Challenge Proposal: Accelerating Witness
Generation through Circuit Optimization

CEL Team
January 16, 2026

1 Context: The Bottleneck of Verifiable Computa-
tion

Zero-knowledge (zk) proofs are rapidly becoming foundational tools in cryptography,
enabling applications such as scalable rollups, anonymous identity protocols, verifiable
machine learning, and decentralized Al agents.

While zk proving systems have seen major performance improvements in proof generation
and verification, a lesser-known bottleneck remains:

Witness generation, i.e. the computation of all intermediate values required
to satisfy a zk circuit.

This step can dominate runtime, and improving the performance of witness generation
has the potential to accelerate proving systems across many domains.

1.1 Background: Rank-1 Constraint System (R1CS)

A Rank-1 Constraint System (R1CS) is a set of equations of the form:
(@i, w) - (bi, W) = (ci, W) (1)
where:

e w is the witness vector, containing all values involved in the computation:

— A leading 1 (used for constants)
— All public inputs (known to the verifier)
— All public outputs (claimed results, known to the verifier)
— All private inputs (secret data, hidden from the verifier)
— All intermediate variables (internal computation values, hidden from the
verifier)
e a;, b;, c; are coefficient vectors selecting and weighting elements of w for constraint
1.
In matrix notation, an R1CS can be written as:
(Aw) o (Bw) = Cw (2)
where o denotes element-wise multiplication, A, B, C are n X m matrices, n is the number
of constraints, and m is the witness size.

Example: z =22 -y +vy

We decompose 22 - y + y into three constraints:

vy =z -2 (Constraint 1)
veg =vy -y (Constraint 2)

z=wvy+y (Constraint 3)

The (unassigned) witness vector is: w = [1, z, z,y, v, U] where:
e 1: constant term

e z,y: public inputs (known to the verifier)

e 2: public output (verifier checks it)

e vy, vy intermediate variables (private)

The constraints in R1CS row form are:

C1: ([0,0,1,0,0,0], w) - ([0,0,1,0,0,0], w) = ([0,0,0,0,1,0], w) = - z=nuvy,
C2: ([0,0,0,0,1,0], w) - ([0,0,0,1,0,0], w) = ([0,0,0,0,0,1], w) = iy =,
C3: ([0,0,0,1,0,1], w) - ([1,0,0,0,0,0], w) = ([0,1,0,0,0,0], w) = (va+y)-1=2z

Assigned example

If x =3, y =5 (public), then: v; =9, vy =45, z = 50

The full witness is: w = [1,50,3,5,9,45] The verifier sees x = 3 and z = 50; the proof
ensures there exist private intermediate values vy, vy satisfying all constraints without
revealing them.

2 Challenge Statement: Accelerating Witness Gen-
eration through Circuit Optimization

Witness generation becomes a bottleneck because it requires evaluating all intermediate
constraints in the circuit. These operations dominate both runtime and memory use.
While proof systems have been aggressively optimized, this layer remains under-explored
and has become a new performance bottleneck for proof generation.[I]

This challenge addresses a critical systems-level bottleneck in zero-knowledge workflows:

Given a random R1CS circuit C°, participants must produce an alternative
R1CS circuit C* that computes the same function as C° and uses fewer con-
straints than C°.

e Submissions are evaluated by verifying correctness (equivalence to C°), comparing
constraint counts with C° and verifying that C* is not underconstrained.

e Input CY R1CS circuits are randomly generated to prevent hand-optimizing against
known benchmarks.

e Participants must support various difficulty tiers. Increasing difficulty is obtained
by scaling the circuit complexity parameters such as size, depth, and redundancy

(see Sec. [2.4).

The primary goal for challengers is to write or compile more optimized circuits (C*)
representing the same function. Successful optimization results in smaller constraint
systems and, by consequence, faster witness generation and reduced memory overhead.
This challenge can add value in:

1. Optimizing unoptimized circuits:

e Current compilers (e.g., Circom) perform only basic optimizations, so unopti-
mized code lead to inefficient circuits;

e Writing hand-crafted optimized code is a high barrier to entry. Instead, to
lower the barrier for developers, Circom can be used to compile unoptimized
code, and then TIG can take the unoptimized circuits and get them much
closer (if not better) than what can be achieved with optimized code.

