
MySQL 5.0 Reference Manual

Abstract

This is the MySQL™ Reference Manual. It documents MySQL 5.0 through 5.0.96.

End of Product Lifecycle. Active development for MySQL Database Server version 5.0 has ended. Oracle offers
various support offerings which may be of interest. For details and more information, see the MySQL section of
the Lifetime Support Policy for Oracle Technology Products (http://www.oracle.com/us/support/lifetime-support/
index.html). Please consider upgrading to a recent version.

MySQL 5.0 features. This manual describes features that are not included in every edition of MySQL 5.0; such
features may not be included in the edition of MySQL 5.0 licensed to you. If you have any questions about the
features included in your edition of MySQL 5.0, refer to your MySQL 5.0 license agreement or contact your Oracle
representative.

For notes detailing the changes in each release, see the MySQL 5.0 Release Notes.

For help with using MySQL, please visit either the MySQL Forums or MySQL Mailing Lists, where you can discuss
your issues with other MySQL users.

For additional documentation on MySQL products, including translations of the documentation into other languages,
and downloadable versions in variety of formats, including HTML and PDF formats, see the MySQL Documentation
Library.

Licensing information. This product may include third-party software, used under license. If you are using a
Commercial release of MySQL 5.0, see this document for licensing information, including licensing information
relating to third-party software that may be included in this Commercial release. If you are using a Community release
of MySQL 5.0, see this document for licensing information, including licensing information relating to third-party
software that may be included in this Community release.

Document generated on: 2016-05-11 (revision: 47682)

http://www.oracle.com/us/support/lifetime-support/index.html
http://www.oracle.com/us/support/lifetime-support/index.html
http://dev.mysql.com/doc/relnotes/mysql/5.0/en/
http://forums.mysql.com
http://lists.mysql.com
http://dev.mysql.com/doc
http://dev.mysql.com/doc
http://downloads.mysql.com/docs/licenses/mysqld-5.0-com-en.pdf
http://downloads.mysql.com/docs/licenses/mysqld-5.0-gpl-en.pdf

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. iii

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Table of Contents
Preface and Legal Notices ... xix
1 General Information ... 1

1.1 About This Manual ... 2
1.2 Typographical and Syntax Conventions ... 3
1.3 Overview of the MySQL Database Management System .. 4

1.3.1 What is MySQL? ... 4
1.3.2 The Main Features of MySQL .. 6
1.3.3 History of MySQL .. 9

1.4 What Is New in MySQL 5.0 .. 9
1.5 MySQL Development History .. 11
1.6 MySQL Information Sources ... 12

1.6.1 MySQL Mailing Lists .. 12
1.6.2 MySQL Community Support at the MySQL Forums ... 14
1.6.3 MySQL Community Support on Internet Relay Chat (IRC) .. 15
1.6.4 MySQL Enterprise .. 15

1.7 How to Report Bugs or Problems .. 15
1.8 MySQL Standards Compliance .. 20

1.8.1 MySQL Extensions to Standard SQL .. 21
1.8.2 MySQL Differences from Standard SQL .. 24
1.8.3 How MySQL Deals with Constraints ... 29

1.9 Credits ... 33
1.9.1 Contributors to MySQL ... 33
1.9.2 Documenters and translators .. 37
1.9.3 Packages that support MySQL ... 39
1.9.4 Tools that were used to create MySQL ... 39
1.9.5 Supporters of MySQL .. 40

2 Installing and Upgrading MySQL .. 41
2.1 MySQL Installation Overview ... 42
2.2 Determining Your Current MySQL Version ... 42
2.3 Notes for MySQL Enterprise Server .. 43

2.3.1 Enterprise Server Distribution Types ... 44
2.3.2 Upgrading MySQL Enterprise Server .. 44

2.4 Notes for MySQL Community Server ... 44
2.4.1 Overview of MySQL Community Server Installation ... 44
2.4.2 Choosing Which MySQL Distribution to Install ... 45

2.5 How to Get MySQL .. 49
2.6 Verifying Package Integrity Using MD5 Checksums or GnuPG .. 49

2.6.1 Verifying the MD5 Checksum ... 49
2.6.2 Signature Checking Using GnuPG .. 50
2.6.3 Signature Checking Using Gpg4win for Windows .. 53
2.6.4 Signature Checking Using RPM ... 58

2.7 Installation Layouts ... 59
2.8 Compiler-Specific Build Characteristics .. 61
2.9 Standard MySQL Installation from a Binary Distribution .. 61
2.10 Installing MySQL on Microsoft Windows .. 61

2.10.1 Choosing An Installation Package ... 63
2.10.2 Installing MySQL on Microsoft Windows Using an MSI Package 63
2.10.3 MySQL Server Instance Configuration Wizard ... 70
2.10.4 Installing MySQL on Microsoft Windows Using a noinstall Zip Archive 81
2.10.5 Troubleshooting a MySQL Installation Under Windows ... 90
2.10.6 Windows Postinstallation Procedures .. 91

MySQL 5.0 Reference Manual

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. iv

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2.10.7 Upgrading MySQL on Windows .. 93
2.10.8 Installing MySQL from Source on Windows ... 94

2.11 Installing MySQL on OS X .. 99
2.12 Installing MySQL on Linux Using RPM Packages ... 102
2.13 Installing MySQL on Solaris .. 106
2.14 Installing MySQL on i5/OS .. 106
2.15 Installing MySQL on NetWare ... 110
2.16 Installing MySQL on Unix/Linux Using Generic Binaries .. 112
2.17 Installing MySQL from Source ... 115

2.17.1 Installing MySQL Using a Standard Source Distribution .. 116
2.17.2 Installing MySQL Using a Development Source Tree ... 119
2.17.3 MySQL Source-Configuration Options ... 122
2.17.4 Dealing with Problems Compiling MySQL .. 130
2.17.5 Compiling and Linking an Optimized mysqld Server ... 133

2.18 Postinstallation Setup and Testing ... 134
2.18.1 Initializing the Data Directory .. 135
2.18.2 Starting the Server ... 138
2.18.3 Testing the Server .. 142
2.18.4 Securing the Initial MySQL Accounts .. 144
2.18.5 Starting and Stopping MySQL Automatically .. 148

2.19 Upgrading or Downgrading MySQL .. 149
2.19.1 Upgrading MySQL .. 149
2.19.2 Downgrading MySQL ... 163
2.19.3 Checking Whether Tables or Indexes Must Be Rebuilt ... 166
2.19.4 Rebuilding or Repairing Tables or Indexes .. 168
2.19.5 Copying MySQL Databases to Another Machine .. 170

2.20 Operating System-Specific Notes ... 171
2.20.1 Linux Notes ... 171
2.20.2 OS X Notes ... 178
2.20.3 Solaris Notes ... 178
2.20.4 BSD Notes ... 182
2.20.5 Other Unix Notes ... 185
2.20.6 OS/2 Notes .. 202

2.21 Environment Variables .. 203
2.22 Perl Installation Notes ... 204

2.22.1 Installing Perl on Unix .. 205
2.22.2 Installing ActiveState Perl on Windows .. 206
2.22.3 Problems Using the Perl DBI/DBD Interface .. 206

3 Tutorial .. 209
3.1 Connecting to and Disconnecting from the Server .. 209
3.2 Entering Queries ... 210
3.3 Creating and Using a Database .. 213

3.3.1 Creating and Selecting a Database ... 215
3.3.2 Creating a Table .. 215
3.3.3 Loading Data into a Table .. 217
3.3.4 Retrieving Information from a Table .. 218

3.4 Getting Information About Databases and Tables ... 232
3.5 Using mysql in Batch Mode .. 233
3.6 Examples of Common Queries .. 235

3.6.1 The Maximum Value for a Column ... 235
3.6.2 The Row Holding the Maximum of a Certain Column ... 235
3.6.3 Maximum of Column per Group .. 236
3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column 236
3.6.5 Using User-Defined Variables ... 237

MySQL 5.0 Reference Manual

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. v

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

3.6.6 Using Foreign Keys .. 237
3.6.7 Searching on Two Keys ... 239
3.6.8 Calculating Visits Per Day .. 240
3.6.9 Using AUTO_INCREMENT ... 240

3.7 Using MySQL with Apache ... 242
4 MySQL Programs .. 243

4.1 Overview of MySQL Programs .. 244
4.2 Using MySQL Programs ... 249

4.2.1 Invoking MySQL Programs ... 249
4.2.2 Connecting to the MySQL Server ... 250
4.2.3 Specifying Program Options ... 254
4.2.4 Using Options on the Command Line ... 254
4.2.5 Program Option Modifiers ... 256
4.2.6 Using Option Files ... 257
4.2.7 Command-Line Options that Affect Option-File Handling .. 261
4.2.8 Using Options to Set Program Variables ... 262
4.2.9 Option Defaults, Options Expecting Values, and the = Sign 263
4.2.10 Setting Environment Variables .. 266

4.3 MySQL Server and Server-Startup Programs ... 267
4.3.1 mysqld — The MySQL Server ... 267
4.3.2 mysqld_safe — MySQL Server Startup Script .. 268
4.3.3 mysql.server — MySQL Server Startup Script .. 272
4.3.4 mysqld_multi — Manage Multiple MySQL Servers ... 274

4.4 MySQL Installation-Related Programs .. 279
4.4.1 comp_err — Compile MySQL Error Message File .. 279
4.4.2 make_win_bin_dist — Package MySQL Distribution as Zip Archive 280
4.4.3 make_win_src_distribution — Create Source Distribution for Windows 281
4.4.4 mysqlbug — Generate Bug Report ... 282
4.4.5 mysql_fix_privilege_tables — Upgrade MySQL System Tables 282
4.4.6 mysql_install_db — Initialize MySQL Data Directory ... 283
4.4.7 mysql_secure_installation — Improve MySQL Installation Security 285
4.4.8 mysql_tzinfo_to_sql — Load the Time Zone Tables ... 285
4.4.9 mysql_upgrade — Check Tables for MySQL Upgrade .. 286

4.5 MySQL Client Programs ... 290
4.5.1 mysql — The MySQL Command-Line Tool .. 290
4.5.2 mysqladmin — Client for Administering a MySQL Server 311
4.5.3 mysqlcheck — A Table Maintenance Program .. 318
4.5.4 mysqldump — A Database Backup Program .. 324
4.5.5 mysqlimport — A Data Import Program ... 341
4.5.6 mysqlshow — Display Database, Table, and Column Information 345

4.6 MySQL Administrative and Utility Programs ... 349
4.6.1 innochecksum — Offline InnoDB File Checksum Utility .. 349
4.6.2 myisam_ftdump — Display Full-Text Index information .. 350
4.6.3 myisamchk — MyISAM Table-Maintenance Utility .. 351
4.6.4 myisamlog — Display MyISAM Log File Contents .. 368
4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables 369
4.6.6 mysqlaccess — Client for Checking Access Privileges .. 375
4.6.7 mysqlbinlog — Utility for Processing Binary Log Files .. 378
4.6.8 mysqldumpslow — Summarize Slow Query Log Files .. 387
4.6.9 mysqlhotcopy — A Database Backup Program .. 389
4.6.10 mysqlmanager — The MySQL Instance Manager .. 392
4.6.11 mysql_convert_table_format — Convert Tables to Use a Given Storage
Engine .. 403
4.6.12 mysql_explain_log — Use EXPLAIN on Statements in Query Log 404

MySQL 5.0 Reference Manual

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. vi

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

4.6.13 mysql_find_rows — Extract SQL Statements from Files 404
4.6.14 mysql_fix_extensions — Normalize Table File Name Extensions 405
4.6.15 mysql_setpermission — Interactively Set Permissions in Grant Tables 405
4.6.16 mysql_tableinfo — Generate Database Metadata .. 406
4.6.17 mysql_waitpid — Kill Process and Wait for Its Termination 408
4.6.18 mysql_zap — Kill Processes That Match a Pattern .. 409

4.7 MySQL Program Development Utilities .. 409
4.7.1 msql2mysql — Convert mSQL Programs for Use with MySQL 410
4.7.2 mysql_config — Display Options for Compiling Clients .. 410
4.7.3 my_print_defaults — Display Options from Option Files 411
4.7.4 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols 412

4.8 Miscellaneous Programs ... 413
4.8.1 perror — Explain Error Codes ... 413
4.8.2 replace — A String-Replacement Utility .. 414
4.8.3 resolveip — Resolve Host name to IP Address or Vice Versa 414

5 MySQL Server Administration .. 417
5.1 The MySQL Server ... 417

5.1.1 Server Option and Variable Reference .. 418
5.1.2 Server Configuration Defaults ... 439
5.1.3 Server Command Options .. 439
5.1.4 Server System Variables .. 466
5.1.5 Using System Variables ... 556
5.1.6 Server Status Variables .. 566
5.1.7 Server SQL Modes .. 586
5.1.8 Server-Side Help .. 594
5.1.9 Server Response to Signals ... 594
5.1.10 The Server Shutdown Process ... 595

5.2 The MySQL Data Directory ... 596
5.3 The mysql System Database ... 597
5.4 MySQL Server Logs ... 598

5.4.1 The Error Log .. 598
5.4.2 The General Query Log ... 600
5.4.3 The Binary Log .. 600
5.4.4 The Slow Query Log .. 604
5.4.5 Server Log Maintenance .. 605

5.5 Running Multiple MySQL Instances on One Machine .. 606
5.5.1 Setting Up Multiple Data Directories .. 607
5.5.2 Running Multiple MySQL Instances on Windows ... 608
5.5.3 Running Multiple MySQL Instances on Unix .. 611
5.5.4 Using Client Programs in a Multiple-Server Environment .. 613

6 Security ... 615
6.1 General Security Issues .. 616

6.1.1 Security Guidelines .. 616
6.1.2 Keeping Passwords Secure .. 617
6.1.3 Making MySQL Secure Against Attackers ... 625
6.1.4 Security-Related mysqld Options and Variables ... 627
6.1.5 How to Run MySQL as a Normal User ... 628
6.1.6 Security Issues with LOAD DATA LOCAL ... 629
6.1.7 Client Programming Security Guidelines .. 630

6.2 The MySQL Access Privilege System .. 631
6.2.1 Privileges Provided by MySQL ... 632
6.2.2 Grant Tables .. 636
6.2.3 Specifying Account Names ... 641
6.2.4 Access Control, Stage 1: Connection Verification ... 643

MySQL 5.0 Reference Manual

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. vii

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

6.2.5 Access Control, Stage 2: Request Verification ... 646
6.2.6 When Privilege Changes Take Effect .. 648
6.2.7 Troubleshooting Problems Connecting to MySQL .. 649

6.3 MySQL User Account Management ... 654
6.3.1 User Names and Passwords .. 654
6.3.2 Adding User Accounts .. 656
6.3.3 Removing User Accounts ... 659
6.3.4 Setting Account Resource Limits .. 659
6.3.5 Assigning Account Passwords .. 661
6.3.6 Using Secure Connections ... 662
6.3.7 Creating SSL Certificates and Keys Using openssl .. 670
6.3.8 Connecting to MySQL Remotely from Windows with SSH .. 676
6.3.9 SQL-Based MySQL Account Activity Auditing .. 676

7 Backup and Recovery ... 679
7.1 Backup and Recovery Types ... 680
7.2 Database Backup Methods ... 682
7.3 Example Backup and Recovery Strategy ... 684

7.3.1 Establishing a Backup Policy .. 685
7.3.2 Using Backups for Recovery .. 687
7.3.3 Backup Strategy Summary ... 688

7.4 Using mysqldump for Backups .. 688
7.4.1 Dumping Data in SQL Format with mysqldump .. 688
7.4.2 Reloading SQL-Format Backups ... 689
7.4.3 Dumping Data in Delimited-Text Format with mysqldump ... 690
7.4.4 Reloading Delimited-Text Format Backups .. 691
7.4.5 mysqldump Tips ... 692

7.5 Point-in-Time (Incremental) Recovery Using the Binary Log .. 694
7.5.1 Point-in-Time Recovery Using Event Times ... 695
7.5.2 Point-in-Time Recovery Using Event Positions .. 696

7.6 MyISAM Table Maintenance and Crash Recovery .. 697
7.6.1 Using myisamchk for Crash Recovery ... 697
7.6.2 How to Check MyISAM Tables for Errors .. 698
7.6.3 How to Repair MyISAM Tables ... 699
7.6.4 MyISAM Table Optimization ... 701
7.6.5 Setting Up a MyISAM Table Maintenance Schedule .. 702

8 Optimization .. 703
8.1 Optimization Overview .. 704
8.2 Optimizing SQL Statements .. 706

8.2.1 Optimizing SELECT Statements ... 707
8.2.2 Optimizing DML Statements ... 742
8.2.3 Optimizing Database Privileges .. 744
8.2.4 Other Optimization Tips .. 744

8.3 Optimization and Indexes .. 745
8.3.1 How MySQL Uses Indexes ... 745
8.3.2 Using Primary Keys ... 746
8.3.3 Using Foreign Keys .. 746
8.3.4 Column Indexes ... 746
8.3.5 Multiple-Column Indexes .. 747
8.3.6 Verifying Index Usage .. 749
8.3.7 MyISAM Index Statistics Collection ... 749
8.3.8 Comparison of B-Tree and Hash Indexes .. 751

8.4 Optimizing Database Structure .. 752
8.4.1 Optimizing Data Size ... 752
8.4.2 Optimizing MySQL Data Types ... 754

MySQL 5.0 Reference Manual

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. viii

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

8.4.3 Optimizing for Many Tables .. 756
8.4.4 Internal Temporary Table Use in MySQL .. 757

8.5 Optimizing for MyISAM Tables .. 758
8.5.1 Optimizing MyISAM Queries ... 758
8.5.2 Bulk Data Loading for MyISAM Tables .. 760
8.5.3 Speed of REPAIR TABLE Statements .. 761

8.6 Optimizing for InnoDB Tables .. 763
8.6.1 Optimizing Storage Layout for InnoDB Tables ... 763
8.6.2 Optimizing InnoDB Transaction Management .. 763
8.6.3 Optimizing InnoDB Redo Logging ... 764
8.6.4 Bulk Data Loading for InnoDB Tables ... 764
8.6.5 Optimizing InnoDB Queries .. 765
8.6.6 Optimizing InnoDB DDL Operations .. 766
8.6.7 Optimizing InnoDB Disk I/O .. 766
8.6.8 Optimizing InnoDB for Systems with Many Tables ... 767

8.7 Optimizing for MEMORY Tables .. 767
8.8 Understanding the Query Execution Plan ... 767

8.8.1 Optimizing Queries with EXPLAIN .. 767
8.8.2 EXPLAIN Output Format .. 768
8.8.3 EXPLAIN EXTENDED Output Format ... 778
8.8.4 Estimating Query Performance ... 780

8.9 Controlling the Query Optimizer ... 780
8.9.1 Controlling Query Plan Evaluation ... 780
8.9.2 Index Hints .. 781

8.10 Buffering and Caching ... 782
8.10.1 The MyISAM Key Cache .. 782
8.10.2 The InnoDB Buffer Pool ... 787
8.10.3 The MySQL Query Cache .. 787

8.11 Optimizing Locking Operations .. 794
8.11.1 Internal Locking Methods .. 794
8.11.2 Table Locking Issues ... 796
8.11.3 Concurrent Inserts .. 798
8.11.4 External Locking .. 798

8.12 Optimizing the MySQL Server ... 799
8.12.1 System Factors and Startup Parameter Tuning .. 799
8.12.2 Tuning Server Parameters .. 800
8.12.3 Optimizing Disk I/O .. 802
8.12.4 Using Symbolic Links ... 803
8.12.5 Optimizing Memory Use ... 806
8.12.6 Optimizing Network Use ... 809

8.13 Measuring Performance (Benchmarking) .. 811
8.13.1 Measuring the Speed of Expressions and Functions .. 812
8.13.2 The MySQL Benchmark Suite ... 812
8.13.3 Using Your Own Benchmarks ... 813

8.14 Examining Thread Information ... 813
8.14.1 Thread Command Values ... 814
8.14.2 General Thread States ... 816
8.14.3 Delayed-Insert Thread States ... 822
8.14.4 Query Cache Thread States ... 823
8.14.5 Replication Master Thread States ... 823
8.14.6 Replication Slave I/O Thread States .. 824
8.14.7 Replication Slave SQL Thread States ... 825
8.14.8 Replication Slave Connection Thread States ... 825
8.14.9 MySQL Cluster Thread States .. 826

MySQL 5.0 Reference Manual

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. ix

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

9 Language Structure ... 829
9.1 Literal Values ... 829

9.1.1 String Literals .. 829
9.1.2 Number Literals ... 832
9.1.3 Date and Time Literals ... 832
9.1.4 Hexadecimal Literals .. 834
9.1.5 Boolean Literals ... 835
9.1.6 Bit-Field Literals ... 835
9.1.7 NULL Values ... 836

9.2 Schema Object Names ... 836
9.2.1 Identifier Qualifiers ... 838
9.2.2 Identifier Case Sensitivity ... 838
9.2.3 Function Name Parsing and Resolution .. 840

9.3 Keywords and Reserved Words .. 843
9.4 User-Defined Variables ... 849
9.5 Expression Syntax .. 852
9.6 Comment Syntax .. 854

10 Globalization .. 857
10.1 Character Set Support .. 857

10.1.1 Character Sets and Collations in General .. 858
10.1.2 Character Sets and Collations in MySQL ... 859
10.1.3 Specifying Character Sets and Collations .. 860
10.1.4 Connection Character Sets and Collations ... 868
10.1.5 Configuring the Character Set and Collation for Applications 870
10.1.6 Character Set for Error Messages ... 872
10.1.7 Collation Issues .. 872
10.1.8 String Repertoire .. 880
10.1.9 Operations Affected by Character Set Support ... 882
10.1.10 Unicode Support .. 885
10.1.11 UTF-8 for Metadata .. 886
10.1.12 Column Character Set Conversion .. 887
10.1.13 Character Sets and Collations That MySQL Supports ... 889

10.2 Setting the Error Message Language ... 899
10.3 Adding a Character Set ... 900

10.3.1 Character Definition Arrays ... 902
10.3.2 String Collating Support for Complex Character Sets ... 903
10.3.3 Multi-Byte Character Support for Complex Character Sets 904

10.4 Adding a Collation to a Character Set .. 904
10.4.1 Collation Implementation Types .. 905
10.4.2 Choosing a Collation ID .. 906
10.4.3 Adding a Simple Collation to an 8-Bit Character Set ... 907
10.4.4 Adding a UCA Collation to a Unicode Character Set .. 908

10.5 Character Set Configuration .. 912
10.6 MySQL Server Time Zone Support .. 913

10.6.1 Staying Current with Time Zone Changes ... 915
10.6.2 Time Zone Leap Second Support ... 917

10.7 MySQL Server Locale Support .. 918
11 Data Types ... 921

11.1 Data Type Overview ... 922
11.1.1 Numeric Type Overview ... 922
11.1.2 Date and Time Type Overview ... 926
11.1.3 String Type Overview ... 927

11.2 Numeric Types ... 931

MySQL 5.0 Reference Manual

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. x

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

11.2.1 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT,
BIGINT ... 931
11.2.2 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC .. 932
11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE 932
11.2.4 Bit-Value Type - BIT .. 933
11.2.5 Numeric Type Attributes ... 933
11.2.6 Out-of-Range and Overflow Handling .. 934

11.3 Date and Time Types ... 935
11.3.1 The DATE, DATETIME, and TIMESTAMP Types ... 937
11.3.2 The TIME Type .. 938
11.3.3 The YEAR Type ... 939
11.3.4 YEAR(2) Limitations and Migrating to YEAR(4) .. 939
11.3.5 Automatic Initialization and Updating for TIMESTAMP .. 941
11.3.6 Fractional Seconds in Time Values ... 944
11.3.7 Conversion Between Date and Time Types ... 944
11.3.8 Two-Digit Years in Dates .. 945

11.4 String Types ... 946
11.4.1 The CHAR and VARCHAR Types ... 946
11.4.2 The BINARY and VARBINARY Types ... 948
11.4.3 The BLOB and TEXT Types ... 949
11.4.4 The ENUM Type .. 951
11.4.5 The SET Type ... 953

11.5 Extensions for Spatial Data ... 955
11.5.1 Spatial Data Types ... 957
11.5.2 The OpenGIS Geometry Model ... 958
11.5.3 Using Spatial Data ... 963

11.6 Data Type Default Values ... 971
11.7 Data Type Storage Requirements .. 972
11.8 Choosing the Right Type for a Column .. 976
11.9 Using Data Types from Other Database Engines .. 976

12 Functions and Operators .. 979
12.1 Function and Operator Reference .. 980
12.2 Type Conversion in Expression Evaluation ... 989
12.3 Operators ... 991

12.3.1 Operator Precedence ... 992
12.3.2 Comparison Functions and Operators ... 993
12.3.3 Logical Operators ... 1000
12.3.4 Assignment Operators .. 1001

12.4 Control Flow Functions .. 1003
12.5 String Functions .. 1005

12.5.1 String Comparison Functions .. 1018
12.5.2 Regular Expressions ... 1021

12.6 Numeric Functions and Operators .. 1027
12.6.1 Arithmetic Operators ... 1028
12.6.2 Mathematical Functions .. 1030

12.7 Date and Time Functions .. 1039
12.8 What Calendar Is Used By MySQL? .. 1060
12.9 Full-Text Search Functions .. 1061

12.9.1 Natural Language Full-Text Searches .. 1062
12.9.2 Boolean Full-Text Searches .. 1065
12.9.3 Full-Text Searches with Query Expansion .. 1067
12.9.4 Full-Text Stopwords .. 1068
12.9.5 Full-Text Restrictions .. 1071
12.9.6 Fine-Tuning MySQL Full-Text Search .. 1072

MySQL 5.0 Reference Manual

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. xi

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

12.9.7 Adding a Collation for Full-Text Indexing ... 1074
12.10 Cast Functions and Operators ... 1075
12.11 Bit Functions and Operators .. 1079
12.12 Encryption and Compression Functions .. 1081
12.13 Information Functions .. 1087
12.14 Spatial Analysis Functions ... 1095

12.14.1 Spatial Function Reference ... 1095
12.14.2 Argument Handling by Spatial Functions .. 1097
12.14.3 Functions That Create Geometry Values from WKT Values 1098
12.14.4 Functions That Create Geometry Values from WKB Values 1098
12.14.5 MySQL-Specific Functions That Create Geometry Values 1099
12.14.6 Geometry Format Conversion Functions .. 1100
12.14.7 Geometry Property Functions .. 1101
12.14.8 Spatial Operator Functions .. 1106
12.14.9 Functions That Test Spatial Relations Between Geometry Objects 1106

12.15 Miscellaneous Functions .. 1109
12.16 GROUP BY (Aggregate) Functions .. 1113

12.16.1 GROUP BY (Aggregate) Function Descriptions .. 1113
12.16.2 GROUP BY Modifiers ... 1118
12.16.3 MySQL Handling of GROUP BY ... 1121

12.17 Precision Math .. 1122
12.17.1 Types of Numeric Values .. 1123
12.17.2 DECIMAL Data Type Characteristics ... 1123
12.17.3 Expression Handling ... 1125
12.17.4 Rounding Behavior ... 1127
12.17.5 Precision Math Examples .. 1127

13 SQL Statement Syntax ... 1133
13.1 Data Definition Statements .. 1134

13.1.1 ALTER DATABASE Syntax .. 1134
13.1.2 ALTER FUNCTION Syntax ... 1134
13.1.3 ALTER PROCEDURE Syntax ... 1135
13.1.4 ALTER TABLE Syntax .. 1135
13.1.5 ALTER VIEW Syntax .. 1143
13.1.6 CREATE DATABASE Syntax .. 1144
13.1.7 CREATE FUNCTION Syntax .. 1144
13.1.8 CREATE INDEX Syntax ... 1144
13.1.9 CREATE PROCEDURE and CREATE FUNCTION Syntax 1147
13.1.10 CREATE TABLE Syntax ... 1153
13.1.11 CREATE TRIGGER Syntax .. 1173
13.1.12 CREATE VIEW Syntax ... 1175
13.1.13 DROP DATABASE Syntax .. 1180
13.1.14 DROP FUNCTION Syntax .. 1181
13.1.15 DROP INDEX Syntax ... 1181
13.1.16 DROP PROCEDURE and DROP FUNCTION Syntax ... 1181
13.1.17 DROP TABLE Syntax ... 1182
13.1.18 DROP TRIGGER Syntax .. 1182
13.1.19 DROP VIEW Syntax ... 1183
13.1.20 RENAME TABLE Syntax .. 1183
13.1.21 TRUNCATE TABLE Syntax .. 1184

13.2 Data Manipulation Statements ... 1185
13.2.1 CALL Syntax .. 1185
13.2.2 DELETE Syntax ... 1187
13.2.3 DO Syntax ... 1191
13.2.4 HANDLER Syntax .. 1191

MySQL 5.0 Reference Manual

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. xii

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

13.2.5 INSERT Syntax .. 1193
13.2.6 LOAD DATA INFILE Syntax ... 1200
13.2.7 REPLACE Syntax ... 1210
13.2.8 SELECT Syntax ... 1211
13.2.9 Subquery Syntax .. 1228
13.2.10 UPDATE Syntax ... 1240

13.3 MySQL Transactional and Locking Statements ... 1242
13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax 1243
13.3.2 Statements That Cannot Be Rolled Back ... 1245
13.3.3 Statements That Cause an Implicit Commit ... 1245
13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT, and
Syntax .. 1246
13.3.5 LOCK TABLES and UNLOCK TABLES Syntax .. 1247
13.3.6 SET TRANSACTION Syntax ... 1252
13.3.7 XA Transactions ... 1254

13.4 Replication Statements .. 1258
13.4.1 SQL Statements for Controlling Master Servers ... 1258
13.4.2 SQL Statements for Controlling Slave Servers ... 1260

13.5 SQL Syntax for Prepared Statements .. 1267
13.5.1 PREPARE Syntax .. 1270
13.5.2 EXECUTE Syntax .. 1271
13.5.3 DEALLOCATE PREPARE Syntax ... 1271

13.6 MySQL Compound-Statement Syntax .. 1271
13.6.1 BEGIN ... END Compound-Statement Syntax .. 1271
13.6.2 Statement Label Syntax .. 1272
13.6.3 DECLARE Syntax .. 1273
13.6.4 Variables in Stored Programs ... 1273
13.6.5 Flow Control Statements ... 1275
13.6.6 Cursors .. 1279
13.6.7 Condition Handling ... 1281

13.7 Database Administration Statements .. 1286
13.7.1 Account Management Statements ... 1286
13.7.2 Table Maintenance Statements ... 1301
13.7.3 User-Defined Function Statements .. 1309
13.7.4 SET Syntax .. 1310
13.7.5 SHOW Syntax .. 1313
13.7.6 Other Administrative Statements ... 1349

13.8 MySQL Utility Statements .. 1354
13.8.1 DESCRIBE Syntax ... 1354
13.8.2 EXPLAIN Syntax .. 1355
13.8.3 HELP Syntax ... 1356
13.8.4 USE Syntax ... 1358

14 Storage Engines .. 1359
14.1 The MyISAM Storage Engine .. 1362

14.1.1 MyISAM Startup Options .. 1364
14.1.2 Space Needed for Keys ... 1366
14.1.3 MyISAM Table Storage Formats ... 1366
14.1.4 MyISAM Table Problems .. 1369

14.2 The InnoDB Storage Engine .. 1370
14.2.1 Configuring InnoDB .. 1371
14.2.2 InnoDB Startup Options and System Variables .. 1381
14.2.3 Creating and Using InnoDB Tables ... 1405
14.2.4 Changing the Number or Size of InnoDB Redo Log Files 1411
14.2.5 Resizing the InnoDB System Tablespace .. 1411

MySQL 5.0 Reference Manual

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. xiii

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

14.2.6 Backing Up and Recovering an InnoDB Database .. 1412
14.2.7 Moving an InnoDB Database to Another Machine .. 1416
14.2.8 InnoDB Transaction Model and Locking .. 1417
14.2.9 InnoDB Multi-Versioning ... 1430
14.2.10 InnoDB Table and Index Structures ... 1431
14.2.11 InnoDB Disk I/O and File Space Management ... 1434
14.2.12 InnoDB Error Handling .. 1436
14.2.13 InnoDB Troubleshooting .. 1437
14.2.14 Limits on InnoDB Tables ... 1449

14.3 The MERGE Storage Engine ... 1452
14.3.1 MERGE Table Advantages and Disadvantages .. 1455
14.3.2 MERGE Table Problems ... 1456

14.4 The MEMORY (HEAP) Storage Engine .. 1458
14.5 The BDB (BerkeleyDB) Storage Engine ... 1460

14.5.1 Operating Systems Supported by BDB .. 1461
14.5.2 Installing BDB .. 1461
14.5.3 BDB Startup Options .. 1462
14.5.4 Characteristics of BDB Tables .. 1463
14.5.5 Restrictions on BDB Tables .. 1465
14.5.6 Errors That May Occur When Using BDB Tables ... 1465

14.6 The EXAMPLE Storage Engine ... 1466
14.7 The FEDERATED Storage Engine ... 1466

14.7.1 Description of the FEDERATED Storage Engine .. 1467
14.7.2 How to Use FEDERATED Tables ... 1467
14.7.3 Limitations of the FEDERATED Storage Engine ... 1469

14.8 The ARCHIVE Storage Engine .. 1470
14.9 The CSV Storage Engine .. 1471
14.10 The BLACKHOLE Storage Engine ... 1471

15 High Availability and Scalability .. 1475
15.1 Using MySQL within an Amazon EC2 Instance ... 1477

15.1.1 Setting Up MySQL on an EC2 AMI ... 1478
15.1.2 EC2 Instance Limitations .. 1479
15.1.3 Deploying a MySQL Database Using EC2 ... 1480

15.2 Using ZFS Replication ... 1482
15.2.1 Using ZFS for File System Replication .. 1484
15.2.2 Configuring MySQL for ZFS Replication .. 1485
15.2.3 Handling MySQL Recovery with ZFS .. 1485

15.3 Using MySQL with memcached ... 1486
15.3.1 Installing memcached ... 1487
15.3.2 Using memcached .. 1488
15.3.3 Developing a memcached Application ... 1508
15.3.4 Getting memcached Statistics ... 1534
15.3.5 memcached FAQ ... 1543

16 Replication ... 1547
16.1 Replication Configuration ... 1548

16.1.1 How to Set Up Replication .. 1549
16.1.2 Replication and Binary Logging Options and Variables ... 1558
16.1.3 Common Replication Administration Tasks .. 1595

16.2 Replication Implementation .. 1598
16.2.1 Replication Implementation Details .. 1599
16.2.2 Replication Relay and Status Logs .. 1600
16.2.3 How Servers Evaluate Replication Filtering Rules .. 1603

16.3 Replication Solutions ... 1609
16.3.1 Using Replication for Backups .. 1610

MySQL 5.0 Reference Manual

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. xiv

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

16.3.2 Using Replication with Different Master and Slave Storage Engines 1612
16.3.3 Using Replication for Scale-Out .. 1613
16.3.4 Replicating Different Databases to Different Slaves .. 1614
16.3.5 Improving Replication Performance ... 1615
16.3.6 Switching Masters During Failover .. 1616
16.3.7 Setting Up Replication to Use Secure Connections .. 1618

16.4 Replication Notes and Tips .. 1620
16.4.1 Replication Features and Issues ... 1620
16.4.2 Replication Compatibility Between MySQL Versions ... 1632
16.4.3 Upgrading a Replication Setup .. 1633
16.4.4 Troubleshooting Replication .. 1634
16.4.5 How to Report Replication Bugs or Problems .. 1635

17 MySQL Cluster .. 1637
17.1 MySQL Cluster Overview .. 1638

17.1.1 MySQL Cluster Core Concepts ... 1640
17.1.2 MySQL Cluster Nodes, Node Groups, Replicas, and Partitions 1642
17.1.3 MySQL Cluster Hardware, Software, and Networking Requirements 1644
17.1.4 What is New in MySQL Cluster ... 1646
17.1.5 Known Limitations of MySQL Cluster .. 1647

17.2 MySQL Cluster Installation and Upgrades .. 1655
17.2.1 Installing MySQL Cluster on Linux .. 1658
17.2.2 Initial Configuration of MySQL Cluster ... 1663
17.2.3 Initial Startup of MySQL Cluster .. 1665
17.2.4 MySQL Cluster Example with Tables and Data .. 1666
17.2.5 Safe Shutdown and Restart of MySQL Cluster ... 1669
17.2.6 Upgrading and Downgrading MySQL Cluster ... 1670

17.3 MySQL Cluster Configuration .. 1672
17.3.1 Quick Test Setup of MySQL Cluster .. 1672
17.3.2 Overview of MySQL Cluster Configuration Parameters, Options, and Variables 1675
17.3.3 MySQL Cluster Configuration Files .. 1695
17.3.4 Using High-Speed Interconnects with MySQL Cluster ... 1749

17.4 MySQL Cluster Programs .. 1751
17.4.1 ndbd — The MySQL Cluster Data Node Daemon .. 1751
17.4.2 ndb_mgmd — The MySQL Cluster Management Server Daemon 1756
17.4.3 ndb_mgm — The MySQL Cluster Management Client ... 1759
17.4.4 ndb_config — Extract MySQL Cluster Configuration Information 1760
17.4.5 ndb_cpcd — Automate Testing for NDB Development .. 1765
17.4.6 ndb_delete_all — Delete All Rows from an NDB Table 1765
17.4.7 ndb_desc — Describe NDB Tables ... 1766
17.4.8 ndb_drop_index — Drop Index from an NDB Table .. 1767
17.4.9 ndb_drop_table — Drop an NDB Table .. 1769
17.4.10 ndb_error_reporter — NDB Error-Reporting Utility 1769
17.4.11 ndb_print_backup_file — Print NDB Backup File Contents 1770
17.4.12 ndb_print_schema_file — Print NDB Schema File Contents 1770
17.4.13 ndb_print_sys_file — Print NDB System File Contents 1771
17.4.14 ndb_restore — Restore a MySQL Cluster Backup .. 1771
17.4.15 ndb_select_all — Print Rows from an NDB Table .. 1777
17.4.16 ndb_select_count — Print Row Counts for NDB Tables 1780
17.4.17 ndb_show_tables — Display List of NDB Tables .. 1781
17.4.18 ndb_size.pl — NDBCLUSTER Size Requirement Estimator 1782
17.4.19 ndb_waiter — Wait for MySQL Cluster to Reach a Given Status 1783
17.4.20 Options Common to MySQL Cluster Programs — Options Common to MySQL
Cluster Programs .. 1785

17.5 Management of MySQL Cluster ... 1789

MySQL 5.0 Reference Manual

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. xv

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

17.5.1 Summary of MySQL Cluster Start Phases ... 1789
17.5.2 Commands in the MySQL Cluster Management Client ... 1791
17.5.3 Online Backup of MySQL Cluster .. 1791
17.5.4 MySQL Server Usage for MySQL Cluster .. 1795
17.5.5 Performing a Rolling Restart of a MySQL Cluster ... 1797
17.5.6 Event Reports Generated in MySQL Cluster .. 1798
17.5.7 MySQL Cluster Log Messages .. 1807
17.5.8 MySQL Cluster Single User Mode ... 1822
17.5.9 Quick Reference: MySQL Cluster SQL Statements .. 1823
17.5.10 MySQL Cluster Security Issues ... 1825

18 Stored Programs and Views ... 1833
18.1 Defining Stored Programs ... 1833
18.2 Using Stored Routines (Procedures and Functions) .. 1835

18.2.1 Stored Routine Syntax .. 1835
18.2.2 Stored Routines and MySQL Privileges ... 1836
18.2.3 Stored Routine Metadata .. 1837
18.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID() 1837

18.3 Using Triggers .. 1837
18.3.1 Trigger Syntax and Examples ... 1838
18.3.2 Trigger Metadata .. 1842

18.4 Using Views .. 1842
18.4.1 View Syntax ... 1842
18.4.2 View Processing Algorithms .. 1843
18.4.3 Updatable and Insertable Views .. 1844
18.4.4 The View WITH CHECK OPTION Clause .. 1846
18.4.5 View Metadata ... 1846

18.5 Access Control for Stored Programs and Views .. 1847
18.6 Binary Logging of Stored Programs ... 1848

19 INFORMATION_SCHEMA Tables .. 1859
19.1 The INFORMATION_SCHEMA CHARACTER_SETS Table .. 1861
19.2 The INFORMATION_SCHEMA COLLATIONS Table ... 1862
19.3 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table 1862
19.4 The INFORMATION_SCHEMA COLUMNS Table ... 1862
19.5 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table .. 1863
19.6 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table 1864
19.7 The INFORMATION_SCHEMA PROFILING Table .. 1865
19.8 The INFORMATION_SCHEMA ROUTINES Table .. 1866
19.9 The INFORMATION_SCHEMA SCHEMATA Table ... 1867
19.10 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table 1868
19.11 The INFORMATION_SCHEMA STATISTICS Table ... 1868
19.12 The INFORMATION_SCHEMA TABLES Table ... 1869
19.13 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table 1870
19.14 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table .. 1870
19.15 The INFORMATION_SCHEMA TRIGGERS Table .. 1871
19.16 The INFORMATION_SCHEMA USER_PRIVILEGES Table ... 1873
19.17 The INFORMATION_SCHEMA VIEWS Table ... 1873
19.18 Extensions to SHOW Statements ... 1874

20 Connectors and APIs ... 1877
20.1 MySQL Connector/ODBC .. 1880
20.2 MySQL Connector/Net .. 1881
20.3 MySQL Connector/J .. 1881
20.4 MySQL Connector/C ... 1881
20.5 libmysqld, the Embedded MySQL Server Library .. 1881
20.6 MySQL C API ... 1882

MySQL 5.0 Reference Manual

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. xvi

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

20.6.1 MySQL C API Implementations ... 1883
20.6.2 Simultaneous MySQL Server and Connector/C Installations 1884
20.6.3 Example C API Client Programs ... 1885
20.6.4 Building and Running C API Client Programs .. 1885
20.6.5 C API Data Structures .. 1889
20.6.6 C API Function Overview ... 1894
20.6.7 C API Function Descriptions ... 1898
20.6.8 C API Prepared Statements .. 1950
20.6.9 C API Prepared Statement Data Structures ... 1950
20.6.10 C API Prepared Statement Function Overview ... 1957
20.6.11 C API Prepared Statement Function Descriptions ... 1959
20.6.12 C API Threaded Function Descriptions .. 1983
20.6.13 C API Embedded Server Function Descriptions .. 1984
20.6.14 Common Questions and Problems When Using the C API 1985
20.6.15 Controlling Automatic Reconnection Behavior .. 1986
20.6.16 C API Support for Multiple Statement Execution ... 1987
20.6.17 C API Prepared Statement Problems .. 1990
20.6.18 C API Prepared Statement Handling of Date and Time Values 1990
20.6.19 C API Support for Prepared CALL Statements ... 1991

20.7 MySQL PHP API .. 1991
20.8 MySQL Perl API ... 1991
20.9 MySQL Python API ... 1992
20.10 MySQL Ruby APIs .. 1993

20.10.1 The MySQL/Ruby API .. 1993
20.10.2 The Ruby/MySQL API .. 1993

20.11 MySQL Tcl API ... 1993
20.12 MySQL Eiffel Wrapper ... 1993

21 Extending MySQL .. 1995
21.1 MySQL Internals ... 1995

21.1.1 MySQL Threads ... 1995
21.1.2 The MySQL Test Suite ... 1996

21.2 Adding New Functions to MySQL .. 1997
21.2.1 Features of the User-Defined Function Interface .. 1997
21.2.2 Adding a New User-Defined Function .. 1998
21.2.3 Adding a New Native Function .. 2008

21.3 Debugging and Porting MySQL ... 2010
21.3.1 Debugging a MySQL Server ... 2010
21.3.2 Debugging a MySQL Client .. 2017
21.3.3 The DBUG Package ... 2017

22 MySQL Enterprise Edition .. 2021
22.1 MySQL Enterprise Monitor Overview .. 2021
22.2 MySQL Enterprise Backup Overview .. 2022
22.3 MySQL Enterprise Security Overview ... 2023
22.4 MySQL Enterprise Encryption Overview ... 2023
22.5 MySQL Enterprise Audit Overview ... 2023
22.6 MySQL Enterprise Firewall Overview ... 2024
22.7 MySQL Enterprise Thread Pool Overview .. 2024

A MySQL 5.0 Frequently Asked Questions .. 2025
A.1 MySQL 5.0 FAQ: General ... 2025
A.2 MySQL 5.0 FAQ: Storage Engines .. 2027
A.3 MySQL 5.0 FAQ: Server SQL Mode .. 2027
A.4 MySQL 5.0 FAQ: Stored Procedures and Functions ... 2028
A.5 MySQL 5.0 FAQ: Triggers .. 2032
A.6 MySQL 5.0 FAQ: Views .. 2034

MySQL 5.0 Reference Manual

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. xvii

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A.7 MySQL 5.0 FAQ: INFORMATION_SCHEMA .. 2035
A.8 MySQL 5.0 FAQ: Migration ... 2035
A.9 MySQL 5.0 FAQ: Security ... 2036
A.10 MySQL 5.0 FAQ: MySQL Cluster .. 2037
A.11 MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets 2049
A.12 MySQL 5.0 FAQ: Connectors & APIs .. 2062
A.13 MySQL 5.0 FAQ: Replication .. 2062

B Errors, Error Codes, and Common Problems .. 2067
B.1 Sources of Error Information ... 2067
B.2 Types of Error Values ... 2067
B.3 Server Error Codes and Messages .. 2068
B.4 Client Error Codes and Messages ... 2106
B.5 Problems and Common Errors .. 2110

B.5.1 How to Determine What Is Causing a Problem .. 2110
B.5.2 Common Errors When Using MySQL Programs .. 2112
B.5.3 Administration-Related Issues ... 2125
B.5.4 Query-Related Issues ... 2133
B.5.5 Optimizer-Related Issues ... 2142
B.5.6 Table Definition-Related Issues .. 2142
B.5.7 Known Issues in MySQL .. 2143

C Restrictions and Limits .. 2147
C.1 Restrictions on Stored Programs ... 2147
C.2 Restrictions on Server-Side Cursors .. 2149
C.3 Restrictions on Subqueries ... 2150
C.4 Restrictions on Views ... 2152
C.5 Restrictions on XA Transactions ... 2154
C.6 Restrictions on Character Sets .. 2155
C.7 Limits in MySQL ... 2155

C.7.1 Limits on Joins .. 2155
C.7.2 Limits on Number of Databases and Tables .. 2155
C.7.3 Limits on Table Size .. 2155
C.7.4 Limits on Table Column Count and Row Size ... 2157
C.7.5 Limits Imposed by .frm File Structure .. 2158
C.7.6 Windows Platform Limitations ... 2159

General Index ... 2163
C Function Index .. 2239
Command Index ... 2249
Function Index .. 2275
INFORMATION_SCHEMA Index ... 2291
Join Types Index .. 2293
Operator Index ... 2295
Option Index ... 2299
Privileges Index .. 2347
SQL Modes Index ... 2353
Statement/Syntax Index .. 2357
Status Variable Index .. 2389
System Variable Index .. 2395
Transaction Isolation Level Index .. 2411

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. xviii

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. xix

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Preface and Legal Notices
This is the Reference Manual for the MySQL Database System, version 5.0, through release 5.0.96.
Differences between minor versions of MySQL 5.0 are noted in the present text with reference to release
numbers (5.0.x). For license information, see the Legal Notices.

This manual is not intended for use with older versions of the MySQL software due to the many functional
and other differences between MySQL 5.0 and previous versions. If you are using an earlier release of the
MySQL software, please refer to the appropriate manual. For example, MySQL 3.23, 4.0, 4.1 Reference
Manual covers the 4.1 series of MySQL software releases.

If you are using MySQL 5.1, please refer to the MySQL 5.1 Reference Manual.

Licensing information. This product may include third-party software, used under license. If you are
using a Commercial release of MySQL 5.0, see this document for licensing information, including licensing
information relating to third-party software that may be included in this Commercial release. If you are
using a Community release of MySQL 5.0, see this document for licensing information, including licensing
information relating to third-party software that may be included in this Community release.

Legal Notices
Copyright © 1997, 2016, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,

http://dev.mysql.com/doc/refman/4.1/en/
http://dev.mysql.com/doc/refman/4.1/en/
http://dev.mysql.com/doc/refman/5.1/en/
http://downloads.mysql.com/docs/licenses/mysqld-5.0-com-en.pdf
http://downloads.mysql.com/docs/licenses/mysqld-5.0-gpl-en.pdf

Legal Notices

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. xx

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=trs if you are hearing impaired.

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 1 General Information

Table of Contents
1.1 About This Manual ... 2
1.2 Typographical and Syntax Conventions ... 3
1.3 Overview of the MySQL Database Management System .. 4

1.3.1 What is MySQL? ... 4
1.3.2 The Main Features of MySQL .. 6
1.3.3 History of MySQL .. 9

1.4 What Is New in MySQL 5.0 .. 9
1.5 MySQL Development History .. 11
1.6 MySQL Information Sources ... 12

1.6.1 MySQL Mailing Lists .. 12
1.6.2 MySQL Community Support at the MySQL Forums ... 14
1.6.3 MySQL Community Support on Internet Relay Chat (IRC) .. 15
1.6.4 MySQL Enterprise .. 15

1.7 How to Report Bugs or Problems .. 15
1.8 MySQL Standards Compliance .. 20

1.8.1 MySQL Extensions to Standard SQL .. 21
1.8.2 MySQL Differences from Standard SQL .. 24
1.8.3 How MySQL Deals with Constraints ... 29

1.9 Credits ... 33
1.9.1 Contributors to MySQL ... 33
1.9.2 Documenters and translators .. 37
1.9.3 Packages that support MySQL ... 39
1.9.4 Tools that were used to create MySQL ... 39
1.9.5 Supporters of MySQL .. 40

End of Product Lifecycle. Active development for MySQL Database Server version 5.0 has ended.
Oracle offers various support offerings which may be of interest. For details and more information, see the
MySQL section of the Lifetime Support Policy for Oracle Technology Products (http://www.oracle.com/us/
support/lifetime-support/index.html). Please consider upgrading to a recent version.

The MySQL™ software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured
Query Language) database server. MySQL Server is intended for mission-critical, heavy-load production
systems as well as for embedding into mass-deployed software. Oracle is a registered trademark of Oracle
Corporation and/or its affiliates. MySQL is a trademark of Oracle Corporation and/or its affiliates, and shall
not be used by Customer without Oracle's express written authorization. Other names may be trademarks
of their respective owners.

The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an Open Source
product under the terms of the GNU General Public License (http://www.fsf.org/licenses/) or can purchase
a standard commercial license from Oracle. See http://www.mysql.com/company/legal/licensing/ for more
information on our licensing policies.

The following list describes some sections of particular interest in this manual:

• For a discussion of MySQL Database Server capabilities, see Section 1.3.2, “The Main Features of
MySQL”.

• For an overview of new MySQL features, see Section 1.4, “What Is New in MySQL 5.0”. For information
about the changes in each version, see the Release Notes.

http://www.oracle.com/us/support/lifetime-support/index.html
http://www.oracle.com/us/support/lifetime-support/index.html
http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/
http://dev.mysql.com/doc/relnotes/mysql/5.0/en/

About This Manual

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• For installation instructions, see Chapter 2, Installing and Upgrading MySQL. For information about
upgrading MySQL, see Section 2.19.1, “Upgrading MySQL”.

• For a tutorial introduction to the MySQL Database Server, see Chapter 3, Tutorial.

• For information about configuring and administering MySQL Server, see Chapter 5, MySQL Server
Administration.

• For information about security in MySQL, see Chapter 6, Security.

• For information about setting up replication servers, see Chapter 16, Replication.

• For information about MySQL Enterprise, the commercial MySQL release with advanced features and
management tools, see Chapter 22, MySQL Enterprise Edition.

• For answers to a number of questions that are often asked concerning the MySQL Database Server and
its capabilities, see Appendix A, MySQL 5.0 Frequently Asked Questions.

• For a history of new features and bugfixes, see the Release Notes.

Important

To report problems or bugs, please use the instructions at Section 1.7, “How
to Report Bugs or Problems”. If you find a sensitive security bug in MySQL
Server, please let us know immediately by sending an email message to
<secalert_us@oracle.com>. Exception: Support customers should report all
problems, including security bugs, to Oracle Support.

1.1 About This Manual
This is the Reference Manual for the MySQL Database System, version 5.0, through release 5.0.96.
Differences between minor versions of MySQL 5.0 are noted in the present text with reference to release
numbers (5.0.x). For license information, see the Legal Notices.

This manual is not intended for use with older versions of the MySQL software due to the many functional
and other differences between MySQL 5.0 and previous versions. If you are using an earlier release of the
MySQL software, please refer to the appropriate manual. For example, MySQL 3.23, 4.0, 4.1 Reference
Manual covers the 4.1 series of MySQL software releases.

If you are using MySQL 5.1, please refer to the MySQL 5.1 Reference Manual.

Because this manual serves as a reference, it does not provide general instruction on SQL or relational
database concepts. It also does not teach you how to use your operating system or command-line
interpreter.

The MySQL Database Software is under constant development, and the Reference Manual is updated
frequently as well. The most recent version of the manual is available online in searchable form at http://
dev.mysql.com/doc/. Other formats also are available there, including HTML, PDF, and Windows CHM
versions.

The Reference Manual source files are written in DocBook XML format. The HTML version and other
formats are produced automatically, primarily using the DocBook XSL stylesheets. For information about
DocBook, see http://docbook.org/

If you have questions about using MySQL, you can ask them using our mailing lists or forums. See
Section 1.6.1, “MySQL Mailing Lists”, and Section 1.6.2, “MySQL Community Support at the MySQL

http://dev.mysql.com/doc/relnotes/mysql/5.0/en/
http://dev.mysql.com/doc/refman/4.1/en/
http://dev.mysql.com/doc/refman/4.1/en/
http://dev.mysql.com/doc/refman/5.1/en/
http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
http://docbook.org/

Typographical and Syntax Conventions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 3

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Forums”. If you have suggestions concerning additions or corrections to the manual itself, please send
them to the http://www.mysql.com/company/contact/.

This manual was originally written by David Axmark and Michael “Monty” Widenius. It is maintained by the
MySQL Documentation Team, consisting of Chris Cole, Paul DuBois, Edward Gilmore, Stefan Hinz, David
Moss, Philip Olson, Daniel Price, Daniel So, and Jon Stephens.

1.2 Typographical and Syntax Conventions
This manual uses certain typographical conventions:

• Text in this style is used for SQL statements; database, table, and column names; program
listings and source code; and environment variables. Example: “To reload the grant tables, use the
FLUSH PRIVILEGES statement.”

• Text in this style indicates input that you type in examples.

• Text in this style indicates the names of executable programs and scripts, examples being
mysql (the MySQL command-line client program) and mysqld (the MySQL server executable).

• Text in this style is used for variable input for which you should substitute a value of your own
choosing.

• Text in this style is used for emphasis.

• Text in this style is used in table headings and to convey especially strong emphasis.

• Text in this style is used to indicate a program option that affects how the program is executed,
or that supplies information that is needed for the program to function in a certain way. Example: “The --
host option (short form -h) tells the mysql client program the hostname or IP address of the MySQL
server that it should connect to”.

• File names and directory names are written like this: “The global my.cnf file is located in the /etc
directory.”

• Character sequences are written like this: “To specify a wildcard, use the ‘%’ character.”

When commands are shown that are meant to be executed from within a particular program, the prompt
shown preceding the command indicates which command to use. For example, shell> indicates a
command that you execute from your login shell, root-shell> is similar but should be executed as
root, and mysql> indicates a statement that you execute from the mysql client program:

shell> type a shell command here
root-shell> type a shell command as root here
mysql> type a mysql statement here

In some areas different systems may be distinguished from each other to show that commands should be
executed in two different environments. For example, while working with replication the commands might
be prefixed with master and slave:

master> type a mysql command on the replication master here
slave> type a mysql command on the replication slave here

The “shell” is your command interpreter. On Unix, this is typically a program such as sh, csh, or bash. On
Windows, the equivalent program is command.com or cmd.exe, typically run in a console window.

When you enter a command or statement shown in an example, do not type the prompt shown in the
example.

http://www.mysql.com/company/contact/

Overview of the MySQL Database Management System

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 4

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Database, table, and column names must often be substituted into statements. To indicate that such
substitution is necessary, this manual uses db_name, tbl_name, and col_name. For example, you might
see a statement like this:

mysql> SELECT col_name FROM db_name.tbl_name;

This means that if you were to enter a similar statement, you would supply your own database, table, and
column names, perhaps like this:

mysql> SELECT author_name FROM biblio_db.author_list;

SQL keywords are not case sensitive and may be written in any lettercase. This manual uses uppercase.

In syntax descriptions, square brackets (“[” and “]”) indicate optional words or clauses. For example, in the
following statement, IF EXISTS is optional:

DROP TABLE [IF EXISTS] tbl_name

When a syntax element consists of a number of alternatives, the alternatives are separated by vertical bars
(“|”). When one member from a set of choices may be chosen, the alternatives are listed within square
brackets (“[” and “]”):

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

When one member from a set of choices must be chosen, the alternatives are listed within braces (“{” and
“}”):

{DESCRIBE | DESC} tbl_name [col_name | wild]

An ellipsis (...) indicates the omission of a section of a statement, typically to provide a shorter version of
more complex syntax. For example, SELECT ... INTO OUTFILE is shorthand for the form of SELECT
statement that has an INTO OUTFILE clause following other parts of the statement.

An ellipsis can also indicate that the preceding syntax element of a statement may be repeated. In
the following example, multiple reset_option values may be given, with each of those after the first
preceded by commas:

RESET reset_option [,reset_option] ...

Commands for setting shell variables are shown using Bourne shell syntax. For example, the sequence to
set the CC environment variable and run the configure command looks like this in Bourne shell syntax:

shell> CC=gcc ./configure

If you are using csh or tcsh, you must issue commands somewhat differently:

shell> setenv CC gcc
shell> ./configure

1.3 Overview of the MySQL Database Management System

1.3.1 What is MySQL?

What is MySQL?

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 5

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL, the most popular Open Source SQL database management system, is developed, distributed, and
supported by Oracle Corporation.

The MySQL Web site (http://www.mysql.com/) provides the latest information about MySQL software.

• MySQL is a database management system.

A database is a structured collection of data. It may be anything from a simple shopping list to a picture
gallery or the vast amounts of information in a corporate network. To add, access, and process data
stored in a computer database, you need a database management system such as MySQL Server.
Since computers are very good at handling large amounts of data, database management systems play
a central role in computing, as standalone utilities, or as parts of other applications.

• MySQL databases are relational.

 A relational database stores data in separate tables rather than putting all the data in one big storeroom.
The database structures are organized into physical files optimized for speed. The logical model,
with objects such as databases, tables, views, rows, and columns, offers a flexible programming
environment. You set up rules governing the relationships between different data fields, such as one-to-
one, one-to-many, unique, required or optional, and “pointers” between different tables. The database
enforces these rules, so that with a well-designed database, your application never sees inconsistent,
duplicate, orphan, out-of-date, or missing data.

The SQL part of “MySQL” stands for “Structured Query Language”. SQL is the most common
standardized language used to access databases. Depending on your programming environment, you
might enter SQL directly (for example, to generate reports), embed SQL statements into code written in
another language, or use a language-specific API that hides the SQL syntax.

SQL is defined by the ANSI/ISO SQL Standard. The SQL standard has been evolving since 1986 and
several versions exist. In this manual, “SQL-92” refers to the standard released in 1992, “SQL:1999”
refers to the standard released in 1999, and “SQL:2003” refers to the current version of the standard. We
use the phrase “the SQL standard” to mean the current version of the SQL Standard at any time.

• MySQL software is Open Source.

 Open Source means that it is possible for anyone to use and modify the software. Anybody can
download the MySQL software from the Internet and use it without paying anything. If you wish, you
may study the source code and change it to suit your needs. The MySQL software uses the GPL (GNU
General Public License), http://www.fsf.org/licenses/, to define what you may and may not do with the
software in different situations. If you feel uncomfortable with the GPL or need to embed MySQL code
into a commercial application, you can buy a commercially licensed version from us. See the MySQL
Licensing Overview for more information (http://www.mysql.com/company/legal/licensing/).

• The MySQL Database Server is very fast, reliable, scalable, and easy to use.

If that is what you are looking for, you should give it a try. MySQL Server can run comfortably on a
desktop or laptop, alongside your other applications, web servers, and so on, requiring little or no
attention. If you dedicate an entire machine to MySQL, you can adjust the settings to take advantage
of all the memory, CPU power, and I/O capacity available. MySQL can also scale up to clusters of
machines, networked together.

You can find a performance comparison of MySQL Server with other database managers on our
benchmark page. See Section 8.13.2, “The MySQL Benchmark Suite”.

MySQL Server was originally developed to handle large databases much faster than existing solutions
and has been successfully used in highly demanding production environments for several years.

http://www.mysql.com/
http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/

The Main Features of MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 6

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Although under constant development, MySQL Server today offers a rich and useful set of functions.
Its connectivity, speed, and security make MySQL Server highly suited for accessing databases on the
Internet.

• MySQL Server works in client/server or embedded systems.

The MySQL Database Software is a client/server system that consists of a multi-threaded SQL server
that supports different backends, several different client programs and libraries, administrative tools, and
a wide range of application programming interfaces (APIs).

We also provide MySQL Server as an embedded multi-threaded library that you can link into your
application to get a smaller, faster, easier-to-manage standalone product.

• A large amount of contributed MySQL software is available.

MySQL Server has a practical set of features developed in close cooperation with our users. It is very
likely that your favorite application or language supports the MySQL Database Server.

The official way to pronounce “MySQL” is “My Ess Que Ell” (not “my sequel”), but we do not mind if you
pronounce it as “my sequel” or in some other localized way.

1.3.2 The Main Features of MySQL

This section describes some of the important characteristics of the MySQL Database Software. In most
respects, the roadmap applies to all versions of MySQL. For information about features as they are
introduced into MySQL on a series-specific basis, see the “In a Nutshell” section of the appropriate Manual:

• MySQL 5.7: What Is New in MySQL 5.7

• MySQL 5.6: What Is New in MySQL 5.6

• MySQL 5.5: What Is New in MySQL 5.5

• MySQL 5.1: What Is New in MySQL 5.1

Internals and Portability

• Written in C and C++.

• Tested with a broad range of different compilers.

• Works on many different platforms. See http://www.mysql.com/support/supportedplatforms/
database.html.

• For portability, uses CMake in MySQL 5.5 and up. Previous series use GNU Automake, Autoconf, and
Libtool.

• Tested with Purify (a commercial memory leakage detector) as well as with Valgrind, a GPL tool (http://
developer.kde.org/~sewardj/).

• Uses multi-layered server design with independent modules.

• Designed to be fully multi-threaded using kernel threads, to easily use multiple CPUs if they are
available.

• Provides transactional and nontransactional storage engines.

• Uses very fast B-tree disk tables (MyISAM) with index compression.

http://dev.mysql.com/doc/refman/5.7/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.5/en/mysql-nutshell.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-nutshell.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://developer.kde.org/~sewardj/
http://developer.kde.org/~sewardj/

The Main Features of MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 7

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Designed to make it relatively easy to add other storage engines. This is useful if you want to provide an
SQL interface for an in-house database.

• Uses a very fast thread-based memory allocation system.

• Executes very fast joins using an optimized nested-loop join.

• Implements in-memory hash tables, which are used as temporary tables.

• Implements SQL functions using a highly optimized class library that should be as fast as possible.
Usually there is no memory allocation at all after query initialization.

• Provides the server as a separate program for use in a client/server networked environment, and as a
library that can be embedded (linked) into standalone applications. Such applications can be used in
isolation or in environments where no network is available.

Data Types

• Many data types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT, DOUBLE, CHAR,
VARCHAR, BINARY, VARBINARY, TEXT, BLOB, DATE, TIME, DATETIME, TIMESTAMP, YEAR, SET, ENUM,
and OpenGIS spatial types. See Chapter 11, Data Types.

• Fixed-length and variable-length string types.

Statements and Functions

• Full operator and function support in the SELECT list and WHERE clause of queries. For example:

mysql> SELECT CONCAT(first_name, ' ', last_name)
 -> FROM citizen
 -> WHERE income/dependents > 10000 AND age > 30;

• Full support for SQL GROUP BY and ORDER BY clauses. Support for group functions (COUNT(), AVG(),
STD(), SUM(), MAX(), MIN(), and GROUP_CONCAT()).

• Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard SQL and ODBC syntax.

• Support for aliases on tables and columns as required by standard SQL.

• Support for DELETE, INSERT, REPLACE, and UPDATE to return the number of rows that were changed
(affected), or to return the number of rows matched instead by setting a flag when connecting to the
server.

• Support for MySQL-specific SHOW statements that retrieve information about databases, storage
engines, tables, and indexes. Support for the INFORMATION_SCHEMA database, implemented according
to standard SQL.

• An EXPLAIN statement to show how the optimizer resolves a query.

• Independence of function names from table or column names. For example, ABS is a valid column name.
The only restriction is that for a function call, no spaces are permitted between the function name and
the “(” that follows it. See Section 9.3, “Keywords and Reserved Words”.

• You can refer to tables from different databases in the same statement.

Security

• A privilege and password system that is very flexible and secure, and that enables host-based
verification.

The Main Features of MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 8

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Password security by encryption of all password traffic when you connect to a server.

Scalability and Limits

• Support for large databases. We use MySQL Server with databases that contain 50 million records. We
also know of users who use MySQL Server with 200,000 tables and about 5,000,000,000 rows.

• Support for up to 64 indexes per table. Each index may consist of 1 to 16 columns or parts of columns.
The maximum index width is 767 bytes for InnoDB tables, or 1000 for MyISAM. An index may use a
prefix of a column for CHAR, VARCHAR, BLOB, or TEXT column types.

Connectivity

• Clients can connect to MySQL Server using several protocols:

• Clients can connect using TCP/IP sockets on any platform.

• On Windows systems, clients can connect using named pipes if the server is started with the --
enable-named-pipe option. Windows servers also support shared-memory connections if started
with the --shared-memory option. Clients can connect through shared memory by using the --
protocol=memory option.

• On Unix systems, clients can connect using Unix domain socket files.

• MySQL client programs can be written in many languages. A client library written in C is available for
clients written in C or C++, or for any language that provides C bindings.

• APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available, enabling MySQL clients to
be written in many languages. See Chapter 20, Connectors and APIs.

• The Connector/ODBC (MyODBC) interface provides MySQL support for client programs that use ODBC
(Open Database Connectivity) connections. For example, you can use MS Access to connect to your
MySQL server. Clients can be run on Windows or Unix. Connector/ODBC source is available. All ODBC
2.5 functions are supported, as are many others. See MySQL Connector/ODBC Developer Guide.

• The Connector/J interface provides MySQL support for Java client programs that use JDBC connections.
Clients can be run on Windows or Unix. Connector/J source is available. See MySQL Connector/J 5.1
Developer Guide.

• MySQL Connector/Net enables developers to easily create .NET applications that require secure,
high-performance data connectivity with MySQL. It implements the required ADO.NET interfaces and
integrates into ADO.NET aware tools. Developers can build applications using their choice of .NET
languages. MySQL Connector/Net is a fully managed ADO.NET driver written in 100% pure C#. See
MySQL Connector/Net Developer Guide.

Localization

• The server can provide error messages to clients in many languages. See Section 10.2, “Setting the
Error Message Language”.

• Full support for several different character sets, including latin1 (cp1252), german, big5, ujis,
several Unicode character sets, and more. For example, the Scandinavian characters “å”, “ä” and “ö” are
permitted in table and column names.

• All data is saved in the chosen character set.

• Sorting and comparisons are done according to the chosen character set and collation (using latin1
and Swedish collation by default). It is possible to change this when the MySQL server is started. To see

http://dev.mysql.com/doc/connector-odbc/en/
http://dev.mysql.com/doc/connector-j/5.1/en/
http://dev.mysql.com/doc/connector-j/5.1/en/
http://dev.mysql.com/doc/connector-net/en/

History of MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 9

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

an example of very advanced sorting, look at the Czech sorting code. MySQL Server supports many
different character sets that can be specified at compile time and runtime.

• The server time zone can be changed dynamically, and individual clients can specify their own time
zone. See Section 10.6, “MySQL Server Time Zone Support”.

Clients and Tools

• MySQL includes several client and utility programs. These include both command-line programs such as
mysqldump and mysqladmin, and graphical programs such as MySQL Workbench.

• MySQL Server has built-in support for SQL statements to check, optimize, and repair tables. These
statements are available from the command line through the mysqlcheck client. MySQL also includes
myisamchk, a very fast command-line utility for performing these operations on MyISAM tables. See
Chapter 4, MySQL Programs.

• MySQL programs can be invoked with the --help or -? option to obtain online assistance.

1.3.3 History of MySQL

We started out with the intention of using the mSQL database system to connect to our tables using our
own fast low-level (ISAM) routines. However, after some testing, we came to the conclusion that mSQL was
not fast enough or flexible enough for our needs. This resulted in a new SQL interface to our database but
with almost the same API interface as mSQL. This API was designed to enable third-party code that was
written for use with mSQL to be ported easily for use with MySQL.

MySQL is named after co-founder Monty Widenius's daughter, My.

The name of the MySQL Dolphin (our logo) is “Sakila,” which was chosen from a huge list of names
suggested by users in our “Name the Dolphin” contest. The winning name was submitted by Ambrose
Twebaze, an Open Source software developer from Swaziland, Africa. According to Ambrose, the feminine
name Sakila has its roots in SiSwati, the local language of Swaziland. Sakila is also the name of a town in
Arusha, Tanzania, near Ambrose's country of origin, Uganda.

1.4 What Is New in MySQL 5.0
The following features are implemented in MySQL 5.0:

• Information Schema. The introduction of the INFORMATION_SCHEMA database in MySQL 5.0
provided a standards-compliant means for accessing the MySQL Server's metadata; that is, data
about the databases (schemas) on the server and the objects which they contain. See Chapter 19,
INFORMATION_SCHEMA Tables.

• Instance Manager. Can be used to start and stop the MySQL Server, even from a remote host. See
Section 4.6.10, “mysqlmanager — The MySQL Instance Manager”.

• Precision Math. MySQL 5.0 introduced stricter criteria for acceptance or rejection of data, and
implemented a new library for fixed-point arithmetic. These contributed to a much higher degree of
accuracy for mathematical operations and greater control over invalid values. See Section 12.17,
“Precision Math”.

• Storage Engines. New storage engines were added and performance of others was improved.

• New storage engines in MySQL 5.0 include ARCHIVE and FEDERATED. See Section 14.8, “The
ARCHIVE Storage Engine”, and Section 14.7, “The FEDERATED Storage Engine”.

• Performance Improvements in the InnoDB Storage Engine:

http://dev.mysql.com/doc/refman/5.1/en/workbench.html

What Is New in MySQL 5.0

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 10

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• New compact storage format which can save up to 20% of the disk space required in previous
MySQL/InnoDB versions.

• Faster recovery from a failed or aborted ALTER TABLE.

• Faster implementation of TRUNCATE TABLE.

(See Section 14.2, “The InnoDB Storage Engine”.)

• Performance Improvements in the NDBCLUSTER Storage Engine:

• Faster handling of queries that use IN and BETWEEN.

• Condition pushdown: In cases involving the comparison of an unindexed column with a constant,
this condition is “pushed down” to the cluster where it is evaluated in all partitions simultaneously,
eliminating the need to send nonmatching records over the network. This can make such queries 10
to 100 times faster than in MySQL 4.1 Cluster.

See Section 13.8.2, “EXPLAIN Syntax”, for more information.

(See Chapter 17, MySQL Cluster.)

• Stored Routines. MySQL 5.0 added support for stored procedures and stored functions. See
Section 18.2, “Using Stored Routines (Procedures and Functions)”.

• Triggers. MySQL 5.0 added limited support for triggers. See Section 18.3, “Using Triggers”.

• Views. MySQL 5.0 added support for named, updatable views. See Section 18.4, “Using Views”.

• Cursors. Elementary support for server-side cursors. For information about using cursors within
stored routines, see Section 13.6.6, “Cursors”. For information about using cursors from within the C
API, see Section 20.6.11.3, “mysql_stmt_attr_set()”.

• Strict Mode and Standard Error Handling. MySQL 5.0 added a strict mode where by it follows
standard SQL in a number of ways in which it did not previously. Support for standard SQLSTATE error
messages was also implemented. See Section 5.1.7, “Server SQL Modes”.

• VARCHAR Data Type. The effective maximum length of a VARCHAR column was increased to 65,535
bytes, and stripping of trailing whitespace was eliminated. VARCHAR in MySQL 5.0 is more efficient
than in previous versions, due to the elimination of the old (and nonstandard) removal of trailing spaces
during retrieval. (The actual maximum length of a VARCHAR is determined by the maximum row size and
the character set you use. The maximum effective column length is subject to a row size of 65,535 bytes,
which is shared among all columns.) See Section 11.4, “String Types”.

• BIT Data Type. A true BIT column type is available that can be used to store numbers in binary
notation. This type is much more efficient for storage and retrieval of Boolean values than the
workarounds required in MySQL in versions previous to 5.0. See Section 11.1.1, “Numeric Type
Overview”.

• Optimizer enhancements. Several optimizer improvements were made to improve the speed of
certain types of queries and in the handling of certain types. These include:

• MySQL 5.0 introduces a new “greedy” optimizer which can greatly reduce the time required to arrive
at a query execution plan. This is particularly noticeable where several tables are to be joined and no
good join keys can otherwise be found. Without the greedy optimizer, the complexity of the search
for an execution plan is calculated as N!, where N is the number of tables to be joined. The greedy

MySQL Development History

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 11

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

optimizer reduces this to N!/(D-1)!, where D is the depth of the search. Although the greedy
optimizer does not guarantee the best possible of all execution plans (this is currently being worked
on), it can reduce the time spent arriving at an execution plan for a join involving a great many tables
—30, 40, or more—by a factor of as much as 1,000. This should eliminate most if not all situations
where users thought that the optimizer had hung when trying to perform joins across many tables.

• Use of the Index Merge method to obtain better optimization of AND and OR relations over different
keys. (Previously, these were optimized only where both relations in the WHERE clause involved the
same key.) This also applies to other one-to-one comparison operators (>, <, and so on), including
= and the IN operator. This means that MySQL can use multiple indexes in retrieving results for
conditions such as WHERE key1 > 4 OR key2 < 7 and even combinations of conditions such as
WHERE (key1 > 4 OR key2 < 7) AND (key3 >= 10 OR key4 = 1). See Section 8.2.1.4,
“Index Merge Optimization”.

• A new equality detector finds and optimizes “hidden” equalities in joins. For example, a WHERE clause
such as

t1.c1=t2.c2 AND t2.c2=t3.c3 AND t1.c1 < 5

implies these other conditions

t1.c1=t3.c3 AND t2.c2 < 5 AND t3.c3 < 5

These optimizations can be applied with any combination of AND and OR operators. See
Section 8.2.1.9, “Nested Join Optimization”, and Section 8.2.1.10, “Outer Join Simplification”.

• Optimization of NOT IN and NOT BETWEEN relations, reducing or eliminating table scans for queries
making use of them by mean of range analysis. The performance of MySQL with regard to these
relations now matches its performance with regard to IN and BETWEEN.

• XA Transactions. MySQL 5.0 supports XA (distributed) transactions. See Section 13.3.7, “XA
Transactions”.

1.5 MySQL Development History

This section describes the general MySQL development history, including major features implemented in
or planned for various MySQL releases. The following sections provide information for each release series.

The current production release series is MySQL 5.1, which was declared stable for production use as
of MySQL 5.1.30, released in November 2008. The previous production release series was MySQL 5.0,
which was declared stable for production use as of MySQL 5.0.15, released in October 2005. “General
Availability status” means that future 5.1 and 5.0 development is limited only to bugfixes. For the older
MySQL 4.1, 4.0, and 3.23 series, only critical bugfixes are made.

Before upgrading from one release series to the next, please see the notes in Section 2.19.1, “Upgrading
MySQL”.

The most requested features and the versions in which they were implemented are summarized in the
following table.

Feature MySQL Series

Unions 4.0

Subqueries 4.1

MySQL Information Sources

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 12

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Feature MySQL Series

R-trees 4.1 (for the MyISAM storage engine)

Stored procedures and functions 5.0

Views 5.0

Cursors 5.0

XA transactions 5.0

Triggers 5.0 and 5.1

Event scheduler 5.1

Partitioning 5.1

Pluggable storage engine API 5.1

Plugin API 5.1

InnoDB Plugin 5.1

Row-based replication 5.1

Server log tables 5.1

1.6 MySQL Information Sources

This section lists sources of additional information that you may find helpful, such as the MySQL mailing
lists and user forums, and Internet Relay Chat.

1.6.1 MySQL Mailing Lists

This section introduces the MySQL mailing lists and provides guidelines as to how the lists should be used.
When you subscribe to a mailing list, you receive all postings to the list as email messages. You can also
send your own questions and answers to the list.

To subscribe to or unsubscribe from any of the mailing lists described in this section, visit http://
lists.mysql.com/. For most of them, you can select the regular version of the list where you get individual
messages, or a digest version where you get one large message per day.

Please do not send messages about subscribing or unsubscribing to any of the mailing lists, because such
messages are distributed automatically to thousands of other users.

Your local site may have many subscribers to a MySQL mailing list. If so, the site may have a local mailing
list, so that messages sent from lists.mysql.com to your site are propagated to the local list. In such
cases, please contact your system administrator to be added to or dropped from the local MySQL list.

To have traffic for a mailing list go to a separate mailbox in your mail program, set up a filter based on
the message headers. You can use either the List-ID: or Delivered-To: headers to identify list
messages.

The MySQL mailing lists are as follows:

• announce

The list for announcements of new versions of MySQL and related programs. This is a low-volume list to
which all MySQL users should subscribe.

• mysql

http://lists.mysql.com/
http://lists.mysql.com/

MySQL Mailing Lists

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 13

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The main list for general MySQL discussion. Please note that some topics are better discussed on the
more-specialized lists. If you post to the wrong list, you may not get an answer.

• bugs

The list for people who want to stay informed about issues reported since the last release of MySQL
or who want to be actively involved in the process of bug hunting and fixing. See Section 1.7, “How to
Report Bugs or Problems”.

• internals

The list for people who work on the MySQL code. This is also the forum for discussions on MySQL
development and for posting patches.

• mysqldoc

The list for people who work on the MySQL documentation.

• benchmarks

The list for anyone interested in performance issues. Discussions concentrate on database performance
(not limited to MySQL), but also include broader categories such as performance of the kernel, file
system, disk system, and so on.

• packagers

The list for discussions on packaging and distributing MySQL. This is the forum used by distribution
maintainers to exchange ideas on packaging MySQL and on ensuring that MySQL looks and feels as
similar as possible on all supported platforms and operating systems.

• java

The list for discussions about the MySQL server and Java. It is mostly used to discuss JDBC drivers
such as MySQL Connector/J.

• win32

The list for all topics concerning the MySQL software on Microsoft operating systems, such as Windows
9x, Me, NT, 2000, XP, and 2003.

• myodbc

The list for all topics concerning connecting to the MySQL server with ODBC.

• gui-tools

The list for all topics concerning MySQL graphical user interface tools such as MySQL Workbench.

• cluster

The list for discussion of MySQL Cluster.

• dotnet

The list for discussion of the MySQL server and the .NET platform. It is mostly related to MySQL
Connector/Net.

• plusplus

MySQL Community Support at the MySQL Forums

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 14

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The list for all topics concerning programming with the C++ API for MySQL.

• perl

The list for all topics concerning Perl support for MySQL with DBD::mysql.

If you're unable to get an answer to your questions from a MySQL mailing list or forum, one option is to
purchase support from Oracle. This puts you in direct contact with MySQL developers.

The following MySQL mailing lists are in languages other than English. These lists are not operated by
Oracle.

• <mysql-france-subscribe@yahoogroups.com>

A French mailing list.

• <list@tinc.net>

A Korean mailing list. To subscribe, email subscribe mysql your@email.address to this list.

• <mysql-de-request@lists.4t2.com>

A German mailing list. To subscribe, email subscribe mysql-de your@email.address to this list.
You can find information about this mailing list at http://www.4t2.com/mysql/.

• <mysql-br-request@listas.linkway.com.br>

A Portuguese mailing list. To subscribe, email subscribe mysql-br your@email.address to this
list.

• <mysql-alta@elistas.net>

A Spanish mailing list. To subscribe, email subscribe mysql your@email.address to this list.

1.6.1.1 Guidelines for Using the Mailing Lists

Please do not post mail messages from your browser with HTML mode turned on. Many users do not read
mail with a browser.

When you answer a question sent to a mailing list, if you consider your answer to have broad interest,
you may want to post it to the list instead of replying directly to the individual who asked. Try to make your
answer general enough that people other than the original poster may benefit from it. When you post to the
list, please make sure that your answer is not a duplication of a previous answer.

Try to summarize the essential part of the question in your reply. Do not feel obliged to quote the entire
original message.

When answers are sent to you individually and not to the mailing list, it is considered good etiquette to
summarize the answers and send the summary to the mailing list so that others may have the benefit of
responses you received that helped you solve your problem.

1.6.2 MySQL Community Support at the MySQL Forums

The forums at http://forums.mysql.com are an important community resource. Many forums are available,
grouped into these general categories:

• Migration

http://www.4t2.com/mysql/
http://forums.mysql.com

MySQL Community Support on Internet Relay Chat (IRC)

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 15

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• MySQL Usage

• MySQL Connectors

• Programming Languages

• Tools

• 3rd-Party Applications

• Storage Engines

• MySQL Technology

• SQL Standards

• Business

1.6.3 MySQL Community Support on Internet Relay Chat (IRC)

In addition to the various MySQL mailing lists and forums, you can find experienced community people on
Internet Relay Chat (IRC). These are the best networks/channels currently known to us:

freenode (see http://www.freenode.net/ for servers)

• #mysql is primarily for MySQL questions, but other database and general SQL questions are welcome.
Questions about PHP, Perl, or C in combination with MySQL are also common.

• #workbench is primarily for MySQL Workbench related questions and thoughts, and it is also a good
place to meet the MySQL Workbench developers.

If you are looking for IRC client software to connect to an IRC network, take a look at xChat (http://
www.xchat.org/). X-Chat (GPL licensed) is available for Unix as well as for Windows platforms (a free
Windows build of X-Chat is available at http://www.silverex.org/download/).

1.6.4 MySQL Enterprise

Oracle offers technical support in the form of MySQL Enterprise. For organizations that rely on the MySQL
DBMS for business-critical production applications, MySQL Enterprise is a commercial subscription
offering which includes:

• MySQL Enterprise Server

• MySQL Enterprise Monitor

• Monthly Rapid Updates and Quarterly Service Packs

• MySQL Knowledge Base

• 24x7 Technical and Consultative Support

MySQL Enterprise is available in multiple tiers, giving you the flexibility to choose the level of service that
best matches your needs. For more information, see MySQL Enterprise.

1.7 How to Report Bugs or Problems
Before posting a bug report about a problem, please try to verify that it is a bug and that it has not been
reported already:

http://www.freenode.net/
http://www.xchat.org/
http://www.xchat.org/
http://www.silverex.org/download/
http://www.mysql.com/products/enterprise/

How to Report Bugs or Problems

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 16

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Start by searching the MySQL online manual at http://dev.mysql.com/doc/. We try to keep the manual
up to date by updating it frequently with solutions to newly found problems. In addition, the release
notes accompanying the manual can be particularly useful since it is quite possible that a newer version
contains a solution to your problem. The release notes are available at the location just given for the
manual.

• If you get a parse error for an SQL statement, please check your syntax closely. If you cannot find
something wrong with it, it is extremely likely that your current version of MySQL Server doesn't support
the syntax you are using. If you are using the current version and the manual doesn't cover the syntax
that you are using, MySQL Server doesn't support your statement.

If the manual covers the syntax you are using, but you have an older version of MySQL Server, you
should check the MySQL change history to see when the syntax was implemented. In this case, you
have the option of upgrading to a newer version of MySQL Server.

• For solutions to some common problems, see Section B.5, “Problems and Common Errors”.

• Search the bugs database at http://bugs.mysql.com/ to see whether the bug has been reported and
fixed.

• Search the MySQL mailing list archives at http://lists.mysql.com/. See Section 1.6.1, “MySQL Mailing
Lists”.

• You can also use http://www.mysql.com/search/ to search all the Web pages (including the manual) that
are located at the MySQL Web site.

If you cannot find an answer in the manual, the bugs database, or the mailing list archives, check with your
local MySQL expert. If you still cannot find an answer to your question, please use the following guidelines
for reporting the bug.

The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs
database. This database is public and can be browsed and searched by anyone. If you log in to the
system, you can enter new reports.

Bugs posted in the bugs database at http://bugs.mysql.com/ that are corrected for a given release are
noted in the release notes.

If you find a sensitive security bug in MySQL Server, please let us know immediately by sending an email
message to <secalert_us@oracle.com>. Exception: Support customers should report all problems,
including security bugs, to Oracle Support at http://support.oracle.com/.

To discuss problems with other users, you can use one of the MySQL mailing lists. Section 1.6.1, “MySQL
Mailing Lists”.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix the
bug in the next release. This section helps you write your report correctly so that you do not waste your
time doing things that may not help us much or at all. Please read this section carefully and make sure that
all the information described here is included in your report.

Preferably, you should test the problem using the latest production or development version of MySQL
Server before posting. Anyone should be able to repeat the bug by just using mysql test <
script_file on your test case or by running the shell or Perl script that you include in the bug report.
Any bug that we are able to repeat has a high chance of being fixed in the next MySQL release.

It is most helpful when a good description of the problem is included in the bug report. That is, give a good
example of everything you did that led to the problem and describe, in exact detail, the problem itself.

http://dev.mysql.com/doc/
http://bugs.mysql.com/
http://lists.mysql.com/
http://www.mysql.com/search/
http://bugs.mysql.com/
http://bugs.mysql.com/
http://support.oracle.com/

How to Report Bugs or Problems

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 17

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The best reports are those that include a full example showing how to reproduce the bug or problem. See
Section 21.3, “Debugging and Porting MySQL”.

Remember that it is possible for us to respond to a report containing too much information, but not to one
containing too little. People often omit facts because they think they know the cause of a problem and
assume that some details do not matter. A good principle to follow is that if you are in doubt about stating
something, state it. It is faster and less troublesome to write a couple more lines in your report than to wait
longer for the answer if we must ask you to provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of the MySQL
distribution that you use, and (b) not fully describing the platform on which the MySQL server is installed
(including the platform type and version number). These are highly relevant pieces of information, and in
99 cases out of 100, the bug report is useless without them. Very often we get questions like, “Why doesn't
this work for me?” Then we find that the feature requested wasn't implemented in that MySQL version,
or that a bug described in a report has been fixed in newer MySQL versions. Errors often are platform-
dependent. In such cases, it is next to impossible for us to fix anything without knowing the operating
system and the version number of the platform.

If you compiled MySQL from source, remember also to provide information about your compiler if it is
related to the problem. Often people find bugs in compilers and think the problem is MySQL-related.
Most compilers are under development all the time and become better version by version. To determine
whether your problem depends on your compiler, we need to know what compiler you used. Note that
every compiling problem should be regarded as a bug and reported accordingly.

If a program produces an error message, it is very important to include the message in your report. If we try
to search for something from the archives, it is better that the error message reported exactly matches the
one that the program produces. (Even the lettercase should be observed.) It is best to copy and paste the
entire error message into your report. You should never try to reproduce the message from memory.

If you have a problem with Connector/ODBC (MyODBC), please try to generate a trace file and send it with
your report. See How to Report Connector/ODBC Problems or Bugs.

If your report includes long query output lines from test cases that you run with the mysql command-
line tool, you can make the output more readable by using the --vertical option or the \G statement
terminator. The EXPLAIN SELECT example later in this section demonstrates the use of \G.

Please include the following information in your report:

• The version number of the MySQL distribution you are using (for example, MySQL 5.7.10). You can find
out which version you are running by executing mysqladmin version. The mysqladmin program can
be found in the bin directory under your MySQL installation directory.

• The manufacturer and model of the machine on which you experience the problem.

• The operating system name and version. If you work with Windows, you can usually get the name and
version number by double-clicking your My Computer icon and pulling down the “Help/About Windows”
menu. For most Unix-like operating systems, you can get this information by executing the command
uname -a.

• Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include these values.

• If you are using a source distribution of the MySQL software, include the name and version number of
the compiler that you used. If you have a binary distribution, include the distribution name.

• If the problem occurs during compilation, include the exact error messages and also a few lines of
context around the offending code in the file where the error occurs.

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-support-bug-report.html

How to Report Bugs or Problems

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 18

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• If mysqld died, you should also report the statement that crashed mysqld. You can usually get this
information by running mysqld with query logging enabled, and then looking in the log after mysqld
crashes. See Section 21.3, “Debugging and Porting MySQL”.

• If a database table is related to the problem, include the output from the SHOW CREATE TABLE
db_name.tbl_name statement in the bug report. This is a very easy way to get the definition of
any table in a database. The information helps us create a situation matching the one that you have
experienced.

• The SQL mode in effect when the problem occurred can be significant, so please report the value of
the sql_mode system variable. For stored procedure, stored function, and trigger objects, the relevant
sql_mode value is the one in effect when the object was created. For a stored procedure or function,
the SHOW CREATE PROCEDURE or SHOW CREATE FUNCTION statement shows the relevant SQL mode,
or you can query INFORMATION_SCHEMA for the information:

SELECT ROUTINE_SCHEMA, ROUTINE_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.ROUTINES;

For triggers, you can use this statement:

SELECT EVENT_OBJECT_SCHEMA, EVENT_OBJECT_TABLE, TRIGGER_NAME, SQL_MODE
FROM INFORMATION_SCHEMA.TRIGGERS;

• For performance-related bugs or problems with SELECT statements, you should always include the
output of EXPLAIN SELECT ..., and at least the number of rows that the SELECT statement produces.
You should also include the output from SHOW CREATE TABLE tbl_name for each table that is
involved. The more information you provide about your situation, the more likely it is that someone can
help you.

The following is an example of a very good bug report. The statements are run using the mysql
command-line tool. Note the use of the \G statement terminator for statements that would otherwise
provide very long output lines that are difficult to read.

mysql> SHOW VARIABLES;
mysql> SHOW COLUMNS FROM ...\G
 <output from SHOW COLUMNS>
mysql> EXPLAIN SELECT ...\G
 <output from EXPLAIN>
mysql> FLUSH STATUS;
mysql> SELECT ...;
 <A short version of the output from SELECT,
 including the time taken to run the query>
mysql> SHOW STATUS;
 <output from SHOW STATUS>

• If a bug or problem occurs while running mysqld, try to provide an input script that reproduces the
anomaly. This script should include any necessary source files. The more closely the script can
reproduce your situation, the better. If you can make a reproducible test case, you should upload it to be
attached to the bug report.

If you cannot provide a script, you should at least include the output from mysqladmin variables
extended-status processlist in your report to provide some information on how your system is
performing.

• If you cannot produce a test case with only a few rows, or if the test table is too big to be included in the
bug report (more than 10 rows), you should dump your tables using mysqldump and create a README
file that describes your problem. Create a compressed archive of your files using tar and gzip or zip.

How to Report Bugs or Problems

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 19

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

After you initiate a bug report for our bugs database at http://bugs.mysql.com/, click the Files tab in the
bug report for instructions on uploading the archive to the bugs database.

• If you believe that the MySQL server produces a strange result from a statement, include not only the
result, but also your opinion of what the result should be, and an explanation describing the basis for
your opinion.

• When you provide an example of the problem, it is better to use the table names, variable names, and
so forth that exist in your actual situation than to come up with new names. The problem could be related
to the name of a table or variable. These cases are rare, perhaps, but it is better to be safe than sorry.
After all, it should be easier for you to provide an example that uses your actual situation, and it is by all
means better for us. If you have data that you do not want to be visible to others in the bug report, you
can upload it using the Files tab as previously described. If the information is really top secret and you do
not want to show it even to us, go ahead and provide an example using other names, but please regard
this as the last choice.

• Include all the options given to the relevant programs, if possible. For example, indicate the options that
you use when you start the mysqld server, as well as the options that you use to run any MySQL client
programs. The options to programs such as mysqld and mysql, and to the configure script, are often
key to resolving problems and are very relevant. It is never a bad idea to include them. If your problem
involves a program written in a language such as Perl or PHP, please include the language processor's
version number, as well as the version for any modules that the program uses. For example, if you have
a Perl script that uses the DBI and DBD::mysql modules, include the version numbers for Perl, DBI,
and DBD::mysql.

• If your question is related to the privilege system, please include the output of mysqladmin reload,
and all the error messages you get when trying to connect. When you test your privileges, you should
execute mysqladmin reload version and try to connect with the program that gives you trouble.

• If you have a patch for a bug, do include it. But do not assume that the patch is all we need, or that we
can use it, if you do not provide some necessary information such as test cases showing the bug that
your patch fixes. We might find problems with your patch or we might not understand it at all. If so, we
cannot use it.

If we cannot verify the exact purpose of the patch, we will not use it. Test cases help us here. Show that
the patch handles all the situations that may occur. If we find a borderline case (even a rare one) where
the patch will not work, it may be useless.

• Guesses about what the bug is, why it occurs, or what it depends on are usually wrong. Even the
MySQL team cannot guess such things without first using a debugger to determine the real cause of a
bug.

• Indicate in your bug report that you have checked the reference manual and mail archive so that others
know you have tried to solve the problem yourself.

• If your data appears corrupt or you get errors when you access a particular table, first check your tables
with CHECK TABLE. If that statement reports any errors:

• The InnoDB crash recovery mechanism handles cleanup when the server is restarted after being
killed, so in typical operation there is no need to “repair” tables. If you encounter an error with
InnoDB tables, restart the server and see whether the problem persists, or whether the error
affected only cached data in memory. If data is corrupted on disk, consider restarting with the
innodb_force_recovery option enabled so that you can dump the affected tables.

• For non-transactional tables, try to repair them with REPAIR TABLE or with myisamchk. See
Chapter 5, MySQL Server Administration.

http://bugs.mysql.com/

MySQL Standards Compliance

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 20

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you are running Windows, please verify the value of lower_case_table_names using the SHOW
VARIABLES LIKE 'lower_case_table_names' statement. This variable affects how the server
handles lettercase of database and table names. Its effect for a given value should be as described in
Section 9.2.2, “Identifier Case Sensitivity”.

• If you often get corrupted tables, you should try to find out when and why this happens. In this case,
the error log in the MySQL data directory may contain some information about what happened. (This
is the file with the .err suffix in the name.) See Section 5.4.1, “The Error Log”. Please include any
relevant information from this file in your bug report. Normally mysqld should never crash a table if
nothing killed it in the middle of an update. If you can find the cause of mysqld dying, it is much easier
for us to provide you with a fix for the problem. See Section B.5.1, “How to Determine What Is Causing a
Problem”.

• If possible, download and install the most recent version of MySQL Server and check whether it solves
your problem. All versions of the MySQL software are thoroughly tested and should work without
problems. We believe in making everything as backward-compatible as possible, and you should be able
to switch MySQL versions without difficulty. See Section 2.4.2, “Choosing Which MySQL Distribution to
Install”.

1.8 MySQL Standards Compliance

This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server has many
extensions to the SQL standard, and here you can find out what they are and how to use them. You can
also find information about functionality missing from MySQL Server, and how to work around some of the
differences.

The SQL standard has been evolving since 1986 and several versions exist. In this manual, “SQL-92”
refers to the standard released in 1992, “SQL:1999” refers to the standard released in 1999, “SQL:2003”
refers to the standard released in 2003, and “SQL:2008” refers to the most recent version of the standard,
released in 2008. We use the phrase “the SQL standard” or “standard SQL” to mean the current version of
the SQL Standard at any time.

One of our main goals with the product is to continue to work toward compliance with the SQL standard,
but without sacrificing speed or reliability. We are not afraid to add extensions to SQL or support for non-
SQL features if this greatly increases the usability of MySQL Server for a large segment of our user base.
The HANDLER interface is an example of this strategy. See Section 13.2.4, “HANDLER Syntax”.

We continue to support transactional and nontransactional databases to satisfy both mission-critical 24/7
usage and heavy Web or logging usage.

MySQL Server was originally designed to work with medium-sized databases (10-100 million rows,
or about 100MB per table) on small computer systems. Today MySQL Server handles terabyte-sized
databases, but the code can also be compiled in a reduced version suitable for hand-held and embedded
devices. The compact design of the MySQL server makes development in both directions possible without
any conflicts in the source tree.

We are not targeting real-time support, although MySQL replication capabilities offer significant
functionality.

MySQL supports ODBC levels 0 to 3.51.

MySQL supports high-availability database clustering using the NDBCLUSTER storage engine. See
Chapter 17, MySQL Cluster.

Selecting SQL Modes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 21

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

XML support is to be implemented in a future version of the database server.

Selecting SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differently for different
clients, depending on the value of the sql_mode system variable. DBAs can set the global SQL mode to
match site server operating requirements, and each application can set its session SQL mode to its own
requirements.

Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This makes it
easier to use MySQL in different environments and to use MySQL together with other database servers.

For more information on setting the SQL mode, see Section 5.1.7, “Server SQL Modes”.

Running MySQL in ANSI Mode

To run MySQL Server in ANSI mode, start mysqld with the --ansi option. Running the server in ANSI
mode is the same as starting it with the following options:

--transaction-isolation=SERIALIZABLE --sql-mode=ANSI

To achieve the same effect at runtime, execute these two statements:

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET GLOBAL sql_mode = 'ANSI';

You can see that setting the sql_mode system variable to 'ANSI' enables all SQL mode options that are
relevant for ANSI mode as follows:

mysql> SET GLOBAL sql_mode='ANSI';
mysql> SELECT @@global.sql_mode;
 -> 'REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ANSI'

Running the server in ANSI mode with --ansi is not quite the same as setting the SQL mode to 'ANSI'
because the --ansi option also sets the transaction isolation level.

See Section 5.1.3, “Server Command Options”.

1.8.1 MySQL Extensions to Standard SQL

MySQL Server supports some extensions that you probably won't find in other SQL DBMSs. Be warned
that if you use them, your code won't be portable to other SQL servers. In some cases, you can write code
that includes MySQL extensions, but is still portable, by using comments of the following form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other SQL
statement, but other SQL servers will ignore the extensions. For example, MySQL Server recognizes the
STRAIGHT_JOIN keyword in the following statement, but other servers will not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

MySQL Extensions to Standard SQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 22

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you add a version number after the “!” character, the syntax within the comment is executed only if the
MySQL version is greater than or equal to the specified version number. The TEMPORARY keyword in the
following comment is executed only by servers from MySQL 3.23.02 or higher:

CREATE /*!32302 TEMPORARY */ TABLE t (a INT);

The following descriptions list MySQL extensions, organized by category.

• Organization of data on disk

MySQL Server maps each database to a directory under the MySQL data directory, and maps tables
within a database to file names in the database directory. This has a few implications:

• Database and table names are case sensitive in MySQL Server on operating systems that
have case-sensitive file names (such as most Unix systems). See Section 9.2.2, “Identifier Case
Sensitivity”.

• You can use standard system commands to back up, rename, move, delete, and copy tables that
are managed by the MyISAM storage engine. For example, it is possible to rename a MyISAM table
by renaming the .MYD, .MYI, and .frm files to which the table corresponds. (Nevertheless, it is
preferable to use RENAME TABLE or ALTER TABLE ... RENAME and let the server rename the
files.)

Database and table names cannot contain path name separator characters (“/”, “\”).

• General language syntax

• By default, strings can be enclosed by either “"” or “'”, not just by “'”. (If the ANSI_QUOTES SQL
mode is enabled, strings can be enclosed only by “'” and the server interprets strings enclosed by “"”
as identifiers.)

• “\” is the escape character in strings.

• In SQL statements, you can access tables from different databases with the db_name.tbl_name
syntax. Some SQL servers provide the same functionality but call this User space. MySQL
Server doesn't support tablespaces such as used in statements like this: CREATE TABLE
ralph.my_table ... IN my_tablespace.

• SQL statement syntax

• The ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.

• The CREATE DATABASE, DROP DATABASE, and ALTER DATABASE statements. See Section 13.1.6,
“CREATE DATABASE Syntax”, Section 13.1.13, “DROP DATABASE Syntax”, and Section 13.1.1,
“ALTER DATABASE Syntax”.

• The DO statement.

• EXPLAIN SELECT to obtain a description of how tables are processed by the query optimizer.

• The FLUSH and RESET statements.

• The SET statement. See Section 13.7.4, “SET Syntax”.

• The SHOW statement. See Section 13.7.5, “SHOW Syntax”. The information produced by many of the
MySQL-specific SHOW statements can be obtained in more standard fashion by using SELECT to query
INFORMATION_SCHEMA. See Chapter 19, INFORMATION_SCHEMA Tables.

MySQL Extensions to Standard SQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 23

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Use of LOAD DATA INFILE. In many cases, this syntax is compatible with Oracle's LOAD DATA
INFILE. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

• Use of RENAME TABLE. See Section 13.1.20, “RENAME TABLE Syntax”.

• Use of REPLACE instead of DELETE plus INSERT. See Section 13.2.7, “REPLACE Syntax”.

• Use of CHANGE col_name, DROP col_name, or DROP INDEX, IGNORE or RENAME in ALTER TABLE
statements. Use of multiple ADD, ALTER, DROP, or CHANGE clauses in an ALTER TABLE statement.
See Section 13.1.4, “ALTER TABLE Syntax”.

• Use of index names, indexes on a prefix of a column, and use of INDEX or KEY in CREATE TABLE
statements. See Section 13.1.10, “CREATE TABLE Syntax”.

• Use of TEMPORARY or IF NOT EXISTS with CREATE TABLE.

• Use of IF EXISTS with DROP TABLE and DROP DATABASE.

• The capability of dropping multiple tables with a single DROP TABLE statement.

• The ORDER BY and LIMIT clauses of the UPDATE and DELETE statements.

• INSERT INTO tbl_name SET col_name = ... syntax.

• The DELAYED clause of the INSERT and REPLACE statements.

• The LOW_PRIORITY clause of the INSERT, REPLACE, DELETE, and UPDATE statements.

• Use of INTO OUTFILE or INTO DUMPFILE in SELECT statements. See Section 13.2.8, “SELECT
Syntax”.

• Options such as STRAIGHT_JOIN or SQL_SMALL_RESULT in SELECT statements.

• You don't need to name all selected columns in the GROUP BY clause. This gives better performance
for some very specific, but quite normal queries. See Section 12.16, “GROUP BY (Aggregate)
Functions”.

• You can specify ASC and DESC with GROUP BY, not just with ORDER BY.

• The ability to set variables in a statement with the := assignment operator. See Section 9.4, “User-
Defined Variables”.

• Data types

• The MEDIUMINT, SET, and ENUM data types, and the various BLOB and TEXT data types.

• The AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL data type attributes.

• Functions and operators

• To make it easier for users who migrate from other SQL environments, MySQL Server supports
aliases for many functions. For example, all string functions support both standard SQL syntax and
ODBC syntax.

• MySQL Server understands the || and && operators to mean logical OR and AND, as in the
C programming language. In MySQL Server, || and OR are synonyms, as are && and AND.
Because of this nice syntax, MySQL Server doesn't support the standard SQL || operator for string

MySQL Differences from Standard SQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 24

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

concatenation; use CONCAT() instead. Because CONCAT() takes any number of arguments, it is easy
to convert use of the || operator to MySQL Server.

• Use of COUNT(DISTINCT value_list) where value_list has more than one element.

• String comparisons are case-insensitive by default, with sort ordering determined by the collation of
the current character set, which is latin1 (cp1252 West European) by default. If you don't like this,
you should declare your columns with the BINARY attribute or use the BINARY cast, which causes
comparisons to be done using the underlying character code values rather than a lexical ordering.

• The % operator is a synonym for MOD(). That is, N % M is equivalent to MOD(N,M). % is supported
for C programmers and for compatibility with PostgreSQL.

• The =, <>, <=, <, >=, >, <<, >>, <=>, AND, OR, or LIKE operators may be used in expressions in the
output column list (to the left of the FROM) in SELECT statements. For example:

mysql> SELECT col1=1 AND col2=2 FROM my_table;

• The LAST_INSERT_ID() function returns the most recent AUTO_INCREMENT value. See
Section 12.13, “Information Functions”.

• LIKE is permitted on numeric values.

• The REGEXP and NOT REGEXP extended regular expression operators.

• CONCAT() or CHAR() with one argument or more than two arguments. (In MySQL Server, these
functions can take a variable number of arguments.)

• The BIT_COUNT(), CASE, ELT(), FROM_DAYS(), FORMAT(), IF(), PASSWORD(), ENCRYPT(),
MD5(), ENCODE(), DECODE(), PERIOD_ADD(), PERIOD_DIFF(), TO_DAYS(), and WEEKDAY()
functions.

• Use of TRIM() to trim substrings. Standard SQL supports removal of single characters only.

• The GROUP BY functions STD(), BIT_OR(), BIT_AND(), BIT_XOR(), and GROUP_CONCAT(). See
Section 12.16, “GROUP BY (Aggregate) Functions”.

1.8.2 MySQL Differences from Standard SQL

We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL standard, but MySQL
Server performs operations differently in some cases:

• For VARCHAR columns, trailing spaces are removed when the value is stored. (This is fixed in MySQL
5.0.3). See Section B.5.7, “Known Issues in MySQL”.

• In some cases, CHAR columns are silently converted to VARCHAR columns when you define a table or
alter its structure. (This no longer occurs as of MySQL 5.0.3). See Section 13.1.10.4, “Silent Column
Specification Changes”.

• There are several differences between the MySQL and standard SQL privilege systems. For example, in
MySQL, privileges for a table are not automatically revoked when you delete a table. You must explicitly
issue a REVOKE statement to revoke privileges for a table. For more information, see Section 13.7.1.5,
“REVOKE Syntax”.

• The CAST() function does not support cast to REAL or BIGINT. See Section 12.10, “Cast Functions and
Operators”.

MySQL Differences from Standard SQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 25

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Standard SQL requires that a HAVING clause in a SELECT statement be able to refer to columns in the
GROUP BY clause. This cannot be done before MySQL 5.0.2.

1.8.2.1 SELECT INTO TABLE

MySQL Server doesn't support the SELECT ... INTO TABLE Sybase SQL extension. Instead, MySQL
Server supports the INSERT INTO ... SELECT standard SQL syntax, which is basically the same thing.
See Section 13.2.5.1, “INSERT ... SELECT Syntax”. For example:

INSERT INTO tbl_temp2 (fld_id)
 SELECT tbl_temp1.fld_order_id
 FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

Alternatively, you can use SELECT ... INTO OUTFILE or CREATE TABLE ... SELECT.

You can use SELECT ... INTO with user-defined variables. The same syntax can also be used inside
stored routines using cursors and local variables. See Section 13.2.8.1, “SELECT ... INTO Syntax”.

1.8.2.2 UPDATE

If you access a column from the table to be updated in an expression, UPDATE uses the current value of
the column. The second assignment in the following statement sets col2 to the current (updated) col1
value, not the original col1 value. The result is that col1 and col2 have the same value. This behavior
differs from standard SQL.

UPDATE t1 SET col1 = col1 + 1, col2 = col1;

1.8.2.3 Transactions and Atomic Operations

MySQL Server (version 3.23-max and all versions 4.0 and above) supports transactions with the InnoDB
and BDB transactional storage engines. InnoDB provides full ACID compliance. See Chapter 14, Storage
Engines. For information about InnoDB differences from standard SQL with regard to treatment of
transaction errors, see Section 14.2.12, “InnoDB Error Handling”.

The other nontransactional storage engines in MySQL Server (such as MyISAM) follow a different
paradigm for data integrity called “atomic operations.” In transactional terms, MyISAM tables effectively
always operate in autocommit = 1 mode. Atomic operations often offer comparable integrity with higher
performance.

Because MySQL Server supports both paradigms, you can decide whether your applications are best
served by the speed of atomic operations or the use of transactional features. This choice can be made on
a per-table basis.

As noted, the tradeoff for transactional versus nontransactional storage engines lies mostly in performance.
Transactional tables have significantly higher memory and disk space requirements, and more CPU
overhead. On the other hand, transactional storage engines such as InnoDB also offer many significant
features. MySQL Server's modular design enables the concurrent use of different storage engines to suit
different requirements and deliver optimum performance in all situations.

But how do you use the features of MySQL Server to maintain rigorous integrity even with the
nontransactional MyISAM tables, and how do these features compare with the transactional storage
engines?

• If your applications are written in a way that is dependent on being able to call ROLLBACK rather than
COMMIT in critical situations, transactions are more convenient. Transactions also ensure that unfinished

MySQL Differences from Standard SQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 26

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

updates or corrupting activities are not committed to the database; the server is given the opportunity to
do an automatic rollback and your database is saved.

If you use nontransactional tables, MySQL Server in almost all cases enables you to resolve potential
problems by including simple checks before updates and by running simple scripts that check the
databases for inconsistencies and automatically repair or warn if such an inconsistency occurs. You can
normally fix tables perfectly with no data integrity loss just by using the MySQL log or even adding one
extra log.

• More often than not, critical transactional updates can be rewritten to be atomic. Generally speaking, all
integrity problems that transactions solve can be done with LOCK TABLES or atomic updates, ensuring
that there are no automatic aborts from the server, which is a common problem with transactional
database systems.

• To be safe with MySQL Server, regardless of whether you use transactional tables, you only need
to have backups and have binary logging turned on. When that is true, you can recover from any
situation that you could with any other transactional database system. It is always good to have backups,
regardless of which database system you use.

The transactional paradigm has its advantages and disadvantages. Many users and application developers
depend on the ease with which they can code around problems where an abort appears to be necessary,
or is necessary. However, even if you are new to the atomic operations paradigm, or more familiar with
transactions, do consider the speed benefit that nontransactional tables can offer on the order of three to
five times the speed of the fastest and most optimally tuned transactional tables.

In situations where integrity is of highest importance, MySQL Server offers transaction-level reliability
and integrity even for nontransactional tables. If you lock tables with LOCK TABLES, all updates stall until
integrity checks are made. If you obtain a READ LOCAL lock (as opposed to a write lock) for a table that
enables concurrent inserts at the end of the table, reads are permitted, as are inserts by other clients.
The newly inserted records are not be seen by the client that has the read lock until it releases the lock.
With INSERT DELAYED, you can write inserts that go into a local queue until the locks are released,
without having the client wait for the insert to complete. See Section 8.11.3, “Concurrent Inserts”, and
Section 13.2.5.2, “INSERT DELAYED Syntax”.

“Atomic,” in the sense that we mean it, is nothing magical. It only means that you can be sure that while
each specific update is running, no other user can interfere with it, and there can never be an automatic
rollback (which can happen with transactional tables if you are not very careful). MySQL Server also
guarantees that there are no dirty reads.

Following are some techniques for working with nontransactional tables:

• Loops that need transactions normally can be coded with the help of LOCK TABLES, and you don't need
cursors to update records on the fly.

• To avoid using ROLLBACK, you can employ the following strategy:

1. Use LOCK TABLES to lock all the tables you want to access.

2. Test the conditions that must be true before performing the update.

3. Update if the conditions are satisfied.

4. Use UNLOCK TABLES to release your locks.

This is usually a much faster method than using transactions with possible rollbacks, although not
always. The only situation this solution doesn't handle is when someone kills the threads in the middle of
an update. In that case, all locks are released but some of the updates may not have been executed.

MySQL Differences from Standard SQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 27

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• You can also use functions to update records in a single operation. You can get a very efficient
application by using the following techniques:

• Modify columns relative to their current value.

• Update only those columns that actually have changed.

For example, when we are updating customer information, we update only the customer data that has
changed and test only that none of the changed data, or data that depends on the changed data, has
changed compared to the original row. The test for changed data is done with the WHERE clause in the
UPDATE statement. If the record wasn't updated, we give the client a message: “Some of the data you
have changed has been changed by another user.” Then we show the old row versus the new row in a
window so that the user can decide which version of the customer record to use.

This gives us something that is similar to column locking but is actually even better because we only
update some of the columns, using values that are relative to their current values. This means that
typical UPDATE statements look something like these:

UPDATE tablename SET pay_back=pay_back+125;

UPDATE customer
 SET
 customer_date='current_date',
 address='new address',
 phone='new phone',
 money_owed_to_us=money_owed_to_us-125
 WHERE
 customer_id=id AND address='old address' AND phone='old phone';

This is very efficient and works even if another client has changed the values in the pay_back or
money_owed_to_us columns.

• In many cases, users have wanted LOCK TABLES or ROLLBACK for the purpose of managing
unique identifiers. This can be handled much more efficiently without locking or rolling back
by using an AUTO_INCREMENT column and either the LAST_INSERT_ID() SQL function or
the mysql_insert_id() C API function. See Section 12.13, “Information Functions”, and
Section 20.6.7.37, “mysql_insert_id()”.

You can generally code around the need for row-level locking. Some situations really do need it, and
InnoDB tables support row-level locking. Otherwise, with MyISAM tables, you can use a flag column in
the table and do something like the following:

UPDATE tbl_name SET row_flag=1 WHERE id=ID;

MySQL returns 1 for the number of affected rows if the row was found and row_flag wasn't 1 in the
original row. You can think of this as though MySQL Server changed the preceding statement to:

UPDATE tbl_name SET row_flag=1 WHERE id=ID AND row_flag <> 1;

1.8.2.4 Foreign Key Differences

MySQL's implementation of foreign keys differs from the SQL standard in the following key respects:

• If there are several rows in the parent table that have the same referenced key value, InnoDB acts in
foreign key checks as if the other parent rows with the same key value do not exist. For example, if you

MySQL Differences from Standard SQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 28

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

have defined a RESTRICT type constraint, and there is a child row with several parent rows, InnoDB
does not permit the deletion of any of those parent rows.

InnoDB performs cascading operations through a depth-first algorithm, based on records in the indexes
corresponding to the foreign key constraints.

• A FOREIGN KEY constraint that references a non-UNIQUE key is not standard SQL but rather an
InnoDB extension.

• If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to update the same table it has previously
updated during the same cascade, it acts like RESTRICT. This means that you cannot use self-
referential ON UPDATE CASCADE or ON UPDATE SET NULL operations. This is to prevent infinite
loops resulting from cascaded updates. A self-referential ON DELETE SET NULL, on the other hand, is
possible, as is a self-referential ON DELETE CASCADE. Cascading operations may not be nested more
than 15 levels deep.

• In an SQL statement that inserts, deletes, or updates many rows, foreign key constraints (like unique
constraints) are checked row-by-row. When performing foreign key checks, InnoDB sets shared row-
level locks on child or parent records that it must examine. MySQL checks foreign key constraints
immediately; the check is not deferred to transaction commit. According to the SQL standard, the
default behavior should be deferred checking. That is, constraints are only checked after the entire SQL
statement has been processed. This means that it is not possible to delete a row that refers to itself
using a foreign key.

For information about how the InnoDB storage engine handles foreign keys, see Section 14.2.3.4,
“InnoDB and FOREIGN KEY Constraints”.

1.8.2.5 '--' as the Start of a Comment

Standard SQL uses the C syntax /* this is a comment */ for comments, and MySQL Server
supports this syntax as well. MySQL also support extensions to this syntax that enable MySQL-specific
SQL to be embedded in the comment, as described in Section 9.6, “Comment Syntax”.

Standard SQL uses “--” as a start-comment sequence. MySQL Server uses “#” as the start comment
character. MySQL Server 3.23.3 and up also supports a variant of the “--” comment style. That is, the “--”
start-comment sequence must be followed by a space (or by a control character such as a newline). The
space is required to prevent problems with automatically generated SQL queries that use constructs such
as the following, where we automatically insert the value of the payment for payment:

UPDATE account SET credit=credit-payment

Consider about what happens if payment has a negative value such as -1:

UPDATE account SET credit=credit--1

credit--1 is a legal expression in SQL, but “--” is interpreted as the start of a comment, part of the
expression is discarded. The result is a statement that has a completely different meaning than intended:

UPDATE account SET credit=credit

The statement produces no change in value at all. This illustrates that permitting comments to start with
“--” can have serious consequences.

Using our implementation requires a space following the “--” for it to be recognized as a start-comment
sequence in MySQL Server 3.23.3 and newer. Therefore, credit--1 is safe to use.

How MySQL Deals with Constraints

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 29

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Another safe feature is that the mysql command-line client ignores lines that start with “--”.

The following information is relevant only if you are running a MySQL version earlier than 3.23.3:

If you have an SQL script in a text file that contains “--” comments, you should use the replace utility as
follows to convert the comments to use “#” characters before executing the script:

shell> replace " --" " #" < text-file-with-funny-comments.sql \
 | mysql db_name

That is safer than executing the script in the usual way:

shell> mysql db_name < text-file-with-funny-comments.sql

You can also edit the script file “in place” to change the “--” comments to “#” comments:

shell> replace " --" " #" -- text-file-with-funny-comments.sql

Change them back with this command:

shell> replace " #" " --" -- text-file-with-funny-comments.sql

See Section 4.8.2, “replace — A String-Replacement Utility”.

1.8.3 How MySQL Deals with Constraints

MySQL enables you to work both with transactional tables that permit rollback and with nontransactional
tables that do not. Because of this, constraint handling is a bit different in MySQL than in other DBMSs. We
must handle the case when you have inserted or updated a lot of rows in a nontransactional table for which
changes cannot be rolled back when an error occurs.

The basic philosophy is that MySQL Server tries to produce an error for anything that it can detect while
parsing a statement to be executed, and tries to recover from any errors that occur while executing the
statement. We do this in most cases, but not yet for all.

The options MySQL has when an error occurs are to stop the statement in the middle or to recover as well
as possible from the problem and continue. By default, the server follows the latter course. This means, for
example, that the server may coerce illegal values to the closest legal values.

Beginning with MySQL 5.0.2, several SQL mode options are available to provide greater control over
handling of bad data values and whether to continue statement execution or abort when errors occur.
Using these options, you can configure MySQL Server to act in a more traditional fashion that is like other
DBMSs that reject improper input. The SQL mode can be set globally at server startup to affect all clients.
Individual clients can set the SQL mode at runtime, which enables each client to select the behavior most
appropriate for its requirements. See Section 5.1.7, “Server SQL Modes”.

The following sections describe how MySQL Server handles different types of constraints.

1.8.3.1 PRIMARY KEY and UNIQUE Index Constraints

Normally, errors occurs for data-change statements (such as INSERT or UPDATE) that would violate
primary-key, unique-key, or foreign-key constraints. If you are using a transactional storage engine such

How MySQL Deals with Constraints

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 30

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

as InnoDB, MySQL automatically rolls back the statement. If you are using a nontransactional storage
engine, MySQL stops processing the statement at the row for which the error occurred and leaves any
remaining rows unprocessed.

MySQL supports an IGNORE keyword for INSERT, UPDATE, and so forth. If you use it, MySQL ignores
primary-key or unique-key violations and continues processing with the next row. See the section for the
statement that you are using (Section 13.2.5, “INSERT Syntax”, Section 13.2.10, “UPDATE Syntax”, and
so forth).

You can get information about the number of rows actually inserted or updated with the mysql_info() C
API function. You can also use the SHOW WARNINGS statement. See Section 20.6.7.35, “mysql_info()”, and
Section 13.7.5.37, “SHOW WARNINGS Syntax”.

Only InnoDB tables support foreign keys. See Section 14.2.3.4, “InnoDB and FOREIGN KEY Constraints”.

1.8.3.2 FOREIGN KEY Constraints

Foreign keys let you cross-reference related data across tables, and foreign key constraints help keep this
spread-out data consistent.

MySQL supports ON UPDATE and ON DELETE foreign key references in CREATE TABLE and ALTER
TABLE statements. The available referential actions are RESTRICT (the default), CASCADE, SET NULL,
and NO ACTION.

SET DEFAULT is also supported by the MySQL Server but is currently rejected as invalid by InnoDB.
Since MySQL does not support deferred constraint checking, NO ACTION is treated as RESTRICT. For
the exact syntax supported by MySQL for foreign keys, see Section 13.1.10.3, “Using FOREIGN KEY
Constraints”.

MATCH FULL, MATCH PARTIAL, and MATCH SIMPLE are allowed, but their use should be avoided,
as they cause the MySQL Server to ignore any ON DELETE or ON UPDATE clause used in the same
statement. MATCH options do not have any other effect in MySQL, which in effect enforces MATCH SIMPLE
semantics full-time.

MySQL requires that foreign key columns be indexed; if you create a table with a foreign key constraint but
no index on a given column, an index is created.

You can obtain information about foreign keys from the INFORMATION_SCHEMA.KEY_COLUMN_USAGE
table. An example of a query against this table is shown here:

mysql> SELECT TABLE_SCHEMA, TABLE_NAME, COLUMN_NAME, CONSTRAINT_NAME
 > FROM INFORMATION_SCHEMA.KEY_COLUMN_USAGE
 > WHERE REFERENCED_TABLE_SCHEMA IS NOT NULL;
+--------------+---------------+-------------+-----------------+
| TABLE_SCHEMA | TABLE_NAME | COLUMN_NAME | CONSTRAINT_NAME |
+--------------+---------------+-------------+-----------------+
fk1	myuser	myuser_id	f
fk1	product_order	customer_id	f2
fk1	product_order	product_id	f1
+--------------+---------------+-------------+-----------------+
3 rows in set (0.01 sec)

Only InnoDB tables support foreign keys. See Section 14.2.3.4, “InnoDB and FOREIGN KEY Constraints”,
for information specific to foreign key support in InnoDB.

1.8.3.3 Constraints on Invalid Data

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key_constraint

How MySQL Deals with Constraints

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 31

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Before MySQL 5.0.2, MySQL is forgiving of illegal or improper data values and coerces them to legal
values for data entry. In MySQL 5.0.2 and up, that remains the default behavior, but you can enable strict
SQL mode to select more traditional treatment of bad values such that the server rejects them and aborts
the statement in which they occur. Section 5.1.7, “Server SQL Modes”.

This section describes the default (forgiving) behavior of MySQL, as well as the strict SQL mode and how it
differs.

If you are not using strict mode, then whenever you insert an “incorrect” value into a column, such as
a NULL into a NOT NULL column or a too-large numeric value into a numeric column, MySQL sets the
column to the “best possible value” instead of producing an error: The following rules describe in more
detail how this works:

• If you try to store an out of range value into a numeric column, MySQL Server instead stores zero, the
smallest possible value, or the largest possible value, whichever is closest to the invalid value.

• For strings, MySQL stores either the empty string or as much of the string as can be stored in the
column.

• If you try to store a string that does not start with a number into a numeric column, MySQL Server stores
0.

• Invalid values for ENUM and SET columns are handled as described in Section 1.8.3.4, “ENUM and SET
Constraints”.

• MySQL permits you to store certain incorrect date values into DATE and DATETIME columns (such
as '2000-02-31' or '2000-02-00'). In this case, when an application has not enabled strict SQL
mode, it up to the application to validate the dates before storing them. If MySQL can store a date value
and retrieve exactly the same value, MySQL stores it as given. If the date is totally wrong (outside the
server's ability to store it), the special “zero” date value '0000-00-00' is stored in the column instead.

• If you try to store NULL into a column that doesn't take NULL values, an error occurs for single-
row INSERT statements. For multiple-row INSERT statements or for INSERT INTO ... SELECT
statements, MySQL Server stores the implicit default value for the column data type. In general, this is
0 for numeric types, the empty string ('') for string types, and the “zero” value for date and time types.
Implicit default values are discussed in Section 11.6, “Data Type Default Values”.

• If an INSERT statement specifies no value for a column, MySQL inserts its default value if the column
definition includes an explicit DEFAULT clause. If the definition has no such DEFAULT clause, MySQL
inserts the implicit default value for the column data type.

The reason for using the preceding rules in nonstrict mode is that we can't check these conditions until
the statement has begun executing. We can't just roll back if we encounter a problem after updating a few
rows, because the storage engine may not support rollback. The option of terminating the statement is not
that good; in this case, the update would be “half done,” which is probably the worst possible scenario. In
this case, it is better to “do the best you can” and then continue as if nothing happened.

In MySQL 5.0.2 and up, you can select stricter treatment of input values by using the
STRICT_TRANS_TABLES or STRICT_ALL_TABLES SQL modes:

SET sql_mode = 'STRICT_TRANS_TABLES';
SET sql_mode = 'STRICT_ALL_TABLES';

STRICT_TRANS_TABLES enables strict mode for transactional storage engines, and also to some extent
for nontransactional engines. It works like this:

How MySQL Deals with Constraints

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 32

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• For transactional storage engines, bad data values occurring anywhere in a statement cause the
statement to abort and roll back.

• For nontransactional storage engines, a statement aborts if the error occurs in the first row to be inserted
or updated. (When the error occurs in the first row, the statement can be aborted to leave the table
unchanged, just as for a transactional table.) Errors in rows after the first do not abort the statement,
because the table has already been changed by the first row. Instead, bad data values are adjusted
and result in warnings rather than errors. In other words, with STRICT_TRANS_TABLES, a wrong value
causes MySQL to roll back all updates done so far, if that can be done without changing the table. But
once the table has been changed, further errors result in adjustments and warnings.

For even stricter checking, enable STRICT_ALL_TABLES. This is the same as STRICT_TRANS_TABLES
except that for nontransactional storage engines, errors abort the statement even for bad data in rows
following the first row. This means that if an error occurs partway through a multiple-row insert or update
for a nontransactional table, a partial update results. Earlier rows are inserted or updated, but those from
the point of the error on are not. To avoid this for nontransactional tables, either use single-row statements
or else use STRICT_TRANS_TABLES if conversion warnings rather than errors are acceptable. To avoid
problems in the first place, do not use MySQL to check column content. It is safest (and often faster) to let
the application ensure that it passes only legal values to the database.

With either of the strict mode options, you can cause errors to be treated as warnings by using INSERT
IGNORE or UPDATE IGNORE rather than INSERT or UPDATE without IGNORE.

1.8.3.4 ENUM and SET Constraints

ENUM and SET columns provide an efficient way to define columns that can contain only a given set of
values. See Section 11.4.4, “The ENUM Type”, and Section 11.4.5, “The SET Type”. However, before
MySQL 5.0.2, ENUM and SET columns do not provide true constraints on entry of invalid data:

• ENUM columns always have a default value. If you specify no default value, then it is NULL for columns
that can have NULL, otherwise it is the first enumeration value in the column definition.

• If you insert an incorrect value into an ENUM column or if you force a value into an ENUM column with
IGNORE, it is set to the reserved enumeration value of 0, which is displayed as an empty string in string
context.

• If you insert an incorrect value into a SET column, the incorrect value is ignored. For example, if the
column can contain the values 'a', 'b', and 'c', an attempt to assign 'a,x,b,y' results in a value of
'a,b'.

As of MySQL 5.0.2, you can configure the server to use strict SQL mode. See Section 5.1.7, “Server SQL
Modes”. With strict mode enabled, the definition of a ENUM or SET column does act as a constraint on
values entered into the column. An error occurs for values that do not satisfy these conditions:

• An ENUM value must be one of those listed in the column definition, or the internal numeric equivalent
thereof. The value cannot be the error value (that is, 0 or the empty string). For a column defined as
ENUM('a','b','c'), values such as '', 'd', or 'ax' are illegal and are rejected.

• A SET value must be the empty string or a value consisting only of the values listed in the column
definition separated by commas. For a column defined as SET('a','b','c'), values such as 'd' or
'a,b,c,d' are illegal and are rejected.

Errors for invalid values can be suppressed in strict mode if you use INSERT IGNORE or UPDATE
IGNORE. In this case, a warning is generated rather than an error. For ENUM, the value is inserted as the
error member (0). For SET, the value is inserted as given except that any invalid substrings are deleted.
For example, 'a,x,b,y' results in a value of 'a,b'.

Credits

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 33

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

1.9 Credits
The following sections list developers, contributors, and supporters that have helped to make MySQL what
it is today.

1.9.1 Contributors to MySQL

Although Oracle Corporation and/or its affiliates own all copyrights in the MySQL server and the MySQL
manual, we wish to recognize those who have made contributions of one kind or another to the MySQL
distribution. Contributors are listed here, in somewhat random order:

• Gianmassimo Vigazzola <qwerg@mbox.vol.it> or <qwerg@tin.it>

The initial port to Win32/NT.

• Per Eric Olsson

For constructive criticism and real testing of the dynamic record format.

• Irena Pancirov <irena@mail.yacc.it>

Win32 port with Borland compiler. mysqlshutdown.exe and mysqlwatch.exe.

• David J. Hughes

For the effort to make a shareware SQL database. At TcX, the predecessor of MySQL AB, we started
with mSQL, but found that it couldn't satisfy our purposes so instead we wrote an SQL interface to our
application builder Unireg. mysqladmin and mysql client are programs that were largely influenced
by their mSQL counterparts. We have put a lot of effort into making the MySQL syntax a superset of
mSQL. Many of the API's ideas are borrowed from mSQL to make it easy to port free mSQL programs
to the MySQL API. The MySQL software doesn't contain any code from mSQL. Two files in the
distribution (client/insert_test.c and client/select_test.c) are based on the corresponding
(noncopyrighted) files in the mSQL distribution, but are modified as examples showing the changes
necessary to convert code from mSQL to MySQL Server. (mSQL is copyrighted David J. Hughes.)

• Patrick Lynch

For helping us acquire http://www.mysql.com/.

• Fred Lindberg

For setting up qmail to handle the MySQL mailing list and for the incredible help we got in managing the
MySQL mailing lists.

• Igor Romanenko <igor@frog.kiev.ua>

mysqldump (previously msqldump, but ported and enhanced by Monty).

• Yuri Dario

For keeping up and extending the MySQL OS/2 port.

• Tim Bunce

Author of mysqlhotcopy.

• Zarko Mocnik <zarko.mocnik@dem.si>

http://www.mysql.com/

Contributors to MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 34

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Sorting for Slovenian language.

• "TAMITO" <tommy@valley.ne.jp>

The _MB character set macros and the ujis and sjis character sets.

• Joshua Chamas <joshua@chamas.com>

Base for concurrent insert, extended date syntax, debugging on NT, and answering on the MySQL
mailing list.

• Yves Carlier <Yves.Carlier@rug.ac.be>

mysqlaccess, a program to show the access rights for a user.

• Rhys Jones <rhys@wales.com> (And GWE Technologies Limited)

For one of the early JDBC drivers.

• Dr Xiaokun Kelvin ZHU <X.Zhu@brad.ac.uk>

Further development of one of the early JDBC drivers and other MySQL-related Java tools.

• James Cooper <pixel@organic.com>

For setting up a searchable mailing list archive at his site.

• Rick Mehalick <Rick_Mehalick@i-o.com>

For xmysql, a graphical X client for MySQL Server.

• Doug Sisk <sisk@wix.com>

For providing RPM packages of MySQL for Red Hat Linux.

• Diemand Alexander V. <axeld@vial.ethz.ch>

For providing RPM packages of MySQL for Red Hat Linux-Alpha.

• Antoni Pamies Olive <toni@readysoft.es>

For providing RPM versions of a lot of MySQL clients for Intel and SPARC.

• Jay Bloodworth <jay@pathways.sde.state.sc.us>

For providing RPM versions for MySQL 3.21.

• David Sacerdote <davids@secnet.com>

Ideas for secure checking of DNS host names.

• Wei-Jou Chen <jou@nematic.ieo.nctu.edu.tw>

Some support for Chinese(BIG5) characters.

• Wei He <hewei@mail.ied.ac.cn>

A lot of functionality for the Chinese(GBK) character set.

• Jan Pazdziora <adelton@fi.muni.cz>

Contributors to MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 35

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Czech sorting order.

• Zeev Suraski <bourbon@netvision.net.il>

FROM_UNIXTIME() time formatting, ENCRYPT() functions, and bison advisor. Active mailing list
member.

• Luuk de Boer <luuk@wxs.nl>

Ported (and extended) the benchmark suite to DBI/DBD. Have been of great help with crash-me and
running benchmarks. Some new date functions. The mysql_setpermission script.

• Alexis Mikhailov <root@medinf.chuvashia.su>

User-defined functions (UDFs); CREATE FUNCTION and DROP FUNCTION.

• Andreas F. Bobak <bobak@relog.ch>

The AGGREGATE extension to user-defined functions.

• Ross Wakelin <R.Wakelin@march.co.uk>

Help to set up InstallShield for MySQL-Win32.

• Jethro Wright III <jetman@li.net>

The libmysql.dll library.

• James Pereria <jpereira@iafrica.com>

Mysqlmanager, a Win32 GUI tool for administering MySQL Servers.

• Curt Sampson <cjs@portal.ca>

Porting of MIT-pthreads to NetBSD/Alpha and NetBSD 1.3/i386.

• Martin Ramsch <m.ramsch@computer.org>

Examples in the MySQL Tutorial.

• Steve Harvey

For making mysqlaccess more secure.

• Konark IA-64 Centre of Persistent Systems Private Limited

Help with the Win64 port of the MySQL server.

• Albert Chin-A-Young.

Configure updates for Tru64, large file support and better TCP wrappers support.

• John Birrell

Emulation of pthread_mutex() for OS/2.

• Benjamin Pflugmann

Extended MERGE tables to handle INSERTS. Active member on the MySQL mailing lists.

Contributors to MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 36

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Jocelyn Fournier

Excellent spotting and reporting innumerable bugs (especially in the MySQL 4.1 subquery code).

• Marc Liyanage

Maintaining the OS X packages and providing invaluable feedback on how to create OS X packages.

• Robert Rutherford

Providing invaluable information and feedback about the QNX port.

• Previous developers of NDB Cluster

Lots of people were involved in various ways summer students, master thesis students, employees. In
total more than 100 people so too many to mention here. Notable name is Ataullah Dabaghi who up until
1999 contributed around a third of the code base. A special thanks also to developers of the AXE system
which provided much of the architectural foundations for NDB Cluster with blocks, signals and crash
tracing functionality. Also credit should be given to those who believed in the ideas enough to allocate of
their budgets for its development from 1992 to present time.

• Google Inc.

We wish to recognize Google Inc. for contributions to the MySQL distribution: Mark Callaghan's SMP
Performance patches and other patches.

Other contributors, bugfinders, and testers: James H. Thompson, Maurizio Menghini, Wojciech
Tryc, Luca Berra, Zarko Mocnik, Wim Bonis, Elmar Haneke, <jehamby@lightside>,
<psmith@BayNetworks.com>, <duane@connect.com.au>, Ted Deppner <ted@psyber.com>, Mike
Simons, Jaakko Hyvatti.

And lots of bug report/patches from the folks on the mailing list.

A big tribute goes to those that help us answer questions on the MySQL mailing lists:

• Daniel Koch <dkoch@amcity.com>

Irix setup.

• Luuk de Boer <luuk@wxs.nl>

Benchmark questions.

• Tim Sailer <tps@users.buoy.com>

DBD::mysql questions.

• Boyd Lynn Gerber <gerberb@zenez.com>

SCO-related questions.

• Richard Mehalick <RM186061@shellus.com>

xmysql-related questions and basic installation questions.

• Zeev Suraski <bourbon@netvision.net.il>

Apache module configuration questions (log & auth), PHP-related questions, SQL syntax-related
questions and other general questions.

Documenters and translators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 37

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Francesc Guasch <frankie@citel.upc.es>

General questions.

• Jonathan J Smith <jsmith@wtp.net>

Questions pertaining to OS-specifics with Linux, SQL syntax, and other things that might need some
work.

• David Sklar <sklar@student.net>

Using MySQL from PHP and Perl.

• Alistair MacDonald <A.MacDonald@uel.ac.uk>

Is flexible and can handle Linux and perhaps HP-UX.

• John Lyon <jlyon@imag.net>

Questions about installing MySQL on Linux systems, using either .rpm files or compiling from source.

• Lorvid Ltd. <lorvid@WOLFENET.com>

Simple billing/license/support/copyright issues.

• Patrick Sherrill <patrick@coconet.com>

ODBC and VisualC++ interface questions.

• Randy Harmon <rjharmon@uptimecomputers.com>

DBD, Linux, some SQL syntax questions.

1.9.2 Documenters and translators

The following people have helped us with writing the MySQL documentation and translating the
documentation or error messages in MySQL.

• Paul DuBois

Ongoing help with making this manual correct and understandable. That includes rewriting Monty's and
David's attempts at English into English as other people know it.

• Kim Aldale

Helped to rewrite Monty's and David's early attempts at English into English.

• Michael J. Miller Jr. <mke@terrapin.turbolift.com>

For the first MySQL manual. And a lot of spelling/language fixes for the FAQ (that turned into the MySQL
manual a long time ago).

• Yan Cailin

First translator of the MySQL Reference Manual into simplified Chinese in early 2000 on which the Big5
and HK coded versions were based.

• Jay Flaherty <fty@mediapulse.com>

Documenters and translators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 38

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Big parts of the Perl DBI/DBD section in the manual.

• Paul Southworth <pauls@etext.org>, Ray Loyzaga <yar@cs.su.oz.au>

Proof-reading of the Reference Manual.

• Therrien Gilbert <gilbert@ican.net>, Jean-Marc Pouyot <jmp@scalaire.fr>

French error messages.

• Petr Snajdr, <snajdr@pvt.net>

Czech error messages.

• Jaroslaw Lewandowski <jotel@itnet.com.pl>

Polish error messages.

• Miguel Angel Fernandez Roiz

Spanish error messages.

• Roy-Magne Mo <rmo@www.hivolda.no>

Norwegian error messages and testing of MySQL 3.21.xx.

• Timur I. Bakeyev <root@timur.tatarstan.ru>

Russian error messages.

• <brenno@dewinter.com> & Filippo Grassilli <phil@hyppo.com>

Italian error messages.

• Dirk Munzinger <dirk@trinity.saar.de>

German error messages.

• Billik Stefan <billik@sun.uniag.sk>

Slovak error messages.

• Stefan Saroiu <tzoompy@cs.washington.edu>

Romanian error messages.

• Peter Feher

Hungarian error messages.

• Roberto M. Serqueira

Portuguese error messages.

• Carsten H. Pedersen

Danish error messages.

• Arjen Lentz

Packages that support MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 39

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Dutch error messages, completing earlier partial translation (also work on consistency and spelling).

1.9.3 Packages that support MySQL

The following is a list of creators/maintainers of some of the most important API/packages/applications that
a lot of people use with MySQL.

We cannot list every possible package here because the list would then be way to hard to maintain. For
other packages, please refer to the software portal at http://solutions.mysql.com/software/.

• Tim Bunce, Alligator Descartes

For the DBD (Perl) interface.

• Andreas Koenig <a.koenig@mind.de>

For the Perl interface for MySQL Server.

• Jochen Wiedmann <wiedmann@neckar-alb.de>

For maintaining the Perl DBD::mysql module.

• Eugene Chan <eugene@acenet.com.sg>

For porting PHP for MySQL Server.

• Georg Richter

MySQL 4.1 testing and bug hunting. New PHP 5.0 mysqli extension (API) for use with MySQL 4.1 and
up.

• Giovanni Maruzzelli <maruzz@matrice.it>

For porting iODBC (Unix ODBC).

• Xavier Leroy <Xavier.Leroy@inria.fr>

The author of LinuxThreads (used by the MySQL Server on Linux).

1.9.4 Tools that were used to create MySQL

The following is a list of some of the tools we have used to create MySQL. We use this to express our
thanks to those that has created them as without these we could not have made MySQL what it is today.

• Free Software Foundation

From whom we got an excellent compiler (gcc), an excellent debugger (gdb and the libc library (from
which we have borrowed strto.c to get some code working in Linux).

• Free Software Foundation & The XEmacs development team

For a really great editor/environment.

• Julian Seward

Author of valgrind, an excellent memory checker tool that has helped us find a lot of otherwise hard to
find bugs in MySQL.

http://solutions.mysql.com/software/

Supporters of MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 40

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Dorothea Lütkehaus and Andreas Zeller

For DDD (The Data Display Debugger) which is an excellent graphical front end to gdb).

1.9.5 Supporters of MySQL

Although Oracle Corporation and/or its affiliates own all copyrights in the MySQL server and the MySQL
manual, we wish to recognize the following companies, which helped us finance the development of the
MySQL server, such as by paying us for developing a new feature or giving us hardware for development
of the MySQL server.

• VA Linux / Andover.net

Funded replication.

• NuSphere

Editing of the MySQL manual.

• Stork Design studio

The MySQL Web site in use between 1998-2000.

• Intel

Contributed to development on Windows and Linux platforms.

• Compaq

Contributed to Development on Linux/Alpha.

• SWSoft

Development on the embedded mysqld version.

• FutureQuest

The --skip-show-database option.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 41

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 2 Installing and Upgrading MySQL

Table of Contents
2.1 MySQL Installation Overview .. 42
2.2 Determining Your Current MySQL Version ... 42
2.3 Notes for MySQL Enterprise Server .. 43

2.3.1 Enterprise Server Distribution Types ... 44
2.3.2 Upgrading MySQL Enterprise Server .. 44

2.4 Notes for MySQL Community Server ... 44
2.4.1 Overview of MySQL Community Server Installation ... 44
2.4.2 Choosing Which MySQL Distribution to Install ... 45

2.5 How to Get MySQL .. 49
2.6 Verifying Package Integrity Using MD5 Checksums or GnuPG .. 49

2.6.1 Verifying the MD5 Checksum ... 49
2.6.2 Signature Checking Using GnuPG .. 50
2.6.3 Signature Checking Using Gpg4win for Windows .. 53
2.6.4 Signature Checking Using RPM ... 58

2.7 Installation Layouts ... 59
2.8 Compiler-Specific Build Characteristics .. 61
2.9 Standard MySQL Installation from a Binary Distribution .. 61
2.10 Installing MySQL on Microsoft Windows .. 61

2.10.1 Choosing An Installation Package ... 63
2.10.2 Installing MySQL on Microsoft Windows Using an MSI Package 63
2.10.3 MySQL Server Instance Configuration Wizard ... 70
2.10.4 Installing MySQL on Microsoft Windows Using a noinstall Zip Archive 81
2.10.5 Troubleshooting a MySQL Installation Under Windows ... 90
2.10.6 Windows Postinstallation Procedures .. 91
2.10.7 Upgrading MySQL on Windows .. 93
2.10.8 Installing MySQL from Source on Windows ... 94

2.11 Installing MySQL on OS X .. 99
2.12 Installing MySQL on Linux Using RPM Packages ... 102
2.13 Installing MySQL on Solaris .. 106
2.14 Installing MySQL on i5/OS .. 106
2.15 Installing MySQL on NetWare ... 110
2.16 Installing MySQL on Unix/Linux Using Generic Binaries .. 112
2.17 Installing MySQL from Source ... 115

2.17.1 Installing MySQL Using a Standard Source Distribution .. 116
2.17.2 Installing MySQL Using a Development Source Tree ... 119
2.17.3 MySQL Source-Configuration Options ... 122
2.17.4 Dealing with Problems Compiling MySQL .. 130
2.17.5 Compiling and Linking an Optimized mysqld Server ... 133

2.18 Postinstallation Setup and Testing ... 134
2.18.1 Initializing the Data Directory .. 135
2.18.2 Starting the Server ... 138
2.18.3 Testing the Server ... 142
2.18.4 Securing the Initial MySQL Accounts .. 144
2.18.5 Starting and Stopping MySQL Automatically .. 148

2.19 Upgrading or Downgrading MySQL .. 149
2.19.1 Upgrading MySQL .. 149
2.19.2 Downgrading MySQL ... 163
2.19.3 Checking Whether Tables or Indexes Must Be Rebuilt ... 166

MySQL Installation Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 42

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2.19.4 Rebuilding or Repairing Tables or Indexes .. 168
2.19.5 Copying MySQL Databases to Another Machine .. 170

2.20 Operating System-Specific Notes ... 171
2.20.1 Linux Notes ... 171
2.20.2 OS X Notes ... 178
2.20.3 Solaris Notes ... 178
2.20.4 BSD Notes ... 182
2.20.5 Other Unix Notes ... 185
2.20.6 OS/2 Notes .. 202

2.21 Environment Variables .. 203
2.22 Perl Installation Notes ... 204

2.22.1 Installing Perl on Unix .. 205
2.22.2 Installing ActiveState Perl on Windows .. 206
2.22.3 Problems Using the Perl DBI/DBD Interface .. 206

End of Product Lifecycle. Active development for MySQL Database Server version 5.0 has ended.
Oracle offers various support offerings which may be of interest. For details and more information, see the
MySQL section of the Lifetime Support Policy for Oracle Technology Products (http://www.oracle.com/us/
support/lifetime-support/index.html). Please consider upgrading to a recent version.

2.1 MySQL Installation Overview

This chapter describes how to obtain and install MySQL. You can choose to install MySQL Enterprise or
MySQL Community Server:

• MySQL Enterprise is Oracle Corporation's commercial offering for modern enterprise businesses. It
includes MySQL Enterprise Server and the services provided by MySQL Network. To install MySQL
Enterprise, see Section 2.3, “Notes for MySQL Enterprise Server”.

• MySQL Community Server is for users who are comfortable configuring and administering MySQL
by themselves. To install MySQL Community Server, see Section 2.4, “Notes for MySQL Community
Server”.

If you plan to upgrade an existing version of MySQL to a newer version rather than install MySQL for the
first time, see Section 2.19.1, “Upgrading MySQL”, for information about upgrade procedures and about
issues that you should consider before upgrading.

If you are interested in migrating to MySQL from another database system, you may wish to read
Section A.8, “MySQL 5.0 FAQ: Migration”, which contains answers to some common questions concerning
migration issues.

2.2 Determining Your Current MySQL Version

To determine the version and release of your currently installed MySQL installation, there are a number of
options.

• Using a command client (mysql), the server version of the MySQL server to which you are connected
is shown once you are connected. The server version information includes community or enterprise
accordingly.

For example, here is the output from a MySQL Community Server edition installed on Linux:

http://www.oracle.com/us/support/lifetime-support/index.html
http://www.oracle.com/us/support/lifetime-support/index.html

Notes for MySQL Enterprise Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 43

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6
Server version: 5.0.27-standard MySQL Community Edition - Standard (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

This is an example of the output from MySQL Enterprise Server on Windows:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2
Server version: 5.0.28-enterprise-gpl-nt MySQL Enterprise Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

• You may also determine the version information using the version variables. Both the version and
version_comment variables contain version information for the server to which you are connected. Use
the SHOW VARIABLES statement to obtain the information you want, as shown in this example:

mysql> SHOW VARIABLES LIKE "%version%";
+-------------------------+--+
| Variable_name | Value |
+-------------------------+--+
protocol_version	10
version	5.0.27-standard
version_comment	MySQL Community Edition - Standard (GPL)
version_compile_machine	i686
version_compile_os	pc-linux-gnu
+-------------------------+--+
5 rows in set (0.04 sec)

You can also obtain server version information in the mysql client using the SELECT VERSION()
statement. In addition, MySQL Workbench also shows the server version in the Server Status tab.
However, in both of these cases, only the value of version is shown.

• The STATUS command displays the version as well as version comment information. For example:

mysql> STATUS;

./client/mysql Ver 14.12 Distrib 5.0.29, for pc-linux-gnu (i686) using readline 5.0

Connection id: 8
Current database:
Current user: mc@localhost
SSL: Not in use
Current pager: /usr/bin/less
Using outfile: ''
Using delimiter: ;
Server version: 5.0.27-standard MySQL Community Edition - Standard (GPL)
Protocol version: 10
Connection: Localhost via UNIX socket
Server characterset: latin1
Db characterset: latin1
Client characterset: latin1
Conn. characterset: latin1
UNIX socket: /tmp/mysql.sock
Uptime: 1 day 3 hours 58 min 43 sec

Threads: 2 Questions: 17 Slow queries: 0 Opens: 11 Flush tables: 1 Open tables: 6 Queries per second avg: 0.000

2.3 Notes for MySQL Enterprise Server

Enterprise Server Distribution Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 44

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To obtain MySQL Enterprise, visit http://enterprise.mysql.com if you're a customer. Otherwise, visit http://
www.mysql.com/products/enterprise/. The platforms that are officially supported for MySQL Enterprise are
listed at http://www.mysql.com/support/supportedplatforms/enterprise.html.

MySQL Enterprise Server is available for download in the form of Quarterly Service Pack (QSP) or Monthly
Rapid Update (MRU) binary releases.

To install MySQL Enterprise Server, you should use the latest available Quarterly Service Pack (QSP).
This includes an accumulation of the bug fixes provided in all predecessor QSP and MRU releases.

MRU releases are provided on a monthly basis and represent the most current Enterprise Server bug fixes.
Each MRU is an accumulation of the bug fixes included in its predecessor. Customers should standardize
on the latest MRU release only if it includes a needed bug fix.

2.3.1 Enterprise Server Distribution Types

Enterprise Server releases will be created for the following packages from the MySQL 5.0 tree:

• mysql-enterprise: Released under a commercial license and includes the following storage engines:
MyISAM, MEMORY, MERGE, InnoDB, ARCHIVE, BLACKHOLE, EXAMPLE, FEDERATED.

• mysql-enterprise-gpl: Same as mysql-enterprise, but released under the GPL.

• mysql-cluster: mysql-enterprise plus MySQL Cluster (NDB).

• mysql-classic: Released under a commercial license, does not include InnoDB.

• mysql-community: Same as mysql-enterprise-gpl, but available for the community, and
released every 6 months.

To satisfy different user requirements, we provide several servers. mysqld is an optimized server that is
a smaller, faster binary. mysqld-debug is compiled with debugging support but is otherwise configured
identically to the nondebug server.

Each of these servers is compiled from the same source distribution, though with different configuration
options. All native MySQL clients can connect to servers from either MySQL version.

2.3.2 Upgrading MySQL Enterprise Server

When upgrading to MySQL Enterprise from Community Server you need only follow the installation
process to install and upgrade the packages to the latest version provided by MySQL Enterprise. You will
also need to install the latest MySQL Enterprise Service Pack and any outstanding MySQL Hot-fix packs.

Be aware, however, that you must take into account any of the changes when moving between major
releases. You should also check the Release Notes for details on major changes between revisions of
MySQL Enterprise Server.

You should also review the notes and advice contained within Section 2.19.1, “Upgrading MySQL”.

2.4 Notes for MySQL Community Server

2.4.1 Overview of MySQL Community Server Installation

1. Determine whether MySQL runs and is supported on your platform. Not all platforms are
equally suitable for running MySQL, and not all platforms on which MySQL is known to run are officially
supported by Oracle Corporation.

http://enterprise.mysql.com
http://www.mysql.com/support/supportedplatforms/enterprise.html
http://dev.mysql.com/doc/relnotes/mysql/5.0/en/

Choosing Which MySQL Distribution to Install

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 45

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2. Choose which distribution to install. Several versions of MySQL are available, and most
are available in multiple distribution formats. You can choose from prepackaged distributions
containing binary (precompiled) programs or source code. When in doubt, use a binary distribution.
We also provide public access to our current source trees for those who want to see our most recent
developments and to help us test new code. To determine which version and type of distribution you
should use, see Section 2.4.2, “Choosing Which MySQL Distribution to Install”.

3. Download the distribution that you want to install. For download instructions, see Section 2.5,
“How to Get MySQL”. To verify the integrity of the distribution, use the instructions in Section 2.6,
“Verifying Package Integrity Using MD5 Checksums or GnuPG”.

4. Install the distribution. To install MySQL from a binary distribution, use the instructions in
Section 2.9, “Standard MySQL Installation from a Binary Distribution”. To install MySQL from a source
distribution or from the current development source tree, use the instructions in Section 2.17, “Installing
MySQL from Source”.

If you encounter installation difficulties, see Section 2.20, “Operating System-Specific Notes”, for
information on solving problems for particular platforms.

5. Perform any necessary postinstallation setup. After installing MySQL, read Section 2.18,
“Postinstallation Setup and Testing”, which contains important information about making sure the
MySQL server is working properly. It also describes how to secure the initial MySQL user accounts,
which have no passwords until you assign passwords. The information in this section applies whether
you install MySQL using a binary or source distribution.

6. Perform setup for running benchmarks (optional). If you want to use the MySQL benchmark
scripts, Perl support for MySQL must be available. See Section 2.22, “Perl Installation Notes”, for more
information.

The sections immediately following this one contain necessary information about choosing, downloading,
and verifying your distribution. The instructions in later sections of the chapter describe how to install the
distribution that you choose. For binary distributions, see the instructions in Section 2.9, “Standard MySQL
Installation from a Binary Distribution”. To build MySQL from source, use the instructions in Section 2.17,
“Installing MySQL from Source”.

2.4.2 Choosing Which MySQL Distribution to Install

MySQL is available on a number of operating systems and platforms. For information about those
platforms that are officially supported, see http://www.mysql.com/support/supportedplatforms/
database.html on the MySQL Web site.

When preparing to install MySQL, you should decide which version to use. MySQL development occurs in
several release series, and you can pick the one that best fits your needs. After deciding which version to
install, you can choose a distribution format. Releases are available in binary or source format.

2.4.2.1 Choosing Which Version of MySQL to Install

The first decision to make is whether you want to use a production (stable) release or a development
release. In the MySQL development process, multiple release series co-exist, each at a different stage of
maturity.

Production Releases

• MySQL 5.7: Latest General Availability (Production) release

• MySQL 5.6: Previous General Availability (Production) release

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html

Choosing Which MySQL Distribution to Install

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 46

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• MySQL 5.5: Older General Availability (Production) release

• MySQL 5.1, 5.0: Older Production releases for which active development has ended

MySQL 4.1, 4.0, and 3.23 are old releases that are no longer supported.

See http://www.mysql.com/about/legal/lifecycle/ for information about support policies and schedules. For
supported platform information, see http://www.mysql.com/support/supportedplatforms/database.html.

Normally, if you are beginning to use MySQL for the first time or trying to port it to some system for which
there is no binary distribution, use the most recent General Availability series listed in the preceding
descriptions. All MySQL releases, even those from development series, are checked with the MySQL
benchmarks and an extensive test suite before being issued.

If you are running an older system and want to upgrade, but do not want to take the chance of having a
nonseamless upgrade, you should upgrade to the latest version in the same release series you are using
(where only the last part of the version number is newer than yours). We have tried to fix only fatal bugs
and make only small, relatively “safe” changes to that version.

If you want to use new features not present in the production release series, you can use a version from a
development series. Be aware that development releases are not as stable as production releases.

We do not use a complete code freeze because this prevents us from making bugfixes and other fixes that
must be done. We may add small things that should not affect anything that currently works in a production
release. Naturally, relevant bugfixes from an earlier series propagate to later series.

If you want to use the very latest sources containing all current patches and bugfixes, you can use one of
our source code repositories (see Section 2.17.2, “Installing MySQL Using a Development Source Tree”).
These are not “releases” as such, but are available as previews of the code on which future releases are to
be based.

The naming scheme in MySQL 5.0 uses release names that consist of three numbers and a suffix; for
example, mysql-5.0.14-rc. The numbers within the release name are interpreted as follows:

• The first number (5) is the major version and describes the file format. All MySQL 5 releases have the
same file format.

• The second number (0) is the release level. Taken together, the major version and release level
constitute the release series number.

• The third number (14) is the version number within the release series. This is incremented for each new
release. Usually you want the latest version for the series you have chosen.

For each minor update, the last number in the version string is incremented. When there are major new
features or minor incompatibilities with previous versions, the second number in the version string is
incremented. When the file format changes, the first number is increased.

Release names also include a suffix that indicates the stability level of the release. Releases within a
series progress through a set of suffixes to indicate how the stability level improves. The possible suffixes
are:

• alpha indicates that the release is for preview purposes only. Known bugs should be documented in the
Release Notes. Most alpha releases implement new commands and extensions. Active development
that may involve major code changes can occur in an alpha release. However, we do conduct testing
before issuing a release.

• beta indicates that the release is appropriate for use with new development. Within beta releases, the
features and compatibility should remain consistent. However, beta releases may contain numerous and
major unaddressed bugs.

http://www.mysql.com/about/legal/lifecycle/
http://www.mysql.com/support/supportedplatforms/database.html
http://dev.mysql.com/doc/relnotes/mysql/5.0/en/

Choosing Which MySQL Distribution to Install

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 47

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

No APIs, externally visible structures, or columns for SQL statements will change during future beta,
release candidate, or production releases.

• rc indicates a Release Candidate. Release candidates are believed to be stable, having passed all of
MySQL's internal testing, and with all known fatal runtime bugs fixed. However, the release has not been
in widespread use long enough to know for sure that all bugs have been identified. Only minor fixes are
added. (A release candidate is what formerly was known as a gamma release.)

• If there is no suffix, it indicates that the release is a General Availability (GA) or Production release. GA
releases are stable, having successfully passed through all earlier release stages and are believed to
be reliable, free of serious bugs, and suitable for use in production systems. Only critical bugfixes are
applied to the release.

All releases of MySQL are run through our standard tests and benchmarks to ensure that they are
relatively safe to use. Because the standard tests are extended over time to check for all previously found
bugs, the test suite keeps getting better.

All releases have been tested at least with these tools:

• An internal test suite. The mysql-test directory contains an extensive set of test cases. We run
these tests for every server binary. See Section 21.1.2, “The MySQL Test Suite”, for more information
about this test suite.

• The MySQL benchmark suite. This suite runs a range of common queries. It is also a test to
determine whether the latest batch of optimizations actually made the code faster. See Section 8.13.2,
“The MySQL Benchmark Suite”.

We also perform additional integration and nonfunctional testing of the latest MySQL version in our
internal production environment. Integration testing is done with different connectors, storage engines,
replication modes, backup, partitioning, stored programs, and so forth in various combinations. Additional
nonfunctional testing is done in areas of performance, concurrency, stress, high volume, upgrade and
downgrade.

2.4.2.2 Choosing a Distribution Format

After choosing which version of MySQL to install, you should decide whether to use a binary distribution
or a source distribution. In most cases, you should probably use a binary distribution, if one exists for your
platform. Binary distributions are available in native format for many platforms, such as RPM packages for
Linux, DMG packages for OS X, and PKG packages for Solaris. Distributions are also available in more
generic formats such as Zip archives or compressed tar files.

Reasons to choose a binary distribution include the following:

• Binary distributions generally are easier to install than source distributions.

• To satisfy different user requirements, we provide several servers in binary distributions. mysqld is an
optimized server that is a smaller, faster binary. mysqld-debug is compiled with debugging support.

Each of these servers is compiled from the same source distribution, though with different configuration
options. All native MySQL clients can connect to servers from either MySQL version.

Under some circumstances, you may be better off installing MySQL from a source distribution:

• You want to install MySQL at some explicit location. The standard binary distributions are ready to run at
any installation location, but you might require even more flexibility to place MySQL components where
you want.

Choosing Which MySQL Distribution to Install

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 48

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• You want to configure mysqld to ensure that features are available that might not be included in the
standard binary distributions. Here is a list of the most common extra options that you may want to use
to ensure feature availability:

• --with-berkeley-db (not available on all platforms)

• --with-libwrap

• --with-named-z-libs (this is done for some of the binaries)

• --with-debug[=full]

For additional information, see Section 2.17.3, “MySQL Source-Configuration Options”.

• You want to configure mysqld without some features that are included in the standard binary
distributions. For example, distributions normally are compiled with support for all character sets. If you
want a smaller MySQL server, you can recompile it with support for only the character sets you need.

• You want to use the latest sources from one of the Bazaar repositories to have access to all current
bugfixes. For example, if you have found a bug and reported it to the MySQL development team, the
bugfix is committed to the source repository and you can access it there. The bugfix does not appear in a
release until a release actually is issued.

• You want to read (or modify) the C and C++ code that makes up MySQL. For this purpose, you should
get a source distribution, because the source code is always the ultimate manual.

• Source distributions contain more tests and examples than binary distributions.

2.4.2.3 How and When Updates Are Released

MySQL is evolving quite rapidly and we want to share new developments with other MySQL users. We
try to produce a new release whenever we have new and useful features that others also seem to have a
need for.

We also try to help users who request features that are easy to implement. We take note of what our
licensed users want, and we especially take note of what our support customers want and try to help them
in this regard.

No one is required to download a new release. The Release Notes help you determine whether the new
release has something you really want.

We use the following policy when updating MySQL:

• Enterprise Server releases are meant to appear every 18 months, supplemented by quarterly service
packs and monthly rapid updates. Community Server releases are meant to appear 2−3 times per year.

• Releases are issued within each series. For each release, the last number in the version is one more
than the previous release within the same series.

• Binary distributions for some platforms are made by us for major releases. Other people may make
binary distributions for other systems, but probably less frequently.

• We make fixes available as soon as we have identified and corrected small or noncritical but annoying
bugs. The fixes are available in source form immediately from our public Bazaar repositories, and are
included in the next release.

• If by any chance a security vulnerability or critical bug is found in a release, our policy is to fix it in a new
release as soon as possible. (We would like other companies to do this, too!)

http://dev.mysql.com/doc/relnotes/mysql/5.0/en/

How to Get MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 49

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2.4.2.4 MySQL Binaries Compiled by Oracle Corporation

Oracle Corporation provides a set of binary distributions of MySQL. In addition to binaries provided in
platform-specific package formats, we offer binary distributions for a number of platforms in the form of
compressed tar files (.tar.gz files). See Section 2.9, “Standard MySQL Installation from a Binary
Distribution”. For Windows distributions, see Section 2.10, “Installing MySQL on Microsoft Windows”.

If you want to compile MySQL from a source distribution, see Section 2.17, “Installing MySQL from
Source”. To compile a debug version of MySQL, see Section 2.17.3, “MySQL Source-Configuration
Options” for options that enable debugging.

2.5 How to Get MySQL
Check our downloads page at http://dev.mysql.com/downloads/ for information about the current version of
MySQL and for downloading instructions. For a complete up-to-date list of MySQL download mirror sites,
see http://dev.mysql.com/downloads/mirrors.html. You can also find information there about becoming a
MySQL mirror site and how to report a bad or out-of-date mirror.

To obtain the latest development source, see Section 2.17.2, “Installing MySQL Using a Development
Source Tree”.

2.6 Verifying Package Integrity Using MD5 Checksums or GnuPG
After downloading the MySQL package that suits your needs and before attempting to install it, make sure
that it is intact and has not been tampered with. There are three means of integrity checking:

• MD5 checksums

• Cryptographic signatures using GnuPG, the GNU Privacy Guard

• For RPM packages, the built-in RPM integrity verification mechanism

The following sections describe how to use these methods.

If you notice that the MD5 checksum or GPG signatures do not match, first try to download the respective
package one more time, perhaps from another mirror site.

2.6.1 Verifying the MD5 Checksum

After you have downloaded a MySQL package, you should make sure that its MD5 checksum matches
the one provided on the MySQL download pages. Each package has an individual checksum that you can
verify against the package that you downloaded. The correct MD5 checksum is listed on the downloads
page for each MySQL product, and you will compare it against the MD5 checksum of the file (product) that
you download.

Each operating system and setup offers its own version of tools for checking the MD5 checksum. Typically
the command is named md5sum, or it may be named md5, and some operating systems do not ship it at
all. On Linux, it is part of the GNU Text Utilities package, which is available for a wide range of platforms.
You can also download the source code from http://www.gnu.org/software/textutils/. If you have OpenSSL
installed, you can use the command openssl md5 package_name instead. A Windows implementation
of the md5 command line utility is available from http://www.fourmilab.ch/md5/. winMd5Sum is a graphical
MD5 checking tool that can be obtained from http://www.nullriver.com/index/products/winmd5sum. Our
Microsoft Windows examples will assume the name md5.exe.

Linux and Microsoft Windows examples:

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/mirrors.html
http://www.gnu.org/software/textutils/
http://www.fourmilab.ch/md5/
http://www.nullriver.com/index/products/winmd5sum

Signature Checking Using GnuPG

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 50

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> md5sum mysql-standard-5.0.96-linux-i686.tar.gz
aaab65abbec64d5e907dcd41b8699945 mysql-standard-5.0.96-linux-i686.tar.gz

shell> md5.exe mysql-installer-community-5.0.96.msi
aaab65abbec64d5e907dcd41b8699945 mysql-installer-community-5.0.96.msi

You should verify that the resulting checksum (the string of hexadecimal digits) matches the one displayed
on the download page immediately below the respective package.

Note

Make sure to verify the checksum of the archive file (for example, the .zip,
.tar.gz, or .msi file) and not of the files that are contained inside of the archive.
In other words, verify the file before extracting its contents.

2.6.2 Signature Checking Using GnuPG

Another method of verifying the integrity and authenticity of a package is to use cryptographic signatures.
This is more reliable than using MD5 checksums, but requires more work.

We sign MySQL downloadable packages with GnuPG (GNU Privacy Guard). GnuPG is an Open Source
alternative to the well-known Pretty Good Privacy (PGP) by Phil Zimmermann. See http://www.gnupg.org/
for more information about GnuPG and how to obtain and install it on your system. Most Linux distributions
ship with GnuPG installed by default. For more information about GnuPG, see http://www.openpgp.org/.

To verify the signature for a specific package, you first need to obtain a copy of our public GPG build
key, which you can download from http://pgp.mit.edu/. The key that you want to obtain is named mysql-
build@oss.oracle.com. Alternatively, you can cut and paste the key directly from the following text:

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.9 (SunOS)

mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bPlUWC3
RODjQReyCITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+OmSLN9brZ
fw2vOUgCmYv2hW0hyDHuvYlQA/BThQoADgj8AW6/0Lo7V1W9/8VuHP0gQwCgvzV3
BqOxRznNCRCRxAuAuVztHRcEAJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNW
hxwR9pRWVArNYJdDRT+rf2RUe3vpquKNQU/hnEIUHJRQqYHo8gTxvxXNQc7fJYLV
K2HtkrPbP72vwsEKMYhhr0eKCbtLGfls9krjJ6sBgACyP/Vb7hiPwxh6rDZ7ITnE
kYpXBACmWpP8NJTkamEnPCia2ZoOHODANwpUkP43I7jsDmgtobZX9qnrAXw+uNDI
QJEXM6FSbi0LLtZciNlYsafwAPEOMDKpMqAK6IyisNtPvaLd8lH0bPAnWqcyefep
rv0sxxqUEMcM3o7wwgfN83POkDasDbs3pjwPhxvhz6//62zQJ7Q2TXlTUUwgUmVs
ZWFzZSBFbmdpbmVlcmluZyA8bXlzcWwtYnVpbGRAb3NzLm9yYWNsZS5jb20+iGkE
ExECACkCGyMGCwkIBwMCBBUCCAMEFgIDAQIeAQIXgAIZAQUCUwHUZgUJGmbLywAK
CRCMcY07UHLh9V+DAKCjS1gGwgVI/eut+5L+l2v3ybl+ZgCcD7ZoA341HtoroV3U
6xRD09fUgeq0O015U1FMIFBhY2thZ2Ugc2lnbmluZyBrZXkgKHd3dy5teXNxbC5j
b20pIDxidWlsZEBteXNxbC5jb20+iG8EMBECAC8FAk53Pa0oHSBidWlsZEBteXNx
bC5jb20gd2lsbCBzdG9wIHdvcmtpbmcgc29vbgAKCRCMcY07UHLh9bU9AJ9xDK0o
xJFL9vTl9OSZC4lX0K9AzwCcCrS9cnJyz79eaRjL0s2r/CcljdyIZQQTEQIAHQUC
R6yUtAUJDTBYqAULBwoDBAMVAwIDFgIBAheAABIJEIxxjTtQcuH1B2VHUEcAAQGu
kgCffz4GUEjzXkOi71VcwgCxASTgbe0An34LPr1j9fCbrXWXO14msIADfb5piEwE
ExECAAwFAj4+o9EFgwlmALsACgkQSVDhKrJykfIk4QCfWbEeKN+3TRspe+5xKj+k
QJSammIAnjUz0xFWPlVx0f8o38qNG1bq0cU9iEwEExECAAwFAj5CggMFgwliIokA
CgkQtvXNTca6JD+WkQCgiGmnoGjMojynp5ppvMXkyUkfnykAoK79E6h8rwkSDZou
iz7nMRisH8uyiEYEEBECAAYFAj+s468ACgkQr8UjSHiDdA/2lgCg21IhIMMABTYd
p/IBiUsP/JQLiEoAnRzMywEtujQz/E9ono7H1DkebDa4iEYEEBECAAYFAj+0Q3cA
CgkQhZavqzBzTmbGwwCdFqD1frViC7WRt8GKoOS7hzNN32kAnirlbwpnT7a6NOsQ
83nk11a2dePhiEYEEBECAAYFAkNbs+oACgkQi9gubzC5S1x/dACdELKoXQKkwJN0
gZztsM7kjsIgyFMAnRRMbHQ7V39XC90OIpaPjk3a01tgiEYEExECAAYFAkTxMyYA
CgkQ9knE9GCTUwwKcQCgibak/SwhxWH1ijRhgYCo5GtM4vcAnAhtzL57wcw1Kg1X
m7nVGetUqJ7fiEwEEBECAAwFAkGBywEFgwYi2YsACgkQGFnQH2d7oexCjQCcD8sJ
NDc/mS8m8OGDUOx9VMWcnGkAnj1YWOD+Qhxo3mI/Ul9oEAhNkjcfiEwEEBECAAwF

http://www.gnupg.org/
http://www.openpgp.org/
http://pgp.mit.edu/

Signature Checking Using GnuPG

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 51

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

AkGByzQFgwYi2VgACgkQgcL36+ITtpIiIwCdFVNVUB8xe8mFXoPm4d9Z54PTjpMA
niSPA/ZsfJ3oOMLKar4F0QPPrdrGiEwEEBECAAwFAkGBy2IFgwYi2SoACgkQa3Ds
2V3D9HMJqgCbBYzr5GPXOXgP88jKzmdbjweqXeEAnRss4G2G/3qD7uhTL1SPT1SH
jWUXiEwEEBECAAwFAkHQkyQFgwXUEWgACgkQfSXKCsEpp8JiVQCghvWvkPqowsw8
w7WSseTcw1tflvkAni+vLHl/DqIly0LkZYn5jzK1dpvfiEwEEBECAAwFAkIrW7oF
gwV5SNIACgkQ5hukiRXruavzEwCgkzL5QkLSypcw9LGHcFSx1ya0VL4An35nXkum
g6cCJ1NP8r2I4NcZWIrqiEwEEhECAAwFAkAqWToFgwd6S1IACgkQPKEfNJT6+GEm
XACcD+A53A5OGM7w750W11ukq4iZ9ckAnRMvndAqn3YTOxxlLPj2UPZiSgSqiEwE
EhECAAwFAkA9+roFgwdmqdIACgkQ8tdcY+OcZZyy3wCgtDcwlaq20w0cNuXFLLNe
EUaFFTwAni6RHN80moSVAdDTRkzZacJU3M5QiEwEEhECAAwFAkEOCoQFgwaWmggA
CgkQOcor9D1qil/83QCeITZ9wIo7XAMjC6y4ZWUL4m+edZsAoMOhRIRi42fmrNFu
vNZbnMGej81viEwEEhECAAwFAkKApTQFgwUj/1gACgkQBA3AhXyDn6jjJACcD1A4
UtXk84J13JQyoH9+dy24714Aniwlsso/9ndICJOkqs2j5dlHFq6oiEwEExECAAwF
Aj5NTYQFgwlXVwgACgkQLbt2v63UyTMFDACglT5G5NVKf5Mj65bFSlPzb92zk2QA
n1uc2h19/IwwrsbIyK/9POJ+JMP7iEwEExECAAwFAkHXgHYFgwXNJBYACgkQZu/b
yM2C/T4/vACfXe67xiSHB80wkmFZ2krb+oz/gBAAnjR2ucpbaonkQQgnC3GnBqmC
vNaJiEwEExECAAwFAkIYgQ4FgwWMI34ACgkQdsEDHKIxbqGg7gCfQi2HcrHn+yLF
uNlH1oSOh48ZM0oAn3hKV0uIRJphonHaUYiUP1ttWgdBiGUEExECAB0FCwcKAwQD
FQMCAxYCAQIXgAUCS3AvygUJEPPzpwASB2VHUEcAAQEJEIxxjTtQcuH1sNsAniYp
YBGqy/HhMnw3WE8kXahOOR5KAJ4xUmWPGYP4l3hKxyNK9OAUbpDVYIh7BDARAgA7
BQJCdzX1NB0AT29wcy4uLiBzaG91bGQgaGF2ZSBiZWVuIGxvY2FsISBJJ20gKnNv
KiBzdHVwaWQuLi4ACgkQOcor9D1qil/vRwCdFo08f66oKLiuEAqzlf9iDlPozEEA
n2EgvCYLCCHjfGosrkrU3WK5NFVgiI8EMBECAE8FAkVvAL9IHQBTaG91bGQgaGF2
ZSBiZWVuIGEgbG9jYWwgc2lnbmF0dXJlLCBvciBzb21ldGhpbmcgLSBXVEYgd2Fz
IEkgdGhpbmtpbmc/AAoJEDnKK/Q9aopfoPsAn3BVqKOalJeF0xPSvLR90PsRlnmG
AJ44oisY7Tl3NJbPgZal8W32fbqgbIkCIgQQAQIADAUCQYHLhQWDBiLZBwAKCRCq
4+bOZqFEaKgvEACCErnaHGyUYa0wETjj6DLEXsqeOiXad4i9aBQxnD35GUgcFofC
/nCY4XcnCMMEnmdQ9ofUuU3OBJ6BNJIbEusAabgLooebP/3KEaiCIiyhHYU5jarp
ZAh+Zopgs3Oc11mQ1tIaS69iJxrGTLodkAsAJAeEUwTPq9fHFFzC1eGBysoyFWg4
bIjz/zClI+qyTbFA5g6tRoiXTo8ko7QhY2AA5UGEg+83Hdb6akC04Z2QRErxKAqr
phHzj8XpjVOsQAdAi/qVKQeNKROlJ+iq6+YesmcWGfzeb87dGNweVFDJIGA0qY27
pTb2lExYjsRFN4Cb13NfodAbMTOxcAWZ7jAPCxAPlHUG++mHMrhQXEToZnBFE4nb
nC7vOBNgWdjUgXcpkUCkop4b17BFpR+k8ZtYLSS8p2LLz4uAeCcSm2/msJxT7rC/
FvoH8428oHincqs2ICo9zO/Ud4HmmO0O+SsZdVKIIjinGyOVWb4OOzkAlnnhEZ3o
6hAHcREIsBgPwEYVTj/9ZdC0AO44Nj9cU7awaqgtrnwwfr/o4V2gl8bLSkltZU27
/29HeuOeFGjlFe0YrDd/aRNsxbyb2O28H4sG1CVZmC5uK1iQBDiSyA7Q0bbdofCW
oQzm5twlpKWnY8Oe0ub9XP5p/sVfck4FceWFHwv+/PC9RzSl33lQ6vM2wIkCIgQT
AQIADAUCQp8KHAWDBQWacAAKCRDYwgoJWiRXzyE+D/9uc7z6fIsalfOYoLN60ajA
bQbI/uRKBFugyZ5RoaItusn9Z2rAtn61WrFhu4uCSJtFN1ny2RERg40f56pTghKr
D+YEt+Nze6+FKQ5AbGIdFsR/2bUk+ZZRSt83e14Lcb6ii/fJfzkoIox9ltkifQxq
Y7Tvk4noKu4oLSc8O1Wsfc/y0B9sYUUCmUfcnq58DEmGie9ovUslmyt5NPnveXxp
5UeaRc5Rqt9tK2B4A+7/cqENrdZJbAMSunt2+2fkYiRunAFPKPBdJBsY1sxeL/A9
aKe0viKEXQdAWqdNZKNCi8rd/oOP99/9lMbFudAbX6nL2DSb1OG2Z7NWEqgIAzjm
pwYYPCKeVz5Q8R+if9/fe5+STY/55OaI33fJ2H3v+U435VjYqbrerWe36xJItcJe
qUzW71fQtXi1CTEl3w2ch7VF5oj/QyjabLnAlHgSlkSi6p7By5C2MnbCHlCfPnIi
nPhFoRcRGPjJe9nFwGs+QblvS/Chzc2WX3s/2SWm4gEUKRX4zsAJ5ocyfa/vkxCk
SxK/erWlCPf/J1T70+i5waXDN/E3enSet/WL7h94pQKpjz8OdGL4JSBHuAVGA+a+
dknqnPF0KMKLhjrgV+L7O84FhbmAP7PXm3xmiMPriXf+el5fZZequQoIagf8rdRH
HhRJxQgI0HNknkaOqs8dtrkCDQQ+PqMdEAgA7+GJfxbMdY4wslPnjH9rF4N2qfWs
EN/lxaZoJYc3a6M02WCnHl6ahT2/tBK2w1QI4YFteR47gCvtgb6O1JHffOo2HfLm
RDRiRjd1DTCHqeyX7CHhcghj/dNRlW2Z0l5QFEcmV9U0Vhp3aFfWC4Ujfs3LU+hk
AWzE7zaD5cH9J7yv/6xuZVw411x0h4UqsTcWMu0iM1BzELqX1DY7LwoPEb/O9Rkb
f4fmLe11EzIaCa4PqARXQZc4dhSinMt6K3X4BrRsKTfozBu74F47D8Ilbf5vSYHb
uE5p/1oIDznkg/p8kW+3FxuWrycciqFTcNz215yyX39LXFnlLzKUb/F5GwADBQf+
Lwqqa8CGrRfsOAJxim63CHfty5mUc5rUSnTslGYEIOCR1BeQauyPZbPDsDD9MZ1Z
aSafanFvwFG6Llx9xkU7tzq+vKLoWkm4u5xf3vn55VjnSd1aQ9eQnUcXiL4cnBGo
TbOWI39EcyzgslzBdC++MPjcQTcA7p6JUVsP6oAB3FQWg54tuUo0Ec8bsM8b3Ev4
2LmuQT5NdKHGwHsXTPtl0klk4bQk4OajHsiy1BMahpT27jWjJlMiJc+IWJ0mghkK
Ht926s/ymfdf5HkdQ1cyvsz5tryVI3Fx78XeSYfQvuuwqp2H139pXGEkg0n6KdUO
etdZWhe70YGNPw1yjWJT1IhUBBgRAgAMBQJOdz3tBQkT+wG4ABIHZUdQRwABAQkQ
jHGNO1By4fUUmwCbBYr2+bBEn/L2BOcnw9Z/QFWuhRMAoKVgCFm5fadQ3Afi+UQl
AcOphrnJ
=443I
-----END PGP PUBLIC KEY BLOCK-----

To import the build key into your personal public GPG keyring, use gpg --import. For example, if you
have saved the key in a file named mysql_pubkey.asc, the import command looks like this:

Signature Checking Using GnuPG

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 52

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> gpg --import mysql_pubkey.asc
gpg: key 5072E1F5: public key "MySQL Release Engineering
<mysql-build@oss.oracle.com>" imported
gpg: Total number processed: 1
gpg: imported: 1
gpg: no ultimately trusted keys found

You can also download the key from the public keyserver using the public key id, 5072E1F5:

shell> gpg --recv-keys 5072E1F5
gpg: requesting key 5072E1F5 from hkp server keys.gnupg.net
gpg: key 5072E1F5: "MySQL Release Engineering <mysql-build@oss.oracle.com>"
1 new user ID
gpg: key 5072E1F5: "MySQL Release Engineering <mysql-build@oss.oracle.com>"
53 new signatures
gpg: no ultimately trusted keys found
gpg: Total number processed: 1
gpg: new user IDs: 1
gpg: new signatures: 53

If you want to import the key into your RPM configuration to validate RPM install packages, you should be
able to import the key directly:

shell> rpm --import mysql_pubkey.asc

If you experience problems or require RPM specific information, see Section 2.6.4, “Signature Checking
Using RPM”.

After you have downloaded and imported the public build key, download your desired MySQL package
and the corresponding signature, which also is available from the download page. The signature file has
the same name as the distribution file with an .asc extension, as shown by the examples in the following
table.

Table 2.1 MySQL Package and Signature Files for Source files

File Type File Name

Distribution file mysql-standard-5.0.96-linux-i686.tar.gz

Signature file mysql-standard-5.0.96-linux-i686.tar.gz.asc

Make sure that both files are stored in the same directory and then run the following command to verify the
signature for the distribution file:

shell> gpg --verify package_name.asc

If the downloaded package is valid, you will see a "Good signature" similar to:

shell> gpg --verify mysql-standard-5.0.96-linux-i686.tar.gz.asc
gpg: Signature made Tue 01 Feb 2011 02:38:30 AM CST using DSA key ID 5072E1F5
gpg: Good signature from "MySQL Release Engineering <mysql-build@oss.oracle.com>"

The Good signature message indicates that the file signature is valid, when compared to the signature
listed on our site. But you might also see warnings, like so:

shell> gpg --verify mysql-standard-5.0.96-linux-i686.tar.gz.asc
gpg: Signature made Wed 23 Jan 2013 02:25:45 AM PST using DSA key ID 5072E1F5
gpg: checking the trustdb
gpg: no ultimately trusted keys found

Signature Checking Using Gpg4win for Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 53

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

gpg: Good signature from "MySQL Release Engineering <mysql-build@oss.oracle.com>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: A4A9 4068 76FC BD3C 4567 70C8 8C71 8D3B 5072 E1F5

That is normal, as they depend on your setup and configuration. Here are explanations for these warnings:

• gpg: no ultimately trusted keys found: This means that the specific key is not "ultimately trusted" by you
or your web of trust, which is okay for the purposes of verifying file signatures.

• WARNING: This key is not certified with a trusted signature! There is no indication that the signature
belongs to the owner.: This refers to your level of trust in your belief that you possess our real public key.
This is a personal decision. Ideally, a MySQL developer would hand you the key in person, but more
commonly, you downloaded it. Was the download tampered with? Probably not, but this decision is up to
you. Setting up a web of trust is one method for trusting them.

See the GPG documentation for more information on how to work with public keys.

2.6.3 Signature Checking Using Gpg4win for Windows

The Section 2.6.2, “Signature Checking Using GnuPG” section describes how to verify MySQL downloads
using GPG. That guide also applies to Microsoft Windows, but another option is to use a GUI tool like
Gpg4win. You may use a different tool but our examples are based on Gpg4win, and utilize its bundled
Kleopatra GUI.

Download and install Gpg4win, and then load Kleopatra. The dialog should look similar to:

Figure 2.1 Initial screen after loading Kleopatra

http://www.gpg4win.org/

Signature Checking Using Gpg4win for Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 54

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Next, add the MySQL Release Engineering certificate. Do this by clicking File, Lookup Certificates on
Server. Type "Mysql Release Engineering" into the search box and press Search.

Figure 2.2 Finding the MySQL Release Engineering certificate

Select the "MySQL Release Engineering" certificate. The Fingerprint and Key-ID must be "5072E1F5", or
choose Details... to confirm the certificate is valid. Now, import it by clicking Import. An import dialog will
be displayed, choose Okay, and this certificate will now be listed under the Imported Certificates tab.

Next, configure the trust level for our certificate. Select our certificate, then from the main menu select
Certificates, Change Owner Trust.... We suggest choosing I believe checks are very accurate for our
certificate, as otherwise you might not be able to verify our signature. Select I believe checks are very
accurate and then press OK.

Signature Checking Using Gpg4win for Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 55

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Figure 2.3 Changing the Trust level

Next, verify the downloaded MySQL package file. This requires files for both the packaged file, and the
signature. The signature file must have the same name as the packaged file but with an appended .asc
extension, as shown by the example in the following table. The signature is linked to on the downloads
page for each MySQL product. You must create the .asc file with this signature.

Table 2.2 MySQL Package and Signature Files for MySQL Installer for Microsoft Windows

File Type File Name

Distribution file mysql-installer-community-5.0.96.msi

Signature file mysql-installer-community-5.0.96.msi.asc

Make sure that both files are stored in the same directory and then run the following command to verify the
signature for the distribution file. Either drag and drop the signature (.asc) file into Kleopatra, or load the
dialog from File, Decrypt/Verify Files..., and then choose either the .msi or .asc file.

Signature Checking Using Gpg4win for Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 56

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Figure 2.4 The Decrypt/Verify Files dialog

Click Decrypt/Verify to check the file. The two most common results will look like the following, and
although the yellow warning looks problematic, the following means that the file check passed with
success. You may now run this installer.

Signature Checking Using Gpg4win for Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 57

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Figure 2.5 The Decrypt/Verify Results: Good

Seeing a red "The signature is bad" error means the file is invalid. Do not execute the MSI file if you see
this error.

Signature Checking Using RPM

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 58

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Figure 2.6 The Decrypt/Verify Results: Bad

The Section 2.6.2, “Signature Checking Using GnuPG” section explains why you probably don't see a
green Good signature result.

2.6.4 Signature Checking Using RPM

For RPM packages, there is no separate signature. RPM packages have a built-in GPG signature and
MD5 checksum. You can verify a package by running the following command:

shell> rpm --checksig package_name.rpm

Example:

shell> rpm --checksig MySQL-server-5.0.96-0.glibc23.i386.rpm
MySQL-server-5.0.96-0.glibc23.i386.rpm: md5 gpg OK

Note

If you are using RPM 4.1 and it complains about (GPG) NOT OK (MISSING
KEYS: GPG#5072e1f5), even though you have imported the MySQL public build

Installation Layouts

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 59

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

key into your own GPG keyring, you need to import the key into the RPM keyring
first. RPM 4.1 no longer uses your personal GPG keyring (or GPG itself). Rather,
RPM maintains a separate keyring because it is a system-wide application and a
user's GPG public keyring is a user-specific file. To import the MySQL public key
into the RPM keyring, first obtain the key, then use rpm --import to import the
key. For example:

shell> gpg --export -a 5072e1f5 > 5072e1f5.asc
shell> rpm --import 5072e1f5.asc

Alternatively, rpm also supports loading the key directly from a URL, and you can use this manual page:

shell> rpm --import http://dev.mysql.com/doc/refman/5.0/en/checking-gpg-signature.html

If you need to obtain the MySQL public key, see Section 2.6.2, “Signature Checking Using GnuPG”.

2.7 Installation Layouts

This section describes the default layout of the directories created by installing binary or source
distributions provided by Oracle Corporation. A distribution provided by another vendor might use a layout
different from those shown here.

For MySQL 5.0 on Windows, the default installation directory is C:\Program Files\MySQL\MySQL
Server 5.0. (Some Windows users prefer to install in C:\mysql, the directory that formerly was used as
the default. However, the layout of the subdirectories remains the same.) The installation directory has the
following subdirectories:

Table 2.3 MySQL Installation Layout for Windows

Directory Contents of Directory

bin Client programs and the mysqld server

data Log files, databases

examples Example programs and scripts

include Include (header) files

lib Libraries

scripts Utility scripts

share Miscellaneous support files, including error messages,
character set files, sample configuration files, SQL for
database installation

Installations created from our Linux RPM distributions result in files under the system directories shown in
the following table.

Table 2.4 MySQL Installation Layout for Linux RPM Packages

Directory Contents of Directory

/usr/bin Client programs and scripts

/usr/sbin The mysqld server

/var/lib/mysql Log files, databases

/usr/share/info MySQL manual in Info format

Installation Layouts

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 60

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Directory Contents of Directory

/usr/share/man Unix man pages

/usr/include/mysql Include (header) files

/usr/lib/mysql Libraries

/usr/share/mysql Miscellaneous support files, including error messages,
character set files, sample configuration files, SQL for
database installation

/usr/share/sql-bench Benchmarks

On Unix, a tar file binary distribution is installed by unpacking it at the installation location you choose
(typically /usr/local/mysql) and creates the following directories in that location:

Table 2.5 MySQL Installation Layout for Generic Unix/Linux Binary Package

Directory Contents of Directory

bin Client programs and the mysqld server

data Log files, databases

docs MySQL manual in Info format

man Unix manual pages

include Include (header) files

lib Libraries

scripts mysql_install_db

share/mysql Miscellaneous support files, including error messages,
character set files, sample configuration files, SQL for
database installation

sql-bench Benchmarks

By default, when you install MySQL after compiling it from a source distribution, the installation step installs
files under /usr/local. Components are installed in the directories shown in the following table. To
configure particular installation locations, use the options described at Section 2.17.3, “MySQL Source-
Configuration Options”.

Table 2.6 MySQL Layout for Installation from Source

Directory Contents of Directory

bin Client programs and scripts

include/mysql Include (header) files

Docs MySQL manual in Info format

man Unix manual pages

lib/mysql Libraries

libexec The mysqld server

share/mysql Miscellaneous support files, including error messages, character set
files, sample configuration files, SQL for database installation

sql-bench Benchmarks

var Log files, databases

Compiler-Specific Build Characteristics

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 61

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Within its installation directory, the layout of a source installation differs from that of a binary installation in
the following ways:

• The mysqld server is installed in the libexec directory rather than in the bin directory.

• The data directory is var rather than data.

• mysql_install_db is installed in the bin directory rather than in the scripts directory.

• The header file and library directories are include/mysql and lib/mysql rather than include and
lib.

To create your own binary installation from a compiled source distribution, execute the scripts/
make_binary_distribution script from the top directory of the source distribution.

2.8 Compiler-Specific Build Characteristics

In some cases, the compiler used to build MySQL affects the features available for use. The notes in this
section apply for binary distributions provided by Oracle Corporation or that you compile yourself from
source.

icc (Intel C++ Compiler) Builds

A server built with icc has these characteristics:

• SSL support is not included.

2.9 Standard MySQL Installation from a Binary Distribution

The next several sections cover the installation of MySQL on platforms where we offer packages using the
native packaging format of the respective platform. (This is also known as performing a binary installation.)
However, binary distributions of MySQL are available for many other platforms as well. See Section 2.16,
“Installing MySQL on Unix/Linux Using Generic Binaries”, for generic installation instructions for these
packages that apply to all platforms.

See Section 2.4, “Notes for MySQL Community Server”, for more information on what other binary
distributions are available and how to obtain them.

2.10 Installing MySQL on Microsoft Windows

Important

The MySQL server 5.0 branch is old and not recommended for new installations.
Consider installing the latest stable branch, which today is MySQL server 5.7.

A native Windows distribution of MySQL has been available since version 3.21 and represents a sizable
percentage of the daily downloads of MySQL. This section describes the process for installing MySQL on
Windows.

Note

If you are upgrading MySQL from an existing installation older than MySQL 4.1.5,
you must first perform the procedure described in Section 2.10.7, “Upgrading
MySQL on Windows”.

Installing MySQL on Microsoft Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 62

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To run MySQL on Windows, you need the following:

• A Windows operating system such as XP, Vista, and Server 2003. Newer versions of Windows
than these are not supported. Windows 95/98/ME/2000 and versions of Windows older than these
are no longer supported. For supported platform information, see http://www.mysql.com/support/
supportedplatforms/database.html.

A Windows operating system permits you to run the MySQL server as a service. See Section 2.10.4.7,
“Starting MySQL as a Windows Service”.

Generally, you should install MySQL on Windows using an account that has administrator rights.
Otherwise, you may encounter problems with certain operations such as editing the PATH environment
variable or accessing the Service Control Manager.

• TCP/IP protocol support.

• Enough space on the hard drive to unpack, install, and create the databases in accordance with your
requirements (generally a minimum of 200 megabytes is recommended.)

For a list of limitations on the use of MySQL on the Windows platform, see Section C.7.6, “Windows
Platform Limitations”.

There may also be other requirements, depending on how you plan to use MySQL:

• To connect to the MySQL server using ODBC, you must have a Connector/ODBC driver. See
Chapter 20, Connectors and APIs.

• If you need tables with a size larger than 4GB, install MySQL on an NTFS or newer file system. Do not
forget to use MAX_ROWS and AVG_ROW_LENGTH when you create tables. See Section 13.1.10, “CREATE
TABLE Syntax”.

MySQL for Windows is available in several distribution formats:

• Binary distributions are available that contain a setup program that installs everything you need so that
you can start the server immediately. Another binary distribution format contains an archive that you
simply unpack in the installation location and then configure yourself. For details, see Section 2.10.1,
“Choosing An Installation Package”.

• The source distribution format contains all the code and support files for building the executables using
the Visual Studio compiler system.

Generally speaking, you should use a binary distribution that includes an installer. It is simpler to use than
the others, and you need no additional tools to get MySQL up and running. The installer for the Windows
version of MySQL, combined with a GUI Configuration Wizard, automatically installs MySQL, creates an
option file, starts the server, and secures the default user accounts.

Caution

Virus-scanning software such as Norton/Symantec Anti-Virus on directories
containing MySQL data and temporary tables can cause issues, both in terms of the
performance of MySQL and the virus-scanning software misidentifying the contents
of the files as containing spam. This is due to the fingerprinting mechanism used by
the virus-scanning software, and the way in which MySQL rapidly updates different
files, which may be identified as a potential security risk.

After installing MySQL Server, it is recommended that you disable virus scanning
on the main directory (datadir) used to store your MySQL table data. There is

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html

Choosing An Installation Package

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 63

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

usually a system built into the virus scanning software to enable specific directories
to be ignored.

In addition, by default, MySQL creates temporary files in the standard Windows
temporary directory. To prevent the temporary files also being scanned, configure
a separate temporary directory for MySQL temporary files and add this directory
to the virus scanning exclusion list. To do this, add a configuration option for the
tmpdir parameter to your my.ini configuration file. For more information, see
Section 2.10.4.2, “Creating an Option File”.

The following section describes how to install MySQL on Windows using a binary distribution. To use an
installation package that does not include an installer, follow the procedure described in Section 2.10.4,
“Installing MySQL on Microsoft Windows Using a noinstall Zip Archive”. To install using a source
distribution, see Section 2.10.8, “Installing MySQL from Source on Windows”.

MySQL distributions for Windows can be downloaded from http://dev.mysql.com/downloads/. See
Section 2.5, “How to Get MySQL”.

2.10.1 Choosing An Installation Package

For MySQL 5.0, there are multiple installation package formats to choose from when installing MySQL on
Windows.

• The Essentials package. This package has a file name similar to mysql-essential-5.0.96-
win32.msi and contains the minimum set of files needed to install MySQL on Windows, including the
Configuration Wizard. This package does not include optional components such as the embedded server
and benchmark suite.

• The Complete package. This package has a file name similar to mysql-5.0.96-win32.zip and
contains all files needed for a complete Windows installation, including the Configuration Wizard. This
package includes optional components such as the embedded server and benchmark suite.

• The no-install archive. This package has a file name similar to mysql-noinstall-5.0.96-
win32.zip and contains all the files found in the Complete install package, with the exception of the
Configuration Wizard. This package does not include an automated installer, and must be manually
installed and configured.

The Essentials package is recommended for most users. It is provided as an .msi file for use with the
Windows Installer. The Complete and Noinstall distributions are packaged as Zip archives. To use them,
you must have a tool that can unpack .zip files.

Your choice of install package affects the installation process you must follow. If you choose to install either
an Essentials or Complete install package, see Section 2.10.2, “Installing MySQL on Microsoft Windows
Using an MSI Package”. If you choose to install a Noinstall archive, see Section 2.10.4, “Installing MySQL
on Microsoft Windows Using a noinstall Zip Archive”.

2.10.2 Installing MySQL on Microsoft Windows Using an MSI Package

New MySQL users can use the MySQL Installation Wizard and MySQL Configuration Wizard to install
MySQL on Windows. These are designed to install and configure MySQL in such a way that new users can
immediately get started using MySQL.

The MySQL Installation Wizard and MySQL Configuration Wizard are available in the Essentials and
Complete install packages. They are recommended for most standard MySQL installations. Exceptions
include users who need to install multiple instances of MySQL on a single server host and advanced users
who want complete control of server configuration.

http://dev.mysql.com/downloads/

Installing MySQL on Microsoft Windows Using an MSI Package

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 64

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2.10.2.1 Using the MySQL Installation Wizard

MySQL Installation Wizard is an installer for the MySQL server that uses the latest installer technologies
for Microsoft Windows. The MySQL Installation Wizard, in combination with the MySQL Configuration
Wizard, enables a user to install and configure a MySQL server that is ready for use immediately after
installation.

The MySQL Installation Wizard is the standard installer for all MySQL server distributions, version 4.1.5
and higher. Users of previous versions of MySQL need to shut down and remove their existing MySQL
installations manually before installing MySQL with the MySQL Installation Wizard. See Upgrading MySQL
with the Installation Wizard, for more information on upgrading from a previous version.

The Microsoft Windows Installer (MSI) is the standard for application installations on Windows 2000 and
later versions. The MySQL Installation Wizard makes use of this technology to provide a smoother and
more flexible installation process.

The Microsoft Windows Installer Engine was updated with the release of Windows XP; those using a
previous version of Windows can reference this Microsoft Knowledge Base article for information on
upgrading to the latest version of the Windows Installer Engine.

In addition, Microsoft has introduced the WiX (Windows Installer XML) toolkit, which is the first highly
acknowledged Open Source project from Microsoft. We have switched to WiX because it is an Open
Source project and it enables us to handle the complete Windows installation process in a flexible manner
using scripts.

Improving the MySQL Installation Wizard depends on the support and feedback of users. If you find
that the MySQL Installation Wizard is lacking some feature important to you, or if you discover a bug,
please report it in our bugs database using the instructions given in Section 1.7, “How to Report Bugs or
Problems”.

Downloading and Starting the MySQL Installation Wizard

MySQL installation packages can be downloaded from http://dev.mysql.com/downloads/. If the package
you download is contained within a Zip archive, you need to extract the archive first.

Note

If you are installing on Windows Vista or newer, it is best to open a network port for
MySQL to use before beginning the installation. To do this, first ensure that you are
logged in as an Administrator, then go to the Control Panel and double-click the
Windows Firewall icon. Choose the Allow a program through Windows
Firewall option and click the Add port button. Enter MySQL into the Name text
box and 3306 (or other port of your choice) into the Port number text box. Also
ensure that the TCP protocol radio button is selected. If you wish, you can also limit
access to the MySQL server by choosing the Change scope button. Confirm your
choices by clicking the OK button. If you do not open a port prior to installation,
you cannot configure the MySQL server immediately after installation. Additionally,
when running the MySQL Installation Wizard on Windows Vista or newer, ensure
that you are logged in as a user with administrative rights.

