
2007 JavaOneSM Conference   |   Session TS-21935   | 

TS-21935

Improving the Quality of Your 
Enterprise Application: Innovative 
Ways to Spot Memory-Related Bugs 
and Bottlenecks 
Vedran Lerenc, Andreas Buchen

Programmers
SAP AG
http://www.sap.com



2007 JavaOneSM Conference   |   Session TS-21935   | 2

Heap
MB

t

IOIOII
IOIIOI
OIOIO
IIOIIOI

-XX:+Heap
DumpOnOutOf
MemoryError

Minor Garbage 
Collection

Full Garbage 
Collection

Memory 
Utilization 

Trend

2 a.m. Out of
Memory

Memory 101



2007 JavaOneSM Conference   |   Session TS-21935   | 3

Goal 

Learn which valuable information can be 
extracted from an HPROF binary heap dump.
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Question

How many objects do you find in big 
production heap dumps?
a) ~ 1.000.000
b) ~ 10.000.000
c) ~ 100.000.000
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MB

Types of Memory

Perm

Heap

Classes …

Objects …
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MB

Heap Dump Content
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All Objects
Class, fields, primitive values and references

All Classes
ClassLoader, name, super class, static fields

All ClassLoaders
Defined classes

Garbage Collection Roots
Objects defined to be reachable by the JVM software

JVM = Java™ Virtual Machine (JVM™)
The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.
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MB

HPROF Binary Heap Dump
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A heap dump cannot not answer
• who and where objects have been created.
• which objects have been garbage collected.

A heap dump contains a snapshot of objects 
that are alive at one point in time.

A full GC is triggered before the heap dump 
is written.
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How to Acquire a Heap Dump

• Available in 1.4.2_12 and 5.0_ 7 and 6.0 upwards
• -XX:+HeapDumpOnOutOfMemoryError

• Alternatives to get it on demand
• -XX:+HeapDumpOnCtrlBreak
• jmap -dump:format=b,file=<filename.hprof> <pid>
• JConsole
• SAP Memory Analyzer / JVMMON / (MMC)
• …
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How to Get a Heap Dump 
via SAP JVMMON

Run JVMMON from bin directory, e.g.,
<system>/SYS/exe/run/sapjvm_5\bin\jvmmon -gui

1

Dump is written to the current working directory of the VM, e.g.,
<system>/JC<instance>/j2ee/cluster/server<node>/java_pid<pid>.hprof

2

For Your Reference
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How to Get a Heap Dump 
via SAP MMC
Configure your server using the Java™ Platform, Enterprise 
Edition (Java™ EE  platform) Config Tool:
<system>/JC<instance>/j2ee/configtool/configtool

-XX:+HeapDumpOnOutOfMemoryError
-XX:+HeapDumpOnCtrlBreak

1

2 Select “Dump Stack Trace” in SAPMMC:

3
Dump is written to:
<system>/JC<instance>/j2ee/cluster/server<node>/java_pid<pid>.hprof

For Your Reference
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Memory 101—Retained Size
class X
{
static
}

LinkedList

LinkedList$Entry

SomeEntry

String

char[]
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Determine Retained Size
via GC Simulation

1. Remove all references to 
object X.

2. Mark all objects which 
are still reachable from 
the GC Roots.

3. The unmarked objects 
constitute the retained 
set of object X.
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Shallow and Retained Size

• Shallow heap is the memory consumed by one object;
Java HotSpot™ virtual machines (VMs) need 32 or 64 
bits per object handle (depending on the machine 
architecture), 4 bytes per Integer, 8 bytes per Long, etc; 
the total is then aligned to a multiple 8 bytes

• Retained set of X is the set of objects that will be garbage 
collected if X is garbage collected

• Retained heap of X is the sum of shallow sizes of all 
objects in the retained set of X, i.e., memory kept alive
by X

For Your Reference
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Garbage Collection Root

…is an object which is defined to be reachable by the 
JVM software:

• System Class—Class loaded by system class loader, e.g., java.lang.String
• Java Local—Local variable, i.e., method input parameters or locally created 

objects of methods still on the stack of a thread
• Busy Monitor—Everything you have called wait() or notify() on or you have 

synchronized on
• Thread Block—Started but not stopped threads
• JNI Local—Local variable in native code
• JNI Global—Global variable in native code
• Native Stack—In or out parameters in native code; frequently seen as some 

methods have native parts and the objects handled as method parameters 
become GC roots, e.g., parameters used for file/network I/O methods or 
reflection

For Your Reference

JNI = Java Native Interface (JNI™)
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DEMO
SAP Memory Analyzer

Pick it up at the 
SAP booth.
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Dominator Tree

