
2007 JavaOneSM Conference   |   Session TS-21935   | 

TS-21935

Improving the Quality of Your 
Enterprise Application: Innovative 
Ways to Spot Memory-Related Bugs 
and Bottlenecks 
Vedran Lerenc, Andreas Buchen

Programmers
SAP AG
http://www.sap.com



2007 JavaOneSM Conference   |   Session TS-21935   | 2

Heap
MB

t

IOIOII
IOIIOI
OIOIO
IIOIIOI

-XX:+Heap
DumpOnOutOf
MemoryError

Minor Garbage 
Collection

Full Garbage 
Collection

Memory 
Utilization 

Trend

2 a.m. Out of
Memory

Memory 101



2007 JavaOneSM Conference   |   Session TS-21935   | 3

Goal 

Learn which valuable information can be 
extracted from an HPROF binary heap dump.



2007 JavaOneSM Conference   |   Session TS-21935   | 4

Question

How many objects do you find in big 
production heap dumps?
a) ~ 1.000.000
b) ~ 10.000.000
c) ~ 100.000.000



2007 JavaOneSM Conference   |   Session TS-21935   | 5

Agenda

Memory 101
Analysis Techniques
Pathogen Memory
Lessons Learned
Q&A



2007 JavaOneSM Conference   |   Session TS-21935   | 6

Agenda

Memory 101
Analysis Techniques
Pathogen Memory
Lessons Learned
Q&A



2007 JavaOneSM Conference   |   Session TS-21935   | 7

MB

Types of Memory

Perm

Heap

Classes …

Objects …



2007 JavaOneSM Conference   |   Session TS-21935   | 8

MB

Heap Dump Content

IOIOII
IOIIOI
OIOIO
IIOIIOI

All Objects
Class, fields, primitive values and references

All Classes
ClassLoader, name, super class, static fields

All ClassLoaders
Defined classes

Garbage Collection Roots
Objects defined to be reachable by the JVM software

JVM = Java™ Virtual Machine (JVM™)
The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.



2007 JavaOneSM Conference   |   Session TS-21935   | 9

MB

HPROF Binary Heap Dump

IOIOII
IOIIOI
OIOIO
IIOIIOI

IOIOII
IOIIOI
OIOIO
IIOIIOI

A heap dump cannot not answer
• who and where objects have been created.
• which objects have been garbage collected.

A heap dump contains a snapshot of objects 
that are alive at one point in time.

A full GC is triggered before the heap dump 
is written.



2007 JavaOneSM Conference   |   Session TS-21935   | 10

How to Acquire a Heap Dump

• Available in 1.4.2_12 and 5.0_ 7 and 6.0 upwards
• -XX:+HeapDumpOnOutOfMemoryError

• Alternatives to get it on demand
• -XX:+HeapDumpOnCtrlBreak
• jmap -dump:format=b,file=<filename.hprof> <pid>
• JConsole
• SAP Memory Analyzer / JVMMON / (MMC)
• …



2007 JavaOneSM Conference   |   Session TS-21935   | 11

How to Get a Heap Dump 
via SAP JVMMON

Run JVMMON from bin directory, e.g.,
<system>/SYS/exe/run/sapjvm_5\bin\jvmmon -gui

1

Dump is written to the current working directory of the VM, e.g.,
<system>/JC<instance>/j2ee/cluster/server<node>/java_pid<pid>.hprof

2

For Your Reference



2007 JavaOneSM Conference   |   Session TS-21935   | 12

How to Get a Heap Dump 
via SAP MMC
Configure your server using the Java™ Platform, Enterprise 
Edition (Java™ EE  platform) Config Tool:
<system>/JC<instance>/j2ee/configtool/configtool

-XX:+HeapDumpOnOutOfMemoryError
-XX:+HeapDumpOnCtrlBreak

1

2 Select “Dump Stack Trace” in SAPMMC:

3
Dump is written to:
<system>/JC<instance>/j2ee/cluster/server<node>/java_pid<pid>.hprof

For Your Reference



2007 JavaOneSM Conference   |   Session TS-21935   | 13

Agenda

Memory 101
Analysis Techniques

Retained Size
Dominator Tree
Grouping Anywhere

Pathogen Memory
Lessons Learned
Q&A



2007 JavaOneSM Conference   |   Session TS-21935   | 14

Memory 101—Retained Size
class X
{
static
}

LinkedList

LinkedList$Entry

SomeEntry

String

char[]