The process for starting the wizard depends on the contents of the installation package you download. If
there is a setup.exe file present, double-click it to start the installation process. If there is an .msi file
present, double-click it to start the installation process.

http://support.microsoft.com/default.aspx?scid=kb;EN-US;292539
http://dev.mysql.com/downloads/

Installing MySQL on Microsoft Windows Using an MSI Package

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 65

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Choosing an Installation Type

There are three installation types available: Typical, Complete, and Custom.

Installing MySQL on Microsoft Windows Using an MSI Package

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 66

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The Typical installation type installs the MySQL server, the mysql command-line client, and the
command-line utilities. The command-line clients and utilities include mysqldump, myisamchk, and
several other tools to help you manage the MySQL server.

The Complete installation type installs all components included in the installation package. The full
installation package includes components such as the embedded server library, the benchmark suite,
support scripts, and documentation.

The Custom installation type gives you complete control over which packages you wish to install and the
installation path that is used. See The Custom Installation Dialog, for more information on performing a
custom install.

If you choose the Typical or Complete installation types and click the Next button, you advance to the
confirmation screen to verify your choices and begin the installation. If you choose the Custom installation
type and click the Next button, you advance to the custom installation dialog, described in The Custom
Installation Dialog.

The Custom Installation Dialog

If you wish to change the installation path or the specific components that are installed by the MySQL
Installation Wizard, choose the Custom installation type.

Installing MySQL on Microsoft Windows Using an MSI Package

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 67

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A tree view on the left side of the custom install dialog lists all available components. Components that
are not installed have a red X icon; components that are installed have a gray icon. To change whether a
component is installed, click that component's icon and choose a new option from the drop-down list that
appears.

You can change the default installation path by clicking the Change... button to the right of the displayed
installation path.

After choosing your installation components and installation path, click the Next button to advance to the
confirmation dialog.

The Confirmation Dialog

Once you choose an installation type and optionally choose your installation components, you advance to
the confirmation dialog. Your installation type and installation path are displayed for you to review.

Installing MySQL on Microsoft Windows Using an MSI Package

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 68

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To install MySQL if you are satisfied with your settings, click the Install button. To change your settings,
click the Back button. To exit the MySQL Installation Wizard without installing MySQL, click the Cancel
button.

After installation is complete, you have the option of registering with the MySQL Web site. Registration
gives you access to post in the MySQL forums at forums.mysql.com, along with the ability to report bugs at
bugs.mysql.com and to subscribe to our newsletter. The final screen of the installer provides a summary of
the installation and gives you the option to launch the MySQL Configuration Wizard, which you can use to
create a configuration file, install the MySQL service, and configure security settings.

Changes Made by MySQL Installation Wizard

Once you click the Install button, the MySQL Installation Wizard begins the installation process and makes
certain changes to your system which are described in the sections that follow.

Changes to the Registry

The MySQL Installation Wizard creates one Windows registry key in a typical install situation, located in
HKEY_LOCAL_MACHINE\SOFTWARE\MySQL AB.

The MySQL Installation Wizard creates a key named after the release series of the server that is being
installed, such as MySQL Server 5.0. It contains two string values, Location and Version. The
Location string contains the path to the installation directory. In a default installation it contains C:

http://forums.mysql.com
http://bugs.mysql.com

Installing MySQL on Microsoft Windows Using an MSI Package

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 69

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

\Program Files\MySQL\MySQL Server 5.0\. The Version string contains the release number. For
example, for an installation of MySQL Server 5.0.96, the key contains a value of 5.0.96.

These registry keys are used to help external tools identify the installed location of the MySQL server,
preventing a complete scan of the hard-disk to determine the installation path of the MySQL server. The
registry keys are not required to run the server, and if you install MySQL using the noinstall Zip archive,
the registry keys are not created.

Changes to the Start Menu

The MySQL Installation Wizard creates a new entry in the Windows Start menu under a common MySQL
menu heading named after the release series of MySQL that you have installed. For example, if you install
MySQL 5.0, the MySQL Installation Wizard creates a MySQL Server 5.0 section in the Start menu.

The following entries are created within the new Start menu section:

• MySQL Command-Line Client: This is a shortcut to the mysql command-line client and is configured
to connect as the root user. The shortcut prompts for a root user password when you connect.

• MySQL Server Instance Config Wizard: This is a shortcut to the MySQL Configuration Wizard. Use
this shortcut to configure a newly installed server, or to reconfigure an existing server.

• MySQL Documentation: This is a link to the MySQL server documentation that is stored locally in the
MySQL server installation directory. This option is not available when the MySQL server is installed
using the Essentials installation package.

Changes to the File System

The MySQL Installation Wizard by default installs the MySQL 5.0 server to C:\Program Files\MySQL
\MySQL Server 5.0, where Program Files is the default location for applications in your system, and
5.0 is the major version of your MySQL server. This is the recommended location for the MySQL server,
replacing the former default location C:\mysql.

By default, all MySQL applications are stored in a common directory at C:\Program Files\MySQL,
where Program Files is the default location for applications in your Windows installation. A typical
MySQL installation on a developer machine might look like this:

C:\Program Files\MySQL\MySQL Server 5.0
C:\Program Files\MySQL\MySQL Workbench 5.1 OSS

This approach makes it easier to manage and maintain all MySQL applications installed on a particular
system.

Upgrading MySQL with the Installation Wizard

The MySQL Installation Wizard can perform server upgrades automatically using the upgrade capabilities
of MSI. That means you do not need to remove a previous installation manually before installing a new
release. The installer automatically shuts down and removes the previous MySQL service before installing
the new version.

Automatic upgrades are available only when upgrading between installations that have the same major
and minor version numbers. For example, you can upgrade automatically from MySQL 5.0.5 to MySQL
5.0.6, but not from MySQL 4.1 to MySQL 5.0.

See Section 2.10.7, “Upgrading MySQL on Windows”.

MySQL Server Instance Configuration Wizard

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 70

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2.10.3 MySQL Server Instance Configuration Wizard

The MySQL Server Instance Configuration Wizard helps automate the process of configuring your server.
It creates a custom MySQL configuration file (my.ini or my.cnf) by asking you a series of questions
and then applying your responses to a template to generate the configuration file that is tuned to your
installation.

The MySQL Server Instance Configuration Wizard is included with the MySQL 5.0 server. The MySQL
Server Instance Configuration Wizard is only available for Windows.

2.10.3.1 Starting the MySQL Server Instance Configuration Wizard

The MySQL Server Instance Configuration Wizard is normally started as part of the installation process.
You should only need to run the MySQL Server Instance Configuration Wizard again when you need to
change the configuration parameters of your server.

If you chose not to open a port prior to installing MySQL on Windows Vista or newer, you can choose
to use the MySQL Server Configuration Wizard after installation. However, you must open a port in
the Windows Firewall. To do this see the instructions given in Downloading and Starting the MySQL
Installation Wizard. Rather than opening a port, you also have the option of adding MySQL as a program
that bypasses the Windows Firewall. One or the other option is sufficient—you need not do both.
Additionally, when running the MySQL Server Configuration Wizard on Windows Vista or newer, ensure
that you are logged in as a user with administrative rights.

MySQL Server Instance Configuration Wizard

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 71

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

You can launch the MySQL Configuration Wizard by clicking the MySQL Server Instance Config Wizard
entry in the MySQL section of the Windows Start menu.

Alternatively, you can navigate to the bin directory of your MySQL installation and launch the
MySQLInstanceConfig.exe file directly.

The MySQL Server Instance Configuration Wizard places the my.ini file in the installation directory for
the MySQL server. This helps associate configuration files with particular server instances.

To ensure that the MySQL server knows where to look for the my.ini file, an argument similar to this is
passed to the MySQL server as part of the service installation:

--defaults-file="C:\Program Files\MySQL\MySQL Server 5.0\my.ini"

Here, C:\Program Files\MySQL\MySQL Server 5.0 is replaced with the installation path to the
MySQL Server. The --defaults-file option instructs the MySQL server to read the specified file for
configuration options when it starts.

Apart from making changes to the my.ini file by running the MySQL Server Instance Configuration
Wizard again, you can modify it by opening it with a text editor and making any necessary changes. You
can also modify the server configuration with the http://www.mysql.com/products/administrator/ utility. For
more information about server configuration, see Section 5.1.3, “Server Command Options”.

MySQL clients and utilities such as the mysql and mysqldump command-line clients are not able to locate
the my.ini file located in the server installation directory. To configure the client and utility applications,
create a new my.ini file in the Windows installation directory (for example, C:\WINDOWS).

Under Windows Server 2003, Windows Server 2000 and Windows XP, MySQL Server Instance
Configuration Wizard will configure MySQL to work as a Windows service. To start and stop MySQL you
use the Services application that is supplied as part of the Windows Administrator Tools.

2.10.3.2 Choosing a Maintenance Option

If the MySQL Server Instance Configuration Wizard detects an existing configuration file, you have
the option of either reconfiguring your existing server, or removing the server instance by deleting the
configuration file and stopping and removing the MySQL service.

To reconfigure an existing server, choose the Re-configure Instance option and click the Next button.
Any existing configuration file is not overwritten, but renamed (within the same directory) using a timestamp
(Windows) or sequential number (Linux). To remove the existing server instance, choose the Remove
Instance option and click the Next button.

If you choose the Remove Instance option, you advance to a confirmation window. Click the Execute
button. The MySQL Server Configuration Wizard stops and removes the MySQL service, and then deletes
the configuration file. The server installation and its data folder are not removed.

If you choose the Re-configure Instance option, you advance to the Configuration Type dialog where
you can choose the type of installation that you wish to configure.

2.10.3.3 Choosing a Configuration Type

When you start the MySQL Server Instance Configuration Wizard for a new MySQL installation, or choose
the Re-configure Instance option for an existing installation, you advance to the Configuration Type
dialog.

http://www.mysql.com/products/administrator/

MySQL Server Instance Configuration Wizard

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 72

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

There are two configuration types available: Detailed Configuration and Standard Configuration. The
Standard Configuration option is intended for new users who want to get started with MySQL quickly
without having to make many decisions about server configuration. The Detailed Configuration option is
intended for advanced users who want more fine-grained control over server configuration.

If you are new to MySQL and need a server configured as a single-user developer machine, the Standard
Configuration should suit your needs. Choosing the Standard Configuration option causes the MySQL
Configuration Wizard to set all configuration options automatically with the exception of Service Options
and Security Options.

The Standard Configuration sets options that may be incompatible with systems where there are
existing MySQL installations. If you have an existing MySQL installation on your system in addition to the
installation you wish to configure, the Detailed Configuration option is recommended.

To complete the Standard Configuration, please refer to the sections on Service Options and Security
Options in Section 2.10.3.10, “The Service Options Dialog”, and Section 2.10.3.11, “The Security Options
Dialog”, respectively.

2.10.3.4 The Server Type Dialog

There are three different server types available to choose from. The server type that you choose affects the
decisions that the MySQL Server Instance Configuration Wizard makes with regard to memory, disk, and
processor usage.

MySQL Server Instance Configuration Wizard

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 73

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Developer Machine: Choose this option for a typical desktop workstation where MySQL is intended only
for personal use. It is assumed that many other desktop applications are running. The MySQL server is
configured to use minimal system resources.

• Server Machine: Choose this option for a server machine where the MySQL server is running alongside
other server applications such as FTP, email, and Web servers. The MySQL server is configured to use
a moderate portion of the system resources.

• Dedicated MySQL Server Machine: Choose this option for a server machine that is intended to run
only the MySQL server. It is assumed that no other applications are running. The MySQL server is
configured to use all available system resources.

Note

By selecting one of the preconfigured configurations, the values and settings
of various options in your my.cnf or my.ini will be altered accordingly. The
default values and options as described in the reference manual may therefore be
different to the options and values that were created during the execution of the
configuration wizard.

MySQL Server Instance Configuration Wizard

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 74

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2.10.3.5 The Database Usage Dialog

The Database Usage dialog enables you to indicate the storage engines that you expect to use when
creating MySQL tables. The option you choose determines whether the InnoDB storage engine is
available and what percentage of the server resources are available to InnoDB.

• Multifunctional Database: This option enables both the InnoDB and MyISAM storage engines and
divides resources evenly between the two. This option is recommended for users who use both storage
engines on a regular basis.

• Transactional Database Only: This option enables both the InnoDB and MyISAM storage engines, but
dedicates most server resources to the InnoDB storage engine. This option is recommended for users
who use InnoDB almost exclusively and make only minimal use of MyISAM.

• Non-Transactional Database Only: This option disables the InnoDB storage engine completely and
dedicates all server resources to the MyISAM storage engine. This option is recommended for users who
do not use InnoDB.

The Configuration Wizard uses a template to generate the server configuration file. The Database Usage
dialog sets one of the following option strings:

Multifunctional Database: MIXED
Transactional Database Only: INNODB
Non-Transactional Database Only: MYISAM

MySQL Server Instance Configuration Wizard

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 75

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When these options are processed through the default template (my-template.ini) the result is:

Multifunctional Database:
default-storage-engine=InnoDB
_myisam_pct=50

Transactional Database Only:
default-storage-engine=InnoDB
_myisam_pct=5

Non-Transactional Database Only:
default-storage-engine=MyISAM
_myisam_pct=100
skip-innodb

The _myisam_pct value is used to calculate the percentage of resources dedicated to MyISAM. The
remaining resources are allocated to InnoDB.

2.10.3.6 The InnoDB Tablespace Dialog

Some users may want to locate the InnoDB tablespace files in a different location than the MySQL server
data directory. Placing the tablespace files in a separate location can be desirable if your system has a
higher capacity or higher performance storage device available, such as a RAID storage system.

MySQL Server Instance Configuration Wizard

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 76

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To change the default location for the InnoDB tablespace files, choose a new drive from the drop-down list
of drive letters and choose a new path from the drop-down list of paths. To create a custom path, click the
... button.

If you are modifying the configuration of an existing server, you must click the Modify button before you
change the path. In this situation you must move the existing tablespace files to the new location manually
before starting the server.

2.10.3.7 The Concurrent Connections Dialog

To prevent the server from running out of resources, it is important to limit the number of concurrent
connections to the MySQL server that can be established. The Concurrent Connections dialog enables
you to choose the expected usage of your server, and sets the limit for concurrent connections accordingly.
It is also possible to set the concurrent connection limit manually.

• Decision Support (DSS)/OLAP: Choose this option if your server does not require a large number
of concurrent connections. The maximum number of connections is set at 100, with an average of 20
concurrent connections assumed.

• Online Transaction Processing (OLTP): Choose this option if your server requires a large number of
concurrent connections. The maximum number of connections is set at 500.

• Manual Setting: Choose this option to set the maximum number of concurrent connections to the server
manually. Choose the number of concurrent connections from the drop-down box provided, or enter the
maximum number of connections into the drop-down box if the number you desire is not listed.

MySQL Server Instance Configuration Wizard

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 77

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2.10.3.8 The Networking and Strict Mode Options Dialog

Use the Networking Options dialog to enable or disable TCP/IP networking and to configure the port
number that is used to connect to the MySQL server.

TCP/IP networking is enabled by default. To disable TCP/IP networking, uncheck the box next to the
Enable TCP/IP Networking option.

Port 3306 is used by default. To change the port used to access MySQL, choose a new port number from
the drop-down box or type a new port number directly into the drop-down box. If the port number you
choose is in use, you are prompted to confirm your choice of port number.

Set the Server SQL Mode to either enable or disable strict mode. Enabling strict mode (default) makes
MySQL behave more like other database management systems. If you run applications that rely on
MySQL's old “forgiving” behavior, make sure to either adapt those applications or to disable strict mode.
For more information about strict mode, see Section 5.1.7, “Server SQL Modes”.

2.10.3.9 The Character Set Dialog

The MySQL server supports multiple character sets and it is possible to set a default server character set
that is applied to all tables, columns, and databases unless overridden. Use the Character Set dialog to
change the default character set of the MySQL server.

MySQL Server Instance Configuration Wizard

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 78

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Standard Character Set: Choose this option if you want to use latin1 as the default server character
set. latin1 is used for English and many Western European languages.

• Best Support For Multilingualism: Choose this option if you want to use utf8 as the default server
character set. This is a Unicode character set that can store characters from many different languages.

• Manual Selected Default Character Set / Collation: Choose this option if you want to pick the server's
default character set manually. Choose the desired character set from the provided drop-down list.

2.10.3.10 The Service Options Dialog

On Windows platforms, the MySQL server can be installed as a Windows service. When installed this way,
the MySQL server can be started automatically during system startup, and even restarted automatically by
Windows in the event of a service failure.

The MySQL Server Instance Configuration Wizard installs the MySQL server as a service by default, using
the service name MySQL. If you do not wish to install the service, uncheck the box next to the Install As
Windows Service option. You can change the service name by picking a new service name from the drop-
down box provided or by entering a new service name into the drop-down box.

Note

Service names can include any legal character except forward (/) or backward (\)
slashes, and must be less than 256 characters long.

MySQL Server Instance Configuration Wizard

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 79

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Warning

If you are installing multiple versions of MySQL onto the same machine, you must
choose a different service name for each version that you install. If you do not
choose a different service for each installed version then the service manager
information will be inconsistent and this will cause problems when you try to
uninstall a previous version.

If you have already installed multiple versions using the same service name,
you must manually edit the contents of the HKEY_LOCAL_MACHINE\SYSTEM
\CurrentControlSet\Services parameters within the Windows registry to
update the association of the service name with the correct server version.

Typically, when installing multiple versions you create a service name based on
the version information. For example, you might install MySQL 5.x as mysql5, or
specific versions such as MySQL 5.0.56 as mysql50056.

To install the MySQL server as a service but not have it started automatically at startup, uncheck the box
next to the Launch the MySQL Server Automatically option.

2.10.3.11 The Security Options Dialog

It is strongly recommended that you set a root password for your MySQL server, and the MySQL
Server Instance Configuration Wizard requires by default that you do so. If you do not wish to set a root
password, uncheck the box next to the Modify Security Settings option.

MySQL Server Instance Configuration Wizard

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 80

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To set the root password, enter the desired password into both the New root password and Confirm
boxes. If you are reconfiguring an existing server, you need to enter the existing root password into the
Current root password box.

To permit root logins from across the network, check the box next to the Enable root access from
remote machines option. This decreases the security of your root account.

To create an anonymous user account, check the box next to the Create An Anonymous Account option.
Creating an anonymous account can decrease server security and cause login and permission difficulties.
For this reason, it is not recommended.

2.10.3.12 The Confirmation Dialog

The final dialog in the MySQL Server Instance Configuration Wizard is the Confirmation Dialog. To start
the configuration process, click the Execute button. To return to a previous dialog, click the Back button.
To exit the MySQL Server Instance Configuration Wizard without configuring the server, click the Cancel
button.

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 81

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

After you click the Execute button, the MySQL Server Instance Configuration Wizard performs a series of
tasks and displays the progress onscreen as the tasks are performed.

The MySQL Server Instance Configuration Wizard first determines configuration file options based on your
choices using a template prepared by MySQL developers and engineers. This template is named my-
template.ini and is located in your server installation directory.

The MySQL Configuration Wizard then writes these options to the corresponding configuration file.

If you chose to create a service for the MySQL server, the MySQL Server Instance Configuration Wizard
creates and starts the service. If you are reconfiguring an existing service, the MySQL Server Instance
Configuration Wizard restarts the service to apply your configuration changes.

If you chose to set a root password, the MySQL Configuration Wizard connects to the server, sets your
new root password, and applies any other security settings you may have selected.

After the MySQL Server Instance Configuration Wizard has completed its tasks, it displays a summary.
Click the Finish button to exit the MySQL Server Configuration Wizard.

2.10.4 Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

Users who are installing from the Noinstall package can use the instructions in this section to manually
install MySQL. The process for installing MySQL from a Zip archive is as follows:

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 82

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

1. Extract the archive to the desired install directory

2. Create an option file

3. Choose a MySQL server type

4. Start the MySQL server

5. Secure the default user accounts

This process is described in the sections that follow.

2.10.4.1 Extracting the Install Archive

To install MySQL manually, do the following:

1. If you are upgrading from a previous version please refer to Section 2.10.7, “Upgrading MySQL on
Windows”, before beginning the upgrade process.

2. Make sure that you are logged in as a user with administrator privileges.

3. Choose an installation location. Traditionally, the MySQL server is installed in C:\mysql. The MySQL
Installation Wizard installs MySQL under C:\Program Files\MySQL. If you do not install MySQL
at C:\mysql, you must specify the path to the install directory during startup or in an option file. See
Section 2.10.4.2, “Creating an Option File”.

4. Extract the install archive to the chosen installation location using your preferred Zip archive tool. Some
tools may extract the archive to a folder within your chosen installation location. If this occurs, you can
move the contents of the subfolder into the chosen installation location.

2.10.4.2 Creating an Option File

If you need to specify startup options when you run the server, you can indicate them on the command
line or place them in an option file. For options that are used every time the server starts, you may find it
most convenient to use an option file to specify your MySQL configuration. This is particularly true under
the following circumstances:

• The installation or data directory locations are different from the default locations (C:\Program Files
\MySQL\MySQL Server 5.0 and C:\Program Files\MySQL\MySQL Server 5.0\data).

• You need to tune the server settings.

When the MySQL server starts on Windows, it looks for option files in several locations, such as
the Windows directory, C:\, and the MySQL installation directory (for the full list of locations, see
Section 4.2.6, “Using Option Files”). The Windows directory typically is named something like C:
\WINDOWS. You can determine its exact location from the value of the WINDIR environment variable using
the following command:

shell> echo %WINDIR%

MySQL looks for options in each location first in the my.ini file, and then in the my.cnf file. However, to
avoid confusion, it is best if you use only one file. If your PC uses a boot loader where C: is not the boot
drive, your only option is to use the my.ini file. Whichever option file you use, it must be a plain text file.

You can also make use of the example option files included with your MySQL distribution; see
Section 5.1.2, “Server Configuration Defaults”.

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 83

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

An option file can be created and modified with any text editor, such as Notepad. For example, if MySQL
is installed in E:\mysql and the data directory is in E:\mydata\data, you can create an option file
containing a [mysqld] section to specify values for the basedir and datadir options:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=E:/mydata/data

Note that Windows path names are specified in option files using (forward) slashes rather than
backslashes. If you do use backslashes, double them:

[mysqld]
set basedir to your installation path
basedir=E:\\mysql
set datadir to the location of your data directory
datadir=E:\\mydata\\data

The rules for use of backslash in option file values are given in Section 4.2.6, “Using Option Files”.

On Windows, the MySQL installer places the data directory directly under the directory where you install
MySQL. If you would like to use a data directory in a different location, you should copy the entire contents
of the data directory to the new location. For example, if MySQL is installed in C:\Program Files
\MySQL\MySQL Server 5.0, the data directory is by default in C:\Program Files\MySQL\MySQL
Server 5.0\data. If you want to use E:\mydata as the data directory instead, you must do two things:

1. Move the entire data directory and all of its contents from C:\Program Files\MySQL\MySQL
Server 5.0\data to E:\mydata.

2. Use a --datadir option to specify the new data directory location each time you start the server.

2.10.4.3 Selecting a MySQL Server Type

The following table shows the available servers for Windows in MySQL 5.0.

Binary Description

mysqld-nt Optimized binary with named-pipe support

mysqld Optimized binary without named-pipe support

mysqld-debug Like mysqld-nt, but compiled with full debugging and automatic memory allocation
checking

All of the preceding binaries are optimized for modern Intel processors, but should work on any Intel i386-
class or higher processor.

Each of the servers in a distribution support the same set of storage engines. The SHOW ENGINES
statement displays which engines a given server supports.

All Windows MySQL 5.0 servers have support for symbolic linking of database directories.

MySQL supports TCP/IP on all Windows platforms. MySQL servers on Windows support named pipes as
indicated in the following list. However, the default is to use TCP/IP regardless of platform. (Named pipes
are slower than TCP/IP in many Windows configurations.)

Use of named pipes is subject to these conditions:

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 84

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Named pipes are enabled only if you start the server with the --enable-named-pipe option. It is
necessary to use this option explicitly because some users have experienced problems with shutting
down the MySQL server when named pipes were used.

• Named-pipe connections are permitted only by the mysqld-nt and mysqld-debug servers.

Note

Most of the examples in this manual use mysqld as the server name. If you choose
to use a different server, such as mysqld-nt, make the appropriate substitutions in
the commands that are shown in the examples.

2.10.4.4 Starting the Server for the First Time

This section gives a general overview of starting the MySQL server. The following sections provide more
specific information for starting the MySQL server from the command line or as a Windows service.

The information here applies primarily if you installed MySQL using the Noinstall version, or if you wish
to configure and test MySQL manually rather than with the GUI tools.

The examples in these sections assume that MySQL is installed under the default location of C:\Program
Files\MySQL\MySQL Server 5.0. Adjust the path names shown in the examples if you have MySQL
installed in a different location.

Clients have two options. They can use TCP/IP, or they can use a named pipe if the server supports
named-pipe connections.

MySQL for Windows also supports shared-memory connections if the server is started with the --
shared-memory option. Clients can connect through shared memory by using the --protocol=MEMORY
option.

For information about which server binary to run, see Section 2.10.4.3, “Selecting a MySQL Server Type”.

Testing is best done from a command prompt in a console window (or “DOS window”). In this way you can
have the server display status messages in the window where they are easy to see. If something is wrong
with your configuration, these messages make it easier for you to identify and fix any problems.

To start the server, enter this command:

shell> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld" --console

For a server that includes InnoDB support, you should see the messages similar to those following as it
starts (the path names and sizes may differ):

InnoDB: The first specified datafile c:\ibdata\ibdata1 did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file c:\ibdata\ibdata1 size to 209715200
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file c:\iblogs\ib_logfile0 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile0 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile1 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile1 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile2 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile2 size to 31457280
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: creating foreign key constraint system tables
InnoDB: foreign key constraint system tables created
011024 10:58:25 InnoDB: Started

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 85

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When the server finishes its startup sequence, you should see something like this, which indicates that the
server is ready to service client connections:

mysqld: ready for connections
Version: '5.0.96' socket: '' port: 3306

The server continues to write to the console any further diagnostic output it produces. You can open a new
console window in which to run client programs.

If you omit the --console option, the server writes diagnostic output to the error log in the data directory
(C:\Program Files\MySQL\MySQL Server 5.0\data by default). The error log is the file with the
.err extension.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords.
After starting the server, you should set up passwords for them using the
instructions in Section 2.18.4, “Securing the Initial MySQL Accounts”.

2.10.4.5 Starting MySQL from the Windows Command Line

The MySQL server can be started manually from the command line. This can be done on any version of
Windows.

To start the mysqld server from the command line, you should start a console window (or “DOS window”)
and enter this command:

shell> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld"

The path to mysqld may vary depending on the install location of MySQL on your system.

You can stop the MySQL server by executing this command:

shell> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke mysqladmin
with the -p option and supply the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell it to
shut down. The command connects as the MySQL root user, which is the default administrative account
in the MySQL grant system. Note that users in the MySQL grant system are wholly independent from any
login users under Windows.

If mysqld doesn't start, check the error log to see whether the server wrote any messages there to indicate
the cause of the problem. The error log is located in the C:\Program Files\MySQL\MySQL Server
5.0\data directory. It is the file with a suffix of .err. You can also try to start the server as mysqld
--console; in this case, you may get some useful information on the screen that may help solve the
problem.

The last option is to start mysqld with the --standalone and --debug options. In this case, mysqld
writes a log file C:\mysqld.trace that should contain the reason why mysqld doesn't start. See
Section 21.3.3, “The DBUG Package”.

Use mysqld --verbose --help to display all the options that mysqld supports.

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 86

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2.10.4.6 Customizing the PATH for MySQL Tools

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory to
your Windows system PATH environment variable:

• On the Windows desktop, right-click the My Computer icon, and select Properties.

• Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

• Under System Variables, select Path, and then click the Edit button. The Edit System Variable
dialogue should appear.

• Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the End
key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter the
complete path name of your MySQL bin directory (for example, C:\Program Files\MySQL\MySQL
Server 5.0\bin)

Note

There must be a semicolon separating this path from any values present in this
field.

Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the dialogues that were
opened have been dismissed. You should now be able to invoke any MySQL executable program by
typing its name at the DOS prompt from any directory on the system, without having to supply the path.
This includes the servers, the mysql client, and all MySQL command-line utilities such as mysqladmin
and mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple MySQL
servers on the same machine.

Warning

You must exercise great care when editing your system PATH by hand; accidental
deletion or modification of any portion of the existing PATH value can leave you with
a malfunctioning or even unusable system.

2.10.4.7 Starting MySQL as a Windows Service

On Windows, the recommended way to run MySQL is to install it as a Windows service, whereby MySQL
starts and stops automatically when Windows starts and stops. A MySQL server installed as a service can
also be controlled from the command line using NET commands, or with the graphical Services utility.
Generally, to install MySQL as a Windows service you should be logged in using an account that has
administrator rights.

The Services utility (the Windows Service Control Manager) can be found in the Windows Control
Panel (under Administrative Tools on Windows 2000, XP, Vista, and Server 2003). To avoid conflicts, it
is advisable to close the Services utility while performing server installation or removal operations from
the command line.

Installing the service

Before installing MySQL as a Windows service, you should first stop the current server if it is running by
using the following command:

shell> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqladmin"

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 87

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke mysqladmin
with the -p option and supply the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell it to
shut down. The command connects as the MySQL root user, which is the default administrative account
in the MySQL grant system. Note that users in the MySQL grant system are wholly independent from any
login users under Windows.

Install the server as a service using this command:

shell> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld" --install

The service-installation command does not start the server. Instructions for that are given later in this
section.

To make it easier to invoke MySQL programs, you can add the path name of the MySQL bin directory to
your Windows system PATH environment variable:

• On the Windows desktop, right-click the My Computer icon, and select Properties.

• Next select the Advanced tab from the System Properties menu that appears, and click the
Environment Variables button.

• Under System Variables, select Path, and then click the Edit button. The Edit System Variable
dialogue should appear.

• Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the End
key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter the
complete path name of your MySQL bin directory (for example, C:\Program Files\MySQL\MySQL
Server 5.0\bin), Note that there should be a semicolon separating this path from any values present
in this field. Dismiss this dialogue, and each dialogue in turn, by clicking OK until all of the dialogues
that were opened have been dismissed. You should now be able to invoke any MySQL executable
program by typing its name at the DOS prompt from any directory on the system, without having to
supply the path. This includes the servers, the mysql client, and all MySQL command-line utilities such
as mysqladmin and mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple MySQL
servers on the same machine.

Warning

You must exercise great care when editing your system PATH by hand; accidental
deletion or modification of any portion of the existing PATH value can leave you with
a malfunctioning or even unusable system.

The following additional arguments can be used when installing the service:

• You can specify a service name immediately following the --install option. The default service name
is MySQL.

• If a service name is given, it can be followed by a single option. By convention, this should be --
defaults-file=file_name to specify the name of an option file from which the server should read
options when it starts.

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 88

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The use of a single option other than --defaults-file is possible but discouraged. --defaults-
file is more flexible because it enables you to specify multiple startup options for the server by placing
them in the named option file. Also, in MySQL 5.0, use of an option different from --defaults-file is
not supported until 5.0.3.

• As of MySQL 5.0.1, you can also specify a --local-service option following the service name. This
causes the server to run using the LocalService Windows account that has limited system privileges.
This account is available only for Windows XP or newer. If both --defaults-file and --local-
service are given following the service name, they can be in any order.

For a MySQL server that is installed as a Windows service, the following rules determine the service name
and option files that the server uses:

• If the service-installation command specifies no service name or the default service name (MySQL)
following the --install option, the server uses the a service name of MySQL and reads options from
the [mysqld] group in the standard option files.

• If the service-installation command specifies a service name other than MySQL following the --install
option, the server uses that service name. It reads options from the [mysqld] group and the group that
has the same name as the service in the standard option files. This enables you to use the [mysqld]
group for options that should be used by all MySQL services, and an option group with the service name
for use by the server installed with that service name.

• If the service-installation command specifies a --defaults-file option after the service name, the
server reads options the same way as described in the previous item, except that it reads options only
from the named file and ignores the standard option files.

As a more complex example, consider the following command:

shell> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld"
 --install MySQL --defaults-file=C:\my-opts.cnf

Here, the default service name (MySQL) is given after the --install option. If no --defaults-file
option had been given, this command would have the effect of causing the server to read the [mysqld]
group from the standard option files. However, because the --defaults-file option is present, the
server reads options from the [mysqld] option group, and only from the named file.

Note

On Windows, if the server is started with the --defaults-file and --install
options, --install must be first. Otherwise, mysqld.exe will attempt to start the
MySQL server.

You can also specify options as Start parameters in the Windows Services utility before you start the
MySQL service.

Starting the service

Once a MySQL server has been installed as a service, Windows starts the service automatically whenever
Windows starts. The service also can be started immediately from the Services utility, or by using a NET
START MySQL command. The NET command is not case sensitive.

When run as a service, mysqld has no access to a console window, so no messages can be seen there. If
mysqld does not start, check the error log to see whether the server wrote any messages there to indicate

Installing MySQL on Microsoft Windows Using a noinstall Zip Archive

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 89

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

the cause of the problem. The error log is located in the MySQL data directory (for example, C:\Program
Files\MySQL\MySQL Server 5.0\data). It is the file with a suffix of .err.

When a MySQL server has been installed as a service, and the service is running, Windows stops the
service automatically when Windows shuts down. The server also can be stopped manually by using the
Services utility, the NET STOP MySQL command, or the mysqladmin shutdown command.

You also have the choice of installing the server as a manual service if you do not wish for the service to
be started automatically during the boot process. To do this, use the --install-manual option rather
than the --install option:

shell> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld" --install-manual

Removing the service

To remove a server that is installed as a service, first stop it if it is running by executing NET STOP MySQL.
Then use the --remove option to remove it:

shell> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld" --remove

If mysqld is not running as a service, you can start it from the command line. For instructions, see
Section 2.10.4.5, “Starting MySQL from the Windows Command Line”.

Please see Section 2.10.5, “Troubleshooting a MySQL Installation Under Windows”, if you encounter
difficulties during installation.

For more information about stopping or removing a MySQL Windows service, see Section 5.5.2.2, “Starting
Multiple MySQL Instances as Windows Services”.

2.10.4.8 Testing The MySQL Installation

You can test whether the MySQL server is working by executing any of the following commands:

shell> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqlshow"
shell> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqlshow" -u root mysql
shell> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqladmin" version status proc
shell> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysql" test

If mysqld is slow to respond to TCP/IP connections from client programs, there is probably a problem with
your DNS. In this case, start mysqld with the --skip-name-resolve option and use only localhost
and IP addresses in the Host column of the MySQL grant tables. (Be sure that an account exists that
specifies an IP address or you may not be able to connect.)

You can force a MySQL client to use a named-pipe connection rather than TCP/IP by specifying the --
pipe or --protocol=PIPE option, or by specifying . (period) as the host name. Use the --socket
option to specify the name of the pipe if you do not want to use the default pipe name.

Note that if you have set a password for the root account, deleted the anonymous account, or created a
new user account, then to connect to the MySQL server you must use the appropriate -u and -p options
with the commands shown previously. See Section 4.2.2, “Connecting to the MySQL Server”.

For more information about mysqlshow, see Section 4.5.6, “mysqlshow — Display Database, Table, and
Column Information”.

Troubleshooting a MySQL Installation Under Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 90

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2.10.5 Troubleshooting a MySQL Installation Under Windows

When installing and running MySQL for the first time, you may encounter certain errors that prevent the
MySQL server from starting. The purpose of this section is to help you diagnose and correct some of these
errors.

Your first resource when troubleshooting server issues is the error log. The MySQL server uses the error
log to record information relevant to the error that prevents the server from starting. The error log is located
in the data directory specified in your my.ini file. The default data directory location is C:\Program
Files\MySQL\MySQL Server 5.0\data. See Section 5.4.1, “The Error Log”.

Another source of information regarding possible errors is the console messages displayed when the
MySQL service is starting. Use the NET START MySQL command from the command line after installing
mysqld as a service to see any error messages regarding the starting of the MySQL server as a service.
See Section 2.10.4.7, “Starting MySQL as a Windows Service”.

The following examples show other common error messages you may encounter when installing MySQL
and starting the server for the first time:

• If the MySQL server cannot find the mysql privileges database or other critical files, you may see these
messages:

System error 1067 has occurred.
Fatal error: Can't open privilege tables: Table 'mysql.host' doesn't exist

These messages often occur when the MySQL base or data directories are installed in different locations
than the default locations (C:\Program Files\MySQL\MySQL Server 5.0 and C:\Program
Files\MySQL\MySQL Server 5.0\data, respectively).

This situation may occur when MySQL is upgraded and installed to a new location, but the configuration
file is not updated to reflect the new location. In addition, there may be old and new configuration files
that conflict. Be sure to delete or rename any old configuration files when upgrading MySQL.

If you have installed MySQL to a directory other than C:\Program Files\MySQL\MySQL Server
5.0, you need to ensure that the MySQL server is aware of this through the use of a configuration
(my.ini) file. The my.ini file needs to be located in your Windows directory, typically C:\WINDOWS.
You can determine its exact location from the value of the WINDIR environment variable by issuing the
following command from the command prompt:

shell> echo %WINDIR%

An option file can be created and modified with any text editor, such as Notepad. For example, if MySQL
is installed in E:\mysql and the data directory is D:\MySQLdata, you can create the option file and set
up a [mysqld] section to specify values for the basedir and datadir options:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=D:/MySQLdata

Note that Windows path names are specified in option files using (forward) slashes rather than
backslashes. If you do use backslashes, double them:

[mysqld]

Windows Postinstallation Procedures

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 91

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

set basedir to your installation path
basedir=C:\\Program Files\\MySQL\\MySQL Server 5.0
set datadir to the location of your data directory
datadir=D:\\MySQLdata

The rules for use of backslash in option file values are given in Section 4.2.6, “Using Option Files”.

If you change the datadir value in your MySQL configuration file, you must move the contents of the
existing MySQL data directory before restarting the MySQL server.

See Section 2.10.4.2, “Creating an Option File”.

• If you reinstall or upgrade MySQL without first stopping and removing the existing MySQL service and
install MySQL using the MySQL Configuration Wizard, you may see this error:

Error: Cannot create Windows service for MySql. Error: 0

This occurs when the Configuration Wizard tries to install the service and finds an existing service with
the same name.

One solution to this problem is to choose a service name other than mysql when using the configuration
wizard. This enables the new service to be installed correctly, but leaves the outdated service in place.
Although this is harmless, it is best to remove old services that are no longer in use.

To permanently remove the old mysql service, execute the following command as a user with
administrative privileges, on the command-line:

shell> sc delete mysql
[SC] DeleteService SUCCESS

If the sc utility is not available for your version of Windows, download the delsrv utility from http://
www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp and use the delsrv mysql
syntax.

2.10.6 Windows Postinstallation Procedures

On Windows, you need not create the data directory and the grant tables. MySQL Windows distributions
include the grant tables with a set of preinitialized accounts in the mysql database under the data
directory.

Regarding passwords, if you installed MySQL using the Windows Installation Wizard, you may have
already assigned passwords to the accounts. (See Section 2.10.2.1, “Using the MySQL Installation
Wizard”.) Otherwise, use the password-assignment procedure given in Section 2.18.4, “Securing the Initial
MySQL Accounts”.

Before assigning passwords, you might want to try running some client programs to make sure that you
can connect to the server and that it is operating properly. Make sure that the server is running (see
Section 2.10.4.4, “Starting the Server for the First Time”). You can also set up a MySQL service that runs
automatically when Windows starts (see Section 2.10.4.7, “Starting MySQL as a Windows Service”).

These instructions assume that your current location is the MySQL installation directory and that it has a
bin subdirectory containing the MySQL programs used here. If that is not true, adjust the command path
names accordingly.

If you installed MySQL using the Windows installation Wizard (see Section 2.10.2.1, “Using the MySQL
Installation Wizard”), the default installation directory is C:\Program Files\MySQL\MySQL Server
5.0:

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp
http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp

Windows Postinstallation Procedures

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 92

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

C:\> cd "C:\Program Files\MySQL\MySQL Server 5.0"

A common installation location for installation from a Zip package is C:\mysql:

C:\> cd C:\mysql

Alternatively, add the bin directory to your PATH environment variable setting. That enables your
command interpreter to find MySQL programs properly, so that you can run a program by typing only its
name, not its path name. See Section 2.10.4.6, “Customizing the PATH for MySQL Tools”.

With the server running, issue the following commands to verify that you can retrieve information from the
server. The output should be similar to that shown here.

Use mysqlshow to see what databases exist:

C:\> bin\mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+

The list of installed databases may vary, but will always include the minimum of mysql and
information_schema.

The preceding command (and commands for other MySQL programs such as mysql) may not work if the
correct MySQL account does not exist. For example, the program may fail with an error, or you may not be
able to view all databases. If you installed using the MSI packages and used the MySQL Server Instance
Config Wizard, then the root user will have been created automatically with the password you supplied.
In this case, you should use the -u root and -p options. (You will also need to use the -u root and -
p options if you have already secured the initial MySQL accounts.) With -p, you will be prompted for the
root password. For example:

C:\> bin\mysqlshow -u root -p
Enter password: (enter root password here)
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+

If you specify a database name, mysqlshow displays a list of the tables within the database:

C:\> bin\mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| func |
| help_category |
| help_keyword |
| help_relation |
| help_topic |

Upgrading MySQL on Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 93

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| host |
| proc |
| procs_priv |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

Use the mysql program to select information from a table in the mysql database:

C:\> bin\mysql -e "SELECT User, Host FROM mysql.user" mysql
+------+-----------+
| User | Host |
+------+-----------+
| root | localhost |
+------+-----------+

For more information about mysql and mysqlshow, see Section 4.5.1, “mysql — The MySQL Command-
Line Tool”, and Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”.

If you are running a version of Windows that supports services, you can set up the MySQL server to run
automatically when Windows starts. See Section 2.10.4.7, “Starting MySQL as a Windows Service”.

2.10.7 Upgrading MySQL on Windows

To upgrade MySQL on Windows, follow these steps:

1. Review Section 2.19.1, “Upgrading MySQL”, for additional information on upgrading MySQL that is not
specific to Windows.

2. You should always back up your current MySQL installation before performing an upgrade. See
Section 7.2, “Database Backup Methods”.

3. Download the latest Windows distribution of MySQL from http://dev.mysql.com/downloads/.

4. Before upgrading MySQL, you must stop the server. If the server is installed as a service, stop the
service with the following command from the command prompt:

shell> NET STOP MySQL

If you are not running the MySQL server as a service, use mysqladmin to stop it. For example, before
upgrading from MySQL 4.1 to 5.0, use mysqladmin from MySQL 4.1 as follows:

shell> "C:\Program Files\MySQL\MySQL Server 4.1\bin\mysqladmin" -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke
mysqladmin with the -p option and enter the password when prompted.

5. Before upgrading to MySQL 5.0 from a version previous to 4.1.5, or from a version of MySQL installed
from a Zip archive to a version of MySQL installed with the MySQL Installation Wizard, you must first
manually remove the previous installation and MySQL service (if the server is installed as a service).

To remove the MySQL service, use the following command:

http://dev.mysql.com/downloads/

Installing MySQL from Source on Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 94

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> C:\mysql\bin\mysqld --remove

If you do not remove the existing service, the MySQL Installation Wizard may fail to properly
install the new MySQL service.

6. If you are using the MySQL Installation Wizard, start the wizard as described in Section 2.10.2.1,
“Using the MySQL Installation Wizard”.

7. If you are installing MySQL from a Zip archive, extract the archive. You may either overwrite your
existing MySQL installation (usually located at C:\mysql), or install it into a different directory, such as
C:\mysql5. Overwriting the existing installation is recommended.

8. If you were running MySQL as a Windows service and you had to remove the service earlier in this
procedure, reinstall the service. (See Section 2.10.4.7, “Starting MySQL as a Windows Service”.)

9. Restart the server. For example, use NET START MySQL if you run MySQL as a service, or invoke
mysqld directly otherwise.

10. As Administrator, run mysql_upgrade to check your tables, attempt to repair them if necessary, and
update your grant tables if they have changed so that you can take advantage of any new capabilities.
See Section 4.4.9, “mysql_upgrade — Check Tables for MySQL Upgrade”.

11. If you encounter errors, see Section 2.10.5, “Troubleshooting a MySQL Installation Under Windows”.

2.10.8 Installing MySQL from Source on Windows

These instructions describe how to build binaries from source for MySQL 5.0 on Windows. Instructions are
provided for building binaries from a standard source distribution or from the Bazaar tree that contains the
latest development source.

Note

The instructions here are strictly for users who want to test MySQL on Microsoft
Windows from the latest source distribution or from the Bazaar tree. For production
use, we do not advise using a MySQL server built by yourself from source.
Normally, it is best to use precompiled binary distributions of MySQL that are built
specifically for optimal performance on Windows by Oracle Corporation. Instructions
for installing binary distributions are available in Section 2.10, “Installing MySQL on
Microsoft Windows”.

To build MySQL on Windows from source, you must satisfy the following system, compiler, and resource
requirements:

• Windows 2000, Windows XP, or newer version.

Windows Vista is supported when using Visual Studio 2005 provided you have installed the following
updates:

• Microsoft Visual Studio 2005 Professional Edition - ENU Service Pack 1 (KB926601)

• Security Update for Microsoft Visual Studio 2005 Professional Edition - ENU (KB937061)

• Update for Microsoft Visual Studio 2005 Professional Edition - ENU (KB932232)

• To build from the standard source distribution, you will need CMake, which can be downloaded from
http://www.cmake.org. After installing, modify your PATH environment variable to include the directory
where cmake is located.

http://support.microsoft.com/?kbid=926601
http://support.microsoft.com/?kbid=937061
http://support.microsoft.com/?kbid=932232
http://www.cmake.org

Installing MySQL from Source on Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 95

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Microsoft Visual C++ 2005 Express Edition, Visual Studio .Net 2003 (7.1), or Visual Studio 2005 (8.0)
compiler system.

• If you are using Visual C++ 2005 Express Edition, you must also install an appropriate Platform
SDK. More information and links to downloads for various Windows platforms is available from http://
www.microsoft.com/downloads/details.aspx?familyid=0baf2b35-c656-4969-ace8-e4c0c0716adb.

• If you are compiling from a Bazaar tree or making changes to the parser, you need bison for Windows,
which can be downloaded from http://gnuwin32.sourceforge.net/packages/bison.htm. Download the
package labeled “Complete package, excluding sources”. After installing the package, modify your PATH
environment variable to include the directory where bison is located.

• Cygwin might be necessary if you want to run the test script or package the compiled binaries and
support files into a Zip archive. (Cygwin is needed only to test or package the distribution, not to build it.)
Cygwin is available from http://cygwin.com.

• 3GB to 5GB of disk space.

There are three solutions available for building from the source code on Windows:

• Build from the standard MySQL source distribution. For this you will need CMake and Visual C++
Express Edition or Visual Studio. Using this method you can select the storage engines that are included
in your build. To use this method, see Section 2.10.8.1, “Building MySQL from the Standard Source
Distribution”.

• Build from the MySQL Windows source distribution. The Windows source distribution includes ready-
made Visual Studio solution files that enable support for all storage engines (except NDB). To build
using using method you only need Visual C++ Express Edition or Visual Studio. To use this method, see
Section 2.10.8.2, “Building MySQL from a Windows Source Distribution”.

• Build directly from the Bazaar source repository. For this you will need CMake, Visual C++ Express
Edition or Visual Studio, and bison. For this method you need to create the distribution on a Unix
system and then copy the generated files to your Windows build environment. To use this method, see
Section 2.10.8.5, “Creating a Windows Source Package from the Bazaar Repository”.

If you find something not working as expected, or you have suggestions about ways to improve the current
build process on Windows, please send a message to the win32 mailing list. See Section 1.6.1, “MySQL
Mailing Lists”.

2.10.8.1 Building MySQL from the Standard Source Distribution

You can build MySQL on Windows by using a combination of cmake and Microsoft Visual Studio .NET
2003 (7.1), Microsoft Visual Studio 2005 (8.0) or Microsoft Visual C++ 2005 Express Edition. You must
have the appropriate Microsoft Platform SDK installed.

Note

To compile from the source code using CMake you must use the standard source
distribution (for example, mysql-5.0.96.tar.gz). You build from the same
distribution as used to build MySQL on Unix, Linux and other platforms. Do not
use the Windows Source distributions as they do not contain the necessary
configuration script and other files.

Follow this procedure to build MySQL:

1. If you are installing from a packaged source distribution, create a work directory (for example, C:
\workdir), and unpack the source distribution there using WinZip or another Windows tool that can
read .zip files. This directory is the work directory in the following instructions.

http://www.microsoft.com/downloads/details.aspx?familyid=0baf2b35-c656-4969-ace8-e4c0c0716adb
http://www.microsoft.com/downloads/details.aspx?familyid=0baf2b35-c656-4969-ace8-e4c0c0716adb
http://gnuwin32.sourceforge.net/packages/bison.htm
http://cygwin.com

Installing MySQL from Source on Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 96

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2. If you are installing from a Bazaar tree, the root directory of that tree is the work directory in the
following instructions.

3. Using a command shell, navigate to the work directory and run the following command:

C:\workdir>win\configure.js options

If you have associated the .js file extension with an application such as a text editor, then you may
need to use the following command to force configure.js to be executed as a script:

C:\workdir>cscript win\configure.js options

These options are available for configure.js:

• WITH_INNOBASE_STORAGE_ENGINE: Enable the InnoDB storage engine.

• WITH_PARTITION_STORAGE_ENGINE: Enable user-defined partitioning.

• WITH_ARCHIVE_STORAGE_ENGINE: Enable the ARCHIVE storage engine.

• WITH_BLACKHOLE_STORAGE_ENGINE: Enable the BLACKHOLE storage engine.

• WITH_EXAMPLE_STORAGE_ENGINE: Enable the EXAMPLE storage engine.

• WITH_FEDERATED_STORAGE_ENGINE: Enable the FEDERATED storage engine.

• MYSQL_SERVER_SUFFIX=suffix: Server suffix, default none.

• COMPILATION_COMMENT=comment: Server comment, default "Source distribution".

• MYSQL_TCP_PORT=port: Server port, default 3306.

• DISABLE_GRANT_OPTIONS: Disables the the --bootstrap, --skip-grant-tables, and --
init-file options for mysqld. This option is available as of MySQL 5.0.36.

For example (type the command on one line):

C:\workdir>win\configure.js WITH_INNOBASE_STORAGE_ENGINE »
 WITH_PARTITION_STORAGE_ENGINE MYSQL_SERVER_SUFFIX=-pro

4. From the work directory, execute the win\build-vs8.bat or win\build-vs71.bat file, depending
on the version of Visual Studio you have installed. The script invokes CMake, which generates the
mysql.sln solution file you will need to build MySQL using Visual Studio..

You can also use win\build-vs8_x64.bat to build the 64-bit version of MySQL. However, you
cannot build the 64-bit version with Visual Studio Express Edition. You must use Visual Studio 2005
(8.0) or higher.

5. From the work directory, open the generated mysql.sln file with Visual Studio and select the proper
configuration using the Configuration menu. The menu provides Debug, Release, RelwithDebInfo,
MinRelInfo options. Then select Solution > Build to build the solution.

The build process will take some time. Please be patient.

Remember the configuration that you use in this step. It is important later when you run the test script
because that script needs to know which configuration you used.

Installing MySQL from Source on Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 97

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

6. You should test you build before installation. See Section 2.10.8.4, “Testing a Windows Source Build”.

7. To install, use the instructions in Section 2.10.8.3, “Installing MySQL from a Source Build on Windows”.

2.10.8.2 Building MySQL from a Windows Source Distribution

The Windows source distribution includes the necessary solution file and the vcproj files required to build
each component. Using this method you are not able to select the storage engines that are included in
your build.

Note

VC++ workspace files for MySQL 4.1 and above are compatible with Microsoft
Visual Studio 7.1 and tested by us before each release.

Follow this procedure to build MySQL:

1. Create a work directory (for example, C:\workdir).

2. Unpack the source distribution in the aforementioned directory using WinZip or another Windows tool
that can read .zip files.

3. Start Visual Studio .Net 2003 (7.1).

4. From the File menu, select Open Solution....

5. Open the mysql.sln solution you find in the work directory.

6. From the Build menu, select Configuration Manager....

7. In the Active Solution Configuration pop-up menu, select the configuration to use. You likely want to
use one of nt (normal server), Max nt (more engines and features), or Debug configuration.

8. From the Build menu, select Build Solution.

9. Debug versions of the programs and libraries are placed in the client_debug and lib_debug
directories. Release versions of the programs and libraries are placed in the client_release and
lib_release directories.

10. You should test you build before installation. See Section 2.10.8.4, “Testing a Windows Source Build”.

11. To install, use the instructions in Section 2.10.8.3, “Installing MySQL from a Source Build on Windows”.

2.10.8.3 Installing MySQL from a Source Build on Windows

When you are satisfied that the program you have built is working correctly, stop the server. Now you can
install the distribution. There are two ways to do this, either by using the supplied installation script or by
copying the files individually by hand.

To use the script method you must have Cygwin installed as the script is a Shell script. To execute the
installation process, run the make_win_bin_dist script in the scripts directory of the MySQL source
distribution (see Section 4.4.2, “make_win_bin_dist — Package MySQL Distribution as Zip Archive”).
This is a shell script, so you must have Cygwin installed if you want to use it. It creates a Zip archive of the
built executables and support files that you can unpack to your desired installation location.

It is also possible to install MySQL by copying directories and files manually:

1. Create the directories where you want to install MySQL. For example, to install into C:\mysql, use
these commands:

Installing MySQL from Source on Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 98

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mkdir C:\mysql
shell> mkdir C:\mysql\bin
shell> mkdir C:\mysql\data
shell> mkdir C:\mysql\share
shell> mkdir C:\mysql\scripts

If you want to compile other clients and link them to MySQL, you should also create several additional
directories:

shell> mkdir C:\mysql\include
shell> mkdir C:\mysql\lib
shell> mkdir C:\mysql\lib\debug
shell> mkdir C:\mysql\lib\opt

If you want to benchmark MySQL, create this directory:

shell> mkdir C:\mysql\sql-bench

Benchmarking requires Perl support. See Section 2.22, “Perl Installation Notes”.

2. From the work directory, copy into the C:\mysql directory the following directories:

shell> cd \workdir
C:\workdir> copy client_release*.exe C:\mysql\bin
C:\workdir> copy client_debug\mysqld.exe C:\mysql\bin\mysqld-debug.exe
C:\workdir> xcopy scripts*.* C:\mysql\scripts /E
C:\workdir> xcopy share*.* C:\mysql\share /E

If you want to compile other clients and link them to MySQL, you should also copy several libraries and
header files:

C:\workdir> copy lib_debug\mysqlclient.lib C:\mysql\lib\debug
C:\workdir> copy lib_debug\libmysql.* C:\mysql\lib\debug
C:\workdir> copy lib_debug\zlib.* C:\mysql\lib\debug
C:\workdir> copy lib_release\mysqlclient.lib C:\mysql\lib\opt
C:\workdir> copy lib_release\libmysql.* C:\mysql\lib\opt
C:\workdir> copy lib_release\zlib.* C:\mysql\lib\opt
C:\workdir> copy include*.h C:\mysql\include
C:\workdir> copy libmysql\libmysql.def C:\mysql\include

If you want to benchmark MySQL, you should also do this:

C:\workdir> xcopy sql-bench*.* C:\mysql\bench /E

After installation, set up and start the server in the same way as for binary Windows distributions. See
Section 2.10, “Installing MySQL on Microsoft Windows”.

2.10.8.4 Testing a Windows Source Build

You should test the server that you have built from source before using the distribution.

To test the server you need to run the built mysqld. By default, using the source build examples, the
MySQL base directory and data directory are C:\mysql and C:\mysql\data. If you want to test your
server using the source tree root directory and its data directory as the base directory and data directory,
you need to tell the server their path names. You can either do this on the command line with the --
basedir and --datadir options, or by placing appropriate options in an option file. (See Section 4.2.6,

Installing MySQL on OS X

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 99

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

“Using Option Files”.) If you have an existing data directory elsewhere that you want to use, you can
specify its path name instead.

When the server is running in standalone fashion or as a service based on your configuration, try to
connect to it from the mysql interactive command-line utility.

You can also run the standard test script, mysql-test-run.pl. This script is written in Perl, so you'll
need either Cygwin or ActiveState Perl to run it. You may also need to install the modules required by the
script. To run the test script, change location into the mysql-test directory under the work directory, set
the MTR_VS_CONFIG environment variable to the configuration you selected earlier (or use the --vs-
config option), and invoke mysql-test-run.pl. For example (using Cygwin and the bash shell):

shell> cd mysql-test
shell> export MTR_VS_CONFIG=debug
shell> ./mysql-test-run.pl --force --timer
shell> ./mysql-test-run.pl --force --timer --ps-protocol

2.10.8.5 Creating a Windows Source Package from the Bazaar Repository

To create a Windows source package from the current Bazaar source tree, use the instructions here. This
procedure must be performed on a system running a Unix or Unix-like operating system because some of
the configuration and build steps require tools that work only on Unix. For example, the following procedure
is known to work well on Linux.

1. Copy the Bazaar source tree for MySQL 5.0. For instructions on how to do this, see Section 2.17.2,
“Installing MySQL Using a Development Source Tree”.

2. Configure and build the distribution so that you have a server binary to work with. One way to do this is
to run the following command in the top-level directory of your source tree:

shell> ./BUILD/compile-pentium-max

3. After making sure that the build process completed successfully, run the following utility script from top-
level directory of your source tree:

shell> ./scripts/make_win_src_distribution

This script creates a Windows source package to be used on your Windows system.
You can supply different options to the script based on your needs. See Section 4.4.3,
“make_win_src_distribution — Create Source Distribution for Windows”, for a list of permissible
options.

By default, make_win_src_distribution creates a Zip-format archive with the name
mysql-VERSION-win-src.zip, where VERSION represents the version of your MySQL source tree.

4. Copy or upload the Windows source package that you have just created to your Windows machine.
To compile it, use the instructions in Section 2.10.8.2, “Building MySQL from a Windows Source
Distribution”.

2.11 Installing MySQL on OS X

You can install MySQL on OS X 10.3.x (“Panther”) or newer using a OS X binary package in DMG format
instead of the binary tarball distribution. Please note that older versions of OS X (for example, 10.1.x or
10.2.x) are not supported by this package.

Installing MySQL on OS X

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 100

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The package is located inside a disk image (.dmg) file that you first need to mount by double-clicking its
icon in the Finder. It should then mount the image and display its contents.

When installing from the package version, you should also install the MySQL Preference Pane, which will
enable you to control the startup and execution of your MySQL server from System Preferences.

To obtain MySQL, see Section 2.5, “How to Get MySQL”.

Note

Before proceeding with the installation, be sure to shut down all running MySQL
server instances by using either the MySQL Manager Application (on OS X Server)
or mysqladmin shutdown on the command line.

To actually install the MySQL DMG file, double-click the package icon. This launches the OS X Package
Installer, which guides you through the installation of MySQL.

Due to a bug in the OS X package installer, you may see this error message in the destination disk
selection dialog:

You cannot install this software on this disk. (null)

If this error occurs, simply click the Go Back button once to return to the previous screen. Then click
Continue to advance to the destination disk selection again, and you should be able to choose the
destination disk correctly. We have reported this bug to Apple and it is investigating this problem.

The OS X MySQL DMG package installs itself into /usr/local/mysql-VERSION and also installs a
symbolic link, /usr/local/mysql, that points to the new location. If a directory named /usr/local/
mysql exists, it is renamed to /usr/local/mysql.bak first. Additionally, the installer creates the grant
tables in the mysql database by executing mysql_install_db.

The installation layout is similar to that of a tar file binary distribution; all MySQL binaries are located in
the directory /usr/local/mysql/bin. The MySQL socket file is created as /tmp/mysql.sock by
default. See Section 2.7, “Installation Layouts”.

MySQL installation requires a OS X user account named mysql. A user account with this name should
exist by default on OS X 10.2 and up.

If you are running OS X Server, a version of MySQL should already be installed. The following table shows
the versions of MySQL that ship with OS X Server versions.

OS X Server Version MySQL Version

10.2-10.2.2 3.23.51

10.2.3-10.2.6 3.23.53

10.3 4.0.14

10.3.2 4.0.16

10.4.0 4.1.10a

This manual section covers the installation of the official MySQL OS X DMG only. Make sure to read
Apple's help information about installing MySQL: Run the “Help View” application, select “OS X Server”
help, do a search for “MySQL,” and read the item entitled “Installing MySQL.”

For preinstalled versions of MySQL on OS X Server, note especially that you should start mysqld with
safe_mysqld instead of mysqld_safe if MySQL is older than version 4.0.

Installing MySQL on OS X

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 101

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you previously used Marc Liyanage's MySQL packages for OS X from http://www.entropy.ch, you can
simply follow the update instructions for packages using the binary installation layout as given on his
pages.

If you are upgrading from Marc's 3.23.x versions or from the OS X Server version of MySQL to the official
MySQL DMG, you also need to convert the existing MySQL privilege tables to the current format, because
some new security privileges have been added. See Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”.

If you want MySQL to start automatically during system startup, you also need to install the MySQL Startup
Item. It is part of the OS X installation disk images as a separate installation package. Simply double-click
the MySQLStartupItem.pkg icon and follow the instructions to install it. The Startup Item need be installed
only once. There is no need to install it each time you upgrade the MySQL package later.

The Startup Item for MySQL is installed into /Library/StartupItems/MySQLCOM. (Before MySQL
4.1.2, the location was /Library/StartupItems/MySQL, but that collided with the MySQL Startup
Item installed by OS X Server.) Startup Item installation adds a variable MYSQLCOM=-YES- to the system
configuration file /etc/hostconfig. If you want to disable the automatic startup of MySQL, simply
change this variable to MYSQLCOM=-NO-.

On OS X Server, the default MySQL installation uses the variable MYSQL in the /etc/hostconfig file.
The MySQL Startup Item installer disables this variable by setting it to MYSQL=-NO-. This avoids boot time
conflicts with the MYSQLCOM variable used by the MySQL Startup Item. However, it does not shut down a
running MySQL server. You should do that yourself.

After the installation, you can start up MySQL by running the following commands in a terminal window.
You must have administrator privileges to perform this task.

If you have installed the Startup Item, use this command:

shell> sudo /Library/StartupItems/MySQLCOM/MySQLCOM start
(Enter your password, if necessary)
(Press Control-D or enter "exit" to exit the shell)

If you do not use the Startup Item, enter the following command sequence:

shell> cd /usr/local/mysql
shell> sudo ./bin/mysqld_safe
(Enter your password, if necessary)
(Press Control-Z)
shell> bg
(Press Control-D or enter "exit" to exit the shell)

You should be able to connect to the MySQL server, for example, by running /usr/local/mysql/bin/
mysql.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords.
After starting the server, you should set up passwords for them using the
instructions in Section 2.18.4, “Securing the Initial MySQL Accounts”.

You might want to add aliases to your shell's resource file to make it easier to access commonly used
programs such as mysql and mysqladmin from the command line. The syntax for bash is:

alias mysql=/usr/local/mysql/bin/mysql

http://www.entropy.ch

Installing MySQL on Linux Using RPM Packages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 102

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

alias mysqladmin=/usr/local/mysql/bin/mysqladmin

For tcsh, use:

alias mysql /usr/local/mysql/bin/mysql
alias mysqladmin /usr/local/mysql/bin/mysqladmin

Even better, add /usr/local/mysql/bin to your PATH environment variable. You can do this by
modifying the appropriate startup file for your shell. For more information, see Section 4.2.1, “Invoking
MySQL Programs”.

If you are upgrading an existing installation, note that installing a new MySQL DMG does not remove
the directory of an older installation. Unfortunately, the OS X Installer does not yet offer the functionality
required to properly upgrade previously installed packages.

To use your existing databases with the new installation, you'll need to copy the contents of the old data
directory to the new data directory. Make sure that neither the old server nor the new one is running when
you do this. After you have copied over the MySQL database files from the previous installation and have
successfully started the new server, you should consider removing the old installation files to save disk
space. Additionally, you should also remove older versions of the Package Receipt directories located in /
Library/Receipts/mysql-VERSION.pkg.

2.12 Installing MySQL on Linux Using RPM Packages
The recommended way to install MySQL on RPM-based Linux distributions is by using the RPM packages.
The RPMs that we provide to the community should work on all versions of Linux that support RPM
packages and use glibc 2.3. We also provide RPMs with binaries that are statically linked to a patched
version of glibc 2.2, but only for the x86 (32-bit) architecture. To obtain RPM packages, see Section 2.5,
“How to Get MySQL”.

For non-RPM Linux distributions, you can install MySQL using a .tar.gz package. See Section 2.16,
“Installing MySQL on Unix/Linux Using Generic Binaries”.

We do provide some platform-specific RPMs; the difference between a platform-specific RPM and a
generic RPM is that a platform-specific RPM is built on the targeted platform and is linked dynamically
whereas a generic RPM is linked statically with LinuxThreads.

Note

RPM distributions of MySQL are also provided by other vendors. Be aware that they
may differ from those built by us in features, capabilities, and conventions (including
communication setup), and that the instructions in this manual do not necessarily
apply to installing them. The vendor's instructions should be consulted instead.
Because of these differences, RPM packages built by us check whether such RPMs
built by other vendors are installed. If so, the RPM does not install and produces a
message explaining this.

If you have problems with an RPM file (for example, if you receive the error Sorry, the host 'xxxx'
could not be looked up), see Section 2.20.1.2, “Linux Binary Distribution Notes”.

In most cases, you need to install only the MySQL-server and MySQL-client packages to get a
functional MySQL installation. The other packages are not required for a standard installation.

For upgrades, if your installation was originally produced by installing multiple RPM packages, it is best
to upgrade all the packages, not just some. For example, if you previously installed the server and client
RPMs, do not upgrade just the server RPM.

Installing MySQL on Linux Using RPM Packages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 103

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you get a dependency failure when trying to install MySQL packages (for example, error: removing
these packages would break dependencies: libmysqlclient.so.10 is needed
by ...), you should also install the MySQL-shared-compat package, which includes the shared
libraries for older releases for backward compatibility.

Some Linux distributions still ship with MySQL 3.23 and they usually link applications dynamically to
save disk space. If these shared libraries are in a separate package (for example, MySQL-shared), it is
sufficient to simply leave this package installed and just upgrade the MySQL server and client packages
(which are statically linked and do not depend on the shared libraries). For distributions that include the
shared libraries in the same package as the MySQL server (for example, Red Hat Linux), you could either
install our 3.23 MySQL-shared RPM, or use the MySQL-shared-compat package instead. (Do not install
both.)

The RPM packages shown in the following list are available. The names shown here use a suffix of
.glibc23.i386.rpm, but particular packages can have different suffixes, as described later. Packages
that have community in the names are Community Server builds, available from MySQL 5.0.27 on.

• MySQL-server-VERSION.glibc23.i386.rpm, MySQL-server-
community-VERSION.glibc23.i386.rpm

The MySQL server. You need this unless you only want to connect to a MySQL server running on
another machine.

• MySQL-client-VERSION.glibc23.i386.rpm, MySQL-client-
community-VERSION.glibc23.i386.rpm

The standard MySQL client programs. You probably always want to install this package.

• MySQL-bench-VERSION.glibc23.i386.rpm

Tests and benchmarks. Requires Perl and the DBI and DBD::mysql modules.

• MySQL-devel-VERSION.glibc23.i386.rpm, MySQL-devel-
community-VERSION.glibc23.i386.rpm

The libraries and include files that are needed if to compile other MySQL clients, such as the Perl
modules. Install this RPM if you intend to compile C API applications.

• MySQL-debuginfo-VERSION.glibc23.i386.rpm, MySQL-community-
debuginfo-VERSION.glibc23.i386.rpm

Debugging information. debuginfo RPMs are never needed to use MySQL software; this is true both
for the server and for client programs. However, they contain additional information that might be needed
by a debugger to analyze a crash.

• MySQL-shared-VERSION.glibc23.i386.rpm, MySQL-shared-
community-VERSION.glibc23.i386.rpm

The shared libraries (libmysqlclient.so*) that certain languages and applications need to
dynamically load and use MySQL. It contains single-threaded and thread-safe libraries. Install this RPM
if you intend to compile or run C API applications that depend on the shared client library. If you install
this package, do not install the MySQL-shared-compat package.

• MySQL-shared-compat-VERSION.glibc23.i386.rpm

The shared libraries for older releases, up to the current release. It contains single-threaded and thread-
safe libraries. Install this package instead of MySQL-shared if you have applications installed that are

Installing MySQL on Linux Using RPM Packages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 104

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

dynamically linked against older versions of MySQL but you want to upgrade to the current version
without breaking the library dependencies.

• MySQL-clustermanagement-communityVERSION.glibc23.i386.rpm,
MySQL-clusterstorage-communityVERSION.glibc23.i386.rpm, MySQL-
clustertools-communityVERSION.glibc23.i386.rpm, MySQL-clusterextra-
communityVERSION.glibc23.i386.rpm

Packages that contain additional files for MySQL Cluster installations. These are platform-specific RPMs,
in contrast to the platform-independent ndb-xxx RPMs.

Note

The MySQL-clustertools RPM requires a working installation of perl
and the DBI and HTML::Template packages. See Section 2.22, “Perl
Installation Notes”, and Section 17.4.18, “ndb_size.pl — NDBCLUSTER Size
Requirement Estimator”, for more information.

• MySQL-ndb-management-VERSION.glibc23.i386.rpm, MySQL-ndb-
storage-VERSION.glibc23.i386.rpm, MySQL-ndb-tools-VERSION.glibc23.i386.rpm,
MySQL-ndb-extra-VERSION.glibc23.i386.rpm

Packages that contain additional files for MySQL Cluster installations. These are platform-independent
RPMs, in contrast to the platform-specific clusterxxx-community RPMs.

• MySQL-test-community-VERSION.glibc23.i386.rpm

The MySQL test suite.

• MySQL-VERSION.src.rpm

The source code for all of the previous packages. It can also be used to rebuild the RPMs on other
architectures (for example, SPARC).

The suffix of RPM package names (following the VERSION value) has the following syntax:

[.PLATFORM].CPU.rpm

The PLATFORM and CPU values indicate the type of system for which the package is built. PLATFORM, if
present, indicates the platform, and CPU indicates the processor type or family.

If the PLATFORM value is missing (for example, MySQL-server-VERSION.i386.rpm), the package is
statically linked against a version of glibc 2.2 that has been patched to handle larger numbers of threads
with larger stack sizes than the stock library.

If PLATFORM is present, the package is dynamically linked against glibc 2.3 and the PLATFORM value
indicates whether the package is platform independent or intended for a specific platform, as shown in the
following table.

PLATFORM Value Intended Use

glibc23 Platform independent, should run on any Linux distribution that supports
glibc 2.3

rhel4, rhel5 Red Hat Enterprise Linux 4 or 5

sles10 SuSE Linux Enterprise Server 10

The CPU value indicates the processor type or family for which the package is built.

Installing MySQL on Linux Using RPM Packages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 105

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CPU Value Intended Processor Type or Family

i386, i586, i686 Pentium processor or better, 32 bit

x86_64 64-bit x86 processor

ia64 Itanium (IA-64) processor

To see all files in an RPM package (for example, a MySQL-server RPM), run a command like this:

shell> rpm -qpl MySQL-server-VERSION.glibc23.i386.rpm

To perform a standard minimal installation, install the server and client RPMs:

shell> rpm -i MySQL-server-VERSION.glibc23.i386.rpm
shell> rpm -i MySQL-client-VERSION.glibc23.i386.rpm

To install only the client programs, install just the client RPM:

shell> rpm -i MySQL-client-VERSION.glibc23.i386.rpm

RPM provides a feature to verify the integrity and authenticity of packages before installing them. To learn
more about this feature, see Section 2.6, “Verifying Package Integrity Using MD5 Checksums or GnuPG”.

The server RPM places data under the /var/lib/mysql directory. The RPM also creates a login
account for a user named mysql (if one does not exist) to use for running the MySQL server, and creates
the appropriate entries in /etc/init.d/ to start the server automatically at boot time. (This means that
if you have performed a previous installation and have made changes to its startup script, you may want
to make a copy of the script so that you do not lose it when you install a newer RPM.) See Section 2.18.5,
“Starting and Stopping MySQL Automatically”, for more information on how MySQL can be started
automatically at system startup.

If the RPM files that you install include MySQL-server, the mysqld server should be up and running after
installation. You should be able to start using MySQL.

If something goes wrong, you can find more information in the binary installation section. See Section 2.16,
“Installing MySQL on Unix/Linux Using Generic Binaries”.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords.
After starting the server, you should set up passwords for them using the
instructions in Section 2.18.4, “Securing the Initial MySQL Accounts”.

During RPM installation, a user named mysql and a group named mysql are created on the system. This
is done using the useradd, groupadd, and usermod commands. Those commands require appropriate
administrative privileges, which is ensured for locally managed users and groups (as listed in the /etc/
passwd and /etc/group files) by the RPM installation process being run by root.

If you log in as the mysql user, you may find that MySQL displays “Invalid (old?) table or database name”
errors that mention .mysqlgui, lost+found, .mysqlgui, .bash_history, .fonts.cache-1,
.lesshst, .mysql_history, .profile, .viminfo, and similar files created by MySQL or operating
system utilities. You can safely ignore these error messages or remove the files or directories that cause
them if you do not need them.

For nonlocal user management (LDAP, NIS, and so forth), the administrative tools may require additional
authentication (such as a password), and will fail if the installing user does not provide this authentication.

Installing MySQL on Solaris

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 106

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Even if they fail, the RPM installation will not abort but succeed, and this is intentional. If they failed, some
of the intended transfer of ownership may be missing, and it is recommended that the system administrator
then manually ensures some appropriate user andgroup exists and manually transfers ownership following
the actions in the RPM spec file.

2.13 Installing MySQL on Solaris

To obtain a binary MySQL distribution for Solaris in tarball or PKG format, http://dev.mysql.com/downloads/
mysql/5.0.html.

If you install MySQL using a binary tarball distribution on Solaris, you may run into trouble even before you
get the MySQL distribution unpacked, as the Solaris tar cannot handle long file names. This means that
you may see errors when you try to unpack MySQL.

If this occurs, you must use GNU tar (gtar) to unpack the distribution.

You can install MySQL on Solaris using a binary package in PKG format instead of the binary tarball
distribution. Before installing using the binary PKG format, you should create the mysql user and group,
for example:

groupadd mysql
useradd -g mysql -s /bin/false mysql

Some basic PKG-handling commands follow:

• To add a package:

pkgadd -d package_name.pkg

• To remove a package:

pkgrm package_name

• To get a full list of installed packages:

pkginfo

• To get detailed information for a package:

pkginfo -l package_name

• To list the files belonging to a package:

pkgchk -v package_name

• To get packaging information for an arbitrary file:

pkgchk -l -p file_name

For additional information about installing MySQL on Solaris, see Section 2.20.3, “Solaris Notes”.

2.14 Installing MySQL on i5/OS

http://dev.mysql.com/downloads/mysql/5.0.html
http://dev.mysql.com/downloads/mysql/5.0.html

Installing MySQL on i5/OS

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 107

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The i5/OS POWER MySQL package was created in cooperation with IBM. MySQL works within the
Portable Application Solution Environment (PASE) on the System i series of hardware and will also provide
database services for the Zend Core for i5/OS.

MySQL for i5/OS is provided both as a tar file and as a save file (.savf) package that can be
downloaded and installed directly without any additional installation steps required. To install MySQL using
the tar file, see Section 2.16, “Installing MySQL on Unix/Linux Using Generic Binaries”.

MySQL is only supported on i5/OS V5R4 or later releases. The i5/OS PASE must be installed for MySQL
to operate. You must be able to login as a user in *SECOFR class.

You should the installation notes and tips for i5/OS before starting installation. See i5/OS Installation
Notes.

Before Installation:

Note

The installation package will use an existing configuration if you have previously
installed MySQL (which is identified by looking for the file /etc/my.cnf). The
values for the data directory (DATADIR) and owner of the MySQL files (USRPRF)
specified during the installation will be ignored, and the values determined from the
/etc/my.cnf will be used instead.

If you want to change these parameters during a new install, you should temporarily
rename /etc/my.cnf, install MySQL using the new parameters you want to use,
and then merge your previous /etc/my.cnf configuration settings with the new /
etc/my.cnf file that is created during installation.

• You must have a user profile with PASE with suitable privileges. The user should be within the *SECOFR
class, such as the QSECOFR user ID. You can use the WRKUSRPRF command to check your user profile.

• For network connections to MySQL, you must have TCP/IP enabled. You should also check the
following:

• Ensure that a name has defined for the system. Run the Configure TCP/IP (CFGTCP) command and
select option 12 (Change TCP/IP domain information) to display this setting. Make sure that a value is
listed in the Host name field.

• Make sure that the system has a loopback entry which represents the localhost or 127.0.0.1.

• Ensure that the IP address of the IBM i machine is mapped correctly to the host name.

To install MySQL on i5/OS, follow these steps:

1. On the System i machine, create a save file that will be used to receive the downloaded installation
save file. The file should be located within the General Purpose Library (QGPL):

CRTSAVF FILE(QGPL/MYSQLINST) TESXT('MySQL Save file')

2. Download the MySQL installation save file in 32-bit (mysql-5.0.82-i5os-power-32bit.savf) or
64-bit (mysql-5.0.82-i5os-power-64bit.savf) from MySQL Downloads.

3. You need to FTP the downloaded .savf file directly into the QGPL/MYSQLINST file on the System i
server. You can do this through FTP using the following steps after logging in to the System i machine:

ftp> bin

http://dev.mysql.com/downloads/

Installing MySQL on i5/OS

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 108

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ftp> cd qgpl
ftp> put mysql-5.0.82-i5os-power.savf mysqlinst

4. Log into the System i server using a user in the *SECOFR class, such as the QSECOFR user ID.

5. You need to restore the installation library stored in the .savf save file:

RSTLIB MYSQLINST DEV(*SAVF) SAVF(QGPL/MYSQLINST) MBROPT(*ALL) ALWOBJDIF(*ALL)

Note

You can ignore the security changes-type message at the bottom of the
installation panel.

6. Once you have finished restoring the MYSQLINST library, check that all the necessary objects for
installation are on the system by using the Display Library (DSPLIB) command:

DSPLIB LIB(MYSQLINST)

7. You need to execute the installation command, MYSQLINST/INSMYSQL. You can specify three
parameter settings during installation:

• DIR('/QOpenSys/usr/local/mysql') sets the installation location for the MySQL files. The
directory will be created if it does not already exist.

• DATADIR('/QOpenSys/usr/local/mysql/data') sets the location of the directory that will be
used to store the database files and binary logs. The default setting is /QOpenSys/usr/local/
mysql/data. Note that if the installer detects an existing installation (due to the existence of /etc/
my.cnf), then the existing setting will be used instead of the default.

• USRPRF(MYSQL) sets the user profile that will own the files that are installed. The profile will be
created if it does not already exist.

Note

You should choose an appropriate user for using the MySQL server
installation. The user will be used whenever you need to do any
administration on the MySQL server.

Once you have set the appropriate parameters, you can begin the installation.

The installation copies all the necessary files into a directory matching the DIR configuration value; sets
the ownership on those files, sets up the MySQL environment and creates the MySQL configuration
file (in /etc/my.cnf) completing all the steps in a typical binary installation process automatically.
If this is a new installation of MySQL, or if the installer detects that this is a new version (because the
/etc/my.cnf file does not exist), then the initial core MySQL databases will also be created during
installation.

Once the installation has been completed, you will get a notice advising you to set the password for the
root user. For more information, Section 2.18, “Postinstallation Setup and Testing”.

8. Once the installation has completed, you can delete the installation file:

DLTLIB LIB(MYSQLINST)

Upgrading an existing MySQL instance

You need to execute the upgrade command, MYSQLINST/UPGMYSQL.

Installing MySQL on i5/OS

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 109

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

You cannot use MYSQLINST/UPGMYSQL to upgrade between release series of
MySQL (for example from 5.0 to 5.1). For information and advice on migrating
between release series you can use the advice provided in Section 2.19.1.1,
“Changes Affecting Upgrades to 5.0”.

You must specify 6 parameters to perform an upgrade:

• DIR('/QOpenSys/usr/local/'): Sets the installation location for the MySQL files. The directory
will be created if it does not already exist. This is the directory that the MySQL server will be installed
into, inside a directory with a name matching the version and release. For example, if installing MySQL
5.0.82 with the DIR set to /QOpenSys/usr/local/ would result in /QOpenSys/usr/local/
mysql-5.0.82-i5os-power64 and a symbolic link to this directory will be created in /QOpenSys/
usr/local/mysql.

• DATADIR('/QOpenSys/mysql/data'): Sets the location of the directory that will be upgraded.

• USRPRF('MYSQL'): Sets the user profile that will own the files that are installed. The profile will be
created if it does not already exist; if it is created as part of the upgrade process, it will be disabled
initially. You may wish to enable this user profile so that it can be used to start the MySQL server later. It
is best practice to use the one previously created during the first installation.

• MYSQLUSR('root user'): Any user account in the current MySQL server with SUPER privileges.

• PASSWORD('root user password'): The password for the above account. This is necessary as
the upgrade starts the MySQL server to upgrade the tables and the password is need to be able to
shutdown the MySQL server.

• CURINST('path to previous install'): The full path to the installation that is being upgraded.
For example an installation in /QOpenSys/usr/local/ will be /QOpenSys/usr/local/
mysql-5.1.30-i5os-power64. Failure to specify this option may result in corruption of your existing
data files.

For example:

MYSQLINST/UPGMYSQL DIR('/QOpenSys/usr/local/') DATADIR('/QOpenSys/mysql/data') »
 USERPRF(MYSQL) MYSQLUSR('root') PASSWORD('root') CURINST('/QOpenSys/usr/local/mysql-5.1.30-i5os-power64')

You should receive a Program Message indicating UPGRADE SUCCESSFUL! upon completion or an error
message if there is a problem.You can view the upgrade programs progression and the error in the text file
upgrade.log in the installation directory.

To start MySQL:

1. Log into the System i server using the user profile create or specified during installation. By default, this
is MYSQL.

Note

You should start mysqld_safe using a user that in the PASE environment
has the id=0 (the equivalent of the standard Unix root user). If you do not use
a user with this ID then the system will be unable to change the user when
executing mysqld as set using --user option. If this happens, mysqld may
be unable to read the files located within the MySQL data directory and the
execution will fail.

2. Enter the PASE environment using call qp2term.

Installing MySQL on NetWare

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 110

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

3. Start the MySQL server by changing to the installation directory and running mysqld_safe, specifying
the user name used to install the server. The installer conveniently installs a symbolic link to the
installation directory (mysql-5.0.42-i5os-power-32bit) as /opt/mysql/mysql:

> cd /opt/mysql/mysql
> bin/mysqld_safe --user=mysql &

You should see a message similar to the following:

Starting mysqld daemon with databases »
 from /opt/mysql/mysql-enterprise-5.0.42-i5os-power-32bit/data

If you are having problems starting MySQL server, see Section 2.18.2.1, “Troubleshooting Problems
Starting the MySQL Server”.

To stop MySQL:

1. Log into the System i server using the user profile create or specified during installation. By default, this
is MYSQL.

2. Enter the PASE environment using call qp2term.

3. Stop the MySQL server by changing into the installation directory and running mysqladmin, specifying
the user name used to install the server:

> cd /opt/mysql/mysql
> bin/mysqladmin -u root shutdown

If the session that you started and stopped MySQL are the same, you may get the log output from
mysqld:

 STOPPING server from pid file »
 /opt/mysql/mysql-enterprise-5.0.42-i5os-power-32bit/data/I5DBX.RCHLAND.IBM.COM.pid
 070718 10:34:20 mysqld ended

If the sessions used to start and stop MySQL are different, you will not receive any confirmation of the
shutdown.

Notes and tips

• A problem has been identified with the installation process on DBCS systems. If you are having
problems install MySQL on a DBCS system, you need to change your job's coded character set identifier
(CSSID) to 37 (EBCDIC) before executing the install command, INSMYSQL. To do this, determine your
existing CSSID (using DSPJOB and selecting option 2), execute CHGJOB CSSID(37), run INSMYSQL to
install MySQL and then execute CHGJOB again with your original CSSID.

• If you want to use the Perl scripts that are included with MySQL, you need to download the iSeries Tools
for Developers (5799-PTL). See http://www-03.ibm.com/servers/enable/site/porting/tools/.

2.15 Installing MySQL on NetWare
Porting MySQL to NetWare was an effort spearheaded by Novell. Novell customers should be pleased to
note that NetWare 6.5 ships with bundled MySQL binaries, complete with an automatic commercial use
license for all servers running that version of NetWare.

MySQL for NetWare is compiled using a combination of Metrowerks CodeWarrior for NetWare and special
cross-compilation versions of the GNU autotools.

The latest binary packages for NetWare can be obtained at http://dev.mysql.com/downloads/. See
Section 2.5, “How to Get MySQL”.

http://www-03.ibm.com/servers/enable/site/porting/tools/
http://dev.mysql.com/downloads/

Installing MySQL on NetWare

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 111

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To host MySQL, the NetWare server must meet these requirements:

• The latest Support Pack of NetWare 6.5 must be installed.

• The system must meet Novell's minimum requirements to run the respective version of NetWare.

• MySQL data and the program binaries must be installed on an NSS volume; traditional volumes are not
supported.

To install MySQL for NetWare, use the following procedure:

1. If you are upgrading from a prior installation, stop the MySQL server. This is done from the server
console, using the following command:

SERVER: mysqladmin -u root shutdown

Note

If the MySQL root user account has a password, you need to invoke
mysqladmin with the -p option and supply the password when prompted.

2. Log on to the target server from a client machine with access to the location where you are installing
MySQL.

3. Extract the binary package Zip file onto the server. Be sure to allow the paths in the Zip file to be used.
It is safe to simply extract the file to SYS:\.

If you are upgrading from a prior installation, you may need to copy the data directory (for example,
SYS:MYSQL\DATA), as well as my.cnf, if you have customized it. You can then delete the old copy of
MySQL.

4. You might want to rename the directory to something more consistent and easy to use. The examples
in this manual use SYS:MYSQL to refer to the installation directory.

Note that MySQL installation on NetWare does not detect if a version of MySQL is already installed
outside the NetWare release. Therefore, if you have installed the latest MySQL version from the Web
(for example, MySQL 4.1 or later) in SYS:\MYSQL, you must rename the folder before upgrading the
NetWare server; otherwise, files in SYS:\MySQL are overwritten by the MySQL version present in
NetWare Support Pack.

5. At the server console, add a search path for the directory containing the MySQL NLMs. For example:

SERVER: SEARCH ADD SYS:MYSQL\BIN

6. Initialize the data directory and the grant tables, if necessary, by executing mysql_install_db at the
server console.

7. Start the MySQL server using mysqld_safe at the server console.

8. To finish the installation, you should also add the following commands to autoexec.ncf. For
example, if your MySQL installation is in SYS:MYSQL and you want MySQL to start automatically, you
could add these lines:

#Starts the MySQL 5.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE

http://support.novell.com/filefinder/18197/index.html

Installing MySQL on Unix/Linux Using Generic Binaries

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 112

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you are running MySQL on NetWare 6.0, we strongly suggest that you use the --skip-external-
locking option on the command line:

#Starts the MySQL 5.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE --skip-external-locking

It is also necessary to use CHECK TABLE and REPAIR TABLE instead of myisamchk, because
myisamchk makes use of external locking. External locking is known to have problems on NetWare
6.0; the problem has been eliminated in NetWare 6.5. Note that the use of MySQL on Netware 6.0 is
not officially supported.

mysqld_safe on NetWare provides a screen presence. When you unload (shut down) the
mysqld_safe NLM, the screen does not go away by default. Instead, it prompts for user input:

<NLM has terminated; Press any key to close the screen>

If you want NetWare to close the screen automatically instead, use the --autoclose option to
mysqld_safe. For example:

#Starts the MySQL 5.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE --autoclose

The behavior of mysqld_safe on NetWare is described further in Section 4.3.2, “mysqld_safe —
MySQL Server Startup Script”.

9. When installing MySQL, either for the first time or upgrading from a previous version, download and
install the latest and appropriate Perl module and PHP extensions for NetWare:

• Perl: http://forge.novell.com/modules/xfcontent/downloads.php/perl/Modules/

• PHP: http://forge.novell.com/modules/xfcontent/downloads.php/php/Modules/

If there was an existing installation of MySQL on the NetWare server, be sure to check for existing MySQL
startup commands in autoexec.ncf, and edit or delete them as necessary.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords.
After starting the server, you should set up passwords for them using the
instructions in Section 2.18, “Postinstallation Setup and Testing”.

2.16 Installing MySQL on Unix/Linux Using Generic Binaries

Oracle provides a set of binary distributions of MySQL. These include generic binary distributions in the
form of compressed tar files (files with a .tar.gz extension) for a number of platforms, and binaries in
platform-specific package formats for selected platforms.

This section covers the installation of MySQL from a compressed tar file binary distribution. For other
platform-specific package formats, see the other platform-specific sections. For example, for Windows
distributions, see Section 2.10, “Installing MySQL on Microsoft Windows”.

To obtain MySQL, see Section 2.5, “How to Get MySQL”.

http://forge.novell.com/modules/xfcontent/downloads.php/perl/Modules/
http://forge.novell.com/modules/xfcontent/downloads.php/php/Modules/

Create a mysql User and Group

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 113

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL compressed tar file binary distributions have names of the form mysql-VERSION-OS.tar.gz,
where VERSION is a number (for example, 5.0.96), and OS indicates the type of operating system for
which the distribution is intended (for example, pc-linux-i686 or winx64).

Warning

If you have previously installed MySQL using your operating system native package
management system, such as yum or apt-get, you may experience problems
installing using a native binary. Make sure your previous MySQL installation has
been removed entirely (using your package management system), and that any
additional files, such as old versions of your data files, have also been removed.
You should also check for configuration files such as /etc/my.cnf or the /etc/
mysql directory and delete them.

If you run into problems and need to file a bug report, please use the instructions in Section 1.7, “How to
Report Bugs or Problems”.

To install and use a MySQL binary distribution, the command sequence looks like this:

shell> groupadd mysql
shell> useradd -r -g mysql -s /bin/false mysql
shell> cd /usr/local
shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz
shell> ln -s full-path-to-mysql-VERSION-OS mysql
shell> cd mysql
shell> chown -R mysql .
shell> chgrp -R mysql .
shell> scripts/mysql_install_db --user=mysql
shell> chown -R root .
shell> chown -R mysql data
Next command is optional
shell> cp support-files/my-medium.cnf /etc/my.cnf
shell> bin/mysqld_safe --user=mysql &
Next command is optional
shell> cp support-files/mysql.server /etc/init.d/mysql.server

Note

This procedure assumes that you have root (administrator) access to your system.
Alternatively, you can prefix each command using the sudo (Linux) or pfexec
(OpenSolaris) command.

Note

The procedure does not assign passwords to MySQL accounts. To do so, use the
instructions in Section 2.18.4, “Securing the Initial MySQL Accounts”.

A more detailed version of the preceding description for installing a binary distribution follows.

Create a mysql User and Group

If your system does not already have a user and group for mysqld to run as, you may need to create
one. The following commands add the mysql group and the mysql user. The syntax for useradd and
groupadd may differ slightly on different versions of Unix, or they may have different names such as
adduser and addgroup.

If your system does not already have a user and group to use for running mysqld, you may need to create
one. The following commands add the mysql group and the mysql user. You might want to call the
user and group something else instead of mysql. If so, substitute the appropriate name in the following

Obtain and Unpack the Distribution

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 114

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

instructions. The syntax for useradd and groupadd may differ slightly on different versions of Unix, or
they may have different names such as adduser and addgroup.

shell> groupadd mysql
shell> useradd -r -g mysql -s /bin/false mysql

Note

Because the user is required only for ownership purposes, not login purposes, the
useradd command uses the -r and -s /bin/false options to create a user
that does not have login permissions to your server host. Omit these options if your
useradd does not support them.

Obtain and Unpack the Distribution

Pick the directory under which you want to unpack the distribution and change location into it. The example
here unpacks the distribution under /usr/local. The instructions, therefore, assume that you have
permission to create files and directories in /usr/local. If that directory is protected, you must perform
the installation as root.

shell> cd /usr/local

Obtain a distribution file using the instructions in Section 2.5, “How to Get MySQL”. For a given release,
binary distributions for all platforms are built from the same MySQL source distribution.

Unpack the distribution, which creates the installation directory. Then create a symbolic link to that
directory. tar can uncompress and unpack the distribution if it has z option support:

shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz
shell> ln -s full-path-to-mysql-VERSION-OS mysql

The tar command creates a directory named mysql-VERSION-OS. The ln command makes a symbolic
link to that directory. This enables you to refer more easily to the installation directory as /usr/local/
mysql.

To install MySQL from a compressed tar file binary distribution, your system must have GNU gunzip to
uncompress the distribution and a reasonable tar to unpack it. If your tar program supports the z option,
it can both uncompress and unpack the file.

GNU tar is known to work. The standard tar provided with some operating systems is not able to unpack
the long file names in the MySQL distribution. You should download and install GNU tar, or if available,
use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as tar within a GNU
or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU tar is available from
http://www.gnu.org/software/tar/.

If your tar does not have z option support, use gunzip to unpack the distribution and tar to unpack it.
Replace the preceding tar command with the following alternative command to uncompress and extract
the distribution:

shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -

Perform Postinstallation Setup

The remainder of the installation process involves setting distribution ownership and access permissions,
initializing the data directory, starting the MySQL server, and setting up the configuration file. For
instructions, see Section 2.18, “Postinstallation Setup and Testing”.

http://www.gnu.org/software/tar/

Installing MySQL from Source

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 115

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2.17 Installing MySQL from Source
Building MySQL from the source code enables you to customize build parameters, compiler optimizations,
and installation location. For a list of systems on which MySQL is known to run, see http://www.mysql.com/
support/supportedplatforms/database.html.

Before you proceed with an installation from source, check whether we produce a precompiled binary
distribution for your platform and whether it works for you. We put a great deal of effort into ensuring that
our binaries are built with the best possible options for optimal performance. Instructions for installing
binary distributions are available in Section 2.16, “Installing MySQL on Unix/Linux Using Generic Binaries”.

To obtain a source distribution for MySQL, see Section 2.5, “How to Get MySQL”. MySQL source
distributions are available as compressed tar files, Zip archives, or RPM packages. Distribution files have
names of the form mysql-VERSION.tar.gz, mysql-VERSION.zip, or mysql-VERSION.rpm, where
VERSION is a number like 5.0.96.

To perform a MySQL installation using the source code:

• To build MySQL from source on Unix-like systems, including Linux, commercial Unix, BSD, OS X and
others using a .tar.gz or RPM-based source code distribution, see Section 2.17.1, “Installing MySQL
Using a Standard Source Distribution”.

• To build MySQL from source on Windows (Windows XP or newer required), see Section 2.10.8,
“Installing MySQL from Source on Windows”.

• For information on building from one of our development trees, see Section 2.17.2, “Installing MySQL
Using a Development Source Tree”.

• For information on using the configure command to specify the source build parameters, including
links to platform specific parameters that you might need, see Section 2.17.3, “MySQL Source-
Configuration Options”.

To install MySQL from source, the following system requirements must be satisfied:

• GNU gunzip to uncompress the distribution and a reasonable tar to unpack it (if you use a .tar.gz
distribution), or WinZip or another tool that can read .zip files (if you use a .zip distribution).

GNU tar is known to work. The standard tar provided with some operating systems is not able to
unpack the long file names in the MySQL distribution. You should download and install GNU tar, or if
available, use a preinstalled version of GNU tar. Usually this is available as gnutar, gtar, or as tar
within a GNU or Free Software directory, such as /usr/sfw/bin or /usr/local/bin. GNU tar is
available from http://www.gnu.org/software/tar/.

• A working ANSI C++ compiler. GCC 3.4.6 or later, Sun Studio 10 or later, Visual Studio 2005 or later,
and many current vendor-supplied compilers are known to work.

• A good make program. Although some platforms come with their own make implementations, it is highly
recommended that you use GNU make 3.75 or newer. It may already be available on your system as
gmake. GNU make is available from http://www.gnu.org/software/make/.

• libtool 1.5, available from http://www.gnu.org/software/libtool/. 1.5.24 or later is recommended.

If you are using a version of gcc recent enough to understand the -fno-exceptions option, it is very
important that you use this option. Otherwise, you may compile a binary that crashes randomly. Also
use -felide-constructors and -fno-rtti along with -fno-exceptions. When in doubt, do the
following:

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.gnu.org/software/tar/
http://www.gnu.org/software/make/
http://www.gnu.org/software/libtool/

Installing MySQL Using a Standard Source Distribution

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 116

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CFLAGS="-O3" CXX=gcc CXXFLAGS="-O3 -felide-constructors \
 -fno-exceptions -fno-rtti" ./configure \
 --prefix=/usr/local/mysql --enable-assembler \
 --with-mysqld-ldflags=-all-static

On most systems, this gives you a fast and stable binary.

If you run into problems and need to file a bug report, please use the instructions in Section 1.7, “How to
Report Bugs or Problems”.

2.17.1 Installing MySQL Using a Standard Source Distribution

To install MySQL from source, first configure, build, and install from a source package. Then follow the
same postinstallation setup sequence as for a binary installation.

If you start from a source RPM, use the following command to make a binary RPM that you can install. If
you do not have rpmbuild, use rpm instead.

shell> rpmbuild --rebuild --clean MySQL-VERSION.src.rpm

The result is one or more binary RPM packages that you install as indicated in Section 2.12, “Installing
MySQL on Linux Using RPM Packages”.

The sequence for installation from a compressed tar file source distribution is similar to the process for
installing from a generic binary distribution that is detailed in Section 2.16, “Installing MySQL on Unix/
Linux Using Generic Binaries”. For a MySQL .tar.gz source distribution, the basic installation command
sequence looks like this:

Preconfiguration setup
shell> groupadd mysql
shell> useradd -g mysql -s /bin/false mysql
Beginning of source-build specific instructions
shell> tar zxvf mysql-VERSION.tar.gz
shell> cd mysql-VERSION
shell> ./configure --prefix=/usr/local/mysql
shell> make
shell> make install
End of source-build specific instructions
Postinstallation setup
shell> cd /usr/local/mysql
shell> chown -R mysql .
shell> chgrp -R mysql .
shell> bin/mysql_install_db --user=mysql
shell> chown -R root .
shell> chown -R mysql var
Next command is optional
shell> cp support-files/my-medium.cnf /etc/my.cnf
shell> bin/mysqld_safe --user=mysql &
Next command is optional
shell> cp support-files/mysql.server /etc/init.d/mysql.server

Note

This procedure does not set up any passwords for MySQL accounts. After following
the procedure, proceed to Section 2.18, “Postinstallation Setup and Testing”, for
postinstallation setup and testing.

A more detailed version of the preceding description for installing MySQL from a source distribution
follows:

1. Add a login user and group for mysqld to run as:

Installing MySQL Using a Standard Source Distribution

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 117

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> groupadd mysql
shell> useradd -g mysql -s /bin/false mysql

These commands add the mysql group and the mysql user. The syntax for useradd and groupadd
may differ slightly on different versions of Unix, or they may have different names such as adduser
and addgroup.

You might want to call the user and group something else instead of mysql. If so, substitute the
appropriate name in the following steps.

2. Perform the following steps as the mysql user, except as noted.

3. Pick the directory under which you want to unpack the distribution and change location into it.

4. Obtain a distribution file using the instructions in Section 2.5, “How to Get MySQL”.

5. Unpack the distribution into the current directory. tar can uncompress and unpack the distribution if it
has z option support:

shell> tar zxvf /path/to/mysql-VERSION.tar.gz

This command creates a directory named mysql-VERSION.

If your tar does not have z option support, use gunzip to unpack the distribution and tar to unpack
it:

shell> gunzip < /path/to/mysql-VERSION.tar.gz | tar xvf -

6. Change location into the top-level directory of the unpacked distribution:

shell> cd mysql-VERSION

Note that currently you must configure and build MySQL from this top-level directory. You cannot build
it in a different directory.

7. Configure the release and compile everything:

shell> ./configure --prefix=/usr/local/mysql
shell> make

When you run configure, you might want to specify other options. For example, if you need to debug
mysqld or a MySQL client, run configure with the --with-debug option, and then recompile and
link your clients with the new client library. See Section 21.3, “Debugging and Porting MySQL”.

Run ./configure --help for a list of options. Section 2.17.3, “MySQL Source-Configuration
Options”, discusses some of the more useful options.

If configure fails and you are going to send mail to a MySQL mailing list to ask for assistance,
please include any lines from config.log that you think can help solve the problem. Also include
the last couple of lines of output from configure. To file a bug report, please use the instructions in
Section 1.7, “How to Report Bugs or Problems”.

If the compile fails, see Section 2.17.4, “Dealing with Problems Compiling MySQL”, for help.

8. Install the distribution:

Installing MySQL Using a Standard Source Distribution

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 118

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> make install

You might need to run this command as root.

If you want to set up an option file, use one of those present in the support-files directory as a
template. For example:

shell> cp support-files/my-medium.cnf /etc/my.cnf

You might need to run this command as root.

If you want to configure support for InnoDB tables, you should edit the /etc/my.cnf file, removing
the # character before the option lines that start with innodb_..., and modify the option values to be
what you want. See Section 4.2.6, “Using Option Files”, and Section 14.2.1, “Configuring InnoDB”.

9. Change location into the installation directory:

shell> cd /usr/local/mysql

10. If you ran the make install command as root, the installed files will be owned by root. Ensure
that the installation is accessible to mysql by executing the following commands as root in the
installation directory:

shell> chown -R mysql .
shell> chgrp -R mysql .

The first command changes the owner attribute of the files to the mysql user. The second changes the
group attribute to the mysql group.

11. If you have not installed MySQL before, you must create the MySQL data directory and initialize the
grant tables:

shell> bin/mysql_install_db --user=mysql

If you run the command as root, include the --user option as shown. If you run the command while
logged in as mysql, you can omit the --user option.

The command should create the data directory and its contents with mysql as the owner.

After using mysql_install_db to create the grant tables for MySQL, you must restart the server
manually. The mysqld_safe command to do this is shown in a later step.

12. Most of the MySQL installation can be owned by root if you like. The exception is that the data
directory must be owned by mysql. To accomplish this, run the following commands as root in the
installation directory:

shell> chown -R root .
shell> chown -R mysql var

13. If the plugin directory is writable by the server, it may be possible for a user to write executable code
to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by making
plugin_dir read only to the server or by setting --secure-file-priv to a directory where
SELECT writes can be made safely.

Installing MySQL Using a Development Source Tree

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 119

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

14. If you want MySQL to start automatically when you boot your machine, you can copy support-
files/mysql.server to the location where your system has its startup files. More information can
be found in the support-files/mysql.server script itself; see also Section 2.18.5, “Starting and
Stopping MySQL Automatically”.

15. You can set up new accounts using the bin/mysql_setpermission script if you install the DBI
and DBD::mysql Perl modules. See Section 4.6.15, “mysql_setpermission — Interactively
Set Permissions in Grant Tables”. For Perl module installation instructions, see Section 2.22, “Perl
Installation Notes”.

After everything has been installed, test the distribution. To start the MySQL server, use the following
command:

shell> /usr/local/mysql/bin/mysqld_safe --user=mysql &

If you run the command as root, you should use the --user option as shown. The option value is the
name of the login account that you created in the first step to use for running the server. If you run the
mysqld_safe command while logged in as that user, you can omit the --user option.

If the command fails immediately and prints mysqld ended, look for information in the error log (which by
default is the host_name.err file in the data directory).

More information about mysqld_safe is given in Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”.

To make it more convenient to invoke programs installed in /usr/local/mysql/bin, you can add that
directory to your PATH environment variable setting. That enables you to run a program by typing only its
name, not its entire path name. See Section 4.2.10, “Setting Environment Variables”.

Note

The accounts that are listed in the MySQL grant tables initially have no passwords.
After starting the server, you should set up passwords for them using the
instructions in Section 2.18, “Postinstallation Setup and Testing”.

2.17.2 Installing MySQL Using a Development Source Tree

This section discusses how to install MySQL from the latest development source code.

To obtain the source tree, you must have Bazaar installed. The Bazaar VCS Web site has instructions
for downloading and installing Bazaar on different platforms. Bazaar is supported on any platform that
supports Python, and is therefore compatible with any Linux, Unix, Windows, or OS X host.

MySQL development projects are hosted on Launchpad. MySQL projects, including MySQL Server,
MySQL Workbench, and others are available from the Oracle/MySQL Engineering page. For the
repositories related only to MySQL Server, see the MySQL Server page.

To build under Unix/Linux, you must have the following tools installed:

• A good make program. Although some platforms come with their own make implementations, it is highly
recommended that you use GNU make 3.75 or newer. It may already be available on your system as
gmake. GNU make is available from http://www.gnu.org/software/make/.

• autoconf 2.58 (or newer), available from http://www.gnu.org/software/autoconf/.

• automake 1.8.1, available from http://www.gnu.org/software/automake/.

http://bazaar-vcs.org
http://launchpad.net/
http://launchpad.net/~mysql
http://launchpad.net/mysql-server
http://www.gnu.org/software/make/
http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/

Installing MySQL Using a Development Source Tree

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 120

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• libtool 1.5, available from http://www.gnu.org/software/libtool/. 1.5.24 or later is recommended.

• m4, available from http://www.gnu.org/software/m4/.

• bison, available from http://www.gnu.org/software/bison/. You should use the latest version of bison
where possible. Versions 1.75 and 2.1 are known to work. There have been reported problems with
bison 1.875. If you experience problems, upgrade to a later, rather than earlier, version.

To build under Windows you must have Microsoft Visual C++ 2005 Express Edition, Visual Studio .Net
2003 (7.1), or Visual Studio 2005 (8.0) compiler system.

Once the necessary tools are installed, create a local branch of the MySQL development tree on your
machine using this procedure:

1. To obtain a copy of the MySQL source code, you must create a new Bazaar branch. If you do not
already have a Bazaar repository directory set up, you must initialize a new directory:

shell> mkdir mysql-server
shell> bzr init-repo --trees mysql-server

This is a one-time operation.

2. Assuming that you have an initialized repository directory, you can branch from the public MySQL
server repositories to create a local source tree. To create a branch of a specific version:

shell> cd mysql-server
shell> bzr branch lp:mysql-server/5.0 mysql-5.0

This is a one-time operation per source tree. You can branch the source trees for several versions of
MySQL under the mysql-server directory.

3. The initial download will take some time to complete, depending on the speed of your connection.
Please be patient. Once you have downloaded the first tree, additional trees should take significantly
less time to download.

4. When building from the Bazaar branch, you may want to create a copy of your active branch so that
you can make configuration and other changes without affecting the original branch contents. You can
achieve this by branching from the original branch:

shell> bzr branch mysql-5.0 mysql-5.0-build

5. To obtain changes made after you have set up the branch initially, update it using the pull option
periodically. Use this command in the top-level directory of the local copy:

shell> bzr pull

You can examine the changeset comments for the tree by using the log option to bzr:

shell> bzr log

You can also browse changesets, comments, and source code online at the Launchpad MySQL Server
page.

If you see diffs (changes) or code that you have a question about, do not hesitate to send email to the
MySQL internals mailing list. See Section 1.6.1, “MySQL Mailing Lists”. If you think you have a
better idea on how to do something, send an email message to the list with a patch.

http://www.gnu.org/software/libtool/
http://www.gnu.org/software/m4/
http://www.gnu.org/software/bison/
http://launchpad.net/mysql-server

Installing MySQL Using a Development Source Tree

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 121

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

After you have the local branch, you can build MySQL server from the source code. On Windows, the build
process is different from Unix/Linux: see Section 2.10.8, “Installing MySQL from Source on Windows”.

On Unix/Linux, use the autoconf system to create the configure script so that you can configure the
build environment before building. The following example shows the typical commands required to build
MySQL from a source tree.

1. Change location to the top-level directory of the source tree; replace mysql-5.0 with the appropriate
directory name.

shell> cd mysql-5.0

2. Prepare the source tree for configuration.

You must separately configure the BDB and InnoDB storage engines. Run the following commands
from the main source directory:

shell> (cd bdb/dist; sh s_all)
shell> (cd innobase; autoreconf --force --install)

You can omit the previous commands if you do not require BDB or InnoDB support.

Prepare the remainder of the source tree:

shell> autoreconf --force --install

As an alternative to the preceding autoreconf command, you can use BUILD/autorun.sh, which
acts as a shortcut for the following sequence of commands:

shell> aclocal; autoheader
shell> libtoolize --automake --force
shell> automake --force --add-missing; autoconf
shell> (cd bdb/dist; sh s_all)
shell> (cd innobase; aclocal; autoheader; autoconf; automake)

If you get some strange errors during this stage, verify that you have the correct version of libtool
installed.

3. Configure the source tree and compile MySQL:

shell> ./configure # Add your favorite options here
shell> make

For a description of some configure options, see Section 2.17.3, “MySQL Source-Configuration
Options”.

A collection of configuration scripts is located in the BUILD/ subdirectory. For example, you may find
it more convenient to use the BUILD/compile-pentium-debug script than the preceding set of
shell commands. To compile on a different architecture, modify the script by removing flags that are
Pentium-specific, or use another script that may be more appropriate. These scripts are provided on an
“as-is” basis. They are not supported and their contents may change from release to release.

4. When the build is done, run make install. Be careful with this on a production machine; the
installation command may overwrite your live release installation. If you already have MySQL installed
and do not want to overwrite it, run ./configure with values for the --prefix, --with-tcp-

MySQL Source-Configuration Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 122

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

port, and --with-unix-socket-path options different from those used by your production server.
For additional information about preventing multiple servers from interfering with each other, see
Section 5.5, “Running Multiple MySQL Instances on One Machine”.

5. Play hard with your new installation. For example, try to make new features crash. Start by running
make test. See Section 21.1.2, “The MySQL Test Suite”.

6. If you have gotten to the make stage, but the distribution does not compile, please enter the problem
into our bugs database using the instructions given in Section 1.7, “How to Report Bugs or Problems”.
If you have installed the latest versions of the required tools, and they crash trying to process our
configuration files, please report that also. However, if you get a command not found error or a
similar problem for required tools, do not report it. Instead, make sure that all the required tools are
installed and that your PATH variable is set correctly so that your shell can find them.

2.17.3 MySQL Source-Configuration Options

The configure script provides a great deal of control over how you configure a MySQL source
distribution. Typically, you do this using options on the configure command line. For a full list of options
supported by configure, run this command:

shell> ./configure --help

You can also affect configure using certain environment variables. See Section 2.21, “Environment
Variables”.

The following table shows the available configure options.

Table 2.7 MySQL Source-Configuration Option Reference (configure)

Formats Description Default IntroducedRemoved

--bindir User executables EPREFIX/bin

--build Configure for building on
BUILD

guessed

--cache-file Cache test results in FILE disabled

--config-cache Alias for `--cache-
file=config.cache'

--datadir Read-only architecture-
independent data

PREFIX/share

--disable-FEATURE Do not include FEATURE

--disable-community-
features

Disable additional features
provided by the community

 5.0.82

--disable-dependency-
tracking

Disable dependency tracking

--disable-grant-
options

Disable GRANT options 5.0.34

--disable-largefile Omit support for large files

--disable-libtool-lock Disable libtool lock

--disable-profiling Build a version without query
profiling code

 5.0.37 5.0.45

--enable-FEATURE Enable FEATURE

MySQL Source-Configuration Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 123

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Formats Description Default IntroducedRemoved

--enable-assembler Use assembler versions
of some string functions if
available

--enable-dependency-
tracking

Do not reject slow dependency
extractors

--enable-fast-install Optimize for fast installation yes

--enable-local-infile Enable LOCAL for LOAD
DATA INFILE

disabled

--enable-shared Build shared libraries yes

--enable-static Build static libraries yes

--enable-thread-safe-
client

Compile the client with threads

--exec-prefix Install architecture-dependent
files in EPREFIX

--help Display help message and exit

--host Cross-compile to build
programs to run on HOST

--includedir C header files PREFIX/include

--infodir Info documentation PREFIX/info

--libdir Object code libraries EPREFIX/lib

--libexecdir Program executables EPREFIX/libexec

--localstatedir Modifiable single-machine
data

PREFIX/var

--mandir man documentation PREFIX/man

--no-create Do not create output files

--oldincludedir C header files for non-gcc /usr/include

--prefix Install architecture-
independent files in PREFIX

--program-prefix Prepend PREFIX to installed
program names

--program-suffix Append SUFFIX to installed
program names

--program-transform-
name

run sed PROGRAM on
installed program names

--quiet Do not print `checking...'
messages

--sbindir System administrative
executables

EPREFIX/sbin

--sharedstatedir Modifiable architecture-
independent data

PREFIX/com

--srcdir Find the sources in DIR configure
directory or ..

MySQL Source-Configuration Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 124

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Formats Description Default IntroducedRemoved

--sysconfdir Read-only single-machine
data

PREFIX/etc

--target Configure for building
compilers for TARGET

--version Display version information
and exit

--with-PACKAGE Use PACKAGE

--with-archive-
storage-engine

Enable the Archive Storage
Engine

no

--with-berkeley-db Use BerkeleyDB located in
DIR

no

--with-berkeley-db-
includes

Find Berkeley DB headers in
DIR

--with-berkeley-db-
libs

Find Berkeley DB libraries in
DIR

--with-big-tables Support tables with more
than 4 G rows even on 32 bit
platforms

 5.0.4

--with-blackhole-
storage-engine

Enable the Blackhole Storage
Engine

no 5.0.4

--with-charset Default character set

--with-client-ldflags Extra linking arguments for
clients

--with-collation Default collation

--with-comment Comment about compilation
environment

--with-csv-storage-
engine

Enable the CSV Storage
Engine

yes

--with-darwin-mwcc Use Metrowerks CodeWarrior
wrappers on OS X/Darwin

 5.0.6

--with-embedded-
privilege-control

Build parts to check user's
privileges (only affects
embedded library)

--with-embedded-server Build the embedded server

--with-example-
storage-engine

Enable the Example Storage
Engine

no

--with-extra-charsets Use charsets in addition to
default

--with-gnu-ld Assume the C compiler uses
GNU ld

no

--with-isam Enable the ISAM table type 5.0.2

--with-lib-ccflags Extra CC options for libraries

MySQL Source-Configuration Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 125

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Formats Description Default IntroducedRemoved

--with-libwrap Compile in libwrap
(tcp_wrappers) support

--with-low-memory Try to use less memory to
compile to avoid memory
limitations

--with-machine-type Set the machine type, like
"powerpc"

 5.0.44

--with-max-indexes Sets the maximum number of
indexes per table

64

--with-mit-threads Always use included thread lib 5.0.4

--with-mysqld-ldflags Extra linking arguments for
mysqld

--with-mysqld-libs Extra libraries to link with for
mysqld

 5.0.44

--with-mysqld-user What user the mysqld daemon
shall be run as

--with-mysqlfs Include the corba-based
MySQL file system

 5.0.3

--with-mysqlmanager Build the mysqlmanager binary Build if server
is built

--with-named-curses-
libs

Use specified curses libraries

--with-named-thread-
libs

Use specified thread libraries

--with-ndb-ccflags Extra CC options for ndb
compile

 5.0.3

--with-ndb-docs Include the NDB Cluster
ndbapi and mgmapi
documentation

--with-ndb-port Port for NDB Cluster
management server

--with-ndb-port-base Port for NDB Cluster
management server

 5.0.3

--with-ndb-sci Provide MySQL with a custom
location of sci library

--with-ndb-shm Include the NDB Cluster
shared memory transporter

 5.0.2

--with-ndb-test Include the NDB Cluster
ndbapi test programs

--with-ndbcluster Include the NDB Cluster table
handler

no

--with-openssl Include the OpenSSL support

--with-openssl-
includes

Find OpenSSL headers in DIR

MySQL Source-Configuration Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 126

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Formats Description Default IntroducedRemoved

--with-openssl-libs Find OpenSSL libraries in DIR

--with-other-libc Link against libc and other
standard libraries installed
in the specified nonstandard
location

--with-pic Try to use only PIC/non-PIC
objects

Use both

--with-pstack Use the pstack backtrace
library

--with-pthread Force use of pthread library

--with-raid Enable RAID Support 5.0.3

--with-server-suffix Append value to the version
string

--with-system-type Set the system type, like "sun-
solaris10"

 5.0.44

--with-tags Include additional
configurations

automatic

--with-tcp-port Which port to use for MySQL
services

3306

--with-unix-socket-
path

Where to put the unix-domain
socket

--with-vio Include the Virtual IO support 5.0.2

--with-yassl Include the yaSSL support 5.0.6

--with-zlib-dir Provide MySQL with a custom
location of compression library

--without-PACKAGE Do not use PACKAGE

--without-bench Skip building of the benchmark
suite

--without-debug Build a production version
without debugging code

--without-docs Skip building of the
documentation

--without-extra-tools Skip building utilities in the
tools directory

--without-geometry Do not build geometry-related
parts

--without-innodb Do not include the InnoDB
table handler

 5.0.48

--without-libedit Use system libedit instead of
bundled copy

--without-man Skip building of the man pages

--without-ndb-debug Disable special ndb debug
features

 5.0.3

MySQL Source-Configuration Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 127

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Formats Description Default IntroducedRemoved

--without-query-cache Do not build query cache

--without-readline Use system readline instead of
bundled copy

--without-server Only build the client

--without-uca Skip building of the national
Unicode collations

 5.0.3

Some of the configure options available are described here. For options that may be of use if you have
difficulties building MySQL, see Section 2.17.4, “Dealing with Problems Compiling MySQL”.

Many options configure compile-time defaults that can be overridden at server startup. For example, the
--prefix, --with-tcp-port, and with-unix-socket-path options that configure the default
installation base directory location, TCP/IP port number, and Unix socket file can be changed at server
startup with the --basedir, --port, and --socket options for mysqld.

• To compile just the MySQL client libraries and client programs and not the server, use the --
without-server option:

shell> ./configure --without-server

If you have no C++ compiler, some client programs such as mysql cannot be compiled because they
require C++. In this case, you can remove the code in configure that tests for the C++ compiler and
then run ./configure with the --without-server option. The compile step should still try to build
all clients, but you can ignore any warnings about files such as mysql.cc. (If make stops, try make -k
to tell it to continue with the rest of the build even if errors occur.)

• To build the embedded MySQL library (libmysqld.a), use the --with-embedded-server option.

• To place your log files and database directories elsewhere than under /usr/local/var, use a
configure command something like one of these:

shell> ./configure --prefix=/usr/local/mysql
shell> ./configure --prefix=/usr/local \
 --localstatedir=/usr/local/mysql/data

The first command changes the installation prefix so that everything is installed under /usr/local/
mysql rather than the default of /usr/local. The second command preserves the default installation
prefix, but overrides the default location for database directories (normally /usr/local/var) and
changes it to /usr/local/mysql/data.

You can also specify the installation directory and data directory locations at server startup time by using
the --basedir and --datadir options. These can be given on the command line or in an MySQL
option file, although it is more common to use an option file. See Section 4.2.6, “Using Option Files”.

• The --with-tcp-port option specifies the port number on which the server listens for TCP/IP
connections. The default is port 3306. To listen on a different port, use a configure command like this:

shell> ./configure --with-tcp-port=3307

• On Unix, if you want the MySQL socket file location to be somewhere other than the default location
(normally in the directory /tmp or /var/run), use a configure command like this:

MySQL Source-Configuration Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 128

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> ./configure \
 --with-unix-socket-path=/usr/local/mysql/tmp/mysql.sock

The socket file name must be an absolute path name. You can also change the location of mysql.sock
at server startup by using a MySQL option file. See Section B.5.3.6, “How to Protect or Change the
MySQL Unix Socket File”.

• To compile statically linked programs (for example, to make a binary distribution, to get better
performance, or to work around problems with some Red Hat Linux distributions), run configure like
this:

shell> ./configure --with-client-ldflags=-all-static \
 --with-mysqld-ldflags=-all-static

• If you are using gcc and do not have libg++ or libstdc++ installed, you can tell configure to
use gcc as your C++ compiler:

shell> CC=gcc CXX=gcc ./configure

When you use gcc as your C++ compiler, it does not attempt to link in libg++ or libstdc++. This
may be a good thing to do even if you have those libraries installed. Some versions of them have caused
strange problems for MySQL users in the past.

The following list indicates some compilers and environment variable settings that are commonly used
with each one.

• gcc 2.7.2:

CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors"

• gcc 2.95.2:

CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro \
-felide-constructors -fno-exceptions -fno-rtti"

In most cases, you can get a reasonably optimized MySQL binary by using the options from the
preceding list and adding the following options to the configure line:

--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

The full configure line would, in other words, be something like the following for all recent gcc
versions:

CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro \
-felide-constructors -fno-exceptions -fno-rtti" ./configure \
--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

The binaries we provide on the MySQL Web site at http://dev.mysql.com/downloads/ are all compiled
with full optimization and should work well for most users. See Section 2.16, “Installing MySQL on Unix/
Linux Using Generic Binaries”.

• If the build fails and produces errors about your compiler or linker not being able to create the shared
library libmysqlclient.so.N (where N is a version number), you can work around this problem by

http://dev.mysql.com/downloads/

MySQL Source-Configuration Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 129

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

giving the --disable-shared option to configure. In this case, configure does not build a shared
libmysqlclient.so.N library.

• By default, MySQL uses the latin1 (cp1252 West European) character set. To change the default
set, use the --with-charset option:

shell> ./configure --with-charset=CHARSET

CHARSET may be one of binary, armscii8, ascii, big5, cp1250, cp1251, cp1256, cp1257,
cp850, cp852, cp866, cp932, dec8, eucjpms, euckr, gb2312, gbk, geostd8, greek, hebrew,
hp8, keybcs2, koi8r, koi8u, latin1, latin2, latin5, latin7, macce, macroman, sjis, swe7,
tis620, ucs2, ujis, utf8. (Additional character sets might be available. Check the output from ./
configure --help for the current list.)

The default collation may also be specified. MySQL uses the latin1_swedish_ci collation by default.
To change this, use the --with-collation option:

shell> ./configure --with-collation=COLLATION

To change both the character set and the collation, use both the --with-charset and --with-
collation options. The collation must be a legal collation for the character set. (Use the SHOW
COLLATION statement to determine which collations are available for each character set.)

 With the configure option --with-extra-charsets=LIST, you can define which additional
character sets should be compiled into the server. LIST is one of the following:

• A list of character set names separated by spaces

• complex to include all character sets that can't be dynamically loaded

• all to include all character sets into the binaries

Clients that want to convert characters between the server and the client should use the SET NAMES
statement. See Section 10.1.4, “Connection Character Sets and Collations”.

• To configure MySQL with debugging code, use the --with-debug option:

shell> ./configure --with-debug

This causes a safe memory allocator to be included that can find some errors and that provides output
about what is happening. See Section 21.3, “Debugging and Porting MySQL”.

As of MySQL 5.0.25, using --with-debug to configure MySQL with debugging support enables you to
use the --debug="d,parser_debug" option when you start the server. This causes the Bison parser
that is used to process SQL statements to dump a parser trace to the server's standard error output.
Typically, this output is written to the error log.

• If your client programs are using threads, you must compile a thread-safe version of the
MySQL client library with the --enable-thread-safe-client configure option. This creates
a libmysqlclient_r library with which you should link your threaded applications. See
Section 20.6.4.2, “Writing C API Threaded Client Programs”.

• Some features require that the server be built with compression library support, such as the
COMPRESS() and UNCOMPRESS() functions, and compression of the client/server protocol. The --
with-zlib-dir=no|bundled|DIR option provides control over compression library support. The

Dealing with Problems Compiling MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 130

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

value no explicitly disables compression support. bundled causes the zlib library bundled in the
MySQL sources to be used. A DIR path name specifies the directory in which to find the compression
library sources.

• It is possible to build MySQL with large table support using the --with-big-tables option,
beginning with MySQL 5.0.4.

This option causes the variables that store table row counts to be declared as unsigned long long
rather than unsigned long. This enables tables to hold up to approximately 1.844E+19 ((232)2) rows
rather than 232 (~4.295E+09) rows. Previously it was necessary to pass -DBIG_TABLES to the compiler
manually in order to enable this feature.

• Run configure with the --disable-grant-options option to cause the --bootstrap, --
skip-grant-tables, and --init-file options for mysqld to be disabled. For Windows, the
configure.js script recognizes the DISABLE_GRANT_OPTIONS flag, which has the same effect. The
capability is available as of MySQL 5.0.34.

• This option allows MySQL Community Server features to be enabled. Additional options may be
required for individual features, such as --enable-profiling to enable statement profiling. This
option was added in MySQL 5.0.82.

• In MySQL Community Server, this option enables the statement profiling capability exposed by
the SHOW PROFILE and SHOW PROFILES statements. (See Section 13.7.5.29, “SHOW PROFILES
Syntax”.) The option was added in MySQL 5.0.37.

• See Section 2.20, “Operating System-Specific Notes”, for options that pertain to particular operating
systems.

• See Section 6.3.6.2, “Building MySQL with Support for Secure Connections”, for options that pertain to
configuring MySQL to support secure (encrypted) connections.

2.17.4 Dealing with Problems Compiling MySQL

All MySQL programs compile cleanly for us with no warnings on Solaris or Linux using gcc. On other
systems, warnings may occur due to differences in system include files. For other problems, check the
following list.

The solution to many problems involves reconfiguring. If you do need to reconfigure, take note of the
following:

• If configure is run after it has previously been run, it may use information that was gathered during its
previous invocation. This information is stored in config.cache. When configure starts up, it looks
for that file and reads its contents if it exists, on the assumption that the information is still correct. That
assumption is invalid when you reconfigure.

• Each time you run configure, you must run make again to recompile. However, you may want
to remove old object files from previous builds first because they were compiled using different
configuration options.

To prevent old configuration information or object files from being used, run these commands before re-
running configure:

shell> rm config.cache
shell> make clean

Alternatively, you can run make distclean.

Dealing with Problems Compiling MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 131

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The following list describes some of the problems that have been found to occur most often when
compiling MySQL:

• If you get errors such as the ones shown here when compiling sql_yacc.cc, you probably have run
out of memory or swap space:

Internal compiler error: program cc1plus got fatal signal 11
Out of virtual memory
Virtual memory exhausted

The problem is that gcc requires a huge amount of memory to compile sql_yacc.cc with inline
functions. Try running configure with the --with-low-memory option:

shell> ./configure --with-low-memory

This option causes -fno-inline to be added to the compile line if you are using gcc and -O0 if
you are using something else. You should try the --with-low-memory option even if you have so
much memory and swap space that you think you can't possibly have run out. This problem has been
observed to occur even on systems with generous hardware configurations, and the --with-low-
memory option usually fixes it.

• By default, configure picks c++ as the compiler name and GNU c++ links with -lg++. If you are
using gcc, that behavior can cause problems during configuration such as this:

configure: error: installation or configuration problem:
C++ compiler cannot create executables.

You might also observe problems during compilation related to g++, libg++, or libstdc++.

One cause of these problems is that you may not have g++, or you may have g++ but not libg++,
or libstdc++. Take a look at the config.log file. It should contain the exact reason why your C+
+ compiler did not work. To work around these problems, you can use gcc as your C++ compiler. Try
setting the environment variable CXX to "gcc -O3". For example:

shell> CXX="gcc -O3" ./configure

This works because gcc compiles C++ source files as well as g++ does, but does not link in libg++ or
libstdc++ by default.

Another way to fix these problems is to install g++, libg++, and libstdc++. However, do not use
libg++ or libstdc++ with MySQL because this only increases the binary size of mysqld without
providing any benefits. Some versions of these libraries have also caused strange problems for MySQL
users in the past.

• To define flags to be used by your C or C++ compilers, specify them using the CFLAGS and
CXXFLAGS environment variables. You can also specify the compiler names this way using CC and CXX.
For example:

shell> CC=gcc
shell> CFLAGS=-O3
shell> CXX=gcc
shell> CXXFLAGS=-O3
shell> export CC CFLAGS CXX CXXFLAGS

Dealing with Problems Compiling MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 132

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To see what flags you might need to specify, invoke mysql_config with the --cflags option.

• If you get errors such as those shown here when compiling mysqld, configure did not correctly detect
the type of the last argument to accept(), getsockname(), or getpeername():

cxx: Error: mysqld.cc, line 645: In this statement, the referenced
 type of the pointer value ''length'' is ''unsigned long'',
 which is not compatible with ''int''.
new_sock = accept(sock, (struct sockaddr *)&cAddr, &length);

To fix this, edit the config.h file (which is generated by configure). Look for these lines:

/* Define as the base type of the last arg to accept */
#define SOCKET_SIZE_TYPE XXX

Change XXX to size_t or int, depending on your operating system. (You must do this each time you
run configure because configure regenerates config.h.)

• If your compile fails with errors such as any of the following, you must upgrade your version of make to
GNU make:

make: Fatal error in reader: Makefile, line 18:
Badly formed macro assignment

Or:

make: file `Makefile' line 18: Must be a separator (:

Or:

pthread.h: No such file or directory

Solaris and FreeBSD are known to have troublesome make programs.

GNU make 3.75 is known to work.

• The sql_yacc.cc file is generated from sql_yacc.yy. Normally, the build process does not need to
create sql_yacc.cc because MySQL comes with a pregenerated copy. However, if you do need to re-
create it, you might encounter this error:

"sql_yacc.yy", line xxx fatal: default action causes potential...

This is a sign that your version of yacc is deficient. You probably need to install bison (the GNU
version of yacc) and use that instead.

Versions of bison older than 1.75 may report this error:

sql_yacc.yy:#####: fatal error: maximum table size (32767) exceeded

The maximum table size is not actually exceeded; the error is caused by bugs in older versions of
bison.

Compiling and Linking an Optimized mysqld Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 133

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• On Debian Linux 3.0, you need to install gawk instead of the default mawk if you want to compile MySQL
with Berkeley DB support.

• If you get a compilation error on Linux (for example, SuSE Linux 8.1 or Red Hat Linux 7.3) similar to the
following one, you probably do not have g++ installed:

libmysql.c:1329: warning: passing arg 5 of `gethostbyname_r' from
incompatible pointer type
libmysql.c:1329: too few arguments to function `gethostbyname_r'
libmysql.c:1329: warning: assignment makes pointer from integer
without a cast
make[2]: *** [libmysql.lo] Error 1

By default, the configure script attempts to determine the correct number of arguments by using g++
(the GNU C++ compiler). This test yields incorrect results if g++ is not installed. There are two ways to
work around this problem:

• Make sure that the GNU C++ g++ is installed. On some Linux distributions, the required package is
called gpp; on others, it is named gcc-c++.

• Use gcc as your C++ compiler by setting the CXX environment variable to gcc:

export CXX="gcc"

You must run configure again after making either of those changes.

For information about acquiring or updating tools, see the system requirements in Section 2.17, “Installing
MySQL from Source”.

2.17.5 Compiling and Linking an Optimized mysqld Server

Most of the following tests were performed on Linux with the MySQL benchmarks, but they should give
some indication for other operating systems and workloads.

You obtain the fastest executables when you link with -static.

By using better compiler and compilation options, you can obtain a 10% to 30% speed increase in
applications. This is particularly important if you compile the MySQL server yourself.

When we tested both the Cygnus CodeFusion and Fujitsu compilers, neither was sufficiently bug-free to
enable MySQL to be compiled with optimizations enabled.

The standard MySQL binary distributions are compiled with support for all character sets. When you
compile MySQL yourself, you should include support only for the character sets that you are going to use.
This is controlled by the --with-charset option to configure.

Here is a list of some measurements that we have made:

• If you link dynamically (without -static), the result is 13% slower on Linux. Note that you still can use
a dynamically linked MySQL library for your client applications. It is the server that is most critical for
performance.

• For a connection from a client to a server running on the same host, if you connect using TCP/IP
rather than a Unix socket file, performance is 7.5% slower. (On Unix, if you connect to the host name
localhost, MySQL uses a socket file by default.)

Postinstallation Setup and Testing

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 134

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• For TCP/IP connections from a client to a server, connecting to a remote server on another host is 8%
to 11% slower than connecting to a server on the same host, even for connections faster than 100Mb/s
Ethernet.

• When running our benchmark tests using secure connections (all data encrypted with internal SSL
support) performance was 55% slower than with unencrypted connections.

• If you compile with --with-debug=full, most queries are 20% slower. Some queries may take
substantially longer; for example, the MySQL benchmarks run 35% slower. If you use --with-debug
(without =full), the speed decrease is only 15%. For a version of mysqld that has been compiled with
--with-debug=full, you can disable memory checking at runtime by starting it with the --skip-
safemalloc option. The execution speed should then be close to that obtained when configuring with
--with-debug.

• On a Sun UltraSPARC-IIe, a server compiled with Forte 5.0 is 4% faster than one compiled with gcc 3.2.

• On a Sun UltraSPARC-IIe, a server compiled with Forte 5.0 is 4% faster in 32-bit mode than in 64-bit
mode.

• Compiling with gcc 2.95.2 for UltraSPARC with the -mcpu=v8 -Wa,-xarch=v8plusa options gives
4% better performance.

• Compiling on Linux-x86 using gcc without frame pointers (-fomit-frame-pointer or -fomit-
frame-pointer -ffixed-ebp) makes mysqld 1% to 4% faster.

2.18 Postinstallation Setup and Testing
This section discusses tasks that you should perform after installing MySQL:

• If necessary, initialize the data directory and create the MySQL grant tables. For some MySQL
installation methods, data directory initialization may be done for you automatically:

• Installation on Windows

• Installation on Linux using a server RPM distribution.

• Installation on OS X using a DMG distribution.

For other platforms and installation types, including installation from generic binary and source
distributions, you must initialize the data directory yourself. For instructions, see Section 2.18.1,
“Initializing the Data Directory”.

• For instructions, see Section 2.18.2, “Starting the Server”, and Section 2.18.3, “Testing the Server”.

• Assign passwords to any initial accounts in the grant tables, if that was not already done during data
directory initialization. Passwords prevent unauthorized access to the MySQL server. You may also wish
to restrict access to test databases. For instructions, see Section 2.18.4, “Securing the Initial MySQL
Accounts”.

• Optionally, arrange for the server to start and stop automatically when your system starts and stops. For
instructions, see Section 2.18.5, “Starting and Stopping MySQL Automatically”.

• Optionally, populate time zone tables to enable recognition of named time zones. For instructions, see
Section 10.6, “MySQL Server Time Zone Support”.

When you are ready to create additional user accounts, you can find information on the MySQL access
control system and account management in Section 6.2, “The MySQL Access Privilege System”, and
Section 6.3, “MySQL User Account Management”.

Initializing the Data Directory

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 135

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2.18.1 Initializing the Data Directory

After installing MySQL, you must initialize the data directory, including the tables in the mysql system
database. For some MySQL installation methods, data directory initialization may be done automatically,
as described in Section 2.18, “Postinstallation Setup and Testing”. For other installation methods, including
installation from generic binary and source distributions, you must initialize the data directory yourself.

This section describes how to initialize the data directory on Unix and Unix-like systems. (For Windows,
see Section 2.10.6, “Windows Postinstallation Procedures”.) For some suggested commands that you can
use to test whether the server is accessible and working properly, see Section 2.18.3, “Testing the Server”.

In the examples shown here, the server runs under the user ID of the mysql login account. This assumes
that such an account exists. Either create the account if it does not exist, or substitute the name of a
different existing login account that you plan to use for running the server. For information about creating
the account, see Creating a mysql System User and Group, in Section 2.16, “Installing MySQL on Unix/
Linux Using Generic Binaries”.

1. Change location into the top-level directory of your MySQL installation, represented here by BASEDIR:

shell> cd BASEDIR

BASEDIR is likely to be something like /usr/local/mysql or /usr/local. The following steps
assume that you have changed location to this directory.

You will find several files and subdirectories in the BASEDIR directory. The most important for
installation purposes are the bin and scripts subdirectories, which contain the server as well as
client and utility programs.

For some distribution types, mysqld is installed in the libexec directory.

2. If necessary, ensure that the distribution contents are accessible to mysql. If you installed the
distribution as mysql, no further action is required. If you installed the distribution as root, its contents
will be owned by root. Change its ownership to mysql by executing the following commands as root
in the installation directory. The first command changes the owner attribute of the files to the mysql
user. The second changes the group attribute to the mysql group.

shell> chown -R mysql .
shell> chgrp -R mysql .

3. If necessary, initialize the data directory, including the mysql database containing the initial MySQL
grant tables that determine how users are permitted to connect to the server.

Typically, data directory initialization need be done only the first time you install MySQL. If you are
upgrading an existing installation, you should run mysql_upgrade instead (see Section 4.4.9,
“mysql_upgrade — Check Tables for MySQL Upgrade”). However, the command that initializes
the data directory does not overwrite any existing privilege tables, so it should be safe to run in any
circumstances.

The exact location of mysql_install_db depends on the layout for your given installation.
To initialize the grant tables, use one of the following commands, depending on whether
mysql_install_db is located in the bin or scripts directory:

shell> bin/mysql_install_db --user=mysql
shell> scripts/mysql_install_db --user=mysql

Initializing the Data Directory

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 136

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

It is important to make sure that the database directories and files are owned by the mysql login
account so that the server has read and write access to them when you run it later. To ensure this if
you run mysql_install_db as root, include the --user option as shown. Otherwise, you should
execute the program while logged in as mysql, in which case you can omit the --user option from the
command.

The mysql_install_db command creates the server's data directory. Under the data directory, it
creates directories for the mysql database that holds the grant tables and the test database that
you can use to test MySQL. The program also creates privilege table entries for the initial account
or accounts. test_. For a complete listing and description of the grant tables, see Section 6.2, “The
MySQL Access Privilege System”.

It might be necessary to specify other options such as --basedir or --datadir if
mysql_install_db does not identify the correct locations for the installation directory or data
directory. For example:

shell> bin/mysql_install_db --user=mysql \
 --basedir=/opt/mysql/mysql \
 --datadir=/opt/mysql/mysql/data

If you do not want to have the test database, you can remove it after starting the server, using the
instructions in Section 2.18.4, “Securing the Initial MySQL Accounts”.

If you have trouble with mysql_install_db at this point, see Section 2.18.1.1, “Problems Running
mysql_install_db”.

4. After initializing the data directory, you can establish the final installation ownership settings. To
leave the installation owned by mysql, no action is required here. Otherwise, most of the MySQL
installation can be owned by root if you like. The exception is that the data directory must be owned
by mysql. To accomplish this, run the following commands as root in the installation directory. For
some distribution types, the data directory might be named var rather than data; adjust the second
command accordingly.

shell> chown -R root .
shell> chown -R mysql data

If the plugin directory (the directory named by the plugin_dir system variable) is writable by
the server, it may be possible for a user to write executable code to a file in the directory using
SELECT ... INTO DUMPFILE. This can be prevented by making the plugin directory read only to
the server or by setting the secure_file_priv system variable at server startup to a directory where
SELECT writes can be performed safely.

5. If you installed MySQL using a source distribution, you may want to optionally copy one of the provided
configuration files from the support-files directory into your /etc directory. There are different
sample configuration files for different use cases, server types, and CPU and RAM configurations. To
use one of these standard files, copy it to /etc/my.cnf, or /etc/mysql/my.cnf and edit and check
the configuration before starting your MySQL server for the first time.

You can also create my.cnf yourself and place into it the options the server should use at startup. See
Section 5.1.2, “Server Configuration Defaults”.

If you do not copy one of the standard configuration files or create your own, the MySQL server starts
with its default settings.

Initializing the Data Directory

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 137

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

6. If you want MySQL to start automatically when you boot your machine, see Section 2.18.5, “Starting
and Stopping MySQL Automatically”.

Data directory initialization creates time zone tables in the mysql database but does not populate them. To
do so, use the instructions in Section 10.6, “MySQL Server Time Zone Support”.

2.18.1.1 Problems Running mysql_install_db

The purpose of the mysql_install_db program is to initialize the data directory, including the tables in
the mysql system database. It does not overwrite existing MySQL privilege tables, and it does not affect
any other data.

To re-create your privilege tables, first stop the mysqld server if it is running. Then rename the mysql
directory under the data directory to save it, and run mysql_install_db. Suppose that your current
directory is the MySQL installation directory and that mysql_install_db is located in the bin directory
and the data directory is named data. To rename the mysql database and re-run mysql_install_db,
use these commands.

shell> mv data/mysql data/mysql.old
shell> bin/mysql_install_db --user=mysql

When you run mysql_install_db, you might encounter the following problems:

• mysql_install_db fails to install the grant tables

You may find that mysql_install_db fails to install the grant tables and terminates after displaying the
following messages:

Starting mysqld daemon with databases from XXXXXX
mysqld ended

In this case, you should examine the error log file very carefully. The log should be located in the
directory XXXXXX named by the error message and should indicate why mysqld did not start. If you do
not understand what happened, include the log when you post a bug report. See Section 1.7, “How to
Report Bugs or Problems”.

• There is a mysqld process running

This indicates that the server is running, in which case the grant tables have probably been created
already. If so, there is no need to run mysql_install_db at all because it needs to be run only once,
when you first install MySQL.

• Installing a second mysqld server does not work when one server is running

This can happen when you have an existing MySQL installation, but want to put a new installation in a
different location. For example, you might have a production installation, but you want to create a second
installation for testing purposes. Generally the problem that occurs when you try to run a second server
is that it tries to use a network interface that is in use by the first server. In this case, you should see one
of the following error messages:

Can't start server: Bind on TCP/IP port:
Address already in use
Can't start server: Bind on unix socket...

For instructions on setting up multiple servers, see Section 5.5, “Running Multiple MySQL Instances on
One Machine”.

Starting the Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 138

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• You do not have write access to the /tmp directory

If you do not have write access to create temporary files or a Unix socket file in the default location (the /
tmp directory), an error occurs when you run mysql_install_db or the mysqld server.

You can specify different locations for the temporary directory and Unix socket file by executing these
commands prior to starting mysql_install_db or mysqld, where some_tmp_dir is the full path
name to some directory for which you have write permission:

shell> TMPDIR=/some_tmp_dir/
shell> MYSQL_UNIX_PORT=/some_tmp_dir/mysql.sock
shell> export TMPDIR MYSQL_UNIX_PORT

Then you should be able to run mysql_install_db and start the server with these commands:

shell> bin/mysql_install_db --user=mysql
shell> bin/mysqld_safe --user=mysql &

If mysql_install_db is located in the scripts directory, modify the first command to scripts/
mysql_install_db.

See Section B.5.3.6, “How to Protect or Change the MySQL Unix Socket File”, and Section 2.21,
“Environment Variables”.

There are some alternatives to running the mysql_install_db program provided in the MySQL
distribution:

• If you want the initial privileges to be different from the standard defaults, use account-management
statements such as CREATE USER, GRANT, and REVOKE to change the privileges after the grant tables
have been set up. In other words, run mysql_install_db, and then use mysql -u root mysql to
connect to the server as the MySQL root user so that you can issue the necessary statements. (See
Section 13.7.1, “Account Management Statements”.)

To install MySQL on several machines with the same privileges, put the CREATE USER, GRANT,
and REVOKE statements in a file and execute the file as a script using mysql after running
mysql_install_db. For example:

shell> bin/mysql_install_db --user=mysql
shell> bin/mysql -u root < your_script_file

This enables you to avoid issuing the statements manually on each machine.

• It is possible to re-create the grant tables completely after they have previously been created. You might
want to do this if you are just learning how to use CREATE USER, GRANT, and REVOKE and have made
so many modifications after running mysql_install_db that you want to wipe out the tables and start
over.

To re-create the grant tables, stop the server if it is running and remove the mysql database directory.
Then run mysql_install_db again.

2.18.2 Starting the Server

This section describes how start the server on Unix and Unix-like systems. (For Windows, see
Section 2.10.4.4, “Starting the Server for the First Time”.) For some suggested commands that you can
use to test whether the server is accessible and working properly, see Section 2.18.3, “Testing the Server”.

Starting the Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 139

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Start the MySQL server like this:

shell> bin/mysqld_safe --user=mysql &

It is important that the MySQL server be run using an unprivileged (non-root) login account. To ensure
this if you run mysqld_safe as root, include the --user option as shown. Otherwise, execute the
program while logged in as mysql, in which case you can omit the --user option from the command.

For further instructions for running MySQL as an unprivileged user, see Section 6.1.5, “How to Run MySQL
as a Normal User”.

If the command fails immediately and prints mysqld ended, look for information in the error log (which by
default is the host_name.err file in the data directory).

If the server is unable to access the data directory it starts or read the grant tables in the mysql database,
it writes a message to its error log. Such problems can occur if you neglected to create the grant tables by
initializing the data directory before proceeding to this step, or if you ran the command that initializes the
data directory without the --user option. Remove the data directory and run the command with the --
user option.

If you have other problems starting the server, see Section 2.18.2.1, “Troubleshooting Problems Starting
the MySQL Server”. For more information about mysqld_safe, see Section 4.3.2, “mysqld_safe —
MySQL Server Startup Script”.

You can set up new accounts using the bin/mysql_setpermission script if you install the DBI
and DBD::mysql Perl modules. See Section 4.6.15, “mysql_setpermission — Interactively Set
Permissions in Grant Tables”. For Perl module installation instructions, see Section 2.22, “Perl Installation
Notes”.

If you would like to use mysqlaccess and have the MySQL distribution in some nonstandard location,
you must change the location where mysqlaccess expects to find the mysql client. Edit the bin/
mysqlaccess script at approximately line 18. Search for a line that looks like this:

$MYSQL = '/usr/local/bin/mysql'; # path to mysql executable

Change the path to reflect the location where mysql actually is stored on your system. If you do not do
this, a Broken pipe error will occur when you run mysqlaccess.

2.18.2.1 Troubleshooting Problems Starting the MySQL Server

This section provides troubleshooting suggestions for problems starting the server. For additional
suggestions for Windows systems, see Section 2.10.5, “Troubleshooting a MySQL Installation Under
Windows”.

If you have problems starting the server, here are some things to try:

• Check the error log to see why the server does not start.

• Specify any special options needed by the storage engines you are using.

• Make sure that the server knows where to find the data directory.

• Make sure that the server can access the data directory. The ownership and permissions of the data
directory and its contents must be set such that the server can read and modify them.

• Verify that the network interfaces the server wants to use are available.

Starting the Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 140

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Some storage engines have options that control their behavior. You can create a my.cnf file and specify
startup options for the engines that you plan to use. If you are going to use storage engines that support
transactional tables (InnoDB, BDB, NDB), be sure that you have them configured the way you want before
starting the server:

• If you are using InnoDB tables, see Section 14.2.1, “Configuring InnoDB”.

• If you are using BDB (Berkeley DB) tables, see Section 14.5.3, “BDB Startup Options”.

• If you are using MySQL Cluster, see Section 17.3, “MySQL Cluster Configuration”.

Storage engines will use default option values if you specify none, but it is recommended that you review
the available options and specify explicit values for those for which the defaults are not appropriate for your
installation.

When the mysqld server starts, it changes location to the data directory. This is where it expects to find
databases and where it expects to write log files. The server also writes the pid (process ID) file in the data
directory.

The data directory location is hardwired in when the server is compiled. This is where the server looks for
the data directory by default. If the data directory is located somewhere else on your system, the server will
not work properly. You can determine what the default path settings are by invoking mysqld with the --
verbose and --help options.

If the default locations do not match the MySQL installation layout on your system, you can override them
by specifying options to mysqld or mysqld_safe on the command line or in an option file.

To specify the location of the data directory explicitly, use the --datadir option. However, normally you
can tell mysqld the location of the base directory under which MySQL is installed and it looks for the data
directory there. You can do this with the --basedir option.

To check the effect of specifying path options, invoke mysqld with those options followed by the --
verbose and --help options. For example, if you change location into the directory where mysqld
is installed and then run the following command, it shows the effect of starting the server with a base
directory of /usr/local:

shell> ./mysqld --basedir=/usr/local --verbose --help

You can specify other options such as --datadir as well, but --verbose and --help must be the last
options.

Once you determine the path settings you want, start the server without --verbose and --help.

If mysqld is currently running, you can find out what path settings it is using by executing this command:

shell> mysqladmin variables

Or:

shell> mysqladmin -h host_name variables

host_name is the name of the MySQL server host.

If you get Errcode 13 (which means Permission denied) when starting mysqld, this means that the
privileges of the data directory or its contents do not permit server access. In this case, you change the
permissions for the involved files and directories so that the server has the right to use them. You can also
start the server as root, but this raises security issues and should be avoided.

Starting the Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 141

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Change location into the data directory and check the ownership of the data directory and its contents to
make sure the server has access. For example, if the data directory is /usr/local/mysql/var, use this
command:

shell> ls -la /usr/local/mysql/var

If the data directory or its files or subdirectories are not owned by the login account that you use for running
the server, change their ownership to that account. If the account is named mysql, use these commands:

shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql/var

Even with correct ownership, MySQL might fail to start up if there is other security software running on your
system that manages application access to various parts of the file system. In this case, reconfigure that
software to enable mysqld to access the directories it uses during normal operation.

If the server fails to start up correctly, check the error log. Log files are located in the data directory
(typically C:\Program Files\MySQL\MySQL Server 5.0\data on Windows, /usr/local/mysql/
data for a Unix/Linux binary distribution, and /usr/local/var for a Unix/Linux source distribution).
Look in the data directory for files with names of the form host_name.err and host_name.log, where
host_name is the name of your server host. Then examine the last few lines of these files. You can use
tail to display them:

shell> tail host_name.err
shell> tail host_name.log

The error log should contain information that indicates why the server could not start. For example, you
might see something like this in the log:

000729 14:50:10 bdb: Recovery function for LSN 1 27595 failed
000729 14:50:10 bdb: warning: ./test/t1.db: No such file or directory
000729 14:50:10 Can't init databases

This means that you did not start mysqld with the --bdb-no-recover option and Berkeley DB found
something wrong with its own log files when it tried to recover your databases. To be able to continue, you
should move the old Berkeley DB log files from the database directory to some other place, where you can
later examine them. The BDB log files are named in sequence beginning with log.0000000001, where
the number increases over time.

If you are running mysqld with BDB table support and mysqld dumps core at startup, this could be due to
problems with the BDB recovery log. In this case, you can try starting mysqld with --bdb-no-recover.
If that helps, you should remove all BDB log files from the data directory and try starting mysqld again
without the --bdb-no-recover option.

If either of the following errors occur, it means that some other program (perhaps another mysqld server)
is using the TCP/IP port or Unix socket file that mysqld is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Use ps to determine whether you have another mysqld server running. If so, shut down the server before
starting mysqld again. (If another server is running, and you really want to run multiple servers, you can
find information about how to do so in Section 5.5, “Running Multiple MySQL Instances on One Machine”.)

If no other server is running, try to execute the command telnet your_host_name
tcp_ip_port_number. (The default MySQL port number is 3306.) Then press Enter a couple of

Testing the Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 142

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

times. If you do not get an error message like telnet: Unable to connect to remote host:
Connection refused, some other program is using the TCP/IP port that mysqld is trying to use. You
will need to track down what program this is and disable it, or else tell mysqld to listen to a different port
with the --port option. In this case, you will also need to specify the port number for client programs
when connecting to the server using TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks connections to
it. If so, modify the firewall settings to permit access to the port.

If the server starts but you cannot connect to it, you should make sure that you have an entry in /etc/
hosts that looks like this:

127.0.0.1 localhost

If you cannot get mysqld to start, you can try to make a trace file to find the problem by using the --
debug option. See Section 21.3.3, “The DBUG Package”.

2.18.3 Testing the Server

After the data directory is initialized and you have started the server, perform some simple tests to make
sure that it works satisfactorily. This section assumes that your current location is the MySQL installation
directory and that it has a bin subdirectory containing the MySQL programs used here. If that is not true,
adjust the command path names accordingly.

Alternatively, add the bin directory to your PATH environment variable setting. That enables your shell
(command interpreter) to find MySQL programs properly, so that you can run a program by typing only its
name, not its path name. See Section 4.2.10, “Setting Environment Variables”.

Use mysqladmin to verify that the server is running. The following commands provide simple tests to
check whether the server is up and responding to connections:

shell> bin/mysqladmin version
shell> bin/mysqladmin variables

If you cannot connect to the server, specify a -u root option to connect as root. If you have assigned a
password for the root account already, you'll also need to specify -p on the command line and enter the
password when prompted. For example:

shell> bin/mysqladmin -u root -p version
Enter password: (enter root password here)

The output from mysqladmin version varies slightly depending on your platform and version of MySQL,
but should be similar to that shown here:

shell> bin/mysqladmin version
mysqladmin Ver 14.12 Distrib 5.0.96, for pc-linux-gnu on i686
...

Server version 5.0.96
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /var/lib/mysql/mysql.sock
Uptime: 14 days 5 hours 5 min 21 sec

Threads: 1 Questions: 366 Slow queries: 0
Opens: 0 Flush tables: 1 Open tables: 19
Queries per second avg: 0.000

Testing the Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 143

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To see what else you can do with mysqladmin, invoke it with the --help option.

Verify that you can shut down the server (include a -p option if the root account has a password already):

shell> bin/mysqladmin -u root shutdown

Verify that you can start the server again. Do this by using mysqld_safe or by invoking mysqld directly.
For example:

shell> bin/mysqld_safe --user=mysql &

If mysqld_safe fails, see Section 2.18.2.1, “Troubleshooting Problems Starting the MySQL Server”.

Run some simple tests to verify that you can retrieve information from the server. The output should be
similar to that shown here.

Use mysqlshow to see what databases exist:

shell> bin/mysqlshow
+--------------------+
| Databases |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+

The list of installed databases may vary, but will always include the minimum of mysql and
information_schema.

If you specify a database name, mysqlshow displays a list of the tables within the database:

shell> bin/mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| func |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| proc |
| procs_priv |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

Use the mysql program to select information from a table in the mysql database:

shell> bin/mysql -e "SELECT User, Host FROM mysql.user" mysql
+------+-----------+
| User | Host |

Securing the Initial MySQL Accounts

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 144

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+------+-----------+
| root | localhost |
+------+-----------+

There is a benchmark suite in the sql-bench directory (under the MySQL installation directory) that you
can use to compare how MySQL performs on different platforms. The benchmark suite is written in Perl.
It requires the Perl DBI module that provides a database-independent interface to the various databases,
and some other additional Perl modules:

DBI
DBD::mysql
Data::Dumper
Data::ShowTable

These modules can be obtained from CPAN (http://www.cpan.org/). See also Section 2.22.1, “Installing
Perl on Unix”.

The sql-bench/Results directory contains the results from many runs against different databases and
platforms. To run all tests, execute these commands:

shell> cd sql-bench
shell> perl run-all-tests

If you do not have the sql-bench directory, you probably installed MySQL using RPM files other than
the source RPM. (The source RPM includes the sql-bench benchmark directory.) In this case, you must
first install the benchmark suite before you can use it. There are separate benchmark RPM files named
mysql-bench-VERSION.i386.rpm that contain benchmark code and data.

If you have a source distribution, there are also tests in its tests subdirectory that you can run. For
example, to run auto_increment.tst, execute this command from the top-level directory of your source
distribution:

shell> mysql -vvf test < ./tests/auto_increment.tst

The expected result of the test can be found in the ./tests/auto_increment.res file.

At this point, your server is running and you can access it. To tighten security if you have not yet assigned
passwords to the initial account or accounts, follow the instructions in Section 2.18.4, “Securing the Initial
MySQL Accounts”.

For more information about mysql, mysqladmin, and mysqlshow, see Section 4.5.1, “mysql — The
MySQL Command-Line Tool”, Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”,
and Section 4.5.6, “mysqlshow — Display Database, Table, and Column Information”.

2.18.4 Securing the Initial MySQL Accounts

The MySQL installation process involves initializing the data directory, including the mysql database
containing the grant tables that define MySQL accounts. For details, see Section 2.18, “Postinstallation
Setup and Testing”.

This section describes how to assign passwords to the initial accounts created during the MySQL
installation procedure, if you have not already done so.

The mysql.user grant table defines the initial MySQL user accounts and their access privileges:

• Some accounts have the user name root. These are superuser accounts that have all privileges and
can do anything. If these root accounts have empty passwords, anyone can connect to the MySQL
server as root without a password and be granted all privileges.

http://www.cpan.org/

Securing the Initial MySQL Accounts

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 145

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• On Windows, root accounts are created that permit connections from the local host only.
Connections can be made by specifying the host name localhost or the IP address 127.0.0.1.
If the user selects the Enable root access from remote machines option during installation, the
Windows installer creates another root account that permits connections from any host.

• On Unix, each root account permits connections from the local host. Connections can be made by
specifying the host name localhost, the IP address 127.0.0.1, or the actual host name or IP
address.

An attempt to connect to the host 127.0.0.1 normally resolves to the localhost account. However,
this fails if the server is run with the --skip-name-resolve option, so the 127.0.0.1 account is
useful in that case.

• If accounts for anonymous users were created, these have an empty user name. The anonymous
accounts have no password, so anyone can use them to connect to the MySQL server.

• On Windows, there is one anonymous account that permits connections from the local host.
Connections can be made by specifying a host name of localhost. It has no global privileges.
(Before MySQL 5.0.36, it has all global privileges, just like the root accounts.)

• On Unix, each anonymous account permits connections from the local host. Connections can be
made by specifying a host name of localhost for one of the accounts, or the actual host name or IP
address for the other.

To display which accounts exist in the mysql.user table and check whether their passwords are empty,
use the following statement:

mysql> SELECT User, Host, Password FROM mysql.user;
+------+--------------------+----------+
| User | Host | Password |
+------+--------------------+----------+
root	localhost	
root	myhost.example.com	
root	127.0.0.1	
	localhost	
	myhost.example.com	
+------+--------------------+----------+

This output indicates that there are several root and anonymous-user accounts, none of which have
passwords. The output might differ on your system, but the presence of accounts with empty passwords
means that your MySQL installation is unprotected until you do something about it:

• Assign a password to each MySQL root account that does not have one.

• To prevent clients from connecting as anonymous users without a password, either assign a password to
each anonymous account or remove the accounts.

In addition, the mysql.db table contains rows that permit all accounts to access the test database and
other databases with names that start with test_. This is true even for accounts that otherwise have no
special privileges such as the default anonymous accounts. This is convenient for testing but inadvisable
on production servers. Administrators who want database access restricted only to accounts that have
permissions granted explicitly for that purpose should remove these mysql.db table rows.

The following instructions describe how to set up passwords for the initial MySQL accounts, first for the
root accounts, then for the anonymous accounts. The instructions also cover how to remove anonymous
accounts, should you prefer not to permit anonymous access at all, and describe how to remove
permissive access to test databases. Replace new_password in the examples with the password that you

Securing the Initial MySQL Accounts

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 146

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

want to use. Replace host_name with the name of the server host. You can determine this name from the
output of the preceding SELECT statement. For the output shown, host_name is myhost.example.com.

Note

For additional information about setting passwords, see Section 6.3.5, “Assigning
Account Passwords”. If you forget your root password after setting it, see
Section B.5.3.2, “How to Reset the Root Password”.

To set up additional accounts, see Section 6.3.2, “Adding User Accounts”.

You might want to defer setting the passwords until later, to avoid the need to specify them while you
perform additional setup or testing. However, be sure to set them before using your installation for
production purposes.

Assigning root Account Passwords

The root account passwords can be set several ways. The following discussion demonstrates three
methods:

• Use the SET PASSWORD statement

• Use the UPDATE statement

• Use the mysqladmin command-line client program

To assign passwords using SET PASSWORD, connect to the server as root and issue a SET PASSWORD
statement for each root account listed in the mysql.user table.

For Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('new_password');
mysql> SET PASSWORD FOR 'root'@'127.0.0.1' = PASSWORD('new_password');
mysql> SET PASSWORD FOR 'root'@'%' = PASSWORD('new_password');

The last statement is unnecessary if the mysql.user table has no root account with a host value of %.

For Unix, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('new_password');
mysql> SET PASSWORD FOR 'root'@'127.0.0.1' = PASSWORD('new_password');
mysql> SET PASSWORD FOR 'root'@'host_name' = PASSWORD('new_password');

You can also use a single statement that assigns a password to all root accounts by using UPDATE to
modify the mysql.user table directly. This method works on any platform:

shell> mysql -u root
mysql> UPDATE mysql.user SET Password = PASSWORD('new_password')
 -> WHERE User = 'root';
mysql> FLUSH PRIVILEGES;

The FLUSH statement causes the server to reread the grant tables. Without it, the password change
remains unnoticed by the server until you restart it.

To assign passwords to the root accounts using mysqladmin, execute the following commands:

Securing the Initial MySQL Accounts

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 147

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysqladmin -u root password "new_password"
shell> mysqladmin -u root -h host_name password "new_password"

Those commands apply both to Windows and to Unix. The double quotation marks around the password
are not always necessary, but you should use them if the password contains spaces or other characters
that are special to your command interpreter.

The mysqladmin method of setting the root account passwords does not work for the
'root'@'127.0.0.1' account. Use the SET PASSWORD method shown earlier.

After the root passwords have been set, you must supply the appropriate password whenever you
connect as root to the server. For example, to shut down the server with mysqladmin, use this
command:

shell> mysqladmin -u root -p shutdown
Enter password: (enter root password here)

The mysql commands in the following instructions include a -p option based on the assumption that
you have assigned the root account passwords using the preceding instructions and must specify that
password when connecting to the server.

Assigning Anonymous Account Passwords

To assign passwords to the anonymous accounts, connect to the server as root, then use either SET
PASSWORD or UPDATE.

To use SET PASSWORD on Windows, do this:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('new_password');

To use SET PASSWORD on Unix, do this:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('new_password');
mysql> SET PASSWORD FOR ''@'host_name' = PASSWORD('new_password');

To set the anonymous-user account passwords with a single UPDATE statement, do this (on any platform):

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> UPDATE mysql.user SET Password = PASSWORD('new_password')
 -> WHERE User = '';
mysql> FLUSH PRIVILEGES;

The FLUSH statement causes the server to reread the grant tables. Without it, the password change
remains unnoticed by the server until you restart it.

Removing Anonymous Accounts

If you prefer to remove any anonymous accounts rather than assigning them passwords, do so as follows
on Windows:

shell> mysql -u root -p
Enter password: (enter root password here)

Starting and Stopping MySQL Automatically

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 148

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> DROP USER ''@'localhost';

On Unix, remove the anonymous accounts like this:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> DROP USER ''@'localhost';
mysql> DROP USER ''@'host_name';

Securing Test Databases

By default, the mysql.db table contains rows that permit access by any user to the test database and
other databases with names that start with test_. (These rows have an empty User column value, which
for access-checking purposes matches any user name.) This means that such databases can be used
even by accounts that otherwise possess no privileges. If you want to remove any-user access to test
databases, do so as follows:

shell> mysql -u root -p
Enter password: (enter root password here)
mysql> DELETE FROM mysql.db WHERE Db LIKE 'test%';
mysql> FLUSH PRIVILEGES;

The FLUSH statement causes the server to reread the grant tables. Without it, the privilege change remains
unnoticed by the server until you restart it.

With the preceding change, only users who have global database privileges or privileges granted explicitly
for the test database can use it. However, if you prefer that the database not exist at all, drop it:

mysql> DROP DATABASE test;

Note

On Windows, you can also perform the process described in this section using the
Configuration Wizard (see Section 2.10.3.11, “The Security Options Dialog”). On
other platforms, the MySQL distribution includes mysql_secure_installation,
a command-line utility that automates much of the process of securing a MySQL
installation.

2.18.5 Starting and Stopping MySQL Automatically

This section discusses methods for starting and stopping the MySQL server.

Generally, you start the mysqld server in one of these ways:

• Invoke mysqld directly. This works on any platform.

• On Windows, you can set up a MySQL service that runs automatically when Windows starts. See
Section 2.10.4.7, “Starting MySQL as a Windows Service”.

• On Unix and Unix-like systems, you can invoke mysqld_safe, which tries to determine the proper
options for mysqld and then runs it with those options. See Section 4.3.2, “mysqld_safe — MySQL
Server Startup Script”.

• On systems that use System V-style run directories (that is, /etc/init.d and run-level specific
directories), invoke mysql.server. This script is used primarily at system startup and shutdown. It
usually is installed under the name mysql. The mysql.server script starts the server by invoking
mysqld_safe. See Section 4.3.3, “mysql.server — MySQL Server Startup Script”.

Upgrading or Downgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 149

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• On OS X, install a separate MySQL Startup Item package to enable automatic MySQL startup at system
startup. The Startup Item starts the server by invoking mysql.server. For details, see Section 2.11,
“Installing MySQL on OS X”.

The mysqld_safe and mysql.server scripts and the OS X Startup Item can be used to start the server
manually, or automatically at system startup time. mysql.server and the Startup Item also can be used
to stop the server.

The following table shows which option groups the server and startup scripts read from option files.

Table 2.8 MySQL Startup Scripts and Supported Server Option Groups

Script Option Groups

mysqld [mysqld], [server], [mysqld-major_version]

mysqld_safe [mysqld], [server], [mysqld_safe]

mysql.server [mysqld], [mysql.server], [server]

[mysqld-major_version] means that groups with names like [mysqld-4.1] and [mysqld-5.0]
are read by servers having versions 4.1.x, 5.0.x, and so forth. This feature can be used to specify options
that can be read only by servers within a given release series.

For backward compatibility, mysql.server also reads the [mysql_server] group and mysqld_safe
also reads the [safe_mysqld] group. However, you should update your option files to use the
[mysql.server] and [mysqld_safe] groups instead.

For more information on MySQL configuration files and their structure and contents, see Section 4.2.6,
“Using Option Files”.

2.19 Upgrading or Downgrading MySQL
This section describes the steps to upgrade or downgrade a MySQL installation.

Upgrading is a common procedure, as you pick up bug fixes within the same MySQL release series or
significant features between major MySQL releases. You perform this procedure first on some test systems
to make sure everything works smoothly, and then on the production systems.

Downgrading is less common. Typically, you undo an upgrade because of some compatibility or
performance issue that occurs on a production system, and was not uncovered during initial upgrade
verification on the test systems. As with the upgrade procedure, perform and verify the downgrade
procedure on some test systems first, before using it on a production system.

2.19.1 Upgrading MySQL

This section describes how to upgrade to a new MySQL version.

• Supported Upgrade Methods

• Supported Upgrade Paths

• Before You Begin

• Performing an In-place Upgrade

• Performing a Logical Upgrade

• Upgrade Troubleshooting

Upgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 150

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Supported Upgrade Methods

• In-place Upgrade: Involves shutting down the old MySQL version, replacing the old MySQL binaries
or packages with the new ones, restarting MySQL on the existing data directory, and running
mysql_upgrade.

• Logical Upgrade: Involves exporting existing data from the old MySQL version using mysqldump,
installing the new MySQL version, loading the dump file into the new MySQL version, and running
mysql_upgrade.

Note

MySQL recommends a mysqldump upgrade when upgrading from a previous
release. For example, use this method when upgrading from 4.1 to 5.0.

For in-place and logical upgrade procedures, see Performing an In-place Upgrade, and Performing a
Logical Upgrade.

If you run MySQL Server on Windows, see Section 2.10.7, “Upgrading MySQL on Windows”.

Supported Upgrade Paths

Unless otherwise documented, the following upgrade paths are supported:

• Upgrading from a release series version to a newer release series version is supported. For example,
upgrading from 5.0.95 to 5.0.96 is supported. Skipping release series versions is also supported. For
example, upgrading from 5.0.92 to 5.0.96 is supported.

• Upgrading one release level is supported. For example, upgrading from 4.1 to 5.0 is supported.
Upgrading to the latest release series version is recommended before upgrading to the next release
level. For example, upgrade to the latest 4.1 release before upgrading to 5.0.

• Upgrading more than one release level is supported, but only if you upgrade one release level at a time.
For example, if you currently are running MySQL 4.0 and wish to upgrade to a newer series, upgrade to
MySQL 4.1 first before upgrading to MySQL 5.0, and so forth. For information on upgrading to MySQL
4.1 or earlier releases, see the MySQL 3.23, 4.0, 4.1 Reference Manual.

• Direct upgrades that skip a release level (for example, upgrading directly from MySQL 4.0 to 5.0) are not
recommended or supported.

The following conditions apply to all upgrade paths:

• Upgrades between General Availability (GA) status releases are supported.

• Upgrades between milestone releases (or from a milestone release to a GA release) are not supported.

• For upgrades between versions of a MySQL release series that has reached GA status, you can move
the MySQL format files and data files between different versions on systems with the same architecture.
This is not necessarily true for upgrades between milestone releases. Use of milestone releases is at
your own risk.

Before You Begin

Before upgrading, review the following information and perform the recommended steps:

• Before upgrading, protect your data by creating a backup of your current databases and log files. The
backup should include the mysql database, which contains the MySQL system tables. See Section 7.2,
“Database Backup Methods”.

Upgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 151

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Review the Release Notes which provide information about features that are new in the MySQL
5.0 or differ from those found in earlier MySQL releases. Some of these changes may result in
incompatibilities.

• Review Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”. This section describes changes that may
require action before or after upgrading.

• Check Section 2.19.3, “Checking Whether Tables or Indexes Must Be Rebuilt”, to see whether changes
to table formats or to character sets or collations were made between your current version of MySQL
and the version to which you are upgrading. If such changes have resulted in an incompatibility between
MySQL versions, you will need to upgrade the affected tables using the instructions in Section 2.19.4,
“Rebuilding or Repairing Tables or Indexes”.

• If you use replication, see Section 16.4.3, “Upgrading a Replication Setup”, for information on upgrading
your replication setup.

• If you use XA transactions with InnoDB, run XA RECOVER before upgrading to check for uncommitted
XA transactions. If results are returned, either commit or rollback the XA transactions by issuing an XA
COMMIT or XA ROLLBACK statement.

• If your MySQL installation contains a large amount of data that might take a long time to convert after
an in-place upgrade, you might find it useful to create a “dummy” database instance for assessing what
conversions might be needed and the work involved to perform them. Make a copy of your MySQL
instance that contains a full copy of the mysql database, plus all other databases without data. Run your
upgrade procedure on this dummy instance to see what actions might be needed so that you can better
evaluate the work involved when performing actual data conversion on your original database instance.

• Rebuilding and reinstalling the Perl DBD::mysql module whenever you install or upgrade to a new
release of MySQL is recommended. The same applies to other MySQL interfaces as well, such as PHP
mysql extensions and the Python MySQLdb module.

Performing an In-place Upgrade

This section describes how to perform an in-place upgrade. Review Before you Begin before proceeding.

Note

If you upgrade an installation originally produced by installing multiple RPM
packages, upgrade all the packages, not just some. For example, if you previously
installed the server and client RPMs, do not upgrade just the server RPM.

To perform an in-place upgrade:

1. Review the changes described in Section 2.19.1.1, “Changes Affecting Upgrades to 5.0” for steps to be
performed before upgrading.

2. If you use InnoDB, configure MySQL to perform a slow shutdown. For example:

shell> bin/mysql -u root -ppassword --execute="set global innodb_fast_shutdown=0"

With a slow shutdown, InnoDB performs a full purge and change buffer merge before shutting down,
which ensures that data files are fully prepared in case of file format differences between releases.

3. Stop the old MySQL server.

4. Upgrade the MySQL binaries or packages in place (replace the 4.1 binaries with those from 5.0).

5. Start the MySQL 5.0 server using the existing data directory.

http://dev.mysql.com/doc/relnotes/mysql/5.0/en/

Upgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 152

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

6. Run mysql_upgrade. For example:

shell> bin/mysql_upgrade -u root -ppassword

mysql_upgrade examines all tables in all databases for incompatibilities with the current version of
MySQL Server. mysql_upgrade also upgrades the system tables so that you can take advantage of
new privileges or capabilities.

Note

mysql_upgrade does not upgrade the contents of the help tables. For upgrade
instructions, see Section 5.1.8, “Server-Side Help”.

Performing a Logical Upgrade

This section describes how to perform a logical upgrade. Review Before you Begin before proceeding.

To perform a logical upgrade:

1. Review the changes described in Section 2.19.1.1, “Changes Affecting Upgrades to 5.0” for steps to be
performed before upgrading.

2. Export your existing data from the previous MySQL version:

shell> mysqldump --add-drop-table --add-drop-table
 -> --all-databases --force > data-for-upgrade.sql

Note

The --all-databases option includes all databases in the dump, including
the mysql database that holds the system tables.

3. Stop the old MySQL server.

4. Install MySQL 5.0.

5. Initialize a new data directory:

shell> scripts/mysql_install_db --user=mysql --datadir=/path/to/5.0-datadir

6. Start the MySQL 5.0 server using the new data directory.

7. Load the previously created dump file into the new MySQL server. For example:

shell> bin/mysql -u root -ppassword --execute="source data-for-upgrade.sql" --force

8. Run mysql_upgrade. For example:

shell> bin/mysql_upgrade -u root -ppassword

mysql_upgrade examines all tables in all databases for incompatibilities with the current version of
MySQL Server. mysql_upgrade also upgrades the system tables so that you can take advantage of
new privileges or capabilities.

Note

mysql_upgrade does not upgrade the contents of the help tables. For upgrade
instructions, see Section 5.1.8, “Server-Side Help”.

Upgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 153

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

9. If you use InnoDB, configure MySQL to perform a slow shutdown. For example:

shell> bin/mysql -u root -ppassword --execute="set global innodb_fast_shutdown=0"

10. Shut down and restart the MySQL server to ensure a clean shutdown and startup.

Upgrade Troubleshooting

• If problems occur, such as that the new mysqld server does not start or that you cannot connect without
a password, verify that you do not have an old my.cnf file from your previous installation. You can
check this with the --print-defaults option (for example, mysqld --print-defaults). If this
command displays anything other than the program name, you have an active my.cnf file that affects
server or client operation.

• If, after an upgrade, you experience problems with compiled client programs, such as Commands
out of sync or unexpected core dumps, you probably have used old header or library files when
compiling your programs. In this case, check the date for your mysql.h file and libmysqlclient.a
library to verify that they are from the new MySQL distribution. If not, recompile your programs
with the new headers and libraries. Recompilation might also be necessary for programs compiled
against the shared client library if the library major version number has changed (for example from
libmysqlclient.so.15 to libmysqlclient.so.16.

• If you have created a user-defined function (UDF) with a given name and upgrade MySQL to a version
that implements a new built-in function with the same name, the UDF becomes inaccessible. To correct
this, use DROP FUNCTION to drop the UDF, and then use CREATE FUNCTION to re-create the UDF
with a different nonconflicting name. The same is true if the new version of MySQL implements a built-
in function with the same name as an existing stored function. See Section 9.2.3, “Function Name
Parsing and Resolution”, for the rules describing how the server interprets references to different kinds of
functions.

2.19.1.1 Changes Affecting Upgrades to 5.0

Before upgrading to MySQL 5.0, review the changes described in this section to identify upgrade issues
that apply to your current MySQL installation and applications.

Changes marked as either Known issue or Incompatible change are incompatibilities with earlier
versions of MySQL, and may require your attention before you upgrade. Our aim is to avoid these
changes, but occasionally they are necessary to correct problems that would be worse than an
incompatibility between releases. If any upgrade issue applicable to your installation involves an
incompatibility that requires special handling, follow the instructions given in the incompatibility description.
Sometimes this involves dumping and reloading tables, or use of a statement such as CHECK TABLE or
REPAIR TABLE.

For dump and reload instructions, see Section 2.19.4, “Rebuilding or Repairing Tables or Indexes”. Any
procedure that involves REPAIR TABLE with the USE_FRM option must be done before upgrading. Use of
this statement with a version of MySQL different from the one used to create the table (that is, using it after
upgrading) may damage the table. See Section 13.7.2.6, “REPAIR TABLE Syntax”.

Note

Several visible behaviors have changed between MySQL 4.1 and MySQL 5.0 to
make MySQL more compatible with standard SQL. These changes may affect your
applications.

• System Table Changes

• Server Changes

Upgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 154

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• SQL Changes

• C API Changes

System Table Changes

• After upgrading a 5.0 installation to 5.0.10 or higher, it is necessary to upgrade your grant tables.
Otherwise, creating stored procedures and functions might not work. The procedure for doing this is
described in Section 4.4.9, “mysql_upgrade — Check Tables for MySQL Upgrade”.

Server Changes

• MySQL 5.0.27 is the last version in MySQL 5.0 for which MySQL-Max binary distributions are provided,
except for RPM distributions. For RPMs, MySQL 5.0.37 is the last release. After these versions, the
features previously included in the mysqld-max server are included in mysqld.

If you previously installed a MySQL-Max distribution that includes a server named mysqld-max, and
then upgrade later to a non-Max version of MySQL, mysqld_safe still attempts to run the old mysqld-
max server. If you perform such an upgrade, you should remove the old mysqld-max server manually to
ensure that mysqld_safe runs the new mysqld server.

• Incompatible change: Character set or collation changes may require table indexes to be rebuilt. In
MySQL 5.0, these occurred in version 5.0.48. For details, see Section 2.19.3, “Checking Whether Tables
or Indexes Must Be Rebuilt”.

• Incompatible change: SHOW CREATE VIEW displays view definitions using an AS alias_name clause
for each column. If a column is created from an expression, the default alias is the expression text, which
can be quite long. As of MySQL 5.0.52, aliases for column names in CREATE VIEW statements are
checked against the maximum column length of 64 characters (not the maximum alias length of 256
characters). As a result, views created from the output of SHOW CREATE VIEW fail if any column alias
exceeds 64 characters. This can cause problems for replication or loading dump files. For additional
information and workarounds, see Section C.4, “Restrictions on Views”.

• Incompatible change: Beginning with MySQL 5.0.42, when a DATE value is compared with a
DATETIME value, the DATE value is coerced to the DATETIME type by adding the time portion as
00:00:00. Previously, the time portion of the DATETIME value was ignored, or the comparison could
be performed as a string comparison. To mimic the old behavior, use the CAST() function to cause the
comparison operands to be treated as previously. For example:

date_col = CAST(NOW() AS DATE)

• Incompatible change: For ENUM columns that had enumeration values containing commas, the
commas were mapped to 0xff internally. However, this rendered the commas indistinguishable from
true 0xff characters in the values. This no longer occurs. However, the fix requires that you dump and
reload any tables that have ENUM columns containing true 0xff in their values: Dump the tables using
mysqldump with the current server before upgrading from a version of MySQL 5.0 older than 5.0.36 to
version 5.0.36 or newer.

• Incompatible change. For BINARY columns, the pad value and how it is handled has changed as of
MySQL 5.0.15. The pad value for inserts now is 0x00 rather than space, and there is no stripping of the
pad value for retrievals. For details, see Section 11.4.2, “The BINARY and VARBINARY Types”.

• Incompatible change: As of MySQL 5.0.13, InnoDB rolls back only the last statement on a transaction
timeout. As of MySQL 5.0.32, a new option, --innodb_rollback_on_timeout, causes InnoDB to
abort and roll back the entire transaction if a transaction timeout occurs (the same behavior as in MySQL
4.1).

Upgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 155

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Incompatible change: The namespace for triggers changed in MySQL 5.0.10. Previously, trigger
names had to be unique per table. Now they must be unique within the schema (database). An
implication of this change is that DROP TRIGGER syntax now uses a schema name instead of a table
name (schema name is optional and, if omitted, the current schema will be used).

When upgrading from a version of MySQL 5 older than 5.0.10 to MySQL 5.0.10 or newer, you must drop
all triggers and re-create them or DROP TRIGGER will not work after the upgrade. Here is a suggested
procedure for doing this:

1. Upgrade to MySQL 5.0.10 or later to be able to access trigger information in the
INFORMATION_SCHEMA.TRIGGERS table. (This should work even for pre-5.0.10 triggers.)

2. Dump all trigger definitions using the following SELECT statement:

SELECT CONCAT('CREATE TRIGGER ', t.TRIGGER_SCHEMA, '.', t.TRIGGER_NAME,
 ' ', t.ACTION_TIMING, ' ', t.EVENT_MANIPULATION, ' ON ',
 t.EVENT_OBJECT_SCHEMA, '.', t.EVENT_OBJECT_TABLE,
 ' FOR EACH ROW ', t.ACTION_STATEMENT, '//')
INTO OUTFILE '/tmp/triggers.sql'
FROM INFORMATION_SCHEMA.TRIGGERS AS t;

The statement uses INTO OUTFILE, so you must have the FILE privilege. The file will be created
on the server host. Use a different file name if you like. To be 100% safe, inspect the trigger
definitions in the triggers.sql file, and perhaps make a backup of the file.

3. Stop the server and drop all triggers by removing all .TRG files in your database directories. Change
location to your data directory and issue this command:

shell> rm */*.TRG

4. Start the server and re-create all triggers using the triggers.sql file:

mysql> delimiter // ;
mysql> source /tmp/triggers.sql //

5. Use the SHOW TRIGGERS statement to check that all triggers were created successfully.

• Incompatible change: The indexing order for end-space in TEXT columns for InnoDB and MyISAM
tables has changed. Starting from 5.0.3, TEXT indexes are compared as space-padded at the end (just
as MySQL sorts CHAR, VARCHAR and TEXT fields). If you have an index on a TEXT column, you should
run CHECK TABLE on it. If the check reports errors, rebuild the indexes: Dump and reload the table if it is
an InnoDB table, or run OPTIMIZE TABLE or REPAIR TABLE if it is a MyISAM table.

• Incompatible change. As of MySQL 5.0.3, trailing spaces no longer are removed from values stored in
VARCHAR and VARBINARY columns. The maximum lengths for VARCHAR and VARBINARY columns in
MySQL 5.0.3 and later are 65,535 characters and 65,535 bytes, respectively.

When a binary upgrade (file system-level copy of data files) to MySQL 5.0 is performed for a table with
a VARBINARY column, the column is space-padded to the full permissible width of the column. This
causes values in VARBINARY columns that do not occupy the full width of the column to include extra
trailing spaces after the upgrade, which means that the data in the column is different.

In addition, new rows inserted into a table upgraded in this way will be space padded to the full width of
the column.

This issue can be resolved as follows:

Upgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 156

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

1. For each table containing VARBINARY columns, execute the following statement, where tbl_name
is the name of the table and engine_name is the name of the storage engine currently used by
tbl_name:

ALTER TABLE tbl_name ENGINE=engine_name;

In other words, if the table named mytable uses the MyISAM storage engine, then you would use
this statement:

ALTER TABLE mytable ENGINE=MYISAM;

This rebuilds the table so that it uses the 5.0 VARBINARY format.

2. Then you must remove all trailing spaces from any VARBINARY column values. For each
VARBINARY column varbinary_column, execute the following statement, where tbl_name is the
name of the table containing the VARBINARY column:

UPDATE tbl_name SET varbinary_column = RTRIM(varbinary_column);

This is necessary and safe because trailing spaces are stripped before 5.0.3, meaning that any
trailing spaces are erroneous.

This problem does not occur (and thus these two steps are not required) for tables upgraded using the
recommended procedure of dumping tables prior to the upgrade and reloading them afterward.

Note

If you create a table with new VARCHAR or VARBINARY columns in MySQL 5.0.3
or later, the table will not be usable if you downgrade to a version older than
5.0.3. Dump the table with mysqldump before downgrading and reload it after
downgrading.

• Incompatible change: The implementation of DECIMAL was changed in MySQL 5.0.3. You should
make your applications aware of this change. For information about this change, and about possible
incompatibilities with old applications, see Section 12.17, “Precision Math”, in particular, Section 12.17.2,
“DECIMAL Data Type Characteristics”.

DECIMAL columns are stored in a more efficient format. To convert a table to use the new DECIMAL
type, you should do an ALTER TABLE on it. (The ALTER TABLE also will change the table's VARCHAR
columns to use the new VARCHAR data type properties, described in a separate item.)

A consequence of the change in handling of the DECIMAL and NUMERIC fixed-point data types is that
the server is more strict to follow standard SQL. For example, a data type of DECIMAL(3,1) stores a
maximum value of 99.9. Before MySQL 5.0.3, the server permitted larger numbers to be stored. That
is, it stored a value such as 100.0 as 100.0. As of MySQL 5.0.3, the server clips 100.0 to the maximum
permissible value of 99.9. If you have tables that were created before MySQL 5.0.3 and that contain
floating-point data not strictly legal for the data type, you should alter the data types of those columns.
For example:

ALTER TABLE tbl_name MODIFY col_name DECIMAL(4,1);

The behavior used by the server for DECIMAL columns in a table depends on the version of MySQL
used to create the table. If your server is from MySQL 5.0.3 or higher, but you have DECIMAL columns

Upgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 157

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

in tables that were created before 5.0.3, the old behavior still applies to those columns. To convert the
tables to the newer DECIMAL format, dump them with mysqldump and reload them.

• Incompatible change: MySQL 5.0.3 and up uses precision math when calculating with DECIMAL and
integer columns (64 decimal digits) and for rounding exact-value numbers. Rounding behavior is well-
defined, not dependent on the implementation of the underlying C library. However, this might result
in incompatibilities for applications that rely on the old behavior. (For example, inserting .5 into an INT
column results in 1 as of MySQL 5.0.3, but might be 0 in older versions.) For more information about
rounding behavior, see Section 12.17.4, “Rounding Behavior”, and Section 12.17.5, “Precision Math
Examples”.

• Incompatible change: In very old versions of MySQL (prior to 4.1), the TIMESTAMP data type
supported a display width, which was silenty ignored beginning with MySQL 4.1. This is deprecated in
MySQL 5.1, and removed altogether in MySQL 5.5. These changes in behavior can lead to two problem
scenarios when trying to use TIMESTAMP(N) columns with a MySQL 5.5 or later server:

• When importing a dump file (for example, one created using mysqldump) created in a MySQL 5.0
or earlier server into a server from a newer release series, a CREATE TABLE or ALTER TABLE
statement containing TIMESTAMP(N) causes the import to fail with a syntax error.

To fix this problem, edit the dump file in a text editor to replace any instances of TIMESTAMP(N)
with TIMESTAMP prior to importing the file. Be sure to use a plain text editor for this, and not a word
processor; otherwise, the result is almost certain to be unusable for importing into the MySQL server.

• When trying replicate any CREATE TABLE or ALTER TABLE statement containing TIMESTAMP(N)
from a master MySQL server that supports the TIMESTAMP(N) syntax to a MySQL 5.5 or newer
slave, the statement causes replication to fail. Similarly, when you try to restore from a binary log
written by a server that supports TIMESTAMP(N) to a MySQL 5.5 or newer server, any CREATE
TABLE or ALTER TABLE statement containing TIMESTAMP(N) causes the backup to fail. This holds
true regardless of the logging format used by a MySQL 5.1 or newer server.

It may be possible to fix such issues using a hex editor, by replacing any width arguments used with
TIMESTAMP, and the parentheses containing them, with space characters (hexadecimal 20). This can
be made to work as long as checksums were not enabled when creating the binary log. Be sure to use
a programmer's binary hex editor and not a regular text editor or word processor for this; otherwise,
the result is almost certain to be a corrupted binary log file. To guard against accidental corruption of
the binary log, you should always work on a copy of the file rather than the original.

You should try to handle potential issues of these types proactively by updating with ALTER TABLE any
TIMESTAMP(N) columns in your databases so that they use TIMESTAMP instead, before performing any
upgrades.

• Incompatible change: MyISAM and InnoDB tables created with DECIMAL columns in MySQL 5.0.3 to
5.0.5 will appear corrupt after an upgrade to MySQL 5.0.6. (The same incompatibility will occur for these
tables created in MySQL 5.0.6 after a downgrade to MySQL 5.0.3 to 5.0.5.) If you have such tables,
check and repair them with mysql_upgrade after upgrading. See Section 4.4.9, “mysql_upgrade —
Check Tables for MySQL Upgrade”.

• Incompatible change: For user-defined functions, exact-value decimal arguments such as 1.3 or
DECIMAL column values were passed as REAL_RESULT values prior to MySQL 5.0.3. As of 5.0.3,
they are passed as strings with a type of DECIMAL_RESULT. If you upgrade to 5.0.3 and find that your
UDF now receives string values, use the initialization function to coerce the arguments to numbers as
described in Section 21.2.2.3, “UDF Argument Processing”.

• Incompatible change: As of MySQL 5.0.3, the server by default no longer loads user-defined functions
(UDFs) unless they have at least one auxiliary symbol (for example, an xxx_init or xxx_deinit

Upgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 158

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

symbol) defined in addition to the main function symbol. This behavior can be overridden with the --
allow-suspicious-udfs option. See Section 21.2.2.6, “UDF Security Precautions”.

• Incompatible change: The update log has been removed in MySQL 5.0. If you had enabled it
previously, enable the binary log instead.

• Incompatible change: Support for the ISAM storage engine has been removed in MySQL 5.0. If you
have any ISAM tables, you should convert them before upgrading. For example, to convert an ISAM
table to use the MyISAM storage engine, use this statement:

ALTER TABLE tbl_name ENGINE = MyISAM;

Use a similar statement for every ISAM table in each of your databases.

• Incompatible change: Support for RAID options in MyISAM tables has been removed in MySQL 5.0.
If you have tables that use these options, you should convert them before upgrading. One way to do
this is to dump them with mysqldump, edit the dump file to remove the RAID options in the CREATE
TABLE statements, and reload the dump file. Another possibility is to use CREATE TABLE new_tbl
... SELECT raid_tbl to create a new table from the RAID table. However, the CREATE TABLE part
of the statement must contain sufficient information to re-create column attributes as well as indexes,
or column attributes may be lost and indexes will not appear in the new table. See Section 13.1.10,
“CREATE TABLE Syntax”.

The .MYD files for RAID tables in a given database are stored under the database directory in
subdirectories that have names consisting of two hex digits in the range from 00 to ff. After converting
all tables that use RAID options, these RAID-related subdirectories still will exist but can be removed.
Verify that they are empty, and then remove them manually. (If they are not empty, this indicates that
there is some RAID table that has not been converted.)

• As of MySQL 5.0.25, the lc_time_names system variable specifies the locale that controls the
language used to display day and month names and abbreviations. This variable affects the output from
the DATE_FORMAT(), DAYNAME() and MONTHNAME() functions. See Section 10.7, “MySQL Server
Locale Support”.

• In MySQL 5.0.6, binary logging of stored routines and triggers was changed. This change has
implications for security, replication, and data recovery, as discussed in Section 18.6, “Binary Logging of
Stored Programs”.

• As of MySQL 5.0.28, mysqld_safe no longer implicitly invokes mysqld-max if it exists. Instead,
it invokes mysqld unless a --mysqld or --mysqld-version option is given to specify another
server explicitly. If you previously relied on the implicit invocation of mysqld-max, you should use an
appropriate option now.

SQL Changes

• Known issue: Prior to MySQL 5.0.46, the parser accepted invalid code in SQL condition handlers,
leading to server crashes or unexpected execution behavior in stored programs. Specifically, the parser
permitted a condition handler to refer to labels for blocks that enclose the handler declaration. This was
incorrect because block label scope does not include the code for handlers declared within the labeled
block.

As of 5.0.46, the parser rejects this invalid construct, but if you upgrade in place (without dumping
and reloading your databases), existing handlers that contain the construct still are invalid even if they
appear to function as you expect and should be rewritten.

Upgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 159

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To find affected handlers, use mysqldump to dump all stored procedures and functions, triggers,
and events. Then attempt to reload them into an upgraded server. Handlers that contain illegal label
references will be rejected.

For more information about condition handlers and writing them to avoid invalid jumps, see
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”.

• Known issue: The fix for Bug #23491 introduced a problem with SHOW CREATE VIEW, which is used
by mysqldump. This causes an incompatibility when upgrading from versions affected by that bug fix
(MySQL 5.0.40 through 5.0.43, MySQL 5.1.18 through 5.1.19): If you use mysqldump before upgrading
from an affected version and reload the data after upgrading to a higher version, you must drop and
recreate your views.

• Incompatible change: The parser accepted statements that contained /* ... */ that were not
properly closed with */, such as SELECT 1 /* + 2. As of MySQL 5.0.50, statements that contain
unclosed /*-comments now are rejected with a syntax error.

This fix has the potential to cause incompatibilities. Because of Bug #26302, which caused the trailing
*/ to be truncated from comments in views, stored routines, triggers, and events, it is possible that
objects of those types may have been stored with definitions that now will be rejected as syntactically
invalid. Such objects should be dropped and re-created so that their definitions do not contain truncated
comments. If a stored object definition contains only a single statement (does not use a BEGIN ...
END block) and contains a comment within the statement, the comment should be moved to follow
the statement or the object should be rewritten to use a BEGIN ... END block. For example, this
statement:

CREATE PROCEDURE p() SELECT 1 /* my comment */ ;

Can be rewritten in either of these ways:

CREATE PROCEDURE p() SELECT 1; /* my comment */
CREATE PROCEDURE p() BEGIN SELECT 1 /* my comment */ ; END;

• Incompatible change: If you have created a user-defined function (UDF) with a given name and
upgrade MySQL to a version that implements a new built-in function with the same name, the UDF
becomes inaccessible. To correct this, use DROP FUNCTION to drop the UDF, and then use CREATE
FUNCTION to re-create the UDF with a different nonconflicting name. If a new version of MySQL
implements a built-in function with the same name as an existing stored function, you have two choices:
Rename the stored function to use a nonconflicting name, or change calls to the function so that they
use a database qualifier (that is, use db_name.func_name() syntax). See Section 9.2.3, “Function
Name Parsing and Resolution”, for the rules describing how the server interprets references to different
kinds of functions.

• Incompatible change: As of MySQL 5.0.15, the CHAR() function returns a binary string rather than
a string in the connection character set. An optional USING charset_name clause may be used to
produce a result in a specific character set instead. Also, arguments larger than 256 produce multiple
characters. They are no longer interpreted modulo 256 to produce a single character each. These
changes may cause some incompatibilities:

• CHAR(ORD('A')) = 'a' is no longer true:

mysql> SELECT CHAR(ORD('A')) = 'a';
+----------------------+
| CHAR(ORD('A')) = 'a' |

Upgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 160

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+----------------------+
| 0 |
+----------------------+

To perform a case-insensitive comparison, you can produce a result string in a nonbinary character
set by adding a USING clause or converting the result:

mysql> SELECT CHAR(ORD('A') USING latin1) = 'a';
+-----------------------------------+
| CHAR(ORD('A') USING latin1) = 'a' |
+-----------------------------------+
| 1 |
+-----------------------------------+
mysql> SELECT CONVERT(CHAR(ORD('A')) USING latin1) = 'a';
+--+
| CONVERT(CHAR(ORD('A')) USING latin1) = 'a' |
+--+
| 1 |
+--+

• Incompatible change: Beginning with MySQL 5.0.12, natural joins and joins with USING, including
outer join variants, are processed according to the SQL:2003 standard. The changes include
elimination of redundant output columns for NATURAL joins and joins specified with a USING clause
and proper ordering of output columns. The precedence of the comma operator also now is lower
compared to JOIN, LEFT JOIN, and so forth.

These changes make MySQL more compliant with standard SQL. However, they can result in different
output columns for some joins. Also, some queries that appeared to work correctly prior to 5.0.12 must
be rewritten to comply with the standard. For details about the scope of the changes and examples
that show what query rewrites are necessary, see Section 13.2.8.2, “JOIN Syntax”.

• CREATE TABLE ... SELECT CHAR(...) produces a VARBINARY column, not a VARCHAR column.
To produce a VARCHAR column, use USING or CONVERT() as just described to convert the CHAR()
result into a nonbinary character set.

• Previously, the following statements inserted the value 0x00410041 ('AA' as a ucs2 string) into the
table:

CREATE TABLE t (ucs2_column CHAR(2) CHARACTER SET ucs2);
INSERT INTO t VALUES (CHAR(0x41,0x41));

As of MySQL 5.0.15, the statements insert a single ucs2 character with value 0x4141.

• Incompatible change: By default, integer subtraction involving an unsigned value should produce an
unsigned result. Tracking of the “unsignedness” of an expression was improved in MySQL 5.0.13. This
means that, in some cases where an unsigned subtraction would have resulted in a signed integer,
it now results in an unsigned integer. One context in which this difference manifests itself is when a
subtraction involving an unsigned operand would be negative.

Suppose that i is a TINYINT UNSIGNED column and has a value of 0. The server evaluates the
following expression using 64-bit unsigned integer arithmetic with the following result:

mysql> SELECT i - 1 FROM t;
+----------------------+
| i - 1 |
+----------------------+
| 18446744073709551615 |
+----------------------+

Upgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 161

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If the expression is used in an UPDATE t SET i = i - 1 statement, the expression is evaluated and
the result assigned to i according to the usual rules for handling values outside the column range or 0
to 255. That is, the value is clipped to the nearest endpoint of the range. However, the result is version-
specific:

• Before MySQL 5.0.13, the expression is evaluated but is treated as the equivalent 64-bit signed
value (−1) for the assignment. The value of −1 is clipped to the nearest endpoint of the column range,
resulting in a value of 0:

mysql> UPDATE t SET i = i - 1; SELECT i FROM t;
+------+
| i |
+------+
| 0 |
+------+

• As of MySQL 5.0.13, the expression is evaluated and retains its unsigned attribute for the assignment.
The value of 18446744073709551615 is clipped to the nearest endpoint of the column range, resulting
in a value of 255:

mysql> UPDATE t SET i = i - 1; SELECT i FROM t;
+------+
| i |
+------+
| 255 |
+------+

To get the older behavior, use CAST() to convert the expression result to a signed value:

UPDATE t SET i = CAST(i - 1 AS SIGNED);

Alternatively, set the NO_UNSIGNED_SUBTRACTION SQL mode. However, this will affect all integer
subtractions involving unsigned values.