X dominates Y if all paths to Y run through X
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Dominator Tree



2007 JavaOneSM Conference   |   Session TS-21935   | 21

Benefit #1
Retained Set and Size Is the Subtree

Retained Set
Retained Size
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Benefit #2
Quickly Find the Greedy Memory Pigs

Immediate Dominator 
Shows the Closest 
Responsible for 
Keeping an Analyzed 
Object Alive
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Benefit #3
Fast Retained Size Approximation

+
Quick Approximation 
of the Retained Size 
for a Set of Objects Is 
Done by Summing up 
of the Top Dominators 
in the Set
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Benefit #3
Fast Retained Size Approximation

+

For Your Reference
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Benefit #4
Biggest Distinct Object Graphs

Top-level Dominators 
Show Biggest Distinct 
Objects

Easy Grouping by 
Class, Class Loader
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Dominators and Dominator Tree

For Your Reference

• An object x dominates an object y if every path in the 
object graph from the start (or the root) node to y must go 
through x

• The immediate dominator x of some object y is the 
dominator closest to the object y

• We build a dominator tree out of the object graph; in the 
dominator tree each object is the immediate dominator of 
its children
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Dominator Tree Properties
• The objects belonging to the sub-tree of x (i.e., the objects 

dominated by x) represent the retained set of x
• If x is the immediate dominator of y, the immediate 

dominator of x also dominates y
• The edges in the dominator tree do not directly 

correspond to object references from the object graph

For Your Reference
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DEMO
SAP Memory Analyzer

Pick it up at the 
SAP booth.
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Grouping Anywhere

Examples:
• Arrays by Length
• Strings by Value
…

1. Look for a property
2. Group objects by it
3. Inspect big chunks
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Group in Top Dominators
Group Along Shortest Paths

Multiple Paths
Shows Common 
Sections Near the GC Roots

Group 
Dominator Tree 
by Class to Find 

Big Groups of 
Distinct Object 

Graphs
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Group Referrers by Class
(list)

(header)

(entries)

(payload)



2007 JavaOneSM Conference   |   Session TS-21935   | 32

DEMO
SAP Memory Analyzer

Pick it up at the 
SAP booth.
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Total heap size

Total number of 
objects, classes and 
class loaders

Class Histogram

Get an Overview Identify HoldersInspect ContentFind Big Chunks

A 4-Step Approach to Finding Issues
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Check Dominator 
Tree

OQL

Expand / explore 
Dominator Tree

Analyze the Retained 
Set

Object outbound 
references/Object 
inspector

OQL

Object inbound 
references

Paths from the 
GC roots

Open in Dominator
Tree

Get an Overview Identify HoldersInspect ContentFind Big Chunks

Finding Single Objects
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Grouping in 
Dominator Tree

OQL

Console:
TOP_CONSUMERS

ARR_SZ_HISTOGRAM

LOCAL_VARS

...

Object lists / 
histograms

Analyze the Retained 
Set/Size

Class-level 
outbound 
references

OQL

Immediate 
dominators of

Class-level inbound 
references

Multiple paths from 
the GC roots

Get an Overview Identify HoldersInspect ContentFind Big Chunks

Finding Groups of Objects
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DEMO
SAP Memory Analyzer

Pick it up at the 
SAP Booth.
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Question

How many objects do you find in big 
production heap dumps?
a) ~ 1.000.000
b) ~ 10.000.000
c) ~ 100.000.000
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Inefficient Data Structures

Degenerated Hashtable

Unused Collections
Class Node
{

List children =
new ArrayList();

}
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Duplicate Classes
and Leaking Loaders

WARClassLoader

WARClassLoader

Deployment
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Critical Problems

• Heap
• Inefficient data structures (e.g., badly used collections,

keeping XML DOM,...)
• Caches (i.e., unknown entry size, different competing 

caches,...)
• Perm

• Model/Proxy-driven class generation
• “Leaking” loaders

• In General
• Real size of objects not apparent to programmer
• No application/user quota
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Lessons Learned

• Memory is performance
• It’s not about leaks; it’s about footprint
• Developer tools do not fit enterprise demands
• Analysis can be automated (Expert System)
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Wish List for HPROF Binary++

• Stable object ids
• GC object survival counts
• Perm space info
• Transient field info
• Interface implementing info
• Thread dump
• No more garbage
• Class info before object data
• ...

For Your Reference



2007 JavaOneSM Conference   |   Session TS-21935   | 45

Q&A
vedran.lerenc@sap.com
andreas.buchen@sap.com

https://www.sdn.sap.com/irj/sdn/wiki?path=/display/Java/Java+Memory+Analysis

Visit us at SAP booth
Wednesday, Thursday
11:30 am–1:30 pm
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