2. Making Advancements in circuit simplification, e.g., extracting common subexpres-
sions or additive terms, is non-trivial but offers large gains.

2.1 Random Instance Generation

To ensure fair, reproducible, and scalable benchmarks, we utilize a deterministic proce-
dural generation pipeline. This approach mitigates the risk of overfitting to static bench-
marks and allows for arbitrary scaling of difficulty. The generation process transforms a
cryptographic seed into a valid R1CS circuit through three formal stages:

1. Procedural Signal Graph Generation: We define a custom generator G that
accepts a random seed s and a configuration vector . While s provides the en-
tropy for uniqueness, 6 = (Kiarget, ps D, Prap) acts as the blueprint for complexity.
Specifically:

® Kiarger: The target constraint count.
e p: The density of intentionally redundant logic (for optimization potential).
e D: The maximum computational depth.

e P, The probability of injecting Algebraic Power Maps (e.g., © +— 2°)
instead of standard linear operations.

This inclusion of Power Maps mimics the non-linear S-Boxes found in ZK-friendly
hash functions (like Poseidon over BN254), ensuring the challenge targets realistic
algebraic bottlenecks rather than unstructured noise.

2. Transpilation to High-Level IR: The raw DAG is deterministically lowered into
Circom code. Crucially, high-degree operations (like 2°) are explicitly unrolled into
chains of quadratic constraints (e.g., 2> = z - x, 2* = 2? - 22, 2° = 2* - x). This un-
rolling introduces intermediate signals that serve as prime targets for optimization,
testing the solver’s ability to identify and collapse algebraic redundancy.

3. R1CS Compilation: The high-level IR is compiled to the final R1CS baseline
C" with optimization flags disabled (e.g., —=00). This ensures that the structural
inefficiencies injected by the generator are preserved, providing the necessary margin
for challengers to achieve the required Better-Than-Baseline (BTB) improvement.

Since the pipeline is deterministic, the tuple (s, §) acts as a compressed representation
of the challenge. Both Prover and Verifier can independently reconstruct C° from the
seed, ensuring transparency.

2.2 Solution verification

To verify that the circuit C* provided by the Challenger is indeed a valid solution, we
need to check that the C* performs the same computation as C?, i.e.

C*(x) =C°z) ,Vx €F (3)

Where F is a finite field. In the following, we reduce the condition in Eq. 3| to checking
circuit equivalence at a random point, meaning:

C*(Zevat) = C°(Tepat) > Teval € F (4)

This reduction is rooted in the fact that each R1CS set of equations can be represented
as a set of polynomial functions mapping the public input variables to the public output
variables. We thus leverage the Schwartz-Zippel lemma to prove probabilistic equality of
two polynomials (or sets of polynomials) by evaluating them at a random point over a
sufficiently large field.

To this end, we adopt the following scheme. We refer to Prover as the entity sub-
mitting the solution and Verifier as the entity verifying the correctness of the solution.

Given this notation, the challenge and verification protocol proceeds as follows:

1. Setup: Verifier sends an instance of the problem, i.e., an R1CS circuit C° with K°
constraints.

2. Optimization: Prover computes a new R1CS circuit C* with K* constraints.

3. Random Point Derivation: Given a hashing function A (known to both parties),
the Prover computes the canonical hashed| of:

e The input circuit C° i.e., hg = H(C°);
e The computed circuit C*, i.e., h, = H(C*);

e The random evaluation point Teyq = H(ho||hs)-
4. Execution: Prover executes both circuits locally using .., as the input:

e Computes the witness w® and public output ygub for CY;

e Computes the witness w* and public output yy , for C*.

5. Proof Generation: To relieve the Verifier of re-executing C°, the Prover generates
two Zero-Knowledge proofs using Spartan (or an equivalent proving system):

e 70 A proof that Co(meml,wo) — Z/Sub;

o 7 A proof that C*(Tevar, W*) = Y-

6. Submission: Prover sends the tuple § = [C’*, Tevals ygub, Ypubs 70, W*} to the Verifier.

ITo compute the hash of a circuit, we define a canonical representation. The canonical hash is com-
puted by lexicographically sorting all constraints based on the string representation of their coefficients
and variable indices. This ensures that topologically identical circuits yield the same hash regardless of
variable naming permutations.