• Incompatible change: Before MySQL 5.0.12, NOW() and SYSDATE() return the same value (the time
at which the statement in which the function occurs begins executing). As of MySQL 5.0.12, SYSDATE()
returns the time at which it executes, which can differ from the value returned by NOW(). For information
about the implications for binary logging, replication, and use of indexes, see the description for
SYSDATE() in Section 12.7, “Date and Time Functions” and for SET TIMESTAMP in Section 13.7.4,
“SET Syntax”. To restore the former behavior for SYSDATE() and cause it to be an alias for NOW(), start
the server with the --sysdate-is-now option (available as of MySQL 5.0.20).

• Incompatible change: Before MySQL 5.0.13, GREATEST(x,NULL) and LEAST(x,NULL) return x
when x is a non-NULL value. As of 5.0.13, both functions return NULL if any argument is NULL, the same
as Oracle. This change can cause problems for applications that rely on the old behavior.

• Incompatible change: Before MySQL 5.0.8, conversion of DATETIME values to numeric form by
adding zero produced a result in YYYYMMDDHHMMSS format. The result of DATETIME+0 is now in
YYYYMMDDHHMMSS.000000 format.

• Incompatible change: In MySQL 5.0.6, the behavior of LOAD DATA INFILE and SELECT ... INTO
OUTFILE has changed when the FIELDS TERMINATED BY and FIELDS ENCLOSED BY values both
are empty. Formerly, a column was read or written using the display width of the column. For example,
INT(4) was read or written using a field with a width of 4. Now columns are read and written using a
field width wide enough to hold all values in the field. However, data files written before this change was

Upgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 162

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

made might not be reloaded correctly with LOAD DATA INFILE for MySQL 5.0.6 and up. This change
also affects data files read by mysqlimport and written by mysqldump --tab, which use LOAD DATA
INFILE and SELECT ... INTO OUTFILE. For more information, see Section 13.2.6, “LOAD DATA
INFILE Syntax”.

• Incompatible change: Before MySQL 5.0.2, SHOW STATUS returned global status values. The default
as of 5.0.2 is to return session values, which is incompatible with previous versions. To issue a SHOW
STATUS statement that will retrieve global status values for all versions of MySQL, write it like this:

SHOW /*!50002 GLOBAL */ STATUS;

• Incompatible change: User variables are not case sensitive in MySQL 5.0. In MySQL 4.1, SET @x =
0; SET @X = 1; SELECT @x; created two variables and returned 0. In MySQL 5.0, it creates one
variable and returns 1. Replication setups that rely on the old behavior may be affected by this change.

• Some keywords may be reserved in MySQL 5.0 that were not reserved in MySQL 4.1. See Section 9.3,
“Keywords and Reserved Words”.

• The LOAD DATA FROM MASTER and LOAD TABLE FROM MASTER statements are deprecated. See
Section 13.4.2.2, “LOAD DATA FROM MASTER Syntax”, for recommended alternatives.

• As of MySQL 5.0.25, TIMESTAMP columns that are NOT NULL now are reported that way by SHOW
COLUMNS and INFORMATION_SCHEMA, rather than as NULL.

• Comparisons made between FLOAT or DOUBLE values that happened to work in MySQL 4.1 may not do
so in 5.0. Values of these types are imprecise in all MySQL versions, and you are strongly advised to
avoid such comparisons as WHERE col_name=some_double, regardless of the MySQL version you
are using. See Section B.5.4.8, “Problems with Floating-Point Values”.

• As of MySQL 5.0.3, BIT is a separate data type, not a synonym for TINYINT(1). See Section 11.1.1,
“Numeric Type Overview”.

• MySQL 5.0.2 adds several SQL modes that enable stricter control over rejecting records that
have invalid or missing values. See Section 5.1.7, “Server SQL Modes”, and Section 1.8.3.3,
“Constraints on Invalid Data”. If you want to enable this control but continue to use MySQL's
capability for storing incorrect dates such as '2004-02-31', you should start the server with --
sql_mode="TRADITIONAL,ALLOW_INVALID_DATES".

• As of MySQL 5.0.2, the SCHEMA and SCHEMAS keywords are accepted as synonyms for DATABASE and
DATABASES, respectively. (While “schemata” is grammatically correct and even appears in some MySQL
5.0 system database and table names, it cannot be used as a keyword.)

C API Changes

• Incompatible change: Because the MySQL 5.0 server has a new implementation of the DECIMAL
data type, a problem may occur if the server is used by older clients that still are linked against MySQL
4.1 client libraries. If a client uses the binary client/server protocol to execute prepared statements that
generate result sets containing numeric values, an error will be raised: 'Using unsupported buffer
type: 246'

This error occurs because the 4.1 client libraries do not support the new MYSQL_TYPE_NEWDECIMAL
type value added in 5.0. There is no way to disable the new DECIMAL data type on the server side. You
can avoid the problem by relinking the application with the client libraries from MySQL 5.0.

• Incompatible change: The ER_WARN_DATA_TRUNCATED warning symbol was renamed to
WARN_DATA_TRUNCATED in MySQL 5.0.3.

Downgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 163

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The reconnect flag in the MYSQL structure is set to 0 by mysql_real_connect(). Only those client
programs which did not explicitly set this flag to 0 or 1 after mysql_real_connect() experience a
change. Having automatic reconnection enabled by default was considered too dangerous (due to the
fact that table locks, temporary tables, user variables, and session variables are lost after reconnection).

2.19.2 Downgrading MySQL

This section describes how to downgrade to an older MySQL version.

• Supported Downgrade Methods

• Supported Downgrade Paths

• Before You Begin

• Performing an In-place Downgrade

• Performing a Logical Downgrade

• Downgrade Troubleshooting

Supported Downgrade Methods

Supported downgrade methods include:

• In-place Downgrade: Involves shutting down the new MySQL version, replacing the new MySQL binaries
or packages with the old ones, and restarting the old MySQL version on the new data files. In-place
downgrades are supported for downgrades between GA versions within the same release series. For
example, in-place downgrades are supported for downgrades from 5.0.96 to 5.0.95.

• Logical Downgrade: Involves using mysqldump to dump all tables from the new MySQL version,
and then loading the dump file into the old MySQL version. Logical downgrades are supported for
downgrades between versions within the same release series and for downgrades between release
levels. For example, logical downgrades are supported for downgrades from 5.0.95 to 5.0.95 and for
downgrades from 5.0 to 4.1.

Supported Downgrade Paths

Unless otherwise documented, the following downgrade paths are supported:

• Downgrading from a release series version to an older release series version is supported using all
downgrade methods. For example, downgrading from 5.0.96 to 5.0.95 is supported. Skipping release
series versions is also supported. For example, downgrading from 5.0.96 to 5.0.92 is supported.

• Downgrading one release level is supported using the logical downgrade method. For example,
downgrading from 5.0 to 4.1 is supported.

• Downgrading more than one release level is supported using the logical downgrade method, but only if
you downgrade one release level at a time.

The following conditions apply to all downgrade paths:

• Downgrades between General Availability (GA) status releases are supported.

• Downgrades between milestone releases (or from a GA release to a milestone release) are not
supported.

Downgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 164

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Before You Begin

Before downgrading, the following steps are recommended:

• Review the Release Notes for the MySQL version you are downgrading from to ensure that there are no
features or fixes that you really need.

• Review Section 2.19.2.1, “Changes Affecting Downgrades from MySQL 5.0”. This section describes
changes that may require action before or after downgrading.

Note

The downgrade procedures described in the following sections assume you are
downgrading with data files created or modified by the newer MySQL version.
However, if you did not modify your data after upgrading, downgrading using
backups taken before upgrading to the new MySQL version is recommended.
Many of the changes described in Section 2.19.2.1, “Changes Affecting
Downgrades from MySQL 5.0” that require action before or after downgrading are
not applicable when downgrading using backups taken before upgrading to the
new MySQL version.

• Always back up your current databases and log files before downgrading. The backup should include
the mysql database, which contains the MySQL system tables. See Section 7.2, “Database Backup
Methods”.

• Use of new features, new configuration options, or new configuration option values that are not
supported by a previous release may cause downgrade errors or failures. Before downgrading,
it is recommended that you reverse changes resulting from the use of new features and remove
configuration settings that are not supported by the release you are downgrading to.

• Check Section 2.19.3, “Checking Whether Tables or Indexes Must Be Rebuilt”, to see whether changes
to table formats or to character sets or collations were made between your current version of MySQL
and the version to which you are downgrading. If such changes have resulted in an incompatibility
between MySQL versions, downgrade the affected tables using the instructions in Section 2.19.4,
“Rebuilding or Repairing Tables or Indexes”.

• If you use XA transactions with InnoDB, run XA RECOVER before downgrading to check for uncommitted
XA transactions. If results are returned, either commit or rollback the XA transactions by issuing an XA
COMMIT or XA ROLLBACK statement.

Performing an In-place Downgrade

In-place downgrades are supported for downgrades between GA status releases within the same release
series. Review Before you Begin before proceeding.

To perform an in-place downgrade:

1. Review the changes described in Section 2.19.2.1, “Changes Affecting Downgrades from MySQL 5.0”
for steps to be performed before downgrading.

2. If you use InnoDB, configure MySQL to perform a slow shutdown. For example:

shell> bin/mysql -u root -ppassword --execute="set global innodb_fast_shutdown=0"

With a slow shutdown, InnoDB performs a full purge and change buffer merge before shutting down,
which ensures that data files are fully prepared in case of file format differences between releases.

3. Stop the newer MySQL server.

http://dev.mysql.com/doc/relnotes/mysql/5.0/en/

Downgrading MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 165

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

4. Downgrade the MySQL binaries or packages in-place by replacing the newer binaries or packages with
the older ones.

5. Start the older (downgraded) MySQL server.

6. Run mysql_upgrade. For example:

shell> bin/mysql_upgrade -u root -ppassword

Performing a Logical Downgrade

Logical downgrades are supported for downgrades between releases within the same release series and
for downgrades to the previous release level. Only downgrades between General Availability (GA) status
releases are supported. Review Before you Begin before proceeding.

To perform a logical downgrade:

1. Review the changes described in Section 2.19.2.1, “Changes Affecting Downgrades from MySQL 5.0”
for steps to be performed before downgrading.

2. Dump all databases. For example:

shell> bin/mysqldump --add-drop-table --skip-routines --skip-triggers -u root -ppassword
 -> --all-databases --force > all_5_0_databases_dump.sql

3. Stop the newer MySQL server.

4. Initialize the older MySQL instance using an empty data directory. For example:

shell> scripts/mysql_install_db --user=mysql

5. Start the older MySQL server.

6. Load the dump file into the older MySQL server. For example:

shell> bin/mysql -u root -ppassword --execute="source all_5_0_databases_dump.sql" --force

7. Run mysql_upgrade. For example:

shell> bin/mysql_upgrade -u root -ppassword

8. If you use InnoDB, configure MySQL to perform a slow shutdown. For example:

shell> bin/mysql -u root -ppassword --execute="set global innodb_fast_shutdown=0"

9. Shut down and restart the MySQL server to ensure a clean shutdown and startup.

Downgrade Troubleshooting

If you downgrade from one release series to another, there may be incompatibilities in table storage
formats. In this case, use mysqldump to dump your tables before downgrading. After downgrading, reload
the dump file using mysql or mysqlimport to re-create your tables. For examples, see Section 2.19.5,
“Copying MySQL Databases to Another Machine”.

A typical symptom of a downward-incompatible table format change when you downgrade is that you
cannot open tables. In that case, use the following procedure:

1. Stop the older MySQL server that you are downgrading to.

2. Restart the newer MySQL server you are downgrading from.

Checking Whether Tables or Indexes Must Be Rebuilt

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 166

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

3. Dump any tables that were inaccessible to the older server by using mysqldump to create a dump file.

4. Stop the newer MySQL server and restart the older one.

5. Reload the dump file into the older server. Your tables should be accessible.

2.19.2.1 Changes Affecting Downgrades from MySQL 5.0

Before downgrading from MySQL 5.0, review the changes described in this section. Some changes may
require action before or after downgrading.

MySQL 4.1 does not support stored routines or triggers. If your databases contain stored routines or
triggers, prevent them from being dumped when you use mysqldump by using the --skip-routines
and --skip-triggers options. (See Section 4.5.4, “mysqldump — A Database Backup Program”.)

MySQL 4.1 does not support views. If your databases contain views, remove them with DROP VIEW before
using mysqldump. (See Section 13.1.19, “DROP VIEW Syntax”.)

After downgrading from MySQL 5.0, you may see the following information in the mysql.err file:

Incorrect information in file: './mysql/user.frm'

In this case, you can do the following:

1. Start MySQL 5.0.4 (or newer).

2. Run mysql_fix_privilege_tables, which will change the mysql.user table to a format that both
MySQL 4.1 and 5.0 can use.

3. Stop the MySQL server.

4. Start MySQL 4.1.

If the preceding procedure fails, you should be able to do the following instead:

1. Start MySQL 5.0.4 (or newer).

2. Run mysqldump --opt --add-drop-table mysql > /tmp/mysql.dump.

3. Stop the MySQL server.

4. Start MySQL 4.1 with the --skip-grant-tables option.

5. Run mysql mysql < /tmp/mysql.dump.

6. Run mysqladmin flush-privileges.

2.19.3 Checking Whether Tables or Indexes Must Be Rebuilt

A binary upgrade or downgrade is one that installs one version of MySQL “in place” over an existing
version, without dumping and reloading tables:

1. Stop the server for the existing version if it is running.

2. Install a different version of MySQL. This is an upgrade if the new version is higher than the original
version, a downgrade if the version is lower.

3. Start the server for the new version.

Checking Whether Tables or Indexes Must Be Rebuilt

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 167

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In many cases, the tables from the previous version of MySQL can be used without problem by the new
version. However, sometimes changes occur that require tables or table indexes to be rebuilt, as described
in this section. If you have tables that are affected by any of the issues described here, rebuild the tables
or indexes as necessary using the instructions given in Section 2.19.4, “Rebuilding or Repairing Tables or
Indexes”.

Table Incompatibilities

After a binary upgrade to MySQL 5.1 from a MySQL 5.0 installation that contains ARCHIVE tables,
accessing those tables causes the server to crash, even if you have run mysql_upgrade or CHECK
TABLE ... FOR UPGRADE. To work around this problem, use mysqldump to dump all ARCHIVE tables
before upgrading, and reload them into MySQL 5.1 after upgrading. The same problem occurs for binary
downgrades from MySQL 5.1 to 5.0.

Index Incompatibilities

If you perform a binary upgrade without dumping and reloading tables, you cannot upgrade directly from
MySQL 4.1 to 5.1 or higher. This occurs due to an incompatible change in the MyISAM table index format
in MySQL 5.0. Upgrade from MySQL 4.1 to 5.0 and repair all MyISAM tables. Then upgrade from MySQL
5.0 to 5.1 and check and repair your tables.

Modifications to the handling of character sets or collations might change the character sort order, which
causes the ordering of entries in any index that uses an affected character set or collation to be incorrect.
Such changes result in several possible problems:

• Comparison results that differ from previous results

• Inability to find some index values due to misordered index entries

• Misordered ORDER BY results

• Tables that CHECK TABLE reports as being in need of repair

The solution to these problems is to rebuild any indexes that use an affected character set or collation,
either by dropping and re-creating the indexes, or by dumping and reloading the entire table. In some
cases, it is possible to alter affected columns to use a different collation. For information about rebuilding
indexes, see Section 2.19.4, “Rebuilding or Repairing Tables or Indexes”.

To check whether a table has indexes that must be rebuilt, consult the following list. It indicates which
versions of MySQL introduced character set or collation changes that require indexes to be rebuilt. Each
entry indicates the version in which the change occurred and the character sets or collations that the
change affects. If the change is associated with a particular bug report, the bug number is given.

The list applies both for binary upgrades and downgrades. For example, Bug #27877 was fixed in MySQL
5.1.24, so it applies to upgrades from versions older than 5.1.24 to 5.1.24 or newer, and to downgrades
from 5.1.24 or newer to versions older than 5.1.24.

In many cases, you can use CHECK TABLE ... FOR UPGRADE to identify tables for which index
rebuilding is required. It will report this message:

Table upgrade required.
Please do "REPAIR TABLE `tbl_name`" to fix it!

In these cases, you can also use mysqlcheck --check-upgrade or mysql_upgrade, which execute
CHECK TABLE. However, the use of CHECK TABLE applies only after upgrades, not downgrades. Also,
CHECK TABLE is not applicable to all storage engines. For details about which storage engines CHECK
TABLE supports, see Section 13.7.2.3, “CHECK TABLE Syntax”.

Rebuilding or Repairing Tables or Indexes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 168

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

These changes cause index rebuilding to be necessary:

• MySQL 5.1.24 (Bug #27877)

Affects indexes that use the utf8_general_ci or ucs2_general_ci collation for columns that
contain 'ß' LATIN SMALL LETTER SHARP S (German). The bug fix corrected an error in the original
collations but introduced an incompatibility such that 'ß' compares equal to characters with which it
previously compared different.

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.30 (see Bug
#40053).

A workaround for this issue is implemented as of MySQL 5.1.62, 5.5.21, and 5.6.5. The
workaround involves altering affected columns to use the utf8_general_mysql500_ci and
ucs2_general_mysql500_ci collations, which preserve the original pre-5.1.24 ordering of
utf8_general_ci and ucs2_general_ci.

• MySQL 5.0.48, 5.1.23 (Bug #27562)

Affects indexes that use the ascii_general_ci collation for columns that contain any of these
characters: '`' GRAVE ACCENT, '[' LEFT SQUARE BRACKET, '\' REVERSE SOLIDUS, ']'
RIGHT SQUARE BRACKET, '~' TILDE

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.29 (see Bug
#39585).

• MySQL 5.0.48, 5.1.21 (Bug #29461)

Affects indexes for columns that use any of these character sets: eucjpms, euc_kr, gb2312, latin7,
macce, ujis

Affected tables can be detected by CHECK TABLE ... FOR UPGRADE as of MySQL 5.1.29 (see Bug
#39585).

2.19.4 Rebuilding or Repairing Tables or Indexes

This section describes how to rebuild a table. This can be necessitated by changes to MySQL such as how
data types are handled or changes to character set handling. For example, an error in a collation might
have been corrected, necessitating a table rebuild to update the indexes for character columns that use the
collation. (For examples, see Section 2.19.3, “Checking Whether Tables or Indexes Must Be Rebuilt”.) It
might also be that a table repair or upgrade should be done as indicated by a table check operation such
as that performed by CHECK TABLE, mysqlcheck, or mysql_upgrade.

Methods for rebuilding a table include dumping and reloading it, or using ALTER TABLE or REPAIR
TABLE.

Note

If you are rebuilding tables because a different version of MySQL will not handle
them after a binary (in-place) upgrade or downgrade, you must use the dump-
and-reload method. Dump the tables before upgrading or downgrading using your
original version of MySQL. Then reload the tables after upgrading or downgrading.

If you use the dump-and-reload method of rebuilding tables only for the purpose of
rebuilding indexes, you can perform the dump either before or after upgrading or
downgrading. Reloading still must be done afterward.

Rebuilding or Repairing Tables or Indexes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 169

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To rebuild a table by dumping and reloading it, use mysqldump to create a dump file and mysql to reload
the file:

shell> mysqldump db_name t1 > dump.sql
shell> mysql db_name < dump.sql

To rebuild all the tables in a single database, specify the database name without any following table name:

shell> mysqldump db_name > dump.sql
shell> mysql db_name < dump.sql

To rebuild all tables in all databases, use the --all-databases option:

shell> mysqldump --all-databases > dump.sql
shell> mysql < dump.sql

To rebuild a table with ALTER TABLE, use a “null” alteration; that is, an ALTER TABLE statement that
“changes” the table to use the storage engine that it already has. For example, if t1 is a MyISAM table, use
this statement:

mysql> ALTER TABLE t1 ENGINE = MyISAM;

If you are not sure which storage engine to specify in the ALTER TABLE statement, use SHOW CREATE
TABLE to display the table definition.

If you must rebuild a table because a table checking operation indicates that the table is corrupt or needs
an upgrade, you can use REPAIR TABLE if that statement supports the table's storage engine. For
example, to repair a MyISAM table, use this statement:

mysql> REPAIR TABLE t1;

For storage engines such as InnoDB that REPAIR TABLE does not support, use mysqldump to create a
dump file and mysql to reload the file, as described earlier.

For specifics about which storage engines REPAIR TABLE supports, see Section 13.7.2.6, “REPAIR
TABLE Syntax”.

mysqlcheck --repair provides command-line access to the REPAIR TABLE statement. This can
be a more convenient means of repairing tables because you can use the --databases or --all-
databases option to repair all tables in specific databases or all databases, respectively:

shell> mysqlcheck --repair --databases db_name ...
shell> mysqlcheck --repair --all-databases

For incompatibilities introduced in MySQL 5.1.24 by the fix for Bug #27877 that corrected the
utf8_general_ci and ucs2_general_ci collations, a workaround is implemented as of MySQL
5.1.62, 5.5.21, and 5.6.5. Upgrade to one of those versions, then convert each affected table using
one of the following methods. In each case, the workaround altering affected columns to use the
utf8_general_mysql500_ci and ucs2_general_mysql500_ci collations, which preserve the
original pre-5.1.24 ordering of utf8_general_ci and ucs2_general_ci.

• To convert an affected table after a binary upgrade that leaves the table files in place, alter the table to
use the new collation. Suppose that the table t1 contains one or more problematic utf8 columns. To
convert the table at the table level, use a statement like this:

Copying MySQL Databases to Another Machine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 170

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ALTER TABLE t1
CONVERT TO CHARACTER SET utf8 COLLATE utf8_general_mysql500_ci;

To apply the change on a column-specific basis, use a statement like this (be sure to repeat the column
definition as originally specified except for the COLLATE clause):

ALTER TABLE t1
MODIFY c1 CHAR(N) CHARACTER SET utf8 COLLATE utf8_general_mysql500_ci;

• To upgrade the table using a dump and reload procedure, dump the table using mysqldump, modify the
CREATE TABLE statement in the dump file to use the new collation, and reload the table.

After making the appropriate changes, CHECK TABLE should report no error.

2.19.5 Copying MySQL Databases to Another Machine

You can copy the .frm, .MYI, and .MYD files for MyISAM tables between different architectures
that support the same floating-point format. (MySQL takes care of any byte-swapping issues.) See
Section 14.1, “The MyISAM Storage Engine”.

In cases where you need to transfer databases between different architectures, you can use mysqldump
to create a file containing SQL statements. You can then transfer the file to the other machine and feed it
as input to the mysql client.

Use mysqldump --help to see what options are available.

The easiest (although not the fastest) way to move a database between two machines is to run the
following commands on the machine on which the database is located:

shell> mysqladmin -h 'other_hostname' create db_name
shell> mysqldump db_name | mysql -h 'other_hostname' db_name

If you want to copy a database from a remote machine over a slow network, you can use these commands:

shell> mysqladmin create db_name
shell> mysqldump -h 'other_hostname' --compress db_name | mysql db_name

You can also store the dump in a file, transfer the file to the target machine, and then load the file into the
database there. For example, you can dump a database to a compressed file on the source machine like
this:

shell> mysqldump --quick db_name | gzip > db_name.gz

Transfer the file containing the database contents to the target machine and run these commands there:

shell> mysqladmin create db_name
shell> gunzip < db_name.gz | mysql db_name

You can also use mysqldump and mysqlimport to transfer the database. For large tables, this is much
faster than simply using mysqldump. In the following commands, DUMPDIR represents the full path name
of the directory you use to store the output from mysqldump.

Operating System-Specific Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 171

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

First, create the directory for the output files and dump the database:

shell> mkdir DUMPDIR
shell> mysqldump --tab=DUMPDIR db_name

Then transfer the files in the DUMPDIR directory to some corresponding directory on the target machine
and load the files into MySQL there:

shell> mysqladmin create db_name # create database
shell> cat DUMPDIR/*.sql | mysql db_name # create tables in database
shell> mysqlimport db_name DUMPDIR/*.txt # load data into tables

Do not forget to copy the mysql database because that is where the grant tables are stored. You might
have to run commands as the MySQL root user on the new machine until you have the mysql database
in place.

After you import the mysql database on the new machine, execute mysqladmin flush-privileges
so that the server reloads the grant table information.

2.20 Operating System-Specific Notes

2.20.1 Linux Notes

This section discusses issues that have been found to occur on Linux. The first few subsections
describe general operating system-related issues, problems that can occur when using binary or source
distributions, and postinstallation issues. The remaining subsections discuss problems that occur with
Linux on specific platforms.

Note that most of these problems occur on older versions of Linux. If you are running a recent version, you
may see none of them.

2.20.1.1 Linux Operating System Notes

MySQL needs at least Linux version 2.0.

Warning

We have seen some strange problems with Linux 2.2.14 and MySQL on
SMP systems. We also have reports from some MySQL users that they have
encountered serious stability problems using MySQL with kernel 2.2.14. If you are
using this kernel, you should upgrade to 2.2.19 (or newer) or to a 2.4 kernel. If you
have a multiple-CPU box, you should seriously consider using 2.4 because it gives
you a significant speed boost. Your system should be more stable.

When using LinuxThreads, you should see a minimum of three mysqld processes running. These are in
fact threads. There is one thread for the LinuxThreads manager, one thread to handle connections, and
one thread to handle alarms and signals.

2.20.1.2 Linux Binary Distribution Notes

The Linux-Intel binary and RPM releases of MySQL are configured for the highest possible speed. We are
always trying to use the fastest stable compiler available.

The binary release is linked with -static, which means you do not normally need to worry about which
version of the system libraries you have. You need not install LinuxThreads, either. A program linked with

Linux Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 172

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

-static is slightly larger than a dynamically linked program, but also slightly faster (3% to 5%). However,
one problem with a statically linked program is that you can't use user-defined functions (UDFs). If you are
going to write or use UDFs (this is something for C or C++ programmers only), you must compile MySQL
yourself using dynamic linking.

A known issue with binary distributions is that on older Linux systems that use libc (such as Red Hat 4.x
or Slackware), you get some (nonfatal) issues with host name resolution. If your system uses libc rather
than glibc2, you probably will encounter some difficulties with host name resolution and getpwnam().
This happens because glibc (unfortunately) depends on some external libraries to implement host name
resolution and getpwent(), even when compiled with -static. These problems manifest themselves in
two ways:

• You may see the following error message when you run mysql_install_db:

Sorry, the host 'xxxx' could not be looked up

You can deal with this by executing mysql_install_db --force, which does not execute the
resolveip test in mysql_install_db. The downside is that you cannot use host names in the
grant tables: except for localhost, you must use IP addresses instead. If you are using an old
version of MySQL that does not support --force, you must manually remove the resolveip test in
mysql_install_db using a text editor.

• You also may see the following error when you try to run mysqld with the --user option:

getpwnam: No such file or directory

To work around this problem, start mysqld by using the su command rather than by specifying the --
user option. This causes the system itself to change the user ID of the mysqld process so that mysqld
need not do so.

Another solution, which solves both problems, is not to use a binary distribution. Obtain a MySQL source
distribution (in RPM or .tar.gz format) and install that instead.

On some Linux 2.2 versions, you may get the error Resource temporarily unavailable when
clients make a great many new connections to a mysqld server over TCP/IP. The problem is that Linux
has a delay between the time that you close a TCP/IP socket and the time that the system actually frees it.
There is room for only a finite number of TCP/IP slots, so you encounter the resource-unavailable error if
clients attempt too many new TCP/IP connections over a short period of time. For example, you may see
the error when you run the MySQL test-connect benchmark over TCP/IP.

We have inquired about this problem a few times on different Linux mailing lists but have never been able
to find a suitable resolution. The only known “fix” is for clients to use persistent connections, or, if you are
running the database server and clients on the same machine, to use Unix socket file connections rather
than TCP/IP connections.

2.20.1.3 Linux Source Distribution Notes

The following notes regarding glibc apply only to the situation when you build MySQL yourself. If you are
running Linux on an x86 machine, in most cases it is much better for you to use our binary. We link our
binaries against the best patched version of glibc we can find and with the best compiler options, in an
attempt to make it suitable for a high-load server. For a typical user, even for setups with a lot of concurrent
connections or tables exceeding the 2GB limit, our binary is the best choice in most cases. After reading
the following text, if you are in doubt about what to do, try our binary first to determine whether it meets
your needs. If you discover that it is not good enough, you may want to try your own build. In that case, we
would appreciate a note about it so that we can build a better binary next time.

Linux Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 173

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL uses LinuxThreads on Linux. If you are using an old Linux version that doesn't have glibc2,
you must install LinuxThreads before trying to compile MySQL. You can obtain LinuxThreads from http://
dev.mysql.com/downloads/os-linux.html.

Note that glibc versions before and including version 2.1.1 have a fatal bug in
pthread_mutex_timedwait() handling, which is used when INSERT DELAYED statements are issued.
Do not use INSERT DELAYED before upgrading glibc.

Note that Linux kernel and the LinuxThread library can by default handle a maximum of 1,024 threads.
If you plan to have more than 1,000 concurrent connections, you need to make some changes to
LinuxThreads, as follows:

• Increase PTHREAD_THREADS_MAX in sysdeps/unix/sysv/linux/bits/local_lim.h to 4096
and decrease STACK_SIZE in linuxthreads/internals.h to 256KB. The paths are relative to
the root of glibc. (Note that MySQL is not stable with 600 to 1000 connections if STACK_SIZE is the
default of 2MB.)

• Recompile LinuxThreads to produce a new libpthread.a library, and relink MySQL against it.

There is another issue that greatly hurts MySQL performance, especially on SMP systems. The mutex
implementation in LinuxThreads in glibc 2.1 is very poor for programs with many threads that hold the
mutex only for a short time. This produces a paradoxical result: If you link MySQL against an unmodified
LinuxThreads, removing processors from an SMP actually improves MySQL performance in many
cases. We have made a patch available for glibc 2.1.3 to correct this behavior (http://dev.mysql.com/
Downloads/Linux/linuxthreads-2.1-patch).

With glibc 2.2.2, MySQL uses the adaptive mutex, which is much better than even the patched one in
glibc 2.1.3. Be warned, however, that under some conditions, the current mutex code in glibc 2.2.2
overspins, which hurts MySQL performance. The likelihood that this condition occurs can be reduced
by re-nicing the mysqld process to the highest priority. We have also been able to correct the overspin
behavior with a patch, available at http://dev.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch. It
combines the correction of overspin, maximum number of threads, and stack spacing all in one. You need
to apply it in the linuxthreads directory with patch -p0 </tmp/linuxthreads-2.2.2.patch. We
hope it is included in some form in future releases of glibc 2.2. In any case, if you link against glibc
2.2.2, you still need to correct STACK_SIZE and PTHREAD_THREADS_MAX. We hope that the defaults is
corrected to some more acceptable values for high-load MySQL setup in the future, so that the commands
needed to produce your own build can be reduced to ./configure; make; make install.

If you use these patches to build a special static version of libpthread.a, use it only for statically
linking against MySQL. We know that these patches are safe for MySQL and significantly improve its
performance, but we cannot say anything about their effects on other applications. If you link other
applications that require LinuxThreads against the patched static version of the library, or build a patched
shared version and install it on your system, you do so at your own risk.

If you experience any strange problems during the installation of MySQL, or with some common utilities
hanging, it is very likely that they are either library or compiler related. If this is the case, using our binary
resolves them.

If you link your own MySQL client programs, you may see the following error at runtime:

ld.so.1: fatal: libmysqlclient.so.#:
open failed: No such file or directory

This problem can be avoided by one of the following methods:

• Link clients with the -Wl,r/full/path/to/libmysqlclient.so flag rather than with -Lpath).

http://dev.mysql.com/downloads/os-linux.html
http://dev.mysql.com/downloads/os-linux.html
http://dev.mysql.com/Downloads/Linux/linuxthreads-2.1-patch
http://dev.mysql.com/Downloads/Linux/linuxthreads-2.1-patch
http://dev.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch

Linux Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 174

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Copy libmysqclient.so to /usr/lib.

• Add the path name of the directory where libmysqlclient.so is located to the LD_RUN_PATH
environment variable before running your client.

If you are using the Fujitsu compiler (fcc/FCC), you may have some problems compiling MySQL because
the Linux header files are very gcc oriented. The following configure line should work with fcc/FCC:

CC=fcc CFLAGS="-O -K fast -K lib -K omitfp -Kpreex -D_GNU_SOURCE \
 -DCONST=const -DNO_STRTOLL_PROTO" \
CXX=FCC CXXFLAGS="-O -K fast -K lib \
 -K omitfp -K preex --no_exceptions --no_rtti -D_GNU_SOURCE \
 -DCONST=const -Dalloca=__builtin_alloca -DNO_STRTOLL_PROTO \
 '-D_EXTERN_INLINE=static __inline'" \
./configure \
 --prefix=/usr/local/mysql --enable-assembler \
 --with-mysqld-ldflags=-all-static --disable-shared \
 --with-low-memory

2.20.1.4 Linux Postinstallation Notes

mysql.server can be found in the support-files directory under the MySQL installation directory
or in a MySQL source tree. You can install it as /etc/init.d/mysql for automatic MySQL startup and
shutdown. See Section 4.3.3, “mysql.server — MySQL Server Startup Script”.

If MySQL cannot open enough files or connections, it may be that you have not configured Linux to handle
enough files.

In Linux 2.2 and onward, you can check the number of allocated file handles as follows:

shell> cat /proc/sys/fs/file-max
shell> cat /proc/sys/fs/dquot-max
shell> cat /proc/sys/fs/super-max

If you have more than 16MB of memory, you should add something like the following to your init scripts (for
example, /etc/init.d/boot.local on SuSE Linux):

echo 65536 > /proc/sys/fs/file-max
echo 8192 > /proc/sys/fs/dquot-max
echo 1024 > /proc/sys/fs/super-max

You can also run the echo commands from the command line as root, but these settings are lost the next
time your computer restarts.

Alternatively, you can set these parameters on startup by using the sysctl tool, which is used by many
Linux distributions (including SuSE Linux 8.0 and later). Put the following values into a file named /etc/
sysctl.conf:

Increase some values for MySQL
fs.file-max = 65536
fs.dquot-max = 8192
fs.super-max = 1024

You should also add the following to /etc/my.cnf:

[mysqld_safe]
open-files-limit=8192

Linux Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 175

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This should enable a server limit of 8,192 for the combined number of connections and open files.

The STACK_SIZE constant in LinuxThreads controls the spacing of thread stacks in the address space.
It needs to be large enough so that there is plenty of room for each individual thread stack, but small
enough to keep the stack of some threads from running into the global mysqld data. Unfortunately,
as we have experimentally discovered, the Linux implementation of mmap() successfully unmaps a
mapped region if you ask it to map out an address currently in use, zeroing out the data on the entire
page instead of returning an error. So, the safety of mysqld or any other threaded application depends
on the “gentlemanly” behavior of the code that creates threads. The user must take measures to make
sure that the number of running threads at any given time is sufficiently low for thread stacks to stay away
from the global heap. With mysqld, you should enforce this behavior by setting a reasonable value for the
max_connections variable.

If you build MySQL yourself, you can patch LinuxThreads for better stack use. See Section 2.20.1.3, “Linux
Source Distribution Notes”. If you do not want to patch LinuxThreads, you should set max_connections
to a value no higher than 500. It should be even less if you have a large key buffer, large heap tables,
or some other things that make mysqld allocate a lot of memory, or if you are running a 2.2 kernel with
a 2GB patch. If you are using our binary or RPM version, you can safely set max_connections at
1500, assuming no large key buffer or heap tables with lots of data. The more you reduce STACK_SIZE
in LinuxThreads the more threads you can safely create. Values between 128KB and 256KB are
recommended.

If you use a lot of concurrent connections, you may suffer from a “feature” in the 2.2 kernel that attempts
to prevent fork bomb attacks by penalizing a process for forking or cloning a child. This causes MySQL
not to scale well as you increase the number of concurrent clients. On single-CPU systems, we have
seen this manifest as very slow thread creation; it may take a long time to connect to MySQL (as long as
one minute), and it may take just as long to shut it down. On multiple-CPU systems, we have observed a
gradual drop in query speed as the number of clients increases. In the process of trying to find a solution,
we have received a kernel patch from one of our users who claimed it helped for his site. This patch is
available at http://dev.mysql.com/Downloads/Patches/linux-fork.patch. We have done rather extensive
testing of this patch on both development and production systems. It has significantly improved MySQL
performance without causing any problems and is recommended for users who still run high-load servers
on 2.2 kernels.

This issue has been fixed in the 2.4 kernel, so if you are not satisfied with the current performance of
your system, rather than patching your 2.2 kernel, it might be easier to upgrade to 2.4. On SMP systems,
upgrading also gives you a nice SMP boost in addition to fixing the fairness bug.

We have tested MySQL on the 2.4 kernel on a two-CPU machine and found MySQL scales much better.
There was virtually no slowdown on query throughput all the way up to 1,000 clients, and the MySQL
scaling factor (computed as the ratio of maximum throughput to the throughput for one client) was 180%.
We have observed similar results on a four-CPU system: Virtually no slowdown as the number of clients
was increased up to 1,000, and a 300% scaling factor. Based on these results, for a high-load SMP server
using a 2.2 kernel, it is definitely recommended to upgrade to the 2.4 kernel at this point.

We have discovered that it is essential to run the mysqld process with the highest possible priority on the
2.4 kernel to achieve maximum performance. This can be done by adding a renice -20 $$ command to
mysqld_safe. In our testing on a four-CPU machine, increasing the priority resulted in a 60% throughput
increase with 400 clients.

If you see a dead mysqld server process with ps, this usually means that you have found a bug in MySQL
or you have a corrupted table. See Section B.5.3.3, “What to Do If MySQL Keeps Crashing”.

To get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld with the --
core-file option. Note that you also probably need to raise the core file size by adding ulimit -

http://dev.mysql.com/Downloads/Patches/linux-fork.patch

Linux Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 176

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

c 1000000 to mysqld_safe or starting mysqld_safe with --core-file-size=1000000. See
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.

2.20.1.5 Linux x86 Notes

MySQL requires libc 5.4.12 or newer. It is known to work with libc 5.4.46. glibc 2.0.6 and later should
also work. There have been some problems with the glibc RPMs from Red Hat, so if you have problems,
check whether there are any updates. The glibc 2.0.7-19 and 2.0.7-29 RPMs are known to work.

If you are using Red Hat 8.0 or a new glibc 2.2.x library, you may see mysqld die in
gethostbyaddr(). This happens because the new glibc library requires a stack size greater than
128KB for this call. To fix the problem, start mysqld with the --thread-stack=192K option. This stack
size is the default on MySQL 4.0.10 and above, so you should not see the problem.

If you are using gcc 3.0 and above to compile MySQL, you must install the libstdc++v3 library before
compiling MySQL; if you do not do this, you get an error about a missing __cxa_pure_virtual symbol
during linking.

On some older Linux distributions, configure may produce an error like this:

Syntax error in sched.h. Change _P to __P in the
/usr/include/sched.h file.
See the Installation chapter in the Reference Manual.

Just do what the error message says. Add an extra underscore to the _P macro name that has only one
underscore, and then try again.

You may get some warnings when compiling. Those shown here can be ignored:

mysqld.cc -o objs-thread/mysqld.o
mysqld.cc: In function `void init_signals()':
mysqld.cc:315: warning: assignment of negative value `-1' to
`long unsigned int'
mysqld.cc: In function `void * signal_hand(void *)':
mysqld.cc:346: warning: assignment of negative value `-1' to
`long unsigned int'

If mysqld always dumps core when it starts, the problem may be that you have an old /lib/libc.a. Try
renaming it, and then remove sql/mysqld and do a new make install and try again. This problem has
been reported on some Slackware installations.

If you get the following error when linking mysqld, it means that your libg++.a is not installed correctly:

/usr/lib/libc.a(putc.o): In function `_IO_putc':
putc.o(.text+0x0): multiple definition of `_IO_putc'

You can avoid using libg++.a by running configure like this:

shell> CXX=gcc ./configure

2.20.1.6 Linux SPARC Notes

In some implementations, readdir_r() is broken. The symptom is that the SHOW DATABASES statement
always returns an empty set. This can be fixed by removing HAVE_READDIR_R from config.h after
configuring and before compiling.

Linux Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 177

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2.20.1.7 Linux Alpha Notes

We have tested MySQL 5.0 on Alpha with our benchmarks and test suite, and it appears to work well.

We currently build the MySQL binary packages on SuSE Linux 7.0 for AXP, kernel 2.4.4-SMP, Compaq
C compiler (V6.2-505) and Compaq C++ compiler (V6.3-006) on a Compaq DS20 machine with an Alpha
EV6 processor.

You can find the preceding compilers at http://www.support.compaq.com/alpha-tools/. By using these
compilers rather than gcc, we get about 9% to 14% better MySQL performance.

For MySQL on Alpha, we use the -arch generic flag to our compile options, which ensures that the
binary runs on all Alpha processors. We also compile statically to avoid library problems. The configure
command looks like this:

CC=ccc CFLAGS="-fast -arch generic" CXX=cxx \
CXXFLAGS="-fast -arch generic -noexceptions -nortti" \
./configure --prefix=/usr/local/mysql --disable-shared \
 --with-extra-charsets=complex --enable-thread-safe-client \
 --with-mysqld-ldflags=-non_shared --with-client-ldflags=-non_shared

Some known problems when running MySQL on Linux-Alpha:

• Debugging threaded applications like MySQL does not work with gdb 4.18. You should use gdb 5.1
instead.

• If you try linking mysqld statically when using gcc, the resulting image dumps core at startup time. In
other words, do not use --with-mysqld-ldflags=-all-static with gcc.

2.20.1.8 Linux PowerPC Notes

MySQL should work on MkLinux with the newest glibc package (tested with glibc 2.0.7).

2.20.1.9 Linux MIPS Notes

To get MySQL to work on Qube2 (Linux Mips), you need the newest glibc libraries. glibc-2.0.7-29C2
is known to work. You must also use gcc 2.95.2 or newer).

2.20.1.10 Linux IA-64 Notes

To get MySQL to compile on Linux IA-64, we use the following configure command for building with gcc
2.96:

CC=gcc \
CFLAGS="-O3 -fno-omit-frame-pointer" \
CXX=gcc \
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors \
 -fno-exceptions -fno-rtti" \
 ./configure --prefix=/usr/local/mysql \
 "--with-comment=Official MySQL binary" \
 --with-extra-charsets=complex

On IA-64, the MySQL client binaries use shared libraries. This means that if you install our binary
distribution at a location other than /usr/local/mysql, you need to add the path of the directory where
you have libmysqlclient.so installed either to the /etc/ld.so.conf file or to the value of your
LD_LIBRARY_PATH environment variable.

See Section 20.6.4.1, “Building C API Client Programs”.

http://www.support.compaq.com/alpha-tools/

OS X Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 178

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2.20.1.11 SELinux Notes

RHEL4 comes with SELinux, which supports tighter access control for processes. If SELinux is enabled
(SELINUX in /etc/selinux/config is set to enforcing, SELINUXTYPE is set to either targeted or
strict), you might encounter problems installing Oracle Corporation RPM packages.

Red Hat has an update that solves this. It involves an update of the “security policy” specification
to handle the install structure of the RPMs provided by Oracle Corporation. For further information,
see https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=167551 and http://rhn.redhat.com/errata/
RHBA-2006-0049.html.

2.20.2 OS X Notes

On OS X, tar cannot handle long file names. If you need to unpack a .tar.gz distribution, use gnutar
instead.

2.20.2.1 OS X 10.x (Darwin)

MySQL should work without major problems on OS X 10.x (Darwin).

Known issues:

• If you have problems with performance under heavy load, try using the --skip-thread-priority
option to mysqld. This runs all threads with the same priority. On OS X, this gives better performance, at
least until Apple fixes its thread scheduler.

• The connection times (wait_timeout, interactive_timeout and net_read_timeout) values are
not honored.

This is probably a signal handling problem in the thread library where the signal doesn't break a pending
read and we hope that a future update to the thread libraries will fix this.

Our binary for OS X is compiled on Darwin 6.3 with the following configure line:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc \
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors \
 -fno-exceptions -fno-rtti" \
 ./configure --prefix=/usr/local/mysql \
 --with-extra-charsets=complex --enable-thread-safe-client \
 --enable-local-infile --disable-shared

See Section 2.11, “Installing MySQL on OS X”.

2.20.2.2 OS X Server 1.2 (Rhapsody)

For current versions of OS X Server, no operating system changes are necessary before compiling
MySQL. Compiling for the Server platform is the same as for the client version of OS X.

For older versions (OS X Server 1.2, a.k.a. Rhapsody), you must first install a pthread package before
trying to configure MySQL.

See Section 2.11, “Installing MySQL on OS X”.

2.20.3 Solaris Notes

For information about installing MySQL on Solaris using PKG distributions, see Section 2.13, “Installing
MySQL on Solaris”.

https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=167551
http://rhn.redhat.com/errata/RHBA-2006-0049.html
http://rhn.redhat.com/errata/RHBA-2006-0049.html

Solaris Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 179

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

On Solaris, you may run into trouble even before you get the MySQL distribution unpacked, as the Solaris
tar cannot handle long file names. This means that you may see errors when you try to unpack MySQL.

If this occurs, you must use GNU tar (gtar) to unpack the distribution.

If you get the following error from configure, it means that you have something wrong with your compiler
installation:

checking for restartable system calls... configure: error can not
run test programs while cross compiling

In this case, you should upgrade your compiler to a newer version. You may also be able to solve this
problem by inserting the following row into the config.cache file:

ac_cv_sys_restartable_syscalls=${ac_cv_sys_restartable_syscalls='no'}

If you are using Solaris on a SPARC, the recommended compiler is gcc 2.95.2 or 3.2. You can find this at
http://gcc.gnu.org/. Note that gcc 2.8.1 does not work reliably on SPARC.

The recommended configure line when using gcc 2.95.2 is:

CC=gcc CFLAGS="-O3" \
CXX=gcc CXXFLAGS="-O3 -felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory \
 --enable-assembler

If you have an UltraSPARC system, you can get 4% better performance by adding -mcpu=v8 -Wa,-
xarch=v8plusa to the CFLAGS and CXXFLAGS environment variables.

If you have Sun's Forte 5.0 (or newer) compiler, you can run configure like this:

CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt" \
CXX=CC CXXFLAGS="-noex -mt" \
./configure --prefix=/usr/local/mysql --enable-assembler

To create a 64-bit binary with Sun's Forte compiler, use the following configuration options:

CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt -xarch=v9" \
CXX=CC CXXFLAGS="-noex -mt -xarch=v9" ASFLAGS="-xarch=v9" \
./configure --prefix=/usr/local/mysql --enable-assembler

To create a 64-bit Solaris binary using gcc, add -m64 to CFLAGS and CXXFLAGS and remove --enable-
assembler from the configure line.

In the MySQL benchmarks, we obtained a 4% speed increase on UltraSPARC when using Forte 5.0 in 32-
bit mode, as compared to using gcc 3.2 with the -mcpu flag.

If you create a 64-bit mysqld binary, it is 4% slower than the 32-bit binary, but can handle more threads
and memory.

When using Solaris 10 for x86_64, you should mount any file systems on which you intend to store
InnoDB files with the forcedirectio option. (By default mounting is done without this option.) Failing to
do so will cause a significant drop in performance when using the InnoDB storage engine on this platform.

If you get a problem with fdatasync or sched_yield, you can fix this by adding LIBS=-lrt to the
configure line

http://gcc.gnu.org/

Solaris Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 180

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For compilers older than WorkShop 5.3, you might have to edit the configure script. Change this line:

#if !defined(__STDC__) || __STDC__ != 1

To this:

#if !defined(__STDC__)

If you turn on __STDC__ with the -Xc option, the Sun compiler can't compile with the Solaris pthread.h
header file. This is a Sun bug (broken compiler or broken include file).

If mysqld issues the following error message when you run it, you have tried to compile MySQL with the
Sun compiler without enabling the -mt multi-thread option:

libc internal error: _rmutex_unlock: rmutex not held

Add -mt to CFLAGS and CXXFLAGS and recompile.

If you are using the SFW version of gcc (which comes with Solaris 8), you must add /opt/sfw/lib to
the environment variable LD_LIBRARY_PATH before running configure.

If you are using the gcc available from sunfreeware.com, you may have many problems. To avoid this,
you should recompile gcc and GNU binutils on the machine where you are running them.

If you get the following error when compiling MySQL with gcc, it means that your gcc is not configured for
your version of Solaris:

shell> gcc -O3 -g -O2 -DDBUG_OFF -o thr_alarm ...
./thr_alarm.c: In function `signal_hand':
./thr_alarm.c:556: too many arguments to function `sigwait'

The proper thing to do in this case is to get the newest version of gcc and compile it with your current gcc
compiler. At least for Solaris 2.5, almost all binary versions of gcc have old, unusable include files that
break all programs that use threads, and possibly other programs as well.

Solaris does not provide static versions of all system libraries (libpthreads and libdl), so you cannot
compile MySQL with --static. If you try to do so, you get one of the following errors:

ld: fatal: library -ldl: not found
undefined reference to `dlopen'
cannot find -lrt

If you link your own MySQL client programs, you may see the following error at runtime:

ld.so.1: fatal: libmysqlclient.so.#:
open failed: No such file or directory

This problem can be avoided by one of the following methods:

• Link clients with the -Wl,r/full/path/to/libmysqlclient.so flag rather than with -Lpath).

• Copy libmysqclient.so to /usr/lib.

• Add the path name of the directory where libmysqlclient.so is located to the LD_RUN_PATH
environment variable before running your client.

Solaris Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 181

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you have problems with configure trying to link with -lz when you do not have zlib installed, you
have two options:

• If you want to be able to use the compressed communication protocol, you need to get and install zlib
from ftp.gnu.org.

• Run configure with the --with-named-z-libs=no option when building MySQL.

If you are using gcc and have problems with loading user-defined functions (UDFs) into MySQL, try adding
-lgcc to the link line for the UDF.

If you would like MySQL to start automatically, you can copy support-files/mysql.server to /etc/
init.d and create a symbolic link to it named /etc/rc3.d/S99mysql.server.

If too many processes try to connect very rapidly to mysqld, you should see this error in the MySQL log:

Error in accept: Protocol error

You might try starting the server with the --back_log=50 option as a workaround for this. (Use -O
back_log=50 before MySQL 4.)

To configure the generation of core files on Solaris you should use the coreadm command. Because of the
security implications of generating a core on a setuid() application, by default, Solaris does not support
core files on setuid() programs. However, you can modify this behavior using coreadm. If you enable
setuid() core files for the current user, they will be generated using the mode 600 and owned by the
superuser.

2.20.3.1 Solaris 2.7/2.8 Notes

Normally, you can use a Solaris 2.6 binary on Solaris 2.7 and 2.8. Most of the Solaris 2.6 issues also apply
for Solaris 2.7 and 2.8.

MySQL should be able to detect new versions of Solaris automatically and enable workarounds for the
following problems.

Solaris 2.7 / 2.8 has some bugs in the include files. You may see the following error when you use gcc:

/usr/include/widec.h:42: warning: `getwc' redefined
/usr/include/wchar.h:326: warning: this is the location of the previous
definition

If this occurs, you can fix the problem by copying /usr/include/widec.h to .../lib/gcc-lib/os/
gcc-version/include and changing line 41 from this:

#if !defined(lint) && !defined(__lint)

To this:

#if !defined(lint) && !defined(__lint) && !defined(getwc)

Alternatively, you can edit /usr/include/widec.h directly. Either way, after you make the fix, you
should remove config.cache and run configure again.

If you get the following errors when you run make, it is because configure didn't detect the curses.h
file (probably because of the error in /usr/include/widec.h):

BSD Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 182

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In file included from mysql.cc:50:
/usr/include/term.h:1060: syntax error before `,'
/usr/include/term.h:1081: syntax error before `;'

The solution to this problem is to do one of the following:

1. Configure with CFLAGS=-DHAVE_CURSES_H CXXFLAGS=-DHAVE_CURSES_H ./configure.

2. Edit /usr/include/widec.h as indicated in the preceding discussion and re-run configure.

3. Remove the #define HAVE_TERM line from the config.h file and run make again.

If your linker cannot find -lz when linking client programs, the problem is probably that your libz.so file
is installed in /usr/local/lib. You can fix this problem by one of the following methods:

• Add /usr/local/lib to LD_LIBRARY_PATH.

• Add a link to libz.so from /lib.

• If you are using Solaris 8, you can install the optional zlib from your Solaris 8 CD distribution.

• Run configure with the --with-named-z-libs=no option when building MySQL.

2.20.3.2 Solaris x86 Notes

On Solaris 8 on x86, mysqld dumps core if you remove the debug symbols using strip.

If you are using gcc on Solaris x86 and you experience problems with core dumps under load, you should
use the following configure command:

CC=gcc CFLAGS="-O3 -fomit-frame-pointer -DHAVE_CURSES_H" \
CXX=gcc \
CXXFLAGS="-O3 -fomit-frame-pointer -felide-constructors \
 -fno-exceptions -fno-rtti -DHAVE_CURSES_H" \
./configure --prefix=/usr/local/mysql

This avoids problems with the libstdc++ library and with C++ exceptions.

If this doesn't help, you should compile a debug version and run it with a trace file or under gdb. See
Section 21.3, “Debugging and Porting MySQL”.

2.20.4 BSD Notes

This section provides information about using MySQL on variants of BSD Unix.

2.20.4.1 FreeBSD Notes

FreeBSD 4.x or newer is recommended for running MySQL, because the thread package is much more
integrated. To get a secure and stable system, you should use only FreeBSD kernels that are marked -
RELEASE.

The easiest (and preferred) way to install MySQL is to use the mysql-server and mysql-client ports
available at http://www.freebsd.org/. Using these ports gives you the following benefits:

• A working MySQL with all optimizations enabled that are known to work on your version of FreeBSD.

• Automatic configuration and build.

http://www.freebsd.org/

BSD Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 183

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Startup scripts installed in /usr/local/etc/rc.d.

• The ability to use pkg_info -L to see which files are installed.

• The ability to use pkg_delete to remove MySQL if you no longer want it on your machine.

It is recommended you use MIT-pthreads on FreeBSD 2.x, and native threads on FreeBSD 3 and up. It is
possible to run with native threads on some late 2.2.x versions, but you may encounter problems shutting
down mysqld.

Unfortunately, certain function calls on FreeBSD are not yet fully thread-safe. Most notably, this includes
the gethostbyname() function, which is used by MySQL to convert host names into IP addresses. Under
certain circumstances, the mysqld process suddenly causes 100% CPU load and is unresponsive. If you
encounter this problem, try to start MySQL using the --skip-name-resolve option.

Alternatively, you can link MySQL on FreeBSD 4.x against the LinuxThreads library, which avoids a few
of the problems that the native FreeBSD thread implementation has. For a very good comparison of
LinuxThreads versus native threads, see Jeremy Zawodny's article FreeBSD or Linux for your MySQL
Server? at http://jeremy.zawodny.com/blog/archives/000697.html.

Known problem when using LinuxThreads on FreeBSD is:

• The connection times (wait_timeout, interactive_timeout and net_read_timeout) values are
not honored. The symptom is that persistent connections can hang for a very long time without getting
closed down and that a 'kill' for a thread will not take affect until the thread does it a new command

This is probably a signal handling problem in the thread library where the signal doesn't break a pending
read. This is supposed to be fixed in FreeBSD 5.0

The MySQL build process requires GNU make (gmake) to work. If GNU make is not available, you must
install it first before compiling MySQL.

The recommended way to compile and install MySQL on FreeBSD with gcc (2.95.2 and up) is:

CC=gcc CFLAGS="-O2 -fno-strength-reduce" \
 CXX=gcc CXXFLAGS="-O2 -fno-rtti -fno-exceptions \
 -felide-constructors -fno-strength-reduce" \
 ./configure --prefix=/usr/local/mysql --enable-assembler
gmake
gmake install
cd /usr/local/mysql
bin/mysql_install_db --user=mysql
bin/mysqld_safe &

Be sure that your name resolver setup is correct. Otherwise, you may experience resolver delays or
failures when connecting to mysqld. Also make sure that the localhost entry in the /etc/hosts file is
correct. The file should start with a line similar to this:

127.0.0.1 localhost localhost.your.domain

FreeBSD is known to have a very low default file handle limit. See Section B.5.2.18, “File Not Found and
Similar Errors”. Start the server by using the --open-files-limit option for mysqld_safe, or raise
the limits for the mysqld user in /etc/login.conf and rebuild it with cap_mkdb /etc/login.conf.
Also be sure that you set the appropriate class for this user in the password file if you are not using the
default (use chpass mysqld-user-name). See Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”.

http://jeremy.zawodny.com/blog/archives/000697.html

BSD Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 184

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

FreeBSD limits the size of a process to 512MB, even if you have much more RAM available on the system.
So you may get an error such as this:

Out of memory (Needed 16391 bytes)

In current versions of FreeBSD (at least 4.x and greater), you may increase this limit by adding the
following entries to the /boot/loader.conf file and rebooting the machine (these are not settings that
can be changed at run time with the sysctl command):

kern.maxdsiz="1073741824" # 1GB
kern.dfldsiz="1073741824" # 1GB
kern.maxssiz="134217728" # 128MB

For older versions of FreeBSD, you must recompile your kernel to change the maximum data segment
size for a process. In this case, you should look at the MAXDSIZ option in the LINT config file for more
information.

If you get problems with the current date in MySQL, setting the TZ variable should help. See Section 2.21,
“Environment Variables”.

2.20.4.2 NetBSD Notes

To compile on NetBSD, you need GNU make. Otherwise, the build process fails when make tries to run
lint on C++ files.

2.20.4.3 OpenBSD 2.5 Notes

On OpenBSD 2.5, you can compile MySQL with native threads with the following options:

CFLAGS=-pthread CXXFLAGS=-pthread ./configure --with-mit-threads=no

2.20.4.4 BSD/OS Version 2.x Notes

If you get the following error when compiling MySQL, your ulimit value for virtual memory is too low:

item_func.h: In method
`Item_func_ge::Item_func_ge(const Item_func_ge &)':
item_func.h:28: virtual memory exhausted
make[2]: *** [item_func.o] Error 1

Try using ulimit -v 80000 and run make again. If this doesn't work and you are using bash, try
switching to csh or sh; some BSDI users have reported problems with bash and ulimit.

If you are using gcc, you may also use have to use the --with-low-memory flag for configure to be
able to compile sql_yacc.cc.

If you get problems with the current date in MySQL, setting the TZ variable should help. See Section 2.21,
“Environment Variables”.

2.20.4.5 BSD/OS Version 3.x Notes

Upgrade to BSD/OS 3.1. If that is not possible, install BSDIpatch M300-038.

Use the following command when configuring MySQL:

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 185

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

env CXX=shlicc++ CC=shlicc2 \
./configure \
 --prefix=/usr/local/mysql \
 --localstatedir=/var/mysql \
 --without-perl \
 --with-unix-socket-path=/var/mysql/mysql.sock

The following is also known to work:

env CC=gcc CXX=gcc CXXFLAGS=-O3 \
./configure \
 --prefix=/usr/local/mysql \
 --with-unix-socket-path=/var/mysql/mysql.sock

You can change the directory locations if you wish, or just use the defaults by not specifying any locations.

If you have problems with performance under heavy load, try using the --skip-thread-priority
option to mysqld. This runs all threads with the same priority. On BSDI 3.1, this gives better performance,
at least until BSDI fixes its thread scheduler.

If you get the error virtual memory exhausted while compiling, you should try using ulimit -v
80000 and running make again. If this doesn't work and you are using bash, try switching to csh or sh;
some BSDI users have reported problems with bash and ulimit.

2.20.4.6 BSD/OS Version 4.x Notes

BSDI 4.x has some thread-related bugs. If you want to use MySQL on this, you should install all thread-
related patches. At least M400-023 should be installed.

On some BSDI 4.x systems, you may get problems with shared libraries. The symptom is that you can't
execute any client programs, for example, mysqladmin. In this case, you need to reconfigure not to use
shared libraries with the --disable-shared option to configure.

Some customers have had problems on BSDI 4.0.1 that the mysqld binary after a while can't open tables.
This occurs because some library/system-related bug causes mysqld to change current directory without
having asked for that to happen.

The fix is to either upgrade MySQL to at least version 3.23.34 or, after running configure, remove the
line #define HAVE_REALPATH from config.h before running make.

Note that this means that you can't symbolically link a database directories to another database directory or
symbolic link a table to another database on BSDI. (Making a symbolic link to another disk is okay).

2.20.5 Other Unix Notes

2.20.5.1 HP-UX Version 10.20 Notes

If you install MySQL using a binary tarball distribution on HP-UX, you may run into trouble even before you
get the MySQL distribution unpacked, as the HP-UX tar cannot handle long file names. This means that
you may see errors when you try to unpack MySQL.

If this occurs, you must use GNU tar (gtar) to unpack the distribution.

There are a couple of small problems when compiling MySQL on HP-UX. Use gcc instead of the HP-UX
native compiler, because gcc produces better code.

Use gcc 2.95 on HP-UX. Do not use high optimization flags (such as -O6) because they may not be safe
on HP-UX.

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 186

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The following configure line should work with gcc 2.95:

CFLAGS="-I/opt/dce/include -fpic" \
CXXFLAGS="-I/opt/dce/include -felide-constructors -fno-exceptions \
-fno-rtti" \
CXX=gcc \
./configure --with-pthread \
 --with-named-thread-libs='-ldce' \
 --prefix=/usr/local/mysql --disable-shared

The following configure line should work with gcc 3.1:

CFLAGS="-DHPUX -I/opt/dce/include -O3 -fPIC" CXX=gcc \
CXXFLAGS="-DHPUX -I/opt/dce/include -felide-constructors \
 -fno-exceptions -fno-rtti -O3 -fPIC" \
./configure --prefix=/usr/local/mysql \
 --with-extra-charsets=complex --enable-thread-safe-client \
 --enable-local-infile --with-pthread \
 --with-named-thread-libs=-ldce --with-lib-ccflags=-fPIC
 --disable-shared

2.20.5.2 HP-UX Version 11.x Notes

If you install MySQL using a binary tarball distribution on HP-UX, you may run into trouble even before you
get the MySQL distribution unpacked, as the HP-UX tar cannot handle long file names. This means that
you may see errors when you try to unpack MySQL.

If this occurs, you must use GNU tar (gtar) to unpack the distribution.

Because of some critical bugs in the standard HP-UX libraries, you should install the following patches
before trying to run MySQL on HP-UX 11.0:

PHKL_22840 Streams cumulative
PHNE_22397 ARPA cumulative

This solves the problem of getting EWOULDBLOCK from recv() and EBADF from accept() in threaded
applications.

If you are using gcc 2.95.1 on an unpatched HP-UX 11.x system, you may get the following error:

In file included from /usr/include/unistd.h:11,
 from ../include/global.h:125,
 from mysql_priv.h:15,
 from item.cc:19:
/usr/include/sys/unistd.h:184: declaration of C function ...
/usr/include/sys/pthread.h:440: previous declaration ...
In file included from item.h:306,
 from mysql_priv.h:158,
 from item.cc:19:

The problem is that HP-UX does not define pthreads_atfork() consistently. It has conflicting
prototypes in /usr/include/sys/unistd.h:184 and /usr/include/sys/pthread.h:440.

One solution is to copy /usr/include/sys/unistd.h into mysql/include and edit unistd.h and
change it to match the definition in pthread.h. Look for this line:

extern int pthread_atfork(void (*prepare)(), void (*parent)(),
 void (*child)());

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 187

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Change it to look like this:

extern int pthread_atfork(void (*prepare)(void), void (*parent)(void),
 void (*child)(void));

After making the change, the following configure line should work:

CFLAGS="-fomit-frame-pointer -O3 -fpic" CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti -O3" \
./configure --prefix=/usr/local/mysql --disable-shared

If you are using HP-UX compiler, you can use the following command (which has been tested with cc
B.11.11.04):

CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure \
 --with-extra-character-set=complex

You can ignore any errors of the following type:

aCC: warning 901: unknown option: `-3': use +help for online
documentation

If you get the following error from configure, verify that you do not have the path to the K&R compiler
before the path to the HP-UX C and C++ compiler:

checking for cc option to accept ANSI C... no
configure: error: MySQL requires an ANSI C compiler (and a C++ compiler).
Try gcc. See the Installation chapter in the Reference Manual.

Another reason for not being able to compile is that you didn't define the +DD64 flags as just described.

Another possibility for HP-UX 11 is to use the MySQL binaries provided at http://dev.mysql.com/
downloads/, which we have built and tested ourselves. We have also received reports that the HP-UX
10.20 binaries supplied by MySQL can be run successfully on HP-UX 11. If you encounter problems, you
should be sure to check your HP-UX patch level.

2.20.5.3 IBM-AIX notes

Automatic detection of xlC is missing from Autoconf, so a number of variables need to be set before
running configure. The following example uses the IBM compiler:

export CC="xlc_r -ma -O3 -qstrict -qoptimize=3 -qmaxmem=8192 "
export CXX="xlC_r -ma -O3 -qstrict -qoptimize=3 -qmaxmem=8192"
export CFLAGS="-I /usr/local/include"
export LDFLAGS="-L /usr/local/lib"
export CPPFLAGS=$CFLAGS
export CXXFLAGS=$CFLAGS

./configure --prefix=/usr/local \
 --localstatedir=/var/mysql \
 --sbindir='/usr/local/bin' \
 --libexecdir='/usr/local/bin' \
 --enable-thread-safe-client \
 --enable-large-files

The preceding options are used to compile the MySQL distribution that can be found at http://www-
frec.bull.com/.

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/
http://www-frec.bull.com/
http://www-frec.bull.com/

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 188

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you change the -O3 to -O2 in the preceding configure line, you must also remove the -qstrict
option. This is a limitation in the IBM C compiler.

If you are using gcc to compile MySQL, you must use the -fno-exceptions flag, because the exception
handling in gcc is not thread-safe! There are also some known problems with IBM's assembler that may
cause it to generate bad code when used with gcc.

Use the following configure line with gcc 2.95 on AIX:

CC="gcc -pipe -mcpu=power -Wa,-many" \
CXX="gcc -pipe -mcpu=power -Wa,-many" \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory

The -Wa,-many option is necessary for the compile to be successful. IBM is aware of this problem but is
in no hurry to fix it because of the workaround that is available. We do not know if the -fno-exceptions
is required with gcc 2.95, but because MySQL doesn't use exceptions and the option generates faster
code, you should always use it with gcc.

If you get a problem with assembler code, try changing the -mcpu=xxx option to match your CPU.
Typically power2, power, or powerpc may need to be used. Alternatively, you might need to use 604 or
604e. We are not positive but suspect that power would likely be safe most of the time, even on a power2
machine.

If you do not know what your CPU is, execute a uname -m command. It produces a string that looks
like 000514676700, with a format of xxyyyyyymmss where xx and ss are always 00, yyyyyy is a
unique system ID and mm is the ID of the CPU Planar. A chart of these values can be found at http://
www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/uname.htm.

This gives you a machine type and a machine model you can use to determine what type of CPU you
have.

If you have problems with threads on AIX 5.3, you should upgrade AIX 5.3 to technology level 7 (5300-07).

If you have problems with signals (MySQL dies unexpectedly under high load), you may have found an OS
bug with threads and signals. In this case, you can tell MySQL not to use signals by configuring as follows:

CFLAGS=-DDONT_USE_THR_ALARM CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti \
-DDONT_USE_THR_ALARM" \
./configure --prefix=/usr/local/mysql --with-debug \
 --with-low-memory

This doesn't affect the performance of MySQL, but has the side effect that you can't kill clients that are
“sleeping” on a connection with mysqladmin kill or mysqladmin shutdown. Instead, the client dies
when it issues its next command.

On some versions of AIX, linking with libbind.a makes getservbyname() dump core. This is an AIX
bug and should be reported to IBM.

For AIX 4.2.1 and gcc, you have to make the following changes.

After configuring, edit config.h and include/my_config.h and change the line that says this:

#define HAVE_SNPRINTF 1

to this:

http://www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/uname.htm
http://www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/uname.htm

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 189

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

#undef HAVE_SNPRINTF

And finally, in mysqld.cc, you need to add a prototype for initgroups().

#ifdef _AIX41
extern "C" int initgroups(const char *,int);
#endif

For 32-bit binaries, if you need to allocate a lot of memory to the mysqld process, it is not enough to just
use ulimit -d unlimited. You may also have to modify mysqld_safe to add a line something like
this:

export LDR_CNTRL='MAXDATA=0x80000000'

You can find more information about using a lot of memory at http://publib16.boulder.ibm.com/pseries/
en_US/aixprggd/genprogc/lrg_prg_support.htm.

Users of AIX 4.3 should use gmake instead of the make utility included with AIX.

As of AIX 4.1, the C compiler has been unbundled from AIX as a separate product. gcc 3.3.2 can be
obtained here: ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/gcc/

The steps for compiling MySQL on AIX with gcc 3.3.2 are similar to those for using gcc 2.95 (in particular,
the need to edit config.h and my_config.h after running configure). However, before running
configure, you should also patch the curses.h file as follows:

/opt/freeware/lib/gcc-lib/powerpc-ibm-aix5.2.0.0/3.3.2/include/curses.h.ORIG
 Mon Dec 26 02:17:28 2005
--- /opt/freeware/lib/gcc-lib/powerpc-ibm-aix5.2.0.0/3.3.2/include/curses.h
Mon Dec 26 02:40:13 2005

*** 2023,2029 ****

 #endif /* _AIX32_CURSES */
! #if defined(__USE_FIXED_PROTOTYPES__) || defined(__cplusplus) || defined
(__STRICT_ANSI__)
 extern int delwin (WINDOW *);
 extern int endwin (void);
 extern int getcurx (WINDOW *);
--- 2023,2029 ----

 #endif /* _AIX32_CURSES */
! #if 0 && (defined(__USE_FIXED_PROTOTYPES__) || defined(__cplusplus)
|| defined
(__STRICT_ANSI__))
 extern int delwin (WINDOW *);
 extern int endwin (void);
 extern int getcurx (WINDOW *);

2.20.5.4 SunOS 4 Notes

On SunOS 4, MIT-pthreads is needed to compile MySQL. This in turn means you need GNU make.

Some SunOS 4 systems have problems with dynamic libraries and libtool. You can use the following
configure line to avoid this problem:

http://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm
http://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm
ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/gcc/

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 190

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

./configure --disable-shared --with-mysqld-ldflags=-all-static

When compiling readline, you may get warnings about duplicate defines. These can be ignored.

When compiling mysqld, there are some implicit declaration of function warnings. These can
be ignored.

2.20.5.5 Alpha-DEC-UNIX Notes (Tru64)

If you are using egcs 1.1.2 on Digital Unix, you should upgrade to gcc 2.95.2, because egcs on DEC has
some serious bugs!

When compiling threaded programs under Digital Unix, the documentation recommends using the -
pthread option for cc and cxx and the -lmach -lexc libraries (in addition to -lpthread). You should
run configure something like this:

CC="cc -pthread" CXX="cxx -pthread -O" \
./configure --with-named-thread-libs="-lpthread -lmach -lexc -lc"

When compiling mysqld, you may see a couple of warnings like this:

mysqld.cc: In function void handle_connections()':
mysqld.cc:626: passing long unsigned int *' as argument 3 of
accept(int,sockadddr *, int *)'

You can safely ignore these warnings. They occur because configure can detect only errors, not
warnings.

If you start the server directly from the command line, you may have problems with it dying when you log
out. (When you log out, your outstanding processes receive a SIGHUP signal.) If so, try starting the server
like this:

nohup mysqld [options] &

nohup causes the command following it to ignore any SIGHUP signal sent from the terminal. Alternatively,
start the server by running mysqld_safe, which invokes mysqld using nohup for you. See Section 4.3.2,
“mysqld_safe — MySQL Server Startup Script”.

If you get a problem when compiling mysys/get_opt.c, just remove the #define _NO_PROTO line from
the start of that file.

If you are using Compaq's CC compiler, the following configure line should work:

CC="cc -pthread"
CFLAGS="-O4 -ansi_alias -ansi_args -fast -inline speed \
 -speculate all -arch host"
CXX="cxx -pthread"
CXXFLAGS="-O4 -ansi_alias -ansi_args -fast -inline speed \
 -speculate all -arch host -noexceptions -nortti"
export CC CFLAGS CXX CXXFLAGS
./configure \
 --prefix=/usr/local/mysql \
 --with-low-memory \
 --enable-large-files \
 --enable-shared=yes \
 --with-named-thread-libs="-lpthread -lmach -lexc -lc"
gnumake

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 191

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you get a problem with libtool when compiling with shared libraries as just shown, when linking
mysql, you should be able to get around this by issuing these commands:

cd mysql
/bin/sh ../libtool --mode=link cxx -pthread -O3 -DDBUG_OFF \
 -O4 -ansi_alias -ansi_args -fast -inline speed \
 -speculate all \ -arch host -DUNDEF_HAVE_GETHOSTBYNAME_R \
 -o mysql mysql.o readline.o sql_string.o completion_hash.o \
 ../readline/libreadline.a -lcurses \
 ../libmysql/.libs/libmysqlclient.so -lm
cd ..
gnumake
gnumake install
scripts/mysql_install_db

2.20.5.6 Alpha-DEC-OSF/1 Notes

If you have problems compiling and have DEC CC and gcc installed, try running configure like this:

CC=cc CFLAGS=-O CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql

If you get problems with the c_asm.h file, you can create and use a 'dummy' c_asm.h file with:

touch include/c_asm.h
CC=gcc CFLAGS=-I./include \
CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql

Note that the following problems with the ld program can be fixed by downloading the latest DEC
(Compaq) patch kit from: http://ftp.support.compaq.com/public/unix/.

On OSF/1 V4.0D and compiler "DEC C V5.6-071 on Digital Unix V4.0 (Rev. 878)," the compiler had some
strange behavior (undefined asm symbols). /bin/ld also appears to be broken (problems with _exit
undefined errors occurring while linking mysqld). On this system, we have managed to compile MySQL
with the following configure line, after replacing /bin/ld with the version from OSF 4.0C:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql

With the Digital compiler "C++ V6.1-029," the following should work:

CC=cc -pthread
CFLAGS=-O4 -ansi_alias -ansi_args -fast -inline speed \
 -speculate all -arch host
CXX=cxx -pthread
CXXFLAGS=-O4 -ansi_alias -ansi_args -fast -inline speed \
 -speculate all -arch host -noexceptions -nortti
export CC CFLAGS CXX CXXFLAGS
./configure --prefix=/usr/mysql/mysql \
 --with-mysqld-ldflags=-all-static --disable-shared \
 --with-named-thread-libs="-lmach -lexc -lc"

In some versions of OSF/1, the alloca() function is broken. Fix this by removing the line in config.h
that defines 'HAVE_ALLOCA'.

The alloca() function also may have an incorrect prototype in /usr/include/alloca.h. This
warning resulting from this can be ignored.

http://ftp.support.compaq.com/public/unix/

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 192

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

configure uses the following thread libraries automatically: --with-named-thread-libs="-
lpthread -lmach -lexc -lc".

When using gcc, you can also try running configure like this:

CFLAGS=-D_PTHREAD_USE_D4 CXX=gcc CXXFLAGS=-O3 ./configure ...

If you have problems with signals (MySQL dies unexpectedly under high load), you may have found an OS
bug with threads and signals. In this case, you can tell MySQL not to use signals by configuring with:

CFLAGS=-DDONT_USE_THR_ALARM \
CXXFLAGS=-DDONT_USE_THR_ALARM \
./configure ...

This does not affect the performance of MySQL, but has the side effect that you can't kill clients that are
“sleeping” on a connection with mysqladmin kill or mysqladmin shutdown. Instead, the client dies
when it issues its next command.

With gcc 2.95.2, you may encounter the following compile error:

sql_acl.cc:1456: Internal compiler error in `scan_region',
at except.c:2566
Please submit a full bug report.

To fix this, you should change to the sql directory and do a cut-and-paste of the last gcc line, but change
-O3 to -O0 (or add -O0 immediately after gcc if you do not have any -O option on your compile line). After
this is done, you can just change back to the top-level directory and run make again.

2.20.5.7 SGI Irix Notes

Note

As of MySQL 5.0, we do not provide binaries for Irix any more.

If you are using Irix 6.5.3 or newer, mysqld is able to create threads only if you run it as a user that has
CAP_SCHED_MGT privileges (such as root) or give the mysqld server this privilege with the following shell
command:

chcap "CAP_SCHED_MGT+epi" /opt/mysql/libexec/mysqld

You may have to undefine some symbols in config.h after running configure and before compiling.

In some Irix implementations, the alloca() function is broken. If the mysqld server dies on some
SELECT statements, remove the lines from config.h that define HAVE_ALLOC and HAVE_ALLOCA_H. If
mysqladmin create doesn't work, remove the line from config.h that defines HAVE_READDIR_R. You
may have to remove the HAVE_TERM_H line as well.

SGI recommends that you install all the patches on this page as a set: http://support.sgi.com/surfzone/
patches/patchset/6.2_indigo.rps.html

At the very minimum, you should install the latest kernel rollup, the latest rld rollup, and the latest libc
rollup.

You definitely need all the POSIX patches on this page, for pthreads support:

http://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html
http://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 193

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

http://support.sgi.com/surfzone/patches/patchset/6.2_posix.rps.html

If you get the something like the following error when compiling mysql.cc:

"/usr/include/curses.h", line 82: error(1084):
invalid combination of type

Type the following in the top-level directory of your MySQL source tree:

extra/replace bool curses_bool < /usr/include/curses.h > include/curses.h
make

There have also been reports of scheduling problems. If only one thread is running, performance is
slow. Avoid this by starting another client. This may lead to a two-to-tenfold increase in execution speed
thereafter for the other thread. This is a poorly understood problem with Irix threads; you may have to
improvise to find solutions until this can be fixed.

If you are compiling with gcc, you can use the following configure command:

CC=gcc CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql --enable-thread-safe-client \
 --with-named-thread-libs=-lpthread

On Irix 6.5.11 with native Irix C and C++ compilers ver. 7.3.1.2, the following is reported to work

CC=cc CXX=CC CFLAGS='-O3 -n32 -TARG:platform=IP22 -I/usr/local/include \
-L/usr/local/lib' CXXFLAGS='-O3 -n32 -TARG:platform=IP22 \
-I/usr/local/include -L/usr/local/lib' \
./configure --prefix=/usr/local/mysql --with-innodb --with-berkeley-db \
 --with-libwrap=/usr/local \
 --with-named-curses-libs=/usr/local/lib/libncurses.a

2.20.5.8 SCO UNIX and OpenServer 5.0.x Notes

The current port is tested only on sco3.2v5.0.5, sco3.2v5.0.6, and sco3.2v5.0.7 systems. There
has also been progress on a port to sco3.2v4.2. Open Server 5.0.8 (Legend) has native threads and
permits files greater than 2GB. The current maximum file size is 2GB.

We have been able to compile MySQL with the following configure command on OpenServer with gcc
2.95.3.

CC=gcc CFLAGS="-D_FILE_OFFSET_BITS=64 -O3" \
CXX=gcc CXXFLAGS="-D_FILE_OFFSET_BITS=64 -O3" \
./configure --prefix=/usr/local/mysql \
 --enable-thread-safe-client --with-innodb \
 --with-openssl --with-vio --with-extra-charsets=complex

gcc is available at ftp://ftp.sco.com/pub/openserver5/opensrc/gnutools-5.0.7Kj.

This development system requires the OpenServer Execution Environment Supplement oss646B on
OpenServer 5.0.6 and oss656B and the OpenSource libraries found in gwxlibs. All OpenSource tools are
in the opensrc directory. They are available at ftp://ftp.sco.com/pub/openserver5/opensrc/.

Use the latest production release of MySQL.

SCO provides operating system patches at ftp://ftp.sco.com/pub/openserver5 for OpenServer 5.0.[0-6] and
ftp://ftp.sco.com/pub/openserverv5/507 for OpenServer 5.0.7.

http://support.sgi.com/surfzone/patches/patchset/6.2_posix.rps.html
ftp://ftp.sco.com/pub/openserver5/opensrc/gnutools-5.0.7Kj
ftp://ftp.sco.com/pub/openserver5/opensrc/
ftp://ftp.sco.com/pub/openserver5
ftp://ftp.sco.com/pub/openserverv5/507

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 194

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenServer for OpenServer
5.0.x.

The maximum file size on an OpenServer 5.0.x system is 2GB.

The total memory which can be allocated for streams buffers, clists, and lock records cannot exceed 60MB
on OpenServer 5.0.x.

Streams buffers are allocated in units of 4096 byte pages, clists are 70 bytes each, and lock records are 64
bytes each, so:

(NSTRPAGES * 4096) + (NCLIST * 70) + (MAX_FLCKREC * 64) <= 62914560

Follow this procedure to configure the Database Services option. If you are unsure whether an application
requires this, see the documentation provided with the application.

1. Log in as root.

2. Enable the SUDS driver by editing the /etc/conf/sdevice.d/suds file. Change the N in the
second field to a Y.

3. Use mkdev aio or the Hardware/Kernel Manager to enable support for asynchronous I/O and
relink the kernel. To enable users to lock down memory for use with this type of I/O, update the
aiomemlock(F) file. This file should be updated to include the names of users that can use AIO and the
maximum amounts of memory they can lock down.

4. Many applications use setuid binaries so that you need to specify only a single user. See the
documentation provided with the application to determine whether this is the case for your application.

After you complete this process, reboot the system to create a new kernel incorporating these changes.

By default, the entries in /etc/conf/cf.d/mtune are set as follows:

Value Default Min Max
----- ------- --- ---
NBUF 0 24 450000
NHBUF 0 32 524288
NMPBUF 0 12 512
MAX_INODE 0 100 64000
MAX_FILE 0 100 64000
CTBUFSIZE 128 0 256
MAX_PROC 0 50 16000
MAX_REGION 0 500 160000
NCLIST 170 120 16640
MAXUP 100 15 16000
NOFILES 110 60 11000
NHINODE 128 64 8192
NAUTOUP 10 0 60
NGROUPS 8 0 128
BDFLUSHR 30 1 300
MAX_FLCKREC 0 50 16000
PUTBUFSZ 8000 2000 20000
MAXSLICE 100 25 100
ULIMIT 4194303 2048 4194303
* Streams Parameters
NSTREAM 64 1 32768
NSTRPUSH 9 9 9
NMUXLINK 192 1 4096
STRMSGSZ 16384 4096 524288
STRCTLSZ 1024 1024 1024

ftp://ftp.sco.com/pub/security/OpenServer

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 195

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

STRMAXBLK 524288 4096 524288
NSTRPAGES 500 0 8000
STRSPLITFRAC 80 50 100
NLOG 3 3 3
NUMSP 64 1 256
NUMTIM 16 1 8192
NUMTRW 16 1 8192
* Semaphore Parameters
SEMMAP 10 10 8192
SEMMNI 10 10 8192
SEMMNS 60 60 8192
SEMMNU 30 10 8192
SEMMSL 25 25 150
SEMOPM 10 10 1024
SEMUME 10 10 25
SEMVMX 32767 32767 32767
SEMAEM 16384 16384 16384
* Shared Memory Parameters
SHMMAX 524288 131072 2147483647
SHMMIN 1 1 1
SHMMNI 100 100 2000
FILE 0 100 64000
NMOUNT 0 4 256
NPROC 0 50 16000
NREGION 0 500 160000

Set these values as follows:

• NOFILES should be 4096 or 2048.

• MAXUP should be 2048.

To make changes to the kernel, use the idtune name parameter command. idtune modifies the /
etc/conf/cf.d/stune file for you. For example, to change SEMMS to 200, execute this command as
root:

/etc/conf/bin/idtune SEMMNS 200

Then rebuild and reboot the kernel by issuing this command:

/etc/conf/bin/idbuild -B && init 6

To tune the system, the proper parameter values to use depend on the number of users accessing the
application or database and size the of the database (that is, the used buffer pool). The following kernel
parameters can be set with idtune:

• SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These parameters
have an influence on the MySQL database engine to create user buffer pools.

• NOFILES and MAXUP should be set to at least 2048.

• MAXPROC should be set to at least 3000/4000 (depends on number of users) or more.

• The following formulas are recommended to calculate values for SEMMSL, SEMMNS, and SEMMNU:

SEMMSL = 13

13 is what has been found to be the best for both Progress and MySQL.

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 196

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SEMMNS = SEMMSL * number of db servers to be run on the system

Set SEMMNS to the value of SEMMSL multiplied by the number of database servers (maximum) that you
are running on the system at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of SEMMNS,
but this is a conservative estimate.

You need to at least install the SCO OpenServer Linker and Application Development Libraries or the
OpenServer Development System to use gcc. You cannot use the GCC Dev system without installing one
of these.

You should get the FSU Pthreads package and install it first. This can be found at http://
moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz. You can also get a precompiled package from
ftp://ftp.zenez.com/pub/zenez/prgms/FSU-threads-3.14.tar.gz.

FSU Pthreads can be compiled with SCO Unix 4.2 with tcpip, or using OpenServer 3.0 or Open Desktop
3.0 (OS 3.0 ODT 3.0) with the SCO Development System installed using a good port of GCC 2.5.x. For
ODT or OS 3.0, you need a good port of GCC 2.5.x. There are a lot of problems without a good port. The
port for this product requires the SCO Unix Development system. Without it, you are missing the libraries
and the linker that is needed. You also need SCO-3.2v4.2-includes.tar.gz. This file contains
the changes to the SCO Development include files that are needed to get MySQL to build. You need to
replace the existing system include files with these modified header files. They can be obtained from ftp://
ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz.

To build FSU Pthreads on your system, all you should need to do is run GNU make. The Makefile in
FSU-threads-3.14.tar.gz is set up to make FSU-threads.

You can run ./configure in the threads/src directory and select the SCO OpenServer option. This
command copies Makefile.SCO5 to Makefile. Then run make.

To install in the default /usr/include directory, log in as root, and then cd to the thread/src
directory and run make install.

Remember that you must use GNU make to build MySQL.

Note

If you do not start mysqld_safe as root, you should get only the default 110
open files per process. mysqld writes a note about this in the log file.

With SCO 3.2V4.2, you should use FSU Pthreads version 3.14 or newer. The following configure
command should work:

CFLAGS="-D_XOPEN_XPG4" CXX=gcc CXXFLAGS="-D_XOPEN_XPG4" \
./configure \
 --prefix=/usr/local/mysql \
 --with-named-thread-libs="-lgthreads -lsocket -lgen -lgthreads" \
 --with-named-curses-libs="-lcurses"

You may have problems with some include files. In this case, you can find new SCO-specific include files
at ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz.

You should unpack this file in the include directory of your MySQL source tree.

http://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz
http://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz
ftp://ftp.zenez.com/pub/zenez/prgms/FSU-threads-3.14.tar.gz
ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz
ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz
ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 197

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SCO development notes:

• MySQL should automatically detect FSU Pthreads and link mysqld with -lgthreads -lsocket -
lgthreads.

• The SCO development libraries are re-entrant in FSU Pthreads. SCO claims that its library functions are
re-entrant, so they must be re-entrant with FSU Pthreads. FSU Pthreads on OpenServer tries to use the
SCO scheme to make re-entrant libraries.

• FSU Pthreads (at least the version at ftp://ftp.zenez.com) comes linked with GNU malloc. If you
encounter problems with memory usage, make sure that gmalloc.o is included in libgthreads.a
and libgthreads.so.

• In FSU Pthreads, the following system calls are pthreads-aware: read(), write(), getmsg(),
connect(), accept(), select(), and wait().

• The CSSA-2001-SCO.35.2 (the patch is listed in custom as erg711905-dscr_remap security patch
(version 2.0.0)) breaks FSU threads and makes mysqld unstable. You have to remove this one if you
want to run mysqld on an OpenServer 5.0.6 machine.

• If you use SCO OpenServer 5, you may need to recompile FSU pthreads with -DDRAFT7 in CFLAGS.
Otherwise, InnoDB may hang at a mysqld startup.

• SCO provides operating system patches at ftp://ftp.sco.com/pub/openserver5 for OpenServer 5.0.x.

• SCO provides security fixes and libsocket.so.2 at ftp://ftp.sco.com/pub/security/OpenServer and
ftp://ftp.sco.com/pub/security/sse for OpenServer 5.0.x.

• Pre-OSR506 security fixes. Also, the telnetd fix at ftp://stage.caldera.com/pub/security/openserver/ or
ftp://stage.caldera.com/pub/security/openserver/CSSA-2001-SCO.10/ as both libsocket.so.2 and
libresolv.so.1 with instructions for installing on pre-OSR506 systems.

It is probably a good idea to install these patches before trying to compile/use MySQL.

Beginning with Legend/OpenServer 6.0.0, there are native threads and no 2GB file size limit.

2.20.5.9 SCO OpenServer 6.0.x Notes

OpenServer 6 includes these key improvements:

• Larger file support up to 1 TB

• Multiprocessor support increased from 4 to 32 processors

• Increased memory support up to 64GB

• Extending the power of UnixWare into OpenServer 6

• Dramatic performance improvement

OpenServer 6.0.0 commands are organized as follows:

• /bin is for commands that behave exactly the same as on OpenServer 5.0.x.

• /u95/bin is for commands that have better standards conformance, for example Large File System
(LFS) support.

• /udk/bin is for commands that behave the same as on UnixWare 7.1.4. The default is for the LFS
support.

ftp://ftp.zenez.com
ftp://ftp.sco.com/pub/openserver5
ftp://ftp.sco.com/pub/security/OpenServer
ftp://ftp.sco.com/pub/security/sse
ftp://stage.caldera.com/pub/security/openserver/
ftp://stage.caldera.com/pub/security/openserver/CSSA-2001-SCO.10/

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 198

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The following is a guide to setting PATH on OpenServer 6. If the user wants the traditional OpenServer
5.0.x then PATH should be /bin first. If the user wants LFS support, the path should be /u95/bin:/bin.
If the user wants UnixWare 7 support first, the path would be /udk/bin:/u95/bin:/bin:.

Use the latest production release of MySQL. Should you choose to use an older release of MySQL on
OpenServer 6.0.x, you must use a version of MySQL at least as recent as 3.22.13 to get fixes for some
portability and OS problems.

MySQL distribution files with names of the following form are tar archives of media are tar archives
of media images suitable for installation with the SCO Software Manager (/etc/custom) on SCO
OpenServer 6:

mysql-PRODUCT-5.0.96-sco-osr6-i686.VOLS.tar

A distribution where PRODUCT is pro-cert is the Commercially licensed MySQL Pro Certified server. A
distribution where PRODUCT is pro-gpl-cert is the MySQL Pro Certified server licensed under the terms
of the General Public License (GPL).

Select whichever distribution you wish to install and, after download, extract the tar archive into an empty
directory. For example:

shell> mkdir /tmp/mysql-pro
shell> cd /tmp/mysql-pro
shell> tar xf /tmp/mysql-pro-cert-5.0.96-sco-osr6-i686.VOLS.tar

Prior to installation, back up your data in accordance with the procedures outlined in Section 2.19.1,
“Upgrading MySQL”.

Remove any previously installed pkgadd version of MySQL:

shell> pkginfo mysql 2>&1 > /dev/null && pkgrm mysql

Install MySQL Pro from media images using the SCO Software Manager:

shell> /etc/custom -p SCO:MySQL -i -z /tmp/mysql-pro

Alternatively, the SCO Software Manager can be displayed graphically by clicking the Software
Manager icon on the desktop, selecting Software -> Install New, selecting the host, selecting
Media Images for the Media Device, and entering /tmp/mysql-pro as the Image Directory.

After installation, run mkdev mysql as the root user to configure your newly installed MySQL Pro
Certified server.

Note

The installation procedure for VOLS packages does not create the mysql user
and group that the package uses by default. You should either create the mysql
user and group, or else select a different user and group using an option in mkdev
mysql.

If you wish to configure your MySQL Pro server to interface with the Apache Web server using
PHP, download and install the PHP update from SCO at ftp://ftp.sco.com/pub/updates/OpenServer/
SCOSA-2006.17/.

We have been able to compile MySQL with the following configure command on OpenServer 6.0.x:

ftp://ftp.sco.com/pub/updates/OpenServer/SCOSA-2006.17/
ftp://ftp.sco.com/pub/updates/OpenServer/SCOSA-2006.17/

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 199

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CC=cc CFLAGS="-D_FILE_OFFSET_BITS=64 -O3" \
CXX=CC CXXFLAGS="-D_FILE_OFFSET_BITS=64 -O3" \
./configure --prefix=/usr/local/mysql \
 --enable-thread-safe-client --with-berkeley-db \
 --with-extra-charsets=complex \
 --build=i686-unknown-sysv5SCO_SV6.0.0

If you use gcc, you must use gcc 2.95.3 or newer.

CC=gcc CXX=g++/configure ...

The version of Berkeley DB that comes with either UnixWare 7.1.4 or OpenServer 6.0.0 is not used when
building MySQL. MySQL instead uses its own version of Berkeley DB. The configure command needs
to build both a static and a dynamic library in src_directory/bdb/build_unix/, but it does not with
MySQL's own BDB version. The workaround is as follows.

1. Configure as normal for MySQL.

2. cd bdb/build_unix/

3. cp -p Makefile Makefile.sav

4. Use same options and run ../dist/configure.

5. Run gmake.

6. cp -p Makefile.sav Makefile

7. Change location to the top source directory and run gmake.

This enables both the shared and dynamic libraries to be made and work.

SCO provides OpenServer 6 operating system patches at ftp://ftp.sco.com/pub/openserver6.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenServer.

By default, the maximum file size on a OpenServer 6.0.0 system is 1TB. Some operating system utilities
have a limitation of 2GB. The maximum possible file size on UnixWare 7 is 1TB with VXFS or HTFS.

OpenServer 6 can be configured for large file support (file sizes greater than 2GB) by tuning the UNIX
kernel.

By default, the entries in /etc/conf/cf.d/mtune are set as follows:

Value Default Min Max
----- ------- --- ---
SVMMLIM 0x9000000 0x1000000 0x7FFFFFFF
HVMMLIM 0x9000000 0x1000000 0x7FFFFFFF

To make changes to the kernel, use the idtune name parameter command. idtune modifies the /
etc/conf/cf.d/stune file for you. To set the kernel values, execute the following commands as root:

/etc/conf/bin/idtune SDATLIM 0x7FFFFFFF
/etc/conf/bin/idtune HDATLIM 0x7FFFFFFF
/etc/conf/bin/idtune SVMMLIM 0x7FFFFFFF
/etc/conf/bin/idtune HVMMLIM 0x7FFFFFFF
/etc/conf/bin/idtune SFNOLIM 2048
/etc/conf/bin/idtune HFNOLIM 2048

ftp://ftp.sco.com/pub/openserver6
ftp://ftp.sco.com/pub/security/OpenServer

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 200

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Then rebuild and reboot the kernel by issuing this command:

/etc/conf/bin/idbuild -B && init 6

To tune the system, the proper parameter values to use depend on the number of users accessing the
application or database and size the of the database (that is, the used buffer pool). The following kernel
parameters can be set with idtune:

• SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These parameters
have an influence on the MySQL database engine to create user buffer pools.

• SFNOLIM and HFNOLIM should be at maximum 2048.

• NPROC should be set to at least 3000/4000 (depends on number of users).

• The following formulas are recommended to calculate values for SEMMSL, SEMMNS, and SEMMNU:

SEMMSL = 13

13 is what has been found to be the best for both Progress and MySQL.

SEMMNS = SEMMSL * number of db servers to be run on the system

Set SEMMNS to the value of SEMMSL multiplied by the number of database servers (maximum) that you
are running on the system at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of SEMMNS,
but this is a conservative estimate.

2.20.5.10 SCO UnixWare 7.1.x and OpenUNIX 8.0.0 Notes

Use the latest production release of MySQL. Should you choose to use an older release of MySQL on
UnixWare 7.1.x, you must use a version of MySQL at least as recent as 3.22.13 to get fixes for some
portability and OS problems.

We have been able to compile MySQL with the following configure command on UnixWare 7.1.x:

CC="cc" CFLAGS="-I/usr/local/include" \
CXX="CC" CXXFLAGS="-I/usr/local/include" \
./configure --prefix=/usr/local/mysql \
 --enable-thread-safe-client --with-berkeley-db=./bdb \
 --with-innodb --with-openssl --with-extra-charsets=complex

If you want to use gcc, you must use gcc 2.95.3 or newer.

CC=gcc CXX=g++/configure ...

The version of Berkeley DB that comes with either UnixWare 7.1.4 or OpenServer 6.0.0 is not used when
building MySQL. MySQL instead uses its own version of Berkeley DB. The configure command needs
to build both a static and a dynamic library in src_directory/bdb/build_unix/, but it does not with
MySQL's own BDB version. The workaround is as follows.

1. Configure as normal for MySQL.

Other Unix Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 201

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2. cd bdb/build_unix/

3. cp -p Makefile Makefile.sav

4. Use same options and run ../dist/configure.

5. Run gmake.

6. cp -p Makefile.sav Makefile

7. Change to top source directory and run gmake.

This enables both the shared and dynamic libraries to be made and work.

SCO provides operating system patches at ftp://ftp.sco.com/pub/unixware7 for UnixWare 7.1.1, ftp://
ftp.sco.com/pub/unixware7/713/ for UnixWare 7.1.3, ftp://ftp.sco.com/pub/unixware7/714/ for UnixWare
7.1.4, and ftp://ftp.sco.com/pub/openunix8 for OpenUNIX 8.0.0.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenUNIX for OpenUNIX
and ftp://ftp.sco.com/pub/security/UnixWare for UnixWare.

The UnixWare 7 file size limit is 1 TB with VXFS. Some OS utilities have a limitation of 2GB.

On UnixWare 7.1.4 you do not need to do anything to get large file support, but to enable large file support
on prior versions of UnixWare 7.1.x, run fsadm.

fsadm -Fvxfs -o largefiles /
fsadm / * Note
ulimit unlimited
/etc/conf/bin/idtune SFSZLIM 0x7FFFFFFF ** Note
/etc/conf/bin/idtune HFSZLIM 0x7FFFFFFF ** Note
/etc/conf/bin/idbuild -B

* This should report "largefiles".
** 0x7FFFFFFF represents infinity for these values.

Reboot the system using shutdown.

By default, the entries in /etc/conf/cf.d/mtune are set as follows:

Value Default Min Max
----- ------- --- ---
SVMMLIM 0x9000000 0x1000000 0x7FFFFFFF
HVMMLIM 0x9000000 0x1000000 0x7FFFFFFF

To make changes to the kernel, use the idtune name parameter command. idtune modifies the /
etc/conf/cf.d/stune file for you. To set the kernel values, execute the following commands as root:

/etc/conf/bin/idtune SDATLIM 0x7FFFFFFF
/etc/conf/bin/idtune HDATLIM 0x7FFFFFFF
/etc/conf/bin/idtune SVMMLIM 0x7FFFFFFF
/etc/conf/bin/idtune HVMMLIM 0x7FFFFFFF
/etc/conf/bin/idtune SFNOLIM 2048
/etc/conf/bin/idtune HFNOLIM 2048

Then rebuild and reboot the kernel by issuing this command:

ftp://ftp.sco.com/pub/unixware7
ftp://ftp.sco.com/pub/unixware7/713/
ftp://ftp.sco.com/pub/unixware7/713/
ftp://ftp.sco.com/pub/unixware7/714/
ftp://ftp.sco.com/pub/openunix8
ftp://ftp.sco.com/pub/security/OpenUNIX
ftp://ftp.sco.com/pub/security/UnixWare

OS/2 Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 202

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

/etc/conf/bin/idbuild -B && init 6

To tune the system, the proper parameter values to use depend on the number of users accessing the
application or database and size the of the database (that is, the used buffer pool). The following kernel
parameters can be set with idtune:

• SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These parameters
have an influence on the MySQL database engine to create user buffer pools.

• SFNOLIM and HFNOLIM should be at maximum 2048.

• NPROC should be set to at least 3000/4000 (depends on number of users).

• The following formulas are recommended to calculate values for SEMMSL, SEMMNS, and SEMMNU:

SEMMSL = 13

13 is what has been found to be the best for both Progress and MySQL.

SEMMNS = SEMMSL * number of db servers to be run on the system

Set SEMMNS to the value of SEMMSL multiplied by the number of database servers (maximum) that you
are running on the system at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of SEMMNS,
but this is a conservative estimate.

2.20.6 OS/2 Notes

Note

We no longer test builds on OS/2. The notes in this section are provided for your
information but may not work on your system.

MySQL uses quite a few open files. Because of this, you should add something like the following to your
CONFIG.SYS file:

SET EMXOPT=-c -n -h1024

If you do not do this, you may encounter the following error:

File 'xxxx' not found (Errcode: 24)

When using MySQL with OS/2 Warp 3, FixPack 29 or above is required. With OS/2 Warp 4, FixPack 4 or
above is required. This is a requirement of the Pthreads library. MySQL must be installed on a partition
with a type that supports long file names, such as HPFS, FAT32, and so on.

The INSTALL.CMD script must be run from OS/2's own CMD.EXE and may not work with replacement
shells such as 4OS2.EXE.

The scripts/mysql-install-db script has been renamed. It is called install.cmd and is a REXX
script, which sets up the default MySQL security settings and creates the WorkPlace Shell icons for
MySQL.

Environment Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 203

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Dynamic module support is compiled in but not fully tested. Dynamic modules should be compiled using
the Pthreads runtime library.

gcc -Zdll -Zmt -Zcrtdll=pthrdrtl -I../include -I../regex -I.. \
 -o example udf_example.c -L../lib -lmysqlclient udf_example.def
mv example.dll example.udf

Note

Due to limitations in OS/2, UDF module name stems must not exceed eight
characters. Modules are stored in the /mysql2/udf directory; the safe-
mysqld.cmd script puts this directory in the BEGINLIBPATH environment variable.
When using UDF modules, specified extensions are ignored---it is assumed to be
.udf. For example, in Unix, the shared module might be named example.so and
you would load a function from it like this:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME 'example.so';

In OS/2, the module would be named example.udf, but you would not specify the module extension:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME 'example';

2.21 Environment Variables

This section lists environment variables that are used directly or indirectly by MySQL. Most of these can
also be found in other places in this manual.

Note that any options on the command line take precedence over values specified in option files and
environment variables, and values in option files take precedence over values in environment variables. In
many cases, it is preferable to use an option file instead of environment variables to modify the behavior of
MySQL. See Section 4.2.6, “Using Option Files”.

Variable Description

CXX The name of your C++ compiler (for running configure).

CC The name of your C compiler (for running configure).

CFLAGS Flags for your C compiler (for running configure).

CXXFLAGS Flags for your C++ compiler (for running configure).

DBI_USER The default user name for Perl DBI.

DBI_TRACE Trace options for Perl DBI.

HOME The default path for the mysql history file is $HOME/.mysql_history.

LD_RUN_PATH Used to specify the location of libmysqlclient.so.

MYSQL_DEBUG Debug trace options when debugging.

MYSQL_GROUP_SUFFIX Option group suffix value (like specifying --defaults-group-suffix).

MYSQL_HISTFILE The path to the mysql history file. If this variable is set, its value overrides the
default for $HOME/.mysql_history.

MYSQL_HOME The path to the directory in which the server-specific my.cnf file resides (as of
MySQL 5.0.3).

MYSQL_HOST The default host name used by the mysql command-line client.

Perl Installation Notes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 204

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable Description

MYSQL_PS1 The command prompt to use in the mysql command-line client.

MYSQL_PWD The default password when connecting to mysqld. Using this is insecure. See
Section 6.1.2.1, “End-User Guidelines for Password Security”.

MYSQL_TCP_PORT The default TCP/IP port number.

MYSQL_UNIX_PORT The default Unix socket file name; used for connections to localhost.

PATH Used by the shell to find MySQL programs.

TMPDIR The directory in which temporary files are created.

TZ This should be set to your local time zone. See Section B.5.3.7, “Time Zone
Problems”.

UMASK The user-file creation mode when creating files. See note following table.

UMASK_DIR The user-directory creation mode when creating directories. See note following
table.

USER The default user name on Windows and NetWare when connecting to mysqld.

For information about the mysql history file, see Section 4.5.1.3, “mysql Logging”.

The default UMASK and UMASK_DIR values are 0660 and 0700, respectively. MySQL assumes that the
value for UMASK or UMASK_DIR is in octal if it starts with a zero. For example, setting UMASK=0600 is
equivalent to UMASK=384 because 0600 octal is 384 decimal.

The UMASK and UMASK_DIR variables, despite their names, are used as modes, not masks:

• If UMASK is set, mysqld uses ($UMASK | 0600) as the mode for file creation, so that newly created
files have a mode in the range from 0600 to 0666 (all values octal).

• If UMASK_DIR is set, mysqld uses ($UMASK_DIR | 0700) as the base mode for directory creation,
which then is AND-ed with ~(~$UMASK & 0666), so that newly created directories have a mode in the
range from 0700 to 0777 (all values octal). The AND operation may remove read and write permissions
from the directory mode, but not execute permissions.

2.22 Perl Installation Notes
The Perl DBI module provides a generic interface for database access. You can write a DBI script that
works with many different database engines without change. To use DBI, you must install the DBI module,
as well as a DataBase Driver (DBD) module for each type of database server you want to access. For
MySQL, this driver is the DBD::mysql module.

Perl, and the DBD::MySQL module for DBI must be installed if you want to run the MySQL benchmark
scripts; see Section 8.13.2, “The MySQL Benchmark Suite”. They are also required for the MySQL
Cluster ndb_size.pl utility; see Section 17.4.18, “ndb_size.pl — NDBCLUSTER Size Requirement
Estimator”.

Note

Perl support is not included with MySQL distributions. You can obtain the necessary
modules from http://search.cpan.org for Unix, or by using the ActiveState ppm
program on Windows. The following sections describe how to do this.

The DBI/DBD interface requires Perl 5.6.0, and 5.6.1 or later is preferred. DBI does not work if you have
an older version of Perl. You should use DBD::mysql 4.009 or higher. Although earlier versions are
available, they do not support the full functionality of MySQL 5.0.

http://search.cpan.org

Installing Perl on Unix

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 205

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2.22.1 Installing Perl on Unix

MySQL Perl support requires that you have installed MySQL client programming support (libraries and
header files). Most installation methods install the necessary files. If you install MySQL from RPM files on
Linux, be sure to install the developer RPM as well. The client programs are in the client RPM, but client
programming support is in the developer RPM.

The files you need for Perl support can be obtained from the CPAN (Comprehensive Perl Archive Network)
at http://search.cpan.org.

The easiest way to install Perl modules on Unix is to use the CPAN module. For example:

shell> perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql

The DBD::mysql installation runs a number of tests. These tests attempt to connect to the local MySQL
server using the default user name and password. (The default user name is your login name on Unix,
and ODBC on Windows. The default password is “no password.”) If you cannot connect to the server with
those values (for example, if your account has a password), the tests fail. You can use force install
DBD::mysql to ignore the failed tests.

DBI requires the Data::Dumper module. It may be installed; if not, you should install it before installing
DBI.

It is also possible to download the module distributions in the form of compressed tar archives and build
the modules manually. For example, to unpack and build a DBI distribution, use a procedure such as this:

1. Unpack the distribution into the current directory:

shell> gunzip < DBI-VERSION.tar.gz | tar xvf -

This command creates a directory named DBI-VERSION.

2. Change location into the top-level directory of the unpacked distribution:

shell> cd DBI-VERSION

3. Build the distribution and compile everything:

shell> perl Makefile.PL
shell> make
shell> make test
shell> make install

The make test command is important because it verifies that the module is working. Note that when you
run that command during the DBD::mysql installation to exercise the interface code, the MySQL server
must be running or the test fails.

It is a good idea to rebuild and reinstall the DBD::mysql distribution whenever you install a new release of
MySQL. This ensures that the latest versions of the MySQL client libraries are installed correctly.

If you do not have access rights to install Perl modules in the system directory or if you want to install
local Perl modules, the following reference may be useful: http://servers.digitaldaze.com/extensions/perl/
modules.html#modules

http://search.cpan.org
http://servers.digitaldaze.com/extensions/perl/modules.html#modules
http://servers.digitaldaze.com/extensions/perl/modules.html#modules

Installing ActiveState Perl on Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 206

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Look under the heading “Installing New Modules that Require Locally Installed Modules.”

2.22.2 Installing ActiveState Perl on Windows

On Windows, you should do the following to install the MySQL DBD module with ActiveState Perl:

1. Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/ and install it.

2. Open a console window.

3. If necessary, set the HTTP_proxy variable. For example, you might try a setting like this:

C:\> set HTTP_proxy=my.proxy.com:3128

4. Start the PPM program:

C:\> C:\perl\bin\ppm.pl

5. If you have not previously done so, install DBI:

ppm> install DBI

6. If this succeeds, run the following command:

ppm> install DBD-mysql

This procedure should work with ActiveState Perl 5.6 or newer.

If you cannot get the procedure to work, you should install the ODBC driver instead and connect to the
MySQL server through ODBC:

use DBI;
$dbh= DBI->connect("DBI:ODBC:$dsn",$user,$password) ||
 die "Got error $DBI::errstr when connecting to $dsn\n";

2.22.3 Problems Using the Perl DBI/DBD Interface

If Perl reports that it cannot find the ../mysql/mysql.so module, the problem is probably that Perl
cannot locate the libmysqlclient.so shared library. You should be able to fix this problem by one of
the following methods:

• Compile the DBD::mysql distribution with perl Makefile.PL -static -config rather than perl
Makefile.PL.

• Copy libmysqlclient.so to the directory where your other shared libraries are located (probably /
usr/lib or /lib).

• Modify the -L options used to compile DBD::mysql to reflect the actual location of
libmysqlclient.so.

• On Linux, you can add the path name of the directory where libmysqlclient.so is located to the /
etc/ld.so.conf file.

• Add the path name of the directory where libmysqlclient.so is located to the LD_RUN_PATH
environment variable. Some systems use LD_LIBRARY_PATH instead.

http://www.activestate.com/Products/ActivePerl/

Problems Using the Perl DBI/DBD Interface

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 207

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note that you may also need to modify the -L options if there are other libraries that the linker fails to find.
For example, if the linker cannot find libc because it is in /lib and the link command specifies -L/usr/
lib, change the -L option to -L/lib or add -L/lib to the existing link command.

If you get the following errors from DBD::mysql, you are probably using gcc (or using an old binary
compiled with gcc):

/usr/bin/perl: can't resolve symbol '__moddi3'
/usr/bin/perl: can't resolve symbol '__divdi3'

Add -L/usr/lib/gcc-lib/... -lgcc to the link command when the mysql.so library gets built
(check the output from make for mysql.so when you compile the Perl client). The -L option should
specify the path name of the directory where libgcc.a is located on your system.

Another cause of this problem may be that Perl and MySQL are not both compiled with gcc. In this case,
you can solve the mismatch by compiling both with gcc.

You may see the following error from DBD::mysql when you run the tests:

t/00base............install_driver(mysql) failed:
Can't load '../blib/arch/auto/DBD/mysql/mysql.so' for module DBD::mysql:
../blib/arch/auto/DBD/mysql/mysql.so: undefined symbol:
uncompress at /usr/lib/perl5/5.00503/i586-linux/DynaLoader.pm line 169.

This means that you need to include the -lz compression library on the link line. That can be done by
changing the following line in the file lib/DBD/mysql/Install.pm:

$sysliblist .= " -lm";

Change that line to:

$sysliblist .= " -lm -lz";

After this, you must run make realclean and then proceed with the installation from the beginning.

If you want to install DBI on SCO, you have to edit the Makefile in DBI-xxx and each subdirectory. Note
that the following assumes gcc 2.95.2 or newer:

OLD: NEW:
CC = cc CC = gcc
CCCDLFLAGS = -KPIC -W1,-Bexport CCCDLFLAGS = -fpic
CCDLFLAGS = -wl,-Bexport CCDLFLAGS =

LD = ld LD = gcc -G -fpic
LDDLFLAGS = -G -L/usr/local/lib LDDLFLAGS = -L/usr/local/lib
LDFLAGS = -belf -L/usr/local/lib LDFLAGS = -L/usr/local/lib

LD = ld LD = gcc -G -fpic
OPTIMISE = -Od OPTIMISE = -O1

OLD:
CCCFLAGS = -belf -dy -w0 -U M_XENIX -DPERL_SCO5 -I/usr/local/include

NEW:
CCFLAGS = -U M_XENIX -DPERL_SCO5 -I/usr/local/include

These changes are necessary because the Perl dynaloader does not load the DBI modules if they were
compiled with icc or cc.

Problems Using the Perl DBI/DBD Interface

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 208

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you want to use the Perl module on a system that does not support dynamic linking (such as SCO), you
can generate a static version of Perl that includes DBI and DBD::mysql. The way this works is that you
generate a version of Perl with the DBI code linked in and install it on top of your current Perl. Then you
use that to build a version of Perl that additionally has the DBD code linked in, and install that.

On SCO, you must have the following environment variables set:

LD_LIBRARY_PATH=/lib:/usr/lib:/usr/local/lib:/usr/progressive/lib

Or:

LD_LIBRARY_PATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\
 /usr/progressive/lib:/usr/skunk/lib
LIBPATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\
 /usr/progressive/lib:/usr/skunk/lib
MANPATH=scohelp:/usr/man:/usr/local1/man:/usr/local/man:\
 /usr/skunk/man:

First, create a Perl that includes a statically linked DBI module by running these commands in the directory
where your DBI distribution is located:

shell> perl Makefile.PL -static -config
shell> make
shell> make install
shell> make perl

Then, you must install the new Perl. The output of make perl indicates the exact make command you
need to execute to perform the installation. On SCO, this is make -f Makefile.aperl inst_perl
MAP_TARGET=perl.

Next, use the just-created Perl to create another Perl that also includes a statically linked DBD::mysql by
running these commands in the directory where your DBD::mysql distribution is located:

shell> perl Makefile.PL -static -config
shell> make
shell> make install
shell> make perl

Finally, you should install this new Perl. Again, the output of make perl indicates the command to use.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 209

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 3 Tutorial

Table of Contents
3.1 Connecting to and Disconnecting from the Server .. 209
3.2 Entering Queries ... 210
3.3 Creating and Using a Database .. 213

3.3.1 Creating and Selecting a Database ... 215
3.3.2 Creating a Table .. 215
3.3.3 Loading Data into a Table .. 217
3.3.4 Retrieving Information from a Table .. 218

3.4 Getting Information About Databases and Tables ... 232
3.5 Using mysql in Batch Mode .. 233
3.6 Examples of Common Queries .. 235

3.6.1 The Maximum Value for a Column ... 235
3.6.2 The Row Holding the Maximum of a Certain Column ... 235
3.6.3 Maximum of Column per Group .. 236
3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column 236
3.6.5 Using User-Defined Variables ... 237
3.6.6 Using Foreign Keys ... 237
3.6.7 Searching on Two Keys ... 239
3.6.8 Calculating Visits Per Day .. 240
3.6.9 Using AUTO_INCREMENT ... 240

3.7 Using MySQL with Apache ... 242

This chapter provides a tutorial introduction to MySQL by showing how to use the mysql client program
to create and use a simple database. mysql (sometimes referred to as the “terminal monitor” or just
“monitor”) is an interactive program that enables you to connect to a MySQL server, run queries, and view
the results. mysql may also be used in batch mode: you place your queries in a file beforehand, then tell
mysql to execute the contents of the file. Both ways of using mysql are covered here.

To see a list of options provided by mysql, invoke it with the --help option:

shell> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is available
to which you can connect. If this is not true, contact your MySQL administrator. (If you are the
administrator, you need to consult the relevant portions of this manual, such as Chapter 5, MySQL Server
Administration.)

This chapter describes the entire process of setting up and using a database. If you are interested only in
accessing an existing database, you may want to skip over the sections that describe how to create the
database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily omitted. Consult the relevant
sections of the manual for more information on the topics covered here.

3.1 Connecting to and Disconnecting from the Server

To connect to the server, you will usually need to provide a MySQL user name when you invoke mysql
and, most likely, a password. If the server runs on a machine other than the one where you log in, you will

Entering Queries

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 210

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

also need to specify a host name. Contact your administrator to find out what connection parameters you
should use to connect (that is, what host, user name, and password to use). Once you know the proper
parameters, you should be able to connect like this:

shell> mysql -h host -u user -p
Enter password: ********

host and user represent the host name where your MySQL server is running and the user name of your
MySQL account. Substitute appropriate values for your setup. The ******** represents your password;
enter it when mysql displays the Enter password: prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

shell> mysql -h host -u user -p
Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 25338 to server version: 5.0.96-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

The mysql> prompt tells you that mysql is ready for you to enter SQL statements.

If you are logging in on the same machine that MySQL is running on, you can omit the host, and simply
use the following:

shell> mysql -u user -p

If, when you attempt to log in, you get an error message such as ERROR 2002 (HY000): Can't
connect to local MySQL server through socket '/tmp/mysql.sock' (2), it means that
the MySQL server daemon (Unix) or service (Windows) is not running. Consult the administrator or see the
section of Chapter 2, Installing and Upgrading MySQL that is appropriate to your operating system.

For help with other problems often encountered when trying to log in, see Section B.5.2, “Common Errors
When Using MySQL Programs”.

Some MySQL installations permit users to connect as the anonymous (unnamed) user to the server
running on the local host. If this is the case on your machine, you should be able to connect to that server
by invoking mysql without any options:

shell> mysql

After you have connected successfully, you can disconnect any time by typing QUIT (or \q) at the mysql>
prompt:

mysql> QUIT
Bye

On Unix, you can also disconnect by pressing Control+D.

Most examples in the following sections assume that you are connected to the server. They indicate this by
the mysql> prompt.

3.2 Entering Queries

Entering Queries

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 211

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Make sure that you are connected to the server, as discussed in the previous section. Doing so does not in
itself select any database to work with, but that is okay. At this point, it is more important to find out a little
about how to issue queries than to jump right in creating tables, loading data into them, and retrieving data
from them. This section describes the basic principles of entering queries, using several queries you can
try out to familiarize yourself with how mysql works.

Here is a simple query that asks the server to tell you its version number and the current date. Type it in as
shown here following the mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;
+----------------+--------------+
| VERSION() | CURRENT_DATE |
+----------------+--------------+
| 5.0.7-beta-Max | 2005-07-11 |
+----------------+--------------+
1 row in set (0.01 sec)
mysql>

This query illustrates several things about mysql:

• A query normally consists of an SQL statement followed by a semicolon. (There are some exceptions
where a semicolon may be omitted. QUIT, mentioned earlier, is one of them. We'll get to others later.)

• When you issue a query, mysql sends it to the server for execution and displays the results, then prints
another mysql> prompt to indicate that it is ready for another query.

• mysql displays query output in tabular form (rows and columns). The first row contains labels for
the columns. The rows following are the query results. Normally, column labels are the names of the
columns you fetch from database tables. If you're retrieving the value of an expression rather than a
table column (as in the example just shown), mysql labels the column using the expression itself.

• mysql shows how many rows were returned and how long the query took to execute, which gives you
a rough idea of server performance. These values are imprecise because they represent wall clock time
(not CPU or machine time), and because they are affected by factors such as server load and network
latency. (For brevity, the “rows in set” line is sometimes not shown in the remaining examples in this
chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;

Here is another query. It demonstrates that you can use mysql as a simple calculator:

mysql> SELECT SIN(PI()/4), (4+1)*5;
+------------------+---------+
| SIN(PI()/4) | (4+1)*5 |
+------------------+---------+
| 0.70710678118655 | 25 |
+------------------+---------+
1 row in set (0.02 sec)

The queries shown thus far have been relatively short, single-line statements. You can even enter multiple
statements on a single line. Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();

Entering Queries

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 212

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+----------------+
| VERSION() |
+----------------+
| 5.0.7-beta-Max |
+----------------+
1 row in set (0.00 sec)

+---------------------+
| NOW() |
+---------------------+
| 2005-07-11 17:59:36 |
+---------------------+
1 row in set (0.00 sec)

A query need not be given all on a single line, so lengthy queries that require several lines are not a
problem. mysql determines where your statement ends by looking for the terminating semicolon, not by
looking for the end of the input line. (In other words, mysql accepts free-format input: it collects input lines
but does not execute them until it sees the semicolon.)

Here is a simple multiple-line statement:

mysql> SELECT
 -> USER()
 -> ,
 -> CURRENT_DATE;
+---------------+--------------+
| USER() | CURRENT_DATE |
+---------------+--------------+
| jon@localhost | 2005-07-11 |
+---------------+--------------+

In this example, notice how the prompt changes from mysql> to -> after you enter the first line of a
multiple-line query. This is how mysql indicates that it has not yet seen a complete statement and is
waiting for the rest. The prompt is your friend, because it provides valuable feedback. If you use that
feedback, you can always be aware of what mysql is waiting for.

If you decide you do not want to execute a query that you are in the process of entering, cancel it by typing
\c:

mysql> SELECT
 -> USER()
 -> \c
mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing feedback to indicate
that mysql is ready for a new query.

The following table shows each of the prompts you may see and summarizes what they mean about the
state that mysql is in.

Prompt Meaning

mysql> Ready for new query

-> Waiting for next line of multiple-line query

'> Waiting for next line, waiting for completion of a string that began with a single quote (“'”)

"> Waiting for next line, waiting for completion of a string that began with a double quote (“"”)

`> Waiting for next line, waiting for completion of an identifier that began with a backtick (“`”)

/*> Waiting for next line, waiting for completion of a comment that began with /*

Creating and Using a Database

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 213

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In the MySQL 5.0 series, the /*> prompt was implemented in MySQL 5.0.6.

Multiple-line statements commonly occur by accident when you intend to issue a query on a single line, but
forget the terminating semicolon. In this case, mysql waits for more input:

mysql> SELECT USER()
 ->

If this happens to you (you think you've entered a statement but the only response is a -> prompt), most
likely mysql is waiting for the semicolon. If you don't notice what the prompt is telling you, you might sit
there for a while before realizing what you need to do. Enter a semicolon to complete the statement, and
mysql executes it:

mysql> SELECT USER()
 -> ;
+---------------+
| USER() |
+---------------+
| jon@localhost |
+---------------+

The '> and "> prompts occur during string collection (another way of saying that MySQL is waiting for
completion of a string). In MySQL, you can write strings surrounded by either “'” or “"” characters (for
example, 'hello' or "goodbye"), and mysql lets you enter strings that span multiple lines. When you
see a '> or "> prompt, it means that you have entered a line containing a string that begins with a “'”
or “"” quote character, but have not yet entered the matching quote that terminates the string. This often
indicates that you have inadvertently left out a quote character. For example:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '>

If you enter this SELECT statement, then press Enter and wait for the result, nothing happens. Instead
of wondering why this query takes so long, notice the clue provided by the '> prompt. It tells you that
mysql expects to see the rest of an unterminated string. (Do you see the error in the statement? The string
'Smith is missing the second single quotation mark.)

At this point, what do you do? The simplest thing is to cancel the query. However, you cannot just type \c
in this case, because mysql interprets it as part of the string that it is collecting. Instead, enter the closing
quote character (so mysql knows you've finished the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
 '> '\c
mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new query.

The `> prompt is similar to the '> and "> prompts, but indicates that you have begun but not completed a
backtick-quoted identifier.

It is important to know what the '>, ">, and `> prompts signify, because if you mistakenly enter an
unterminated string, any further lines you type appear to be ignored by mysql—including a line containing
QUIT. This can be quite confusing, especially if you do not know that you need to supply the terminating
quote before you can cancel the current query.

3.3 Creating and Using a Database

Creating and Using a Database

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 214

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Once you know how to enter SQL statements, you are ready to access a database.

Suppose that you have several pets in your home (your menagerie) and you would like to keep track of
various types of information about them. You can do so by creating tables to hold your data and loading
them with the desired information. Then you can answer different sorts of questions about your animals by
retrieving data from the tables. This section shows you how to perform the following operations:

• Create a database

• Create a table

• Load data into the table

• Retrieve data from the table in various ways

• Use multiple tables

The menagerie database is simple (deliberately), but it is not difficult to think of real-world situations
in which a similar type of database might be used. For example, a database like this could be used by
a farmer to keep track of livestock, or by a veterinarian to keep track of patient records. A menagerie
distribution containing some of the queries and sample data used in the following sections can be
obtained from the MySQL Web site. It is available in both compressed tar file and Zip formats at http://
dev.mysql.com/doc/.

Use the SHOW statement to find out what databases currently exist on the server:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
| tmp |
+----------+

The mysql database describes user access privileges. The test database often is available as a
workspace for users to try things out.

The list of databases displayed by the statement may be different on your machine; SHOW DATABASES
does not show databases that you have no privileges for if you do not have the SHOW DATABASES
privilege. See Section 13.7.5.11, “SHOW DATABASES Syntax”.

If the test database exists, try to access it:

mysql> USE test
Database changed

USE, like QUIT, does not require a semicolon. (You can terminate such statements with a semicolon if you
like; it does no harm.) The USE statement is special in another way, too: it must be given on a single line.

You can use the test database (if you have access to it) for the examples that follow, but anything you
create in that database can be removed by anyone else with access to it. For this reason, you should
probably ask your MySQL administrator for permission to use a database of your own. Suppose that you
want to call yours menagerie. The administrator needs to execute a statement like this:

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/

Creating and Selecting a Database

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 215

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> GRANT ALL ON menagerie.* TO 'your_mysql_name'@'your_client_host';

where your_mysql_name is the MySQL user name assigned to you and your_client_host is the host
from which you connect to the server.

3.3.1 Creating and Selecting a Database

If the administrator creates your database for you when setting up your permissions, you can begin using
it. Otherwise, you need to create it yourself:

mysql> CREATE DATABASE menagerie;

Under Unix, database names are case sensitive (unlike SQL keywords), so you must always refer to
your database as menagerie, not as Menagerie, MENAGERIE, or some other variant. This is also true
for table names. (Under Windows, this restriction does not apply, although you must refer to databases
and tables using the same lettercase throughout a given query. However, for a variety of reasons, the
recommended best practice is always to use the same lettercase that was used when the database was
created.)

Note

If you get an error such as ERROR 1044 (42000): Access denied for user
'micah'@'localhost' to database 'menagerie' when attempting to
create a database, this means that your user account does not have the necessary
privileges to do so. Discuss this with the administrator or see Section 6.2, “The
MySQL Access Privilege System”.

Creating a database does not select it for use; you must do that explicitly. To make menagerie the current
database, use this statement:

mysql> USE menagerie
Database changed

Your database needs to be created only once, but you must select it for use each time you begin a mysql
session. You can do this by issuing a USE statement as shown in the example. Alternatively, you can select
the database on the command line when you invoke mysql. Just specify its name after any connection
parameters that you might need to provide. For example:

shell> mysql -h host -u user -p menagerie
Enter password: ********

Important

menagerie in the command just shown is not your password. If you want to supply
your password on the command line after the -p option, you must do so with no
intervening space (for example, as -pmypassword, not as -p mypassword).
However, putting your password on the command line is not recommended,
because doing so exposes it to snooping by other users logged in on your machine.

Note

You can see at any time which database is currently selected using SELECT
DATABASE().

3.3.2 Creating a Table

Creating a Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 216

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Creating the database is the easy part, but at this point it is empty, as SHOW TABLES tells you:

mysql> SHOW TABLES;
Empty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you need and what
columns should be in each of them.

You want a table that contains a record for each of your pets. This can be called the pet table, and
it should contain, as a bare minimum, each animal's name. Because the name by itself is not very
interesting, the table should contain other information. For example, if more than one person in your
family keeps pets, you might want to list each animal's owner. You might also want to record some basic
descriptive information such as species and sex.

How about age? That might be of interest, but it is not a good thing to store in a database. Age changes
as time passes, which means you'd have to update your records often. Instead, it is better to store a fixed
value such as date of birth. Then, whenever you need age, you can calculate it as the difference between
the current date and the birth date. MySQL provides functions for doing date arithmetic, so this is not
difficult. Storing birth date rather than age has other advantages, too:

• You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If you
think this type of query is somewhat silly, note that it is the same question you might ask in the context
of a business database to identify clients to whom you need to send out birthday greetings in the current
week or month, for that computer-assisted personal touch.)

• You can calculate age in relation to dates other than the current date. For example, if you store death
date in the database, you can easily calculate how old a pet was when it died.

You can probably think of other types of information that would be useful in the pet table, but the ones
identified so far are sufficient: name, owner, species, sex, birth, and death.

Use a CREATE TABLE statement to specify the layout of your table:

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
 -> species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

VARCHAR is a good choice for the name, owner, and species columns because the column values vary
in length. The lengths in those column definitions need not all be the same, and need not be 20. You can
normally pick any length from 1 to 65535, whatever seems most reasonable to you.

Note

Prior to MySQL 5.0.3, the upper limit was 255.) If you make a poor choice and it
turns out later that you need a longer field, MySQL provides an ALTER TABLE
statement.

Several types of values can be chosen to represent sex in animal records, such as 'm' and 'f', or
perhaps 'male' and 'female'. It is simplest to use the single characters 'm' and 'f'.

The use of the DATE data type for the birth and death columns is a fairly obvious choice.

Once you have created a table, SHOW TABLES should produce some output:

mysql> SHOW TABLES;

Loading Data into a Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 217

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+---------------------+
| Tables in menagerie |
+---------------------+
| pet |
+---------------------+

To verify that your table was created the way you expected, use a DESCRIBE statement:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

You can use DESCRIBE any time, for example, if you forget the names of the columns in your table or what
types they have.

For more information about MySQL data types, see Chapter 11, Data Types.

3.3.3 Loading Data into a Table

After creating your table, you need to populate it. The LOAD DATA and INSERT statements are useful for
this.

Suppose that your pet records can be described as shown here. (Observe that MySQL expects dates in
'YYYY-MM-DD' format; this may be different from what you are used to.)

name owner species sex birth death

Fluffy Harold cat f 1993-02-04

Claws Gwen cat m 1994-03-17

Buffy Harold dog f 1989-05-13

Fang Benny dog m 1990-08-27

Bowser Diane dog m 1979-08-31 1995-07-29

Chirpy Gwen bird f 1998-09-11

Whistler Gwen bird 1997-12-09

Slim Benny snake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it is to create a text file
containing a row for each of your animals, then load the contents of the file into the table with a single
statement.

You could create a text file pet.txt containing one record per line, with values separated by tabs, and
given in the order in which the columns were listed in the CREATE TABLE statement. For missing values
(such as unknown sexes or death dates for animals that are still living), you can use NULL values. To
represent these in your text file, use \N (backslash, capital-N). For example, the record for Whistler the bird
would look like this (where the whitespace between values is a single tab character):

Retrieving Information from a Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 218

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Whistler Gwen bird \N 1997-12-09 \N

To load the text file pet.txt into the pet table, use this statement:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;

If you created the file on Windows with an editor that uses \r\n as a line terminator, you should use this
statement instead:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet
 -> LINES TERMINATED BY '\r\n';

(On an Apple machine running OS X, you would likely want to use LINES TERMINATED BY '\r'.)

You can specify the column value separator and end of line marker explicitly in the LOAD DATA statement
if you wish, but the defaults are tab and linefeed. These are sufficient for the statement to read the file
pet.txt properly.

If the statement fails, it is likely that your MySQL installation does not have local file capability enabled by
default. See Section 6.1.6, “Security Issues with LOAD DATA LOCAL”, for information on how to change
this.

When you want to add new records one at a time, the INSERT statement is useful. In its simplest form,
you supply values for each column, in the order in which the columns were listed in the CREATE TABLE
statement. Suppose that Diane gets a new hamster named “Puffball.” You could add a new record using
an INSERT statement like this:

mysql> INSERT INTO pet
 -> VALUES ('Puffball','Diane','hamster','f','1999-03-30',NULL);

String and date values are specified as quoted strings here. Also, with INSERT, you can insert NULL
directly to represent a missing value. You do not use \N like you do with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved to load your
records initially using several INSERT statements rather than a single LOAD DATA statement.

3.3.4 Retrieving Information from a Table

The SELECT statement is used to pull information from a table. The general form of the statement is:

SELECT what_to_select
FROM which_table
WHERE conditions_to_satisfy;

what_to_select indicates what you want to see. This can be a list of columns, or * to indicate “all
columns.” which_table indicates the table from which you want to retrieve data. The WHERE clause
is optional. If it is present, conditions_to_satisfy specifies one or more conditions that rows must
satisfy to qualify for retrieval.

3.3.4.1 Selecting All Data

The simplest form of SELECT retrieves everything from a table:

Retrieving Information from a Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 219

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT * FROM pet;
+----------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+--------+---------+------+------------+------------+
Fluffy	Harold	cat	f	1993-02-04	NULL
Claws	Gwen	cat	m	1994-03-17	NULL
Buffy	Harold	dog	f	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1979-08-31	1995-07-29
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Puffball	Diane	hamster	f	1999-03-30	NULL
+----------+--------+---------+------+------------+------------+

This form of SELECT is useful if you want to review your entire table, for example, after you've just loaded it
with your initial data set. For example, you may happen to think that the birth date for Bowser doesn't seem
quite right. Consulting your original pedigree papers, you find that the correct birth year should be 1989,
not 1979.

There are at least two ways to fix this:

• Edit the file pet.txt to correct the error, then empty the table and reload it using DELETE and LOAD
DATA:

mysql> DELETE FROM pet;
mysql> LOAD DATA LOCAL INFILE 'pet.txt' INTO TABLE pet;

However, if you do this, you must also re-enter the record for Puffball.

• Fix only the erroneous record with an UPDATE statement:

mysql> UPDATE pet SET birth = '1989-08-31' WHERE name = 'Bowser';

The UPDATE changes only the record in question and does not require you to reload the table.

3.3.4.2 Selecting Particular Rows

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE clause from
the SELECT statement. But typically you don't want to see the entire table, particularly when it becomes
large. Instead, you're usually more interested in answering a particular question, in which case you specify
some constraints on the information you want. Let's look at some selection queries in terms of questions
about your pets that they answer.

You can select only particular rows from your table. For example, if you want to verify the change that you
made to Bowser's birth date, select Bowser's record like this:

mysql> SELECT * FROM pet WHERE name = 'Bowser';
+--------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+-------+---------+------+------------+------------+
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+-------+---------+------+------------+------------+

The output confirms that the year is correctly recorded as 1989, not 1979.

String comparisons normally are case-insensitive, so you can specify the name as 'bowser', 'BOWSER',
and so forth. The query result is the same.

Retrieving Information from a Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 220

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

You can specify conditions on any column, not just name. For example, if you want to know which animals
were born during or after 1998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= '1998-1-1';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
| Chirpy | Gwen | bird | f | 1998-09-11 | NULL |
| Puffball | Diane | hamster | f | 1999-03-30 | NULL |
+----------+-------+---------+------+------------+-------+

You can combine conditions, for example, to locate female dogs:

mysql> SELECT * FROM pet WHERE species = 'dog' AND sex = 'f';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The preceding query uses the AND logical operator. There is also an OR operator:

mysql> SELECT * FROM pet WHERE species = 'snake' OR species = 'bird';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
+----------+-------+---------+------+------------+-------+

AND and OR may be intermixed, although AND has higher precedence than OR. If you use both operators, it
is a good idea to use parentheses to indicate explicitly how conditions should be grouped:

mysql> SELECT * FROM pet WHERE (species = 'cat' AND sex = 'm')
 -> OR (species = 'dog' AND sex = 'f');
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

3.3.4.3 Selecting Particular Columns

If you do not want to see entire rows from your table, just name the columns in which you are interested,
separated by commas. For example, if you want to know when your animals were born, select the name
and birth columns:

mysql> SELECT name, birth FROM pet;
+----------+------------+
| name | birth |
+----------+------------+
Fluffy	1993-02-04
Claws	1994-03-17
Buffy	1989-05-13
Fang	1990-08-27
Bowser	1989-08-31
Chirpy	1998-09-11

Retrieving Information from a Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 221

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Whistler	1997-12-09
Slim	1996-04-29
Puffball	1999-03-30
+----------+------------+

To find out who owns pets, use this query:

mysql> SELECT owner FROM pet;
+--------+
| owner |
+--------+
| Harold |
| Gwen |
| Harold |
| Benny |
| Diane |
| Gwen |
| Gwen |
| Benny |
| Diane |
+--------+

Notice that the query simply retrieves the owner column from each record, and some of them appear more
than once. To minimize the output, retrieve each unique output record just once by adding the keyword
DISTINCT:

mysql> SELECT DISTINCT owner FROM pet;
+--------+
| owner |
+--------+
| Benny |
| Diane |
| Gwen |
| Harold |
+--------+

You can use a WHERE clause to combine row selection with column selection. For example, to get birth
dates for dogs and cats only, use this query:

mysql> SELECT name, species, birth FROM pet
 -> WHERE species = 'dog' OR species = 'cat';
+--------+---------+------------+
| name | species | birth |
+--------+---------+------------+
Fluffy	cat	1993-02-04
Claws	cat	1994-03-17
Buffy	dog	1989-05-13
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
+--------+---------+------------+

3.3.4.4 Sorting Rows

You may have noticed in the preceding examples that the result rows are displayed in no particular order. It
is often easier to examine query output when the rows are sorted in some meaningful way. To sort a result,
use an ORDER BY clause.

Here are animal birthdays, sorted by date:

Retrieving Information from a Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 222

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT name, birth FROM pet ORDER BY birth;
+----------+------------+
| name | birth |
+----------+------------+
Buffy	1989-05-13
Bowser	1989-08-31
Fang	1990-08-27
Fluffy	1993-02-04
Claws	1994-03-17
Slim	1996-04-29
Whistler	1997-12-09
Chirpy	1998-09-11
Puffball	1999-03-30
+----------+------------+

On character type columns, sorting—like all other comparison operations—is normally performed in a
case-insensitive fashion. This means that the order is undefined for columns that are identical except for
their case. You can force a case-sensitive sort for a column by using BINARY like so: ORDER BY BINARY
col_name.

The default sort order is ascending, with smallest values first. To sort in reverse (descending) order, add
the DESC keyword to the name of the column you are sorting by:

mysql> SELECT name, birth FROM pet ORDER BY birth DESC;
+----------+------------+
| name | birth |
+----------+------------+
Puffball	1999-03-30
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Claws	1994-03-17
Fluffy	1993-02-04
Fang	1990-08-27
Bowser	1989-08-31
Buffy	1989-05-13
+----------+------------+

You can sort on multiple columns, and you can sort different columns in different directions. For example,
to sort by type of animal in ascending order, then by birth date within animal type in descending order
(youngest animals first), use the following query:

mysql> SELECT name, species, birth FROM pet
 -> ORDER BY species, birth DESC;
+----------+---------+------------+
| name | species | birth |
+----------+---------+------------+
Chirpy	bird	1998-09-11
Whistler	bird	1997-12-09
Claws	cat	1994-03-17
Fluffy	cat	1993-02-04
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
Buffy	dog	1989-05-13
Puffball	hamster	1999-03-30
Slim	snake	1996-04-29
+----------+---------+------------+

The DESC keyword applies only to the column name immediately preceding it (birth); it does not affect
the species column sort order.

3.3.4.5 Date Calculations

Retrieving Information from a Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 223

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL provides several functions that you can use to perform calculations on dates, for example, to
calculate ages or extract parts of dates.

To determine how many years old each of your pets is, use the TIMESTAMPDIFF() function. Its
arguments are the unit in which you want the result expressed, and the two date for which to take the
difference. The following query shows, for each pet, the birth date, the current date, and the age in years.
An alias (age) is used to make the final output column label more meaningful.

mysql> SELECT name, birth, CURDATE(),
 -> TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 -> FROM pet;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Fluffy	1993-02-04	2003-08-19	10
Claws	1994-03-17	2003-08-19	9
Buffy	1989-05-13	2003-08-19	14
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Chirpy	1998-09-11	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Puffball	1999-03-30	2003-08-19	4
+----------+------------+------------+------+

The query works, but the result could be scanned more easily if the rows were presented in some order.
This can be done by adding an ORDER BY name clause to sort the output by name:

mysql> SELECT name, birth, CURDATE(),
 -> TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 -> FROM pet ORDER BY name;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
Chirpy	1998-09-11	2003-08-19	4
Claws	1994-03-17	2003-08-19	9
Fang	1990-08-27	2003-08-19	12
Fluffy	1993-02-04	2003-08-19	10
Puffball	1999-03-30	2003-08-19	4
Slim	1996-04-29	2003-08-19	7
Whistler	1997-12-09	2003-08-19	5
+----------+------------+------------+------+

To sort the output by age rather than name, just use a different ORDER BY clause:

mysql> SELECT name, birth, CURDATE(),
 -> TIMESTAMPDIFF(YEAR,birth,CURDATE()) AS age
 -> FROM pet ORDER BY age;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Chirpy	1998-09-11	2003-08-19	4
Puffball	1999-03-30	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Claws	1994-03-17	2003-08-19	9
Fluffy	1993-02-04	2003-08-19	10
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13

Retrieving Information from a Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 224

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| Buffy | 1989-05-13 | 2003-08-19 | 14 |
+----------+------------+------------+------+

A similar query can be used to determine age at death for animals that have died. You determine which
animals these are by checking whether the death value is NULL. Then, for those with non-NULL values,
compute the difference between the death and birth values:

mysql> SELECT name, birth, death,
 -> TIMESTAMPDIFF(YEAR,birth,death) AS age
 -> FROM pet WHERE death IS NOT NULL ORDER BY age;
+--------+------------+------------+------+
| name | birth | death | age |
+--------+------------+------------+------+
| Bowser | 1989-08-31 | 1995-07-29 | 5 |
+--------+------------+------------+------+

The query uses death IS NOT NULL rather than death <> NULL because NULL is a special value that
cannot be compared using the usual comparison operators. This is discussed later. See Section 3.3.4.6,
“Working with NULL Values”.

What if you want to know which animals have birthdays next month? For this type of calculation, year
and day are irrelevant; you simply want to extract the month part of the birth column. MySQL provides
several functions for extracting parts of dates, such as YEAR(), MONTH(), and DAYOFMONTH(). MONTH()
is the appropriate function here. To see how it works, run a simple query that displays the value of both
birth and MONTH(birth):

mysql> SELECT name, birth, MONTH(birth) FROM pet;
+----------+------------+--------------+
| name | birth | MONTH(birth) |
+----------+------------+--------------+
Fluffy	1993-02-04	2
Claws	1994-03-17	3
Buffy	1989-05-13	5
Fang	1990-08-27	8
Bowser	1989-08-31	8
Chirpy	1998-09-11	9
Whistler	1997-12-09	12
Slim	1996-04-29	4
Puffball	1999-03-30	3
+----------+------------+--------------+

Finding animals with birthdays in the upcoming month is also simple. Suppose that the current month is
April. Then the month value is 4 and you can look for animals born in May (month 5) like this:

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;
+-------+------------+
| name | birth |
+-------+------------+
| Buffy | 1989-05-13 |
+-------+------------+

There is a small complication if the current month is December. You cannot merely add one to the month
number (12) and look for animals born in month 13, because there is no such month. Instead, you look for
animals born in January (month 1).

You can write the query so that it works no matter what the current month is, so that you do not have to
use the number for a particular month. DATE_ADD() enables you to add a time interval to a given date.
If you add a month to the value of CURDATE(), then extract the month part with MONTH(), the result
produces the month in which to look for birthdays:

Retrieving Information from a Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 225

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT name, birth FROM pet
 -> WHERE MONTH(birth) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));

A different way to accomplish the same task is to add 1 to get the next month after the current one after
using the modulo function (MOD) to wrap the month value to 0 if it is currently 12:

mysql> SELECT name, birth FROM pet
 -> WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;

MONTH() returns a number between 1 and 12. And MOD(something,12) returns a number between 0
and 11. So the addition has to be after the MOD(), otherwise we would go from November (11) to January
(1).

3.3.4.6 Working with NULL Values

The NULL value can be surprising until you get used to it. Conceptually, NULL means “a missing unknown
value” and it is treated somewhat differently from other values.

To test for NULL, use the IS NULL and IS NOT NULL operators, as shown here:

mysql> SELECT 1 IS NULL, 1 IS NOT NULL;
+-----------+---------------+
| 1 IS NULL | 1 IS NOT NULL |
+-----------+---------------+
| 0 | 1 |
+-----------+---------------+

You cannot use arithmetic comparison operators such as =, <, or <> to test for NULL. To demonstrate this
for yourself, try the following query:

mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;
+----------+-----------+----------+----------+
| 1 = NULL | 1 <> NULL | 1 < NULL | 1 > NULL |
+----------+-----------+----------+----------+
| NULL | NULL | NULL | NULL |
+----------+-----------+----------+----------+

Because the result of any arithmetic comparison with NULL is also NULL, you cannot obtain any meaningful
results from such comparisons.

In MySQL, 0 or NULL means false and anything else means true. The default truth value from a boolean
operation is 1.

This special treatment of NULL is why, in the previous section, it was necessary to determine which
animals are no longer alive using death IS NOT NULL instead of death <> NULL.

Two NULL values are regarded as equal in a GROUP BY.

When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and last if you
do ORDER BY ... DESC.

A common error when working with NULL is to assume that it is not possible to insert a zero or an empty
string into a column defined as NOT NULL, but this is not the case. These are in fact values, whereas NULL
means “not having a value.” You can test this easily enough by using IS [NOT] NULL as shown:

Retrieving Information from a Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 226

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT 0 IS NULL, 0 IS NOT NULL, '' IS NULL, '' IS NOT NULL;
+-----------+---------------+------------+----------------+
| 0 IS NULL | 0 IS NOT NULL | '' IS NULL | '' IS NOT NULL |
+-----------+---------------+------------+----------------+
| 0 | 1 | 0 | 1 |
+-----------+---------------+------------+----------------+

Thus it is entirely possible to insert a zero or empty string into a NOT NULL column, as these are in fact
NOT NULL. See Section B.5.4.3, “Problems with NULL Values”.

3.3.4.7 Pattern Matching

MySQL provides standard SQL pattern matching as well as a form of pattern matching based on extended
regular expressions similar to those used by Unix utilities such as vi, grep, and sed.

SQL pattern matching enables you to use “_” to match any single character and “%” to match an arbitrary
number of characters (including zero characters). In MySQL, SQL patterns are case-insensitive by default.
Some examples are shown here. You do not use = or <> when you use SQL patterns; use the LIKE or
NOT LIKE comparison operators instead.

To find names beginning with “b”:

mysql> SELECT * FROM pet WHERE name LIKE 'b%';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To find names ending with “fy”:

mysql> SELECT * FROM pet WHERE name LIKE '%fy';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a “w”:

mysql> SELECT * FROM pet WHERE name LIKE '%w%';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

To find names containing exactly five characters, use five instances of the “_” pattern character:

mysql> SELECT * FROM pet WHERE name LIKE '_____';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |

Retrieving Information from a Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 227

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+-------+--------+---------+------+------------+-------+

The other type of pattern matching provided by MySQL uses extended regular expressions. When you
test for a match for this type of pattern, use the REGEXP and NOT REGEXP operators (or RLIKE and NOT
RLIKE, which are synonyms).

The following list describes some characteristics of extended regular expressions:

• “.” matches any single character.

• A character class “[...]” matches any character within the brackets. For example, “[abc]” matches
“a”, “b”, or “c”. To name a range of characters, use a dash. “[a-z]” matches any letter, whereas
“[0-9]” matches any digit.

• “*” matches zero or more instances of the thing preceding it. For example, “x*” matches any number of
“x” characters, “[0-9]*” matches any number of digits, and “.*” matches any number of anything.

• A REGEXP pattern match succeeds if the pattern matches anywhere in the value being tested. (This
differs from a LIKE pattern match, which succeeds only if the pattern matches the entire value.)

• To anchor a pattern so that it must match the beginning or end of the value being tested, use “^” at the
beginning or “$” at the end of the pattern.

To demonstrate how extended regular expressions work, the LIKE queries shown previously are rewritten
here to use REGEXP.

To find names beginning with “b”, use “^” to match the beginning of the name:

mysql> SELECT * FROM pet WHERE name REGEXP '^b';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

If you really want to force a REGEXP comparison to be case sensitive, use the BINARY keyword to make
one of the strings a binary string. This query matches only lowercase “b” at the beginning of a name:

mysql> SELECT * FROM pet WHERE name REGEXP BINARY '^b';

To find names ending with “fy”, use “$” to match the end of the name:

mysql> SELECT * FROM pet WHERE name REGEXP 'fy$';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a “w”, use this query:

mysql> SELECT * FROM pet WHERE name REGEXP 'w';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+

Retrieving Information from a Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 228

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

Because a regular expression pattern matches if it occurs anywhere in the value, it is not necessary in the
previous query to put a wildcard on either side of the pattern to get it to match the entire value like it would
be if you used an SQL pattern.

To find names containing exactly five characters, use “^” and “$” to match the beginning and end of the
name, and five instances of “.” in between:

mysql> SELECT * FROM pet WHERE name REGEXP '^.....$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

You could also write the previous query using the {n} (“repeat-n-times”) operator:

mysql> SELECT * FROM pet WHERE name REGEXP '^.{5}$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

Section 12.5.2, “Regular Expressions”, provides more information about the syntax for regular expressions.

3.3.4.8 Counting Rows

Databases are often used to answer the question, “How often does a certain type of data occur in a table?”
For example, you might want to know how many pets you have, or how many pets each owner has, or you
might want to perform various kinds of census operations on your animals.

Counting the total number of animals you have is the same question as “How many rows are in the pet
table?” because there is one record per pet. COUNT(*) counts the number of rows, so the query to count
your animals looks like this:

mysql> SELECT COUNT(*) FROM pet;
+----------+
| COUNT(*) |
+----------+
| 9 |
+----------+

Earlier, you retrieved the names of the people who owned pets. You can use COUNT() if you want to find
out how many pets each owner has:

mysql> SELECT owner, COUNT(*) FROM pet GROUP BY owner;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
Benny	2
Diane	2
Gwen	3

Retrieving Information from a Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 229

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| Harold | 2 |
+--------+----------+

The preceding query uses GROUP BY to group all records for each owner. The use of COUNT() in
conjunction with GROUP BY is useful for characterizing your data under various groupings. The following
examples show different ways to perform animal census operations.

Number of animals per species:

mysql> SELECT species, COUNT(*) FROM pet GROUP BY species;
+---------+----------+
| species | COUNT(*) |
+---------+----------+
bird	2
cat	2
dog	3
hamster	1
snake	1
+---------+----------+

Number of animals per sex:

mysql> SELECT sex, COUNT(*) FROM pet GROUP BY sex;
+------+----------+
| sex | COUNT(*) |
+------+----------+
NULL	1
f	4
m	4
+------+----------+

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:

mysql> SELECT species, sex, COUNT(*) FROM pet GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	NULL	1
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

You need not retrieve an entire table when you use COUNT(). For example, the previous query, when
performed just on dogs and cats, looks like this:

mysql> SELECT species, sex, COUNT(*) FROM pet
 -> WHERE species = 'dog' OR species = 'cat'
 -> GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
cat	f	1
cat	m	1
dog	f	1

Retrieving Information from a Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 230

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| dog | m | 2 |
+---------+------+----------+

Or, if you wanted the number of animals per sex only for animals whose sex is known:

mysql> SELECT species, sex, COUNT(*) FROM pet
 -> WHERE sex IS NOT NULL
 -> GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

If you name columns to select in addition to the COUNT() value, a GROUP BY clause should be present
that names those same columns. Otherwise, the following occurs:

• If the ONLY_FULL_GROUP_BY SQL mode is enabled, an error occurs:

mysql> SET sql_mode = 'ONLY_FULL_GROUP_BY';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT owner, COUNT(*) FROM pet;
ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT()...)
with no GROUP columns is illegal if there is no GROUP BY clause

• If ONLY_FULL_GROUP_BY is not enabled, the query is processed by treating all rows as a single group,
but the value selected for each named column is indeterminate. The server is free to select the value
from any row:

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT owner, COUNT(*) FROM pet;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
| Harold | 8 |
+--------+----------+
1 row in set (0.00 sec)

See also Section 12.16.3, “MySQL Handling of GROUP BY”.

3.3.4.9 Using More Than one Table

The pet table keeps track of which pets you have. If you want to record other information about them,
such as events in their lives like visits to the vet or when litters are born, you need another table. What
should this table look like? It needs to contain the following information:

• The pet name so that you know which animal each event pertains to.

• A date so that you know when the event occurred.

• A field to describe the event.

Retrieving Information from a Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 231

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• An event type field, if you want to be able to categorize events.

Given these considerations, the CREATE TABLE statement for the event table might look like this:

mysql> CREATE TABLE event (name VARCHAR(20), date DATE,
 -> type VARCHAR(15), remark VARCHAR(255));

As with the pet table, it is easiest to load the initial records by creating a tab-delimited text file containing
the following information.

name date type remark

Fluffy 1995-05-15 litter 4 kittens, 3 female, 1 male

Buffy 1993-06-23 litter 5 puppies, 2 female, 3 male

Buffy 1994-06-19 litter 3 puppies, 3 female

Chirpy 1999-03-21 vet needed beak straightened

Slim 1997-08-03 vet broken rib

Bowser 1991-10-12 kennel

Fang 1991-10-12 kennel

Fang 1998-08-28 birthday Gave him a new chew toy

Claws 1998-03-17 birthday Gave him a new flea collar

Whistler 1998-12-09 birthday First birthday

Load the records like this:

mysql> LOAD DATA LOCAL INFILE 'event.txt' INTO TABLE event;

Based on what you have learned from the queries that you have run on the pet table, you should be able
to perform retrievals on the records in the event table; the principles are the same. But when is the event
table by itself insufficient to answer questions you might ask?

Suppose that you want to find out the ages at which each pet had its litters. We saw earlier how to
calculate ages from two dates. The litter date of the mother is in the event table, but to calculate her age
on that date you need her birth date, which is stored in the pet table. This means the query requires both
tables:

mysql> SELECT pet.name,
 -> (YEAR(date)-YEAR(birth)) - (RIGHT(date,5)<RIGHT(birth,5)) AS age,
 -> remark
 -> FROM pet INNER JOIN event
 -> ON pet.name = event.name
 -> WHERE event.type = 'litter';
+--------+------+-----------------------------+
| name | age | remark |
+--------+------+-----------------------------+
Fluffy	2	4 kittens, 3 female, 1 male
Buffy	4	5 puppies, 2 female, 3 male
Buffy	5	3 puppies, 3 female
+--------+------+-----------------------------+

There are several things to note about this query:

• The FROM clause joins two tables because the query needs to pull information from both of them.

Getting Information About Databases and Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 232

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• When combining (joining) information from multiple tables, you need to specify how records in one table
can be matched to records in the other. This is easy because they both have a name column. The query
uses ON clause to match up records in the two tables based on the name values.

The query uses an INNER JOIN to combine the tables. An INNER JOIN permits rows from either table
to appear in the result if and only if both tables meet the conditions specified in the ON clause. In this
example, the ON clause specifies that the name column in the pet table must match the name column
in the event table. If a name appears in one table but not the other, the row will not appear in the result
because the condition in the ON clause fails.

• Because the name column occurs in both tables, you must be specific about which table you mean when
referring to the column. This is done by prepending the table name to the column name.

You need not have two different tables to perform a join. Sometimes it is useful to join a table to itself, if
you want to compare records in a table to other records in that same table. For example, to find breeding
pairs among your pets, you can join the pet table with itself to produce candidate pairs of males and
females of like species:

mysql> SELECT p1.name, p1.sex, p2.name, p2.sex, p1.species
 -> FROM pet AS p1 INNER JOIN pet AS p2
 -> ON p1.species = p2.species AND p1.sex = 'f' AND p2.sex = 'm';
+--------+------+--------+------+---------+
| name | sex | name | sex | species |
+--------+------+--------+------+---------+
Fluffy	f	Claws	m	cat
Buffy	f	Fang	m	dog
Buffy	f	Bowser	m	dog
+--------+------+--------+------+---------+

In this query, we specify aliases for the table name to refer to the columns and keep straight which
instance of the table each column reference is associated with.

3.4 Getting Information About Databases and Tables
What if you forget the name of a database or table, or what the structure of a given table is (for example,
what its columns are called)? MySQL addresses this problem through several statements that provide
information about the databases and tables it supports.

You have previously seen SHOW DATABASES, which lists the databases managed by the server. To find
out which database is currently selected, use the DATABASE() function:

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| menagerie |
+------------+

If you have not yet selected any database, the result is NULL.

To find out what tables the default database contains (for example, when you are not sure about the name
of a table), use this statement:

mysql> SHOW TABLES;
+---------------------+
| Tables_in_menagerie |
+---------------------+
| event |

Using mysql in Batch Mode

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 233

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| pet |
+---------------------+

The name of the column in the output produced by this statement is always Tables_in_db_name,
where db_name is the name of the database. See Section 13.7.5.34, “SHOW TABLES Syntax”, for more
information.

If you want to find out about the structure of a table, the DESCRIBE statement is useful; it displays
information about each of a table's columns:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

Field indicates the column name, Type is the data type for the column, NULL indicates whether the
column can contain NULL values, Key indicates whether the column is indexed, and Default specifies the
column's default value. Extra displays special information about columns: If a column was created with
the AUTO_INCREMENT option, the value will be auto_increment rather than empty.

DESC is a short form of DESCRIBE. See Section 13.8.1, “DESCRIBE Syntax”, for more information.

You can obtain the CREATE TABLE statement necessary to create an existing table using the SHOW
CREATE TABLE statement. See Section 13.7.5.9, “SHOW CREATE TABLE Syntax”.

If you have indexes on a table, SHOW INDEX FROM tbl_name produces information about them. See
Section 13.7.5.18, “SHOW INDEX Syntax”, for more about this statement.

3.5 Using mysql in Batch Mode
In the previous sections, you used mysql interactively to enter statements and view the results. You can
also run mysql in batch mode. To do this, put the statements you want to run in a file, then tell mysql to
read its input from the file:

shell> mysql < batch-file

If you are running mysql under Windows and have some special characters in the file that cause
problems, you can do this:

C:\> mysql -e "source batch-file"

If you need to specify connection parameters on the command line, the command might look like this:

shell> mysql -h host -u user -p < batch-file
Enter password: ********

When you use mysql this way, you are creating a script file, then executing the script.

If you want the script to continue even if some of the statements in it produce errors, you should use the --
force command-line option.

Using mysql in Batch Mode

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 234

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Why use a script? Here are a few reasons:

• If you run a query repeatedly (say, every day or every week), making it a script enables you to avoid
retyping it each time you execute it.

• You can generate new queries from existing ones that are similar by copying and editing script files.

• Batch mode can also be useful while you're developing a query, particularly for multiple-line statements
or multiple-statement sequences. If you make a mistake, you don't have to retype everything. Just edit
your script to correct the error, then tell mysql to execute it again.

• If you have a query that produces a lot of output, you can run the output through a pager rather than
watching it scroll off the top of your screen:

shell> mysql < batch-file | more

• You can catch the output in a file for further processing:

shell> mysql < batch-file > mysql.out

• You can distribute your script to other people so that they can also run the statements.

• Some situations do not allow for interactive use, for example, when you run a query from a cron job. In
this case, you must use batch mode.

The default output format is different (more concise) when you run mysql in batch mode than when you
use it interactively. For example, the output of SELECT DISTINCT species FROM pet looks like this
when mysql is run interactively:

+---------+
| species |
+---------+
| bird |
| cat |
| dog |
| hamster |
| snake |
+---------+

In batch mode, the output looks like this instead:

species
bird
cat
dog
hamster
snake

If you want to get the interactive output format in batch mode, use mysql -t. To echo to the output the
statements that are executed, use mysql -v.

You can also use scripts from the mysql prompt by using the source command or \. command:

mysql> source filename;
mysql> \. filename

See Section 4.5.1.5, “Executing SQL Statements from a Text File”, for more information.

Examples of Common Queries

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 235

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

3.6 Examples of Common Queries

Here are examples of how to solve some common problems with MySQL.

Some of the examples use the table shop to hold the price of each article (item number) for certain traders
(dealers). Supposing that each trader has a single fixed price per article, then (article, dealer) is a
primary key for the records.

Start the command-line tool mysql and select a database:

shell> mysql your-database-name

(In most MySQL installations, you can use the database named test).

You can create and populate the example table with these statements:

CREATE TABLE shop (
 article INT(4) UNSIGNED ZEROFILL DEFAULT '0000' NOT NULL,
 dealer CHAR(20) DEFAULT '' NOT NULL,
 price DOUBLE(16,2) DEFAULT '0.00' NOT NULL,
 PRIMARY KEY(article, dealer));
INSERT INTO shop VALUES
 (1,'A',3.45),(1,'B',3.99),(2,'A',10.99),(3,'B',1.45),
 (3,'C',1.69),(3,'D',1.25),(4,'D',19.95);

After issuing the statements, the table should have the following contents:

SELECT * FROM shop;

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	A	3.45
0001	B	3.99
0002	A	10.99
0003	B	1.45
0003	C	1.69
0003	D	1.25
0004	D	19.95
+---------+--------+-------+

3.6.1 The Maximum Value for a Column

“What is the highest item number?”

SELECT MAX(article) AS article FROM shop;

+---------+
| article |
+---------+
| 4 |
+---------+

3.6.2 The Row Holding the Maximum of a Certain Column

Task: Find the number, dealer, and price of the most expensive article.

This is easily done with a subquery:

Maximum of Column per Group

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 236

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT article, dealer, price
FROM shop
WHERE price=(SELECT MAX(price) FROM shop);

+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0004 | D | 19.95 |
+---------+--------+-------+

Other solutions are to use a LEFT JOIN or to sort all rows descending by price and get only the first row
using the MySQL-specific LIMIT clause:

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.price < s2.price
WHERE s2.article IS NULL;

SELECT article, dealer, price
FROM shop
ORDER BY price DESC
LIMIT 1;

Note

If there were several most expensive articles, each with a price of 19.95, the LIMIT
solution would show only one of them.

3.6.3 Maximum of Column per Group

Task: Find the highest price per article.

SELECT article, MAX(price) AS price
FROM shop
GROUP BY article;

+---------+-------+
| article | price |
+---------+-------+
0001	3.99
0002	10.99
0003	1.69
0004	19.95
+---------+-------+

3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column

Task: For each article, find the dealer or dealers with the most expensive price.

This problem can be solved with a subquery like this one:

SELECT article, dealer, price
FROM shop s1
WHERE price=(SELECT MAX(s2.price)
 FROM shop s2
 WHERE s1.article = s2.article);

+---------+--------+-------+
| article | dealer | price |

Using User-Defined Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 237

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+---------+--------+-------+
0001	B	3.99
0002	A	10.99
0003	C	1.69
0004	D	19.95
+---------+--------+-------+

The preceding example uses a correlated subquery, which can be inefficient (see Section 13.2.9.7,
“Correlated Subqueries”). Other possibilities for solving the problem are to use an uncorrelated subquery in
the FROM clause or a LEFT JOIN.

Uncorrelated subquery:

SELECT s1.article, dealer, s1.price
FROM shop s1
JOIN (
 SELECT article, MAX(price) AS price
 FROM shop
 GROUP BY article) AS s2
 ON s1.article = s2.article AND s1.price = s2.price;

LEFT JOIN:

SELECT s1.article, s1.dealer, s1.price
FROM shop s1
LEFT JOIN shop s2 ON s1.article = s2.article AND s1.price < s2.price
WHERE s2.article IS NULL;

The LEFT JOIN works on the basis that when s1.price is at its maximum value, there is no s2.price
with a greater value and the s2 rows values will be NULL. See Section 13.2.8.2, “JOIN Syntax”.

3.6.5 Using User-Defined Variables

You can employ MySQL user variables to remember results without having to store them in temporary
variables in the client. (See Section 9.4, “User-Defined Variables”.)

For example, to find the articles with the highest and lowest price you can do this:

mysql> SELECT @min_price:=MIN(price),@max_price:=MAX(price) FROM shop;
mysql> SELECT * FROM shop WHERE price=@min_price OR price=@max_price;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0003 | D | 1.25 |
| 0004 | D | 19.95 |
+---------+--------+-------+

Note

It is also possible to store the name of a database object such as a table or a
column in a user variable and then to use this variable in an SQL statement;
however, this requires the use of a prepared statement. See Section 13.5, “SQL
Syntax for Prepared Statements”, for more information.

3.6.6 Using Foreign Keys

In MySQL, InnoDB tables support checking of foreign key constraints. See Section 14.2, “The InnoDB
Storage Engine”, and Section 1.8.2.4, “Foreign Key Differences”.

Using Foreign Keys

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 238

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A foreign key constraint is not required merely to join two tables. For storage engines other than InnoDB,
it is possible when defining a column to use a REFERENCES tbl_name(col_name) clause, which has
no actual effect, and serves only as a memo or comment to you that the column which you are currently
defining is intended to refer to a column in another table. It is extremely important to realize when using this
syntax that:

• MySQL does not perform any sort of CHECK to make sure that col_name actually exists in tbl_name
(or even that tbl_name itself exists).

• MySQL does not perform any sort of action on tbl_name such as deleting rows in response to actions
taken on rows in the table which you are defining; in other words, this syntax induces no ON DELETE or
ON UPDATE behavior whatsoever. (Although you can write an ON DELETE or ON UPDATE clause as part
of the REFERENCES clause, it is also ignored.)

• This syntax creates a column; it does not create any sort of index or key.

You can use a column so created as a join column, as shown here:

CREATE TABLE person (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 name CHAR(60) NOT NULL,
 PRIMARY KEY (id)
);

CREATE TABLE shirt (
 id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
 style ENUM('t-shirt', 'polo', 'dress') NOT NULL,
 color ENUM('red', 'blue', 'orange', 'white', 'black') NOT NULL,
 owner SMALLINT UNSIGNED NOT NULL REFERENCES person(id),
 PRIMARY KEY (id)
);

INSERT INTO person VALUES (NULL, 'Antonio Paz');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'polo', 'blue', @last),
(NULL, 'dress', 'white', @last),
(NULL, 't-shirt', 'blue', @last);

INSERT INTO person VALUES (NULL, 'Lilliana Angelovska');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'dress', 'orange', @last),
(NULL, 'polo', 'red', @last),
(NULL, 'dress', 'blue', @last),
(NULL, 't-shirt', 'white', @last);

SELECT * FROM person;
+----+---------------------+
| id | name |
+----+---------------------+
| 1 | Antonio Paz |
| 2 | Lilliana Angelovska |
+----+---------------------+

SELECT * FROM shirt;
+----+---------+--------+-------+
| id | style | color | owner |
+----+---------+--------+-------+

Searching on Two Keys

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 239

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

1	polo	blue	1
2	dress	white	1
3	t-shirt	blue	1
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
7	t-shirt	white	2
+----+---------+--------+-------+

SELECT s.* FROM person p INNER JOIN shirt s
 ON s.owner = p.id
 WHERE p.name LIKE 'Lilliana%'
 AND s.color <> 'white';

+----+-------+--------+-------+
| id | style | color | owner |
+----+-------+--------+-------+
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
+----+-------+--------+-------+

When used in this fashion, the REFERENCES clause is not displayed in the output of SHOW CREATE TABLE
or DESCRIBE:

SHOW CREATE TABLE shirt\G
*************************** 1. row ***************************
Table: shirt
Create Table: CREATE TABLE `shirt` (
`id` smallint(5) unsigned NOT NULL auto_increment,
`style` enum('t-shirt','polo','dress') NOT NULL,
`color` enum('red','blue','orange','white','black') NOT NULL,
`owner` smallint(5) unsigned NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1

The use of REFERENCES in this way as a comment or “reminder” in a column definition works with both
MyISAM and BerkeleyDB tables.

3.6.7 Searching on Two Keys

An OR using a single key is well optimized, as is the handling of AND.

The one tricky case is that of searching on two different keys combined with OR:

SELECT field1_index, field2_index FROM test_table
WHERE field1_index = '1' OR field2_index = '1'

This case is optimized from MySQL 5.0.0. See Section 8.2.1.4, “Index Merge Optimization”.

You can also solve the problem efficiently by using a UNION that combines the output of two separate
SELECT statements. See Section 13.2.8.3, “UNION Syntax”.

Each SELECT searches only one key and can be optimized:

SELECT field1_index, field2_index
 FROM test_table WHERE field1_index = '1'
UNION
SELECT field1_index, field2_index

Calculating Visits Per Day

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 240

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 FROM test_table WHERE field2_index = '1';

3.6.8 Calculating Visits Per Day

The following example shows how you can use the bit group functions to calculate the number of days per
month a user has visited a Web page.

CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL,
 day INT(2) UNSIGNED ZEROFILL);
INSERT INTO t1 VALUES(2000,1,1),(2000,1,20),(2000,1,30),(2000,2,2),
 (2000,2,23),(2000,2,23);

The example table contains year-month-day values representing visits by users to the page. To determine
how many different days in each month these visits occur, use this query:

SELECT year,month,BIT_COUNT(BIT_OR(1<<day)) AS days FROM t1
 GROUP BY year,month;

Which returns:

+------+-------+------+
| year | month | days |
+------+-------+------+
| 2000 | 01 | 3 |
| 2000 | 02 | 2 |
+------+-------+------+

The query calculates how many different days appear in the table for each year/month combination, with
automatic removal of duplicate entries.

3.6.9 Using AUTO_INCREMENT

The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows:

CREATE TABLE animals (
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (id)
) ENGINE=MyISAM;

INSERT INTO animals (name) VALUES
 ('dog'),('cat'),('penguin'),
 ('lax'),('whale'),('ostrich');

SELECT * FROM animals;

Which returns:

+----+---------+
| id | name |
+----+---------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
+----+---------+

Using AUTO_INCREMENT

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 241

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

No value was specified for the AUTO_INCREMENT column, so MySQL assigned sequence numbers
automatically. You can also explicitly assign 0 to the column to generate sequence numbers. If the column
is declared NOT NULL, it is also possible to assign NULL to the column to generate sequence numbers.
When you insert any other value into a AUTO_INCREMENT column, the column is set to that value and
the sequence is reset so that the next automatically generated value follows sequentially from the largest
column value.

You can retrieve the most recent automatically generated AUTO_INCREMENT value with the
LAST_INSERT_ID() SQL function or the mysql_insert_id() C API function. These functions are
connection-specific, so their return values are not affected by another connection which is also performing
inserts.

Use a large enough integer data type for the AUTO_INCREMENT column to hold the maximum sequence
value you will need. When the column reaches the upper limit of the data type, the next attempt to
generate a sequence number fails. For example, if you use TINYINT, the maximum permissible sequence
number is 127. For TINYINT UNSIGNED, the maximum is 255.

Note

For a multiple-row insert, LAST_INSERT_ID() and mysql_insert_id() actually
return the AUTO_INCREMENT key from the first of the inserted rows. This enables
multiple-row inserts to be reproduced correctly on other servers in a replication
setup.

For MyISAM and BDB tables you can specify AUTO_INCREMENT on a secondary column in a multiple-
column index. In this case, the generated value for the AUTO_INCREMENT column is calculated as
MAX(auto_increment_column) + 1 WHERE prefix=given-prefix. This is useful when you want
to put data into ordered groups.

CREATE TABLE animals (
 grp ENUM('fish','mammal','bird') NOT NULL,
 id MEDIUMINT NOT NULL AUTO_INCREMENT,
 name CHAR(30) NOT NULL,
 PRIMARY KEY (grp,id)
) ENGINE=MyISAM;

INSERT INTO animals (grp,name) VALUES
 ('mammal','dog'),('mammal','cat'),
 ('bird','penguin'),('fish','lax'),('mammal','whale'),
 ('bird','ostrich');

SELECT * FROM animals ORDER BY grp,id;

Which returns:

+--------+----+---------+
| grp | id | name |
+--------+----+---------+
fish	1	lax
mammal	1	dog
mammal	2	cat
mammal	3	whale
bird	1	penguin
bird	2	ostrich
+--------+----+---------+

In this case (when the AUTO_INCREMENT column is part of a multiple-column index), AUTO_INCREMENT
values are reused if you delete the row with the biggest AUTO_INCREMENT value in any group. This
happens even for MyISAM tables, for which AUTO_INCREMENT values normally are not reused.

Using MySQL with Apache

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 242

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If the AUTO_INCREMENT column is part of multiple indexes, MySQL will generate sequence values using
the index that begins with the AUTO_INCREMENT column, if there is one. For example, if the animals
table contained indexes PRIMARY KEY (grp, id) and INDEX (id), MySQL would ignore the
PRIMARY KEY for generating sequence values. As a result, the table would contain a single sequence, not
a sequence per grp value.

To start with an AUTO_INCREMENT value other than 1, you can set that value with CREATE TABLE or
ALTER TABLE, like this:

mysql> ALTER TABLE tbl AUTO_INCREMENT = 100;

More information about AUTO_INCREMENT is available here:

• How to assign the AUTO_INCREMENT attribute to a column: Section 13.1.10, “CREATE TABLE Syntax”,
and Section 13.1.4, “ALTER TABLE Syntax”.

• How AUTO_INCREMENT behaves depending on the NO_AUTO_VALUE_ON_ZERO SQL mode:
Section 5.1.7, “Server SQL Modes”.

• How to use the LAST_INSERT_ID() function to find the row that contains the most recent
AUTO_INCREMENT value: Section 12.13, “Information Functions”.

• Setting the AUTO_INCREMENT value to be used: Section 5.1.4, “Server System Variables”.

• AUTO_INCREMENT and replication: Section 16.4.1.1, “Replication and AUTO_INCREMENT”.

• Server-system variables related to AUTO_INCREMENT (auto_increment_increment and
auto_increment_offset) that can be used for replication: Section 5.1.4, “Server System Variables”.

• AUTO_INCREMENT and InnoDB tables: Section 14.2.3.3, “AUTO_INCREMENT Handling in InnoDB”.

3.7 Using MySQL with Apache

There are programs that let you authenticate your users from a MySQL database and also let you write
your log files into a MySQL table.

You can change the Apache logging format to be easily readable by MySQL by putting the following into
the Apache configuration file:

LogFormat \
 "\"%h\",%{%Y%m%d%H%M%S}t,%>s,\"%b\",\"%{Content-Type}o\", \
 \"%U\",\"%{Referer}i\",\"%{User-Agent}i\""

To load a log file in that format into MySQL, you can use a statement something like this:

LOAD DATA INFILE '/local/access_log' INTO TABLE tbl_name
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '\\'

The named table should be created to have columns that correspond to those that the LogFormat line
writes to the log file.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 243

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 4 MySQL Programs

Table of Contents
4.1 Overview of MySQL Programs .. 244
4.2 Using MySQL Programs ... 249

4.2.1 Invoking MySQL Programs ... 249
4.2.2 Connecting to the MySQL Server ... 250
4.2.3 Specifying Program Options ... 254
4.2.4 Using Options on the Command Line ... 254
4.2.5 Program Option Modifiers ... 256
4.2.6 Using Option Files ... 257
4.2.7 Command-Line Options that Affect Option-File Handling .. 261
4.2.8 Using Options to Set Program Variables ... 262
4.2.9 Option Defaults, Options Expecting Values, and the = Sign .. 263
4.2.10 Setting Environment Variables .. 266

4.3 MySQL Server and Server-Startup Programs ... 267
4.3.1 mysqld — The MySQL Server .. 267
4.3.2 mysqld_safe — MySQL Server Startup Script .. 268
4.3.3 mysql.server — MySQL Server Startup Script .. 272
4.3.4 mysqld_multi — Manage Multiple MySQL Servers .. 274

4.4 MySQL Installation-Related Programs .. 279
4.4.1 comp_err — Compile MySQL Error Message File .. 279
4.4.2 make_win_bin_dist — Package MySQL Distribution as Zip Archive 280
4.4.3 make_win_src_distribution — Create Source Distribution for Windows 281
4.4.4 mysqlbug — Generate Bug Report ... 282
4.4.5 mysql_fix_privilege_tables — Upgrade MySQL System Tables 282
4.4.6 mysql_install_db — Initialize MySQL Data Directory ... 283
4.4.7 mysql_secure_installation — Improve MySQL Installation Security 285
4.4.8 mysql_tzinfo_to_sql — Load the Time Zone Tables ... 285
4.4.9 mysql_upgrade — Check Tables for MySQL Upgrade .. 286

4.5 MySQL Client Programs ... 290
4.5.1 mysql — The MySQL Command-Line Tool .. 290
4.5.2 mysqladmin — Client for Administering a MySQL Server ... 311
4.5.3 mysqlcheck — A Table Maintenance Program .. 318
4.5.4 mysqldump — A Database Backup Program .. 324
4.5.5 mysqlimport — A Data Import Program ... 341
4.5.6 mysqlshow — Display Database, Table, and Column Information 345

4.6 MySQL Administrative and Utility Programs ... 349
4.6.1 innochecksum — Offline InnoDB File Checksum Utility .. 349
4.6.2 myisam_ftdump — Display Full-Text Index information .. 350
4.6.3 myisamchk — MyISAM Table-Maintenance Utility .. 351
4.6.4 myisamlog — Display MyISAM Log File Contents .. 368
4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables 369
4.6.6 mysqlaccess — Client for Checking Access Privileges .. 375
4.6.7 mysqlbinlog — Utility for Processing Binary Log Files .. 378
4.6.8 mysqldumpslow — Summarize Slow Query Log Files .. 387
4.6.9 mysqlhotcopy — A Database Backup Program .. 389
4.6.10 mysqlmanager — The MySQL Instance Manager .. 392
4.6.11 mysql_convert_table_format — Convert Tables to Use a Given Storage Engine 403
4.6.12 mysql_explain_log — Use EXPLAIN on Statements in Query Log 404
4.6.13 mysql_find_rows — Extract SQL Statements from Files .. 404

Overview of MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 244

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

4.6.14 mysql_fix_extensions — Normalize Table File Name Extensions 405
4.6.15 mysql_setpermission — Interactively Set Permissions in Grant Tables 405
4.6.16 mysql_tableinfo — Generate Database Metadata .. 406
4.6.17 mysql_waitpid — Kill Process and Wait for Its Termination .. 408
4.6.18 mysql_zap — Kill Processes That Match a Pattern .. 409

4.7 MySQL Program Development Utilities .. 409
4.7.1 msql2mysql — Convert mSQL Programs for Use with MySQL 410
4.7.2 mysql_config — Display Options for Compiling Clients .. 410
4.7.3 my_print_defaults — Display Options from Option Files .. 411
4.7.4 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols 412

4.8 Miscellaneous Programs ... 413
4.8.1 perror — Explain Error Codes ... 413
4.8.2 replace — A String-Replacement Utility .. 414
4.8.3 resolveip — Resolve Host name to IP Address or Vice Versa 414

This chapter provides a brief overview of the MySQL command-line programs provided by Oracle
Corporation. It also discusses the general syntax for specifying options when you run these programs.
Most programs have options that are specific to their own operation, but the option syntax is similar for all
of them. Finally, the chapter provides more detailed descriptions of individual programs, including which
options they recognize.

4.1 Overview of MySQL Programs
There are many different programs in a MySQL installation. This section provides a brief overview of them.
Later sections provide a more detailed description of each one, with the exception of MySQL Cluster
programs. Each program's description indicates its invocation syntax and the options that it supports.
Chapter 17, MySQL Cluster, describes programs specific to MySQL Cluster.

Most MySQL distributions include all of these programs, except for those programs that are platform-
specific. (For example, the server startup scripts are not used on Windows.) The exception is that RPM
distributions are more specialized. There is one RPM for the server, another for client programs, and so
forth. If you appear to be missing one or more programs, see Chapter 2, Installing and Upgrading MySQL,
for information on types of distributions and what they contain. It may be that you have a distribution that
does not include all programs and you need to install an additional package.

Each MySQL program takes many different options. Most programs provide a --help option that you can
use to get a description of the program's different options. For example, try mysql --help.

You can override default option values for MySQL programs by specifying options on the command line or
in an option file. See Section 4.2, “Using MySQL Programs”, for general information on invoking programs
and specifying program options.

The MySQL server, mysqld, is the main program that does most of the work in a MySQL installation. The
server is accompanied by several related scripts that assist you in starting and stopping the server:

• mysqld

The SQL daemon (that is, the MySQL server). To use client programs, mysqld must be running,
because clients gain access to databases by connecting to the server. See Section 4.3.1, “mysqld —
The MySQL Server”.

• mysqld_safe

A server startup script. mysqld_safe attempts to start mysqld. See Section 4.3.2, “mysqld_safe —
MySQL Server Startup Script”.

• mysql.server

Overview of MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 245

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A server startup script. This script is used on systems that use System V-style run directories containing
scripts that start system services for particular run levels. It invokes mysqld_safe to start the MySQL
server. See Section 4.3.3, “mysql.server — MySQL Server Startup Script”.

• mysqld_multi

A server startup script that can start or stop multiple servers installed on the system. See Section 4.3.4,
“mysqld_multi — Manage Multiple MySQL Servers”. As of MySQL 5.0.3 (Unix-like systems) or 5.0.13
(Windows), an alternative to mysqld_multi is mysqlmanager, the MySQL Instance Manager. See
Section 4.6.10, “mysqlmanager — The MySQL Instance Manager”.

There are several programs that perform setup operations during MySQL installation or upgrading:

• comp_err

This program is used during the MySQL build/installation process. It compiles error message files from
the error source files. See Section 4.4.1, “comp_err — Compile MySQL Error Message File”.

• make_binary_distribution

This program makes a binary release of a compiled MySQL. This could be sent by FTP to /pub/
mysql/upload/ on ftp.mysql.com for the convenience of other MySQL users.

• make_win_bin_dist

This program is used on Windows. It packages a MySQL distribution for installation after the source
distribution has been built. See Section 4.4.2, “make_win_bin_dist — Package MySQL Distribution
as Zip Archive”.

• mysql_fix_privilege_tables

This program is used after a MySQL upgrade operation. It updates the grant tables with
any changes that have been made in newer versions of MySQL. See Section 4.4.5,
“mysql_fix_privilege_tables — Upgrade MySQL System Tables”.

Note: As of MySQL 5.0.19, this program has been superseded by mysql_upgrade and should no
longer be used.

• mysql_install_db

This program initializes the MySQL data directory, creates the mysql database, and initializes its
grant tables with default privileges. It is usually executed only once, when first installing MySQL on a
system. See Section 4.4.6, “mysql_install_db — Initialize MySQL Data Directory”, and Section 2.18,
“Postinstallation Setup and Testing”.

• mysql_secure_installation

This program enables you to improve the security of your MySQL installation. See Section 4.4.7,
“mysql_secure_installation — Improve MySQL Installation Security”.

• mysql_tzinfo_to_sql

This program loads the time zone tables in the mysql database using the contents of the host system
zoneinfo database (the set of files describing time zones). See Section 4.4.8, “mysql_tzinfo_to_sql
— Load the Time Zone Tables”.

• mysql_upgrade

Overview of MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 246

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This program is used after a MySQL upgrade operation. It checks tables for incompatibilities and repairs
them if necessary, and updates the grant tables with any changes that have been made in newer
versions of MySQL. See Section 4.4.9, “mysql_upgrade — Check Tables for MySQL Upgrade”.

• make_win_src_distribution

This program is used on Unix or Unix-like systems to create a MySQL source distribution that can be
compiled on Windows. See Section 2.10.8.5, “Creating a Windows Source Package from the Bazaar
Repository”, and Section 4.4.3, “make_win_src_distribution — Create Source Distribution for
Windows”.

MySQL client programs:

• mysql

The command-line tool for interactively entering SQL statements or executing them from a file in batch
mode. See Section 4.5.1, “mysql — The MySQL Command-Line Tool”.

• mysqladmin

A client that performs administrative operations, such as creating or dropping databases, reloading the
grant tables, flushing tables to disk, and reopening log files. mysqladmin can also be used to retrieve
version, process, and status information from the server. See Section 4.5.2, “mysqladmin — Client for
Administering a MySQL Server”.

• mysqlcheck

A table-maintenance client that checks, repairs, analyzes, and optimizes tables. See Section 4.5.3,
“mysqlcheck — A Table Maintenance Program”.

• mysqldump

A client that dumps a MySQL database into a file as SQL, text, or XML. See Section 4.5.4, “mysqldump
— A Database Backup Program”.

• mysqlimport

A client that imports text files into their respective tables using LOAD DATA INFILE. See Section 4.5.5,
“mysqlimport — A Data Import Program”.

• mysqlshow

A client that displays information about databases, tables, columns, and indexes. See Section 4.5.6,
“mysqlshow — Display Database, Table, and Column Information”.

MySQL administrative and utility programs:

• innochecksum

An offline InnoDB offline file checksum utility. See Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”.

• myisam_ftdump

A utility that displays information about full-text indexes in MyISAM tables. See Section 4.6.2,
“myisam_ftdump — Display Full-Text Index information”.

• myisamchk

Overview of MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 247

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A utility to describe, check, optimize, and repair MyISAM tables. See Section 4.6.3, “myisamchk —
MyISAM Table-Maintenance Utility”.

• myisamlog

A utility that processes the contents of a MyISAM log file. See Section 4.6.4, “myisamlog — Display
MyISAM Log File Contents”.

• myisampack

A utility that compresses MyISAM tables to produce smaller read-only tables. See Section 4.6.5,
“myisampack — Generate Compressed, Read-Only MyISAM Tables”.

• mysqlaccess

A script that checks the access privileges for a host name, user name, and database combination. See
Section 4.6.6, “mysqlaccess — Client for Checking Access Privileges”.

• mysqlbinlog

A utility for reading statements from a binary log. The log of executed statements contained in the binary
log files can be used to help recover from a crash. See Section 4.6.7, “mysqlbinlog — Utility for
Processing Binary Log Files”.

• mysqldumpslow

A utility to read and summarize the contents of a slow query log. See Section 4.6.8, “mysqldumpslow
— Summarize Slow Query Log Files”.

• mysqlhotcopy

A utility that quickly makes backups of MyISAM tables while the server is running. See Section 4.6.9,
“mysqlhotcopy — A Database Backup Program”.

• mysqlmanager

The MySQL Instance Manager, a program for monitoring and managing MySQL servers. See
Section 4.6.10, “mysqlmanager — The MySQL Instance Manager”.

Important

MySQL Instance Manager has been deprecated and is removed in MySQL 5.5.

• mysql_convert_table_format

A utility that converts tables in a database to use a given storage engine. See Section 4.6.11,
“mysql_convert_table_format — Convert Tables to Use a Given Storage Engine”.

• mysql_explain_log

A utility that analyzes queries in the MySQL query log using EXPLAIN See Section 4.6.12,
“mysql_explain_log — Use EXPLAIN on Statements in Query Log”.

• mysql_find_rows

Overview of MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 248

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A utility that reads files containing SQL statements (such as update logs) and extracts statements that
match a given regular expression. See Section 4.6.13, “mysql_find_rows — Extract SQL Statements
from Files”.

• mysql_fix_extensions

A utility that converts the extensions for MyISAM table files to lowercase. This can be useful after
transferring the files from a system with case-insensitive file names to a system with case-sensitive file
names. See Section 4.6.14, “mysql_fix_extensions — Normalize Table File Name Extensions”.

• mysql_setpermission

A utility for interactively setting permissions in the MySQL grant tables. See Section 4.6.15,
“mysql_setpermission — Interactively Set Permissions in Grant Tables”.

• mysql_tableinfo

A utility that generates database metadata. Section 4.6.16, “mysql_tableinfo — Generate Database
Metadata”.

• mysql_waitpid

A utility that kills the process with a given process ID. See Section 4.6.17, “mysql_waitpid — Kill
Process and Wait for Its Termination”.

• mysql_zap

A utility that kills processes that match a pattern. See Section 4.6.18, “mysql_zap — Kill Processes
That Match a Pattern”.

MySQL program-development utilities:

• msql2mysql

A shell script that converts mSQL programs to MySQL. It doesn't handle every case, but it gives a good
start when converting. See Section 4.7.1, “msql2mysql — Convert mSQL Programs for Use with
MySQL”.

• mysql_config

A shell script that produces the option values needed when compiling MySQL programs. See
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”.

• my_print_defaults

A utility that shows which options are present in option groups of option files. See Section 4.7.3,
“my_print_defaults — Display Options from Option Files”.

• resolve_stack_dump

A utility program that resolves a numeric stack trace dump to symbols. See Section 4.7.4,
“resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols”.

Miscellaneous utilities:

• perror

Using MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 249

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A utility that displays the meaning of system or MySQL error codes. See Section 4.8.1, “perror —
Explain Error Codes”.

• replace

A utility program that performs string replacement in the input text. See Section 4.8.2, “replace — A
String-Replacement Utility”.

• resolveip

A utility program that resolves a host name to an IP address or vice versa. See Section 4.8.3,
“resolveip — Resolve Host name to IP Address or Vice Versa”.

Oracle Corporation also provides the MySQL Workbench GUI tool, which is used to administer MySQL
servers and databases, to create, execute, and evaluate queries, and to migrate schemas and data from
other relational database management systems for use with MySQL. Additional GUI tools include MySQL
Notifier and MySQL for Excel.

MySQL client programs that communicate with the server using the MySQL client/server library use the
following environment variables.

Environment Variable Meaning

MYSQL_UNIX_PORT The default Unix socket file; used for connections to localhost

MYSQL_TCP_PORT The default port number; used for TCP/IP connections

MYSQL_PWD The default password

MYSQL_DEBUG Debug trace options when debugging

TMPDIR The directory where temporary tables and files are created

For a full list of environment variables used by MySQL programs, see Section 2.21, “Environment
Variables”.

Use of MYSQL_PWD is insecure. See Section 6.1.2.1, “End-User Guidelines for Password Security”.

4.2 Using MySQL Programs

4.2.1 Invoking MySQL Programs

To invoke a MySQL program from the command line (that is, from your shell or command prompt), enter
the program name followed by any options or other arguments needed to instruct the program what you
want it to do. The following commands show some sample program invocations. “shell>” represents
the prompt for your command interpreter; it is not part of what you type. The particular prompt you see
depends on your command interpreter. Typical prompts are $ for sh or bash, % for csh or tcsh, and C:\>
for the Windows command.com or cmd.exe command interpreters.

shell> mysql --user=root test
shell> mysqladmin extended-status variables
shell> mysqlshow --help
shell> mysqldump -u root personnel

Arguments that begin with a single or double dash (“-”, “--”) specify program options. Options typically
indicate the type of connection a program should make to the server or affect its operational mode. Option
syntax is described in Section 4.2.3, “Specifying Program Options”.

http://dev.mysql.com/doc/refman/5.1/en/workbench.html
http://dev.mysql.com/doc/refman/5.1/en/windows-notifier.html
http://dev.mysql.com/doc/refman/5.1/en/windows-notifier.html
http://dev.mysql.com/doc/mysql-for-excel/en/

Connecting to the MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 250

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Nonoption arguments (arguments with no leading dash) provide additional information to the program.
For example, the mysql program interprets the first nonoption argument as a database name, so the
command mysql --user=root test indicates that you want to use the test database.

Later sections that describe individual programs indicate which options a program supports and describe
the meaning of any additional nonoption arguments.

Some options are common to a number of programs. The most frequently used of these are the --host
(or -h), --user (or -u), and --password (or -p) options that specify connection parameters. They
indicate the host where the MySQL server is running, and the user name and password of your MySQL
account. All MySQL client programs understand these options; they enable you to specify which server to
connect to and the account to use on that server. Other connection options are --port (or -P) to specify
a TCP/IP port number and --socket (or -S) to specify a Unix socket file on Unix (or named pipe name on
Windows). For more information on options that specify connection options, see Section 4.2.2, “Connecting
to the MySQL Server”.

You may find it necessary to invoke MySQL programs using the path name to the bin directory in which
they are installed. This is likely to be the case if you get a “program not found” error whenever you attempt
to run a MySQL program from any directory other than the bin directory. To make it more convenient to
use MySQL, you can add the path name of the bin directory to your PATH environment variable setting.
That enables you to run a program by typing only its name, not its entire path name. For example, if mysql
is installed in /usr/local/mysql/bin, you can run the program by invoking it as mysql, and it is not
necessary to invoke it as /usr/local/mysql/bin/mysql.

Consult the documentation for your command interpreter for instructions on setting your PATH variable.
The syntax for setting environment variables is interpreter-specific. (Some information is given in
Section 4.2.10, “Setting Environment Variables”.) After modifying your PATH setting, open a new console
window on Windows or log in again on Unix so that the setting goes into effect.

4.2.2 Connecting to the MySQL Server

This section describes how to establish a connection to the MySQL server. For additional information if you
are unable to connect, see Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”.

For a client program to be able to connect to the MySQL server, it must use the proper connection
parameters, such as the name of the host where the server is running and the user name and password
of your MySQL account. Each connection parameter has a default value, but you can override them as
necessary using program options specified either on the command line or in an option file.

The examples here use the mysql client program, but the principles apply to other clients such as
mysqldump, mysqladmin, or mysqlshow.

This command invokes mysql without specifying any connection parameters explicitly:

shell> mysql

Because there are no parameter options, the default values apply:

• The default host name is localhost. On Unix, this has a special meaning, as described later.

• The default user name is ODBC on Windows or your Unix login name on Unix.

• No password is sent if neither -p nor --password is given.

• For mysql, the first nonoption argument is taken as the name of the default database. If there is no such
option, mysql does not select a default database.

Connecting to the MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 251

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To specify the host name and user name explicitly, as well as a password, supply appropriate options on
the command line:

shell> mysql --host=localhost --user=myname --password=mypass mydb
shell> mysql -h localhost -u myname -pmypass mydb

For password options, the password value is optional:

• If you use a -p or --password option and specify the password value, there must be no space between
-p or --password= and the password following it.

• If you use a -p or --password option but do not specify the password value, the client program
prompts you to enter the password. The password is not displayed as you enter it. This is more
secure than giving the password on the command line. Other users on your system may be able to
see a password specified on the command line by executing a command such as ps auxw. See
Section 6.1.2.1, “End-User Guidelines for Password Security”.

As just mentioned, including the password value on the command line can be a security risk. To avoid this
problem, specify the --password or -p option without any following password value:

shell> mysql --host=localhost --user=myname --password mydb
shell> mysql -h localhost -u myname -p mydb

When the password option has no password value, the client program prints a prompt and waits for you
to enter the password. (In these examples, mydb is not interpreted as a password because it is separated
from the preceding password option by a space.)

On some systems, the library routine that MySQL uses to prompt for a password automatically limits the
password to eight characters. That is a problem with the system library, not with MySQL. Internally, MySQL
does not have any limit for the length of the password. To work around the problem, change your MySQL
password to a value that is eight or fewer characters long, or put your password in an option file.

On Unix, MySQL programs treat the host name localhost specially, in a way that is likely different from
what you expect compared to other network-based programs. For connections to localhost, MySQL
programs attempt to connect to the local server by using a Unix socket file. This occurs even if a --port
or -P option is given to specify a port number. To ensure that the client makes a TCP/IP connection to the
local server, use --host or -h to specify a host name value of 127.0.0.1, or the IP address or name of
the local server. You can also specify the connection protocol explicitly, even for localhost, by using the
--protocol=TCP option. For example:

shell> mysql --host=127.0.0.1
shell> mysql --protocol=TCP

The --protocol option enables you to establish a particular type of connection even when the other
options would normally default to some other protocol.

On Windows, you can force a MySQL client to use a named-pipe connection by specifying the --pipe or
--protocol=PIPE option, or by specifying . (period) as the host name. If named-pipe connections are
not enabled, an error occurs. Use the --socket option to specify the name of the pipe if you do not want
to use the default pipe name.

Connections to remote servers always use TCP/IP. This command connects to the server running on
remote.example.com using the default port number (3306):

Connecting to the MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 252

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysql --host=remote.example.com

To specify a port number explicitly, use the --port or -P option:

shell> mysql --host=remote.example.com --port=13306

You can specify a port number for connections to a local server, too. However, as indicated previously,
connections to localhost on Unix will use a socket file by default. You will need to force a TCP/IP
connection as already described or any option that specifies a port number will be ignored.

For this command, the program uses a socket file on Unix and the --port option is ignored:

shell> mysql --port=13306 --host=localhost

To cause the port number to be used, invoke the program in either of these ways:

shell> mysql --port=13306 --host=127.0.0.1
shell> mysql --port=13306 --protocol=TCP

The following list summarizes the options that can be used to control how client programs connect to the
server:

• --host=host_name, -h host_name

The host where the server is running. The default value is localhost.

• --password[=pass_val], -p[pass_val]

The password of the MySQL account. As described earlier, the password value is optional, but if given,
there must be no space between -p or --password= and the password following it. The default is to
send no password.

• --pipe, -W

On Windows, connect to the server using a named pipe. The server must be started with the --
enable-named-pipe option to enable named-pipe connections.

• --port=port_num, -P port_num

The port number to use for the connection, for connections made using TCP/IP. The default port number
is 3306.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

This option explicitly specifies a protocol to use for connecting to the server. It is useful when the other
connection parameters normally would cause a protocol to be used other than the one you want. For
example, connections on Unix to localhost are made using a Unix socket file by default:

shell> mysql --host=localhost

To force a TCP/IP connection to be used instead, specify a --protocol option:

shell> mysql --host=localhost --protocol=TCP

The following table shows the permissible --protocol option values and indicates the platforms on
which each value may be used. The values are not case sensitive.

Connecting to the MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 253

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--protocol
Value

Connection Protocol Permissible Operating
Systems

TCP TCP/IP connection to local or remote server All

SOCKET Unix socket file connection to local server Unix only

PIPE Named-pipe connection to local or remote server Windows only

MEMORY Shared-memory connection to local server Windows only

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory connections.

• --socket=file_name, -S file_name

On Unix, the name of the Unix socket file to use, for connections made using a named pipe to a local
server. The default Unix socket file name is /tmp/mysql.sock.

On Windows, the name of the named pipe to use, for connections to a local server. The default Windows
pipe name is MySQL. The pipe name is not case sensitive.

The server must be started with the --enable-named-pipe option to enable named-pipe connections.