2007 JavaOneSM Conference   |   Session TS-21935   | 15

Determine Retained Size
via GC Simulation

1. Remove all references to 
object X.

2. Mark all objects which 
are still reachable from 
the GC Roots.

3. The unmarked objects 
constitute the retained 
set of object X.



2007 JavaOneSM Conference   |   Session TS-21935   | 16

Shallow and Retained Size

• Shallow heap is the memory consumed by one object;
Java HotSpot™ virtual machines (VMs) need 32 or 64 
bits per object handle (depending on the machine 
architecture), 4 bytes per Integer, 8 bytes per Long, etc; 
the total is then aligned to a multiple 8 bytes

• Retained set of X is the set of objects that will be garbage 
collected if X is garbage collected

• Retained heap of X is the sum of shallow sizes of all 
objects in the retained set of X, i.e., memory kept alive
by X

For Your Reference



2007 JavaOneSM Conference   |   Session TS-21935   | 17

Garbage Collection Root

…is an object which is defined to be reachable by the 
JVM software:

• System Class—Class loaded by system class loader, e.g., java.lang.String
• Java Local—Local variable, i.e., method input parameters or locally created 

objects of methods still on the stack of a thread
• Busy Monitor—Everything you have called wait() or notify() on or you have 

synchronized on
• Thread Block—Started but not stopped threads
• JNI Local—Local variable in native code
• JNI Global—Global variable in native code
• Native Stack—In or out parameters in native code; frequently seen as some 

methods have native parts and the objects handled as method parameters 
become GC roots, e.g., parameters used for file/network I/O methods or 
reflection

For Your Reference

JNI = Java Native Interface (JNI™)



2007 JavaOneSM Conference   |   Session TS-21935   | 18

DEMO
SAP Memory Analyzer

Pick it up at the 
SAP booth.



2007 JavaOneSM Conference   |   Session TS-21935   | 19

Dominator Tree

X dominates Y if all paths to Y run through X



2007 JavaOneSM Conference   |   Session TS-21935   | 20

Dominator Tree



2007 JavaOneSM Conference   |   Session TS-21935   | 21

Benefit #1
Retained Set and Size Is the Subtree

Retained Set
Retained Size



2007 JavaOneSM Conference   |   Session TS-21935   | 22

Benefit #2
Quickly Find the Greedy Memory Pigs

Immediate Dominator 
Shows the Closest 
Responsible for 
Keeping an Analyzed 
Object Alive



2007 JavaOneSM Conference   |   Session TS-21935   | 23

Benefit #3
Fast Retained Size Approximation

+
Quick Approximation 
of the Retained Size 
for a Set of Objects Is 
Done by Summing up 
of the Top Dominators 
in the Set



2007 JavaOneSM Conference   |   Session TS-21935   | 24

Benefit #3
Fast Retained Size Approximation

+

For Your Reference



2007 JavaOneSM Conference   |   Session TS-21935   | 25

Benefit #4
Biggest Distinct Object Graphs

Top-level Dominators 
Show Biggest Distinct 
Objects

Easy Grouping by 
Class, Class Loader



2007 JavaOneSM Conference   |   Session TS-21935   | 26

Dominators and Dominator Tree

For Your Reference

• An object x dominates an object y if every path in the 
object graph from the start (or the root) node to y must go 
through x

• The immediate dominator x of some object y is the 
dominator closest to the object y

• We build a dominator tree out of the object graph; in the 
dominator tree each object is the immediate dominator of 
its children



2007 JavaOneSM Conference   |   Session TS-21935   | 27

Dominator Tree Properties
• The objects belonging to the sub-tree of x (i.e., the objects 

dominated by x) represent the retained set of x
• If x is the immediate dominator of y, the immediate 

dominator of x also dominates y
• The edges in the dominator tree do not directly 

correspond to object references from the object graph

For Your Reference



2007 JavaOneSM Conference   |   Session TS-21935   | 28

DEMO
SAP Memory Analyzer

Pick it up at the 
SAP booth.