The Verifier then validates the submission via the following steps:

1. Hash Validation: Verifier independently computes h{, = H(C°) and h, = H(C*)
to verify that the evaluation point provided matches the canonical derivation:

?

Leval = H(h,0| |h;)

2. Constraint Check: Verifier checks that the challenger has actually optimized the
circuit:
K*<K°

3. Output Equivalence: Verifier checks that both circuits produced identical public

outputs:
”

0 ! *
ypub = ypub
4. Proof Verification: Verifier leverages the Spartan verifier to check the validity of
both proofs:
e Verify 7°: Confirms g, is the true output of the baseline circuit C° on eyqr;

e Verify 7*: Confirms y;ub is the true output of the optimized circuit C* on Z,yq;.

Note on Performance: By requiring the Prover to submit a proof (%) for the base-
line execution, we transform the verification complexity from linear O(|C?|) to constant
time O(1) (dominated only by SNARK verification). This ensures the Verifier remains
lightweight regardless of the difficulty or size of the challenge circuit]

2Further optimization is possible by constructing a single ”Solution Circuit” that composes the hash-
ing, execution, and comparison into one proving system. However, the ”Double Proof” scheme described
here offers the best balance between implementation simplicity and verification speed.

2.3 Security Analysis

The proposed verification protocol relies on a combination of probabilistic checking and
cryptographic commitments to guarantee soundness. The security of the scheme holds
under the following standard assumptions:

1. Collision Resistance of the Hash Function: We assume #H (e.g., Poseidon or
SHA-256) is a collision-resistant hash function. This prevents a malicious Prover
from finding two distinct circuits Cy # Cy such that H(Cy) = H(Cy).

2. Schwartz-Zippel Lemma (Probabilistic Equivalence): The core security guar-
antee relies on the fact that any directed acyclic arithmetic circuit (such as our
R1CS) inherently computes a multivariate polynomial map from inputs to outputs
[2]. The Schwartz-Zippel Lemma [3] states that for two distinct polynomials P(x)
and Q(x) over a large finite field IF, the probability that they agree on a randomly
selected point r € F is bounded by:

d
Pr[P(r) = Q(r) | P # Q] < T
where d is the total multiplicative degree (depth) of the circuit. Since the field size
|F| is cryptographically large (e.g., ~ 225%) and vastly exceeds any realizable circuit
depth d, this probability is negligible.

3. Input Commitment (Fiat-Shamir Transformation): To prevent ”Input Grind-
ing” (where an attacker crafts a circuit C* that is valid only for a specific input),
the protocol enforces a strict dependency chain via the Fiat-Shamir heuristic [4):

derive

cr @) H(C*> — Zeval

The evaluation point ., is derived after the circuit is committed to. Any modifi-
cation to C* to accommodate a specific input would alter H(C*), thereby changing
Tepa itself. This circular dependency renders input-specific attacks computationally
infeasible.

4. Soundness of the ZK-SNARK: The scheme assumes the underlying proving
system, Spartan [5], is computationally sound. A malicious Prover cannot generate
a valid proof 7 for a false statement (e.g., claiming 37, is the output of C* when it
is not) except with negligible probability.

Under these conditions, the ”"Double Proof” verification scheme provides security
equivalent to direct execution by the Verifier, while reducing the Verifier’'s computational
complexity from linear O(N) to constant O(1).

2.4 Difficulty Tracks
We parameterize the challenge difficulty tracks by a &, the Circuit complexity scalar.

2.4.1 Circuit Complexity (¢)

Our procedural generation allows us to scale challenges dynamically. We define the
circuit complexity ¢ as a target scalar value. To generate an instance matching a specific
difficulty 6, we map it to a concrete configuration vector 6 via a scaling function F:

0 = F<5) = <Ktarget(6)> P Palias; Plirm Pmap> (5)

® Kigrget(d) = x 1000 — scales the constraint count linearly with difficulty.

e p = 0.25 - redundancy ratio held constant at 25%, ensuring consistent optimization
potential from shared subexpressions across all difficulty levels.

e Pi.s = 0.15 — alias operation frequency held constant at 15%.
e Py, = 0.20 — linear scaling operation frequency held constant at 20%.
e P4 = 0.15 — algebraic power map (S-boxed) frequency held constant at 15%.