• --ssl*

Options that begin with --ssl are used for establishing a secure connection to the server using SSL,
if the server is configured with SSL support. For details, see Section 6.3.6.5, “Command Options for
Secure Connections”.

• --user=user_name, -u user_name

The user name of the MySQL account you want to use. The default user name is ODBC on Windows or
your Unix login name on Unix.

It is possible to specify different default values to be used when you make a connection so that you need
not enter them on the command line each time you invoke a client program. This can be done in a couple
of ways:

• You can specify connection parameters in the [client] section of an option file. The relevant section
of the file might look like this:

[client]
host=host_name
user=user_name
password=your_pass

Section 4.2.6, “Using Option Files”, discusses option files further.

• You can specify some connection parameters using environment variables. The host can be
specified for mysql using MYSQL_HOST. The MySQL user name can be specified using USER (this is
for Windows and NetWare only). The password can be specified using MYSQL_PWD, although this is
insecure; see Section 6.1.2.1, “End-User Guidelines for Password Security”. For a list of variables, see
Section 2.21, “Environment Variables”.

Specifying Program Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 254

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

4.2.3 Specifying Program Options

There are several ways to specify options for MySQL programs:

• List the options on the command line following the program name. This is common for options that apply
to a specific invocation of the program.

• List the options in an option file that the program reads when it starts. This is common for options that
you want the program to use each time it runs.

• List the options in environment variables (see Section 4.2.10, “Setting Environment Variables”). This
method is useful for options that you want to apply each time the program runs. In practice, option files
are used more commonly for this purpose, but Section 5.5.3, “Running Multiple MySQL Instances on
Unix”, discusses one situation in which environment variables can be very helpful. It describes a handy
technique that uses such variables to specify the TCP/IP port number and Unix socket file for the server
and for client programs.

Options are processed in order, so if an option is specified multiple times, the last occurrence takes
precedence. The following command causes mysql to connect to the server running on localhost:

shell> mysql -h example.com -h localhost

If conflicting or related options are given, later options take precedence over earlier options. The following
command runs mysql in “no column names” mode:

shell> mysql --column-names --skip-column-names

MySQL programs determine which options are given first by examining environment variables, then by
reading option files, and then by checking the command line. This means that environment variables have
the lowest precedence and command-line options the highest.

You can take advantage of the way that MySQL programs process options by specifying default option
values for a program in an option file. That enables you to avoid typing them each time you run the
program while enabling you to override the defaults if necessary by using command-line options.

An option can be specified by writing it in full or as any unambiguous prefix. For example, the --compress
option can be given to mysqldump as --compr, but not as --comp because the latter is ambiguous:

shell> mysqldump --comp
mysqldump: ambiguous option '--comp' (compatible, compress)

Be aware that the use of option prefixes can cause problems in the event that new options are
implemented for a program. A prefix that is unambiguous now might become ambiguous in the future.

4.2.4 Using Options on the Command Line

Program options specified on the command line follow these rules:

• Options are given after the command name.

• An option argument begins with one dash or two dashes, depending on whether it is a short form or long
form of the option name. Many options have both short and long forms. For example, -? and --help
are the short and long forms of the option that instructs a MySQL program to display its help message.

• Option names are case sensitive. -v and -V are both legal and have different meanings. (They are the
corresponding short forms of the --verbose and --version options.)

Using Options on the Command Line

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 255

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Some options take a value following the option name. For example, -h localhost or --
host=localhost indicate the MySQL server host to a client program. The option value tells the
program the name of the host where the MySQL server is running.

• For a long option that takes a value, separate the option name and the value by an “=” sign. For a
short option that takes a value, the option value can immediately follow the option letter, or there
can be a space between: -hlocalhost and -h localhost are equivalent. An exception to this
rule is the option for specifying your MySQL password. This option can be given in long form as --
password=pass_val or as --password. In the latter case (with no password value given), the
program prompts you for the password. The password option also may be given in short form as -
ppass_val or as -p. However, for the short form, if the password value is given, it must follow the
option letter with no intervening space. The reason for this is that if a space follows the option letter,
the program has no way to tell whether a following argument is supposed to be the password value or
some other kind of argument. Consequently, the following two commands have two completely different
meanings:

shell> mysql -ptest
shell> mysql -p test

The first command instructs mysql to use a password value of test, but specifies no default database.
The second instructs mysql to prompt for the password value and to use test as the default database.

• Within option names, dash (“-”) and underscore (“_”) may be used interchangeably. For example, --
skip-grant-tables and --skip_grant_tables are equivalent. (However, the leading dashes
cannot be given as underscores.)

• For options that take a numeric value, the value can be given with a suffix of K, M, or G (either uppercase
or lowercase) to indicate a multiplier of 1024, 10242 or 10243. For example, the following command tells
mysqladmin to ping the server 1024 times, sleeping 10 seconds between each ping:

mysql> mysqladmin --count=1K --sleep=10 ping

Option values that contain spaces must be quoted when given on the command line. For example, the --
execute (or -e) option can be used with mysql to pass SQL statements to the server. When this option is
used, mysql executes the statements in the option value and exits. The statements must be enclosed by
quotation marks. For example, you can use the following command to obtain a list of user accounts:

mysql> mysql -u root -p --execute="SELECT User, Host FROM mysql.user"
Enter password: ******
+------+-----------+
| User | Host |
+------+-----------+
	gigan
root	gigan
	localhost
jon	localhost
root	localhost
+------+-----------+
shell>

Note

The long form (--execute) is followed by an equals sign (=).

If you wish to use quoted values within a statement, you will either need to escape the inner quotation
marks, or use a different type of quotation marks within the statement from those used to quote the

Program Option Modifiers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 256

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

statement itself. The capabilities of your command processor dictate your choices for whether you can
use single or double quotation marks and the syntax for escaping quote characters. For example, if your
command processor supports quoting with single or double quotation marks, you can use double quotation
marks around the statement, and single quotation marks for any quoted values within the statement.

Multiple SQL statements may be passed in the option value on the command line, separated by
semicolons:

shell> mysql -u root -p -e "SELECT VERSION();SELECT NOW()"
Enter password: ******
+------------------+
| VERSION() |
+------------------+
| 5.0.97-debug-log |
+------------------+
+---------------------+
| NOW() |
+---------------------+
| 2015-11-05 20:03:51 |
+---------------------+

The --execute or -e option may also be used to pass commands in an analogous fashion to the
ndb_mgm management client for MySQL Cluster. See Section 17.2.5, “Safe Shutdown and Restart of
MySQL Cluster”, for an example.

4.2.5 Program Option Modifiers

Some options are “boolean” and control behavior that can be turned on or off. For example, the mysql
client supports a --column-names option that determines whether or not to display a row of column
names at the beginning of query results. By default, this option is enabled. However, you may want to
disable it in some instances, such as when sending the output of mysql into another program that expects
to see only data and not an initial header line.

To disable column names, you can specify the option using any of these forms:

--disable-column-names
--skip-column-names
--column-names=0

The --disable and --skip prefixes and the =0 suffix all have the same effect: They turn the option off.

The “enabled” form of the option may be specified in any of these ways:

--column-names
--enable-column-names
--column-names=1

If an option is prefixed by --loose, a program does not exit with an error if it does not recognize the
option, but instead issues only a warning:

shell> mysql --loose-no-such-option
mysql: WARNING: unknown option '--loose-no-such-option'

The --loose prefix can be useful when you run programs from multiple installations of MySQL on the
same machine and list options in an option file. An option that may not be recognized by all versions of a
program can be given using the --loose prefix (or loose in an option file). Versions of the program that

Using Option Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 257

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

recognize the option process it normally, and versions that do not recognize it issue a warning and ignore
it.

The --maximum prefix is available for mysqld only and permits a limit to be placed on how large client
programs can set session system variables. To do this, use a --maximum prefix with the variable name.
For example, --maximum-max_heap_table_size=32M prevents any client from making the heap table
size limit larger than 32M.

The --maximum prefix is intended for use with system variables that have a session value. If applied
to a system variable that has only a global value, an error occurs. For example, with --maximum-
query_cache_size=4M, the server produces this error:

Maximum value of 'query_cache_size' cannot be set

4.2.6 Using Option Files

Most MySQL programs can read startup options from option files (also sometimes called configuration
files). Option files provide a convenient way to specify commonly used options so that they need not be
entered on the command line each time you run a program. For the MySQL server, MySQL provides a
number of preconfigured option files.

To determine whether a program reads option files, invoke it with the --help option. (For mysqld, use --
verbose and --help.) If the program reads option files, the help message indicates which files it looks for
and which option groups it recognizes.

Note

Option files used with MySQL Cluster programs are covered in Section 17.3,
“MySQL Cluster Configuration”.

On Windows, MySQL programs read startup options from the following files, in the specified order (top files
are read first, later files take precedence).

File Name Purpose

%WINDIR%\my.ini, %WINDIR
%\my.cnf

Global options

C:\my.ini, C:\my.cnf Global options

INSTALLDIR\my.ini,
INSTALLDIR\my.cnf

Global options

defaults-extra-file The file specified with --defaults-extra-file=file_name, if any

In table items, %WINDIR% represents the location of your Windows directory. This is commonly C:
\WINDOWS. You can determine its exact location from the value of the WINDIR environment variable using
the following command:

C:\> echo %WINDIR%

INSTALLDIR represents the MySQL installation directory. This is typically C:\PROGRAMDIR\MySQL
\MySQL 5.0 Server where PROGRAMDIR represents the programs directory (usually Program Files
on English-language versions of Windows), when MySQL 5.0 has been installed using the installation and
configuration wizards. See Section 2.10.3.1, “Starting the MySQL Server Instance Configuration Wizard”.

On Unix, Linux and OS X, MySQL programs read startup options from the following files, in the specified
order (top files are read first, later files take precedence).

Using Option Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 258

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

File Name Purpose

/etc/my.cnf Global options

SYSCONFDIR/my.cnf Global options

$MYSQL_HOME/my.cnf Server-specific options

defaults-extra-file The file specified with --defaults-extra-file=file_name, if any

~/.my.cnf User-specific options

In table items, ~ represents the current user's home directory (the value of $HOME).

SYSCONFDIR represents the directory specified with the --sysconfdir option to configure when
MySQL was built. By default, this is the etc directory located under the compiled-in installation directory.
This location is used as of MySQL 5.0.21. (From 5.0.21 to 5.0.53, it was read last, after ~/.my.cnf.)

MYSQL_HOME is an environment variable containing the path to the directory in which the server-specific
my.cnf file resides. (This was DATADIR prior to MySQL version 5.0.3.)

If MYSQL_HOME is not set and you start the server using the mysqld_safe program, mysqld_safe
attempts to set MYSQL_HOME as follows:

• Let BASEDIR and DATADIR represent the path names of the MySQL base directory and data directory,
respectively.

• If there is a my.cnf file in DATADIR but not in BASEDIR, mysqld_safe sets MYSQL_HOME to DATADIR.

• Otherwise, if MYSQL_HOME is not set and there is no my.cnf file in DATADIR, mysqld_safe sets
MYSQL_HOME to BASEDIR.

In MySQL 5.0, use of DATADIR as the location for my.cnf is deprecated.

Typically, DATADIR is /usr/local/mysql/data for a binary installation or /usr/local/var for a
source installation. This is the data directory location that was specified at configuration time, not the one
specified with the --datadir option when mysqld starts. Use of --datadir at runtime has no effect on
where the server looks for option files, because it looks for them before processing any options.

MySQL looks for option files in the order just described and reads any that exist. If an option file that you
want to use does not exist, create it with a plain text editor.

If multiple instances of a given option are found, the last instance takes precedence. There is one
exception: For mysqld, the first instance of the --user option is used as a security precaution, to prevent
a user specified in an option file from being overridden on the command line.

Note

On Unix platforms, MySQL ignores configuration files that are world-writable. This is
intentional as a security measure.

Any long option that may be given on the command line when running a MySQL program can be given in
an option file as well. To get the list of available options for a program, run it with the --help option.

The syntax for specifying options in an option file is similar to command-line syntax (see Section 4.2.4,
“Using Options on the Command Line”). However, in an option file, you omit the leading two dashes
from the option name and you specify only one option per line. For example, --quick and --
host=localhost on the command line should be specified as quick and host=localhost on
separate lines in an option file. To specify an option of the form --loose-opt_name in an option file, write
it as loose-opt_name.

Using Option Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 259

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Empty lines in option files are ignored. Nonempty lines can take any of the following forms:

• #comment, ;comment

Comment lines start with “#” or “;”. A “#” comment can start in the middle of a line as well.

• [group]

group is the name of the program or group for which you want to set options. After a group line, any
option-setting lines apply to the named group until the end of the option file or another group line is
given. Option group names are not case sensitive.

• opt_name

This is equivalent to --opt_name on the command line.

• opt_name=value

This is equivalent to --opt_name=value on the command line. In an option file, you can have spaces
around the “=” character, something that is not true on the command line. You can optionally enclose the
value within single quotation marks or double quotation marks, which is useful if the value contains a “#”
comment character.

Leading and trailing spaces are automatically deleted from option names and values.

You can use the escape sequences “\b”, “\t”, “\n”, “\r”, “\\”, and “\s” in option values to represent the
backspace, tab, newline, carriage return, backslash, and space characters. The escaping rules in option
files are:

• If a backslash is followed by a valid escape sequence character, the sequence is converted to the
character represented by the sequence. For example, “\s” is converted to a space.

• If a backslash is not followed by a valid escape sequence character, it remains unchanged. For example,
“\S” is retained as is.

The preceding rules mean that a literal backslash can be given as “\\”, or as “\” if it is not followed by a
valid escape sequence character.

The rules for escape sequences in option files differ slightly from the rules for escape sequences in string
literals in SQL statements. In the latter context, if “x” is not a valid escape sequence character, “\x”
becomes “x” rather than “\x”. See Section 9.1.1, “String Literals”.

The escaping rules for option file values are especially pertinent for Windows path names, which use “\”
as a path name separator. A separator in a Windows path name must be written as “\\” if it is followed by
an escape sequence character. It can be written as “\\” or “\” if it is not. Alternatively, “/” may be used in
Windows path names and will be treated as “\”. Suppose that you want to specify a base directory of C:
\Program Files\MySQL\MySQL Server 5.0 in an option file. This can be done several ways. Some
examples:

basedir="C:\Program Files\MySQL\MySQL Server 5.0"
basedir="C:\\Program Files\\MySQL\\MySQL Server 5.0"
basedir="C:/Program Files/MySQL/MySQL Server 5.0"
basedir=C:\\Program\sFiles\\MySQL\\MySQL\sServer\s5.0

If an option group name is the same as a program name, options in the group apply specifically to that
program. For example, the [mysqld] and [mysql] groups apply to the mysqld server and the mysql
client program, respectively.

Using Option Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 260

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The [client] option group is read by all client programs (but not by mysqld). This enables you to
specify options that apply to all clients. For example, [client] is the perfect group to use to specify
the password that you use to connect to the server. (But make sure that the option file is readable and
writable only by yourself, so that other people cannot find out your password.) Be sure not to put an option
in the [client] group unless it is recognized by all client programs that you use. Programs that do not
understand the option quit after displaying an error message if you try to run them.

Here is a typical global option file:

[client]
port=3306
socket=/tmp/mysql.sock

[mysqld]
port=3306
socket=/tmp/mysql.sock
key_buffer_size=16M
max_allowed_packet=8M

[mysqldump]
quick

The preceding option file uses var_name=value syntax for the lines that set the key_buffer_size and
max_allowed_packet variables.

Here is a typical user option file:

[client]
The following password will be sent to all standard MySQL clients
password="my_password"

[mysql]
no-auto-rehash
connect_timeout=2

[mysqlhotcopy]
interactive-timeout

If you want to create option groups that should be read by mysqld servers from a specific MySQL release
series only, you can do this by using groups with names of [mysqld-4.1], [mysqld-5.0], and so forth.
The following group indicates that the sql_mode setting should be used only by MySQL servers with 5.0.x
version numbers:

[mysqld-5.0]
sql_mode=TRADITIONAL

Beginning with MySQL 5.0.4, it is possible to use !include directives in option files to include other
option files and !includedir to search specific directories for option files. For example, to include the /
home/mydir/myopt.cnf file, use the following directive:

!include /home/mydir/myopt.cnf

To search the /home/mydir directory and read option files found there, use this directive:

!includedir /home/mydir

There is no guarantee about the order in which the option files in the directory will be read.

Command-Line Options that Affect Option-File Handling

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 261

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

Any files to be found and included using the !includedir directive on Unix
operating systems must have file names ending in .cnf. On Windows, this
directive checks for files with the .ini or .cnf extension.

Write the contents of an included option file like any other option file. That is, it should contain groups of
options, each preceded by a [group] line that indicates the program to which the options apply.

While an included file is being processed, only those options in groups that the current program is looking
for are used. Other groups are ignored. Suppose that a my.cnf file contains this line:

!include /home/mydir/myopt.cnf

And suppose that /home/mydir/myopt.cnf looks like this:

[mysqladmin]
force

[mysqld]
key_buffer_size=16M

If my.cnf is processed by mysqld, only the [mysqld] group in /home/mydir/myopt.cnf is used. If
the file is processed by mysqladmin, only the [mysqladmin] group is used. If the file is processed by
any other program, no options in /home/mydir/myopt.cnf are used.

The !includedir directive is processed similarly except that all option files in the named directory are
read.

4.2.7 Command-Line Options that Affect Option-File Handling

Most MySQL programs that support option files handle the following options. Because these options affect
option-file handling, they must be given on the command line and not in an option file. To work properly,
each of these options must be given before other options, with these exceptions:

• --print-defaults may be used immediately after --defaults-file or --defaults-extra-
file.

• On Windows, if the server is started with the --defaults-file and --install options, --install
must be first. See Section 2.10.4.7, “Starting MySQL as a Windows Service”.

When specifying file names, avoid the use of the “~” shell metacharacter because it might not be
interpreted as you expect.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. (For information
about the order in which option files are used, see Section 4.2.6, “Using Option Files”.) As of MySQL
5.0.6, if the file does not exist or is otherwise inaccessible, an error occurs. file_name is the full path
name to the file.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is the full path name to the file.

• --defaults-group-suffix=str

Using Options to Set Program Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 262

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, the mysql client normally reads the [client] and [mysql] groups. If the --
defaults-group-suffix=_other option is given, mysql also reads the [client_other] and
[mysql_other] groups. This option was added in MySQL 5.0.10.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

• --print-defaults

Print the program name and all options that it gets from option files.

4.2.8 Using Options to Set Program Variables

Many MySQL programs have internal variables that can be set at runtime using the SET statement. See
Section 13.7.4, “SET Syntax”, and Section 5.1.5, “Using System Variables”.

Most of these program variables also can be set at server startup by using the same syntax that applies
to specifying program options. For example, mysql has a max_allowed_packet variable that controls
the maximum size of its communication buffer. To set the max_allowed_packet variable for mysql to a
value of 16MB, use either of the following commands:

shell> mysql --max_allowed_packet=16777216
shell> mysql --max_allowed_packet=16M

The first command specifies the value in bytes. The second specifies the value in megabytes. For variables
that take a numeric value, the value can be given with a suffix of K, M, or G (either uppercase or lowercase)
to indicate a multiplier of 1024, 10242 or 10243. (For example, when used to set max_allowed_packet,
the suffixes indicate units of kilobytes, megabytes, or gigabytes.)

In an option file, variable settings are given without the leading dashes:

[mysql]
max_allowed_packet=16777216

Or:

[mysql]
max_allowed_packet=16M

If you like, underscores in a variable name can be specified as dashes. The following option groups are
equivalent. Both set the size of the server's key buffer to 512MB:

[mysqld]
key_buffer_size=512M

[mysqld]
key-buffer-size=512M

A variable can be specified by writing it in full or as any unambiguous prefix. For example, the
max_allowed_packet variable can be set for mysql as --max_a, but not as --max because the latter
is ambiguous:

Option Defaults, Options Expecting Values, and the = Sign

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 263

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysql --max=1000000
mysql: ambiguous option '--max=1000000' (max_allowed_packet, max_join_size)

Be aware that the use of variable prefixes can cause problems in the event that new variables are
implemented for a program. A prefix that is unambiguous now might become ambiguous in the future.

Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not to
set the value with SET at runtime. On the other hand, with SET you can assign a variable's value using
an expression, which is not true when you set a variable at server startup. For example, the first of the
following lines is legal at server startup, but the second is not:

shell> mysql --max_allowed_packet=16M
shell> mysql --max_allowed_packet=16*1024*1024

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

Note

Before MySQL 4.0.2, the only syntax for setting program variables was --set-
variable=option=value (or set-variable=option=value in option files).
Underscores cannot be given as dashes, and the variable name must be specified
in full. This syntax still is recognized, but is now deprecated and is removed in
MySQL 5.5.

4.2.9 Option Defaults, Options Expecting Values, and the = Sign

By convention, long forms of options that assign a value are written with an equals (=) sign, like this:

shell> mysql --host=tonfisk --user=jon

For options that require a value (that is, not having a default value), the equal sign is not required, and so
the following is also valid:

shell> mysql --host tonfisk --user jon

In both cases, the mysql client attempts to connect to a MySQL server running on the host named
“tonfisk” using an account with the user name “jon”.

Due to this behavior, problems can occasionally arise when no value is provided for an option that expects
one. Consider the following example, where a user connects to a MySQL server running on host tonfisk
as user jon:

shell> mysql --host 85.224.35.45 --user jon
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3
Server version: 5.0.96 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |

Option Defaults, Options Expecting Values, and the = Sign

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 264

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+----------------+
| jon@% |
+----------------+
1 row in set (0.00 sec)

Omitting the required value for one of these option yields an error, such as the one shown here:

shell> mysql --host 85.224.35.45 --user
mysql: option '--user' requires an argument

In this case, mysql was unable to find a value following the --user option because nothing came after it
on the command line. However, if you omit the value for an option that is not the last option to be used, you
obtain a different error that you may not be expecting:

shell> mysql --host --user jon
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)

Because mysql assumes that any string following --host on the command line is a host name, --host
--user is interpreted as --host=--user, and the client attempts to connect to a MySQL server running
on a host named “--user”.

Options having default values always require an equal sign when assigning a value; failing to do
so causes an error. For example, the MySQL server --log-error option has the default value
host_name.err, where host_name is the name of the host on which MySQL is running. Assume that
you are running MySQL on a computer whose host name is “tonfisk”, and consider the following invocation
of mysqld_safe:

shell> mysqld_safe &
[1] 11699
shell> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
shell>

After shutting down the server, restart it as follows:

shell> mysqld_safe --log-error &
[1] 11699
shell> 080112 12:53:40 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080112 12:53:40 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
shell>

The result is the same, since --log-error is not followed by anything else on the command line,
and it supplies its own default value. (The & character tells the operating system to run MySQL in the
background; it is ignored by MySQL itself.) Now suppose that you wish to log errors to a file named my-
errors.err. You might try starting the server with --log-error my-errors, but this does not have
the intended effect, as shown here:

shell> mysqld_safe --log-error my-errors &
[1] 31357
shell> 080111 22:53:31 mysqld_safe Logging to '/usr/local/mysql/var/tonfisk.err'.
080111 22:53:32 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var
080111 22:53:34 mysqld_safe mysqld from pid file /usr/local/mysql/var/tonfisk.pid ended

[1]+ Done ./mysqld_safe --log-error my-errors

The server attempted to start using /usr/local/mysql/var/tonfisk.err as the error log, but then
shut down. Examining the last few lines of this file shows the reason:

Option Defaults, Options Expecting Values, and the = Sign

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 265

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> tail /usr/local/mysql/var/tonfisk.err
080111 22:53:32 InnoDB: Started; log sequence number 0 46409
/usr/local/mysql/libexec/mysqld: Too many arguments (first extra is 'my-errors').
Use --verbose --help to get a list of available options
080111 22:53:32 [ERROR] Aborting

080111 22:53:32 InnoDB: Starting shutdown...
080111 22:53:34 InnoDB: Shutdown completed; log sequence number 0 46409
080111 22:53:34 [Note] /usr/local/mysql/libexec/mysqld: Shutdown complete

080111 22:53:34 mysqld_safe mysqld from pid file /usr/local/mysql/var/tonfisk.pid ended

Because the --log-error option supplies a default value, you must use an equal sign to assign a
different value to it, as shown here:

shell> mysqld_safe --log-error=my-errors &
[1] 31437
shell> 080111 22:54:15 mysqld_safe Logging to '/usr/local/mysql/var/my-errors.err'.
080111 22:54:15 mysqld_safe Starting mysqld daemon with databases from /usr/local/mysql/var

shell>

Now the server has been started successfully, and is logging errors to the file /usr/local/mysql/var/
my-errors.err.

Similar issues can arise when specifying option values in option files. For example, consider a my.cnf file
that contains the following:

[mysql]

host
user

When the mysql client reads this file, these entries are parsed as --host --user or --host=--user,
with the result shown here:

shell> mysql
ERROR 2005 (HY000): Unknown MySQL server host '--user' (1)

However, in option files, an equal sign is not assumed. Suppose the my.cnf file is as shown here:

[mysql]

user jon

Trying to start mysql in this case causes a different error:

shell> mysql
mysql: unknown option '--user jon'

A similar error would occur if you were to write host tonfisk in the option file rather than
host=tonfisk. Instead, you must use the equals sign:

[mysql]

user=jon

Setting Environment Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 266

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Now the login attempt succeeds:

shell> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5
Server version: 5.0.96 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT USER();
+---------------+
| USER() |
+---------------+
| jon@localhost |
+---------------+
1 row in set (0.00 sec)

This is not the same behavior as with the command line, where the equals sign is not required:

shell> mysql --user jon --host tonfisk
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 6
Server version: 5.0.96 Source distribution

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SELECT USER();
+---------------+
| USER() |
+---------------+
| jon@tonfisk |
+---------------+
1 row in set (0.00 sec)

4.2.10 Setting Environment Variables

Environment variables can be set at the command prompt to affect the current invocation of your command
processor, or set permanently to affect future invocations. To set a variable permanently, you can
set it in a startup file or by using the interface provided by your system for this purpose. Consult the
documentation for your command interpreter for specific details. Section 2.21, “Environment Variables”,
lists all environment variables that affect MySQL program operation.

To specify a value for an environment variable, use the syntax appropriate for your command processor.
For example, on Windows or NetWare, you can set the USER variable to specify your MySQL account
name. To do so, use this syntax:

SET USER=your_name

The syntax on Unix depends on your shell. Suppose that you want to specify the TCP/IP port number using
the MYSQL_TCP_PORT variable. Typical syntax (such as for sh, bash, zsh, and so on) is as follows:

MYSQL_TCP_PORT=3306
export MYSQL_TCP_PORT

The first command sets the variable, and the export command exports the variable to the shell
environment so that its value becomes accessible to MySQL and other processes.

For csh and tcsh, use setenv to make the shell variable available to the environment:

MySQL Server and Server-Startup Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 267

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

setenv MYSQL_TCP_PORT 3306

The commands to set environment variables can be executed at your command prompt to take effect
immediately, but the settings persist only until you log out. To have the settings take effect each time you
log in, use the interface provided by your system or place the appropriate command or commands in a
startup file that your command interpreter reads each time it starts.

On Windows, you can set environment variables using the System Control Panel (under Advanced).

On Unix, typical shell startup files are .bashrc or .bash_profile for bash, or .tcshrc for tcsh.

Suppose that your MySQL programs are installed in /usr/local/mysql/bin and that you want to make
it easy to invoke these programs. To do this, set the value of the PATH environment variable to include that
directory. For example, if your shell is bash, add the following line to your .bashrc file:

PATH=${PATH}:/usr/local/mysql/bin

bash uses different startup files for login and nonlogin shells, so you might want to add the setting to
.bashrc for login shells and to .bash_profile for nonlogin shells to make sure that PATH is set
regardless.

If your shell is tcsh, add the following line to your .tcshrc file:

setenv PATH ${PATH}:/usr/local/mysql/bin

If the appropriate startup file does not exist in your home directory, create it with a text editor.

After modifying your PATH setting, open a new console window on Windows or log in again on Unix so that
the setting goes into effect.

4.3 MySQL Server and Server-Startup Programs

This section describes mysqld, the MySQL server, and several programs that are used to start the server.

4.3.1 mysqld — The MySQL Server

mysqld, also known as MySQL Server, is the main program that does most of the work in a MySQL
installation. MySQL Server manages access to the MySQL data directory that contains databases and
tables. The data directory is also the default location for other information such as log files and status files.

When MySQL server starts, it listens for network connections from client programs and manages access to
databases on behalf of those clients.

The mysqld program has many options that can be specified at startup. For a complete list of options, run
this command:

shell> mysqld --verbose --help

MySQL Server also has a set of system variables that affect its operation as it runs. System variables
can be set at server startup, and many of them can be changed at runtime to effect dynamic server
reconfiguration. MySQL Server also has a set of status variables that provide information about its
operation. You can monitor these status variables to access runtime performance characteristics.

mysqld_safe — MySQL Server Startup Script

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 268

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For a full description of MySQL Server command options, system variables, and status variables, see
Section 5.1, “The MySQL Server”. For information about installing MySQL and setting up the initial
configuration, see Chapter 2, Installing and Upgrading MySQL.

4.3.2 mysqld_safe — MySQL Server Startup Script

mysqld_safe is the recommended way to start a mysqld server on Unix and NetWare. mysqld_safe
adds some safety features such as restarting the server when an error occurs and logging runtime
information to an error log file. NetWare-specific behaviors are listed later in this section.

Note

To preserve backward compatibility with older versions of MySQL, MySQL binary
distributions still include safe_mysqld as a symbolic link to mysqld_safe.
However, you should not rely on this because it is removed as of MySQL 5.1.

By default, mysqld_safe before MySQL 5.0.27 tries to start an executable named mysqld-max if it
exists, and mysqld otherwise. Be aware of the implications of this behavior:

• On Linux, the MySQL-Max RPM relies on this mysqld_safe behavior. The RPM installs an executable
named mysqld-max, which causes mysqld_safe to automatically use that executable rather than
mysqld from that point on.

• If you install a MySQL-Max distribution that includes a server named mysqld-max, and then upgrade
later to a non-Max version of MySQL, mysqld_safe will still attempt to run the old mysqld-max server.
If you perform such an upgrade, you should manually remove the old mysqld-max server to ensure that
mysqld_safe runs the new mysqld server.

To override the default behavior and specify explicitly the name of the server you want to run, specify a
--mysqld or --mysqld-version option to mysqld_safe. You can also use --ledir to indicate the
directory where mysqld_safe should look for the server.

Many of the options to mysqld_safe are the same as the options to mysqld. See Section 5.1.3, “Server
Command Options”.

Options unknown to mysqld_safe are passed to mysqld if they are specified on the command line, but
ignored if they are specified in the [mysqld_safe] group of an option file. See Section 4.2.6, “Using
Option Files”.

mysqld_safe reads all options from the [mysqld], [server], and [mysqld_safe] sections in option
files. For example, if you specify a [mysqld] section like this, mysqld_safe will find and use the --log-
error option:

[mysqld]
log-error=error.log

For backward compatibility, mysqld_safe also reads [safe_mysqld] sections, but to be current you
should rename such sections to [mysqld_safe].

mysqld_safe supports the following options. It also reads option files and supports the options for
processing them described at Section 4.2.7, “Command-Line Options that Affect Option-File Handling”.

Table 4.1 mysqld_safe Options

Format Description Introduced

--autoclose On NetWare, mysqld_safe provides a screen presence

mysqld_safe — MySQL Server Startup Script

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 269

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Introduced

--basedir Path to MySQL installation directory

--core-file-size Size of core file that mysqld should be able to create

--datadir Path to data directory

--defaults-extra-file Read named option file in addition to usual option files

--defaults-file Read only named option file

--help Display help message and exit 5.0.3

--ledir Path to directory where server is located

--log-error Write error log to named file

--mysqld Name of server program to start (in ledir directory)

--mysqld-version Suffix for server program name

--nice Use nice program to set server scheduling priority

--no-defaults Read no option files

--open-files-limit Number of files that mysqld should be able to open

--pid-file Path name of process ID file

--port Port number on which to listen for TCP/IP connections

--skip-kill-mysqld Do not try to kill stray mysqld processes

--socket Socket file on which to listen for Unix socket connections

--timezone Set TZ time zone environment variable to named value

--user Run mysqld as user having name user_name or numeric
user ID user_id

• --help

Display a help message and exit. (Added in MySQL 5.0.3)

• --autoclose

(NetWare only) On NetWare, mysqld_safe provides a screen presence. When you unload (shut down)
the mysqld_safe NLM, the screen does not by default go away. Instead, it prompts for user input:

<NLM has terminated; Press any key to close the screen>

If you want NetWare to close the screen automatically instead, use the --autoclose option to
mysqld_safe.

• --basedir=dir_name

The path to the MySQL installation directory.

• --core-file-size=size

The size of the core file that mysqld should be able to create. The option value is passed to ulimit -
c.

• --datadir=dir_name

The path to the data directory.

mysqld_safe — MySQL Server Startup Script

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 270

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --defaults-extra-file=file_name

The name of an option file to be read in addition to the usual option files. This must be the first option on
the command line if it is used. As of MySQL 5.0.6, if the file does not exist or is otherwise inaccessible,
the server will exit with an error.

• --defaults-file=file_name

The name of an option file to be read instead of the usual option files. This must be the first option on the
command line if it is used.

• --ledir=dir_name

If mysqld_safe cannot find the server, use this option to indicate the path name to the directory where
the server is located.

• --log-error=file_name

Write the error log to the given file. See Section 5.4.1, “The Error Log”.

• --mysqld=prog_name

The name of the server program (in the ledir directory) that you want to start. This option is needed
if you use the MySQL binary distribution but have the data directory outside of the binary distribution. If
mysqld_safe cannot find the server, use the --ledir option to indicate the path name to the directory
where the server is located.

• --mysqld-version=suffix

This option is similar to the --mysqld option, but you specify only the suffix for the server
program name. The base name is assumed to be mysqld. For example, if you use --mysqld-
version=debug, mysqld_safe starts the mysqld-debug program in the ledir directory. If the
argument to --mysqld-version is empty, mysqld_safe uses mysqld in the ledir directory.

• --nice=priority

Use the nice program to set the server's scheduling priority to the given value.

• --no-defaults

Do not read any option files. This must be the first option on the command line if it is used.

• --open-files-limit=count

The number of files that mysqld should be able to open. The option value is passed to ulimit -n.

Note

You must start mysqld_safe as root for this to function properly.

• --pid-file=file_name

The path name of the process ID file.

• --port=port_num

The port number that the server should use when listening for TCP/IP connections. The port number
must be 1024 or higher unless the server is started by the root system user.

mysqld_safe — MySQL Server Startup Script

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 271

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --skip-kill-mysqld

Do not try to kill stray mysqld processes at startup. This option works only on Linux.

• --socket=path

The Unix socket file that the server should use when listening for local connections.

• --timezone=timezone

Set the TZ time zone environment variable to the given option value. Consult your operating system
documentation for legal time zone specification formats.

• --user={user_name|user_id}

Run the mysqld server as the user having the name user_name or the numeric user ID user_id.
(“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)

If you execute mysqld_safe with the --defaults-file or --defaults-extra-file option to name
an option file, the option must be the first one given on the command line or the option file will not be used.
For example, this command will not use the named option file:

mysql> mysqld_safe --port=port_num --defaults-file=file_name

Instead, use the following command:

mysql> mysqld_safe --defaults-file=file_name --port=port_num

The mysqld_safe script is written so that it normally can start a server that was installed from either
a source or a binary distribution of MySQL, even though these types of distributions typically install the
server in slightly different locations. (See Section 2.7, “Installation Layouts”.) mysqld_safe expects one of
the following conditions to be true:

• The server and databases can be found relative to the working directory (the directory from which
mysqld_safe is invoked). For binary distributions, mysqld_safe looks under its working directory
for bin and data directories. For source distributions, it looks for libexec and var directories. This
condition should be met if you execute mysqld_safe from your MySQL installation directory (for
example, /usr/local/mysql for a binary distribution).

• If the server and databases cannot be found relative to the working directory, mysqld_safe attempts to
locate them by absolute path names. Typical locations are /usr/local/libexec and /usr/local/
var. The actual locations are determined from the values configured into the distribution at the time it
was built. They should be correct if MySQL is installed in the location specified at configuration time.

Because mysqld_safe tries to find the server and databases relative to its own working directory, you
can install a binary distribution of MySQL anywhere, as long as you run mysqld_safe from the MySQL
installation directory:

shell> cd mysql_installation_directory
shell> bin/mysqld_safe &

If mysqld_safe fails, even when invoked from the MySQL installation directory, specify the --ledir
and --datadir options to indicate the directories in which the server and databases are located on your
system.

Normally, you should not edit the mysqld_safe script. Instead, configure mysqld_safe by using
command-line options or options in the [mysqld_safe] section of a my.cnf option file. In rare cases, it

mysql.server — MySQL Server Startup Script

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 272

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

might be necessary to edit mysqld_safe to get it to start the server properly. However, if you do this, your
modified version of mysqld_safe might be overwritten if you upgrade MySQL in the future, so you should
make a copy of your edited version that you can reinstall.

On NetWare, mysqld_safe is a NetWare Loadable Module (NLM) that is ported from the original Unix
shell script. It starts the server as follows:

1. Runs a number of system and option checks.

2. Runs a check on MyISAM tables.

3. Provides a screen presence for the MySQL server.

4. Starts mysqld, monitors it, and restarts it if it terminates in error.

5. Sends error messages from mysqld to the host_name.err file in the data directory.

6. Sends mysqld_safe screen output to the host_name.safe file in the data directory.

4.3.3 mysql.server — MySQL Server Startup Script

MySQL distributions on Unix include a script named mysql.server, which starts the server using
mysqld_safe. It can be used on systems such as Linux and Solaris that use System V-style run
directories to start and stop system services. It is also used by the OS X Startup Item for MySQL.

To start or stop the server manually using the mysql.server script, invoke it with start or stop
arguments:

shell> mysql.server start
shell> mysql.server stop

Before mysql.server starts the server, it changes location to the MySQL installation directory, and then
invokes mysqld_safe. To run the server as some specific user, add an appropriate user option to the
[mysqld] group of the /etc/my.cnf option file, as shown later in this section. (It is possible that you
must edit mysql.server if you've installed a binary distribution of MySQL in a nonstandard location.
Modify it to change location into the proper directory before it runs mysqld_safe. If you do this, your
modified version of mysql.server may be overwritten if you upgrade MySQL in the future, so you should
make a copy of your edited version that you can reinstall.)

mysql.server stop stops the server by sending a signal to it. You can also stop the server manually by
executing mysqladmin shutdown.

To start and stop MySQL automatically on your server, you must add start and stop commands to the
appropriate places in your /etc/rc* files.

If you use the Linux server RPM package (MySQL-server-VERSION.rpm), the mysql.server script
is installed in the /etc/init.d directory with the name mysql. You need not install it manually. See
Section 2.12, “Installing MySQL on Linux Using RPM Packages”, for more information on the Linux RPM
packages.

Some vendors provide RPM packages that install a startup script under a different name such as mysqld.

If you install MySQL from a source distribution or using a binary distribution format that does not install
mysql.server automatically, you can install it manually. The script can be found in the support-files
directory under the MySQL installation directory or in a MySQL source tree. Copy it to the /etc/init.d
directory with the name mysql, and then make it executable:

mysql.server — MySQL Server Startup Script

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 273

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> cp mysql.server /etc/init.d/mysql
shell> chmod +x /etc/init.d/mysql

Note

Older Red Hat systems use the /etc/rc.d/init.d directory rather than /etc/
init.d. Adjust the preceding commands accordingly. Alternatively, first create /
etc/init.d as a symbolic link that points to /etc/rc.d/init.d:

shell> cd /etc
shell> ln -s rc.d/init.d .

After installing the script, the commands needed to activate it to run at system startup depend on your
operating system. On Linux, you can use chkconfig:

shell> chkconfig --add mysql

On some Linux systems, the following command also seems to be necessary to fully enable the mysql
script:

shell> chkconfig --level 345 mysql on

On FreeBSD, startup scripts generally should go in /usr/local/etc/rc.d/. The rc(8) manual page
states that scripts in this directory are executed only if their base name matches the *.sh shell file name
pattern. Any other files or directories present within the directory are silently ignored. In other words, on
FreeBSD, you should install the mysql.server script as /usr/local/etc/rc.d/mysql.server.sh
to enable automatic startup.

As an alternative to the preceding setup, some operating systems also use /etc/rc.local or /etc/
init.d/boot.local to start additional services on startup. To start up MySQL using this method,
append a command like the one following to the appropriate startup file:

/bin/sh -c 'cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &'

For other systems, consult your operating system documentation to see how to install startup scripts.

mysql.server reads options from the [mysql.server] and [mysqld] sections of option files. For
backward compatibility, it also reads [mysql_server] sections, but to be current you should rename
such sections to [mysql.server].

You can add options for mysql.server in a global /etc/my.cnf file. A typical /etc/my.cnf file might
look like this:

[mysqld]
datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock
port=3306
user=mysql

[mysql.server]
basedir=/usr/local/mysql

The mysql.server script supports the following options. If specified, they must be placed in an
option file, not on the command line. mysql.server supports only start and stop as command-line
arguments.

mysqld_multi — Manage Multiple MySQL Servers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 274

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Table 4.2 mysql.server Options

Format Description Introduced

--basedir Path to MySQL installation directory

--datadir Path to MySQL data directory

--pid-file File in which server should write its process ID

--service-startup-timeout How long to wait for server startup 5.0.40

--use-manager Use Instance Manager to start server 5.0.4

--use-mysqld_safe Use mysqld_safe to start server 5.0.4

--user Run server using this login user name 5.0.4

• --basedir=dir_name

The path to the MySQL installation directory.

• --datadir=dir_name

The path to the MySQL data directory.

• --pid-file=file_name

The path name of the file in which the server should write its process ID.

• --service-startup-timeout=seconds

How long in seconds to wait for confirmation of server startup. If the server does not start within this time,
mysql.server exits with an error. The default value is 900. A value of 0 means not to wait at all for
startup. Negative values mean to wait forever (no timeout). This option was added in MySQL 5.0.40.
Before that, a value of 900 is always used.

• --use-mysqld_safe

Use mysqld_safe to start the server. This is the default. This option was added in MySQL 5.0.4.

• --use-manager

Use Instance Manager to start the server. This option was added in MySQL 5.0.4.

• --user=user_name

The login user name to use for running mysqld. This option was added in MySQL 5.0.4.

4.3.4 mysqld_multi — Manage Multiple MySQL Servers

mysqld_multi is designed to manage several mysqld processes that listen for connections on
different Unix socket files and TCP/IP ports. It can start or stop servers, or report their current status. The
MySQL Instance Manager is an alternative means of managing multiple servers (see Section 4.6.10,
“mysqlmanager — The MySQL Instance Manager”).

mysqld_multi searches for groups named [mysqldN] in my.cnf (or in the file named by the --
config-file option). N can be any positive integer. This number is referred to in the following discussion
as the option group number, or GNR. Group numbers distinguish option groups from one another and are
used as arguments to mysqld_multi to specify which servers you want to start, stop, or obtain a status
report for. Options listed in these groups are the same that you would use in the [mysqld] group used

mysqld_multi — Manage Multiple MySQL Servers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 275

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

for starting mysqld. (See, for example, Section 2.18.5, “Starting and Stopping MySQL Automatically”.)
However, when using multiple servers, it is necessary that each one use its own value for options such
as the Unix socket file and TCP/IP port number. For more information on which options must be unique
per server in a multiple-server environment, see Section 5.5, “Running Multiple MySQL Instances on One
Machine”.

To invoke mysqld_multi, use the following syntax:

shell> mysqld_multi [options] {start|stop|report} [GNR[,GNR] ...]

start, stop, and report indicate which operation to perform. You can perform the designated operation
for a single server or multiple servers, depending on the GNR list that follows the option name. If there is no
list, mysqld_multi performs the operation for all servers in the option file.

Each GNR value represents an option group number or range of group numbers. The value should be
the number at the end of the group name in the option file. For example, the GNR for a group named
[mysqld17] is 17. To specify a range of numbers, separate the first and last numbers by a dash. The
GNR value 10-13 represents groups [mysqld10] through [mysqld13]. Multiple groups or group ranges
can be specified on the command line, separated by commas. There must be no whitespace characters
(spaces or tabs) in the GNR list; anything after a whitespace character is ignored.

This command starts a single server using option group [mysqld17]:

shell> mysqld_multi start 17

This command stops several servers, using option groups [mysqld8] and [mysqld10] through
[mysqld13]:

shell> mysqld_multi stop 8,10-13

For an example of how you might set up an option file, use this command:

shell> mysqld_multi --example

As of MySQL 5.0.42, mysqld_multi searches for option files as follows:

• With --no-defaults, no option files are read.

• With --defaults-file=file_name, only the named file is read.

• Otherwise, option files in the standard list of locations are read, including any file named by the --
defaults-extra-file=file_name option, if one is given. (If the option is given multiple times, the
last value is used.)

Before MySQL 5.0.42, the preceding options are not recognized. Files in the standard locations are read,
and any file named by the --config-file=file_name option, if one is given. A file named by --
config-file is read only for [mysqldN] option groups, not the [mysqld_multi] group.

Option files read are searched for [mysqld_multi] and [mysqldN] option groups. The
[mysqld_multi] group can be used for options to mysqld_multi itself. [mysqldN] groups can be
used for options passed to specific mysqld instances.

As of MySQL 5.0.82, the [mysqld] or [mysqld_safe] groups can be used for common options read by
all instances of mysqld or mysqld_safe. You can specify a --defaults-file=file_name option to
use a different configuration file for that instance, in which case the [mysqld] or [mysqld_safe] groups

mysqld_multi — Manage Multiple MySQL Servers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 276

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

from that file will be used for that instance. Before MySQL 5.0.82, some versions of mysqld_multi pass
the --no-defaults options to instances, so these techniques are inapplicable.

mysqld_multi supports the following options.

• --help

Display a help message and exit.

• --config-file=file_name

As of MySQL 5.0.42, this option is deprecated. If given, it is treated the same way as --defaults-
extra-file, described earlier. --config-file is removed in MySQL 5.5.

Before MySQL 5.0.42, this option specifies the name of an extra option file. It affects where
mysqld_multi looks for [mysqldN] option groups. Without this option, all options are read from the
usual my.cnf file. The option does not affect where mysqld_multi reads its own options, which are
always taken from the [mysqld_multi] group in the usual my.cnf file.

• --example

Display a sample option file.

• --log=file_name

Specify the name of the log file. If the file exists, log output is appended to it.

• --mysqladmin=prog_name

The mysqladmin binary to be used to stop servers.

• --mysqld=prog_name

The mysqld binary to be used. Note that you can specify mysqld_safe as the value for this option
also. If you use mysqld_safe to start the server, you can include the mysqld or ledir options
in the corresponding [mysqldN] option group. These options indicate the name of the server that
mysqld_safe should start and the path name of the directory where the server is located. (See the
descriptions for these options in Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.)
Example:

[mysqld38]
mysqld = mysqld-debug
ledir = /opt/local/mysql/libexec

• --no-log

Print log information to stdout rather than to the log file. By default, output goes to the log file.

• --password=password

The password of the MySQL account to use when invoking mysqladmin. Note that the password value
is not optional for this option, unlike for other MySQL programs.

• --silent

Silent mode; disable warnings.

• --tcp-ip

mysqld_multi — Manage Multiple MySQL Servers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 277

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Connect to each MySQL server through the TCP/IP port instead of the Unix socket file. (If a socket file
is missing, the server might still be running, but accessible only through the TCP/IP port.) By default,
connections are made using the Unix socket file. This option affects stop and report operations.

• --user=user_name

The user name of the MySQL account to use when invoking mysqladmin.

• --verbose

Be more verbose.

• --version

Display version information and exit.

Some notes about mysqld_multi:

• Most important: Before using mysqld_multi be sure that you understand the meanings of the options
that are passed to the mysqld servers and why you would want to have separate mysqld processes.
Beware of the dangers of using multiple mysqld servers with the same data directory. Use separate
data directories, unless you know what you are doing. Starting multiple servers with the same data
directory does not give you extra performance in a threaded system. See Section 5.5, “Running Multiple
MySQL Instances on One Machine”.

• Important

Make sure that the data directory for each server is fully accessible to the Unix
account that the specific mysqld process is started as. Do not use the Unix root
account for this, unless you know what you are doing. See Section 6.1.5, “How to
Run MySQL as a Normal User”.

• Make sure that the MySQL account used for stopping the mysqld servers (with the mysqladmin
program) has the same user name and password for each server. Also, make sure that the account
has the SHUTDOWN privilege. If the servers that you want to manage have different user names or
passwords for the administrative accounts, you might want to create an account on each server that has
the same user name and password. For example, you might set up a common multi_admin account
by executing the following commands for each server:

shell> mysql -u root -S /tmp/mysql.sock -p
Enter password:
mysql> CREATE USER 'multi_admin'@'localhost' IDENTIFIED BY 'multipass';
mysql> GRANT SHUTDOWN ON *.* TO 'multi_admin'@'localhost';

See Section 6.2, “The MySQL Access Privilege System”. You have to do this for each mysqld server.
Change the connection parameters appropriately when connecting to each one. Note that the host name
part of the account name must permit you to connect as multi_admin from the host where you want to
run mysqld_multi.

• The Unix socket file and the TCP/IP port number must be different for every mysqld. (Alternatively, if the
host has multiple network addresses, you can use --bind-address to cause different servers to listen
to different interfaces.)

• The --pid-file option is very important if you are using mysqld_safe to start mysqld (for example,
--mysqld=mysqld_safe) Every mysqld should have its own process ID file. The advantage of using
mysqld_safe instead of mysqld is that mysqld_safe monitors its mysqld process and restarts it if

mysqld_multi — Manage Multiple MySQL Servers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 278

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

the process terminates due to a signal sent using kill -9 or for other reasons, such as a segmentation
fault. Please note that the mysqld_safe script might require that you start it from a certain place. This
means that you might have to change location to a certain directory before running mysqld_multi. If
you have problems starting, please see the mysqld_safe script. Check especially the lines:

--
MY_PWD=`pwd`
Check if we are starting this relative (for the binary release)
if test -d $MY_PWD/data/mysql -a -f ./share/mysql/english/errmsg.sys -a \
 -x ./bin/mysqld
--

The test performed by these lines should be successful, or you might encounter problems. See
Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”.

• You might want to use the --user option for mysqld, but to do this you need to run the
mysqld_multi script as the Unix superuser (root). Having the option in the option file doesn't matter;
you just get a warning if you are not the superuser and the mysqld processes are started under your
own Unix account.

The following example shows how you might set up an option file for use with mysqld_multi. The order
in which the mysqld programs are started or stopped depends on the order in which they appear in the
option file. Group numbers need not form an unbroken sequence. The first and fifth [mysqldN] groups
were intentionally omitted from the example to illustrate that you can have “gaps” in the option file. This
gives you more flexibility.

This is an example of a my.cnf file for mysqld_multi.
Usually this file is located in home dir ~/.my.cnf or /etc/my.cnf

[mysqld_multi]
mysqld = /usr/local/mysql/bin/mysqld_safe
mysqladmin = /usr/local/mysql/bin/mysqladmin
user = multi_admin
password = my_password

[mysqld2]
socket = /tmp/mysql.sock2
port = 3307
pid-file = /usr/local/mysql/data2/hostname.pid2
datadir = /usr/local/mysql/data2
language = /usr/local/mysql/share/mysql/english
user = unix_user1

[mysqld3]
mysqld = /path/to/mysqld_safe
ledir = /path/to/mysqld-binary/
mysqladmin = /path/to/mysqladmin
socket = /tmp/mysql.sock3
port = 3308
pid-file = /usr/local/mysql/data3/hostname.pid3
datadir = /usr/local/mysql/data3
language = /usr/local/mysql/share/mysql/swedish
user = unix_user2

[mysqld4]
socket = /tmp/mysql.sock4
port = 3309
pid-file = /usr/local/mysql/data4/hostname.pid4
datadir = /usr/local/mysql/data4
language = /usr/local/mysql/share/mysql/estonia
user = unix_user3

MySQL Installation-Related Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 279

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

[mysqld6]
socket = /tmp/mysql.sock6
port = 3311
pid-file = /usr/local/mysql/data6/hostname.pid6
datadir = /usr/local/mysql/data6
language = /usr/local/mysql/share/mysql/japanese
user = unix_user4

See Section 4.2.6, “Using Option Files”.

4.4 MySQL Installation-Related Programs

The programs in this section are used when installing or upgrading MySQL.

4.4.1 comp_err — Compile MySQL Error Message File

comp_err creates the errmsg.sys file that is used by mysqld to determine the error messages to
display for different error codes. comp_err normally is run automatically when MySQL is built. It compiles
the errmsg.sys file from the text file located at sql/share/errmsg.txt in MySQL source distributions.

comp_err also generates mysqld_error.h, mysqld_ername.h, and sql_state.h header files.

For more information about how error messages are defined, see the MySQL Internals Manual.

Invoke comp_err like this:

shell> comp_err [options]

comp_err supports the following options.

• --help, -?

Display a help message and exit.

• --charset=dir_name, -C dir_name

The character set directory. The default is ../sql/share/charsets.

• --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:O,file_name. The default is d:t:O,/
tmp/comp_err.trace.

• --debug-info, -T

Print some debugging information when the program exits.

• --header_file=file_name, -H file_name

The name of the error header file. The default is mysqld_error.h.

• --in_file=file_name, -F file_name

The name of the input file. The default is ../sql/share/errmsg.txt.

• --name_file=file_name, -N file_name

The name of the error name file. The default is mysqld_ername.h.

http://dev.mysql.com/doc/internals/en

make_win_bin_dist — Package MySQL Distribution as Zip Archive

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 280

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --out_dir=dir_name, -D dir_name

The name of the output base directory. The default is ../sql/share/.

• --out_file=file_name, -O file_name

The name of the output file. The default is errmsg.sys.

• --statefile=file_name, -S file_name

The name for the SQLSTATE header file. The default is sql_state.h.

• --version, -V

Display version information and exit.

4.4.2 make_win_bin_dist — Package MySQL Distribution as Zip Archive

This script is used on Windows after building a MySQL distribution from source to create executable
programs. It packages the binaries and support files into a Zip archive that can be unpacked at the location
where you want to install MySQL.

make_win_bin_dist is a shell script, so you must have Cygwin installed to use it.

This program's use is subject to change. Currently, you invoke it as follows from the root directory of your
source distribution:

shell> make_win_bin_dist [options] package_basename [copy_def ...]

The package_basename argument provides the base name for the resulting Zip archive. This name will
be the name of the directory that results from unpacking the archive.

Because you might want to include files of directories from other builds, you can instruct
this script to copy them in for you, using copy_def arguments, which have the form
relative_dest_name=source_name.

Example:

bin/mysqld-max.exe=../my-max-build/sql/release/mysqld.exe

If you specify a directory, the entire directory will be copied.

make_win_bin_dist supports the following options.

• --debug

Pack the debug binaries and produce an error if they were not built.

• --embedded

Pack the embedded server and produce an error if it was not built. The default is to pack it if it was built.

• --exe-suffix=suffix

Add a suffix to the base name of the mysql binary. For example, a suffix of -abc produces a binary
named mysqld-abc.exe.

make_win_src_distribution — Create Source Distribution for Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 281

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --no-debug

Do not pack the debug binaries even if they were built.

• --no-embedded

Do not pack the embedded server even if it was built.

• --only-debug

Use this option when the target for this build was Debug, and you just want to replace the normal
binaries with debug versions (that is, do not use separate debug directories).

4.4.3 make_win_src_distribution — Create Source Distribution for
Windows

make_win_src_distribution creates a Windows source package to be used on Windows systems.
It is used after you configure and build the source distribution on a Unix or Unix-like system so that you
have a server binary to work with. (See the instructions at Section 2.10.8.5, “Creating a Windows Source
Package from the Bazaar Repository”.)

Invoke make_win_src_distribution like this from the top-level directory of a MySQL source
distribution:

shell> make_win_src_distribution [options]

make_win_src_distribution understands the following options:

• --help

Display a help message and exit.

• --debug

Print information about script operations; do not create a package.

• --dirname

Directory name to copy files (intermediate).

• --silent

Do not print verbose list of files processed.

• --suffix

The suffix name for the package.

• --tar

Create a .tar.gz package instead of a .zip package.

By default, make_win_src_distribution creates a Zip-format archive with the name
mysql-VERSION-win-src.zip, where VERSION represents the version of your MySQL source tree.

• --tmp

mysqlbug — Generate Bug Report

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 282

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Specify the temporary location.

4.4.4 mysqlbug — Generate Bug Report

This program enables you to generate a bug report and send it to Oracle Corporation. It is a shell script
and runs on Unix.

The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs
database. This database is public and can be browsed and searched by anyone. If you log in to the
system, you can enter new reports. If you have no Web access, you can generate a bug report by using
the mysqlbug script.

mysqlbug helps you generate a report by determining much of the following information automatically,
but if something important is missing, please include it with your message. mysqlbug can be found in the
scripts directory (source distribution) and in the bin directory under your MySQL installation directory
(binary distribution).

Invoke mysqlbug without arguments:

shell> mysqlbug

The script will place you in an editor with a copy of the report to be sent. Edit the lines near the beginning
that indicate the nature of the problem. Then write the file to save your changes, quit the editor, and
mysqlbug will send the report by email.

4.4.5 mysql_fix_privilege_tables — Upgrade MySQL System Tables

Some releases of MySQL introduce changes to the structure of the system tables in the mysql database
to add new privileges or support new features. When you update to a new version of MySQL, update your
system tables as well to make sure that their structure is up to date. Otherwise, there might be capabilities
that you cannot take advantage of.

mysql_fix_privilege_tables is an older script that previously was used to uprade the system tables
in the mysql database after a MySQL upgrade.

Note

As of MySQL 5.0.19, mysql_fix_privilege_tables is superseded
by mysql_upgrade, which should be used instead. See Section 4.4.9,
“mysql_upgrade — Check Tables for MySQL Upgrade”.

Before running mysql_fix_privilege_tables, make a backup of your mysql database.

On Unix or Unix-like systems, update the system tables by running the mysql_fix_privilege_tables
script:

shell> mysql_fix_privilege_tables

You must run this script while the server is running. It attempts to connect to the server running on the local
host as root. If your root account requires a password, indicate the password on the command line like
this:

http://bugs.mysql.com/

mysql_install_db — Initialize MySQL Data Directory

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 283

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysql_fix_privilege_tables --password=root_password

The mysql_fix_privilege_tables script performs any actions necessary to convert your system
tables to the current format. You might see some Duplicate column name warnings as it runs; you can
ignore them.

After running the script, stop the server and restart it so that any changes made to the system tables take
effect.

On Windows systems, MySQL distributions include a mysql_fix_privilege_tables.sql SQL script
that you can run using the mysql client. For example, if your MySQL installation is located at C:\Program
Files\MySQL\MySQL Server 5.0, the commands look like this:

C:\> cd "C:\Program Files\MySQL\MySQL Server 5.0"
C:\> bin\mysql -u root -p mysql
mysql> SOURCE share/mysql_fix_privilege_tables.sql

Note

Prior to version 5.0.38, this script is found in the scripts directory.

The mysql command will prompt you for the root password; enter it when prompted.

If your installation is located in some other directory, adjust the path names appropriately.

As with the Unix procedure, you might see some Duplicate column name warnings as mysql
processes the statements in the mysql_fix_privilege_tables.sql script; you can ignore them.

After running the script, stop the server and restart it.

4.4.6 mysql_install_db — Initialize MySQL Data Directory

mysql_install_db initializes the MySQL data directory and creates the system tables that it contains, if
they do not exist. mysql_install_db is a shell script and is available only on Unix platforms.

To invoke mysql_install_db, use the following syntax:

shell> mysql_install_db [options]

Because the MySQL server, mysqld, must access the data directory when it runs later, you should either
run mysql_install_db from the same system account that will be used for running mysqld, or run it
as root and specify the --user option to indicate the user name that mysqld will run as. It might be
necessary to specify other options such as --basedir or --datadir if mysql_install_db does not
use the correct locations for the installation directory or data directory. For example:

shell> bin/mysql_install_db --user=mysql \
 --basedir=/opt/mysql/mysql \
 --datadir=/opt/mysql/mysql/data

mysql_install_db needs to invoke mysqld with the --bootstrap and --skip-grant-tables
options. If MySQL was configured with the --disable-grant-options configuration option, --
bootstrap and --skip-grant-tables will be disabled (see Section 2.17.3, “MySQL Source-
Configuration Options”). To handle this, set the MYSQLD_BOOTSTRAP environment variable to the full path
name of a server that has all options enabled. mysql_install_db will use that server.

mysql_install_db — Initialize MySQL Data Directory

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 284

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql_install_db supports the following options, which can be specified on the command line or in
the [mysql_install_db] group of an option file. (Options that are common to mysqld can also be
specified in the [mysqld] group.) Other options are passed to mysqld. For information about option files
used by MySQL programs, see Section 4.2.6, “Using Option Files”. mysql_install_db also supports the
options for processing option files described at Section 4.2.7, “Command-Line Options that Affect Option-
File Handling”.

• --help

Display a help message and exit.

• --basedir=dir_name

The path to the MySQL installation directory.

• --builddir=dir_name

For use with --srcdir and out-of-source builds. Set this to the location of the directory where the built
files reside.

• --cross-bootstrap

For internal use. This option is used for building system tables on one host intended for another.

• --datadir=dir_name

The path to the MySQL data directory.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. If the file does
not exist or is otherwise inaccessible, an error occurs. file_name is interpreted relative to the current
directory if given as a relative path name rather than a full path name.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is interpreted relative to the current directory if given as a relative path name rather than a
full path name.

• --force

Cause mysql_install_db to run even if DNS does not work. Grant table entries normally created
using host names will use IP addresses instead.

• --ldata=dir_name

A synonym for --datadir.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

• --rpm

For internal use. This option is used during the MySQL installation process for install operations
performed using RPM packages.

mysql_secure_installation — Improve MySQL Installation Security

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 285

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --skip-name-resolve

Use IP addresses rather than host names when creating grant table entries. This option can be useful if
your DNS does not work.

• --srcdir=dir_name

For internal use. This option specifies the directory under which mysql_install_db looks for support
files such as the error message file and the file for populating the help tables. This option was added in
MySQL 5.0.32.

• --user=user_name

The system (login) user name to use for running mysqld. Files and directories created by mysqld will
be owned by this user. You must be the system root user to use this option. By default, mysqld runs
using your current login name and files and directories that it creates will be owned by you.

• --verbose

Verbose mode. Print more information about what the program does.

• --windows

For internal use. This option is used for creating Windows distributions.

4.4.7 mysql_secure_installation — Improve MySQL Installation Security

This program enables you to improve the security of your MySQL installation in the following ways:

• You can set a password for root accounts.

• You can remove root accounts that are accessible from outside the local host.

• You can remove anonymous-user accounts.

• You can remove the test database (which by default can be accessed by all users, even anonymous
users), and privileges that permit anyone to access databases with names that start with test_.

mysql_secure_installation helps you implement security recommendations similar to those
described at Section 2.18.4, “Securing the Initial MySQL Accounts”.

Invoke mysql_secure_installation without arguments:

shell> mysql_secure_installation

When executed, the script prompts you to determine which actions to perform.

mysql_secure_installation is not available on Windows.

4.4.8 mysql_tzinfo_to_sql — Load the Time Zone Tables

The mysql_tzinfo_to_sql program loads the time zone tables in the mysql database. It is used on
systems that have a zoneinfo database (the set of files describing time zones). Examples of such systems
are Linux, FreeBSD, Solaris, and OS X. One likely location for these files is the /usr/share/zoneinfo
directory (/usr/share/lib/zoneinfo on Solaris). If your system does not have a zoneinfo database,
you can use the downloadable package described in Section 10.6, “MySQL Server Time Zone Support”.

mysql_upgrade — Check Tables for MySQL Upgrade

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 286

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql_tzinfo_to_sql can be invoked several ways:

shell> mysql_tzinfo_to_sql tz_dir
shell> mysql_tzinfo_to_sql tz_file tz_name
shell> mysql_tzinfo_to_sql --leap tz_file

For the first invocation syntax, pass the zoneinfo directory path name to mysql_tzinfo_to_sql and
send the output into the mysql program. For example:

shell> mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from them.
mysql processes those statements to load the time zone tables.

The second syntax causes mysql_tzinfo_to_sql to load a single time zone file tz_file that
corresponds to a time zone name tz_name:

shell> mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql

If your time zone needs to account for leap seconds, invoke mysql_tzinfo_to_sql using the third
syntax, which initializes the leap second information. tz_file is the name of your time zone file:

shell> mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql

After running mysql_tzinfo_to_sql, it is best to restart the server so that it does not continue to use
any previously cached time zone data.

4.4.9 mysql_upgrade — Check Tables for MySQL Upgrade

mysql_upgrade examines all tables in all databases for incompatibilities with the current version of
MySQL Server. mysql_upgrade also upgrades the system tables so that you can take advantage of new
privileges or capabilities that might have been added.

If mysql_upgrade finds that a table has a possible incompatibility, it performs a table check and,
if problems are found, attempts a table repair. If the table cannot be repaired, see Section 2.19.4,
“Rebuilding or Repairing Tables or Indexes” for manual table repair strategies.

You should execute mysql_upgrade each time you upgrade MySQL. It supersedes the older
mysql_fix_privilege_tables script, which should no longer be used.

If you install MySQL from RPM packages on Linux, you must install the server and client RPMs.
mysql_upgrade is included in the server RPM but requires the client RPM because the latter includes
mysqlcheck. (See Section 2.12, “Installing MySQL on Linux Using RPM Packages”.)

Caution

You should always back up your current MySQL installation before performing an
upgrade. See Section 7.2, “Database Backup Methods”.

Some upgrade incompatibilities may require special handling before you upgrade
your MySQL installation and run mysql_upgrade. See Section 2.19.1, “Upgrading
MySQL”, for instructions on determining whether any such incompatibilities apply to
your installation and how to handle them.

To use mysql_upgrade, make sure that the server is running. Then invoke it like this:

mysql_upgrade — Check Tables for MySQL Upgrade

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 287

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysql_upgrade [options]

After running mysql_upgrade, stop the server and restart it so that any changes made to the system
tables take effect.

If you have multiple MySQL server instances running, invoke mysql_upgrade with connection
parameters appropriate for connecting to the desired server. For example, with servers running on the local
host on parts 3306 through 3308, upgrade each of them by connecting to the appropriate port:

shell> mysql_upgrade --protocol=tcp -P 3306 [other_options]
shell> mysql_upgrade --protocol=tcp -P 3307 [other_options]
shell> mysql_upgrade --protocol=tcp -P 3308 [other_options]

For local host connections on Unix, the --protocol=tcp option forces a connection using TCP/IP rather
than the Unix socket file.

mysql_upgrade executes the following commands to check and repair tables and to upgrade the system
tables:

mysqlcheck --no-defaults --check-upgrade --all-databases --auto-repair
mysql < fix_priv_tables

Notes about the preceding commands:

• Because mysql_upgrade invokes mysqlcheck with the --all-databases option, it processes all
tables in all databases, which might take a long time to complete. Each table is locked and therefore
unavailable to other sessions while it is being processed. Check and repair operations can be time-
consuming, particularly for large tables.

• For details about what checks the --check-upgrade option entails, see the description of the FOR
UPGRADE option of the CHECK TABLE statement (see Section 13.7.2.3, “CHECK TABLE Syntax”).

• fix_priv_tables represents a script generated internally by mysql_upgrade that contains SQL
statements to upgrade the tables in the mysql database.

All checked and repaired tables are marked with the current MySQL version number. This ensures that
next time you run mysql_upgrade with the same version of the server, it can tell whether there is any
need to check or repair the table again.

mysql_upgrade also saves the MySQL version number in a file named mysql_upgrade_info in the
data directory. This is used to quickly check whether all tables have been checked for this release so that
table-checking can be skipped. To ignore this file and perform the check regardless, use the --force
option.

In MySQL 5.0.19, mysql_upgrade was added as a shell script and worked only for Unix systems. As of
MySQL 5.0.23, mysql_upgrade is an executable binary and is available on all systems.

mysql_upgrade does not upgrade the contents of the help tables. For upgrade instructions, see
Section 5.1.8, “Server-Side Help”.

mysql_upgrade supports the following options, which can be specified on the command line or in
the [mysql_upgrade] and [client] groups of an option file. Unrecognized options are passed to
mysqlcheck. For information about option files, see Section 4.2.6, “Using Option Files”.

• --help

mysql_upgrade — Check Tables for MySQL Upgrade

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 288

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Display a short help message and exit.

• --basedir=dir_name

The path to the MySQL installation directory. This option is accepted for backward compatibility but
ignored.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”. This
option was added in MySQL 5.0.30.

• --compress

Compress all information sent between the client and the server if both support compression. This option
was added in MySQL 5.0.30.

• --datadir=dir_name

The path to the data directory. This option is accepted for backward compatibility but ignored.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:O,/
tmp/mysql_upgrade.trace.

• --debug-info, -T

Print some debugging information when the program exits.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”. This
option was added in MySQL 5.0.30.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. As of MySQL
5.0.6, if the file does not exist or is otherwise inaccessible, an error occurs. file_name is the full path
name to the file.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is the full path name to the file.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysql_upgrade normally reads the [client] and [mysql_upgrade] groups.
If the --defaults-group-suffix=_other option is given, mysql_upgrade also reads the
[client_other] and [mysql_upgrade_other] groups.

• --force

Ignore the mysql_upgrade_info file and force execution even if mysql_upgrade has already been
executed for the current version of MySQL.

mysql_upgrade — Check Tables for MySQL Upgrade

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 289

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host. This option was added in MySQL 5.0.30.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot
have a space between the option and the password. If you omit the password value following the --
password or -p option on the command line, mysql_upgrade prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. You can use an option file to avoid giving the password on the
command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server supports
named-pipe connections. This option was added in MySQL 5.0.30.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on the
permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory connections.
This option was added in MySQL 5.0.30.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate where to
find SSL keys and certificates. See Section 6.3.6.5, “Command Options for Secure Connections”. These
options were added in MySQL 5.0.30.

• --tmpdir=dir_name, -t dir_name

MySQL Client Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 290

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The path name of the directory to use for creating temporary files. This option was added in MySQL
5.0.62.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server. The default user name is root.

• --verbose

Verbose mode. Print more information about what the program does.

4.5 MySQL Client Programs

This section describes client programs that connect to the MySQL server.

4.5.1 mysql — The MySQL Command-Line Tool

mysql is a simple SQL shell with input line editing capabilities. It supports interactive and noninteractive
use. When used interactively, query results are presented in an ASCII-table format. When used
noninteractively (for example, as a filter), the result is presented in tab-separated format. The output format
can be changed using command options.

If you have problems due to insufficient memory for large result sets, use the --quick option. This
forces mysql to retrieve results from the server a row at a time rather than retrieving the entire result
set and buffering it in memory before displaying it. This is done by returning the result set using the
mysql_use_result() C API function in the client/server library rather than mysql_store_result().

Using mysql is very easy. Invoke it from the prompt of your command interpreter as follows:

shell> mysql db_name

Or:

shell> mysql --user=user_name --password=your_password db_name

Then type an SQL statement, end it with “;”, \g, or \G and press Enter.

As of MySQL 5.0.25, typing Control+C causes mysql to attempt to kill the current statement. If this cannot
be done, or Control+C is typed again before the statement is killed, mysql exits. Previously, Control+C
caused mysql to exit in all cases.

You can execute SQL statements in a script file (batch file) like this:

shell> mysql db_name < script.sql > output.tab

On Unix, the mysql client logs statements executed interactively to a history file. See Section 4.5.1.3,
“mysql Logging”.

4.5.1.1 mysql Options

mysql supports the following options, which can be specified on the command line or in the [mysql]
and [client] groups of an option file. For information about option files used by MySQL programs, see
Section 4.2.6, “Using Option Files”.

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 291

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Table 4.3 mysql Options

Format Description Introduced

--auto-rehash Enable automatic rehashing

--batch Do not use history file

--character-sets-dir Directory where character sets are installed

--column-names Write column names in results

--comments Whether to retain or strip comments in statements sent to
the server

5.0.52

--compress Compress all information sent between client and server

--connect_timeout Number of seconds before connection timeout

--database The database to use

--debug Write debugging log; supported only if MySQL was built
with debugging support

--debug-info Print debugging information, memory, and CPU statistics
when program exits

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value 5.0.10

--delimiter Set the statement delimiter

--execute Execute the statement and quit

--force Continue even if an SQL error occurs

--help Display help message and exit

--host Connect to MySQL server on given host

--html Produce HTML output

--ignore-spaces Ignore spaces after function names

--line-numbers Write line numbers for errors

--local-infile Enable or disable for LOCAL capability for LOAD DATA
INFILE

--max_allowed_packet Maximum packet length to send to or receive from server

--max_join_size The automatic limit for rows in a join when using --safe-
updates

--named-commands Enable named mysql commands

--net_buffer_length Buffer size for TCP/IP and socket communication

--no-auto-rehash Disable automatic rehashing

--no-beep Do not beep when errors occur

--no-defaults Read no option files

--no-named-commands Disable named mysql commands

--no-pager Deprecated form of --skip-pager

--no-tee Do not copy output to a file

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 292

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Introduced

--one-database Ignore statements except those for the default database
named on the command line

--pager Use the given command for paging query output

--password Password to use when connecting to server

--pipe On Windows, connect to server using named pipe

--port TCP/IP port number to use for connection

--print-defaults Print default options

--prompt Set the prompt to the specified format

--protocol Connection protocol to use

--quick Do not cache each query result

--raw Write column values without escape conversion

--reconnect If the connection to the server is lost, automatically try to
reconnect

--i-am-a-dummy, --safe-updates Allow only UPDATE and DELETE statements that specify
key values

--secure-auth Do not send passwords to server in old (pre-4.1) format

--select_limit The automatic limit for SELECT statements when using --
safe-updates

--shared-memory-base-name The name of shared memory to use for shared-memory
connections

--show-warnings Show warnings after each statement if there are any 5.0.6

--sigint-ignore Ignore SIGINT signals (typically the result of typing Control
+C)

--silent Silent mode

--skip-auto-rehash Disable automatic rehashing

--skip-column-names Do not write column names in results

--skip-line-numbers Skip line numbers for errors

--skip-named-commands Disable named mysql commands

--skip-pager Disable paging

--skip-reconnect Disable reconnecting

--socket For connections to localhost, the Unix socket file to use

--ssl Enable secure connection

--ssl-ca Path of file that contains list of trusted SSL CAs

--ssl-capath Path of directory that contains trusted SSL CA certificates
in PEM format

--ssl-cert Path of file that contains X509 certificate in PEM format

--ssl-cipher List of permitted ciphers to use for connection encryption

--ssl-key Path of file that contains X509 key in PEM format

--ssl-verify-server-cert Verify server certificate Common Name value against host
name used when connecting to server

5.0.23

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 293

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Introduced

--table Display output in tabular format

--tee Append a copy of output to named file

--unbuffered Flush the buffer after each query

--user MySQL user name to use when connecting to server

--verbose Verbose mode

--version Display version information and exit

--vertical Print query output rows vertically (one line per column
value)

--wait If the connection cannot be established, wait and retry
instead of aborting

--xml Produce XML output

• --help, -?

Display a help message and exit.

• --auto-rehash

Enable automatic rehashing. This option is on by default, which enables database, table, and column
name completion. Use --disable-auto-rehash to disable rehashing. That causes mysql to start
faster, but you must issue the rehash command if you want to use name completion.

To complete a name, enter the first part and press Tab. If the name is unambiguous, mysql completes
it. Otherwise, you can press Tab again to see the possible names that begin with what you have typed
so far. Completion does not occur if there is no default database.

• --batch, -B

Print results using tab as the column separator, with each row on a new line. With this option, mysql
does not use the history file.

Batch mode results in nontabular output format and escaping of special characters. Escaping may be
disabled by using raw mode; see the description for the --raw option.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --column-names

Write column names in results.

• --comments, -c

Whether to preserve comments in statements sent to the server. The default is --skip-comments (discard
comments), enable with --comments (preserve comments). This option was added in MySQL 5.0.52.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --database=db_name, -D db_name

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 294

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The database to use. This is useful primarily in an option file.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/mysql.trace.

This option is available only if MySQL was built using --with-debug. MySQL release binaries are not
built using this option.

• --debug-info, -T

Print some debugging information when the program exits.

• --default-character-set=charset_name

Use charset_name as the default character set for the client and connection.

A common issue that can occur when the operating system uses utf8 or another multibyte character
set is that output from the mysql client is formatted incorrectly, due to the fact that the MySQL client
uses the latin1 character set by default. You can usually fix such issues by using this option to force
the client to use the system character set instead.

See Section 10.5, “Character Set Configuration”, for more information.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. As of MySQL
5.0.6, if the file does not exist or is otherwise inaccessible, an error occurs. file_name is the full path
name to the file.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is the full path name to the file.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysql normally reads the [client] and [mysql] groups. If the --defaults-group-
suffix=_other option is given, mysql also reads the [client_other] and [mysql_other]
groups. This option was added in MySQL 5.0.10.

• --delimiter=str

Set the statement delimiter. The default is the semicolon character (“;”).

• --disable-named-commands

Disable named commands. Use the * form only, or use named commands only at the beginning of a
line ending with a semicolon (“;”). mysql starts with this option enabled by default. However, even with
this option, long-format commands still work from the first line. See Section 4.5.1.2, “mysql Commands”.

• --execute=statement, -e statement

Execute the statement and quit. The default output format is like that produced with --batch. See
Section 4.2.4, “Using Options on the Command Line”, for some examples. With this option, mysql does
not use the history file.

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 295

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --force, -f

Continue even if an SQL error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --html, -H

Produce HTML output.

• --ignore-spaces, -i

Ignore spaces after function names. The effect of this is described in the discussion for the
IGNORE_SPACE SQL mode (see Section 5.1.7, “Server SQL Modes”).

• --line-numbers

Write line numbers for errors. Disable this with --skip-line-numbers.

• --local-infile[={0|1}]

Enable or disable LOCAL capability for LOAD DATA INFILE. With no value, the option enables LOCAL.
The option may be given as --local-infile=0 or --local-infile=1 to explicitly disable or enable
LOCAL. Enabling LOCAL has no effect if the server does not also support it.

• --named-commands, -G

Enable named mysql commands. Long-format commands are permitted, not just short-format
commands. For example, quit and \q both are recognized. Use --skip-named-commands to disable
named commands. See Section 4.5.1.2, “mysql Commands”.

• --no-auto-rehash, -A

This has the same effect as --skip-auto-rehash. See the description for --auto-rehash.

• --no-beep, -b

Do not beep when errors occur.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

• --no-named-commands, -g

Deprecated, use --disable-named-commands instead. --no-named-commands is removed in
MySQL 5.5.

• --no-pager

Deprecated form of --skip-pager. See the --pager option. --no-pager is removed in MySQL 5.5.

• --no-tee

Deprecated form of --skip-tee. See the --tee option. --no-tee is removed in MySQL 5.5.

• --one-database, -o

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 296

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Ignore statements except those that occur while the default database is the one named on the command
line. This option is rudimentary and should be used with care. Statement filtering is based only on USE
statements.

Initially, mysql executes statements in the input because specifying a database db_name on the
command line is equivalent to inserting USE db_name at the beginning of the input. Then, for each
USE statement encountered, mysql accepts or rejects following statements depending on whether the
database named is the one on the command line. The content of the statements is immaterial.

Suppose that mysql is invoked to process this set of statements:

DELETE FROM db2.t2;
USE db2;
DROP TABLE db1.t1;
CREATE TABLE db1.t1 (i INT);
USE db1;
INSERT INTO t1 (i) VALUES(1);
CREATE TABLE db2.t1 (j INT);

If the command line is mysql --force --one-database db1, mysql handles the input as follows:

• The DELETE statement is executed because the default database is db1, even though the statement
names a table in a different database.

• The DROP TABLE and CREATE TABLE statements are not executed because the default database is
not db1, even though the statements name a table in db1.

• The INSERT and CREATE TABLE statements are executed because the default database is db1,
even though the CREATE TABLE statement names a table in a different database.

• --pager[=command]

Use the given command for paging query output. If the command is omitted, the default pager is the
value of your PAGER environment variable. Valid pagers are less, more, cat [> filename], and
so forth. This option works only on Unix and only in interactive mode. To disable paging, use --skip-
pager. Section 4.5.1.2, “mysql Commands”, discusses output paging further.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot
have a space between the option and the password. If you omit the password value following the --
password or -p option on the command line, mysql prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. You can use an option file to avoid giving the password on the
command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server supports
named-pipe connections.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 297

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Print the program name and all options that it gets from option files.

• --prompt=format_str

Set the prompt to the specified format. The default is mysql>. The special sequences that the prompt
can contain are described in Section 4.5.1.2, “mysql Commands”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on the
permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --quick, -q

Do not cache each query result, print each row as it is received. This may slow down the server if the
output is suspended. With this option, mysql does not use the history file.

• --raw, -r

For tabular output, the “boxing” around columns enables one column value to be distinguished from
another. For nontabular output (such as is produced in batch mode or when the --batch or --silent
option is given), special characters are escaped in the output so they can be identified easily. Newline,
tab, NUL, and backslash are written as \n, \t, \0, and \\. The --raw option disables this character
escaping.

The following example demonstrates tabular versus nontabular output and the use of raw mode to
disable escaping:

% mysql
mysql> SELECT CHAR(92);
+----------+
| CHAR(92) |
+----------+
| \ |
+----------+

% mysql -s
mysql> SELECT CHAR(92);
CHAR(92)
\\

% mysql -s -r
mysql> SELECT CHAR(92);
CHAR(92)
\

• --reconnect

If the connection to the server is lost, automatically try to reconnect. A single reconnect attempt is made
each time the connection is lost. To suppress reconnection behavior, use --skip-reconnect.

• --safe-updates, --i-am-a-dummy, -U

Permit only those UPDATE and DELETE statements that specify which rows to modify by using key
values. If you have set this option in an option file, you can override it by using --safe-updates on the
command line. See Section 4.5.1.6, “mysql Tips”, for more information about this option.

• --secure-auth

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 298

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Do not send passwords to the server in old (pre-4.1) format. This prevents connections except for
servers that use the newer password format.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory connections.

• --show-warnings

Cause warnings to be shown after each statement if there are any. This option applies to interactive and
batch mode. This option was added in MySQL 5.0.6.

• --sigint-ignore

Ignore SIGINT signals (typically the result of typing Control+C).

• --silent, -s

Silent mode. Produce less output. This option can be given multiple times to produce less and less
output.

This option results in nontabular output format and escaping of special characters. Escaping may be
disabled by using raw mode; see the description for the --raw option.

• --skip-column-names, -N

Do not write column names in results.

• --skip-line-numbers, -L

Do not write line numbers for errors. Useful when you want to compare result files that include error
messages.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate where to
find SSL keys and certificates. See Section 6.3.6.5, “Command Options for Secure Connections”.

• --table, -t

Display output in table format. This is the default for interactive use, but can be used to produce table
output in batch mode.

• --tee=file_name

Append a copy of output to the given file. This option works only in interactive mode. Section 4.5.1.2,
“mysql Commands”, discusses tee files further.

• --unbuffered, -n

Flush the buffer after each query.

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 299

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose, -v

Verbose mode. Produce more output about what the program does. This option can be given multiple
times to produce more and more output. (For example, -v -v -v produces table output format even in
batch mode.)

• --version, -V

Display version information and exit.

• --vertical, -E

Print query output rows vertically (one line per column value). Without this option, you can specify
vertical output for individual statements by terminating them with \G.

• --wait, -w

If the connection cannot be established, wait and retry instead of aborting.

• --xml, -X

Produce XML output.

Note

Prior to MySQL 5.0.26, there was no differentiation in the output when using this
option between columns containing the NULL value and columns containing the
string literal 'NULL'; both were represented as

<field name="column_name">NULL</field>

Beginning with MySQL 5.0.26, the output when --xml is used with mysql matches that of mysqldump
--xml. See Section 4.5.4, “mysqldump — A Database Backup Program” for details.

Beginning with MySQL 5.0.40, the XML output also uses an XML namespace, as shown here:

shell> mysql --xml -uroot -e "SHOW VARIABLES LIKE 'version%'"
<?xml version="1.0"?>

<resultset statement="SHOW VARIABLES LIKE 'version%'" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<row>
<field name="Variable_name">version</field>
<field name="Value">5.0.40-debug</field>
</row>

<row>
<field name="Variable_name">version_comment</field>
<field name="Value">Source distribution</field>
</row>

<row>
<field name="Variable_name">version_compile_machine</field>
<field name="Value">i686</field>
</row>

<row>

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 300

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

<field name="Variable_name">version_compile_os</field>
<field name="Value">suse-linux-gnu</field>
</row>
</resultset>

(See Bug #25946.)

You can also set the following variables by using --var_name=value. The --set-variable format is
deprecated.

• connect_timeout

The number of seconds before connection timeout. (Default value is 0.)

• max_allowed_packet

The maximum size of the buffer for client/server communication. The default is 16MB, the maximum is
1GB.

• max_join_size

The automatic limit for rows in a join when using --safe-updates. (Default value is 1,000,000.)

• net_buffer_length

The buffer size for TCP/IP and socket communication. (Default value is 16KB.)

• select_limit

The automatic limit for SELECT statements when using --safe-updates. (Default value is 1,000.)

It is also possible to set variables by using --var_name=value. The --set-variable format is
deprecated.

4.5.1.2 mysql Commands

mysql sends each SQL statement that you issue to the server to be executed. There is also a set of
commands that mysql itself interprets. For a list of these commands, type help or \h at the mysql>
prompt:

mysql> help

List of all MySQL commands:
Note that all text commands must be first on line and end with ';'
? (\?) Synonym for `help'.
clear (\c) Clear command.
connect (\r) Reconnect to the server. Optional arguments are db and host.
delimiter (\d) Set statement delimiter.
edit (\e) Edit command with $EDITOR.
ego (\G) Send command to mysql server, display result vertically.
exit (\q) Exit mysql. Same as quit.
go (\g) Send command to mysql server.
help (\h) Display this help.
nopager (\n) Disable pager, print to stdout.
notee (\t) Don't write into outfile.
pager (\P) Set PAGER [to_pager]. Print the query results via PAGER.
print (\p) Print current command.
prompt (\R) Change your mysql prompt.
quit (\q) Quit mysql.
rehash (\#) Rebuild completion hash.
source (\.) Execute an SQL script file. Takes a file name as an argument.
status (\s) Get status information from the server.

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 301

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

system (\!) Execute a system shell command.
tee (\T) Set outfile [to_outfile]. Append everything into given
 outfile.
use (\u) Use another database. Takes database name as argument.
charset (\C) Switch to another charset. Might be needed for processing
 binlog with multi-byte charsets.
warnings (\W) Show warnings after every statement.
nowarning (\w) Don't show warnings after every statement.

For server side help, type 'help contents'

Each command has both a long and short form. The long form is not case sensitive; the short form is. The
long form can be followed by an optional semicolon terminator, but the short form should not.

The use of short-form commands within multiple-line /* ... */ comments is not supported.

• help [arg], \h [arg], \? [arg], ? [arg]

Display a help message listing the available mysql commands.

If you provide an argument to the help command, mysql uses it as a search string to access server-
side help from the contents of the MySQL Reference Manual. For more information, see Section 4.5.1.4,
“mysql Server-Side Help”.

• charset charset_name, \C charset_name

Change the default character set and issue a SET NAMES statement. This enables the character set to
remain synchronized on the client and server if mysql is run with auto-reconnect enabled (which is not
recommended), because the specified character set is used for reconnects. This command was added in
MySQL 5.0.19.

• clear, \c

Clear the current input. Use this if you change your mind about executing the statement that you are
entering.

• connect [db_name host_name]], \r [db_name host_name]]

Reconnect to the server. The optional database name and host name arguments may be given to
specify the default database or the host where the server is running. If omitted, the current values are
used.

• delimiter str, \d str

Change the string that mysql interprets as the separator between SQL statements. The default is the
semicolon character (“;”).

The delimiter string can be specified as an unquoted or quoted argument on the delimiter command
line. Quoting can be done with either single quote ('), double quote ("), or backtick (`) characters. To
include a quote within a quoted string, either quote the string with a different quote character or escape
the quote with a backslash (“\”) character. Backslash should be avoided outside of quoted strings
because it is the escape character for MySQL. For an unquoted argument, the delimiter is read up to the
first space or end of line. For a quoted argument, the delimiter is read up to the matching quote on the
line.

mysql interprets instances of the delimiter string as a statement delimiter anywhere it occurs, except
within quoted strings. Be careful about defining a delimiter that might occur within other words. For
example, if you define the delimiter as X, you will be unable to use the word INDEX in statements. mysql
interprets this as INDE followed by the delimiter X.

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 302

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When the delimiter recognized by mysql is set to something other than the default of “;”, instances of
that character are sent to the server without interpretation. However, the server itself still interprets “;”
as a statement delimiter and processes statements accordingly. This behavior on the server side comes
into play for multiple-statement execution (see Section 20.6.16, “C API Support for Multiple Statement
Execution”), and for parsing the body of stored procedures and functions and triggers (see Section 18.1,
“Defining Stored Programs”).

• edit, \e

Edit the current input statement. mysql checks the values of the EDITOR and VISUAL environment
variables to determine which editor to use. The default editor is vi if neither variable is set.

The edit command works only in Unix.

• ego, \G

Send the current statement to the server to be executed and display the result using vertical format.

Be careful about defining a delimiter that might occur within other words. For example, if you define the
delimiter as X, you will be unable to use the word INDEX in statements.

• exit, \q

Exit mysql.

• go, \g

Send the current statement to the server to be executed.

• nopager, \n

Disable output paging. See the description for pager.

The nopager command works only in Unix.

• notee, \t

Disable output copying to the tee file. See the description for tee.

• nowarning, \w

Disable display of warnings after each statement. This command was added in MySQL 5.0.6.

• pager [command], \P [command]

Enable output paging. By using the --pager option when you invoke mysql, it is possible to browse or
search query results in interactive mode with Unix programs such as less, more, or any other similar
program. If you specify no value for the option, mysql checks the value of the PAGER environment
variable and sets the pager to that. Pager functionality works only in interactive mode.

Output paging can be enabled interactively with the pager command and disabled with nopager. The
command takes an optional argument; if given, the paging program is set to that. With no argument, the
pager is set to the pager that was set on the command line, or stdout if no pager was specified.

Output paging works only in Unix because it uses the popen() function, which does not exist on
Windows. For Windows, the tee option can be used instead to save query output, although it is not as
convenient as pager for browsing output in some situations.

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 303

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• print, \p

Print the current input statement without executing it.

• prompt [str], \R [str]

Reconfigure the mysql prompt to the given string. The special character sequences that can be used in
the prompt are described later in this section.

If you specify the prompt command with no argument, mysql resets the prompt to the default of
mysql>.

• quit, \q

Exit mysql.

• rehash, \#

Rebuild the completion hash that enables database, table, and column name completion while you are
entering statements. (See the description for the --auto-rehash option.)

• source file_name, \. file_name

Read the named file and executes the statements contained therein. On Windows, you can specify path
name separators as / or \\.

• status, \s

Provide status information about the connection and the server you are using. If you are running in --
safe-updates mode, status also prints the values for the mysql variables that affect your queries.

• system command, \! command

Execute the given command using your default command interpreter.

The system command works only in Unix.

• tee [file_name], \T [file_name]

By using the --tee option when you invoke mysql, you can log statements and their output. All the
data displayed on the screen is appended into a given file. This can be very useful for debugging
purposes also. mysql flushes results to the file after each statement, just before it prints its next prompt.
Tee functionality works only in interactive mode.

You can enable this feature interactively with the tee command. Without a parameter, the previous file is
used. The tee file can be disabled with the notee command. Executing tee again re-enables logging.

• use db_name, \u db_name

Use db_name as the default database.

• warnings, \W

Enable display of warnings after each statement (if there are any). This command was added in MySQL
5.0.6.

Here are a few tips about the pager command:

• You can use it to write to a file and the results go only to the file:

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 304

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> pager cat > /tmp/log.txt

You can also pass any options for the program that you want to use as your pager:

mysql> pager less -n -i -S

• In the preceding example, note the -S option. You may find it very useful for browsing wide query
results. Sometimes a very wide result set is difficult to read on the screen. The -S option to less can
make the result set much more readable because you can scroll it horizontally using the left-arrow and
right-arrow keys. You can also use -S interactively within less to switch the horizontal-browse mode on
and off. For more information, read the less manual page:

shell> man less

• The -F and -X options may be used with less to cause it to exit if output fits on one screen, which is
convenient when no scrolling is necessary:

mysql> pager less -n -i -S -F -X

• You can specify very complex pager commands for handling query output:

mysql> pager cat | tee /dr1/tmp/res.txt \
 | tee /dr2/tmp/res2.txt | less -n -i -S

In this example, the command would send query results to two files in two different directories on two
different file systems mounted on /dr1 and /dr2, yet still display the results onscreen using less.

You can also combine the tee and pager functions. Have a tee file enabled and pager set to less, and
you are able to browse the results using the less program and still have everything appended into a file
the same time. The difference between the Unix tee used with the pager command and the mysql built-
in tee command is that the built-in tee works even if you do not have the Unix tee available. The built-
in tee also logs everything that is printed on the screen, whereas the Unix tee used with pager does not
log quite that much. Additionally, tee file logging can be turned on and off interactively from within mysql.
This is useful when you want to log some queries to a file, but not others.

The prompt command reconfigures the default mysql> prompt. The string for defining the prompt can
contain the following special sequences.

Option Description

\c A counter that increments for each statement you issue

\D The full current date

\d The default database

\h The server host

\l The current delimiter (new in 5.0.25)

\m Minutes of the current time

\n A newline character

\O The current month in three-letter format (Jan, Feb, …)

\o The current month in numeric format

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 305

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option Description

\P am/pm

\p The current TCP/IP port or socket file

\R The current time, in 24-hour military time (0–23)

\r The current time, standard 12-hour time (1–12)

\S Semicolon

\s Seconds of the current time

\t A tab character

\U Your full user_name@host_name account name

\u Your user name

\v The server version

\w The current day of the week in three-letter format (Mon, Tue, …)

\Y The current year, four digits

\y The current year, two digits

_ A space

\ A space (a space follows the backslash)

\' Single quote

\" Double quote

\\ A literal “\” backslash character

\x x, for any “x” not listed above

You can set the prompt in several ways:

• Use an environment variable. You can set the MYSQL_PS1 environment variable to a prompt string. For
example:

shell> export MYSQL_PS1="(\u@\h) [\d]> "

• Use a command-line option. You can set the --prompt option on the command line to mysql. For
example:

shell> mysql --prompt="(\u@\h) [\d]> "
(user@host) [database]>

• Use an option file. You can set the prompt option in the [mysql] group of any MySQL option file, such
as /etc/my.cnf or the .my.cnf file in your home directory. For example:

[mysql]
prompt=(\\u@\\h) [\\d]>_

In this example, note that the backslashes are doubled. If you set the prompt using the prompt option
in an option file, it is advisable to double the backslashes when using the special prompt options. There
is some overlap in the set of permissible prompt options and the set of special escape sequences that
are recognized in option files. (The rules for escape sequences in option files are listed in Section 4.2.6,
“Using Option Files”.) The overlap may cause you problems if you use single backslashes. For example,
\s is interpreted as a space rather than as the current seconds value. The following example shows how
to define a prompt within an option file to include the current time in HH:MM:SS> format:

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 306

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

[mysql]
prompt="\\r:\\m:\\s> "

• Set the prompt interactively. You can change your prompt interactively by using the prompt (or \R)
command. For example:

mysql> prompt (\u@\h) [\d]>_
PROMPT set to '(\u@\h) [\d]>_'
(user@host) [database]>
(user@host) [database]> prompt
Returning to default PROMPT of mysql>
mysql>

4.5.1.3 mysql Logging

On Unix, the mysql client logs statements executed interactively to a history file. By default, this file
is named .mysql_history in your home directory. To specify a different file, set the value of the
MYSQL_HISTFILE environment variable.

How Logging Occurs

Statement logging occurs as follows:

• Statements are logged only when executed interactively. Statements are noninteractive, for example,
when read from a file or a pipe. It is also possible to suppress statement logging by using the --batch
or --execute option.

• mysql logs each nonempty statement line individually.

• If a statement spans multiple lines (not including the terminating delimiter), mysql concatenates the lines
to form the complete statement, maps newlines to spaces, and logs the result, plus a delimiter.

Consequently, an input statement that spans multiple lines can be logged twice. Consider this input:

mysql> SELECT
 -> 'Today is'
 -> ,
 -> CURDATE()
 -> ;

In this case, mysql logs the “SELECT”, “'Today is'”, “,”, “CURDATE()”, and “;” lines as it reads them. It
also logs the complete statement, after mapping SELECT\n'Today is'\n,\nCURDATE() to SELECT
'Today is' , CURDATE(), plus a delimiter. Thus, these lines appear in logged output:

SELECT
'Today is'
,
CURDATE()
;
SELECT 'Today is' , CURDATE();

Controlling the History File

The .mysql_history file should be protected with a restrictive access mode because sensitive
information might be written to it, such as the text of SQL statements that contain passwords. See
Section 6.1.2.1, “End-User Guidelines for Password Security”.

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 307

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you do not want to maintain a history file, first remove .mysql_history if it exists. Then use either of
the following techniques to prevent it from being created again:

• Set the MYSQL_HISTFILE environment variable to /dev/null. To cause this setting to take effect each
time you log in, put it in one of your shell's startup files.

• Create .mysql_history as a symbolic link to /dev/null; this need be done only once:

shell> ln -s /dev/null $HOME/.mysql_history

4.5.1.4 mysql Server-Side Help

mysql> help search_string

If you provide an argument to the help command, mysql uses it as a search string to access server-side
help from the contents of the MySQL Reference Manual. The proper operation of this command requires
that the help tables in the mysql database be initialized with help topic information (see Section 5.1.8,
“Server-Side Help”).

If there is no match for the search string, the search fails:

mysql> help me

Nothing found
Please try to run 'help contents' for a list of all accessible topics

Use help contents to see a list of the help categories:

mysql> help contents
You asked for help about help category: "Contents"
For more information, type 'help <item>', where <item> is one of the
following categories:
 Account Management
 Administration
 Data Definition
 Data Manipulation
 Data Types
 Functions
 Functions and Modifiers for Use with GROUP BY
 Geographic Features
 Language Structure
 Storage Engines
 Stored Routines
 Table Maintenance
 Transactions
 Triggers

If the search string matches multiple items, mysql shows a list of matching topics:

mysql> help logs
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following topics:
 SHOW
 SHOW BINARY LOGS
 SHOW ENGINE
 SHOW LOGS

Use a topic as the search string to see the help entry for that topic:

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 308

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> help show binary logs
Name: 'SHOW BINARY LOGS'
Description:
Syntax:
SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as
part of the procedure described in [purge-binary-logs], that shows how
to determine which logs can be purged.

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |
| binlog.000016 | 733481 |
+---------------+-----------+

The search string can contain the wildcard characters “%” and “_”. These have the same meaning as for
pattern-matching operations performed with the LIKE operator. For example, HELP rep% returns a list of
topics that begin with rep:

mysql> HELP rep%
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following
topics:
 REPAIR TABLE
 REPEAT FUNCTION
 REPEAT LOOP
 REPLACE
 REPLACE FUNCTION

4.5.1.5 Executing SQL Statements from a Text File

The mysql client typically is used interactively, like this:

shell> mysql db_name

However, it is also possible to put your SQL statements in a file and then tell mysql to read its input from
that file. To do so, create a text file text_file that contains the statements you wish to execute. Then
invoke mysql as shown here:

shell> mysql db_name < text_file

If you place a USE db_name statement as the first statement in the file, it is unnecessary to specify the
database name on the command line:

shell> mysql < text_file

If you are already running mysql, you can execute an SQL script file using the source command or \.
command:

mysql> source file_name
mysql> \. file_name

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 309

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Sometimes you may want your script to display progress information to the user. For this you can insert
statements like this:

SELECT '<info_to_display>' AS ' ';

The statement shown outputs <info_to_display>.

You can also invoke mysql with the --verbose option, which causes each statement to be displayed
before the result that it produces.

As of MySQL 5.0.54, mysql ignores Unicode byte order mark (BOM) characters at the beginning of input
files. Previously, it read them and sent them to the server, resulting in a syntax error. Presence of a BOM
does not cause mysql to change its default character set. To do that, invoke mysql with an option such as
--default-character-set=utf8.

For more information about batch mode, see Section 3.5, “Using mysql in Batch Mode”.

4.5.1.6 mysql Tips

This section describes some techniques that can help you use mysql more effectively.

Input-Line Editing

mysql supports input-line editing, which enables you to modify the current input line in place or recall
previous input lines. For example, the left-arrow and right-arrow keys move horizontally within the current
input line, and the up-arrow and down-arrow keys move up and down through the set of previously
entered lines. Backspace deletes the character before the cursor and typing new characters enters them
at the cursor position. To enter the line, press Enter.

On Windows, the editing key sequences are the same as supported for command editing in console
windows. On Unix, the key sequences depend on the input library used to build mysql (for example, the
libedit or readline library).

Documentation for the libedit and readline libraries is available online. To change the set of key
sequences permitted by a given input library, define key bindings in the library startup file. This is a file in
your home directory: .editrc for libedit and .inputrc for readline.

For example, in libedit, Control+W deletes everything before the current cursor position and Control
+U deletes the entire line. In readline, Control+W deletes the word before the cursor and Control
+U deletes everything before the current cursor position. If mysql was built using libedit, a user who
prefers the readline behavior for these two keys can put the following lines in the .editrc file (creating
the file if necessary):

bind "^W" ed-delete-prev-word
bind "^U" vi-kill-line-prev

To see the current set of key bindings, temporarily put a line that says only bind at the end of .editrc.
mysql will show the bindings when it starts.

Displaying Query Results Vertically

Some query results are much more readable when displayed vertically, instead of in the usual horizontal
table format. Queries can be displayed vertically by terminating the query with \G instead of a semicolon.
For example, longer text values that include newlines often are much easier to read with vertical output:

mysql> SELECT * FROM mails WHERE LENGTH(txt) < 300 LIMIT 300,1\G

mysql — The MySQL Command-Line Tool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 310

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

*************************** 1. row ***************************
 msg_nro: 3068
 date: 2000-03-01 23:29:50
time_zone: +0200
mail_from: Monty
 reply: monty@no.spam.com
 mail_to: "Thimble Smith" <tim@no.spam.com>
 sbj: UTF-8
 txt: >>>>> "Thimble" == Thimble Smith writes:

Thimble> Hi. I think this is a good idea. Is anyone familiar
Thimble> with UTF-8 or Unicode? Otherwise, I'll put this on my
Thimble> TODO list and see what happens.

Yes, please do that.

Regards,
Monty
 file: inbox-jani-1
 hash: 190402944
1 row in set (0.09 sec)

Using the --safe-updates Option

For beginners, a useful startup option is --safe-updates (or --i-am-a-dummy, which has the same
effect). It is helpful for cases when you might have issued a DELETE FROM tbl_name statement but
forgotten the WHERE clause. Normally, such a statement deletes all rows from the table. With --safe-
updates, you can delete rows only by specifying the key values that identify them. This helps prevent
accidents.

When you use the --safe-updates option, mysql issues the following statement when it connects to
the MySQL server:

SET sql_safe_updates=1, sql_select_limit=1000, sql_max_join_size=1000000;

See Section 5.1.4, “Server System Variables”.

The SET statement has the following effects:

• You are not permitted to execute an UPDATE or DELETE statement unless you specify a key constraint in
the WHERE clause or provide a LIMIT clause (or both). For example:

UPDATE tbl_name SET not_key_column=val WHERE key_column=val;

UPDATE tbl_name SET not_key_column=val LIMIT 1;

• The server limits all large SELECT results to 1,000 rows unless the statement includes a LIMIT clause.

• The server aborts multiple-table SELECT statements that probably need to examine more than 1,000,000
row combinations.

To specify limits different from 1,000 and 1,000,000, you can override the defaults by using the --
select_limit and --max_join_size options:

shell> mysql --safe-updates --select_limit=500 --max_join_size=10000

Disabling mysql Auto-Reconnect

If the mysql client loses its connection to the server while sending a statement, it immediately and
automatically tries to reconnect once to the server and send the statement again. However, even if mysql

mysqladmin — Client for Administering a MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 311

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

succeeds in reconnecting, your first connection has ended and all your previous session objects and
settings are lost: temporary tables, the autocommit mode, and user-defined and session variables. Also,
any current transaction rolls back. This behavior may be dangerous for you, as in the following example
where the server was shut down and restarted between the first and second statements without you
knowing it:

mysql> SET @a=1;
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t VALUES(@a);
ERROR 2006: MySQL server has gone away
No connection. Trying to reconnect...
Connection id: 1
Current database: test

Query OK, 1 row affected (1.30 sec)

mysql> SELECT * FROM t;
+------+
| a |
+------+
| NULL |
+------+
1 row in set (0.05 sec)

The @a user variable has been lost with the connection, and after the reconnection it is undefined. If it is
important to have mysql terminate with an error if the connection has been lost, you can start the mysql
client with the --skip-reconnect option.

For more information about auto-reconnect and its effect on state information when a reconnection occurs,
see Section 20.6.15, “Controlling Automatic Reconnection Behavior”.

4.5.2 mysqladmin — Client for Administering a MySQL Server

mysqladmin is a client for performing administrative operations. You can use it to check the server's
configuration and current status, to create and drop databases, and more.

Invoke mysqladmin like this:

shell> mysqladmin [options] command [command-arg] [command [command-arg]] ...

mysqladmin supports the following commands. Some of the commands take an argument following the
command name.

• create db_name

Create a new database named db_name.

• debug

Tell the server to write debug information to the error log. Format and content of this information is
subject to change.

• drop db_name

Delete the database named db_name and all its tables.

• extended-status

mysqladmin — Client for Administering a MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 312

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Display the server status variables and their values.

• flush-hosts

Flush all information in the host cache.

• flush-logs

Flush all logs.

• flush-privileges

Reload the grant tables (same as reload).

• flush-status

Clear status variables.

• flush-tables

Flush all tables.

• flush-threads

Flush the thread cache.

• kill id,id,...

Kill server threads. If multiple thread ID values are given, there must be no spaces in the list.

• old-password new_password

This is like the password command but stores the password using the old (pre-4.1) password-hashing
format. (See Section 6.1.2.4, “Password Hashing in MySQL”.)

• password new_password

Set a new password. This changes the password to new_password for the account that you use with
mysqladmin for connecting to the server. Thus, the next time you invoke mysqladmin (or any other
client program) using the same account, you will need to specify the new password.

If the new_password value contains spaces or other characters that are special to your command
interpreter, you need to enclose it within quotation marks. On Windows, be sure to use double quotation
marks rather than single quotation marks; single quotation marks are not stripped from the password, but
rather are interpreted as part of the password. For example:

shell> mysqladmin password "my new password"

Caution

Do not use this command used if the server was started with the --skip-
grant-tables option. No password change will be applied. This is true even if
you precede the password command with flush-privileges on the same
command line to re-enable the grant tables because the flush operation occurs
after you connect. However, you can use mysqladmin flush-privileges
to re-enable the grant table and then use a separate mysqladmin password
command to change the password.

mysqladmin — Client for Administering a MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 313

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• ping

Check whether the server is available. The return status from mysqladmin is 0 if the server is running,
1 if it is not. This is 0 even in case of an error such as Access denied, because this means that the
server is running but refused the connection, which is different from the server not running.

• processlist

Show a list of active server threads. This is like the output of the SHOW PROCESSLIST statement.
If the --verbose option is given, the output is like that of SHOW FULL PROCESSLIST. (See
Section 13.7.5.27, “SHOW PROCESSLIST Syntax”.)

• reload

Reload the grant tables.

• refresh

Flush all tables and close and open log files.

• shutdown

Stop the server.

• start-slave

Start replication on a slave server.

• status

Display a short server status message.

• stop-slave

Stop replication on a slave server.

• variables

Display the server system variables and their values.

• version

Display version information from the server.

All commands can be shortened to any unique prefix. For example:

shell> mysqladmin proc stat
+----+-------+-----------+----+---------+------+-------+------------------+
| Id | User | Host | db | Command | Time | State | Info |
+----+-------+-----------+----+---------+------+-------+------------------+
| 51 | monty | localhost | | Query | 0 | | show processlist |
+----+-------+-----------+----+---------+------+-------+------------------+
Uptime: 1473624 Threads: 1 Questions: 39487
Slow queries: 0 Opens: 541 Flush tables: 1
Open tables: 19 Queries per second avg: 0.0268

The mysqladmin status command result displays the following values:

• Uptime

mysqladmin — Client for Administering a MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 314

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The number of seconds the MySQL server has been running.

• Threads

The number of active threads (clients).

• Questions

The number of questions (queries) from clients since the server was started.

• Slow queries

The number of queries that have taken more than long_query_time seconds. See Section 5.4.4, “The
Slow Query Log”.

• Opens

The number of tables the server has opened.

• Flush tables

The number of flush-*, refresh, and reload commands the server has executed.

• Open tables

The number of tables that currently are open.

• Memory in use

The amount of memory allocated directly by mysqld. This value is displayed only when MySQL has
been compiled with --with-debug=full.

• Maximum memory used

The maximum amount of memory allocated directly by mysqld. This value is displayed only when
MySQL has been compiled with --with-debug=full.

If you execute mysqladmin shutdown when connecting to a local server using a Unix socket file,
mysqladmin waits until the server's process ID file has been removed, to ensure that the server has
stopped properly.

mysqladmin supports the following options, which can be specified on the command line or in the
[mysqladmin] and [client] groups of an option file. For information about option files used by MySQL
programs, see Section 4.2.6, “Using Option Files”.

Table 4.4 mysqladmin Options

Format Description Introduced

--compress Compress all information sent between client and server

--connect_timeout Number of seconds before connection timeout

--count Number of iterations to make for repeated command
execution

--debug Write debugging log

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition to usual option files

--defaults-file Read only named option file

mysqladmin — Client for Administering a MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 315

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Introduced

--defaults-group-suffix Option group suffix value 5.0.10

--force Continue even if an SQL error occurs

--help Display help message and exit

--host Connect to MySQL server on given host

--no-defaults Read no option files

--password Password to use when connecting to server

--pipe On Windows, connect to server using named pipe

--port TCP/IP port number to use for connection

--print-defaults Print default options

--protocol Connection protocol to use

--relative Show the difference between the current and previous
values when used with the --sleep option

--shared-memory-base-name The name of shared memory to use for shared-memory
connections

--shutdown_timeout The maximum number of seconds to wait for server
shutdown

--silent Silent mode

--sleep Execute commands repeatedly, sleeping for delay seconds
in between

--socket For connections to localhost, the Unix socket file to use

--ssl Enable secure connection

--ssl-ca Path of file that contains list of trusted SSL CAs

--ssl-capath Path of directory that contains trusted SSL CA certificates
in PEM format

--ssl-cert Path of file that contains X509 certificate in PEM format

--ssl-cipher List of permitted ciphers to use for connection encryption

--ssl-key Path of file that contains X509 key in PEM format

--ssl-verify-server-cert Verify server certificate Common Name value against host
name used when connecting to server

5.0.23

--user MySQL user name to use when connecting to server

--verbose Verbose mode

--version Display version information and exit

--vertical Print query output rows vertically (one line per column
value)

--wait If the connection cannot be established, wait and retry
instead of aborting

• --help, -?

Display a help message and exit.

• --character-sets-dir=dir_name

mysqladmin — Client for Administering a MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 316

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --count=N, -c N

The number of iterations to make for repeated command execution if the --sleep option is given.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/mysqladmin.trace.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. As of MySQL
5.0.6, if the file does not exist or is otherwise inaccessible, an error occurs. file_name is the full path
name to the file.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is the full path name to the file.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqladmin normally reads the [client] and [mysqladmin] groups. If the --
defaults-group-suffix=_other option is given, mysqladmin also reads the [client_other]
and [mysqladmin_other] groups. This option was added in MySQL 5.0.10.

• --force, -f

Do not ask for confirmation for the drop db_name command. With multiple commands, continue even if
an error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot
have a space between the option and the password. If you omit the password value following the --
password or -p option on the command line, mysqladmin prompts for one.

mysqladmin — Client for Administering a MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 317

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. You can use an option file to avoid giving the password on the
command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server supports
named-pipe connections.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on the
permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --relative, -r

Show the difference between the current and previous values when used with the --sleep option. This
option works only with the extended-status command.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory connections.

• --silent, -s

Exit silently if a connection to the server cannot be established.

• --sleep=delay, -i delay

Execute commands repeatedly, sleeping for delay seconds in between. The --count option
determines the number of iterations. If --count is not given, mysqladmin executes commands
indefinitely until interrupted.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate where to
find SSL keys and certificates. See Section 6.3.6.5, “Command Options for Secure Connections”.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

mysqlcheck — A Table Maintenance Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 318

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

• --vertical, -E

Print output vertically. This is similar to --relative, but prints output vertically.

• --wait[=count], -w[count]

If the connection cannot be established, wait and retry instead of aborting. If a count value is given, it
indicates the number of times to retry. The default is one time.

You can also set the following variables by using --var_name=value The --set-variable format is
deprecated. syntax:

• connect_timeout

The maximum number of seconds before connection timeout. The default value is 43200 (12 hours).

• shutdown_timeout

The maximum number of seconds to wait for server shutdown. The default value is 3600 (1 hour).

It is also possible to set variables by using --var_name=value. The --set-variable format is
deprecated.

4.5.3 mysqlcheck — A Table Maintenance Program

The mysqlcheck client performs table maintenance: It checks, repairs, optimizes, or analyzes tables.

Each table is locked and therefore unavailable to other sessions while it is being processed, although
for check operations, the table is locked with a READ lock only (see Section 13.3.5, “LOCK TABLES and
UNLOCK TABLES Syntax”, for more information about READ and WRITE locks). Table maintenance
operations can be time-consuming, particularly for large tables. If you use the --databases or --all-
databases option to process all tables in one or more databases, an invocation of mysqlcheck might
take a long time. (This is also true for mysql_upgrade because that program invokes mysqlcheck to
check all tables and repair them if necessary.)

mysqlcheck is similar in function to myisamchk, but works differently. The main operational difference is
that mysqlcheck must be used when the mysqld server is running, whereas myisamchk should be used
when it is not. The benefit of using mysqlcheck is that you do not have to stop the server to perform table
maintenance.

mysqlcheck uses the SQL statements CHECK TABLE, REPAIR TABLE, ANALYZE TABLE, and
OPTIMIZE TABLE in a convenient way for the user. It determines which statements to use for the
operation you want to perform, and then sends the statements to the server to be executed. For details
about which storage engines each statement works with, see the descriptions for those statements in
Section 13.7.2, “Table Maintenance Statements”.

The MyISAM storage engine supports all four maintenance operations, so mysqlcheck can be used to
perform any of them on MyISAM tables. Other storage engines do not necessarily support all operations. In
such cases, an error message is displayed. For example, if test.t is a MEMORY table, an attempt to check
it produces this result:

mysqlcheck — A Table Maintenance Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 319

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysqlcheck test t
test.t
note : The storage engine for the table doesn't support check

If mysqlcheck is unable to repair a table, see Section 2.19.4, “Rebuilding or Repairing Tables or Indexes”
for manual table repair strategies. This will be the case, for example, for InnoDB tables, which can be
checked with CHECK TABLE, but not repaired with REPAIR TABLE.

Caution

It is best to make a backup of a table before performing a table repair operation;
under some circumstances the operation might cause data loss. Possible causes
include but are not limited to file system errors.

There are three general ways to invoke mysqlcheck:

shell> mysqlcheck [options] db_name [tbl_name ...]
shell> mysqlcheck [options] --databases db_name ...
shell> mysqlcheck [options] --all-databases

If you do not name any tables following db_name or if you use the --databases or --all-databases
option, entire databases are checked.

mysqlcheck has a special feature compared to other client programs. The default behavior of checking
tables (--check) can be changed by renaming the binary. If you want to have a tool that repairs tables by
default, you should just make a copy of mysqlcheck named mysqlrepair, or make a symbolic link to
mysqlcheck named mysqlrepair. If you invoke mysqlrepair, it repairs tables.

The names shown in the following table can be used to change mysqlcheck default behavior.

Command Meaning

mysqlrepair The default option is --repair

mysqlanalyze The default option is --analyze

mysqloptimize The default option is --optimize

mysqlcheck supports the following options, which can be specified on the command line or in the
[mysqlcheck] and [client] groups of an option file. For information about option files used by MySQL
programs, see Section 4.2.6, “Using Option Files”.

Table 4.5 mysqlcheck Options

Format Description Introduced

--all-databases Check all tables in all databases

--all-in-1 Execute a single statement for each database that names
all the tables from that database

--analyze Analyze the tables

--auto-repair If a checked table is corrupted, automatically fix it

--character-sets-dir Directory where character sets are installed

--check Check the tables for errors

--check-only-changed Check only tables that have changed since the last check

--check-upgrade Invoke CHECK TABLE with the FOR UPGRADE option 5.0.19

--compress Compress all information sent between client and server

mysqlcheck — A Table Maintenance Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 320

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Introduced

--databases Interpret all arguments as database names

--debug Write debugging log

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value 5.0.10

--extended Check and repair tables

--fast Check only tables that have not been closed properly

--force Continue even if an SQL error occurs

--help Display help message and exit

--host Connect to MySQL server on given host

--medium-check Do a check that is faster than an --extended operation

--no-defaults Read no option files

--optimize Optimize the tables

--password Password to use when connecting to server

--pipe On Windows, connect to server using named pipe

--port TCP/IP port number to use for connection

--print-defaults Print default options

--protocol Connection protocol to use

--quick The fastest method of checking

--repair Perform a repair that can fix almost anything except unique
keys that are not unique

--shared-memory-base-name The name of shared memory to use for shared-memory
connections

--silent Silent mode

--socket For connections to localhost, the Unix socket file to use

--ssl Enable secure connection

--ssl-ca Path of file that contains list of trusted SSL CAs

--ssl-capath Path of directory that contains trusted SSL CA certificates
in PEM format

--ssl-cert Path of file that contains X509 certificate in PEM format

--ssl-cipher List of permitted ciphers to use for connection encryption

--ssl-key Path of file that contains X509 key in PEM format

--ssl-verify-server-cert Verify server certificate Common Name value against host
name used when connecting to server

5.0.23

--tables Overrides the --databases or -B option

--use-frm For repair operations on MyISAM tables

--user MySQL user name to use when connecting to server

--verbose Verbose mode

mysqlcheck — A Table Maintenance Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 321

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Introduced

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --all-databases, -A

Check all tables in all databases. This is the same as using the --databases option and naming all the
databases on the command line.

• --all-in-1, -1

Instead of issuing a statement for each table, execute a single statement for each database that names
all the tables from that database to be processed.

• --analyze, -a

Analyze the tables.

• --auto-repair

If a checked table is corrupted, automatically fix it. Any necessary repairs are done after all tables have
been checked.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --check, -c

Check the tables for errors. This is the default operation.

• --check-only-changed, -C

Check only tables that have changed since the last check or that have not been closed properly.

• --check-upgrade, -g

Invoke CHECK TABLE with the FOR UPGRADE option to check tables for incompatibilities with the current
version of the server. This option was added in MySQL 5.0.19.

• --compress

Compress all information sent between the client and the server if both support compression.

• --databases, -B

Process all tables in the named databases. Normally, mysqlcheck treats the first name argument on
the command line as a database name and any following names as table names. With this option, it
treats all name arguments as database names.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o.

• --default-character-set=charset_name

mysqlcheck — A Table Maintenance Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 322

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. As of MySQL
5.0.6, if the file does not exist or is otherwise inaccessible, an error occurs. file_name is the full path
name to the file.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is the full path name to the file.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlcheck normally reads the [client] and [mysqlcheck] groups. If the --
defaults-group-suffix=_other option is given, mysqlcheck also reads the [client_other]
and [mysqlcheck_other] groups. This option was added in MySQL 5.0.10.

• --extended, -e

If you are using this option to check tables, it ensures that they are 100% consistent but takes a long
time.

If you are using this option to repair tables, it runs an extended repair that may not only take a long time
to execute, but may produce a lot of garbage rows also!

• --fast, -F

Check only tables that have not been closed properly.

• --force, -f

Continue even if an SQL error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --medium-check, -m

Do a check that is faster than an --extended operation. This finds only 99.99% of all errors, which
should be good enough in most cases.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

• --optimize, -o

Optimize the tables.

• --password[=password], -p[password]

mysqlcheck — A Table Maintenance Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 323

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The password to use when connecting to the server. If you use the short option form (-p), you cannot
have a space between the option and the password. If you omit the password value following the --
password or -p option on the command line, mysqlcheck prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. You can use an option file to avoid giving the password on the
command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server supports
named-pipe connections.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on the
permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --quick, -q

If you are using this option to check tables, it prevents the check from scanning the rows to check for
incorrect links. This is the fastest check method.

If you are using this option to repair tables, it tries to repair only the index tree. This is the fastest repair
method.

• --repair, -r

Perform a repair that can fix almost anything except unique keys that are not unique.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory connections.

• --silent, -s

Silent mode. Print only error messages.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

• --ssl*

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 324

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Options that begin with --ssl specify whether to connect to the server using SSL and indicate where to
find SSL keys and certificates. See Section 6.3.6.5, “Command Options for Secure Connections”.

• --tables

Override the --databases or -B option. All name arguments following the option are regarded as table
names.

• --use-frm

For repair operations on MyISAM tables, get the table structure from the .frm file so that the table can
be repaired even if the .MYI header is corrupted.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose, -v

Verbose mode. Print information about the various stages of program operation.

• --version, -V

Display version information and exit.

4.5.4 mysqldump — A Database Backup Program

The mysqldump client is a backup program originally written by Igor Romanenko. It can be used to dump
a database or a collection of databases for backup or transfer to another SQL server (not necessarily
a MySQL server). The dump typically contains SQL statements to create the table, populate it, or both.
However, mysqldump can also be used to generate files in CSV, other delimited text, or XML format.

mysqldump requires at least the SELECT privilege for dumped tables, SHOW VIEW for dumped views,
SUPER for dumped triggers, and LOCK TABLES if the --single-transaction option is not used.
Certain options might require other privileges as noted in the option descriptions.

To reload a dump file, you must have the privileges required to execute the statements that it contains,
such as the appropriate CREATE privileges for objects created by those statements.

If you are doing a backup on the server and your tables all are MyISAM tables, consider using the
mysqlhotcopy instead because it can accomplish faster backups and faster restores. See Section 4.6.9,
“mysqlhotcopy — A Database Backup Program”.

There are three general ways to invoke mysqldump:

shell> mysqldump [options] db_name [tbl_name ...]
shell> mysqldump [options] --databases db_name ...
shell> mysqldump [options] --all-databases

If you do not name any tables following db_name or if you use the --databases or --all-databases
option, entire databases are dumped.

mysqldump does not dump the INFORMATION_SCHEMA database. If you name that database explicitly on
the command line, mysqldump silently ignores it.

To see a list of the options your version of mysqldump supports, execute mysqldump --help.

Some mysqldump options are shorthand for groups of other options:

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 325

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Use of --opt is the same as specifying --add-drop-table, --add-locks, --create-options,
--disable-keys, --extended-insert, --lock-tables, --quick, and --set-charset. All of
the options that --opt stands for also are on by default because --opt is on by default.

• Use of --compact is the same as specifying --skip-add-drop-table, --skip-add-locks, --
skip-comments, --skip-disable-keys, and --skip-set-charset options.

To reverse the effect of a group option, uses its --skip-xxx form (--skip-opt or --skip-compact).
It is also possible to select only part of the effect of a group option by following it with options that enable or
disable specific features. Here are some examples:

• To select the effect of --opt except for some features, use the --skip option for each feature. To
disable extended inserts and memory buffering, use --opt --skip-extended-insert --skip-
quick. (Actually, --skip-extended-insert --skip-quick is sufficient because --opt is on by
default.)

• To reverse --opt for all features except index disabling and table locking, use --skip-opt --
disable-keys --lock-tables.

When you selectively enable or disable the effect of a group option, order is important because options are
processed first to last. For example, --disable-keys --lock-tables --skip-opt would not have
the intended effect; it is the same as --skip-opt by itself.

mysqldump can retrieve and dump table contents row by row, or it can retrieve the entire content from a
table and buffer it in memory before dumping it. Buffering in memory can be a problem if you are dumping
large tables. To dump tables row by row, use the --quick option (or --opt, which enables --quick).
The --opt option (and hence --quick) is enabled by default, so to enable memory buffering, use --
skip-quick.

If you are using a recent version of mysqldump to generate a dump to be reloaded into a very old MySQL
server, you should not use the --opt or --extended-insert option. Use --skip-opt instead.

Before MySQL 4.1.2, out-of-range numeric values such as -inf and inf, as well as NaN (not-a-number)
values are dumped by mysqldump as NULL. You can see this using the following sample table:

mysql> CREATE TABLE t (f DOUBLE);
mysql> INSERT INTO t VALUES(1e+111111111111111111111);
mysql> INSERT INTO t VALUES(-1e111111111111111111111);
mysql> SELECT f FROM t;
+------+
| f |
+------+
| inf |
| -inf |
+------+

For this table, mysqldump produces the following data output:

--
-- Dumping data for table `t`
--

INSERT INTO t VALUES (NULL);
INSERT INTO t VALUES (NULL);

The significance of this behavior is that if you dump and restore the table, the new table has contents that
differ from the original contents. This problem is fixed as of MySQL 4.1.2; you cannot insert inf in the
table, so this mysqldump behavior is only relevant when you deal with old servers.

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 326

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For additional information about mysqldump, see Section 7.4, “Using mysqldump for Backups”.

mysqldump supports the following options, which can be specified on the command line or in the
[mysqldump] and [client] groups of an option file. For information about option files used by MySQL
programs, see Section 4.2.6, “Using Option Files”.

Table 4.6 mysqldump Options

Format Description Introduced

--add-drop-database Add DROP DATABASE statement before each CREATE
DATABASE statement

--add-drop-table Add DROP TABLE statement before each CREATE
TABLE statement

--add-locks Surround each table dump with LOCK TABLES and
UNLOCK TABLES statements

--all-databases Dump all tables in all databases

--allow-keywords Allow creation of column names that are keywords

--character-sets-dir Directory where character sets are installed

--comments Add comments to dump file

--compact Produce more compact output

--compatible Produce output that is more compatible with other
database systems or with older MySQL servers

--complete-insert Use complete INSERT statements that include column
names

--compress Compress all information sent between client and server

--create-options Include all MySQL-specific table options in CREATE
TABLE statements

--databases Interpret all name arguments as database names

--debug Write debugging log

--debug-info Print debugging information, memory, and CPU statistics
when program exits

5.0.32

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value 5.0.10

--delayed-insert Write INSERT DELAYED statements rather than INSERT
statements

--delete-master-logs On a master replication server, delete the binary logs after
performing the dump operation

--disable-keys For each table, surround INSERT statements with
statements to disable and enable keys

--dump-date Include dump date as "Dump completed on" comment if --
comments is given

5.0.52

--extended-insert Use multiple-row INSERT syntax

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 327

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Introduced

--fields-enclosed-by This option is used with the --tab option and has the same
meaning as the corresponding clause for LOAD DATA
INFILE

--fields-escaped-by This option is used with the --tab option and has the same
meaning as the corresponding clause for LOAD DATA
INFILE

--fields-optionally-enclosed-by This option is used with the --tab option and has the same
meaning as the corresponding clause for LOAD DATA
INFILE

--fields-terminated-by This option is used with the --tab option and has the same
meaning as the corresponding clause for LOAD DATA
INFILE

--first-slave Deprecated; use --lock-all-tables instead

--flush-logs Flush MySQL server log files before starting dump

--flush-privileges Emit a FLUSH PRIVILEGES statement after dumping
mysql database

--force Continue even if an SQL error occurs during a table dump

--help Display help message and exit

--hex-blob Dump binary columns using hexadecimal notation

--host Host to connect to (IP address or hostname)

--ignore-table Do not dump given table

--insert-ignore Write INSERT IGNORE rather than INSERT statements

--lines-terminated-by This option is used with the --tab option and has the same
meaning as the corresponding clause for LOAD DATA
INFILE

--lock-all-tables Lock all tables across all databases

--lock-tables Lock all tables before dumping them

--log-error Append warnings and errors to named file 5.0.42

--master-data Write the binary log file name and position to the output

--max_allowed_packet Maximum packet length to send to or receive from server

--net_buffer_length Buffer size for TCP/IP and socket communication

--no-autocommit Enclose the INSERT statements for each dumped table
within SET autocommit = 0 and COMMIT statements

--no-create-db Do not write CREATE DATABASE statements

--no-create-info Do not write CREATE TABLE statements that re-create
each dumped table

--no-data Do not dump table contents

--no-defaults Read no option files

--no-set-names Same as --skip-set-charset

--opt Shorthand for --add-drop-table --add-locks --create-options
--disable-keys --extended-insert --lock-tables --quick --set-
charset.

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 328

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Introduced

--order-by-primary Dump each table's rows sorted by its primary key, or by its
first unique index

--password Password to use when connecting to server

--pipe On Windows, connect to server using named pipe

--port TCP/IP port number to use for connection

--print-defaults Print default options

--protocol Connection protocol to use

--quick Retrieve rows for a table from the server a row at a time

--quote-names Quote identifiers within backtick characters

--result-file Direct output to a given file

--routines Dump stored routines (procedures and functions) from
dumped databases

5.0.13

--set-charset Add SET NAMES default_character_set to output

--shared-memory-base-name The name of shared memory to use for shared-memory
connections

--single-transaction Issue a BEGIN SQL statement before dumping data from
server

--skip-add-drop-table Do not add a DROP TABLE statement before each
CREATE TABLE statement

--skip-add-locks Do not add locks

--skip-comments Do not add comments to dump file

--skip-compact Do not produce more compact output

--skip-disable-keys Do not disable keys

--skip-extended-insert Turn off extended-insert

--skip-opt Turn off options set by --opt

--skip-quick Do not retrieve rows for a table from the server a row at a
time

--skip-quote-names Do not quote identifiers

--skip-set-charset Do not write SET NAMES statement

--skip-triggers Do not dump triggers 5.0.11

--skip-tz-utc Turn off tz-utc 5.0.15

--socket For connections to localhost, the Unix socket file to use

--ssl Enable secure connection

--ssl-ca Path of file that contains list of trusted SSL CAs

--ssl-capath Path of directory that contains trusted SSL CA certificates
in PEM format

--ssl-cert Path of file that contains X509 certificate in PEM format

--ssl-cipher List of permitted ciphers to use for connection encryption

--ssl-key Path of file that contains X509 key in PEM format

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 329

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Introduced

--ssl-verify-server-cert Verify server certificate Common Name value against host
name used when connecting to server

5.0.23

--tab Produce tab-separated data files

--tables Override --databases or -B option

--triggers Dump triggers for each dumped table

--tz-utc Add SET TIME_ZONE='+00:00' to dump file 5.0.15

--user MySQL user name to use when connecting to server

--verbose Verbose mode

--version Display version information and exit

--where Dump only rows selected by given WHERE condition

--xml Produce XML output

• --help, -?

Display a help message and exit.

• --add-drop-database

Write a DROP DATABASE statement before each CREATE DATABASE statement. This option is typically
used in conjunction with the --all-databases or --databases option because no CREATE
DATABASE statements are written unless one of those options is specified.

• --add-drop-table

Write a DROP TABLE statement before each CREATE TABLE statement.

• --add-locks

Surround each table dump with LOCK TABLES and UNLOCK TABLES statements. This results in faster
inserts when the dump file is reloaded. See Section 8.2.2.1, “Speed of INSERT Statements”.

• --all-databases, -A

Dump all tables in all databases. This is the same as using the --databases option and naming all the
databases on the command line.

• --allow-keywords

Permit creation of column names that are keywords. This works by prefixing each column name with the
table name.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --comments, -i

Write additional information in the dump file such as program version, server version, and host. This
option is enabled by default. To suppress this additional information, use --skip-comments.

• --compact

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 330

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Produce more compact output. This option enables the --skip-add-drop-table, --skip-add-
locks, --skip-comments, --skip-disable-keys, and --skip-set-charset options.

Note

Prior to MySQL 5.0.48, this option did not create valid SQL if the database dump
contained views. The recreation of views requires the creation and removal of
temporary tables and this option suppressed the removal of those temporary
tables. As a workaround, use --compact with the --add-drop-table option
and then manually adjust the dump file.

• --compatible=name

Produce output that is more compatible with other database systems or with older MySQL servers.
The value of name can be ansi, mysql323, mysql40, postgresql, oracle, mssql, db2, maxdb,
no_key_options, no_table_options, or no_field_options. To use several values, separate
them by commas. These values have the same meaning as the corresponding options for setting the
server SQL mode. See Section 5.1.7, “Server SQL Modes”.

This option does not guarantee compatibility with other servers. It only enables those SQL mode
values that are currently available for making dump output more compatible. For example, --
compatible=oracle does not map data types to Oracle types or use Oracle comment syntax.

This option requires a server version of 4.1.0 or higher. With older servers, it does nothing.

• --complete-insert, -c

Use complete INSERT statements that include column names.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --create-options

Include all MySQL-specific table options in the CREATE TABLE statements.

• --databases, -B

Dump several databases. Normally, mysqldump treats the first name argument on the command line as
a database name and following names as table names. With this option, it treats all name arguments as
database names. CREATE DATABASE and USE statements are included in the output before each new
database.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default value is
d:t:o,/tmp/mysqldump.trace.

• --debug-info

Print debugging information and memory and CPU usage statistics when the program exits. This option
was added in MySQL 5.0.32.

• --default-character-set=charset_name

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 331

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”. If no
character set is specified, mysqldump uses utf8.

This option has no effect for output data files produced by using the --tab option. See the description
for that option.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. As of MySQL
5.0.6, if the file does not exist or is otherwise inaccessible, an error occurs. file_name is the full path
name to the file.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is the full path name to the file.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqldump normally reads the [client] and [mysqldump] groups. If the --
defaults-group-suffix=_other option is given, mysqldump also reads the [client_other]
and [mysqldump_other] groups. This option was added in MySQL 5.0.10.

• --delayed-insert

Write INSERT DELAYED statements rather than INSERT statements.

• --delete-master-logs

On a master replication server, delete the binary logs by sending a PURGE BINARY LOGS statement to
the server after performing the dump operation. This option automatically enables --master-data.

• --disable-keys, -K

For each table, surround the INSERT statements with /*!40000 ALTER TABLE tbl_name DISABLE
KEYS */; and /*!40000 ALTER TABLE tbl_name ENABLE KEYS */; statements. This makes
loading the dump file faster because the indexes are created after all rows are inserted. This option is
effective only for nonunique indexes of MyISAM tables. It has no effect for other tables.

• --dump-date

If the --comments option is given, mysqldump produces a comment at the end of the dump of the
following form:

-- Dump completed on DATE

However, the date causes dump files taken at different times to appear to be different, even if the data
are otherwise identical. --dump-date and --skip-dump-date control whether the date is added to
the comment. The default is --dump-date (include the date in the comment). --skip-dump-date
suppresses date printing. This option was added in MySQL 5.0.52.

• --extended-insert, -e

Write INSERT statements using multiple-row syntax that includes several VALUES lists. This results in a
smaller dump file and speeds up inserts when the file is reloaded.

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 332

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --fields-terminated-by=..., --fields-enclosed-by=..., --fields-optionally-
enclosed-by=..., --fields-escaped-by=...

These options are used with the --tab option and have the same meaning as the corresponding
FIELDS clauses for LOAD DATA INFILE. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

• --first-slave

Deprecated. Use --lock-all-tables instead. --first-slave is removed in MySQL 5.5.

• --flush-logs, -F

Flush the MySQL server log files before starting the dump. This option requires the RELOAD privilege.
If you use this option in combination with the --all-databases option, the logs are flushed for each
database dumped. The exception is when using --lock-all-tables or --master-data: In this
case, the logs are flushed only once, corresponding to the moment that all tables are locked. If you want
your dump and the log flush to happen at exactly the same moment, you should use --flush-logs
together with either --lock-all-tables or --master-data.

• --flush-privileges

Add a FLUSH PRIVILEGES statement to the dump output after dumping the mysql database. This
option should be used any time the dump contains the mysql database and any other database that
depends on the data in the mysql database for proper restoration. This option was added in MySQL
5.0.26.

• --force, -f

Continue even if an SQL error occurs during a table dump.

One use for this option is to cause mysqldump to continue executing even when it encounters a view
that has become invalid because the definition refers to a table that has been dropped. Without --
force, mysqldump exits with an error message. With --force, mysqldump prints the error message,
but it also writes an SQL comment containing the view definition to the dump output and continues
executing.

• --host=host_name, -h host_name

Dump data from the MySQL server on the given host. The default host is localhost.

• --hex-blob

Dump binary columns using hexadecimal notation (for example, 'abc' becomes 0x616263). The
affected data types are BINARY, VARBINARY, and the BLOB types. As of MySQL 5.0.13, BIT columns
are affected as well.

• --ignore-table=db_name.tbl_name

Do not dump the given table, which must be specified using both the database and table names. To
ignore multiple tables, use this option multiple times. This option also can be used to ignore views.

• --insert-ignore

Write INSERT IGNORE statements rather than INSERT statements.

• --lines-terminated-by=...

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 333

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This option is used with the --tab option and has the same meaning as the corresponding LINES
clause for LOAD DATA INFILE. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

• --lock-all-tables, -x

Lock all tables across all databases. This is achieved by acquiring a global read lock for the duration of
the whole dump. This option automatically turns off --single-transaction and --lock-tables.

• --lock-tables, -l

For each dumped database, lock all tables to be dumped before dumping them. The tables are locked
with READ LOCAL to permit concurrent inserts in the case of MyISAM tables. For transactional tables
such as InnoDB and BDB, --single-transaction is a much better option than --lock-tables
because it does not need to lock the tables at all.

Because --lock-tables locks tables for each database separately, this option does not guarantee
that the tables in the dump file are logically consistent between databases. Tables in different databases
may be dumped in completely different states.

• --log-error=file_name

Log warnings and errors by appending them to the named file. The default is to do no logging. This
option was added in MySQL 5.0.42.

• --master-data[=value]

Use this option to dump a master replication server to produce a dump file that can be used to set up
another server as a slave of the master. It causes the dump output to include a CHANGE MASTER TO
statement that indicates the binary log coordinates (file name and position) of the dumped server. These
are the master server coordinates from which the slave should start replicating after you load the dump
file into the slave.

If the option value is 2, the CHANGE MASTER TO statement is written as an SQL comment, and thus is
informative only; it has no effect when the dump file is reloaded. If the option value is 1, the statement is
not written as a comment and takes effect when the dump file is reloaded. If no option value is specified,
the default value is 1.

This option requires the RELOAD privilege and the binary log must be enabled.

The --master-data option automatically turns off --lock-tables. It also turns on --lock-
all-tables, unless --single-transaction also is specified, in which case, a global read lock
is acquired only for a short time at the beginning of the dump (see the description for --single-
transaction). In all cases, any action on logs happens at the exact moment of the dump.

It is also possible to set up a slave by dumping an existing slave of the master. To do this, use the
following procedure on the existing slave:

1. Stop the slave's SQL thread and get its current status:

mysql> STOP SLAVE SQL_THREAD;
mysql> SHOW SLAVE STATUS;

2. From the output of the SHOW SLAVE STATUS statement, the binary log coordinates of
the master server from which the new slave should start replicating are the values of the
Relay_Master_Log_File and Exec_Master_Log_Pos fields. Denote those values as
file_name and file_pos.

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 334

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

3. Dump the slave server:

shell> mysqldump --master-data=2 --all-databases > dumpfile

Using --master-data=2 works only if binary logging has been enabled on the slave. Otherwise,
mysqldump fails with the error Binlogging on server not active. In this case you must
handle any locking issues in another manner, using one or more of --add-locks, --lock-
tables, --lock-all-tables, or --single-transaction, as required by your application and
environment.

4. Restart the slave:

mysql> START SLAVE;

5. On the new slave, load the dump file:

shell> mysql < dumpfile

6. On the new slave, set the replication coordinates to those of the master server obtained earlier:

mysql> CHANGE MASTER TO
 -> MASTER_LOG_FILE = 'file_name', MASTER_LOG_POS = file_pos;

The CHANGE MASTER TO statement might also need other parameters, such as MASTER_HOST to
point the slave to the correct master server host. Add any such parameters as necessary.

• --no-autocommit

Enclose the INSERT statements for each dumped table within SET autocommit = 0 and COMMIT
statements.

• --no-create-db, -n

Suppress the CREATE DATABASE statements that are otherwise included in the output if the --
databases or --all-databases option is given.

• --no-create-info, -t

Do not write CREATE TABLE statements that create each dumped table.

• --no-data, -d

Do not write any table row information (that is, do not dump table contents). This is useful if you want to
dump only the CREATE TABLE statement for the table (for example, to create an empty copy of the table
by loading the dump file).

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

• --no-set-names, -N

This has the same effect as --skip-set-charset.

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 335

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --opt

This option is shorthand. It is the same as specifying --add-drop-table --add-locks --create-
options --disable-keys --extended-insert --lock-tables --quick --set-charset.
It should give you a fast dump operation and produce a dump file that can be reloaded into a MySQL
server quickly.

The --opt option is enabled by default. Use --skip-opt to disable it. See the discussion at the
beginning of this section for information about selectively enabling or disabling a subset of the options
affected by --opt.

• --order-by-primary

Dump each table's rows sorted by its primary key, or by its first unique index, if such an index exists.
This is useful when dumping a MyISAM table to be loaded into an InnoDB table, but will make the dump
operation take considerably longer.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot
have a space between the option and the password. If you omit the password value following the --
password or -p option on the command line, mysqldump prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. You can use an option file to avoid giving the password on the
command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server supports
named-pipe connections.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on the
permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --quick, -q

This option is useful for dumping large tables. It forces mysqldump to retrieve rows for a table from the
server a row at a time rather than retrieving the entire row set and buffering it in memory before writing it
out.

• --quote-names, -Q

Quote identifiers (such as database, table, and column names) within “`” characters. If the
ANSI_QUOTES SQL mode is enabled, identifiers are quoted within “"” characters. This option is enabled
by default. It can be disabled with --skip-quote-names, but this option should be given after any
option such as --compatible that may enable --quote-names.

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 336

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --result-file=file_name, -r file_name

Direct output to the named file. The result file is created and its previous contents overwritten, even if an
error occurs while generating the dump.

This option should be used on Windows to prevent newline “\n” characters from being converted to “\r
\n” carriage return/newline sequences.

• --routines, -R

Include stored routines (procedures and functions) for the dumped databases in the output. Use of this
option requires the SELECT privilege for the mysql.proc table.

The output generated by using --routines contains CREATE PROCEDURE and CREATE FUNCTION
statements to create the routines. However, these statements do not include attributes such as the
routine creation and modification timestamps, so when the routines are reloaded, they are created with
timestamps equal to the reload time.

If you require routines to be created with their original timestamp attributes, do not use --routines.
Instead, dump and reload the contents of the mysql.proc table directly, using a MySQL account that
has appropriate privileges for the mysql database.

This option was added in MySQL 5.0.13. Before that, stored routines are not dumped. Routine DEFINER
values are not dumped until MySQL 5.0.20. This means that before 5.0.20, when routines are reloaded,
they will be created with the definer set to the reloading user. If you require routines to be re-created with
their original definer, dump and load the contents of the mysql.proc table directly as described earlier.

• --set-charset

Write SET NAMES default_character_set to the output. This option is enabled by default. To
suppress the SET NAMES statement, use --skip-set-charset.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory connections.

• --single-transaction

This option sets the transaction isolation mode to REPEATABLE READ and sends a START
TRANSACTION SQL statement to the server before dumping data. It is useful only with transactional
tables such as InnoDB and BDB, because then it dumps the consistent state of the database at the time
when START TRANSACTION was issued without blocking any applications.

When using this option, you should keep in mind that only InnoDB tables are dumped in a consistent
state. For example, any MyISAM or MEMORY tables dumped while using this option may still change
state.

While a --single-transaction dump is in process, to ensure a valid dump file (correct table
contents and binary log coordinates), no other connection should use the following statements: ALTER
TABLE, CREATE TABLE, DROP TABLE, RENAME TABLE, TRUNCATE TABLE. A consistent read is not
isolated from those statements, so use of them on a table to be dumped can cause the SELECT that is
performed by mysqldump to retrieve the table contents to obtain incorrect contents or fail.

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 337

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The --single-transaction option and the --lock-tables option are mutually exclusive because
LOCK TABLES causes any pending transactions to be committed implicitly.

This option is not supported for MySQL Cluster tables; the results cannot be guaranteed to be consistent
due to the fact that the NDBCLUSTER storage engine supports only the READ_COMMITTED transaction
isolation level. You should always use NDB backup and restore instead.

To dump large tables, combine the --single-transaction option with the --quick option.

• --skip-comments

See the description for the --comments option.

• --skip-opt

See the description for the --opt option.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate where to
find SSL keys and certificates. See Section 6.3.6.5, “Command Options for Secure Connections”.

• --tab=dir_name, -T dir_name

Produce tab-separated text-format data files. For each dumped table, mysqldump creates a
tbl_name.sql file that contains the CREATE TABLE statement that creates the table, and the server
writes a tbl_name.txt file that contains its data. The option value is the directory in which to write the
files.

Note

This option should be used only when mysqldump is run on the same machine
as the mysqld server. Because the server creates files *.txt file in the directory
that you specify, the directory must be writable by the server and the MySQL
account that you use must have the FILE privilege. Because mysqldump creates
*.sql in the same directory, it must be writable by your system login account.

By default, the .txt data files are formatted using tab characters between column values and a newline
at the end of each line. The format can be specified explicitly using the --fields-xxx and --lines-
terminated-by options.

Column values are dumped using the binary character set and the --default-character-set
option is ignored. In effect, there is no character set conversion. If a table contains columns in several
character sets, the output data file will as well and you may not be able to reload the file correctly.

• --tables

Override the --databases or -B option. mysqldump regards all name arguments following the option
as table names.

• --triggers

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 338

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Include triggers for each dumped table in the output. This option is enabled by default; disable it with --
skip-triggers. This option was added in MySQL 5.0.11. Before that, triggers are not dumped.

• --tz-utc

This option enables TIMESTAMP columns to be dumped and reloaded between servers in different time
zones. mysqldump sets its connection time zone to UTC and adds SET TIME_ZONE='+00:00' to the
dump file. Without this option, TIMESTAMP columns are dumped and reloaded in the time zones local to
the source and destination servers, which can cause the values to change if the servers are in different
time zones. --tz-utc also protects against changes due to daylight saving time. --tz-utc is enabled
by default. To disable it, use --skip-tz-utc. This option was added in MySQL 5.0.15.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

• --where='where_condition', -w 'where_condition'

Dump only rows selected by the given WHERE condition. Quotes around the condition are mandatory if it
contains spaces or other characters that are special to your command interpreter.

Examples:

--where="user='jimf'"
-w"userid>1"
-w"userid<1"

• --xml, -X

Write dump output as well-formed XML.

NULL, 'NULL', and Empty Values: For a column named column_name, the NULL value, an empty
string, and the string value 'NULL' are distinguished from one another in the output generated by this
option as follows.

Value: XML Representation:

NULL (unknown value) <field name="column_name"
xsi:nil="true" />

'' (empty string) <field name="column_name"></field>

'NULL' (string value) <field name="column_name">NULL</
field>

Beginning with MySQL 5.0.26, the output from the mysql client when run using the --xml option also
follows the preceding rules. (See Section 4.5.1.1, “mysql Options”.)

Beginning with MySQL 5.0.40, XML output from mysqldump includes the XML namespace, as shown
here:

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 339

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysqldump --xml -u root world City
<?xml version="1.0"?>
<mysqldump xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
<database name="world">
<table_structure name="City">
<field Field="ID" Type="int(11)" Null="NO" Key="PRI" Extra="auto_increment" />
<field Field="Name" Type="char(35)" Null="NO" Key="" Default="" Extra="" />
<field Field="CountryCode" Type="char(3)" Null="NO" Key="" Default="" Extra="" />
<field Field="District" Type="char(20)" Null="NO" Key="" Default="" Extra="" />
<field Field="Population" Type="int(11)" Null="NO" Key="" Default="0" Extra="" />
<key Table="City" Non_unique="0" Key_name="PRIMARY" Seq_in_index="1" Column_name="ID"
Collation="A" Cardinality="4079" Null="" Index_type="BTREE" Comment="" />
<options Name="City" Engine="MyISAM" Version="10" Row_format="Fixed" Rows="4079"
Avg_row_length="67" Data_length="273293" Max_data_length="18858823439613951"
Index_length="43008" Data_free="0" Auto_increment="4080"
Create_time="2007-03-31 01:47:01" Update_time="2007-03-31 01:47:02"
Collation="latin1_swedish_ci" Create_options="" Comment="" />
</table_structure>
<table_data name="City">
<row>
<field name="ID">1</field>
<field name="Name">Kabul</field>
<field name="CountryCode">AFG</field>
<field name="District">Kabol</field>
<field name="Population">1780000</field>
</row>

...

<row>
<field name="ID">4079</field>
<field name="Name">Rafah</field>
<field name="CountryCode">PSE</field>
<field name="District">Rafah</field>
<field name="Population">92020</field>
</row>
</table_data>
</database>
</mysqldump>

You can also set the following variables by using --var_name=value syntax:

• max_allowed_packet

The maximum size of the buffer for client/server communication. The default is 24MB, the maximum is
1GB.

• net_buffer_length

The initial size of the buffer for client/server communication. When creating multiple-row INSERT
statements (as with the --extended-insert or --opt option), mysqldump creates rows up
to net_buffer_length bytes long. If you increase this variable, ensure that the MySQL server
net_buffer_length system variable has a value at least this large.

It is also possible to set variables by using --var_name=value. The --set-variable format is
deprecated.

A common use of mysqldump is for making a backup of an entire database:

shell> mysqldump db_name > backup-file.sql

You can load the dump file back into the server like this:

mysqldump — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 340

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysql db_name < backup-file.sql

Or like this:

shell> mysql -e "source /path-to-backup/backup-file.sql" db_name

mysqldump is also very useful for populating databases by copying data from one MySQL server to
another:

shell> mysqldump --opt db_name | mysql --host=remote_host -C db_name

It is possible to dump several databases with one command:

shell> mysqldump --databases db_name1 [db_name2 ...] > my_databases.sql

To dump all databases, use the --all-databases option:

shell> mysqldump --all-databases > all_databases.sql

For InnoDB tables, mysqldump provides a way of making an online backup:

shell> mysqldump --all-databases --master-data --single-transaction > all_databases.sql

This backup acquires a global read lock on all tables (using FLUSH TABLES WITH READ LOCK) at the
beginning of the dump. As soon as this lock has been acquired, the binary log coordinates are read and
the lock is released. If long updating statements are running when the FLUSH statement is issued, the
MySQL server may get stalled until those statements finish. After that, the dump becomes lock free and
does not disturb reads and writes on the tables. If the update statements that the MySQL server receives
are short (in terms of execution time), the initial lock period should not be noticeable, even with many
updates.

For point-in-time recovery (also known as “roll-forward,” when you need to restore an old backup
and replay the changes that happened since that backup), it is often useful to rotate the binary log
(see Section 5.4.3, “The Binary Log”) or at least know the binary log coordinates to which the dump
corresponds:

shell> mysqldump --all-databases --master-data=2 > all_databases.sql

Or:

shell> mysqldump --all-databases --flush-logs --master-data=2
 > all_databases.sql

The --master-data and --single-transaction options can be used simultaneously, which provides
a convenient way to make an online backup suitable for use prior to point-in-time recovery if tables are
stored using the InnoDB storage engine.

For more information on making backups, see Section 7.2, “Database Backup Methods”, and Section 7.3,
“Example Backup and Recovery Strategy”.

If you encounter problems backing up views, please read the section that covers restrictions on views
which describes a workaround for backing up views when this fails due to insufficient privileges. See
Section C.4, “Restrictions on Views”.

mysqlimport — A Data Import Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 341

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

4.5.5 mysqlimport — A Data Import Program

The mysqlimport client provides a command-line interface to the LOAD DATA INFILE SQL statement.
Most options to mysqlimport correspond directly to clauses of LOAD DATA INFILE syntax. See
Section 13.2.6, “LOAD DATA INFILE Syntax”.

Invoke mysqlimport like this:

shell> mysqlimport [options] db_name textfile1 [textfile2 ...]

For each text file named on the command line, mysqlimport strips any extension from the file name and
uses the result to determine the name of the table into which to import the file's contents. For example, files
named patient.txt, patient.text, and patient all would be imported into a table named patient.

mysqlimport supports the following options, which can be specified on the command line or in the
[mysqlimport] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.7 mysqlimport Options

Format Description Introduced

--columns This option takes a comma-separated list of column names
as its value

--compress Compress all information sent between client and server

--debug Write debugging log

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value 5.0.10

--delete Empty the table before importing the text file

--fields-enclosed-by This option has the same meaning as the corresponding
clause for LOAD DATA INFILE

--fields-escaped-by This option has the same meaning as the corresponding
clause for LOAD DATA INFILE

--fields-optionally-enclosed-by This option has the same meaning as the corresponding
clause for LOAD DATA INFILE

--fields-terminated-by This option has the same meaning as the corresponding
clause for LOAD DATA INFILE

--force Continue even if an SQL error occurs

--help Display help message and exit

--host Connect to MySQL server on given host

--ignore See the description for the --replace option

--ignore-lines Ignore the first N lines of the data file

--lines-terminated-by This option has the same meaning as the corresponding
clause for LOAD DATA INFILE

--local Read input files locally from the client host

--lock-tables Lock all tables for writing before processing any text files

mysqlimport — A Data Import Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 342

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Introduced

--low-priority Use LOW_PRIORITY when loading the table.

--no-defaults Read no option files

--password Password to use when connecting to server

--pipe On Windows, connect to server using named pipe

--port TCP/IP port number to use for connection

--print-defaults Print default options

--protocol Connection protocol to use

--replace The --replace and --ignore options control handling of input
rows that duplicate existing rows on unique key values

--shared-memory-base-name The name of shared memory to use for shared-memory
connections

--silent Produce output only when errors occur

--socket For connections to localhost, the Unix socket file to use

--ssl Enable secure connection

--ssl-ca Path of file that contains list of trusted SSL CAs

--ssl-capath Path of directory that contains trusted SSL CA certificates
in PEM format

--ssl-cert Path of file that contains X509 certificate in PEM format

--ssl-cipher List of permitted ciphers to use for connection encryption

--ssl-key Path of file that contains X509 key in PEM format

--ssl-verify-server-cert Verify server certificate Common Name value against host
name used when connecting to server

5.0.23

--user MySQL user name to use when connecting to server

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --columns=column_list, -c column_list

This option takes a comma-separated list of column names as its value. The order of the column names
indicates how to match data file columns with table columns.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o.

mysqlimport — A Data Import Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 343

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. As of MySQL
5.0.6, if the file does not exist or is otherwise inaccessible, an error occurs. file_name is the full path
name to the file.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is the full path name to the file.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlimport normally reads the [client] and [mysqlimport] groups. If the --
defaults-group-suffix=_other option is given, mysqlimport also reads the [client_other]
and [mysqlimport_other] groups. This option was added in MySQL 5.0.10.

• --delete, -D

Empty the table before importing the text file.

• --fields-terminated-by=..., --fields-enclosed-by=..., --fields-optionally-
enclosed-by=..., --fields-escaped-by=...

These options have the same meaning as the corresponding clauses for LOAD DATA INFILE. See
Section 13.2.6, “LOAD DATA INFILE Syntax”.

• --force, -f

Ignore errors. For example, if a table for a text file does not exist, continue processing any remaining
files. Without --force, mysqlimport exits if a table does not exist.

• --host=host_name, -h host_name

Import data to the MySQL server on the given host. The default host is localhost.

• --ignore, -i

See the description for the --replace option.

• --ignore-lines=N

Ignore the first N lines of the data file.

• --lines-terminated-by=...

This option has the same meaning as the corresponding clause for LOAD DATA INFILE. For example,
to import Windows files that have lines terminated with carriage return/linefeed pairs, use --lines-
terminated-by="\r\n". (You might have to double the backslashes, depending on the escaping
conventions of your command interpreter.) See Section 13.2.6, “LOAD DATA INFILE Syntax”.

• --local, -L

Read input files locally from the client host.

mysqlimport — A Data Import Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 344

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --lock-tables, -l

Lock all tables for writing before processing any text files. This ensures that all tables are synchronized
on the server.

• --low-priority

Use LOW_PRIORITY when loading the table. This affects only storage engines that use only table-level
locking (such as MyISAM, MEMORY, and MERGE).

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot
have a space between the option and the password. If you omit the password value following the --
password or -p option on the command line, mysqlimport prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. You can use an option file to avoid giving the password on the
command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server supports
named-pipe connections.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on the
permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --replace, -r

The --replace and --ignore options control handling of input rows that duplicate existing rows
on unique key values. If you specify --replace, new rows replace existing rows that have the same
unique key value. If you specify --ignore, input rows that duplicate an existing row on a unique key
value are skipped. If you do not specify either option, an error occurs when a duplicate key value is
found, and the rest of the text file is ignored.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory connections.

mysqlshow — Display Database, Table, and Column Information

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 345

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --silent, -s

Silent mode. Produce output only when errors occur.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate where to
find SSL keys and certificates. See Section 6.3.6.5, “Command Options for Secure Connections”.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

Some options, such as --opt, automatically enable --lock-tables. If you want to override this, use
--skip-lock-tables at the end of the option list.

Here is a sample session that demonstrates use of mysqlimport:

shell> mysql -e 'CREATE TABLE imptest(id INT, n VARCHAR(30))' test
shell> ed
a
100 Max Sydow
101 Count Dracula
.
w imptest.txt
32
q
shell> od -c imptest.txt
0000000 1 0 0 \t M a x S y d o w \n 1 0
0000020 1 \t C o u n t D r a c u l a \n
0000040
shell> mysqlimport --local test imptest.txt
test.imptest: Records: 2 Deleted: 0 Skipped: 0 Warnings: 0
shell> mysql -e 'SELECT * FROM imptest' test
+------+---------------+
| id | n |
+------+---------------+
| 100 | Max Sydow |
| 101 | Count Dracula |
+------+---------------+

4.5.6 mysqlshow — Display Database, Table, and Column Information

The mysqlshow client can be used to quickly see which databases exist, their tables, or a table's columns
or indexes.

mysqlshow — Display Database, Table, and Column Information

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 346

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysqlshow provides a command-line interface to several SQL SHOW statements. See Section 13.7.5,
“SHOW Syntax”. The same information can be obtained by using those statements directly. For example,
you can issue them from the mysql client program.

Invoke mysqlshow like this:

shell> mysqlshow [options] [db_name [tbl_name [col_name]]]

• If no database is given, a list of database names is shown.

• If no table is given, all matching tables in the database are shown.

• If no column is given, all matching columns and column types in the table are shown.

The output displays only the names of those databases, tables, or columns for which you have some
privileges.

If the last argument contains shell or SQL wildcard characters (“*”, “?”, “%”, or “_”), only those names that
are matched by the wildcard are shown. If a database name contains any underscores, those should be
escaped with a backslash (some Unix shells require two) to get a list of the proper tables or columns.
“*” and “?” characters are converted into SQL “%” and “_” wildcard characters. This might cause some
confusion when you try to display the columns for a table with a “_” in the name, because in this case,
mysqlshow shows you only the table names that match the pattern. This is easily fixed by adding an extra
“%” last on the command line as a separate argument.

mysqlshow supports the following options, which can be specified on the command line or in the
[mysqlshow] and [client] groups of an option file. For information about option files used by MySQL
programs, see Section 4.2.6, “Using Option Files”.

Table 4.8 mysqlshow Options

Format Description Introduced

--compress Compress all information sent between client and server

--count Show the number of rows per table 5.0.6

--debug Write debugging log

--default-character-set Specify default character set

--defaults-extra-file Read named option file in addition to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value 5.0.10

--help Display help message and exit

--host Connect to MySQL server on given host

--keys Show table indexes

--no-defaults Read no option files

--password Password to use when connecting to server

--pipe On Windows, connect to server using named pipe

--port TCP/IP port number to use for connection

--print-defaults Print default options

--protocol Connection protocol to use

mysqlshow — Display Database, Table, and Column Information

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 347

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Introduced

--shared-memory-base-name The name of shared memory to use for shared-memory
connections

--show-table-type Show a column indicating the table type 5.0.4

--socket For connections to localhost, the Unix socket file to use

--ssl Enable secure connection

--ssl-ca Path of file that contains list of trusted SSL CAs

--ssl-capath Path of directory that contains trusted SSL CA certificates
in PEM format

--ssl-cert Path of file that contains X509 certificate in PEM format

--ssl-cipher List of permitted ciphers to use for connection encryption

--ssl-key Path of file that contains X509 key in PEM format

--ssl-verify-server-cert Verify server certificate Common Name value against host
name used when connecting to server

5.0.23

--status Display extra information about each table

--user MySQL user name to use when connecting to server

--verbose Verbose mode

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --count

Show the number of rows per table. This can be slow for non-MyISAM tables. This option was added in
MySQL 5.0.6.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 10.5, “Character Set Configuration”.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. As of MySQL
5.0.6, if the file does not exist or is otherwise inaccessible, an error occurs. file_name is the full path
name to the file.

• --defaults-file=file_name

mysqlshow — Display Database, Table, and Column Information

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 348

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is the full path name to the file.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlshow normally reads the [client] and [mysqlshow] groups. If the --
defaults-group-suffix=_other option is given, mysqlshow also reads the [client_other]
and [mysqlshow_other] groups. This option was added in MySQL 5.0.10.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --keys, -k

Show table indexes.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot
have a space between the option and the password. If you omit the password value following the --
password or -p option on the command line, mysqlshow prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. You can use an option file to avoid giving the password on the
command line.

• --pipe, -W

On Windows, connect to the server using a named pipe. This option applies only if the server supports
named-pipe connections.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on the
permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --shared-memory-base-name=name

On Windows, the shared-memory name to use, for connections made using shared memory to a local
server. The default value is MYSQL. The shared-memory name is case sensitive.

The server must be started with the --shared-memory option to enable shared-memory connections.

MySQL Administrative and Utility Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 349

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --show-table-type, -t

Show a column indicating the table type, as in SHOW FULL TABLES. The type is BASE TABLE or VIEW.
This option was added in MySQL 5.0.4.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server using SSL and indicate where to
find SSL keys and certificates. See Section 6.3.6.5, “Command Options for Secure Connections”.

• --status, -i

Display extra information about each table.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does. This option can be used multiple
times to increase the amount of information.

• --version, -V

Display version information and exit.

4.6 MySQL Administrative and Utility Programs
This section describes administrative programs and programs that perform miscellaneous utility operations.

4.6.1 innochecksum — Offline InnoDB File Checksum Utility

innochecksum prints checksums for InnoDB files. This tool reads an InnoDB tablespace file, calculates
the checksum for each page, compares the calculated checksum to the stored checksum, and reports
mismatches, which indicate damaged pages. It was originally developed to speed up verifying the
integrity of tablespace files after power outages but can also be used after file copies. Because checksum
mismatches will cause InnoDB to deliberately shut down a running server, it can be preferable to use this
tool rather than waiting for a server in production usage to encounter the damaged pages.

innochecksum cannot be used on tablespace files that the server already has open. For such files, you
should use CHECK TABLE to check tables within the tablespace.

If checksum mismatches are found, you would normally restore the tablespace from backup or start the
server and attempt to use mysqldump to make a backup of the tables within the tablespace.

Invoke innochecksum like this:

shell> innochecksum [options] file_name

innochecksum supports the following options. For options that refer to page numbers, the numbers are
zero-based.

myisam_ftdump — Display Full-Text Index information

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 350

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• -c

Print a count of the number of pages in the file.

• -d

Debug mode; prints checksums for each page.

• -e num

End at this page number.

• -p num

Check only this page number.

• -s num

Start at this page number.

• -v

Verbose mode; print a progress indicator every five seconds.

4.6.2 myisam_ftdump — Display Full-Text Index information

myisam_ftdump displays information about FULLTEXT indexes in MyISAM tables. It reads the
MyISAM index file directly, so it must be run on the server host where the table is located. Before using
myisam_ftdump, be sure to issue a FLUSH TABLES statement first if the server is running.

myisam_ftdump scans and dumps the entire index, which is not particularly fast. On the other hand, the
distribution of words changes infrequently, so it need not be run often.

Invoke myisam_ftdump like this:

shell> myisam_ftdump [options] tbl_name index_num

The tbl_name argument should be the name of a MyISAM table. You can also specify a table by naming
its index file (the file with the .MYI suffix). If you do not invoke myisam_ftdump in the directory where
the table files are located, the table or index file name must be preceded by the path name to the table's
database directory. Index numbers begin with 0.

Example: Suppose that the test database contains a table named mytexttable that has the following
definition:

CREATE TABLE mytexttable
(
 id INT NOT NULL,
 txt TEXT NOT NULL,
 PRIMARY KEY (id),
 FULLTEXT (txt)
) ENGINE=MyISAM;

The index on id is index 0 and the FULLTEXT index on txt is index 1. If your working directory is the
test database directory, invoke myisam_ftdump as follows:

shell> myisam_ftdump mytexttable 1

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 351

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If the path name to the test database directory is /usr/local/mysql/data/test, you can
also specify the table name argument using that path name. This is useful if you do not invoke
myisam_ftdump in the database directory:

shell> myisam_ftdump /usr/local/mysql/data/test/mytexttable 1

You can use myisam_ftdump to generate a list of index entries in order of frequency of occurrence like
this:

shell> myisam_ftdump -c mytexttable 1 | sort -r

myisam_ftdump supports the following options:

• --help, -h -?

Display a help message and exit.

• --count, -c

Calculate per-word statistics (counts and global weights).

• --dump, -d

Dump the index, including data offsets and word weights.

• --length, -l

Report the length distribution.

• --stats, -s

Report global index statistics. This is the default operation if no other operation is specified.

• --verbose, -v

Verbose mode. Print more output about what the program does.

4.6.3 myisamchk — MyISAM Table-Maintenance Utility

The myisamchk utility gets information about your database tables or checks, repairs, or optimizes
them. myisamchk works with MyISAM tables (tables that have .MYD and .MYI files for storing data and
indexes).

You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM tables.
See Section 13.7.2.3, “CHECK TABLE Syntax”, and Section 13.7.2.6, “REPAIR TABLE Syntax”.

Caution

It is best to make a backup of a table before performing a table repair operation;
under some circumstances the operation might cause data loss. Possible causes
include but are not limited to file system errors.

Invoke myisamchk like this:

shell> myisamchk [options] tbl_name ...

The options specify what you want myisamchk to do. They are described in the following sections. You
can also get a list of options by invoking myisamchk --help.

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 352

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

With no options, myisamchk simply checks your table as the default operation. To get more information or
to tell myisamchk to take corrective action, specify options as described in the following discussion.

tbl_name is the database table you want to check or repair. If you run myisamchk somewhere other than
in the database directory, you must specify the path to the database directory, because myisamchk has
no idea where the database is located. In fact, myisamchk does not actually care whether the files you are
working on are located in a database directory. You can copy the files that correspond to a database table
into some other location and perform recovery operations on them there.

You can name several tables on the myisamchk command line if you wish. You can also specify a table
by naming its index file (the file with the .MYI suffix). This enables you to specify all tables in a directory
by using the pattern *.MYI. For example, if you are in a database directory, you can check all the MyISAM
tables in that directory like this:

shell> myisamchk *.MYI

If you are not in the database directory, you can check all the tables there by specifying the path to the
directory:

shell> myisamchk /path/to/database_dir/*.MYI

You can even check all tables in all databases by specifying a wildcard with the path to the MySQL data
directory:

shell> myisamchk /path/to/datadir/*/*.MYI

The recommended way to quickly check all MyISAM tables is:

shell> myisamchk --silent --fast /path/to/datadir/*/*.MYI

If you want to check all MyISAM tables and repair any that are corrupted, you can use the following
command:

shell> myisamchk --silent --force --fast --update-state \
 --key_buffer_size=64M --sort_buffer_size=64M \
 --read_buffer_size=1M --write_buffer_size=1M \
 /path/to/datadir/*/*.MYI

This command assumes that you have more than 64MB free. For more information about memory
allocation with myisamchk, see Section 4.6.3.6, “myisamchk Memory Usage”.

For additional information about using myisamchk, see Section 7.6, “MyISAM Table Maintenance and
Crash Recovery”.

Important

You must ensure that no other program is using the tables while you are running
myisamchk. The most effective means of doing so is to shut down the MySQL
server while running myisamchk, or to lock all tables that myisamchk is being
used on.

Otherwise, when you run myisamchk, it may display the following error message:

warning: clients are using or haven't closed the table properly

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 353

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This means that you are trying to check a table that has been updated by another
program (such as the mysqld server) that hasn't yet closed the file or that has died
without closing the file properly, which can sometimes lead to the corruption of one
or more MyISAM tables.

If mysqld is running, you must force it to flush any table modifications that are still
buffered in memory by using FLUSH TABLES. You should then ensure that no one
is using the tables while you are running myisamchk

However, the easiest way to avoid this problem is to use CHECK TABLE instead of
myisamchk to check tables. See Section 13.7.2.3, “CHECK TABLE Syntax”.

myisamchk supports the following options, which can be specified on the command line or in the
[myisamchk] group of an option file. For information about option files used by MySQL programs, see
Section 4.2.6, “Using Option Files”.

Table 4.9 myisamchk Options

Format Description IntroducedRemoved

--analyze Analyze the distribution of key values

--backup Make a backup of the .MYD file as file_name-
time.BAK

--block-search Find the record that a block at the given offset
belongs to

--check Check the table for errors

--check-only-changed Check only tables that have changed since the last
check

--correct-checksum Correct the checksum information for the table

--data-file-length Maximum length of the data file (when re-creating
data file when it is full)

--debug Write debugging log

--decode_bits Decode_bits

--defaults-extra-file Read named option file in addition to usual option
files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value 5.0.10

--description Print some descriptive information about the table

--extend-check Do very thorough table check or repair that tries to
recover every possible row from the data file

--fast Check only tables that haven't been closed properly

--force Do a repair operation automatically if myisamchk
finds any errors in the table

--force Overwrite old temporary files. For use with the -r or -
o option

--ft_max_word_len Maximum word length for FULLTEXT indexes

--ft_min_word_len Minimum word length for FULLTEXT indexes

--ft_stopword_file Use stopwords from this file instead of built-in list

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 354

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description IntroducedRemoved

--HELP Display help message and exit

--help Display help message and exit

--information Print informational statistics about the table that is
checked

--key_buffer_size Size of buffer used for index blocks for MyISAM
tables

--keys-used A bit-value that indicates which indexes to update

--max-record-length Skip rows larger than the given length if myisamchk
cannot allocate memory to hold them

--medium-check Do a check that is faster than an --extend-check
operation

--myisam_block_size Block size to be used for MyISAM index pages

--no-defaults Read no option files

--parallel-recover Uses the same technique as -r and -n, but creates all
the keys in parallel, using different threads (beta)

--print-defaults Print default options

--quick Achieve a faster repair by not modifying the data file.

--read_buffer_size Each thread that does a sequential scan allocates a
buffer of this size for each table it scans

--read-only Do not mark the table as checked

--recover Do a repair that can fix almost any problem except
unique keys that aren't unique

--safe-recover Do a repair using an old recovery method that reads
through all rows in order and updates all index trees
based on the rows found

--set-auto-increment Force AUTO_INCREMENT numbering for new
records to start at the given value

--set-character-set Change the character set used by the table indexes 5.0.3

--set-collation Specify the collation to use for sorting table indexes 5.0.3

--silent Silent mode

--sort_buffer_size The buffer that is allocated when sorting the index
when doing a REPAIR or when creating indexes with
CREATE INDEX or ALTER TABLE

--sort-index Sort the index tree blocks in high-low order

--sort_key_blocks sort_key_blocks

--sort-records Sort records according to a particular index

--sort-recover Force myisamchk to use sorting to resolve the keys
even if the temporary files would be very large

--stats_method Specifies how MyISAM index statistics collection
code should treat NULLs

--tmpdir Path of the directory to be used for storing temporary
files

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 355

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description IntroducedRemoved

--unpack Unpack a table that was packed with myisampack

--update-state Store information in the .MYI file to indicate when the
table was checked and whether the table crashed

--verbose Verbose mode

--version Display version information and exit

--write_buffer_size Write buffer size

4.6.3.1 myisamchk General Options

The options described in this section can be used for any type of table maintenance operation performed
by myisamchk. The sections following this one describe options that pertain only to specific operations,
such as table checking or repairing.

• --help, -?

Display a help message and exit. Options are grouped by type of operation.

• --HELP, -H

Display a help message and exit. Options are presented in a single list.

• --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/myisamchk.trace.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. As of MySQL
5.0.6, if the file does not exist or is otherwise inaccessible, an error occurs. file_name is the full path
name to the file.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is the full path name to the file.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, myisamchk normally reads the [myisamchk] group. If the --defaults-group-
suffix=_other option is given, myisamchk also reads the [myisamchk_other] group. This option
was added in MySQL 5.0.10.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

• --print-defaults

Print the program name and all options that it gets from option files.

• --silent, -s

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 356

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Silent mode. Write output only when errors occur. You can use -s twice (-ss) to make myisamchk very
silent.

• --verbose, -v

Verbose mode. Print more information about what the program does. This can be used with -d and -e.
Use -v multiple times (-vv, -vvv) for even more output.

• --version, -V

Display version information and exit.

• --wait, -w

Instead of terminating with an error if the table is locked, wait until the table is unlocked before
continuing. If you are running mysqld with external locking disabled, the table can be locked only by
another myisamchk command.

You can also set the following variables by using --var_name=value syntax:

Variable Default Value

decode_bits 9

ft_max_word_len version-dependent

ft_min_word_len 4

ft_stopword_file built-in list

key_buffer_size 523264

myisam_block_size 1024

read_buffer_size 262136

sort_buffer_size 2097144

sort_key_blocks 16

stats_method nulls_unequal

write_buffer_size 262136

It is also possible to set variables by using --set-variable=var_name=value or -O
var_name=value syntax. However, this syntax is deprecated as of MySQL 4.0.

The possible myisamchk variables and their default values can be examined with myisamchk --help:

sort_buffer_size is used when the keys are repaired by sorting keys, which is the normal case when
you use --recover.

key_buffer_size is used when you are checking the table with --extend-check or when the keys are
repaired by inserting keys row by row into the table (like when doing normal inserts). Repairing through the
key buffer is used in the following cases:

• You use --safe-recover.

• The temporary files needed to sort the keys would be more than twice as big as when creating the
key file directly. This is often the case when you have large key values for CHAR, VARCHAR, or TEXT
columns, because the sort operation needs to store the complete key values as it proceeds. If you have
lots of temporary space and you can force myisamchk to repair by sorting, you can use the --sort-
recover option.

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 357

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Repairing through the key buffer takes much less disk space than using sorting, but is also much slower.

If you want a faster repair, set the key_buffer_size and sort_buffer_size variables to about 25%
of your available memory. You can set both variables to large values, because only one of them is used at
a time.

myisam_block_size is the size used for index blocks.

stats_method influences how NULL values are treated for index statistics collection when the --
analyze option is given. It acts like the myisam_stats_method system variable. For more information,
see the description of myisam_stats_method in Section 5.1.4, “Server System Variables”, and
Section 8.3.7, “MyISAM Index Statistics Collection”. The stats_method method was added in MySQL
5.0.14. For older versions, the statistics collection method is equivalent to nulls_equal.

ft_min_word_len and ft_max_word_len indicate the minimum and maximum word length for
FULLTEXT indexes. ft_stopword_file names the stopword file. These need to be set under the
following circumstances.

If you use myisamchk to perform an operation that modifies table indexes (such as repair or analyze), the
FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum and maximum word
length and the stopword file unless you specify otherwise. This can result in queries failing.

The problem occurs because these parameters are known only by the server. They are not stored in
MyISAM index files. To avoid the problem if you have modified the minimum or maximum word length
or the stopword file in the server, specify the same ft_min_word_len, ft_max_word_len, and
ft_stopword_file values to myisamchk that you use for mysqld. For example, if you have set the
minimum word length to 3, you can repair a table with myisamchk like this:

shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, you can place
each one in both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk is to use the REPAIR TABLE, ANALYZE TABLE, OPTIMIZE TABLE,
or ALTER TABLE. These statements are performed by the server, which knows the proper full-text
parameter values to use.

4.6.3.2 myisamchk Check Options

myisamchk supports the following options for table checking operations:

• --check, -c

Check the table for errors. This is the default operation if you specify no option that selects an operation
type explicitly.

• --check-only-changed, -C

Check only tables that have changed since the last check.

• --extend-check, -e

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 358

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Check the table very thoroughly. This is quite slow if the table has many indexes. This option should only
be used in extreme cases. Normally, myisamchk or myisamchk --medium-check should be able to
determine whether there are any errors in the table.

If you are using --extend-check and have plenty of memory, setting the key_buffer_size variable
to a large value helps the repair operation run faster.

See also the description of this option under table repair options.

For a description of the output format, see Section 4.6.3.5, “Obtaining Table Information with
myisamchk”.

• --fast, -F

Check only tables that haven't been closed properly.

• --force, -f

Do a repair operation automatically if myisamchk finds any errors in the table. The repair type is the
same as that specified with the --recover or -r option.

• --information, -i

Print informational statistics about the table that is checked.

• --medium-check, -m

Do a check that is faster than an --extend-check operation. This finds only 99.99% of all errors,
which should be good enough in most cases.

• --read-only, -T

Do not mark the table as checked. This is useful if you use myisamchk to check a table that is in use
by some other application that does not use locking, such as mysqld when run with external locking
disabled.

• --update-state, -U

Store information in the .MYI file to indicate when the table was checked and whether the table crashed.
This should be used to get full benefit of the --check-only-changed option, but you shouldn't use
this option if the mysqld server is using the table and you are running it with external locking disabled.

4.6.3.3 myisamchk Repair Options

myisamchk supports the following options for table repair operations (operations performed when an
option such as --recover or --safe-recover is given):

• --backup, -B

Make a backup of the .MYD file as file_name-time.BAK

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --correct-checksum

Correct the checksum information for the table.

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 359

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --data-file-length=len, -D len

The maximum length of the data file (when re-creating data file when it is “full”).

• --extend-check, -e

Do a repair that tries to recover every possible row from the data file. Normally, this also finds a lot of
garbage rows. Do not use this option unless you are desperate.

See also the description of this option under table checking options.

For a description of the output format, see Section 4.6.3.5, “Obtaining Table Information with
myisamchk”.

• --force, -f

Overwrite old intermediate files (files with names like tbl_name.TMD) instead of aborting.

• --keys-used=val, -k val

For myisamchk, the option value is a bit-value that indicates which indexes to update. Each binary bit of
the option value corresponds to a table index, where the first index is bit 0. An option value of 0 disables
updates to all indexes, which can be used to get faster inserts. Deactivated indexes can be reactivated
by using myisamchk -r.

• --no-symlinks, -l

Do not follow symbolic links. Normally myisamchk repairs the table that a symlink points to. This option
does not exist as of MySQL 4.0 because versions from 4.0 on do not remove symlinks during repair
operations.

• --max-record-length=len

Skip rows larger than the given length if myisamchk cannot allocate memory to hold them.

• --parallel-recover, -p

Use the same technique as -r and -n, but create all the keys in parallel, using different threads. This is
beta-quality code. Use at your own risk!

• --quick, -q

Achieve a faster repair by modifying only the index file, not the data file. You can specify this option twice
to force myisamchk to modify the original data file in case of duplicate keys.

• --recover, -r

Do a repair that can fix almost any problem except unique keys that are not unique (which is an
extremely unlikely error with MyISAM tables). If you want to recover a table, this is the option to try first.
You should try --safe-recover only if myisamchk reports that the table cannot be recovered using
--recover. (In the unlikely case that --recover fails, the data file remains intact.)

If you have lots of memory, you should increase the value of sort_buffer_size.

• --safe-recover, -o

Do a repair using an old recovery method that reads through all rows in order and updates all index
trees based on the rows found. This is an order of magnitude slower than --recover, but can handle

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 360

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

a couple of very unlikely cases that --recover cannot. This recovery method also uses much less disk
space than --recover. Normally, you should repair first using --recover, and then with --safe-
recover only if --recover fails.

If you have lots of memory, you should increase the value of key_buffer_size.

• --set-character-set=name

Change the character set used by the table indexes. This option was replaced by --set-collation in
MySQL 5.0.3.

• --set-collation=name

Specify the collation to use for sorting table indexes. The character set name is implied by the first part of
the collation name. This option was added in MySQL 5.0.3.

• --sort-recover, -n

Force myisamchk to use sorting to resolve the keys even if the temporary files would be very large.

• --tmpdir=dir_name, -t dir_name

The path of the directory to be used for storing temporary files. If this is not set, myisamchk uses the
value of the TMPDIR environment variable. --tmpdir can be set to a list of directory paths that are
used successively in round-robin fashion for creating temporary files. The separator character between
directory names is the colon (“:”) on Unix and the semicolon (“;”) on Windows, NetWare, and OS/2.

• --unpack, -u

Unpack a table that was packed with myisampack.

4.6.3.4 Other myisamchk Options

myisamchk supports the following options for actions other than table checks and repairs:

• --analyze, -a

Analyze the distribution of key values. This improves join performance by enabling the join optimizer to
better choose the order in which to join the tables and which indexes it should use. To obtain information
about the key distribution, use a myisamchk --description --verbose tbl_name command or
the SHOW INDEX FROM tbl_name statement.

• --block-search=offset, -b offset

Find the record that a block at the given offset belongs to.

• --description, -d

Print some descriptive information about the table. Specifying the --verbose option once or twice
produces additional information. See Section 4.6.3.5, “Obtaining Table Information with myisamchk”.

• --set-auto-increment[=value], -A[value]

Force AUTO_INCREMENT numbering for new records to start at the given value (or higher, if there are
existing records with AUTO_INCREMENT values this large). If value is not specified, AUTO_INCREMENT
numbers for new records begin with the largest value currently in the table, plus one.

• --sort-index, -S

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 361

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Sort the index tree blocks in high-low order. This optimizes seeks and makes table scans that use
indexes faster.

• --sort-records=N, -R N

Sort records according to a particular index. This makes your data much more localized and may speed
up range-based SELECT and ORDER BY operations that use this index. (The first time you use this
option to sort a table, it may be very slow.) To determine a table's index numbers, use SHOW INDEX,
which displays a table's indexes in the same order that myisamchk sees them. Indexes are numbered
beginning with 1.

If keys are not packed (PACK_KEYS=0), they have the same length, so when myisamchk sorts and
moves records, it just overwrites record offsets in the index. If keys are packed (PACK_KEYS=1),
myisamchk must unpack key blocks first, then re-create indexes and pack the key blocks again. (In this
case, re-creating indexes is faster than updating offsets for each index.)

4.6.3.5 Obtaining Table Information with myisamchk

To obtain a description of a MyISAM table or statistics about it, use the commands shown here. The output
from these commands is explained later in this section.

• myisamchk -d tbl_name

Runs myisamchk in “describe mode” to produce a description of your table. If you start the MySQL
server with external locking disabled, myisamchk may report an error for a table that is updated while
it runs. However, because myisamchk does not change the table in describe mode, there is no risk of
destroying data.

• myisamchk -dv tbl_name

Adding -v runs myisamchk in verbose mode so that it produces more information about the table.
Adding -v a second time produces even more information.

• myisamchk -eis tbl_name

Shows only the most important information from a table. This operation is slow because it must read the
entire table.

• myisamchk -eiv tbl_name

This is like -eis, but tells you what is being done.

The tbl_name argument can be either the name of a MyISAM table or the name of its index file, as
described in Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”. Multiple tbl_name
arguments can be given.

Suppose that a table named person has the following structure. (The MAX_ROWS table option is included
so that in the example output from myisamchk shown later, some values are smaller and fit the output
format more easily.)

CREATE TABLE person
(
 id INT NOT NULL AUTO_INCREMENT,
 last_name VARCHAR(20) NOT NULL,
 first_name VARCHAR(20) NOT NULL,
 birth DATE,
 death DATE,
 PRIMARY KEY (id),

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 362

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 INDEX (last_name, first_name),
 INDEX (birth)
) MAX_ROWS = 1000000;

Suppose also that the table has these data and index file sizes:

-rw-rw---- 1 mysql mysql 9347072 Aug 19 11:47 person.MYD
-rw-rw---- 1 mysql mysql 6066176 Aug 19 11:47 person.MYI

Example of myisamchk -dvv output:

MyISAM file: person
Record format: Packed
Character set: latin1_swedish_ci (8)
File-version: 1
Creation time: 2009-08-19 16:47:41
Recover time: 2009-08-19 16:47:56
Status: checked,analyzed,optimized keys
Auto increment key: 1 Last value: 306688
Data records: 306688 Deleted blocks: 0
Datafile parts: 306688 Deleted data: 0
Datafile pointer (bytes): 4 Keyfile pointer (bytes): 3
Datafile length: 9347072 Keyfile length: 6066176
Max datafile length: 4294967294 Max keyfile length: 17179868159
Recordlength: 54

table description:
Key Start Len Index Type Rec/key Root Blocksize
1 2 4 unique long 1 99328 1024
2 6 20 multip. varchar prefix 512 3563520 1024
 27 20 varchar 512
3 48 3 multip. uint24 NULL 306688 6065152 1024

Field Start Length Nullpos Nullbit Type
1 1 1
2 2 4 no zeros
3 6 21 varchar
4 27 21 varchar
5 48 3 1 1 no zeros
6 51 3 1 2 no zeros

Explanations for the types of information myisamchk produces are given here. “Keyfile” refers to the index
file. “Record” and “row” are synonymous, as are “field” and “column.”

The initial part of the table description contains these values:

• MyISAM file

Name of the MyISAM (index) file.

• Record format

The format used to store table rows. The preceding examples use Fixed length. Other possible
values are Compressed and Packed. (Packed corresponds to what SHOW TABLE STATUS reports as
Dynamic.)

• Chararacter set

The table default character set.

• File-version

Version of MyISAM format. Always 1.

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 363

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Creation time

When the data file was created.

• Recover time

When the index/data file was last reconstructed.

• Status

Table status flags. Possible values are crashed, open, changed, analyzed, optimized keys, and
sorted index pages.

• Auto increment key, Last value

The key number associated the table's AUTO_INCREMENT column, and the most recently generated
value for this column. These fields do not appear if there is no such column.

• Data records

The number of rows in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this space.
See Section 7.6.4, “MyISAM Table Optimization”.

• Datafile parts

For dynamic-row format, this indicates how many data blocks there are. For an optimized table without
fragmented rows, this is the same as Data records.

• Deleted data

How many bytes of unreclaimed deleted data there are. You can optimize your table to minimize this
space. See Section 7.6.4, “MyISAM Table Optimization”.

• Datafile pointer

The size of the data file pointer, in bytes. It is usually 2, 3, 4, or 5 bytes. Most tables manage with 2
bytes, but this cannot be controlled from MySQL yet. For fixed tables, this is a row address. For dynamic
tables, this is a byte address.

• Keyfile pointer

The size of the index file pointer, in bytes. It is usually 1, 2, or 3 bytes. Most tables manage with 2 bytes,
but this is calculated automatically by MySQL. It is always a block address.

• Max datafile length

How long the table data file can become, in bytes.

• Max keyfile length

How long the table index file can become, in bytes.

• Recordlength

How much space each row takes, in bytes.

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 364

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The table description part of the output includes a list of all keys in the table. For each key,
myisamchk displays some low-level information:

• Key

This key's number. This value is shown only for the first column of the key. If this value is missing, the
line corresponds to the second or later column of a multiple-column key. For the table shown in the
example, there are two table description lines for the second index. This indicates that it is a
multiple-part index with two parts.

• Start

Where in the row this portion of the index starts.

• Len

How long this portion of the index is. For packed numbers, this should always be the full length of the
column. For strings, it may be shorter than the full length of the indexed column, because you can index
a prefix of a string column. The total length of a multiple-part key is the sum of the Len values for all key
parts.

• Index

Whether a key value can exist multiple times in the index. Possible values are unique or multip.
(multiple).

• Type

What data type this portion of the index has. This is a MyISAM data type with the possible values
packed, stripped, or empty.

• Root

Address of the root index block.

• Blocksize

The size of each index block. By default this is 1024, but the value may be changed at compile time
when MySQL is built from source.

• Rec/key

This is a statistical value used by the optimizer. It tells how many rows there are per value for this index.
A unique index always has a value of 1. This may be updated after a table is loaded (or greatly changed)
with myisamchk -a. If this is not updated at all, a default value of 30 is given.

The last part of the output provides information about each column:

• Field

The column number.

• Start

The byte position of the column within table rows.

• Length

The length of the column in bytes.

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 365

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Nullpos, Nullbit

For columns that can be NULL, MyISAM stores NULL values as a flag in a byte. Depending on how
many nullable columns there are, there can be one or more bytes used for this purpose. The Nullpos
and Nullbit values, if nonempty, indicate which byte and bit contains that flag indicating whether the
column is NULL.

The position and number of bytes used to store NULL flags is shown in the line for field 1. This is why
there are six Field lines for the person table even though it has only five columns.

• Type

The data type. The value may contain any of the following descriptors:

• constant

All rows have the same value.

• no endspace

Do not store endspace.

• no endspace, not_always

Do not store endspace and do not do endspace compression for all values.

• no endspace, no empty

Do not store endspace. Do not store empty values.

• table-lookup

The column was converted to an ENUM.

• zerofill(N)

The most significant N bytes in the value are always 0 and are not stored.

• no zeros

Do not store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

• Bits

The number of bits used in the Huffman tree.

The Huff tree and Bits fields are displayed if the table has been compressed with myisampack. See
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”, for an example of
this information.

Example of myisamchk -eiv output:

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 366

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Checking MyISAM file: person
Data records: 306688 Deleted blocks: 0
- check file-size
- check record delete-chain
No recordlinks
- check key delete-chain
block_size 1024:
- check index reference
- check data record references index: 1
Key: 1: Keyblocks used: 98% Packed: 0% Max levels: 3
- check data record references index: 2
Key: 2: Keyblocks used: 99% Packed: 97% Max levels: 3
- check data record references index: 3
Key: 3: Keyblocks used: 98% Packed: -14% Max levels: 3
Total: Keyblocks used: 98% Packed: 89%

- check records and index references
*** LOTS OF ROW NUMBERS DELETED ***

Records: 306688 M.recordlength: 25 Packed: 83%
Recordspace used: 97% Empty space: 2% Blocks/Record: 1.00
Record blocks: 306688 Delete blocks: 0
Record data: 7934464 Deleted data: 0
Lost space: 256512 Linkdata: 1156096

User time 43.08, System time 1.68
Maximum resident set size 0, Integral resident set size 0
Non-physical pagefaults 0, Physical pagefaults 0, Swaps 0
Blocks in 0 out 7, Messages in 0 out 0, Signals 0
Voluntary context switches 0, Involuntary context switches 0
Maximum memory usage: 1046926 bytes (1023k)

myisamchk -eiv output includes the following information:

• Data records

The number of rows in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this space.
See Section 7.6.4, “MyISAM Table Optimization”.

• Key

The key number.

• Keyblocks used

What percentage of the keyblocks are used. When a table has just been reorganized with myisamchk,
the values are very high (very near theoretical maximum).

• Packed

MySQL tries to pack key values that have a common suffix. This can only be used for indexes on CHAR
and VARCHAR columns. For long indexed strings that have similar leftmost parts, this can significantly
reduce the space used. In the preceding example, the second key is 40 bytes long and a 97% reduction
in space is achieved.

• Max levels

How deep the B-tree for this key is. Large tables with long key values get high values.

myisamchk — MyISAM Table-Maintenance Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 367

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Records

How many rows are in the table.

• M.recordlength

The average row length. This is the exact row length for tables with fixed-length rows, because all rows
have the same length.

• Packed

MySQL strips spaces from the end of strings. The Packed value indicates the percentage of savings
achieved by doing this.

• Recordspace used

What percentage of the data file is used.

• Empty space

What percentage of the data file is unused.

• Blocks/Record

Average number of blocks per row (that is, how many links a fragmented row is composed of). This is
always 1.0 for fixed-format tables. This value should stay as close to 1.0 as possible. If it gets too large,
you can reorganize the table. See Section 7.6.4, “MyISAM Table Optimization”.

• Recordblocks

How many blocks (links) are used. For fixed-format tables, this is the same as the number of rows.

• Deleteblocks

How many blocks (links) are deleted.

• Recorddata

How many bytes in the data file are used.

• Deleted data

How many bytes in the data file are deleted (unused).

• Lost space

If a row is updated to a shorter length, some space is lost. This is the sum of all such losses, in bytes.

• Linkdata

When the dynamic table format is used, row fragments are linked with pointers (4 to 7 bytes each).
Linkdata is the sum of the amount of storage used by all such pointers.

4.6.3.6 myisamchk Memory Usage

Memory allocation is important when you run myisamchk. myisamchk uses no more memory than its
memory-related variables are set to. If you are going to use myisamchk on very large tables, you should
first decide how much memory you want it to use. The default is to use only about 3MB to perform repairs.
By using larger values, you can get myisamchk to operate faster. For example, if you have more than

myisamlog — Display MyISAM Log File Contents

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 368

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

512MB RAM available, you could use options such as these (in addition to any other options you might
specify):

shell> myisamchk --sort_buffer_size=256M \
 --key_buffer_size=512M \
 --read_buffer_size=64M \
 --write_buffer_size=64M ...

Using --sort_buffer_size=16M is probably enough for most cases.

Be aware that myisamchk uses temporary files in TMPDIR. If TMPDIR points to a memory file system, out
of memory errors can easily occur. If this happens, run myisamchk with the --tmpdir=dir_name option
to specify a directory located on a file system that has more space.

When performing repair operations, myisamchk also needs a lot of disk space:

• Twice the size of the data file (the original file and a copy). This space is not needed if you do a repair
with --quick; in this case, only the index file is re-created. This space must be available on the same
file system as the original data file, as the copy is created in the same directory as the original.

• Space for the new index file that replaces the old one. The old index file is truncated at the start of the
repair operation, so you usually ignore this space. This space must be available on the same file system
as the original data file.

• When using --recover or --sort-recover (but not when using --safe-recover), you need
space on disk for sorting. This space is allocated in the temporary directory (specified by TMPDIR or --
tmpdir=dir_name). The following formula yields the amount of space required:

(largest_key + row_pointer_length) * number_of_rows * 2

You can check the length of the keys and the row_pointer_length with myisamchk -
dv tbl_name (see Section 4.6.3.5, “Obtaining Table Information with myisamchk”). The
row_pointer_length and number_of_rows values are the Datafile pointer and Data
records values in the table description. To determine the largest_key value, check the Key lines in
the table description. The Len column indicates the number of bytes for each key part. For a multiple-
column index, the key size is the sum of the Len values for all key parts.

If you have a problem with disk space during repair, you can try --safe-recover instead of --recover.

4.6.4 myisamlog — Display MyISAM Log File Contents

myisamlog processes the contents of a MyISAM log file. To create such a file, start the server with a --
log-isam=log_file option.

Invoke myisamlog like this:

shell> myisamlog [options] [file_name [tbl_name] ...]

The default operation is update (-u). If a recovery is done (-r), all writes and possibly updates and deletes
are done and errors are only counted. The default log file name is myisam.log if no log_file argument
is given. If tables are named on the command line, only those tables are updated.

myisamlog supports the following options:

• -?, -I

Display a help message and exit.

myisampack — Generate Compressed, Read-Only MyISAM Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 369

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• -c N

Execute only N commands.

• -f N

Specify the maximum number of open files.

• -i

Display extra information before exiting.

• -o offset

Specify the starting offset.

• -p N

Remove N components from path.

• -r

Perform a recovery operation.

• -R record_pos_file record_pos

Specify record position file and record position.

• -u

Perform an update operation.

• -v

Verbose mode. Print more output about what the program does. This option can be given multiple times
to produce more and more output.

• -w write_file

Specify the write file.

• -V

Display version information.

4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables

The myisampack utility compresses MyISAM tables. myisampack works by compressing each column in
the table separately. Usually, myisampack packs the data file 40% to 70%.

When the table is used later, the server reads into memory the information needed to decompress
columns. This results in much better performance when accessing individual rows, because you only have
to uncompress exactly one row.

MySQL uses mmap() when possible to perform memory mapping on compressed tables. If mmap() does
not work, MySQL falls back to normal read/write file operations.

Please note the following:

myisampack — Generate Compressed, Read-Only MyISAM Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 370

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• If the mysqld server was invoked with external locking disabled, it is not a good idea to invoke
myisampack if the table might be updated by the server during the packing process. It is safest to
compress tables with the server stopped.

• After packing a table, it becomes read only. This is generally intended (such as when accessing packed
tables on a CD).

Invoke myisampack like this:

shell> myisampack [options] file_name ...

Each file name argument should be the name of an index (.MYI) file. If you are not in the database
directory, you should specify the path name to the file. It is permissible to omit the .MYI extension.

After you compress a table with myisampack, use myisamchk -rq to rebuild its indexes. Section 4.6.3,
“myisamchk — MyISAM Table-Maintenance Utility”.

myisampack supports the following options. It also reads option files and supports the options for
processing them described at Section 4.2.7, “Command-Line Options that Affect Option-File Handling”.

• --help, -?

Display a help message and exit.

• --backup, -b

Make a backup of each table's data file using the name tbl_name.OLD.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o.