2007 JavaOneSM Conference   |   Session TS-21935   | 29

Grouping Anywhere

Examples:
• Arrays by Length
• Strings by Value
…

1. Look for a property
2. Group objects by it
3. Inspect big chunks



2007 JavaOneSM Conference   |   Session TS-21935   | 30

Group in Top Dominators
Group Along Shortest Paths

Multiple Paths
Shows Common 
Sections Near the GC Roots

Group 
Dominator Tree 
by Class to Find 

Big Groups of 
Distinct Object 

Graphs



2007 JavaOneSM Conference   |   Session TS-21935   | 31

Group Referrers by Class
(list)

(header)

(entries)

(payload)



2007 JavaOneSM Conference   |   Session TS-21935   | 32

DEMO
SAP Memory Analyzer

Pick it up at the 
SAP booth.



2007 JavaOneSM Conference   |   Session TS-21935   | 33

Total heap size

Total number of 
objects, classes and 
class loaders

Class Histogram

Get an Overview Identify HoldersInspect ContentFind Big Chunks

A 4-Step Approach to Finding Issues



2007 JavaOneSM Conference   |   Session TS-21935   | 34

Check Dominator 
Tree

OQL

Expand / explore 
Dominator Tree

Analyze the Retained 
Set

Object outbound 
references/Object 
inspector

OQL

Object inbound 
references

Paths from the 
GC roots

Open in Dominator
Tree

Get an Overview Identify HoldersInspect ContentFind Big Chunks

Finding Single Objects



2007 JavaOneSM Conference   |   Session TS-21935   | 35

Grouping in 
Dominator Tree

OQL

Console:
TOP_CONSUMERS

ARR_SZ_HISTOGRAM

LOCAL_VARS

...

Object lists / 
histograms

Analyze the Retained 
Set/Size

Class-level 
outbound 
references

OQL

Immediate 
dominators of

Class-level inbound 
references

Multiple paths from 
the GC roots

Get an Overview Identify HoldersInspect ContentFind Big Chunks

Finding Groups of Objects



2007 JavaOneSM Conference   |   Session TS-21935   | 36

DEMO
SAP Memory Analyzer

Pick it up at the 
SAP Booth.



2007 JavaOneSM Conference   |   Session TS-21935   | 37

Question

How many objects do you find in big 
production heap dumps?
a) ~ 1.000.000
b) ~ 10.000.000
c) ~ 100.000.000



2007 JavaOneSM Conference   |   Session TS-21935   | 38

Agenda

Memory 101
Analysis Techniques
Pathogen Memory

Inefficient Data Structures
Duplicate Classes and Leaking Loaders

Lessons Learned
Q&A



2007 JavaOneSM Conference   |   Session TS-21935   | 39

Inefficient Data Structures

Degenerated Hashtable

Unused Collections
Class Node
{

List children =
new ArrayList();

}



2007 JavaOneSM Conference   |   Session TS-21935   | 40

Duplicate Classes
and Leaking Loaders

WARClassLoader

WARClassLoader

Deployment



2007 JavaOneSM Conference   |   Session TS-21935   | 41

Agenda

Memory 101
Analysis Techniques
Pathogen Memory
Lessons Learned
Q&A



2007 JavaOneSM Conference   |   Session TS-21935   | 42

Critical Problems

• Heap
• Inefficient data structures (e.g., badly used collections,

keeping XML DOM,...)
• Caches (i.e., unknown entry size, different competing 

caches,...)
• Perm

• Model/Proxy-driven class generation
• “Leaking” loaders

• In General
• Real size of objects not apparent to programmer
• No application/user quota



2007 JavaOneSM Conference   |   Session TS-21935   | 43

Lessons Learned

• Memory is performance
• It’s not about leaks; it’s about footprint
• Developer tools do not fit enterprise demands
• Analysis can be automated (Expert System)



2007 JavaOneSM Conference   |   Session TS-21935   | 44

Wish List for HPROF Binary++

• Stable object ids
• GC object survival counts
• Perm space info
• Transient field info
• Interface implementing info
• Thread dump
• No more garbage
• Class info before object data
• ...

For Your Reference



2007 JavaOneSM Conference   |   Session TS-21935   | 45

Q&A
vedran.lerenc@sap.com
andreas.buchen@sap.com

https://www.sdn.sap.com/irj/sdn/wiki?path=/display/Java/Java+Memory+Analysis

Visit us at SAP booth
Wednesday, Thursday
11:30 am–1:30 pm



2007 JavaOneSM Conference   |   Session TS-21935   | 

TS-21935

Improving the Quality of Your 
Enterprise Application: Innovative 
Ways to Spot Memory-Related Bugs 
and Bottlenecks 
Vedran Lerenc, Andreas Buchen

Programmers
SAP AG
http://www.sap.com