This scaling approach maintains isomorphic difficulty characteristics across all tiers.
Each difficulty level produces circuits with the same statistical distribution of optimiza-
tion traps and redundancy patterns, scaled proportionally in size. This ensures that:

1. The optimization challenge remains consistent across difficulties — a solver that
performs well on difficulty 1 should scale predictably to higher difficulties.

2. Performance benchmarks are comparable — doubling the difficulty approximately
doubles the circuit size while maintaining the same 65% theoretical reduction
potential.

If future versions require non-uniform difficulty scaling (where higher difficulties become
progressively harder to optimize beyond just size), the parameters p, Piqs, FPin, and
P,y can be made functions of §. For example, decreasing p(d) at higher difficulties
would reduce redundancy and make common subexpression elimination less effective.

2.4.2 Empirical Calibration and Variance Control

A critical requirement for a fair challenge is Isotropic Difficulty: two distinct random
instances generated with the same complexity parameters § must present a comparable
optimization challenge. If the variance between instances is high, the competition risks
rewarding ”lucky” seeds rather than superior solvers.

To ensure consistency, we employ a pre-computation calibration phase using a Refer-
ence Solver S, (e.g., standard Circom compiler with -01). We validate the difficulty
parameters as follows:

1. Monte Carlo Sampling: For a candidate configuration €, we generate a large
batch of instances {C?,...,C%}.

2. Reference Reduction: We measure the Natural Reducibility n; of each instance

using the Reference Solver:
|Sres (C7)]
,=1— 6
! [e R

3. Variance Constraint: We calculate the mean reducibility u, and standard devia-
tion o, of the batch. A configuration 6 is valid if and only if the standard deviation
is below a strict tolerance threshold 7 (e.g., o, < 0.05).

This protocol ensures that the difficulty track parameter J is a reliable predictor of
effort. By filtering out configuration vectors that produce unstable or "noisy” difficulty
distributions, we guarantee that all participants in a given tier face a statistically equiv-
alent optimization task, regardless of the random seed assigned to them.

3 Quality
Given a challenger’s solution, we define its quality € € [0, 1] as :
K*
1-— 700 =€ (7)

where K* and K° are the number of constraints of the challenger’s solution circuit and the
original circuit, respectively. Thus, larger € means higher circuit reduction. For intuition:
e = 0.6 means to achieve a 60% reduction in the circuit’s size.

Acknowledgments We are deeply grateful to Carlo Modica and Wisdom Ogwu for
their invaluable contributions to this work. Carlo Modica provided essential insights
into the challenge design methodology. Wisdom Ogwu contributed significantly to the
development and analysis of the solution verification algorithm.

10

References

[1] Zheming Ye, Xiaodong Qi, Zhao Zhang, and Cheqing Jin. Yoimiya: A Scalable
Framework for Optimal Resource Utilization in ZK-SNARK Systems. arXiv preprint
arXiv:2502.18288, 2024. https://arxiv.org/pdf/2502.18288

[2] Amir Shpilka and Amir Yehudayoff. Arithmetic Circuits: A survey of recent results
and open questions. Foundations and Trends®) in Theoretical Computer Science,
5(3-4):207-388, 2010.

[3] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identi-
ties. Journal of the ACM (JACM), 27(4):701-717, 1980.

[4] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to Identi-
fication and Signature Problems. Advances in Cryptology — CRYPTO’ 86, Lecture
Notes in Computer Science, vol 263. Springer, 1986.

[5] Srinath Setty. Spartan: Efficient and general-purpose zkSNARKs without trusted
setup. Advances in Cryptology — CRYPTO 2020, pages 704-737. Springer, 2020.

11

https://arxiv.org/pdf/2502.18288

	Context: The Bottleneck of Verifiable Computation
	Background: Rank-1 Constraint System (R1CS)

	Challenge Statement: Accelerating Witness Generation through Circuit Optimization
	Random Instance Generation
	Solution verification
	Security Analysis
	Difficulty Tracks
	Circuit Complexity ()
	Empirical Calibration and Variance Control

	Quality