• --force, -f

Produce a packed table even if it becomes larger than the original or if the intermediate file from
an earlier invocation of myisampack exists. (myisampack creates an intermediate file named
tbl_name.TMD in the database directory while it compresses the table. If you kill myisampack, the
.TMD file might not be deleted.) Normally, myisampack exits with an error if it finds that tbl_name.TMD
exists. With --force, myisampack packs the table anyway.

• --join=big_tbl_name, -j big_tbl_name

Join all tables named on the command line into a single packed table big_tbl_name. All tables that are
to be combined must have identical structure (same column names and types, same indexes, and so
forth).

big_tbl_name must not exist prior to the join operation. All source tables named on the command line
to be merged into big_tbl_name must exist. The source tables are read for the join operation but not
modified. The join operation does not create a .frm file for big_tbl_name, so after the join operation
finishes, copy the .frm file from one of the source tables and name it big_tbl_name.frm.

• --silent, -s

Silent mode. Write output only when errors occur.

myisampack — Generate Compressed, Read-Only MyISAM Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 371

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --test, -t

Do not actually pack the table, just test packing it.

• --tmpdir=dir_name, -T dir_name

Use the named directory as the location where myisampack creates temporary files.

• --verbose, -v

Verbose mode. Write information about the progress of the packing operation and its result.

• --version, -V

Display version information and exit.

• --wait, -w

Wait and retry if the table is in use. If the mysqld server was invoked with external locking disabled, it
is not a good idea to invoke myisampack if the table might be updated by the server during the packing
process.

The following sequence of commands illustrates a typical table compression session:

shell> ls -l station.*
-rw-rw-r-- 1 monty my 994128 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 monty my 53248 Apr 17 19:00 station.MYI
-rw-rw-r-- 1 monty my 5767 Apr 17 19:00 station.frm

shell> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-02-02 3:06:43
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 2 Keyfile pointer (bytes): 2
Max datafile length: 54657023 Max keyfile length: 33554431
Recordlength: 834
Record format: Fixed length

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 1024 1024 1
2 32 30 multip. text 10240 1024 1

Field Start Length Type
1 1 1
2 2 4
3 6 4
4 10 1
5 11 20
6 31 1
7 32 30
8 62 35
9 97 35
10 132 35
11 167 4
12 171 16
13 187 35
14 222 4
15 226 16

myisampack — Generate Compressed, Read-Only MyISAM Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 372

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

16 242 20
17 262 20
18 282 20
19 302 30
20 332 4
21 336 4
22 340 1
23 341 8
24 349 8
25 357 8
26 365 2
27 367 2
28 369 4
29 373 4
30 377 1
31 378 2
32 380 8
33 388 4
34 392 4
35 396 4
36 400 4
37 404 1
38 405 4
39 409 4
40 413 4
41 417 4
42 421 4
43 425 4
44 429 20
45 449 30
46 479 1
47 480 1
48 481 79
49 560 79
50 639 79
51 718 79
52 797 8
53 805 1
54 806 1
55 807 20
56 827 4
57 831 4

shell> myisampack station.MYI
Compressing station.MYI: (1192 records)
- Calculating statistics

normal: 20 empty-space: 16 empty-zero: 12 empty-fill: 11
pre-space: 0 end-space: 12 table-lookups: 5 zero: 7
Original trees: 57 After join: 17
- Compressing file
87.14%
Remember to run myisamchk -rq on compressed tables

shell> myisamchk -rq station
- check record delete-chain
- recovering (with sort) MyISAM-table 'station'
Data records: 1192
- Fixing index 1
- Fixing index 2

shell> mysqladmin -uroot flush-tables

shell> ls -l station.*
-rw-rw-r-- 1 monty my 127874 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 monty my 55296 Apr 17 19:04 station.MYI
-rw-rw-r-- 1 monty my 5767 Apr 17 19:00 station.frm

myisampack — Generate Compressed, Read-Only MyISAM Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 373

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-04-17 19:04:26
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 3 Keyfile pointer (bytes): 1
Max datafile length: 16777215 Max keyfile length: 131071
Recordlength: 834
Record format: Compressed

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 10240 1024 1
2 32 30 multip. text 54272 1024 1

Field Start Length Type Huff tree Bits
1 1 1 constant 1 0
2 2 4 zerofill(1) 2 9
3 6 4 no zeros, zerofill(1) 2 9
4 10 1 3 9
5 11 20 table-lookup 4 0
6 31 1 3 9
7 32 30 no endspace, not_always 5 9
8 62 35 no endspace, not_always, no empty 6 9
9 97 35 no empty 7 9
10 132 35 no endspace, not_always, no empty 6 9
11 167 4 zerofill(1) 2 9
12 171 16 no endspace, not_always, no empty 5 9
13 187 35 no endspace, not_always, no empty 6 9
14 222 4 zerofill(1) 2 9
15 226 16 no endspace, not_always, no empty 5 9
16 242 20 no endspace, not_always 8 9
17 262 20 no endspace, no empty 8 9
18 282 20 no endspace, no empty 5 9
19 302 30 no endspace, no empty 6 9
20 332 4 always zero 2 9
21 336 4 always zero 2 9
22 340 1 3 9
23 341 8 table-lookup 9 0
24 349 8 table-lookup 10 0
25 357 8 always zero 2 9
26 365 2 2 9
27 367 2 no zeros, zerofill(1) 2 9
28 369 4 no zeros, zerofill(1) 2 9
29 373 4 table-lookup 11 0
30 377 1 3 9
31 378 2 no zeros, zerofill(1) 2 9
32 380 8 no zeros 2 9
33 388 4 always zero 2 9
34 392 4 table-lookup 12 0
35 396 4 no zeros, zerofill(1) 13 9
36 400 4 no zeros, zerofill(1) 2 9
37 404 1 2 9
38 405 4 no zeros 2 9
39 409 4 always zero 2 9
40 413 4 no zeros 2 9
41 417 4 always zero 2 9
42 421 4 no zeros 2 9
43 425 4 always zero 2 9
44 429 20 no empty 3 9
45 449 30 no empty 3 9
46 479 1 14 4
47 480 1 14 4

myisampack — Generate Compressed, Read-Only MyISAM Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 374

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

48 481 79 no endspace, no empty 15 9
49 560 79 no empty 2 9
50 639 79 no empty 2 9
51 718 79 no endspace 16 9
52 797 8 no empty 2 9
53 805 1 17 1
54 806 1 3 9
55 807 20 no empty 3 9
56 827 4 no zeros, zerofill(2) 2 9
57 831 4 no zeros, zerofill(1) 2 9

myisampack displays the following kinds of information:

• normal

The number of columns for which no extra packing is used.

• empty-space

The number of columns containing values that are only spaces. These occupy one bit.

• empty-zero

The number of columns containing values that are only binary zeros. These occupy one bit.

• empty-fill

The number of integer columns that do not occupy the full byte range of their type. These are changed to
a smaller type. For example, a BIGINT column (eight bytes) can be stored as a TINYINT column (one
byte) if all its values are in the range from -128 to 127.

• pre-space

The number of decimal columns that are stored with leading spaces. In this case, each value contains a
count for the number of leading spaces.

• end-space

The number of columns that have a lot of trailing spaces. In this case, each value contains a count for
the number of trailing spaces.

• table-lookup

The column had only a small number of different values, which were converted to an ENUM before
Huffman compression.

• zero

The number of columns for which all values are zero.

• Original trees

The initial number of Huffman trees.

• After join

The number of distinct Huffman trees left after joining trees to save some header space.

After a table has been compressed, the Field lines displayed by myisamchk -dvv include additional
information about each column:

mysqlaccess — Client for Checking Access Privileges

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 375

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Type

The data type. The value may contain any of the following descriptors:

• constant

All rows have the same value.

• no endspace

Do not store endspace.

• no endspace, not_always

Do not store endspace and do not do endspace compression for all values.

• no endspace, no empty

Do not store endspace. Do not store empty values.

• table-lookup

The column was converted to an ENUM.

• zerofill(N)

The most significant N bytes in the value are always 0 and are not stored.

• no zeros

Do not store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

• Bits

The number of bits used in the Huffman tree.

After you run myisampack, use myisamchk to re-create any indexes. At this time, you can also sort the
index blocks and create statistics needed for the MySQL optimizer to work more efficiently:

shell> myisamchk -rq --sort-index --analyze tbl_name.MYI

After you have installed the packed table into the MySQL database directory, you should execute
mysqladmin flush-tables to force mysqld to start using the new table.

To unpack a packed table, use the --unpack option to myisamchk.

4.6.6 mysqlaccess — Client for Checking Access Privileges

mysqlaccess is a diagnostic tool that Yves Carlier has provided for the MySQL distribution. It checks the
access privileges for a host name, user name, and database combination. Note that mysqlaccess checks

mysqlaccess — Client for Checking Access Privileges

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 376

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

access using only the user, db, and host tables. It does not check table, column, or routine privileges
specified in the tables_priv, columns_priv, or procs_priv tables.

Invoke mysqlaccess like this:

shell> mysqlaccess [host_name [user_name [db_name]]] [options]

mysqlaccess supports the following options.

Table 4.10 mysqlaccess Options

Format Description

--brief Generate reports in single-line tabular format

--commit Copy the new access privileges from the temporary tables to the
original grant tables

--copy Reload the temporary grant tables from original ones

--db Specify the database name

--debug Specify the debug level

--help Display help message and exit

--host Connect to MySQL server on given host

--howto Display some examples that show how to use mysqlaccess

--old_server Assume that the server is an old MySQL server (prior to MySQL
3.21)

--password Password to use when connecting to server

--plan Display suggestions and ideas for future releases

--preview Show the privilege differences after making changes to the
temporary grant tables

--relnotes Display release notes

--rhost Connect to MySQL server on given host

--rollback Undo the most recent changes to the temporary grant tables.

--spassword Password to use when connecting to server as the superuser

--superuser Specify the user name for connecting as the superuser

--table Generate reports in table format

--user MySQL user name to use when connecting to server

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --brief, -b

Generate reports in single-line tabular format.

• --commit

Copy the new access privileges from the temporary tables to the original grant tables. The grant tables
must be flushed for the new privileges to take effect. (For example, execute a mysqladmin reload
command.)

mysqlaccess — Client for Checking Access Privileges

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 377

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --copy

Reload the temporary grant tables from original ones.

• --db=db_name, -d db_name

Specify the database name.

• --debug=N

Specify the debug level. N can be an integer from 0 to 3.

• --host=host_name, -h host_name

The host name to use in the access privileges.

• --howto

Display some examples that show how to use mysqlaccess.

• --old_server

Assume that the server is an old MySQL server (before MySQL 3.21) that does not yet know how to
handle full WHERE clauses.

• --password[=password], -p[password]

The password to use when connecting to the server. If you omit the password value following the --
password or -p option on the command line, mysqlaccess prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”.

• --plan

Display suggestions and ideas for future releases.

• --preview

Show the privilege differences after making changes to the temporary grant tables.

• --relnotes

Display the release notes.

• --rhost=host_name, -H host_name

Connect to the MySQL server on the given host.

• --rollback

Undo the most recent changes to the temporary grant tables.

• --spassword[=password], -P[password]

The password to use when connecting to the server as the superuser. If you omit the password value
following the --spassword or -p option on the command line, mysqlaccess prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”.

mysqlbinlog — Utility for Processing Binary Log Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 378

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --superuser=user_name, -U user_name

Specify the user name for connecting as the superuser.

• --table, -t

Generate reports in table format.

• --user=user_name, -u user_name

The user name to use in the access privileges.

• --version, -v

Display version information and exit.

If your MySQL distribution is installed in some nonstandard location, you must change the location where
mysqlaccess expects to find the mysql client. Edit the mysqlaccess script at approximately line 18.
Search for a line that looks like this:

$MYSQL = '/usr/local/bin/mysql'; # path to mysql executable

Change the path to reflect the location where mysql actually is stored on your system. If you do not do
this, a Broken pipe error will occur when you run mysqlaccess.

4.6.7 mysqlbinlog — Utility for Processing Binary Log Files

The server's binary log consists of files containing “events” that describe modifications to database
contents. The server writes these files in binary format. To display their contents in text format, use the
mysqlbinlog utility. You can also use mysqlbinlog to display the contents of relay log files written by
a slave server in a replication setup because relay logs have the same format as binary logs. The binary
log and relay log are discussed further in Section 5.4.3, “The Binary Log”, and Section 16.2.2, “Replication
Relay and Status Logs”.

Invoke mysqlbinlog like this:

shell> mysqlbinlog [options] log_file ...

For example, to display the contents of the binary log file named binlog.000003, use this command:

shell> mysqlbinlog binlog.0000003

The output includes events contained in binlog.000003. Event information includes the SQL statement,
the ID of the server on which it was executed, the timestamp when the statement was executed, how much
time it took, and so forth.

Events are preceded by header comments that provide additional information. For example:

at 141
#100309 9:28:36 server id 123 end_log_pos 245
 Query thread_id=3350 exec_time=11 error_code=0

In the first line, the number following at indicates the file offset, or starting position, of the event in the
binary log file.

The second line starts with a date and time indicating when the statement started on the server where
the event originated. For replication, this timestamp is propagated to slave servers. server id is the

mysqlbinlog — Utility for Processing Binary Log Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 379

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

server_id value of the server where the event originated. end_log_pos indicates where the next event
starts (that is, it is the end position of the current event + 1). thread_id indicates which thread executed
the event. exec_time is the time spent executing the event, on a master server. On a slave, it is the
difference of the end execution time on the slave minus the beginning execution time on the master. The
difference serves as an indicator of how much replication lags behind the master. error_code indicates
the result from executing the event. Zero means that no error occurred.

Note

When using event groups, the file offsets of events may be grouped together and
the comments of events may be grouped together. Do not mistake these grouped
events for blank file offsets.

The output from mysqlbinlog can be re-executed (for example, by using it as input to mysql) to
redo the statements in the log. This is useful for recovery operations after a server crash. For other
usage examples, see the discussion later in this section and in Section 7.5, “Point-in-Time (Incremental)
Recovery Using the Binary Log”.

Normally, you use mysqlbinlog to read binary log files directly and apply them to the local MySQL
server. It is also possible to read binary logs from a remote server by using the --read-from-remote-
server option. To read remote binary logs, the connection parameter options can be given to indicate how
to connect to the server. These options are --host, --password, --port, --protocol, --socket,
and --user; they are ignored except when you also use the --read-from-remote-server option.

When running mysqlbinlog against a large binary log, be careful that the filesystem has enough space
for the resulting files. To configure the directory that mysqlbinlog uses for temporary files, use the
TMPDIR environment variable.

mysqlbinlog supports the following options, which can be specified on the command line or in the
[mysqlbinlog] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.11 mysqlbinlog Options

Format Description Introduced

--character-sets-dir Directory where character sets are installed

--database List entries for just this database

--debug Write debugging log

--defaults-extra-file Read named option file in addition to usual option files

--defaults-file Read only named option file

--defaults-group-suffix Option group suffix value 5.0.10

--disable-log-bin Disable binary logging

--force-read If mysqlbinlog reads a binary log event that it does not
recognize, it prints a warning

--help Display help message and exit

--hexdump Display a hex dump of the log in comments 5.0.16

--host Connect to MySQL server on given host

--local-load Prepare local temporary files for LOAD DATA INFILE in the
specified directory

--no-defaults Read no option files

--offset Skip the first N entries in the log

mysqlbinlog — Utility for Processing Binary Log Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 380

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Introduced

--password Password to use when connecting to server

--port TCP/IP port number to use for connection

--position Deprecated. Use --start-position

--print-defaults Print default options

--protocol Connection protocol to use

--read-from-remote-server Read binary log from MySQL server rather than local log
file

--result-file Direct output to named file

--set-charset Add a SET NAMES charset_name statement to the output 5.0.23

--short-form Display only the statements contained in the log

--socket For connections to localhost, the Unix socket file to use

--start-datetime Read binary log from first event with timestamp equal to or
later than datetime argument

--start-position Read binary log from first event with position equal to or
greater than argument

--stop-datetime Stop reading binary log at first event with timestamp equal
to or greater than datetime argument

--stop-position Stop reading binary log at first event with position equal to
or greater than argument

--to-last-log Do not stop at the end of requested binary log from a
MySQL server, but rather continue printing to end of last
binary log

--user MySQL user name to use when connecting to server

--version Display version information and exit

• --help, -?

Display a help message and exit.

• --character-sets-dir=dir_name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --database=db_name, -d db_name

This option causes mysqlbinlog to output entries from the binary log (local log only) that occur while
db_name is been selected as the default database by USE.

The --database option for mysqlbinlog is similar to the --binlog-do-db option for mysqld, but
can be used to specify only one database. If --database is given multiple times, only the last instance
is used.

The --database option works as follows:

• While db_name is the default database, statements are output whether they modify tables in db_name
or a different database.

mysqlbinlog — Utility for Processing Binary Log Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 381

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Unless db_name is selected as the default database, statements are not output, even if they modify
tables in db_name.

• There is an exception for CREATE DATABASE, ALTER DATABASE, and DROP DATABASE. The
database being created, altered, or dropped is considered to be the default database when
determining whether to output the statement.

Suppose that the binary log contains these statements:

INSERT INTO test.t1 (i) VALUES(100);
INSERT INTO db2.t2 (j) VALUES(200);
USE test;
INSERT INTO test.t1 (i) VALUES(101);
INSERT INTO t1 (i) VALUES(102);
INSERT INTO db2.t2 (j) VALUES(201);
USE db2;
INSERT INTO test.t1 (i) VALUES(103);
INSERT INTO db2.t2 (j) VALUES(202);
INSERT INTO t2 (j) VALUES(203);

mysqlbinlog --database=test does not output the first two INSERT statements because there
is no default database. It outputs the three INSERT statements following USE test, but not the three
INSERT statements following USE db2.

mysqlbinlog --database=db2 does not output the first two INSERT statements because there is no
default database. It does not output the three INSERT statements following USE test, but does output
the three INSERT statements following USE db2.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/mysqlbinlog.trace.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. As of MySQL
5.0.6, if the file does not exist or is otherwise inaccessible, an error occurs. file_name is the full path
name to the file.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is the full path name to the file.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str.
For example, mysqlbinlog normally reads the [client] and [mysqlbinlog] groups. If the --
defaults-group-suffix=_other option is given, mysqlbinlog also reads the [client_other]
and [mysqlbinlog_other] groups. This option was added in MySQL 5.0.10.

• --disable-log-bin, -D

Disable binary logging. This is useful for avoiding an endless loop if you use the --to-last-log option
and are sending the output to the same MySQL server. This option also is useful when restoring after a
crash to avoid duplication of the statements you have logged.

mysqlbinlog — Utility for Processing Binary Log Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 382

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This option requires that you have the SUPER privilege. It causes mysqlbinlog to include a SET
sql_log_bin = 0 statement in its output to disable binary logging of the remaining output. The SET
statement is ineffective unless you have the SUPER privilege.

• --force-read, -f

With this option, if mysqlbinlog reads a binary log event that it does not recognize, it prints a warning,
ignores the event, and continues. Without this option, mysqlbinlog stops if it reads such an event.

• --hexdump, -H

Display a hex dump of the log in comments. The hex output can be helpful for replication debugging.
Hex dump format is discussed later in this section. This option was added in MySQL 5.0.16.

• --host=host_name, -h host_name

Get the binary log from the MySQL server on the given host.

• --local-load=dir_name, -l dir_name

Prepare local temporary files for LOAD DATA INFILE in the specified directory.

Important

These temporary files are not automatically removed by mysqlbinlog or any
other MySQL program.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

• --offset=N, -o N

Skip the first N entries in the log.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you cannot
have a space between the option and the password. If you omit the password value following the --
password or -p option on the command line, mysqlbinlog prompts for one.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. You can use an option file to avoid giving the password on the
command line.

• --port=port_num, -P port_num

The TCP/IP port number to use for connecting to a remote server.

• --position=N

Deprecated. Use --start-position instead. --position is removed in MySQL 5.5.

• --print-defaults

Print the program name and all options that it gets from option files.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

mysqlbinlog — Utility for Processing Binary Log Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 383

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The connection protocol to use for connecting to the server. It is useful when the other connection
parameters normally would cause a protocol to be used other than the one you want. For details on the
permissible values, see Section 4.2.2, “Connecting to the MySQL Server”.

• --read-from-remote-server, -R

Read the binary log from a MySQL server rather than reading a local log file. Any connection parameter
options are ignored unless this option is given as well. These options are --host, --password, --
port, --protocol, --socket, and --user.

This option requires that the remote server be running. It works only for binary log files on the remote
server, not relay log files.

• --result-file=name, -r name

Direct output to the given file.

• --set-charset=charset_name

Add a SET NAMES charset_name statement to the output to specify the character set to be used for
processing log files. This option was added in MySQL 5.0.23.

• --short-form, -s

Display only the statements contained in the log, without any extra information. This is for testing only,
and should not be used in production systems.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

• --start-datetime=datetime

Start reading the binary log at the first event having a timestamp equal to or later than the datetime
argument. The datetime value is relative to the local time zone on the machine where you run
mysqlbinlog. The value should be in a format accepted for the DATETIME or TIMESTAMP data types.
For example:

shell> mysqlbinlog --start-datetime="2005-12-25 11:25:56" binlog.000003

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

• --start-position=N, -j N

Start reading the binary log at the first event having a position equal to or greater than N. This option
applies to the first log file named on the command line.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

• --stop-datetime=datetime

Stop reading the binary log at the first event having a timestamp equal to or later than the datetime
argument. This option is useful for point-in-time recovery. See the description of the --start-
datetime option for information about the datetime value.

mysqlbinlog — Utility for Processing Binary Log Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 384

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

• --stop-position=N

Stop reading the binary log at the first event having a position equal to or greater than N. This option
applies to the last log file named on the command line.

This option is useful for point-in-time recovery. See Section 7.3, “Example Backup and Recovery
Strategy”.

• --to-last-log, -t

Do not stop at the end of the requested binary log from a MySQL server, but rather continue printing
until the end of the last binary log. If you send the output to the same MySQL server, this may lead to an
endless loop. This option requires --read-from-remote-server.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to a remote server.

• --version, -V

Display version information and exit.

In MySQL 5.0, the version number shown for mysqlbinlog is always 3.2.

You can also set the following variable by using --var_name=value syntax:

• open_files_limit

Specify the number of open file descriptors to reserve.

It is also possible to set variables by using --set-variable=var_name=value or -O
var_name=value syntax. This syntax is deprecated.

You can pipe the output of mysqlbinlog into the mysql client to execute the events contained in the
binary log. This technique is used to recover from a crash when you have an old backup (see Section 7.5,
“Point-in-Time (Incremental) Recovery Using the Binary Log”). For example:

shell> mysqlbinlog binlog.000001 | mysql -u root -p

Or:

shell> mysqlbinlog binlog.[0-9]* | mysql -u root -p

You can also redirect the output of mysqlbinlog to a text file instead, if you need to modify the statement
log first (for example, to remove statements that you do not want to execute for some reason). After editing
the file, execute the statements that it contains by using it as input to the mysql program:

shell> mysqlbinlog binlog.000001 > tmpfile
shell> ... edit tmpfile ...
shell> mysql -u root -p < tmpfile

When mysqlbinlog is invoked with the --start-position option, it displays only those events with
an offset in the binary log greater than or equal to a given position (the given position must match the start

mysqlbinlog — Utility for Processing Binary Log Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 385

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

of one event). It also has options to stop and start when it sees an event with a given date and time. This
enables you to perform point-in-time recovery using the --stop-datetime option (to be able to say, for
example, “roll forward my databases to how they were today at 10:30 a.m.”).

If you have more than one binary log to execute on the MySQL server, the safe method is to process them
all using a single connection to the server. Here is an example that demonstrates what may be unsafe:

shell> mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!
shell> mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!

Processing binary logs this way using multiple connections to the server causes problems if the first log file
contains a CREATE TEMPORARY TABLE statement and the second log contains a statement that uses the
temporary table. When the first mysql process terminates, the server drops the temporary table. When the
second mysql process attempts to use the table, the server reports “unknown table.”

To avoid problems like this, use a single mysql process to execute the contents of all binary logs that you
want to process. Here is one way to do so:

shell> mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

Another approach is to write all the logs to a single file and then process the file:

shell> mysqlbinlog binlog.000001 > /tmp/statements.sql
shell> mysqlbinlog binlog.000002 >> /tmp/statements.sql
shell> mysql -u root -p -e "source /tmp/statements.sql"

mysqlbinlog can produce output that reproduces a LOAD DATA INFILE operation without the original
data file. mysqlbinlog copies the data to a temporary file and writes a LOAD DATA LOCAL INFILE
statement that refers to the file. The default location of the directory where these files are written is system-
specific. To specify a directory explicitly, use the --local-load option.

Because mysqlbinlog converts LOAD DATA INFILE statements to LOAD DATA LOCAL INFILE
statements (that is, it adds LOCAL), both the client and the server that you use to process the statements
must be configured with the LOCAL capability enabled. See Section 6.1.6, “Security Issues with LOAD
DATA LOCAL”.

Warning

The temporary files created for LOAD DATA LOCAL statements are not
automatically deleted because they are needed until you actually execute those
statements. You should delete the temporary files yourself after you no longer need
the statement log. The files can be found in the temporary file directory and have
names like original_file_name-#-#.

The --hexdump option produces a hex dump of the log contents:

shell> mysqlbinlog --hexdump master-bin.000001

The hex output consists of comment lines beginning with #, so the output might look like this for the
preceding command:

/*!40019 SET @@session.max_insert_delayed_threads=0*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
at 4
#051024 17:24:13 server id 1 end_log_pos 98
Position Timestamp Type Master ID Size Master Pos Flags

mysqlbinlog — Utility for Processing Binary Log Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 386

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

00000004 9d fc 5c 43 0f 01 00 00 00 5e 00 00 00 62 00 00 00 00 00
00000017 04 00 35 2e 30 2e 31 35 2d 64 65 62 75 67 2d 6c |..5.0.15.debug.l|
00000027 6f 67 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |og..............|
00000037 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000047 00 00 00 00 9d fc 5c 43 13 38 0d 00 08 00 12 00 |.......C.8......|
00000057 04 04 04 04 12 00 00 4b 00 04 1a |.......K...|
Start: binlog v 4, server v 5.0.15-debug-log created 051024 17:24:13
at startup
ROLLBACK;

Hex dump output currently contains the following elements. This format is subject to change.

• Position: The byte position within the log file.

• Timestamp: The event timestamp. In the example shown, '9d fc 5c 43' is the representation of
'051024 17:24:13' in hexadecimal.

• Type: The event type code. In the example shown, '0f' indicates a FORMAT_DESCRIPTION_EVENT.
The following table lists the possible type codes.

TypeName Meaning

00 UNKNOWN_EVENT This event should never be present in the log.

01 START_EVENT_V3 This indicates the start of a log file written by MySQL 4 or earlier.

02 QUERY_EVENT The most common type of events. These contain statements executed on the
master.

03 STOP_EVENT Indicates that master has stopped.

04 ROTATE_EVENT Written when the master switches to a new log file.

05 INTVAR_EVENT Used for AUTO_INCREMENT values or when the LAST_INSERT_ID()
function is used in the statement.

06 LOAD_EVENT Used for LOAD DATA INFILE in MySQL 3.23.

07 SLAVE_EVENT Reserved for future use.

08 CREATE_FILE_EVENTUsed for LOAD DATA INFILE statements. This indicates the start of
execution of such a statement. A temporary file is created on the slave. Used
in MySQL 4 only.

09 APPEND_BLOCK_EVENTContains data for use in a LOAD DATA INFILE statement. The data is
stored in the temporary file on the slave.

0a EXEC_LOAD_EVENT Used for LOAD DATA INFILE statements. The contents of the temporary file
is stored in the table on the slave. Used in MySQL 4 only.

0b DELETE_FILE_EVENTRollback of a LOAD DATA INFILE statement. The temporary file should be
deleted on the slave.

0c NEW_LOAD_EVENT Used for LOAD DATA INFILE in MySQL 4 and earlier.

0d RAND_EVENT Used to send information about random values if the RAND() function is used
in the statement.

0e USER_VAR_EVENT Used to replicate user variables.

0f FORMAT_DESCRIPTION_EVENTThis indicates the start of a log file written by MySQL 5 or later.

10 XID_EVENT Event indicating commit of an XA transaction.

11 BEGIN_LOAD_QUERY_EVENTUsed for LOAD DATA INFILE statements in MySQL 5 and later.

12 EXECUTE_LOAD_QUERY_EVENTUsed for LOAD DATA INFILE statements in MySQL 5 and later.

13 TABLE_MAP_EVENT Reserved for future use.

mysqldumpslow — Summarize Slow Query Log Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 387

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

TypeName Meaning

14 WRITE_ROWS_EVENTReserved for future use.

15 UPDATE_ROWS_EVENTReserved for future use.

16 DELETE_ROWS_EVENTReserved for future use.

• Master ID: The server ID of the master that created the event.

• Size: The size in bytes of the event.

• Master Pos: The position of the next event in the original master log file.

• Flags: 16 flags. The following flags are used. The others are reserved for future use.

Flag Name Meaning

01 LOG_EVENT_BINLOG_IN_USE_FLog file correctly closed. (Used only in FORMAT_DESCRIPTION_EVENT.)
If this flag is set (if the flags are, for example, '01 00') in a
FORMAT_DESCRIPTION_EVENT, the log file has not been properly closed.
Most probably this is because of a master crash (for example, due to power
failure).

02 Reserved for future use.

04 LOG_EVENT_THREAD_SPECIFIC_FSet if the event is dependent on the connection it was executed in (for
example, '04 00'), for example, if the event uses temporary tables.

08 LOG_EVENT_SUPPRESS_USE_FSet in some circumstances when the event is not dependent on the default
database.

4.6.8 mysqldumpslow — Summarize Slow Query Log Files

The MySQL slow query log contains information about queries that take a long time to execute (see
Section 5.4.4, “The Slow Query Log”). mysqldumpslow parses MySQL slow query log files and prints a
summary of their contents.

Normally, mysqldumpslow groups queries that are similar except for the particular values of number and
string data values. It “abstracts” these values to N and 'S' when displaying summary output. The -a and -
n options can be used to modify value abstracting behavior.

Invoke mysqldumpslow like this:

shell> mysqldumpslow [options] [log_file ...]

mysqldumpslow supports the following options.

Table 4.12 mysqldumpslow Options

Format Description

-a Do not abstract all numbers to N and strings to S

-n Abstract numbers with at least the specified digits

--debug Write debugging information

-g Only consider statements that match the pattern

--help Display help message and exit

-h Host name of the server in the log file name

mysqldumpslow — Summarize Slow Query Log Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 388

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description

-i Name of the server instance

-l Do not subtract lock time from total time

-r Reverse the sort order

-s How to sort output

-t Display only first num queries

--verbose Verbose mode

• --help

Display a help message and exit.

• -a

Do not abstract all numbers to N and strings to 'S'.

• --debug, -d

Run in debug mode.

• -g pattern

Consider only queries that match the (grep-style) pattern.

• -h host_name

Host name of MySQL server for *-slow.log file name. The value can contain a wildcard. The default is
* (match all).

• -i name

Name of server instance (if using mysql.server startup script).

• -l

Do not subtract lock time from total time.

• -n N

Abstract numbers with at least N digits within names.

• -r

Reverse the sort order.

• -s sort_type

How to sort the output. The value of sort_type should be chosen from the following list:

• t, at: Sort by query time or average query time

• l, al: Sort by lock time or average lock time

• r, ar: Sort by rows sent or average rows sent

• c: Sort by count

mysqlhotcopy — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 389

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

By default, mysqldumpslow sorts by average query time (equivalent to -s at).

• -t N

Display only the first N queries in the output.

• --verbose, -v

Verbose mode. Print more information about what the program does.

Example of usage:

shell> mysqldumpslow

Reading mysql slow query log from /usr/local/mysql/data/mysqld51-apple-slow.log
Count: 1 Time=4.32s (4s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t2 select * from t1

Count: 3 Time=2.53s (7s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t2 select * from t1 limit N

Count: 3 Time=2.13s (6s) Lock=0.00s (0s) Rows=0.0 (0), root[root]@localhost
 insert into t1 select * from t1

4.6.9 mysqlhotcopy — A Database Backup Program

mysqlhotcopy is a Perl script that was originally written and contributed by Tim Bunce. It uses FLUSH
TABLES, LOCK TABLES, and cp or scp to make a database backup. It is a fast way to make a backup of
the database or single tables, but it can be run only on the same machine where the database directories
are located. mysqlhotcopy works only for backing up MyISAM and ARCHIVE tables. It runs on Unix and
NetWare.

To use mysqlhotcopy, you must have read access to the files for the tables that you are backing up, the
SELECT privilege for those tables, the RELOAD privilege (to be able to execute FLUSH TABLES), and the
LOCK TABLES privilege (to be able to lock the tables).

shell> mysqlhotcopy db_name [/path/to/new_directory]

shell> mysqlhotcopy db_name_1 ... db_name_n /path/to/new_directory

Back up tables in the given database that match a regular expression:

shell> mysqlhotcopy db_name./regex/

The regular expression for the table name can be negated by prefixing it with a tilde (“~”):

shell> mysqlhotcopy db_name./~regex/

mysqlhotcopy supports the following options, which can be specified on the command line or in the
[mysqlhotcopy] and [client] groups of an option file. For information about option files used by
MySQL programs, see Section 4.2.6, “Using Option Files”.

Table 4.13 mysqlhotcopy Options

Format Description

--addtodest Do not rename target directory (if it exists); merely add files to it

mysqlhotcopy — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 390

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description

--allowold Do not abort if a target exists; rename it by adding an _old suffix

--checkpoint Insert checkpoint entries

--chroot Base directory of the chroot jail in which mysqld operates

--debug Write debugging log

--dryrun Report actions without performing them

--flushlog Flush logs after all tables are locked

--help Display help message and exit

--host Connect to MySQL server on given host

--keepold Do not delete previous (renamed) target when done

--method The method for copying files

--noindices Do not include full index files in the backup

--password Password to use when connecting to server

--port TCP/IP port number to use for connection

--quiet Be silent except for errors

--regexp Copy all databases with names that match the given regular
expression

--resetmaster Reset the binary log after locking all the tables

--resetslave Reset the master.info file after locking all the tables

--socket For connections to localhost, the Unix socket file to use

--tmpdir The temporary directory

--user MySQL user name to use when connecting to server

• --help, -?

Display a help message and exit.

• --addtodest

Do not rename target directory (if it exists); merely add files to it.

• --allowold

Do not abort if a target exists; rename it by adding an _old suffix.

• --checkpoint=db_name.tbl_name

Insert checkpoint entries into the specified database db_name and table tbl_name.

• --chroot=dir_name

Base directory of the chroot jail in which mysqld operates. The dir_name value should match that of
the --chroot option given to mysqld.

• --debug

Enable debug output.

• --dryrun, -n

mysqlhotcopy — A Database Backup Program

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 391

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Report actions without performing them.

• --flushlog

Flush logs after all tables are locked.

• --host=host_name, -h host_name

The host name of the local host to use for making a TCP/IP connection to the local server. By default,
the connection is made to localhost using a Unix socket file.

• --keepold

Do not delete previous (renamed) target when done.

• --method=command

The method for copying files (cp or scp). The default is cp.

• --noindices

Do not include full index files for MyISAM tables in the backup. This makes the backup smaller and
faster. The indexes for reloaded tables can be reconstructed later with myisamchk -rq.

• --password=password, -ppassword

The password to use when connecting to the server. The password value is not optional for this option,
unlike for other MySQL programs.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. You can use an option file to avoid giving the password on the
command line.

• --port=port_num, -P port_num

The TCP/IP port number to use when connecting to the local server.

• --quiet, -q

Be silent except for errors.

• --record_log_pos=db_name.tbl_name

Record master and slave status in the specified database db_name and table tbl_name.

• --regexp=expr

Copy all databases with names that match the given regular expression.

• --resetmaster

Reset the binary log after locking all the tables.

• --resetslave

Reset the master.info file after locking all the tables.

• --socket=path, -S path

mysqlmanager — The MySQL Instance Manager

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 392

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The Unix socket file to use for connections to localhost.

• --suffix=str

The suffix to use for names of copied databases.

• --tmpdir=dir_name

The temporary directory. The default is /tmp.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

Use perldoc for additional mysqlhotcopy documentation, including information about the structure of
the tables needed for the --checkpoint and --record_log_pos options:

shell> perldoc mysqlhotcopy

4.6.10 mysqlmanager — The MySQL Instance Manager

Important

MySQL Instance Manager is been deprecated in MySQL 5.1 and is removed in
MySQL 5.5.

mysqlmanager is the MySQL Instance Manager (IM). This program monitors and manages MySQL
Database Server instances. MySQL Instance Manager is available for Unix-like operating systems, and
also on Windows as of MySQL 5.0.13. It runs as a daemon that listens on a TCP/IP port. On Unix, it also
listens on a Unix socket file.

MySQL Instance Manager is included in MySQL distributions from version 5.0.3, and can be used in place
of the mysqld_safe script to start and stop one or more instances of MySQL Server. Because Instance
Manager can manage multiple server instances, it can also be used in place of the mysqld_multi script.
Instance Manager offers these capabilities:

• Instance Manager can start and stop instances, and report on the status of instances.

• Server instances can be treated as guarded or unguarded:

• When Instance Manager starts, it starts each guarded instance. If the instance crashes, Instance
Manager detects this and restarts it. When Instance Manager stops, it stops the instance.

• A nonguarded instance is not started when Instance Manager starts or monitored by it. If the instance
crashes after being started, Instance Manager does not restart it. When Instance Manager exits, it
does not stop the instance if it is running.

Instances are guarded by default. An instance can be designated as nonguarded by including the
nonguarded option in the configuration file.

• Instance Manager provides an interactive interface for configuring instances, so that the need to edit the
configuration file manually is reduced or eliminated.

• Instance Manager provides remote instance management. That is, it runs on the host where you want
to control MySQL Server instances, but you can connect to it from a remote host to perform instance-
management operations.

mysqlmanager — The MySQL Instance Manager

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 393

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The following sections describe MySQL Instance Manager operation in more detail.

4.6.10.1 MySQL Instance Manager Command Options

Important

MySQL Instance Manager is been deprecated in MySQL 5.1 and is removed in
MySQL 5.5.

The MySQL Instance Manager supports a number of command options. For a brief listing, invoke
mysqlmanager with the --help option. Options may be given on the command line or in the Instance
Manager configuration file. On Windows, the standard configuration file is my.ini in the directory
where Instance Manager is installed. On Unix, the standard file is /etc/my.cnf. To specify a different
configuration file, start Instance Manager with the --defaults-file option.

mysqlmanager supports the following options. It also reads option files and supports the options for
processing them described at Section 4.2.7, “Command-Line Options that Affect Option-File Handling”.

• --help, -?

Display a help message and exit.

• --angel-pid-file=file_name

The file in which the angel process records its process ID when mysqlmanager runs in
daemon mode (that is, when the --run-as-service option is given). The default file name is
mysqlmanager.angel.pid.

If the --angel-pid-file option is not given, the default angel PID file has the same name as the
PID file except that any PID file extension is replaced with an extension of .angel.pid. (For example,
mysqlmanager.pid becomes mysqlmanager.angel.pid.)

This option was added in MySQL 5.0.23.

• --bind-address=IP

The IP address to bind to.

• --default-mysqld-path=file_name

The path name of the MySQL Server binary. This path name is used for all server instance sections in
the configuration file for which no mysqld-path option is present. The default value of this option is the
compiled-in path name, which depends on how the MySQL distribution was configured. Example: --
default-mysqld-path=/usr/sbin/mysqld

• --defaults-file=file_name

Read Instance Manager and MySQL Server settings from the given file. All configuration changes made
by the Instance Manager will be written to this file. This must be the first option on the command line if it
is used, and the file must exist.

If this option is not given, Instance Manager uses its standard configuration file. On Windows, the
standard file is my.ini in the directory where Instance Manager is installed. On Unix, the standard file is
/etc/my.cnf.

• --install

mysqlmanager — The MySQL Instance Manager

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 394

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

On Windows, install Instance Manager as a Windows service. The service name is MySQL Manager.
This option was added in MySQL 5.0.11.

• --log=file_name

The path to the Instance Manager log file. This option has no effect unless the --run-as-service
option is also given. If the file name specified for the option is a relative name, the log file is created
under the directory from which Instance Manager is started. To ensure that the file is created in a
specific directory, specify it as a full path name.

If --run-as-service is given without --log, the log file is mysqlmanager.log in the data directory.

If --run-as-service is not given, log messages go to the standard output. To capture log output, you
can redirect Instance Manager output to a file:

mysqlmanager > im.log

• --monitoring-interval=seconds

The interval in seconds for monitoring server instances. The default value is 20 seconds.
Instance Manager tries to connect to each monitored (guarded) instance using the nonexisting
MySQL_Instance_Manager user account to check whether it is available/not hanging. If the result of
the connection attempt indicates that the instance is unavailable, Instance Manager performs several
attempts to restart the instance.

Normally, the MySQL_Instance_Manager account does not exist, so the connection attempts by
Instance Manager cause the monitored instance to produce messages in its general query log similar to
the following:

Access denied for user 'MySQL_Instance_M'@'localhost' (using password: YES)

The nonguarded option in the appropriate server instance section disables monitoring for a particular
instance. If the instance dies after being started, Instance Manager will not restart it. Instance Manager
tries to connect to a nonguarded instance only when you request the instance's status (for example, with
the SHOW INSTANCES status.

See Section 4.6.10.5, “MySQL Server Instance Status Monitoring”, for more information.

• --passwd, -P

Prepare an entry for the password file, print it to the standard output, and exit. You can redirect the
output from Instance Manager to a file to save the entry in the file. See also Section 4.6.10.4, “Instance
Manager User and Password Management”. This

• --password-file=file_name

The name of the file where the Instance Manager looks for users and passwords. On Windows, the
default is mysqlmanager.passwd in the directory where Instance Manager is installed. On Unix, the
default file is /etc/mysqlmanager.passwd. See also Section 4.6.10.4, “Instance Manager User and
Password Management”.

• --pid-file=file_name

The process ID file to use. On Windows, the default file is mysqlmanager.pid in the directory where
Instance Manager is installed. On Unix, the default is mysqlmanager.pid in the data directory.

mysqlmanager — The MySQL Instance Manager

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 395

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --port=port_num

The port number to use when listening for TCP/IP connections from clients. The default port number
(assigned by IANA) is 2273.

• --print-defaults

Print the current defaults and exit. This must be the first option on the command line if it is used.

• --remove

On Windows, removes Instance Manager as a Windows service. This assumes that Instance Manager
has been run with --install previously. This option was added in MySQL 5.0.11.

• --run-as-service

On Unix, daemonize and start an angel process. The angel process monitors Instance Manager and
restarts it if it crashes. (The angel process itself is simple and unlikely to crash.)

• --socket=path

On Unix, the socket file to use for incoming connections. The default file is named /tmp/
mysqlmanager.sock. This option has no meaning on Windows.

• --standalone

This option is used on Windows to run Instance Manager in standalone mode. You should specify it
when you start Instance Manager from the command line. This option was added in MySQL 5.0.13.

• --user=user_name

On Unix, the user name of the system account to use for starting and running mysqlmanager. This
option generates a warning and has no effect unless you start mysqlmanager as root (so that
it can change its effective user ID), or as the named user. It is recommended that you configure
mysqlmanager to run using the same account used to run the mysqld server. (“User” in this context
refers to a system login account, not a MySQL user listed in the grant tables.)

• --version, -V

Display version information and exit.

• --wait-timeout=N

The number of seconds to wait for activity on an incoming connection before closing it. The default is
28800 seconds (8 hours).

This option was added in MySQL 5.0.19. Before that, the timeout is 30 seconds and cannot be changed.

4.6.10.2 MySQL Instance Manager Configuration Files

Important

MySQL Instance Manager is been deprecated in MySQL 5.1 and is removed in
MySQL 5.5.

Instance Manager uses its standard configuration file unless it is started with a --defaults-file option
that specifies a different file. On Windows, the standard file is my.ini in the directory where Instance
Manager is installed. On Unix, the standard file is /etc/my.cnf. (Prior to MySQL 5.0.10, the MySQL

mysqlmanager — The MySQL Instance Manager

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 396

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Instance Manager read the same configuration files as the MySQL Server, including /etc/my.cnf,
~/.my.cnf, and so forth.)

Instance Manager reads options for itself from the [manager] section of the configuration file, and options
for server instances from [mysqld] or [mysqldN] sections. The [manager] section contains any of
the options listed in Section 4.6.10.1, “MySQL Instance Manager Command Options”, except for those
specified as having to be given as the first option on the command line. Here is a sample [manager]
section:

MySQL Instance Manager options section
[manager]
default-mysqld-path = /usr/local/mysql/libexec/mysqld
socket=/tmp/manager.sock
pid-file=/tmp/manager.pid
password-file = /home/cps/.mysqlmanager.passwd
monitoring-interval = 2
port = 1999
bind-address = 192.168.1.5

Each [mysqld] or [mysqldN] instance section specifies options given by Instance Manager to a
server instance at startup. These are mainly common MySQL Server options (see Section 5.1.3, “Server
Command Options”). In addition, a [mysqldN] section can contain the options in the following list, which
are specific to Instance Manager. These options are interpreted by Instance Manager itself; it does not
pass them to the server when it attempts to start that server.

Warning

The Instance Manager-specific options must not be used in a [mysqld] section.
If a server is started without using Instance Manager, it will not recognize these
options and will fail to start properly.

• mysqld-path = file_name

The path name of the mysqld server binary to use for the server instance.

• nonguarded

This option disables Instance Manager monitoring functionality for the server instance. By default, an
instance is guarded: At Instance Manager start time, it starts the instance. It also monitors the instance
status and attempts to restart it if it fails. At Instance Manager exit time, it stops the instance. None of
these things happen for nonguarded instances.

• shutdown-delay = seconds

The number of seconds Instance Manager should wait for the server instance to shut down. The default
value is 35 seconds. After the delay expires, Instance Manager assumes that the instance is hanging
and attempts to terminate it. If you use InnoDB with large tables, you should increase this value.

Here are some sample instance sections:

[mysqld1]
mysqld-path=/usr/local/mysql/libexec/mysqld
socket=/tmp/mysql.sock
port=3307
server_id=1
skip-stack-trace
core-file
skip-bdb

mysqlmanager — The MySQL Instance Manager

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 397

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

log-bin
log-error
log=mylog
log-slow-queries

[mysqld2]
nonguarded
port=3308
server_id=2
mysqld-path= /home/cps/mysql/trees/mysql-5.0/sql/mysqld
socket = /tmp/mysql.sock5
pid-file = /tmp/hostname.pid5
datadir= /home/cps/mysql_data/data_dir1
language=/home/cps/mysql/trees/mysql-5.0/sql/share/english
log-bin
log=/tmp/fordel.log

4.6.10.3 Starting the MySQL Server with MySQL Instance Manager

Important

MySQL Instance Manager is been deprecated in MySQL 5.1 and is removed in
MySQL 5.5.

This section discusses how Instance Manager starts server instances when it starts. However, before you
start Instance Manager, you should set up a password file for it. Otherwise, you will not be able to connect
to Instance Manager to control it after it starts. For details about creating Instance Manager accounts, see
Section 4.6.10.4, “Instance Manager User and Password Management”.

On Unix, the mysqld MySQL database server normally is started with the mysql.server script, which
usually resides in the /etc/init.d/ directory. In MySQL 5.0.3, this script invokes mysqlmanager (the
MySQL Instance Manager binary) to start MySQL. (In prior versions of MySQL the mysqld_safe script
is used for this purpose.) Starting from MySQL 5.0.4, the behavior of the startup script was changed again
to incorporate both setup schemes. In version 5.0.4, the startup script uses the old scheme (invoking
mysqld_safe) by default, but one can set the use_mysqld_safe variable in the script to 0 (zero) to use
the MySQL Instance Manager to start a server.

Starting with MySQL 5.0.19, you can use Instance Manager if you modify the my.cnf configuration file by
adding use-manager to the [mysql.server] section:

[mysql.server]
use-manager

When Instance Manager starts, it reads its configuration file if it exists to find server instance sections and
prepare a list of instances. Instance sections have names of the form [mysqld] or [mysqldN], where N
is an unsigned integer (for example, [mysqld1], [mysqld2], and so forth).

After preparing the list of instances, Instance Manager starts the guarded instances in the list. If there are
no instances, Instance Manager creates an instance named mysqld and attempts to start it with default
(compiled-in) configuration values. This means that the Instance Manager cannot find the mysqld program
if it is not installed in the default location. (Section 2.7, “Installation Layouts”, describes default locations
for components of MySQL distributions.) If you have installed the MySQL server in a nonstandard location,
you should create the Instance Manager configuration file.

Instance Manager also stops all guarded server instances when it shuts down.

The permissible options for [mysqldN] server instance sections are described in Section 4.6.10.2,
“MySQL Instance Manager Configuration Files”. In these sections, you can use a special mysqld-
path=path-to-mysqld-binary option that is recognized only by Instance Manager. Use this option

mysqlmanager — The MySQL Instance Manager

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 398

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

to let Instance Manager know where the mysqld binary resides. If there are multiple instances, it may
also be necessary to set other options such as datadir and port, to ensure that each instance has a
different data directory and TCP/IP port number. Section 5.5, “Running Multiple MySQL Instances on One
Machine”, discusses the configuration values that must differ for each instance when you run multiple
instance on the same machine.

Warning

The [mysqld] instance section, if it exists, must not contain any Instance
Manager-specific options.

The typical Unix startup/shutdown cycle for a MySQL server with the MySQL Instance Manager enabled is
as follows:

1. The /etc/init.d/mysql script starts MySQL Instance Manager.

2. Instance Manager starts the guarded server instances and monitors them.

3. If a server instance fails, Instance Manager restarts it.

4. If Instance Manager is shut down (for example, with the /etc/init.d/mysql stop command), it
shuts down all server instances.

4.6.10.4 Instance Manager User and Password Management

Important

MySQL Instance Manager is been deprecated in MySQL 5.1 and is removed in
MySQL 5.5.

The Instance Manager stores its user information in a password file. On Windows, the default is
mysqlmanager.passwd in the directory where Instance Manager is installed. On Unix, the default file is /
etc/mysqlmanager.passwd. To specify a different location for the password file, use the --password-
file option.

If the password file does not exist or contains no password entries, you cannot connect to the Instance
Manager.

Note

Any Instance Manager process that is running to monitor server instances does
not notice changes to the password file. You must stop it and restart it after making
password entry changes.

Entries in the password file have the following format, where the two fields are the account user name and
encrypted password, separated by a colon:

petr:*35110DC9B4D8140F5DE667E28C72DD2597B5C848

Instance Manager password encryption is the same as that used by MySQL Server. It is a one-way
operation; no means are provided for decrypting encrypted passwords.

Instance Manager accounts differ somewhat from MySQL Server accounts:

• MySQL Server accounts are associated with a host name, user name, and password (see Section 6.3.1,
“User Names and Passwords”).

• Instance Manager accounts are associated with a user name and password only.

mysqlmanager — The MySQL Instance Manager

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 399

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This means that a client can connect to Instance Manager with a given user name from any host. To limit
connections so that clients can connect only from the local host, start Instance Manager with the --bind-
address=127.0.0.1 option so that it listens only to the local network interface. Remote clients will not be
able to connect. Local clients can connect like this:

shell> mysql -h 127.0.0.1 -P 2273

To generate a new entry, invoke Instance Manager with the --passwd option and append the output to
the /etc/mysqlmanager.passwd file. Here is an example:

shell> mysqlmanager --passwd >> /etc/mysqlmanager.passwd
Creating record for new user.
Enter user name: mike
Enter password: mikepass
Re-type password: mikepass

At the prompts, enter the user name and password for the new Instance Manager user. You must enter
the password twice. It does not echo to the screen, so double entry guards against entering a different
password than you intend (if the two passwords do not match, no entry is generated).

The preceding command causes the following line to be added to /etc/mysqlmanager.passwd:

mike:*BBF1F551DD9DD96A01E66EC7DDC073911BAD17BA

Use of the --passwd option fails if mysqlmanager is invoked directly from an IBM 5250 terminal. To work
around this, use a command like the following from the command line to generate the password entry:

shell> mysql -B --skip-column-name \
 -e 'SELECT CONCAT("user_name",":",PASSWORD("pass_val"));'

The output from the command can be used an entry in the /etc/mysqlmanager.passwd file.

4.6.10.5 MySQL Server Instance Status Monitoring

Important

MySQL Instance Manager is been deprecated in MySQL 5.1 and is removed in
MySQL 5.5.

To monitor the status of each guarded server instance, the MySQL Instance Manager attempts to connect
to the instance at regular intervals using the MySQL_Instance_Manager@localhost user account with
a password of check_connection.

You are not required to create this account for MySQL Server; in fact, it is expected that it will not exist.
Instance Manager can tell that a server is operational if the server accepts the connection attempt but
refuses access for the account by returning a login error. However, these failed connection attempts are
logged by the server to its general query log (see Section 5.4.2, “The General Query Log”).

Instance Manager also attempts a connection to nonguarded server instances when you use the
SHOW INSTANCES or SHOW INSTANCE STATUS command. This is the only status monitoring done for
nonguarded instances.

Instance Manager knows if a server instance fails at startup because it receives a status from the attempt.
For an instance that starts but later crashes, Instance Manager receives a signal because it is the parent
process of the instance.

mysqlmanager — The MySQL Instance Manager

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 400

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

4.6.10.6 Connecting to MySQL Instance Manager

Important

MySQL Instance Manager is been deprecated in MySQL 5.1 and is removed in
MySQL 5.5.

After you set up a password file for the MySQL Instance Manager and Instance Manager is running, you
can connect to it. The MySQL client/server protocol is used to communicate with the Instance Manager.
For example, you can connect to it using the standard mysql client program:

shell> mysql --port=2273 --host=im.example.org --user=mysql --password

Instance Manager supports the version of the MySQL client/server protocol used by the client tools and
libraries distributed with MySQL 4.1 or later, so other programs that use the MySQL C API also can
connect to it.

4.6.10.7 MySQL Instance Manager Commands

Important

MySQL Instance Manager is been deprecated in MySQL 5.1 and is removed in
MySQL 5.5.

After you connect to MySQL Instance Manager, you can issue commands. The following general principles
apply to Instance Manager command execution:

• Commands that take an instance name fail if the name is not a valid instance name.

• Commands that take an instance name fail if the instance does not exist.

• Instance Manager maintains information about instance configuration in an internal (in-memory) cache.
Initially, this information comes from the configuration file if it exists, but some commands change the
configuration of an instance. Commands that modify the configuration file fail if the file does not exist or
is not accessible to Instance Manager.

• On Windows, the standard file is my.ini in the directory where Instance Manager is installed. On Unix,
the standard configuration file is /etc/my.cnf. To specify a different configuration file, start Instance
Manager with the --defaults-file option.

• If a [mysqld] instance section exists in the configuration file, it must not contain any Instance Manager-
specific options (see Section 4.6.10.2, “MySQL Instance Manager Configuration Files”). Therefore, you
must not add any of these options if you change the configuration for an instance named mysqld.

The following list describes the commands that Instance Manager accepts, with examples.

• START INSTANCE instance_name

This command attempts to start an offline instance. The command is asynchronous; it does not wait for
the instance to start.

mysql> START INSTANCE mysqld4;
Query OK, 0 rows affected (0,00 sec)

• STOP INSTANCE instance_name

mysqlmanager — The MySQL Instance Manager

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 401

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This command attempts to stop an instance. The command is synchronous; it waits for the instance to
stop.

mysql> STOP INSTANCE mysqld4;
Query OK, 0 rows affected (0,00 sec)

• SHOW INSTANCES

Shows the names and status of all loaded instances.

mysql> SHOW INSTANCES;
+---------------+---------+
| instance_name | status |
+---------------+---------+
mysqld3	offline
mysqld4	online
mysqld2	offline
+---------------+---------+

• SHOW INSTANCE STATUS instance_name

Shows status and version information for an instance.

mysql> SHOW INSTANCE STATUS mysqld3;
+---------------+--------+---------+
| instance_name | status | version |
+---------------+--------+---------+
| mysqld3 | online | unknown |
+---------------+--------+---------+

• SHOW INSTANCE OPTIONS instance_name

Shows the options used by an instance.

mysql> SHOW INSTANCE OPTIONS mysqld3;
+---------------+---+
| option_name | value |
+---------------+---+
instance_name	mysqld3
mysqld-path	/home/cps/mysql/trees/mysql-4.1/sql/mysqld
port	3309
socket	/tmp/mysql.sock3
pid-file	hostname.pid3
datadir	/home/cps/mysql_data/data_dir1/
language	/home/cps/mysql/trees/mysql-4.1/sql/share/english
+---------------+---+

• SHOW instance_name LOG FILES

The command lists all log files used by the instance. The result set contains the path to the log file and
the log file size. If no log file path is specified in the instance section of the configuration file (for example,
log=/var/mysql.log), the Instance Manager tries to guess its placement. If Instance Manager is
unable to guess the log file placement you should specify the log file location explicitly by using a log
option in the appropriate instance section of the configuration file.

mysql> SHOW mysqld LOG FILES;
+-------------+------------------------------------+----------+
| Logfile | Path | Filesize |

mysqlmanager — The MySQL Instance Manager

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 402

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+-------------+------------------------------------+----------+
ERROR LOG	/home/cps/var/mysql/owlet.err	9186
GENERAL LOG	/home/cps/var/mysql/owlet.log	471503
SLOW LOG	/home/cps/var/mysql/owlet-slow.log	4463
+-------------+------------------------------------+----------+

Log options are described in Section 5.1.3, “Server Command Options”.

• SHOW instance_name LOG {ERROR | SLOW | GENERAL} size[,offset_from_end]

This command retrieves a portion of the specified log file. Because most users are interested in the
latest log messages, the size parameter defines the number of bytes to retrieve from the end of the log.
To retrieve data from the middle of the log file, specify the optional offset_from_end parameter. The
following example retrieves 21 bytes of data, starting 23 bytes before the end of the log file and ending 2
bytes before the end:

mysql> SHOW mysqld LOG GENERAL 21, 2;
+---------------------+
| Log |
+---------------------+
| using password: YES |
+---------------------+

• SET instance_name.option_name[=option_value]

This command edits the specified instance's configuration section to change or add instance options.
The option is added to the section is it is not already present. Otherwise, the new setting replaces the
existing one.

mysql> SET mysqld2.port=3322;
Query OK, 0 rows affected (0.00 sec)

Changes made to the configuration file do not take effect until the MySQL server is restarted. In addition,
these changes are not stored in the instance manager's local cache of instance settings until a FLUSH
INSTANCES command is executed.

• UNSET instance_name.option_name

This command removes an option from an instance's configuration section.

mysql> UNSET mysqld2.port;
Query OK, 0 rows affected (0.00 sec)

Changes made to the configuration file do not take effect until the MySQL server is restarted. In addition,
these changes are not stored in the instance manager's local cache of instance settings until a FLUSH
INSTANCES command is executed.

• FLUSH INSTANCES

This command forces Instance Manager reread the configuration file and to refresh internal structures.
This command should be performed after editing the configuration file. The command does not restart
instances.

mysql> FLUSH INSTANCES;
Query OK, 0 rows affected (0.04 sec)

FLUSH INSTANCES is deprecated and will be removed in a future MySQL release.

mysql_convert_table_format — Convert Tables to Use a Given Storage Engine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 403

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

4.6.11 mysql_convert_table_format — Convert Tables to Use a Given
Storage Engine

mysql_convert_table_format converts the tables in a database to use a particular storage engine
(MyISAM by default). mysql_convert_table_format is written in Perl and requires that the DBI and
DBD::mysql Perl modules be installed (see Section 2.22, “Perl Installation Notes”).

Invoke mysql_convert_table_format like this:

shell> mysql_convert_table_format [options]db_name

The db_name argument indicates the database containing the tables to be converted.

mysql_convert_table_format supports the options described in the following list.

• --help

Display a help message and exit.

• --force

Continue even if errors occur.

• --host=host_name

Connect to the MySQL server on the given host.

• --password=password

The password to use when connecting to the server. Note that the password value is not optional for this
option, unlike for other MySQL programs.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. You can use an option file to avoid giving the password on the
command line.

• --port=port_num

The TCP/IP port number to use for the connection.

• --socket=path

For connections to localhost, the Unix socket file to use.

• --type=engine_name

Specify the storage engine that the tables should be converted to use. The default is MyISAM if this
option is not given.

• --user=user_name

The MySQL user name to use when connecting to the server.

• --verbose

Verbose mode. Print more information about what the program does.

• --version

mysql_explain_log — Use EXPLAIN on Statements in Query Log

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 404

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Display version information and exit.

4.6.12 mysql_explain_log — Use EXPLAIN on Statements in Query Log

mysql_explain_log reads its standard input for query log contents. It uses EXPLAIN to analyze
SELECT statements found in the input. UPDATE statements are rewritten to SELECT statements and also
analyzed with EXPLAIN. mysql_explain_log then displays a summary of its results.

The results may assist you in determining which queries result in table scans and where it would be
beneficial to add indexes to your tables.

Invoke mysql_explain_log like this, where log_file contains all or part of a MySQL query log:

shell> mysql_explain_log [options] < log_file

mysql_explain_log understands the following options:

• --help, -?

Display a help message and exit.

• --date=YYMMDD, -d YYMMDD

Select entries from the log only for the given date.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --password=password, -p password

The password to use when connecting to the server.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”.

• --printerror=1, -e 1

Enable error output.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the named pipe
to use.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

4.6.13 mysql_find_rows — Extract SQL Statements from Files

mysql_find_rows reads files containing SQL statements and extracts statements that match a given
regular expression or that contain USE db_name or SET statements. The utility was written for use
with update log files (as used prior to MySQL 5.0) and as such expects statements to be terminated
with semicolon (;) characters. It may be useful with other files that contain SQL statements as long as
statements are terminated with semicolons.

mysql_fix_extensions — Normalize Table File Name Extensions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 405

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Invoke mysql_find_rows like this:

shell> mysql_find_rows [options] [file_name ...]

Each file_name argument should be the name of file containing SQL statements. If no file names are
given, mysql_find_rows reads the standard input.

Examples:

mysql_find_rows --regexp=problem_table --rows=20 < update.log
mysql_find_rows --regexp=problem_table update-log.1 update-log.2

mysql_find_rows supports the following options:

• --help, --Information

Display a help message and exit.

• --regexp=pattern

Display queries that match the pattern.

• --rows=N

Quit after displaying N queries.

• --skip-use-db

Do not include USE db_name statements in the output.

• --start_row=N

Start output from this row.

4.6.14 mysql_fix_extensions — Normalize Table File Name Extensions

mysql_fix_extensions converts the extensions for MyISAM (or ISAM) table files to their canonical
forms. It looks for files with extensions matching any lettercase variant of .frm, .myd, .myi, .isd, and
.ism and renames them to have extensions of .frm, .MYD, .MYI, .ISD, and .ISM, respectively. This can
be useful after transferring the files from a system with case-insensitive file names (such as Windows) to a
system with case-sensitive file names.

Invoke mysql_fix_extensions like this, where data_dir is the path name to the MySQL data
directory.

shell> mysql_fix_extensions data_dir

4.6.15 mysql_setpermission — Interactively Set Permissions in Grant
Tables

mysql_setpermission is a Perl script that was originally written and contributed by Luuk de Boer. It
interactively sets permissions in the MySQL grant tables. mysql_setpermission is written in Perl and
requires that the DBI and DBD::mysql Perl modules be installed (see Section 2.22, “Perl Installation
Notes”).

Invoke mysql_setpermission like this:

mysql_tableinfo — Generate Database Metadata

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 406

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysql_setpermission [options]

options should be either --help to display the help message, or options that indicate how to connect
to the MySQL server. The account used when you connect determines which permissions you have when
attempting to modify existing permissions in the grant tables.

mysql_setpermissions also reads options from the [client] and [perl] groups in the .my.cnf file
in your home directory, if the file exists.

mysql_setpermission supports the following options:

• --help

Display a help message and exit.

• --host=host_name

Connect to the MySQL server on the given host.

• --password=password

The password to use when connecting to the server. Note that the password value is not optional for this
option, unlike for other MySQL programs.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. You can use an option file to avoid giving the password on the
command line.

• --port=port_num

The TCP/IP port number to use for the connection.

• --socket=path

For connections to localhost, the Unix socket file to use.

• --user=user_name

The MySQL user name to use when connecting to the server.

4.6.16 mysql_tableinfo — Generate Database Metadata

mysql_tableinfo creates tables and populates them with database metadata. It uses SHOW
DATABASES, SHOW TABLES, SHOW TABLE STATUS, SHOW COLUMNS, and SHOW INDEX to obtain the
metadata.

In MySQL 5.0 and up, the INFORMATION_SCHEMA database contains the same kind of information in the
SCHEMATA, TABLES, COLUMNS, and STATISTICS tables. See Chapter 19, INFORMATION_SCHEMA
Tables.

Invoke mysql_tableinfo like this:

shell> mysql_tableinfo [options] db_name [db_like [tbl_like]]

The db_name argument indicates which database mysql_tableinfo should use as the location for the
metadata tables. The database will be created if it does not exist. The tables will be named db, tbl (or
tbl_status), col, and idx.

mysql_tableinfo — Generate Database Metadata

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 407

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If the db_like or tbl_like arguments are given, they are used as patterns and metadata is generated
only for databases or tables that match the patterns. These arguments default to % if not given.

Examples:

mysql_tableinfo info
mysql_tableinfo info world
mysql_tableinfo info mydb tmp%

Each of the commands stores information into tables in the info database. The first stores information
for all databases and tables. The second stores information for all tables in the world database. The third
stores information for tables in the mydb database that have names matching the pattern tmp%.

mysql_tableinfo supports the following options:

Table 4.14 mysql_tableinfo Options

Format Description

--clear Before populating each metadata table, drop it if it exists

--clear-only Similar to --clear, but exits after dropping the metadata tables to be
populated.

--col Generate column metadata into the col table

--help Display help message and exit

--host Connect to MySQL server on given host

--idx Generate index metadata into the idx table

--password Password to use when connecting to server -- not optional

--port TCP/IP port number to use for connection

--prefix Add prefix_str at the beginning of each metadata table name

--quiet Be silent except for errors

--socket For connections to localhost, the Unix socket file to use

--tbl-status Use SHOW TABLE STATUS instead of SHOW TABLES

--user The mysql_tableinfo user name to use when connecting to server

• --help

Display a help message and exit.

• --clear

Before populating each metadata table, drop it if it exists.

• --clear-only

Similar to --clear, but exits after dropping the metadata tables to be populated.

• --col

Generate column metadata into the col table.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

mysql_waitpid — Kill Process and Wait for Its Termination

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 408

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --idx

Generate index metadata into the idx table.

• --password=password, -ppassword

The password to use when connecting to the server. Note that the password value is not optional for this
option, unlike for other MySQL programs. You can use an option file to avoid giving the password on the
command line.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --prefix=prefix_str

Add prefix_str at the beginning of each metadata table name.

• --quiet, -q

Be silent except for errors.

• --socket=path, -S path

The Unix socket file to use for the connection.

• --tbl-status

Use SHOW TABLE STATUS instead of SHOW TABLES. This provides more complete information, but is
slower.

• --user=user_name, -u user_name

The MySQL user name to use when connecting to the server.

4.6.17 mysql_waitpid — Kill Process and Wait for Its Termination

mysql_waitpid signals a process to terminate and waits for the process to exit. It uses the kill()
system call and Unix signals, so it runs on Unix and Unix-like systems.

Invoke mysql_waitpid like this:

shell> mysql_waitpid [options] pid wait_time

mysql_waitpid sends signal 0 to the process identified by pid and waits up to wait_time seconds for
the process to terminate. pid and wait_time must be positive integers.

If process termination occurs within the wait time or the process does not exist, mysql_waitpid returns
0. Otherwise, it returns 1.

If the kill() system call cannot handle signal 0, mysql_waitpid() uses signal 1 instead.

mysql_waitpid supports the following options:

• --help, -?, -I

mysql_zap — Kill Processes That Match a Pattern

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 409

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Display a help message and exit.

• --verbose, -v

Verbose mode. Display a warning if signal 0 could not be used and signal 1 is used instead.

• --version, -V

Display version information and exit.

4.6.18 mysql_zap — Kill Processes That Match a Pattern

mysql_zap kills processes that match a pattern. It uses the ps command and Unix signals, so it runs on
Unix and Unix-like systems.

Invoke mysql_zap like this:

shell> mysql_zap [-signal] [-?Ift] pattern

A process matches if its output line from the ps command contains the pattern. By default, mysql_zap
asks for confirmation for each process. Respond y to kill the process, or q to exit mysql_zap. For any
other response, mysql_zap does not attempt to kill the process.

If the -signal option is given, it specifies the name or number of the signal to send to each process.
Otherwise, mysql_zap tries first with TERM (signal 15) and then with KILL (signal 9).

mysql_zap supports the following additional options:

• --help, -?, -I

Display a help message and exit.

• -f

Force mode. mysql_zap attempts to kill each process without confirmation.

• -t

Test mode. Display information about each process but do not kill it.

4.7 MySQL Program Development Utilities

This section describes some utilities that you may find useful when developing MySQL programs.

In shell scripts, you can use the my_print_defaults program to parse option files and see what options
would be used by a given program. The following example shows the output that my_print_defaults
might produce when asked to show the options found in the [client] and [mysql] groups:

shell> my_print_defaults client mysql
--port=3306
--socket=/tmp/mysql.sock
--no-auto-rehash

Note for developers: Option file handling is implemented in the C client library simply by processing all
options in the appropriate group or groups before any command-line arguments. This works well for

msql2mysql — Convert mSQL Programs for Use with MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 410

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

programs that use the last instance of an option that is specified multiple times. If you have a C or C++
program that handles multiply specified options this way but that doesn't read option files, you need add
only two lines to give it that capability. Check the source code of any of the standard MySQL clients to see
how to do this.

Several other language interfaces to MySQL are based on the C client library, and some of them provide a
way to access option file contents. These include Perl and Python. For details, see the documentation for
your preferred interface.

4.7.1 msql2mysql — Convert mSQL Programs for Use with MySQL

Initially, the MySQL C API was developed to be very similar to that for the mSQL database system.
Because of this, mSQL programs often can be converted relatively easily for use with MySQL by changing
the names of the C API functions.

The msql2mysql utility performs the conversion of mSQL C API function calls to their MySQL equivalents.
msql2mysql converts the input file in place, so make a copy of the original before converting it. For
example, use msql2mysql like this:

shell> cp client-prog.c client-prog.c.orig
shell> msql2mysql client-prog.c
client-prog.c converted

Then examine client-prog.c and make any post-conversion revisions that may be necessary.

msql2mysql uses the replace utility to make the function name substitutions. See Section 4.8.2,
“replace — A String-Replacement Utility”.

4.7.2 mysql_config — Display Options for Compiling Clients

mysql_config provides you with useful information for compiling your MySQL client and connecting it to
MySQL. It is a shell script, so it is available only on Unix and Unix-like systems.

mysql_config supports the following options.

• --cflags

Compiler flags to find include files and critical compiler flags and defines used when compiling the
libmysqlclient library. The options returned are tied to the specific compiler that was used when the
library was created and might clash with the settings for your own compiler. Use --include for more
portable options that contain only include paths.

• --include

Compiler options to find MySQL include files.

• --libmysqld-libs, --embedded

Libraries and options required to link with the MySQL embedded server.

• --libs

Libraries and options required to link with the MySQL client library.

• --libs_r

Libraries and options required to link with the thread-safe MySQL client library.

my_print_defaults — Display Options from Option Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 411

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --port

The default TCP/IP port number, defined when configuring MySQL.

• --socket

The default Unix socket file, defined when configuring MySQL.

• --version

Version number for the MySQL distribution.

If you invoke mysql_config with no options, it displays a list of all options that it supports, and their
values:

shell> mysql_config
Usage: /usr/local/mysql/bin/mysql_config [options]
Options:
 --cflags [-I/usr/local/mysql/include/mysql -mcpu=pentiumpro]
 --include [-I/usr/local/mysql/include/mysql]
 --libs [-L/usr/local/mysql/lib/mysql -lmysqlclient -lz
 -lz -lcrypt -lnsl -lm]
 --libs_r [-L/usr/local/mysql/lib/mysql -lmysqlclient_r
 -lz -lpthread -lcrypt -lnsl -lm -lpthread]
 --socket [/tmp/mysql.sock]
 --port [3306]
 --version [5.0.96]
 --libmysqld-libs [-L/usr/local/mysql/lib/mysql -lmysqld
 -lz -lpthread -lcrypt -lnsl -lm -lpthread -lrt]

You can use mysql_config within a command line using backticks to include the output that it produces
for particular options. For example, to compile and link a MySQL client program, use mysql_config as
follows:

gcc -c `mysql_config --cflags` progname.c
gcc -o progname progname.o `mysql_config --libs`

4.7.3 my_print_defaults — Display Options from Option Files

my_print_defaults displays the options that are present in option groups of option files. The output
indicates what options will be used by programs that read the specified option groups. For example, the
mysqlcheck program reads the [mysqlcheck] and [client] option groups. To see what options are
present in those groups in the standard option files, invoke my_print_defaults like this:

shell> my_print_defaults mysqlcheck client
--user=myusername
--password=secret
--host=localhost

The output consists of options, one per line, in the form that they would be specified on the command line.

my_print_defaults supports the following options.

• --help, -?

Display a help message and exit.

• --config-file=file_name, --defaults-file=file_name, -c file_name

resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 412

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Read only the given option file.

• --debug=debug_options, -# debug_options

Write a debugging log. A typical debug_options string is d:t:o,file_name. The default is d:t:o,/
tmp/my_print_defaults.trace.

• --defaults-extra-file=file_name, --extra-file=file_name, -e file_name

Read this option file after the global option file but (on Unix) before the user option file.

• --defaults-group-suffix=suffix, -g suffix

In addition to the groups named on the command line, read groups that have the given suffix.

• --no-defaults, -n

Return an empty string.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

4.7.4 resolve_stack_dump — Resolve Numeric Stack Trace Dump to
Symbols

resolve_stack_dump resolves a numeric stack dump to symbols.

Invoke resolve_stack_dump like this:

shell> resolve_stack_dump [options] symbols_file [numeric_dump_file]

The symbols file should include the output from the nm --numeric-sort mysqld command. The
numeric dump file should contain a numeric stack track from mysqld. If no numeric dump file is named on
the command line, the stack trace is read from the standard input.

resolve_stack_dump supports the following options.

• --help, -h

Display a help message and exit.

• --numeric-dump-file=file_name, -n file_name

Read the stack trace from the given file.

• --symbols-file=file_name, -s file_name

Use the given symbols file.

• --version, -V

Display version information and exit.

Miscellaneous Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 413

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For more information, see Section 21.3.1.5, “Using a Stack Trace”.

4.8 Miscellaneous Programs

4.8.1 perror — Explain Error Codes

For most system errors, MySQL displays, in addition to an internal text message, the system error code in
one of the following styles:

message ... (errno: #)
message ... (Errcode: #)

You can find out what the error code means by examining the documentation for your system or by using
the perror utility.

perror prints a description for a system error code or for a storage engine (table handler) error code.

Invoke perror like this:

shell> perror [options] errorcode ...

Example:

shell> perror 13 64
OS error code 13: Permission denied
OS error code 64: Machine is not on the network

To obtain the error message for a MySQL Cluster error code, invoke perror with the --ndb option:

shell> perror --ndb errorcode

The meaning of system error messages may be dependent on your operating system. A given error code
may mean different things on different operating systems.

perror supports the following options.

• --help, --info, -I, -?

Display a help message and exit.

• --ndb

Print the error message for a MySQL Cluster error code.

• --silent, -s

Silent mode. Print only the error message.

• --verbose, -v

Verbose mode. Print error code and message. This is the default behavior.

• --version, -V

Display version information and exit.

replace — A String-Replacement Utility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 414

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

4.8.2 replace — A String-Replacement Utility

The replace utility program changes strings in place in files or on the standard input.

Invoke replace in one of the following ways:

shell> replace from to [from to] ... -- file_name [file_name] ...
shell> replace from to [from to] ... < file_name

from represents a string to look for and to represents its replacement. There can be one or more pairs of
strings.

Use the -- option to indicate where the string-replacement list ends and the file names begin. In this case,
any file named on the command line is modified in place, so you may want to make a copy of the original
before converting it. replace prints a message indicating which of the input files it actually modifies.

If the -- option is not given, replace reads the standard input and writes to the standard output.

replace uses a finite state machine to match longer strings first. It can be used to swap strings. For
example, the following command swaps a and b in the given files, file1 and file2:

shell> replace a b b a -- file1 file2 ...

The replace program is used by msql2mysql. See Section 4.7.1, “msql2mysql — Convert mSQL
Programs for Use with MySQL”.

replace supports the following options.

• -?, -I

Display a help message and exit.

• -#debug_options

Enable debugging.

• -s

Silent mode. Print less information what the program does.

• -v

Verbose mode. Print more information about what the program does.

• -V

Display version information and exit.

4.8.3 resolveip — Resolve Host name to IP Address or Vice Versa

The resolveip utility resolves host names to IP addresses and vice versa.

Invoke resolveip like this:

shell> resolveip [options] {host_name|ip-addr} ...

resolveip — Resolve Host name to IP Address or Vice Versa

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 415

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

resolveip supports the following options.

• --help, --info, -?, -I

Display a help message and exit.

• --silent, -s

Silent mode. Produce less output.

• --version, -V

Display version information and exit.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 416

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 417

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 5 MySQL Server Administration

Table of Contents
5.1 The MySQL Server ... 417

5.1.1 Server Option and Variable Reference .. 418
5.1.2 Server Configuration Defaults ... 439
5.1.3 Server Command Options .. 439
5.1.4 Server System Variables .. 466
5.1.5 Using System Variables ... 556
5.1.6 Server Status Variables .. 566
5.1.7 Server SQL Modes .. 586
5.1.8 Server-Side Help .. 594
5.1.9 Server Response to Signals ... 594
5.1.10 The Server Shutdown Process ... 595

5.2 The MySQL Data Directory ... 596
5.3 The mysql System Database ... 597
5.4 MySQL Server Logs ... 598

5.4.1 The Error Log .. 598
5.4.2 The General Query Log ... 600
5.4.3 The Binary Log .. 600
5.4.4 The Slow Query Log .. 604
5.4.5 Server Log Maintenance .. 605

5.5 Running Multiple MySQL Instances on One Machine .. 606
5.5.1 Setting Up Multiple Data Directories ... 607
5.5.2 Running Multiple MySQL Instances on Windows ... 608
5.5.3 Running Multiple MySQL Instances on Unix .. 611
5.5.4 Using Client Programs in a Multiple-Server Environment .. 613

End of Product Lifecycle. Active development for MySQL Database Server version 5.0 has ended.
Oracle offers various support offerings which may be of interest. For details and more information, see the
MySQL section of the Lifetime Support Policy for Oracle Technology Products (http://www.oracle.com/us/
support/lifetime-support/index.html). Please consider upgrading to a recent version.

MySQL Server (mysqld) is the main program that does most of the work in a MySQL installation. This
chapter provides an overview of MySQL Server and covers general server administration:

• Server configuration

• The data directory, particularly the mysql system database

• The server log files

• Management of multiple servers on a single machine

For additional information on administrative topics, see also:

• Chapter 6, Security

• Chapter 7, Backup and Recovery

• Chapter 16, Replication

5.1 The MySQL Server

http://www.oracle.com/us/support/lifetime-support/index.html
http://www.oracle.com/us/support/lifetime-support/index.html

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 418

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysqld is the MySQL server. The following discussion covers these MySQL server configuration topics:

• Startup options that the server supports

• Server system variables

• Server status variables

• How to set the server SQL mode

• The server shutdown process

Note

Not all storage engines are supported by all MySQL server binaries and
configurations. To find out how to determine which storage engines your MySQL
server installation supports, see Section 13.7.5.13, “SHOW ENGINES Syntax”.

5.1.1 Server Option and Variable Reference

The following table provides a list of all the command line options, server and status variables applicable
within mysqld.

The table lists command-line options (Cmd-line), options valid in configuration files (Option file), server
system variables (System Var), and status variables (Status var) in one unified list, with notification
of where each option/variable is valid. If a server option set on the command line or in an option file
differs from the name of the corresponding server system or status variable, the variable name is noted
immediately below the corresponding option. For status variables, the scope of the variable is shown
(Scope) as either global, session, or both. Please see the corresponding sections for details on setting
and using the options and variables. Where appropriate, a direct link to further information on the item as
available.

For a version of this table that is specific to MySQL Cluster, see Section 17.3.2.5, “MySQL Cluster mysqld
Option and Variable Reference”.

Table 5.1 Option/Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

abort-slave-event-
count

Yes Yes

Aborted_clients Yes Global No

Aborted_connects Yes Global No

allow-suspicious-
udfs

Yes Yes

ansi Yes Yes

auto_increment_increment Yes Both Yes

auto_increment_offset Yes Both Yes

autocommit Yes Session Yes

automatic_sp_privileges Yes Global Yes

back_log Yes Global No

basedir Yes Yes Yes Global No

bdb_cache_size Yes Global No

bdb-home Yes Yes Global No

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 419

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

- Variable:
bdb_home

 Yes Global No

bdb-lock-detect Yes Yes Yes Global No

bdb_log_buffer_size Yes Global No

bdb-logdir Yes Yes Global No

- Variable:
bdb_logdir

 Yes Global No

bdb_max_lock Yes Global No

bdb-no-recover Yes Yes

bdb-no-sync Yes Yes

bdb-shared-data Yes Yes Global No

- Variable:
bdb_shared_data

 Yes Global No

bdb-tmpdir Yes Yes Global No

- Variable:
bdb_tmpdir

 Yes Global No

big-tables Yes Yes Session Yes

- Variable:
big_tables

 Yes Session Yes

bind-address Yes Yes

Binlog_cache_disk_use Yes Global No

binlog_cache_size Yes Yes Yes Global Yes

Binlog_cache_use Yes Global No

binlog-do-db Yes Yes

binlog-ignore-db Yes Yes

bootstrap Yes Yes

bulk_insert_buffer_sizeYes Yes Yes Both Yes

Bytes_received Yes Both No

Bytes_sent Yes Both No

character_set_client Yes Both Yes

character-set-
client-handshake

Yes Yes

character_set_connection Yes Both Yes

character_set_databasea Yes Both Yes

character-set-
filesystem

Yes Yes Both Yes

- Variable:
character_set_filesystem

 Yes Both Yes

character_set_results Yes Both Yes

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 420

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

character-set-
server

Yes Yes Both Yes

- Variable:
character_set_server

 Yes Both Yes

character_set_system Yes Global No

character-sets-dir Yes Yes Global No

- Variable:
character_sets_dir

 Yes Global No

chroot Yes Yes

collation_connection Yes Both Yes

collation_databaseb Yes Both Yes

collation-server Yes Yes Both Yes

- Variable:
collation_server

 Yes Both Yes

Com_admin_commands Yes Both No

Com_alter_db Yes Both No

Com_alter_event Yes Both No

Com_alter_table Yes Both No

Com_analyze Yes Both No

Com_backup_table Yes Both No

Com_begin Yes Both No

Com_call_procedure Yes Both No

Com_change_db Yes Both No

Com_change_master Yes Both No

Com_check Yes Both No

Com_checksum Yes Both No

Com_commit Yes Both No

Com_create_db Yes Both No

Com_create_event Yes Both No

Com_create_function Yes Both No

Com_create_index Yes Both No

Com_create_table Yes Both No

Com_create_user Yes Both No

Com_dealloc_sql Yes Both No

Com_delete Yes Both No

Com_delete_multi Yes Both No

Com_do Yes Both No

Com_drop_db Yes Both No

Com_drop_event Yes Both No

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 421

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_drop_function Yes Both No

Com_drop_index Yes Both No

Com_drop_table Yes Both No

Com_drop_user Yes Both No

Com_execute_sql Yes Both No

Com_flush Yes Both No

Com_grant Yes Both No

Com_ha_close Yes Both No

Com_ha_open Yes Both No

Com_ha_read Yes Both No

Com_help Yes Both No

Com_insert Yes Both No

Com_insert_select Yes Both No

Com_kill Yes Both No

Com_load Yes Both No

Com_lock_tables Yes Both No

Com_optimize Yes Both No

Com_preload_keys Yes Both No

Com_prepare_sql Yes Both No

Com_purge Yes Both No

Com_purge_before_date Yes Both No

Com_rename_table Yes Both No

Com_repair Yes Both No

Com_replace Yes Both No

Com_replace_select Yes Both No

Com_reset Yes Both No

Com_restore_table Yes Both No

Com_revoke Yes Both No

Com_revoke_all Yes Both No

Com_rollback Yes Both No

Com_savepoint Yes Both No

Com_select Yes Both No

Com_set_option Yes Both No

Com_show_binlog_events Yes Both No

Com_show_binlogs Yes Both No

Com_show_charsets Yes Both No

Com_show_collations Yes Both No

Com_show_column_types Yes Both No

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 422

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_show_create_db Yes Both No

Com_show_create_event Yes Both No

Com_show_create_table Yes Both No

Com_show_databases Yes Both No

Com_show_engine_logs Yes Both No

Com_show_engine_mutex Yes Both No

Com_show_engine_status Yes Both No

Com_show_errors Yes Both No

Com_show_events Yes Both No

Com_show_fields Yes Both No

Com_show_grants Yes Both No

Com_show_innodb_status Yes Both No

Com_show_keys Yes Both No

Com_show_logs Yes Both No

Com_show_master_status Yes Both No

Com_show_ndb_status Yes Both No

Com_show_new_master Yes Both No

Com_show_open_tables Yes Both No

Com_show_plugins Yes Both No

Com_show_privileges Yes Both No

Com_show_processlist Yes Both No

Com_show_slave_hosts Yes Both No

Com_show_slave_status Yes Both No

Com_show_status Yes Both No

Com_show_storage_engines Yes Both No

Com_show_tables Yes Both No

Com_show_triggers Yes Both No

Com_show_variables Yes Both No

Com_show_warnings Yes Both No

Com_slave_start Yes Both No

Com_slave_stop Yes Both No

Com_stmt_close Yes Both No

Com_stmt_execute Yes Both No

Com_stmt_fetch Yes Both No

Com_stmt_prepare Yes Both No

Com_stmt_reset Yes Both No

Com_stmt_send_long_data Yes Both No

Com_truncate Yes Both No

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 423

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_unlock_tables Yes Both No

Com_update Yes Both No

Com_update_multi Yes Both No

Com_xa_commit Yes Both No

Com_xa_end Yes Both No

Com_xa_prepare Yes Both No

Com_xa_recover Yes Both No

Com_xa_rollback Yes Both No

Com_xa_start Yes Both No

completion_type Yes Yes Yes Both Yes

Compression Yes Session No

concurrent_insert Yes Yes Yes Global Yes

connect_timeout Yes Yes Yes Global Yes

Connections Yes Global No

console Yes Yes

core-file Yes Yes

Created_tmp_disk_tables Yes Both No

Created_tmp_files Yes Global No

Created_tmp_tables Yes Both No

datadir Yes Yes Yes Global No

date_format Yes Both No

datetime_format Yes Both No

debug Yes Yes Yes Both Yes

default-character-
set

Yes Yes

default-storage-
engine

Yes Yes Yes Both Yes

default-table-type Yes Yes

default-time-zone Yes Yes

default_week_formatYes Yes Yes Both Yes

defaults-extra-file Yes

defaults-file Yes

defaults-group-
suffix

Yes

delay-key-write Yes Yes Global Yes

- Variable:
delay_key_write

 Yes Global Yes

Delayed_errors Yes Global No

delayed_insert_limitYes Yes Yes Global Yes

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 424

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Delayed_insert_threads Yes Global No

delayed_insert_timeoutYes Yes Yes Global Yes

delayed_queue_sizeYes Yes Yes Global Yes

Delayed_writes Yes Global No

des-key-file Yes Yes

disconnect-slave-
event-count

Yes Yes

div_precision_incrementYes Yes Yes Both Yes

enable-locking Yes Yes

enable-named-
pipe

Yes Yes

- Variable:
named_pipe

enable-pstack Yes Yes

engine-condition-
pushdown

Yes Yes Both Yes

- Variable:
engine_condition_pushdown

 Yes Both Yes

error_count Yes Session No

exit-info Yes Yes

expire_logs_days Yes Yes Yes Global Yes

external-locking Yes Yes

- Variable:
skip_external_locking

flush Yes Yes Yes Global Yes

Flush_commands Yes Global No

flush_time Yes Yes Yes Global Yes

foreign_key_checks Yes Session Yes

ft_boolean_syntax Yes Yes Yes Global Yes

ft_max_word_len Yes Yes Yes Global No

ft_min_word_len Yes Yes Yes Global No

ft_query_expansion_limitYes Yes Yes Global No

ft_stopword_file Yes Yes Yes Global No

gdb Yes Yes

group_concat_max_lenYes Yes Yes Both Yes

Handler_commit Yes Both No

Handler_delete Yes Both No

Handler_discover Yes Both No

Handler_prepare Yes Both No

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 425

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Handler_read_first Yes Both No

Handler_read_key Yes Both No

Handler_read_next Yes Both No

Handler_read_prev Yes Both No

Handler_read_rnd Yes Both No

Handler_read_rnd_next Yes Both No

Handler_rollback Yes Both No

Handler_savepoint Yes Both No

Handler_savepoint_rollback Yes Both No

Handler_update Yes Both No

Handler_write Yes Both No

have_archive Yes Global No

have_bdb Yes Global No

have_blackhole_engine Yes Global No

have_community_features Yes Global No

have_compress Yes Global No

have_crypt Yes Global No

have_csv Yes Global No

have_example_engine Yes Global No

have_federated_engine Yes Global No

have_geometry Yes Global No

have_innodb Yes Global No

have_isam Yes Global No

have_merge_engine Yes Global No

have_ndbcluster Yes Global No

have_openssl Yes Global No

have_profiling Yes Global No

have_query_cache Yes Global No

have_raid Yes Global No

have_rtree_keys Yes Global No

have_ssl Yes Global No

have_symlink Yes Global No

help Yes Yes

hostname Yes Global No

identity Yes Session Yes

init_connect Yes Yes Yes Global Yes

init-file Yes Yes Global No

- Variable: init_file Yes Global No

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 426

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

init-rpl-role Yes Yes

init_slave Yes Yes Yes Global Yes

innodb Yes Yes

innodb_adaptive_hash_indexYes Yes Yes Global No

innodb_additional_mem_pool_sizeYes Yes Yes Global No

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_buffer_pool_awe_mem_mbYes Yes Yes Global No

Innodb_buffer_pool_pages_data Yes Global No

Innodb_buffer_pool_pages_dirty Yes Global No

Innodb_buffer_pool_pages_flushed Yes Global No

Innodb_buffer_pool_pages_free Yes Global No

Innodb_buffer_pool_pages_latched Yes Global No

Innodb_buffer_pool_pages_misc Yes Global No

Innodb_buffer_pool_pages_total Yes Global No

Innodb_buffer_pool_read_ahead_rnd Yes Global No

Innodb_buffer_pool_read_ahead_seq Yes Global No

Innodb_buffer_pool_read_requests Yes Global No

Innodb_buffer_pool_reads Yes Global No

innodb_buffer_pool_sizeYes Yes Yes Global No

Innodb_buffer_pool_wait_free Yes Global No

Innodb_buffer_pool_write_requests Yes Global No

innodb_checksumsYes Yes Yes Global No

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_data_file_pathYes Yes Yes Global No

Innodb_data_fsyncs Yes Global No

innodb_data_home_dirYes Yes Yes Global No

Innodb_data_pending_fsyncs Yes Global No

Innodb_data_pending_reads Yes Global No

Innodb_data_pending_writes Yes Global No

Innodb_data_read Yes Global No

Innodb_data_reads Yes Global No

Innodb_data_writes Yes Global No

Innodb_data_written Yes Global No

Innodb_dblwr_pages_written Yes Global No

Innodb_dblwr_writes Yes Global No

innodb_doublewriteYes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 427

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb_file_io_threadsYes Yes Yes Global No

innodb_file_per_tableYes Yes Yes Global No

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_lock_wait_timeoutYes Yes Yes Global No

innodb_locks_unsafe_for_binlogYes Yes Yes Global No

innodb_log_arch_dirYes Yes Yes Global No

innodb_log_archiveYes Yes Yes Global No

innodb_log_buffer_sizeYes Yes Yes Global No

innodb_log_file_sizeYes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

Innodb_log_waits Yes Global No

Innodb_log_write_requests Yes Global No

Innodb_log_writes Yes Global No

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_mirrored_log_groupsYes Yes Yes Global No

innodb_open_files Yes Yes Yes Global No

Innodb_os_log_fsyncs Yes Global No

Innodb_os_log_pending_fsyncs Yes Global No

Innodb_os_log_pending_writes Yes Global No

Innodb_os_log_written Yes Global No

Innodb_page_size Yes Global No

Innodb_pages_created Yes Global No

Innodb_pages_read Yes Global No

Innodb_pages_written Yes Global No

innodb_rollback_on_timeoutYes Yes Yes Global No

Innodb_row_lock_current_waits Yes Global No

Innodb_row_lock_time Yes Global No

Innodb_row_lock_time_avg Yes Global No

Innodb_row_lock_time_max Yes Global No

Innodb_row_lock_waits Yes Global No

Innodb_rows_deleted Yes Global No

Innodb_rows_inserted Yes Global No

Innodb_rows_read Yes Global No

Innodb_rows_updated Yes Global No

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 428

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

innodb-safe-
binlog

Yes Yes

innodb-status-file Yes Yes

innodb_support_xaYes Yes Yes Both Yes

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locksYes Yes Yes Both Yes

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_use_legacy_cardinality_algorithmYes Yes Yes Global Yes

insert_id Yes Session Yes

install Yes

install-manual Yes

interactive_timeout Yes Yes Yes Both Yes

join_buffer_size Yes Yes Yes Both Yes

keep_files_on_createYes Yes Yes Both Yes

Key_blocks_not_flushed Yes Global No

Key_blocks_unused Yes Global No

Key_blocks_used Yes Global No

key_buffer_size Yes Yes Yes Global Yes

key_cache_age_thresholdYes Yes Yes Global Yes

key_cache_block_sizeYes Yes Yes Global Yes

key_cache_division_limitYes Yes Yes Global Yes

Key_read_requests Yes Global No

Key_reads Yes Global No

Key_write_requests Yes Global No

Key_writes Yes Global No

language Yes Yes Yes Global No

large_files_support Yes Global No

large_page_size Yes Global No

large-pages Yes Yes Global No

- Variable:
large_pages

 Yes Global No

last_insert_id Yes Session Yes

Last_query_cost Yes Session No

lc_time_names Yes Both Yes

license Yes Global No

local_infile Yes Global Yes

local-service Yes

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 429

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

locked_in_memory Yes Global No

log Yes Yes Yes Global No

log-bin Yes Yes Yes Global No

log_bin Yes Global No

log-bin-index Yes Yes

log-bin-trust-
function-creators

Yes Yes Global Yes

- Variable:
log_bin_trust_function_creators

 Yes Global Yes

log-bin-trust-
routine-creators

Yes Yes Global Yes

- Variable:
log_bin_trust_routine_creators

 Yes Global Yes

log-error Yes Yes Global No

- Variable:
log_error

 Yes Global No

log-isam Yes Yes

log-queries-not-
using-indexes

Yes Yes Global Yes

- Variable:
log_queries_not_using_indexes

 Yes Global Yes

log-short-format Yes Yes

log-slave-updates Yes Yes Global No

- Variable:
log_slave_updates

 Yes Global No

log_slave_updates Yes Yes Yes Global No

log-slow-admin-
statements

Yes Yes

log-slow-queries Yes Yes Global No

- Variable:
log_slow_queries

 Yes Global No

log-tc Yes Yes

log-tc-size Yes Yes

log-warnings Yes Yes Both Yes

- Variable:
log_warnings

 Yes Both Yes

long_query_time Yes Yes Yes Both Yes

low-priority-
updates

Yes Yes Both Yes

- Variable:
low_priority_updates

 Yes Both Yes

lower_case_file_system Yes Global No

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 430

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

lower_case_table_namesYes Yes Yes Global No

master-connect-
retry

Yes Yes

master-host Yes Yes

master-info-file Yes Yes

master-password Yes Yes

master-port Yes Yes

master-retry-count Yes Yes

master-ssl Yes Yes

master-ssl-ca Yes Yes

master-ssl-capath Yes Yes

master-ssl-cert Yes Yes

master-ssl-cipher Yes Yes

master-ssl-key Yes Yes

master-user Yes Yes

max_allowed_packetYes Yes Yes Both Yes

max_binlog_cache_sizeYes Yes Yes Global Yes

max-binlog-dump-
events

Yes Yes

max_binlog_size Yes Yes Yes Global Yes

max_connect_errorsYes Yes Yes Global Yes

max_connections Yes Yes Yes Global Yes

max_delayed_threadsYes Yes Yes Both Yes

max_error_count Yes Yes Yes Both Yes

max_heap_table_sizeYes Yes Yes Both Yes

max_insert_delayed_threads Yes Both Yes

max_join_size Yes Yes Yes Both Yes

max_length_for_sort_dataYes Yes Yes Both Yes

max_prepared_stmt_countYes Yes Yes Global Yes

max_relay_log_sizeYes Yes Yes Global Yes

max_seeks_for_keyYes Yes Yes Both Yes

max_sort_length Yes Yes Yes Both Yes

max_sp_recursion_depthYes Yes Yes Both Yes

max_tmp_tables Yes Both Yes

Max_used_connections Yes Global No

max_user_connectionsYes Yes Yes Varies Yes

max_write_lock_countYes Yes Yes Global Yes

memlock Yes Yes

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 431

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

- Variable:
locked_in_memory

merge Yes Yes

multi_range_count Yes Yes Yes Both Yes

myisam-block-
size

Yes Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_extra_sort_file_sizeYes Yes Yes Global No

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_sizeYes Yes Yes Global No

myisam-recover Yes Yes

- Variable:
myisam_recover_options

myisam_recover_options Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

named_pipe Yes Global No

ndb_autoincrement_prefetch_szYes Yes Yes Both Yes

ndb_cache_check_timeYes Yes Yes Global Yes

Ndb_cluster_node_id Yes Both No

Ndb_config_from_host Yes Both No

Ndb_config_from_port Yes Both No

ndb-connectstring Yes Yes

ndb_force_send Yes Yes Yes Both Yes

ndb_index_stat_cache_entriesYes Yes Yes Both Yes

ndb_index_stat_enableYes Yes Yes Both Yes

ndb_index_stat_update_freqYes Yes Yes Both Yes

ndb-mgmd-host Yes Yes

ndb-nodeid Yes Yes Yes Global No

ndb_optimized_node_selectionYes Yes Yes Global No

ndb_report_thresh_binlog_epoch_slipYes Yes

ndb_report_thresh_binlog_mem_usageYes Yes

ndb_use_exact_count Yes Both Yes

ndb_use_transactionsYes Yes Yes Both Yes

ndbcluster Yes Yes

- Variable:
have_ndbcluster

net_buffer_length Yes Yes Yes Both Yes

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 432

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

net_read_timeout Yes Yes Yes Both Yes

net_retry_count Yes Yes Yes Both Yes

net_write_timeout Yes Yes Yes Both Yes

new Yes Yes Yes Both Yes

no-defaults Yes

Not_flushed_delayed_rows Yes Global No

old_passwords Yes Both Yes

old-style-user-
limits

Yes Yes

one-thread Yes Yes

Open_files Yes Global No

open-files-limit Yes Yes Global No

- Variable:
open_files_limit

 Yes Global No

Open_streams Yes Global No

Open_tables Yes Both No

Opened_tables Yes Both No

optimizer_prune_levelYes Yes Yes Both Yes

optimizer_search_depthYes Yes Yes Both Yes

pid-file Yes Yes Global No

- Variable: pid_file Yes Global No

plugin_dir Yes Yes Yes Global No

port Yes Yes Yes Global No

port-open-timeout Yes Yes

preload_buffer_sizeYes Yes Yes Both Yes

Prepared_stmt_count Yes Global No

prepared_stmt_count Yes Global No

print-defaults Yes

profiling Yes Session Yes

profiling_history_sizeYes Yes Yes Both Yes

protocol_version Yes Global No

pseudo_thread_id Yes Session Yes

Qcache_free_blocks Yes Global No

Qcache_free_memory Yes Global No

Qcache_hits Yes Global No

Qcache_inserts Yes Global No

Qcache_lowmem_prunes Yes Global No

Qcache_not_cached Yes Global No

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 433

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Qcache_queries_in_cache Yes Global No

Qcache_total_blocks Yes Global No

Queries Yes Both No

query_alloc_block_sizeYes Yes Yes Both Yes

query_cache_limit Yes Yes Yes Global Yes

query_cache_min_res_unitYes Yes Yes Global Yes

query_cache_size Yes Yes Yes Global Yes

query_cache_type Yes Yes Yes Both Yes

query_cache_wlock_invalidateYes Yes Yes Both Yes

query_prealloc_sizeYes Yes Yes Both Yes

Questions Yes Both No

rand_seed1 Yes Session Yes

rand_seed2 Yes Session Yes

range_alloc_block_sizeYes Yes Yes Both Yes

read_buffer_size Yes Yes Yes Both Yes

read_only Yes Yes Yes Global Yes

read_rnd_buffer_sizeYes Yes Yes Both Yes

relay-log Yes Yes Global No

- Variable:
relay_log

 Yes Global No

relay-log-index Yes Yes Global No

- Variable:
relay_log_index

 Yes Global No

relay_log_index Yes Yes Yes Global No

relay-log-info-file Yes Yes

- Variable:
relay_log_info_file

relay_log_info_file Yes Yes Yes Global No

relay_log_purge Yes Yes Yes Global Yes

relay_log_space_limitYes Yes Yes Global No

remove Yes

replicate-do-db Yes Yes

replicate-do-table Yes Yes

replicate-ignore-
db

Yes Yes

replicate-ignore-
table

Yes Yes

replicate-rewrite-
db

Yes Yes

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 434

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

replicate-same-
server-id

Yes Yes

replicate-wild-do-
table

Yes Yes

replicate-wild-
ignore-table

Yes Yes

report-host Yes Yes

report-password Yes Yes

report-port Yes Yes

report-user Yes Yes

rpl_recovery_rank Yes Global Yes

Rpl_status Yes Global No

safe-mode Yes Yes

safe-show-
database

Yes Yes

safe-user-create Yes Yes

safemalloc-mem-
limit

Yes Yes

secure-auth Yes Yes Global Yes

- Variable:
secure_auth

 Yes Global Yes

secure-file-priv Yes Yes Global No

- Variable:
secure_file_priv

 Yes Global No

Select_full_join Yes Both No

Select_full_range_join Yes Both No

Select_range Yes Both No

Select_range_check Yes Both No

Select_scan Yes Both No

server-id Yes Yes Global Yes

- Variable:
server_id

 Yes Global Yes

set-variable Yes Yes

shared_memory Yes Yes Yes Global No

shared_memory_base_nameYes Yes Yes Global No

show-slave-auth-
info

Yes Yes

skip-bdb Yes Yes

skip-character-
set-client-
handshake

Yes Yes

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 435

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

skip-concurrent-
insert

Yes Yes

- Variable:
concurrent_insert

skip_external_lockingYes Yes Yes Global No

skip-grant-tables Yes Yes

skip-host-cache Yes Yes

skip-locking Yes Yes

skip-merge Yes Yes

skip-name-resolve Yes Yes

skip-ndbcluster Yes Yes

skip-networking Yes Yes Global No

- Variable:
skip_networking

 Yes Global No

skip-new Yes Yes

skip-safemalloc Yes Yes

skip-show-
database

Yes Yes Global No

- Variable:
skip_show_database

 Yes Global No

skip-slave-start Yes Yes

skip-ssl Yes Yes

skip-stack-trace Yes Yes

skip-symbolic-
links

Yes

skip-symlink Yes Yes

skip-sync-bdb-
logs

Yes Yes Yes Global No

skip-thread-
priority

Yes Yes

slave_compressed_protocolYes Yes Yes Global Yes

slave-load-tmpdir Yes Yes Global No

- Variable:
slave_load_tmpdir

 Yes Global No

slave-net-timeout Yes Yes Global Yes

- Variable:
slave_net_timeout

 Yes Global Yes

Slave_open_temp_tables Yes Global No

Slave_retried_transactions Yes Global No

Slave_running Yes Global No

slave-skip-errors Yes Yes Global No

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 436

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

- Variable:
slave_skip_errors

 Yes Global No

slave_transaction_retriesYes Yes Yes Global Yes

Slow_launch_threads Yes Both No

slow_launch_time Yes Yes Yes Global Yes

Slow_queries Yes Both No

socket Yes Yes Yes Global No

sort_buffer_size Yes Yes Yes Both Yes

Sort_merge_passes Yes Both No

Sort_range Yes Both No

Sort_rows Yes Both No

Sort_scan Yes Both No

sporadic-binlog-
dump-fail

Yes Yes

sql_auto_is_null Yes Session Yes

sql_big_selects Yes Session Yes

sql_big_tables Yes Session Yes

sql_buffer_result Yes Session Yes

sql_log_bin Yes Session Yes

sql_log_off Yes Session Yes

sql_log_update Yes Session Yes

sql_low_priority_updates Yes Both Yes

sql_max_join_size Yes Both Yes

sql-mode Yes Yes Both Yes

- Variable:
sql_mode

 Yes Both Yes

sql_notes Yes Session Yes

sql_quote_show_create Yes Session Yes

sql_safe_updates Yes Session Yes

sql_select_limit Yes Both Yes

sql_slave_skip_counter Yes Global Yes

sql_warnings Yes Session Yes

ssl Yes Yes

Ssl_accept_renegotiates Yes Global No

Ssl_accepts Yes Global No

ssl-ca Yes Yes Global No

- Variable: ssl_ca Yes Global No

Ssl_callback_cache_hits Yes Global No

ssl-capath Yes Yes Global No

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 437

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

- Variable:
ssl_capath

 Yes Global No

ssl-cert Yes Yes Global No

- Variable:
ssl_cert

 Yes Global No

Ssl_cipher Yes Both No

ssl-cipher Yes Yes Global No

- Variable:
ssl_cipher

 Yes Global No

Ssl_cipher_list Yes Both No

Ssl_client_connects Yes Global No

Ssl_connect_renegotiates Yes Global No

Ssl_ctx_verify_depth Yes Global No

Ssl_ctx_verify_mode Yes Global No

Ssl_default_timeout Yes Both No

Ssl_finished_accepts Yes Global No

Ssl_finished_connects Yes Global No

ssl-key Yes Yes Global No

- Variable:
ssl_key

 Yes Global No

Ssl_session_cache_hits Yes Global No

Ssl_session_cache_misses Yes Global No

Ssl_session_cache_mode Yes Global No

Ssl_session_cache_overflows Yes Global No

Ssl_session_cache_size Yes Global No

Ssl_session_cache_timeouts Yes Global No

Ssl_sessions_reused Yes Both No

Ssl_used_session_cache_entries Yes Global No

Ssl_verify_depth Yes Both No

Ssl_verify_mode Yes Both No

Ssl_version Yes Both No

standalone Yes Yes

storage_engine Yes Both Yes

symbolic-links Yes Yes

sync-bdb-logs Yes Yes Yes Global No

sync_binlog Yes Yes Yes Global Yes

sync_frm Yes Yes Yes Global Yes

sysdate-is-now Yes Yes

system_time_zone Yes Global No

Server Option and Variable Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 438

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

table_cache Yes Yes Yes Global Yes

table_lock_wait_timeoutYes Yes Yes Global Yes

Table_locks_immediate Yes Global No

Table_locks_waited Yes Global No

table_type Yes Both Yes

tc-heuristic-
recover

Yes Yes

Tc_log_max_pages_used Yes Global No

Tc_log_page_size Yes Global No

Tc_log_page_waits Yes Global No

temp-pool Yes Yes

thread_cache_size Yes Yes Yes Global Yes

thread_concurrencyYes Yes Yes Global No

thread_stack Yes Yes Yes Global No

Threads_cached Yes Global No

Threads_connected Yes Global No

Threads_created Yes Global No

Threads_running Yes Global No

time_format Yes Both No

time_zone Yes Both Yes

timed_mutexes Yes Yes Yes Global Yes

timestamp Yes Session Yes

tmp_table_size Yes Yes Yes Both Yes

tmpdir Yes Yes Yes Global No

transaction_alloc_block_sizeYes Yes Yes Both Yes

transaction-
isolation

Yes Yes

- Variable:
tx_isolation

transaction_prealloc_sizeYes Yes Yes Both Yes

tx_isolation Yes Both Yes

unique_checks Yes Session Yes

updatable_views_with_limitYes Yes Yes Both Yes

Uptime Yes Global No

Uptime_since_flush_status Yes Global No

user Yes Yes

verbose Yes Yes

version Yes Global No

version_comment Yes Global No

Server Configuration Defaults

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 439

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

version_compile_machine Yes Global No

version_compile_os Yes Global No

wait_timeout Yes Yes Yes Both Yes

warning_count Yes Session No

warnings Yes Yes
aThis option is dynamic, but only the server should set this information. You should not set the value of this variable manually.
bThis option is dynamic, but only the server should set this information. You should not set the value of this variable manually.

5.1.2 Server Configuration Defaults

The MySQL server has many operating parameters, which you can change at server startup using
command-line options or configuration files (option files). It is also possible to change many parameters at
runtime. For general instructions on setting parameters at startup or runtime, see Section 5.1.3, “Server
Command Options”, and Section 5.1.4, “Server System Variables”.

MySQL provides a number of preconfigured option files that can be used as a basis for tuning the MySQL
server. Look for files named my-small.cnf, my-medium.cnf, my-large.cnf, and my-huge.cnf,
which are sample option files for small, medium, large, and very large systems. On Windows, the extension
is .ini rather than .cnf.

Note

On Windows, the .ini or .cnf option file extension might not be displayed.

For a binary distribution, look for the sample files in or under your installation directory. If you have a
source distribution, look in the support-files directory. To use a sample file as a base configuration
file, rename a copy of it and place the copy in the appropriate location. Regarding names and appropriate
location, see the general information provided in Section 4.2.6, “Using Option Files”. That section also
describes option file format and syntax.

5.1.3 Server Command Options

When you start the mysqld server, you can specify program options using any of the methods described
in Section 4.2.3, “Specifying Program Options”. The most common methods are to provide options in an
option file or on the command line. However, in most cases it is desirable to make sure that the server
uses the same options each time it runs. The best way to ensure this is to list them in an option file. See
Section 4.2.6, “Using Option Files”. That section also describes option file format and syntax.

mysqld reads options from the [mysqld] and [server] groups. mysqld_safe reads options from the
[mysqld], [server], [mysqld_safe], and [safe_mysqld] groups. mysql.server reads options
from the [mysqld] and [mysql.server] groups.

An embedded MySQL server usually reads options from the [server], [embedded], and
[xxxxx_SERVER] groups, where xxxxx is the name of the application into which the server is embedded.

mysqld accepts many command options. For a brief summary, execute mysqld --help. To see the full
list, use mysqld --verbose --help.

The following list shows some of the most common server options. Additional options are described in
other sections:

• Options that affect security: See Section 6.1.4, “Security-Related mysqld Options and Variables”.

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 440

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• SSL-related options: See Section 6.3.6.5, “Command Options for Secure Connections”.

• Binary log control options: See Section 16.1.2.4, “Binary Log Options and Variables”.

• Replication-related options: See Section 16.1.2, “Replication and Binary Logging Options and Variables”.

• Options specific to particular storage engines: See Section 14.1.1, “MyISAM Startup Options”,
Section 14.5.3, “BDB Startup Options”, Section 14.2.2, “InnoDB Startup Options and System Variables”,
and mysqld Command Options for MySQL Cluster.

Some options control the size of buffers or caches. For a given buffer, the server might need to allocate
internal data structures. These structures typically are allocated from the total memory allocated to the
buffer, and the amount of space required might be platform dependent. This means that when you assign
a value to an option that controls a buffer size, the amount of space actually available might differ from the
value assigned. In some cases, the amount might be less than the value assigned. It is also possible that
the server will adjust a value upward. For example, if you assign a value of 0 to an option for which the
minimal value is 1024, the server will set the value to 1024.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

Some options take file name values. Unless otherwise specified, the default file location is the data
directory if the value is a relative path name. To specify the location explicitly, use an absolute path name.
Suppose that the data directory is /var/mysql/data. If a file-valued option is given as a relative path
name, it will be located under /var/mysql/data. If the value is an absolute path name, its location is as
given by the path name.

You can also set the values of server system variables at server startup by using variable names as
options. To assign a value to a server system variable, use an option of the form --var_name=value. For
example, --key_buffer_size=32M sets the key_buffer_size variable to a value of 32MB.

When you assign a value to a variable, MySQL might automatically correct the value to stay within a given
range, or adjust the value to the closest permissible value if only certain values are permitted.

If you want to restrict the maximum value to which a variable can be set at runtime with SET, you can
define this by using the --maximum-var_name=value command-line option.

It is also possible to set variables by using --set-variable=var_name=value or -O
var_name=value syntax. This syntax is deprecated.

You can change the values of most system variables for a running server with the SET statement. See
Section 13.7.4, “SET Syntax”.

Section 5.1.4, “Server System Variables”, provides a full description for all variables, and additional
information for setting them at server startup and runtime. Section 8.12.2, “Tuning Server Parameters”,
includes information on optimizing the server by tuning system variables.

• --help, -?

Command-Line Format --help

Display a short help message and exit. Use both the --verbose and --help options to see the full
message.

• --allow-suspicious-udfs

Introduced 5.0.3

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 441

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Command-Line Format --allow-suspicious-udfs

Type booleanPermitted Values

Default FALSE

This option controls whether user-defined functions that have only an xxx symbol for the main function
can be loaded. By default, the option is off and only UDFs that have at least one auxiliary symbol
can be loaded; this prevents attempts at loading functions from shared object files other than those
containing legitimate UDFs. This option was added in version 5.0.3. See Section 21.2.2.6, “UDF Security
Precautions”.

• --ansi

Command-Line Format --ansi

Use standard (ANSI) SQL syntax instead of MySQL syntax. For more precise control over the server
SQL mode, use the --sql-mode option instead. See Section 1.8, “MySQL Standards Compliance”, and
Section 5.1.7, “Server SQL Modes”.

• --basedir=dir_name, -b dir_name

Command-Line Format --basedir=dir_name

Name basedir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The path to the MySQL installation directory. All paths are usually resolved relative to this directory.

• --big-tables

Command-Line Format --big-tables

Name big_tables

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Enable large result sets by saving all temporary sets in files. This option prevents most “table full”
errors, but also slows down queries for which in-memory tables would suffice. Since MySQL 3.23.2, the
server is able to handle large result sets automatically by using memory for small temporary tables and
switching to disk tables where necessary.

• --bind-address=addr

Command-Line Format --bind-address=addr

Permitted Values Type string

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 442

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Default 0.0.0.0

The MySQL server listens on a single network socket for TCP/IP connections. This socket is bound to
a single address, but it is possible for an address to map onto multiple network interfaces. The default
address is 0.0.0.0. To specify an address explicitly, use the --bind-address=addr option at server
startup, where addr is an IPv4 address or a host name. If addr is a host name, the server resolves the
name to an IPv4 address and binds to that address.

The server treats different types of addresses as follows:

• If the address is 0.0.0.0, the server accepts TCP/IP connections on all server host IPv4 interfaces.

• If the address is a “regular” IPv4 address (such as 127.0.0.1), the server accepts TCP/IP
connections only for that particular IPv4 address.

If you intend to bind the server to a specific address, be sure that the mysql.user grant table contains
an account with administrative privileges that you can use connect to that address. Otherwise, you
will not be able to shut down the server. For example, if you bind to 0.0.0.0, you can connect to the
server using all existing accounts. But if you bind to 127.0.0.1, the server accepts connections only
on that address. In this case, first make sure that the 'root'@'127.0.0.1' account is present in the
mysql.user table so that you can still connect to the server to shut it down.

• --bootstrap

Command-Line Format --bootstrap

This option is used by the mysql_install_db program to create the MySQL privilege tables without
having to start a full MySQL server.

This option is unavailable if MySQL was configured with the --disable-grant-options option. See
Section 2.17.3, “MySQL Source-Configuration Options”.

• --character-sets-dir=dir_name

Command-Line Format --character-sets-dir=dir_name

Name character_sets_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The directory where character sets are installed. See Section 10.5, “Character Set Configuration”.

• --character-set-client-handshake

Command-Line Format --character-set-client-handshake

Type booleanPermitted Values

Default TRUE

Do not ignore character set information sent by the client. To ignore client information and use the
default server character set, use --skip-character-set-client-handshake; this makes MySQL
behave like MySQL 4.0.

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 443

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --character-set-filesystem=charset_name

Introduced 5.0.19

Command-Line Format --character-set-filesystem=name

Name character_set_filesystem

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default binary

The file system character set. This option sets the character_set_filesystem system variable. It
was added in MySQL 5.0.19.

• --character-set-server=charset_name, -C charset_name

Command-Line Format --character-set-server

Name character_set_server

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default latin1

Use charset_name as the default server character set. See Section 10.5, “Character Set
Configuration”. If you use this option to specify a nondefault character set, you should also use --
collation-server to specify the collation.

• --chroot=dir_name, -r dir_name

Command-Line Format --chroot=dir_name

Permitted Values Type directory name

Put the mysqld server in a closed environment during startup by using the chroot() system call. This
is a recommended security measure. Use of this option somewhat limits LOAD DATA INFILE and
SELECT ... INTO OUTFILE.

• --collation-server=collation_name

Command-Line Format --collation-server

Name collation_server

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 444

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Default latin1_swedish_ci

Use collation_name as the default server collation. See Section 10.5, “Character Set Configuration”.

• --console

Command-Line Format --console

Platform Specific Windows

(Windows only.) Write error log messages to stderr and stdout. mysqld does not close the console
window if this option is used.

If both --log-error and --console are specified, whichever option is given last takes precedence.

• --core-file

Command-Line Format --core-file

Type booleanPermitted Values

Default OFF

Write a core file if mysqld dies. The name and location of the core file is system dependent. On Linux,
a core file named core.pid is written to the current working directory of the process, which for mysqld
is the data directory. pid represents the process ID of the server process. On OS X, a core file named
core.pid is written to the /cores directory. On Solaris, use the coreadm command to specify where
to write the core file and how to name it.

For some systems, to get a core file you must also specify the --core-file-size option to
mysqld_safe. See Section 4.3.2, “mysqld_safe — MySQL Server Startup Script”. On some systems,
such as Solaris, you do not get a core file if you are also using the --user option. There might be
additional restrictions or limitations. For example, it might be necessary to execute ulimit -c
unlimited before starting the server. Consult your system documentation.

• --datadir=dir_name, -h dir_name

Command-Line Format --datadir=dir_name

Name datadir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The path to the data directory.

• --debug[=debug_options], -# [debug_options]

Command-Line Format --debug[=debug_options]

Name debugSystem Variable

Variable
Scope

Global, Session

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 445

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Dynamic
Variable

Yes

Type stringPermitted Values (Unix)

Default d:t:i:o,/tmp/mysqld.trace

Type stringPermitted Values
(Windows) Default d:t:i:O,\mysqld.trace

If MySQL is configured with --with-debug, you can use this option to get a trace file of what mysqld
is doing. A typical debug_options string is d:t:o,file_name. The default is d:t:i:o,/tmp/
mysqld.trace on Unix and d:t:i:O,\mysqld.trace on Windows.

As of MySQL 5.0.25, using --with-debug to configure MySQL with debugging support enables you to
use the --debug="d,parser_debug" option when you start the server. This causes the Bison parser
that is used to process SQL statements to dump a parser trace to the server's standard error output.
Typically, this output is written to the error log.

For more information, see Section 21.3.3, “The DBUG Package”.

• --default-character-set=charset_name

Deprecated 5.0.0

Command-Line Format --default-character-set=name

Permitted Values Type string

Use charset_name as the default character set. This option is deprecated in favor of --character-
set-server. See Section 10.5, “Character Set Configuration”. --default-character-set is
removed in MySQL 5.5.

• --default-collation=collation_name

Deprecated 4.1.3

Command-Line Format --default-collation=name

Permitted Values Type string

Use collation_name as the default collation. This option is deprecated in favor of --collation-
server. See Section 10.5, “Character Set Configuration”. --default-collation is removed in
MySQL 5.5.

• --default-storage-engine=type

Command-Line Format --default-storage-engine=name

Name storage_engine

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumerationPermitted Values

Default MyISAM

Set the default storage engine (table type) for tables. See Chapter 14, Storage Engines.

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 446

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --default-table-type=type

Deprecated 5.0.0, by default-storage-engine

Command-Line Format --default-table-type=name

Permitted Values Type string

This option is a deprecated synonym for --default-storage-engine.

• --default-time-zone=timezone

Command-Line Format --default-time-zone=name

Permitted Values Type string

Set the default server time zone. This option sets the global time_zone system variable. If this option
is not given, the default time zone is the same as the system time zone (given by the value of the
system_time_zone system variable.

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file. As of MySQL
5.0.6, if the file does not exist or is otherwise inaccessible, an error occurs. file_name is the full path
name to the file.

• --defaults-file=file_name

Use only the given option file. If the file does not exist or is otherwise inaccessible, an error occurs.
file_name is the full path name to the file.

• --defaults-group-suffix=str

Read not only the usual option groups, but also groups with the usual names and a suffix of str. For
example, mysqld normally reads the [mysqld] group. If the --defaults-group-suffix=_other
option is given, mysqld also reads the [mysqld_other] group. This option was added in MySQL
5.0.10.

• --delay-key-write[={OFF|ON|ALL}]

Command-Line Format --delay-key-write[=name]

Name delay_key_write

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default ON

ON

OFF

Permitted Values

Valid
Values

ALL

Specify how to use delayed key writes. Delayed key writing causes key buffers not to be flushed
between writes for MyISAM tables. OFF disables delayed key writes. ON enables delayed key writes for

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 447

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

those tables that were created with the DELAY_KEY_WRITE option. ALL delays key writes for all MyISAM
tables. See Section 8.12.2, “Tuning Server Parameters”, and Section 14.1.1, “MyISAM Startup Options”.

Note

If you set this variable to ALL, you should not use MyISAM tables from within
another program (such as another MySQL server or myisamchk) when the
tables are in use. Doing so leads to index corruption.

• --des-key-file=file_name

Command-Line Format --des-key-file=file_name

Read the default DES keys from this file. These keys are used by the DES_ENCRYPT() and
DES_DECRYPT() functions.

• --enable-locking

This option is deprecated. Use --external-locking instead.

• --enable-named-pipe

Command-Line Format --enable-named-pipe

Platform Specific Windows

Enable support for named pipes. This option can be used only with the mysqld-nt and mysqld-debug
servers that support named-pipe connections.

• --enable-pstack

Command-Line Format --enable-pstack

Type booleanPermitted Values

Default FALSE

Print a symbolic stack trace on failure. This capability is available only on Intel Linux systems, and only if
MySQL was configured with the --with-pstack option.

• --engine-condition-pushdown={ON|OFF}

Introduced 5.0.3

Command-Line Format --engine-condition-pushdown

Name engine_condition_pushdown

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values (>=
5.0.3) Default OFF

Sets the engine_condition_pushdown system variable. For more information, see Section 8.2.1.5,
“Engine Condition Pushdown Optimization”.

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 448

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This variable was added in MySQL 5.0.3.

• --exit-info[=flags], -T [flags]

Command-Line Format --exit-info[=flags]

Permitted Values Type integer

This is a bit mask of different flags that you can use for debugging the mysqld server. Do not use this
option unless you know exactly what it does!

• --external-locking

Command-Line Format --external-locking

Type booleanPermitted Values

Default FALSE

Enable external locking (system locking), which is disabled by default. If you use this option on a system
on which lockd does not fully work (such as Linux), it is easy for mysqld to deadlock. This option
previously was named --enable-locking.

To disable external locking explicitly, use --skip-external-locking.

External locking affects only MyISAM table access. For more information, including conditions under
which it can and cannot be used, see Section 8.11.4, “External Locking”.

• --flush

Command-Line Format --flush

Name flush

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Flush (synchronize) all changes to disk after each SQL statement. Normally, MySQL does a write of all
changes to disk only after each SQL statement and lets the operating system handle the synchronizing
to disk. See Section B.5.3.3, “What to Do If MySQL Keeps Crashing”.

• --gdb

Command-Line Format --gdb

Type booleanPermitted Values

Default FALSE

Install an interrupt handler for SIGINT (needed to stop mysqld with ^C to set breakpoints) and disable
stack tracing and core file handling. See Section 21.3, “Debugging and Porting MySQL”.

• --init-file=file_name

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 449

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Command-Line Format --init-file=file_name

Name init_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

Read SQL statements from this file at startup. Each statement must be on a single line and should not
include comments.

This option is unavailable if MySQL was configured with the --disable-grant-options option. See
Section 2.17.3, “MySQL Source-Configuration Options”.

• --innodb-safe-binlog

Deprecated 5.0.3

Removed 5.0.3

Command-Line Format --innodb-safe-binlog

Permitted Values Type boolean

If this option is given, then after a crash recovery by InnoDB, mysqld truncates the binary log after the
last not-rolled-back transaction in the log. The option also causes InnoDB to print an error if the binary
log is smaller or shorter than it should be. See Section 5.4.3, “The Binary Log”. This option was removed
in MySQL 5.0.3, having been made obsolete by the introduction of XA transaction support.

• --innodb-xxx

Set an option for the InnoDB storage engine. The InnoDB options are listed in Section 14.2.2, “InnoDB
Startup Options and System Variables”.

• --install [service_name]

Command-Line Format --install [service_name]

Platform Specific Windows

(Windows only) Install the server as a Windows service that starts automatically during Windows startup.
The default service name is MySQL if no service_name value is given. For more information, see
Section 2.10.4.7, “Starting MySQL as a Windows Service”.

Note

If the server is started with the --defaults-file and --install options, --
install must be first.

• --install-manual [service_name]

Command-Line Format --install-manual [service_name]

Platform Specific Windows

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 450

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

(Windows only) Install the server as a Windows service that must be started manually. It does not start
automatically during Windows startup. The default service name is MySQL if no service_name value is
given. For more information, see Section 2.10.4.7, “Starting MySQL as a Windows Service”.

Note

If the server is started with the --defaults-file and --install-manual
options, --install-manual must be first.

• --language=lang_name, -L lang_name

Command-Line Format --language=name

Name language

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type directory namePermitted Values

Default /usr/local/mysql/share/mysql/english/

The language to use for error messages. lang_name can be given as the language name or as the full
path name to the directory where the language files are installed. See Section 10.2, “Setting the Error
Message Language”.

• --large-pages

Introduced 5.0.3

Command-Line Format --large-pages

Name large_pages

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Linux

Type booleanPermitted Values (Linux)

Default FALSE

Some hardware/operating system architectures support memory pages greater than the default (usually
4KB). The actual implementation of this support depends on the underlying hardware and operating
system. Applications that perform a lot of memory accesses may obtain performance improvements by
using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

MySQL supports only the Linux implementation of large page support (which is called HugeTLB in
Linux). See Section 8.12.5.2, “Enabling Large Page Support”.

--large-pages is disabled by default. It was added in MySQL 5.0.3.

• --local-service

Command-Line Format --local-service

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 451

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

(Windows only) A --local-service option following the service name causes the server to run using
the LocalService Windows account that has limited system privileges. This account is available only
for Windows XP or newer. If both --defaults-file and --local-service are given following the
service name, they can be in any order. See Section 2.10.4.7, “Starting MySQL as a Windows Service”.

• --log[=file_name], -l [file_name]

Command-Line Format --log[=file_name]

Name log

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

Log connections and SQL statements received from clients to this file. See Section 5.4.2, “The General
Query Log”. If you omit the file name, MySQL uses host_name.log as the file name.

• --log-error[=file_name]

Command-Line Format --log-error[=file_name]

Name log_error

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

Log errors and startup messages to this file. See Section 5.4.1, “The Error Log”. If you omit the file
name, MySQL uses host_name.err. If the file name has no extension, the server adds an extension of
.err.

• --log-isam[=file_name]

Command-Line Format --log-isam[=file_name]

Permitted Values Type file name

Log all MyISAM changes to this file (used only when debugging MyISAM).

• --log-long-format

Deprecated 4.1.0

Command-Line Format --log-long-format

Log extra information to the update log, binary update log, and slow query log, if they have been
activated. For example, the user name and timestamp are logged for all queries. This option is
deprecated, as it now represents the default logging behavior. (See the description for --log-short-
format.) The --log-queries-not-using-indexes option is available for the purpose of logging
queries that do not use indexes to the slow query log. --log-long-format is removed in MySQL 5.5.

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 452

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --log-queries-not-using-indexes

Command-Line Format --log-queries-not-using-indexes

Name log_queries_not_using_indexes

Variable
Scope

Global

System Variable (>=
5.0.23)

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If you are using this option with the slow query log enabled, queries that are expected to retrieve all
rows are logged. See Section 5.4.4, “The Slow Query Log”. This option does not necessarily mean that
no index is used. For example, a query that uses a full index scan uses an index but would be logged
because the index would not limit the number of rows.

• --log-short-format

Command-Line Format --log-short-format

Type booleanPermitted Values

Default FALSE

Originally intended to log less information to the update log and slow query log, if they have been
activated. However, this option is not operational.

• --log-slow-admin-statements

Command-Line Format --log-slow-admin-statements

Type booleanPermitted Values

Default OFF

Include slow administrative statements in the statements written to the slow query log. Administrative
statements include ALTER TABLE, ANALYZE TABLE, CHECK TABLE, CREATE INDEX, DROP INDEX,
OPTIMIZE TABLE, and REPAIR TABLE.

• --log-slow-queries[=file_name]

Command-Line Format --log-slow-queries[=name]

Name log_slow_queries

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type boolean

Log all queries that have taken more than long_query_time seconds to execute to this file. See
Section 5.4.4, “The Slow Query Log”. See the descriptions of the --log-long-format and --log-
short-format options for details.

• --log-tc=file_name

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 453

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Introduced 5.0.3

Command-Line Format --log-tc=file_name

Type file namePermitted Values

Default tc.log

The name of the memory-mapped transaction coordinator log file (for XA transactions that affect multiple
storage engines when the binary log is disabled). The default name is tc.log. The file is created under
the data directory if not given as a full path name. This option is unused. Added in MySQL 5.0.3.

• --log-tc-size=size

Introduced 5.0.3

Command-Line Format --log-tc-size=#

Type integer

Default 24576

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 24576

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

The size in bytes of the memory-mapped transaction coordinator log. The default size is 24KB. Added in
MySQL 5.0.3.

• --log-warnings[=level], -W [level]

Command-Line Format --log-warnings[=#]

Name log_warnings

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 454

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Print out warnings such as Aborted connection... to the error log. This option is enabled (1) by
default. To disable it, use --log-warnings=0. Specifying the option without a level value increments
the current value by 1. Enabling this option by setting it greater than 0 is recommended, for example,
if you use replication (you get more information about what is happening, such as messages about
network failures and reconnections). If the value is greater than 1, aborted connections are written to the
error log. See Section B.5.2.11, “Communication Errors and Aborted Connections”.

If a slave server was started with --log-warnings enabled, the slave prints messages to the error log
to provide information about its status, such as the binary log and relay log coordinates where it starts its
job, when it is switching to another relay log, when it reconnects after a disconnect, and so forth.

• --low-priority-updates

Command-Line Format --low-priority-updates

Name low_priority_updates

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE

Give table-modifying operations (INSERT, REPLACE, DELETE, UPDATE) lower priority than selects. This
can also be done using {INSERT | REPLACE | DELETE | UPDATE} LOW_PRIORITY ... to lower
the priority of only one query, or by SET LOW_PRIORITY_UPDATES=1 to change the priority in one
thread. This affects only storage engines that use only table-level locking (MyISAM, MEMORY, MERGE).
See Section 8.11.2, “Table Locking Issues”.

• --memlock

Command-Line Format --memlock

Type booleanPermitted Values

Default FALSE

Lock the mysqld process in memory. This option might help if you have a problem where the operating
system is causing mysqld to swap to disk.

--memlock works on systems that support the mlockall() system call; this includes Solaris, most
Linux distributions that use a 2.4 or newer kernel, and perhaps other Unix systems. On Linux systems,
you can tell whether or not mlockall() (and thus this option) is supported by checking to see whether
or not it is defined in the system mman.h file, like this:

shell> grep mlockall /usr/include/sys/mman.h

If mlockall() is supported, you should see in the output of the previous command something like the
following:

extern int mlockall (int __flags) __THROW;

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 455

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Important

Use of this option may require you to run the server as root, which, for reasons
of security, is normally not a good idea. See Section 6.1.5, “How to Run MySQL
as a Normal User”.

On Linux and perhaps other systems, you can avoid the need to run the server as
root by changing the limits.conf file. See the notes regarding the memlock
limit in Section 8.12.5.2, “Enabling Large Page Support”.

You must not try to use this option on a system that does not support the
mlockall() system call; if you do so, mysqld will very likely crash as soon as
you try to start it.

• --myisam-block-size=N

Command-Line Format --myisam-block-size=#

Type integer

Default 1024

Min
Value

1024

Permitted Values

Max
Value

16384

The block size to be used for MyISAM index pages.

• --myisam-recover[=option[,option]...]]

Command-Line Format --myisam-recover[=name]

Type enumeration

Default OFF

OFF

DEFAULT

BACKUP

FORCE

Permitted Values

Valid
Values

QUICK

Set the MyISAM storage engine recovery mode. The option value is any combination of the values
of DEFAULT, BACKUP, FORCE, or QUICK. If you specify multiple values, separate them by commas.
Specifying the option with no argument is the same as specifying DEFAULT, and specifying with an
explicit value of "" disables recovery (same as not giving the option). If recovery is enabled, each time
mysqld opens a MyISAM table, it checks whether the table is marked as crashed or was not closed
properly. (The last option works only if you are running with external locking disabled.) If this is the case,
mysqld runs a check on the table. If the table was corrupted, mysqld attempts to repair it.

The following options affect how the repair works.

Option Description

DEFAULT Recovery without backup, forcing, or quick checking.

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 456

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option Description

BACKUP If the data file was changed during recovery, save a backup of the tbl_name.MYD
file as tbl_name-datetime.BAK.

FORCE Run recovery even if we would lose more than one row from the .MYD file.

QUICK Do not check the rows in the table if there are not any delete blocks.

Before the server automatically repairs a table, it writes a note about the repair to the error log. If you
want to be able to recover from most problems without user intervention, you should use the options
BACKUP,FORCE. This forces a repair of a table even if some rows would be deleted, but it keeps the old
data file as a backup so that you can later examine what happened.

See Section 14.1.1, “MyISAM Startup Options”.

• --no-defaults

Do not read any option files. If program startup fails due to reading unknown options from an option file,
--no-defaults can be used to prevent them from being read.

• --old-style-user-limits

Introduced 5.0.3

Command-Line Format --old-style-user-limits

Type booleanPermitted Values

Default FALSE

Enable old-style user limits. (Before MySQL 5.0.3, account resource limits were counted separately
for each host from which a user connected rather than per account row in the user table.) See
Section 6.3.4, “Setting Account Resource Limits”. This option was added in MySQL 5.0.3.

• --one-thread

Command-Line Format --one-thread

Only use one thread (for debugging under Linux). This option is available only if the server is built with
debugging enabled. See Section 21.3, “Debugging and Porting MySQL”.

• --open-files-limit=count

Command-Line Format --open-files-limit=#

Name open_files_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

platform dependent

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 457

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Changes the number of file descriptors available to mysqld. You should try increasing the value of this
option if mysqld gives you the error Too many open files. mysqld uses the option value to reserve
descriptors with setrlimit(). Internally, the maximum value for this option is the maximum unsigned
integer value, but the actual maximum is platform dependent. If the requested number of file descriptors
cannot be allocated, mysqld writes a warning to the error log.

mysqld may attempt to allocate more than the requested number of descriptors (if they are available),
using the values of max_connections and table_cache to estimate whether more descriptors will be
needed.

On Unix, the value cannot be set less than ulimit -n.

• --pid-file=file_name

Command-Line Format --pid-file=file_name

Name pid_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The path name of the process ID file. The server creates the file in the data directory unless an
absolute path name is given to specify a different directory. This file is used by other programs such as
mysqld_safe to determine the server's process ID.

• --port=port_num, -P port_num

Command-Line Format --port=#

Name port

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 3306

Min
Value

0

Permitted Values

Max
Value

65535

The port number to use when listening for TCP/IP connections. On Unix and Unix-like systems, the port
number must be 1024 or higher unless the server is started by the root system user.

• --port-open-timeout=num

Introduced 5.0.19

Command-Line Format --port-open-timeout=#

Permitted Values Type integer

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 458

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Default 0

On some systems, when the server is stopped, the TCP/IP port might not become available immediately.
If the server is restarted quickly afterward, its attempt to reopen the port can fail. This option indicates
how many seconds the server should wait for the TCP/IP port to become free if it cannot be opened. The
default is not to wait. This option was added in MySQL 5.0.19.

• --print-defaults

Print the program name and all options that it gets from option files.

• --remove [service_name]

Command-Line Format --remove [service_name]

Platform Specific Windows

(Windows only) Remove a MySQL Windows service. The default service name is MySQL if no
service_name value is given. For more information, see Section 2.10.4.7, “Starting MySQL as a
Windows Service”.

• --safe-mode

Command-Line Format --safe-mode

Skip some optimization stages. This option is deprecated and is removed in MySQL 5.6.

• --safe-show-database

Deprecated 4.0.2

Command-Line Format --safe-show-database

Permitted Values Type boolean

This option is deprecated and does not do anything because there is a SHOW DATABASES privilege that
can be used to control access to database names on a per-account basis. See Section 6.2.1, “Privileges
Provided by MySQL”. --safe-show-database is removed in MySQL 5.5.

• --safe-user-create

Command-Line Format --safe-user-create

Type booleanPermitted Values

Default FALSE

If this option is enabled, a user cannot create new MySQL users by using the GRANT statement unless
the user has the INSERT privilege for the mysql.user table or any column in the table. If you want a
user to have the ability to create new users that have those privileges that the user has the right to grant,
you should grant the user the following privilege:

GRANT INSERT(user) ON mysql.user TO 'user_name'@'host_name';

This ensures that the user cannot change any privilege columns directly, but has to use the GRANT
statement to give privileges to other users.

• --secure-auth

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 459

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Command-Line Format --secure-auth

Name secure_auth

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

This option causes the server to block connections by clients that attempt to use accounts that have
passwords stored in the old (pre-4.1) format. Use it to prevent all use of passwords employing the old
format (and hence insecure communication over the network).

Server startup fails with an error if this option is enabled and the privilege tables are in pre-4.1 format.
See Section B.5.2.4, “Client does not support authentication protocol”.

The mysql client also has a --secure-auth option, which prevents connections to a server if the
server requires a password in old format for the client account.

• --secure-file-priv=dir_name

Introduced 5.0.38

Command-Line Format --secure-file-priv=dir_name

Name secure_file_priv

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type string

Default empty

empty

Permitted Values

Valid
Values dirname

This option limits the effect of the LOAD DATA and SELECT ... INTO OUTFILE statements and the
LOAD_FILE() function to work only with files in the specified directory.

This option was added in MySQL 5.0.38.

• --shared-memory

Command-Line Format --shared_memory[={0,1}]

Name shared_memory

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Windows

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 460

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type booleanPermitted Values

Default FALSE

Enable shared-memory connections by local clients. This option is available only on Windows.

• --shared-memory-base-name=name

Command-Line Format --shared_memory_base_name=name

Name shared_memory_base_name

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Windows

Type stringPermitted Values

Default MYSQL

The name of shared memory to use for shared-memory connections. This option is available only on
Windows. The default name is MYSQL. The name is case sensitive.

• --skip-bdb

Disable the BDB storage engine. This saves memory and might speed up some operations. Do not use
this option if you require BDB tables.

• --skip-concurrent-insert

Turn off the ability to select and insert at the same time on MyISAM tables. (This is to be used only if you
think you have found a bug in this feature.) See Section 8.11.3, “Concurrent Inserts”.

• --skip-grant-tables

This option causes the server to start without using the privilege system at all, which gives anyone with
access to the server unrestricted access to all databases. You can cause a running server to start using
the grant tables again by executing mysqladmin flush-privileges or mysqladmin reload
command from a system shell, or by issuing a MySQL FLUSH PRIVILEGES statement after connecting
to the server. This option also suppresses loading of user-defined functions (UDFs).

FLUSH PRIVILEGES might be executed implicitly by other actions performed after startup. For example,
mysql_upgrade flushes the privileges during the upgrade procedure.

This option is unavailable if MySQL was configured with the --disable-grant-options option. See
Section 2.17.3, “MySQL Source-Configuration Options”.

• --skip-host-cache

Disable use of the internal host cache for faster name-to-IP resolution. In this case, the server performs
a DNS lookup every time a client connects. See Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”.

• --skip-innodb

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 461

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Disable the InnoDB storage engine. In this case, the server will not start if the default storage engine
is set to InnoDB. Use --default-storage-engine to set the default to some other engine if
necessary.

• --skip-merge

Disable the MERGE storage engine. This option was added in MySQL 5.0.24. It can be used if the
following behavior is undesirable: If a user has access to MyISAM table t, that user can create a MERGE
table m that accesses t. However, if the user's privileges on t are subsequently revoked, the user can
continue to access t by doing so through m.

• --skip-name-resolve

Do not resolve host names when checking client connections. Use only IP addresses. If you use
this option, all Host column values in the grant tables must be IP addresses or localhost. See
Section 8.12.6.2, “DNS Lookup Optimization and the Host Cache”.

Depending on the network configuration of your system and the Host values for your accounts,
clients may need to connect using an explicit --host option, such as --host=localhost or --
host=127.0.0.1.

• --skip-networking

Do not listen for TCP/IP connections at all. All interaction with mysqld must be made using named pipes
or shared memory (on Windows) or Unix socket files (on Unix). This option is highly recommended for
systems where only local clients are permitted. See Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”.

• --ssl*

Options that begin with --ssl specify whether to permit clients to connect using SSL and indicate where
to find SSL keys and certificates. See Section 6.3.6.5, “Command Options for Secure Connections”.

• --standalone

Command-Line Format --standalone

Platform Specific Windows

Instructs the MySQL server not to run as a service.

• --symbolic-links, --skip-symbolic-links

Command-Line Format --symbolic-links

Enable or disable symbolic link support. This option has different effects on Windows and Unix:

• On Windows, enabling symbolic links enables you to establish a symbolic link to a database directory
by creating a db_name.sym file that contains the path to the real directory. See Section 8.12.4.3,
“Using Symbolic Links for Databases on Windows”.

• On Unix, enabling symbolic links means that you can link a MyISAM index file or data file to another
directory with the INDEX DIRECTORY or DATA DIRECTORY options of the CREATE TABLE statement.
If you delete or rename the table, the files that its symbolic links point to also are deleted or renamed.
See Section 8.12.4.2, “Using Symbolic Links for MyISAM Tables on Unix”.

• --skip-safemalloc

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 462

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Command-Line Format --skip-safemalloc

If MySQL is configured with --with-debug=full, all MySQL programs check for memory overruns
during each memory allocation and memory freeing operation. This checking is very slow, so for the
server you can avoid it when you do not need it by using the --skip-safemalloc option.

• --skip-show-database

Command-Line Format --skip-show-database

Name skip_show_database

Variable
Scope

Global

System Variable

Dynamic
Variable

No

This option sets the skip_show_database system variable that controls who is permitted to use the
SHOW DATABASES statement. See Section 5.1.4, “Server System Variables”.

• --skip-stack-trace

Command-Line Format --skip-stack-trace

Do not write stack traces. This option is useful when you are running mysqld under a debugger. On
some systems, you also must use this option to get a core file. See Section 21.3, “Debugging and
Porting MySQL”.

• --skip-thread-priority

Command-Line Format --skip-thread-priority

Disable using thread priorities for faster response time.

mysqld makes a large number of invalid calls to thread scheduling routines on Linux. These calls do not
affect performance noticeably but may be a source of “noise” for debugging tools. For example, they can
overwhelm other information of more interest in kernel logs. To avoid these calls, start the server with the
--skip-thread-priority option.

• --socket=path

Command-Line Format --socket={file_name|pipe_name}

Name socket

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default /tmp/mysql.sock

On Unix, this option specifies the Unix socket file to use when listening for local connections. The default
value is /tmp/mysql.sock. If this option is given, the server creates the file in the data directory unless
an absolute path name is given to specify a different directory. On Windows, the option specifies the pipe

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 463

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

name to use when listening for local connections that use a named pipe. The default value is MySQL (not
case sensitive).

• --sql-mode=value[,value[,value...]]

Command-Line Format --sql-mode=name

Name sql_mode

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type set

Default ''

ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

REAL_AS_FLOAT

STRICT_ALL_TABLES

Permitted Values

Valid
Values

STRICT_TRANS_TABLES

Set the SQL mode. See Section 5.1.7, “Server SQL Modes”.

Note

MySQL installation programs may configure the SQL mode during the installation
process. If the SQL mode differs from the default or from what you expect, check
for a setting in an option file that the server reads at startup.

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 464

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --sysdate-is-now

Introduced 5.0.20

Command-Line Format --sysdate-is-now

Type booleanPermitted Values

Default FALSE

As of MySQL 5.0.12, SYSDATE() by default returns the time at which it executes, not the time at which
the statement in which it occurs begins executing. This differs from the behavior of NOW(). This option
causes SYSDATE() to be an alias for NOW(). For information about the implications for binary logging
and replication, see the description for SYSDATE() in Section 12.7, “Date and Time Functions” and for
SET TIMESTAMP in Section 5.1.4, “Server System Variables”.

This option was added in MySQL 5.0.20.

• --tc-heuristic-recover={COMMIT|ROLLBACK}

Introduced 5.0.3

Command-Line Format --tc-heuristic-recover=name

Type enumeration

Default COMMIT

COMMIT

Permitted Values

Valid
Values ROLLBACK

The type of decision to use in the heuristic recovery process. This option is unused. Added in MySQL
5.0.3.

• --temp-pool

Command-Line Format --temp-pool

Type booleanPermitted Values

Default TRUE

This option causes most temporary files created by the server to use a small set of names, rather than
a unique name for each new file. This works around a problem in the Linux kernel dealing with creating
many new files with different names. With the old behavior, Linux seems to “leak” memory, because it is
being allocated to the directory entry cache rather than to the disk cache.

• --transaction-isolation=level

Command-Line Format --transaction-isolation=name

Type enumeration

Default REPEATABLE-READ

READ-UNCOMMITTED

READ-COMMITTED

REPEATABLE-READ

Permitted Values

Valid
Values

SERIALIZABLE

Server Command Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 465

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Sets the default transaction isolation level. The level value can be READ-UNCOMMITTED, READ-
COMMITTED, REPEATABLE-READ, or SERIALIZABLE. See Section 13.3.6, “SET TRANSACTION
Syntax”.

The default transaction isolation level can also be set at runtime using the SET TRANSACTION
statement or by setting the tx_isolation system variable.

• --tmpdir=dir_name, -t dir_name

Command-Line Format --tmpdir=dir_name

Name tmpdir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The path of the directory to use for creating temporary files. It might be useful if your default /tmp
directory resides on a partition that is too small to hold temporary tables. This option accepts several
paths that are used in round-robin fashion. Paths should be separated by colon characters (“:”) on Unix
and semicolon characters (“;”) on Windows, NetWare, and OS/2. If the MySQL server is acting as a
replication slave, you should not set --tmpdir to point to a directory on a memory-based file system
or to a directory that is cleared when the server host restarts. For more information about the storage
location of temporary files, see Section B.5.3.5, “Where MySQL Stores Temporary Files”. A replication
slave needs some of its temporary files to survive a machine restart so that it can replicate temporary
tables or LOAD DATA INFILE operations. If files in the temporary file directory are lost when the server
restarts, replication fails.

• --user={user_name|user_id}, -u {user_name|user_id}

Command-Line Format --user=name

Permitted Values Type string

Run the mysqld server as the user having the name user_name or the numeric user ID user_id.
(“User” in this context refers to a system login account, not a MySQL user listed in the grant tables.)

This option is mandatory when starting mysqld as root. The server changes its user ID during its
startup sequence, causing it to run as that particular user rather than as root. See Section 6.1.1,
“Security Guidelines”.

To avoid a possible security hole where a user adds a --user=root option to a my.cnf file (thus
causing the server to run as root), mysqld uses only the first --user option specified and produces a
warning if there are multiple --user options. Options in /etc/my.cnf and $MYSQL_HOME/my.cnf are
processed before command-line options, so it is recommended that you put a --user option in /etc/
my.cnf and specify a value other than root. The option in /etc/my.cnf is found before any other --
user options, which ensures that the server runs as a user other than root, and that a warning results if
any other --user option is found.

• --verbose, -v

Use this option with the --help option for detailed help.

• --version, -V

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 466

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name version

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Display version information and exit.

An attempt to connect to the host 127.0.0.1 normally resolves to the localhost account.
However, this fails if the server is run with the --skip-name-resolve option, so make sure that an
account exists that can accept a connection. For example, to be able to connect as root using --
host=127.0.0.1 or --host=::1, create these accounts:

CREATE USER 'root'@'127.0.0.1' IDENTIFIED BY 'root-password';
CREATE USER 'root'@'::1' IDENTIFIED BY 'root-password';

5.1.4 Server System Variables

The MySQL server maintains many system variables that indicate how it is configured. Each system
variable has a default value. System variables can be set at server startup using options on the command
line or in an option file. Most of them can be changed dynamically while the server is running by means of
the SET statement, which enables you to modify operation of the server without having to stop and restart
it. You can refer to system variable values in expressions.

There are several ways to see the names and values of system variables:

• To see the values that a server will use based on its compiled-in defaults and any option files that it
reads, use this command:

mysqld --verbose --help

• To see the values that a server will use based on its compiled-in defaults, ignoring the settings in any
option files, use this command:

mysqld --no-defaults --verbose --help

• To see the current values used by a running server, use the SHOW VARIABLES statement.

This section provides a description of each system variable. Variables with no version indicated are
present in all MySQL 5.0 releases.

The following table lists all available system variables.

Table 5.2 System Variable Summary

Name Cmd-Line Option File System Var Var Scope Dynamic

auto_increment_increment Yes Both Yes

auto_increment_offset Yes Both Yes

autocommit Yes Session Yes

automatic_sp_privileges Yes Global Yes

back_log Yes Global No

basedir Yes Yes Yes Global No

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 467

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Var Scope Dynamic

bdb_cache_size Yes Global No

bdb-home Yes Yes No

- Variable:
bdb_home

 Yes Global No

bdb-lock-detect Yes Yes Yes Global No

bdb_log_buffer_size Yes Global No

bdb-logdir Yes Yes No

- Variable: bdb_logdir Yes Global No

bdb_max_lock Yes Global No

bdb-shared-data Yes Yes No

- Variable:
bdb_shared_data

 Yes Global No

bdb-tmpdir Yes Yes No

- Variable:
bdb_tmpdir

 Yes Global No

big-tables Yes Yes Yes

- Variable: big_tables Yes Session Yes

binlog_cache_size Yes Yes Yes Global Yes

bulk_insert_buffer_sizeYes Yes Yes Both Yes

character_set_client Yes Both Yes

character_set_connection Yes Both Yes

character_set_databasea Yes Both Yes

character-set-
filesystem

Yes Yes Yes

- Variable:
character_set_filesystem

 Yes Both Yes

character_set_results Yes Both Yes

character-set-server Yes Yes Yes

- Variable:
character_set_server

 Yes Both Yes

character_set_system Yes Global No

character-sets-dir Yes Yes No

- Variable:
character_sets_dir

 Yes Global No

collation_connection Yes Both Yes

collation_databaseb Yes Both Yes

collation-server Yes Yes Yes

- Variable:
collation_server

 Yes Both Yes

completion_type Yes Yes Yes Both Yes

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 468

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Var Scope Dynamic

concurrent_insert Yes Yes Yes Global Yes

connect_timeout Yes Yes Yes Global Yes

datadir Yes Yes Yes Global No

date_format Yes Both No

datetime_format Yes Both No

debug Yes Yes Yes Both Yes

default-storage-
engine

Yes Yes Yes Both Yes

default_week_format Yes Yes Yes Both Yes

delay-key-write Yes Yes Yes

- Variable:
delay_key_write

 Yes Global Yes

delayed_insert_limit Yes Yes Yes Global Yes

delayed_insert_timeoutYes Yes Yes Global Yes

delayed_queue_size Yes Yes Yes Global Yes

div_precision_incrementYes Yes Yes Both Yes

engine-condition-
pushdown

Yes Yes Yes

- Variable:
engine_condition_pushdown

 Yes Both Yes

error_count Yes Session No

expire_logs_days Yes Yes Yes Global Yes

flush Yes Yes Yes Global Yes

flush_time Yes Yes Yes Global Yes

foreign_key_checks Yes Session Yes

ft_boolean_syntax Yes Yes Yes Global Yes

ft_max_word_len Yes Yes Yes Global No

ft_min_word_len Yes Yes Yes Global No

ft_query_expansion_limitYes Yes Yes Global No

ft_stopword_file Yes Yes Yes Global No

group_concat_max_lenYes Yes Yes Both Yes

have_archive Yes Global No

have_bdb Yes Global No

have_blackhole_engine Yes Global No

have_community_features Yes Global No

have_compress Yes Global No

have_crypt Yes Global No

have_csv Yes Global No

have_example_engine Yes Global No

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 469

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Var Scope Dynamic

have_federated_engine Yes Global No

have_geometry Yes Global No

have_innodb Yes Global No

have_isam Yes Global No

have_merge_engine Yes Global No

have_ndbcluster Yes Global No

have_openssl Yes Global No

have_profiling Yes Global No

have_query_cache Yes Global No

have_raid Yes Global No

have_rtree_keys Yes Global No

have_ssl Yes Global No

have_symlink Yes Global No

hostname Yes Global No

identity Yes Session Yes

init_connect Yes Yes Yes Global Yes

init-file Yes Yes No

- Variable: init_file Yes Global No

init_slave Yes Yes Yes Global Yes

innodb_adaptive_hash_indexYes Yes Yes Global No

innodb_additional_mem_pool_sizeYes Yes Yes Global No

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_buffer_pool_awe_mem_mbYes Yes Yes Global No

innodb_buffer_pool_sizeYes Yes Yes Global No

innodb_checksums Yes Yes Yes Global No

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_data_file_pathYes Yes Yes Global No

innodb_data_home_dirYes Yes Yes Global No

innodb_doublewrite Yes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_file_io_threadsYes Yes Yes Global No

innodb_file_per_table Yes Yes Yes Global No

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_method Yes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_lock_wait_timeoutYes Yes Yes Global No

innodb_locks_unsafe_for_binlogYes Yes Yes Global No

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 470

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Var Scope Dynamic

innodb_log_arch_dir Yes Yes Yes Global No

innodb_log_archive Yes Yes Yes Global No

innodb_log_buffer_sizeYes Yes Yes Global No

innodb_log_file_size Yes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_mirrored_log_groupsYes Yes Yes Global No

innodb_open_files Yes Yes Yes Global No

innodb_rollback_on_timeoutYes Yes Yes Global No

innodb_support_xa Yes Yes Yes Both Yes

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locks Yes Yes Yes Both Yes

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_use_legacy_cardinality_algorithmYes Yes Yes Global Yes

insert_id Yes Session Yes

interactive_timeout Yes Yes Yes Both Yes

join_buffer_size Yes Yes Yes Both Yes

keep_files_on_create Yes Yes Yes Both Yes

key_buffer_size Yes Yes Yes Global Yes

key_cache_age_thresholdYes Yes Yes Global Yes

key_cache_block_sizeYes Yes Yes Global Yes

key_cache_division_limitYes Yes Yes Global Yes

language Yes Yes Yes Global No

large_files_support Yes Global No

large_page_size Yes Global No

large-pages Yes Yes No

- Variable:
large_pages

 Yes Global No

last_insert_id Yes Session Yes

lc_time_names Yes Both Yes

license Yes Global No

local_infile Yes Global Yes

locked_in_memory Yes Global No

log Yes Yes Yes Global No

log-bin Yes Yes Yes Global No

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 471

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Var Scope Dynamic

log_bin Yes Global No

log-bin-trust-function-
creators

Yes Yes Yes

- Variable:
log_bin_trust_function_creators

 Yes Global Yes

log-bin-trust-routine-
creators

Yes Yes Yes

- Variable:
log_bin_trust_routine_creators

 Yes Global Yes

log-error Yes Yes No

- Variable: log_error Yes Global No

log-queries-not-
using-indexes

Yes Yes Yes

- Variable:
log_queries_not_using_indexes

 Yes Global Yes

log-slave-updates Yes Yes No

- Variable:
log_slave_updates

 Yes Global No

log_slave_updates Yes Yes Yes Global No

log-slow-queries Yes Yes No

- Variable:
log_slow_queries

 Yes Global No

log-warnings Yes Yes Yes

- Variable:
log_warnings

 Yes Both Yes

long_query_time Yes Yes Yes Both Yes

low-priority-updates Yes Yes Yes

- Variable:
low_priority_updates

 Yes Both Yes

lower_case_file_system Yes Global No

lower_case_table_namesYes Yes Yes Global No

max_allowed_packet Yes Yes Yes Both Yes

max_binlog_cache_sizeYes Yes Yes Global Yes

max_binlog_size Yes Yes Yes Global Yes

max_connect_errors Yes Yes Yes Global Yes

max_connections Yes Yes Yes Global Yes

max_delayed_threads Yes Yes Yes Both Yes

max_error_count Yes Yes Yes Both Yes

max_heap_table_size Yes Yes Yes Both Yes

max_insert_delayed_threads Yes Both Yes

max_join_size Yes Yes Yes Both Yes

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 472

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Var Scope Dynamic

max_length_for_sort_dataYes Yes Yes Both Yes

max_prepared_stmt_countYes Yes Yes Global Yes

max_relay_log_size Yes Yes Yes Global Yes

max_seeks_for_key Yes Yes Yes Both Yes

max_sort_length Yes Yes Yes Both Yes

max_sp_recursion_depthYes Yes Yes Both Yes

max_tmp_tables Yes Both Yes

max_user_connectionsYes Yes Yes Varies Yes

max_write_lock_countYes Yes Yes Global Yes

multi_range_count Yes Yes Yes Both Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_extra_sort_file_sizeYes Yes Yes Global No

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_size Yes Yes Yes Global No

myisam_recover_options Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

named_pipe Yes Global No

ndb_autoincrement_prefetch_szYes Yes Yes Both Yes

ndb_cache_check_timeYes Yes Yes Global Yes

ndb_force_send Yes Yes Yes Both Yes

ndb_index_stat_cache_entriesYes Yes Yes Both Yes

ndb_index_stat_enableYes Yes Yes Both Yes

ndb_index_stat_update_freqYes Yes Yes Both Yes

ndb_optimized_node_selectionYes Yes Yes Global No

ndb_use_exact_count Yes Both Yes

ndb_use_transactions Yes Yes Yes Both Yes

net_buffer_length Yes Yes Yes Both Yes

net_read_timeout Yes Yes Yes Both Yes

net_retry_count Yes Yes Yes Both Yes

net_write_timeout Yes Yes Yes Both Yes

new Yes Yes Yes Both Yes

old_passwords Yes Both Yes

open-files-limit Yes Yes No

- Variable:
open_files_limit

 Yes Global No

optimizer_prune_level Yes Yes Yes Both Yes

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 473

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Var Scope Dynamic

optimizer_search_depthYes Yes Yes Both Yes

pid-file Yes Yes No

- Variable: pid_file Yes Global No

plugin_dir Yes Yes Yes Global No

port Yes Yes Yes Global No

preload_buffer_size Yes Yes Yes Both Yes

prepared_stmt_count Yes Global No

profiling Yes Session Yes

profiling_history_size Yes Yes Yes Both Yes

protocol_version Yes Global No

pseudo_thread_id Yes Session Yes

query_alloc_block_sizeYes Yes Yes Both Yes

query_cache_limit Yes Yes Yes Global Yes

query_cache_min_res_unitYes Yes Yes Global Yes

query_cache_size Yes Yes Yes Global Yes

query_cache_type Yes Yes Yes Both Yes

query_cache_wlock_invalidateYes Yes Yes Both Yes

query_prealloc_size Yes Yes Yes Both Yes

rand_seed1 Yes Session Yes

rand_seed2 Yes Session Yes

range_alloc_block_sizeYes Yes Yes Both Yes

read_buffer_size Yes Yes Yes Both Yes

read_only Yes Yes Yes Global Yes

read_rnd_buffer_size Yes Yes Yes Both Yes

relay-log Yes Yes No

- Variable: relay_log Yes Global No

relay-log-index Yes Yes No

- Variable:
relay_log_index

 Yes Global No

relay_log_index Yes Yes Yes Global No

relay_log_info_file Yes Yes Yes Global No

relay_log_purge Yes Yes Yes Global Yes

relay_log_space_limit Yes Yes Yes Global No

rpl_recovery_rank Yes Global Yes

secure-auth Yes Yes Yes

- Variable:
secure_auth

 Yes Global Yes

secure-file-priv Yes Yes No

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 474

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Var Scope Dynamic

- Variable:
secure_file_priv

 Yes Global No

server-id Yes Yes Yes

- Variable: server_id Yes Global Yes

shared_memory Yes Yes Yes Global No

shared_memory_base_nameYes Yes Yes Global No

skip_external_locking Yes Yes Yes Global No

skip-networking Yes Yes No

- Variable:
skip_networking

 Yes Global No

skip-show-database Yes Yes No

- Variable:
skip_show_database

 Yes Global No

skip-sync-bdb-logs Yes Yes Yes Global No

slave_compressed_protocolYes Yes Yes Global Yes

slave-load-tmpdir Yes Yes No

- Variable:
slave_load_tmpdir

 Yes Global No

slave-net-timeout Yes Yes Yes

- Variable:
slave_net_timeout

 Yes Global Yes

slave-skip-errors Yes Yes No

- Variable:
slave_skip_errors

 Yes Global No

slave_transaction_retriesYes Yes Yes Global Yes

slow_launch_time Yes Yes Yes Global Yes

socket Yes Yes Yes Global No

sort_buffer_size Yes Yes Yes Both Yes

sql_auto_is_null Yes Session Yes

sql_big_selects Yes Session Yes

sql_big_tables Yes Session Yes

sql_buffer_result Yes Session Yes

sql_log_bin Yes Session Yes

sql_log_off Yes Session Yes

sql_log_update Yes Session Yes

sql_low_priority_updates Yes Both Yes

sql_max_join_size Yes Both Yes

sql-mode Yes Yes Yes

- Variable: sql_mode Yes Both Yes

sql_notes Yes Session Yes

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 475

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Var Scope Dynamic

sql_quote_show_create Yes Session Yes

sql_safe_updates Yes Session Yes

sql_select_limit Yes Both Yes

sql_slave_skip_counter Yes Global Yes

sql_warnings Yes Session Yes

ssl-ca Yes Yes No

- Variable: ssl_ca Yes Global No

ssl-capath Yes Yes No

- Variable:
ssl_capath

 Yes Global No

ssl-cert Yes Yes No

- Variable: ssl_cert Yes Global No

ssl-cipher Yes Yes No

- Variable: ssl_cipher Yes Global No

ssl-key Yes Yes No

- Variable: ssl_key Yes Global No

storage_engine Yes Both Yes

sync-bdb-logs Yes Yes Yes Global No

sync_binlog Yes Yes Yes Global Yes

sync_frm Yes Yes Yes Global Yes

system_time_zone Yes Global No

table_cache Yes Yes Yes Global Yes

table_lock_wait_timeoutYes Yes Yes Global Yes

table_type Yes Both Yes

thread_cache_size Yes Yes Yes Global Yes

thread_concurrency Yes Yes Yes Global No

thread_stack Yes Yes Yes Global No

time_format Yes Both No

time_zone Yes Both Yes

timed_mutexes Yes Yes Yes Global Yes

timestamp Yes Session Yes

tmp_table_size Yes Yes Yes Both Yes

tmpdir Yes Yes Yes Global No

transaction_alloc_block_sizeYes Yes Yes Both Yes

transaction_prealloc_sizeYes Yes Yes Both Yes

tx_isolation Yes Both Yes

unique_checks Yes Session Yes

updatable_views_with_limitYes Yes Yes Both Yes

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 476

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Var Scope Dynamic

version Yes Global No

version_comment Yes Global No

version_compile_machine Yes Global No

version_compile_os Yes Global No

wait_timeout Yes Yes Yes Both Yes

warning_count Yes Session No
aThis option is dynamic, but only the server should set this information. You should not set the value of this variable manually.
bThis option is dynamic, but only the server should set this information. You should not set the value of this variable manually.

For additional system variable information, see these sections:

• Section 5.1.5, “Using System Variables”, discusses the syntax for setting and displaying system variable
values.

• Section 5.1.5.2, “Dynamic System Variables”, lists the variables that can be set at runtime.

• Information on tuning system variables can be found in Section 8.12.2, “Tuning Server Parameters”.

• Section 14.2.2, “InnoDB Startup Options and System Variables”, lists InnoDB system variables.

• MySQL Cluster System Variables, lists system variables which are specific to MySQL Cluster.

• For information on server system variables specific to replication, see Section 16.1.2, “Replication and
Binary Logging Options and Variables”.

Note

Some of the following variable descriptions refer to “enabling” or “disabling” a
variable. These variables can be enabled with the SET statement by setting them
to ON or 1, or disabled by setting them to OFF or 0. However, to set such a variable
on the command line or in an option file, you must set it to 1 or 0; setting it to ON or
OFF will not work. For example, on the command line, --delay_key_write=1
works but --delay_key_write=ON does not.

Some system variables control the size of buffers or caches. For a given buffer, the server might need to
allocate internal data structures. These structures typically are allocated from the total memory allocated
to the buffer, and the amount of space required might be platform dependent. This means that when you
assign a value to a system variable that controls a buffer size, the amount of space actually available might
differ from the value assigned. In some cases, the amount might be less than the value assigned. It is also
possible that the server will adjust a value upward. For example, if you assign a value of 0 to a variable for
which the minimal value is 1024, the server will set the value to 1024.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

Some system variables take file name values. Unless otherwise specified, the default file location is the
data directory if the value is a relative path name. To specify the location explicitly, use an absolute path
name. Suppose that the data directory is /var/mysql/data. If a file-valued variable is given as a relative
path name, it will be located under /var/mysql/data. If the value is an absolute path name, its location
is as given by the path name.

• autocommit

System Variable Name autocommit

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 477

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable
Scope

Session

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

The autocommit mode. If set to 1, all changes to a table take effect immediately. If set to 0, you must
use COMMIT to accept a transaction or ROLLBACK to cancel it. If autocommit is 0 and you change it to
1, MySQL performs an automatic COMMIT of any open transaction. Another way to begin a transaction
is to use a START TRANSACTION or BEGIN statement. See Section 13.3.1, “START TRANSACTION,
COMMIT, and ROLLBACK Syntax”.

By default, client connections begin with autocommit set to 1. To cause clients to begin with a default
of 0, set the server's init_connect system variable:

SET GLOBAL init_connect='SET autocommit=0';

The init_connect variable can also be set on the command line or in an option file. To set the
variable as just shown using an option file, include these lines:

[mysqld]
init_connect='SET autocommit=0'

The content of init_connect is not executed for users that have the SUPER privilege.

• automatic_sp_privileges

Introduced 5.0.3

Name automatic_sp_privileges

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

When this variable has a value of 1 (the default), the server automatically grants the EXECUTE and
ALTER ROUTINE privileges to the creator of a stored routine, if the user cannot already execute
and alter or drop the routine. (The ALTER ROUTINE privilege is required to drop the routine.) The
server also automatically drops those privileges from the creator when the routine is dropped. If
automatic_sp_privileges is 0, the server does not automatically add or drop these privileges.

The creator of a routine is the account used to execute the CREATE statement for it. This might not be
the same as the account named as the DEFINER in the routine definition.

See also Section 18.2.2, “Stored Routines and MySQL Privileges”.

This variable was added in MySQL 5.0.3.

• back_log

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 478

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name back_log

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 50

Min
Value

1

Permitted Values

Max
Value

65535

The number of outstanding connection requests MySQL can have. This comes into play when the
main MySQL thread gets very many connection requests in a very short time. It then takes some
time (although very little) for the main thread to check the connection and start a new thread. The
back_log value indicates how many requests can be stacked during this short time before MySQL
momentarily stops answering new requests. You need to increase this only if you expect a large number
of connections in a short period of time.

In other words, this value is the size of the listen queue for incoming TCP/IP connections. Your operating
system has its own limit on the size of this queue. The manual page for the Unix listen() system
call should have more details. Check your OS documentation for the maximum value for this variable.
back_log cannot be set higher than your operating system limit.

• basedir

Command-Line Format --basedir=dir_name

Name basedir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The MySQL installation base directory. This variable can be set with the --basedir option. Relative
path names for other variables usually are resolved relative to the base directory.

• bdb_cache_size

Name bdb_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values

Min
Value

20480

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 479

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The size of the buffer that is allocated for caching indexes and rows for BDB tables. If you do not use BDB
tables, you should start mysqld with --skip-bdb to not allocate memory for this cache.

• bdb_home

Command-Line Format --bdb-home=dir_name

Name bdb_home

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The base directory for BDB tables. This should be assigned the same value as the datadir variable.

• bdb_log_buffer_size

Name bdb_log_buffer_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Min
Value

262144

Permitted Values

Max
Value

4294967295

The size of the buffer that is allocated for caching indexes and rows for BDB tables. If you do not use BDB
tables, you should set this to 0 or start mysqld with --skip-bdb to not allocate memory for this cache.

• bdb_logdir

Command-Line Format --bdb-logdir=file_name

Name bdb_logdir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The directory where the BDB storage engine writes its log files. This variable can be set with the --bdb-
logdir option.

• bdb_max_lock

System Variable Name bdb_max_lock

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 480

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable
Scope

Global

Dynamic
Variable

No

Type integerPermitted Values

Default 10000

The maximum number of locks that can be active for a BDB table (10,000 by default). You should
increase this value if errors such as the following occur when you perform long transactions or when
mysqld has to examine many rows to calculate a query:

bdb: Lock table is out of available locks
Got error 12 from ...

For more information, see Section 21.3.3, “The DBUG Package”.

• bdb_shared_data

Command-Line Format --bdb-shared-data

Name bdb_shared_data

Variable
Scope

Global

System Variable

Dynamic
Variable

No

This is ON if you are using --bdb-shared-data to start Berkeley DB in multi-process mode. (Do not
use DB_PRIVATE when initializing Berkeley DB.)

• bdb_tmpdir

Command-Line Format --bdb-tmpdir=dir_name

Name bdb_tmpdir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The BDB temporary file directory.

• big_tables

If set to 1, all temporary tables are stored on disk rather than in memory. This is a little slower, but
the error The table tbl_name is full does not occur for SELECT operations that require a
large temporary table. The default value for a new connection is 0 (use in-memory temporary tables).
Normally, you should never need to set this variable, because in-memory tables are automatically
converted to disk-based tables as required.

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 481

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

This variable was formerly named sql_big_tables.

• binlog_cache_size

Command-Line Format --binlog_cache_size=#

Name binlog_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 32768

Min
Value

4096

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 32768

Min
Value

4096

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

The size of the cache to hold the SQL statements for the binary log during a transaction. A binary
log cache is allocated for each client if the server supports any transactional storage engines and if
the server has the binary log enabled (--log-bin option). If you often use large, multiple-statement
transactions, you can increase this cache size to get better performance. The Binlog_cache_use
and Binlog_cache_disk_use status variables can be useful for tuning the size of this variable. See
Section 5.4.3, “The Binary Log”.

• bulk_insert_buffer_size

Command-Line Format --bulk_insert_buffer_size=#

Name bulk_insert_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 8388608

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 482

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type integer

Default 8388608

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

MyISAM uses a special tree-like cache to make bulk inserts faster for INSERT ... SELECT,
INSERT ... VALUES (...), (...), ..., and LOAD DATA INFILE when adding data to
nonempty tables. This variable limits the size of the cache tree in bytes per thread. Setting it to 0
disables this optimization. The default value is 8MB.

• character_set_client

Name character_set_client

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

The character set for statements that arrive from the client. The session value of this variable is set using
the character set requested by the client when the client connects to the server. (Many clients support
a --default-character-set option to enable this character set to be specified explicitly. See also
Section 10.1.4, “Connection Character Sets and Collations”.) The global value of the variable is used to
set the session value in cases when the client-requested value is unknown or not available, or the server
is configured to ignore client requests:

• The client is from a version of MySQL older than MySQL 4.1, and thus does not request a character
set.

• The client requests a character set not known to the server. For example, a Japanese-enabled client
requests sjis when connecting to a server not configured with sjis support.

• mysqld was started with the --skip-character-set-client-handshake option, which causes
it to ignore client character set configuration. This reproduces MySQL 4.0 behavior and is useful
should you wish to upgrade the server without upgrading all the clients.

ucs2 cannot be used as a client character set, which means that it also does not work for SET NAMES or
SET CHARACTER SET.

• character_set_connection

Name character_set_connection

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 483

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The character set used for literals that do not have a character set introducer and for number-to-string
conversion.

• character_set_database

Name character_set_database

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Footnote This option is dynamic, but only the server should set this information. You
should not set the value of this variable manually.

Permitted Values Type string

The character set used by the default database. The server sets this variable whenever the
default database changes. If there is no default database, the variable has the same value as
character_set_server.

• character_set_filesystem

Introduced 5.0.19

Command-Line Format --character-set-filesystem=name

Name character_set_filesystem

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default binary

The file system character set. This variable is used to interpret string literals that refer to file
names, such as in the LOAD DATA INFILE and SELECT ... INTO OUTFILE statements and
the LOAD_FILE() function. Such file names are converted from character_set_client to
character_set_filesystem before the file opening attempt occurs. The default value is binary,
which means that no conversion occurs. For systems on which multibyte file names are permitted, a
different value may be more appropriate. For example, if the system represents file names using UTF-8,
set character_set_filesystem to 'utf8'. This variable was added in MySQL 5.0.19.

• character_set_results

Name character_set_results

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

The character set used for returning query results such as result sets or error messages to the client.

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 484

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• character_set_server

Command-Line Format --character-set-server

Name character_set_server

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default latin1

The server's default character set.

• character_set_system

Name character_set_system

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default utf8

The character set used by the server for storing identifiers. The value is always utf8.

• character_sets_dir

Command-Line Format --character-sets-dir=dir_name

Name character_sets_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The directory where character sets are installed.

• collation_connection

Name collation_connection

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

The collation of the connection character set.

• collation_database

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 485

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name collation_database

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Footnote This option is dynamic, but only the server should set this information. You
should not set the value of this variable manually.

Permitted Values Type string

The collation used by the default database. The server sets this variable whenever the default database
changes. If there is no default database, the variable has the same value as collation_server.

• collation_server

Command-Line Format --collation-server

Name collation_server

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default latin1_swedish_ci

The server's default collation.

• completion_type

Introduced 5.0.3

Command-Line Format --completion_type=#

Name completion_type

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

0

1

Permitted Values (>=
5.0.3)

Valid
Values

2

The transaction completion type. This variable can take the values shown in the following table.

Value Description

0 COMMIT and ROLLBACK are unaffected. This is the default value.

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 486

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Value Description

1 COMMIT and ROLLBACK are equivalent to COMMIT AND CHAIN and ROLLBACK AND
CHAIN, respectively. (A new transaction starts immediately with the same isolation level as
the just-terminated transaction.)

2 COMMIT and ROLLBACK are equivalent to COMMIT RELEASE and ROLLBACK RELEASE,
respectively. (The server disconnects after terminating the transaction.)

completion_type affects transactions that begin with START TRANSACTION or BEGIN and end with
COMMIT or ROLLBACK. It does not apply to implicit commits resulting from execution of the statements
listed in Section 13.3.3, “Statements That Cause an Implicit Commit”. It also does not apply for XA
COMMIT, XA ROLLBACK, or when autocommit=1.

This variable was added in MySQL 5.0.3.

• concurrent_insert

Command-Line Format --concurrent_insert[=#]

Name concurrent_insert

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values (<=
5.0.5) Default TRUE

Type integer

Default 1

0

1

Permitted Values (>=
5.0.6)

Valid
Values

2

If 1 (the default), MySQL permits INSERT and SELECT statements to run concurrently for MyISAM
tables that have no free blocks in the middle of the data file. If you start mysqld with --skip-new, this
variable is set to 0.

In MySQL 5.0.6, this variable was changed to take three integer values:

Value Description

0 Disables concurrent inserts

1 (Default) Enables concurrent insert for MyISAM tables that do not have holes

2 Enables concurrent inserts for all MyISAM tables, even those that have holes. For a table
with a hole, new rows are inserted at the end of the table if it is in use by another thread.
Otherwise, MySQL acquires a normal write lock and inserts the row into the hole.

See also Section 8.11.3, “Concurrent Inserts”.

• connect_timeout

Command-Line Format --connect_timeout=#

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 487

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name connect_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 5

Min
Value

2

Permitted Values (<=
5.0.51)

Max
Value

31536000

Type integer

Default 10

Min
Value

2

Permitted Values (>=
5.0.52)

Max
Value

31536000

The number of seconds that the mysqld server waits for a connect packet before responding with Bad
handshake. The default value is 10 seconds as of MySQL 5.0.52 and 5 seconds before that.

Increasing the connect_timeout value might help if clients frequently encounter errors of the form
Lost connection to MySQL server at 'XXX', system error: errno.

• datadir

Command-Line Format --datadir=dir_name

Name datadir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The MySQL data directory. This variable can be set with the --datadir option.

• date_format

This variable is unused.

• datetime_format

This variable is unused.

• default_week_format

Command-Line Format --default_week_format=#

System Variable Name default_week_format

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 488

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable
Scope

Global, Session

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

7

The default mode value to use for the WEEK() function. See Section 12.7, “Date and Time Functions”.

• delay_key_write

Command-Line Format --delay-key-write[=name]

Name delay_key_write

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type enumeration

Default ON

ON

OFF

Permitted Values

Valid
Values

ALL

This option applies only to MyISAM tables. It can have one of the following values to affect handling of
the DELAY_KEY_WRITE table option that can be used in CREATE TABLE statements.

Option Description

OFF DELAY_KEY_WRITE is ignored.

ON MySQL honors any DELAY_KEY_WRITE option specified in CREATE TABLE statements.
This is the default value.

ALL All new opened tables are treated as if they were created with the DELAY_KEY_WRITE
option enabled.

If DELAY_KEY_WRITE is enabled for a table, the key buffer is not flushed for the table on every index
update, but only when the table is closed. This speeds up writes on keys a lot, but if you use this feature,
you should add automatic checking of all MyISAM tables by starting the server with the --myisam-
recover option (for example, --myisam-recover=BACKUP,FORCE). See Section 5.1.3, “Server
Command Options”, and Section 14.1.1, “MyISAM Startup Options”.

Warning

If you enable external locking with --external-locking, there is no protection
against index corruption for tables that use delayed key writes.

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 489

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• delayed_insert_limit

Command-Line Format --delayed_insert_limit=#

Name delayed_insert_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 100

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 100

Min
Value

1

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

After inserting delayed_insert_limit delayed rows, the INSERT DELAYED handler thread checks
whether there are any SELECT statements pending. If so, it permits them to execute before continuing to
insert delayed rows.

• delayed_insert_timeout

Command-Line Format --delayed_insert_timeout=#

Name delayed_insert_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 300

How many seconds an INSERT DELAYED handler thread should wait for INSERT statements before
terminating.

• delayed_queue_size

Command-Line Format --delayed_queue_size=#

Name delayed_queue_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 490

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type integer

Default 1000

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1000

Min
Value

1

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

This is a per-table limit on the number of rows to queue when handling INSERT DELAYED statements. If
the queue becomes full, any client that issues an INSERT DELAYED statement waits until there is room
in the queue again.

• div_precision_increment

Introduced 5.0.6

Command-Line Format --div_precision_increment=#

Name div_precision_increment

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 4

Min
Value

0

Permitted Values

Max
Value

30

This variable indicates the number of digits by which to increase the scale of the result of division
operations performed with the / operator. The default value is 4. The minimum and maximum values are
0 and 30, respectively. The following example illustrates the effect of increasing the default value.

mysql> SELECT 1/7;
+--------+
| 1/7 |
+--------+
| 0.1429 |
+--------+
mysql> SET div_precision_increment = 12;
mysql> SELECT 1/7;
+----------------+
| 1/7 |
+----------------+
| 0.142857142857 |
+----------------+

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 491

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This variable was added in MySQL 5.0.6.

• engine_condition_pushdown

Introduced 5.0.3

Command-Line Format --engine-condition-pushdown

Name engine_condition_pushdown

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values (>=
5.0.3) Default OFF

The engine condition pushdown optimization enables processing for certain comparisons to be “pushed
down” to the storage engine level for more efficient execution. For more information, see Section 8.2.1.5,
“Engine Condition Pushdown Optimization”.

Engine condition pushdown is used only by the NDBCLUSTER storage engine. Enabling this optimization
on a MySQL Server acting as a MySQL Cluster SQL node causes WHERE conditions on unindexed
columns to be evaluated on the cluster's data nodes and only the rows that match to be sent back to the
SQL node that issued the query. This greatly reduces the amount of cluster data that must be sent over
the network, increasing the efficiency with which results are returned.

The engine_condition_pushdown variable controls whether engine condition pushdown is enabled.
By default, this variable is OFF (0). Setting it to ON (1) enables pushdown.

This variable was added in MySQL 5.0.3.

• error_count

The number of errors that resulted from the last statement that generated messages. This variable is
read only. See Section 13.7.5.14, “SHOW ERRORS Syntax”.

• expire_logs_days

Command-Line Format --expire_logs_days=#

Name expire_logs_days

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

99

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 492

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The number of days for automatic binary log file removal. The default is 0, which means “no automatic
removal.” Possible removals happen at startup and when the binary log is flushed. Log flushing occurs
as indicated in Section 5.4, “MySQL Server Logs”.

To remove binary log files manually, use the PURGE BINARY LOGS statement. See Section 13.4.1.1,
“PURGE BINARY LOGS Syntax”.

• flush

Command-Line Format --flush

Name flush

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If ON, the server flushes (synchronizes) all changes to disk after each SQL statement. Normally, MySQL
does a write of all changes to disk only after each SQL statement and lets the operating system handle
the synchronizing to disk. See Section B.5.3.3, “What to Do If MySQL Keeps Crashing”. This variable is
set to ON if you start mysqld with the --flush option.

• flush_time

Command-Line Format --flush_time=#

Name flush_time

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Permitted Values

Min
Value

0

Type integer

Default 1800

Permitted Values
(Windows)

Min
Value

0

If this is set to a nonzero value, all tables are closed every flush_time seconds to free up resources
and synchronize unflushed data to disk. This option is best used only on systems with minimal
resources.

• foreign_key_checks

If set to 1 (the default), foreign key constraints for InnoDB tables are checked. If set to 0, foreign key
constraints are ignored, with a couple of exceptions. When re-creating a table that was dropped, an error
is returned if the table definition does not conform to the foreign key constraints referencing the table.

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 493

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Likewise, an ALTER TABLE operation returns an error if a foreign key definition is incorrectly formed. For
more information, see Section 13.1.10.3, “Using FOREIGN KEY Constraints”.

Disabling foreign key checking can be useful for reloading InnoDB tables in an order different from
that required by their parent/child relationships. See Section 14.2.3.4, “InnoDB and FOREIGN KEY
Constraints”.

Setting foreign_key_checks to 0 also affects data definition statements: DROP DATABASE drops
a database even if it contains tables that have foreign keys that are referred to by tables outside the
database, and DROP TABLE drops tables that have foreign keys that are referred to by other tables.

Note

Setting foreign_key_checks to 1 does not trigger a scan of the existing table
data. Therefore, rows added to the table while foreign_key_checks = 0 will
not be verified for consistency.

• ft_boolean_syntax

Command-Line Format --ft_boolean_syntax=name

Name ft_boolean_syntax

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type stringPermitted Values

Default + -><()~*:""&|

The list of operators supported by boolean full-text searches performed using IN BOOLEAN MODE. See
Section 12.9.2, “Boolean Full-Text Searches”.

The default variable value is '+ -><()~*:""&|'. The rules for changing the value are as follows:

• Operator function is determined by position within the string.

• The replacement value must be 14 characters.

• Each character must be an ASCII nonalphanumeric character.

• Either the first or second character must be a space.

• No duplicates are permitted except the phrase quoting operators in positions 11 and 12. These two
characters are not required to be the same, but they are the only two that may be.

• Positions 10, 13, and 14 (which by default are set to “:”, “&”, and “|”) are reserved for future
extensions.

• ft_max_word_len

Command-Line Format --ft_max_word_len=#

Name ft_max_word_lenSystem Variable

Variable
Scope

Global

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 494

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Dynamic
Variable

No

Type integerPermitted Values

Min
Value

10

The maximum length of the word to be included in a FULLTEXT index.

Note

FULLTEXT indexes must be rebuilt after changing this variable. Use REPAIR
TABLE tbl_name QUICK.

• ft_min_word_len

Command-Line Format --ft_min_word_len=#

Name ft_min_word_len

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 4

Permitted Values

Min
Value

1

The minimum length of the word to be included in a FULLTEXT index.

Note

FULLTEXT indexes must be rebuilt after changing this variable. Use REPAIR
TABLE tbl_name QUICK.

• ft_query_expansion_limit

Command-Line Format --ft_query_expansion_limit=#

Name ft_query_expansion_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 20

Min
Value

0

Permitted Values

Max
Value

1000

The number of top matches to use for full-text searches performed using WITH QUERY EXPANSION.

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 495

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• ft_stopword_file

Command-Line Format --ft_stopword_file=file_name

Name ft_stopword_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The file from which to read the list of stopwords for full-text searches. The server looks for the file in the
data directory unless an absolute path name is given to specify a different directory. All the words from
the file are used; comments are not honored. By default, a built-in list of stopwords is used (as defined in
the myisam/ft_static.c file). Setting this variable to the empty string ('') disables stopword filtering.
See also Section 12.9.4, “Full-Text Stopwords”.

Note

FULLTEXT indexes must be rebuilt after changing this variable or the contents of
the stopword file. Use REPAIR TABLE tbl_name QUICK.

• group_concat_max_len

Command-Line Format --group_concat_max_len=#

Name group_concat_max_len

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1024

Min
Value

4

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1024

Min
Value

4

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

The maximum permitted result length in bytes for the GROUP_CONCAT() function. The default is 1024.

• have_archive

YES if mysqld supports ARCHIVE tables, NO if not.

• have_bdb

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 496

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

YES if mysqld supports BDB tables. DISABLED if --skip-bdb is used.

• have_blackhole_engine

YES if mysqld supports BLACKHOLE tables, NO if not.

• have_community_features

YES if statement profiling capability is present, NO if not. If present, the profiling system variable
controls whether this capability is enabled or disabled. See Section 13.7.5.29, “SHOW PROFILES
Syntax”.

This variable was added in MySQL 5.0.82.

• have_compress

YES if the zlib compression library is available to the server, NO if not. If not, the COMPRESS() and
UNCOMPRESS() functions cannot be used.

• have_crypt

YES if the crypt() system call is available to the server, NO if not. If not, the ENCRYPT() function
cannot be used.

• have_csv

YES if mysqld supports CSV tables, NO if not.

• have_example_engine

YES if mysqld supports EXAMPLE tables, NO if not.

• have_federated_engine

YES if mysqld supports FEDERATED tables, NO if not. This variable was added in MySQL 5.0.3.

• have_geometry

YES if the server supports spatial data types, NO if not.

• have_innodb

YES if mysqld supports InnoDB tables. DISABLED if --skip-innodb is used.

• have_isam

This variable appears only for reasons of backward compatibility. It is always NO because ISAM tables
are no longer supported.

• have_merge_engine

YES if mysqld supports MERGE tables. DISABLED if --skip-merge is used. This variable was added in
MySQL 5.0.24.

• have_openssl

YES if mysqld supports SSL connections, NO if not. As of MySQL 5.0.38, this variable is an alias for
have_ssl.

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 497

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• have_profiling

YES if statement profiling capability is present, NO if not. If present, the profiling system variable
controls whether this capability is enabled or disabled. See Section 13.7.5.29, “SHOW PROFILES
Syntax”.

This variable was added in MySQL 5.0.82.

• have_query_cache

YES if mysqld supports the query cache, NO if not.

• have_raid

This variable appears only for reasons of backward compatibility. It is always NO because RAID tables
are no longer supported.

• have_rtree_keys

YES if RTREE indexes are available, NO if not. (These are used for spatial indexes in MyISAM tables.)

• have_ssl

YES if mysqld supports SSL connections, NO if not. DISABLED indicates that the server was compiled
with SSL support, but but was not started with the appropriate --ssl-xxx options. For more
information, see Section 6.3.6.2, “Building MySQL with Support for Secure Connections”.

This variable was added in MySQL 5.0.38. Before that, use have_openssl.

• have_symlink

YES if symbolic link support is enabled, NO if not. This is required on Unix for support of the DATA
DIRECTORY and INDEX DIRECTORY table options, and on Windows for support of data directory
symlinks. If the server is started with the --skip-symbolic-links option, the value is DISABLED.

• hostname

Introduced 5.0.38

Name hostname

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The server sets this variable to the server host name at startup. This variable was added in MySQL
5.0.38.

• identity

This variable is a synonym for the last_insert_id variable. It exists for compatibility with other
database systems. You can read its value with SELECT @@identity, and set it using SET identity.

• init_connect

Command-Line Format --init-connect=name

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 498

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name init_connect

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

A string to be executed by the server for each client that connects. The string consists of one or more
SQL statements, separated by semicolon characters. For example, each client session begins by
default with autocommit mode enabled. There is no global autocommit system variable to specify that
autocommit should be disabled by default, but init_connect can be used to achieve the same effect:

SET GLOBAL init_connect='SET autocommit=0';

The init_connect variable can also be set on the command line or in an option file. To set the
variable as just shown using an option file, include these lines:

[mysqld]
init_connect='SET autocommit=0'

The content of init_connect is not executed for users that have the SUPER privilege. This is done so
that an erroneous value for init_connect does not prevent all clients from connecting. For example,
the value might contain a statement that has a syntax error, thus causing client connections to fail. Not
executing init_connect for users that have the SUPER privilege enables them to open a connection
and fix the init_connect value.

The server discards any result sets produced by statements in the value of of init_connect.

• init_file

Command-Line Format --init-file=file_name

Name init_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The name of the file specified with the --init-file option when you start the server. This should be a
file containing SQL statements that you want the server to execute when it starts. Each statement must
be on a single line and should not include comments. For more information, see the description of --
init-file.

Note that the --init-file option is unavailable if MySQL was configured with the --disable-
grant-options option. See Section 2.17.3, “MySQL Source-Configuration Options”.

• innodb_xxx

InnoDB system variables are listed in Section 14.2.2, “InnoDB Startup Options and System Variables”.

• insert_id

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 499

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The value to be used by the following INSERT or ALTER TABLE statement when inserting an
AUTO_INCREMENT value. This is mainly used with the binary log.

• interactive_timeout

Command-Line Format --interactive_timeout=#

Name interactive_timeout

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 28800

Permitted Values

Min
Value

1

The number of seconds the server waits for activity on an interactive connection before closing
it. An interactive client is defined as a client that uses the CLIENT_INTERACTIVE option to
mysql_real_connect(). See also wait_timeout.

• join_buffer_size

Command-Line Format --join_buffer_size=#

Name join_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 131072

Min
Value

8200

Permitted Values

Max
Value

4294967295

The minimum size of the buffer that is used for plain index scans, range index scans, and joins that
do not use indexes and thus perform full table scans. Normally, the best way to get fast joins is to add
indexes. Increase the value of join_buffer_size to get a faster full join when adding indexes is not
possible. One join buffer is allocated for each full join between two tables. For a complex join between
several tables for which indexes are not used, multiple join buffers might be necessary.

There is no gain from setting the buffer larger than required to hold each matching row, and all joins
allocate at least the minimum size, so use caution in setting this variable to a large value globally. It is
better to keep the global setting small and change to a larger setting only in sessions that are doing large
joins. Memory allocation time can cause substantial performance drops if the global size is larger than
needed by most queries that use it.

The maximum permissible setting for join_buffer_size is 4GB−1.

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 500

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For additional information about join buffering, see Section 8.2.1.8, “Nested-Loop Join Algorithms”.

• keep_files_on_create

Introduced 5.0.48

Command-Line Format --keep_files_on_create=#

Name keep_files_on_create

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the database
directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it. The same applies
to .MYI files for tables created with no INDEX DIRECTORY option. To suppress this behavior, set the
keep_files_on_create variable to ON (1), in which case MyISAM will not overwrite existing files and
returns an error instead. The default value is OFF (0).

If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing
.MYD or .MYI file is found, MyISAM always returns an error. It will not overwrite a file in the specified
directory.

This variable was added in MySQL 5.0.48.

• key_buffer_size

Command-Line Format --key_buffer_size=#

Name key_buffer_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 8388608

Min
Value

8

Permitted Values

Max
Value

4294967295

Index blocks for MyISAM tables are buffered and are shared by all threads. key_buffer_size is the
size of the buffer used for index blocks. The key buffer is also known as the key cache.

The maximum permissible setting for key_buffer_size is 4GB−1 on 32-bit platforms. As of MySQL
5.0.52, larger values are permitted for 64-bit platforms (except 64-bit Windows, for which large values
are truncated to 4GB−1 with a warning). The effective maximum size might be less, depending on your
available physical RAM and per-process RAM limits imposed by your operating system or hardware

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 501

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

platform. The value of this variable indicates the amount of memory requested. Internally, the server
allocates as much memory as possible up to this amount, but the actual allocation might be less.

You can increase the value to get better index handling for all reads and multiple writes; on a system
whose primary function is to run MySQL using the MyISAM storage engine, 25% of the machine's total
memory is an acceptable value for this variable. However, you should be aware that, if you make the
value too large (for example, more than 50% of the machine's total memory), your system might start
to page and become extremely slow. This is because MySQL relies on the operating system to perform
file system caching for data reads, so you must leave some room for the file system cache. You should
also consider the memory requirements of any other storage engines that you may be using in addition
to MyISAM.

For even more speed when writing many rows at the same time, use LOCK TABLES. See
Section 8.2.2.1, “Speed of INSERT Statements”.

You can check the performance of the key buffer by issuing a SHOW STATUS statement and examining
the Key_read_requests, Key_reads, Key_write_requests, and Key_writes status variables.
(See Section 13.7.5, “SHOW Syntax”.) The Key_reads/Key_read_requests ratio should normally
be less than 0.01. The Key_writes/Key_write_requests ratio is usually near 1 if you are using
mostly updates and deletes, but might be much smaller if you tend to do updates that affect many rows
at the same time or if you are using the DELAY_KEY_WRITE table option.

The fraction of the key buffer in use can be determined using key_buffer_size in conjunction
with the Key_blocks_unused status variable and the buffer block size, which is available from the
key_cache_block_size system variable:

1 - ((Key_blocks_unused * key_cache_block_size) / key_buffer_size)

This value is an approximation because some space in the key buffer is allocated internally for
administrative structures. Factors that influence the amount of overhead for these structures include
block size and pointer size. As block size increases, the percentage of the key buffer lost to overhead
tends to decrease. Larger blocks results in a smaller number of read operations (because more keys are
obtained per read), but conversely an increase in reads of keys that are not examined (if not all keys in a
block are relevant to a query).

It is possible to create multiple MyISAM key caches. The size limit of 4GB applies to each cache
individually, not as a group. See Section 8.10.1, “The MyISAM Key Cache”.

• key_cache_age_threshold

Command-Line Format --key_cache_age_threshold=#

Name key_cache_age_threshold

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 300

Min
Value

100

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 502

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type integer

Default 300

Min
Value

100

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

This value controls the demotion of buffers from the hot sublist of a key cache to the warm sublist. Lower
values cause demotion to happen more quickly. The minimum value is 100. The default value is 300.
See Section 8.10.1, “The MyISAM Key Cache”.

• key_cache_block_size

Command-Line Format --key_cache_block_size=#

Name key_cache_block_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1024

Min
Value

512

Permitted Values

Max
Value

16384

The size in bytes of blocks in the key cache. The default value is 1024. See Section 8.10.1, “The
MyISAM Key Cache”.

• key_cache_division_limit

Command-Line Format --key_cache_division_limit=#

Name key_cache_division_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 100

Min
Value

1

Permitted Values

Max
Value

100

The division point between the hot and warm sublists of the key cache buffer list. The value is the
percentage of the buffer list to use for the warm sublist. Permissible values range from 1 to 100. The
default value is 100. See Section 8.10.1, “The MyISAM Key Cache”.

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 503

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• language

Command-Line Format --language=name

Name language

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type directory namePermitted Values

Default /usr/local/mysql/share/mysql/english/

The directory where error messages are located. See Section 10.2, “Setting the Error Message
Language”.

• large_files_support

Name large_files_support

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Whether mysqld was compiled with options for large file support.

• large_pages

Introduced 5.0.3

Command-Line Format --large-pages

Name large_pages

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Linux

Type booleanPermitted Values (Linux)

Default FALSE

Whether large page support is enabled (via the --large-pages option). See Section 8.12.5.2,
“Enabling Large Page Support”. This variable was added in MySQL 5.0.3.

For more information, see the entry for the --large-pages server option.

• large_page_size

Introduced 5.0.3

Name large_page_sizeSystem Variable

Variable
Scope

Global

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 504

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Dynamic
Variable

No

Type integerPermitted Values (Linux)

Default 0

If large page support is enabled, this shows the size of memory pages. Large memory pages are
supported only on Linux; on other platforms, the value of this variable is always 0. This variable was
added in MySQL 5.0.3.

For more information, see the entry for the --large-pages server option.

• last_insert_id

The value to be returned from LAST_INSERT_ID(). This is stored in the binary log when you use
LAST_INSERT_ID() in a statement that updates a table. Setting this variable does not update the value
returned by the mysql_insert_id() C API function.

• lc_time_names

Introduced 5.0.25

Name lc_time_names

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

This variable specifies the locale that controls the language used to display day and month names
and abbreviations. This variable affects the output from the DATE_FORMAT(), DAYNAME() and
MONTHNAME() functions. Locale names are POSIX-style values such as 'ja_JP' or 'pt_BR'.
The default value is 'en_US' regardless of your system's locale setting. For further information, see
Section 10.7, “MySQL Server Locale Support”. This variable was added in MySQL 5.0.25.

• license

Name license

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default GPL

The type of license the server has.

• local_infile

Name local_infileSystem Variable

Variable
Scope

Global

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 505

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Dynamic
Variable

Yes

Type booleanPermitted Values

Default true

Whether LOCAL is supported for LOAD DATA INFILE statements. If this variable is disabled, clients
cannot use LOCAL in LOAD DATA statements. While the default for this variable is true, whether LOAD
DATA INFILE LOCAL is actually permitted depends on how MySQL was compiled, as well as a number
of settings on both the server and the client; see Section 6.1.6, “Security Issues with LOAD DATA
LOCAL”, for details.

• locked_in_memory

Name locked_in_memory

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Whether mysqld was locked in memory with --memlock.

• log

Command-Line Format --log[=file_name]

Name log

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

Whether logging of all statements to the general query log is enabled. See Section 5.4.2, “The General
Query Log”.

• log_bin_trust_function_creators

Introduced 5.0.16

Command-Line Format --log-bin-trust-function-creators

Name log_bin_trust_function_creators

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE

This variable applies when binary logging is enabled. It controls whether stored function creators can be
trusted not to create stored functions that will cause unsafe events to be written to the binary log. If set
to 0 (the default), users are not permitted to create or alter stored functions unless they have the SUPER

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 506

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

privilege in addition to the CREATE ROUTINE or ALTER ROUTINE privilege. A setting of 0 also enforces
the restriction that a function must be declared with the DETERMINISTIC characteristic, or with the
READS SQL DATA or NO SQL characteristic. If the variable is set to 1, MySQL does not enforce these
restrictions on stored function creation. This variable also applies to trigger creation. See Section 18.6,
“Binary Logging of Stored Programs”.

This variable was added in MySQL 5.0.16.

• log_bin_trust_routine_creators

This is the old name for log_bin_trust_function_creators. Before MySQL 5.0.16, it also applies
to stored procedures, not just stored functions. As of 5.0.16, this variable is deprecated. It is recognized
for backward compatibility but its use results in a warning.

This variable was added in MySQL 5.0.6. It is removed in MySQL 5.5.

• log_error

Command-Line Format --log-error[=file_name]

Name log_error

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The location of the error log, or empty if the server is writing error message to the standard error output.
See Section 5.4.1, “The Error Log”.

• log_queries_not_using_indexes

Command-Line Format --log-queries-not-using-indexes

Name log_queries_not_using_indexes

Variable
Scope

Global

System Variable (>=
5.0.23)

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Whether queries that do not use indexes are logged to the slow query log. See Section 5.4.4, “The Slow
Query Log”. This variable was added in MySQL 5.0.23.

• log_slow_queries

Command-Line Format --log-slow-queries[=name]

Name log_slow_queries

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 507

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Permitted Values Type boolean

Whether slow queries should be logged. “Slow” is determined by the value of the long_query_time
variable. See Section 5.4.4, “The Slow Query Log”.

• log_warnings

Command-Line Format --log-warnings[=#]

Name log_warnings

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

Whether to produce additional warning messages to the error log. This variable is enabled (1) by default
and can be disabled by setting it to 0. Aborted connections and access-denied errors for new connection
attempts are logged if the value is greater than 1.

• long_query_time

Command-Line Format --long_query_time=#

Name long_query_time

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 10

Permitted Values (<=
5.0.20)

Min
Value

1

Type numeric

Default 10

Permitted Values (>=
5.0.21)

Min
Value

0

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 508

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If a query takes longer than this many seconds, the server increments the Slow_queries status
variable. If you are using the --log-slow-queries option, the query is logged to the slow query log
file. This value is measured in real time, not CPU time, so a query that is under the threshold on a lightly
loaded system might be above the threshold on a heavily loaded one. The minimum value is 1. The
default is 10. See Section 5.4.4, “The Slow Query Log”.

• low_priority_updates

Command-Line Format --low-priority-updates

Name low_priority_updates

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE

If set to 1, all INSERT, UPDATE, DELETE, and LOCK TABLE WRITE statements wait until there is no
pending SELECT or LOCK TABLE READ on the affected table. This affects only storage engines that use
only table-level locking (such as MyISAM, MEMORY, and MERGE). This variable previously was named
sql_low_priority_updates.

• lower_case_file_system

Name lower_case_file_system

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type boolean

This variable describes the case sensitivity of file names on the file system where the data directory is
located. OFF means file names are case sensitive, ON means they are not case sensitive. This variable is
read only because it reflects a file system attribute and setting it would have no effect on the file system.

• lower_case_table_names

Command-Line Format --lower_case_table_names[=#]

Name lower_case_table_names

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Permitted Values

Min
Value

0

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 509

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Max
Value

2

If set to 0, table names are stored as specified and comparisons are case sensitive. If set to 1, table
names are stored in lowercase on disk and comparisons are not case sensitive. If set to 2, table names
are stored as given but compared in lowercase. This option also applies to database names and table
aliases. For additional information, see Section 9.2.2, “Identifier Case Sensitivity”.

On Windows the default value is 1. On OS X, the default value is 2.

You should not set lower_case_table_names to 0 if you are running MySQL on a system where
the data directory resides on a case-insensitive file system (such as on Windows or OS X). It is an
unsupported combination that could result in a hang condition when running an INSERT INTO ...
SELECT ... FROM tbl_name operation with the wrong tbl_name letter case. With MyISAM,
accessing table names using different letter cases could cause index corruption.

If you are using InnoDB or MySQL Cluster (NDB) tables, you should set this variable to 1 on all platforms
to force names to be converted to lowercase.

The setting of this variable has no effect on replication filtering options. See Section 16.2.3, “How
Servers Evaluate Replication Filtering Rules”, for more information.

You should not use different settings for lower_case_table_names on replication masters and
slaves. In particular, you should not do this when the slave uses a case-sensitive file system, as this can
cause replication to fail. For more information, see Section 16.4.1.29, “Replication and Variables”.

• max_allowed_packet

Command-Line Format --max_allowed_packet=#

Name max_allowed_packet

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1048576

Min
Value

1024

Permitted Values

Max
Value

1073741824

The maximum size of one packet or any generated/intermediate string.

The packet message buffer is initialized to net_buffer_length bytes, but can grow up to
max_allowed_packet bytes when needed. This value by default is small, to catch large (possibly
incorrect) packets.

You must increase this value if you are using large BLOB columns or long strings. It should be as big
as the largest BLOB you want to use. The protocol limit for max_allowed_packet is 1GB. The value
should be a multiple of 1024; nonmultiples are rounded down to the nearest multiple.

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 510

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When you change the message buffer size by changing the value of the max_allowed_packet
variable, you should also change the buffer size on the client side if your client program permits it.
The default max_allowed_packet value built in to the client library is 1GB, but individual client
programs might override this. For example, mysql and mysqldump have defaults of 16MB and 24MB,
respectively. They also enable you to change the client-side value by setting max_allowed_packet on
the command line or in an option file.

As of MySQL 5.0.84, the session value of this variable is read only. Before 5.0.84, setting the
session value is permitted but has no effect. The client can receive up to as many bytes as the
session value. However, the server will not send to the client more bytes than the current global
max_allowed_packet value. (The global value could be less than the session value if the global value
is changed after the client connects.)

• max_connect_errors

Command-Line Format --max_connect_errors=#

Name max_connect_errors

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 10

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 10

Min
Value

1

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

If more than this many successive connection requests from a host are interrupted without a successful
connection, the server blocks that host from further connections. You can unblock blocked hosts by
flushing the host cache. To do so, issue a FLUSH HOSTS statement or execute a mysqladmin flush-
hosts command. If a connection is established successfully within fewer than max_connect_errors
attempts after a previous connection was interrupted, the error count for the host is cleared to zero.
However, once a host is blocked, flushing the host cache is the only way to unblock it.

• max_connections

Command-Line Format --max_connections=#

Name max_connectionsSystem Variable

Variable
Scope

Global

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 511

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Dynamic
Variable

Yes

Type integer

Default 100

Min
Value

1

Permitted Values

Max
Value

16384

The maximum permitted number of simultaneous client connections. By default, this is 100. See
Section B.5.2.7, “Too many connections”, for more information.

Increasing this value increases the number of file descriptors that mysqld requires. See Section 8.4.3.1,
“How MySQL Opens and Closes Tables”, for comments on file descriptor limits.

• max_delayed_threads

Command-Line Format --max_delayed_threads=#

Name max_delayed_threads

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 20

Min
Value

0

Permitted Values

Max
Value

16384

Do not start more than this number of threads to handle INSERT DELAYED statements. If you try to
insert data into a new table after all INSERT DELAYED threads are in use, the row is inserted as if
the DELAYED attribute was not specified. If you set this to 0, MySQL never creates a thread to handle
DELAYED rows; in effect, this disables DELAYED entirely.

For the SESSION value of this variable, the only valid values are 0 or the GLOBAL value.

• max_error_count

Command-Line Format --max_error_count=#

Name max_error_count

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 64

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 512

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Min
Value

0

Max
Value

65535

The maximum number of error, warning, and note messages to be stored for display by the SHOW
ERRORS and SHOW WARNINGS statements.

• max_heap_table_size

Command-Line Format --max_heap_table_size=#

Name max_heap_table_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 16777216

Min
Value

16384

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 16777216

Min
Value

16384

Permitted Values (64-bit
platforms)

Max
Value

1844674407370954752

This variable sets the maximum size to which user-created MEMORY tables are permitted to grow. The
value of the variable is used to calculate MEMORY table MAX_ROWS values. Setting this variable has no
effect on any existing MEMORY table, unless the table is re-created with a statement such as CREATE
TABLE or altered with ALTER TABLE or TRUNCATE TABLE. A server restart also sets the maximum size
of existing MEMORY tables to the global max_heap_table_size value.

This variable is also used in conjunction with tmp_table_size to limit the size of internal in-memory
tables. See Section 8.4.4, “Internal Temporary Table Use in MySQL”.

max_heap_table_size is not replicated. See Section 16.4.1.15, “Replication and MEMORY Tables”,
and Section 16.4.1.29, “Replication and Variables”, for more information.

• max_insert_delayed_threads

Name max_insert_delayed_threads

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 513

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Permitted Values Type integer

This variable is a synonym for max_delayed_threads.

• max_join_size

Command-Line Format --max_join_size=#

Name max_join_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 4294967295

Min
Value

1

Permitted Values

Max
Value

4294967295

Do not permit statements that probably need to examine more than max_join_size rows (for single-
table statements) or row combinations (for multiple-table statements) or that are likely to do more than
max_join_size disk seeks. By setting this value, you can catch statements where keys are not used
properly and that would probably take a long time. Set it if your users tend to perform joins that lack a
WHERE clause, that take a long time, or that return millions of rows.

Setting this variable to a value other than DEFAULT resets the value of sql_big_selects to 0. If you
set the sql_big_selects value again, the max_join_size variable is ignored.

If a query result is in the query cache, no result size check is performed, because the result has
previously been computed and it does not burden the server to send it to the client.

This variable previously was named sql_max_join_size.

• max_length_for_sort_data

Command-Line Format --max_length_for_sort_data=#

Name max_length_for_sort_data

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1024

Min
Value

4

Permitted Values

Max
Value

8388608

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 514

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The cutoff on the size of index values that determines which filesort algorithm to use. See
Section 8.2.1.11, “ORDER BY Optimization”.

• max_prepared_stmt_count

Introduced 5.0.21

Command-Line Format --max_prepared_stmt_count=# (>= 5.0.21)

Name max_prepared_stmt_count

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 16382

Min
Value

0

Permitted Values

Max
Value

1048576

This variable limits the total number of prepared statements in the server. (The sum of the number of
prepared statements across all sessions.) It can be used in environments where there is the potential
for denial-of-service attacks based on running the server out of memory by preparing huge numbers of
statements. If the value is set lower than the current number of prepared statements, existing statements
are not affected and can be used, but no new statements can be prepared until the current number
drops below the limit. The default value is 16,382. The permissible range of values is from 0 to 1 million.
Setting the value to 0 disables prepared statements. This variable was added in MySQL 5.0.21.

• max_relay_log_size

Command-Line Format --max_relay_log_size=#

Name max_relay_log_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

1073741824

If a write by a replication slave to its relay log causes the current log file size to exceed the value
of this variable, the slave rotates the relay logs (closes the current file and opens the next one). If
max_relay_log_size is 0, the server uses max_binlog_size for both the binary log and the relay
log. If max_relay_log_size is greater than 0, it constrains the size of the relay log, which enables you
to have different sizes for the two logs. You must set max_relay_log_size to between 4096 bytes

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 515

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

and 1GB (inclusive), or to 0. The default value is 0. See Section 16.2.1, “Replication Implementation
Details”.

• max_seeks_for_key

Command-Line Format --max_seeks_for_key=#

Name max_seeks_for_key

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 4294967295

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 18446744073709547520

Min
Value

1

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

Limit the assumed maximum number of seeks when looking up rows based on a key. The MySQL
optimizer assumes that no more than this number of key seeks are required when searching for
matching rows in a table by scanning an index, regardless of the actual cardinality of the index (see
Section 13.7.5.18, “SHOW INDEX Syntax”). By setting this to a low value (say, 100), you can force
MySQL to prefer indexes instead of table scans.

• max_sort_length

Command-Line Format --max_sort_length=#

Name max_sort_length

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1024

Min
Value

4

Permitted Values

Max
Value

8388608

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 516

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The number of bytes to use when sorting data values. The server uses only the first max_sort_length
bytes of each value and ignores the rest. Consequently, values that differ only after the first
max_sort_length bytes compare as equal for GROUP BY, ORDER BY, and DISTINCT operations.

• max_sp_recursion_depth

Introduced 5.0.17

Command-Line Format --max_sp_recursion_depth[=#]

Name max_sp_recursion_depth

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Permitted Values

Max
Value

255

The number of times that any given stored procedure may be called recursively. The default value for
this option is 0, which completely disables recursion in stored procedures. The maximum value is 255.

Stored procedure recursion increases the demand on thread stack space. If you increase the value of
max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the value
of thread_stack at server startup.

This variable was added in MySQL 5.0.17.

• max_tmp_tables

This variable is unused.

• max_user_connections

Command-Line Format --max_user_connections=#

Name max_user_connections

Variable
Scope

Global

System Variable (<=
5.0.3)

Dynamic
Variable

Yes

Name max_user_connections

Variable
Scope

Global, Session

System Variable (>=
5.0.3)

Dynamic
Variable

Yes

Type integer

Default 0

Permitted Values

Min
Value

0

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 517

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Max
Value

4294967295

The maximum number of simultaneous connections permitted to any given MySQL user account. A
value of 0 (the default) means “no limit.”

Before MySQL 5.0.3, this variable has only a global value that can be set at server startup or runtime.
As of MySQL 5.0.3, it also has a read-only session value that indicates the effective simultaneous-
connection limit that applies to the account associated with the current session. The session value is
initialized as follows:

• If the user account has a nonzero MAX_USER_CONNECTIONS resource limit, the session
max_user_connections value is set to that limit.

• Otherwise, the session max_user_connections value is set to the global value.

Account resource limits are specified using the GRANT statement. See Section 6.3.4, “Setting Account
Resource Limits”, and Section 13.7.1.3, “GRANT Syntax”.

• max_write_lock_count

Command-Line Format --max_write_lock_count=#

Name max_write_lock_count

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 4294967295

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 18446744073709547520

Min
Value

1

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

After this many write locks, permit some pending read lock requests to be processed in between.

• multi_range_count

Introduced 5.0.3

Command-Line Format --multi_range_count=#

Name multi_range_countSystem Variable

Variable
Scope

Global, Session

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 518

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Dynamic
Variable

Yes

Type integer

Default 256

Min
Value

1

Permitted Values

Max
Value

4294967295

The maximum number of ranges to send to a table handler at once during range selects. The default
value is 256. Sending multiple ranges to a handler at once can improve the performance of certain
selects dramatically. This is especially true for the NDBCLUSTER table handler, which needs to send the
range requests to all nodes. Sending a batch of those requests at once reduces communication costs
significantly.

This variable was added in MySQL 5.0.3.

• myisam_data_pointer_size

Command-Line Format --myisam_data_pointer_size=#

Name myisam_data_pointer_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 4

Min
Value

2

Permitted Values (<=
5.0.5)

Max
Value

8

Type integer

Default 6

Min
Value

2

Permitted Values (>=
5.0.6)

Max
Value

7

The default pointer size in bytes, to be used by CREATE TABLE for MyISAM tables when no MAX_ROWS
option is specified. This variable cannot be less than 2 or larger than 7. The default value is 6 (4 before
MySQL 5.0.6). See Section B.5.2.12, “The table is full”.

• myisam_max_extra_sort_file_size (DEPRECATED)

This variable is unused as of MySQL 5.0.6.

• myisam_max_sort_file_size

Command-Line Format --myisam_max_sort_file_size=#

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 519

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name myisam_max_sort_file_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values (32-bit
platforms) Default 2147483648

Type integerPermitted Values (64-bit
platforms) Default 9223372036854775807

The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA INFILE). If the file size would be larger
than this value, the index is created using the key cache instead, which is slower. The value is given in
bytes.

If MyISAM index files exceed this size and disk space is available, increasing the value may help
performance. The space must be available in the file system containing the directory where the original
index file is located.

• myisam_mmap_size

Introduced 5.0.90

Command-Line Format --myisam_mmap_size=#

Name myisam_mmap_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 4294967295

Min
Value

7

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 18446744073709547520

Min
Value

7

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

The maximum amount of memory to use for memory mapping compressed MyISAM files. If many
compressed MyISAM tables are used, the value can be decreased to reduce the likelihood of memory-
swapping problems. This variable was added in MySQL 5.0.90.

• myisam_recover_options

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 520

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name myisam_recover_options

Variable
Scope

Global

System Variable

Dynamic
Variable

No

The value of the --myisam-recover option. See Section 5.1.3, “Server Command Options”.

• myisam_repair_threads

Command-Line Format --myisam_repair_threads=#

Name myisam_repair_threads

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1

Min
Value

1

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

If this value is greater than 1, MyISAM table indexes are created in parallel (each index in its own thread)
during the Repair by sorting process. The default value is 1.

Note

Multi-threaded repair is still beta-quality code.

• myisam_sort_buffer_size

Command-Line Format --myisam_sort_buffer_size=#

Name myisam_sort_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values
(Windows) Default 8388608

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 521

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Min
Value

4096

Max
Value

4294967295

Type integer

Default 8388608

Min
Value

4096

Permitted Values (Other,
32-bit platforms)

Max
Value

4294967295

Type integer

Default 8388608

Min
Value

4096

Permitted Values (Other,
64-bit platforms)

Max
Value

18446744073709547520

The size of the buffer that is allocated when sorting MyISAM indexes during a REPAIR TABLE or when
creating indexes with CREATE INDEX or ALTER TABLE.

The maximum permissible setting for myisam_sort_buffer_size is 4GB−1.

• myisam_stats_method

Introduced 5.0.14

Command-Line Format --myisam_stats_method=name

Name myisam_stats_method

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default nulls_unequal

nulls_equal

nulls_unequal

Permitted Values (>=
5.0.14)

Valid
Values

nulls_ignored

How the server treats NULL values when collecting statistics about the distribution of index values
for MyISAM tables. This variable has three possible values, nulls_equal, nulls_unequal, and
nulls_ignored. For nulls_equal, all NULL index values are considered equal and form a single
value group that has a size equal to the number of NULL values. For nulls_unequal, NULL values are
considered unequal, and each NULL forms a distinct value group of size 1. For nulls_ignored, NULL
values are ignored.

The method that is used for generating table statistics influences how the optimizer chooses indexes for
query execution, as described in Section 8.3.7, “MyISAM Index Statistics Collection”.

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 522

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Any unique prefix of a valid value may be used to set the value of this variable.

This variable was added in MySQL 5.0.14. For older versions, the statistics collection method is
equivalent to nulls_equal.

• named_pipe

Name named_pipe

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Windows

Type booleanPermitted Values
(Windows) Default OFF

(Windows only.) Indicates whether the server supports connections over named pipes.

• net_buffer_length

Command-Line Format --net_buffer_length=#

Name net_buffer_length

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 16384

Min
Value

1024

Permitted Values

Max
Value

1048576

Each client thread is associated with a connection buffer and result buffer. Both begin with a size given
by net_buffer_length but are dynamically enlarged up to max_allowed_packet bytes as needed.
The result buffer shrinks to net_buffer_length after each SQL statement.

This variable should not normally be changed, but if you have very little memory, you can set it to the
expected length of statements sent by clients. If statements exceed this length, the connection buffer is
automatically enlarged. The maximum value to which net_buffer_length can be set is 1MB.

As of MySQL 5.0.84, the session value of this variable is read only. Before 5.0.84, setting the session
value is permitted but has no effect.

• net_read_timeout

Command-Line Format --net_read_timeout=#

System Variable Name net_read_timeout

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 523

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable
Scope

Global, Session

Dynamic
Variable

Yes

Type integer

Default 30

Permitted Values

Min
Value

1

The number of seconds to wait for more data from a connection before aborting the read. This timeout
applies only to TCP/IP connections, not to connections made through Unix socket files, named pipes, or
shared memory. When the server is reading from the client, net_read_timeout is the timeout value
controlling when to abort. When the server is writing to the client, net_write_timeout is the timeout
value controlling when to abort. See also slave_net_timeout.

On Linux, the NO_ALARM build flag affects timeout behavior as indicated in the description of the
net_retry_count system variable.

• net_retry_count

Command-Line Format --net_retry_count=#

Name net_retry_count

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 10

Min
Value

1

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 10

Min
Value

1

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

If a read or write on a communication port is interrupted, retry this many times before giving up. This
value should be set quite high on FreeBSD because internal interrupts are sent to all threads.

On Linux, the NO_ALARM build flag (-DNO_ALARM) modifies how the binary treats both
net_read_timeout and net_write_timeout. With this flag enabled, neither timer cancels
the current statement until after the failing connection has been waited on an additional
net_retry_count times. This means that the effective timeout value becomes (timeout setting)
× (net_retry_count+1).

• net_write_timeout

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 524

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Command-Line Format --net_write_timeout=#

Name net_write_timeout

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 60

Permitted Values

Min
Value

1

The number of seconds to wait for a block to be written to a connection before aborting the write. This
timeout applies only to TCP/IP connections, not to connections made using Unix socket files, named
pipes, or shared memory. See also net_read_timeout.

On Linux, the NO_ALARM build flag affects timeout behavior as indicated in the description of the
net_retry_count system variable.

• new

Command-Line Format --new

Name new

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Disabled by skip-new

Type booleanPermitted Values

Default FALSE

This variable was used in MySQL 4.0 to turn on some 4.1 behaviors, and is retained for backward
compatibility. Its value is always OFF.

• old_passwords

Name old_passwords

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 0

This variable controls the password hashing method used by the PASSWORD() function. It also
influences password hashing performed by CREATE USER and GRANT statements that specify a
password using an IDENTIFIED BY clause.

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 525

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The value determines whether or not to use “old” native MySQL password hashing. A value of 0 (or OFF)
causes passwords to be encrypted using the format available from MySQL 4.1 on. A value of 1 (or ON)
causes password encryption to use the older pre-4.1 format.

If old_passwords=1, PASSWORD(str) returns the same value as OLD_PASSWORD(str). The latter
function is not affected by the value of old_passwords.

For information about hashing formats, see Section 6.1.2.4, “Password Hashing in MySQL”.

• one_shot

This is not a variable, but it can be used when setting some variables. It is described in Section 13.7.4,
“SET Syntax”.

• open_files_limit

Command-Line Format --open-files-limit=#

Name open_files_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

platform dependent

The number of files that the operating system permits mysqld to open. This is the real value permitted
by the system and might be different from the value you gave using the --open-files-limit option
to mysqld or mysqld_safe. The value is 0 on systems where MySQL cannot change the number of
open files.

• optimizer_prune_level

Introduced 5.0.1

Command-Line Format --optimizer_prune_level[=#]

Name optimizer_prune_level

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 1

Controls the heuristics applied during query optimization to prune less-promising partial plans from the
optimizer search space. A value of 0 disables heuristics so that the optimizer performs an exhaustive

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 526

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

search. A value of 1 causes the optimizer to prune plans based on the number of rows retrieved by
intermediate plans. This variable was added in MySQL 5.0.1.

• optimizer_search_depth

Introduced 5.0.1

Command-Line Format --optimizer_search_depth[=#]

Name optimizer_search_depth

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 62

Min
Value

0

Permitted Values

Max
Value

63

The maximum depth of search performed by the query optimizer. Values larger than the number of
relations in a query result in better query plans, but take longer to generate an execution plan for a
query. Values smaller than the number of relations in a query return an execution plan quicker, but the
resulting plan may be far from being optimal. If set to 0, the system automatically picks a reasonable
value. If set to 63, the optimizer switches to the algorithm used in MySQL 5.0.0 (and previous versions)
for performing searches. This variable was added in MySQL 5.0.1.

• pid_file

Command-Line Format --pid-file=file_name

Name pid_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The path name of the process ID (PID) file. This variable can be set with the --pid-file option.

• plugin_dir

Introduced 5.0.67

Command-Line Format --plugin_dir=dir_name

Name plugin_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 527

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Default

The path name of the plugin directory. This variable was added in MySQL 5.0.67. If the value is
nonempty, user-defined function object files must be located in this directory. If the value is empty, the
behavior that is used before 5.0.67 applies: The UDF object files must be located in a directory that is
searched by your system's dynamic linker.

If the plugin directory is writable by the server, it may be possible for a user to write executable code
to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by making
plugin_dir read only to the server or by setting --secure-file-priv to a directory where SELECT
writes can be made safely.

• port

Command-Line Format --port=#

Name port

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 3306

Min
Value

0

Permitted Values

Max
Value

65535

The number of the port on which the server listens for TCP/IP connections. This variable can be set with
the --port option.

• preload_buffer_size

Command-Line Format --preload_buffer_size=#

Name preload_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 32768

Min
Value

1024

Permitted Values

Max
Value

1073741824

The size of the buffer that is allocated when preloading indexes.

• prepared_stmt_count

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 528

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Introduced 5.0.21

Removed 5.0.31

Name prepared_stmt_count

Variable
Scope

Global

System Variable (>=
5.0.21, <= 5.0.31)

Dynamic
Variable

No

Permitted Values Type integer

The current number of prepared statements. (The maximum number of statements is given by the
max_prepared_stmt_count system variable.) This variable was added in MySQL 5.0.21. In MySQL
5.0.32, it was converted to the global Prepared_stmt_count status variable.

• profiling

If set to 0 or OFF (the default), statement profiling is disabled. If set to 1 or ON, statement profiling
is enabled and the SHOW PROFILE and SHOW PROFILES statements provide access to profiling
information. See Section 13.7.5.29, “SHOW PROFILES Syntax”. This variable was added in MySQL
5.0.37. Note: This option does not apply to MySQL Enterprise Server users.

• profiling_history_size

The number of statements for which to maintain profiling information if profiling is enabled. The
default value is 15. The maximum value is 100. Setting the value to 0 effectively disables profiling. See
Section 13.7.5.29, “SHOW PROFILES Syntax”. This variable was added in MySQL 5.0.37. Note: This
option does not apply to MySQL Enterprise Server users.

• protocol_version

Name protocol_version

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type integer

The version of the client/server protocol used by the MySQL server.

• pseudo_thread_id

Name pseudo_thread_id

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

This variable is for internal server use.

• query_alloc_block_size

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 529

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Command-Line Format --query_alloc_block_size=#

Name query_alloc_block_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 8192

Min
Value

1024

Max
Value

4294967295

Permitted Values (32-bit
platforms)

Block
Size

1024

Type integer

Default 8192

Min
Value

1024

Max
Value

18446744073709547520

Permitted Values (64-bit
platforms)

Block
Size

1024

The allocation size of memory blocks that are allocated for objects created during statement parsing and
execution. If you have problems with memory fragmentation, it might help to increase this parameter.

• query_cache_limit

Command-Line Format --query_cache_limit=#

Name query_cache_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1048576

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1048576

Permitted Values (64-bit
platforms)

Min
Value

0

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 530

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Max
Value

18446744073709547520

Do not cache results that are larger than this number of bytes. The default value is 1MB.

• query_cache_min_res_unit

Command-Line Format --query_cache_min_res_unit=#

Name query_cache_min_res_unit

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 4096

Min
Value

512

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 4096

Min
Value

512

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

The minimum size (in bytes) for blocks allocated by the query cache. The default value is 4096 (4KB).
Tuning information for this variable is given in Section 8.10.3.3, “Query Cache Configuration”.

• query_cache_size

Command-Line Format --query_cache_size=#

Name query_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integerPermitted Values (64-bit
platforms) Default 0

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 531

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Min
Value

0

Max
Value

18446744073709547520

The amount of memory allocated for caching query results. The default value is 0, which disables the
query cache. The permissible values are multiples of 1024; other values are rounded down to the
nearest multiple. query_cache_size bytes of memory are allocated even if query_cache_type is
set to 0. See Section 8.10.3.3, “Query Cache Configuration”, for more information.

The query cache needs a minimum size of about 40KB to allocate its structures. (The exact size
depends on system architecture.) If you set the value of query_cache_size too small, a warning will
occur, as described in Section 8.10.3.3, “Query Cache Configuration”.

• query_cache_type

Command-Line Format --query_cache_type=#

Name query_cache_type

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumeration

Default 1

0

1

Permitted Values

Valid
Values

2

Set the query cache type. Setting the GLOBAL value sets the type for all clients that connect thereafter.
Individual clients can set the SESSION value to affect their own use of the query cache. Possible values
are shown in the following table.

Option Description

0 or OFF Do not cache results in or retrieve results from the query cache. Note that
this does not deallocate the query cache buffer. To do that, you should set
query_cache_size to 0.

1 or ON Cache all cacheable query results except for those that begin with SELECT
SQL_NO_CACHE.

2 or DEMAND Cache results only for cacheable queries that begin with SELECT SQL_CACHE.

This variable defaults to ON.

Any unique prefix of a valid value may be used to set the value of this variable.

• query_cache_wlock_invalidate

Command-Line Format --query_cache_wlock_invalidate

System Variable Name query_cache_wlock_invalidate

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 532

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable
Scope

Global, Session

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE

Normally, when one client acquires a WRITE lock on a MyISAM table, other clients are not blocked from
issuing statements that read from the table if the query results are present in the query cache. Setting
this variable to 1 causes acquisition of a WRITE lock for a table to invalidate any queries in the query
cache that refer to the table. This forces other clients that attempt to access the table to wait while the
lock is in effect.

• query_prealloc_size

Command-Line Format --query_prealloc_size=#

Name query_prealloc_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 8192

Min
Value

8192

Max
Value

4294967295

Permitted Values (32-bit
platforms)

Block
Size

1024

Type integer

Default 8192

Min
Value

8192

Max
Value

18446744073709547520

Permitted Values (64-bit
platforms)

Block
Size

1024

The size of the persistent buffer used for statement parsing and execution. This buffer is not freed
between statements. If you are running complex queries, a larger query_prealloc_size value might
be helpful in improving performance, because it can reduce the need for the server to perform memory
allocation during query execution operations.

• rand_seed1

The rand_seed1 and rand_seed2 variables exist as session variables only, and can be set but not
read. They are not shown in the output of SHOW VARIABLES.

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 533

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The purpose of these variables is to support replication of the RAND() function. For statements
that invoke RAND(), the master passes two values to the slave, where they are used to seed the
random number generator. The slave uses these values to set the session variables rand_seed1 and
rand_seed2 so that RAND() on the slave generates the same value as on the master.

• rand_seed2

See the description for rand_seed1.

• range_alloc_block_size

Command-Line Format --range_alloc_block_size=#

Name range_alloc_block_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 4096

Min
Value

4096

Max
Value

4294967295

Permitted Values (32-bit
platforms)

Block
Size

1024

The size of blocks that are allocated when doing range optimization.

• read_buffer_size

Command-Line Format --read_buffer_size=#

Name read_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 131072

Min
Value

8200

Permitted Values

Max
Value

2147479552

Each thread that does a sequential scan allocates a buffer of this size (in bytes) for each table it scans.
If you do many sequential scans, you might want to increase this value, which defaults to 131072. The
value of this variable should be a multiple of 4KB. If it is set to a value that is not a multiple of 4KB, its
value will be rounded down to the nearest multiple of 4KB.

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 534

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The maximum permissible setting for read_buffer_size is 2GB.

read_buffer_size and read_rnd_buffer_size are not specific to any storage engine and apply in
a general manner for optimization. See Section 8.12.5.1, “How MySQL Uses Memory”, for example.

• read_only

Command-Line Format --read_only

Name read_only

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

When the read_only system variable is enabled, the server permits no client updates except from
users who have the SUPER privilege. This variable is disabled by default.

Even with read_only enabled, the server permits these operations:

• Updates performed by slave threads, if the server is a replication slave. In replication setups, it can
be useful to enable read_only on slave servers to ensure that slaves accept updates only from the
master server and not from clients.

• Use of ANALYZE TABLE or OPTIMIZE TABLE statements. The purpose of read-only mode is to
prevent changes to table structure or contents. Analysis and optimization do not qualify as such
changes. This means, for example, that consistency checks on read-only replication slaves can be
performed with mysqlcheck --all-databases --analyze.

• Operations on TEMPORARY tables, as of MySQL 5.0.16.

read_only exists only as a GLOBAL variable, so changes to its value require the SUPER privilege.
Changes to read_only on a master server are not replicated to slave servers. The value can be set on
a slave server independent of the setting on the master.

Important

As of MySQL 5.1, enabling read_only prevents users not having the SUPER
privilege from using account-management statements such as CREATE USER
or SET PASSWORD. This is not the case for MySQL 5.0. When replicating from a
MySQL 5.0 master to a MySQL 5.1 or later slave, check whether this will have an
impact on your applications.

• read_rnd_buffer_size

Command-Line Format --read_rnd_buffer_size=#

Name read_rnd_buffer_sizeSystem Variable

Variable
Scope

Global, Session

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 535

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Dynamic
Variable

Yes

Type integer

Default 262144

Min
Value

8200

Permitted Values

Max
Value

2147483647

When reading rows in sorted order following a key-sorting operation, the rows are read through this
buffer to avoid disk seeks. See Section 8.2.1.11, “ORDER BY Optimization”. Setting the variable to a
large value can improve ORDER BY performance by a lot. However, this is a buffer allocated for each
client, so you should not set the global variable to a large value. Instead, change the session variable
only from within those clients that need to run large queries.

The maximum permissible setting for read_rnd_buffer_size is 2GB.

read_buffer_size and read_rnd_buffer_size are not specific to any storage engine and apply in
a general manner for optimization. See Section 8.12.5.1, “How MySQL Uses Memory”, for example.

• relay_log_purge

Command-Line Format --relay_log_purge

Name relay_log_purge

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

Disables or enables automatic purging of relay log files as soon as they are not needed any more. The
default value is 1 (ON).

• relay_log_space_limit

Command-Line Format --relay_log_space_limit=#

Name relay_log_space_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 536

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

The maximum amount of space to use for all relay logs.

• secure_auth

Command-Line Format --secure-auth

Name secure_auth

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If this variable is enabled, the server blocks connections by clients that attempt to use accounts that
have passwords stored in the old (pre-4.1) format.

Enable this variable to prevent all use of passwords employing the old format (and hence insecure
communication over the network).

Server startup fails with an error if this variable is enabled and the privilege tables are in pre-4.1 format.
See Section B.5.2.4, “Client does not support authentication protocol”.

• secure_file_priv

Introduced 5.0.38

Command-Line Format --secure-file-priv=dir_name

Name secure_file_priv

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type string

Default empty

empty

Permitted Values

Valid
Values dirname

This variable is used to limit the effect of data import and export operations, such as those performed
by the LOAD DATA and SELECT ... INTO OUTFILE statements and the LOAD_FILE() function. By
default, this variable is empty. If set to the name of a directory, it limits import and export operations to
work only with files in that directory.

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 537

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This variable was added in MySQL 5.0.38.

• server_id

Command-Line Format --server-id=#

Name server_id

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

4294967295

The server ID, used in replication to give each master and slave a unique identity. This variable is set by
the --server-id option. For each server participating in replication, you should pick a positive integer
in the range from 1 to 232 − 1 to act as that server's ID.

• shared_memory

Command-Line Format --shared_memory[={0,1}]

Name shared_memory

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Windows

Type booleanPermitted Values

Default FALSE

(Windows only.) Whether the server permits shared-memory connections.

• shared_memory_base_name

Command-Line Format --shared_memory_base_name=name

Name shared_memory_base_name

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Windows

Type stringPermitted Values

Default MYSQL

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 538

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

(Windows only.) The name of shared memory to use for shared-memory connections. This is useful
when running multiple MySQL instances on a single physical machine. The default name is MYSQL. The
name is case sensitive.

• skip_external_locking

Command-Line Format --skip-external-locking

Name skip_external_locking

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

This is OFF if mysqld uses external locking (system locking), ON if external locking is disabled. This
affects only MyISAM table access.

This variable is set by the --external-locking or --skip-external-locking option. External
locking is disabled by default.

External locking affects only MyISAM table access. For more information, including conditions under
which it can and cannot be used, see Section 8.11.4, “External Locking”.

• skip_networking

Command-Line Format --skip-networking

Name skip_networking

Variable
Scope

Global

System Variable

Dynamic
Variable

No

This is ON if the server permits only local (non-TCP/IP) connections. On Unix, local connections use a
Unix socket file. On Windows, local connections use a named pipe or shared memory. On NetWare, only
TCP/IP connections are supported, so do not set this variable to ON. This variable can be set to ON with
the --skip-networking option.

• skip_show_database

Command-Line Format --skip-show-database

Name skip_show_database

Variable
Scope

Global

System Variable

Dynamic
Variable

No

This prevents people from using the SHOW DATABASES statement if they do not have the SHOW
DATABASES privilege. This can improve security if you have concerns about users being able to see
databases belonging to other users. Its effect depends on the SHOW DATABASES privilege: If the

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 539

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

variable value is ON, the SHOW DATABASES statement is permitted only to users who have the SHOW
DATABASES privilege, and the statement displays all database names. If the value is OFF, SHOW
DATABASES is permitted to all users, but displays the names of only those databases for which the user
has the SHOW DATABASES or other privilege. (Note that any global privilege is considered a privilege for
the database.)

• slow_launch_time

Command-Line Format --slow_launch_time=#

Name slow_launch_time

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 2

If creating a thread takes longer than this many seconds, the server increments the
Slow_launch_threads status variable.

• socket

Command-Line Format --socket={file_name|pipe_name}

Name socket

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default /tmp/mysql.sock

On Unix platforms, this variable is the name of the socket file that is used for local client connections.
The default is /tmp/mysql.sock. (For some distribution formats, the directory might be different, such
as /var/lib/mysql for RPMs.)

On Windows, this variable is the name of the named pipe that is used for local client connections. The
default value is MySQL (not case sensitive).

• sort_buffer_size

Command-Line Format --sort_buffer_size=#

Name sort_buffer_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integerPermitted Values

Default 2097144

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 540

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Min
Value

32768

Max
Value

4294967295

Each session that needs to do a sort allocates a buffer of this size. sort_buffer_size is not specific
to any storage engine and applies in a general manner for optimization. See Section 8.2.1.11, “ORDER
BY Optimization”, for example.

If you see many Sort_merge_passes per second in SHOW GLOBAL STATUS output, you can consider
increasing the sort_buffer_size value to speed up ORDER BY or GROUP BY operations that cannot
be improved with query optimization or improved indexing. The entire buffer is allocated even if it is not
all needed, so setting it larger than required globally will slow down most queries that sort. It is best to
increase it as a session setting, and only for the sessions that need a larger size. On Linux, there are
thresholds of 256KB and 2MB where larger values may significantly slow down memory allocation,
so you should consider staying below one of those values. Experiment to find the best value for your
workload. See Section B.5.3.5, “Where MySQL Stores Temporary Files”.

The maximum permissible setting for sort_buffer_size is 4GB−1.

• sql_auto_is_null

Name sql_auto_is_null

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 1

If this variable is set to 1 (the default), then after a statement that successfully inserts an automatically
generated AUTO_INCREMENT value, you can find that value by issuing a statement of the following form:

SELECT * FROM tbl_name WHERE auto_col IS NULL

If the statement returns a row, the value returned is the same as if you invoked the LAST_INSERT_ID()
function. For details, including the return value after a multiple-row insert, see Section 12.13,
“Information Functions”. If no AUTO_INCREMENT value was successfully inserted, the SELECT statement
returns no row.

The behavior of retrieving an AUTO_INCREMENT value by using an IS NULL comparison is used by
some ODBC programs, such as Access. See Obtaining Auto-Increment Values. This behavior can be
disabled by setting sql_auto_is_null to 0.

• sql_big_selects

Name sql_big_selects

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 541

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type booleanPermitted Values

Default 1

If set to 0, MySQL aborts SELECT statements that are likely to take a very long time to execute (that is,
statements for which the optimizer estimates that the number of examined rows exceeds the value of
max_join_size). This is useful when an inadvisable WHERE statement has been issued. The default
value for a new connection is 1, which permits all SELECT statements.

If you set the max_join_size system variable to a value other than DEFAULT, sql_big_selects is
set to 0.

• sql_buffer_result

Name sql_buffer_result

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 0

If set to 1, sql_buffer_result forces results from SELECT statements to be put into temporary
tables. This helps MySQL free the table locks early and can be beneficial in cases where it takes a long
time to send results to the client. The default value is 0.

• sql_log_bin

Name sql_log_bin

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type boolean

If set to 0, no logging is done to the binary log for the client. The client must have the SUPER privilege to
set this option. The default value is 1.

• sql_log_off

Name sql_log_off

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 0

If set to 1, no logging is done to the general query log for this client. The client must have the SUPER
privilege to set this option. The default value is 0.

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 542

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• sql_log_update

Deprecated 5.0.0, by sql_log_bin

Name sql_log_update

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type boolean

This variable is deprecated, and is mapped to sql_log_bin. It is removed in MySQL 5.5.

• sql_mode

Command-Line Format --sql-mode=name

Name sql_mode

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type set

Default ''

ALLOW_INVALID_DATES

ANSI_QUOTES

ERROR_FOR_DIVISION_BY_ZERO

HIGH_NOT_PRECEDENCE

IGNORE_SPACE

NO_AUTO_CREATE_USER

NO_AUTO_VALUE_ON_ZERO

NO_BACKSLASH_ESCAPES

NO_DIR_IN_CREATE

NO_ENGINE_SUBSTITUTION

NO_FIELD_OPTIONS

NO_KEY_OPTIONS

NO_TABLE_OPTIONS

NO_UNSIGNED_SUBTRACTION

NO_ZERO_DATE

NO_ZERO_IN_DATE

ONLY_FULL_GROUP_BY

PAD_CHAR_TO_FULL_LENGTH

PIPES_AS_CONCAT

Permitted Values

Valid
Values

REAL_AS_FLOAT

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 543

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

STRICT_ALL_TABLES

STRICT_TRANS_TABLES

The current server SQL mode, which can be set dynamically. For details, see Section 5.1.7, “Server SQL
Modes”.

Note

MySQL installation programs may configure the SQL mode during the installation
process. If the SQL mode differs from the default or from what you expect, check
for a setting in an option file that the server reads at startup.

• sql_notes

If set to 1 (the default), warnings of Note level increment warning_count and the server records them.
If set to 0, Note warnings do not increment warning_count and the server does not record them.
mysqldump includes output to set this variable to 0 so that reloading the dump file does not produce
warnings for events that do not affect the integrity of the reload operation. sql_notes was added in
MySQL 5.0.3.

• sql_quote_show_create

If set to 1 (the default), the server quotes identifiers for SHOW CREATE TABLE and SHOW CREATE
DATABASE statements. If set to 0, quoting is disabled. This option is enabled by default so that
replication works for identifiers that require quoting. See Section 13.7.5.9, “SHOW CREATE TABLE
Syntax”, and Section 13.7.5.6, “SHOW CREATE DATABASE Syntax”.

• sql_safe_updates

If set to 1, MySQL aborts UPDATE or DELETE statements that do not use a key in the WHERE clause
or a LIMIT clause. (Specifically, UPDATE statements must have a WHERE clause that uses a key or a
LIMIT clause, or both. DELETE statements must have both.) This makes it possible to catch UPDATE or
DELETE statements where keys are not used properly and that would probably change or delete a large
number of rows. The default value is 0.

• sql_select_limit

Name sql_select_limit

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

The maximum number of rows to return from SELECT statements. The default value for a new
connection is the maximum number of rows that the server permits per table, which depends on the
server configuration and may be affected if the server build was configured with --with-big-tables.
Typical default values are (232)−1 or (264)−1. If you have changed the limit, the default value can be
restored by assigning a value of DEFAULT.

If a SELECT has a LIMIT clause, the LIMIT takes precedence over the value of sql_select_limit.

• sql_warnings

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 544

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This variable controls whether single-row INSERT statements produce an information string if warnings
occur. The default is 0. Set the value to 1 to produce an information string.

• ssl_ca

Introduced 5.0.23

Command-Line Format --ssl-ca=file_name

Name ssl_ca

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The path to a file with a list of trusted SSL CAs. This variable was added in MySQL 5.0.23.

• ssl_capath

Introduced 5.0.23

Command-Line Format --ssl-capath=dir_name

Name ssl_capath

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The path to a directory that contains trusted SSL CA certificates in PEM format. This variable was added
in MySQL 5.0.23.

• ssl_cert

Introduced 5.0.23

Command-Line Format --ssl-cert=file_name

Name ssl_cert

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The name of the SSL certificate file to use for establishing a secure connection. This variable was added
in MySQL 5.0.23.

• ssl_cipher

Introduced 5.0.23

Command-Line Format --ssl-cipher=name

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 545

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name ssl_cipher

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

A list of permissible ciphers to use for SSL encryption. This variable was added in MySQL 5.0.23.

• ssl_key

Introduced 5.0.23

Command-Line Format --ssl-key=file_name

Name ssl_key

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The name of the SSL key file to use for establishing a secure connection. This variable was added in
MySQL 5.0.23.

• storage_engine

Name storage_engine

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumerationPermitted Values

Default MyISAM

The default storage engine (table type). To set the storage engine at server startup, use the --
default-storage-engine option. See Section 5.1.3, “Server Command Options”.

To see which storage engines are available and enabled, use the SHOW ENGINES statement.

• sync_frm

Command-Line Format --sync-frm

Name sync_frm

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 546

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If this variable is set to 1, when any nontemporary table is created its .frm file is synchronized to disk
(using fdatasync()). This is slower but safer in case of a crash. The default is 1.

• system_time_zone

Name system_time_zone

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The server system time zone. When the server begins executing, it inherits a time zone setting from the
machine defaults, possibly modified by the environment of the account used for running the server or the
startup script. The value is used to set system_time_zone. Typically the time zone is specified by the
TZ environment variable. It also can be specified using the --timezone option of the mysqld_safe
script.

The system_time_zone variable differs from time_zone. Although they might have the same value,
the latter variable is used to initialize the time zone for each client that connects. See Section 10.6,
“MySQL Server Time Zone Support”.

• table_cache

Command-Line Format --table_cache=#

Name table_cache

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 64

Min
Value

1

Permitted Values

Max
Value

524288

The number of open tables for all threads. Increasing this value increases the number of file descriptors
that mysqld requires. You can check whether you need to increase the table cache by checking
the Opened_tables status variable. See Section 5.1.6, “Server Status Variables”. If the value of
Opened_tables is large and you do not use FLUSH TABLES often (which just forces all tables to be
closed and reopened), then you should increase the value of the table_cache variable. For more
information about the table cache, see Section 8.4.3.1, “How MySQL Opens and Closes Tables”.

• table_lock_wait_timeout

Introduced 5.0.10

Command-Line Format --table_lock_wait_timeout=#

System Variable Name table_lock_wait_timeout

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 547

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable
Scope

Global

Dynamic
Variable

Yes

Type integer

Default 50

Min
Value

1

Permitted Values

Max
Value

1073741824

This variable is unused.

• table_type

Name table_type

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type enumeration

This variable is a synonym for storage_engine, which is the preferred name; table_type is
deprecated and is removed in MySQL 5.5.

• thread_cache_size

Command-Line Format --thread_cache_size=#

Name thread_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

16384

How many threads the server should cache for reuse. When a client disconnects, the client's threads
are put in the cache if there are fewer than thread_cache_size threads there. Requests for threads
are satisfied by reusing threads taken from the cache if possible, and only when the cache is empty is
a new thread created. This variable can be increased to improve performance if you have a lot of new
connections. Normally, this does not provide a notable performance improvement if you have a good
thread implementation. However, if your server sees hundreds of connections per second you should
normally set thread_cache_size high enough so that most new connections use cached threads. By

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 548

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

examining the difference between the Connections and Threads_created status variables, you can
see how efficient the thread cache is. For details, see Section 5.1.6, “Server Status Variables”.

• thread_concurrency

Command-Line Format --thread_concurrency=#

Name thread_concurrency

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 10

Min
Value

1

Permitted Values

Max
Value

512

This variable is specific to Solaris systems, for which mysqld invokes the thr_setconcurrency()
with the variable value. This function enables applications to give the threads system a hint about the
desired number of threads that should be run at the same time.

• thread_stack

Command-Line Format --thread_stack=#

Name thread_stack

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 196608

Min
Value

131072

Max
Value

4294967295

Permitted Values (32-bit
platforms)

Block
Size

1024

Type integer

Default 262144

Min
Value

131072

Max
Value

18446744073709547520

Permitted Values (64-bit
platforms)

Block
Size

1024

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 549

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The stack size for each thread. Many of the limits detected by the crash-me test are dependent on
this value. See Section 8.13.2, “The MySQL Benchmark Suite”. The default of 192KB (256KB for 64-
bit systems) is large enough for normal operation. If the thread stack size is too small, it limits the
complexity of the SQL statements that the server can handle, the recursion depth of stored procedures,
and other memory-consuming actions.

• time_format

This variable is unused.

• time_zone

Name time_zone

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

The current time zone. This variable is used to initialize the time zone for each client that connects. By
default, the initial value of this is 'SYSTEM' (which means, “use the value of system_time_zone”).
The value can be specified explicitly at server startup with the --default-time-zone option. See
Section 10.6, “MySQL Server Time Zone Support”.

• timed_mutexes

Introduced 5.0.3

Command-Line Format --timed_mutexes

Name timed_mutexes

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

This variable controls whether InnoDB mutexes are timed. If this variable is set to 0 or OFF (the default),
mutex timing is disabled. If the variable is set to 1 or ON, mutex timing is enabled. With timing enabled,
the os_wait_times value in the output from SHOW ENGINE INNODB MUTEX indicates the amount
of time (in ms) spent in operating system waits. Otherwise, the value is 0. This variable was added in
MySQL 5.0.3.

• timestamp

Name timestamp

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 550

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Permitted Values Type numeric

Set the time for this client. This is used to get the original timestamp if you use the binary log to
restore rows. timestamp_value should be a Unix epoch timestamp (a value like that returned by
UNIX_TIMESTAMP(), not a value in 'YYYY-MM-DD hh:mm:ss' format) or DEFAULT.

Setting timestamp to a constant value causes it to retain that value until it is changed again. Setting
timestamp to DEFAULT causes its value to be the current date and time as of the time it is accessed.

SET timestamp affects the value returned by NOW() but not by SYSDATE(). This means that
timestamp settings in the binary log have no effect on invocations of SYSDATE(). The server can be
started with the --sysdate-is-now option to cause SYSDATE() to be an alias for NOW(), in which
case SET timestamp affects both functions.

• tmp_table_size

Command-Line Format --tmp_table_size=#

Name tmp_table_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 33554432

Min
Value

1024

Permitted Values (<=
5.0.85)

Max
Value

4294967295

Type integer

Default 33554432

Min
Value

1024

Permitted Values (>=
5.0.86)

Max
Value

9223372036854775807

The maximum size of internal in-memory temporary tables. This variable does not apply to user-created
MEMORY tables.

The actual limit is determined as the minimum of tmp_table_size and max_heap_table_size. If
an in-memory temporary table exceeds the limit, MySQL automatically converts it to an on-disk MyISAM
table. Increase the value of tmp_table_size (and max_heap_table_size if necessary) if you do
many advanced GROUP BY queries and you have lots of memory.

You can compare the number of internal on-disk temporary tables created to the total number of
internal temporary tables created by comparing the values of the Created_tmp_disk_tables and
Created_tmp_tables variables.

See also Section 8.4.4, “Internal Temporary Table Use in MySQL”.

• tmpdir

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 551

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Command-Line Format --tmpdir=dir_name

Name tmpdir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The directory used for temporary files and temporary tables. This variable can be set to a list of several
paths that are used in round-robin fashion. Paths should be separated by colon characters (“:”) on Unix
and semicolon characters (“;”) on Windows, NetWare, and OS/2.

The multiple-directory feature can be used to spread the load between several physical disks. If the
MySQL server is acting as a replication slave, you should not set tmpdir to point to a directory on a
memory-based file system or to a directory that is cleared when the server host restarts. A replication
slave needs some of its temporary files to survive a machine restart so that it can replicate temporary
tables or LOAD DATA INFILE operations. If files in the temporary file directory are lost when the server
restarts, replication fails. You can set the slave's temporary directory using the slave_load_tmpdir
variable. In that case, the slave will not use the general tmpdir value and you can set tmpdir to a
nonpermanent location.

• transaction_alloc_block_size

Command-Line Format --transaction_alloc_block_size=#

Name transaction_alloc_block_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 8192

Min
Value

1024

Max
Value

4294967295

Permitted Values (32-bit
platforms)

Block
Size

1024

Type integer

Default 8192

Min
Value

1024

Max
Value

18446744073709547520

Permitted Values (64-bit
platforms)

Block
Size

1024

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 552

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The amount in bytes by which to increase a per-transaction memory pool which needs memory. See the
description of transaction_prealloc_size.

• transaction_prealloc_size

Command-Line Format --transaction_prealloc_size=#

Name transaction_prealloc_size

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 4096

Min
Value

1024

Max
Value

4294967295

Permitted Values (32-bit
platforms)

Block
Size

1024

Type integer

Default 4096

Min
Value

1024

Max
Value

18446744073709547520

Permitted Values (64-bit
platforms)

Block
Size

1024

There is a per-transaction memory pool from which various transaction-related allocations take memory.
The initial size of the pool in bytes is transaction_prealloc_size. For every allocation that
cannot be satisfied from the pool because it has insufficient memory available, the pool is increased
by transaction_alloc_block_size bytes. When the transaction ends, the pool is truncated to
transaction_prealloc_size bytes.

By making transaction_prealloc_size sufficiently large to contain all statements within a single
transaction, you can avoid many malloc() calls.

• tx_isolation

Name tx_isolation

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type enumerationPermitted Values

Default REPEATABLE-READ

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 553

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

READ-UNCOMMITTED

READ-COMMITTED

REPEATABLE-READ

Valid
Values

SERIALIZABLE

The default transaction isolation level. Defaults to REPEATABLE-READ.

This variable can be set directly, or indirectly using the SET TRANSACTION statement. See
Section 13.3.6, “SET TRANSACTION Syntax”. If you set tx_isolation directly to an isolation level
name that contains a space, the name should be enclosed within quotation marks, with the space
replaced by a dash. For example:

SET tx_isolation = 'READ-COMMITTED';

Any unique prefix of a valid value may be used to set the value of this variable.

The default transaction isolation level can also be set at startup using the --transaction-isolation
server option.

• unique_checks

Name unique_checks

Variable
Scope

Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 1

If set to 1 (the default), uniqueness checks for secondary indexes in InnoDB tables are performed. If set
to 0, storage engines are permitted to assume that duplicate keys are not present in input data. If you
know for certain that your data does not contain uniqueness violations, you can set this to 0 to speed up
large table imports to InnoDB.

Setting this variable to 0 does not require storage engines to ignore duplicate keys. An engine is still
permitted to check for them and issue duplicate-key errors if it detects them.

• updatable_views_with_limit

Introduced 5.0.2

Command-Line Format --updatable_views_with_limit=#

Name updatable_views_with_limit

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default 1

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 554

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This variable controls whether updates to a view can be made when the view does not contain all
columns of the primary key defined in the underlying table, if the update statement contains a LIMIT
clause. (Such updates often are generated by GUI tools.) An update is an UPDATE or DELETE statement.
Primary key here means a PRIMARY KEY, or a UNIQUE index in which no column can contain NULL.

The variable can have two values:

• 1 or YES: Issue a warning only (not an error message). This is the default value.

• 0 or NO: Prohibit the update.

This variable was added in MySQL 5.0.2.

• version

Name version

Variable
Scope

Global

System Variable

Dynamic
Variable

No

The version number for the server. The value might also include a suffix indicating server build or
configuration information. -log indicates that one or more of the general log, slow query log, or binary
log are enabled. -debug indicates that the server was built with debugging support enabled.

Name version

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Starting with MySQL 5.0.24, the version number will also indicate whether the server is a standard
release (Community) or Enterprise release (for example, 5.0.28-enterprise-gpl-nt).

• version_bdb

The BDB storage engine version.

• version_comment

Name version_comment

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The configure script has a --with-comment option that permits a comment to be specified when
building MySQL. This variable contains the value of that comment.

For precompiled binaries, this variable will hold the server version and license information. Starting with
MySQL 5.0.24, version_comment will include the full server type and license. For community users

Server System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 555

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

this will appear as MySQL Community Edition - Standard (GPL). For Enterprise users, the
version might be displayed as MySQL Enterprise Server (GPL). The corresponding license for
your MySQL binary is shown in parentheses. For server compiled from source, the default value will be
the same as that for Community releases.

• version_compile_machine

Name version_compile_machine

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The type of machine or architecture on which MySQL was built.

• version_compile_os

Name version_compile_os

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type string

The type of operating system on which MySQL was built.

• wait_timeout

Command-Line Format --wait_timeout=#

Name wait_timeout

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 28800

Min
Value

1

Permitted Values
(Windows)

Max
Value

2147483

Type integer

Default 28800

Min
Value

1

Permitted Values (Other)

Max
Value

31536000

Using System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 556

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The number of seconds the server waits for activity on a noninteractive connection before closing it. This
timeout applies only to TCP/IP and Unix socket file connections, not to connections made using named
pipes, or shared memory.

On thread startup, the session wait_timeout value is initialized from the global wait_timeout
value or from the global interactive_timeout value, depending on the type of client (as
defined by the CLIENT_INTERACTIVE connect option to mysql_real_connect()). See also
interactive_timeout.

• warning_count

The number of errors, warnings, and notes that resulted from the last statement that generated
messages. This variable is read only. See Section 13.7.5.37, “SHOW WARNINGS Syntax”.

5.1.5 Using System Variables

The MySQL server maintains many system variables that indicate how it is configured. Section 5.1.4,
“Server System Variables”, describes the meaning of these variables. Each system variable has a default
value. System variables can be set at server startup using options on the command line or in an option
file. Most of them can be changed dynamically while the server is running by means of the SET statement,
which enables you to modify operation of the server without having to stop and restart it. You can refer to
system variable values in expressions.

The server maintains two kinds of system variables. Global variables affect the overall operation of the
server. Session variables affect its operation for individual client connections. A given system variable can
have both a global and a session value. Global and session system variables are related as follows:

• When the server starts, it initializes all global variables to their default values. These defaults can be
changed by options specified on the command line or in an option file. (See Section 4.2.3, “Specifying
Program Options”.)

• The server also maintains a set of session variables for each client that connects. The client's session
variables are initialized at connect time using the current values of the corresponding global variables.
For example, the client's SQL mode is controlled by the session sql_mode value, which is initialized
when the client connects to the value of the global sql_mode value.

System variable values can be set globally at server startup by using options on the command line or in
an option file. When you use a startup option to set a variable that takes a numeric value, the value can be
given with a suffix of K, M, or G (either uppercase or lowercase) to indicate a multiplier of 1024, 10242 or
10243; that is, units of kilobytes, megabytes, or gigabytes, respectively. Thus, the following command starts
the server with a query cache size of 16 megabytes and a maximum packet size of one gigabyte:

mysqld --query_cache_size=16M --max_allowed_packet=1G

Within an option file, those variables are set like this:

[mysqld]
query_cache_size=16M
max_allowed_packet=1G

The lettercase of suffix letters does not matter; 16M and 16m are equivalent, as are 1G and 1g.

If you want to restrict the maximum value to which a system variable can be set at runtime with the SET
statement, you can specify this maximum by using an option of the form --maximum-var_name=value

Using System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 557

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

at server startup. For example, to prevent the value of query_cache_size from being increased to more
than 32MB at runtime, use the option --maximum-query_cache_size=32M.

Many system variables are dynamic and can be changed while the server runs by using the SET
statement. For a list, see Section 5.1.5.2, “Dynamic System Variables”. To change a system variable with
SET, refer to it as var_name, optionally preceded by a modifier:

• To indicate explicitly that a variable is a global variable, precede its name by GLOBAL or @@global..
The SUPER privilege is required to set global variables.

• To indicate explicitly that a variable is a session variable, precede its name by SESSION, @@session.,
or @@. Setting a session variable requires no special privilege, but a client can change only its own
session variables, not those of any other client.

• LOCAL and @@local. are synonyms for SESSION and @@session..

• If no modifier is present, SET changes the session variable.

A SET statement can contain multiple variable assignments, separated by commas. If you set several
system variables, the most recent GLOBAL or SESSION modifier in the statement is used for following
variables that have no modifier specified.

Examples:

SET sort_buffer_size=10000;
SET @@local.sort_buffer_size=10000;
SET GLOBAL sort_buffer_size=1000000, SESSION sort_buffer_size=1000000;
SET @@sort_buffer_size=1000000;
SET @@global.sort_buffer_size=1000000, @@local.sort_buffer_size=1000000;

The @@var_name syntax for system variables is supported for compatibility with some other database
systems.

If you change a session system variable, the value remains in effect until your session ends or until you
change the variable to a different value. The change is not visible to other clients.

If you change a global system variable, the value is remembered and used for new connections until the
server restarts. (To make a global system variable setting permanent, you should set it in an option file.)
The change is visible to any client that accesses that global variable. However, the change affects the
corresponding session variable only for clients that connect after the change. The global variable change
does not affect the session variable for any client that is currently connected (not even that of the client that
issues the SET GLOBAL statement).

To prevent incorrect usage, MySQL produces an error if you use SET GLOBAL with a variable that can
only be used with SET SESSION or if you do not specify GLOBAL (or @@global.) when setting a global
variable.

To set a SESSION variable to the GLOBAL value or a GLOBAL value to the compiled-in MySQL default
value, use the DEFAULT keyword. For example, the following two statements are identical in setting the
session value of max_join_size to the global value:

SET max_join_size=DEFAULT;
SET @@session.max_join_size=@@global.max_join_size;

Not all system variables can be set to DEFAULT. In such cases, use of DEFAULT results in an error.

Using System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 558

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

You can refer to the values of specific global or session system variables in expressions by using one of
the @@-modifiers. For example, you can retrieve values in a SELECT statement like this:

SELECT @@global.sql_mode, @@session.sql_mode, @@sql_mode;

When you refer to a system variable in an expression as @@var_name (that is, when you do not specify
@@global. or @@session.), MySQL returns the session value if it exists and the global value otherwise.
(This differs from SET @@var_name = value, which always refers to the session value.)

Note

Some variables displayed by SHOW VARIABLES may not be available using
SELECT @@var_name syntax; an Unknown system variable occurs. As a
workaround in such cases, you can use SHOW VARIABLES LIKE 'var_name'.

Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not to
set the value with SET at runtime. On the other hand, with SET you can assign a variable's value using
an expression, which is not true when you set a variable at server startup. For example, the first of the
following lines is legal at server startup, but the second is not:

shell> mysql --max_allowed_packet=16M
shell> mysql --max_allowed_packet=16*1024*1024

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

Note

Some system variables can be enabled with the SET statement by setting them to
ON or 1, or disabled by setting them to OFF or 0. However, to set such a variable
on the command line or in an option file, you must set it to 1 or 0; setting it to ON or
OFF will not work. For example, on the command line, --delay_key_write=1
works but --delay_key_write=ON does not.

To display system variable names and values, use the SHOW VARIABLES statement:

mysql> SHOW VARIABLES;
+--------+--+
| Variable_name | Value |
+--------+--+
auto_increment_increment	1
auto_increment_offset	1
automatic_sp_privileges	ON
back_log	50
basedir	/
bdb_cache_size	8388600
bdb_home	/var/lib/mysql/
bdb_log_buffer_size	32768
bdb_logdir	
bdb_max_lock	10000
bdb_shared_data	OFF
bdb_tmpdir	/tmp/
binlog_cache_size	32768
bulk_insert_buffer_size	8388608
character_set_client	latin1

Using System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 559

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

character_set_connection	latin1
character_set_database	latin1
character_set_results	latin1
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/share/mysql/charsets/
collation_connection	latin1_swedish_ci
collation_database	latin1_swedish_ci
collation_server	latin1_swedish_ci
...	
innodb_additional_mem_pool_size	1048576
innodb_autoextend_increment	8
innodb_buffer_pool_awe_mem_mb	0
innodb_buffer_pool_size	8388608
innodb_checksums	ON
innodb_commit_concurrency	0
innodb_concurrency_tickets	500
innodb_data_file_path	ibdata1:10M:autoextend
innodb_data_home_dir	
...	
version	5.0.19
version_comment	MySQL Community Edition - (GPL)
version_compile_machine	i686
version_compile_os	pc-linux-gnu
wait_timeout	28800
+--------+--+

With a LIKE clause, the statement displays only those variables that match the pattern. To obtain a
specific variable name, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the “%” wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking,
because “_” is a wildcard that matches any single character, you should escape it as “_” to match it
literally. In practice, this is rarely necessary.

For SHOW VARIABLES, if you specify neither GLOBAL nor SESSION, MySQL returns SESSION values.

The reason for requiring the GLOBAL keyword when setting GLOBAL-only variables but not when retrieving
them is to prevent problems in the future. If we were to remove a SESSION variable that has the same
name as a GLOBAL variable, a client with the SUPER privilege might accidentally change the GLOBAL
variable rather than just the SESSION variable for its own connection. If we add a SESSION variable with
the same name as a GLOBAL variable, a client that intends to change the GLOBAL variable might find only
its own SESSION variable changed.

5.1.5.1 Structured System Variables

A structured variable differs from a regular system variable in two respects:

• Its value is a structure with components that specify server parameters considered to be closely related.

• There might be several instances of a given type of structured variable. Each one has a different name
and refers to a different resource maintained by the server.

Using System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 560

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL supports one structured variable type, which specifies parameters governing the operation of key
caches. A key cache structured variable has these components:

• key_buffer_size

• key_cache_block_size

• key_cache_division_limit

• key_cache_age_threshold

This section describes the syntax for referring to structured variables. Key cache variables are used
for syntax examples, but specific details about how key caches operate are found elsewhere, in
Section 8.10.1, “The MyISAM Key Cache”.

To refer to a component of a structured variable instance, you can use a compound name in
instance_name.component_name format. Examples:

hot_cache.key_buffer_size
hot_cache.key_cache_block_size
cold_cache.key_cache_block_size

For each structured system variable, an instance with the name of default is always predefined. If you
refer to a component of a structured variable without any instance name, the default instance is used.
Thus, default.key_buffer_size and key_buffer_size both refer to the same system variable.

Structured variable instances and components follow these naming rules:

• For a given type of structured variable, each instance must have a name that is unique within variables
of that type. However, instance names need not be unique across structured variable types. For
example, each structured variable has an instance named default, so default is not unique across
variable types.

• The names of the components of each structured variable type must be unique across all system
variable names. If this were not true (that is, if two different types of structured variables could share
component member names), it would not be clear which default structured variable to use for references
to member names that are not qualified by an instance name.

• If a structured variable instance name is not legal as an unquoted identifier, refer to it as a quoted
identifier using backticks. For example, hot-cache is not legal, but `hot-cache` is.

• global, session, and local are not legal instance names. This avoids a conflict with notation such as
@@global.var_name for referring to nonstructured system variables.

Currently, the first two rules have no possibility of being violated because the only structured variable type
is the one for key caches. These rules will assume greater significance if some other type of structured
variable is created in the future.

With one exception, you can refer to structured variable components using compound names in any
context where simple variable names can occur. For example, you can assign a value to a structured
variable using a command-line option:

shell> mysqld --hot_cache.key_buffer_size=64K

In an option file, use this syntax:

Using System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 561

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

[mysqld]
hot_cache.key_buffer_size=64K

If you start the server with this option, it creates a key cache named hot_cache with a size of 64KB in
addition to the default key cache that has a default size of 8MB.

Suppose that you start the server as follows:

shell> mysqld --key_buffer_size=256K \
 --extra_cache.key_buffer_size=128K \
 --extra_cache.key_cache_block_size=2048

In this case, the server sets the size of the default key cache to 256KB. (You could also have written
--default.key_buffer_size=256K.) In addition, the server creates a second key cache named
extra_cache that has a size of 128KB, with the size of block buffers for caching table index blocks set to
2048 bytes.

The following example starts the server with three different key caches having sizes in a 3:1:1 ratio:

shell> mysqld --key_buffer_size=6M \
 --hot_cache.key_buffer_size=2M \
 --cold_cache.key_buffer_size=2M

Structured variable values may be set and retrieved at runtime as well. For example, to set a key cache
named hot_cache to a size of 10MB, use either of these statements:

mysql> SET GLOBAL hot_cache.key_buffer_size = 10*1024*1024;
mysql> SET @@global.hot_cache.key_buffer_size = 10*1024*1024;

To retrieve the cache size, do this:

mysql> SELECT @@global.hot_cache.key_buffer_size;

However, the following statement does not work. The variable is not interpreted as a compound name, but
as a simple string for a LIKE pattern-matching operation:

mysql> SHOW GLOBAL VARIABLES LIKE 'hot_cache.key_buffer_size';

This is the exception to being able to use structured variable names anywhere a simple variable name may
occur.

5.1.5.2 Dynamic System Variables

Many server system variables are dynamic and can be set at runtime using SET GLOBAL or SET
SESSION. You can also obtain their values using SELECT. See Section 5.1.5, “Using System Variables”.

The following table shows the full list of all dynamic system variables. The last column indicates for each
variable whether GLOBAL or SESSION (or both) apply. The table also lists session options that can be set
with the SET statement. Section 5.1.4, “Server System Variables”, discusses these options.

Variables that have a type of “string” take a string value. Variables that have a type of “numeric” take a
numeric value. Variables that have a type of “boolean” can be set to 0, 1, ON or OFF. (If you set them on
the command line or in an option file, use the numeric values.) Variables that are marked as “enumeration”
normally should be set to one of the available values for the variable, but can also be set to the number
that corresponds to the desired enumeration value. For enumerated system variables, the first enumeration

Using System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 562

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

value corresponds to 0. This differs from ENUM columns, for which the first enumeration value corresponds
to 1.

Table 5.3 Dynamic Variable Summary

Variable Name Variable Type Variable Scope

auto_increment_increment integer GLOBAL | SESSION

auto_increment_offset integer GLOBAL | SESSION

autocommit boolean SESSION

automatic_sp_privileges boolean GLOBAL

big_tables boolean SESSION

binlog_cache_size integer GLOBAL

bulk_insert_buffer_size integer GLOBAL | SESSION

character_set_client string GLOBAL | SESSION

character_set_connection string GLOBAL | SESSION

character_set_database string GLOBAL | SESSION

character_set_filesystem string GLOBAL | SESSION

character_set_results string GLOBAL | SESSION

character_set_server string GLOBAL | SESSION

collation_connection string GLOBAL | SESSION

collation_database string GLOBAL | SESSION

collation_server string GLOBAL | SESSION

completion_type integer GLOBAL | SESSION

concurrent_insert integer GLOBAL

connect_timeout integer GLOBAL

debug string GLOBAL | SESSION

storage_engine enumeration GLOBAL | SESSION

default_week_format integer GLOBAL | SESSION

delay_key_write enumeration GLOBAL

delayed_insert_limit integer GLOBAL

delayed_insert_timeout integer GLOBAL

delayed_queue_size integer GLOBAL

div_precision_increment integer GLOBAL | SESSION

engine_condition_pushdown boolean GLOBAL | SESSION

expire_logs_days integer GLOBAL

flush boolean GLOBAL

flush_time integer GLOBAL

foreign_key_checks boolean SESSION

ft_boolean_syntax string GLOBAL

group_concat_max_len integer GLOBAL | SESSION

identity integer SESSION

Using System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 563

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable Name Variable Type Variable Scope

init_connect string GLOBAL

init_slave string GLOBAL

innodb_autoextend_increment integer GLOBAL

innodb_commit_concurrency integer GLOBAL

innodb_concurrency_tickets integer GLOBAL

innodb_fast_shutdown integer GLOBAL

innodb_flush_log_at_trx_commit enumeration GLOBAL

innodb_max_dirty_pages_pct numeric GLOBAL

innodb_max_purge_lag integer GLOBAL

innodb_support_xa boolean GLOBAL | SESSION

innodb_sync_spin_loops integer GLOBAL

innodb_table_locks boolean GLOBAL | SESSION

innodb_thread_concurrency integer GLOBAL

innodb_thread_sleep_delay integer GLOBAL

innodb_use_legacy_cardinality_algorithm boolean GLOBAL

insert_id integer SESSION

interactive_timeout integer GLOBAL | SESSION

join_buffer_size integer GLOBAL | SESSION

keep_files_on_create boolean GLOBAL | SESSION

key_buffer_size integer GLOBAL

key_cache_age_threshold integer GLOBAL

key_cache_block_size integer GLOBAL

key_cache_division_limit integer GLOBAL

last_insert_id integer SESSION

lc_time_names string GLOBAL | SESSION

local_infile boolean GLOBAL

log_bin_trust_function_creators boolean GLOBAL

log_bin_trust_routine_creators boolean GLOBAL

log_queries_not_using_indexes boolean GLOBAL

log_warnings integer GLOBAL | SESSION

long_query_time numeric GLOBAL | SESSION

low_priority_updates boolean GLOBAL | SESSION

max_allowed_packet integer GLOBAL | SESSION

max_binlog_cache_size integer GLOBAL

max_binlog_size integer GLOBAL

max_connect_errors integer GLOBAL

max_connections integer GLOBAL

max_delayed_threads integer GLOBAL | SESSION

Using System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 564

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable Name Variable Type Variable Scope

max_error_count integer GLOBAL | SESSION

max_heap_table_size integer GLOBAL | SESSION

max_insert_delayed_threads integer GLOBAL | SESSION

max_join_size integer GLOBAL | SESSION

max_length_for_sort_data integer GLOBAL | SESSION

max_prepared_stmt_count integer GLOBAL

max_relay_log_size integer GLOBAL

max_seeks_for_key integer GLOBAL | SESSION

max_sort_length integer GLOBAL | SESSION

max_sp_recursion_depth integer GLOBAL | SESSION

max_tmp_tables integer GLOBAL | SESSION

max_user_connections integer GLOBAL | SESSION

max_write_lock_count integer GLOBAL

multi_range_count integer GLOBAL | SESSION

myisam_data_pointer_size integer GLOBAL

myisam_max_sort_file_size integer GLOBAL

myisam_repair_threads integer GLOBAL | SESSION

myisam_sort_buffer_size integer GLOBAL | SESSION

myisam_stats_method enumeration GLOBAL | SESSION

ndb_autoincrement_prefetch_sz integer GLOBAL | SESSION

ndb_cache_check_time integer GLOBAL

ndb_force_send boolean GLOBAL | SESSION

ndb_index_stat_cache_entries integer GLOBAL | SESSION

ndb_index_stat_enable boolean GLOBAL | SESSION

ndb_index_stat_update_freq integer GLOBAL | SESSION

ndb_use_exact_count boolean GLOBAL | SESSION

ndb_use_transactions boolean GLOBAL | SESSION

net_buffer_length integer GLOBAL | SESSION

net_read_timeout integer GLOBAL | SESSION

net_retry_count integer GLOBAL | SESSION

net_write_timeout integer GLOBAL | SESSION

new boolean GLOBAL | SESSION

old_passwords boolean GLOBAL | SESSION

optimizer_prune_level boolean GLOBAL | SESSION

optimizer_search_depth integer GLOBAL | SESSION

preload_buffer_size integer GLOBAL | SESSION

profiling boolean SESSION

profiling_history_size integer GLOBAL | SESSION

Using System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 565

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable Name Variable Type Variable Scope

pseudo_thread_id integer SESSION

query_alloc_block_size integer GLOBAL | SESSION

query_cache_limit integer GLOBAL

query_cache_min_res_unit integer GLOBAL

query_cache_size integer GLOBAL

query_cache_type enumeration GLOBAL | SESSION

query_cache_wlock_invalidate boolean GLOBAL | SESSION

query_prealloc_size integer GLOBAL | SESSION

rand_seed1 integer SESSION

rand_seed2 integer SESSION

range_alloc_block_size integer GLOBAL | SESSION

read_buffer_size integer GLOBAL | SESSION

read_only boolean GLOBAL

read_rnd_buffer_size integer GLOBAL | SESSION

relay_log_purge boolean GLOBAL

rpl_recovery_rank integer GLOBAL

secure_auth boolean GLOBAL

server_id integer GLOBAL

slave_compressed_protocol boolean GLOBAL

slave_net_timeout integer GLOBAL

slave_transaction_retries integer GLOBAL

slow_launch_time integer GLOBAL

sort_buffer_size integer GLOBAL | SESSION

sql_auto_is_null boolean SESSION

sql_big_selects boolean SESSION

sql_big_tables boolean SESSION

sql_buffer_result boolean SESSION

sql_log_bin boolean SESSION

sql_log_off boolean SESSION

sql_log_update boolean SESSION

sql_low_priority_updates boolean GLOBAL | SESSION

sql_max_join_size integer GLOBAL | SESSION

sql_mode set GLOBAL | SESSION

sql_notes boolean SESSION

sql_quote_show_create boolean SESSION

sql_safe_updates boolean SESSION

sql_select_limit integer GLOBAL | SESSION

sql_slave_skip_counter integer GLOBAL

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 566

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable Name Variable Type Variable Scope

sql_warnings boolean SESSION

storage_engine enumeration GLOBAL | SESSION

sync_binlog integer GLOBAL

sync_frm boolean GLOBAL

table_cache integer GLOBAL

table_lock_wait_timeout integer GLOBAL

table_type enumeration GLOBAL | SESSION

thread_cache_size integer GLOBAL

time_zone string GLOBAL | SESSION

timed_mutexes boolean GLOBAL

timestamp numeric SESSION

tmp_table_size integer GLOBAL | SESSION

transaction_alloc_block_size integer GLOBAL | SESSION

transaction_prealloc_size integer GLOBAL | SESSION

tx_isolation enumeration GLOBAL | SESSION

unique_checks boolean SESSION

updatable_views_with_limit boolean GLOBAL | SESSION

wait_timeout integer GLOBAL | SESSION

5.1.6 Server Status Variables

The MySQL server maintains many status variables that provide information about its operation. You can
view these variables and their values by using the SHOW [GLOBAL | SESSION] STATUS statement (see
Section 13.7.5.32, “SHOW STATUS Syntax”). The optional GLOBAL keyword aggregates the values over
all connections, and SESSION shows the values for the current connection.

mysql> SHOW GLOBAL STATUS;
+-----------------------------------+------------+
| Variable_name | Value |
+-----------------------------------+------------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
...	
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_files	3
Created_tmp_tables	2
...	
Threads_created	217
Threads_running	88
Uptime	1389872
+-----------------------------------+------------+

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 567

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

Before MySQL 5.0.2, SHOW STATUS returned global status values. Because the
default as of 5.0.2 is to return session values, this is incompatible with previous
versions. To issue a SHOW STATUS statement that will retrieve global status values
for all versions of MySQL, write it like this:

SHOW /*!50002 GLOBAL */ STATUS;

Several status variables provide statement counts. To determine the number of statements executed, use
these relationships:

 SUM(Com_xxx) + Qcache_hits
= Questions + statements executed within stored programs
= Queries

Many status variables are reset to 0 by the FLUSH STATUS statement.

The following table lists all available server status variables:

Table 5.4 Status Variable Summary

Variable Name Variable Type Variable Scope

Aborted_clients integer GLOBAL

Aborted_connects integer GLOBAL

Binlog_cache_disk_use integer GLOBAL

Binlog_cache_use integer GLOBAL

Bytes_received integer GLOBAL | SESSION

Bytes_sent integer GLOBAL | SESSION

Com_admin_commands integer GLOBAL | SESSION

Com_alter_db integer GLOBAL | SESSION

Com_alter_event integer GLOBAL | SESSION

Com_alter_table integer GLOBAL | SESSION

Com_analyze integer GLOBAL | SESSION

Com_backup_table integer GLOBAL | SESSION

Com_begin integer GLOBAL | SESSION

Com_call_procedure integer GLOBAL | SESSION

Com_change_db integer GLOBAL | SESSION

Com_change_master integer GLOBAL | SESSION

Com_check integer GLOBAL | SESSION

Com_checksum integer GLOBAL | SESSION

Com_commit integer GLOBAL | SESSION

Com_create_db integer GLOBAL | SESSION

Com_create_event integer GLOBAL | SESSION

Com_create_function integer GLOBAL | SESSION

Com_create_index integer GLOBAL | SESSION

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 568

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable Name Variable Type Variable Scope

Com_create_table integer GLOBAL | SESSION

Com_create_user integer GLOBAL | SESSION

Com_dealloc_sql integer GLOBAL | SESSION

Com_delete integer GLOBAL | SESSION

Com_delete_multi integer GLOBAL | SESSION

Com_do integer GLOBAL | SESSION

Com_drop_db integer GLOBAL | SESSION

Com_drop_event integer GLOBAL | SESSION

Com_drop_function integer GLOBAL | SESSION

Com_drop_index integer GLOBAL | SESSION

Com_drop_table integer GLOBAL | SESSION

Com_drop_user integer GLOBAL | SESSION

Com_execute_sql integer GLOBAL | SESSION

Com_flush integer GLOBAL | SESSION

Com_grant integer GLOBAL | SESSION

Com_ha_close integer GLOBAL | SESSION

Com_ha_open integer GLOBAL | SESSION

Com_ha_read integer GLOBAL | SESSION

Com_help integer GLOBAL | SESSION

Com_insert integer GLOBAL | SESSION

Com_insert_select integer GLOBAL | SESSION

Com_kill integer GLOBAL | SESSION

Com_load integer GLOBAL | SESSION

Com_lock_tables integer GLOBAL | SESSION

Com_optimize integer GLOBAL | SESSION

Com_preload_keys integer GLOBAL | SESSION

Com_prepare_sql integer GLOBAL | SESSION

Com_purge integer GLOBAL | SESSION

Com_purge_before_date integer GLOBAL | SESSION

Com_rename_table integer GLOBAL | SESSION

Com_repair integer GLOBAL | SESSION

Com_replace integer GLOBAL | SESSION

Com_replace_select integer GLOBAL | SESSION

Com_reset integer GLOBAL | SESSION

Com_restore_table integer GLOBAL | SESSION

Com_revoke integer GLOBAL | SESSION

Com_revoke_all integer GLOBAL | SESSION

Com_rollback integer GLOBAL | SESSION

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 569

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable Name Variable Type Variable Scope

Com_savepoint integer GLOBAL | SESSION

Com_select integer GLOBAL | SESSION

Com_set_option integer GLOBAL | SESSION

Com_show_binlog_events integer GLOBAL | SESSION

Com_show_binlogs integer GLOBAL | SESSION

Com_show_charsets integer GLOBAL | SESSION

Com_show_collations integer GLOBAL | SESSION

Com_show_column_types integer GLOBAL | SESSION

Com_show_create_db integer GLOBAL | SESSION

Com_show_create_event integer GLOBAL | SESSION

Com_show_create_table integer GLOBAL | SESSION

Com_show_databases integer GLOBAL | SESSION

Com_show_engine_logs integer GLOBAL | SESSION

Com_show_engine_mutex integer GLOBAL | SESSION

Com_show_engine_status integer GLOBAL | SESSION

Com_show_errors integer GLOBAL | SESSION

Com_show_events integer GLOBAL | SESSION

Com_show_fields integer GLOBAL | SESSION

Com_show_grants integer GLOBAL | SESSION

Com_show_innodb_status integer GLOBAL | SESSION

Com_show_keys integer GLOBAL | SESSION

Com_show_logs integer GLOBAL | SESSION

Com_show_master_status integer GLOBAL | SESSION

Com_show_ndb_status integer GLOBAL | SESSION

Com_show_new_master integer GLOBAL | SESSION

Com_show_open_tables integer GLOBAL | SESSION

Com_show_plugins integer GLOBAL | SESSION

Com_show_privileges integer GLOBAL | SESSION

Com_show_processlist integer GLOBAL | SESSION

Com_show_slave_hosts integer GLOBAL | SESSION

Com_show_slave_status integer GLOBAL | SESSION

Com_show_status integer GLOBAL | SESSION

Com_show_storage_engines integer GLOBAL | SESSION

Com_show_tables integer GLOBAL | SESSION

Com_show_triggers integer GLOBAL | SESSION

Com_show_variables integer GLOBAL | SESSION

Com_show_warnings integer GLOBAL | SESSION

Com_slave_start integer GLOBAL | SESSION

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 570

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable Name Variable Type Variable Scope

Com_slave_stop integer GLOBAL | SESSION

Com_stmt_close integer GLOBAL | SESSION

Com_stmt_execute integer GLOBAL | SESSION

Com_stmt_fetch integer GLOBAL | SESSION

Com_stmt_prepare integer GLOBAL | SESSION

Com_stmt_reset integer GLOBAL | SESSION

Com_stmt_send_long_data integer GLOBAL | SESSION

Com_truncate integer GLOBAL | SESSION

Com_unlock_tables integer GLOBAL | SESSION

Com_update integer GLOBAL | SESSION

Com_update_multi integer GLOBAL | SESSION

Com_xa_commit integer GLOBAL | SESSION

Com_xa_end integer GLOBAL | SESSION

Com_xa_prepare integer GLOBAL | SESSION

Com_xa_recover integer GLOBAL | SESSION

Com_xa_rollback integer GLOBAL | SESSION

Com_xa_start integer GLOBAL | SESSION

Compression integer SESSION

Connections integer GLOBAL

Created_tmp_disk_tables integer GLOBAL | SESSION

Created_tmp_files integer GLOBAL

Created_tmp_tables integer GLOBAL | SESSION

Delayed_errors integer GLOBAL

Delayed_insert_threads integer GLOBAL

Delayed_writes integer GLOBAL

Flush_commands integer GLOBAL

Handler_commit integer GLOBAL | SESSION

Handler_delete integer GLOBAL | SESSION

Handler_discover integer GLOBAL | SESSION

Handler_prepare integer GLOBAL | SESSION

Handler_read_first integer GLOBAL | SESSION

Handler_read_key integer GLOBAL | SESSION

Handler_read_next integer GLOBAL | SESSION

Handler_read_prev integer GLOBAL | SESSION

Handler_read_rnd integer GLOBAL | SESSION

Handler_read_rnd_next integer GLOBAL | SESSION

Handler_rollback integer GLOBAL | SESSION

Handler_savepoint integer GLOBAL | SESSION

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 571

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable Name Variable Type Variable Scope

Handler_savepoint_rollback integer GLOBAL | SESSION

Handler_update integer GLOBAL | SESSION

Handler_write integer GLOBAL | SESSION

Innodb_buffer_pool_pages_data integer GLOBAL

Innodb_buffer_pool_pages_dirty integer GLOBAL

Innodb_buffer_pool_pages_flushed integer GLOBAL

Innodb_buffer_pool_pages_free integer GLOBAL

Innodb_buffer_pool_pages_latched integer GLOBAL

Innodb_buffer_pool_pages_misc integer GLOBAL

Innodb_buffer_pool_pages_total integer GLOBAL

Innodb_buffer_pool_read_ahead_rnd integer GLOBAL

Innodb_buffer_pool_read_ahead_seq integer GLOBAL

Innodb_buffer_pool_read_requests integer GLOBAL

Innodb_buffer_pool_reads integer GLOBAL

Innodb_buffer_pool_wait_free integer GLOBAL

Innodb_buffer_pool_write_requests integer GLOBAL

Innodb_data_fsyncs integer GLOBAL

Innodb_data_pending_fsyncs integer GLOBAL

Innodb_data_pending_reads integer GLOBAL

Innodb_data_pending_writes integer GLOBAL

Innodb_data_read integer GLOBAL

Innodb_data_reads integer GLOBAL

Innodb_data_writes integer GLOBAL

Innodb_data_written integer GLOBAL

Innodb_dblwr_pages_written integer GLOBAL

Innodb_dblwr_writes integer GLOBAL

Innodb_log_waits integer GLOBAL

Innodb_log_write_requests integer GLOBAL

Innodb_log_writes integer GLOBAL

Innodb_os_log_fsyncs integer GLOBAL

Innodb_os_log_pending_fsyncs integer GLOBAL

Innodb_os_log_pending_writes integer GLOBAL

Innodb_os_log_written integer GLOBAL

Innodb_page_size integer GLOBAL

Innodb_pages_created integer GLOBAL

Innodb_pages_read integer GLOBAL

Innodb_pages_written integer GLOBAL

Innodb_row_lock_current_waits integer GLOBAL

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 572

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable Name Variable Type Variable Scope

Innodb_row_lock_time integer GLOBAL

Innodb_row_lock_time_avg integer GLOBAL

Innodb_row_lock_time_max integer GLOBAL

Innodb_row_lock_waits integer GLOBAL

Innodb_rows_deleted integer GLOBAL

Innodb_rows_inserted integer GLOBAL

Innodb_rows_read integer GLOBAL

Innodb_rows_updated integer GLOBAL

Key_blocks_not_flushed integer GLOBAL

Key_blocks_unused integer GLOBAL

Key_blocks_used integer GLOBAL

Key_read_requests integer GLOBAL

Key_reads integer GLOBAL

Key_write_requests integer GLOBAL

Key_writes integer GLOBAL

Last_query_cost numeric SESSION

Max_used_connections integer GLOBAL

Ndb_cluster_node_id integer GLOBAL | SESSION

Ndb_config_from_host integer GLOBAL | SESSION

Ndb_config_from_port integer GLOBAL | SESSION

Ndb_cluster_node_id integer GLOBAL

Not_flushed_delayed_rows integer GLOBAL

Open_files integer GLOBAL

Open_streams integer GLOBAL

Open_tables integer GLOBAL | SESSION

Opened_tables integer GLOBAL | SESSION

Prepared_stmt_count integer GLOBAL

Qcache_free_blocks integer GLOBAL

Qcache_free_memory integer GLOBAL

Qcache_hits integer GLOBAL

Qcache_inserts integer GLOBAL

Qcache_lowmem_prunes integer GLOBAL

Qcache_not_cached integer GLOBAL

Qcache_queries_in_cache integer GLOBAL

Qcache_total_blocks integer GLOBAL

Queries integer GLOBAL | SESSION

Questions integer GLOBAL | SESSION

Rpl_status string GLOBAL

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 573

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable Name Variable Type Variable Scope

Select_full_join integer GLOBAL | SESSION

Select_full_range_join integer GLOBAL | SESSION

Select_range integer GLOBAL | SESSION

Select_range_check integer GLOBAL | SESSION

Select_scan integer GLOBAL | SESSION

Slave_open_temp_tables integer GLOBAL

Slave_retried_transactions integer GLOBAL

Slave_running boolean GLOBAL

Slow_launch_threads integer GLOBAL | SESSION

Slow_queries integer GLOBAL | SESSION

Sort_merge_passes integer GLOBAL | SESSION

Sort_range integer GLOBAL | SESSION

Sort_rows integer GLOBAL | SESSION

Sort_scan integer GLOBAL | SESSION

Ssl_accept_renegotiates integer GLOBAL

Ssl_accepts integer GLOBAL

Ssl_callback_cache_hits integer GLOBAL

Ssl_cipher string GLOBAL | SESSION

Ssl_cipher_list string GLOBAL | SESSION

Ssl_client_connects integer GLOBAL

Ssl_connect_renegotiates integer GLOBAL

Ssl_ctx_verify_depth integer GLOBAL

Ssl_ctx_verify_mode integer GLOBAL

Ssl_default_timeout integer GLOBAL | SESSION

Ssl_finished_accepts integer GLOBAL

Ssl_finished_connects integer GLOBAL

Ssl_session_cache_hits integer GLOBAL

Ssl_session_cache_misses integer GLOBAL

Ssl_session_cache_mode string GLOBAL

Ssl_session_cache_overflows integer GLOBAL

Ssl_session_cache_size integer GLOBAL

Ssl_session_cache_timeouts integer GLOBAL

Ssl_sessions_reused integer GLOBAL | SESSION

Ssl_used_session_cache_entries integer GLOBAL

Ssl_verify_depth integer GLOBAL | SESSION

Ssl_verify_mode integer GLOBAL | SESSION

Ssl_version string GLOBAL | SESSION

Table_locks_immediate integer GLOBAL

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 574

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable Name Variable Type Variable Scope

Table_locks_waited integer GLOBAL

Tc_log_max_pages_used integer GLOBAL

Tc_log_page_size integer GLOBAL

Tc_log_page_waits integer GLOBAL

Threads_cached integer GLOBAL

Threads_connected integer GLOBAL

Threads_created integer GLOBAL

Threads_running integer GLOBAL

Uptime integer GLOBAL

Uptime_since_flush_status integer GLOBAL

The status variables have the following meanings. For meanings of status variables specific to MySQL
Cluster, see MySQL Cluster Status Variables.

• Aborted_clients

The number of connections that were aborted because the client died without closing the connection
properly. See Section B.5.2.11, “Communication Errors and Aborted Connections”.

• Aborted_connects

The number of failed attempts to connect to the MySQL server. See Section B.5.2.11, “Communication
Errors and Aborted Connections”.

• Binlog_cache_disk_use

The number of transactions that used the temporary binary log cache but that exceeded the value of
binlog_cache_size and used a temporary file to store statements from the transaction.

• Binlog_cache_use

The number of transactions that used the temporary binary log cache.

• Bytes_received

The number of bytes received from all clients.

• Bytes_sent

The number of bytes sent to all clients.

• Com_xxx

The Com_xxx statement counter variables indicate the number of times each xxx statement has
been executed. There is one status variable for each type of statement. For example, Com_delete
and Com_update count DELETE and UPDATE statements, respectively. Com_delete_multi and
Com_update_multi are similar but apply to DELETE and UPDATE statements that use multiple-table
syntax.

If a query result is returned from query cache, the server increments the Qcache_hits status variable,
not Com_select. See Section 8.10.3.4, “Query Cache Status and Maintenance”.

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 575

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The discussion at the beginning of this section indicates how to relate these statement-counting status
variables to other such variables.

All of the Com_stmt_xxx variables are increased even if a prepared statement argument is unknown or
an error occurred during execution. In other words, their values correspond to the number of requests
issued, not to the number of requests successfully completed.

The Com_stmt_xxx status variables were added in 5.0.8:

• Com_stmt_prepare

• Com_stmt_execute

• Com_stmt_fetch

• Com_stmt_send_long_data

• Com_stmt_reset

• Com_stmt_close

Those variables stand for prepared statement commands. Their names refer to the COM_xxx command
set used in the network layer. In other words, their values increase whenever prepared statement
API calls such as mysql_stmt_prepare(), mysql_stmt_execute(), and so forth are executed.
However, Com_stmt_prepare, Com_stmt_execute and Com_stmt_close also increase for
PREPARE, EXECUTE, or DEALLOCATE PREPARE, respectively. Additionally, the values of the older
statement counter variables Com_prepare_sql, Com_execute_sql, and Com_dealloc_sql
increase for the PREPARE, EXECUTE, and DEALLOCATE PREPARE statements. Com_stmt_fetch
stands for the total number of network round-trips issued when fetching from cursors.

• Compression

Whether the client connection uses compression in the client/server protocol. Added in MySQL 5.0.16.

• Connections

The number of connection attempts (successful or not) to the MySQL server.

• Created_tmp_disk_tables

The number of internal on-disk temporary tables created by the server while executing statements.

If an internal temporary table is created initially as an in-memory table but becomes too large,
MySQL automatically converts it to an on-disk table. The maximum size for in-memory temporary
tables is the minimum of the tmp_table_size and max_heap_table_size values. If
Created_tmp_disk_tables is large, you may want to increase the tmp_table_size or
max_heap_table_size value to lessen the likelihood that internal temporary tables in memory will be
converted to on-disk tables.

You can compare the number of internal on-disk temporary tables created to the total number of
internal temporary tables created by comparing the values of the Created_tmp_disk_tables and
Created_tmp_tables variables.

See also Section 8.4.4, “Internal Temporary Table Use in MySQL”.

• Created_tmp_files

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 576

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

How many temporary files mysqld has created.

• Created_tmp_tables

The number of internal temporary tables created by the server while executing statements.

You can compare the number of internal on-disk temporary tables created to the total number of
internal temporary tables created by comparing the values of the Created_tmp_disk_tables and
Created_tmp_tables variables.

See also Section 8.4.4, “Internal Temporary Table Use in MySQL”.

• Delayed_errors

The number of rows written with INSERT DELAYED for which some error occurred (probably
duplicate key).

• Delayed_insert_threads

The number of INSERT DELAYED handler threads in use.

• Delayed_writes

The number of INSERT DELAYED rows written.

• Flush_commands

The number of times the server flushes tables, whether because a user executed a FLUSH TABLES
statement or due to internal server operation. It is also incremented by receipt of a COM_REFRESH
packet. This is in contrast to Com_flush, which indicates how many FLUSH statements have been
executed, whether FLUSH TABLES, FLUSH LOGS, and so forth.

• Handler_commit

The number of internal COMMIT statements.

• Handler_delete

The number of times that rows have been deleted from tables.

• Handler_prepare

A counter for the prepare phase of two-phase commit operations. Added in MySQL 5.0.3.

• Handler_read_first

The number of times the first entry in an index was read. If this value is high, it suggests that the server
is doing a lot of full index scans; for example, SELECT col1 FROM foo, assuming that col1 is
indexed.

• Handler_read_key

The number of requests to read a row based on a key. If this value is high, it is a good indication that
your tables are properly indexed for your queries.

• Handler_read_next

The number of requests to read the next row in key order. This value is incremented if you are querying
an index column with a range constraint or if you are doing an index scan.

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 577

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Handler_read_prev

The number of requests to read the previous row in key order. This read method is mainly used to
optimize ORDER BY ... DESC.

• Handler_read_rnd

The number of requests to read a row based on a fixed position. This value is high if you are doing a
lot of queries that require sorting of the result. You probably have a lot of queries that require MySQL to
scan entire tables or you have joins that do not use keys properly.

• Handler_read_rnd_next

The number of requests to read the next row in the data file. This value is high if you are doing a lot of
table scans. Generally this suggests that your tables are not properly indexed or that your queries are
not written to take advantage of the indexes you have.

• Handler_rollback

The number of requests for a storage engine to perform a rollback operation.

• Handler_savepoint

The number of requests for a storage engine to place a savepoint. Added in MySQL 5.0.3.

• Handler_savepoint_rollback

The number of requests for a storage engine to roll back to a savepoint. Added in MySQL 5.0.3.

• Handler_update

The number of requests to update a row in a table.

• Handler_write

The number of requests to insert a row in a table.

• Innodb_buffer_pool_pages_data

The number of pages containing data (dirty or clean). Added in MySQL 5.0.2.

• Innodb_buffer_pool_pages_dirty

The number of pages currently dirty. Added in MySQL 5.0.2.

• Innodb_buffer_pool_pages_flushed

The number of buffer pool page-flush requests. Added in MySQL 5.0.2.

• Innodb_buffer_pool_pages_free

The number of free pages. Added in MySQL 5.0.2.

• Innodb_buffer_pool_pages_latched

The number of latched pages in InnoDB buffer pool. These are pages currently being read or written
or that cannot be flushed or removed for some other reason. Added in MySQL 5.0.2. Calculation of
this variable is expensive, so as of MySQL 5.0.68, it is available only when the UNIV_DEBUG system is
defined at server build time.

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 578

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Innodb_buffer_pool_pages_misc

The number of pages that are busy because they have been allocated for administrative
overhead such as row locks or the adaptive hash index. This value can also be calculated
as Innodb_buffer_pool_pages_total − Innodb_buffer_pool_pages_free −
Innodb_buffer_pool_pages_data. Added in MySQL 5.0.2.

• Innodb_buffer_pool_pages_total

The total size of buffer pool, in pages. Added in MySQL 5.0.2.

• Innodb_buffer_pool_read_ahead_rnd

The number of “random” read-aheads initiated by InnoDB. This happens when a query scans a large
portion of a table but in random order. Added in MySQL 5.0.2.

• Innodb_buffer_pool_read_ahead_seq

The number of sequential read-aheads initiated by InnoDB. This happens when InnoDB does a
sequential full table scan. Added in MySQL 5.0.2.

• Innodb_buffer_pool_read_requests

The number of logical read requests. Added in MySQL 5.0.2.

• Innodb_buffer_pool_reads

The number of logical reads that InnoDB could not satisfy from the buffer pool, and had to read directly
from the disk.

• Innodb_buffer_pool_wait_free

Normally, writes to the InnoDB buffer pool happen in the background. However, if it is necessary to read
or create a page and no clean pages are available, it is also necessary to wait for pages to be flushed
first. This counter counts instances of these waits. If the buffer pool size has been set properly, this value
should be small. Added in MySQL 5.0.2.

• Innodb_buffer_pool_write_requests

The number writes done to the InnoDB buffer pool. Added in MySQL 5.0.2.

• Innodb_data_fsyncs

The number of fsync() operations so far. Added in MySQL 5.0.2.

• Innodb_data_pending_fsyncs

The current number of pending fsync() operations. Added in MySQL 5.0.2.

• Innodb_data_pending_reads

The current number of pending reads. Added in MySQL 5.0.2.

• Innodb_data_pending_writes

The current number of pending writes. Added in MySQL 5.0.2.

• Innodb_data_read

The amount of data read since the server was started. Added in MySQL 5.0.2.

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 579

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Innodb_data_reads

The total number of data reads. Added in MySQL 5.0.2.

• Innodb_data_writes

The total number of data writes. Added in MySQL 5.0.2.

• Innodb_data_written

The amount of data written so far, in bytes. Added in MySQL 5.0.2.

• Innodb_dblwr_pages_written

The number of pages that have been written for doublewrite operations. Added in MySQL 5.0.2. See
Section 14.2.11.1, “InnoDB Disk I/O”.

• Innodb_dblwr_writes

The number of doublewrite operations that have been performed. Added in MySQL 5.0.2. See
Section 14.2.11.1, “InnoDB Disk I/O”.

• Innodb_log_waits

The number of times that the log buffer was too small and a wait was required for it to be flushed before
continuing. Added in MySQL 5.0.2.

• Innodb_log_write_requests

The number of log write requests. Added in MySQL 5.0.2.

• Innodb_log_writes

The number of physical writes to the log file. Added in MySQL 5.0.2.

• Innodb_os_log_fsyncs

The number of fsync() writes done to the log file. Added in MySQL 5.0.2.

• Innodb_os_log_pending_fsyncs

The number of pending log file fsync() operations. Added in MySQL 5.0.2.

• Innodb_os_log_pending_writes

The number of pending log file writes. Added in MySQL 5.0.2.

• Innodb_os_log_written

The number of bytes written to the log file. Added in MySQL 5.0.2.

• Innodb_page_size

The compiled-in InnoDB page size (default 16KB). Many values are counted in pages; the page size
permits them to be easily converted to bytes. Added in MySQL 5.0.2.

• Innodb_pages_created

The number of pages created. Added in MySQL 5.0.2.

• Innodb_pages_read

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 580

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The number of pages read. Added in MySQL 5.0.2.

• Innodb_pages_written

The number of pages written. Added in MySQL 5.0.2.

• Innodb_row_lock_current_waits

The number of row locks currently being waited for. Added in MySQL 5.0.3.

• Innodb_row_lock_time

The total time spent in acquiring row locks, in milliseconds. Added in MySQL 5.0.3.

• Innodb_row_lock_time_avg

The average time to acquire a row lock, in milliseconds. Added in MySQL 5.0.3.

• Innodb_row_lock_time_max

The maximum time to acquire a row lock, in milliseconds. Added in MySQL 5.0.3.

• Innodb_row_lock_waits

The number of times a row lock had to be waited for. Added in MySQL 5.0.3.

• Innodb_rows_deleted

The number of rows deleted from InnoDB tables. Added in MySQL 5.0.2.

• Innodb_rows_inserted

The number of rows inserted into InnoDB tables. Added in MySQL 5.0.2.

• Innodb_rows_read

The number of rows read from InnoDB tables. Added in MySQL 5.0.2.

• Innodb_rows_updated

The number of rows updated in InnoDB tables. Added in MySQL 5.0.2.

• Key_blocks_not_flushed

The number of key blocks in the key cache that have changed but have not yet been flushed to disk.

• Key_blocks_unused

The number of unused blocks in the key cache. You can use this value to determine how much of
the key cache is in use; see the discussion of key_buffer_size in Section 5.1.4, “Server System
Variables”.

• Key_blocks_used

The number of used blocks in the key cache. This value is a high-water mark that indicates the
maximum number of blocks that have ever been in use at one time.

• Key_read_requests

The number of requests to read a key block from the cache.

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 581

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Key_reads

The number of physical reads of a key block from disk. If Key_reads is large, then your
key_buffer_size value is probably too small. The cache miss rate can be calculated as
Key_reads/Key_read_requests.

• Key_write_requests

The number of requests to write a key block to the cache.

• Key_writes

The number of physical writes of a key block to disk.

• Last_query_cost

The total cost of the last compiled query as computed by the query optimizer. This is useful for
comparing the cost of different query plans for the same query. The default value of 0 means that no
query has been compiled yet. This variable was added in MySQL 5.0.1, with a default value of -1. In
MySQL 5.0.7, the default was changed to 0; also in version 5.0.7, the scope of Last_query_cost was
changed to session rather than global.

The Last_query_cost value can be computed accurately only for simple “flat” queries, not complex
queries such as those with subqueries or UNION. For the latter, the value is set to 0.

Prior to MySQL 5.0.16, this variable was not updated for queries served from the query cache.

• Max_used_connections

The maximum number of connections that have been in use simultaneously since the server started.

• Not_flushed_delayed_rows

The number of rows waiting to be written in INSERT DELAYED queues.

• Open_files

The number of files that are open. This count includes regular files opened by the server. It does not
include other types of files such as sockets or pipes. Also, the count does not include files that storage
engines open using their own internal functions rather than asking the server level to do so.

• Open_streams

The number of streams that are open (used mainly for logging).

• Open_tables

The number of tables that are open.

• Opened_tables

The number of tables that have been opened. If Opened_tables is big, your table_cache value is
probably too small.

• Prepared_stmt_count

The current number of prepared statements. (The maximum number of statements is given by the
max_prepared_stmt_count system variable.) This variable was added in MySQL 5.0.32.

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 582

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Qcache_free_blocks

The number of free memory blocks in the query cache.

• Qcache_free_memory

The amount of free memory for the query cache.

• Qcache_hits

The number of query cache hits.

The discussion at the beginning of this section indicates how to relate this statement-counting status
variable to other such variables.

• Qcache_inserts

The number of queries added to the query cache.

• Qcache_lowmem_prunes

The number of queries that were deleted from the query cache because of low memory.

• Qcache_not_cached

The number of noncached queries (not cacheable, or not cached due to the query_cache_type
setting).

• Qcache_queries_in_cache

The number of queries registered in the query cache.

• Qcache_total_blocks

The total number of blocks in the query cache.

• Queries

The number of statements executed by the server. This variable includes statements executed within
stored programs, unlike the Questions variable. It does not count COM_PING or COM_STATISTICS
commands. This variable was added in MySQL 5.0.76.

The discussion at the beginning of this section indicates how to relate this statement-counting status
variable to other such variables.

• Questions

The number of statements executed by the server. As of MySQL 5.0.72, this includes only statements
sent to the server by clients and no longer includes statements executed within stored programs,
unlike the Queries variable. This variable does not count COM_PING, COM_STATISTICS,
COM_STMT_PREPARE, COM_STMT_CLOSE, or COM_STMT_RESET commands.

The discussion at the beginning of this section indicates how to relate this statement-counting status
variable to other such variables.

• Rpl_status

The status of fail-safe replication (not implemented). This variable is unused and is removed in MySQL
5.6.

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 583

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Select_full_join

The number of joins that perform table scans because they do not use indexes. If this value is not 0, you
should carefully check the indexes of your tables.

• Select_full_range_join

The number of joins that used a range search on a reference table.

• Select_range

The number of joins that used ranges on the first table. This is normally not a critical issue even if the
value is quite large.

• Select_range_check

The number of joins without keys that check for key usage after each row. If this is not 0, you should
carefully check the indexes of your tables.

• Select_scan

The number of joins that did a full scan of the first table.

• Slave_open_temp_tables

The number of temporary tables that the slave SQL thread currently has open. If the value is greater
than zero, it is not safe to shut down the slave; see Section 16.4.1.16, “Replication and Temporary
Tables”.

• Slave_retried_transactions

The total number of times since startup that the replication slave SQL thread has retried transactions.
This variable was added in version 5.0.4.

• Slave_running

This is ON if this server is a replication slave that is connected to a replication master, and both the I/O
and SQL threads are running; otherwise, it is OFF.

• Slow_launch_threads

The number of threads that have taken more than slow_launch_time seconds to create.

• Slow_queries

The number of queries that have taken more than long_query_time seconds. This counter
increments regardless of whether the slow query log is enabled. For information about that log, see
Section 5.4.4, “The Slow Query Log”.

• Sort_merge_passes

The number of merge passes that the sort algorithm has had to do. If this value is large, you should
consider increasing the value of the sort_buffer_size system variable.

• Sort_range

The number of sorts that were done using ranges.

• Sort_rows

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 584

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The number of sorted rows.

• Sort_scan

The number of sorts that were done by scanning the table.

• Ssl_accept_renegotiates

The number of negotiates needed to establish the connection.

• Ssl_accepts

The number of accepted SSL connections.

• Ssl_callback_cache_hits

The number of callback cache hits.

• Ssl_cipher

The current encryption cipher (empty for unencrypted connections).

• Ssl_cipher_list

The list of possible SSL ciphers (empty for non-SSL connections).

• Ssl_client_connects

The number of SSL connection attempts to an SSL-enabled master.

• Ssl_connect_renegotiates

The number of negotiates needed to establish the connection to an SSL-enabled master.

• Ssl_ctx_verify_depth

The SSL context verification depth (how many certificates in the chain are tested).

• Ssl_ctx_verify_mode

The SSL context verification mode.

• Ssl_default_timeout

The default SSL timeout.

• Ssl_finished_accepts

The number of successful SSL connections to the server.

• Ssl_finished_connects

The number of successful slave connections to an SSL-enabled master.

• Ssl_session_cache_hits

The number of SSL session cache hits.

• Ssl_session_cache_misses

Server Status Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 585

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The number of SSL session cache misses.

• Ssl_session_cache_mode

The SSL session cache mode.

• Ssl_session_cache_overflows

The number of SSL session cache overflows.

• Ssl_session_cache_size

The SSL session cache size.

• Ssl_session_cache_timeouts

The number of SSL session cache timeouts.

• Ssl_sessions_reused

How many SSL connections were reused from the cache.

• Ssl_used_session_cache_entries

How many SSL session cache entries were used.

• Ssl_verify_depth

The verification depth for replication SSL connections.

• Ssl_verify_mode

The verification mode for replication SSL connections.

• Ssl_version

The SSL protocol version of the connection; for example, TLSv1. If the connection is not encrypted, the
value is empty.

• Table_locks_immediate

The number of times that a request for a table lock could be granted immediately.

• Table_locks_waited

The number of times that a request for a table lock could not be granted immediately and a wait was
needed. If this is high and you have performance problems, you should first optimize your queries, and
then either split your table or tables or use replication.

• Tc_log_max_pages_used

For the memory-mapped implementation of the log that is used by mysqld when it acts as the
transaction coordinator for recovery of internal XA transactions, this variable indicates the largest
number of pages used for the log since the server started. If the product of Tc_log_max_pages_used
and Tc_log_page_size is always significantly less than the log size, the size is larger than necessary
and can be reduced. (The size is set by the --log-tc-size option. This variable is unused: It is
unneeded for binary log-based recovery, and the memory-mapped recovery log method is not used
unless the number of storage engines that are capable of two-phase commit and that support XA
transactions is greater than one. (InnoDB is the only applicable engine.) Added in MySQL 5.0.3.

Server SQL Modes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 586

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Tc_log_page_size

The page size used for the memory-mapped implementation of the XA recovery log. The default value
is determined using getpagesize(). This variable is unused for the same reasons as described for
Tc_log_max_pages_used. Added in MySQL 5.0.3.

• Tc_log_page_waits

For the memory-mapped implementation of the recovery log, this variable increments each time the
server was not able to commit a transaction and had to wait for a free page in the log. If this value is
large, you might want to increase the log size (with the --log-tc-size option). For binary log-based
recovery, this variable increments each time the binary log cannot be closed because there are two-
phase commits in progress. (The close operation waits until all such transactions are finished.) Added in
MySQL 5.0.3.

• Threads_cached

The number of threads in the thread cache.

• Threads_connected

The number of currently open connections.

• Threads_created

The number of threads created to handle connections. If Threads_created is big, you may
want to increase the thread_cache_size value. The cache miss rate can be calculated as
Threads_created/Connections.

• Threads_running

The number of threads that are not sleeping.

• Uptime

The number of seconds that the server has been up.

• Uptime_since_flush_status

The number of seconds since the most recent FLUSH STATUS statement. This variable was added in
5.0.35. (MySQL Community only)

5.1.7 Server SQL Modes

The MySQL server can operate in different SQL modes, and can apply these modes differently for different
clients, depending on the value of the sql_mode system variable. DBAs can set the global SQL mode to
match site server operating requirements, and each application can set its session SQL mode to its own
requirements.

Modes affect the SQL syntax MySQL supports and the data validation checks it performs. This makes it
easier to use MySQL in different environments and to use MySQL together with other database servers.

• Setting the SQL Mode

• The Most Important SQL Modes

• Full List of SQL Modes

• Strict SQL Mode

Server SQL Modes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 587

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Combination SQL Modes

Setting the SQL Mode

The default SQL mode is empty (no modes set).

To set the SQL mode at server startup, use the --sql-mode="modes" option on the command line, or
sql-mode="modes" in an option file such as my.cnf (Unix operating systems) or my.ini (Windows).
modes is a list of different modes separated by commas. To clear the SQL mode explicitly, set it to an
empty string using --sql-mode="" on the command line, or sql-mode="" in an option file.

Note

MySQL installation programs may configure the SQL mode during the installation
process. If the SQL mode differs from the default or from what you expect, check for
a setting in an option file that the server reads at startup.

To change the SQL mode at runtime, set the global or session sql_mode system variable using a SET
statement:

SET GLOBAL sql_mode = 'modes';
SET SESSION sql_mode = 'modes';

Setting the GLOBAL variable requires the SUPER privilege and affects the operation of all clients that
connect from that time on. Setting the SESSION variable affects only the current client. Each client can
change its session sql_mode value at any time.

To determine the current global or session sql_mode value, use the following statements:

SELECT @@GLOBAL.sql_mode;
SELECT @@SESSION.sql_mode;

The Most Important SQL Modes

The most important sql_mode values are probably these:

• ANSI

This mode changes syntax and behavior to conform more closely to standard SQL.

• STRICT_TRANS_TABLES

If a value could not be inserted as given into a transactional table, abort the statement. For a
nontransactional table, abort the statement if the value occurs in a single-row statement or the first row
of a multiple-row statement. More details are given later in this section. (Implemented in MySQL 5.0.2)

• TRADITIONAL

Make MySQL behave like a “traditional” SQL database system. A simple description of this mode is “give
an error instead of a warning” when inserting an incorrect value into a column.

Note

The INSERT or UPDATE aborts as soon as the error is noticed. This may not be
what you want if you are using a nontransactional storage engine, because data
changes made prior to the error may not be rolled back, resulting in a “partially
done” update. (Added in MySQL 5.0.2)

Server SQL Modes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 588

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When this manual refers to “strict mode,” it means a mode with either or both STRICT_TRANS_TABLES or
STRICT_ALL_TABLES enabled.

Full List of SQL Modes

The following list describes all supported SQL modes:

• ALLOW_INVALID_DATES

Do not perform full checking of dates. Check only that the month is in the range from 1 to 12 and the
day is in the range from 1 to 31. This is very convenient for Web applications where you obtain year,
month, and day in three different fields and you want to store exactly what the user inserted (without date
validation). This mode applies to DATE and DATETIME columns. It does not apply TIMESTAMP columns,
which always require a valid date.

This mode is implemented in MySQL 5.0.2. Before 5.0.2, this was the default MySQL date-handling
mode. As of 5.0.2, the server requires that month and day values be legal, and not merely in the range
1 to 12 and 1 to 31, respectively. With strict mode disabled, invalid dates such as '2004-04-31'
are converted to '0000-00-00' and a warning is generated. With strict mode enabled, invalid dates
generate an error. To permit such dates, enable ALLOW_INVALID_DATES.

• ANSI_QUOTES

Treat “"” as an identifier quote character (like the “`” quote character) and not as a string quote
character. You can still use “`” to quote identifiers with this mode enabled. With ANSI_QUOTES enabled,
you cannot use double quotation marks to quote literal strings, because it is interpreted as an identifier.

• ERROR_FOR_DIVISION_BY_ZERO

The ERROR_FOR_DIVISION_BY_ZERO mode affects handling of division by zero, which includes
MOD(N,0). For data-change operations (INSERT, UPDATE), its effect also depends on whether strict
SQL mode is enabled.

• If this mode is not enabled, division by zero inserts NULL and produces no warning.

• If this mode is enabled, division by zero inserts NULL and produces a warning.

• If this mode and strict mode are enabled, division by zero produces an error, unless IGNORE is given
as well. For INSERT IGNORE and UPDATE IGNORE, division by zero inserts NULL and produces a
warning.

For SELECT, division by zero returns NULL. Enabling ERROR_FOR_DIVISION_BY_ZERO causes a
warning to be produced as well, regardless of whether strict mode is enabled.

This mode was implemented in MySQL 5.0.2.

• HIGH_NOT_PRECEDENCE

From MySQL 5.0.2 on, the precedence of the NOT operator is such that expressions such as NOT a
BETWEEN b AND c are parsed as NOT (a BETWEEN b AND c). Before MySQL 5.0.2, the expression
is parsed as (NOT a) BETWEEN b AND c. The old higher-precedence behavior can be obtained by
enabling the HIGH_NOT_PRECEDENCE SQL mode. (Added in MySQL 5.0.2)

mysql> SET sql_mode = '';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;
 -> 0
mysql> SET sql_mode = 'HIGH_NOT_PRECEDENCE';

Server SQL Modes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 589

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT NOT 1 BETWEEN -5 AND 5;
 -> 1

• IGNORE_SPACE

Permit spaces between a function name and the “(” character. This causes built-in function names
to be treated as reserved words. As a result, identifiers that are the same as function names must be
quoted as described in Section 9.2, “Schema Object Names”. For example, because there is a COUNT()
function, the use of count as a table name in the following statement causes an error:

mysql> CREATE TABLE count (i INT);
ERROR 1064 (42000): You have an error in your SQL syntax

The table name should be quoted:

mysql> CREATE TABLE `count` (i INT);
Query OK, 0 rows affected (0.00 sec)

The IGNORE_SPACE SQL mode applies to built-in functions, not to user-defined functions or stored
functions. It is always permissible to have spaces after a UDF or stored function name, regardless of
whether IGNORE_SPACE is enabled.

For further discussion of IGNORE_SPACE, see Section 9.2.3, “Function Name Parsing and Resolution”.

• NO_AUTO_CREATE_USER

Prevent the GRANT statement from automatically creating new users if it would otherwise do so, unless a
nonempty password also is specified. (Added in MySQL 5.0.2)

• NO_AUTO_VALUE_ON_ZERO

NO_AUTO_VALUE_ON_ZERO affects handling of AUTO_INCREMENT columns. Normally, you generate the
next sequence number for the column by inserting either NULL or 0 into it. NO_AUTO_VALUE_ON_ZERO
suppresses this behavior for 0 so that only NULL generates the next sequence number.

This mode can be useful if 0 has been stored in a table's AUTO_INCREMENT column. (Storing 0 is not
a recommended practice, by the way.) For example, if you dump the table with mysqldump and then
reload it, MySQL normally generates new sequence numbers when it encounters the 0 values, resulting
in a table with contents different from the one that was dumped. Enabling NO_AUTO_VALUE_ON_ZERO
before reloading the dump file solves this problem. mysqldump now automatically includes in its output
a statement that enables NO_AUTO_VALUE_ON_ZERO, to avoid this problem.

• NO_BACKSLASH_ESCAPES

Disable the use of the backslash character (“\”) as an escape character within strings. With this mode
enabled, backslash becomes an ordinary character like any other. (Implemented in MySQL 5.0.1)

• NO_DIR_IN_CREATE

When creating a table, ignore all INDEX DIRECTORY and DATA DIRECTORY directives. This option is
useful on slave replication servers.

• NO_ENGINE_SUBSTITUTION

Control automatic substitution of the default storage engine when a statement such as CREATE TABLE
or ALTER TABLE specifies a storage engine that is disabled or not compiled in. (Implemented in MySQL
5.0.8)

Server SQL Modes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 590

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

With NO_ENGINE_SUBSTITUTION disabled, the default engine is used and a warning occurs if the
desired engine is known but disabled or not compiled in. If the desired engine is invalid (not a known
engine name), an error occurs and the table is not created or altered.

With NO_ENGINE_SUBSTITUTION enabled, an error occurs and the table is not created or altered if the
desired engine is unavailable for any reason (whether disabled or invalid).

• NO_FIELD_OPTIONS

Do not print MySQL-specific column options in the output of SHOW CREATE TABLE. This mode is used
by mysqldump in portability mode.

• NO_KEY_OPTIONS

Do not print MySQL-specific index options in the output of SHOW CREATE TABLE. This mode is used by
mysqldump in portability mode.

• NO_TABLE_OPTIONS

Do not print MySQL-specific table options (such as ENGINE) in the output of SHOW CREATE TABLE.
This mode is used by mysqldump in portability mode.

• NO_UNSIGNED_SUBTRACTION

By default, subtraction between integer operands produces an UNSIGNED result if any operand is
UNSIGNED. When NO_UNSIGNED_SUBTRACTION is enabled, the subtraction result is signed, even if any
operand is unsigned. For example, compare the type of column c2 in table t1 with that of column c2 in
table t2:

mysql> SET sql_mode='';
mysql> CREATE TABLE test (c1 BIGINT UNSIGNED NOT NULL);
mysql> CREATE TABLE t1 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t1;
+-------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------------+------+-----+---------+-------+
| c2 | bigint(21) unsigned | NO | | 0 | |
+-------+---------------------+------+-----+---------+-------+

mysql> SET sql_mode='NO_UNSIGNED_SUBTRACTION';
mysql> CREATE TABLE t2 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t2;
+-------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+------------+------+-----+---------+-------+
| c2 | bigint(21) | NO | | 0 | |
+-------+------------+------+-----+---------+-------+

This means that BIGINT UNSIGNED is not 100% usable in all contexts. See Section 12.10, “Cast
Functions and Operators”.

mysql> SET sql_mode = '';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| 18446744073709551615 |
+-------------------------+

Server SQL Modes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 591

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| -1 |
+-------------------------+

• NO_ZERO_DATE

The NO_ZERO_DATE mode affects whether the server permits '0000-00-00' as a valid date. Its effect
also depends on whether strict SQL mode is enabled. This mode was added in MySQL 5.0.2.

• If this mode is not enabled, '0000-00-00' is permitted and inserts produce no warning.

• If this mode is enabled, '0000-00-00' is permitted and inserts produce a warning.

• If this mode and strict mode are enabled, '0000-00-00' is not permitted and inserts produce an
error, unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE, '0000-00-00' is
permitted and inserts produce a warning.

• NO_ZERO_IN_DATE

The NO_ZERO_IN_DATE mode affects whether the server permits dates in which the year part
is nonzero but the month or day part is 0. (This mode affects dates such as '2010-00-01' or
'2010-01-00', but not '0000-00-00'. To control whether the server permits '0000-00-00', use
the NO_ZERO_DATE mode.) The effect of NO_ZERO_IN_DATE also depends on whether strict SQL mode
is enabled. This mode was added in MySQL 5.0.2.

• If this mode is not enabled, dates with zero parts are permitted and inserts produce no warning.

• If this mode is enabled, dates with zero parts are inserted as '0000-00-00' and produce a warning.

• If this mode and strict mode are enabled, dates with zero parts are not permitted and inserts produce
an error, unless IGNORE is given as well. For INSERT IGNORE and UPDATE IGNORE, dates with zero
parts are inserted as '0000-00-00' and produce a warning.

• ONLY_FULL_GROUP_BY

Reject queries for which the select list or (as of MySQL 5.0.23) HAVING list refer to nonaggregated
columns that are not named in the GROUP BY clause.

A MySQL extension to standard SQL permits references in the HAVING clause to aliased expressions
in the select list. Enabling ONLY_FULL_GROUP_BY disables this extension, thus requiring the HAVING
clause to be written using unaliased expressions.

For additional discussion and examples, see Section 12.16.3, “MySQL Handling of GROUP BY”.

• PIPES_AS_CONCAT

Treat || as a string concatenation operator (same as CONCAT()) rather than as a synonym for OR.

• REAL_AS_FLOAT

Treat REAL as a synonym for FLOAT. By default, MySQL treats REAL as a synonym for DOUBLE.

• STRICT_ALL_TABLES

Server SQL Modes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 592

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Enable strict mode for all storage engines. Invalid data values are rejected. For details, see Strict SQL
Mode. (Added in MySQL 5.0.2)

• STRICT_TRANS_TABLES

Enable strict mode for transactional storage engines, and when possible for nontransactional storage
engines. For details, see Strict SQL Mode. (Implemented in MySQL 5.0.2)

Combination SQL Modes

The following special modes are provided as shorthand for combinations of mode values from the
preceding list. All are available beginning with version MySQL 5.0.0, except for TRADITIONAL, which was
implemented in MySQL 5.0.2.

• ANSI

Equivalent to REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE. Before MySQL
5.0.3, ANSI also includes ONLY_FULL_GROUP_BY.

As of MySQL 5.0.40, ANSI mode also causes the server to return an error for queries where a set
function S with an outer reference S(outer_ref) cannot be aggregated in the outer query against
which the outer reference has been resolved. This is such a query:

SELECT * FROM t1 WHERE t1.a IN (SELECT MAX(t1.b) FROM t2 WHERE ...);

Here, MAX(t1.b) cannot aggregated in the outer query because it appears in the WHERE clause of that
query. Standard SQL requires an error in this situation. If ANSI mode is not enabled, the server treats
S(outer_ref) in such queries the same way that it would interpret S(const), as was always done
prior to 5.0.40.

See Section 1.8, “MySQL Standards Compliance”.

• DB2

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• MAXDB

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

• MSSQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• MYSQL323

Equivalent to MYSQL323, HIGH_NOT_PRECEDENCE. This means HIGH_NOT_PRECEDENCE plus some
SHOW CREATE TABLE behaviors specific to MYSQL323:

• TIMESTAMP column display does not include DEFAULT or ON UPDATE attributes that were introduced
in MySQL 4.1.

Server SQL Modes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 593

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• String column display does not include character set and collation attributes that were introduced in
MySQL 4.1. For CHAR and VARCHAR columns, if the collation is binary, BINARY is appended to the
column type.

• The ENGINE=engine_name table option displays as TYPE=engine+name.

• For MEMORY tables, the storage engine is displayed as HEAP.

• MYSQL40

Equivalent to MYSQL40, HIGH_NOT_PRECEDENCE. This means HIGH_NOT_PRECEDENCE plus some
behaviors specific to MYSQL40. These are the same as for MYSQL323, except that SHOW CREATE
TABLE does not display HEAP as the storage engine for MEMORY tables.

• ORACLE

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

• POSTGRESQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• TRADITIONAL

Equivalent to STRICT_TRANS_TABLES, STRICT_ALL_TABLES, NO_ZERO_IN_DATE, NO_ZERO_DATE,
ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER.

Strict SQL Mode

Strict mode controls how MySQL handles invalid or missing values in data-change statements such as
INSERT or UPDATE. A value can be invalid for several reasons. For example, it might have the wrong data
type for the column, or it might be out of range. A value is missing when a new row to be inserted does not
contain a value for a non-NULL column that has no explicit DEFAULT clause in its definition. (For a NULL
column, NULL is inserted if the value is missing.)

If strict mode is not in effect, MySQL inserts adjusted values for invalid or missing values and produces
warnings (see Section 13.7.5.37, “SHOW WARNINGS Syntax”). In strict mode, you can produce this
behavior by using INSERT IGNORE or UPDATE IGNORE.

For statements such as SELECT that do not change data, invalid values generate a warning in strict mode,
not an error.

Strict mode does not affect whether foreign key constraints are checked. foreign_key_checks can be
used for that. (See Section 5.1.4, “Server System Variables”.)

Strict SQL mode is in effect if either STRICT_ALL_TABLES or STRICT_TRANS_TABLES is enabled,
although the effects of these modes differ somewhat:

• For transactional tables, an error occurs for invalid or missing values in a data-change statement when
either STRICT_ALL_TABLES or STRICT_TRANS_TABLES is enabled. The statement is aborted and
rolled back.

• For nontransactional tables, the behavior is the same for either mode if the bad value occurs in the
first row to be inserted or updated: The statement is aborted and the table remains unchanged. If the

Server-Side Help

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 594

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

statement inserts or modifies multiple rows and the bad value occurs in the second or later row, the
result depends on which strict mode is enabled:

• For STRICT_ALL_TABLES, MySQL returns an error and ignores the rest of the rows. However,
because the earlier rows have been inserted or updated, the result is a partial update. To avoid this,
use single-row statements, which can be aborted without changing the table.

• For STRICT_TRANS_TABLES, MySQL converts an invalid value to the closest valid value for the
column and inserts the adjusted value. If a value is missing, MySQL inserts the implicit default
value for the column data type. In either case, MySQL generates a warning rather than an error and
continues processing the statement. Implicit defaults are described in Section 11.6, “Data Type Default
Values”.

Strict mode also affects handling of division by zero, zero dates, and zeros in dates, in conjunction with the
ERROR_FOR_DIVISION_BY_ZERO, NO_ZERO_DATE, and NO_ZERO_IN_DATE modes. For details, see the
descriptions of those modes.

5.1.8 Server-Side Help

MySQL Server supports a HELP statement that returns information from the MySQL Reference manual
(see Section 13.8.3, “HELP Syntax”). Several tables in the mysql system database contain the information
needed to support this statement (see Section 5.3, “The mysql System Database”). The proper operation
of this statement requires that these help tables be initialized, which is done by processing the contents of
the fill_help_tables.sql script.

If you install MySQL using a binary or source distribution on Unix, help table content initialization occurs
when you initialize the data directory (see Section 2.18.1, “Initializing the Data Directory”). For an RPM
distribution on Linux or binary distribution on Windows, content initialization occurs as part of the MySQL
installation process.

If you upgrade MySQL using a binary distribution, help table content is not upgraded automatically, but
you can upgrade it manually. Locate the fill_help_tables.sql file in the share or share/mysql
directory. Change location into that directory and process the file with the mysql client as follows:

shell> mysql -u root mysql < fill_help_tables.sql

You can also obtain the latest fill_help_tables.sql at any time to upgrade your help tables.
Download the proper file for your version of MySQL from http://dev.mysql.com/doc/index-other.html. After
downloading and uncompressing the file, process it with mysql as described previously.

If you are working with Bazaar and a MySQL development source tree, you must use a downloaded copy
of the fill_help_tables.sql file because the source tree contains only a “stub” version.

5.1.9 Server Response to Signals

On Unix, signals can be sent to processes. mysqld responds to signals sent to it as follows:

• SIGTERM causes the server to shut down.

• SIGHUP causes the server to reload the grant tables and to flush tables, logs, the thread cache, and the
host cache. These actions are like various forms of the FLUSH statement. The server also writes a status
report to the error log that has this format:

Status information:

Current dir: /var/mysql/data/

http://dev.mysql.com/doc/index-other.html

The Server Shutdown Process

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 595

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Running threads: 0 Stack size: 196608
Current locks:

Key caches:
default
Buffer_size: 8388600
Block_size: 1024
Division_limit: 100
Age_limit: 300
blocks used: 0
not flushed: 0
w_requests: 0
writes: 0
r_requests: 0
reads: 0

handler status:
read_key: 0
read_next: 0
read_rnd 0
read_first: 1
write: 0
delete 0
update: 0

Table status:
Opened tables: 5
Open tables: 0
Open files: 7
Open streams: 0

Alarm status:
Active alarms: 1
Max used alarms: 2
Next alarm time: 67

5.1.10 The Server Shutdown Process

The server shutdown process takes place as follows:

1. The shutdown process is initiated.

This can occur initiated several ways. For example, a user with the SHUTDOWN privilege can execute a
mysqladmin shutdown command. mysqladmin can be used on any platform supported by MySQL.
Other operating system-specific shutdown initiation methods are possible as well: The server shuts
down on Unix when it receives a SIGTERM signal. A server running as a service on Windows shuts
down when the services manager tells it to.

2. The server creates a shutdown thread if necessary.

Depending on how shutdown was initiated, the server might create a thread to handle the shutdown
process. If shutdown was requested by a client, a shutdown thread is created. If shutdown is the result
of receiving a SIGTERM signal, the signal thread might handle shutdown itself, or it might create a
separate thread to do so. If the server tries to create a shutdown thread and cannot (for example, if
memory is exhausted), it issues a diagnostic message that appears in the error log:

Error: Can't create thread to kill server

3. The server stops accepting new connections.

To prevent new activity from being initiated during shutdown, the server stops accepting new
client connections by closing the handlers for the network interfaces to which it normally listens for

The MySQL Data Directory

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 596

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

connections: the TCP/IP port, the Unix socket file, the Windows named pipe, and shared memory on
Windows.

4. The server terminates current activity.

For each thread associated with a client connection, the server breaks the connection to the client and
marks the thread as killed. Threads die when they notice that they are so marked. Threads for idle
connections die quickly. Threads that currently are processing statements check their state periodically
and take longer to die. For additional information about thread termination, see Section 13.7.6.3, “KILL
Syntax”, in particular for the instructions about killed REPAIR TABLE or OPTIMIZE TABLE operations
on MyISAM tables.

For threads that have an open transaction, the transaction is rolled back. If a thread is updating a
nontransactional table, an operation such as a multiple-row UPDATE or INSERT may leave the table
partially updated because the operation can terminate before completion.

If the server is a master replication server, it treats threads associated with currently connected slaves
like other client threads. That is, each one is marked as killed and exits when it next checks its state.

If the server is a slave replication server, it stops the I/O and SQL threads, if they are active, before
marking client threads as killed. The SQL thread is permitted to finish its current statement (to avoid
causing replication problems), and then stops. In MySQL 5.0.80 and earlier, if the SQL thread was in
the middle of a transaction at this point, the transaction was rolled back; in MySQL 5.0.81 and later,
the server waits until the current replication event group (if any) has finished executing, or until the user
issues a KILL QUERY or KILL CONNECTION statement. See also Section 13.4.2.8, “STOP SLAVE
Syntax”.

If the slave is updating a nontransactional table when it is forcibly killed, the slave's data may become
inconsistent with the master.

5. The server shuts down or closes storage engines.

At this stage, the server flushes the table cache and closes all open tables.

Each storage engine performs any actions necessary for tables that it manages. For example, MyISAM
flushes any pending index writes for a table. InnoDB flushes its buffer pool to disk (starting from 5.0.5:
unless innodb_fast_shutdown is 2), writes the current LSN to the tablespace, and terminates its
own internal threads.

6. The server exits.

5.2 The MySQL Data Directory
Information managed by the MySQL server is stored under a directory known as the data directory. The
following list briefly describes the items typically found in the data directory, with cross references for
additional information:

• Each data directory subdirectory corresponds to a database managed by the server:

• The mysql directory corresponds to the mysql system database, which contains information required
by the MySQL server as it runs. See Section 5.3, “The mysql System Database”.

• Other subdirectories correspond to databases created by users or applications.

• Log files written by the server. See Section 5.4, “MySQL Server Logs”.

• InnoDB tablespace and log files. See Section 14.2, “The InnoDB Storage Engine”.

The mysql System Database

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 597

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The server process ID file (while the server is running).

Some items in the preceding list can be relocated elsewhere; for any given MySQL installation, check the
server configuration to determine whether items have been moved. In addition, the location of the data
directory itself can be discovered or configured using the datadir system variable.

5.3 The mysql System Database
The mysql database is the system database. It contains tables that store information required by the
MySQL server as it runs.

Tables in the mysql database fall into these categories:

• Grant tables

• Object information tables

• Server-side help tables

• Time zone tables

Grant System Tables

These system tables contain grant information about user accounts and the privileges held by them:

• user: User accounts, global privileges, and other non-privilege columns.

• db: Database-level privileges.

• host: Obsolete.

• tables_priv: Table-level privileges.

• columns_priv: Column-level privileges.

• procs_priv: Stored procedure and function privileges.

For more information about the structure, contents, and purpose of the grant tables, see Section 6.2.2,
“Grant Tables”.

Object Information System Tables

The func system table contains information about user-defined functions. See Section 21.2, “Adding New
Functions to MySQL”.

Server-Side Help System Tables

These system tables contain server-side help information:

• help_category: Information about help categories.

• help_keyword: Keywords associated with help topics.

• help_relation: Mappings between help keywords and topics.

• help_topic: Help topic contents.

For more information, see Section 5.1.8, “Server-Side Help”.

Time Zone System Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 598

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Time Zone System Tables

These system tables contain time zone information:

• time_zone: List of time zone IDs and whether they use leap seconds.

• time_zone_leap_second: When leap seconds occur.

• time_zone_name: Mappings between time zone IDs and names.

• time_zone_transition, time_zone_transition_type: Time zone descriptions.

For more information, see Section 10.6, “MySQL Server Time Zone Support”.

5.4 MySQL Server Logs

MySQL Server has several logs that can help you find out what activity is taking place.

Log Type Information Written to Log

Error log Problems encountered starting, running, or stopping mysqld

General query log Established client connections and statements received from clients

Binary log Statements that change data (also used for replication)

Relay log Data changes received from a replication master server

Slow query log Queries that took more than long_query_time seconds to execute

By default, no logs are enabled (except the error log on Windows). The following log-specific sections
provide information about the server options that enable logging.

By default, the server writes files for all enabled logs in the data directory. You can force the server
to close and reopen the log files (or in some cases switch to a new log file) by flushing the logs. Log
flushing occurs when you issue a FLUSH LOGS statement; execute mysqladmin with a flush-logs
or refresh argument; or execute mysqldump with a --flush-logs or --master-data option. See
Section 13.7.6.2, “FLUSH Syntax”, Section 4.5.2, “mysqladmin — Client for Administering a MySQL
Server”, and Section 4.5.4, “mysqldump — A Database Backup Program”. In addition, the binary log is
flushed when its size reaches the value of the max_binlog_size system variable.

The relay log is used only on slave replication servers, to hold data changes from the master server
that must also be made on the slave. For discussion of relay log contents and configuration, see
Section 16.2.2.1, “The Slave Relay Log”.

For information about log maintenance operations such as expiration of old log files, see Section 5.4.5,
“Server Log Maintenance”.

For information about keeping logs secure, see Section 6.1.2.3, “Passwords and Logging”.

5.4.1 The Error Log

The error log contains information indicating when mysqld was started and stopped and also any critical
errors that occur while the server is running. If mysqld notices a table that needs to be automatically
checked or repaired, it writes a message to the error log.

On some operating systems, the error log contains a stack trace if mysqld exits abnormally. The trace can
be used to determine where mysqld exited. See Section 21.3, “Debugging and Porting MySQL”.

The Error Log

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 599

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If mysqld_safe is used to start mysqld and mysqld exits abnormally, mysqld_safe notices this,
restarts mysqld, and writes a mysqld restarted message to the error log.

In the following discussion, “console” means stderr, the standard error output; this is your terminal or
console window unless the standard error output has been redirected.

On Windows, the --log-error, --pid-file, and --console options affect error logging:

• If no log file name is specified, the default log file is host_name.err in the data directory, unless the --
pid-file option is specified. In that case, the default name is the PID file base name with a suffix of
.err in the data directory.

• Without --log-error, mysqld writes error messages to the default log file.

• With --log-error[=file_name], mysqld writes error messages to an error log file. mysqld writes
to the named file if present, creating it in the data directory unless an absolute path name is given to
specify a different directory. If no file is named, mysqld writes to the default log file.

• With --console, mysqld writes error messages to the console, unless --log-error is also given. If
both options are present, the last one takes precedence.

In addition, on Windows, the server writes events and error messages to the Windows Event Log within the
Application log. Entries marked as Warning and Note are written to the Event Log, but not informational
messages such as information statements from individual storage engines. These log entries have a
source of MySQL. You cannot disable writing information to the Windows Event Log.

On Unix and Unix-like systems, mysqld writes error log messages as follows:

• Without --log-error, mysqld writes error messages to the console.

• With --log-error[=file_name], mysqld writes error messages to an error log file. The server
uses the named file if present, creating it in the data directory unless an absolute path name is given
to specify a different directory. If no file is named, the default name is host_name.err in the data
directory.

At runtime, log_error system variable indicates the error log file name if error output is written to a file.

If you flush the logs using FLUSH LOGS or mysqladmin flush-logs and mysqld is writing the error log
to a file (for example, if it was started with the --log-error option), it renames the current log file with the
suffix -old, then creates a new empty log file. Be aware that a second log-flushing operation thus causes
the original error log file to be lost unless you save it under a different name. For example, you can use the
following commands to save the file:

shell> mysqladmin flush-logs
shell> mv host_name.err-old backup-directory

If the server is not writing to a named file, no error log renaming occurs when the logs are flushed.

If you use mysqld_safe to start mysqld, mysqld_safe arranges for mysqld to write error messages
to a log file. If you specify a file name using --log-error to mysqld_safe or mysqld, that file name is
used. Otherwise, mysqld_safe uses the default error log file.

The --log-warnings option or log_warnings system variable can be used to control warning logging
to the error log. The default value is enabled (1). Warning logging can be disabled using a value of 0.
If the value is greater than 1, aborted connections are written to the error log. See Section B.5.2.11,
“Communication Errors and Aborted Connections”.

The General Query Log

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 600

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

5.4.2 The General Query Log

The general query log is a general record of what mysqld is doing. The server writes information to this
log when clients connect or disconnect, and it logs each SQL statement received from clients. The general
query log can be very useful when you suspect an error in a client and want to know exactly what the client
sent to mysqld.

mysqld writes statements to the query log in the order that it receives them, which might differ from the
order in which they are executed. This logging order is in contrast with that of the binary log, for which
statements are written after they are executed but before any locks are released. (Also, the query log
contains all statements, whereas the binary log does not contain statements that only select data.)

To enable the general query log, start mysqld with the --log[=file_name] or -l [file_name]
option.

If the general query log file is enabled but no name is specified, the default name is host_name.log and
the server creates the file in the same directory where it creates the PID file. If a name is given, the server
creates the file in the data directory unless an absolute path name is given to specify a different directory.

Server restarts and log flushing do not cause a new general query log file to be generated (although
flushing closes and reopens it). On Unix, to rename the file and create a new one, use the following
commands:

shell> mv host_name.log host_name-old.log
shell> mysqladmin flush-logs
shell> mv host_name-old.log backup-directory

On Windows, you cannot rename a log file while the server has it open before MySQL 5.0.17. You must
stop the server, rename the file, and then restart the server to create a new log file. As of 5.0.17, this
applies only to the error log. However, a stop and restart can be avoided by using FLUSH LOGS, which
causes the server to rename the error log with an -old suffix and open a new error log.

The general query log should be protected because logged statements might contain passwords. See
Section 6.1.2.3, “Passwords and Logging”.

5.4.3 The Binary Log

The binary log contains “events” that describe database changes such as table creation operations or
changes to table data. It also contains events for statements that potentially could have made changes
(for example, a DELETE which matched no rows). The binary log also contains information about how long
each statement took that updated data. The binary log has two important purposes:

• For replication, the binary log on a master replication server provides a record of the data changes to be
sent to slave servers. The master server sends the events contained in its binary log to its slaves, which
execute those events to make the same data changes that were made on the master. See Section 16.2,
“Replication Implementation”.

• Certain data recovery operations require use of the binary log. After a backup has been restored, the
events in the binary log that were recorded after the backup was made are re-executed. These events
bring databases up to date from the point of the backup. See Section 7.5, “Point-in-Time (Incremental)
Recovery Using the Binary Log”.

Note

The binary log has replaced the old update log, which is no longer available as of
MySQL 5.0. The binary log contains all information that is available in the update

The Binary Log

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 601

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

log in a more efficient format and in a manner that is transaction-safe. If you are
using transactions, you must use the MySQL binary log for backups instead of the
old update log.

The binary log is not used for statements such as SELECT or SHOW that do not modify data. To log all
statements (for example, to identify a problem query), use the general query log. See Section 5.4.2, “The
General Query Log”.

Running a server with binary logging enabled makes performance slightly slower. However, the benefits of
the binary log in enabling you to set up replication and for restore operations generally outweigh this minor
performance decrement.

The binary log should be protected because logged statements might contain passwords. See
Section 6.1.2.3, “Passwords and Logging”.

The following discussion describes some of the server options and variables that affect the operation of
binary logging. For a complete list, see Section 16.1.2.4, “Binary Log Options and Variables”.

For detailed information about the format of the binary log, see MySQL Internals: The Binary Log.

To enable the binary log, start the server with the --log-bin[=base_name] option. If no base_name
value is given, the default name is the value of the pid-file option (which by default is the name of
host machine) followed by -bin. If the base name is given, the server writes the file in the data directory
unless the base name is given with a leading absolute path name to specify a different directory. It is
recommended that you specify a base name explicitly rather than using the default of the host name; see
Section B.5.7, “Known Issues in MySQL”, for the reason.

Note

From MySQL 5.0.41 through 5.0.52, “mysql” was used when no base_name was
specified. Also in these versions, a path given as part of the --log-bin options
was treated as absolute rather than relative. The previous behaviors were restored
in MySQL 5.0.54. (See Bug #28603 and Bug #28597.)

If you supply an extension in the log name (for example, --log-bin=base_name.extension), the
extension is silently removed and ignored.

mysqld appends a numeric extension to the binary log base name to generate binary log file names. The
number increases each time the server creates a new log file, thus creating an ordered series of files. The
server creates a new file in the series each time it starts or flushes the logs. The server also creates a
new binary log file automatically after the current log's size reaches max_binlog_size. A binary log file
may become larger than max_binlog_size if you are using large transactions because a transaction is
written to the file in one piece, never split between files.

To keep track of which binary log files have been used, mysqld also creates a binary log index file that
contains the names of all used binary log files. By default, this has the same base name as the binary log
file, with the extension '.index'. You can change the name of the binary log index file with the --log-
bin-index[=file_name] option. You should not manually edit this file while mysqld is running; doing
so would confuse mysqld.

The term “binary log file” generally denotes an individual numbered file containing database events. The
term “binary log” collectively denotes the set of numbered binary log files plus the index file.

A client that has the SUPER privilege can disable binary logging of its own statements by using a SET
sql_log_bin=0 statement. See Section 5.1.4, “Server System Variables”.

http://dev.mysql.com/doc/internals/en/binary-log.html

The Binary Log

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 602

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The server evaluates the --binlog-do-db and --binlog-ignore-db options in the same way as it
does the --replicate-do-db and --replicate-ignore-db options. For information about how this
is done, see Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”.

A replication slave server by default does not write to its own binary log any data modifications that are
received from the replication master. To log these modifications, start the slave with the --log-slave-
updates option in addition to the --log-bin option (see Section 16.1.2.3, “Replication Slave Options
and Variables”). This is done when a slave is also to act as a master to other slaves in chained replication.

You can delete all binary log files with the RESET MASTER statement, or a subset of them with PURGE
BINARY LOGS. See Section 13.7.6.5, “RESET Syntax”, and Section 13.4.1.1, “PURGE BINARY LOGS
Syntax”.

If you are using replication, you should not delete old binary log files on the master until you are sure that
no slave still needs to use them. For example, if your slaves never run more than three days behind, once
a day you can execute mysqladmin flush-logs on the master and then remove any logs that are
more than three days old. You can remove the files manually, but it is preferable to use PURGE BINARY
LOGS, which also safely updates the binary log index file for you (and which can take a date argument).
See Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.

You can display the contents of binary log files with the mysqlbinlog utility. This can be useful when you
want to reprocess statements in the log for a recovery operation. For example, you can update a MySQL
server from the binary log as follows:

shell> mysqlbinlog log_file | mysql -h server_name

mysqlbinlog also can be used to display replication slave relay log file contents because they are written
using the same format as binary log files. For more information on the mysqlbinlog utility and how to use
it, see Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”. For more information about
the binary log and recovery operations, see Section 7.5, “Point-in-Time (Incremental) Recovery Using the
Binary Log”.

Binary logging is done immediately after a statement or transaction completes but before any locks are
released or any commit is done. This ensures that the log is logged in commit order.

Updates to nontransactional tables are stored in the binary log immediately after execution. In MySQL
5.0.53 and earlier versions of MySQL 5.0, an UPDATE statement using a stored function that modified a
nontransactional table was not logged if it failed, and an INSERT ... ON DUPLICATE KEY UPDATE
statement that encountered a duplicate key constraint—but did not actually change any data—was not
logged. Beginning with MySQL 5.0.54, both of these statements are written to the binary log. (Bug #23333)

Within an uncommitted transaction, all updates (UPDATE, DELETE, or INSERT) that change transactional
tables such as BDB or InnoDB tables are cached until a COMMIT statement is received by the server. At
that point, mysqld writes the entire transaction to the binary log before the COMMIT is executed.

Modifications to nontransactional tables cannot be rolled back. If a transaction that is rolled back includes
modifications to nontransactional tables, the entire transaction is logged with a ROLLBACK statement at the
end to ensure that the modifications to those tables are replicated.

When a thread that handles the transaction starts, it allocates a buffer of binlog_cache_size to buffer
statements. If a statement is bigger than this, the thread opens a temporary file to store the transaction.
The temporary file is deleted when the thread ends.

The Binlog_cache_use status variable shows the number of transactions that used this buffer (and
possibly a temporary file) for storing statements. The Binlog_cache_disk_use status variable shows

The Binary Log

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 603

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

how many of those transactions actually had to use a temporary file. These two variables can be used for
tuning binlog_cache_size to a large enough value that avoids the use of temporary files.

The max_binlog_cache_size system variable (default 4GB, which is also the maximum) can be used
to restrict the total size used to cache a multiple-statement transaction. If a transaction is larger than this
many bytes, it fails and rolls back. The minimum value is 4096.

If you are using the binary log and row based logging, concurrent inserts are converted to normal inserts
for CREATE ... SELECT or INSERT ... SELECT statements. This is done to ensure that you can
re-create an exact copy of your tables by applying the log during a backup operation. If you are using
statement-based logging, the original statement is written to the log.

The binary log format has some known limitations that can affect recovery from backups. See
Section 16.4.1, “Replication Features and Issues”.

Binary logging for stored programs is done as described in Section 18.6, “Binary Logging of Stored
Programs”.

Note that the binary log format differs in MySQL 5.0 from previous versions of MySQL, due to
enhancements in replication. See Section 16.4.2, “Replication Compatibility Between MySQL Versions”.

Writes to the binary log file and binary log index file are handled in the same way as writes to MyISAM
tables. See Section B.5.3.4, “How MySQL Handles a Full Disk”.

By default, the binary log is not synchronized to disk at each write. So if the operating system or machine
(not only the MySQL server) crashes, there is a chance that the last statements of the binary log are lost.
To prevent this, you can make the binary log be synchronized to disk after every N writes to the binary
log, with the sync_binlog system variable. See Section 5.1.4, “Server System Variables”. 1 is the safest
value for sync_binlog, but also the slowest. Even with sync_binlog set to 1, there is still the chance
of an inconsistency between the table content and binary log content in case of a crash. For example, if
you are using InnoDB tables and the MySQL server processes a COMMIT statement, it writes the whole
transaction to the binary log and then commits this transaction into InnoDB. If the server crashes between
those two operations, the transaction is rolled back by InnoDB at restart but still exists in the binary log.
This problem can be solved with the --innodb-safe-binlog option, which adds consistency between
the content of InnoDB tables and the binary log. (Note: --innodb-safe-binlog is unneeded as of
MySQL 5.0; it was made obsolete by the introduction of XA transaction support.)

For this option to provide a greater degree of safety, the MySQL server should also be configured to
synchronize the binary log and the InnoDB logs to disk at every transaction. The InnoDB logs are
synchronized by default, and sync_binlog=1 can be used to synchronize the binary log. The effect of
this option is that at restart after a crash, after doing a rollback of transactions, the MySQL server cuts
rolled back InnoDB transactions from the binary log. This ensures that the binary log reflects the exact
data of InnoDB tables, and so, that the slave remains in synchrony with the master (not receiving a
statement which has been rolled back).

Note that --innodb-safe-binlog can be used even if the MySQL server updates other storage
engines than InnoDB. Only statements and transactions that affect InnoDB tables are subject to removal
from the binary log at InnoDB's crash recovery. If the MySQL server discovers at crash recovery that
the binary log is shorter than it should have been, it lacks at least one successfully committed InnoDB
transaction. This should not happen if sync_binlog=1 and the disk/file system do an actual sync
when they are requested to (some do not), so the server prints an error message The binary log
file_name is shorter than its expected size. In this case, this binary log is not correct and
replication should be restarted from a fresh snapshot of the master's data.

For MySQL 5.0.46, the session values of the following system variables are written to the binary log and
honored by the replication slave when parsing the binary log:

The Slow Query Log

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 604

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• sql_mode

• foreign_key_checks

• unique_checks

• character_set_client

• collation_connection

• collation_database

• collation_server

• sql_auto_is_null

5.4.4 The Slow Query Log

The slow query log consists of SQL statements that took more than long_query_time seconds to
execute. The minimum and default values of long_query_time are 1 and 10, respectively.

By default, administrative statements are not logged, nor are queries that do not use indexes for lookups.
This behavior can be changed using --log-slow-admin-statements and --log-queries-not-
using-indexes, as described later.

The time to acquire the initial locks is not counted as execution time. mysqld writes a statement to the
slow query log after it has been executed and after all locks have been released, so log order might differ
from execution order.

To enable the slow query log, start mysqld with the --log-slow-queries[=file_name] option.

If the slow query log file is enabled but no name is specified, the default name is host_name-slow.log
and the server creates the file in the same directory where it creates the PID file. If a name is given, the
server creates the file in the data directory unless an absolute path name is given to specify a different
directory.

To include slow administrative statements in the statements written to the slow query log, use the --log-
slow-admin-statements server option. Administrative statements include ALTER TABLE, ANALYZE
TABLE, CHECK TABLE, CREATE INDEX, DROP INDEX, OPTIMIZE TABLE, and REPAIR TABLE.

To include queries that do not use indexes for row lookups in the statements written to the slow query log,
use the --log-queries-not-using-indexes server option. See Section 5.1.3, “Server Command
Options”. When such queries are logged, the slow query log may grow quickly.

The server uses the controlling parameters in the following order to determine whether to write a query to
the slow query log:

1. The query must either not be an administrative statement, or --log-slow-admin-statements must
have been specified.

2. The query must have taken at least long_query_time seconds, or --log-queries-not-using-
indexes must have been specified and the query used no indexes for row lookups.

The server does not write queries handled by the query cache to the slow query log, nor queries that would
not benefit from the presence of an index because the table has zero rows or one row.

Replication slaves do not write replicated queries to the slow query log, even if the same queries were
written to the slow query log on the master. This is a known issue. (Bug #23300)

Server Log Maintenance

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 605

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The slow query log should be protected because logged statements might contain passwords. See
Section 6.1.2.3, “Passwords and Logging”.

The slow query log can be used to find queries that take a long time to execute and are therefore
candidates for optimization. However, examining a long slow query log can become a difficult task.
To make this easier, you can process a slow query log file using the mysqldumpslow command to
summarize the queries that appear in the log. See Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”.

5.4.5 Server Log Maintenance

As described in Section 5.4, “MySQL Server Logs”, MySQL Server can create several different log files to
help you see what activity is taking place. However, you must clean up these files regularly to ensure that
the logs do not take up too much disk space.

When using MySQL with logging enabled, you may want to back up and remove old log files from time to
time and tell MySQL to start logging to new files. See Section 7.2, “Database Backup Methods”.

On a Linux (Red Hat) installation, you can use the mysql-log-rotate script for this. If you installed
MySQL from an RPM distribution, this script should have been installed automatically. Be careful with this
script if you are using the binary log for replication. You should not remove binary logs until you are certain
that their contents have been processed by all slaves.

On other systems, you must install a short script yourself that you start from cron (or its equivalent) for
handling log files.

For the binary log, you can set the expire_logs_days system variable to expire binary log files
automatically after a given number of days (see Section 5.1.4, “Server System Variables”). If you are using
replication, you should set the variable no lower than the maximum number of days your slaves might lag
behind the master. To remove binary logs on demand, use the PURGE BINARY LOGS statement (see
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”).

You can force MySQL to start using new log files by flushing the logs. Log flushing occurs when you
issue a FLUSH LOGS statement or execute a mysqladmin flush-logs, mysqladmin refresh,
mysqldump --flush-logs, or mysqldump --master-data command. See Section 13.7.6.2, “FLUSH
Syntax”, Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”, and Section 4.5.4,
“mysqldump — A Database Backup Program”. In addition, the binary log is flushed when its size reaches
the value of the max_binlog_size system variable.

A log-flushing operation does the following:

• If general query logging (--log) or slow query logging (--log-slow-queries) to a log file is enabled,
the server closes and reopens the general query log file or slow query log file.

• If binary logging (--log-bin) is used, the server closes the current log file and opens a new log file with
the next sequence number.

• If the server was started with the --log-error option to cause the error log to be written to a file, it
renames the current log file with the suffix -old and creates a new empty error log file.

The server creates a new binary log file when you flush the logs. However, it just closes and reopens the
general and slow query log files. To cause new files to be created on Unix, rename the current log files
before flushing them. At flush time, the server opens new log files with the original names. For example, if
the general and slow query log files are named mysql.log and mysql-slow.log, you can use a series
of commands like this:

Running Multiple MySQL Instances on One Machine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 606

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> cd mysql-data-directory
shell> mv mysql.log mysql.old
shell> mv mysql-slow.log mysql-slow.old
shell> mysqladmin flush-logs

On Windows, use rename rather than mv.

At this point, you can make a backup of mysql.old and mysql-slow.old and then remove them from
disk.

For older versions of MySQL, you cannot rename certain log files on Windows while the server has them
open. Before MySQL 5.0.17, this restriction applies to all log files. You must stop the server, rename the
file, then restart the server to create a new log file. From 5.0.18 on, the restriction applies only to the error
log file. To rename the error log file, a stop and restart can be avoided by flushing the logs to cause the
server to rename the current log file with the suffix -old and create a new empty error log file.

To disable or enable general query logging for the current connection, set the session sql_log_off
variable to ON or OFF.

5.5 Running Multiple MySQL Instances on One Machine

In some cases, you might want to run multiple instances of MySQL on a single machine. You might want
to test a new MySQL release while leaving an existing production setup undisturbed. Or you might want to
give different users access to different mysqld servers that they manage themselves. (For example, you
might be an Internet Service Provider that wants to provide independent MySQL installations for different
customers.)

It is possible to use a different MySQL server binary per instance, or use the same binary for multiple
instances, or any combination of the two approaches. For example, you might run a server from MySQL
4.1 and one from MySQL 5.0, to see how different versions handle a given workload. Or you might run
multiple instances of the current production version, each managing a different set of databases.

Whether or not you use distinct server binaries, each instance that you run must be configured with unique
values for several operating parameters. This eliminates the potential for conflict between instances.
Parameters can be set on the command line, in option files, or by setting environment variables. See
Section 4.2.3, “Specifying Program Options”. To see the values used by a given instance, connect to it and
execute a SHOW VARIABLES statement.

The primary resource managed by a MySQL instance is the data directory. Each instance should use a
different data directory, the location of which is specified using the --datadir=dir_name option. For
methods of configuring each instance with its own data directory, and warnings about the dangers of failing
to do so, see Section 5.5.1, “Setting Up Multiple Data Directories”.

In addition to using different data directories, several other options must have different values for each
server instance:

• --port=port_num

--port controls the port number for TCP/IP connections. Alternatively, if the host has multiple network
addresses, you can use --bind-address to cause each server to listen to a different address.

• --socket={file_name|pipe_name}

--socket controls the Unix socket file path on Unix or the named pipe name on Windows. On
Windows, it is necessary to specify distinct pipe names only for those servers configured to permit
named-pipe connections.

Setting Up Multiple Data Directories

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 607

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --shared-memory-base-name=name

This option is used only on Windows. It designates the shared-memory name used by a Windows server
to permit clients to connect using shared memory. It is necessary to specify distinct shared-memory
names only for those servers configured to permit shared-memory connections.

• --pid-file=file_name

This option indicates the path name of the file in which the server writes its process ID.

If you use the following log file options, their values must differ for each server:

• --log[=file_name]

• --log-bin[=file_name]

• --log-error[=file_name]

• --bdb-logdir=file_name

For further discussion of log file options, see Section 5.4, “MySQL Server Logs”.

To achieve better performance, you can specify the following options differently for each server, to spread
the load between several physical disks:

• --tmpdir=dir_name

• --bdb-tmpdir=dir_name

Having different temporary directories also makes it easier to determine which MySQL server created any
given temporary file.

If you have multiple MySQL installations in different locations, you can specify the base directory for each
installation with the --basedir=dir_name option. This causes each instance to automatically use a
different data directory, log files, and PID file because the default for each of those parameters is relative
to the base directory. In that case, the only other options you need to specify are the --socket and --
port options. Suppose that you install different versions of MySQL using tar file binary distributions.
These install in different locations, so you can start the server for each installation using the command
bin/mysqld_safe under its corresponding base directory. mysqld_safe determines the proper --
basedir option to pass to mysqld, and you need specify only the --socket and --port options to
mysqld_safe.

As discussed in the following sections, it is possible to start additional servers by specifying appropriate
command options or by setting environment variables. However, if you need to run multiple servers on
a more permanent basis, it is more convenient to use option files to specify for each server those option
values that must be unique to it. The --defaults-file option is useful for this purpose.

5.5.1 Setting Up Multiple Data Directories

Each MySQL Instance on a machine should have its own data directory. The location is specified using the
--datadir=dir_name option.

There are different methods of setting up a data directory for a new instance:

• Create a new data directory.

• Copy an existing data directory.

Running Multiple MySQL Instances on Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 608

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The following discussion provides more detail about each method.

Warning

Normally, you should never have two servers that update data in the same
databases. This may lead to unpleasant surprises if your operating system does
not support fault-free system locking. If (despite this warning) you run multiple
servers using the same data directory and they have logging enabled, you must
use the appropriate options to specify log file names that are unique to each server.
Otherwise, the servers try to log to the same files.

Even when the preceding precautions are observed, this kind of setup works only
with MyISAM and MERGE tables, and not with any of the other storage engines. Also,
this warning against sharing a data directory among servers always applies in an
NFS environment. Permitting multiple MySQL servers to access a common data
directory over NFS is a very bad idea. The primary problem is that NFS is the speed
bottleneck. It is not meant for such use. Another risk with NFS is that you must
devise a way to ensure that two or more servers do not interfere with each other.
Usually NFS file locking is handled by the lockd daemon, but at the moment there
is no platform that performs locking 100% reliably in every situation.

Create a New Data Directory

With this method, the data directory will be in the same state as when you first install MySQL. It will have
the default set of MySQL accounts and no user data.

On Unix, initialize the data directory. See Section 2.18, “Postinstallation Setup and Testing”.

On Windows, the data directory is included in MySQL distributions. If you obtain a distribution in Windows
Zip archive format, you can unpack it into a temporary location, then copy the data directory from this
location to where you are setting up the new instance.

Copy an Existing Data Directory

With this method, any MySQL accounts or user data present in the data directory are carried over to the
new data directory.

1. Stop the existing MySQL instance using the data directory. This must be a clean shutdown so that the
instance flushes any pending changes to disk.

2. Copy the data directory to the location where the new data directory should be.

3. Copy the my.cnf or my.ini option file used by the existing instance. This serves as a basis for the
new instance.

4. Modify the new option file so that any pathnames referring to the original data directory refer to the
new data directory. Also, modify any other options that must be unique per instance, such as the
TCP/IP port number and the log files. For a list of parameters that must be unique per instance, see
Section 5.5, “Running Multiple MySQL Instances on One Machine”.

5. Start the new instance, telling it to use the new option file.

5.5.2 Running Multiple MySQL Instances on Windows

You can run multiple servers on Windows by starting them manually from the command line, each with
appropriate operating parameters, or by installing several servers as Windows services and running them

Running Multiple MySQL Instances on Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 609

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

that way. General instructions for running MySQL from the command line or as a service are given in
Section 2.10, “Installing MySQL on Microsoft Windows”. The following sections describe how to start each
server with different values for those options that must be unique per server, such as the data directory.
These options are listed in Section 5.5, “Running Multiple MySQL Instances on One Machine”.

5.5.2.1 Starting Multiple MySQL Instances at the Windows Command Line

The procedure for starting a single MySQL server manually from the command line is described in
Section 2.10.4.5, “Starting MySQL from the Windows Command Line”. To start multiple servers this way,
you can specify the appropriate options on the command line or in an option file. It is more convenient
to place the options in an option file, but it is necessary to make sure that each server gets its own set
of options. To do this, create an option file for each server and tell the server the file name with a --
defaults-file option when you run it.

Suppose that you want to run mysqld on port 3307 with a data directory of C:\mydata1, and mysqld-
debug on port 3308 with a data directory of C:\mydata2. Use this procedure:

1. Make sure that each data directory exists, including its own copy of the mysql database that contains
the grant tables.

2. Create two option files. For example, create one file named C:\my-opts1.cnf that looks like this:

[mysqld]
datadir = C:/mydata1
port = 3307

Create a second file named C:\my-opts2.cnf that looks like this:

[mysqld]
datadir = C:/mydata2
port = 3308

3. Use the --defaults-file option to start each server with its own option file:

C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql\bin\mysqld-debug --defaults-file=C:\my-opts2.cnf

Each server starts in the foreground (no new prompt appears until the server exits later), so you will
need to issue those two commands in separate console windows.

To shut down the servers, connect to each using the appropriate port number:

C:\> C:\mysql\bin\mysqladmin --port=3307 --host=127.0.0.1 --user=root --password shutdown
C:\> C:\mysql\bin\mysqladmin --port=3308 --host=127.0.0.1 --user=root --password shutdown

Servers configured as just described permit clients to connect over TCP/IP. If your version of Windows
supports named pipes and you also want to permit named-pipe connections, use the mysqld-nt or
mysqld-debug server and specify options that enable the named pipe and specify its name. Each
server that supports named-pipe connections must use a unique pipe name. For example, the C:\my-
opts1.cnf file might be written like this:

[mysqld]
datadir = C:/mydata1
port = 3307
enable-named-pipe
socket = mypipe1

Running Multiple MySQL Instances on Windows

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 610

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Modify C:\my-opts2.cnf similarly for use by the second server. Then start the servers as described
previously.

A similar procedure applies for servers that you want to permit shared-memory connections. Enable such
connections with the --shared-memory option and specify a unique shared-memory name for each
server with the --shared-memory-base-name option.

5.5.2.2 Starting Multiple MySQL Instances as Windows Services

On Windows, a MySQL server can run as a Windows service. The procedures for installing, controlling,
and removing a single MySQL service are described in Section 2.10.4.7, “Starting MySQL as a Windows
Service”.

To set up multiple MySQL services, you must make sure that each instance uses a different service name
in addition to the other parameters that must be unique per instance.

For the following instructions, suppose that you want to run the mysqld-nt server from two different
versions of MySQL that are installed at C:\mysql-4.1.24 and C:\mysql-5.0.96, respectively. (This
might be the case if you're running 4.1.24 as your production server, but also want to conduct tests using
5.0.96.)

To install MySQL as a Windows service, use the --install or --install-manual option. For
information about these options, see Section 2.10.4.7, “Starting MySQL as a Windows Service”.

Based on the preceding information, you have several ways to set up multiple services. The following
instructions describe some examples. Before trying any of them, shut down and remove any existing
MySQL services.

• Approach 1: Specify the options for all services in one of the standard option files. To do this, use a
different service name for each server. Suppose that you want to run the 4.1.24 mysqld-nt using the
service name of mysqld1 and the 5.0.96 mysqld-nt using the service name mysqld2. In this case,
you can use the [mysqld1] group for 4.1.24 and the [mysqld2] group for 5.0.96. For example, you
can set up C:\my.cnf like this:

options for mysqld1 service
[mysqld1]
basedir = C:/mysql-4.1.24
port = 3307
enable-named-pipe
socket = mypipe1

options for mysqld2 service
[mysqld2]
basedir = C:/mysql-5.0.96
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows, using the full server path names to ensure that Windows registers the
correct executable program for each service:

C:\> C:\mysql-4.1.24\bin\mysqld-nt --install mysqld1
C:\> C:\mysql-5.0.96\bin\mysqld-nt --install mysqld2

To start the services, use the services manager, or use NET START with the appropriate service names:

C:\> NET START mysqld1

Running Multiple MySQL Instances on Unix

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 611

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

C:\> NET START mysqld2

To stop the services, use the services manager, or use NET STOP with the appropriate service names:

C:\> NET STOP mysqld1
C:\> NET STOP mysqld2

• Approach 2: Specify options for each server in separate files and use --defaults-file when you
install the services to tell each server what file to use. In this case, each file should list options using a
[mysqld] group.

With this approach, to specify options for the 4.1.24 mysqld-nt, create a file C:\my-opts1.cnf that
looks like this:

[mysqld]
basedir = C:/mysql-4.1.24
port = 3307
enable-named-pipe
socket = mypipe1

For the 5.0.96 mysqld-nt, create a file C:\my-opts2.cnf that looks like this:

[mysqld]
basedir = C:/mysql-5.0.96
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows (enter each command on a single line):

C:\> C:\mysql-4.1.24\bin\mysqld-nt --install mysqld1
 --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql-5.0.96\bin\mysqld-nt --install mysqld2
 --defaults-file=C:\my-opts2.cnf

When you install a MySQL server as a service and use a --defaults-file option, the service name
must precede the option.

After installing the services, start and stop them the same way as in the preceding example.

To remove multiple services, use mysqld --remove for each one, specifying a service name following
the --remove option. If the service name is the default (MySQL), you can omit it.

5.5.3 Running Multiple MySQL Instances on Unix

One way is to run multiple MySQL instances on Unix is to compile different servers with different default
TCP/IP ports and Unix socket files so that each one listens on different network interfaces. Compiling in
different base directories for each installation also results automatically in a separate, compiled-in data
directory, log file, and PID file location for each server.

Assume that an existing 4.1 server is configured for the default TCP/IP port number (3306) and Unix
socket file (/tmp/mysql.sock). To configure a new 5.0.96 server to have different operating parameters,
use a configure command something like this:

shell> ./configure --with-tcp-port=port_number \
 --with-unix-socket-path=file_name \

Running Multiple MySQL Instances on Unix

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 612

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 --prefix=/usr/local/mysql-5.0.96

Here, port_number and file_name must be different from the default TCP/IP port number and Unix
socket file path name, and the --prefix value should specify an installation directory different from the
one under which the existing MySQL installation is located.

If you have a MySQL server listening on a given port number, you can use the following command to find
out what operating parameters it is using for several important configurable variables, including the base
directory and Unix socket file name:

shell> mysqladmin --host=host_name --port=port_number variables

With the information displayed by that command, you can tell what option values not to use when
configuring an additional server.

If you specify localhost as the host name, mysqladmin defaults to using a Unix socket file connection
rather than TCP/IP. To explicitly specify the connection protocol, use the --protocol={TCP|SOCKET|
PIPE|MEMORY} option.

You need not compile a new MySQL server just to start with a different Unix socket file and TCP/IP port
number. It is also possible to use the same server binary and start each invocation of it with different
parameter values at runtime. One way to do so is by using command-line options:

shell> mysqld_safe --socket=file_name --port=port_number

To start a second server, provide different --socket and --port option values, and pass a --
datadir=dir_name option to mysqld_safe so that the server uses a different data directory.

Alternatively, put the options for each server in a different option file, then start each server using a --
defaults-file option that specifies the path to the appropriate option file. For example, if the option files
for two server instances are named /usr/local/mysql/my.cnf and /usr/local/mysql/my.cnf2,
start the servers like this: command:

shell> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf
shell> mysqld_safe --defaults-file=/usr/local/mysql/my.cnf2

Another way to achieve a similar effect is to use environment variables to set the Unix socket file name and
TCP/IP port number:

shell> MYSQL_UNIX_PORT=/tmp/mysqld-new.sock
shell> MYSQL_TCP_PORT=3307
shell> export MYSQL_UNIX_PORT MYSQL_TCP_PORT
shell> mysql_install_db --user=mysql
shell> mysqld_safe --datadir=/path/to/datadir &

This is a quick way of starting a second server to use for testing. The nice thing about this method is that
the environment variable settings apply to any client programs that you invoke from the same shell. Thus,
connections for those clients are automatically directed to the second server.

Section 2.21, “Environment Variables”, includes a list of other environment variables you can use to affect
MySQL programs.

On Unix, the mysqld_multi script provides another way to start multiple servers. See Section 4.3.4,
“mysqld_multi — Manage Multiple MySQL Servers”.

Using Client Programs in a Multiple-Server Environment

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 613

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

5.5.4 Using Client Programs in a Multiple-Server Environment

To connect with a client program to a MySQL server that is listening to different network interfaces from
those compiled into your client, you can use one of the following methods:

• Start the client with --host=host_name --port=port_number to connect using TCP/IP to a remote
server, with --host=127.0.0.1 --port=port_number to connect using TCP/IP to a local server, or
with --host=localhost --socket=file_name to connect to a local server using a Unix socket file
or a Windows named pipe.

• Start the client with --protocol=TCP to connect using TCP/IP, --protocol=SOCKET to connect
using a Unix socket file, --protocol=PIPE to connect using a named pipe, or --protocol=MEMORY
to connect using shared memory. For TCP/IP connections, you may also need to specify --host and
--port options. For the other types of connections, you may need to specify a --socket option to
specify a Unix socket file or Windows named-pipe name, or a --shared-memory-base-name option
to specify the shared-memory name. Shared-memory connections are supported only on Windows.

• On Unix, set the MYSQL_UNIX_PORT and MYSQL_TCP_PORT environment variables to point to the
Unix socket file and TCP/IP port number before you start your clients. If you normally use a specific
socket file or port number, you can place commands to set these environment variables in your .login
file so that they apply each time you log in. See Section 2.21, “Environment Variables”.

• Specify the default Unix socket file and TCP/IP port number in the [client] group of an option file.
For example, you can use C:\my.cnf on Windows, or the .my.cnf file in your home directory on Unix.
See Section 4.2.6, “Using Option Files”.

• In a C program, you can specify the socket file or port number arguments in the
mysql_real_connect() call. You can also have the program read option files by calling
mysql_options(). See Section 20.6.7, “C API Function Descriptions”.

• If you are using the Perl DBD::mysql module, you can read options from MySQL option files. For
example:

$dsn = "DBI:mysql:test;mysql_read_default_group=client;"
 . "mysql_read_default_file=/usr/local/mysql/data/my.cnf";
$dbh = DBI->connect($dsn, $user, $password);

See Section 20.8, “MySQL Perl API”.

Other programming interfaces may provide similar capabilities for reading option files.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 614

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 615

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 6 Security

Table of Contents
6.1 General Security Issues .. 616

6.1.1 Security Guidelines .. 616
6.1.2 Keeping Passwords Secure .. 617
6.1.3 Making MySQL Secure Against Attackers ... 625
6.1.4 Security-Related mysqld Options and Variables ... 627
6.1.5 How to Run MySQL as a Normal User ... 628
6.1.6 Security Issues with LOAD DATA LOCAL ... 629
6.1.7 Client Programming Security Guidelines .. 630

6.2 The MySQL Access Privilege System .. 631
6.2.1 Privileges Provided by MySQL ... 632
6.2.2 Grant Tables .. 636
6.2.3 Specifying Account Names ... 641
6.2.4 Access Control, Stage 1: Connection Verification ... 643
6.2.5 Access Control, Stage 2: Request Verification ... 646
6.2.6 When Privilege Changes Take Effect .. 648
6.2.7 Troubleshooting Problems Connecting to MySQL .. 649

6.3 MySQL User Account Management ... 654
6.3.1 User Names and Passwords .. 654
6.3.2 Adding User Accounts .. 656
6.3.3 Removing User Accounts ... 659
6.3.4 Setting Account Resource Limits .. 659
6.3.5 Assigning Account Passwords .. 661
6.3.6 Using Secure Connections ... 662
6.3.7 Creating SSL Certificates and Keys Using openssl .. 670
6.3.8 Connecting to MySQL Remotely from Windows with SSH .. 676
6.3.9 SQL-Based MySQL Account Activity Auditing .. 676

When thinking about security within a MySQL installation, you should consider a wide range of possible
topics and how they affect the security of your MySQL server and related applications:

• General factors that affect security. These include choosing good passwords, not granting unnecessary
privileges to users, ensuring application security by preventing SQL injections and data corruption, and
others. See Section 6.1, “General Security Issues”.

• Security of the installation itself. The data files, log files, and the all the application files of your
installation should be protected to ensure that they are not readable or writable by unauthorized parties.
For more information, see Section 2.18, “Postinstallation Setup and Testing”.

• Access control and security within the database system itself, including the users and databases
granted with access to the databases, views and stored programs in use within the database. For more
information, see Section 6.2, “The MySQL Access Privilege System”, and Section 6.3, “MySQL User
Account Management”.

• Network security of MySQL and your system. The security is related to the grants for individual users,
but you may also wish to restrict MySQL so that it is available only locally on the MySQL server host, or
to a limited set of other hosts.

• Ensure that you have adequate and appropriate backups of your database files, configuration and log
files. Also be sure that you have a recovery solution in place and test that you are able to successfully
recover the information from your backups. See Chapter 7, Backup and Recovery.

General Security Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 616

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

6.1 General Security Issues
This section describes general security issues to be aware of and what you can do to make your MySQL
installation more secure against attack or misuse. For information specifically about the access control
system that MySQL uses for setting up user accounts and checking database access, see Section 6.2,
“The MySQL Access Privilege System”.

For answers to some questions that are often asked about MySQL Server security issues, see Section A.9,
“MySQL 5.0 FAQ: Security”.

6.1.1 Security Guidelines

Anyone using MySQL on a computer connected to the Internet should read this section to avoid the most
common security mistakes.

In discussing security, it is necessary to consider fully protecting the entire server host (not just the MySQL
server) against all types of applicable attacks: eavesdropping, altering, playback, and denial of service. We
do not cover all aspects of availability and fault tolerance here.

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries, and other
operations that users can attempt to perform. There is also support for SSL-encrypted connections
between MySQL clients and servers. Many of the concepts discussed here are not specific to MySQL at
all; the same general ideas apply to almost all applications.

When running MySQL, follow these guidelines:

• Do not ever give anyone (except MySQL root accounts) access to the user table in the mysql
database! This is critical.

• Learn how the MySQL access privilege system works (see Section 6.2, “The MySQL Access Privilege
System”). Use the GRANT and REVOKE statements to control access to MySQL. Do not grant more
privileges than necessary. Never grant privileges to all hosts.

Checklist:

• Try mysql -u root. If you are able to connect successfully to the server without being asked for a
password, anyone can connect to your MySQL server as the MySQL root user with full privileges!
Review the MySQL installation instructions, paying particular attention to the information about setting
a root password. See Section 2.18.4, “Securing the Initial MySQL Accounts”.

• Use the SHOW GRANTS statement to check which accounts have access to what. Then use the
REVOKE statement to remove those privileges that are not necessary.

• Do not store cleartext passwords in your database. If your computer becomes compromised, the intruder
can take the full list of passwords and use them. Instead, use SHA1(), MD5(), or some other one-way
hashing function and store the hash value.

To prevent password recovery using rainbow tables, do not use these functions on a plain password;
instead, choose some string to be used as a salt, and use hash(hash(password)+salt) values.

• Do not choose passwords from dictionaries. Special programs exist to break passwords. Even
passwords like “xfish98” are very bad. Much better is “duag98” which contains the same word “fish” but
typed one key to the left on a standard QWERTY keyboard. Another method is to use a password that
is taken from the first characters of each word in a sentence (for example, “Four score and seven years
ago” results in a password of “Fsasya”). The password is easy to remember and type, but difficult to
guess for someone who does not know the sentence. In this case, you can additionally substitute digits

Keeping Passwords Secure

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 617

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

for the number words to obtain the phrase “4 score and 7 years ago”, yielding the password “4sa7ya”
which is even more difficult to guess.

• Invest in a firewall. This protects you from at least 50% of all types of exploits in any software. Put
MySQL behind the firewall or in a demilitarized zone (DMZ).

Checklist:

• Try to scan your ports from the Internet using a tool such as nmap. MySQL uses port 3306 by default.
This port should not be accessible from untrusted hosts. As a simple way to check whether your
MySQL port is open, try the following command from some remote machine, where server_host is
the host name or IP address of the host on which your MySQL server runs:

shell> telnet server_host 3306

If telnet hangs or the connection is refused, the port is blocked, which is how you want it to be. If
you get a connection and some garbage characters, the port is open, and should be closed on your
firewall or router, unless you really have a good reason to keep it open.

• Applications that access MySQL should not trust any data entered by users, and should be written
using proper defensive programming techniques. See Section 6.1.7, “Client Programming Security
Guidelines”.

• Do not transmit plain (unencrypted) data over the Internet. This information is accessible to everyone
who has the time and ability to intercept it and use it for their own purposes. Instead, use an encrypted
protocol such as SSL or SSH. MySQL supports internal SSL connections. Another technique is to use
SSH port-forwarding to create an encrypted (and compressed) tunnel for the communication.

• Learn to use the tcpdump and strings utilities. In most cases, you can check whether MySQL data
streams are unencrypted by issuing a command like the following:

shell> tcpdump -l -i eth0 -w - src or dst port 3306 | strings

This works under Linux and should work with small modifications under other systems.

Warning

If you do not see cleartext data, this does not always mean that the information
actually is encrypted. If you need high security, consult with a security expert.

6.1.2 Keeping Passwords Secure

Passwords occur in several contexts within MySQL. The following sections provide guidelines that enable
end users and administrators to keep these passwords secure and avoid exposing them. There is also a
discussion of how MySQL uses password hashing internally.

6.1.2.1 End-User Guidelines for Password Security

MySQL users should use the following guidelines to keep passwords secure.

When you run a client program to connect to the MySQL server, it is inadvisable to specify your password
in a way that exposes it to discovery by other users. The methods you can use to specify your password
when you run client programs are listed here, along with an assessment of the risks of each method.
In short, the safest methods are to have the client program prompt for the password or to specify the
password in a properly protected option file.

Keeping Passwords Secure

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 618

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Use a -pyour_pass or --password=your_pass option on the command line. For example:

shell> mysql -u francis -pfrank db_name

This is convenient but insecure. On some systems, your password becomes visible to system status
programs such as ps that may be invoked by other users to display command lines. MySQL clients
typically overwrite the command-line password argument with zeros during their initialization sequence.
However, there is still a brief interval during which the value is visible. Also, on some systems this
overwriting strategy is ineffective and the password remains visible to ps. (SystemV Unix systems and
perhaps others are subject to this problem.)

If your operating environment is set up to display your current command in the title bar of your terminal
window, the password remains visible as long as the command is running, even if the command has
scrolled out of view in the window content area.

• Use the -p or --password option on the command line with no password value specified. In this case,
the client program solicits the password interactively:

shell> mysql -u francis -p db_name
Enter password: ********

The “*” characters indicate where you enter your password. The password is not displayed as you enter
it.

It is more secure to enter your password this way than to specify it on the command line because it is
not visible to other users. However, this method of entering a password is suitable only for programs that
you run interactively. If you want to invoke a client from a script that runs noninteractively, there is no
opportunity to enter the password from the keyboard. On some systems, you may even find that the first
line of your script is read and interpreted (incorrectly) as your password.

• Store your password in an option file. For example, on Unix, you can list your password in the
[client] section of the .my.cnf file in your home directory:

[client]
password=your_pass

To keep the password safe, the file should not be accessible to anyone but yourself. To ensure this, set
the file access mode to 400 or 600. For example:

shell> chmod 600 .my.cnf

To name from the command line a specific option file containing the password, use the --defaults-
file=file_name option, where file_name is the full path name to the file. For example:

shell> mysql --defaults-file=/home/francis/mysql-opts

Section 4.2.6, “Using Option Files”, discusses option files in more detail.

• Store your password in the MYSQL_PWD environment variable. See Section 2.21, “Environment
Variables”.

This method of specifying your MySQL password must be considered extremely insecure and should
not be used. Some versions of ps include an option to display the environment of running processes.
On some systems, if you set MYSQL_PWD, your password is exposed to any other user who runs ps.

Keeping Passwords Secure

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 619

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Even on systems without such a version of ps, it is unwise to assume that there are no other methods by
which users can examine process environments.

On Unix, the mysql client writes a record of executed statements to a history file (see Section 4.5.1.3,
“mysql Logging”). By default, this file is named .mysql_history and is created in your home directory.
Passwords can be written as plain text in SQL statements such as CREATE USER, GRANT, and SET
PASSWORD, so if you use these statements, they are logged in the history file. To keep this file safe, use a
restrictive access mode, the same way as described earlier for the .my.cnf file.

If your command interpreter is configured to maintain a history, any file in which the commands
are saved will contain MySQL passwords entered on the command line. For example, bash uses
~/.bash_history. Any such file should have a restrictive access mode.

6.1.2.2 Administrator Guidelines for Password Security

Database administrators should use the following guidelines to keep passwords secure.

MySQL stores passwords for user accounts in the mysql.user table. Access to this table should never be
granted to any nonadministrative accounts.

A user who has access to modify the plugin directory (the value of the plugin_dir system variable)
or the my.cnf file that specifies the location of the plugin directory can replace plugins and modify the
capabilities provided by plugins.

Files such as log files to which passwords might be written should be protected. See Section 6.1.2.3,
“Passwords and Logging”.

6.1.2.3 Passwords and Logging

Passwords can be written as plain text in SQL statements such as CREATE USER, GRANT, SET
PASSWORD, and statements that invoke the PASSWORD() function. If such statements are logged by the
MySQL server as written, passwords in them become visible to anyone with access to the logs. This
applies to the general query log, the slow query log, and the binary log (see Section 5.4, “MySQL Server
Logs”).

To guard log files against unwarranted exposure, locate them in a directory that restricts access to the
server and the database administrator.

Replication slaves store the password for the replication master in the master.info file. Retrict this file to
be accessible only to the database administrator.

Use a restricted access mode to protect database backups that include log files containing passwords.

6.1.2.4 Password Hashing in MySQL

MySQL lists user accounts in the user table of the mysql database. Each MySQL account can be
assigned a password, although the user table does not store the cleartext version of the password, but a
hash value computed from it.

MySQL uses passwords in two phases of client/server communication:

• When a client attempts to connect to the server, there is an initial authentication step in which the client
must present a password that has a hash value matching the hash value stored in the user table for the
account the client wants to use.

Keeping Passwords Secure

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 620

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• After the client connects, it can (if it has sufficient privileges) set or change the password hash for
accounts listed in the user table. The client can do this by using the PASSWORD() function to generate
a password hash, or by using a password-generating statement (CREATE USER, GRANT, or SET
PASSWORD).

In other words, the server checks hash values during authentication when a client first attempts to connect.
The server generates hash values if a connected client invokes the PASSWORD() function or uses a
password-generating statement to set or change a password.

Password hashing methods in MySQL have the history described following. These changes are illustrated
by changes in the result from the PASSWORD() function that computes password hash values and in the
structure of the user table where passwords are stored.

Note

This discussion contrasts 4.1 behavior with pre-4.1 behavior, but the 4.1 behavior
described here actually begins with 4.1.1. MySQL 4.1.0 is an “odd” release because
it has a slightly different method than that implemented in 4.1.1 and up. Differences
between 4.1.0 and more recent versions are described further in MySQL 3.23, 4.0,
4.1 Reference Manual.

The Original (Pre-4.1) Hashing Method

The original hashing method produced a 16-byte string. Such hashes look like this:

mysql> SELECT PASSWORD('mypass');
+--------------------+
| PASSWORD('mypass') |
+--------------------+
| 6f8c114b58f2ce9e |
+--------------------+

To store account passwords, the Password column of the user table was at this point 16 bytes long.

The 4.1 Hashing Method

MySQL 4.1 introduced password hashing that provided better security and reduced the risk of passwords
being intercepted. There were several aspects to this change:

• Different format of password values produced by the PASSWORD() function

• Widening of the Password column

• Control over the default hashing method

• Control over the permitted hashing methods for clients attempting to connect to the server

The changes in MySQL 4.1 took place in two stages:

• MySQL 4.1.0 used a preliminary version of the 4.1 hashing method. This method was short lived and the
following discussion says nothing more about it.

• In MySQL 4.1.1, the hashing method was modified to produce a longer 41-byte hash value:

mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |

Keeping Passwords Secure

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 621

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+

The longer password hash format has better cryptographic properties, and client authentication based on
long hashes is more secure than that based on the older short hashes.

To accommodate longer password hashes, the Password column in the user table was changed at this
point to be 41 bytes, its current length.

A widened Password column can store password hashes in both the pre-4.1 and 4.1 formats. The
format of any given hash value can be determined two ways:

• The length: 4.1 and pre-4.1 hashes are 41 and 16 bytes, respectively.

• Password hashes in the 4.1 format always begin with a “*” character, whereas passwords in the
pre-4.1 format never do.

To permit explicit generation of pre-4.1 password hashes, two additional changes were made:

• The OLD_PASSWORD() function was added, which returns hash values in the 16-byte format.

• For compatibility purposes, the old_passwords system variable was added, to enable DBAs and
applications control over the hashing method. The default old_passwords value of 0 causes hashing
to use the 4.1 method (41-byte hash values), but setting old_passwords=1 causes hashing to
use the pre-4.1 method. In this case, PASSWORD() produces 16-byte values and is equivalent to
OLD_PASSWORD()

To permit DBAs control over how clients are permitted to connect, the secure_auth system variable
was added. Starting the server with this variable disabled or enabled permits or prohibits clients to
connect using the older pre-4.1 password hashing method. Before MySQL 5.6.5, secure_auth is
disabled by default. As of 5.6.5, secure_auth is enabled by default to promote a more secure default
configuration. (DBAs can disable it at their discretion, but this is not recommended.)

In addition, the mysql client supports a --secure-auth option that is analogous to secure_auth,
but from the client side. It can be used to prevent connections to less secure accounts that use pre-4.1
password hashing. This option is disabled by default before MySQL 5.6.7, enabled thereafter.

Compatibility Issues Related to Hashing Methods

The widening of the Password column in MySQL 4.1 from 16 bytes to 41 bytes affects installation or
upgrade operations as follows:

• If you perform a new installation of MySQL, the Password column is made 41 bytes long automatically.

• Upgrades from MySQL 4.1 or later to current versions of MySQL should not give rise to any issues in
regard to the Password column because both versions use the same column length and password
hashing method.

• For upgrades from a pre-4.1 release to 4.1 or later, you must upgrade the system tables after upgrading.
(See Section 4.4.9, “mysql_upgrade — Check Tables for MySQL Upgrade”.)

The 4.1 hashing method is understood only by MySQL 4.1 (and newer) servers and clients, which can
result in some compatibility problems. A 4.1 or newer client can connect to a pre-4.1 server, because the
client understands both the pre-4.1 and 4.1 password hashing methods. However, a pre-4.1 client that
attempts to connect to a 4.1 or newer server may run into difficulties. For example, a 4.0 mysql client may
fail with the following error message:

Keeping Passwords Secure

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 622

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysql -h localhost -u root
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

This phenomenon also occurs for attempts to use the older PHP mysql extension after upgrading to
MySQL 4.1 or newer. (See Common Problems with MySQL and PHP.)

The following discussion describes the differences between the pre-4.1 and 4.1 hashing methods, and
what you should do if you upgrade your server but need to maintain backward compatibility with pre-4.1
clients. (However, permitting connections by old clients is not recommended and should be avoided if
possible.) Additional information can be found in Section B.5.2.4, “Client does not support authentication
protocol”. This information is of particular importance to PHP programmers migrating MySQL databases
from versions older than 4.1 to 4.1 or higher.

The differences between short and long password hashes are relevant both for how the server uses
passwords during authentication and for how it generates password hashes for connected clients that
perform password-changing operations.

The way in which the server uses password hashes during authentication is affected by the width of the
Password column:

• If the column is short, only short-hash authentication is used.

• If the column is long, it can hold either short or long hashes, and the server can use either format:

• Pre-4.1 clients can connect, but because they know only about the pre-4.1 hashing method, they can
authenticate only using accounts that have short hashes.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

Even for short-hash accounts, the authentication process is actually a bit more secure for 4.1 and later
clients than for older clients. In terms of security, the gradient from least to most secure is:

• Pre-4.1 client authenticating with short password hash

• 4.1 or later client authenticating with short password hash

• 4.1 or later client authenticating with long password hash

The way in which the server generates password hashes for connected clients is affected by the width of
the Password column and by the old_passwords system variable. A 4.1 or later server generates long
hashes only if certain conditions are met: The Password column must be wide enough to hold long values
and old_passwords must not be set to 1.

Those conditions apply as follows:

• The Password column must be wide enough to hold long hashes (41 bytes). If the column has not
been updated and still has the pre-4.1 width of 16 bytes, the server notices that long hashes cannot fit
into it and generates only short hashes when a client performs password-changing operations using
the PASSWORD() function or a password-generating statement. This is the behavior that occurs if
you have upgraded from a version of MySQL older than 4.1 to 4.1 or later but have not yet run the
mysql_upgrade program to widen the Password column.

• If the Password column is wide, it can store either short or long password hashes. In this case, the
PASSWORD() function and password-generating statements generate long hashes unless the server was
started with the old_passwords system variable set to 1 to force the server to generate short password
hashes instead.

http://dev.mysql.com/doc/apis-php/en/apis-php-problems.html

Keeping Passwords Secure

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 623

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The purpose of the old_passwords system variable is to permit backward compatibility with pre-4.1
clients under circumstances where the server would otherwise generate long password hashes. The option
does not affect authentication (4.1 and later clients can still use accounts that have long password hashes),
but it does prevent creation of a long password hash in the user table as the result of a password-
changing operation. Were that permitted to occur, the account could no longer be used by pre-4.1 clients.
With old_passwords disabled, the following undesirable scenario is possible:

• An old pre-4.1 client connects to an account that has a short password hash.

• The client changes its own password. With old_passwords disabled, this results in the account having
a long password hash.

• The next time the old client attempts to connect to the account, it cannot, because the account has a
long password hash that requires the 4.1 hashing method during authentication. (Once an account has
a long password hash in the user table, only 4.1 and later clients can authenticate for it because pre-4.1
clients do not understand long hashes.)

This scenario illustrates that, if you must support older pre-4.1 clients, it is problematic to run a 4.1
or newer server without old_passwords set to 1. By running the server with old_passwords=1,
password-changing operations do not generate long password hashes and thus do not cause accounts to
become inaccessible to older clients. (Those clients cannot inadvertently lock themselves out by changing
their password and ending up with a long password hash.)

The downside of old_passwords=1 is that any passwords created or changed use short hashes, even
for 4.1 or later clients. Thus, you lose the additional security provided by long password hashes. To create
an account that has a long hash (for example, for use by 4.1 clients) or to change an existing account to
use a long password hash, an administrator can set the session value of old_passwords set to 0 while
leaving the global value set to 1:

mysql> SET @@session.old_passwords = 0;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@session.old_passwords, @@global.old_passwords;
+-------------------------+------------------------+
| @@session.old_passwords | @@global.old_passwords |
+-------------------------+------------------------+
| 0 | 1 |
+-------------------------+------------------------+
1 row in set (0.00 sec)

mysql> CREATE USER 'newuser'@'localhost' IDENTIFIED BY 'newpass';
Query OK, 0 rows affected (0.03 sec)

mysql> SET PASSWORD FOR 'existinguser'@'localhost' = PASSWORD('existingpass');
Query OK, 0 rows affected (0.00 sec)

The following scenarios are possible in MySQL 4.1 or later. The factors are whether the Password column
is short or long, and, if long, whether the server is started with old_passwords enabled or disabled.

Scenario 1: Short Password column in user table:

• Only short hashes can be stored in the Password column.

• The server uses only short hashes during client authentication.

• For connected clients, password hash-generating operations involving the PASSWORD() function or
password-generating statements use short hashes exclusively. Any change to an account's password
results in that account having a short password hash.

Keeping Passwords Secure

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 624

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The value of old_passwords is irrelevant because with a short Password column, the server
generates only short password hashes anyway.

This scenario occurs when a pre-4.1 MySQL installation has been upgraded to 4.1 or later but
mysql_upgrade has not been run to upgrade the system tables in the mysql database. (This is not a
recommended configuration because it does not permit use of more secure 4.1 password hashing.)

Scenario 2: Long Password column; server started with old_passwords=1:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate for accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only for accounts that have short hashes.

• For connected clients, password hash-generating operations involving the PASSWORD() function or
password-generating statements use short hashes exclusively. Any change to an account's password
results in that account having a short password hash.

In this scenario, newly created accounts have short password hashes because old_passwords=1
prevents generation of long hashes. Also, if you create an account with a long hash before setting
old_passwords to 1, changing the account's password while old_passwords=1 results in the account
being given a short password, causing it to lose the security benefits of a longer hash.

To create a new account that has a long password hash, or to change the password of any existing
account to use a long hash, first set the session value of old_passwords set to 0 while leaving the global
value set to 1, as described previously.

In this scenario, the server has an up to date Password column, but is running with the default password
hashing method set to generate pre-4.1 hash values. This is not a recommended configuration but
may be useful during a transitional period in which pre-4.1 clients and passwords are upgraded to
4.1 or later. When that has been done, it is preferable to run the server with old_passwords=0 and
secure_auth=1.

Scenario 3: Long Password column; server started with old_passwords=0:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only using accounts that have short hashes.

• For connected clients, password hash-generating operations involving the PASSWORD() function or
password-generating statements use long hashes exclusively. A change to an account's password
results in that account having a long password hash.

As indicated earlier, a danger in this scenario is that it is possible for accounts that have a short password
hash to become inaccessible to pre-4.1 clients. A change to such an account's password made using
the PASSWORD() function or a password-generating statement results in the account being given a long
password hash. From that point on, no pre-4.1 client can connect to the server using that account. The
client must upgrade to 4.1 or later.

If this is a problem, you can change a password in a special way. For example, normally you use SET
PASSWORD as follows to change an account password:

Making MySQL Secure Against Attackers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 625

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SET PASSWORD FOR 'some_user'@'some_host' = PASSWORD('mypass');

To change the password but create a short hash, use the OLD_PASSWORD() function instead:

SET PASSWORD FOR 'some_user'@'some_host' = OLD_PASSWORD('mypass');

OLD_PASSWORD() is useful for situations in which you explicitly want to generate a short hash.

The disadvantages for each of the preceding scenarios may be summarized as follows:

In scenario 1, you cannot take advantage of longer hashes that provide more secure authentication.

In scenario 2, old_passwords=1 prevents accounts with short hashes from becoming inaccessible, but
password-changing operations cause accounts with long hashes to revert to short hashes unless you take
care to change the session value of old_passwords to 0 first.

In scenario 3, accounts with short hashes become inaccessible to pre-4.1 clients if you change their
passwords without explicitly using OLD_PASSWORD().

The best way to avoid compatibility problems related to short password hashes is to not use them:

• Upgrade all client programs to MySQL 4.1 or later.

• Run the server with old_passwords=0.

• Reset the password for any account with a short password hash to use a long password hash.

• For additional security, run the server with secure_auth=1.

6.1.2.5 Implications of Password Hashing Changes in MySQL 4.1 for Application Programs

An upgrade to MySQL version 4.1 or later can cause compatibility issues for applications that use
PASSWORD() to generate passwords for their own purposes. Applications really should not do this,
because PASSWORD() should be used only to manage passwords for MySQL accounts. But some
applications use PASSWORD() for their own purposes anyway.

If you upgrade to 4.1 or later from a pre-4.1 version of MySQL and run the server under conditions where
it generates long password hashes, an application using PASSWORD() for its own passwords breaks. The
recommended course of action in such cases is to modify the application to use another function, such as
SHA1() or MD5(), to produce hashed values. If that is not possible, you can use the OLD_PASSWORD()
function, which is provided for generate short hashes in the old format. However, you should note that
OLD_PASSWORD() may one day no longer be supported.

If the server is running with old_passwords=1, it generates short hashes and OLD_PASSWORD() is
equivalent to PASSWORD().

PHP programmers migrating their MySQL databases from version 4.0 or lower to version 4.1 or higher
should see MySQL and PHP.

6.1.3 Making MySQL Secure Against Attackers

When you connect to a MySQL server, you should use a password. The password is not transmitted in
clear text over the connection. Password handling during the client connection sequence was upgraded in
MySQL 4.1.1 to be very secure. If you are still using pre-4.1.1-style passwords, the encryption algorithm is

http://dev.mysql.com/doc/apis-php/en/

Making MySQL Secure Against Attackers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 626

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

not as strong as the newer algorithm. With some effort, a clever attacker who can sniff the traffic between
the client and the server can crack the password. (See Section 6.1.2.4, “Password Hashing in MySQL”, for
a discussion of the different password handling methods.)

All other information is transferred as text, and can be read by anyone who is able to watch the connection.
If the connection between the client and the server goes through an untrusted network, and you are
concerned about this, you can use the compressed protocol to make traffic much more difficult to
decipher. You can also use MySQL's internal SSL support to make the connection even more secure.
See Section 6.3.6, “Using Secure Connections”. Alternatively, use SSH to get an encrypted TCP/IP
connection between a MySQL server and a MySQL client. You can find an Open Source SSH client at
http://www.openssh.org/, and a commercial SSH client at http://www.ssh.com/.

To make a MySQL system secure, you should strongly consider the following suggestions:

• Require all MySQL accounts to have a password. A client program does not necessarily know the
identity of the person running it. It is common for client/server applications that the user can specify
any user name to the client program. For example, anyone can use the mysql program to connect as
any other person simply by invoking it as mysql -u other_user db_name if other_user has no
password. If all accounts have a password, connecting using another user's account becomes much
more difficult.

For a discussion of methods for setting passwords, see Section 6.3.5, “Assigning Account Passwords”.

• Make sure that the only Unix user account with read or write privileges in the database directories is the
account that is used for running mysqld.

• Never run the MySQL server as the Unix root user. This is extremely dangerous, because any
user with the FILE privilege is able to cause the server to create files as root (for example,
~root/.bashrc). To prevent this, mysqld refuses to run as root unless that is specified explicitly
using the --user=root option.

mysqld can (and should) be run as an ordinary, unprivileged user instead. You can create a separate
Unix account named mysql to make everything even more secure. Use this account only for
administering MySQL. To start mysqld as a different Unix user, add a user option that specifies the
user name in the [mysqld] group of the my.cnf option file where you specify server options. For
example:

[mysqld]
user=mysql

This causes the server to start as the designated user whether you start it manually or by using
mysqld_safe or mysql.server. For more details, see Section 6.1.5, “How to Run MySQL as a
Normal User”.

Running mysqld as a Unix user other than root does not mean that you need to change the root user
name in the user table. User names for MySQL accounts have nothing to do with user names for Unix
accounts.

• Do not grant the FILE privilege to nonadministrative users. Any user that has this privilege can write
a file anywhere in the file system with the privileges of the mysqld daemon. This includes the server's
data directory containing the files that implement the privilege tables. To make FILE-privilege operations
a bit safer, files generated with SELECT ... INTO OUTFILE do not overwrite existing files and are
writable by everyone.

The FILE privilege may also be used to read any file that is world-readable or accessible to the Unix
user that the server runs as. With this privilege, you can read any file into a database table. This could

http://www.openssh.org/
http://www.ssh.com/

Security-Related mysqld Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 627

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

be abused, for example, by using LOAD DATA to load /etc/passwd into a table, which then can be
displayed with SELECT.

To limit the location in which files can be read and written, set the secure_file_priv system to a
specific directory. See Section 5.1.4, “Server System Variables”.

• Do not grant the PROCESS or SUPER privilege to nonadministrative users. The output of mysqladmin
processlist and SHOW PROCESSLIST shows the text of any statements currently being executed, so
any user who is permitted to see the server process list might be able to see statements issued by other
users such as UPDATE user SET password=PASSWORD('not_secure').

mysqld reserves an extra connection for users who have the SUPER privilege, so that a MySQL root
user can log in and check server activity even if all normal connections are in use.

The SUPER privilege can be used to terminate client connections, change server operation by changing
the value of system variables, and control replication servers.

• Do not permit the use of symlinks to tables. (This capability can be disabled with the --skip-
symbolic-links option.) This is especially important if you run mysqld as root, because anyone
that has write access to the server's data directory then could delete any file in the system! See
Section 8.12.4.2, “Using Symbolic Links for MyISAM Tables on Unix”.

• Stored programs and views should be written using the security guidelines discussed in Section 18.5,
“Access Control for Stored Programs and Views”.

• If you do not trust your DNS, you should use IP addresses rather than host names in the grant tables.
In any case, you should be very careful about creating grant table entries using host name values that
contain wildcards.

• If you want to restrict the number of connections permitted to a single account, you can do so by setting
the max_user_connections variable in mysqld. The GRANT statement also supports resource control
options for limiting the extent of server use permitted to an account. See Section 13.7.1.3, “GRANT
Syntax”.

• If the plugin directory is writable by the server, it may be possible for a user to write executable code
to a file in the directory using SELECT ... INTO DUMPFILE. This can be prevented by making
plugin_dir read only to the server or by setting --secure-file-priv to a directory where SELECT
writes can be made safely.

6.1.4 Security-Related mysqld Options and Variables

The following table shows mysqld options and system variables that affect security. For descriptions
of each of these, see Section 5.1.3, “Server Command Options”, and Section 5.1.4, “Server System
Variables”.

Table 6.1 Security Option/Variable Summary

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

allow-suspicious-
udfs

Yes Yes

automatic_sp_privileges Yes Global Yes

chroot Yes Yes

des-key-file Yes Yes

local_infile Yes Global Yes

How to Run MySQL as a Normal User

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 628

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

old_passwords Yes Both Yes

safe-show-
database

Yes Yes

safe-user-create Yes Yes

secure-auth Yes Yes Global Yes

- Variable:
secure_auth

 Yes Global Yes

secure-file-priv Yes Yes Global No

- Variable:
secure_file_priv

 Yes Global No

skip-grant-tables Yes Yes

skip-name-resolve Yes Yes

skip-networking Yes Yes Global No

- Variable:
skip_networking

 Yes Global No

skip-show-
database

Yes Yes Global No

- Variable:
skip_show_database

 Yes Global No

6.1.5 How to Run MySQL as a Normal User

On Windows, you can run the server as a Windows service using a normal user account.

On Unix, the MySQL server mysqld can be started and run by any user. However, you should avoid
running the server as the Unix root user for security reasons. To change mysqld to run as a normal
unprivileged Unix user user_name, you must do the following:

1. Stop the server if it is running (use mysqladmin shutdown).

2. Change the database directories and files so that user_name has privileges to read and write files in
them (you might need to do this as the Unix root user):

shell> chown -R user_name /path/to/mysql/datadir

If you do not do this, the server will not be able to access databases or tables when it runs as
user_name.

If directories or files within the MySQL data directory are symbolic links, chown -R might not follow
symbolic links for you. If it does not, you will also need to follow those links and change the directories
and files they point to.

3. Start the server as user user_name. Another alternative is to start mysqld as the Unix root user
and use the --user=user_name option. mysqld starts up, then switches to run as the Unix user
user_name before accepting any connections.

4. To start the server as the given user automatically at system startup time, specify the user name by
adding a user option to the [mysqld] group of the /etc/my.cnf option file or the my.cnf option file
in the server's data directory. For example:

Security Issues with LOAD DATA LOCAL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 629

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

[mysqld]
user=user_name

If your Unix machine itself is not secured, you should assign passwords to the MySQL root accounts
in the grant tables. Otherwise, any user with a login account on that machine can run the mysql client
with a --user=root option and perform any operation. (It is a good idea to assign passwords to
MySQL accounts in any case, but especially so when other login accounts exist on the server host.) See
Section 2.18.4, “Securing the Initial MySQL Accounts”.

6.1.6 Security Issues with LOAD DATA LOCAL

The LOAD DATA statement can load a file that is located on the server host, or it can load a file that is
located on the client host when the LOCAL keyword is specified.

There are two potential security issues with supporting the LOCAL version of LOAD DATA statements:

• The transfer of the file from the client host to the server host is initiated by the MySQL server. In theory,
a patched server could be built that would tell the client program to transfer a file of the server's choosing
rather than the file named by the client in the LOAD DATA statement. Such a server could access any file
on the client host to which the client user has read access.

• In a Web environment where the clients are connecting from a Web server, a user could use LOAD
DATA LOCAL to read any files that the Web server process has read access to (assuming that a user
could run any command against the SQL server). In this environment, the client with respect to the
MySQL server actually is the Web server, not the remote program being run by the user who connects to
the Web server.

To deal with these problems, LOAD DATA LOCAL works like this:

• By default, all MySQL clients and libraries in binary distributions are compiled with the --enable-
local-infile option.

• If you build MySQL from source but do not invoke configure with the --enable-local-infile
option, LOAD DATA LOCAL cannot be used by any client unless it is written explicitly to invoke
mysql_options(... MYSQL_OPT_LOCAL_INFILE, 0). See Section 20.6.7.49, “mysql_options()”.

• You can disable all LOAD DATA LOCAL statements from the server side by starting mysqld with the --
local-infile=0 option.

• For the mysql command-line client, enable LOAD DATA LOCAL by specifying the --local-
infile[=1] option, or disable it with the --local-infile=0 option. For mysqlimport, local data
file loading is off by default; enable it with the --local or -L option. In any case, successful use of a
local load operation requires that the server permits it.

• If you use LOAD DATA LOCAL in Perl scripts or other programs that read the [client] group from
option files, you can add the local-infile=1 option to that group. However, to keep this from causing
problems for programs that do not understand local-infile, specify it using the loose- prefix:

[client]
loose-local-infile=1

• If LOAD DATA LOCAL is disabled, either in the server or the client, a client that attempts to issue such a
statement receives the following error message:

ERROR 1148: The used command is not allowed with this MySQL version

Client Programming Security Guidelines

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 630

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

6.1.7 Client Programming Security Guidelines

Applications that access MySQL should not trust any data entered by users, who can try to trick your
code by entering special or escaped character sequences in Web forms, URLs, or whatever application
you have built. Be sure that your application remains secure if a user enters something like “; DROP
DATABASE mysql;”. This is an extreme example, but large security leaks and data loss might occur as a
result of hackers using similar techniques, if you do not prepare for them.

A common mistake is to protect only string data values. Remember to check numeric data as well. If an
application generates a query such as SELECT * FROM table WHERE ID=234 when a user enters
the value 234, the user can enter the value 234 OR 1=1 to cause the application to generate the query
SELECT * FROM table WHERE ID=234 OR 1=1. As a result, the server retrieves every row in the
table. This exposes every row and causes excessive server load. The simplest way to protect from
this type of attack is to use single quotation marks around the numeric constants: SELECT * FROM
table WHERE ID='234'. If the user enters extra information, it all becomes part of the string. In a
numeric context, MySQL automatically converts this string to a number and strips any trailing nonnumeric
characters from it.

Sometimes people think that if a database contains only publicly available data, it need not be protected.
This is incorrect. Even if it is permissible to display any row in the database, you should still protect against
denial of service attacks (for example, those that are based on the technique in the preceding paragraph
that causes the server to waste resources). Otherwise, your server becomes unresponsive to legitimate
users.

Checklist:

• Enable strict SQL mode to tell the server to be more restrictive of what data values it accepts. See
Section 5.1.7, “Server SQL Modes”.

• Try to enter single and double quotation marks (“'” and “"”) in all of your Web forms. If you get any kind
of MySQL error, investigate the problem right away.

• Try to modify dynamic URLs by adding %22 (“"”), %23 (“#”), and %27 (“'”) to them.

• Try to modify data types in dynamic URLs from numeric to character types using the characters shown in
the previous examples. Your application should be safe against these and similar attacks.

• Try to enter characters, spaces, and special symbols rather than numbers in numeric fields. Your
application should remove them before passing them to MySQL or else generate an error. Passing
unchecked values to MySQL is very dangerous!

• Check the size of data before passing it to MySQL.

• Have your application connect to the database using a user name different from the one you use for
administrative purposes. Do not give your applications any access privileges they do not need.

Many application programming interfaces provide a means of escaping special characters in data values.
Properly used, this prevents application users from entering values that cause the application to generate
statements that have a different effect than you intend:

• MySQL C API: Use the mysql_real_escape_string() API call.

• MySQL++: Use the escape and quote modifiers for query streams.

• PHP: Use either the mysqli or pdo_mysql extensions, and not the older ext/mysql extension.
The preferred API's support the improved MySQL authentication protocol and passwords, as well as
prepared statements with placeholders. See also Choosing an API.

http://dev.mysql.com/doc/apis-php/en/apis-php-mysqlinfo.api.choosing.html

The MySQL Access Privilege System

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 631

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If the older ext/mysql extension must be used, then for escaping use the
mysql_real_escape_string() function and not mysql_escape_string() or addslashes()
because only mysql_real_escape_string() is character set-aware; the other functions can be
“bypassed” when using (invalid) multibyte character sets.

• Perl DBI: Use placeholders or the quote() method.

• Ruby DBI: Use placeholders or the quote() method.

• Java JDBC: Use a PreparedStatement object and placeholders.

Other programming interfaces might have similar capabilities.

6.2 The MySQL Access Privilege System

The primary function of the MySQL privilege system is to authenticate a user who connects from a given
host and to associate that user with privileges on a database such as SELECT, INSERT, UPDATE, and
DELETE. Additional functionality includes the ability to have anonymous users and to grant privileges for
MySQL-specific functions such as LOAD DATA INFILE and administrative operations.

There are some things that you cannot do with the MySQL privilege system:

• You cannot explicitly specify that a given user should be denied access. That is, you cannot explicitly
match a user and then refuse the connection.

• You cannot specify that a user has privileges to create or drop tables in a database but not to create or
drop the database itself.

• A password applies globally to an account. You cannot associate a password with a specific object such
as a database, table, or routine.

The user interface to the MySQL privilege system consists of SQL statements such as CREATE USER,
GRANT, and REVOKE. See Section 13.7.1, “Account Management Statements”.

Internally, the server stores privilege information in the grant tables of the mysql database (that is, in the
database named mysql). The MySQL server reads the contents of these tables into memory when it starts
and bases access-control decisions on the in-memory copies of the grant tables.

The MySQL privilege system ensures that all users may perform only the operations permitted to them.
As a user, when you connect to a MySQL server, your identity is determined by the host from which you
connect and the user name you specify. When you issue requests after connecting, the system grants
privileges according to your identity and what you want to do.

MySQL considers both your host name and user name in identifying you because there is no reason
to assume that a given user name belongs to the same person on all hosts. For example, the user
joe who connects from office.example.com need not be the same person as the user joe who
connects from home.example.com. MySQL handles this by enabling you to distinguish users on
different hosts that happen to have the same name: You can grant one set of privileges for connections
by joe from office.example.com, and a different set of privileges for connections by joe from
home.example.com. To see what privileges a given account has, use the SHOW GRANTS statement. For
example:

SHOW GRANTS FOR 'joe'@'office.example.com';
SHOW GRANTS FOR 'joe'@'home.example.com';

Privileges Provided by MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 632

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL access control involves two stages when you run a client program that connects to the server:

Stage 1: The server accepts or rejects the connection based on your identity and whether you can verify
your identity by supplying the correct password.

Stage 2: Assuming that you can connect, the server checks each statement you issue to determine
whether you have sufficient privileges to perform it. For example, if you try to select rows from a table in a
database or drop a table from the database, the server verifies that you have the SELECT privilege for the
table or the DROP privilege for the database.

For a more detailed description of what happens during each stage, see Section 6.2.4, “Access Control,
Stage 1: Connection Verification”, and Section 6.2.5, “Access Control, Stage 2: Request Verification”.

If your privileges are changed (either by yourself or someone else) while you are connected, those
changes do not necessarily take effect immediately for the next statement that you issue. For details
about the conditions under which the server reloads the grant tables, see Section 6.2.6, “When Privilege
Changes Take Effect”.

For general security-related advice, see Section 6.1, “General Security Issues”. For help in diagnosing
privilege-related problems, see Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”.

6.2.1 Privileges Provided by MySQL

MySQL provides privileges that apply in different contexts and at different levels of operation:

• Administrative privileges enable users to manage operation of the MySQL server. These privileges are
global because they are not specific to a particular database.

• Database privileges apply to a database and to all objects within it. These privileges can be granted for
specific databases, or globally so that they apply to all databases.

• Privileges for database objects such as tables, indexes, views, and stored routines can be granted for
specific objects within a database, for all objects of a given type within a database (for example, all
tables in a database), or globally for all objects of a given type in all databases).

Information about account privileges is stored in the user, db, host, tables_priv, columns_priv,
and procs_priv tables in the mysql database (see Section 6.2.2, “Grant Tables”). The MySQL server
reads the contents of these tables into memory when it starts and reloads them under the circumstances
indicated in Section 6.2.6, “When Privilege Changes Take Effect”. Access-control decisions are based on
the in-memory copies of the grant tables.

Some releases of MySQL introduce changes to the structure of the grant tables to add new privileges or
features. To make sure that you can take advantage of any new capabilities, update your grant tables
to have the current structure whenever you update to a new version of MySQL. See Section 4.4.9,
“mysql_upgrade — Check Tables for MySQL Upgrade”.

The following table shows the privilege names used at the SQL level in the GRANT and REVOKE
statements, along with the column name associated with each privilege in the grant tables and the context
in which the privilege applies.

Table 6.2 Permissible Privileges for GRANT and REVOKE

Privilege Column Context

CREATE Create_priv databases, tables, or indexes

DROP Drop_priv databases, tables, or views

Privileges Provided by MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 633

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Privilege Column Context

GRANT OPTION Grant_priv databases, tables, or stored routines

LOCK TABLES Lock_tables_priv databases

REFERENCES References_priv databases or tables

ALTER Alter_priv tables

DELETE Delete_priv tables

INDEX Index_priv tables

INSERT Insert_priv tables or columns

SELECT Select_priv tables or columns

UPDATE Update_priv tables or columns

CREATE TEMPORARY
TABLES

Create_tmp_table_priv tables

CREATE VIEW Create_view_priv views

SHOW VIEW Show_view_priv views

ALTER ROUTINE Alter_routine_priv stored routines

CREATE ROUTINE Create_routine_priv stored routines

EXECUTE Execute_priv stored routines

FILE File_priv file access on server host

CREATE USER Create_user_priv server administration

PROCESS Process_priv server administration

RELOAD Reload_priv server administration

REPLICATION CLIENT Repl_client_priv server administration

REPLICATION SLAVE Repl_slave_priv server administration

SHOW DATABASES Show_db_priv server administration

SHUTDOWN Shutdown_priv server administration

SUPER Super_priv server administration

ALL [PRIVILEGES] server administration

USAGE server administration

The following list provides a general description of each privilege available in MySQL. Particular SQL
statements might have more specific privilege requirements than indicated here. If so, the description for
the statement in question provides the details.

• The ALL or ALL PRIVILEGES privilege specifier is shorthand. It stands for “all privileges available at
a given privilege level” (except GRANT OPTION). For example, granting ALL at the global or table level
grants all global privileges or all table-level privileges.

• The ALTER privilege enables use of ALTER TABLE to change the structure of tables. ALTER TABLE
also requires the CREATE and INSERT privileges. Renaming a table requires ALTER and DROP on the
old table, CREATE, and INSERT on the new table.

• The ALTER ROUTINE privilege is needed to alter or drop stored routines (procedures and functions).
This privilege was added in MySQL 5.0.3.

• The CREATE privilege enables creation of new databases and tables.

Privileges Provided by MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 634

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The CREATE ROUTINE privilege is needed to create stored routines (procedures and functions). This
privilege was added in MySQL 5.0.3.

• The CREATE TEMPORARY TABLES privilege enables the creation of temporary tables using the CREATE
TEMPORARY TABLE statement.

However, other operations on a temporary table, such as INSERT, UPDATE, or SELECT, require
additional privileges for those operations for the database containing the temporary table, or for the
nontemporary table of the same name.

To keep privileges for temporary and nontemporary tables separate, a common workaround for this
situation is to create a database dedicated to the use of temporary tables. Then for that database, a user
can be granted the CREATE TEMPORARY TABLES privilege, along with any other privileges required for
temporary table operations done by that user.

• The CREATE USER privilege enables use of CREATE USER, DROP USER, RENAME USER, and REVOKE
ALL PRIVILEGES. This privilege was added in MySQL 5.0.3.

• The CREATE VIEW privilege enables use of CREATE VIEW. This privilege was added in MySQL 5.0.1.

• The DELETE privilege enables rows to be deleted from tables in a database.

• The DROP privilege enables you to drop (remove) existing databases and tables. If you grant the DROP
privilege for the mysql database to a user, that user can drop the database in which the MySQL access
privileges are stored.

• The EXECUTE privilege is required to execute stored routines (procedures and functions). This privilege
was added in MySQL 5.0.0 but did not become operational until MySQL 5.0.3.

• The FILE privilege gives you permission to read and write files on the server host using the LOAD DATA
INFILE and SELECT ... INTO OUTFILE statements and the LOAD_FILE() function. A user who
has the FILE privilege can read any file on the server host that is either world-readable or readable
by the MySQL server. (This implies the user can read any file in any database directory, because the
server can access any of those files.) The FILE privilege also enables the user to create new files in any
directory where the MySQL server has write access. This includes the server's data directory containing
the files that implement the privilege tables. As a security measure, the server will not overwrite existing
files.

To limit the location in which files can be read and written, set the secure_file_priv system to a
specific directory. See Section 5.1.4, “Server System Variables”.

• The GRANT OPTION privilege enables you to give to other users or remove from other users those
privileges that you yourself possess.

• The INDEX privilege enables you to create or drop (remove) indexes. INDEX applies to existing tables.
If you have the CREATE privilege for a table, you can include index definitions in the CREATE TABLE
statement.

• The INSERT privilege enables rows to be inserted into tables in a database. INSERT is also required for
the ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE table-maintenance statements.

• The LOCK TABLES privilege enables the use of explicit LOCK TABLES statements to lock tables for
which you have the SELECT privilege. This includes the use of write locks, which prevents other sessions
from reading the locked table.

• The PROCESS privilege pertains to display of information about the threads executing within the server
(that is, information about the statements being executed by sessions). The privilege enables use of

Privileges Provided by MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 635

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SHOW PROCESSLIST or mysqladmin processlist to see threads belonging to other accounts; you
can always see your own threads.

• The REFERENCES privilege is unused.

• The RELOAD privilege enables use of the FLUSH statement. It also enables mysqladmin commands
that are equivalent to FLUSH operations: flush-hosts, flush-logs, flush-privileges, flush-
status, flush-tables, flush-threads, refresh, and reload.

The reload command tells the server to reload the grant tables into memory. flush-privileges is
a synonym for reload. The refresh command closes and reopens the log files and flushes all tables.
The other flush-xxx commands perform functions similar to refresh, but are more specific and may
be preferable in some instances. For example, if you want to flush just the log files, flush-logs is a
better choice than refresh.

• The REPLICATION CLIENT privilege enables the use of SHOW MASTER STATUS and SHOW SLAVE
STATUS.

• The REPLICATION SLAVE privilege should be granted to accounts that are used by slave servers to
connect to the current server as their master. Without this privilege, the slave cannot request updates
that have been made to databases on the master server.

• The SELECT privilege enables you to select rows from tables in a database. SELECT statements require
the SELECT privilege only if they actually retrieve rows from a table. Some SELECT statements do not
access tables and can be executed without permission for any database. For example, you can use
SELECT as a simple calculator to evaluate expressions that make no reference to tables:

SELECT 1+1;
SELECT PI()*2;

The SELECT privilege is also needed for other statements that read column values. For example,
SELECT is needed for columns referenced on the right hand side of col_name=expr assignment in
UPDATE statements or for columns named in the WHERE clause of DELETE or UPDATE statements.

• The SHOW DATABASES privilege enables the account to see database names by issuing the SHOW
DATABASE statement. Accounts that do not have this privilege see only databases for which they have
some privileges, and cannot use the statement at all if the server was started with the --skip-show-
database option. Note that any global privilege is a privilege for the database.

• The SHOW VIEW privilege enables use of SHOW CREATE VIEW. This privilege was added in MySQL
5.0.1.

• The SHUTDOWN privilege enables use of the mysqladmin shutdown command and the
mysql_shutdown() C API function. There is no corresponding SQL statement.

• The SUPER privilege enables an account to use CHANGE MASTER TO, KILL or mysqladmin kill to
kill threads belonging to other accounts (you can always kill your own threads), PURGE BINARY LOGS,
configuration changes using SET GLOBAL to modify global system variables, the mysqladmin debug
command, enabling or disabling logging, performing updates even if the read_only system variable is
enabled, starting and stopping replication on slave servers, specification of any account in the DEFINER
attribute of stored programs and views, and enables you to connect (once) even if the connection limit
controlled by the max_connections system variable is reached.

To create or alter stored routines if binary logging is enabled, you may also need the SUPER privilege, as
described in Section 18.6, “Binary Logging of Stored Programs”.

• The UPDATE privilege enables rows to be updated in tables in a database.

Grant Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 636

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The USAGE privilege specifier stands for “no privileges.” It is used at the global level with GRANT to
modify account attributes such as resource limits or SSL characteristics without affecting existing
account privileges.

It is a good idea to grant to an account only those privileges that it needs. You should exercise particular
caution in granting the FILE and administrative privileges:

• The FILE privilege can be abused to read into a database table any files that the MySQL server can
read on the server host. This includes all world-readable files and files in the server's data directory. The
table can then be accessed using SELECT to transfer its contents to the client host.

• The GRANT OPTION privilege enables users to give their privileges to other users. Two users that have
different privileges and with the GRANT OPTION privilege are able to combine privileges.

• The ALTER privilege may be used to subvert the privilege system by renaming tables.

• The SHUTDOWN privilege can be abused to deny service to other users entirely by terminating the server.

• The PROCESS privilege can be used to view the plain text of currently executing statements, including
statements that set or change passwords.

• The SUPER privilege can be used to terminate other sessions or change how the server operates.

• Privileges granted for the mysql database itself can be used to change passwords and other access
privilege information. Passwords are stored encrypted, so a malicious user cannot simply read them to
know the plain text password. However, a user with write access to the user table Password column
can change an account's password, and then connect to the MySQL server using that account.

6.2.2 Grant Tables

The mysql system database includes several grant tables that contain information about user accounts
and the privileges held by them. This section describes those tables. For information about other tables in
the system database, see Section 5.3, “The mysql System Database”.

Normally, to manipulate the contents of grant tables, you modify them indirectly by using account-
management statements such as CREATE USER, GRANT, and REVOKE to set up accounts and control the
privileges available to each one. See Section 13.7.1, “Account Management Statements”. The discussion
here describes the underlying structure of the grant tables and how the server uses their contents when
interacting with clients.

Note

Direct modification of grant tables using statements such as INSERT, UPDATE, or
DELETE is discouraged and done at your own risk. The server is free to ignore rows
that become malformed as a result of such modifications.

These mysql database tables contain grant information:

• user: User accounts, global privileges, and other non-privilege columns.

• db: Database-level privileges.

• host: Obsolete.

• tables_priv: Table-level privileges.

• columns_priv: Column-level privileges.

Grant Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 637

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• procs_priv: Stored procedure and function privileges.

Each grant table contains scope columns and privilege columns:

• Scope columns determine the scope of each row in the tables; that is, the context in which the row
applies. For example, a user table row with Host and User values of 'thomas.loc.gov' and
'bob' applies to authenticating connections made to the server from the host thomas.loc.gov by
a client that specifies a user name of bob. Similarly, a db table row with Host, User, and Db column
values of 'thomas.loc.gov', 'bob' and 'reports' applies when bob connects from the host
thomas.loc.gov to access the reports database. The tables_priv and columns_priv tables
contain scope columns indicating tables or table/column combinations to which each row applies. The
procs_priv scope columns indicate the stored routine to which each row applies.

• Privilege columns indicate which privileges a table row grants; that is, which operations it permits to
be performed. The server combines the information in the various grant tables to form a complete
description of a user's privileges. Section 6.2.5, “Access Control, Stage 2: Request Verification”,
describes the rules for this.

The server uses the grant tables in the following manner:

• The user table scope columns determine whether to reject or permit incoming connections. For
permitted connections, any privileges granted in the user table indicate the user's global privileges. Any
privileges granted in this table apply to all databases on the server.

Caution

Because any global privilege is considered a privilege for all databases,
any global privilege enables a user to see all database names with SHOW
DATABASES or by examining the SCHEMATA table of INFORMATION_SCHEMA.

• The db table scope columns determine which users can access which databases from which hosts. The
privilege columns determine the permitted operations. A privilege granted at the database level applies
to the database and to all objects in the database, such as tables and stored programs.

• The host table is used in conjunction with the db table when you want a given db table row to apply to
several hosts. For example, if you want a user to be able to use a database from several hosts in your
network, leave the Host value empty in the user's db table row, then populate the host table with a
row for each of those hosts. This mechanism is described more detail in Section 6.2.5, “Access Control,
Stage 2: Request Verification”.

Note

The host table must be modified directly with statements such as INSERT,
UPDATE, and DELETE. It is not affected by statements such as GRANT and
REVOKE that modify the grant tables indirectly. Most MySQL installations need not
use this table at all.

• The tables_priv and columns_priv tables are similar to the db table, but are more fine-grained:
They apply at the table and column levels rather than at the database level. A privilege granted at the
table level applies to the table and to all its columns. A privilege granted at the column level applies only
to a specific column.

• The procs_priv table applies to stored routines (procedures and functions). A privilege granted at the
routine level applies only to a single procedure or function.

The server uses the user, db, and host tables in the mysql database at both the first and second stages
of access control (see Section 6.2, “The MySQL Access Privilege System”). The columns in the user and

Grant Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 638

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

db tables are shown here. The host table is similar to the db table but has a specialized use as described
in Section 6.2.5, “Access Control, Stage 2: Request Verification”.

Table 6.3 user and db Table Columns

Table Name user db

Scope columns Host Host

 User Db

 Password User

Privilege columns Select_priv Select_priv

 Insert_priv Insert_priv

 Update_priv Update_priv

 Delete_priv Delete_priv

 Index_priv Index_priv

 Alter_priv Alter_priv

 Create_priv Create_priv

 Drop_priv Drop_priv

 Grant_priv Grant_priv

 Create_view_priv Create_view_priv

 Show_view_priv Show_view_priv

 Create_routine_priv Create_routine_priv

 Alter_routine_priv Alter_routine_priv

 Execute_priv Execute_priv

 Create_tmp_table_priv Create_tmp_table_priv

 Lock_tables_priv Lock_tables_priv

 References_priv References_priv

 Reload_priv

 Shutdown_priv

 Process_priv

 File_priv

 Show_db_priv

 Super_priv

 Repl_slave_priv

 Repl_client_priv

 Create_user_priv

Security columns ssl_type

 ssl_cipher

 x509_issuer

 x509_subject

Resource control columns max_questions

 max_updates

Grant Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 639

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Table Name user db

 max_connections

 max_user_connections

Execute_priv was present in MySQL 5.0.0, but did not become operational until MySQL 5.0.3.

The Create_view_priv and Show_view_priv columns were added in MySQL 5.0.1.

The Create_routine_priv, Alter_routine_priv, and max_user_connections columns were
added in MySQL 5.0.3.

During the second stage of access control, the server performs request verification to ensure that each
client has sufficient privileges for each request that it issues. In addition to the user, db, and host grant
tables, the server may also consult the tables_priv and columns_priv tables for requests that involve
tables. The latter tables provide finer privilege control at the table and column levels. They have the
columns shown in the following table.

Table 6.4 tables_priv and columns_priv Table Columns

Table Name tables_priv columns_priv

Scope columns Host Host

 Db Db

 User User

 Table_name Table_name

 Column_name

Privilege columns Table_priv Column_priv

 Column_priv

Other columns Timestamp Timestamp

 Grantor

The Timestamp and Grantor columns are unused.

For verification of requests that involve stored routines, the server may consult the procs_priv table,
which has the columns shown in the following table.

Table 6.5 procs_priv Table Columns

Table Name procs_priv

Scope columns Host

 Db

 User

 Routine_name

 Routine_type

Privilege columns Proc_priv

Other columns Timestamp

 Grantor

Grant Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 640

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The procs_priv table exists as of MySQL 5.0.3. The Routine_type column was added in MySQL
5.0.6. It is an ENUM column with values of 'FUNCTION' or 'PROCEDURE' to indicate the type of routine the
row refers to. This column enables privileges to be granted separately for a function and a procedure with
the same name.

The Timestamp and Grantor columns are set to the current timestamp and the CURRENT_USER value,
respectively, but are otherwise unused.

Scope columns in the grant tables contain strings. The default value for each is the empty string. The
following table shows the number of characters permitted in each column.

Table 6.6 Grant Table Scope Column Lengths

Column Name Maximum Permitted Characters

Host 60

User 16

Password 41

Db 64

Table_name 64

Column_name 64

Routine_name 64

For access-checking purposes, comparisons of User, Password, Db, and Table_name values are case
sensitive. Comparisons of Host, Column_name, and Routine_name values are not case sensitive.

The user, db, and host tables list each privilege in a separate column that is declared as
ENUM('N','Y') DEFAULT 'N'. In other words, each privilege can be disabled or enabled, with the
default being disabled.

The tables_priv, columns_priv, and procs_priv tables declare the privilege columns as SET
columns. Values in these columns can contain any combination of the privileges controlled by the table.
Only those privileges listed in the column value are enabled.

Table 6.7 Set-Type Privilege Column Values

Table Name Column Name Possible Set Elements

tables_priv Table_priv 'Select', 'Insert', 'Update',
'Delete', 'Create', 'Drop', 'Grant',
'References', 'Index', 'Alter',
'Create View', 'Show view'

tables_priv Column_priv 'Select', 'Insert', 'Update',
'References'

columns_priv Column_priv 'Select', 'Insert', 'Update',
'References'

procs_priv Proc_priv 'Execute', 'Alter Routine', 'Grant'

Only the user table specifies administrative privileges, such as RELOAD and SHUTDOWN. Administrative
operations are operations on the server itself and are not database-specific, so there is no reason to list

Specifying Account Names

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 641

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

these privileges in the other grant tables. Consequently, the server need consult only the user table to
determine whether a user can perform an administrative operation.

The FILE privilege also is specified only in the user table. It is not an administrative privilege as such, but
a user's ability to read or write files on the server host is independent of the database being accessed.

The server reads the contents of the grant tables into memory when it starts. You can tell it to reload the
tables by issuing a FLUSH PRIVILEGES statement or executing a mysqladmin flush-privileges
or mysqladmin reload command. Changes to the grant tables take effect as indicated in Section 6.2.6,
“When Privilege Changes Take Effect”.

When you modify an account, it is a good idea to verify that your changes have the intended effect.
To check the privileges for a given account, use the SHOW GRANTS statement. For example, to
determine the privileges that are granted to an account with user name and host name values of bob and
pc84.example.com, use this statement:

SHOW GRANTS FOR 'bob'@'pc84.example.com';

6.2.3 Specifying Account Names

MySQL account names consist of a user name and a host name. This enables creation of accounts for
users with the same name who can connect from different hosts. This section describes how to write
account names, including special values and wildcard rules.

In SQL statements such as CREATE USER, GRANT, and SET PASSWORD, write account names using the
following rules:

• Syntax for account names is 'user_name'@'host_name'.

• An account name consisting only of a user name is equivalent to 'user_name'@'%'. For example,
'me' is equivalent to 'me'@'%'.

• The user name and host name need not be quoted if they are legal as unquoted identifiers. Quotes are
necessary to specify a user_name string containing special characters (such as “-”), or a host_name
string containing special characters or wildcard characters (such as “%”); for example, 'test-
user'@'%.com'.

• Quote user names and host names as identifiers or as strings, using either backticks (“`”), single
quotation marks (“'”), or double quotation marks (“"”).

• The user name and host name parts, if quoted, must be quoted separately. That is, write
'me'@'localhost', not 'me@localhost'; the latter is interpreted as 'me@localhost'@'%'.

MySQL stores account names in grant tables in the mysql database using separate columns for the user
name and host name parts:

• The user table contains one row for each account. The User and Host columns store the user name
and host name. This table also indicates which global privileges the account has.

• Other grant tables indicate privileges an account has for databases and objects within databases. These
tables have User and Host columns to store the account name. Each row in these tables associates
with the account in the user table that has the same User and Host values.

• A reference to the CURRENT_USER or CURRENT_USER() function is equivalent to specifying the current
client's user name and host name literally.

Specifying Account Names

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 642

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For additional detail about grant table structure, see Section 6.2.2, “Grant Tables”.

User names and host names have certain special values or wildcard conventions, as described following.

A user name is either a nonblank value that literally matches the user name for incoming connection
attempts, or a blank value (empty string) that matches any user name. An account with a blank user name
is an anonymous user. To specify an anonymous user in SQL statements, use a quoted empty user name
part, such as ''@'localhost'.

The host name part of an account name can take many forms, and wildcards are permitted:

• A host value can be a host name or an IP address. The name 'localhost' indicates the local host.
The IP address '127.0.0.1' indicates the loopback interface.

• You can use the wildcard characters “%” and “_” in host name or IP address values. These have the
same meaning as for pattern-matching operations performed with the LIKE operator. For example, a
host value of '%' matches any host name, whereas a value of '%.mysql.com' matches any host in
the mysql.com domain. '192.168.1.%' matches any host in the 192.168.1 class C network.

Because you can use IP wildcard values in host values (for example, '192.168.1.%' to
match every host on a subnet), someone could try to exploit this capability by naming a host
192.168.1.somewhere.com. To foil such attempts, MySQL disallows matching on host names that
start with digits and a dot. Thus, if you have a host named something like 1.2.example.com, its name
never matches the host part of account names. An IP wildcard value can match only IP addresses, not
host names.

• For a host value specified as an IP address, you can specify a netmask indicating how many address
bits to use for the network number. The syntax is host_ip/netmask. For example:

CREATE USER 'david'@'192.58.197.0/255.255.255.0';

This enables david to connect from any client host having an IP address client_ip for which the
following condition is true:

client_ip & netmask = host_ip

That is, for the CREATE USER statement just shown:

client_ip & 255.255.255.0 = 192.58.197.0

IP addresses that satisfy this condition and can connect to the MySQL server are those in the range from
192.58.197.0 to 192.58.197.255.

A netmask typically begins with bits set to 1, followed by bits set to 0. Examples:

• 192.0.0.0/255.0.0.0: Any host on the 192 class A network

• 192.168.0.0/255.255.0.0: Any host on the 192.168 class B network

• 192.168.1.0/255.255.255.0: Any host on the 192.168.1 class C network

• 192.168.1.1: Only the host with this specific IP address

The following netmask will not work because it masks 28 bits, and 28 is not a multiple of 8:

Access Control, Stage 1: Connection Verification

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 643

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

192.168.0.1/255.255.255.240

The server performs matching of host values in account names against the client host using the value
returned by the system DNS resolver for the client host name or IP address. Except in the case that the
account host value is specified using netmask notation, this comparison is performed as a string match,
even for an account host value given as an IP address. This means that you should specify account host
values in the same format used by DNS. Here are examples of problems to watch out for:

• Suppose that a host on the local network has a fully qualified name of host1.example.com. If DNS
returns name lookups for this host as host1.example.com, use that name in account host values. But
if DNS returns just host1, use host1 instead.

• If DNS returns the IP address for a given host as 192.168.1.2, that will match an account host value of
192.168.1.2 but not 192.168.01.2. Similarly, it will match an account host pattern like 192.168.1.
% but not 192.168.01.%.

To avoid problems like this, it is advisable to check the format in which your DNS returns host names and
addresses, and use values in the same format in MySQL account names.

6.2.4 Access Control, Stage 1: Connection Verification

When you attempt to connect to a MySQL server, the server accepts or rejects the connection based on
your identity and whether you can verify your identity by supplying the correct password. If not, the server
denies access to you completely. Otherwise, the server accepts the connection, and then enters Stage 2
and waits for requests.

Credential checking is performed using the three user table scope columns (Host, User, and
Password). The server accepts the connection only if the Host and User columns in some user table
row match the client host name and user name and the client supplies the password specified in that row.
The rules for permissible Host and User values are given in Section 6.2.3, “Specifying Account Names”.

Your identity is based on two pieces of information:

• The client host from which you connect

• Your MySQL user name

If the User column value is nonblank, the user name in an incoming connection must match exactly. If the
User value is blank, it matches any user name. If the user table row that matches an incoming connection
has a blank user name, the user is considered to be an anonymous user with no name, not a user with the
name that the client actually specified. This means that a blank user name is used for all further access
checking for the duration of the connection (that is, during Stage 2).

The Password column can be blank. This is not a wildcard and does not mean that any password
matches. It means that the user must connect without specifying a password.

Nonblank Password values in the user table represent encrypted passwords. MySQL does not store
passwords in cleartext form for anyone to see. Rather, the password supplied by a user who is attempting
to connect is encrypted (using the PASSWORD() function). The encrypted password then is used during the
connection process when checking whether the password is correct. This is done without the encrypted
password ever traveling over the connection. See Section 6.3.1, “User Names and Passwords”.

From MySQL's point of view, the encrypted password is the real password, so you should never give
anyone access to it. In particular, do not give nonadministrative users read access to tables in the mysql
database.

Access Control, Stage 1: Connection Verification

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 644

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The following table shows how various combinations of User and Host values in the user table apply to
incoming connections.

User Value Host Value Permissible Connections

'fred' 'thomas.loc.gov' fred, connecting from thomas.loc.gov

'' 'thomas.loc.gov' Any user, connecting from thomas.loc.gov

'fred' '%' fred, connecting from any host

'' '%' Any user, connecting from any host

'fred' '%.loc.gov' fred, connecting from any host in the loc.gov
domain

'fred' 'x.y.%' fred, connecting from x.y.net, x.y.com,
x.y.edu, and so on; this is probably not useful

'fred' '192.168.10.177' fred, connecting from the host with IP address
192.168.10.177

'fred' '192.168.10.%' fred, connecting from any host in the 192.168.10
class C subnet

'fred' '192.168.10.0/255.255.255.0'Same as previous example

It is possible for the client host name and user name of an incoming connection to match more than one
row in the user table. The preceding set of examples demonstrates this: Several of the entries shown
match a connection from thomas.loc.gov by fred.

When multiple matches are possible, the server must determine which of them to use. It resolves this issue
as follows:

• Whenever the server reads the user table into memory, it sorts the rows.

• When a client attempts to connect, the server looks through the rows in sorted order.

• The server uses the first row that matches the client host name and user name.

The server uses sorting rules that order rows with the most-specific Host values first. Literal host names
and IP addresses are the most specific. (The specificity of a literal IP address is not affected by whether it
has a netmask, so 192.168.1.13 and 192.168.1.0/255.255.255.0 are considered equally specific.)
The pattern '%' means “any host” and is least specific. The empty string '' also means “any host” but
sorts after '%'. Rows with the same Host value are ordered with the most-specific User values first (a
blank User value means “any user” and is least specific). For rows with equally-specific Host and User
values, the order is indeterminate.

To see how this works, suppose that the user table looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| % | root | ...
| % | jeffrey | ...
| localhost | root | ...
| localhost | | ...
+-----------+----------+-

When the server reads the table into memory, it sorts the rows using the rules just described. The result
after sorting looks like this:

Access Control, Stage 1: Connection Verification

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 645

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| localhost | root | ...
| localhost | | ...
| % | jeffrey | ...
| % | root | ...
+-----------+----------+-

When a client attempts to connect, the server looks through the sorted rows and uses the first match
found. For a connection from localhost by jeffrey, two of the rows from the table match: the one with
Host and User values of 'localhost' and '', and the one with values of '%' and 'jeffrey'. The
'localhost' row appears first in sorted order, so that is the one the server uses.

Here is another example. Suppose that the user table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| % | jeffrey | ...
| thomas.loc.gov | | ...
+----------------+----------+-

The sorted table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| thomas.loc.gov | | ...
| % | jeffrey | ...
+----------------+----------+-

A connection by jeffrey from thomas.loc.gov is matched by the first row, whereas a connection by
jeffrey from any host is matched by the second.

Note

It is a common misconception to think that, for a given user name, all rows that
explicitly name that user are used first when the server attempts to find a match
for the connection. This is not true. The preceding example illustrates this, where
a connection from thomas.loc.gov by jeffrey is first matched not by the row
containing 'jeffrey' as the User column value, but by the row with no user
name. As a result, jeffrey is authenticated as an anonymous user, even though
he specified a user name when connecting.

If you are able to connect to the server, but your privileges are not what you expect, you probably are
being authenticated as some other account. To find out what account the server used to authenticate you,
use the CURRENT_USER() function. (See Section 12.13, “Information Functions”.) It returns a value in
user_name@host_name format that indicates the User and Host values from the matching user table
row. Suppose that jeffrey connects and issues the following query:

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| @localhost |

Access Control, Stage 2: Request Verification

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 646

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+----------------+

The result shown here indicates that the matching user table row had a blank User column value. In other
words, the server is treating jeffrey as an anonymous user.

Another way to diagnose authentication problems is to print out the user table and sort it by hand to see
where the first match is being made.

6.2.5 Access Control, Stage 2: Request Verification

After you establish a connection, the server enters Stage 2 of access control. For each request that
you issue through that connection, the server determines what operation you want to perform, then
checks whether you have sufficient privileges to do so. This is where the privilege columns in the grant
tables come into play. These privileges can come from any of the user, db, host, tables_priv,
columns_priv, or procs_priv tables. (You may find it helpful to refer to Section 6.2.2, “Grant Tables”,
which lists the columns present in each of the grant tables.)

The user table grants privileges that are assigned to you on a global basis and that apply no matter what
the default database is. For example, if the user table grants you the DELETE privilege, you can delete
rows from any table in any database on the server host! It is wise to grant privileges in the user table only
to people who need them, such as database administrators. For other users, you should leave all privileges
in the user table set to 'N' and grant privileges at more specific levels only. You can grant privileges for
particular databases, tables, columns, or routines.

The db and host tables grant database-specific privileges. Values in the scope columns of these tables
can take the following forms:

• A blank User value in the db table matches the anonymous user. A nonblank value matches literally;
there are no wildcards in user names.

• The wildcard characters “%” and “_” can be used in the Host and Db columns of either table. These have
the same meaning as for pattern-matching operations performed with the LIKE operator. If you want to
use either character literally when granting privileges, you must escape it with a backslash. For example,
to include the underscore character (“_”) as part of a database name, specify it as “_” in the GRANT
statement.

• A '%' Host value in the db table means “any host.” A blank Host value in the db table means “consult
the host table for further information” (a process that is described later in this section).

• A '%' or blank Host value in the host table means “any host.”

• A '%' or blank Db value in either table means “any database.”

The server reads the db and host tables into memory and sorts them at the same time that it reads the
user table. The server sorts the db table based on the Host, Db, and User scope columns, and sorts
the host table based on the Host and Db scope columns. As with the user table, sorting puts the most-
specific values first and least-specific values last, and when the server looks for matching rows, it uses the
first match that it finds.

The tables_priv, columns_priv, and procs_priv tables grant table-specific, column-specific, and
routine-specific privileges. Values in the scope columns of these tables can take the following forms:

• The wildcard characters “%” and “_” can be used in the Host column. These have the same meaning as
for pattern-matching operations performed with the LIKE operator.

• A '%' or blank Host value means “any host.”

Access Control, Stage 2: Request Verification

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 647

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The Db, Table_name, Column_name, and Routine_name columns cannot contain wildcards or be
blank.

The server sorts the tables_priv, columns_priv, and procs_priv tables based on the Host, Db,
and User columns. This is similar to db table sorting, but simpler because only the Host column can
contain wildcards.

The server uses the sorted tables to verify each request that it receives. For requests that require
administrative privileges such as SHUTDOWN or RELOAD, the server checks only the user table row
because that is the only table that specifies administrative privileges. The server grants access if the
row permits the requested operation and denies access otherwise. For example, if you want to execute
mysqladmin shutdown but your user table row does not grant the SHUTDOWN privilege to you, the
server denies access without even checking the db or host tables. (They contain no Shutdown_priv
column, so there is no need to do so.)

For database-related requests (INSERT, UPDATE, and so on), the server first checks the user's global
privileges by looking in the user table row. If the row permits the requested operation, access is granted.
If the global privileges in the user table are insufficient, the server determines the user's database-specific
privileges by checking the db and host tables:

1. The server looks in the db table for a match on the Host, Db, and User columns. The Host and User
columns are matched to the connecting user's host name and MySQL user name. The Db column
is matched to the database that the user wants to access. If there is no row for the Host and User,
access is denied.

2. If there is a matching db table row and its Host column is not blank, that row defines the user's
database-specific privileges.

3. If the matching db table row's Host column is blank, it signifies that the host table enumerates which
hosts should be permitted access to the database. In this case, a further lookup is done in the host
table to find a match on the Host and Db columns. If no host table row matches, access is denied.
If there is a match, the user's database-specific privileges are computed as the intersection (not the
union!) of the privileges in the db and host table rows; that is, the privileges that are 'Y' in both rows.
(This way you can grant general privileges in the db table row and then selectively restrict them on a
host-by-host basis using the host table rows.)

After determining the database-specific privileges granted by the db and host table rows, the server
adds them to the global privileges granted by the user table. If the result permits the requested operation,
access is granted. Otherwise, the server successively checks the user's table and column privileges in
the tables_priv and columns_priv tables, adds those to the user's privileges, and permits or denies
access based on the result. For stored-routine operations, the server uses the procs_priv table rather
than tables_priv and columns_priv.

Expressed in boolean terms, the preceding description of how a user's privileges are calculated may be
summarized like this:

global privileges
OR (database privileges AND host privileges)
OR table privileges
OR column privileges
OR routine privileges

It may not be apparent why, if the global user row privileges are initially found to be insufficient for the
requested operation, the server adds those privileges to the database, table, and column privileges later.
The reason is that a request might require more than one type of privilege. For example, if you execute
an INSERT INTO ... SELECT statement, you need both the INSERT and the SELECT privileges. Your

When Privilege Changes Take Effect

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 648

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

privileges might be such that the user table row grants one privilege and the db table row grants the other.
In this case, you have the necessary privileges to perform the request, but the server cannot tell that from
either table by itself; the privileges granted by the rows in both tables must be combined.

The host table is not affected by the GRANT or REVOKE statements, so it is unused in most MySQL
installations. If you modify it directly, you can use it for some specialized purposes, such as to maintain a
list of secure servers on the local network that are granted all privileges.

You can also use the host table to indicate hosts that are not secure. Suppose that you have a machine
public.your.domain that is located in a public area that you do not consider secure. You can enable
access to all hosts on your network except that machine by using host table rows like this:

+--------------------+----+-
| Host | Db | ...
+--------------------+----+-
| public.your.domain | % | ... (all privileges set to 'N')
| %.your.domain | % | ... (all privileges set to 'Y')
+--------------------+----+-

6.2.6 When Privilege Changes Take Effect

When mysqld starts, it reads all grant table contents into memory. The in-memory tables become effective
for access control at that point.

If you modify the grant tables indirectly using account-management statements such as GRANT, REVOKE,
or SET PASSWORD, the server notices these changes and loads the grant tables into memory again
immediately.

If you modify the grant tables directly using statements such as INSERT, UPDATE, or DELETE, your
changes have no effect on privilege checking until you either restart the server or tell it to reload the tables.
If you change the grant tables directly but forget to reload them, your changes have no effect until you
restart the server. This may leave you wondering why your changes do not seem to make any difference!

To tell the server to reload the grant tables, perform a flush-privileges operation. This can be done by
issuing a FLUSH PRIVILEGES statement or by executing a mysqladmin flush-privileges or
mysqladmin reload command.

When the server reloads the grant tables, privileges for each existing client connection are affected as
follows:

• Table and column privilege changes take effect with the client's next request.

• Database privilege changes take effect the next time the client executes a USE db_name statement.

Note

Client applications may cache the database name; thus, this effect may not be
visible to them without actually changing to a different database or flushing the
privileges.

• Global privileges and passwords are unaffected for a connected client. These changes take effect only
for subsequent connections.

If the server is started with the --skip-grant-tables option, it does not read the grant tables or
implement any access control. Anyone can connect and do anything. To cause a server thus started to
read the tables and enable access checking, flush the privileges.

Troubleshooting Problems Connecting to MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 649

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

6.2.7 Troubleshooting Problems Connecting to MySQL

If you encounter problems when you try to connect to the MySQL server, the following items describe
some courses of action you can take to correct the problem.

• Make sure that the server is running. If it is not, clients cannot connect to it. For example, if an attempt to
connect to the server fails with a message such as one of those following, one cause might be that the
server is not running:

shell> mysql
ERROR 2003: Can't connect to MySQL server on 'host_name' (111)
shell> mysql
ERROR 2002: Can't connect to local MySQL server through socket
'/tmp/mysql.sock' (111)

• It might be that the server is running, but you are trying to connect using a TCP/IP port, named pipe, or
Unix socket file different from the one on which the server is listening. To correct this when you invoke
a client program, specify a --port option to indicate the proper port number, or a --socket option to
indicate the proper named pipe or Unix socket file. To find out where the socket file is, you can use this
command:

shell> netstat -ln | grep mysql

• Make sure that the server has not been configured to ignore network connections or (if you are
attempting to connect remotely) that it has not been configured to listen only locally on its network
interfaces. If the server was started with --skip-networking, it will not accept TCP/IP connections at
all. If the server was started with --bind-address=127.0.0.1, it will listen for TCP/IP connections
only locally on the loopback interface and will not accept remote connections.

• Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be configured
on the basis of the application being executed, or the port number used by MySQL for communication
(3306 by default). Under Linux or Unix, check your IP tables (or similar) configuration to ensure that
the port has not been blocked. Under Windows, applications such as ZoneAlarm or the Windows XP
personal firewall may need to be configured not to block the MySQL port.

• The grant tables must be properly set up so that the server can use them for access control. For
some distribution types (such as binary distributions on Windows, or RPM distributions on Linux), the
installation process initializes the MySQL data directory, including the mysql database containing the
grant tables. For distributions that do not do this, you must initialize the data directory manually. For
details, see Section 2.18, “Postinstallation Setup and Testing”.

To determine whether you need to initialize the grant tables, look for a mysql directory under the
data directory. (The data directory normally is named data or var and is located under your MySQL
installation directory.) Make sure that you have a file named user.MYD in the mysql database directory.
If not, initialize the data directory. After doing so and starting the server, test the initial privileges by
executing this command:

shell> mysql -u root

The server should let you connect without error.

• After a fresh installation, you should connect to the server and set up your users and their access
permissions:

shell> mysql -u root mysql

Troubleshooting Problems Connecting to MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 650

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The server should let you connect because the MySQL root user has no password initially. That is
also a security risk, so setting the password for the root accounts is something you should do while
you're setting up your other MySQL accounts. For instructions on setting the initial passwords, see
Section 2.18.4, “Securing the Initial MySQL Accounts”.

• If you have updated an existing MySQL installation to a newer version, did you run the
mysql_upgrade script? If not, do so. The structure of the grant tables changes occasionally when
new capabilities are added, so after an upgrade you should always make sure that your tables have the
current structure. For instructions, see Section 4.4.9, “mysql_upgrade — Check Tables for MySQL
Upgrade”.

• If a client program receives the following error message when it tries to connect, it means that the server
expects passwords in a newer format than the client is capable of generating:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

For information on how to deal with this, see Section 6.1.2.4, “Password Hashing in MySQL”, and
Section B.5.2.4, “Client does not support authentication protocol”.

• Remember that client programs use connection parameters specified in option files or environment
variables. If a client program seems to be sending incorrect default connection parameters when you
have not specified them on the command line, check any applicable option files and your environment.
For example, if you get Access denied when you run a client without any options, make sure that you
have not specified an old password in any of your option files!

You can suppress the use of option files by a client program by invoking it with the --no-defaults
option. For example:

shell> mysqladmin --no-defaults -u root version

The option files that clients use are listed in Section 4.2.6, “Using Option Files”. Environment variables
are listed in Section 2.21, “Environment Variables”.

• If you get the following error, it means that you are using an incorrect root password:

shell> mysqladmin -u root -pxxxx ver
Access denied for user 'root'@'localhost' (using password: YES)

If the preceding error occurs even when you have not specified a password, it means that you have
an incorrect password listed in some option file. Try the --no-defaults option as described in the
previous item.

For information on changing passwords, see Section 6.3.5, “Assigning Account Passwords”.

If you have lost or forgotten the root password, see Section B.5.3.2, “How to Reset the Root
Password”.

• If you change a password by using SET PASSWORD, INSERT, or UPDATE, you must encrypt the
password using the PASSWORD() function. If you do not use PASSWORD() for these statements, the
password will not work. For example, the following statement assigns a password, but fails to encrypt it,
so the user is not able to connect afterward:

Troubleshooting Problems Connecting to MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 651

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SET PASSWORD FOR 'abe'@'host_name' = 'eagle';

Instead, set the password like this:

SET PASSWORD FOR 'abe'@'host_name' = PASSWORD('eagle');

The PASSWORD() function is unnecessary when you specify a password using the GRANT or (beginning
with MySQL 5.0.2) CREATE USER statements, or the mysqladmin password command. Each of
those automatically uses PASSWORD() to encrypt the password. See Section 6.3.5, “Assigning Account
Passwords”, and Section 13.7.1.1, “CREATE USER Syntax”.

• localhost is a synonym for your local host name, and is also the default host to which clients try to
connect if you specify no host explicitly.

You can use a --host=127.0.0.1 option to name the server host explicitly. This will make a TCP/
IP connection to the local mysqld server. You can also use TCP/IP by specifying a --host option that
uses the actual host name of the local host. In this case, the host name must be specified in a user
table row on the server host, even though you are running the client program on the same host as the
server.

• The Access denied error message tells you who you are trying to log in as, the client host from which
you are trying to connect, and whether you were using a password. Normally, you should have one
row in the user table that exactly matches the host name and user name that were given in the error
message. For example, if you get an error message that contains using password: NO, it means that
you tried to log in without a password.

• If you get an Access denied error when trying to connect to the database with mysql -u
user_name, you may have a problem with the user table. Check this by executing mysql -u root
mysql and issuing this SQL statement:

SELECT * FROM user;

The result should include a row with the Host and User columns matching your client's host name and
your MySQL user name.

• If the following error occurs when you try to connect from a host other than the one on which the MySQL
server is running, it means that there is no row in the user table with a Host value that matches the
client host:

Host ... is not allowed to connect to this MySQL server

You can fix this by setting up an account for the combination of client host name and user name that you
are using when trying to connect.

If you do not know the IP address or host name of the machine from which you are connecting, you
should put a row with '%' as the Host column value in the user table. After trying to connect from the
client machine, use a SELECT USER() query to see how you really did connect. Then change the '%'
in the user table row to the actual host name that shows up in the log. Otherwise, your system is left
insecure because it permits connections from any host for the given user name.

On Linux, another reason that this error might occur is that you are using a binary MySQL version that
is compiled with a different version of the glibc library than the one you are using. In this case, you
should either upgrade your operating system or glibc, or download a source distribution of MySQL
version and compile it yourself. A source RPM is normally trivial to compile and install, so this is not a big
problem.

Troubleshooting Problems Connecting to MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 652

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• If you specify a host name when trying to connect, but get an error message where the host name is not
shown or is an IP address, it means that the MySQL server got an error when trying to resolve the IP
address of the client host to a name:

shell> mysqladmin -u root -pxxxx -h some_hostname ver
Access denied for user 'root'@'' (using password: YES)

If you try to connect as root and get the following error, it means that you do not have a row in the user
table with a User column value of 'root' and that mysqld cannot resolve the host name for your
client:

Access denied for user ''@'unknown'

These errors indicate a DNS problem. To fix it, execute mysqladmin flush-hosts to reset the
internal DNS host cache. See Section 8.12.6.2, “DNS Lookup Optimization and the Host Cache”.

Some permanent solutions are:

• Determine what is wrong with your DNS server and fix it.

• Specify IP addresses rather than host names in the MySQL grant tables.

• Put an entry for the client machine name in /etc/hosts on Unix or \windows\hosts on Windows.

• Start mysqld with the --skip-name-resolve option.

• Start mysqld with the --skip-host-cache option.

• On Unix, if you are running the server and the client on the same machine, connect to localhost.
For connections to localhost, MySQL programs attempt to connect to the local server by using a
Unix socket file, unless there are connection parameters specified to ensure that the client makes a
TCP/IP connection. For more information, see Section 4.2.2, “Connecting to the MySQL Server”.

• On Windows, if you are running the server and the client on the same machine and the server
supports named pipe connections, connect to the host name . (period). Connections to . use a
named pipe rather than TCP/IP.

• If mysql -u root works but mysql -h your_hostname -u root results in Access denied
(where your_hostname is the actual host name of the local host), you may not have the correct
name for your host in the user table. A common problem here is that the Host value in the user
table row specifies an unqualified host name, but your system's name resolution routines return a
fully qualified domain name (or vice versa). For example, if you have a row with host 'pluto' in the
user table, but your DNS tells MySQL that your host name is 'pluto.example.com', the row does
not work. Try adding a row to the user table that contains the IP address of your host as the Host
column value. (Alternatively, you could add a row to the user table with a Host value that contains a
wildcard; for example, 'pluto.%'. However, use of Host values ending with “%” is insecure and is not
recommended!)

• If mysql -u user_name works but mysql -u user_name some_db does not, you have not granted
access to the given user for the database named some_db.

• If mysql -u user_name works when executed on the server host, but mysql -h host_name -u
user_name does not work when executed on a remote client host, you have not enabled access to the
server for the given user name from the remote host.

Troubleshooting Problems Connecting to MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 653

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• If you cannot figure out why you get Access denied, remove from the user table all rows that have
Host values containing wildcards (rows that contain '%' or '_' characters). A very common error is
to insert a new row with Host='%' and User='some_user', thinking that this enables you to specify
localhost to connect from the same machine. The reason that this does not work is that the default
privileges include a row with Host='localhost' and User=''. Because that row has a Host value
'localhost' that is more specific than '%', it is used in preference to the new row when connecting
from localhost! The correct procedure is to insert a second row with Host='localhost' and
User='some_user', or to delete the row with Host='localhost' and User=''. After deleting
the row, remember to issue a FLUSH PRIVILEGES statement to reload the grant tables. See also
Section 6.2.4, “Access Control, Stage 1: Connection Verification”.

• If you are able to connect to the MySQL server, but get an Access denied message whenever you
issue a SELECT ... INTO OUTFILE or LOAD DATA INFILE statement, your row in the user table
does not have the FILE privilege enabled.

• If you change the grant tables directly (for example, by using INSERT, UPDATE, or DELETE statements)
and your changes seem to be ignored, remember that you must execute a FLUSH PRIVILEGES
statement or a mysqladmin flush-privileges command to cause the server to reload the privilege
tables. Otherwise, your changes have no effect until the next time the server is restarted. Remember
that after you change the root password with an UPDATE statement, you will not need to specify the
new password until after you flush the privileges, because the server will not know you've changed the
password yet!

• If your privileges seem to have changed in the middle of a session, it may be that a MySQL administrator
has changed them. Reloading the grant tables affects new client connections, but it also affects existing
connections as indicated in Section 6.2.6, “When Privilege Changes Take Effect”.

• If you have access problems with a Perl, PHP, Python, or ODBC program, try to connect to the server
with mysql -u user_name db_name or mysql -u user_name -pyour_pass db_name. If
you are able to connect using the mysql client, the problem lies with your program, not with the
access privileges. (There is no space between -p and the password; you can also use the --
password=your_pass syntax to specify the password. If you use the -p or --password option with
no password value, MySQL prompts you for the password.)

• For testing purposes, start the mysqld server with the --skip-grant-tables option. Then you can
change the MySQL grant tables and use the mysqlaccess script to check whether your modifications
have the desired effect. When you are satisfied with your changes, execute mysqladmin flush-
privileges to tell the mysqld server to reload the privileges. This enables you to begin using the new
grant table contents without stopping and restarting the server.

• If you get the following error, you may have a problem with the db or host table:

Access to database denied

If the row selected from the db table has an empty value in the Host column, make sure that there are
one or more corresponding rows in the host table specifying which hosts the db table row applies to.
This problem occurs infrequently because the host table is rarely used.

• If everything else fails, start the mysqld server with a debugging option (for example, --
debug=d,general,query). This prints host and user information about attempted connections, as well
as information about each command issued. See Section 21.3.3, “The DBUG Package”.

• If you have any other problems with the MySQL grant tables and feel you must post the problem to
the mailing list, always provide a dump of the MySQL grant tables. You can dump the tables with the
mysqldump mysql command. To file a bug report, see the instructions at Section 1.7, “How to Report

MySQL User Account Management

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 654

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Bugs or Problems”. In some cases, you may need to restart mysqld with --skip-grant-tables to
run mysqldump.

6.3 MySQL User Account Management
This section describes how to set up accounts for clients of your MySQL server. It discusses the following
topics:

• The meaning of account names and passwords as used in MySQL and how that compares to names
and passwords used by your operating system

• How to set up new accounts and remove existing accounts

• How to change passwords

• Guidelines for using passwords securely

• How to use secure connections

See also Section 13.7.1, “Account Management Statements”, which describes the syntax and use for all
user-management SQL statements.

6.3.1 User Names and Passwords

MySQL stores accounts in the user table of the mysql system database. An account is defined in
terms of a user name and the client host or hosts from which the user can connect to the server. The
account may also have a password. For information about account representation in the user table, see
Section 6.2.2, “Grant Tables”.

There are several distinctions between the way user names and passwords are used by MySQL and your
operating system:

• User names, as used by MySQL for authentication purposes, have nothing to do with user names (login
names) as used by Windows or Unix. On Unix, most MySQL clients by default try to log in using the
current Unix user name as the MySQL user name, but that is for convenience only. The default can
be overridden easily, because client programs permit any user name to be specified with a -u or --
user option. This means that anyone can attempt to connect to the server using any user name, so you
cannot make a database secure in any way unless all MySQL accounts have passwords. Anyone who
specifies a user name for an account that has no password is able to connect successfully to the server.

• MySQL user names can be up to 16 characters long. Operating system user names may be of a
different maximum length. For example, Unix user names typically are limited to eight characters.

Warning

The limit on MySQL user name length is hard-coded in MySQL servers and
clients, and trying to circumvent it by modifying the definitions of the tables in the
mysql database does not work.

You should never alter the structure of tables in the mysql database in any
manner whatsoever except by means of the procedure that is described in
Section 4.4.9, “mysql_upgrade — Check Tables for MySQL Upgrade”.
Attempting to redefine MySQL's system tables in any other fashion results in
undefined (and unsupported!) behavior. The server is free to ignore rows that
become malformed as a result of such modifications.

• To authenticate client connections that use MySQL built-in authentication, the server uses MySQL
passwords stored in the user table. These passwords are distinct from passwords for logging in to your

User Names and Passwords

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 655

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

operating system. There is no necessary connection between the “external” password you use to log in
to a Windows or Unix machine and the password you use to access the MySQL server on that machine.

• MySQL encrypts passwords stored in the user table using its own algorithm. This encryption is the
same as that implemented by the PASSWORD() SQL function but differs from that used during the
Unix login process. Unix password encryption is the same as that implemented by the ENCRYPT()
SQL function. See the descriptions of the PASSWORD() and ENCRYPT() functions in Section 12.12,
“Encryption and Compression Functions”.

From version 4.1 on, MySQL employs a stronger authentication method that has better password
protection during the connection process than in earlier versions. It is secure even if TCP/IP packets are
sniffed or the mysql database is captured. (In earlier versions, even though passwords are stored in
encrypted form in the user table, knowledge of the encrypted password value could be used to connect
to the MySQL server.) Section 6.1.2.4, “Password Hashing in MySQL”, discusses password encryption
further.

• If the user name and password contain only ASCII characters, it is possible to connect to the
server regardless of character set settings. To connect when the user name or password contain
non-ASCII characters, the client should call the mysql_options() C API function with the
MYSQL_SET_CHARSET_NAME option and appropriate character set name as arguments. This causes
authentication to take place using the specified character set. Otherwise, authentication will fail unless
the server default character set is the same as the encoding in the authentication defaults.

Standard MySQL client programs support a --default-character-set option that causes
mysql_options() to be called as just described. For programs that use a connector that is not based
on the C API, the connector may provide an equivalent to mysql_options() that can be used instead.
Check the connector documentation.

The preceding notes do not apply for ucs2, which is not permitted as a client character set.

The MySQL installation process populates the grant tables with an initial account or accounts. The names
and access privileges for these accounts are described in Section 2.18.4, “Securing the Initial MySQL
Accounts”, which also discusses how to assign passwords to them. Thereafter, you normally set up,
modify, and remove MySQL accounts using statements such as CREATE USER, DROP USER, GRANT, and
REVOKE. See Section 13.7.1, “Account Management Statements”.

To connect to a MySQL server with a command-line client, specify user name and password options as
necessary for the account that you want to use:

shell> mysql --user=monty --password db_name

If you prefer short options, the command looks like this:

shell> mysql -u monty -p db_name

If you omit the password value following the --password or -p option on the command line (as just
shown), the client prompts for one. Alternatively, the password can be specified on the command line:

shell> mysql --user=monty --password=password db_name
shell> mysql -u monty -ppassword db_name

If you use the -p option, there must be no space between -p and the following password value.

Specifying a password on the command line should be considered insecure. See Section 6.1.2.1, “End-
User Guidelines for Password Security”. You can use an option file to avoid giving the password on the
command line. See Section 4.2.6, “Using Option Files”.

Adding User Accounts

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 656

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For additional information about specifying user names, passwords, and other connection parameters, see
Section 4.2.2, “Connecting to the MySQL Server”.

6.3.2 Adding User Accounts

You can create MySQL accounts two ways:

• By using account-management statements intended for creating accounts and establishing their
privileges, such as CREATE USER and GRANT. These statements cause the server to make appropriate
modifications to the underlying grant tables.

• By manipulating the MySQL grant tables directly with statements such as INSERT, UPDATE, or DELETE.

The preferred method is to use account-management statements because they are more concise and less
error-prone than manipulating the grant tables directly. All such statements are described in Section 13.7.1,
“Account Management Statements”. Direct grant table manipulation is discouraged, and the server is free
to ignore rows that become malformed as a result of such modifications.

Another option for creating accounts is to use the GUI tool MySQL Workbench. Also, several third-party
programs offer capabilities for MySQL account administration. phpMyAdmin is one such program.

The following examples show how to use the mysql client program to set up new accounts. These
examples assume that privileges have been set up according to the defaults described in Section 2.18.4,
“Securing the Initial MySQL Accounts”. This means that to make changes, you must connect to the MySQL
server as the MySQL root user, and the root account, which has the CREATE USER privilege, the
INSERT privilege for the mysql database and the RELOAD administrative privilege.

As noted in the examples where appropriate, some of the statements will fail if the server's SQL
mode has been set to enable certain restrictions. In particular, strict mode (STRICT_TRANS_TABLES,
STRICT_ALL_TABLES) and NO_AUTO_CREATE_USER will prevent the server from accepting some of the
statements. Workarounds are indicated for these cases. For more information about SQL modes and their
effect on grant table manipulation, see Section 5.1.7, “Server SQL Modes”, and Section 13.7.1.3, “GRANT
Syntax”.

First, use the mysql program to connect to the server as the MySQL root user:

shell> mysql --user=root mysql

If you have assigned a password to the root account, you must also supply a --password or -p option,
both for this mysql command and for those later in this section.

After connecting to the server as root, you can add new accounts. The following example uses CREATE
USER and GRANT statements to set up four accounts:

mysql> CREATE USER 'monty'@'localhost' IDENTIFIED BY 'some_pass';
mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'localhost'
 -> WITH GRANT OPTION;
mysql> CREATE USER 'monty'@'%' IDENTIFIED BY 'some_pass';
mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'%'
 -> WITH GRANT OPTION;
mysql> CREATE USER 'admin'@'localhost' IDENTIFIED BY 'admin_pass';
mysql> GRANT RELOAD,PROCESS ON *.* TO 'admin'@'localhost';
mysql> CREATE USER 'dummy'@'localhost';

The accounts created by those statements have the following properties:

• Two accounts have a user name of monty and a password of some_pass. Both are superuser accounts
with full privileges to do anything. The 'monty'@'localhost' account can be used only when

Adding User Accounts

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 657

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

connecting from the local host. The 'monty'@'%' account uses the '%' wildcard for the host part, so it
can be used to connect from any host.

The 'monty'@'localhost' account is necessary if there is an anonymous-user account for
localhost. Without the 'monty'@'localhost' account, that anonymous-user account takes
precedence when monty connects from the local host and monty is treated as an anonymous user.
The reason for this is that the anonymous-user account has a more specific Host column value than
the 'monty'@'%' account and thus comes earlier in the user table sort order. (user table sorting is
discussed in Section 6.2.4, “Access Control, Stage 1: Connection Verification”.)

• The 'admin'@'localhost' account has a password of admin_pass. This account can be used
only by admin to connect from the local host. It is granted the RELOAD and PROCESS administrative
privileges. These privileges enable the admin user to execute the mysqladmin reload, mysqladmin
refresh, and mysqladmin flush-xxx commands, as well as mysqladmin processlist .
No privileges are granted for accessing any databases. You could add such privileges using GRANT
statements.

• The 'dummy'@'localhost' account has no password (which is insecure and not recommended). This
account can be used only to connect from the local host. No privileges are granted. It is assumed that
you will grant specific privileges to the account using GRANT statements.

The statements that create accounts with no password will fail if the NO_AUTO_CREATE_USER SQL mode
is enabled. To deal with this, use an IDENTIFIED BY clause that specifies a nonempty password.

To see the privileges for an account, use SHOW GRANTS:

mysql> SHOW GRANTS FOR 'admin'@'localhost';
+---+
| Grants for admin@localhost |
+---+
| GRANT RELOAD, PROCESS ON *.* TO 'admin'@'localhost' |
+---+

As an alternative to CREATE USER and GRANT, you can create the same accounts directly by issuing
INSERT statements and then telling the server to reload the grant tables using FLUSH PRIVILEGES:

shell> mysql --user=root mysql
mysql> INSERT INTO user
 -> VALUES('localhost','monty',PASSWORD('some_pass'),
 -> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y');
mysql> INSERT INTO user
 -> VALUES('%','monty',PASSWORD('some_pass'),
 -> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y',
 -> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y',
 -> '','','','',0,0,0,0);
mysql> INSERT INTO user SET Host='localhost',User='admin',
 -> Password=PASSWORD('admin_pass'),
 -> Reload_priv='Y', Process_priv='Y';
mysql> INSERT INTO user (Host,User,Password)
 -> VALUES('localhost','dummy','');
mysql> FLUSH PRIVILEGES;

When you create accounts with INSERT, it is necessary to use FLUSH PRIVILEGES to tell the server to
reload the grant tables. Otherwise, the changes go unnoticed until you restart the server. With CREATE
USER, FLUSH PRIVILEGES is unnecessary.

The reason for using the PASSWORD() function with INSERT is to encrypt the password. The CREATE
USER statement encrypts the password for you, so PASSWORD() is unnecessary.

Adding User Accounts

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 658

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The 'Y' values enable privileges for the accounts. Depending on your MySQL version, you may have to
use a different number of 'Y' values in the first two INSERT statements. The INSERT statement for the
admin account employs the more readable extended INSERT syntax using SET.

In the INSERT statement for the dummy account, only the Host, User, and Password columns in the
user table row are assigned values. None of the privilege columns are set explicitly, so MySQL assigns
them all the default value of 'N'. This is equivalent to what CREATE USER does.

If strict SQL mode is enabled, all columns that have no default value must have a value specified. In
this case, INSERT statements must explicitly specify values for the ssl_cipher, x509_issuer, and
x509_subject columns.

To set up a superuser account, it is necessary only to insert a user table row with all privilege columns set
to 'Y'. The user table privileges are global, so no entries in any of the other grant tables are needed.

The next examples create three accounts and grant them access to specific databases. Each of them has
a user name of custom and password of obscure.

To create the accounts with CREATE USER and GRANT, use the following statements:

shell> mysql --user=root mysql
mysql> CREATE USER 'custom'@'localhost' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 -> ON bankaccount.*
 -> TO 'custom'@'localhost';
mysql> CREATE USER 'custom'@'host47.example.com' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 -> ON expenses.*
 -> TO 'custom'@'host47.example.com';
mysql> CREATE USER 'custom'@'%.example.com' IDENTIFIED BY 'obscure';
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
 -> ON customer.*
 -> TO 'custom'@'%.example.com';

The three accounts can be used as follows:

• The first account can access the bankaccount database, but only from the local host.

• The second account can access the expenses database, but only from the host
host47.example.com.

• The third account can access the customer database, from any host in the example.com domain. This
account has access from all machines in the domain due to use of the “%” wildcard character in the host
part of the account name.

To set up the custom accounts without GRANT, use INSERT statements as follows to modify the grant
tables directly:

shell> mysql --user=root mysql
mysql> INSERT INTO user (Host,User,Password)
 -> VALUES('localhost','custom',PASSWORD('obscure'));
mysql> INSERT INTO user (Host,User,Password)
 -> VALUES('host47.example.com','custom',PASSWORD('obscure'));
mysql> INSERT INTO user (Host,User,Password)
 -> VALUES('%.example.com','custom',PASSWORD('obscure'));
mysql> INSERT INTO db
 -> (Host,Db,User,Select_priv,Insert_priv,
 -> Update_priv,Delete_priv,Create_priv,Drop_priv)
 -> VALUES('localhost','bankaccount','custom',
 -> 'Y','Y','Y','Y','Y','Y');
mysql> INSERT INTO db

Removing User Accounts

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 659

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 -> (Host,Db,User,Select_priv,Insert_priv,
 -> Update_priv,Delete_priv,Create_priv,Drop_priv)
 -> VALUES('host47.example.com','expenses','custom',
 -> 'Y','Y','Y','Y','Y','Y');
mysql> INSERT INTO db
 -> (Host,Db,User,Select_priv,Insert_priv,
 -> Update_priv,Delete_priv,Create_priv,Drop_priv)
 -> VALUES('%.example.com','customer','custom',
 -> 'Y','Y','Y','Y','Y','Y');
mysql> FLUSH PRIVILEGES;

The first three INSERT statements add user table entries that permit the user custom to connect from the
various hosts with the given password, but grant no global privileges (all privileges are set to the default
value of 'N'). The next three INSERT statements add db table entries that grant privileges to custom for
the bankaccount, expenses, and customer databases, but only when accessed from the proper hosts.
As usual when you modify the grant tables directly, you must tell the server to reload them with FLUSH
PRIVILEGES so that the privilege changes take effect.

6.3.3 Removing User Accounts

To remove an account, use the DROP USER statement, which is described in Section 13.7.1.2, “DROP
USER Syntax”. For example:

mysql> DROP USER 'jeffrey'@'localhost';

6.3.4 Setting Account Resource Limits

One means of restricting client use of MySQL server resources is to set the global
max_user_connections system variable to a nonzero value. This limits the number of simultaneous
connections that can be made by any given account, but places no limits on what a client can do once
connected. In addition, setting max_user_connections does not enable management of individual
accounts. Both types of control are of interest to MySQL administrators.

To address such concerns, MySQL permits limits for individual accounts on use of these server resources:

• The number of queries an account can issue per hour

• The number of updates an account can issue per hour

• The number of times an account can connect to the server per hour

• The number of simultaneous connections to the server by an account

Any statement that a client can issue counts against the query limit, unless its results are served from the
query cache. Only statements that modify databases or tables count against the update limit.

An “account” in this context corresponds to a row in the mysql.user table. That is, a connection is
assessed against the User and Host values in the user table row that applies to the connection. For
example, an account 'usera'@'%.example.com' corresponds to a row in the user table that has
User and Host values of usera and %.example.com, to permit usera to connect from any host in
the example.com domain. In this case, the server applies resource limits in this row collectively to all
connections by usera from any host in the example.com domain because all such connections use the
same account.

Before MySQL 5.0.3, an “account” was assessed against the actual host from which a user connects.
This older method of accounting may be selected by starting the server with the --old-style-
user-limits option. In this case, if usera connects simultaneously from host1.example.com and
host2.example.com, the server applies the account resource limits separately to each connection.

Setting Account Resource Limits

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 660

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If usera connects again from host1.example.com, the server applies the limits for that connection
together with the existing connection from that host.

To establish resource limits for an account, use the GRANT statement (see Section 13.7.1.3, “GRANT
Syntax”). Provide a WITH clause that names each resource to be limited. The default value for each limit is
zero (no limit). For example, to create a new account that can access the customer database, but only in
a limited fashion, issue these statements:

mysql> CREATE USER 'francis'@'localhost' IDENTIFIED BY 'frank';
mysql> GRANT ALL ON customer.* TO 'francis'@'localhost'
 -> WITH MAX_QUERIES_PER_HOUR 20
 -> MAX_UPDATES_PER_HOUR 10
 -> MAX_CONNECTIONS_PER_HOUR 5
 -> MAX_USER_CONNECTIONS 2;

The limit types need not all be named in the WITH clause, but those named can be present in any
order. The value for each per-hour limit should be an integer representing a count per hour. For
MAX_USER_CONNECTIONS, the limit is an integer representing the maximum number of simultaneous
connections by the account. If this limit is set to zero, the global max_user_connections system
variable value determines the number of simultaneous connections. If max_user_connections is also
zero, there is no limit for the account.

To modify limits for an existing account, use a GRANT USAGE statement at the global level (ON *.*). The
following statement changes the query limit for francis to 100:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
 -> WITH MAX_QUERIES_PER_HOUR 100;

The statement modifies only the limit value specified and leaves the account otherwise unchanged.

To remove a limit, set its value to zero. For example, to remove the limit on how many times per hour
francis can connect, use this statement:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
 -> WITH MAX_CONNECTIONS_PER_HOUR 0;

As mentioned previously, the simultaneous-connection limit for an account is determined from the
MAX_USER_CONNECTIONS limit and the max_user_connections system variable. Suppose that the
global max_user_connections value is 10 and three accounts have individual resource limits specified
as follows:

GRANT ... TO 'user1'@'localhost' WITH MAX_USER_CONNECTIONS 0;
GRANT ... TO 'user2'@'localhost' WITH MAX_USER_CONNECTIONS 5;
GRANT ... TO 'user3'@'localhost' WITH MAX_USER_CONNECTIONS 20;

user1 has a connection limit of 10 (the global max_user_connections value) because it has
a MAX_USER_CONNECTIONS limit of zero. user2 and user3 have connection limits of 5 and 20,
respectively, because they have nonzero MAX_USER_CONNECTIONS limits.

The server stores resource limits for an account in the user table row corresponding to the account.
The max_questions, max_updates, and max_connections columns store the per-hour limits, and
the max_user_connections column stores the MAX_USER_CONNECTIONS limit. (See Section 6.2.2,
“Grant Tables”.) If your user table does not have these columns, it must be upgraded; see Section 4.4.9,
“mysql_upgrade — Check Tables for MySQL Upgrade”.

Resource-use counting takes place when any account has a nonzero limit placed on its use of any of the
resources.

Assigning Account Passwords

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 661

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

As the server runs, it counts the number of times each account uses resources. If an account reaches
its limit on number of connections within the last hour, the server rejects further connections for the
account until that hour is up. Similarly, if the account reaches its limit on the number of queries or updates,
the server rejects further queries or updates until the hour is up. In all such cases, the server issues
appropriate error messages.

Resource counting occurs per account, not per client. For example, if your account has a query limit of 50,
you cannot increase your limit to 100 by making two simultaneous client connections to the server. Queries
issued on both connections are counted together.

The current per-hour resource-use counts can be reset globally for all accounts, or individually for a given
account:

• To reset the current counts to zero for all accounts, issue a FLUSH USER_RESOURCES statement.
The counts also can be reset by reloading the grant tables (for example, with a FLUSH PRIVILEGES
statement or a mysqladmin reload command).

• The counts for an individual account can be reset to zero by setting any of its limits again. Specify a limit
value equal to the value currently assigned to the account.

Per-hour counter resets do not affect the MAX_USER_CONNECTIONS limit.

All counts begin at zero when the server starts. Counts do not carry over through server restarts.

For the MAX_USER_CONNECTIONS limit, an edge case can occur if the account currently has open the
maximum number of connections permitted to it: A disconnect followed quickly by a connect can result in
an error (ER_TOO_MANY_USER_CONNECTIONS or ER_USER_LIMIT_REACHED) if the server has not fully
processed the disconnect by the time the connect occurs. When the server finishes disconnect processing,
another connection will once more be permitted.

6.3.5 Assigning Account Passwords

Required credentials for clients that connect to the MySQL server can include a password. This section
describes how to assign passwords for MySQL accounts.

MySQL stores passwords in the user table in the mysql system database. Operations that assign or
modify passwords are permitted only to users with the CREATE USER privilege, or, alternatively, privileges
for the mysql database (INSERT privilege to create new accounts, UPDATE privilege to modify existing
accounts).

The discussion here summarizes syntax only for the most common password-assignment statements. For
complete details on other possibilities, see Section 13.7.1.1, “CREATE USER Syntax”, Section 13.7.1.3,
“GRANT Syntax”, and Section 13.7.1.6, “SET PASSWORD Syntax”.

MySQL hashes passwords stored in the mysql.user table to obfuscate them. For most statements
described here, MySQL automatically hashes the password specified. An exception is SET
PASSWORD ... = PASSWORD('auth_string'), for which you use the PASSWORD() function explicitly
to hash the password. There are also syntaxes for CREATE USER, GRANT, and SET PASSWORD that permit
hashed values to be specified literally; for details, see the descriptions of those statements.

To assign a password when you create a new account, use CREATE USER and include an IDENTIFIED
BY clause:

mysql> CREATE USER 'jeffrey'@'localhost'
 -> IDENTIFIED BY 'mypass';

For this CREATE USER syntax, MySQL automatically hashes the password before storing it in the
mysql.user table.

Using Secure Connections

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 662

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To assign or change a password for an existing account, use one of the following methods:

• Use SET PASSWORD with the PASSWORD() function:

mysql> SET PASSWORD FOR
 -> 'jeffrey'@'localhost' = PASSWORD('mypass');

If you are not connected as an anonymous user, you can change your own password by omitting the
FOR clause:

mysql> SET PASSWORD = PASSWORD('mypass');

The PASSWORD() function hashes the password using the hashing method determined by the value
of the old_passwords system variable value. If SET PASSWORD rejects the hashed password
value returned by PASSWORD() as not being in the correct format, it may be necessary to change
old_passwords to change the hashing method. For descriptions of the permitted values, see
Section 5.1.4, “Server System Variables”.

• You can also use a GRANT USAGE statement at the global level (ON *.*) to assign a password to an
account without affecting the account's current privileges:

mysql> GRANT USAGE ON *.* TO 'jeffrey'@'localhost'
 -> IDENTIFIED BY 'mypass';

For this GRANT syntax, MySQL automatically hashes the password before storing it in the mysql.user
table.

• To change an account password from the command line, use the mysqladmin command:

shell> mysqladmin -u user_name -h host_name password "new_password"

The account for which this command sets the password is the one with a mysql.user table row that
matches user_name in the User column and the client host from which you connect in the Host
column.

For password changes made using mysqladmin, MySQL automatically hashes the password before
storing it in the mysql.user table.

6.3.6 Using Secure Connections

With an unencrypted connection between the MySQL client and the server, someone with access to the
network could watch all your traffic and inspect the data being sent or received between client and server.

When you must move information over a network in a secure fashion, an unencrypted connection
is unacceptable. To make any kind of data unreadable, use encryption. Encryption algorithms must
include security elements to resist many kinds of known attacks such as changing the order of encrypted
messages or replaying data twice.

MySQL supports secure (encrypted) connections between clients and the server using the TLS (Transport
Layer Security) protocol. TLS is sometimes referred to as SSL (Secure Sockets Layer).

TLS uses encryption algorithms to ensure that data received over a public network can be trusted. It has
mechanisms to detect data change, loss, or replay. TLS also incorporates algorithms that provide identity
verification using the X509 standard.

Using Secure Connections

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 663

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

X509 makes it possible to identify someone on the Internet. In basic terms, there should be some entity
called a “Certificate Authority” (or CA) that assigns electronic certificates to anyone who needs them.
Certificates rely on asymmetric encryption algorithms that have two encryption keys (a public key and a
secret key). A certificate owner can present the certificate to another party as proof of identity. A certificate
consists of its owner's public key. Any data encrypted using this public key can be decrypted only using the
corresponding secret key, which is held by the owner of the certificate.

For more information about TLS, SSL, X509, encryption, or public-key cryptography, perform an Internet
search for the keywords in which you are interested.

MySQL can be compiled for secure-connection support using OpenSSL or yaSSL. For a comparison of
the two packages, see Section 6.3.6.1, “OpenSSL Versus yaSSL” For information about the encryption
protocols and ciphers each package supports, see Section 6.3.6.3, “Secure Connection Protocols and
Ciphers”.

MySQL performs encryption on a per-connection basis, and use of encryption can be optional or
mandatory. This enables you to choose an encrypted or unencrypted connection according to the
requirements of individual applications. For information on how to require users to use encrypted
connections, see the discussion of the REQUIRE clause of the GRANT statement in Section 13.7.1.3,
“GRANT Syntax”.

Encrypted connections are not used by default. For applications that require the security provided by
encrypted connections, the extra computation to encrypt the data is worthwhile.

Secure connections are available through the MySQL C API using the mysql_ssl_set() and
mysql_options() functions. See Section 20.6.7.67, “mysql_ssl_set()”, and Section 20.6.7.49,
“mysql_options()”.

Replication uses the C API, so secure connections can be used between master and slave servers. See
Section 16.3.7, “Setting Up Replication to Use Secure Connections”.

It is also possible to connect securely from within an SSH connection to the MySQL server host. For an
example, see Section 6.3.8, “Connecting to MySQL Remotely from Windows with SSH”.

6.3.6.1 OpenSSL Versus yaSSL

MySQL can be compiled using OpenSSL or yaSSL, both of which enable secure conections based on the
OpenSSL API.

OpenSSL and yaSSL offer the same basic functionality, but additional features are available in MySQL
distributions compiled using OpenSSL: OpenSSL supports a wider range of encryption ciphers from which
to choose for the --ssl-cipher option, and supports the --ssl-capath option. See Section 6.3.6.5,
“Command Options for Secure Connections”.

6.3.6.2 Building MySQL with Support for Secure Connections

To use SSL connections between the MySQL server and client programs, your system must support either
OpenSSL or yaSSL, and your version of MySQL must be built with SSL support. To make it easier to use
secure connections, as of version 5.0.10, MySQL is bundled with yaSSL, which uses the same licensing
model as MySQL. (OpenSSL uses an Apache-style license.) yaSSL support is available on all platforms
supported by Oracle Corporation.

To get secure connections to work with MySQL and SSL, you must do the following:

1. If you are not using a binary (precompiled) version of MySQL that has been built with SSL support,
and you are going to use OpenSSL rather than the bundled yaSSL library, install OpenSSL if it has not
already been installed. We have tested MySQL with OpenSSL 0.9.6. To obtain OpenSSL, visit http://
www.openssl.org.

http://www.openssl.org
http://www.openssl.org

Using Secure Connections

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 664

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Building MySQL using OpenSSL requires a shared OpenSSL library, otherwise linker errors occur.
Alternatively, build MySQL using yaSSL.

2. If you are not using a binary (precompiled) version of MySQL that has been built with SSL support,
configure a MySQL source distribution to use SSL. When you configure MySQL, invoke the
configure script with the appropriate option to select the SSL library that you want to use.

For yaSSL:

shell> ./configure --with-yassl

For OpenSSL:

shell> ./configure --with-openssl

Before MySQL 5.0, it was also neccessary to use --with-vio, but that option is no longer required.

Then compile and install the distribution.

On Unix platforms, yaSSL retrieves true random numbers from either /dev/urandom or /dev/
random. Bug#13164 lists workarounds for some very old platforms which do not support these devices.

3. To check whether a server binary is compiled with SSL support, invoke it with the --ssl option. An
error will occur if the server does not support SSL:

shell> mysqld --ssl --help
060525 14:18:52 [ERROR] mysqld: unknown option '--ssl'

To check whether a running mysqld server supports secure connections, examine the value of the
have_ssl system variable (if you have no have_ssl variable, check for have_openssl):

mysql> SHOW VARIABLES LIKE 'have_ssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_ssl | YES |
+---------------+-------+

If the value is YES, the server supports secure connections. If the value is DISABLED, the server is
capable of supporting secure connections but was not started with the appropriate --ssl-xxx options
to enable secure connections to be used; see Section 6.3.6.4, “Configuring MySQL to Use Secure
Connections”.

6.3.6.3 Secure Connection Protocols and Ciphers

To determine which encryption protocol and cipher are in use for an encrypted connection, use the
following statements to check the values of the Ssl_version and Ssl_cipher status variables:

mysql> SHOW SESSION STATUS LIKE 'Ssl_version';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Ssl_version | TLSv1 |
+---------------+-------+
mysql> SHOW SESSION STATUS LIKE 'Ssl_cipher';

Using Secure Connections

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 665

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+---------------+--------------------+
| Variable_name | Value |
+---------------+--------------------+
| Ssl_cipher | DHE-RSA-AES256-SHA |
+---------------+--------------------+

If the connection is not encrypted, both variables have an empty value.

MySQL supports encrypted connections using the TLSv1 protocol.

To determine which ciphers a given server supports, use the following statement to check the value of the
Ssl_cipher_list status variable:

SHOW SESSION STATUS LIKE 'Ssl_cipher_list';

The set of available ciphers depends on your MySQL version and whether MySQL was compiled using
OpenSSL or yaSSL, and (for OpenSSL) the library version used to compile MySQL.

For example, for OpenSSL, the list may include these ciphers:

AES256-GCM-SHA384
AES256-SHA
AES256-SHA256
CAMELLIA256-SHA
DES-CBC3-SHA
DHE-DSS-AES256-GCM-SHA384
DHE-DSS-AES256-SHA
DHE-DSS-AES256-SHA256
DHE-DSS-CAMELLIA256-SHA
DHE-RSA-AES256-GCM-SHA384
DHE-RSA-AES256-SHA
DHE-RSA-AES256-SHA256
DHE-RSA-CAMELLIA256-SHA
ECDH-ECDSA-AES256-GCM-SHA384
ECDH-ECDSA-AES256-SHA
ECDH-ECDSA-AES256-SHA384
ECDH-ECDSA-DES-CBC3-SHA
ECDH-RSA-AES256-GCM-SHA384
ECDH-RSA-AES256-SHA
ECDH-RSA-AES256-SHA384
ECDH-RSA-DES-CBC3-SHA
ECDHE-ECDSA-AES128-GCM-SHA256
ECDHE-ECDSA-AES128-SHA
ECDHE-ECDSA-AES128-SHA256
ECDHE-ECDSA-AES256-GCM-SHA384
ECDHE-ECDSA-AES256-SHA
ECDHE-ECDSA-AES256-SHA384
ECDHE-ECDSA-DES-CBC3-SHA
ECDHE-RSA-AES128-GCM-SHA256
ECDHE-RSA-AES128-SHA
ECDHE-RSA-AES128-SHA256
ECDHE-RSA-AES256-GCM-SHA384
ECDHE-RSA-AES256-SHA
ECDHE-RSA-AES256-SHA384
ECDHE-RSA-DES-CBC3-SHA
EDH-DSS-DES-CBC3-SHA
EDH-RSA-DES-CBC3-SHA
PSK-3DES-EDE-CBC-SHA
PSK-AES256-CBC-SHA
SRP-DSS-3DES-EDE-CBC-SHA
SRP-DSS-AES-128-CBC-SHA
SRP-DSS-AES-256-CBC-SHA
SRP-RSA-3DES-EDE-CBC-SHA
SRP-RSA-AES-128-CBC-S

Using Secure Connections

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 666

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SRP-RSA-AES-256-CBC-SHA

yaSSL supports these ciphers:

AES128-RMD
AES128-SHA
AES256-RMD
AES256-SHA
DES-CBC-SHA
DES-CBC3-RMD
DES-CBC3-SHA
DHE-RSA-AES128-RMD
DHE-RSA-AES128-SHA
DHE-RSA-AES256-RMD
DHE-RSA-AES256-SHA
DHE-RSA-DES-CBC3-RMD
EDH-RSA-DES-CBC-SHA
EDH-RSA-DES-CBC3-SHA
RC4-MD5
RC4-SHA

6.3.6.4 Configuring MySQL to Use Secure Connections

To enable secure connections, your MySQL distribution must be built with SSL support, as described in
Section 6.3.6.2, “Building MySQL with Support for Secure Connections”. In addition, the proper options
must be used to specify the appropriate certificate and key files. For a complete list of options related to
establishment of secure connections, see Section 6.3.6.5, “Command Options for Secure Connections”.

If you need to create the required SSL files, see Section 6.3.7, “Creating SSL Certificates and Keys Using
openssl”.

Server-Side Configuration for Secure Connections

To start the MySQL server so that it permits clients to connect securely, use options that identify the
certificate and key files the server uses when establishing a secure connection:

• --ssl-ca identifies the Certificate Authority (CA) certificate.

• --ssl-cert identifies the server public key certificate. This can be sent to the client and authenticated
against the CA certificate that it has.

• --ssl-key identifies the server private key.

For example, start the server with these lines in the my.cnf file, changing the file names as necessary:

[mysqld]
ssl-ca=ca.pem
ssl-cert=server-cert.pem
ssl-key=server-key.pem

Each option names a file in PEM format. If you have a MySQL source distribution, you can test your setup
using the demonstration certificate and key files in its mysql-test/std_data directory.

Client-Side Configuration for Secure Connections

For client programs, options for secure connections are similar to those used on the server side, but --
ssl-cert and --ssl-key identify the client public and private key:

• --ssl-ca identifies the Certificate Authority (CA) certificate. This option, if used, must specify the same
certificate used by the server.

Using Secure Connections

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 667

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --ssl-cert identifies the client public key certificate.

• --ssl-key identifies the client private key.

To connect securely to a MySQL server that supports secure connections, the options that a client must
specify depend on the encryption requirements of the MySQL account used by the client. (See the
discussion of the REQUIRE clause in Section 13.7.1.3, “GRANT Syntax”.)

Suppose that you want to connect using an account that has no special encryption requirements or was
created using a GRANT statement that includes the REQUIRE SSL option. As a recommended set of
secure-connection options, start the server with at least --ssl-cert and --ssl-key, and invoke the
client with --ssl-ca. A client can connect securely like this:

shell> mysql --ssl-ca=ca.pem

To require that a client certificate also be specified, create the account using the REQUIRE X509 option.
Then the client must also specify the proper client key and certificate files or the server will reject the
connection:

shell> mysql --ssl-ca=ca.pem \
 --ssl-cert=client-cert.pem \
 --ssl-key=client-key.pem

To prevent use of encryption and override other --ssl-xxx options, invoke the client program with --
ssl=0 or a synonym (--skip-ssl, --disable-ssl):

shell> mysql --ssl=0

A client can determine whether the current connection with the server uses encryption by checking the
value of the Ssl_cipher status variable. If the value is empty, the connection is encrypted. Otherwise, the
connection is encrypted and the value indicates the encryption cipher. For example:

mysql> SHOW STATUS LIKE 'Ssl_cipher';
+---------------+--------------------+
| Variable_name | Value |
+---------------+--------------------+
| Ssl_cipher | DHE-RSA-AES256-SHA |
+---------------+--------------------+

For the mysql client, an alternative is to use the STATUS or \s command and check the SSL line:

mysql> \s
...
SSL: Cipher in use is DHE-RSA-AES256-SHA
...

Or:

mysql> \s
...
SSL: Not in use
...

C API Configuration for Secure Connections

The C API enables application programs to use secure connections:

Using Secure Connections

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 668

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• To establish a secure connection, use the mysql_ssl_set() C API function to set the appropriate
certificate options before calling mysql_real_connect(). See Section 20.6.7.67, “mysql_ssl_set()”.

• To determine whether encryption is in use after the connection is established, use
mysql_get_ssl_cipher(). A non-NULL return value indicates an encrypted connection and names
the cipher used for encryption. A NULL return value indicates that encryption is not being used. See
Section 20.6.7.33, “mysql_get_ssl_cipher()”.

Replication uses the C API, so secure connections can be used between master and slave servers. See
Section 16.3.7, “Setting Up Replication to Use Secure Connections”.

6.3.6.5 Command Options for Secure Connections

This section describes options that specify whether to use secure connections and the names of certificate
and key files. These options can be given on the command line or in an option file. They are not available
unless MySQL has been built with SSL support. See Section 6.3.6.2, “Building MySQL with Support for
Secure Connections”. For examples of suggested use and how to check whether a connection is secure,
see Section 6.3.6.4, “Configuring MySQL to Use Secure Connections”. (There are also --master-ssl*
options that can be used for setting up a secure connection from a slave replication server to a master
server; see Section 16.1.2, “Replication and Binary Logging Options and Variables”.)

Table 6.8 Secure-Connection Option Summary

Format Description Introduced

--skip-ssl Do not use secure connection

--ssl Enable secure connection

--ssl-ca Path of file that contains list of trusted SSL CAs 5.0.23

--ssl-capath Path of directory that contains trusted SSL CA certificates
in PEM format

5.0.23

--ssl-cert Path of file that contains X509 certificate in PEM format 5.0.23

--ssl-cipher List of permitted ciphers to use for connection encryption 5.0.23

--ssl-key Path of file that contains X509 key in PEM format 5.0.23

--ssl-verify-server-cert Verify server certificate Common Name value against host
name used when connecting to server

5.0.23

• --ssl

For the MySQL server, this option specifies that the server permits but does not require secure
connections.

For MySQL client programs, this option permits but does not require the client to connect to the server
using encryption. Therefore, this option is not sufficient in itself to cause a secure connection to be used.
For example, if you specify this option for a client program but the server has not been configured to
support secure connections, the client falls back to an unencrypted connection.

As a recommended set of options to enable secure connections, use at least --ssl-cert and --ssl-
key on the server side and --ssl-ca on the client side. See Section 6.3.6.4, “Configuring MySQL to
Use Secure Connections”.

--ssl may be implied by other --ssl-xxx options, as indicated in the descriptions for those options.

The --ssl option in negated form overrides other --ssl-xxx options and indicates that encryption
should not be used. To do this, specify the option as --ssl=0 or a synonym (--skip-ssl, --
disable-ssl). For example, you might have options specified in the [client] group of your

Using Secure Connections

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 669

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

option file to use secure connections by default when you invoke MySQL client programs. To use an
unencrypted connection instead, invoke the client program with --ssl=0 on the command line to
override the options in the option file.

To require use of secure connections for a MySQL account, use a GRANT statement for the account
that includes at least a REQUIRE SSL clause. Connections for the account will be rejected unless
MySQL supports secure connections and the server and client have been started with the proper secure-
connection options.

The REQUIRE clause permits other encryption-related options, which can be used to enforce stricter
requirements than REQUIRE SSL. For additional details about which command options may or must be
specified by clients that connect using accounts configured using the various REQUIRE options, see the
description of REQUIRE in Section 13.7.1.3, “GRANT Syntax”.

• --ssl-ca=file_name

The path to a file in PEM format that contains a list of trusted SSL certificate authorities. This option
implies --ssl.

As of MySQL 5.0.40, if you use encryption when establishing a client connection, to tell the client not
to authenticate the server certificate, specify neither --ssl-ca nor --ssl-capath. The server still
verifies the client according to any applicable requirements established for the client account, and it still
uses any --ssl-ca or --ssl-capath option values specified at server startup.

• --ssl-capath=dir_name

The path to a directory that contains trusted SSL certificate authority certificates in PEM format. This
option implies --ssl.

As of MySQL 5.0.40, if you use encryption when establishing a client connection, to tell the client not
to authenticate the server certificate, specify neither --ssl-ca nor --ssl-capath. The server still
verifies the client according to any applicable requirements established for the client account, and it still
uses any --ssl-ca or --ssl-capath option values specified at server startup.

MySQL distributions compiled using OpenSSL support the --ssl-capath option (see Section 6.3.6.1,
“OpenSSL Versus yaSSL”). Distributions compiled using yaSSL do not because yaSSL does not look in
any directory and does not follow a chained certificate tree. yaSSL requires that all components of the
CA certificate tree be contained within a single CA certificate tree and that each certificate in the file has
a unique SubjectName value. To work around this yaSSL limitation, concatenate the individual certificate
files comprising the certificate tree into a new file and specify that file as the value of the --ssl-ca
option.

• --ssl-cert=file_name

The name of the SSL certificate file in PEM format to use for establishing a secure connection. This
option implies --ssl.

• --ssl-cipher=cipher_list

A list of permissible ciphers to use for connection encryption. If no cipher in the list is supported,
encrypted connections will not work. This option implies --ssl.

For greatest portability, cipher_list should be a list of one or more cipher names, separated by
colons. This format is understood both by OpenSSL and yaSSL. Examples:

--ssl-cipher=AES128-SHA

Creating SSL Certificates and Keys Using openssl

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 670

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--ssl-cipher=DHE-RSA-AES256-SHA:AES128-SHA

OpenSSL supports a more flexible syntax for specifying ciphers, as described in the OpenSSL
documentation at http://www.openssl.org/docs/apps/ciphers.html. However, yaSSL does not, so
attempts to use that extended syntax fail for a MySQL distribution compiled using yaSSL.

For information about which encryption ciphers MySQL supports, see Section 6.3.6.3, “Secure
Connection Protocols and Ciphers”.

• --ssl-key=file_name

The name of the SSL key file in PEM format to use for establishing a secure connection. This option
implies --ssl.

If the MySQL distribution was compiled using OpenSSL and the key file is protected by a passphrase,
the program prompts the user for the passphrase. The password must be given interactively; it cannot be
stored in a file. If the passphrase is incorrect, the program continues as if it could not read the key. If the
MySQL distribution was built using yaSSL and the key file is protected by a passphrase, an error occurs.

• --ssl-verify-server-cert

This option is available only for client programs, not the server. It causes the client to check the server's
Common Name value in the certificate that the server sends to the client. The client verifies that name
against the host name the client uses for connecting to the server, and the connection fails if there is a
mismatch. For encrypted connections, this option helps prevent man-in-the-middle attacks. Verification is
disabled by default. This option was added in MySQL 5.0.23.

6.3.7 Creating SSL Certificates and Keys Using openssl

This section describes how to use the openssl command to set up SSL certificate and key files for use
by MySQL servers and clients. The first example shows a simplified procedure such as you might use
from the command line. The second shows a script that contains more detail. The first two examples are
intended for use on Unix and both use the openssl command that is part of OpenSSL. The third example
describes how to set up SSL files on Windows.

Important

Whatever method you use to generate the certificate and key files, the Common
Name value used for the server and client certificates/keys must each differ from
the Common Name value used for the CA certificate. Otherwise, the certificate and
key files will not work for servers compiled using OpenSSL. A typical error in this
case is:

ERROR 2026 (HY000): SSL connection error:
error:00000001:lib(0):func(0):reason(1)

Example 1: Creating SSL Files from the Command Line on Unix

The following example shows a set of commands to create MySQL server and client certificate and key
files. You will need to respond to several prompts by the openssl commands. To generate test files,
you can press Enter to all prompts. To generate files for production use, you should provide nonempty
responses.

Create clean environment
shell> rm -rf newcerts
shell> mkdir newcerts && cd newcerts

http://www.openssl.org/docs/apps/ciphers.html

Creating SSL Certificates and Keys Using openssl

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 671

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Create CA certificate
shell> openssl genrsa 2048 > ca-key.pem
shell> openssl req -new -x509 -nodes -days 3600 \
 -key ca-key.pem -out ca.pem

Create server certificate, remove passphrase, and sign it
server-cert.pem = public key, server-key.pem = private key
shell> openssl req -newkey rsa:2048 -days 3600 \
 -nodes -keyout server-key.pem -out server-req.pem
shell> openssl rsa -in server-key.pem -out server-key.pem
shell> openssl x509 -req -in server-req.pem -days 3600 \
 -CA ca.pem -CAkey ca-key.pem -set_serial 01 -out server-cert.pem

Create client certificate, remove passphrase, and sign it
client-cert.pem = public key, client-key.pem = private key
shell> openssl req -newkey rsa:2048 -days 3600 \
 -nodes -keyout client-key.pem -out client-req.pem
shell> openssl rsa -in client-key.pem -out client-key.pem
shell> openssl x509 -req -in client-req.pem -days 3600 \
 -CA ca.pem -CAkey ca-key.pem -set_serial 01 -out client-cert.pem

After generating the certificates, verify them:

shell> openssl verify -CAfile ca.pem server-cert.pem client-cert.pem
server-cert.pem: OK
client-cert.pem: OK

Now you have a set of files that can be used as follows:

• ca.pem: Use this as the argument to --ssl-ca on the server and client sides. (The CA certificate, if
used, must be the same on both sides.)

• server-cert.pem, server-key.pem: Use these as the arguments to --ssl-cert and --ssl-key
on the server side.

• client-cert.pem, client-key.pem: Use these as the arguments to --ssl-cert and --ssl-key
on the client side.

To use the files for SSL connections, see Section 6.3.6.4, “Configuring MySQL to Use Secure
Connections”.

Example 2: Creating SSL Files Using a Script on Unix

Here is an example script that shows how to set up SSL certificate and key files for MySQL. After
executing the script, use the files for SSL connections as described in Section 6.3.6.4, “Configuring MySQL
to Use Secure Connections”.

DIR=`pwd`/openssl
PRIV=$DIR/private

mkdir $DIR $PRIV $DIR/newcerts
cp /usr/share/ssl/openssl.cnf $DIR
replace ./demoCA $DIR -- $DIR/openssl.cnf

Create necessary files: $database, $serial and $new_certs_dir
directory (optional)

touch $DIR/index.txt
echo "01" > $DIR/serial

#
Generation of Certificate Authority(CA)
#

Creating SSL Certificates and Keys Using openssl

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 672

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DIR/ca.pem \
 -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
................++++++
.........++++++
writing new private key to '/home/monty/openssl/private/cakey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL admin
Email Address []:

#
Create server request and key
#
openssl req -new -keyout $DIR/server-key.pem -out \
 $DIR/server-req.pem -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
..++++++
..........++++++
writing new private key to '/home/monty/openssl/server-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL server
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

#
Remove the passphrase from the key

Creating SSL Certificates and Keys Using openssl

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 673

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

#
openssl rsa -in $DIR/server-key.pem -out $DIR/server-key.pem

#
Sign server cert
#
openssl ca -cert $DIR/ca.pem -policy policy_anything \
 -out $DIR/server-cert.pem -config $DIR/openssl.cnf \
 -infiles $DIR/server-req.pem

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL admin'
Certificate is to be certified until Sep 13 14:22:46 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

#
Create client request and key
#
openssl req -new -keyout $DIR/client-key.pem -out \
 $DIR/client-req.pem -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
.....................................++++++
...++++++
writing new private key to '/home/monty/openssl/client-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL user
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

#
Remove the passphrase from the key
#

Creating SSL Certificates and Keys Using openssl

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 674

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

openssl rsa -in $DIR/client-key.pem -out $DIR/client-key.pem

#
Sign client cert
#

openssl ca -cert $DIR/ca.pem -policy policy_anything \
 -out $DIR/client-cert.pem -config $DIR/openssl.cnf \
 -infiles $DIR/client-req.pem

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL user'
Certificate is to be certified until Sep 13 16:45:17 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

#
Create a my.cnf file that you can use to test the certificates
#

cat <<EOF > $DIR/my.cnf
[client]
ssl-ca=$DIR/ca.pem
ssl-cert=$DIR/client-cert.pem
ssl-key=$DIR/client-key.pem
[mysqld]
ssl-ca=$DIR/ca.pem
ssl-cert=$DIR/server-cert.pem
ssl-key=$DIR/server-key.pem
EOF

Example 3: Creating SSL Files on Windows

Download OpenSSL for Windows if it is not installed on your system. An overview of available packages
can be seen here:

http://www.slproweb.com/products/Win32OpenSSL.html

Choose the Win32 OpenSSL Light or Win64 OpenSSL Light package, depending on your architecture
(32-bit or 64-bit). The default installation location will be C:\OpenSSL-Win32 or C:\OpenSSL-Win64,
depending on which package you downloaded. The following instructions assume a default location of C:
\OpenSSL-Win32. Modify this as necessary if you are using the 64-bit package.

If a message occurs during setup indicating '...critical component is missing: Microsoft
Visual C++ 2008 Redistributables', cancel the setup and download one of the following
packages as well, again depending on your architecture (32-bit or 64-bit):

• Visual C++ 2008 Redistributables (x86), available at:

http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF

http://www.slproweb.com/products/Win32OpenSSL.html
http://www.microsoft.com/downloads/details.aspx?familyid=9B2DA534-3E03-4391-8A4D-074B9F2BC1BF

Creating SSL Certificates and Keys Using openssl

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 675

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Visual C++ 2008 Redistributables (x64), available at:

http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

After installing the additional package, restart the OpenSSL setup procedure.

During installation, leave the default C:\OpenSSL-Win32 as the install path, and also leave the default
option 'Copy OpenSSL DLL files to the Windows system directory' selected.

When the installation has finished, add C:\OpenSSL-Win32\bin to the Windows System Path variable of
your server:

1. On the Windows desktop, right-click the My Computer icon, and select Properties.

2. Select the Advanced tab from the System Properties menu that appears, and click the Environment
Variables button.

3. Under System Variables, select Path, then click the Edit button. The Edit System Variable dialogue
should appear.

4. Add ';C:\OpenSSL-Win32\bin' to the end (notice the semicolon).

5. Press OK 3 times.

6. Check that OpenSSL was correctly integrated into the Path variable by opening a new command
console (Start>Run>cmd.exe) and verifying that OpenSSL is available:

Microsoft Windows [Version ...]
Copyright (c) 2006 Microsoft Corporation. All rights reserved.

C:\Windows\system32>cd \

C:\>openssl
OpenSSL> exit <<< If you see the OpenSSL prompt, installation was successful.

C:\>

Depending on your version of Windows, the preceding path-setting instructions might differ slightly.

After OpenSSL has been installed, use instructions similar to those from from Example 1 (shown earlier in
this section), with the following changes:

• Change the following Unix commands:

Create clean environment
shell> rm -rf newcerts
shell> mkdir newcerts && cd newcerts

On Windows, use these commands instead:

Create clean environment
C:\> md c:\newcerts
C:\> cd c:\newcerts

• When a '\' character is shown at the end of a command line, this '\' character must be removed and
the command lines entered all on a single line.

After generating the certificate and key files, to use them for SSL connections, see Section 6.3.6.4,
“Configuring MySQL to Use Secure Connections”.

http://www.microsoft.com/downloads/details.aspx?familyid=bd2a6171-e2d6-4230-b809-9a8d7548c1b6

Connecting to MySQL Remotely from Windows with SSH

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 676

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

6.3.8 Connecting to MySQL Remotely from Windows with SSH

This section describes how to get a secure connection to a remote MySQL server with SSH. The
information was provided by David Carlson <dcarlson@mplcomm.com>.

1. Install an SSH client on your Windows machine. As a user, the best nonfree one I have found is
from SecureCRT from http://www.vandyke.com/. Another option is f-secure from http://www.f-
secure.com/. You can also find some free ones on Google at http://directory.google.com/Top/
Computers/Internet/Protocols/SSH/Clients/Windows/.

2. Start your Windows SSH client. Set Host_Name = yourmysqlserver_URL_or_IP. Set
userid=your_userid to log in to your server. This userid value might not be the same as the user
name of your MySQL account.

3. Set up port forwarding. Either do a remote forward (Set local_port: 3306, remote_host:
yourmysqlservername_or_ip, remote_port: 3306) or a local forward (Set port: 3306,
host: localhost, remote port: 3306).

4. Save everything, otherwise you will have to redo it the next time.

5. Log in to your server with the SSH session you just created.

6. On your Windows machine, start some ODBC application (such as Access).

7. Create a new file in Windows and link to MySQL using the ODBC driver the same way you normally do,
except type in localhost for the MySQL host server, not yourmysqlservername.

At this point, you should have an ODBC connection to MySQL, encrypted using SSH.

6.3.9 SQL-Based MySQL Account Activity Auditing

Applications can use the following guidelines to perform SQL-based auditing that ties database activity to
MySQL accounts.

MySQL accounts correspond to rows in the mysql.user table. When a client connects successfully, the
server authenticates the client to a particular row in this table. The User and Host column values in this
row uniquely identify the account and correspond to the 'user_name'@'host_name' format in which
account names are written in SQL statements.

The account used to authenticate a client determines which privileges the client has. Normally, the
CURRENT_USER() function can be invoked to determine which account this is for the client user. Its value
is constructed from the User and Host columns of the user table row for the account.

However, there are circumstances under which the CURRENT_USER() value corresponds not to the client
user but to a different account. This occurs in contexts when privilege checking is not based the client's
account:

• Stored routines (procedures and functions) defined with the SQL SECURITY DEFINER characteristic.

• Views defined with the SQL SECURITY DEFINER characteristic (as of MySQL 5.0.24).

• Triggers (as of MySQL 5.0.17).

In those contexts, privilege checking is done against the DEFINER account and CURRENT_USER() refers
to that account, not to the account for the client who invoked the stored routine or view or who caused
the trigger to activate. To determine the invoking user, you can call the USER() function, which returns a

http://www.vandyke.com/
http://www.f-secure.com/
http://www.f-secure.com/
http://directory.google.com/Top/Computers/Internet/Protocols/SSH/Clients/Windows/
http://directory.google.com/Top/Computers/Internet/Protocols/SSH/Clients/Windows/

SQL-Based MySQL Account Activity Auditing

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 677

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

value indicating the actual user name provided by the client and the host from which the client connected.
However, this value does not necessarily correspond directly to an account in the user table, because the
USER() value never contains wildcards, whereas account values (as returned by CURRENT_USER()) may
contain user name and host name wildcards.

For example, a blank user name matches any user, so an account of ''@'localhost' enables clients to
connect as an anonymous user from the local host with any user name. In this case, if a client connects as
user1 from the local host, USER() and CURRENT_USER() return different values:

mysql> SELECT USER(), CURRENT_USER();
+-----------------+----------------+
| USER() | CURRENT_USER() |
+-----------------+----------------+
| user1@localhost | @localhost |
+-----------------+----------------+

The host name part of an account can contain wildcards, too. If the host name contains a '%' or
'_' pattern character or uses netmask notation, the account can be used for clients connecting from
multiple hosts and the CURRENT_USER() value will not indicate which one. For example, the account
'user2'@'%.example.com' can be used by user2 to connect from any host in the example.com
domain. If user2 connects from remote.example.com, USER() and CURRENT_USER() return different
values:

mysql> SELECT USER(), CURRENT_USER();
+--------------------------+---------------------+
| USER() | CURRENT_USER() |
+--------------------------+---------------------+
| user2@remote.example.com | user2@%.example.com |
+--------------------------+---------------------+

If an application must invoke USER() for user auditing (for example, if it does auditing from within triggers)
but must also be able to associate the USER() value with an account in the user table, it is necessary
to avoid accounts that contain wildcards in the User or Host column. Specifically, do not permit User to
be empty (which creates an anonymous-user account), and do not permit pattern characters or netmask
notation in Host values. All accounts must have a nonempty User value and literal Host value.

With respect to the previous examples, the ''@'localhost' and 'user2'@'%.example.com'
accounts should be changed not to use wildcards:

RENAME USER ''@'localhost' TO 'user1'@'localhost';
RENAME USER 'user2'@'%.example.com' TO 'user2'@'remote.example.com';

If user2 must be able to connect from several hosts in the example.com domain, there should be a
separate account for each host.

To extract the user name or host name part from a CURRENT_USER() or USER() value, use the
SUBSTRING_INDEX() function:

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',1);
+---------------------------------------+
| SUBSTRING_INDEX(CURRENT_USER(),'@',1) |
+---------------------------------------+
| user1 |
+---------------------------------------+

mysql> SELECT SUBSTRING_INDEX(CURRENT_USER(),'@',-1);
+--+

SQL-Based MySQL Account Activity Auditing

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 678

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| SUBSTRING_INDEX(CURRENT_USER(),'@',-1) |
+--+
| localhost |
+--+

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 679

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 7 Backup and Recovery

Table of Contents
7.1 Backup and Recovery Types ... 680
7.2 Database Backup Methods ... 682
7.3 Example Backup and Recovery Strategy ... 684

7.3.1 Establishing a Backup Policy .. 685
7.3.2 Using Backups for Recovery .. 687
7.3.3 Backup Strategy Summary ... 688

7.4 Using mysqldump for Backups .. 688
7.4.1 Dumping Data in SQL Format with mysqldump ... 688
7.4.2 Reloading SQL-Format Backups ... 689
7.4.3 Dumping Data in Delimited-Text Format with mysqldump ... 690
7.4.4 Reloading Delimited-Text Format Backups .. 691
7.4.5 mysqldump Tips ... 692

7.5 Point-in-Time (Incremental) Recovery Using the Binary Log .. 694
7.5.1 Point-in-Time Recovery Using Event Times ... 695
7.5.2 Point-in-Time Recovery Using Event Positions .. 696

7.6 MyISAM Table Maintenance and Crash Recovery .. 697
7.6.1 Using myisamchk for Crash Recovery ... 697
7.6.2 How to Check MyISAM Tables for Errors .. 698
7.6.3 How to Repair MyISAM Tables ... 699
7.6.4 MyISAM Table Optimization ... 701
7.6.5 Setting Up a MyISAM Table Maintenance Schedule .. 702

It is important to back up your databases so that you can recover your data and be up and running again
in case problems occur, such as system crashes, hardware failures, or users deleting data by mistake.
Backups are also essential as a safeguard before upgrading a MySQL installation, and they can be used to
transfer a MySQL installation to another system or to set up replication slave servers.

MySQL offers a variety of backup strategies from which you can choose the methods that best suit the
requirements for your installation. This chapter discusses several backup and recovery topics with which
you should be familiar:

• Types of backups: Logical versus physical, full versus incremental, and so forth

• Methods for creating backups

• Recovery methods, including point-in-time recovery

• Backup scheduling, compression, and encryption

• Table maintenance, to enable recovery of corrupt tables

Additional Resources

Resources related to backup or to maintaining data availability include the following:

• A forum dedicated to backup issues is available at http://forums.mysql.com/list.php?28.

• Details for mysqldump, mysqlhotcopy, and other MySQL backup programs can be found in Chapter 4,
MySQL Programs.

http://forums.mysql.com/list.php?28

Backup and Recovery Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 680

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The syntax of the SQL statements described here is given in Chapter 13, SQL Statement Syntax.

• For additional information about InnoDB backup procedures, see Section 14.2.6, “Backing Up and
Recovering an InnoDB Database”.

• Replication enables you to maintain identical data on multiple servers. This has several benefits, such
as enabling client query load to be distributed over servers, availability of data even if a given server
is taken offline or fails, and the ability to make backups with no impact on the master by using a slave
server. See Chapter 16, Replication.

• MySQL Cluster provides a high-availability, high-redundancy version of MySQL adapted for the
distributed computing environment. See Chapter 17, MySQL Cluster. For information specifically about
MySQL Cluster backup, see Section 17.5.3, “Online Backup of MySQL Cluster”.

7.1 Backup and Recovery Types
This section describes the characteristics of different types of backups.

Logical Versus Physical (Raw) Backups

Logical backups save information represented as logical database structure (CREATE DATABASE, CREATE
TABLE statements) and content (INSERT statements or delimited-text files). Physical backups consist of
raw copies of the directories and files that store database contents.

Logical backup methods have these characteristics:

• The backup is done by querying the MySQL server to obtain database structure and content information.

• Backup is slower than physical methods because the server must access database information and
convert it to logical format. If the output is written on the client side, the server must also send it to the
backup program.

• Output is larger than for physical backup, particularly when saved in text format.

• Backup and restore granularity is available at the server level (all databases), database level (all tables
in a particular database), or table level. This is true regardless of storage engine.

• The backup does not include log or configuration files, or other database-related files that are not part of
databases.

• Backups stored in logical format are machine independent and highly portable.

• Logical backups are performed with the MySQL server running. The server is not taken offline.

• Logical backup tools include the mysqldump program and the SELECT ... INTO OUTFILE
statement. These work for any storage engine, even MEMORY.

• To restore logical backups, SQL-format dump files can be processed using the mysql client. To load
delimited-text files, use the LOAD DATA INFILE statement or the mysqlimport client.

Physical backup methods have these characteristics:

• The backup consists of exact copies of database directories and files. Typically this is a copy of all or
part of the MySQL data directory. Data from MEMORY tables cannot be backed up this way because their
contents are not stored on disk.

• Physical backup methods are faster than logical because they involve only file copying without
conversion.

Backup and Recovery Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 681

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Output is more compact than for logical backup.

• Backup and restore granularity ranges from the level of the entire data directory down to the level of
individual files. This may or may not provide for table-level granularity, depending on storage engine.
(Each MyISAM table corresponds uniquely to a set of files, but an InnoDB table shares file storage with
other InnoDB tables.)

• In addition to databases, the backup can include any related files such as log or configuration files.

• Backups are portable only to other machines that have identical or similar hardware characteristics.

• Backups can be performed while the MySQL server is not running. If the server is running, it is
necessary to perform appropriate locking so that the server does not change database contents during
the backup.

• Physical backup tools include file system-level commands (such as cp, scp, tar, rsync),
mysqlhotcopy for MyISAM tables, ibbackup for InnoDB tables, or START BACKUP for NDB tables.

• For restore, files copied at the file system level or with mysqlhotcopy can be copied back to their
original locations with file system commands; ibbackup restores InnoDB tables, and ndb_restore
restores NDB tables.

Online Versus Offline Backups

Online backups take place while the MySQL server is running so that the database information can be
obtained from the server. Offline backups take place while the server is stopped. This distinction can also
be described as “hot” versus “cold” backups; a “warm” backup is one where the server remains running but
locked against modifying data while you access database files externally.

Online backup methods have these characteristics:

• The backup is less intrusive to other clients, which can connect to the MySQL server during the backup
and may be able to access data depending on what operations they need to perform.

• Care must be taken to impose appropriate locking so that data modifications do not take place that
would compromise backup integrity.

Offline backup methods have these characteristics:

• Clients can be affected adversely because the server is unavailable during backup.

• The backup procedure is simpler because there is no possibility of interference from client activity.

A similar distinction between online and offline applies for recovery operations, and similar characteristics
apply. However, it is more likely that clients will be affected for online recovery than for online backup
because recovery requires stronger locking. During backup, clients might be able to read data while it is
being backed up. Recovery modifies data and does not just read it, so clients must be prevented from
accessing data while it is being restored.

Local Versus Remote Backups

A local backup is performed on the same host where the MySQL server runs, whereas a remote backup
is done from a different host. For some types of backups, the backup can be initiated from a remote host
even if the output is written locally on the server. host.

• mysqldump can connect to local or remote servers. For SQL output (CREATE and INSERT statements),
local or remote dumps can be done and generate output on the client. For delimited-text output (with the
--tab option), data files are created on the server host.

Database Backup Methods

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 682

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• mysqlhotcopy performs only local backups: It connects to the server to lock it against data
modifications and then copies local table files.

• SELECT ... INTO OUTFILE can be initiated from a local or remote client host, but the output file is
created on the server host.

• Physical backup methods typically are initiated locally on the MySQL server host so that the server can
be taken offline, although the destination for copied files might be remote.

Snapshot Backups

Some file system implementations enable “snapshots” to be taken. These provide logical copies of the file
system at a given point in time, without requiring a physical copy of the entire file system. (For example,
the implementation may use copy-on-write techniques so that only parts of the file system modified after
the snapshot time need be copied.) MySQL itself does not provide the capability for taking file system
snapshots. It is available through third-party solutions such as Veritas, LVM, or ZFS.

Full Versus Incremental Backups

A full backup includes all data managed by a MySQL server at a given point in time. An incremental
backup consists of the changes made to the data during a given time span (from one point in time to
another). MySQL has different ways to perform full backups, such as those described earlier in this section.
Incremental backups are made possible by enabling the server's binary log, which the server uses to
record data changes.

Full Versus Point-in-Time (Incremental) Recovery

A full recovery restores all data from a full backup. This restores the server instance to the state that it
had when the backup was made. If that state is not sufficiently current, a full recovery can be followed by
recovery of incremental backups made since the full backup, to bring the server to a more up-to-date state.

Incremental recovery is recovery of changes made during a given time span. This is also called point-in-
time recovery because it makes a server's state current up to a given time. Point-in-time recovery is based
on the binary log and typically follows a full recovery from the backup files that restores the server to its
state when the backup was made. Then the data changes written in the binary log files are applied as
incremental recovery to redo data modifications and bring the server up to the desired point in time.

Table Maintenance

Data integrity can be compromised if tables become corrupt. MySQL provides programs for checking
MyISAM tables and repairing them should problems be found. See Section 7.6, “MyISAM Table
Maintenance and Crash Recovery”.

Backup Scheduling, Compression, and Encryption

Backup scheduling is valuable for automating backup procedures. Compression of backup output reduces
space requirements, and encryption of the output provides better security against unauthorized access
of backed-up data. MySQL itself does not provide these capabilities. ibbackup can compress InnoDB
backups, and compression or encryption of backup output can be achieved using file system utilities. Other
third-party solutions may be available.

7.2 Database Backup Methods

This section summarizes some general methods for making backups.

Making Backups with mysqldump or mysqlhotcopy

Database Backup Methods

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 683

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The mysqldump program and the mysqlhotcopy script can make backups. mysqldump is more general
because it can back up all kinds of tables. mysqlhotcopy works only with some storage engines. (See
Section 7.4, “Using mysqldump for Backups”, and Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”.)

For InnoDB tables, it is possible to perform an online backup that takes no locks on tables using the --
single-transaction option to mysqldump. See Section 7.3.1, “Establishing a Backup Policy”.

Making Backups by Copying Table Files

For storage engines that represent each table using its own files, tables can be backed up by copying
those files. For example, MyISAM tables are stored as files, so it is easy to do a backup by copying files
(*.frm, *.MYD, and *.MYI files). To get a consistent backup, stop the server or lock and flush the
relevant tables:

LOCK TABLES tbl_list READ;
FLUSH TABLES tbl_list;

You need only a read lock; this enables other clients to continue to query the tables while you are making
a copy of the files in the database directory. The FLUSH TABLES statement is needed to ensure that the
all active index pages are written to disk before you start the backup. See Section 13.3.5, “LOCK TABLES
and UNLOCK TABLES Syntax”, and Section 13.7.6.2, “FLUSH Syntax”.

You can also create a binary backup simply by copying all table files, as long as the server isn't updating
anything. The mysqlhotcopy script uses this method. (But note that table file copying methods do not
work if your database contains InnoDB tables. mysqlhotcopy does not work for InnoDB tables because
InnoDB does not necessarily store table contents in database directories. Also, even if the server is not
actively updating data, InnoDB may still have modified data cached in memory and not flushed to disk.)

Making Delimited-Text File Backups

To create a text file containing a table's data, you can use SELECT * INTO OUTFILE 'file_name'
FROM tbl_name. The file is created on the MySQL server host, not the client host. For this statement, the
output file cannot already exist because permitting files to be overwritten constitutes a security risk. See
Section 13.2.8, “SELECT Syntax”. This method works for any kind of data file, but saves only table data,
not the table structure.

Another way to create text data files (along with files containing CREATE TABLE statements for the backed
up tables) is to use mysqldump with the --tab option. See Section 7.4.3, “Dumping Data in Delimited-
Text Format with mysqldump”.

To reload a delimited-text data file, use LOAD DATA INFILE or mysqlimport.

Making Incremental Backups by Enabling the Binary Log

MySQL supports incremental backups: You must start the server with the --log-bin option to enable
binary logging; see Section 5.4.3, “The Binary Log”. The binary log files provide you with the information
you need to replicate changes to the database that are made subsequent to the point at which you
performed a backup. At the moment you want to make an incremental backup (containing all changes
that happened since the last full or incremental backup), you should rotate the binary log by using FLUSH
LOGS. This done, you need to copy to the backup location all binary logs which range from the one of the
moment of the last full or incremental backup to the last but one. These binary logs are the incremental
backup; at restore time, you apply them as explained in Section 7.5, “Point-in-Time (Incremental) Recovery
Using the Binary Log”. The next time you do a full backup, you should also rotate the binary log using
FLUSH LOGS, mysqldump --flush-logs, or mysqlhotcopy --flushlog. See Section 4.5.4,

Example Backup and Recovery Strategy

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 684

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

“mysqldump — A Database Backup Program”, and Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”.

Making Backups Using Replication Slaves

If you have performance problems with your master server while making backups, one strategy that
can help is to set up replication and perform backups on the slave rather than on the master. See
Section 16.3.1, “Using Replication for Backups”.

If you are backing up a slave replication server, you should back up its master.info and relay-
log.info files when you back up the slave's databases, regardless of the backup method you choose.
These information files are always needed to resume replication after you restore the slave's data. If your
slave is replicating LOAD DATA INFILE statements, you should also back up any SQL_LOAD-* files that
exist in the directory that the slave uses for this purpose. The slave needs these files to resume replication
of any interrupted LOAD DATA INFILE operations. The location of this directory is the value of the --
slave-load-tmpdir option. If the server was not started with that option, the directory location is the
value of the tmpdir system variable.

Recovering Corrupt Tables

If you have to restore MyISAM tables that have become corrupt, try to recover them using REPAIR TABLE
or myisamchk -r first. That should work in 99.9% of all cases. If myisamchk fails, see Section 7.6,
“MyISAM Table Maintenance and Crash Recovery”.

Making Backups Using a File System Snapshot

If you are using a Veritas file system, you can make a backup like this:

1. From a client program, execute FLUSH TABLES WITH READ LOCK.

2. From another shell, execute mount vxfs snapshot.

3. From the first client, execute UNLOCK TABLES.

4. Copy files from the snapshot.

5. Unmount the snapshot.

Similar snapshot capabilities may be available in other file systems, such as LVM or ZFS.

7.3 Example Backup and Recovery Strategy

This section discusses a procedure for performing backups that enables you to recover data after several
types of crashes:

• Operating system crash

• Power failure

• File system crash

• Hardware problem (hard drive, motherboard, and so forth)

The example commands do not include options such as --user and --password for the mysqldump
and mysql client programs. You should include such options as necessary to enable client programs to
connect to the MySQL server.

Establishing a Backup Policy

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 685

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Assume that data is stored in the InnoDB storage engine, which has support for transactions and
automatic crash recovery. Assume also that the MySQL server is under load at the time of the crash. If it
were not, no recovery would ever be needed.

For cases of operating system crashes or power failures, we can assume that MySQL's disk data is
available after a restart. The InnoDB data files might not contain consistent data due to the crash, but
InnoDB reads its logs and finds in them the list of pending committed and noncommitted transactions that
have not been flushed to the data files. InnoDB automatically rolls back those transactions that were not
committed, and flushes to its data files those that were committed. Information about this recovery process
is conveyed to the user through the MySQL error log. The following is an example log excerpt:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

For the cases of file system crashes or hardware problems, we can assume that the MySQL disk data is
not available after a restart. This means that MySQL fails to start successfully because some blocks of
disk data are no longer readable. In this case, it is necessary to reformat the disk, install a new one, or
otherwise correct the underlying problem. Then it is necessary to recover our MySQL data from backups,
which means that backups must already have been made. To make sure that is the case, design and
implement a backup policy.

7.3.1 Establishing a Backup Policy

To be useful, backups must be scheduled regularly. A full backup (a snapshot of the data at a point in
time) can be done in MySQL with several tools. For example, InnoDB Hot Backup provides online
nonblocking physical backup of the InnoDB data files, and mysqldump provides online logical backup.
This discussion uses mysqldump.

Assume that we make a full backup of all our InnoDB tables in all databases using the following command
on Sunday at 1 p.m., when load is low:

shell> mysqldump --single-transaction --all-databases > backup_sunday_1_PM.sql

The resulting .sql file produced by mysqldump contains a set of SQL INSERT statements that can be
used to reload the dumped tables at a later time.

This backup operation acquires a global read lock on all tables at the beginning of the dump (using FLUSH
TABLES WITH READ LOCK). As soon as this lock has been acquired, the binary log coordinates are read
and the lock is released. If long updating statements are running when the FLUSH statement is issued, the

Establishing a Backup Policy

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 686

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

backup operation may stall until those statements finish. After that, the dump becomes lock-free and does
not disturb reads and writes on the tables.

It was assumed earlier that the tables to back up are InnoDB tables, so --single-transaction uses
a consistent read and guarantees that data seen by mysqldump does not change. (Changes made by
other clients to InnoDB tables are not seen by the mysqldump process.) If the backup operation includes
nontransactional tables, consistency requires that they do not change during the backup. For example, for
the MyISAM tables in the mysql database, there must be no administrative changes to MySQL accounts
during the backup.

Full backups are necessary, but it is not always convenient to create them. They produce large backup
files and take time to generate. They are not optimal in the sense that each successive full backup includes
all data, even that part that has not changed since the previous full backup. It is more efficient to make an
initial full backup, and then to make incremental backups. The incremental backups are smaller and take
less time to produce. The tradeoff is that, at recovery time, you cannot restore your data just by reloading
the full backup. You must also process the incremental backups to recover the incremental changes.

To make incremental backups, we need to save the incremental changes. In MySQL, these changes
are represented in the binary log, so the MySQL server should always be started with the --log-bin
option to enable that log. With binary logging enabled, the server writes each data change into a file while it
updates data. Looking at the data directory of a MySQL server that was started with the --log-bin option
and that has been running for some days, we find these MySQL binary log files:

-rw-rw---- 1 guilhem guilhem 1277324 Nov 10 23:59 gbichot2-bin.000001
-rw-rw---- 1 guilhem guilhem 4 Nov 10 23:59 gbichot2-bin.000002
-rw-rw---- 1 guilhem guilhem 79 Nov 11 11:06 gbichot2-bin.000003
-rw-rw---- 1 guilhem guilhem 508 Nov 11 11:08 gbichot2-bin.000004
-rw-rw---- 1 guilhem guilhem 220047446 Nov 12 16:47 gbichot2-bin.000005
-rw-rw---- 1 guilhem guilhem 998412 Nov 14 10:08 gbichot2-bin.000006
-rw-rw---- 1 guilhem guilhem 361 Nov 14 10:07 gbichot2-bin.index

Each time it restarts, the MySQL server creates a new binary log file using the next number in the
sequence. While the server is running, you can also tell it to close the current binary log file and begin
a new one manually by issuing a FLUSH LOGS SQL statement or with a mysqladmin flush-logs
command. mysqldump also has an option to flush the logs. The .index file in the data directory contains
the list of all MySQL binary logs in the directory.

The MySQL binary logs are important for recovery because they form the set of incremental backups. If
you make sure to flush the logs when you make your full backup, the binary log files created afterward
contain all the data changes made since the backup. Let's modify the previous mysqldump command a
bit so that it flushes the MySQL binary logs at the moment of the full backup, and so that the dump file
contains the name of the new current binary log:

shell> mysqldump --single-transaction --flush-logs --master-data=2 \
 --all-databases > backup_sunday_1_PM.sql

After executing this command, the data directory contains a new binary log file, gbichot2-bin.000007,
because the --flush-logs option causes the server to flush its logs. The --master-data option
causes mysqldump to write binary log information to its output, so the resulting .sql dump file includes
these lines:

-- Position to start replication or point-in-time recovery from
-- CHANGE MASTER TO MASTER_LOG_FILE='gbichot2-bin.000007',MASTER_LOG_POS=4;

Because the mysqldump command made a full backup, those lines mean two things:

Using Backups for Recovery

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 687

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The dump file contains all changes made before any changes written to the gbichot2-bin.000007
binary log file or newer.

• All data changes logged after the backup are not present in the dump file, but are present in the
gbichot2-bin.000007 binary log file or newer.

On Monday at 1 p.m., we can create an incremental backup by flushing the logs to begin a new binary log
file. For example, executing a mysqladmin flush-logs command creates gbichot2-bin.000008.
All changes between the Sunday 1 p.m. full backup and Monday 1 p.m. will be in the gbichot2-
bin.000007 file. This incremental backup is important, so it is a good idea to copy it to a safe place.
(For example, back it up on tape or DVD, or copy it to another machine.) On Tuesday at 1 p.m., execute
another mysqladmin flush-logs command. All changes between Monday 1 p.m. and Tuesday 1 p.m.
will be in the gbichot2-bin.000008 file (which also should be copied somewhere safe).

The MySQL binary logs take up disk space. To free up space, purge them from time to time. One way to
do this is by deleting the binary logs that are no longer needed, such as when we make a full backup:

shell> mysqldump --single-transaction --flush-logs --master-data=2 \
 --all-databases --delete-master-logs > backup_sunday_1_PM.sql

Note

Deleting the MySQL binary logs with mysqldump --delete-master-logs can
be dangerous if your server is a replication master server, because slave servers
might not yet fully have processed the contents of the binary log. The description
for the PURGE BINARY LOGS statement explains what should be verified before
deleting the MySQL binary logs. See Section 13.4.1.1, “PURGE BINARY LOGS
Syntax”.

7.3.2 Using Backups for Recovery

Now, suppose that we have a catastrophic crash on Wednesday at 8 a.m. that requires recovery from
backups. To recover, first we restore the last full backup we have (the one from Sunday 1 p.m.). The full
backup file is just a set of SQL statements, so restoring it is very easy:

shell> mysql < backup_sunday_1_PM.sql

At this point, the data is restored to its state as of Sunday 1 p.m.. To restore the changes made since then,
we must use the incremental backups; that is, the gbichot2-bin.000007 and gbichot2-bin.000008
binary log files. Fetch the files if necessary from where they were backed up, and then process their
contents like this:

shell> mysqlbinlog gbichot2-bin.000007 gbichot2-bin.000008 | mysql

We now have recovered the data to its state as of Tuesday 1 p.m., but still are missing the changes from
that date to the date of the crash. To not lose them, we would have needed to have the MySQL server
store its MySQL binary logs into a safe location (RAID disks, SAN, ...) different from the place where it
stores its data files, so that these logs were not on the destroyed disk. (That is, we can start the server with
a --log-bin option that specifies a location on a different physical device from the one on which the data
directory resides. That way, the logs are safe even if the device containing the directory is lost.) If we had
done this, we would have the gbichot2-bin.000009 file (and any subsequent files) at hand, and we
could apply them using mysqlbinlog and mysql to restore the most recent data changes with no loss up
to the moment of the crash:

Backup Strategy Summary

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 688

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysqlbinlog gbichot2-bin.000009 ... | mysql

For more information about using mysqlbinlog to process binary log files, see Section 7.5, “Point-in-
Time (Incremental) Recovery Using the Binary Log”.

7.3.3 Backup Strategy Summary

In case of an operating system crash or power failure, InnoDB itself does all the job of recovering data. But
to make sure that you can sleep well, observe the following guidelines:

• Always run the MySQL server with the --log-bin option, or even --log-bin=log_name, where
the log file name is located on some safe media different from the drive on which the data directory is
located. If you have such safe media, this technique can also be good for disk load balancing (which
results in a performance improvement).

• Make periodic full backups, using the mysqldump command shown earlier in Section 7.3.1,
“Establishing a Backup Policy”, that makes an online, nonblocking backup.

• Make periodic incremental backups by flushing the logs with FLUSH LOGS or mysqladmin flush-
logs.

7.4 Using mysqldump for Backups

This section describes how to use mysqldump to produce dump files, and how to reload dump files. A
dump file can be used in several ways:

• As a backup to enable data recovery in case of data loss.

• As a source of data for setting up replication slaves.

• As a source of data for experimentation:

• To make a copy of a database that you can use without changing the original data.

• To test potential upgrade incompatibilities.

mysqldump produces two types of output, depending on whether the --tab option is given:

• Without --tab, mysqldump writes SQL statements to the standard output. This output consists of
CREATE statements to create dumped objects (databases, tables, stored routines, and so forth), and
INSERT statements to load data into tables. The output can be saved in a file and reloaded later
using mysql to recreate the dumped objects. Options are available to modify the format of the SQL
statements, and to control which objects are dumped.

• With --tab, mysqldump produces two output files for each dumped table. The server writes one file
as tab-delimited text, one line per table row. This file is named tbl_name.txt in the output directory.
The server also sends a CREATE TABLE statement for the table to mysqldump, which writes it as a file
named tbl_name.sql in the output directory.

7.4.1 Dumping Data in SQL Format with mysqldump

This section describes how to use mysqldump to create SQL-format dump files. For information about
reloading such dump files, see Section 7.4.2, “Reloading SQL-Format Backups”.

By default, mysqldump writes information as SQL statements to the standard output. You can save the
output in a file:

Reloading SQL-Format Backups

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 689

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysqldump [arguments] > file_name

To dump all databases, invoke mysqldump with the --all-databases option:

shell> mysqldump --all-databases > dump.sql

To dump only specific databases, name them on the command line and use the --databases option:

shell> mysqldump --databases db1 db2 db3 > dump.sql

The --databases option causes all names on the command line to be treated as database names.
Without this option, mysqldump treats the first name as a database name and those following as table
names.

With --all-databases or --databases, mysqldump writes CREATE DATABASE and USE statements
prior to the dump output for each database. This ensures that when the dump file is reloaded, it creates
each database if it does not exist and makes it the default database so database contents are loaded
into the same database from which they came. If you want to cause the dump file to force a drop of each
database before recreating it, use the --add-drop-database option as well. In this case, mysqldump
writes a DROP DATABASE statement preceding each CREATE DATABASE statement.

To dump a single database, name it on the command line:

shell> mysqldump --databases test > dump.sql

In the single-database case, it is permissible to omit the --databases option:

shell> mysqldump test > dump.sql

The difference between the two preceding commands is that without --databases, the dump output
contains no CREATE DATABASE or USE statements. This has several implications:

• When you reload the dump file, you must specify a default database name so that the server knows
which database to reload.

• For reloading, you can specify a database name different from the original name, which enables you to
reload the data into a different database.

• If the database to be reloaded does not exist, you must create it first.

• Because the output will contain no CREATE DATABASE statement, the --add-drop-database option
has no effect. If you use it, it produces no DROP DATABASE statement.

To dump only specific tables from a database, name them on the command line following the database
name:

shell> mysqldump test t1 t3 t7 > dump.sql

7.4.2 Reloading SQL-Format Backups

To reload a dump file written by mysqldump that consists of SQL statements, use it as input to the mysql
client. If the dump file was created by mysqldump with the --all-databases or --databases option, it
contains CREATE DATABASE and USE statements and it is not necessary to specify a default database into
which to load the data:

Dumping Data in Delimited-Text Format with mysqldump

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 690

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysql < dump.sql

Alternatively, from within mysql, use a source command:

mysql> source dump.sql

If the file is a single-database dump not containing CREATE DATABASE and USE statements, create the
database first (if necessary):

shell> mysqladmin create db1

Then specify the database name when you load the dump file:

shell> mysql db1 < dump.sql

Alternatively, from within mysql, create the database, select it as the default database, and load the dump
file:

mysql> CREATE DATABASE IF NOT EXISTS db1;
mysql> USE db1;
mysql> source dump.sql

7.4.3 Dumping Data in Delimited-Text Format with mysqldump

This section describes how to use mysqldump to create delimited-text dump files. For information about
reloading such dump files, see Section 7.4.4, “Reloading Delimited-Text Format Backups”.

If you invoke mysqldump with the --tab=dir_name option, it uses dir_name as the output directory and
dumps tables individually in that directory using two files for each table. The table name is the base name
for these files. For a table named t1, the files are named t1.sql and t1.txt. The .sql file contains a
CREATE TABLE statement for the table. The .txt file contains the table data, one line per table row.

The following command dumps the contents of the db1 database to files in the /tmp database:

shell> mysqldump --tab=/tmp db1

The .txt files containing table data are written by the server, so they are owned by the system account
used for running the server. The server uses SELECT ... INTO OUTFILE to write the files, so you must
have the FILE privilege to perform this operation, and an error occurs if a given .txt file already exists.

The server sends the CREATE definitions for dumped tables to mysqldump, which writes them to .sql
files. These files therefore are owned by the user who executes mysqldump.

It is best that --tab be used only for dumping a local server. If you use it with a remote server, the --tab
directory must exist on both the local and remote hosts, and the .txt files will be written by the server in
the remote directory (on the server host), whereas the .sql files will be written by mysqldump in the local
directory (on the client host).

For mysqldump --tab, the server by default writes table data to .txt files one line per row with tabs
between column values, no quotation marks around column values, and newline as the line terminator.
(These are the same defaults as for SELECT ... INTO OUTFILE.)

To enable data files to be written using a different format, mysqldump supports these options:

Reloading Delimited-Text Format Backups

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 691

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --fields-terminated-by=str

The string for separating column values (default: tab).

• --fields-enclosed-by=char

The character within which to enclose column values (default: no character).

• --fields-optionally-enclosed-by=char

The character within which to enclose non-numeric column values (default: no character).

• --fields-escaped-by=char

The character for escaping special characters (default: no escaping).

• --lines-terminated-by=str

The line-termination string (default: newline).

Depending on the value you specify for any of these options, it might be necessary on the command line
to quote or escape the value appropriately for your command interpreter. Alternatively, specify the value
using hex notation. Suppose that you want mysqldump to quote column values within double quotation
marks. To do so, specify double quote as the value for the --fields-enclosed-by option. But this
character is often special to command interpreters and must be treated specially. For example, on Unix,
you can quote the double quote like this:

--fields-enclosed-by='"'

On any platform, you can specify the value in hex:

--fields-enclosed-by=0x22

It is common to use several of the data-formatting options together. For example, to dump tables in
comma-separated values format with lines terminated by carriage-return/newline pairs (\r\n), use this
command (enter it on a single line):

shell> mysqldump --tab=/tmp --fields-terminated-by=,
 --fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1

Should you use any of the data-formatting options to dump table data, you will need to specify the same
format when you reload data files later, to ensure proper interpretation of the file contents.

7.4.4 Reloading Delimited-Text Format Backups

For backups produced with mysqldump --tab, each table is represented in the output directory by an
.sql file containing the CREATE TABLE statement for the table, and a .txt file containing the table data.
To reload a table, first change location into the output directory. Then process the .sql file with mysql to
create an empty table and process the .txt file to load the data into the table:

shell> mysql db1 < t1.sql
shell> mysqlimport db1 t1.txt

An alternative to using mysqlimport to load the data file is to use the LOAD DATA INFILE statement
from within the mysql client:

mysqldump Tips

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 692

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1;

If you used any data-formatting options with mysqldump when you initially dumped the table, you must use
the same options with mysqlimport or LOAD DATA INFILE to ensure proper interpretation of the data
file contents:

shell> mysqlimport --fields-terminated-by=,
 --fields-enclosed-by='"' --lines-terminated-by=0x0d0a db1 t1.txt

Or:

mysql> USE db1;
mysql> LOAD DATA INFILE 't1.txt' INTO TABLE t1
 -> FIELDS TERMINATED BY ',' FIELDS ENCLOSED BY '"'
 -> LINES TERMINATED BY '\r\n';

7.4.5 mysqldump Tips

This section surveys techniques that enable you to use mysqldump to solve specific problems:

• How to make a copy a database

• How to copy a database from one server to another

• How to dump stored programs (stored procedures and functions and triggers)

• How to dump definitions and data separately

7.4.5.1 Making a Copy of a Database

shell> mysqldump db1 > dump.sql
shell> mysqladmin create db2
shell> mysql db2 < dump.sql

Do not use --databases on the mysqldump command line because that causes USE db1 to be included
in the dump file, which overrides the effect of naming db2 on the mysql command line.

7.4.5.2 Copy a Database from one Server to Another

On Server 1:

shell> mysqldump --databases db1 > dump.sql

Copy the dump file from Server 1 to Server 2.

On Server 2:

shell> mysql < dump.sql

Use of --databases with the mysqldump command line causes the dump file to include CREATE
DATABASE and USE statements that create the database if it does exist and make it the default database
for the reloaded data.

mysqldump Tips

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 693

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Alternatively, you can omit --databases from the mysqldump command. Then you will need to create
the database on Server 2 (if necessary) and specify it as the default database when you reload the dump
file.

On Server 1:

shell> mysqldump db1 > dump.sql

On Server 2:

shell> mysqladmin create db1
shell> mysql db1 < dump.sql

You can specify a different database name in this case, so omitting --databases from the mysqldump
command enables you to dump data from one database and load it into another.

7.4.5.3 Dumping Stored Programs

Several options control how mysqldump handles stored programs (stored procedures and functions and
triggers):

• --routines: Dump stored procedures and functions

• --triggers: Dump triggers for tables

The --triggers option is enabled by default so that when tables are dumped, they are accompanied by
any triggers they have. The other options are disabled by default and must be specified explicitly to dump
the corresponding objects. To disable any of these options explicitly, use its skip form: --skip-routines
or --skip-triggers.

7.4.5.4 Dumping Table Definitions and Content Separately

The --no-data option tells mysqldump not to dump table data, resulting in the dump file containing only
statements to create the tables. Conversely, the --no-create-info option tells mysqldump to suppress
CREATE statements from the output, so that the dump file contains only table data.

For example, to dump table definitions and data separately for the test database, use these commands:

shell> mysqldump --no-data test > dump-defs.sql
shell> mysqldump --no-create-info test > dump-data.sql

For a definition-only dump, add the --routines option to also include stored routine definitions:

shell> mysqldump --no-data --routines test > dump-defs.sql

7.4.5.5 Using mysqldump to Test for Upgrade Incompatibilities

When contemplating a MySQL upgrade, it is prudent to install the newer version separately from your
current production version. Then you can dump the database and database object definitions from the
production server and load them into the new server to verify that they are handled properly. (This is also
useful for testing downgrades.)

On the production server:

Point-in-Time (Incremental) Recovery Using the Binary Log

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 694

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysqldump --all-databases --no-data --routines > dump-defs.sql

On the upgraded server:

shell> mysql < dump-defs.sql

Because the dump file does not contain table data, it can be processed quickly. This enables you to spot
potential incompatibilities without waiting for lengthy data-loading operations. Look for warnings or errors
while the dump file is being processed.

After you have verified that the definitions are handled properly, dump the data and try to load it into the
upgraded server.

On the production server:

shell> mysqldump --all-databases --no-create-info > dump-data.sql

On the upgraded server:

shell> mysql < dump-data.sql

Now check the table contents and run some test queries.

7.5 Point-in-Time (Incremental) Recovery Using the Binary Log

Point-in-time recovery refers to recovery of data changes made since a given point in time. Typically, this
type of recovery is performed after restoring a full backup that brings the server to its state as of the time
the backup was made. (The full backup can be made in several ways, such as those listed in Section 7.2,
“Database Backup Methods”.) Point-in-time recovery then brings the server up to date incrementally from
the time of the full backup to a more recent time.

Point-in-time recovery is based on these principles:

• The source of information for point-in-time recovery is the set of incremental backups represented by the
binary log files generated subsequent to the full backup operation. Therefore, the server must be started
with the --log-bin option to enable binary logging (see Section 5.4.3, “The Binary Log”).

To restore data from the binary log, you must know the name and location of the current binary log files.
By default, the server creates binary log files in the data directory, but a path name can be specified with
the --log-bin option to place the files in a different location. Section 5.4.3, “The Binary Log”.

To see a listing of all binary log files, use this statement:

mysql> SHOW BINARY LOGS;

To determine the name of the current binary log file, issue the following statement:

mysql> SHOW MASTER STATUS;

• The mysqlbinlog utility converts the events in the binary log files from binary format to text so that
they can be executed or viewed. mysqlbinlog has options for selecting sections of the binary log
based on event times or position of events within the log. See Section 4.6.7, “mysqlbinlog — Utility for
Processing Binary Log Files”.

Point-in-Time Recovery Using Event Times

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 695

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Executing events from the binary log causes the data modifications they represent to be redone. This
enables recovery of data changes for a given span of time. To execute events from the binary log,
process mysqlbinlog output using the mysql client:

shell> mysqlbinlog binlog_files | mysql -u root -p

• Viewing log contents can be useful when you need to determine event times or positions to select partial
log contents prior to executing events. To view events from the log, send mysqlbinlog output into a
paging program:

shell> mysqlbinlog binlog_files | more

Alternatively, save the output in a file and view the file in a text editor:

shell> mysqlbinlog binlog_files > tmpfile
shell> ... edit tmpfile ...

• Saving the output in a file is useful as a preliminary to executing the log contents with certain events
removed, such as an accidental DROP DATABASE. You can delete from the file any statements not to be
executed before executing its contents. After editing the file, execute the contents as follows:

shell> mysql -u root -p < tmpfile

If you have more than one binary log to execute on the MySQL server, the safe method is to process them
all using a single connection to the server. Here is an example that demonstrates what may be unsafe:

shell> mysqlbinlog binlog.000001 | mysql -u root -p # DANGER!!
shell> mysqlbinlog binlog.000002 | mysql -u root -p # DANGER!!

Processing binary logs this way using different connections to the server causes problems if the first log file
contains a CREATE TEMPORARY TABLE statement and the second log contains a statement that uses the
temporary table. When the first mysql process terminates, the server drops the temporary table. When the
second mysql process attempts to use the table, the server reports “unknown table.”

To avoid problems like this, use a single connection to execute the contents of all binary logs that you want
to process. Here is one way to do so:

shell> mysqlbinlog binlog.000001 binlog.000002 | mysql -u root -p

Another approach is to write all the logs to a single file and then process the file:

shell> mysqlbinlog binlog.000001 > /tmp/statements.sql
shell> mysqlbinlog binlog.000002 >> /tmp/statements.sql
shell> mysql -u root -p -e "source /tmp/statements.sql"

7.5.1 Point-in-Time Recovery Using Event Times

To indicate the start and end times for recovery, specify the --start-datetime and --stop-datetime
options for mysqlbinlog, in DATETIME format. As an example, suppose that exactly at 10:00 a.m. on
April 20, 2005 an SQL statement was executed that deleted a large table. To restore the table and data,
you could restore the previous night's backup, and then execute the following command:

Point-in-Time Recovery Using Event Positions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 696

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysqlbinlog --stop-datetime="2005-04-20 9:59:59" \
 /var/log/mysql/bin.123456 | mysql -u root -p

This command recovers all of the data up until the date and time given by the --stop-datetime option.
If you did not detect the erroneous SQL statement that was entered until hours later, you will probably also
want to recover the activity that occurred afterward. Based on this, you could run mysqlbinlog again with
a start date and time, like so:

shell> mysqlbinlog --start-datetime="2005-04-20 10:01:00" \
 /var/log/mysql/bin.123456 | mysql -u root -p

In this command, the SQL statements logged from 10:01 a.m. on will be re-executed. The combination of
restoring of the previous night's dump file and the two mysqlbinlog commands restores everything up
until one second before 10:00 a.m. and everything from 10:01 a.m. on.

To use this method of point-in-time recovery, you should examine the log to be sure of the exact times to
specify for the commands. To display the log file contents without executing them, use this command:

shell> mysqlbinlog /var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

Then open the /tmp/mysql_restore.sql file with a text editor to examine it.

Excluding specific changes by specifying times for mysqlbinlog does not work well if multiple statements
executed at the same time as the one to be excluded.

7.5.2 Point-in-Time Recovery Using Event Positions

Instead of specifying dates and times, the --start-position and --stop-position options for
mysqlbinlog can be used for specifying log positions. They work the same as the start and stop date
options, except that you specify log position numbers rather than dates. Using positions may enable you
to be more precise about which part of the log to recover, especially if many transactions occurred around
the same time as a damaging SQL statement. To determine the position numbers, run mysqlbinlog for a
range of times near the time when the unwanted transaction was executed, but redirect the results to a text
file for examination. This can be done like so:

shell> mysqlbinlog --start-datetime="2005-04-20 9:55:00" \
 --stop-datetime="2005-04-20 10:05:00" \
 /var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

This command creates a small text file in the /tmp directory that contains the SQL statements around
the time that the deleterious SQL statement was executed. Open this file with a text editor and look for
the statement that you do not want to repeat. Determine the positions in the binary log for stopping and
resuming the recovery and make note of them. Positions are labeled as log_pos followed by a number.
After restoring the previous backup file, use the position numbers to process the binary log file. For
example, you would use commands something like these:

shell> mysqlbinlog --stop-position=368312 /var/log/mysql/bin.123456 \
 | mysql -u root -p

shell> mysqlbinlog --start-position=368315 /var/log/mysql/bin.123456 \
 | mysql -u root -p

The first command recovers all the transactions up until the stop position given. The second command
recovers all transactions from the starting position given until the end of the binary log. Because the
output of mysqlbinlog includes SET TIMESTAMP statements before each SQL statement recorded,

MyISAM Table Maintenance and Crash Recovery

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 697

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

the recovered data and related MySQL logs will reflect the original times at which the transactions were
executed.

7.6 MyISAM Table Maintenance and Crash Recovery

This section discusses how to use myisamchk to check or repair MyISAM tables (tables that have .MYD
and .MYI files for storing data and indexes). For general myisamchk background, see Section 4.6.3,
“myisamchk — MyISAM Table-Maintenance Utility”. Other table-repair information can be found at
Section 2.19.4, “Rebuilding or Repairing Tables or Indexes”.

You can use myisamchk to check, repair, or optimize database tables. The following sections describe
how to perform these operations and how to set up a table maintenance schedule. For information about
using myisamchk to get information about your tables, see Section 4.6.3.5, “Obtaining Table Information
with myisamchk”.

Even though table repair with myisamchk is quite secure, it is always a good idea to make a backup
before doing a repair or any maintenance operation that could make a lot of changes to a table.

myisamchk operations that affect indexes can cause FULLTEXT indexes to be rebuilt with full-text
parameters that are incompatible with the values used by the MySQL server. To avoid this problem, follow
the guidelines in Section 4.6.3.1, “myisamchk General Options”.

MyISAM table maintenance can also be done using the SQL statements that perform operations similar to
what myisamchk can do:

• To check MyISAM tables, use CHECK TABLE.

• To repair MyISAM tables, use REPAIR TABLE.

• To optimize MyISAM tables, use OPTIMIZE TABLE.

• To analyze MyISAM tables, use ANALYZE TABLE.

For additional information about these statements, see Section 13.7.2, “Table Maintenance Statements”.

These statements can be used directly or by means of the mysqlcheck client program. One advantage
of these statements over myisamchk is that the server does all the work. With myisamchk, you must
make sure that the server does not use the tables at the same time so that there is no unwanted interaction
between myisamchk and the server.

7.6.1 Using myisamchk for Crash Recovery

This section describes how to check for and deal with data corruption in MySQL databases. If your tables
become corrupted frequently, you should try to find the reason why. See Section B.5.3.3, “What to Do If
MySQL Keeps Crashing”.

For an explanation of how MyISAM tables can become corrupted, see Section 14.1.4, “MyISAM Table
Problems”.

If you run mysqld with external locking disabled (which is the default), you cannot reliably use myisamchk
to check a table when mysqld is using the same table. If you can be certain that no one will access the
tables through mysqld while you run myisamchk, you only have to execute mysqladmin flush-
tables before you start checking the tables. If you cannot guarantee this, you must stop mysqld while
you check the tables. If you run myisamchk to check tables that mysqld is updating at the same time, you
may get a warning that a table is corrupt even when it is not.

How to Check MyISAM Tables for Errors

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 698

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If the server is run with external locking enabled, you can use myisamchk to check tables at any time. In
this case, if the server tries to update a table that myisamchk is using, the server will wait for myisamchk
to finish before it continues.

If you use myisamchk to repair or optimize tables, you must always ensure that the mysqld server is not
using the table (this also applies if external locking is disabled). If you do not stop mysqld, you should at
least do a mysqladmin flush-tables before you run myisamchk. Your tables may become corrupted
if the server and myisamchk access the tables simultaneously.

When performing crash recovery, it is important to understand that each MyISAM table tbl_name in a
database corresponds to the three files in the database directory shown in the following table.

File Purpose

tbl_name.frm Definition (format) file

tbl_name.MYD Data file

tbl_name.MYI Index file

Each of these three file types is subject to corruption in various ways, but problems occur most often in
data files and index files.

myisamchk works by creating a copy of the .MYD data file row by row. It ends the repair stage by
removing the old .MYD file and renaming the new file to the original file name. If you use --quick,
myisamchk does not create a temporary .MYD file, but instead assumes that the .MYD file is correct
and generates only a new index file without touching the .MYD file. This is safe, because myisamchk
automatically detects whether the .MYD file is corrupt and aborts the repair if it is. You can also specify the
--quick option twice to myisamchk. In this case, myisamchk does not abort on some errors (such as
duplicate-key errors) but instead tries to resolve them by modifying the .MYD file. Normally the use of two
--quick options is useful only if you have too little free disk space to perform a normal repair. In this case,
you should at least make a backup of the table before running myisamchk.

7.6.2 How to Check MyISAM Tables for Errors

To check a MyISAM table, use the following commands:

• myisamchk tbl_name

This finds 99.99% of all errors. What it cannot find is corruption that involves only the data file (which is
very unusual). If you want to check a table, you should normally run myisamchk without options or with
the -s (silent) option.

• myisamchk -m tbl_name

This finds 99.999% of all errors. It first checks all index entries for errors and then reads through all
rows. It calculates a checksum for all key values in the rows and verifies that the checksum matches the
checksum for the keys in the index tree.

• myisamchk -e tbl_name

This does a complete and thorough check of all data (-e means “extended check”). It does a check-read
of every key for each row to verify that they indeed point to the correct row. This may take a long time for
a large table that has many indexes. Normally, myisamchk stops after the first error it finds. If you want
to obtain more information, you can add the -v (verbose) option. This causes myisamchk to keep going,
up through a maximum of 20 errors.

• myisamchk -e -i tbl_name

How to Repair MyISAM Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 699

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This is like the previous command, but the -i option tells myisamchk to print additional statistical
information.

In most cases, a simple myisamchk command with no arguments other than the table name is sufficient to
check a table.

7.6.3 How to Repair MyISAM Tables

The discussion in this section describes how to use myisamchk on MyISAM tables (extensions .MYI and
.MYD).

You can also use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM tables.
See Section 13.7.2.3, “CHECK TABLE Syntax”, and Section 13.7.2.6, “REPAIR TABLE Syntax”.

Symptoms of corrupted tables include queries that abort unexpectedly and observable errors such as
these:

• tbl_name.frm is locked against change

• Can't find file tbl_name.MYI (Errcode: nnn)

• Unexpected end of file

• Record file is crashed

• Got error nnn from table handler

To get more information about the error, run perror nnn, where nnn is the error number. The following
example shows how to use perror to find the meanings for the most common error numbers that indicate
a problem with a table:

shell> perror 126 127 132 134 135 136 141 144 145
MySQL error code 126 = Index file is crashed
MySQL error code 127 = Record-file is crashed
MySQL error code 132 = Old database file
MySQL error code 134 = Record was already deleted (or record file crashed)
MySQL error code 135 = No more room in record file
MySQL error code 136 = No more room in index file
MySQL error code 141 = Duplicate unique key or constraint on write or update
MySQL error code 144 = Table is crashed and last repair failed
MySQL error code 145 = Table was marked as crashed and should be repaired

Note that error 135 (no more room in record file) and error 136 (no more room in index file) are not errors
that can be fixed by a simple repair. In this case, you must use ALTER TABLE to increase the MAX_ROWS
and AVG_ROW_LENGTH table option values:

ALTER TABLE tbl_name MAX_ROWS=xxx AVG_ROW_LENGTH=yyy;

If you do not know the current table option values, use SHOW CREATE TABLE.

For the other errors, you must repair your tables. myisamchk can usually detect and fix most problems
that occur.

The repair process involves up to four stages, described here. Before you begin, you should change
location to the database directory and check the permissions of the table files. On Unix, make sure that
they are readable by the user that mysqld runs as (and to you, because you need to access the files you
are checking). If it turns out you need to modify files, they must also be writable by you.

How to Repair MyISAM Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 700

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This section is for the cases where a table check fails (such as those described in Section 7.6.2, “How to
Check MyISAM Tables for Errors”), or you want to use the extended features that myisamchk provides.

The myisamchk options used for table maintenance with are described in Section 4.6.3, “myisamchk —
MyISAM Table-Maintenance Utility”. myisamchk also has variables that you can set to control memory
allocation that may improve performance. See Section 4.6.3.6, “myisamchk Memory Usage”.

If you are going to repair a table from the command line, you must first stop the mysqld server. Note that
when you do mysqladmin shutdown on a remote server, the mysqld server is still available for a while
after mysqladmin returns, until all statement-processing has stopped and all index changes have been
flushed to disk.

Stage 1: Checking your tables

Run myisamchk *.MYI or myisamchk -e *.MYI if you have more time. Use the -s (silent) option to
suppress unnecessary information.

If the mysqld server is stopped, you should use the --update-state option to tell myisamchk to mark
the table as “checked.”

You have to repair only those tables for which myisamchk announces an error. For such tables, proceed
to Stage 2.

If you get unexpected errors when checking (such as out of memory errors), or if myisamchk crashes,
go to Stage 3.

Stage 2: Easy safe repair

First, try myisamchk -r -q tbl_name (-r -q means “quick recovery mode”). This attempts to repair
the index file without touching the data file. If the data file contains everything that it should and the delete
links point at the correct locations within the data file, this should work, and the table is fixed. Start repairing
the next table. Otherwise, use the following procedure:

1. Make a backup of the data file before continuing.

2. Use myisamchk -r tbl_name (-r means “recovery mode”). This removes incorrect rows and
deleted rows from the data file and reconstructs the index file.

3. If the preceding step fails, use myisamchk --safe-recover tbl_name. Safe recovery mode uses
an old recovery method that handles a few cases that regular recovery mode does not (but is slower).

Note

If you want a repair operation to go much faster, you should set the values of the
sort_buffer_size and key_buffer_size variables each to about 25% of your
available memory when running myisamchk.

If you get unexpected errors when repairing (such as out of memory errors), or if myisamchk crashes,
go to Stage 3.

Stage 3: Difficult repair

You should reach this stage only if the first 16KB block in the index file is destroyed or contains incorrect
information, or if the index file is missing. In this case, it is necessary to create a new index file. Do so as
follows:

1. Move the data file to a safe place.

MyISAM Table Optimization

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 701

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2. Use the table description file to create new (empty) data and index files:

shell> mysql db_name
mysql> SET autocommit=1;
mysql> TRUNCATE TABLE tbl_name;
mysql> quit

3. Copy the old data file back onto the newly created data file. (Do not just move the old file back onto the
new file. You want to retain a copy in case something goes wrong.)

Important

If you are using replication, you should stop it prior to performing the above
procedure, since it involves file system operations, and these are not logged by
MySQL.

Go back to Stage 2. myisamchk -r -q should work. (This should not be an endless loop.)

You can also use the REPAIR TABLE tbl_name USE_FRM SQL statement, which performs the whole
procedure automatically. There is also no possibility of unwanted interaction between a utility and the
server, because the server does all the work when you use REPAIR TABLE. See Section 13.7.2.6,
“REPAIR TABLE Syntax”.

Stage 4: Very difficult repair

You should reach this stage only if the .frm description file has also crashed. That should never happen,
because the description file is not changed after the table is created:

1. Restore the description file from a backup and go back to Stage 3. You can also restore the index file
and go back to Stage 2. In the latter case, you should start with myisamchk -r.

2. If you do not have a backup but know exactly how the table was created, create a copy of the table in
another database. Remove the new data file, and then move the .frm description and .MYI index files
from the other database to your crashed database. This gives you new description and index files, but
leaves the .MYD data file alone. Go back to Stage 2 and attempt to reconstruct the index file.

7.6.4 MyISAM Table Optimization

To coalesce fragmented rows and eliminate wasted space that results from deleting or updating rows, run
myisamchk in recovery mode:

shell> myisamchk -r tbl_name

You can optimize a table in the same way by using the OPTIMIZE TABLE SQL statement. OPTIMIZE
TABLE does a table repair and a key analysis, and also sorts the index tree so that key lookups are faster.
There is also no possibility of unwanted interaction between a utility and the server, because the server
does all the work when you use OPTIMIZE TABLE. See Section 13.7.2.5, “OPTIMIZE TABLE Syntax”.

myisamchk has a number of other options that you can use to improve the performance of a table:

• --analyze or -a: Perform key distribution analysis. This improves join performance by enabling the join
optimizer to better choose the order in which to join the tables and which indexes it should use.

• --sort-index or -S: Sort the index blocks. This optimizes seeks and makes table scans that use
indexes faster.

Setting Up a MyISAM Table Maintenance Schedule

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 702

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --sort-records=index_num or -R index_num: Sort data rows according to a given index.
This makes your data much more localized and may speed up range-based SELECT and ORDER BY
operations that use this index.

For a full description of all available options, see Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”.

7.6.5 Setting Up a MyISAM Table Maintenance Schedule

It is a good idea to perform table checks on a regular basis rather than waiting for problems to occur. One
way to check and repair MyISAM tables is with the CHECK TABLE and REPAIR TABLE statements. See
Section 13.7.2, “Table Maintenance Statements”.

Another way to check tables is to use myisamchk. For maintenance purposes, you can use myisamchk
-s. The -s option (short for --silent) causes myisamchk to run in silent mode, printing messages only
when errors occur.

It is also a good idea to enable automatic MyISAM table checking. For example, whenever the machine
has done a restart in the middle of an update, you usually need to check each table that could have been
affected before it is used further. (These are “expected crashed tables.”) To cause the server to check
MyISAM tables automatically, start it with the --myisam-recover option. See Section 5.1.3, “Server
Command Options”.

You should also check your tables regularly during normal system operation. For example, you can run a
cron job to check important tables once a week, using a line like this in a crontab file:

35 0 * * 0 /path/to/myisamchk --fast --silent /path/to/datadir/*/*.MYI

This prints out information about crashed tables so that you can examine and repair them as necessary.

To start with, execute myisamchk -s each night on all tables that have been updated during the last 24
hours. As you see that problems occur infrequently, you can back off the checking frequency to once a
week or so.

Normally, MySQL tables need little maintenance. If you are performing many updates to MyISAM tables
with dynamic-sized rows (tables with VARCHAR, BLOB, or TEXT columns) or have tables with many deleted
rows you may want to defragment/reclaim space from the tables from time to time. You can do this by
using OPTIMIZE TABLE on the tables in question. Alternatively, if you can stop the mysqld server for a
while, change location into the data directory and use this command while the server is stopped:

shell> myisamchk -r -s --sort-index --sort_buffer_size=16M */*.MYI

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 703

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 8 Optimization

Table of Contents
8.1 Optimization Overview .. 704
8.2 Optimizing SQL Statements .. 706

8.2.1 Optimizing SELECT Statements ... 707
8.2.2 Optimizing DML Statements ... 742
8.2.3 Optimizing Database Privileges .. 744
8.2.4 Other Optimization Tips .. 744

8.3 Optimization and Indexes .. 745
8.3.1 How MySQL Uses Indexes ... 745
8.3.2 Using Primary Keys ... 746
8.3.3 Using Foreign Keys ... 746
8.3.4 Column Indexes ... 746
8.3.5 Multiple-Column Indexes .. 747
8.3.6 Verifying Index Usage .. 749
8.3.7 MyISAM Index Statistics Collection ... 749
8.3.8 Comparison of B-Tree and Hash Indexes .. 751

8.4 Optimizing Database Structure .. 752
8.4.1 Optimizing Data Size ... 752
8.4.2 Optimizing MySQL Data Types ... 754
8.4.3 Optimizing for Many Tables .. 756
8.4.4 Internal Temporary Table Use in MySQL .. 757

8.5 Optimizing for MyISAM Tables .. 758
8.5.1 Optimizing MyISAM Queries ... 758
8.5.2 Bulk Data Loading for MyISAM Tables .. 760
8.5.3 Speed of REPAIR TABLE Statements .. 761

8.6 Optimizing for InnoDB Tables .. 763
8.6.1 Optimizing Storage Layout for InnoDB Tables ... 763
8.6.2 Optimizing InnoDB Transaction Management .. 763
8.6.3 Optimizing InnoDB Redo Logging ... 764
8.6.4 Bulk Data Loading for InnoDB Tables ... 764
8.6.5 Optimizing InnoDB Queries .. 765
8.6.6 Optimizing InnoDB DDL Operations .. 766
8.6.7 Optimizing InnoDB Disk I/O .. 766
8.6.8 Optimizing InnoDB for Systems with Many Tables ... 767

8.7 Optimizing for MEMORY Tables .. 767
8.8 Understanding the Query Execution Plan ... 767

8.8.1 Optimizing Queries with EXPLAIN .. 767
8.8.2 EXPLAIN Output Format .. 768
8.8.3 EXPLAIN EXTENDED Output Format ... 778
8.8.4 Estimating Query Performance ... 780

8.9 Controlling the Query Optimizer .. 780
8.9.1 Controlling Query Plan Evaluation .. 780
8.9.2 Index Hints .. 781

8.10 Buffering and Caching ... 782
8.10.1 The MyISAM Key Cache .. 782
8.10.2 The InnoDB Buffer Pool ... 787
8.10.3 The MySQL Query Cache .. 787

8.11 Optimizing Locking Operations .. 794
8.11.1 Internal Locking Methods .. 794

Optimization Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 704

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

8.11.2 Table Locking Issues ... 796
8.11.3 Concurrent Inserts .. 798
8.11.4 External Locking .. 798

8.12 Optimizing the MySQL Server ... 799
8.12.1 System Factors and Startup Parameter Tuning .. 799
8.12.2 Tuning Server Parameters .. 800
8.12.3 Optimizing Disk I/O .. 802
8.12.4 Using Symbolic Links ... 803
8.12.5 Optimizing Memory Use ... 806
8.12.6 Optimizing Network Use ... 809

8.13 Measuring Performance (Benchmarking) .. 811
8.13.1 Measuring the Speed of Expressions and Functions .. 812
8.13.2 The MySQL Benchmark Suite ... 812
8.13.3 Using Your Own Benchmarks ... 813

8.14 Examining Thread Information ... 813
8.14.1 Thread Command Values ... 814
8.14.2 General Thread States ... 816
8.14.3 Delayed-Insert Thread States ... 822
8.14.4 Query Cache Thread States ... 823
8.14.5 Replication Master Thread States ... 823
8.14.6 Replication Slave I/O Thread States ... 824
8.14.7 Replication Slave SQL Thread States ... 825
8.14.8 Replication Slave Connection Thread States ... 825
8.14.9 MySQL Cluster Thread States .. 826

This chapter explains how to optimize MySQL performance and provides examples. Optimization involves
configuring, tuning, and measuring performance, at several levels. Depending on your job role (developer,
DBA, or a combination of both), you might optimize at the level of individual SQL statements, entire
applications, a single database server, or multiple networked database servers. Sometimes you can be
proactive and plan in advance for performance, while other times you might troubleshoot a configuration
or code issue after a problem occurs. Optimizing CPU and memory usage can also improve scalability,
allowing the database to handle more load without slowing down.

8.1 Optimization Overview

Database performance depends on several factors at the database level, such as tables, queries, and
configuration settings. These software constructs result in CPU and I/O operations at the hardware level,
which you must minimize and make as efficient as possible. As you work on database performance, you
start by learning the high-level rules and guidelines for the software side, and measuring performance
using wall-clock time. As you become an expert, you learn more about what happens internally, and start
measuring things such as CPU cycles and I/O operations.

Typical users aim to get the best database performance out of their existing software and hardware
configurations. Advanced users look for opportunities to improve the MySQL software itself, or develop
their own storage engines and hardware appliances to expand the MySQL ecosystem.

Optimizing at the Database Level

The most important factor in making a database application fast is its basic design:

• Are the tables structured properly? In particular, do the columns have the right data types, and does
each table have the appropriate columns for the type of work? For example, applications that perform

Optimizing at the Hardware Level

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 705

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

frequent updates often have many tables with few columns, while applications that analyze large
amounts of data often have few tables with many columns.

• Are the right indexes in place to make queries efficient?

• Are you using the appropriate storage engine for each table, and taking advantage of the strengths and
features of each storage engine you use? In particular, the choice of a nontransactional storage engine
such as MyISAM or a transactional one such as InnoDB can be very important for performance and
scalability.

• Does each table use an appropriate row format? This choice also depends on the storage engine used
for the table. In particular, compressed tables use less disk space and so require less disk I/O to read
and write the data. Compression is available for read-only MyISAM tables, and for all kinds of workloads
with InnoDB tables.

• Does the application use an appropriate locking strategy? For example, by allowing shared access
when possible so that database operations can run concurrently, and requesting exclusive access when
appropriate so that critical operations get top priority. Again, the choice of storage engine is significant.
The InnoDB storage engine handles most locking issues without involvement from you, allowing for
better concurrency in the database and reducing the amount of experimentation and tuning for your
code.

• Are all memory areas used for caching sized correctly? That is, large enough to hold frequently
accessed data, but not so large that they overload physical memory and cause paging. The main
memory areas to configure are the MyISAM key cache, the InnoDB buffer pool, and the MySQL query
cache.

Optimizing at the Hardware Level

Any database application eventually hits hardware limits as the database becomes more and more busy.
A DBA must evaluate whether it is possible to tune the application or reconfigure the server to avoid these
bottlenecks, or whether more hardware resources are required. System bottlenecks typically arise from
these sources:

• Disk seeks. It takes time for the disk to find a piece of data. With modern disks, the mean time for this
is usually lower than 10ms, so we can in theory do about 100 seeks a second. This time improves
slowly with new disks and is very hard to optimize for a single table. The way to optimize seek time is to
distribute the data onto more than one disk.

• Disk reading and writing. When the disk is at the correct position, we need to read or write the data. With
modern disks, one disk delivers at least 10–20MB/s throughput. This is easier to optimize than seeks
because you can read in parallel from multiple disks.

• CPU cycles. When the data is in main memory, we must process it to get our result. Having large tables
compared to the amount of memory is the most common limiting factor. But with small tables, speed is
usually not the problem.

• Memory bandwidth. When the CPU needs more data than can fit in the CPU cache, main memory
bandwidth becomes a bottleneck. This is an uncommon bottleneck for most systems, but one to be
aware of.

Balancing Portability and Performance

Because all SQL servers implement different parts of standard SQL, it takes work to write portable
database applications. It is very easy to achieve portability for very simple selects and inserts, but becomes

Optimizing SQL Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 706

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

more difficult the more capabilities you require. If you want an application that is fast with many database
systems, it becomes even more difficult.

All database systems have some weak points. That is, they have different design compromises that lead to
different behavior.

To make a complex application portable, you need to determine which SQL servers it must work with, and
then determine what features those servers support. You can use the MySQL crash-me program to find
functions, types, and limits that you can use with a selection of database servers. crash-me does not
check for every possible feature, but it is still reasonably comprehensive, performing about 450 tests. An
example of the type of information crash-me can provide is that you should not use column names that
are longer than 18 characters if you want to be able to use Informix or DB2.

The crash-me program and the MySQL benchmarks are all very database independent. By taking a
look at how they are written, you can get a feeling for what you must do to make your own applications
database independent. The programs can be found in the sql-bench directory of MySQL source
distributions. They are written in Perl and use the DBI database interface. Use of DBI in itself solves part
of the portability problem because it provides database-independent access methods. See Section 8.13.2,
“The MySQL Benchmark Suite”.

If you strive for database independence, you need to get a good feeling for each SQL server's bottlenecks.
For example, MySQL is very fast in retrieving and updating rows for MyISAM tables, but has a problem in
mixing slow readers and writers on the same table. Transactional database systems in general are not very
good at generating summary tables from log tables, because in this case row locking is almost useless.

To make your application really database independent, you should define an easily extendable interface
through which you manipulate your data. For example, C++ is available on most systems, so it makes
sense to use a C++ class-based interface to the databases.

If you use some feature that is specific to a given database system (such as the REPLACE statement,
which is specific to MySQL), you should implement the same feature for other SQL servers by coding an
alternative method. Although the alternative might be slower, it enables the other servers to perform the
same tasks.

To use performance-oriented SQL extensions in a portable MySQL program, you can wrap MySQL-
specific keywords in a statement within /*! */ comment delimiters. Other SQL servers ignore the
commented keywords. For information about writing comments, see Section 9.6, “Comment Syntax”.

If high performance is more important than exactness, as for some Web applications, it is possible to
create an application layer that caches all results to give you even higher performance. By letting old
results expire after a while, you can keep the cache reasonably fresh. This provides a method to handle
high load spikes, in which case you can dynamically increase the cache size and set the expiration timeout
higher until things get back to normal.

In this case, the table creation information should contain information about the initial cache size and how
often the table should normally be refreshed.

An attractive alternative to implementing an application cache is to use the MySQL query cache. By
enabling the query cache, the server handles the details of determining whether a query result can be
reused. This simplifies your application. See Section 8.10.3, “The MySQL Query Cache”.

8.2 Optimizing SQL Statements
The core logic of a database application is performed through SQL statements, whether issued directly
through an interpreter or submitted behind the scenes through an API. The tuning guidelines in this section
help to speed up all kinds of MySQL applications. The guidelines cover SQL operations that read and

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 707

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

write data, the behind-the-scenes overhead for SQL operations in general, and operations used in specific
scenarios such as database monitoring.

8.2.1 Optimizing SELECT Statements

Queries, in the form of SELECT statements, perform all the lookup operations in the database. Tuning
these statements is a top priority, whether to achieve sub-second response times for dynamic web pages,
or to chop hours off the time to generate huge overnight reports.

Besides SELECT statements, the tuning techniques for queries also apply to constructs such as CREATE
TABLE...AS SELECT, INSERT INTO...SELECT, and WHERE clauses in DELETE statements. Those
statements have additional performance considerations because they combine write operations with the
read-oriented query operations.

8.2.1.1 Speed of SELECT Statements

The main considerations for optimizing queries are:

• To make a slow SELECT ... WHERE query faster, the first thing to check is whether you can add an
index. Set up indexes on columns used in the WHERE clause, to speed up evaluation, filtering, and the
final retrieval of results. To avoid wasted disk space, construct a small set of indexes that speed up
many related queries used in your application.

Indexes are especially important for queries that reference different tables, using features such as
joins and foreign keys. You can use the EXPLAIN statement to determine which indexes are used for a
SELECT. See Section 8.3.1, “How MySQL Uses Indexes” and Section 8.8.1, “Optimizing Queries with
EXPLAIN”.

• Isolate and tune any part of the query, such as a function call, that takes excessive time. Depending on
how the query is structured, a function could be called once for every row in the result set, or even once
for every row in the table, greatly magnifying any inefficiency.

• Minimize the number of full table scans in your queries, particularly for big tables.

• Keep table statistics up to date by using the ANALYZE TABLE statement periodically, so the optimizer
has the information needed to construct an efficient execution plan.

• Learn the tuning techniques, indexing techniques, and configuration parameters that are specific to
the storage engine for each table. Both InnoDB and MyISAM have sets of guidelines for enabling and
sustaining high performance in queries. For details, see Section 8.6.5, “Optimizing InnoDB Queries” and
Section 8.5.1, “Optimizing MyISAM Queries”.

• Avoid transforming the query in ways that make it hard to understand, especially if the optimizer does
some of the same transformations automatically.

• If a performance issue is not easily solved by one of the basic guidelines, investigate the internal details
of the specific query by reading the EXPLAIN plan and adjusting your indexes, WHERE clauses, join
clauses, and so on. (When you reach a certain level of expertise, reading the EXPLAIN plan might be
your first step for every query.)

• Adjust the size and properties of the memory areas that MySQL uses for caching. With efficient use of
the MyISAM key cache, InnoDB buffer pool, and the MySQL query cache, repeated queries run faster
because the results are retrieved from memory the second and subsequent times.

• Even for a query that runs fast using the cache memory areas, you might still optimize further so that
they require less cache memory, making your application more scalable. Scalability means that your

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 708

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

application can handle more simultaneous users, larger requests, and so on without experiencing a big
drop in performance.

• Deal with locking issues, where the speed of your query might be affected by other sessions accessing
the tables at the same time.

8.2.1.2 How MySQL Optimizes WHERE Clauses

This section discusses optimizations that can be made for processing WHERE clauses. The examples
use SELECT statements, but the same optimizations apply for WHERE clauses in DELETE and UPDATE
statements.

Work on the MySQL optimizer is ongoing, so this section is incomplete. MySQL performs a great many
optimizations, not all of which are documented here.

Some of the optimizations performed by MySQL follow:

• Removal of unnecessary parentheses:

 ((a AND b) AND c OR (((a AND b) AND (c AND d))))
-> (a AND b AND c) OR (a AND b AND c AND d)

• Constant folding:

 (a<b AND b=c) AND a=5
-> b>5 AND b=c AND a=5

• Constant condition removal (needed because of constant folding):

 (B>=5 AND B=5) OR (B=6 AND 5=5) OR (B=7 AND 5=6)
-> B=5 OR B=6

• Constant expressions used by indexes are evaluated only once.

• COUNT(*) on a single table without a WHERE is retrieved directly from the table information for MyISAM
and MEMORY tables. This is also done for any NOT NULL expression when used with only one table.

• Early detection of invalid constant expressions. MySQL quickly detects that some SELECT statements
are impossible and returns no rows.

• HAVING is merged with WHERE if you do not use GROUP BY or aggregate functions (COUNT(), MIN(),
and so on).

• For each table in a join, a simpler WHERE is constructed to get a fast WHERE evaluation for the table and
also to skip rows as soon as possible.

• All constant tables are read first before any other tables in the query. A constant table is any of the
following:

• An empty table or a table with one row.

• A table that is used with a WHERE clause on a PRIMARY KEY or a UNIQUE index, where all index parts
are compared to constant expressions and are defined as NOT NULL.

All of the following tables are used as constant tables:

SELECT * FROM t WHERE primary_key=1;

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 709

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT * FROM t1,t2
 WHERE t1.primary_key=1 AND t2.primary_key=t1.id;

• The best join combination for joining the tables is found by trying all possibilities. If all columns in ORDER
BY and GROUP BY clauses come from the same table, that table is preferred first when joining.

• If there is an ORDER BY clause and a different GROUP BY clause, or if the ORDER BY or GROUP BY
contains columns from tables other than the first table in the join queue, a temporary table is created.

• If you use the SQL_SMALL_RESULT option, MySQL uses an in-memory temporary table.

• Each table index is queried, and the best index is used unless the optimizer believes that it is more
efficient to use a table scan. At one time, a scan was used based on whether the best index spanned
more than 30% of the table, but a fixed percentage no longer determines the choice between using an
index or a scan. The optimizer now is more complex and bases its estimate on additional factors such as
table size, number of rows, and I/O block size.

• MySQL can sometimes produce query results using data from the index, without consulting the table
data. If all columns used from the index are numeric, only the index data is used to resolve the query.

• Before each row is output, those that do not match the HAVING clause are skipped.

Some examples of queries that are very fast:

SELECT COUNT(*) FROM tbl_name;

SELECT MIN(key_part1),MAX(key_part1) FROM tbl_name;

SELECT MAX(key_part2) FROM tbl_name
 WHERE key_part1=constant;

SELECT ... FROM tbl_name
 ORDER BY key_part1,key_part2,... LIMIT 10;

SELECT ... FROM tbl_name
 ORDER BY key_part1 DESC, key_part2 DESC, ... LIMIT 10;

MySQL resolves the following queries using only the index tree, assuming that the indexed columns are
numeric:

SELECT key_part1,key_part2 FROM tbl_name WHERE key_part1=val;

SELECT COUNT(*) FROM tbl_name
 WHERE key_part1=val1 AND key_part2=val2;

SELECT key_part2 FROM tbl_name GROUP BY key_part1;

The following queries use indexing to retrieve the rows in sorted order without a separate sorting pass:

SELECT ... FROM tbl_name
 ORDER BY key_part1,key_part2,... ;

SELECT ... FROM tbl_name
 ORDER BY key_part1 DESC, key_part2 DESC, ... ;

8.2.1.3 Range Optimization

The range access method uses a single index to retrieve a subset of table rows that are contained within
one or several index value intervals. It can be used for a single-part or multiple-part index. The following
sections give a detailed description of how intervals are extracted from the WHERE clause.

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 710

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The Range Access Method for Single-Part Indexes

For a single-part index, index value intervals can be conveniently represented by corresponding conditions
in the WHERE clause, denoted as range conditions rather than “intervals.”

The definition of a range condition for a single-part index is as follows:

• For both BTREE and HASH indexes, comparison of a key part with a constant value is a range condition
when using the =, <=>, IN(), IS NULL, or IS NOT NULL operators.

• Additionally, for BTREE indexes, comparison of a key part with a constant value is a range condition
when using the >, <, >=, <=, BETWEEN, !=, or <> operators, or LIKE comparisons if the argument to
LIKE is a constant string that does not start with a wildcard character.

• For all index types, multiple range conditions combined with OR or AND form a range condition.

“Constant value” in the preceding descriptions means one of the following:

• A constant from the query string

• A column of a const or system table from the same join

• The result of an uncorrelated subquery

• Any expression composed entirely from subexpressions of the preceding types

Here are some examples of queries with range conditions in the WHERE clause:

SELECT * FROM t1
 WHERE key_col > 1
 AND key_col < 10;

SELECT * FROM t1
 WHERE key_col = 1
 OR key_col IN (15,18,20);

SELECT * FROM t1
 WHERE key_col LIKE 'ab%'
 OR key_col BETWEEN 'bar' AND 'foo';

Some nonconstant values may be converted to constants during the optimizer constant propagation phase.

MySQL tries to extract range conditions from the WHERE clause for each of the possible indexes. During
the extraction process, conditions that cannot be used for constructing the range condition are dropped,
conditions that produce overlapping ranges are combined, and conditions that produce empty ranges are
removed.

Consider the following statement, where key1 is an indexed column and nonkey is not indexed:

SELECT * FROM t1 WHERE
 (key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
 (key1 < 'bar' AND nonkey = 4) OR
 (key1 < 'uux' AND key1 > 'z');

The extraction process for key key1 is as follows:

1. Start with original WHERE clause:

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 711

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
(key1 < 'bar' AND nonkey = 4) OR
(key1 < 'uux' AND key1 > 'z')

2. Remove nonkey = 4 and key1 LIKE '%b' because they cannot be used for a range scan. The
correct way to remove them is to replace them with TRUE, so that we do not miss any matching rows
when doing the range scan. Having replaced them with TRUE, we get:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR TRUE)) OR
(key1 < 'bar' AND TRUE) OR
(key1 < 'uux' AND key1 > 'z')

3. Collapse conditions that are always true or false:

• (key1 LIKE 'abcde%' OR TRUE) is always true

• (key1 < 'uux' AND key1 > 'z') is always false

Replacing these conditions with constants, we get:

(key1 < 'abc' AND TRUE) OR (key1 < 'bar' AND TRUE) OR (FALSE)

Removing unnecessary TRUE and FALSE constants, we obtain:

(key1 < 'abc') OR (key1 < 'bar')

4. Combining overlapping intervals into one yields the final condition to be used for the range scan:

(key1 < 'bar')

In general (and as demonstrated by the preceding example), the condition used for a range scan is less
restrictive than the WHERE clause. MySQL performs an additional check to filter out rows that satisfy the
range condition but not the full WHERE clause.

The range condition extraction algorithm can handle nested AND/OR constructs of arbitrary depth, and its
output does not depend on the order in which conditions appear in WHERE clause.

MySQL does not support merging multiple ranges for the range access method for spatial indexes. To
work around this limitation, you can use a UNION with identical SELECT statements, except that you put
each spatial predicate in a different SELECT.

The Range Access Method for Multiple-Part Indexes

Range conditions on a multiple-part index are an extension of range conditions for a single-part index. A
range condition on a multiple-part index restricts index rows to lie within one or several key tuple intervals.
Key tuple intervals are defined over a set of key tuples, using ordering from the index.

For example, consider a multiple-part index defined as key1(key_part1, key_part2, key_part3),
and the following set of key tuples listed in key order:

key_part1 key_part2 key_part3
 NULL 1 'abc'
 NULL 1 'xyz'
 NULL 2 'foo'
 1 1 'abc'
 1 1 'xyz'

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 712

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 1 2 'abc'
 2 1 'aaa'

The condition key_part1 = 1 defines this interval:

(1,-inf,-inf) <= (key_part1,key_part2,key_part3) < (1,+inf,+inf)

The interval covers the 4th, 5th, and 6th tuples in the preceding data set and can be used by the range
access method.

By contrast, the condition key_part3 = 'abc' does not define a single interval and cannot be used by
the range access method.

The following descriptions indicate how range conditions work for multiple-part indexes in greater detail.

• For HASH indexes, each interval containing identical values can be used. This means that the interval
can be produced only for conditions in the following form:

 key_part1 cmp const1
AND key_part2 cmp const2
AND ...
AND key_partN cmp constN;

Here, const1, const2, … are constants, cmp is one of the =, <=>, or IS NULL comparison operators,
and the conditions cover all index parts. (That is, there are N conditions, one for each part of an N-part
index.) For example, the following is a range condition for a three-part HASH index:

key_part1 = 1 AND key_part2 IS NULL AND key_part3 = 'foo'

For the definition of what is considered to be a constant, see The Range Access Method for Single-Part
Indexes.

• For a BTREE index, an interval might be usable for conditions combined with AND, where each condition
compares a key part with a constant value using =, <=>, IS NULL, >, <, >=, <=, !=, <>, BETWEEN,
or LIKE 'pattern' (where 'pattern' does not start with a wildcard). An interval can be used as
long as it is possible to determine a single key tuple containing all rows that match the condition (or two
intervals if <> or != is used).

The optimizer attempts to use additional key parts to determine the interval as long as the comparison
operator is =, <=>, or IS NULL. If the operator is >, <, >=, <=, !=, <>, BETWEEN, or LIKE, the optimizer
uses it but considers no more key parts. For the following expression, the optimizer uses = from the first
comparison. It also uses >= from the second comparison but considers no further key parts and does not
use the third comparison for interval construction:

key_part1 = 'foo' AND key_part2 >= 10 AND key_part3 > 10

The single interval is:

('foo',10,-inf) < (key_part1,key_part2,key_part3) < ('foo',+inf,+inf)

It is possible that the created interval contains more rows than the initial condition. For example, the
preceding interval includes the value ('foo', 11, 0), which does not satisfy the original condition.

• If conditions that cover sets of rows contained within intervals are combined with OR, they form a
condition that covers a set of rows contained within the union of their intervals. If the conditions are

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 713

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

combined with AND, they form a condition that covers a set of rows contained within the intersection of
their intervals. For example, for this condition on a two-part index:

(key_part1 = 1 AND key_part2 < 2) OR (key_part1 > 5)

The intervals are:

(1,-inf) < (key_part1,key_part2) < (1,2)
(5,-inf) < (key_part1,key_part2)

In this example, the interval on the first line uses one key part for the left bound and two key parts for
the right bound. The interval on the second line uses only one key part. The key_len column in the
EXPLAIN output indicates the maximum length of the key prefix used.

In some cases, key_len may indicate that a key part was used, but that might be not what you would
expect. Suppose that key_part1 and key_part2 can be NULL. Then the key_len column displays
two key part lengths for the following condition:

key_part1 >= 1 AND key_part2 < 2

But, in fact, the condition is converted to this:

key_part1 >= 1 AND key_part2 IS NOT NULL

The Range Access Method for Single-Part Indexes, describes how optimizations are performed to combine
or eliminate intervals for range conditions on a single-part index. Analogous steps are performed for range
conditions on multiple-part indexes.

8.2.1.4 Index Merge Optimization

The Index Merge method is used to retrieve rows with several range scans and to merge their results into
one. The merge can produce unions, intersections, or unions-of-intersections of its underlying scans. This
access method merges index scans from a single table; it does not merge scans across multiple tables.

Note

If you have upgraded from a previous version of MySQL, you should be aware
that this type of join optimization is first introduced in MySQL 5.0, and represents a
significant change in behavior with regard to indexes. (Formerly, MySQL was able
to use at most only one index for each referenced table.)

In EXPLAIN output, the Index Merge method appears as index_merge in the type column. In this case,
the key column contains a list of indexes used, and key_len contains a list of the longest key parts for
those indexes.

Examples:

SELECT * FROM tbl_name WHERE key1 = 10 OR key2 = 20;

SELECT * FROM tbl_name
 WHERE (key1 = 10 OR key2 = 20) AND non_key=30;

SELECT * FROM t1, t2
 WHERE (t1.key1 IN (1,2) OR t1.key2 LIKE 'value%')
 AND t2.key1=t1.some_col;

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 714

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT * FROM t1, t2
 WHERE t1.key1=1
 AND (t2.key1=t1.some_col OR t2.key2=t1.some_col2);

The Index Merge method has several access algorithms (seen in the Extra field of EXPLAIN output):

• Using intersect(...)

• Using union(...)

• Using sort_union(...)

The following sections describe these methods in greater detail.

Note

The Index Merge optimization algorithm has the following known deficiencies:

• If your query has a complex WHERE clause with deep AND/OR nesting and MySQL
does not choose the optimal plan, try distributing terms using the following
identity laws:

(x AND y) OR z = (x OR z) AND (y OR z)
(x OR y) AND z = (x AND z) OR (y AND z)

• Index Merge is not applicable to full-text indexes. We plan to extend it to cover
these in a future MySQL release.

• If a range scan is possible on some key, the optimizer will not consider using
Index Merge Union or Index Merge Sort-Union algorithms. For example, consider
this query:

SELECT * FROM t1 WHERE (goodkey1 < 10 OR goodkey2 < 20) AND badkey < 30;

For this query, two plans are possible:

• An Index Merge scan using the (goodkey1 < 10 OR goodkey2 < 20)
condition.

• A range scan using the badkey < 30 condition.

However, the optimizer considers only the second plan.

The choice between different possible variants of the Index Merge access method and other access
methods is based on cost estimates of various available options.

The Index Merge Intersection Access Algorithm

This access algorithm can be employed when a WHERE clause was converted to several range conditions
on different keys combined with AND, and each condition is one of the following:

• In this form, where the index has exactly N parts (that is, all index parts are covered):

key_part1=const1 AND key_part2=const2 ... AND key_partN=constN

• Any range condition over a primary key of an InnoDB or BDB table.

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 715

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Examples:

SELECT * FROM innodb_table WHERE primary_key < 10 AND key_col1=20;

SELECT * FROM tbl_name
 WHERE (key1_part1=1 AND key1_part2=2) AND key2=2;

The Index Merge intersection algorithm performs simultaneous scans on all used indexes and produces
the intersection of row sequences that it receives from the merged index scans.

If all columns used in the query are covered by the used indexes, full table rows are not retrieved
(EXPLAIN output contains Using index in Extra field in this case). Here is an example of such a query:

SELECT COUNT(*) FROM t1 WHERE key1=1 AND key2=1;

If the used indexes do not cover all columns used in the query, full rows are retrieved only when the range
conditions for all used keys are satisfied.

If one of the merged conditions is a condition over a primary key of an InnoDB or BDB table, it is not used
for row retrieval, but is used to filter out rows retrieved using other conditions.

The Index Merge Union Access Algorithm

The applicability criteria for this algorithm are similar to those for the Index Merge method intersection
algorithm. The algorithm can be employed when the table's WHERE clause was converted to several range
conditions on different keys combined with OR, and each condition is one of the following:

• In this form, where the index has exactly N parts (that is, all index parts are covered):

key_part1=const1 AND key_part2=const2 ... AND key_partN=constN

• Any range condition over a primary key of an InnoDB or BDB table.

• A condition for which the Index Merge method intersection algorithm is applicable.

Examples:

SELECT * FROM t1 WHERE key1=1 OR key2=2 OR key3=3;

SELECT * FROM innodb_table WHERE (key1=1 AND key2=2) OR
 (key3='foo' AND key4='bar') AND key5=5;

The Index Merge Sort-Union Access Algorithm

This access algorithm is employed when the WHERE clause was converted to several range conditions
combined by OR, but for which the Index Merge method union algorithm is not applicable.

Examples:

SELECT * FROM tbl_name WHERE key_col1 < 10 OR key_col2 < 20;

SELECT * FROM tbl_name
 WHERE (key_col1 > 10 OR key_col2 = 20) AND nonkey_col=30;

The difference between the sort-union algorithm and the union algorithm is that the sort-union algorithm
must first fetch row IDs for all rows and sort them before returning any rows.

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 716

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

8.2.1.5 Engine Condition Pushdown Optimization

This optimization improves the efficiency of direct comparisons between a nonindexed column and
a constant. In such cases, the condition is “pushed down” to the storage engine for evaluation. This
optimization can be used only by the NDB storage engine.

For MySQL Cluster, this optimization can eliminate the need to send nonmatching rows over the network
between the cluster's data nodes and the MySQL Server that issued the query, and can speed up queries
where it is used by a factor of 5 to 10 times over cases where condition pushdown could be but is not used.

Suppose that a MySQL Cluster table is defined as follows:

CREATE TABLE t1 (
 a INT,
 b INT,
 KEY(a)
) ENGINE=NDB;

Condition pushdown can be used with queries such as the one shown here, which includes a comparison
between a nonindexed column and a constant:

SELECT a, b FROM t1 WHERE b = 10;

The use of condition pushdown can be seen in the output of EXPLAIN:

mysql> EXPLAIN SELECT a,b FROM t1 WHERE b = 10\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 10
 Extra: Using where with pushed condition

However, condition pushdown cannot be used with either of these two queries:

SELECT a,b FROM t1 WHERE a = 10;
SELECT a,b FROM t1 WHERE b + 1 = 10;

Condition pushdown is not applicable to the first query because an index exists on column a. (An index
access method would be more efficient and so would be chosen in preference to condition pushdown.)
Condition pushdown cannot be employed for the second query because the comparison involving the
nonindexed column b is indirect. (However, condition pushdown could be applied if you were to reduce b
+ 1 = 10 to b = 9 in the WHERE clause.)

Condition pushdown may also be employed when an indexed column is compared with a constant using a
> or < operator:

mysql> EXPLAIN SELECT a, b FROM t1 WHERE a < 2\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 717

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 type: range
possible_keys: a
 key: a
 key_len: 5
 ref: NULL
 rows: 2
 Extra: Using where with pushed condition

Other supported comparisons for condition pushdown include the following:

• column [NOT] LIKE pattern

pattern must be a string literal containing the pattern to be matched; for syntax, see Section 12.5.1,
“String Comparison Functions”.

• column IS [NOT] NULL

• column IN (value_list)

Each item in the value_list must be a constant, literal value.

• column BETWEEN constant1 AND constant2

constant1 and constant2 must each be a constant, literal value.

In all of the cases in the preceding list, it is possible for the condition to be converted into the form of one or
more direct comparisons between a column and a constant.

Engine condition pushdown is disabled by default. To enable it at server startup, set the
engine_condition_pushdown system variable. For example, in a my.cnf file, use these lines:

[mysqld]
engine_condition_pushdown=1

At runtime, enable condition pushdown with either of the following statements:

SET engine_condition_pushdown=ON;

SET engine_condition_pushdown=1;

Limitations. Engine condition pushdown is subject to the following limitations:

• Condition pushdown is supported only by the NDB storage engine.

• Columns may be compared with constants only; however, this includes expressions which evaluate to
constant values.

• Columns used in comparisons cannot be of any of the BLOB or TEXT types.

• A string value to be compared with a column must use the same collation as the column.

• Joins are not directly supported; conditions involving multiple tables are pushed separately where
possible. Use EXPLAIN EXTENDED to determine which conditions are actually pushed down.

8.2.1.6 IS NULL Optimization

MySQL can perform the same optimization on col_name IS NULL that it can use for col_name =
constant_value. For example, MySQL can use indexes and ranges to search for NULL with IS NULL.

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 718

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Examples:

SELECT * FROM tbl_name WHERE key_col IS NULL;

SELECT * FROM tbl_name WHERE key_col <=> NULL;

SELECT * FROM tbl_name
 WHERE key_col=const1 OR key_col=const2 OR key_col IS NULL;

If a WHERE clause includes a col_name IS NULL condition for a column that is declared as NOT NULL,
that expression is optimized away. This optimization does not occur in cases when the column might
produce NULL anyway; for example, if it comes from a table on the right side of a LEFT JOIN.

MySQL can also optimize the combination col_name = expr OR col_name IS NULL, a form that is
common in resolved subqueries. EXPLAIN shows ref_or_null when this optimization is used.

This optimization can handle one IS NULL for any key part.

Some examples of queries that are optimized, assuming that there is an index on columns a and b of table
t2:

SELECT * FROM t1 WHERE t1.a=expr OR t1.a IS NULL;

SELECT * FROM t1, t2 WHERE t1.a=t2.a OR t2.a IS NULL;

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a OR t2.a IS NULL) AND t2.b=t1.b;

SELECT * FROM t1, t2
 WHERE t1.a=t2.a AND (t2.b=t1.b OR t2.b IS NULL);

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a AND t2.a IS NULL AND ...)
 OR (t1.a=t2.a AND t2.a IS NULL AND ...);

ref_or_null works by first doing a read on the reference key, and then a separate search for rows with a
NULL key value.

The optimization can handle only one IS NULL level. In the following query, MySQL uses key lookups only
on the expression (t1.a=t2.a AND t2.a IS NULL) and is not able to use the key part on b:

SELECT * FROM t1, t2
 WHERE (t1.a=t2.a AND t2.a IS NULL)
 OR (t1.b=t2.b AND t2.b IS NULL);

8.2.1.7 LEFT JOIN and RIGHT JOIN Optimization

MySQL implements an A LEFT JOIN B join_condition as follows:

• Table B is set to depend on table A and all tables on which A depends.

• Table A is set to depend on all tables (except B) that are used in the LEFT JOIN condition.

• The LEFT JOIN condition is used to decide how to retrieve rows from table B. (In other words, any
condition in the WHERE clause is not used.)

• All standard join optimizations are performed, with the exception that a table is always read after all
tables on which it depends. If there is a circular dependence, MySQL issues an error.

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 719

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• All standard WHERE optimizations are performed.

• If there is a row in A that matches the WHERE clause, but there is no row in B that matches the ON
condition, an extra B row is generated with all columns set to NULL.

• If you use LEFT JOIN to find rows that do not exist in some table and you have the following test:
col_name IS NULL in the WHERE part, where col_name is a column that is declared as NOT NULL,
MySQL stops searching for more rows (for a particular key combination) after it has found one row that
matches the LEFT JOIN condition.

The implementation of RIGHT JOIN is analogous to that of LEFT JOIN with the roles of the tables
reversed.

 The join optimizer calculates the order in which tables should be joined. The table read order forced by
LEFT JOIN or STRAIGHT_JOIN helps the join optimizer do its work much more quickly, because there
are fewer table permutations to check. Note that this means that if you do a query of the following type,
MySQL does a full scan on b because the LEFT JOIN forces it to be read before d:

SELECT *
 FROM a JOIN b LEFT JOIN c ON (c.key=a.key)
 LEFT JOIN d ON (d.key=a.key)
 WHERE b.key=d.key;

The fix in this case is reverse the order in which a and b are listed in the FROM clause:

SELECT *
 FROM b JOIN a LEFT JOIN c ON (c.key=a.key)
 LEFT JOIN d ON (d.key=a.key)
 WHERE b.key=d.key;

For a LEFT JOIN, if the WHERE condition is always false for the generated NULL row, the LEFT JOIN
is changed to a normal join. For example, the WHERE clause would be false in the following query if
t2.column1 were NULL:

SELECT * FROM t1 LEFT JOIN t2 ON (column1) WHERE t2.column2=5;

Therefore, it is safe to convert the query to a normal join:

SELECT * FROM t1, t2 WHERE t2.column2=5 AND t1.column1=t2.column1;

 This can be made faster because MySQL can use table t2 before table t1 if doing so would result in a
better query plan. To provide a hint about the table join order, use STRAIGHT_JOIN. (See Section 13.2.8,
“SELECT Syntax”.)

8.2.1.8 Nested-Loop Join Algorithms

MySQL executes joins between tables using a nested-loop algorithm or variations on it.

Nested-Loop Join Algorithm

A simple nested-loop join (NLJ) algorithm reads rows from the first table in a loop one at a time, passing
each row to a nested loop that processes the next table in the join. This process is repeated as many times
as there remain tables to be joined.

Assume that a join between three tables t1, t2, and t3 is to be executed using the following join types:

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 720

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Table Join Type
t1 range
t2 ref
t3 ALL

If a simple NLJ algorithm is used, the join is processed like this:

for each row in t1 matching range {
 for each row in t2 matching reference key {
 for each row in t3 {
 if row satisfies join conditions,
 send to client
 }
 }
}

Because the NLJ algorithm passes rows one at a time from outer loops to inner loops, it typically reads
tables processed in the inner loops many times.

Block Nested-Loop Join Algorithm

A Block Nested-Loop (BNL) join algorithm uses buffering of rows read in outer loops to reduce the number
of times that tables in inner loops must be read. For example, if 10 rows are read into a buffer and the
buffer is passed to the next inner loop, each row read in the inner loop can be compared against all 10
rows in the buffer. The reduces the number of times the inner table must be read by an order of magnitude.

MySQL uses join buffering under these conditions:

• The join_buffer_size system variable determines the size of each join buffer.

• Join buffering can be used when the join is of type ALL or index (in other words, when no possible keys
can be used, and a full scan is done, of either the data or index rows, respectively), or range.

• One buffer is allocated for each join that can be buffered, so a given query might be processed using
multiple join buffers.

• A join buffer is never allocated for the first nonconst table, even if it would be of type ALL or index.

• A join buffer is allocated prior to executing the join and freed after the query is done.

• Only columns of interest to the join are stored in the join buffer, not whole rows.

For the example join described previously for the NLJ algorithm (without buffering), the join is done as
follow using join buffering:

for each row in t1 matching range {
 for each row in t2 matching reference key {
 store used columns from t1, t2 in join buffer
 if buffer is full {
 for each row in t3 {
 for each t1, t2 combination in join buffer {
 if row satisfies join conditions,
 send to client
 }
 }
 empty buffer
 }
 }
}

if buffer is not empty {

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 721

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 for each row in t3 {
 for each t1, t2 combination in join buffer {
 if row satisfies join conditions,
 send to client
 }
 }
}

If S is the size of each stored t1, t2 combination is the join buffer and C is the number of combinations in
the buffer, the number of times table t3 is scanned is:

(S * C)/join_buffer_size + 1

The number of t3 scans decreases as the value of join_buffer_size increases, up to the point when
join_buffer_size is large enough to hold all previous row combinations. At that point, there is no
speed to be gained by making it larger.

8.2.1.9 Nested Join Optimization

As of MySQL 5.0.1, the syntax for expressing joins permits nested joins. The following discussion refers to
the join syntax described in Section 13.2.8.2, “JOIN Syntax”.

The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts only
table_reference, not a list of them inside a pair of parentheses. This is a conservative extension if we
consider each comma in a list of table_reference items as equivalent to an inner join. For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

In MySQL, CROSS JOIN is a syntactic equivalent to INNER JOIN (they can replace each other). In
standard SQL, they are not equivalent. INNER JOIN is used with an ON clause; CROSS JOIN is used
otherwise.

In versions of MySQL prior to 5.0.1, parentheses in table_references were just omitted and all join
operations were grouped to the left. In general, parentheses can be ignored in join expressions containing
only inner join operations.

After removing parentheses and grouping operations to the left, the join expression:

t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
 ON t1.a=t2.a

transforms into the expression:

(t1 LEFT JOIN t2 ON t1.a=t2.a) LEFT JOIN t3
 ON t2.b=t3.b OR t2.b IS NULL

Yet, the two expressions are not equivalent. To see this, suppose that the tables t1, t2, and t3 have the
following state:

• Table t1 contains rows (1), (2)

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 722

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Table t2 contains row (1,101)

• Table t3 contains row (101)

In this case, the first expression returns a result set including the rows (1,1,101,101),
(2,NULL,NULL,NULL), whereas the second expression returns the rows (1,1,101,101),
(2,NULL,NULL,101):

mysql> SELECT *
 -> FROM t1
 -> LEFT JOIN
 -> (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
 -> ON t1.a=t2.a;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
 -> FROM (t1 LEFT JOIN t2 ON t1.a=t2.a)
 -> LEFT JOIN t3
 -> ON t2.b=t3.b OR t2.b IS NULL;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+

In the following example, an outer join operation is used together with an inner join operation:

t1 LEFT JOIN (t2, t3) ON t1.a=t2.a

That expression cannot be transformed into the following expression:

t1 LEFT JOIN t2 ON t1.a=t2.a, t3.

For the given table states, the two expressions return different sets of rows:

mysql> SELECT *
 -> FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
 -> FROM t1 LEFT JOIN t2 ON t1.a=t2.a, t3;
+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+

Therefore, if we omit parentheses in a join expression with outer join operators, we might change the result
set for the original expression.

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 723

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

More exactly, we cannot ignore parentheses in the right operand of the left outer join operation and in
the left operand of a right join operation. In other words, we cannot ignore parentheses for the inner table
expressions of outer join operations. Parentheses for the other operand (operand for the outer table) can
be ignored.

The following expression:

(t1,t2) LEFT JOIN t3 ON P(t2.b,t3.b)

is equivalent to this expression:

t1, t2 LEFT JOIN t3 ON P(t2.b,t3.b)

for any tables t1,t2,t3 and any condition P over attributes t2.b and t3.b.

Whenever the order of execution of the join operations in a join expression (join_table) is not from left
to right, we talk about nested joins. Consider the following queries:

SELECT * FROM t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b) ON t1.a=t2.a
 WHERE t1.a > 1

SELECT * FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a
 WHERE (t2.b=t3.b OR t2.b IS NULL) AND t1.a > 1

Those queries are considered to contain these nested joins:

t2 LEFT JOIN t3 ON t2.b=t3.b
t2, t3

The nested join is formed in the first query with a left join operation, whereas in the second query it is
formed with an inner join operation.

In the first query, the parentheses can be omitted: The grammatical structure of the join expression will
dictate the same order of execution for join operations. For the second query, the parentheses cannot
be omitted, although the join expression here can be interpreted unambiguously without them. (In our
extended syntax the parentheses in (t2, t3) of the second query are required, although theoretically
the query could be parsed without them: We still would have unambiguous syntactical structure for the
query because LEFT JOIN and ON would play the role of the left and right delimiters for the expression
(t2,t3).)

The preceding examples demonstrate these points:

• For join expressions involving only inner joins (and not outer joins), parentheses can be removed. You
can remove parentheses and evaluate left to right (or, in fact, you can evaluate the tables in any order).

• The same is not true, in general, for outer joins or for outer joins mixed with inner joins. Removal of
parentheses may change the result.

Queries with nested outer joins are executed in the same pipeline manner as queries with inner joins. More
exactly, a variation of the nested-loop join algorithm is exploited. Recall by what algorithmic schema the
nested-loop join executes a query. Suppose that we have a join query over 3 tables T1,T2,T3 of the form:

SELECT * FROM T1 INNER JOIN T2 ON P1(T1,T2)
 INNER JOIN T3 ON P2(T2,T3)
 WHERE P(T1,T2,T3).

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 724

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Here, P1(T1,T2) and P2(T3,T3) are some join conditions (on expressions), whereas P(T1,T2,T3) is
a condition over columns of tables T1,T2,T3.

The nested-loop join algorithm would execute this query in the following manner:

FOR each row t1 in T1 {
 FOR each row t2 in T2 such that P1(t1,t2) {
 FOR each row t3 in T3 such that P2(t2,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

The notation t1||t2||t3 means “a row constructed by concatenating the columns of rows t1, t2, and
t3.” In some of the following examples, NULL where a row name appears means that NULL is used for
each column of that row. For example, t1||t2||NULL means “a row constructed by concatenating the
columns of rows t1 and t2, and NULL for each column of t3.”

Now let's consider a query with nested outer joins:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON P2(T2,T3))
 ON P1(T1,T2)
 WHERE P(T1,T2,T3).

For this query, we modify the nested-loop pattern to get:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t2 in T2 such that P1(t1,t2) {
 BOOL f2:=FALSE;
 FOR each row t3 in T3 such that P2(t2,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f2=TRUE;
 f1=TRUE;
 }
 IF (!f2) {
 IF P(t1,t2,NULL) {
 t:=t1||t2||NULL; OUTPUT t;
 }
 f1=TRUE;
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

In general, for any nested loop for the first inner table in an outer join operation, a flag is introduced that
is turned off before the loop and is checked after the loop. The flag is turned on when for the current row
from the outer table a match from the table representing the inner operand is found. If at the end of the
loop cycle the flag is still off, no match has been found for the current row of the outer table. In this case,
the row is complemented by NULL values for the columns of the inner tables. The result row is passed to
the final check for the output or into the next nested loop, but only if the row satisfies the join condition of all
embedded outer joins.

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 725

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In our example, the outer join table expressed by the following expression is embedded:

(T2 LEFT JOIN T3 ON P2(T2,T3))

For the query with inner joins, the optimizer could choose a different order of nested loops, such as this
one:

FOR each row t3 in T3 {
 FOR each row t2 in T2 such that P2(t2,t3) {
 FOR each row t1 in T1 such that P1(t1,t2) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

For the queries with outer joins, the optimizer can choose only such an order where loops for outer tables
precede loops for inner tables. Thus, for our query with outer joins, only one nesting order is possible. For
the following query, the optimizer will evaluate two different nestings:

SELECT * T1 LEFT JOIN (T2,T3) ON P1(T1,T2) AND P2(T1,T3)
 WHERE P(T1,T2,T3)

The nestings are these:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t2 in T2 such that P1(t1,t2) {
 FOR each row t3 in T3 such that P2(t1,t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f1:=TRUE
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

and:

FOR each row t1 in T1 {
 BOOL f1:=FALSE;
 FOR each row t3 in T3 such that P2(t1,t3) {
 FOR each row t2 in T2 such that P1(t1,t2) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f1:=TRUE
 }
 }
 IF (!f1) {
 IF P(t1,NULL,NULL) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
 }
}

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 726

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In both nestings, T1 must be processed in the outer loop because it is used in an outer join. T2 and T3
are used in an inner join, so that join must be processed in the inner loop. However, because the join is an
inner join, T2 and T3 can be processed in either order.

When discussing the nested-loop algorithm for inner joins, we omitted some details whose impact on the
performance of query execution may be huge. We did not mention so-called “pushed-down” conditions.
Suppose that our WHERE condition P(T1,T2,T3) can be represented by a conjunctive formula:

P(T1,T2,T2) = C1(T1) AND C2(T2) AND C3(T3).

In this case, MySQL actually uses the following nested-loop schema for the execution of the query with
inner joins:

FOR each row t1 in T1 such that C1(t1) {
 FOR each row t2 in T2 such that P1(t1,t2) AND C2(t2) {
 FOR each row t3 in T3 such that P2(t2,t3) AND C3(t3) {
 IF P(t1,t2,t3) {
 t:=t1||t2||t3; OUTPUT t;
 }
 }
 }
}

You see that each of the conjuncts C1(T1), C2(T2), C3(T3) are pushed out of the most inner loop to
the most outer loop where it can be evaluated. If C1(T1) is a very restrictive condition, this condition
pushdown may greatly reduce the number of rows from table T1 passed to the inner loops. As a result, the
execution time for the query may improve immensely.

For a query with outer joins, the WHERE condition is to be checked only after it has been found that
the current row from the outer table has a match in the inner tables. Thus, the optimization of pushing
conditions out of the inner nested loops cannot be applied directly to queries with outer joins. Here we have
to introduce conditional pushed-down predicates guarded by the flags that are turned on when a match has
been encountered.

For our example with outer joins with:

P(T1,T2,T3)=C1(T1) AND C(T2) AND C3(T3)

the nested-loop schema using guarded pushed-down conditions looks like this:

FOR each row t1 in T1 such that C1(t1) {
 BOOL f1:=FALSE;
 FOR each row t2 in T2
 such that P1(t1,t2) AND (f1?C2(t2):TRUE) {
 BOOL f2:=FALSE;
 FOR each row t3 in T3
 such that P2(t2,t3) AND (f1&&f2?C3(t3):TRUE) {
 IF (f1&&f2?TRUE:(C2(t2) AND C3(t3))) {
 t:=t1||t2||t3; OUTPUT t;
 }
 f2=TRUE;
 f1=TRUE;
 }
 IF (!f2) {
 IF (f1?TRUE:C2(t2) && P(t1,t2,NULL)) {
 t:=t1||t2||NULL; OUTPUT t;
 }
 f1=TRUE;
 }

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 727

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 }
 IF (!f1 && P(t1,NULL,NULL)) {
 t:=t1||NULL||NULL; OUTPUT t;
 }
}

In general, pushed-down predicates can be extracted from join conditions such as P1(T1,T2) and
P(T2,T3). In this case, a pushed-down predicate is guarded also by a flag that prevents checking the
predicate for the NULL-complemented row generated by the corresponding outer join operation.

Access by key from one inner table to another in the same nested join is prohibited if it is induced by a
predicate from the WHERE condition. (We could use conditional key access in this case, but this technique
is not employed yet in MySQL 5.0.)

8.2.1.10 Outer Join Simplification

Table expressions in the FROM clause of a query are simplified in many cases.

At the parser stage, queries with right outer joins operations are converted to equivalent queries containing
only left join operations. In the general case, the conversion is performed according to the following rule:

(T1, ...) RIGHT JOIN (T2,...) ON P(T1,...,T2,...) =
(T2, ...) LEFT JOIN (T1,...) ON P(T1,...,T2,...)

All inner join expressions of the form T1 INNER JOIN T2 ON P(T1,T2) are replaced by the list T1,T2,
P(T1,T2) being joined as a conjunct to the WHERE condition (or to the join condition of the embedding
join, if there is any).

When the optimizer evaluates plans for join queries with outer join operation, it takes into consideration
only the plans where, for each such operation, the outer tables are accessed before the inner tables.
The optimizer options are limited because only such plans enables us to execute queries with outer joins
operations by the nested loop schema.

Suppose that we have a query of the form:

SELECT * T1 LEFT JOIN T2 ON P1(T1,T2)
 WHERE P(T1,T2) AND R(T2)

with R(T2) narrowing greatly the number of matching rows from table T2. If we executed the query as it
is, the optimizer would have no other choice besides to access table T1 before table T2 that may lead to a
very inefficient execution plan.

Fortunately, MySQL converts such a query into a query without an outer join operation if the WHERE
condition is null-rejected. A condition is called null-rejected for an outer join operation if it evaluates to
FALSE or to UNKNOWN for any NULL-complemented row built for the operation.

Thus, for this outer join:

T1 LEFT JOIN T2 ON T1.A=T2.A

Conditions such as these are null-rejected:

T2.B IS NOT NULL,
T2.B > 3,
T2.C <= T1.C,
T2.B < 2 OR T2.C > 1

Conditions such as these are not null-rejected:

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 728

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

T2.B IS NULL,
T1.B < 3 OR T2.B IS NOT NULL,
T1.B < 3 OR T2.B > 3

The general rules for checking whether a condition is null-rejected for an outer join operation are simple. A
condition is null-rejected in the following cases:

• If it is of the form A IS NOT NULL, where A is an attribute of any of the inner tables

• If it is a predicate containing a reference to an inner table that evaluates to UNKNOWN when one of its
arguments is NULL

• If it is a conjunction containing a null-rejected condition as a conjunct

• If it is a disjunction of null-rejected conditions

A condition can be null-rejected for one outer join operation in a query and not null-rejected for another. In
the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 LEFT JOIN T3 ON T3.B=T1.B
 WHERE T3.C > 0

the WHERE condition is null-rejected for the second outer join operation but is not null-rejected for the first
one.

If the WHERE condition is null-rejected for an outer join operation in a query, the outer join operation is
replaced by an inner join operation.

For example, the preceding query is replaced with the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 INNER JOIN T3 ON T3.B=T1.B
 WHERE T3.C > 0

For the original query, the optimizer would evaluate plans compatible with only one access order
T1,T2,T3. For the replacing query, it additionally considers the access sequence T3,T1,T2.

A conversion of one outer join operation may trigger a conversion of another. Thus, the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 LEFT JOIN T3 ON T3.B=T2.B
 WHERE T3.C > 0

will be first converted to the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
 INNER JOIN T3 ON T3.B=T2.B
 WHERE T3.C > 0

which is equivalent to the query:

SELECT * FROM (T1 LEFT JOIN T2 ON T2.A=T1.A), T3
 WHERE T3.C > 0 AND T3.B=T2.B

Now the remaining outer join operation can be replaced by an inner join, too, because the condition
T3.B=T2.B is null-rejected and we get a query without outer joins at all:

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 729

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT * FROM (T1 INNER JOIN T2 ON T2.A=T1.A), T3
 WHERE T3.C > 0 AND T3.B=T2.B

Sometimes we succeed in replacing an embedded outer join operation, but cannot convert the embedding
outer join. The following query:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A
 WHERE T3.C > 0

is converted to:

SELECT * FROM T1 LEFT JOIN
 (T2 INNER JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A
 WHERE T3.C > 0,

That can be rewritten only to the form still containing the embedding outer join operation:

SELECT * FROM T1 LEFT JOIN
 (T2,T3)
 ON (T2.A=T1.A AND T3.B=T2.B)
 WHERE T3.C > 0.

When trying to convert an embedded outer join operation in a query, we must take into account the join
condition for the embedding outer join together with the WHERE condition. In the query:

SELECT * FROM T1 LEFT JOIN
 (T2 LEFT JOIN T3 ON T3.B=T2.B)
 ON T2.A=T1.A AND T3.C=T1.C
 WHERE T3.D > 0 OR T1.D > 0

the WHERE condition is not null-rejected for the embedded outer join, but the join condition of the
embedding outer join T2.A=T1.A AND T3.C=T1.C is null-rejected. So the query can be converted to:

SELECT * FROM T1 LEFT JOIN
 (T2, T3)
 ON T2.A=T1.A AND T3.C=T1.C AND T3.B=T2.B
 WHERE T3.D > 0 OR T1.D > 0

The algorithm that converts outer join operations into inner joins was implemented in full measure, as it has
been described here, in MySQL 5.0.1. MySQL 4.1 performs only some simple conversions.

8.2.1.11 ORDER BY Optimization

In some cases, MySQL can use an index to satisfy an ORDER BY clause without doing extra sorting.

The index can also be used even if the ORDER BY does not match the index exactly, as long as all unused
portions of the index and all extra ORDER BY columns are constants in the WHERE clause. The following
queries use the index to resolve the ORDER BY part:

SELECT * FROM t1
 ORDER BY key_part1,key_part2,... ;

SELECT * FROM t1

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 730

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 WHERE key_part1 = constant
 ORDER BY key_part2;

SELECT * FROM t1
 ORDER BY key_part1 DESC, key_part2 DESC;

SELECT * FROM t1
 WHERE key_part1 = 1
 ORDER BY key_part1 DESC, key_part2 DESC;

SELECT * FROM t1
 WHERE key_part1 > constant
 ORDER BY key_part1 ASC;

SELECT * FROM t1
 WHERE key_part1 < constant
 ORDER BY key_part1 DESC;

SELECT * FROM t1
 WHERE key_part1 = constant1 AND key_part2 > constant2
 ORDER BY key_part2;

In some cases, MySQL cannot use indexes to resolve the ORDER BY, although it still uses indexes to find
the rows that match the WHERE clause. These cases include the following:

• The query uses ORDER BY on different indexes:

SELECT * FROM t1 ORDER BY key1, key2;

• The query uses ORDER BY on nonconsecutive parts of an index:

SELECT * FROM t1 WHERE key2=constant ORDER BY key_part2;

• The query mixes ASC and DESC:

SELECT * FROM t1 ORDER BY key_part1 DESC, key_part2 ASC;

• The index used to fetch the rows differs from the one used in the ORDER BY:

SELECT * FROM t1 WHERE key2=constant ORDER BY key1;

• The query uses ORDER BY with an expression that includes terms other than the index column name:

SELECT * FROM t1 ORDER BY ABS(key);
SELECT * FROM t1 ORDER BY -key;

• The query joins many tables, and the columns in the ORDER BY are not all from the first nonconstant
table that is used to retrieve rows. (This is the first table in the EXPLAIN output that does not have a
const join type.)

• The query has different ORDER BY and GROUP BY expressions.

• There is an index on only a prefix of a column named in the ORDER BY clause. In this case, the index
cannot be used to fully resolve the sort order. For example, if only the first 10 bytes of a CHAR(20)
column are indexed, the index cannot distinguish values past the 10th byte and a filesort will be
needed.

• The index does not store rows in order. For example, this is true for a HASH index in a MEMORY table.

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 731

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Availability of an index for sorting may be affected by the use of column aliases. Suppose that the column
t1.a is indexed. In this statement, the name of the column in the select list is a. It refers to t1.a, so for
the reference to a in the ORDER BY, the index can be used:

SELECT a FROM t1 ORDER BY a;

In this statement, the name of the column in the select list is also a, but it is the alias name. It refers to
ABS(a), so for the reference to a in the ORDER BY, the index cannot be used:

SELECT ABS(a) AS a FROM t1 ORDER BY a;

In the following statement, the ORDER BY refers to a name that is not the name of a column in the select
list. But there is a column in t1 named a, so the ORDER BY uses that and the index can be used. (The
resulting sort order may be completely different from the order for ABS(a), of course.)

SELECT ABS(a) AS b FROM t1 ORDER BY a;

By default, MySQL sorts all GROUP BY col1, col2, ... queries as if you specified ORDER BY col1,
col2, ... in the query as well. If you include an explicit ORDER BY clause that contains the same
column list, MySQL optimizes it away without any speed penalty, although the sorting still occurs.

If a query includes GROUP BY but you want to avoid the overhead of sorting the result, you can suppress
sorting by specifying ORDER BY NULL. For example:

INSERT INTO foo
SELECT a, COUNT(*) FROM bar GROUP BY a ORDER BY NULL;

The optimizer may still choose to use sorting to implement grouping operations. ORDER BY NULL
suppresses sorting of the result, not prior sorting done by grouping operations to determine the result.

With EXPLAIN SELECT ... ORDER BY, you can check whether MySQL can use indexes to resolve
the query. It cannot if you see Using filesort in the Extra column. See Section 8.8.1, “Optimizing
Queries with EXPLAIN”. Filesort uses a fixed-length row-storage format similar to that used by the MEMORY
storage engine. Variable-length types such as VARCHAR are stored using a fixed length.

MySQL has two filesort algorithms for sorting and retrieving results. The original method uses only
the ORDER BY columns. The modified method uses not just the ORDER BY columns, but all the columns
referenced by the query.

The optimizer selects which filesort algorithm to use. It normally uses the modified algorithm except
when BLOB or TEXT columns are involved, in which case it uses the original algorithm. For both algorithms,
the sort buffer size is the sort_buffer_size system variable value.

The original filesort algorithm works as follows:

1. Read all rows according to key or by table scanning. Skip rows that do not match the WHERE clause.

2. For each row, store in the sort buffer a tuple consisting of a pair of values (the sort key value and the
row ID).

3. If all pairs fit into the sort buffer, no temporary file is created. Otherwise, when the sort buffer becomes
full, run a qsort (quicksort) on it in memory and write it to a temporary file. Save a pointer to the sorted
block.

4. Repeat the preceding steps until all rows have been read.

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 732

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

5. Do a multi-merge of up to MERGEBUFF (7) regions to one block in another temporary file. Repeat until
all blocks from the first file are in the second file.

6. Repeat the following until there are fewer than MERGEBUFF2 (15) blocks left.

7. On the last multi-merge, only the row ID (the last part of the value pair) is written to a result file.

8. Read the rows in sorted order using the row IDs in the result file. To optimize this, read in a large block
of row IDs, sort them, and use them to read the rows in sorted order into a row buffer. The row buffer
size is the read_rnd_buffer_size system variable value. The code for this step is in the sql/
records.cc source file.

One problem with this approach is that it reads rows twice: One time during WHERE clause evaluation,
and again after sorting the value pairs. And even if the rows were accessed successively the first time (for
example, if a table scan is done), the second time they are accessed randomly. (The sort keys are ordered,
but the row positions are not.)

The modified filesort algorithm incorporates an optimization to avoid reading the rows twice: It records
the sort key value, but instead of the row ID, it records the columns referenced by the query. The modified
filesort algorithm works like this:

1. Read the rows that match the WHERE clause.

2. For each row, store in the sort buffer a tuple consisting of the sort key value and the columns
referenced by the query.

3. When the sort buffer becomes full, sort the tuples by sort key value in memory and write it to a
temporary file.

4. After merge-sorting the temporary file, retrieve the rows in sorted order, but read the columns required
by the query directly from the sorted tuples rather than by accessing the table a second time.

The tuples used by the modified filesort algorithm are longer than the pairs used by the original
algorithm, and fewer of them fit in the sort buffer. As a result, it is possible for the extra I/O to make
the modified approach slower, not faster. To avoid a slowdown, the optimizer uses the modified
algorithm only if the total size of the extra columns in the sort tuple does not exceed the value of the
max_length_for_sort_data system variable. (A symptom of setting the value of this variable too high
is a combination of high disk activity and low CPU activity.)

If a filesort is done, EXPLAIN output includes Using filesort in the Extra column.

Suppose that a table t1 has four VARCHAR columns a, b, c, and d and that the optimizer uses filesort
for this query:

SELECT * FROM t1 ORDER BY a, b;

The query sorts by a and b, but returns all columns, so the columns referenced by the query are a, b, c,
and d. Depending on which filesort algorithm the optimizer chooses, the query executes as follows:

For the original algorithm, sort buffer tuples have these contents:

(fixed size a value, fixed size b value,
row ID into t1)

The optimizer sorts on the fixed size values. After sorting, the optimizer reads the tuples in order and uses
the row ID in each tuple to read rows from t1 to obtain the select list column values.

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 733

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For the modified algorithm, sort buffer tuples have these contents:

(fixed size a value, fixed size b value,
a value, b value, c value, d value)

The optimizer sorts on the fixed size values. After sorting, the optimizer reads the tuples in order and uses
the values for a, b, c, and d to obtain the select list column values without reading t1 again.

For slow queries for which filesort is not used, try lowering max_length_for_sort_data to a value
that is appropriate to trigger a filesort.

To increase ORDER BY speed, check whether you can get MySQL to use indexes rather than an extra
sorting phase. If this is not possible, you can try the following strategies:

• Increase the sort_buffer_size variable value.

• Increase the read_rnd_buffer_size variable value.

• Use less RAM per row by declaring columns only as large as they need to be to hold the values stored in
them. For example, CHAR(16) is better than CHAR(200) if values never exceed 16 characters.

• Change the tmpdir system variable to point to a dedicated file system with large amounts of free space.
The variable value can list several paths that are used in round-robin fashion; you can use this feature to
spread the load across several directories. Paths should be separated by colon characters (“:”) on Unix
and semicolon characters (“;”) on Windows, NetWare, and OS/2. The paths should name directories in
file systems located on different physical disks, not different partitions on the same disk.

8.2.1.12 GROUP BY Optimization

The most general way to satisfy a GROUP BY clause is to scan the whole table and create a new temporary
table where all rows from each group are consecutive, and then use this temporary table to discover
groups and apply aggregate functions (if any). In some cases, MySQL is able to do much better than that
and to avoid creation of temporary tables by using index access.

The most important preconditions for using indexes for GROUP BY are that all GROUP BY columns
reference attributes from the same index, and that the index stores its keys in order (for example, this is
a BTREE index and not a HASH index). Whether use of temporary tables can be replaced by index access
also depends on which parts of an index are used in a query, the conditions specified for these parts, and
the selected aggregate functions.

There are two ways to execute a GROUP BY query through index access, as detailed in the following
sections. In the first method, the grouping operation is applied together with all range predicates (if any).
The second method first performs a range scan, and then groups the resulting tuples.

In MySQL, GROUP BY is used for sorting, so the server may also apply ORDER BY optimizations to
grouping. See Section 8.2.1.11, “ORDER BY Optimization”.

Loose Index Scan

The most efficient way to process GROUP BY is when an index is used to directly retrieve the grouping
columns. With this access method, MySQL uses the property of some index types that the keys are
ordered (for example, BTREE). This property enables use of lookup groups in an index without having
to consider all keys in the index that satisfy all WHERE conditions. This access method considers only a
fraction of the keys in an index, so it is called a loose index scan. When there is no WHERE clause, a loose
index scan reads as many keys as the number of groups, which may be a much smaller number than that
of all keys. If the WHERE clause contains range predicates (see the discussion of the range join type in
Section 8.8.1, “Optimizing Queries with EXPLAIN”), a loose index scan looks up the first key of each group

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 734

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

that satisfies the range conditions, and again reads the least possible number of keys. This is possible
under the following conditions:

• The query is over a single table.

• The GROUP BY names only columns that form a leftmost prefix of the index and no other columns. (If,
instead of GROUP BY, the query has a DISTINCT clause, all distinct attributes refer to columns that form
a leftmost prefix of the index.) For example, if a table t1 has an index on (c1,c2,c3), loose index scan
is applicable if the query has GROUP BY c1, c2,. It is not applicable if the query has GROUP BY c2,
c3 (the columns are not a leftmost prefix) or GROUP BY c1, c2, c4 (c4 is not in the index).

• The only aggregate functions used in the select list (if any) are MIN() and MAX(), and all of them refer
to the same column. The column must be in the index and must follow the columns in the GROUP BY.

• Any other parts of the index than those from the GROUP BY referenced in the query must be constants
(that is, they must be referenced in equalities with constants), except for the argument of MIN() or
MAX() functions.

• For columns in the index, full column values must be indexed, not just a prefix. For example, with c1
VARCHAR(20), INDEX (c1(10)), the index cannot be used for loose index scan.

If loose index scan is applicable to a query, the EXPLAIN output shows Using index for group-by in
the Extra column.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The loose index scan
access method can be used for the following queries:

SELECT c1, c2 FROM t1 GROUP BY c1, c2;
SELECT DISTINCT c1, c2 FROM t1;
SELECT c1, MIN(c2) FROM t1 GROUP BY c1;
SELECT c1, c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT MAX(c3), MIN(c3), c1, c2 FROM t1 WHERE c2 > const GROUP BY c1, c2;
SELECT c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT c1, c2 FROM t1 WHERE c3 = const GROUP BY c1, c2;

The following queries cannot be executed with this quick select method, for the reasons given:

• There are aggregate functions other than MIN() or MAX():

SELECT c1, SUM(c2) FROM t1 GROUP BY c1;

• The columns in the GROUP BY clause do not form a leftmost prefix of the index:

SELECT c1, c2 FROM t1 GROUP BY c2, c3;

• The query refers to a part of a key that comes after the GROUP BY part, and for which there is no
equality with a constant:

SELECT c1, c3 FROM t1 GROUP BY c1, c2;

Were the query to include WHERE c3 = const, loose index scan could be used.

Tight Index Scan

A tight index scan may be either a full index scan or a range index scan, depending on the query
conditions.

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 735

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When the conditions for a loose index scan are not met, it still may be possible to avoid creation of
temporary tables for GROUP BY queries. If there are range conditions in the WHERE clause, this method
reads only the keys that satisfy these conditions. Otherwise, it performs an index scan. Because this
method reads all keys in each range defined by the WHERE clause, or scans the whole index if there are no
range conditions, we term it a tight index scan. With a tight index scan, the grouping operation is performed
only after all keys that satisfy the range conditions have been found.

For this method to work, it is sufficient that there is a constant equality condition for all columns in a query
referring to parts of the key coming before or in between parts of the GROUP BY key. The constants from
the equality conditions fill in any “gaps” in the search keys so that it is possible to form complete prefixes of
the index. These index prefixes then can be used for index lookups. If we require sorting of the GROUP BY
result, and it is possible to form search keys that are prefixes of the index, MySQL also avoids extra sorting
operations because searching with prefixes in an ordered index already retrieves all the keys in order.

Assume that there is an index idx(c1,c2,c3) on table t1(c1,c2,c3,c4). The following queries do
not work with the loose index scan access method described earlier, but still work with the tight index scan
access method.

• There is a gap in the GROUP BY, but it is covered by the condition c2 = 'a':

SELECT c1, c2, c3 FROM t1 WHERE c2 = 'a' GROUP BY c1, c3;

• The GROUP BY does not begin with the first part of the key, but there is a condition that provides a
constant for that part:

SELECT c1, c2, c3 FROM t1 WHERE c1 = 'a' GROUP BY c2, c3;

8.2.1.13 DISTINCT Optimization

DISTINCT combined with ORDER BY needs a temporary table in many cases.

Because DISTINCT may use GROUP BY, learn how MySQL works with columns in ORDER BY or HAVING
clauses that are not part of the selected columns. See Section 12.16.3, “MySQL Handling of GROUP BY”.

In most cases, a DISTINCT clause can be considered as a special case of GROUP BY. For example, the
following two queries are equivalent:

SELECT DISTINCT c1, c2, c3 FROM t1
WHERE c1 > const;

SELECT c1, c2, c3 FROM t1
WHERE c1 > const GROUP BY c1, c2, c3;

Due to this equivalence, the optimizations applicable to GROUP BY queries can be also applied to queries
with a DISTINCT clause. Thus, for more details on the optimization possibilities for DISTINCT queries, see
Section 8.2.1.12, “GROUP BY Optimization”.

When combining LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count
unique rows.

If you do not use columns from all tables named in a query, MySQL stops scanning any unused tables as
soon as it finds the first match. In the following case, assuming that t1 is used before t2 (which you can
check with EXPLAIN), MySQL stops reading from t2 (for any particular row in t1) when it finds the first
row in t2:

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 736

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT DISTINCT t1.a FROM t1, t2 where t1.a=t2.a;

8.2.1.14 Optimizing Subqueries with EXISTS Strategy

Certain optimizations are applicable to comparisons that use the IN operator to test subquery results (or
that use =ANY, which is equivalent). This section discusses these optimizations, particularly with regard to
the challenges that NULL values present. The last part of the discussion includes suggestions on what you
can do to help the optimizer.

Consider the following subquery comparison:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

MySQL evaluates queries “from outside to inside.” That is, it first obtains the value of the outer expression
outer_expr, and then runs the subquery and captures the rows that it produces.

A very useful optimization is to “inform” the subquery that the only rows of interest are those where the
inner expression inner_expr is equal to outer_expr. This is done by pushing down an appropriate
equality into the subquery's WHERE clause. That is, the comparison is converted to this:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)

After the conversion, MySQL can use the pushed-down equality to limit the number of rows that it must
examine when evaluating the subquery.

More generally, a comparison of N values to a subquery that returns N-value rows is subject to the same
conversion. If oe_i and ie_i represent corresponding outer and inner expression values, this subquery
comparison:

(oe_1, ..., oe_N) IN
 (SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)

Becomes:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND oe_1 = ie_1
 AND ...
 AND oe_N = ie_N)

The following discussion assumes a single pair of outer and inner expression values for simplicity.

The conversion just described has its limitations. It is valid only if we ignore possible NULL values. That is,
the “pushdown” strategy works as long as both of these two conditions are true:

• outer_expr and inner_expr cannot be NULL.

• You do not need to distinguish NULL from FALSE subquery results. (If the subquery is a part of an OR or
AND expression in the WHERE clause, MySQL assumes that you do not care.)

When either or both of those conditions do not hold, optimization is more complex.

Suppose that outer_expr is known to be a non-NULL value but the subquery does not produce a row
such that outer_expr = inner_expr. Then outer_expr IN (SELECT ...) evaluates as follows:

• NULL, if the SELECT produces any row where inner_expr is NULL

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 737

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• FALSE, if the SELECT produces only non-NULL values or produces nothing

In this situation, the approach of looking for rows with outer_expr = inner_expr is no longer valid. It
is necessary to look for such rows, but if none are found, also look for rows where inner_expr is NULL.
Roughly speaking, the subquery can be converted to:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND
 (outer_expr=inner_expr OR inner_expr IS NULL))

The need to evaluate the extra IS NULL condition is why MySQL has the ref_or_null access method:

mysql> EXPLAIN
 -> SELECT outer_expr IN (SELECT t2.maybe_null_key
 -> FROM t2, t3 WHERE ...)
 -> FROM t1;
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
...
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 type: ref_or_null
possible_keys: maybe_null_key
 key: maybe_null_key
 key_len: 5
 ref: func
 rows: 2
 Extra: Using where; Using index
...

The unique_subquery and index_subquery subquery-specific access methods also have “or NULL”
variants. However, they are not visible in EXPLAIN output, so you must use EXPLAIN EXTENDED followed
by SHOW WARNINGS (note the checking NULL in the warning message):

mysql> EXPLAIN EXTENDED
 -> SELECT outer_expr IN (SELECT maybe_null_key FROM t2) FROM t1\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
...
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 type: index_subquery
possible_keys: maybe_null_key
 key: maybe_null_key
 key_len: 5
 ref: func
 rows: 2
 Extra: Using index

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: select (`test`.`t1`.`outer_expr`,
 (((`test`.`t1`.`outer_expr`) in t2 on

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 738

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 maybe_null_key checking NULL))) AS `outer_expr IN (SELECT
 maybe_null_key FROM t2)` from `test`.`t1`

The additional OR ... IS NULL condition makes query execution slightly more complicated (and some
optimizations within the subquery become inapplicable), but generally this is tolerable.

The situation is much worse when outer_expr can be NULL. According to the SQL interpretation of NULL
as “unknown value,” NULL IN (SELECT inner_expr ...) should evaluate to:

• NULL, if the SELECT produces any rows

• FALSE, if the SELECT produces no rows

For proper evaluation, it is necessary to be able to check whether the SELECT has produced any rows
at all, so outer_expr = inner_expr cannot be pushed down into the subquery. This is a problem,
because many real world subqueries become very slow unless the equality can be pushed down.

Essentially, there must be different ways to execute the subquery depending on the value of outer_expr.
In MySQL 5.0 before 5.0.36, the optimizer chose speed over distinguishing a NULL from FALSE result, so
for some queries, you might get a FALSE result rather than NULL.

As of MySQL 5.0.36, the optimizer chooses SQL compliance over speed, so it accounts for the possibility
that outer_expr might be NULL.

If outer_expr is NULL, to evaluate the following expression, it is necessary to run the SELECT to
determine whether it produces any rows:

NULL IN (SELECT inner_expr FROM ... WHERE subquery_where)

It is necessary to run the original SELECT here, without any pushed-down equalities of the kind mentioned
earlier.

On the other hand, when outer_expr is not NULL, it is absolutely essential that this comparison:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

be converted to this expression that uses a pushed-down condition:

EXISTS (SELECT 1 FROM ... WHERE subquery_where AND outer_expr=inner_expr)

Without this conversion, subqueries will be slow. To solve the dilemma of whether to push down or not
push down conditions into the subquery, the conditions are wrapped in “trigger” functions. Thus, an
expression of the following form:

outer_expr IN (SELECT inner_expr FROM ... WHERE subquery_where)

is converted into:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND trigcond(outer_expr=inner_expr))

More generally, if the subquery comparison is based on several pairs of outer and inner expressions, the
conversion takes this comparison:

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 739

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

(oe_1, ..., oe_N) IN (SELECT ie_1, ..., ie_N FROM ... WHERE subquery_where)

and converts it to this expression:

EXISTS (SELECT 1 FROM ... WHERE subquery_where
 AND trigcond(oe_1=ie_1)
 AND ...
 AND trigcond(oe_N=ie_N)
)

Each trigcond(X) is a special function that evaluates to the following values:

• X when the “linked” outer expression oe_i is not NULL

• TRUE when the “linked” outer expression oe_i is NULL

Note

Trigger functions are not triggers of the kind that you create with CREATE
TRIGGER.

Equalities that are wrapped into trigcond() functions are not first class predicates for the query
optimizer. Most optimizations cannot deal with predicates that may be turned on and off at query execution
time, so they assume any trigcond(X) to be an unknown function and ignore it. At the moment,
triggered equalities can be used by those optimizations:

• Reference optimizations: trigcond(X=Y [OR Y IS NULL]) can be used to construct ref, eq_ref,
or ref_or_null table accesses.

• Index lookup-based subquery execution engines: trigcond(X=Y) can be used to construct
unique_subquery or index_subquery accesses.

• Table-condition generator: If the subquery is a join of several tables, the triggered condition will be
checked as soon as possible.

When the optimizer uses a triggered condition to create some kind of index lookup-based access (as for
the first two items of the preceding list), it must have a fallback strategy for the case when the condition is
turned off. This fallback strategy is always the same: Do a full table scan. In EXPLAIN output, the fallback
shows up as Full scan on NULL key in the Extra column:

mysql> EXPLAIN SELECT t1.col1,
 -> t1.col1 IN (SELECT t2.key1 FROM t2 WHERE t2.col2=t1.col2) FROM t1\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 ...
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 type: index_subquery
possible_keys: key1
 key: key1
 key_len: 5
 ref: func
 rows: 2
 Extra: Using where; Full scan on NULL key

If you run EXPLAIN EXTENDED followed by SHOW WARNINGS, you can see the triggered condition:

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 740

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: select `test`.`t1`.`col1` AS `col1`,
 <in_optimizer>(`test`.`t1`.`col1`,
 <exists>(<index_lookup>(<cache>(`test`.`t1`.`col1`) in t2
 on key1 checking NULL
 where (`test`.`t2`.`col2` = `test`.`t1`.`col2`) having
 trigcond(<is_not_null_test>(`test`.`t2`.`key1`))))) AS
 `t1.col1 IN (select t2.key1 from t2 where t2.col2=t1.col2)`
 from `test`.`t1`

The use of triggered conditions has some performance implications. A NULL IN (SELECT ...)
expression now may cause a full table scan (which is slow) when it previously did not. This is the price paid
for correct results (the goal of the trigger-condition strategy was to improve compliance and not speed).

For multiple-table subqueries, execution of NULL IN (SELECT ...) will be particularly slow because the
join optimizer does not optimize for the case where the outer expression is NULL. It assumes that subquery
evaluations with NULL on the left side are very rare, even if there are statistics that indicate otherwise.
On the other hand, if the outer expression might be NULL but never actually is, there is no performance
penalty.

To help the query optimizer better execute your queries, use these tips:

• Declare a column as NOT NULL if it really is. (This also helps other aspects of the optimizer by
simplifying condition testing for the column.)

• If you do not need to distinguish a NULL from FALSE subquery result, you can easily avoid the slow
execution path. Replace a comparison that looks like this:

outer_expr IN (SELECT inner_expr FROM ...)

with this expression:

(outer_expr IS NOT NULL) AND (outer_expr IN (SELECT inner_expr FROM ...))

Then NULL IN (SELECT ...) will never be evaluated because MySQL stops evaluating AND parts as
soon as the expression result is clear.

8.2.1.15 LIMIT Query Optimization

In some cases, MySQL handles a query differently when you are using LIMIT row_count and not using
HAVING:

• If you select only a few rows with LIMIT, MySQL uses indexes in some cases when normally it would
prefer to do a full table scan.

• If you combine LIMIT row_count with ORDER BY, MySQL ends the sorting as soon as it has found
the first row_count rows of the sorted result, rather than sorting the entire result. If ordering is done
by using an index, this is very fast. If a filesort must be done, all rows that match the query without the
LIMIT clause must be selected, and most or all of them must be sorted, before it can be ascertained
that the first row_count rows have been found. In either case, after the initial rows have been found,
there is no need to sort any remainder of the result set, and MySQL does not do so.

• If you combine LIMIT row_count with DISTINCT, MySQL stops as soon as it finds row_count
unique rows.

Optimizing SELECT Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 741

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• In some cases, a GROUP BY can be resolved by reading the index in order (or doing a sort on the index)
and then calculating summaries until the index value changes. In this case, LIMIT row_count does
not calculate any unnecessary GROUP BY values.

• As soon as MySQL has sent the required number of rows to the client, it aborts the query unless
you are using SQL_CALC_FOUND_ROWS. The number of rows can then be retrieved with SELECT
FOUND_ROWS(). See Section 12.13, “Information Functions”.

• LIMIT 0 quickly returns an empty set. This can be useful for checking the validity of a query. When
using one of the MySQL APIs, it can also be employed for obtaining the types of the result columns.
This technique does not work with the mysql client program, which merely displays Empty set in such
cases. Instead, use SHOW COLUMNS or DESCRIBE for this purpose.

• When the server uses temporary tables to resolve the query, it uses the LIMIT row_count clause to
calculate how much space is required.

8.2.1.16 Row Constructor Expression Optimization

Row constructors permit simultaneous comparisons of multiple values. For example, these two statements
are semantically equivalent:

SELECT * FROM t1 WHERE (column1,column2) = (1,1);
SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

In addition, the optimizer handles both expressions the same way.

The optimizer is less likely to use available indexes if the row constructor columns do not cover the prefix
of an index. Consider the following table, which has a primary key on (c1, c2, c3):

CREATE TABLE t1 (
 c1 INT, c2 INT, c3 INT, c4 CHAR(100),
 PRIMARY KEY(c1,c2,c3)
);

In this query, the WHERE clause uses all columns in the index. However, the row constructor itself does not
cover an index prefix, with the result that the optimizer uses only c1 (key_len=4, the size of c1):

mysql> EXPLAIN SELECT * FROM t1
 -> WHERE c1=1 AND (c2,c3) > (1,1)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: ref
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 4
 ref: const
 rows: 3
 Extra: Using where

In such cases, rewriting the row constructor expression using an equivalent nonconstructor expression
may result in more complete index use. For the given query, the row constructor and equivalent
nonconstructor expressions are:

(c2,c3) > (1,1)

Optimizing DML Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 742

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

c2 > 1 OR ((c2 = 1) AND (c3 > 1))

Rewriting the query to use the nonconstructor expression results in the optimizer using all three columns in
the index (key_len=12):

mysql> EXPLAIN SELECT * FROM t1
 -> WHERE c1 = 1 AND (c2 > 1 OR ((c2 = 1) AND (c3 > 1)))\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: t1
 partitions: NULL
 type: range
possible_keys: PRIMARY
 key: PRIMARY
 key_len: 12
 ref: NULL
 rows: 3
 Extra: Using where

Thus, for better results, avoid mixing row constructors with AND/OR expressions. Use one or the other.

8.2.1.17 How to Avoid Full Table Scans

The output from EXPLAIN shows ALL in the type column when MySQL uses a table scan to resolve a
query. This usually happens under the following conditions:

• The table is so small that it is faster to perform a table scan than to bother with a key lookup. This is
common for tables with fewer than 10 rows and a short row length.

• There are no usable restrictions in the ON or WHERE clause for indexed columns.

• You are comparing indexed columns with constant values and MySQL has calculated (based on the
index tree) that the constants cover too large a part of the table and that a table scan would be faster.
See Section 8.2.1.2, “How MySQL Optimizes WHERE Clauses”.

• You are using a key with low cardinality (many rows match the key value) through another column. In
this case, MySQL assumes that by using the key it probably will do many key lookups and that a table
scan would be faster.

For small tables, a table scan often is appropriate and the performance impact is negligible. For large
tables, try the following techniques to avoid having the optimizer incorrectly choose a table scan:

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See
Section 13.7.2.1, “ANALYZE TABLE Syntax”.

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive compared to
using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
 WHERE t1.col_name=t2.col_name;

See Section 8.9.2, “Index Hints”.

• Start mysqld with the --max-seeks-for-key=1000 option or use SET max_seeks_for_key=1000
to tell the optimizer to assume that no key scan causes more than 1,000 key seeks. See Section 5.1.4,
“Server System Variables”.

8.2.2 Optimizing DML Statements

Optimizing DML Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 743

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This section explains how to speed up the data manipulation language (DML) statements, INSERT,
UPDATE, and DELETE. Traditional OLTP applications and modern web applications typically do many
small DML operations, where concurrency is vital. Data analysis and reporting applications typically run
DML operations that affect many rows at once, where the main considerations is the I/O to write large
amounts of data and keep indexes up-to-date. For inserting and updating large volumes of data (known
in the industry as ETL, for “extract-transform-load”), sometimes you use other SQL statements or external
commands, that mimic the effects of INSERT, UPDATE, and DELETE statements.

8.2.2.1 Speed of INSERT Statements

To optimize insert speed, combine many small operations into a single large operation. Ideally, you make a
single connection, send the data for many new rows at once, and delay all index updates and consistency
checking until the very end.

The time required for inserting a row is determined by the following factors, where the numbers indicate
approximate proportions:

• Connecting: (3)

• Sending query to server: (2)

• Parsing query: (2)

• Inserting row: (1 × size of row)

• Inserting indexes: (1 × number of indexes)

• Closing: (1)

This does not take into consideration the initial overhead to open tables, which is done once for each
concurrently running query.

The size of the table slows down the insertion of indexes by log N, assuming B-tree indexes.

You can use the following methods to speed up inserts:

• If you are inserting many rows from the same client at the same time, use INSERT statements with
multiple VALUES lists to insert several rows at a time. This is considerably faster (many times faster in
some cases) than using separate single-row INSERT statements. If you are adding data to a nonempty
table, you can tune the bulk_insert_buffer_size variable to make data insertion even faster. See
Section 5.1.4, “Server System Variables”.

• When loading a table from a text file, use LOAD DATA INFILE. This is usually 20 times faster than
using INSERT statements. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

• Take advantage of the fact that columns have default values. Insert values explicitly only when the value
to be inserted differs from the default. This reduces the parsing that MySQL must do and improves the
insert speed.

• See Section 8.5.2, “Bulk Data Loading for MyISAM Tables” for tips specific to MyISAM tables.

8.2.2.2 Speed of UPDATE Statements

An update statement is optimized like a SELECT query with the additional overhead of a write. The speed
of the write depends on the amount of data being updated and the number of indexes that are updated.
Indexes that are not changed do not get updated.

Optimizing Database Privileges

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 744

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Another way to get fast updates is to delay updates and then do many updates in a row later. Performing
multiple updates together is much quicker than doing one at a time if you lock the table.

For a MyISAM table that uses dynamic row format, updating a row to a longer total length may split the
row. If you do this often, it is very important to use OPTIMIZE TABLE occasionally. See Section 13.7.2.5,
“OPTIMIZE TABLE Syntax”.

8.2.2.3 Speed of DELETE Statements

The time required to delete individual rows is exactly proportional to the number of indexes. To delete rows
more quickly, you can increase the size of the key cache by increasing the key_buffer_size system
variable. See Section 8.12.2, “Tuning Server Parameters”.

To delete all rows from a table, TRUNCATE TABLE tbl_name is faster than DELETE FROM tbl_name.
Truncate operations are not transaction-safe; an error occurs when attempting one in the course of an
active transaction or active table lock. See Section 13.1.21, “TRUNCATE TABLE Syntax”.

8.2.3 Optimizing Database Privileges

The more complex your privilege setup, the more overhead applies to all SQL statements. Simplifying the
privileges established by GRANT statements enables MySQL to reduce permission-checking overhead
when clients execute statements. For example, if you do not grant any table-level or column-level
privileges, the server need not ever check the contents of the tables_priv and columns_priv tables.
Similarly, if you place no resource limits on any accounts, the server does not have to perform resource
counting. If you have a very high statement-processing load, consider using a simplified grant structure to
reduce permission-checking overhead.

8.2.4 Other Optimization Tips

This section lists a number of miscellaneous tips for improving query processing speed:

• If your application makes several database requests to perform related updates, combining the
statements into a stored routine can help performance. Similarly, if your application computes a single
result based on several column values or large volumes of data, combining the computation into a UDF
(user-defined function) can help performance. The resulting fast database operations are then available
to be reused by other queries, applications, and even code written in different programming languages.
See Section 18.2, “Using Stored Routines (Procedures and Functions)” and Section 21.2, “Adding New
Functions to MySQL” for more information.

• To fix any compression issues that occur with ARCHIVE tables, use OPTIMIZE TABLE. See
Section 14.8, “The ARCHIVE Storage Engine”.

• If possible, classify reports as “live” or as “statistical”, where data needed for statistical reports is created
only from summary tables that are generated periodically from the live data.

• If you have data that does not conform well to a rows-and-columns table structure, you can pack and
store data into a BLOB column. In this case, you must provide code in your application to pack and
unpack information, but this might save I/O operations to read and write the sets of related values.

• With Web servers, store images and other binary assets as files, with the path name stored in the
database rather than the file itself. Most Web servers are better at caching files than database contents,
so using files is generally faster. (Although you must handle backups and storage issues yourself in this
case.)

• If you need really high speed, look at the low-level MySQL interfaces. For example, by accessing
the MySQL InnoDB or MyISAM storage engine directly, you could get a substantial speed increase
compared to using the SQL interface.

Optimization and Indexes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 745

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Replication can provide a performance benefit for some operations. You can distribute client retrievals
among replication servers to split up the load. To avoid slowing down the master while making backups,
you can make backups using a slave server. See Chapter 16, Replication.

8.3 Optimization and Indexes
The best way to improve the performance of SELECT operations is to create indexes on one or more of
the columns that are tested in the query. The index entries act like pointers to the table rows, allowing
the query to quickly determine which rows match a condition in the WHERE clause, and retrieve the other
column values for those rows. All MySQL data types can be indexed.

Although it can be tempting to create an indexes for every possible column used in a query, unnecessary
indexes waste space and waste time for MySQL to determine which indexes to use. Indexes also add to
the cost of inserts, updates, and deletes because each index must be updated. You must find the right
balance to achieve fast queries using the optimal set of indexes.

8.3.1 How MySQL Uses Indexes

Indexes are used to find rows with specific column values quickly. Without an index, MySQL must begin
with the first row and then read through the entire table to find the relevant rows. The larger the table, the
more this costs. If the table has an index for the columns in question, MySQL can quickly determine the
position to seek to in the middle of the data file without having to look at all the data. This is much faster
than reading every row sequentially.

Most MySQL indexes (PRIMARY KEY, UNIQUE, INDEX, and FULLTEXT) are stored in B-trees. Exceptions
are that indexes on spatial data types use R-trees, and that MEMORY tables also support hash indexes.

Strings are automatically prefix- and end-space compressed. See Section 13.1.8, “CREATE INDEX
Syntax”.

In general, indexes are used as described in the following discussion. Characteristics specific to hash
indexes (as used in MEMORY tables) are described in Section 8.3.8, “Comparison of B-Tree and Hash
Indexes”.

MySQL uses indexes for these operations:

• To find the rows matching a WHERE clause quickly.

• To eliminate rows from consideration. If there is a choice between multiple indexes, MySQL normally
uses the index that finds the smallest number of rows.

• If the table has a multiple-column index, any leftmost prefix of the index can be used by the optimizer
to look up rows. For example, if you have a three-column index on (col1, col2, col3), you have
indexed search capabilities on (col1), (col1, col2), and (col1, col2, col3). For more
information, see Section 8.3.5, “Multiple-Column Indexes”.

• To retrieve rows from other tables when performing joins. MySQL can use indexes on columns more
efficiently if they are declared as the same type and size. In this context, VARCHAR and CHAR are
considered the same if they are declared as the same size. For example, VARCHAR(10) and CHAR(10)
are the same size, but VARCHAR(10) and CHAR(15) are not.

For comparisons between nonbinary string columns, both columns should use the same character set.
For example, comparing a utf8 column with a latin1 column precludes use of an index.

Comparison of dissimilar columns (comparing a string column to a temporal or numeric column, for
example) may prevent use of indexes if values cannot be compared directly without conversion. For a

Using Primary Keys

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 746

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

given value such as 1 in the numeric column, it might compare equal to any number of values in the
string column such as '1', ' 1', '00001', or '01.e1'. This rules out use of any indexes for the string
column.

• To find the MIN() or MAX() value for a specific indexed column key_col. This is optimized by a
preprocessor that checks whether you are using WHERE key_part_N = constant on all key parts
that occur before key_col in the index. In this case, MySQL does a single key lookup for each MIN()
or MAX() expression and replaces it with a constant. If all expressions are replaced with constants, the
query returns at once. For example:

SELECT MIN(key_part2),MAX(key_part2)
 FROM tbl_name WHERE key_part1=10;

• To sort or group a table if the sorting or grouping is done on a leftmost prefix of a usable index (for
example, ORDER BY key_part1, key_part2). If all key parts are followed by DESC, the key is read
in reverse order. See Section 8.2.1.11, “ORDER BY Optimization”, and Section 8.2.1.12, “GROUP BY
Optimization”.

• In some cases, a query can be optimized to retrieve values without consulting the data rows. If a query
uses from a table only columns that are included in some index, the selected values can be be retrieved
from the index tree for greater speed:

SELECT key_part3 FROM tbl_name
 WHERE key_part1=1

Indexes are less important for queries on small tables, or big tables where report queries process most or
all of the rows. When a query needs to access most of the rows, reading sequentially is faster than working
through an index. Sequential reads minimize disk seeks, even if not all the rows are needed for the query.
See Section 8.2.1.17, “How to Avoid Full Table Scans” for details.

8.3.2 Using Primary Keys

The primary key for a table represents the column or set of columns that you use in your most vital queries.
It has an associated index, for fast query performance. Query performance benefits from the NOT NULL
optimization, because it cannot include any NULL values. With the InnoDB storage engine, the table data
is physically organized to do ultra-fast lookups and sorts based on the primary key column or columns.

If your table is big and important, but does not have an obvious column or set of columns to use as a
primary key, you might create a separate column with auto-increment values to use as the primary key.
These unique IDs can serve as pointers to corresponding rows in other tables when you join tables using
foreign keys.

8.3.3 Using Foreign Keys

If a table has many columns, and you query many different combinations of columns, it might be efficient
to split the less-frequently used data into separate tables with a few columns each, and relate them back
to the main table by duplicating the numeric ID column from the main table. That way, each small table can
have a primary key for fast lookups of its data, and you can query just the set of columns that you need
using a join operation. Depending on how the data is distributed, the queries might perform less I/O and
take up less cache memory because the relevant columns are packed together on disk. (To maximize
performance, queries try to read as few data blocks as possible from disk; tables with only a few columns
can fit more rows in each data block.)

8.3.4 Column Indexes

Multiple-Column Indexes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 747

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

All MySQL data types can be indexed. Use of indexes on the relevant columns is the best way to improve
the performance of SELECT operations.

The maximum number of indexes per table and the maximum index length is defined per storage engine.
See Chapter 14, Storage Engines. All storage engines support at least 16 indexes per table and a total
index length of at least 256 bytes. Most storage engines have higher limits.

For additional information about column indexes, see Section 13.1.8, “CREATE INDEX Syntax”.

Prefix Indexes

With col_name(N) syntax in an index specification for a string column, you can create an index that uses
only the first N characters of the column. Indexing only a prefix of column values in this way can make the
index file much smaller. When you index a BLOB or TEXT column, you must specify a prefix length for the
index. For example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 1000 bytes long (767 bytes for InnoDB tables).

Note

Prefix limits are measured in bytes, whereas the prefix length in CREATE TABLE,
ALTER TABLE, and CREATE INDEX statements is interpreted as number of
characters for nonbinary string types (CHAR, VARCHAR, TEXT) and number of
bytes for binary string types (BINARY, VARBINARY, BLOB). Take this into account
when specifying a prefix length for a nonbinary string column that uses a multibyte
character set.

For additional information about index prefixes, see Section 13.1.8, “CREATE INDEX Syntax”.

FULLTEXT Indexes

FULLTEXT indexes are used for full-text searches. Only the MyISAM storage engine supports FULLTEXT
indexes and only for CHAR, VARCHAR, and TEXT columns. Indexing always takes place over the entire
column and column prefix indexing is not supported. For details, see Section 12.9, “Full-Text Search
Functions”.

Spatial Indexes

You can create indexes on spatial data types. Only MyISAM supports R-tree indexes on spatial types. As of
MySQL 5.0.16, other storage engines use B-trees for indexing spatial types (except for ARCHIVE and NDB,
which do not support spatial type indexing).

Indexes in the MEMORY Storage Engine

The MEMORY storage engine uses HASH indexes by default, but also supports BTREE indexes.

8.3.5 Multiple-Column Indexes

MySQL can create composite indexes (that is, indexes on multiple columns). An index may consist of up
to 16 columns. For certain data types, you can index a prefix of the column (see Section 8.3.4, “Column
Indexes”).

MySQL can use multiple-column indexes for queries that test all the columns in the index, or queries
that test just the first column, the first two columns, the first three columns, and so on. If you specify the

Multiple-Column Indexes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 748

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

columns in the right order in the index definition, a single composite index can speed up several kinds of
queries on the same table.

A multiple-column index can be considered a sorted array, the rows of which contain values that are
created by concatenating the values of the indexed columns.

Note

As an alternative to a composite index, you can introduce a column that is “hashed”
based on information from other columns. If this column is short, reasonably unique,
and indexed, it might be faster than a “wide” index on many columns. In MySQL, it
is very easy to use this extra column:

SELECT * FROM tbl_name
 WHERE hash_col=MD5(CONCAT(val1,val2))
 AND col1=val1 AND col2=val2;

Suppose that a table has the following specification:

CREATE TABLE test (
 id INT NOT NULL,
 last_name CHAR(30) NOT NULL,
 first_name CHAR(30) NOT NULL,
 PRIMARY KEY (id),
 INDEX name (last_name,first_name)
);

The name index is an index over the last_name and first_name columns. The index can be used for
lookups in queries that specify values in a known range for combinations of last_name and first_name
values. It can also be used for queries that specify just a last_name value because that column is a
leftmost prefix of the index (as described later in this section). Therefore, the name index is used for
lookups in the following queries:

SELECT * FROM test WHERE last_name='Widenius';

SELECT * FROM test
 WHERE last_name='Widenius' AND first_name='Michael';

SELECT * FROM test
 WHERE last_name='Widenius'
 AND (first_name='Michael' OR first_name='Monty');

SELECT * FROM test
 WHERE last_name='Widenius'
 AND first_name >='M' AND first_name < 'N';

However, the name index is not used for lookups in the following queries:

SELECT * FROM test WHERE first_name='Michael';

SELECT * FROM test
 WHERE last_name='Widenius' OR first_name='Michael';

Suppose that you issue the following SELECT statement:

SELECT * FROM tbl_name
 WHERE col1=val1 AND col2=val2;

Verifying Index Usage

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 749

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If a multiple-column index exists on col1 and col2, the appropriate rows can be fetched directly. If
separate single-column indexes exist on col1 and col2, the optimizer attempts to use the Index Merge
optimization (see Section 8.2.1.4, “Index Merge Optimization”), or attempts to find the most restrictive index
by deciding which index excludes more rows and using that index to fetch the rows.

If the table has a multiple-column index, any leftmost prefix of the index can be used by the optimizer
to look up rows. For example, if you have a three-column index on (col1, col2, col3), you have
indexed search capabilities on (col1), (col1, col2), and (col1, col2, col3).

MySQL cannot use the index to perform lookups if the columns do not form a leftmost prefix of the index.
Suppose that you have the SELECT statements shown here:

SELECT * FROM tbl_name WHERE col1=val1;
SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;

SELECT * FROM tbl_name WHERE col2=val2;
SELECT * FROM tbl_name WHERE col2=val2 AND col3=val3;

If an index exists on (col1, col2, col3), only the first two queries use the index. The third and fourth
queries do involve indexed columns, but (col2) and (col2, col3) are not leftmost prefixes of (col1,
col2, col3).

8.3.6 Verifying Index Usage

Always check whether all your queries really use the indexes that you have created in the tables. Use the
EXPLAIN statement, as described in Section 8.8.1, “Optimizing Queries with EXPLAIN”.

8.3.7 MyISAM Index Statistics Collection

Storage engines collect statistics about tables for use by the optimizer. Table statistics are based on value
groups, where a value group is a set of rows with the same key prefix value. For optimizer purposes, an
important statistic is the average value group size.

MySQL uses the average value group size in the following ways:

• To estimate how may rows must be read for each ref access

• To estimate how many row a partial join will produce; that is, the number of rows that an operation of this
form will produce:

(...) JOIN tbl_name ON tbl_name.key = expr

As the average value group size for an index increases, the index is less useful for those two purposes
because the average number of rows per lookup increases: For the index to be good for optimization
purposes, it is best that each index value target a small number of rows in the table. When a given index
value yields a large number of rows, the index is less useful and MySQL is less likely to use it.

The average value group size is related to table cardinality, which is the number of value groups. The SHOW
INDEX statement displays a cardinality value based on N/S, where N is the number of rows in the table
and S is the average value group size. That ratio yields an approximate number of value groups in the
table.

For a join based on the <=> comparison operator, NULL is not treated differently from any other value:
NULL <=> NULL, just as N <=> N for any other N.

However, for a join based on the = operator, NULL is different from non-NULL values: expr1 = expr2 is
not true when expr1 or expr2 (or both) are NULL. This affects ref accesses for comparisons of the form

MyISAM Index Statistics Collection

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 750

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

tbl_name.key = expr: MySQL will not access the table if the current value of expr is NULL, because
the comparison cannot be true.

For = comparisons, it does not matter how many NULL values are in the table. For optimization purposes,
the relevant value is the average size of the non-NULL value groups. However, MySQL does not currently
enable that average size to be collected or used.

For MyISAM tables, you have some control over collection of table statistics by means of the
myisam_stats_method system variable. This variable has three possible values, which differ as follows:

• When myisam_stats_method is nulls_equal, all NULL values are treated as identical (that is, they
all form a single value group).

If the NULL value group size is much higher than the average non-NULL value group size, this method
skews the average value group size upward. This makes index appear to the optimizer to be less useful
than it really is for joins that look for non-NULL values. Consequently, the nulls_equal method may
cause the optimizer not to use the index for ref accesses when it should.

• When myisam_stats_method is nulls_unequal, NULL values are not considered the same.
Instead, each NULL value forms a separate value group of size 1.

If you have many NULL values, this method skews the average value group size downward. If the
average non-NULL value group size is large, counting NULL values each as a group of size 1 causes the
optimizer to overestimate the value of the index for joins that look for non-NULL values. Consequently,
the nulls_unequal method may cause the optimizer to use this index for ref lookups when other
methods may be better.

• When myisam_stats_method is nulls_ignored, NULL values are ignored.

If you tend to use many joins that use <=> rather than =, NULL values are not special in comparisons and
one NULL is equal to another. In this case, nulls_equal is the appropriate statistics method.

The myisam_stats_method system variable has global and session values. Setting the global value
affects MyISAM statistics collection for all MyISAM tables. Setting the session value affects statistics
collection only for the current client connection. This means that you can force a table's statistics to
be regenerated with a given method without affecting other clients by setting the session value of
myisam_stats_method.

To regenerate MyISAM table statistics, you can use any of the following methods:

• Execute myisamchk --stats_method=method_name --analyze

• Change the table to cause its statistics to go out of date (for example, insert a row and then delete it),
and then set myisam_stats_method and issue an ANALYZE TABLE statement

Some caveats regarding the use of myisam_stats_method:

• You can force table statistics to be collected explicitly, as just described. However, MySQL may also
collect statistics automatically. For example, if during the course of executing statements for a table,
some of those statements modify the table, MySQL may collect statistics. (This may occur for bulk
inserts or deletes, or some ALTER TABLE statements, for example.) If this happens, the statistics are
collected using whatever value myisam_stats_method has at the time. Thus, if you collect statistics
using one method, but myisam_stats_method is set to the other method when a table's statistics are
collected automatically later, the other method will be used.

• There is no way to tell which method was used to generate statistics for a given MyISAM table.

Comparison of B-Tree and Hash Indexes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 751

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• myisam_stats_method applies only to MyISAM tables. Other storage engines have only one method
for collecting table statistics. Usually it is closer to the nulls_equal method.

8.3.8 Comparison of B-Tree and Hash Indexes

Understanding the B-tree and hash data structures can help predict how different queries perform on
different storage engines that use these data structures in their indexes, particularly for the MEMORY
storage engine that lets you choose B-tree or hash indexes.

B-Tree Index Characteristics

A B-tree index can be used for column comparisons in expressions that use the =, >, >=, <, <=, or
BETWEEN operators. The index also can be used for LIKE comparisons if the argument to LIKE is a
constant string that does not start with a wildcard character. For example, the following SELECT statements
use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE 'Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE 'Pat%_ck%';

In the first statement, only rows with 'Patrick' <= key_col < 'Patricl' are considered. In the
second statement, only rows with 'Pat' <= key_col < 'Pau' are considered.

The following SELECT statements do not use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE '%Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE other_col;

In the first statement, the LIKE value begins with a wildcard character. In the second statement, the LIKE
value is not a constant.

If you use ... LIKE '%string%' and string is longer than three characters, MySQL uses the Turbo
Boyer-Moore algorithm to initialize the pattern for the string and then uses this pattern to perform the
search more quickly.

A search using col_name IS NULL employs indexes if col_name is indexed.

Any index that does not span all AND levels in the WHERE clause is not used to optimize the query. In other
words, to be able to use an index, a prefix of the index must be used in every AND group.

The following WHERE clauses use indexes:

... WHERE index_part1=1 AND index_part2=2 AND other_column=3

 /* index = 1 OR index = 2 */
... WHERE index=1 OR A=10 AND index=2

 /* optimized like "index_part1='hello'" */
... WHERE index_part1='hello' AND index_part3=5

 /* Can use index on index1 but not on index2 or index3 */
... WHERE index1=1 AND index2=2 OR index1=3 AND index3=3;

These WHERE clauses do not use indexes:

 /* index_part1 is not used */
... WHERE index_part2=1 AND index_part3=2

 /* Index is not used in both parts of the WHERE clause */

Optimizing Database Structure

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 752

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

... WHERE index=1 OR A=10

 /* No index spans all rows */
... WHERE index_part1=1 OR index_part2=10

Sometimes MySQL does not use an index, even if one is available. One circumstance under which
this occurs is when the optimizer estimates that using the index would require MySQL to access a very
large percentage of the rows in the table. (In this case, a table scan is likely to be much faster because it
requires fewer seeks.) However, if such a query uses LIMIT to retrieve only some of the rows, MySQL
uses an index anyway, because it can much more quickly find the few rows to return in the result.

Hash Index Characteristics

Hash indexes have somewhat different characteristics from those just discussed:

• They are used only for equality comparisons that use the = or <=> operators (but are very fast). They are
not used for comparison operators such as < that find a range of values. Systems that rely on this type
of single-value lookup are known as “key-value stores”; to use MySQL for such applications, use hash
indexes wherever possible.

• The optimizer cannot use a hash index to speed up ORDER BY operations. (This type of index cannot be
used to search for the next entry in order.)

• MySQL cannot determine approximately how many rows there are between two values (this is used by
the range optimizer to decide which index to use). This may affect some queries if you change a MyISAM
or InnoDB table to a hash-indexed MEMORY table.

• Only whole keys can be used to search for a row. (With a B-tree index, any leftmost prefix of the key can
be used to find rows.)

8.4 Optimizing Database Structure
In your role as a database designer, look for the most efficient way to organize your schemas, tables, and
columns. As when tuning application code, you minimize I/O, keep related items together, and plan ahead
so that performance stays high as the data volume increases. Starting with an efficient database design
makes it easier for team members to write high-performing application code, and makes the database
likely to endure as applications evolve and are rewritten.

8.4.1 Optimizing Data Size

Design your tables to minimize their space on the disk. This can result in huge improvements by reducing
the amount of data written to and read from disk. Smaller tables normally require less main memory while
their contents are being actively processed during query execution. Any space reduction for table data also
results in smaller indexes that can be processed faster.

MySQL supports many different storage engines (table types) and row formats. For each table, you can
decide which storage and indexing method to use. Choosing the proper table format for your application
can give you a big performance gain. See Chapter 14, Storage Engines.

You can get better performance for a table and minimize storage space by using the techniques listed
here:

Table Columns

• Use the most efficient (smallest) data types possible. MySQL has many specialized types that save
disk space and memory. For example, use the smaller integer types if possible to get smaller tables.
MEDIUMINT is often a better choice than INT because a MEDIUMINT column uses 25% less space.

Optimizing Data Size

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 753

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Declare columns to be NOT NULL if possible. It makes SQL operations faster, by enabling better use of
indexes and eliminating overhead for testing whether each value is NULL. You also save some storage
space, one bit per column. If you really need NULL values in your tables, use them. Just avoid the default
setting that allows NULL values in every column.

Row Format

• For MyISAM tables, if you do not have any variable-length columns (VARCHAR, TEXT, or BLOB
columns), a fixed-size row format is used. This is faster but unfortunately may waste some space. See
Section 14.1.3, “MyISAM Table Storage Formats”. You can hint that you want to have fixed length rows
even if you have VARCHAR columns with the CREATE TABLE option ROW_FORMAT=FIXED.

• Starting with MySQL 5.0.3, InnoDB tables use a more compact storage format. In earlier versions of
MySQL, InnoDB rows contain some redundant information, such as the number of columns and the
length of each column, even for fixed-size columns. By default, tables are created in the compact format
(ROW_FORMAT=COMPACT). If you wish to downgrade to older versions of MySQL, you can request the old
format with ROW_FORMAT=REDUNDANT.

The presence of the compact row format decreases row storage space by about 20% at the cost of
increasing CPU use for some operations. If your workload is a typical one that is limited by cache hit
rates and disk speed it is likely to be faster. If it is a rare case that is limited by CPU speed, it might be
slower.

The compact InnoDB format also changes how CHAR columns containing UTF-8 data are stored. With
ROW_FORMAT=REDUNDANT, a UTF-8 CHAR(N) occupies 3 × N bytes, given that the maximum length of
a UTF-8 encoded character is three bytes. Many languages can be written primarily using single-byte
UTF-8 characters, so a fixed storage length often wastes space. With ROW_FORMAT=COMPACT format,
InnoDB allocates a variable amount of storage in the range from N to 3 × N bytes for these columns by
stripping trailing spaces if necessary. The minimum storage length is kept as N bytes to facilitate in-place
updates in typical cases.

Indexes

• The primary index of a table should be as short as possible. This makes identification of each row easy
and efficient.

• Create only the indexes that you need to improve query performance. Indexes are good for retrieval, but
slow down insert and update operations. If you access a table mostly by searching on a combination of
columns, create a single composite index on them rather than a separate index for each column. The
first part of the index should be the column most used. If you always use many columns when selecting
from the table, the first column in the index should be the one with the most duplicates, to obtain better
compression of the index.

• If it is very likely that a string column has a unique prefix on the first number of characters, it is better to
index only this prefix, using MySQL's support for creating an index on the leftmost part of the column
(see Section 13.1.8, “CREATE INDEX Syntax”). Shorter indexes are faster, not only because they
require less disk space, but because they also give you more hits in the index cache, and thus fewer disk
seeks. See Section 8.12.2, “Tuning Server Parameters”.

Joins

• In some circumstances, it can be beneficial to split into two a table that is scanned very often. This is
especially true if it is a dynamic-format table and it is possible to use a smaller static format table that
can be used to find the relevant rows when scanning the table.

• Declare columns with identical information in different tables with identical data types, to speed up joins
based on the corresponding columns.

Optimizing MySQL Data Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 754

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Keep column names simple, so that you can use the same name across different tables and simplify
join queries. For example, in a table named customer, use a column name of name instead of
customer_name. To make your names portable to other SQL servers, consider keeping them shorter
than 18 characters.

Normalization

• Normally, try to keep all data nonredundant (observing what is referred to in database theory as third
normal form). Instead of repeating lengthy values such as names and addresses, assign them unique
IDs, repeat these IDs as needed across multiple smaller tables, and join the tables in queries by
referencing the IDs in the join clause.

• If speed is more important than disk space and the maintenance costs of keeping multiple copies of
data, for example in a business intelligence scenario where you analyze all the data from large tables,
you can relax the normalization rules, duplicating information or creating summary tables to gain more
speed.

8.4.2 Optimizing MySQL Data Types

8.4.2.1 Optimizing for Numeric Data

• For unique IDs or other values that can be represented as either strings or numbers, prefer numeric
columns to string columns. Since large numeric values can be stored in fewer bytes than the
corresponding strings, it is faster and takes less memory to transfer and compare them.

• If you are using numeric data, it is faster in many cases to access information from a database (using
a live connection) than to access a text file. Information in the database is likely to be stored in a more
compact format than in the text file, so accessing it involves fewer disk accesses. You also save code in
your application because you can avoid parsing the text file to find line and column boundaries.

8.4.2.2 Optimizing for Character and String Types

For character and string columns, follow these guidelines:

• Use binary collation order for fast comparison and sort operations, when you do not need language-
specific collation features. You can use the BINARY operator to use binary collation within a particular
query.

• When comparing values from different columns, declare those columns with the same character set and
collation wherever possible, to avoid string conversions while running the query.

• For column values less than 8KB in size, use binary VARCHAR instead of BLOB. The GROUP BY and
ORDER BY clauses can generate temporary tables, and these temporary tables can use the MEMORY
storage engine if the original table does not contain any BLOB columns.

• If a table contains string columns such as name and address, but many queries do not retrieve those
columns, consider splitting the string columns into a separate table and using join queries with a foreign
key when necessary. When MySQL retrieves any value from a row, it reads a data block containing all
the columns of that row (and possibly other adjacent rows). Keeping each row small, with only the most
frequently used columns, allows more rows to fit in each data block. Such compact tables reduce disk I/
O and memory usage for common queries.

• When you use a randomly generated value as a primary key in an InnoDB table, prefix it with an
ascending value such as the current date and time if possible. When consecutive primary values are
physically stored near each other, InnoDB can insert and retrieve them faster.

Optimizing MySQL Data Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 755

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• See Section 8.4.2.1, “Optimizing for Numeric Data” for reasons why a numeric column is usually
preferable to an equivalent string column.

8.4.2.3 Optimizing for BLOB Types

• When storing a large blob containing textual data, consider compressing it first. Do not use this
technique when the entire table is compressed by InnoDB or MyISAM.

• For a table with several columns, to reduce memory requirements for queries that do not use the BLOB
column, consider splitting the BLOB column into a separate table and referencing it with a join query
when needed.

• Since the performance requirements to retrieve and display a BLOB value might be very different from
other data types, you could put the BLOB-specific table on a different storage device or even a separate
database instance. For example, to retrieve a BLOB might require a large sequential disk read that is
better suited to a traditional hard drive than to an SSD device.

• See Section 8.4.2.2, “Optimizing for Character and String Types” for reasons why a binary VARCHAR
column is sometimes preferable to an equivalent BLOB column.

• Rather than testing for equality against a very long text string, you can store a hash of the column value
in a separate column, index that column, and test the hashed value in queries. (Use the MD5() or
CRC32() function to produce the hash value.) Since hash functions can produce duplicate results for
different inputs, you still include a clause AND blob_column = long_string_value in the query to
guard against false matches; the performance benefit comes from the smaller, easily scanned index for
the hashed values.

8.4.2.4 Using PROCEDURE ANALYSE

ANALYSE([max_elements[,max_memory]])

ANALYSE() examines the result from a query and returns an analysis of the results that suggests optimal
data types for each column that may help reduce table sizes. To obtain this analysis, append PROCEDURE
ANALYSE to the end of a SELECT statement:

SELECT ... FROM ... WHERE ... PROCEDURE ANALYSE([max_elements,[max_memory]])

For example:

SELECT col1, col2 FROM table1 PROCEDURE ANALYSE(10, 2000);

The results show some statistics for the values returned by the query, and propose an optimal data type
for the columns. This can be helpful for checking your existing tables, or after importing new data. You
may need to try different settings for the arguments so that PROCEDURE ANALYSE() does not suggest the
ENUM data type when it is not appropriate.

The arguments are optional and are used as follows:

• max_elements (default 256) is the maximum number of distinct values that ANALYSE() notices per
column. This is used by ANALYSE() to check whether the optimal data type should be of type ENUM; if
there are more than max_elements distinct values, then ENUM is not a suggested type.

• max_memory (default 8192) is the maximum amount of memory that ANALYSE() should allocate per
column while trying to find all distinct values.

A PROCEDURE clause is not permitted in a UNION statement.

Optimizing for Many Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 756

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

8.4.3 Optimizing for Many Tables

Some techniques for keeping individual queries fast involve splitting data across many tables. When the
number of tables runs into the thousands or even millions, the overhead of dealing with all these tables
becomes a new performance consideration.

8.4.3.1 How MySQL Opens and Closes Tables

When you execute a mysqladmin status command, you should see something like this:

Uptime: 426 Running threads: 1 Questions: 11082
Reloads: 1 Open tables: 12

The Open tables value of 12 can be somewhat puzzling if you have only six tables.

MySQL is multi-threaded, so there may be many clients issuing queries for a given table simultaneously.
To minimize the problem with multiple client sessions having different states on the same table, the table
is opened independently by each concurrent session. This uses additional memory but normally increases
performance. With MyISAM tables, one extra file descriptor is required for the data file for each client that
has the table open. (By contrast, the index file descriptor is shared between all sessions.)

The table_cache and max_connections system variables affect the maximum number of files the
server keeps open. If you increase one or both of these values, you may run up against a limit imposed by
your operating system on the per-process number of open file descriptors. Many operating systems permit
you to increase the open-files limit, although the method varies widely from system to system. Consult your
operating system documentation to determine whether it is possible to increase the limit and how to do so.

table_cache is related to max_connections. For example, for 200 concurrent running connections,
you should have a table cache size of at least 200 * N, where N is the maximum number of tables per join
in any of the queries which you execute. You must also reserve some extra file descriptors for temporary
tables and files.

Make sure that your operating system can handle the number of open file descriptors implied by the
table_cache setting. If table_cache is set too high, MySQL may run out of file descriptors and refuse
connections, fail to perform queries, and be very unreliable. You also have to take into account that the
MyISAM storage engine needs two file descriptors for each unique open table. You can increase the
number of file descriptors available to MySQL using the --open-files-limit startup option to mysqld.
See Section B.5.2.18, “File Not Found and Similar Errors”.

The cache of open tables is kept at a level of table_cache entries. The default value is 64; this can be
changed with the --table_cache option to mysqld. Note that MySQL may temporarily open more tables
than this to execute queries.

MySQL closes an unused table and removes it from the table cache under the following circumstances:

• When the cache is full and a thread tries to open a table that is not in the cache.

• When the cache contains more than table_cache entries and a table in the cache is no longer being
used by any threads.

• When a table flushing operation occurs. This happens when someone issues a FLUSH TABLES
statement or executes a mysqladmin flush-tables or mysqladmin refresh command.

When the table cache fills up, the server uses the following procedure to locate a cache entry to use:

• Tables that are not currently in use are released, beginning with the table least recently used.

Internal Temporary Table Use in MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 757

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• If a new table needs to be opened, but the cache is full and no tables can be released, the cache is
temporarily extended as necessary. When the cache is in a temporarily extended state and a table goes
from a used to unused state, the table is closed and released from the cache.

A MyISAM table is opened for each concurrent access. This means the table needs to be opened twice if
two threads access the same table or if a thread accesses the table twice in the same query (for example,
by joining the table to itself). Each concurrent open requires an entry in the table cache. The first open of
any MyISAM table takes two file descriptors: one for the data file and one for the index file. Each additional
use of the table takes only one file descriptor for the data file. The index file descriptor is shared among all
threads.

If you are opening a table with the HANDLER tbl_name OPEN statement, a dedicated table object is
allocated for the thread. This table object is not shared by other threads and is not closed until the thread
calls HANDLER tbl_name CLOSE or the thread terminates. When this happens, the table is put back in
the table cache (if the cache is not full). See Section 13.2.4, “HANDLER Syntax”.

You can determine whether your table cache is too small by checking the mysqld status variable
Opened_tables, which indicates the number of table-opening operations since the server started:

mysql> SHOW GLOBAL STATUS LIKE 'Opened_tables';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Opened_tables | 2741 |
+---------------+-------+

If the value is very large or increases rapidly, even when you have not issued many FLUSH TABLES
statements, you should increase the table cache size. See Section 5.1.4, “Server System Variables”, and
Section 5.1.6, “Server Status Variables”.

8.4.3.2 Disadvantages of Creating Many Tables in the Same Database

If you have many MyISAM tables in the same database directory, open, close, and create operations are
slow. If you execute SELECT statements on many different tables, there is a little overhead when the table
cache is full, because for every table that has to be opened, another must be closed. You can reduce this
overhead by increasing the number of entries permitted in the table cache.

8.4.4 Internal Temporary Table Use in MySQL

In some cases, the server creates internal temporary tables while processing statements. Users have no
direct control over when this occurs.

The server creates temporary tables under conditions such as these:

• Evaluation of UNION statements.

• Evaluation of some views, such those that use the TEMPTABLE algorithm, UNION, or aggregation.

• Evaluation of statements that contain an ORDER BY clause and a different GROUP BY clause, or for
which the ORDER BY or GROUP BY contains columns from tables other than the first table in the join
queue.

• Evaluation of DISTINCT combined with ORDER BY may require a temporary table.

• For queries that use the SQL_SMALL_RESULT option, MySQL uses an in-memory temporary table,
unless the query also contains elements (described later) that require on-disk storage.

• Evaluation of multiple-table UPDATE statements.

Optimizing for MyISAM Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 758

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Evaluation of GROUP_CONCAT() or COUNT(DISTINCT) expressions.

To determine whether a statement requires a temporary table, use EXPLAIN and check the Extra column
to see whether it says Using temporary (see Section 8.8.1, “Optimizing Queries with EXPLAIN”).

Storage Engines Used for Temporary Tables

An internal temporary table can be held in memory and processed by the MEMORY storage engine, or
stored on disk and processed by the MyISAM storage engine.

If an internal temporary table is created as an in-memory table but becomes too large, MySQL
automatically converts it to an on-disk table. The maximum size for in-memory temporary tables is the
minimum of the tmp_table_size and max_heap_table_size values. This differs from MEMORY tables
explicitly created with CREATE TABLE: For such tables, only the max_heap_table_size system variable
determines how large the table is permitted to grow and there is no conversion to on-disk format.

Some conditions prevent the use of an in-memory temporary table, in which case the server uses an on-
disk table instead:

• Presence of a BLOB or TEXT column in the table

• Presence of any string column in a GROUP BY or DISTINCT clause larger than 512 bytes

• Presence of any string column with a maximum length larger than 512 (bytes for binary strings,
characters for nonbinary strings) in the SELECT list, if UNION or UNION ALL is used

• The SHOW COLUMNS and DESCRIBE statements use BLOB as the type for some columns, thus the
temporary table used for the results is an on-disk table.

When the server creates an internal temporary table (either in memory or on disk), it increments the
Created_tmp_tables status variable. If the server creates the table on disk (either initially or by
converting an in-memory table) it increments the Created_tmp_disk_tables status variable.

Temporary Table Storage Format

Internal temporary tables are stored using fixed-length row format, whether managed by the MEMORY or
MyISAM storage engine.

8.5 Optimizing for MyISAM Tables

The MyISAM storage engine performs best with read-mostly data or with low-concurrency operations,
because table locks limit the ability to perform simultaneous updates.

8.5.1 Optimizing MyISAM Queries

Some general tips for speeding up queries on MyISAM tables:

• To help MySQL better optimize queries, use ANALYZE TABLE or run myisamchk --analyze on
a table after it has been loaded with data. This updates a value for each index part that indicates the
average number of rows that have the same value. (For unique indexes, this is always 1.) MySQL uses
this to decide which index to choose when you join two tables based on a nonconstant expression. You
can check the result from the table analysis by using SHOW INDEX FROM tbl_name and examining the
Cardinality value. myisamchk --description --verbose shows index distribution information.

• To sort an index and data according to an index, use myisamchk --sort-index --sort-
records=1 (assuming that you want to sort on index 1). This is a good way to make queries faster if

Optimizing MyISAM Queries

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 759

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

you have a unique index from which you want to read all rows in order according to the index. The first
time you sort a large table this way, it may take a long time.

• Try to avoid complex SELECT queries on MyISAM tables that are updated frequently, to avoid problems
with table locking that occur due to contention between readers and writers.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file, you can
INSERT new rows into it at the same time that other threads are reading from the table. If it is important
to be able to do this, consider using the table in ways that avoid deleting rows. Another possibility is to
run OPTIMIZE TABLE to defragment the table after you have deleted a lot of rows from it. This behavior
is altered by setting the concurrent_insert variable. You can force new rows to be appended
(and therefore permit concurrent inserts), even in tables that have deleted rows. See Section 8.11.3,
“Concurrent Inserts”.

• For MyISAM tables that change frequently, try to avoid all variable-length columns (VARCHAR, BLOB,
and TEXT). The table uses dynamic row format if it includes even a single variable-length column. See
Chapter 14, Storage Engines.

• It is normally not useful to split a table into different tables just because the rows become large. In
accessing a row, the biggest performance hit is the disk seek needed to find the first byte of the row.
After finding the data, most modern disks can read the entire row fast enough for most applications. The
only cases where splitting up a table makes an appreciable difference is if it is a MyISAM table using
dynamic row format that you can change to a fixed row size, or if you very often need to scan the table
but do not need most of the columns. See Chapter 14, Storage Engines.

• Use ALTER TABLE ... ORDER BY expr1, expr2, ... if you usually retrieve rows in expr1,
expr2, ... order. By using this option after extensive changes to the table, you may be able to get
higher performance.

• If you often need to calculate results such as counts based on information from a lot of rows, it may be
preferable to introduce a new table and update the counter in real time. An update of the following form
is very fast:

UPDATE tbl_name SET count_col=count_col+1 WHERE key_col=constant;

This is very important when you use a MySQL storage engine such as MyISAM that has only table-level
locking (multiple readers with single writers). This also gives better performance with most database
systems, because the row locking manager in this case has less to do.

• Use INSERT DELAYED when you do not need to know when your data is written. This reduces the
overall insertion impact because many rows can be written with a single disk write.

• Use INSERT LOW_PRIORITY when you want to give SELECT statements higher priority than your
inserts.

Use SELECT HIGH_PRIORITY to get retrievals that jump the queue. That is, the SELECT is executed
even if there is another client waiting to do a write.

LOW_PRIORITY and HIGH_PRIORITY have an effect only for storage engines that use only table-level
locking (such as MyISAM, MEMORY, and MERGE).

• Use OPTIMIZE TABLE periodically to avoid fragmentation with dynamic-format MyISAM tables. See
Section 14.1.3, “MyISAM Table Storage Formats”.

• Declaring a MyISAM table with the DELAY_KEY_WRITE=1 table option makes index updates faster
because they are not flushed to disk until the table is closed. The downside is that if something kills the
server while such a table is open, you must ensure that the table is okay by running the server with the

Bulk Data Loading for MyISAM Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 760

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--myisam-recover option, or by running myisamchk before restarting the server. (However, even in
this case, you should not lose anything by using DELAY_KEY_WRITE, because the key information can
always be generated from the data rows.)

• Strings are automatically prefix- and end-space compressed in MyISAM indexes. See Section 13.1.8,
“CREATE INDEX Syntax”.

• You can increase performance by caching queries or answers in your application and then executing
many inserts or updates together. Locking the table during this operation ensures that the index cache
is only flushed once after all updates. You can also take advantage of MySQL's query cache to achieve
similar results; see Section 8.10.3, “The MySQL Query Cache”.

8.5.2 Bulk Data Loading for MyISAM Tables

These performance tips supplement the general guidelines for fast inserts in Section 8.2.2.1, “Speed of
INSERT Statements”.

• To improve performance when multiple clients insert a lot of rows, use the INSERT DELAYED statement.
See Section 13.2.5.2, “INSERT DELAYED Syntax”. This technique works for MyISAM and some other
storage engines, but not InnoDB.

• For a MyISAM table, you can use concurrent inserts to add rows at the same time that SELECT
statements are running, if there are no deleted rows in middle of the data file. See Section 8.11.3,
“Concurrent Inserts”.

• With some extra work, it is possible to make LOAD DATA INFILE run even faster for a MyISAM table
when the table has many indexes. Use the following procedure:

1. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

2. Use myisamchk --keys-used=0 -rq /path/to/db/tbl_name to remove all use of indexes
for the table.

3. Insert data into the table with LOAD DATA INFILE. This does not update any indexes and therefore
is very fast.

4. If you intend only to read from the table in the future, use myisampack to compress it. See
Section 14.1.3.3, “Compressed Table Characteristics”.

5. Re-create the indexes with myisamchk -rq /path/to/db/tbl_name. This creates the index
tree in memory before writing it to disk, which is much faster than updating the index during LOAD
DATA INFILE because it avoids lots of disk seeks. The resulting index tree is also perfectly
balanced.

6. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

LOAD DATA INFILE performs the preceding optimization automatically if the MyISAM table into which
you insert data is empty. The main difference between automatic optimization and using the procedure
explicitly is that you can let myisamchk allocate much more temporary memory for the index creation
than you might want the server to allocate for index re-creation when it executes the LOAD DATA
INFILE statement.

You can also disable or enable the nonunique indexes for a MyISAM table by using the following
statements rather than myisamchk. If you use these statements, you can skip the FLUSH TABLE
operations:

Speed of REPAIR TABLE Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 761

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ALTER TABLE tbl_name DISABLE KEYS;
ALTER TABLE tbl_name ENABLE KEYS;

• To speed up INSERT operations that are performed with multiple statements for nontransactional tables,
lock your tables:

LOCK TABLES a WRITE;
INSERT INTO a VALUES (1,23),(2,34),(4,33);
INSERT INTO a VALUES (8,26),(6,29);
...
UNLOCK TABLES;

This benefits performance because the index buffer is flushed to disk only once, after all INSERT
statements have completed. Normally, there would be as many index buffer flushes as there are INSERT
statements. Explicit locking statements are not needed if you can insert all rows with a single INSERT.

Locking also lowers the total time for multiple-connection tests, although the maximum wait time for
individual connections might go up because they wait for locks. Suppose that five clients attempt to
perform inserts simultaneously as follows:

• Connection 1 does 1000 inserts

• Connections 2, 3, and 4 do 1 insert

• Connection 5 does 1000 inserts

If you do not use locking, connections 2, 3, and 4 finish before 1 and 5. If you use locking, connections 2,
3, and 4 probably do not finish before 1 or 5, but the total time should be about 40% faster.

INSERT, UPDATE, and DELETE operations are very fast in MySQL, but you can obtain better overall
performance by adding locks around everything that does more than about five successive inserts or
updates. If you do very many successive inserts, you could do a LOCK TABLES followed by an UNLOCK
TABLES once in a while (each 1,000 rows or so) to permit other threads to access table. This would still
result in a nice performance gain.

INSERT is still much slower for loading data than LOAD DATA INFILE, even when using the strategies
just outlined.

• To increase performance for MyISAM tables, for both LOAD DATA INFILE and INSERT, enlarge the
key cache by increasing the key_buffer_size system variable. See Section 8.12.2, “Tuning Server
Parameters”.

8.5.3 Speed of REPAIR TABLE Statements

REPAIR TABLE for MyISAM tables is similar to using myisamchk for repair operations, and some of the
same performance optimizations apply:

• myisamchk has variables that control memory allocation. You may be able to its improve performance
by setting these variables, as described in Section 4.6.3.6, “myisamchk Memory Usage”.

• For REPAIR TABLE, the same principle applies, but because the repair is done by the server, you set
server system variables instead of myisamchk variables. Also, In addition to setting memory-allocation
variables, increasing the myisam_max_sort_file_size system variable increases the likelihood that
the repair will use the faster filesort method and avoid the slower repair by key cache method. Set the
variable to the maximum file size for your system, after checking to be sure that there is enough free
space to hold a copy of the table files. The free space must be available in the file system containing the
original table files.

Speed of REPAIR TABLE Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 762

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Suppose that a myisamchk table-repair operation is done using the following options to set its memory-
allocation variables:

--key_buffer_size=128M --sort_buffer_size=256M
--read_buffer_size=64M --write_buffer_size=64M

Some of those myisamchk variables correspond to server system variables:

myisamchk Variable System Variable

key_buffer_size key_buffer_size

sort_buffer_size myisam_sort_buffer_size

read_buffer_size read_buffer_size

write_buffer_size none

Each of the server system variables can be set at runtime, and some of them
(myisam_sort_buffer_size, read_buffer_size) have a session value in addition to a global
value. Setting a session value limits the effect of the change to your current session and does not affect
other users. Changing a global-only variable (key_buffer_size, myisam_max_sort_file_size)
affects other users as well. For key_buffer_size, you must take into account that the buffer is shared
with those users. For example, if you set the myisamchk key_buffer_size variable to 128MB, you
could set the corresponding key_buffer_size system variable larger than that (if it is not already set
larger), to permit key buffer use by activity in other sessions. However, changing the global key buffer size
invalidates the buffer, causing increased disk I/O and slowdown for other sessions. An alternative that
avoids this problem is to use a separate key cache, assign to it the indexes from the table to be repaired,
and deallocate it when the repair is complete. See Section 8.10.1.2, “Multiple Key Caches”.

Based on the preceding remarks, a REPAIR TABLE operation can be done as follows to use settings
similar to the myisamchk command. Here a separate 128MB key buffer is allocated and the file system is
assumed to permit a file size of at least 100GB.

SET SESSION myisam_sort_buffer_size = 256*1024*1024;
SET SESSION read_buffer_size = 64*1024*1024;
SET GLOBAL myisam_max_sort_file_size = 100*1024*1024*1024;
SET GLOBAL repair_cache.key_buffer_size = 128*1024*1024;
CACHE INDEX tbl_name IN repair_cache;
LOAD INDEX INTO CACHE tbl_name;
REPAIR TABLE tbl_name ;
SET GLOBAL repair_cache.key_buffer_size = 0;

If you intend to change a global variable but want to do so only for the duration of a REPAIR TABLE
operation to minimally affect other users, save its value in a user variable and restore it afterward. For
example:

SET @old_myisam_sort_buffer_size = @@global.myisam_max_sort_file_size;
SET GLOBAL myisam_max_sort_file_size = 100*1024*1024*1024;
REPAIR TABLE tbl_name ;
SET GLOBAL myisam_max_sort_file_size = @old_myisam_max_sort_file_size;

The system variables that affect REPAIR TABLE can be set globally at server startup if you want the
values to be in effect by default. For example, add these lines to the server my.cnf file:

[mysqld]
myisam_sort_buffer_size=256M
key_buffer_size=1G
myisam_max_sort_file_size=100G

Optimizing for InnoDB Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 763

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

These settings do not include read_buffer_size. Setting read_buffer_size globally to a large value
does so for all sessions and can cause performance to suffer due to excessive memory allocation for a
server with many simultaneous sessions.

8.6 Optimizing for InnoDB Tables
This section explains how to optimize database operations for InnoDB tables.

8.6.1 Optimizing Storage Layout for InnoDB Tables

• Once your data reaches a stable size, or a growing table has increased by tens or some hundreds
of megabytes, consider using the OPTIMIZE TABLE statement to reorganize the table and compact
any wasted space. The reorganized tables require less disk I/O to perform full table scans. This is a
straightforward technique that can improve performance when other techniques such as improving index
usage or tuning application code are not practical.

OPTIMIZE TABLE copies the data part of the table and rebuilds the indexes. The benefits come from
improved packing of data within indexes, and reduced fragmentation within the tablespaces and on disk.
The benefits vary depending on the data in each table. You may find that there are significant gains
for some and not for others, or that the gains decrease over time until you next optimize the table. This
operation can be slow if the table is large or if the indexes being rebuilt do not fit into the buffer pool. The
first run after adding a lot of data to a table is often much slower than later runs.

• In InnoDB, having a long PRIMARY KEY (either a single column with a lengthy value, or several
columns that form a long composite value) wastes a lot of disk space. The primary key value for a row is
duplicated in all the secondary index records that point to the same row. (See Section 14.2.10, “InnoDB
Table and Index Structures”.) Create an AUTO_INCREMENT column as the primary key if your primary
key is long, or index a prefix of a long VARCHAR column instead of the entire column.

• Use the VARCHAR data type instead of CHAR to store variable-length strings or for columns with many
NULL values. A CHAR(N) column always takes N characters to store data, even if the string is shorter or
its value is NULL. Smaller tables fit better in the buffer pool and reduce disk I/O.

When using COMPACT row format (the default InnoDB format) and variable-length character sets, such
as utf8 or sjis, CHAR(N) columns occupy a variable amount of space, but still at least N bytes.

• For tables that are big, or contain lots of repetitive text or numeric data, consider using COMPRESSED
row format. Less disk I/O is required to bring data into the buffer pool, or to perform full table scans.
Before making a permanent decision, measure the amount of compression you can achieve by using
COMPRESSED versus COMPACT row format.

8.6.2 Optimizing InnoDB Transaction Management

To optimize InnoDB transaction processing, find the ideal balance between the performance overhead
of transactional features and the workload of your server. For example, an application might encounter
performance issues if it commits thousands of times per second, and different performance issues if it
commits only every 2-3 hours.

• The default MySQL setting AUTOCOMMIT=1 can impose performance limitations on a busy database
server. Where practical, wrap several related DML operations into a single transaction, by issuing SET
AUTOCOMMIT=0 or a START TRANSACTION statement, followed by a COMMIT statement after making all
the changes.

InnoDB must flush the log to disk at each transaction commit if that transaction made modifications to
the database. When each change is followed by a commit (as with the default autocommit setting), the I/
O throughput of the storage device puts a cap on the number of potential operations per second.

Optimizing InnoDB Redo Logging

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 764

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Avoid performing rollbacks after inserting, updating, or deleting huge numbers of rows. If a big
transaction is slowing down server performance, rolling it back can make the problem worse, potentially
taking several times as long to perform as the original DML operations. Killing the database process
does not help, because the rollback starts again on server startup.

To minimize the chance of this issue occurring:

• Increase the size of the buffer pool so that all the DML changes can be cached rather than
immediately written to disk.

• Consider issuing COMMIT statements periodically during the big DML operation, possibly breaking a
single delete or update into multiple statements that operate on smaller numbers of rows.

To get rid of a runaway rollback once it occurs, increase the buffer pool so that the rollback becomes
CPU-bound and runs fast, or kill the server and restart with innodb_force_recovery=3, as explained
in Section 14.2.6.1, “The InnoDB Recovery Process”.

• If you can afford the loss of some of the latest committed transactions if a crash occurs, you can set the
innodb_flush_log_at_trx_commit parameter to 0. InnoDB tries to flush the log once per second
anyway, although the flush is not guaranteed. Also, set the value of innodb_support_xa to 0, which
will reduce the number of disk flushes due to synchronizing on disk data and the binary log.

• When rows are modified or deleted, the rows and associated undo logs are not physically removed
immediately, or even immediately after the transaction commits. The old data is preserved until
transactions that started earlier or concurrently are finished, so that those transactions can access the
previous state of modified or deleted rows. Thus, a long-running transaction can prevent InnoDB from
purging data that was changed by a different transaction.

• When rows are modified or deleted within a long-running transaction, other transactions using the READ
COMMITTED and REPEATABLE READ isolation levels have to do more work to reconstruct the older data
if they read those same rows.

• When a long-running transaction modifies a table, queries against that table from other transactions do
not make use of the covering index technique. Queries that normally could retrieve all the result columns
from a secondary index, instead look up the appropriate values from the table data.

8.6.3 Optimizing InnoDB Redo Logging

Consider the following guidelines for optimizing redo logging:

• Make your redo log files big, even as big as the buffer pool. When InnoDB has written the redo log files
full, it must write the modified contents of the buffer pool to disk in a checkpoint. Small redo log files
cause many unnecessary disk writes. Although historically big redo log files caused lengthy recovery
times, recovery is now much faster and you can confidently use large redo log files.

The size and number of redo log files are configured using the innodb_log_file_size and
innodb_log_files_in_group configuration options. For information about modifying an existing
redo log file configuration, see Section 14.2.4, “Changing the Number or Size of InnoDB Redo Log
Files”.

• Consider increasing the size of the log_buffer. A large log buffer enables large transactions to run
without a need to write the log to disk before the transactions commit. Thus, if you have transactions
that update, insert, or delete many rows, making the log buffer larger saves disk I/O. Log buffer size is
configured using the innodb_log_buffer_size configuration option.

8.6.4 Bulk Data Loading for InnoDB Tables

Optimizing InnoDB Queries

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 765

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

These performance tips supplement the general guidelines for fast inserts in Section 8.2.2.1, “Speed of
INSERT Statements”.

• When importing data into InnoDB, turn off autocommit mode, because it performs a log flush to disk for
every insert. To disable autocommit during your import operation, surround it with SET autocommit
and COMMIT statements:

SET autocommit=0;
... SQL import statements ...
COMMIT;

The mysqldump option --opt creates dump files that are fast to import into an InnoDB table, even
without wrapping them with the SET autocommit and COMMIT statements.

• If you have UNIQUE constraints on secondary keys, you can speed up table imports by temporarily
turning off the uniqueness checks during the import session:

SET unique_checks=0;
... SQL import statements ...
SET unique_checks=1;

For big tables, this saves a lot of disk I/O because InnoDB can use its change buffer to write secondary
index records in a batch. Be certain that the data contains no duplicate keys.

• If you have FOREIGN KEY constraints in your tables, you can speed up table imports by turning off the
foreign key checks for the duration of the import session:

SET foreign_key_checks=0;
... SQL import statements ...
SET foreign_key_checks=1;

For big tables, this can save a lot of disk I/O.

• Use the multiple-row INSERT syntax to reduce communication overhead between the client and the
server if you need to insert many rows:

INSERT INTO yourtable VALUES (1,2), (5,5), ...;

This tip is valid for inserts into any table, not just InnoDB tables.

8.6.5 Optimizing InnoDB Queries

To tune queries for InnoDB tables, create an appropriate set of indexes on each table. See Section 8.3.1,
“How MySQL Uses Indexes” for details. Follow these guidelines for InnoDB indexes:

• Because each InnoDB table has a primary key (whether you request one or not), specify a set of
primary key columns for each table, columns that are used in the most important and time-critical
queries.

• Do not specify too many or too long columns in the primary key, because these column values are
duplicated in each secondary index. When an index contains unnecessary data, the I/O to read this data
and memory to cache it reduce the performance and scalability of the server.

• Do not create a separate secondary index for each column, because each query can only make use of
one index. Indexes on rarely tested columns or columns with only a few different values might not be
helpful for any queries. If you have many queries for the same table, testing different combinations of

Optimizing InnoDB DDL Operations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 766

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

columns, try to create a small number of concatenated indexes rather than a large number of single-
column indexes. If an index contains all the columns needed for the result set (known as a covering
index), the query might be able to avoid reading the table data at all.

• If an indexed column cannot contain any NULL values, declare it as NOT NULL when you create the
table. The optimizer can better determine which index is most effective to use for a query, when it knows
whether each column contains NULL values.

• If you often have recurring queries for tables that are not updated frequently, enable the query cache:

[mysqld]
query_cache_type = 1
query_cache_size = 10M

8.6.6 Optimizing InnoDB DDL Operations

• “Fast index creation” makes it faster in some cases to drop an index before loading data into a table,
then re-create the index after loading the data.

• Use TRUNCATE TABLE to empty a table, not DELETE FROM tbl_name. Foreign key constraints can
make a TRUNCATE statement work like a regular DELETE statement, in which case a sequence of
commands like DROP TABLE and CREATE TABLE might be fastest.

• Because the primary key is integral to the storage layout of each InnoDB table, and changing the
definition of the primary key involves reorganizing the whole table, always set up the primary key as part
of the CREATE TABLE statement, and plan ahead so that you do not need to ALTER or DROP the primary
key afterward.

8.6.7 Optimizing InnoDB Disk I/O

If you follow the best practices for database design and the tuning techniques for SQL operations, but
your database is still slowed by heavy disk I/O activity, explore these low-level techniques related to disk
I/O. If the Unix top tool or the Windows Task Manager shows that the CPU usage percentage with your
workload is less than 70%, your workload is probably disk-bound.

• When table data is cached in the InnoDB buffer pool, it can be accessed repeatedly by queries without
requiring any disk I/O. Specify the size of the buffer pool with the innodb_buffer_pool_size option.
This memory area is important enough that busy databases often specify a size approximately 80% of
the amount of physical memory. For more information, see Section 8.10.2, “The InnoDB Buffer Pool”.

• In some versions of GNU/Linux and Unix, flushing files to disk with the Unix fsync() call (which
InnoDB uses by default) and similar methods is surprisingly slow. If database write performance is an
issue, conduct benchmarks with the innodb_flush_method parameter set to O_DSYNC.

• When using the InnoDB storage engine on Solaris 10 for x86_64 architecture (AMD Opteron), use
direct I/O for InnoDB-related files, to avoid degradation of InnoDB performance. To use direct I/O for an
entire UFS file system used for storing InnoDB-related files, mount it with the forcedirectio option;
see mount_ufs(1M). (The default on Solaris 10/x86_64 is not to use this option.) Alternatively, as
of MySQL 5.0.42, to apply direct I/O only to InnoDB file operations rather than the whole file system,
set innodb_flush_method = O_DIRECT. With this setting, InnoDB calls directio() instead of
fcntl() for I/O to data files (not for I/O to log files).

• When using the InnoDB storage engine with a large innodb_buffer_pool_size value on any
release of Solaris 2.6 and up and any platform (sparc/x86/x64/amd64), conduct benchmarks with
InnoDB data files and log files on raw devices or on a separate direct I/O UFS file system, using the
forcedirectio mount option as described earlier. (It is necessary to use the mount option rather than

Optimizing InnoDB for Systems with Many Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 767

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

setting innodb_flush_method if you want direct I/O for the log files.) Users of the Veritas file system
VxFS should use the convosync=direct mount option.

Do not place other MySQL data files, such as those for MyISAM tables, on a direct I/O file system.
Executables or libraries must not be placed on a direct I/O file system.

• If you have additional storage devices available to set up a RAID configuration or symbolic links to
different disks, Section 8.12.3, “Optimizing Disk I/O” for additional low-level I/O tips.

• Other InnoDB configuration options to consider when tuning I/O-bound workloads include
innodb_log_buffer_size, innodb_log_file_size, innodb_max_dirty_pages_pct,
innodb_max_purge_lag, innodb_open_files, and sync_binlog.

8.6.8 Optimizing InnoDB for Systems with Many Tables

• InnoDB computes index cardinality values for a table the first time that table is accessed after startup,
instead of storing such values in the table. This step can take significant time on systems that partition
the data into many tables. Since this overhead only applies to the initial table open operation, to “warm
up” a table for later use, access it immediately after startup by issuing a statement such as SELECT 1
FROM tbl_name LIMIT 1.

8.7 Optimizing for MEMORY Tables
Consider using MEMORY tables for noncritical data that is accessed often, and is read-only or rarely
updated. Benchmark your application against equivalent InnoDB or MyISAM tables under a realistic
workload, to confirm that any additional performance is worth the risk of losing data, or the overhead of
copying data from a disk-based table at application start.

For best performance with MEMORY tables, examine the kinds of queries against each table, and specify
the type to use for each associated index, either a B-tree index or a hash index. On the CREATE INDEX
statement, use the clause USING BTREE or USING HASH. B-tree indexes are fast for queries that do
greater-than or less-than comparisons through operators such as > or BETWEEN. Hash indexes are only
fast for queries that look up single values through the = operator, or a restricted set of values through
the IN operator. For why USING BTREE is often a better choice than the default USING HASH, see
Section 8.2.1.17, “How to Avoid Full Table Scans”. For implementation details of the different types of
MEMORY indexes, see Section 8.3.8, “Comparison of B-Tree and Hash Indexes”.

8.8 Understanding the Query Execution Plan
Depending on the details of your tables, columns, indexes, and the conditions in your WHERE clause,
the MySQL optimizer considers many techniques to efficiently perform the lookups involved in an SQL
query. A query on a huge table can be performed without reading all the rows; a join involving several
tables can be performed without comparing every combination of rows. The set of operations that the
optimizer chooses to perform the most efficient query is called the “query execution plan”, also known as
the EXPLAIN plan. Your goals are to recognize the aspects of the EXPLAIN plan that indicate a query is
optimized well, and to learn the SQL syntax and indexing techniques to improve the plan if you see some
inefficient operations.

8.8.1 Optimizing Queries with EXPLAIN

The EXPLAIN statement can be used to obtain information about how MySQL executes a statement:

• When you precede a SELECT statement with the keyword EXPLAIN, MySQL displays information from
the optimizer about the statement execution plan. That is, MySQL explains how it would process the
statement, including information about how tables are joined and in which order. For information about
using EXPLAIN to obtain execution plan information, see Section 8.8.2, “EXPLAIN Output Format”.

EXPLAIN Output Format

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 768

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• EXPLAIN EXTENDED can be used to obtain additional execution plan information. See Section 8.8.3,
“EXPLAIN EXTENDED Output Format”.

 With the help of EXPLAIN, you can see where you should add indexes to tables so that the statement
executes faster by using indexes to find rows. You can also use EXPLAIN to check whether the optimizer
joins the tables in an optimal order. To give a hint to the optimizer to use a join order corresponding
to the order in which the tables are named in a SELECT statement, begin the statement with SELECT
STRAIGHT_JOIN rather than just SELECT. (See Section 13.2.8, “SELECT Syntax”.)

If you have a problem with indexes not being used when you believe that they should be, run ANALYZE
TABLE to update table statistics, such as cardinality of keys, that can affect the choices the optimizer
makes. See Section 13.7.2.1, “ANALYZE TABLE Syntax”.

Note

EXPLAIN can also be used to obtain information about the columns in a
table. EXPLAIN tbl_name is synonymous with DESCRIBE tbl_name and
SHOW COLUMNS FROM tbl_name. For more information, see Section 13.8.1,
“DESCRIBE Syntax”, and Section 13.7.5.5, “SHOW COLUMNS Syntax”.

8.8.2 EXPLAIN Output Format

The EXPLAIN statement provides information about the execution plan for a SELECT statement.

EXPLAIN returns a row of information for each table used in the SELECT statement. It lists the tables in
the output in the order that MySQL would read them while processing the statement. MySQL resolves all
joins using a nested-loop join method. This means that MySQL reads a row from the first table, and then
finds a matching row in the second table, the third table, and so on. When all tables are processed, MySQL
outputs the selected columns and backtracks through the table list until a table is found for which there are
more matching rows. The next row is read from this table and the process continues with the next table.

When the EXTENDED keyword is used, EXPLAIN produces extra information that can be viewed by
issuing a SHOW WARNINGS statement following the EXPLAIN statement. See Section 8.8.3, “EXPLAIN
EXTENDED Output Format”.

• EXPLAIN Output Columns

• EXPLAIN Join Types

• EXPLAIN Extra Information

• EXPLAIN Output Interpretation

EXPLAIN Output Columns

This section describes the output columns produced by EXPLAIN. Later sections provide additional
information about the type and Extra columns.

Each output row from EXPLAIN provides information about one table. Each row contains the values
summarized in Table 8.1, “EXPLAIN Output Columns”, and described in more detail following the table.

Table 8.1 EXPLAIN Output Columns

Column Meaning

id The SELECT identifier

select_type The SELECT type

EXPLAIN Output Format

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 769

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Column Meaning

table The table for the output row

type The join type

possible_keys The possible indexes to choose

key The index actually chosen

key_len The length of the chosen key

ref The columns compared to the index

rows Estimate of rows to be examined

Extra Additional information

• id

The SELECT identifier. This is the sequential number of the SELECT within the query. The value can be
NULL if the row refers to the union result of other rows. In this case, the table column shows a value
like <unionM,N> to indicate that the row refers to the union of the rows with id values of M and N.

• select_type

The type of SELECT, which can be any of those shown in the following table.

select_type Value Meaning

SIMPLE Simple SELECT (not using UNION or subqueries)

PRIMARY Outermost SELECT

UNION Second or later SELECT statement in a UNION

DEPENDENT UNION Second or later SELECT statement in a UNION, dependent on outer query

UNION RESULT Result of a UNION.

SUBQUERY First SELECT in subquery

DEPENDENT SUBQUERY First SELECT in subquery, dependent on outer query

DERIVED Derived table SELECT (subquery in FROM clause)

UNCACHEABLE
SUBQUERY

A subquery for which the result cannot be cached and must be re-evaluated
for each row of the outer query

DEPENDENT typically signifies the use of a correlated subquery. See Section 13.2.9.7, “Correlated
Subqueries”.

DEPENDENT SUBQUERY evaluation differs from UNCACHEABLE SUBQUERY evaluation. For DEPENDENT
SUBQUERY, the subquery is re-evaluated only once for each set of different values of the variables from
its outer context. For UNCACHEABLE SUBQUERY, the subquery is re-evaluated for each row of the outer
context.

Cacheability of subqueries differs from caching of query results in the query cache (which is described in
Section 8.10.3.1, “How the Query Cache Operates”). Subquery caching occurs during query execution,
whereas the query cache is used to store results only after query execution finishes.

• table

The name of the table to which the row of output refers. This can also be one of the following values:

• <unionM,N>: The row refers to the union of the rows with id values of M and N.

EXPLAIN Output Format

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 770

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• <derivedN>: The row refers to the derived table result for the row with an id value of N. A derived
table may result, for example, from a subquery in the FROM clause.

• type

The join type. For descriptions of the different types, see EXPLAIN Join Types.

• possible_keys

The possible_keys column indicates which indexes MySQL can choose from use to find the rows in
this table. Note that this column is totally independent of the order of the tables as displayed in the output
from EXPLAIN. That means that some of the keys in possible_keys might not be usable in practice
with the generated table order.

If this column is NULL, there are no relevant indexes. In this case, you may be able to improve the
performance of your query by examining the WHERE clause to check whether it refers to some column or
columns that would be suitable for indexing. If so, create an appropriate index and check the query with
EXPLAIN again. See Section 13.1.4, “ALTER TABLE Syntax”.

To see what indexes a table has, use SHOW INDEX FROM tbl_name.

• key

The key column indicates the key (index) that MySQL actually decided to use. If MySQL decides to use
one of the possible_keys indexes to look up rows, that index is listed as the key value.

It is possible that key will name an index that is not present in the possible_keys value. This can
happen if none of the possible_keys indexes are suitable for looking up rows, but all the columns
selected by the query are columns of some other index. That is, the named index covers the selected
columns, so although it is not used to determine which rows to retrieve, an index scan is more efficient
than a data row scan.

For InnoDB, a secondary index might cover the selected columns even if the query also selects the
primary key because InnoDB stores the primary key value with each secondary index. If key is NULL,
MySQL found no index to use for executing the query more efficiently.

To force MySQL to use or ignore an index listed in the possible_keys column, use FORCE INDEX,
USE INDEX, or IGNORE INDEX in your query. See Section 8.9.2, “Index Hints”.

For MyISAM, NDB, and BDB tables, running ANALYZE TABLE helps the optimizer choose better indexes.
For MyISAM tables, myisamchk --analyze does the same as ANALYZE TABLE. See Section 7.6,
“MyISAM Table Maintenance and Crash Recovery”.

• key_len

The key_len column indicates the length of the key that MySQL decided to use. The length is NULL if
the key column says NULL. Note that the value of key_len enables you to determine how many parts
of a multiple-part key MySQL actually uses.

• ref

The ref column shows which columns or constants are compared to the index named in the key
column to select rows from the table.

• rows

The rows column indicates the number of rows MySQL believes it must examine to execute the query.

EXPLAIN Output Format

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 771

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For InnoDB tables, this number is an estimate, and may not always be exact.

• Extra

This column contains additional information about how MySQL resolves the query. For descriptions of
the different values, see EXPLAIN Extra Information.

EXPLAIN Join Types

The type column of EXPLAIN output describes how tables are joined. The following list describes the join
types, ordered from the best type to the worst:

• system

The table has only one row (= system table). This is a special case of the const join type.

• const

The table has at most one matching row, which is read at the start of the query. Because there is only
one row, values from the column in this row can be regarded as constants by the rest of the optimizer.
const tables are very fast because they are read only once.

const is used when you compare all parts of a PRIMARY KEY or UNIQUE index to constant values. In
the following queries, tbl_name can be used as a const table:

SELECT * FROM tbl_name WHERE primary_key=1;

SELECT * FROM tbl_name
 WHERE primary_key_part1=1 AND primary_key_part2=2;

• eq_ref

One row is read from this table for each combination of rows from the previous tables. Other than the
system and const types, this is the best possible join type. It is used when all parts of an index are
used by the join and the index is a PRIMARY KEY or UNIQUE NOT NULL index.

eq_ref can be used for indexed columns that are compared using the = operator. The comparison
value can be a constant or an expression that uses columns from tables that are read before this table.
In the following examples, MySQL can use an eq_ref join to process ref_table:

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column_part1=other_table.column
 AND ref_table.key_column_part2=1;

• ref

All rows with matching index values are read from this table for each combination of rows from the
previous tables. ref is used if the join uses only a leftmost prefix of the key or if the key is not a
PRIMARY KEY or UNIQUE index (in other words, if the join cannot select a single row based on the key
value). If the key that is used matches only a few rows, this is a good join type.

ref can be used for indexed columns that are compared using the = or <=> operator. In the following
examples, MySQL can use a ref join to process ref_table:

EXPLAIN Output Format

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 772

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT * FROM ref_table WHERE key_column=expr;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
 WHERE ref_table.key_column_part1=other_table.column
 AND ref_table.key_column_part2=1;

• fulltext

The join is performed using a FULLTEXT index.

• ref_or_null

This join type is like ref, but with the addition that MySQL does an extra search for rows that contain
NULL values. This join type optimization is used most often in resolving subqueries. In the following
examples, MySQL can use a ref_or_null join to process ref_table:

SELECT * FROM ref_table
 WHERE key_column=expr OR key_column IS NULL;

See Section 8.2.1.6, “IS NULL Optimization”.

• index_merge

This join type indicates that the Index Merge optimization is used. In this case, the key column in the
output row contains a list of indexes used, and key_len contains a list of the longest key parts for the
indexes used. For more information, see Section 8.2.1.4, “Index Merge Optimization”.

• unique_subquery

This type replaces eq_ref for some IN subqueries of the following form:

value IN (SELECT primary_key FROM single_table WHERE some_expr)

unique_subquery is just an index lookup function that replaces the subquery completely for better
efficiency.

• index_subquery

This join type is similar to unique_subquery. It replaces IN subqueries, but it works for nonunique
indexes in subqueries of the following form:

value IN (SELECT key_column FROM single_table WHERE some_expr)

• range

Only rows that are in a given range are retrieved, using an index to select the rows. The key column in
the output row indicates which index is used. The key_len contains the longest key part that was used.
The ref column is NULL for this type.

range can be used when a key column is compared to a constant using any of the =, <>, >, >=, <, <=,
IS NULL, <=>, BETWEEN, or IN() operators:

EXPLAIN Output Format

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 773

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT * FROM tbl_name
 WHERE key_column = 10;

SELECT * FROM tbl_name
 WHERE key_column BETWEEN 10 and 20;

SELECT * FROM tbl_name
 WHERE key_column IN (10,20,30);

SELECT * FROM tbl_name
 WHERE key_part1= 10 AND key_part2 IN (10,20,30);

• index

The index join type is the same as ALL, except that the index tree is scanned. This occurs two ways:

• If the index is a covering index for the queries and can be used to satisfy all data required from the
table, only the index tree is scanned. In this case, the Extra column says Using index. An index-
only scan usually is faster than ALL because the size of the index usually is smaller than the table
data.

• A full table scan is performed using reads from the index to look up data rows in index order. Uses
index does not appear in the Extra column.

MySQL can use this join type when the query uses only columns that are part of a single index.

• ALL

A full table scan is done for each combination of rows from the previous tables. This is normally not good
if the table is the first table not marked const, and usually very bad in all other cases. Normally, you
can avoid ALL by adding indexes that enable row retrieval from the table based on constant values or
column values from earlier tables.

EXPLAIN Extra Information

The Extra column of EXPLAIN output contains additional information about how MySQL resolves the
query. The following list explains the values that can appear in this column. If you want to make your
queries as fast as possible, look out for Extra values of Using filesort and Using temporary.

• const row not found

For a query such as SELECT ... FROM tbl_name, the table was empty.

• Distinct

MySQL is looking for distinct values, so it stops searching for more rows for the current row combination
after it has found the first matching row.

• Full scan on NULL key

This occurs for subquery optimization as a fallback strategy when the optimizer cannot use an index-
lookup access method.

• Impossible HAVING

The HAVING clause is always false and cannot select any rows.

• Impossible WHERE

The WHERE clause is always false and cannot select any rows.

EXPLAIN Output Format

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 774

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Impossible WHERE noticed after reading const tables

MySQL has read all const (and system) tables and notice that the WHERE clause is always false.

• No matching min/max row

No row satisfies the condition for a query such as SELECT MIN(...) FROM ... WHERE condition.

• no matching row in const table

For a query with a join, there was an empty table or a table with no rows satisfying a unique index
condition.

• No tables used

The query has no FROM clause, or has a FROM DUAL clause.

• Not exists

MySQL was able to do a LEFT JOIN optimization on the query and does not examine more rows in this
table for the previous row combination after it finds one row that matches the LEFT JOIN criteria. Here
is an example of the type of query that can be optimized this way:

SELECT * FROM t1 LEFT JOIN t2 ON t1.id=t2.id
 WHERE t2.id IS NULL;

Assume that t2.id is defined as NOT NULL. In this case, MySQL scans t1 and looks up the rows in
t2 using the values of t1.id. If MySQL finds a matching row in t2, it knows that t2.id can never be
NULL, and does not scan through the rest of the rows in t2 that have the same id value. In other words,
for each row in t1, MySQL needs to do only a single lookup in t2, regardless of how many rows actually
match in t2.

• Range checked for each record (index map: N)

MySQL found no good index to use, but found that some of indexes might be used after column values
from preceding tables are known. For each row combination in the preceding tables, MySQL checks
whether it is possible to use a range or index_merge access method to retrieve rows. This is not very
fast, but is faster than performing a join with no index at all. The applicability criteria are as described
in Section 8.2.1.3, “Range Optimization”, and Section 8.2.1.4, “Index Merge Optimization”, with the
exception that all column values for the preceding table are known and considered to be constants.

Indexes are numbered beginning with 1, in the same order as shown by SHOW INDEX for the table. The
index map value N is a bitmask value that indicates which indexes are candidates. For example, a value
of 0x19 (binary 11001) means that indexes 1, 4, and 5 will be considered.

• Select tables optimized away

The optimizer determined 1) that at most one row should be returned, and 2) that to produce this row,
a deterministic set of rows must be read. When the rows to be read can be read during the optimization
phase (for example, by reading index rows), there is no need to read any tables during query execution.

The first condition is fulfilled when the query is implicitly grouped (contains an aggregate function but no
GROUP BY clause). The second condition is fulfilled when one row lookup is performed per index used.
The number of indexes read determines the number of rows to read.

Consider the following implicitly grouped query:

EXPLAIN Output Format

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 775

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT MIN(c1), MIN(c2) FROM t1;

Suppose that MIN(c1) can be retrieved by reading one index row and MIN(c2) can be retrieved by
reading one row from a different index. That is, for each column c1 and c2, there exists an index where
the column is the first column of the index. In this case, one row is returned, produced by reading two
deterministic rows.

This Extra value does not occur if the rows to read are not deterministic. Consider this query:

SELECT MIN(c2) FROM t1 WHERE c1 <= 10;

Suppose that (c1, c2) is a covering index. Using this index, all rows with c1 <= 10 must be scanned
to find the minimum c2 value. By contrast, consider this query:

SELECT MIN(c2) FROM t1 WHERE c1 = 10;

In this case, the first index row with c1 = 10 contains the minimum c2 value. Only one row must be
read to produce the returned row.

For storage engines that maintain an exact row count per table (such as MyISAM, but not InnoDB), this
Extra value can occur for COUNT(*) queries for which the WHERE clause is missing or always true
and there is no GROUP BY clause. (This is an instance of an implicitly grouped query where the storage
engine influences whether a deterministic number of rows can be read.)

• unique row not found

For a query such as SELECT ... FROM tbl_name, no rows satisfy the condition for a UNIQUE index
or PRIMARY KEY on the table.

• Using filesort

MySQL must do an extra pass to find out how to retrieve the rows in sorted order. The sort is done by
going through all rows according to the join type and storing the sort key and pointer to the row for all
rows that match the WHERE clause. The keys then are sorted and the rows are retrieved in sorted order.
See Section 8.2.1.11, “ORDER BY Optimization”.

• Using index

The column information is retrieved from the table using only information in the index tree without having
to do an additional seek to read the actual row. This strategy can be used when the query uses only
columns that are part of a single index.

• Using index for group-by

Similar to the Using index table access method, Using index for group-by indicates that
MySQL found an index that can be used to retrieve all columns of a GROUP BY or DISTINCT query
without any extra disk access to the actual table. Additionally, the index is used in the most efficient way
so that for each group, only a few index entries are read. For details, see Section 8.2.1.12, “GROUP BY
Optimization”.

• Using sort_union(...), Using union(...), Using intersect(...)

These indicate how index scans are merged for the index_merge join type. See Section 8.2.1.4, “Index
Merge Optimization”.

• Using temporary

EXPLAIN Output Format

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 776

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To resolve the query, MySQL needs to create a temporary table to hold the result. This typically happens
if the query contains GROUP BY and ORDER BY clauses that list columns differently.

• Using where

A WHERE clause is used to restrict which rows to match against the next table or send to the client.
Unless you specifically intend to fetch or examine all rows from the table, you may have something
wrong in your query if the Extra value is not Using where and the table join type is ALL or index.
Even if you are using an index for all parts of a WHERE clause, you may see Using where if the column
can be NULL.

• Using where with pushed condition

This item applies to NDB tables only. It means that MySQL Cluster is using the Condition Pushdown
optimization to improve the efficiency of a direct comparison between a nonindexed column and a
constant. In such cases, the condition is “pushed down” to the cluster's data nodes and is evaluated on
all data nodes simultaneously. This eliminates the need to send nonmatching rows over the network, and
can speed up such queries by a factor of 5 to 10 times over cases where Condition Pushdown could be
but is not used. For more information, see Section 8.2.1.5, “Engine Condition Pushdown Optimization”.

EXPLAIN Output Interpretation

You can get a good indication of how good a join is by taking the product of the values in the rows column
of the EXPLAIN output. This should tell you roughly how many rows MySQL must examine to execute the
query. If you restrict queries with the max_join_size system variable, this row product also is used to
determine which multiple-table SELECT statements to execute and which to abort. See Section 8.12.2,
“Tuning Server Parameters”.

The following example shows how a multiple-table join can be optimized progressively based on the
information provided by EXPLAIN.

Suppose that you have the SELECT statement shown here and that you plan to examine it using EXPLAIN:

EXPLAIN SELECT tt.TicketNumber, tt.TimeIn,
 tt.ProjectReference, tt.EstimatedShipDate,
 tt.ActualShipDate, tt.ClientID,
 tt.ServiceCodes, tt.RepetitiveID,
 tt.CurrentProcess, tt.CurrentDPPerson,
 tt.RecordVolume, tt.DPPrinted, et.COUNTRY,
 et_1.COUNTRY, do.CUSTNAME
 FROM tt, et, et AS et_1, do
 WHERE tt.SubmitTime IS NULL
 AND tt.ActualPC = et.EMPLOYID
 AND tt.AssignedPC = et_1.EMPLOYID
 AND tt.ClientID = do.CUSTNMBR;

For this example, make the following assumptions:

• The columns being compared have been declared as follows.

Table Column Data Type

tt ActualPC CHAR(10)

tt AssignedPC CHAR(10)

tt ClientID CHAR(10)

et EMPLOYID CHAR(15)

EXPLAIN Output Format

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 777

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Table Column Data Type

do CUSTNMBR CHAR(15)

• The tables have the following indexes.

Table Index

tt ActualPC

tt AssignedPC

tt ClientID

et EMPLOYID (primary key)

do CUSTNMBR (primary key)

• The tt.ActualPC values are not evenly distributed.

Initially, before any optimizations have been performed, the EXPLAIN statement produces the following
information:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
do ALL PRIMARY NULL NULL NULL 2135
et_1 ALL PRIMARY NULL NULL NULL 74
tt ALL AssignedPC, NULL NULL NULL 3872
 ClientID,
 ActualPC
 Range checked for each record (index map: 0x23)

Because type is ALL for each table, this output indicates that MySQL is generating a Cartesian product of
all the tables; that is, every combination of rows. This takes quite a long time, because the product of the
number of rows in each table must be examined. For the case at hand, this product is 74 × 2135 × 74 ×
3872 = 45,268,558,720 rows. If the tables were bigger, you can only imagine how long it would take.

One problem here is that MySQL can use indexes on columns more efficiently if they are declared as the
same type and size. In this context, VARCHAR and CHAR are considered the same if they are declared as
the same size. tt.ActualPC is declared as CHAR(10) and et.EMPLOYID is CHAR(15), so there is a
length mismatch.

To fix this disparity between column lengths, use ALTER TABLE to lengthen ActualPC from 10 characters
to 15 characters:

mysql> ALTER TABLE tt MODIFY ActualPC VARCHAR(15);

Now tt.ActualPC and et.EMPLOYID are both VARCHAR(15). Executing the EXPLAIN statement again
produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC, NULL NULL NULL 3872 Using
 ClientID, where
 ActualPC
do ALL PRIMARY NULL NULL NULL 2135
 Range checked for each record (index map: 0x1)
et_1 ALL PRIMARY NULL NULL NULL 74
 Range checked for each record (index map: 0x1)
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1

EXPLAIN EXTENDED Output Format

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 778

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This is not perfect, but is much better: The product of the rows values is less by a factor of 74. This version
executes in a couple of seconds.

A second alteration can be made to eliminate the column length mismatches for the tt.AssignedPC =
et_1.EMPLOYID and tt.ClientID = do.CUSTNMBR comparisons:

mysql> ALTER TABLE tt MODIFY AssignedPC VARCHAR(15),
 -> MODIFY ClientID VARCHAR(15);

After that modification, EXPLAIN produces the output shown here:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
tt ref AssignedPC, ActualPC 15 et.EMPLOYID 52 Using
 ClientID, where
 ActualPC
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

At this point, the query is optimized almost as well as possible. The remaining problem is that, by default,
MySQL assumes that values in the tt.ActualPC column are evenly distributed, and that is not the case
for the tt table. Fortunately, it is easy to tell MySQL to analyze the key distribution:

mysql> ANALYZE TABLE tt;

With the additional index information, the join is perfect and EXPLAIN produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC NULL NULL NULL 3872 Using
 ClientID, where
 ActualPC
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

 The rows column in the output from EXPLAIN is an educated guess from the MySQL join optimizer.
You should check whether the numbers are even close to the truth by comparing the rows product with
the actual number of rows that the query returns. If the numbers are quite different, you might get better
performance by using STRAIGHT_JOIN in your SELECT statement and trying to list the tables in a different
order in the FROM clause.

It is possible in some cases to execute statements that modify data when EXPLAIN SELECT is used with a
subquery; for more information, see Section 13.2.9.8, “Subqueries in the FROM Clause”.

8.8.3 EXPLAIN EXTENDED Output Format

When EXPLAIN is used with the EXTENDED keyword, the output includes a filtered column not
otherwise displayed. This column indicates the estimated percentage of table rows that will be filtered by
the table condition. In addition, the statement produces extra information that can be viewed by issuing a
SHOW WARNINGS statement following the EXPLAIN statement. The Message value in SHOW WARNINGS
output displays how the optimizer qualifies table and column names in the SELECT statement, what the
SELECT looks like after the application of rewriting and optimization rules, and possibly other notes about
the optimization process.

Here is an example of extended output:

EXPLAIN EXTENDED Output Format

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 779

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> EXPLAIN EXTENDED
 -> SELECT t1.a, t1.a IN (SELECT t2.a FROM t2) FROM t1\G
*************************** 1. row ***************************
 id: 1
 select_type: PRIMARY
 table: t1
 type: index
possible_keys: NULL
 key: PRIMARY
 key_len: 4
 ref: NULL
 rows: 4
 Extra: Using index
*************************** 2. row ***************************
 id: 2
 select_type: DEPENDENT SUBQUERY
 table: t2
 type: index_subquery
possible_keys: a
 key: a
 key_len: 5
 ref: func
 rows: 2
 Extra: Using index
2 rows in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Note
 Code: 1003
Message: select `test`.`t1`.`a` AS `a`,
 <in_optimizer>(`test`.`t1`.`a`,
 <exists>(<index_lookup>(<cache>(`test`.`t1`.`a`)
 in t2 on a checking NULL having
 <is_not_null_test>(`test`.`t2`.`a`)))) AS `t1.a
 IN (SELECT t2.a FROM t2)` from `test`.`t1`
1 row in set (0.00 sec)

Because the statement displayed by SHOW WARNINGS may contain special markers to provide information
about query rewriting or optimizer actions, the statement is not necessarily valid SQL and is not intended
to be executed. The output may also include rows with Message values that provide additional non-SQL
explanatory notes about actions taken by the optimizer.

The following list describes special markers that can appear in EXTENDED output displayed by SHOW
WARNINGS:

• <cache>(expr)

The expression (such as a scalar subquery) is executed once and the resulting value is saved in
memory for later use.

• <exists>(query fragment)

The subquery predicate is converted to an EXISTS predicate and the subquery is transformed so that it
can be used together with the EXISTS predicate.

• <in_optimizer>(query fragment)

This is an internal optimizer object with no user significance.

• <index_lookup>(query fragment)

The query fragment is processed using an index lookup to find qualifying rows.

Estimating Query Performance

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 780

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• <is_not_null_test>(expr)

A test to verify that the expression does not evaluate to NULL.

• <primary_index_lookup>(query fragment)

The query fragment is processed using a primary key lookup to find qualifying rows.

• <ref_null_helper>(expr)

This is an internal optimizer object with no user significance.

When some tables are of const or system type, expressions involving columns from these tables are
evaluated early by the optimizer and are not part of the displayed statement. However, with FORMAT=JSON,
some const table accesses are displayed as a ref access that uses a const value.

8.8.4 Estimating Query Performance

In most cases, you can estimate query performance by counting disk seeks. For small tables, you can
usually find a row in one disk seek (because the index is probably cached). For bigger tables, you can
estimate that, using B-tree indexes, you need this many seeks to find a row: log(row_count) /
log(index_block_length / 3 * 2 / (index_length + data_pointer_length)) + 1.

In MySQL, an index block is usually 1,024 bytes and the data pointer is usually four bytes. For a
500,000-row table with a key value length of three bytes (the size of MEDIUMINT), the formula indicates
log(500,000)/log(1024/3*2/(3+4)) + 1 = 4 seeks.

This index would require storage of about 500,000 * 7 * 3/2 = 5.2MB (assuming a typical index buffer fill
ratio of 2/3), so you probably have much of the index in memory and so need only one or two calls to read
data to find the row.

For writes, however, you need four seek requests to find where to place a new index value and normally
two seeks to update the index and write the row.

The preceding discussion does not mean that your application performance slowly degenerates by log N.
As long as everything is cached by the OS or the MySQL server, things become only marginally slower
as the table gets bigger. After the data gets too big to be cached, things start to go much slower until your
applications are bound only by disk seeks (which increase by log N). To avoid this, increase the key cache
size as the data grows. For MyISAM tables, the key cache size is controlled by the key_buffer_size
system variable. See Section 8.12.2, “Tuning Server Parameters”.

8.9 Controlling the Query Optimizer
MySQL provides optimizer control through system variables that affect how query plans are evaluated
index hints.

8.9.1 Controlling Query Plan Evaluation

The task of the query optimizer is to find an optimal plan for executing an SQL query. Because the
difference in performance between “good” and “bad” plans can be orders of magnitude (that is, seconds
versus hours or even days), most query optimizers, including that of MySQL, perform a more or less
exhaustive search for an optimal plan among all possible query evaluation plans. For join queries, the
number of possible plans investigated by the MySQL optimizer grows exponentially with the number of
tables referenced in a query. For small numbers of tables (typically less than 7 to 10) this is not a problem.
However, when larger queries are submitted, the time spent in query optimization may easily become the
major bottleneck in the server's performance.

Index Hints

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 781

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL 5.0.1 introduces a more flexible method for query optimization that enables the user to control
how exhaustive the optimizer is in its search for an optimal query evaluation plan. The general idea is that
the fewer plans that are investigated by the optimizer, the less time it spends in compiling a query. On the
other hand, because the optimizer skips some plans, it may miss finding an optimal plan.

The behavior of the optimizer with respect to the number of plans it evaluates can be controlled using two
system variables:

• The optimizer_prune_level variable tells the optimizer to skip certain plans based on estimates of
the number of rows accessed for each table. Our experience shows that this kind of “educated guess”
rarely misses optimal plans, and may dramatically reduce query compilation times. That is why this
option is on (optimizer_prune_level=1) by default. However, if you believe that the optimizer
missed a better query plan, this option can be switched off (optimizer_prune_level=0) with the risk
that query compilation may take much longer. Note that, even with the use of this heuristic, the optimizer
still explores a roughly exponential number of plans.

• The optimizer_search_depth variable tells how far into the “future” of each incomplete plan
the optimizer should look to evaluate whether it should be expanded further. Smaller values of
optimizer_search_depth may result in orders of magnitude smaller query compilation times. For
example, queries with 12, 13, or more tables may easily require hours and even days to compile if
optimizer_search_depth is close to the number of tables in the query. At the same time, if compiled
with optimizer_search_depth equal to 3 or 4, the optimizer may compile in less than a minute for
the same query. If you are unsure of what a reasonable value is for optimizer_search_depth, this
variable can be set to 0 to tell the optimizer to determine the value automatically.

8.9.2 Index Hints

Index hints give the optimizer information about how to choose indexes during query processing. Index
hints are specified following a table name. (For the general syntax for specifying tables in a SELECT
statement, see Section 13.2.8.2, “JOIN Syntax”.) The syntax for referring to an individual table, including
index hints, looks like this:

tbl_name [[AS] alias] [index_hint]

index_hint:
 USE {INDEX|KEY} [FOR JOIN] (index_list)
 | IGNORE {INDEX|KEY} [FOR JOIN] (index_list)
 | FORCE {INDEX|KEY} [FOR JOIN] (index_list)

index_list:
 index_name [, index_name] ...

The USE INDEX (index_list) hint tells MySQL to use only one of the named indexes to find rows in
the table. The alternative syntax IGNORE INDEX (index_list) tells MySQL to not use some particular
index or indexes. These hints are useful if EXPLAIN shows that MySQL is using the wrong index from the
list of possible indexes.

The FORCE INDEX hint acts like USE INDEX (index_list), with the addition that a table scan is
assumed to be very expensive. In other words, a table scan is used only if there is no way to use one of
the named indexes to find rows in the table.

Each hint requires the names of indexes, not the names of columns. To refer to a primary key, use the
name PRIMARY. To see the index names for a table, use SHOW INDEX.

An index_name value need not be a full index name. It can be an unambiguous prefix of an index name.
If a prefix is ambiguous, an error occurs.

Buffering and Caching

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 782

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

USE INDEX, IGNORE INDEX, and FORCE INDEX affect only which indexes are used when MySQL
decides how to find rows in the table and how to do the join. They do not affect whether an index is used
when resolving an ORDER BY or GROUP BY clause. As of MySQL 5.0.40, the optional FOR JOIN clause
can be added to make this explicit.

Examples:

SELECT * FROM table1 USE INDEX (col1_index,col2_index)
 WHERE col1=1 AND col2=2 AND col3=3;

SELECT * FROM table1 IGNORE INDEX (col3_index)
 WHERE col1=1 AND col2=2 AND col3=3;

For FULLTEXT searches, index hints do not work before MySQL 5.0.74. As of 5.0.74, index hints work as
follows:

• For natural language mode searches, index hints are silently ignored. For example, IGNORE
INDEX(i1) is ignored with no warning and the index is still used.

• For boolean mode searches, index hints are honored.

8.10 Buffering and Caching

MySQL uses several strategies that cache information in memory buffers to increase performance.

8.10.1 The MyISAM Key Cache

To minimize disk I/O, the MyISAM storage engine exploits a strategy that is used by many database
management systems. It employs a cache mechanism to keep the most frequently accessed table blocks
in memory:

• For index blocks, a special structure called the key cache (or key buffer) is maintained. The structure
contains a number of block buffers where the most-used index blocks are placed.

• For data blocks, MySQL uses no special cache. Instead it relies on the native operating system file
system cache.

This section first describes the basic operation of the MyISAM key cache. Then it discusses features that
improve key cache performance and that enable you to better control cache operation:

• Access to the key cache no longer is serialized among threads. Multiple sessions can access the cache
concurrently.

• You can set up multiple key caches and assign table indexes to specific caches.

To control the size of the key cache, use the key_buffer_size system variable. If this variable is set
equal to zero, no key cache is used. The key cache also is not used if the key_buffer_size value is too
small to allocate the minimal number of block buffers (8).

When the key cache is not operational, index files are accessed using only the native file system buffering
provided by the operating system. (In other words, table index blocks are accessed using the same
strategy as that employed for table data blocks.)

An index block is a contiguous unit of access to the MyISAM index files. Usually the size of an index block
is equal to the size of nodes of the index B-tree. (Indexes are represented on disk using a B-tree data
structure. Nodes at the bottom of the tree are leaf nodes. Nodes above the leaf nodes are nonleaf nodes.)

The MyISAM Key Cache

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 783

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

All block buffers in a key cache structure are the same size. This size can be equal to, greater than, or less
than the size of a table index block. Usually one these two values is a multiple of the other.

When data from any table index block must be accessed, the server first checks whether it is available in
some block buffer of the key cache. If it is, the server accesses data in the key cache rather than on disk.
That is, it reads from the cache or writes into it rather than reading from or writing to disk. Otherwise, the
server chooses a cache block buffer containing a different table index block (or blocks) and replaces the
data there by a copy of required table index block. As soon as the new index block is in the cache, the
index data can be accessed.

If it happens that a block selected for replacement has been modified, the block is considered “dirty.” In this
case, prior to being replaced, its contents are flushed to the table index from which it came.

Usually the server follows an LRU (Least Recently Used) strategy: When choosing a block for
replacement, it selects the least recently used index block. To make this choice easier, the key cache
module maintains all used blocks in a special list (LRU chain) ordered by time of use. When a block
is accessed, it is the most recently used and is placed at the end of the list. When blocks need to be
replaced, blocks at the beginning of the list are the least recently used and become the first candidates for
eviction.

The InnoDB storage engine also uses an LRU algorithm, to manage its buffer pool. See Section 8.10.2,
“The InnoDB Buffer Pool”.

8.10.1.1 Shared Key Cache Access

Threads can access key cache buffers simultaneously, subject to the following conditions:

• A buffer that is not being updated can be accessed by multiple sessions.

• A buffer that is being updated causes sessions that need to use it to wait until the update is complete.

• Multiple sessions can initiate requests that result in cache block replacements, as long as they do not
interfere with each other (that is, as long as they need different index blocks, and thus cause different
cache blocks to be replaced).

Shared access to the key cache enables the server to improve throughput significantly.

8.10.1.2 Multiple Key Caches

Shared access to the key cache improves performance but does not eliminate contention among sessions
entirely. They still compete for control structures that manage access to the key cache buffers. To reduce
key cache access contention further, MySQL also provides multiple key caches. This feature enables you
to assign different table indexes to different key caches.

Where there are multiple key caches, the server must know which cache to use when processing queries
for a given MyISAM table. By default, all MyISAM table indexes are cached in the default key cache. To
assign table indexes to a specific key cache, use the CACHE INDEX statement (see Section 13.7.6.1,
“CACHE INDEX Syntax”). For example, the following statement assigns indexes from the tables t1, t2,
and t3 to the key cache named hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
test.t1	assign_to_keycache	status	OK
test.t2	assign_to_keycache	status	OK
test.t3	assign_to_keycache	status	OK

The MyISAM Key Cache

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 784

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+---------+--------------------+----------+----------+

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a SET
GLOBAL parameter setting statement or by using server startup options. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

To destroy a key cache, set its size to zero:

mysql> SET GLOBAL keycache1.key_buffer_size=0;

You cannot destroy the default key cache. Any attempt to do this is ignored:

mysql> SET GLOBAL key_buffer_size = 0;

mysql> SHOW VARIABLES LIKE 'key_buffer_size';
+-----------------+---------+
| Variable_name | Value |
+-----------------+---------+
| key_buffer_size | 8384512 |
+-----------------+---------+

Key cache variables are structured system variables that have a name and components. For
keycache1.key_buffer_size, keycache1 is the cache variable name and key_buffer_size is the
cache component. See Section 5.1.5.1, “Structured System Variables”, for a description of the syntax used
for referring to structured key cache system variables.

By default, table indexes are assigned to the main (default) key cache created at the server startup. When
a key cache is destroyed, all indexes assigned to it are reassigned to the default key cache.

For a busy server, you can use a strategy that involves three key caches:

• A “hot” key cache that takes up 20% of the space allocated for all key caches. Use this for tables that are
heavily used for searches but that are not updated.

• A “cold” key cache that takes up 20% of the space allocated for all key caches. Use this cache for
medium-sized, intensively modified tables, such as temporary tables.

• A “warm” key cache that takes up 60% of the key cache space. Employ this as the default key cache, to
be used by default for all other tables.

One reason the use of three key caches is beneficial is that access to one key cache structure does not
block access to the others. Statements that access tables assigned to one cache do not compete with
statements that access tables assigned to another cache. Performance gains occur for other reasons as
well:

• The hot cache is used only for retrieval queries, so its contents are never modified. Consequently,
whenever an index block needs to be pulled in from disk, the contents of the cache block chosen for
replacement need not be flushed first.

• For an index assigned to the hot cache, if there are no queries requiring an index scan, there is a high
probability that the index blocks corresponding to nonleaf nodes of the index B-tree remain in the cache.

• An update operation most frequently executed for temporary tables is performed much faster when the
updated node is in the cache and need not be read in from disk first. If the size of the indexes of the
temporary tables are comparable with the size of cold key cache, the probability is very high that the
updated node is in the cache.

The MyISAM Key Cache

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 785

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The CACHE INDEX statement sets up an association between a table and a key cache, but the association
is lost each time the server restarts. If you want the association to take effect each time the server starts,
one way to accomplish this is to use an option file: Include variable settings that configure your key caches,
and an init-file option that names a file containing CACHE INDEX statements to be executed. For
example:

key_buffer_size = 4G
hot_cache.key_buffer_size = 2G
cold_cache.key_buffer_size = 2G
init_file=/path/to/data-directory/mysqld_init.sql

The statements in mysqld_init.sql are executed each time the server starts. The file should contain
one SQL statement per line. The following example assigns several tables each to hot_cache and
cold_cache:

CACHE INDEX db1.t1, db1.t2, db2.t3 IN hot_cache
CACHE INDEX db1.t4, db2.t5, db2.t6 IN cold_cache

8.10.1.3 Midpoint Insertion Strategy

By default, the key cache management system uses a simple LRU strategy for choosing key cache blocks
to be evicted, but it also supports a more sophisticated method called the midpoint insertion strategy.

When using the midpoint insertion strategy, the LRU chain is divided into two parts: a hot sublist and a
warm sublist. The division point between two parts is not fixed, but the key cache management system
takes care that the warm part is not “too short,” always containing at least key_cache_division_limit
percent of the key cache blocks. key_cache_division_limit is a component of structured key cache
variables, so its value is a parameter that can be set per cache.

When an index block is read from a table into the key cache, it is placed at the end of the warm sublist.
After a certain number of hits (accesses of the block), it is promoted to the hot sublist. At present, the
number of hits required to promote a block (3) is the same for all index blocks.

A block promoted into the hot sublist is placed at the end of the list. The block then circulates within this
sublist. If the block stays at the beginning of the sublist for a long enough time, it is demoted to the warm
sublist. This time is determined by the value of the key_cache_age_threshold component of the key
cache.

The threshold value prescribes that, for a key cache containing N blocks, the block at the beginning of the
hot sublist not accessed within the last N * key_cache_age_threshold / 100 hits is to be moved
to the beginning of the warm sublist. It then becomes the first candidate for eviction, because blocks for
replacement always are taken from the beginning of the warm sublist.

The midpoint insertion strategy enables you to keep more-valued blocks always in the cache. If you prefer
to use the plain LRU strategy, leave the key_cache_division_limit value set to its default of 100.

The midpoint insertion strategy helps to improve performance when execution of a query that
requires an index scan effectively pushes out of the cache all the index blocks corresponding to
valuable high-level B-tree nodes. To avoid this, you must use a midpoint insertion strategy with the
key_cache_division_limit set to much less than 100. Then valuable frequently hit nodes are
preserved in the hot sublist during an index scan operation as well.

8.10.1.4 Index Preloading

If there are enough blocks in a key cache to hold blocks of an entire index, or at least the blocks
corresponding to its nonleaf nodes, it makes sense to preload the key cache with index blocks before

The MyISAM Key Cache

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 786

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

starting to use it. Preloading enables you to put the table index blocks into a key cache buffer in the most
efficient way: by reading the index blocks from disk sequentially.

Without preloading, the blocks are still placed into the key cache as needed by queries. Although the
blocks will stay in the cache, because there are enough buffers for all of them, they are fetched from disk in
random order, and not sequentially.

To preload an index into a cache, use the LOAD INDEX INTO CACHE statement. For example, the
following statement preloads nodes (index blocks) of indexes of the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded.
Thus, the statement shown preloads all index blocks from t1, but only blocks for the nonleaf nodes from
t2.

If an index has been assigned to a key cache using a CACHE INDEX statement, preloading places index
blocks into that cache. Otherwise, the index is loaded into the default key cache.

8.10.1.5 Key Cache Block Size

It is possible to specify the size of the block buffers for an individual key cache using the
key_cache_block_size variable. This permits tuning of the performance of I/O operations for index
files.

The best performance for I/O operations is achieved when the size of read buffers is equal to the size of
the native operating system I/O buffers. But setting the size of key nodes equal to the size of the I/O buffer
does not always ensure the best overall performance. When reading the big leaf nodes, the server pulls in
a lot of unnecessary data, effectively preventing reading other leaf nodes.

To control the size of blocks in the .MYI index file of MyISAM tables, use the --myisam-block-size
option at server startup.

8.10.1.6 Restructuring a Key Cache

A key cache can be restructured at any time by updating its parameter values. For example:

mysql> SET GLOBAL cold_cache.key_buffer_size=4*1024*1024;

If you assign to either the key_buffer_size or key_cache_block_size key cache component a
value that differs from the component's current value, the server destroys the cache's old structure and
creates a new one based on the new values. If the cache contains any dirty blocks, the server saves them
to disk before destroying and re-creating the cache. Restructuring does not occur if you change other key
cache parameters.

When restructuring a key cache, the server first flushes the contents of any dirty buffers to disk. After that,
the cache contents become unavailable. However, restructuring does not block queries that need to use
indexes assigned to the cache. Instead, the server directly accesses the table indexes using native file
system caching. File system caching is not as efficient as using a key cache, so although queries execute,

The InnoDB Buffer Pool

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 787

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

a slowdown can be anticipated. After the cache has been restructured, it becomes available again for
caching indexes assigned to it, and the use of file system caching for the indexes ceases.

8.10.2 The InnoDB Buffer Pool

InnoDB maintains a buffer pool for caching data and indexes in memory. InnoDB manages the pool as
a list, using a least recently used (LRU) algorithm incorporating a midpoint insertion strategy. When room
is needed to add a new block to the pool, InnoDB evicts the least recently used block and adds the new
block to the middle of the list. The midpoint insertion strategy in effect causes the list to be treated as two
sublists:

• At the head, a sublist of “new” (or “young”) blocks that have been recently used.

• At the tail, a sublist of “old” blocks that are less recently used.

As a result of the algorithm, the new sublist contains blocks that are heavily used by queries. The old
sublist contains less-used blocks, and candidates for eviction are taken from this sublist.

The LRU algorithm operates as follows by default:

• 3/8 of the buffer pool is devoted to the old sublist.

• The midpoint of the list is the boundary where the tail of the new sublist meets the head of the old sublist.

• When InnoDB reads a block into the buffer pool, it initially inserts it at the midpoint (the head of the
old sublist). A block can be read in as a result of two types of read requests: Because it is required (for
example, to satisfy query execution), or as part of read-ahead performed in anticipation that it will be
required.

• The first access to a block in the old sublist makes it “young”, causing it to move to the head of the buffer
pool (the head of the new sublist). If the block was read in because it was required, the first access
occurs immediately and the block is made young. If the block was read in due to read-ahead, the first
access does not occur immediately (and might not occur at all before the block is evicted).

• As long as no accesses occur for a block in the pool, it “ages” by moving toward the tail of the list. Blocks
in both the new and old sublists age as other blocks are made new. Blocks in the old sublist also age as
blocks are inserted at the midpoint. Eventually, a block that remains unused for long enough reaches the
tail of the old sublist and is evicted.

In the default operation of the buffer pool, a block when read in is loaded at the midpoint and then moved
immediately to the head of the new sublist as soon as an access occurs. In the case of a table scan (such
as performed for a mysqldump operation), each block read by the scan ends up moving to the head of the
new sublist because multiple rows are accessed from each block. This occurs even for a one-time scan,
where the blocks are not otherwise used by other queries. Blocks may also be loaded by the read-ahead
background thread and then moved to the head of the new sublist by a single access. These effects can be
disadvantageous because they push blocks that are in heavy use by other queries out of the new sublist to
the old sublist where they become subject to eviction.

The innodb_buffer_pool_size system variable specifies the size of the buffer pool. If your buffer pool
is small and you have sufficient memory, making the pool larger can improve performance by reducing the
amount of disk I/O needed as queries access InnoDB tables.

The MyISAM storage engine also uses an LRU algorithm, to manage its key cache. See Section 8.10.1,
“The MyISAM Key Cache”.

8.10.3 The MySQL Query Cache

The MySQL Query Cache

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 788

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The query cache stores the text of a SELECT statement together with the corresponding result that was
sent to the client. If an identical statement is received later, the server retrieves the results from the query
cache rather than parsing and executing the statement again. The query cache is shared among sessions,
so a result set generated by one client can be sent in response to the same query issued by another client.

The query cache can be useful in an environment where you have tables that do not change very often and
for which the server receives many identical queries. This is a typical situation for many Web servers that
generate many dynamic pages based on database content.

The query cache does not return stale data. When tables are modified, any relevant entries in the query
cache are flushed.

Note

The query cache does not work in an environment where you have multiple mysqld
servers updating the same MyISAM tables.

Note

The query cache is not used for prepared statements. If you are using prepared
statements, consider that these statements will not be satisfied by the query cache.
See Section 20.6.8, “C API Prepared Statements”.

Some performance data for the query cache follows. These results were generated by running the MySQL
benchmark suite on a Linux Alpha 2×500MHz system with 2GB RAM and a 64MB query cache.

• If all the queries you are performing are simple (such as selecting a row from a table with one row),
but still differ so that the queries cannot be cached, the overhead for having the query cache active
is 13%. This could be regarded as the worst case scenario. In real life, queries tend to be much more
complicated, so the overhead normally is significantly lower.

• Searches for a single row in a single-row table are 238% faster with the query cache than without it. This
can be regarded as close to the minimum speedup to be expected for a query that is cached.

To disable the query cache at server startup, set the query_cache_size system variable to 0. By
disabling the query cache code, there is no noticeable overhead. If you build MySQL from source, query
cache capabilities can be excluded from the server entirely by invoking configure with the --without-
query-cache option.

The query cache offers the potential for substantial performance improvement, but you should not assume
that it will do so under all circumstances. With some query cache configurations or server workloads, you
might actually see a performance decrease:

• Be cautious about sizing the query cache excessively large, which increases the overhead required to
maintain the cache, possibly beyond the benefit of enabling it. Sizes in tens of megabytes are usually
beneficial. Sizes in the hundreds of megabytes might not be.

• Server workload has a significant effect on query cache efficiency. A query mix consisting almost entirely
of a fixed set of SELECT statements is much more likely to benefit from enabling the cache than a mix in
which frequent INSERT statements cause continual invalidation of results in the cache. In some cases,
a workaround is to use the SQL_NO_CACHE option to prevent results from even entering the cache for
SELECT statements that use frequently modified tables. (See Section 8.10.3.2, “Query Cache SELECT
Options”.)

To verify that enabling the query cache is beneficial, test the operation of your MySQL server with the
cache enabled and disabled. Then retest periodically because query cache efficiency may change as
server workload changes.

The MySQL Query Cache

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 789

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

8.10.3.1 How the Query Cache Operates

This section describes how the query cache works when it is operational. Section 8.10.3.3, “Query Cache
Configuration”, describes how to control whether it is operational.

Incoming queries are compared to those in the query cache before parsing, so the following two queries
are regarded as different by the query cache:

SELECT * FROM tbl_name
Select * from tbl_name

Queries must be exactly the same (byte for byte) to be seen as identical. In addition, query strings that
are identical may be treated as different for other reasons. Queries that use different databases, different
protocol versions, or different default character sets are considered different queries and are cached
separately.

Because comparison of a query against those in the cache occurs before parsing, the cache is not used for
queries of the following types:

• Prepared statements

• Queries that are a subquery of an outer query

• Queries executed within the body of a stored function or trigger

Before a query result is fetched from the query cache, MySQL checks whether the user has SELECT
privilege for all databases and tables involved. If this is not the case, the cached result is not used.

If a query result is returned from query cache, the server increments the Qcache_hits status variable, not
Com_select. See Section 8.10.3.4, “Query Cache Status and Maintenance”.

If a table changes, all cached queries that use the table become invalid and are removed from the cache.
This includes queries that use MERGE tables that map to the changed table. A table can be changed by
many types of statements, such as INSERT, UPDATE, DELETE, TRUNCATE TABLE, ALTER TABLE, DROP
TABLE, or DROP DATABASE.

The query cache also works within transactions when using InnoDB tables.

The result from a SELECT query on a view is cached.

Before MySQL 5.0, a query that began with a leading comment could be cached, but could not be fetched
from the cache. This problem is fixed in MySQL 5.0.

The query cache works for SELECT SQL_CALC_FOUND_ROWS ... queries and stores a value that is
returned by a following SELECT FOUND_ROWS() query. FOUND_ROWS() returns the correct value even if
the preceding query was fetched from the cache because the number of found rows is also stored in the
cache. The SELECT FOUND_ROWS() query itself cannot be cached.

A query cannot be cached if it contains any of the functions shown in the following table.

BENCHMARK() CONNECTION_ID() CONVERT_TZ()

CURDATE() CURRENT_DATE() CURRENT_TIME()

CURRENT_TIMESTAMP() CURRENT_USER() CURTIME()

DATABASE() ENCRYPT() with one parameter FOUND_ROWS()

The MySQL Query Cache

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 790

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

GET_LOCK() IS_FREE_LOCK() IS_USED_LOCK()

LAST_INSERT_ID() LOAD_FILE() MASTER_POS_WAIT()

NOW() RAND() RELEASE_ALL_LOCKS()

RELEASE_LOCK() SLEEP() SYSDATE()

UNIX_TIMESTAMP() with no
parameters

USER() UUID()

A query also is not cached under these conditions:

• It refers to user-defined functions (UDFs) or stored functions.

• It refers to user variables or local stored program variables.

• It refers to tables in the mysql or INFORMATION_SCHEMA system database.

• It is of any of the following forms:

SELECT ... LOCK IN SHARE MODE
SELECT ... FOR UPDATE
SELECT ... INTO OUTFILE ...
SELECT ... INTO DUMPFILE ...
SELECT * FROM ... WHERE autoincrement_col IS NULL

The last form is not cached because it is used as the ODBC workaround for obtaining the last insert ID
value. See the Connector/ODBC section of Chapter 20, Connectors and APIs.

Statements within transactions that use SERIALIZABLE isolation level also cannot be cached because
they use LOCK IN SHARE MODE locking.

• It was issued as a prepared statement, even if no placeholders were employed. For example, the query
used here is not cached:

char *my_sql_stmt = "SELECT a, b FROM table_c";
/* ... */
mysql_stmt_prepare(stmt, my_sql_stmt, strlen(my_sql_stmt));

See Section 20.6.8, “C API Prepared Statements”.

• It uses TEMPORARY tables.

• It does not use any tables.

• It generates warnings.

• The user has a column-level privilege for any of the involved tables.

8.10.3.2 Query Cache SELECT Options

Two query cache-related options may be specified in SELECT statements:

• SQL_CACHE

The query result is cached if it is cacheable and the value of the query_cache_type system variable is
ON or DEMAND.

•

http://dev.mysql.com/doc/refman/5.7/en/miscellaneous-functions.html#function_release-all-locks

The MySQL Query Cache

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 791

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SQL_NO_CACHE

The server does not use the query cache. It neither checks the query cache to see whether the result is
already cached, nor does it cache the query result. (Due to a limitation in the parser, a space character
must precede and follow the SQL_NO_CACHE keyword; a nonspace such as a newline causes the server
to check the query cache to see whether the result is already cached.)

Examples:

SELECT SQL_CACHE id, name FROM customer;
SELECT SQL_NO_CACHE id, name FROM customer;

8.10.3.3 Query Cache Configuration

The have_query_cache server system variable indicates whether the query cache is available:

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

When using a standard MySQL binary, this value is always YES, even if query caching is disabled.

Several other system variables control query cache operation. These can be set in an option file or on the
command line when starting mysqld. The query cache system variables all have names that begin with
query_cache_. They are described briefly in Section 5.1.4, “Server System Variables”, with additional
configuration information given here.

To set the size of the query cache, set the query_cache_size system variable. Setting it to 0 disables
the query cache. The default size is 0, so the query cache is disabled by default.

Be careful not to set the size of the cache too large. Due to the need for threads to lock the cache during
updates, you may see lock contention issues with a very large cache.

Note

When using the Windows Configuration Wizard to install or configure MySQL, the
default value for query_cache_size will be configured automatically for you
based on the different configuration types available. When using the Windows
Configuration Wizard, the query cache may be enabled (that is, set to a nonzero
value) due to the selected configuration. The query cache is also controlled by the
setting of the query_cache_type variable. You should check the values of these
variables as set in your my.ini file after configuration has taken place.

When you set query_cache_size to a nonzero value, keep in mind that the query cache needs a
minimum size of about 40KB to allocate its structures. (The exact size depends on system architecture.) If
you set the value too small, you'll get a warning, as in this example:

mysql> SET GLOBAL query_cache_size = 40000;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning

The MySQL Query Cache

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 792

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 Code: 1282
Message: Query cache failed to set size 39936;
 new query cache size is 0

mysql> SET GLOBAL query_cache_size = 41984;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| query_cache_size | 41984 |
+------------------+-------+

For the query cache to actually be able to hold any query results, its size must be set larger:

mysql> SET GLOBAL query_cache_size = 1000000;
Query OK, 0 rows affected (0.04 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+--------+
| Variable_name | Value |
+------------------+--------+
| query_cache_size | 999424 |
+------------------+--------+
1 row in set (0.00 sec)

The query_cache_size value is aligned to the nearest 1024 byte block. The value reported may
therefore be different from the value that you assign.

If the query cache size is greater than 0, the query_cache_type variable influences how it works. This
variable can be set to the following values:

• A value of 0 or OFF prevents caching or retrieval of cached results.

• A value of 1 or ON enables caching except of those statements that begin with SELECT SQL_NO_CACHE.

• A value of 2 or DEMAND causes caching of only those statements that begin with SELECT SQL_CACHE.

Setting the GLOBAL query_cache_type value determines query cache behavior for all clients that
connect after the change is made. Individual clients can control cache behavior for their own connection by
setting the SESSION query_cache_type value. For example, a client can disable use of the query cache
for its own queries like this:

mysql> SET SESSION query_cache_type = OFF;

If you set query_cache_type at server startup (rather than at runtime with a SET statement), only the
numeric values are permitted.

To control the maximum size of individual query results that can be cached, set the query_cache_limit
system variable. The default value is 1MB.

When a query is to be cached, its result (the data sent to the client) is stored in the query cache during
result retrieval. Therefore the data usually is not handled in one big chunk. The query cache allocates
blocks for storing this data on demand, so when one block is filled, a new block is allocated. Because
memory allocation operation is costly (timewise), the query cache allocates blocks with a minimum size
given by the query_cache_min_res_unit system variable. When a query is executed, the last result
block is trimmed to the actual data size so that unused memory is freed. Depending on the types of queries
your server executes, you might find it helpful to tune the value of query_cache_min_res_unit:

The MySQL Query Cache

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 793

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The default value of query_cache_min_res_unit is 4KB. This should be adequate for most cases.

• If you have a lot of queries with small results, the default block size may lead to memory fragmentation,
as indicated by a large number of free blocks. Fragmentation can force the query cache to prune
(delete) queries from the cache due to lack of memory. In this case, you should decrease the value of
query_cache_min_res_unit. The number of free blocks and queries removed due to pruning are
given by the values of the Qcache_free_blocks and Qcache_lowmem_prunes status variables.

• If most of your queries have large results (check the Qcache_total_blocks and
Qcache_queries_in_cache status variables), you can increase performance by increasing
query_cache_min_res_unit. However, be careful to not make it too large (see the previous item).

8.10.3.4 Query Cache Status and Maintenance

To check whether the query cache is present in your MySQL server, use the following statement:

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

You can defragment the query cache to better utilize its memory with the FLUSH QUERY CACHE
statement. The statement does not remove any queries from the cache.

The RESET QUERY CACHE statement removes all query results from the query cache. The FLUSH
TABLES statement also does this.

To monitor query cache performance, use SHOW STATUS to view the cache status variables:

mysql> SHOW STATUS LIKE 'Qcache%';
+-------------------------+--------+
| Variable_name | Value |
+-------------------------+--------+
Qcache_free_blocks	36
Qcache_free_memory	138488
Qcache_hits	79570
Qcache_inserts	27087
Qcache_lowmem_prunes	3114
Qcache_not_cached	22989
Qcache_queries_in_cache	415
Qcache_total_blocks	912
+-------------------------+--------+

Descriptions of each of these variables are given in Section 5.1.6, “Server Status Variables”. Some uses
for them are described here.

The total number of SELECT queries is given by this formula:

 Com_select
+ Qcache_hits
+ queries with errors found by parser

The Com_select value is given by this formula:

 Qcache_inserts
+ Qcache_not_cached

Optimizing Locking Operations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 794

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+ queries with errors found during the column-privileges check

The query cache uses variable-length blocks, so Qcache_total_blocks and Qcache_free_blocks
may indicate query cache memory fragmentation. After FLUSH QUERY CACHE, only a single free block
remains.

Every cached query requires a minimum of two blocks (one for the query text and one or more for the
query results). Also, every table that is used by a query requires one block. However, if two or more
queries use the same table, only one table block needs to be allocated.

The information provided by the Qcache_lowmem_prunes status variable can help you tune the query
cache size. It counts the number of queries that have been removed from the cache to free up memory for
caching new queries. The query cache uses a least recently used (LRU) strategy to decide which queries
to remove from the cache. Tuning information is given in Section 8.10.3.3, “Query Cache Configuration”.

8.11 Optimizing Locking Operations
When your database is busy with multiple sessions reading and writing data, the mechanism that controls
access to data files and memory areas can become a consideration for performance tuning. Otherwise,
sessions can spend time waiting for access to resources when they could be running concurrently.

MySQL manages contention for table contents using locking:

• Internal locking is performed within the MySQL server itself to manage contention for table contents
by multiple threads. This type of locking is internal because it is performed entirely by the server and
involves no other programs. See Section 8.11.1, “Internal Locking Methods”.

• External locking occurs when the server and other programs lock MyISAM table files to coordinate
among themselves which program can access the tables at which time. See Section 8.11.4, “External
Locking”.

8.11.1 Internal Locking Methods

This section discusses internal locking; that is, locking performed within the MySQL server itself to manage
contention for table contents by multiple sessions. This type of locking is internal because it is performed
entirely by the server and involves no other programs. External locking occurs when the server and other
programs lock MyISAM table files to coordinate among themselves which program can access the tables at
which time. See Section 8.11.4, “External Locking”.

MySQL uses table-level locking for MyISAM, MEMORY and MERGE tables, page-level locking for BDB tables,
and row-level locking for InnoDB tables.

In many cases, you can make an educated guess about which locking type is best for an application,
but generally it is difficult to say that a given lock type is better than another. Everything depends on the
application and different parts of an application may require different lock types.

To decide whether you want to use a storage engine with row-level locking, you should look at what
your application does and what mix of select and update statements it uses. For example, most Web
applications perform many selects, relatively few deletes, updates based mainly on key values, and inserts
into a few specific tables. The base MySQL MyISAM setup is very well tuned for this.

Table locking in MySQL is deadlock-free for storage engines that use table-level locking. Deadlock
avoidance is managed by always requesting all needed locks at once at the beginning of a query and
always locking the tables in the same order.

MySQL grants table write locks as follows:

Internal Locking Methods

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 795

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

1. If there are no locks on the table, put a write lock on it.

2. Otherwise, put the lock request in the write lock queue.

MySQL grants table read locks as follows:

1. If there are no write locks on the table, put a read lock on it.

2. Otherwise, put the lock request in the read lock queue.

Table updates are given higher priority than table retrievals. Therefore, when a lock is released, the lock
is made available to the requests in the write lock queue and then to the requests in the read lock queue.
This ensures that updates to a table are not “starved” even when there is heavy SELECT activity for the
table. However, if there are many updates for a table, SELECT statements wait until there are no more
updates.

For information on altering the priority of reads and writes, see Section 8.11.2, “Table Locking Issues”.

You can analyze the table lock contention on your system by checking the Table_locks_immediate
and Table_locks_waited status variables, which indicate the number of times that requests for table
locks could be granted immediately and the number that had to wait, respectively:

mysql> SHOW STATUS LIKE 'Table%';
+-----------------------+---------+
| Variable_name | Value |
+-----------------------+---------+
| Table_locks_immediate | 1151552 |
| Table_locks_waited | 15324 |
+-----------------------+---------+

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and
writers for a given table: If a MyISAM table has no free blocks in the middle of the data file, rows are
always inserted at the end of the data file. In this case, you can freely mix concurrent INSERT and
SELECT statements for a MyISAM table without locks. That is, you can insert rows into a MyISAM table
at the same time other clients are reading from it. Holes can result from rows having been deleted
from or updated in the middle of the table. If there are holes, concurrent inserts are disabled but are
enabled again automatically when all holes have been filled with new data. This behavior is altered by the
concurrent_insert system variable. See Section 8.11.3, “Concurrent Inserts”.

If you acquire a table lock explicitly with LOCK TABLES, you can request a READ LOCAL lock rather than a
READ lock to enable other sessions to perform concurrent inserts while you have the table locked.

To perform many INSERT and SELECT operations on a table t1 when concurrent inserts are not possible,
you can insert rows into a temporary table temp_t1 and update the real table with the rows from the
temporary table:

mysql> LOCK TABLES t1 WRITE, temp_t1 WRITE;
mysql> INSERT INTO t1 SELECT * FROM temp_t1;
mysql> DELETE FROM temp_t1;
mysql> UNLOCK TABLES;

InnoDB uses row locks and BDB uses page locks. Deadlocks are possible for these storage engines
because they automatically acquire locks during the processing of SQL statements, not at the start of the
transaction.

Advantages of row-level locking:

Table Locking Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 796

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Fewer lock conflicts when different sessions access different rows

• Fewer changes for rollbacks

• Possible to lock a single row for a long time

Disadvantages of row-level locking:

• Requires more memory than page-level or table-level locks

• Slower than page-level or table-level locks when used on a large part of the table because you must
acquire many more locks

• Slower than other locks if you often do GROUP BY operations on a large part of the data or if you must
scan the entire table frequently

Generally, table locks are superior to page-level or row-level locks in the following cases:

• Most statements for the table are reads

• Statements for the table are a mix of reads and writes, where writes are updates or deletes for a single
row that can be fetched with one key read:

UPDATE tbl_name SET column=value WHERE unique_key_col=key_value;
DELETE FROM tbl_name WHERE unique_key_col=key_value;

• SELECT combined with concurrent INSERT statements, and very few UPDATE or DELETE statements

• Many scans or GROUP BY operations on the entire table without any writers

With higher-level locks, you can more easily tune applications by supporting locks of different types,
because the lock overhead is less than for row-level locks.

Options other than row-level or page-level locking:

• Versioning (such as that used in MySQL for concurrent inserts) where it is possible to have one writer at
the same time as many readers. This means that the database or table supports different views for the
data depending on when access begins. Other common terms for this are “time travel,” “copy on write,”
or “copy on demand.”

• Copy on demand is in many cases superior to page-level or row-level locking. However, in the worst
case, it can use much more memory than using normal locks.

• Instead of using row-level locks, you can employ application-level locks, such as those provided by
GET_LOCK() and RELEASE_LOCK() in MySQL. These are advisory locks, so they work only with
applications that cooperate with each other. See Section 12.15, “Miscellaneous Functions”.

8.11.2 Table Locking Issues

To achieve a very high lock speed, MySQL uses table locking (instead of page, row, or column locking) for
all storage engines except InnoDB, BDB, and NDB.

For InnoDB and BDB tables, MySQL uses table locking only if you explicitly lock the table with LOCK
TABLES. For these storage engines, avoid using LOCK TABLES at all, because InnoDB uses automatic
row-level locking and BDB uses page-level locking to ensure transaction isolation.

For large tables, table locking is often better than row locking, but there are some disadvantages:

Table Locking Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 797

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Table locking enables many sessions to read from a table at the same time, but if a session wants to
write to a table, it must first get exclusive access. During the update, all other sessions that want to
access this particular table must wait until the update is done.

• Table locking causes problems in cases such as when a session is waiting because the disk is full and
free space needs to become available before the session can proceed. In this case, all sessions that
want to access the problem table are also put in a waiting state until more disk space is made available.

Table locking is also disadvantageous under the following scenario:

• A session issues a SELECT that takes a long time to run.

• Another session then issues an UPDATE on the same table. This session waits until the SELECT is
finished.

• Another session issues another SELECT statement on the same table. Because UPDATE has higher
priority than SELECT, this SELECT waits for the UPDATE to finish, after waiting for the first SELECT to
finish.

The following items describe some ways to avoid or reduce contention caused by table locking:

• Try to get the SELECT statements to run faster so that they lock tables for a shorter time. You might have
to create some summary tables to do this.

• Start mysqld with --low-priority-updates. For storage engines that use only table-level locking
(such as MyISAM, MEMORY, and MERGE), this gives all statements that update (modify) a table lower
priority than SELECT statements. In this case, the second SELECT statement in the preceding scenario
would execute before the UPDATE statement, and would not need to wait for the first SELECT to finish.

• To specify that all updates issued in a specific connection should be done with low priority, set the
low_priority_updates server system variable equal to 1.

• To give a specific INSERT, UPDATE, or DELETE statement lower priority, use the LOW_PRIORITY
attribute.

• To give a specific SELECT statement higher priority, use the HIGH_PRIORITY attribute. See
Section 13.2.8, “SELECT Syntax”.

• Start mysqld with a low value for the max_write_lock_count system variable to force MySQL to
temporarily elevate the priority of all SELECT statements that are waiting for a table after a specific
number of inserts to the table occur. This permits READ locks after a certain number of WRITE locks.

• If you have problems with INSERT combined with SELECT, consider switching to MyISAM tables, which
support concurrent SELECT and INSERT statements. (See Section 8.11.3, “Concurrent Inserts”.)

• If you mix inserts and deletes on the same table, INSERT DELAYED may be of great help. See
Section 13.2.5.2, “INSERT DELAYED Syntax”.

• If you have problems with mixed SELECT and DELETE statements, the LIMIT option to DELETE may
help. See Section 13.2.2, “DELETE Syntax”.

• Using SQL_BUFFER_RESULT with SELECT statements can help to make the duration of table locks
shorter. See Section 13.2.8, “SELECT Syntax”.

• You could change the locking code in mysys/thr_lock.c to use a single queue. In this case, write
locks and read locks would have the same priority, which might help some applications.

Here are some tips concerning table locks in MySQL:

Concurrent Inserts

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 798

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Concurrent users are not a problem if you do not mix updates with selects that need to examine many
rows in the same table.

• You can use LOCK TABLES to increase speed, because many updates within a single lock is much
faster than updating without locks. Splitting table contents into separate tables may also help.

• If you encounter speed problems with table locks in MySQL, you may be able to improve performance
by converting some of your tables to InnoDB or BDB tables. See Section 14.2, “The InnoDB Storage
Engine”, and Section 14.5, “The BDB (BerkeleyDB) Storage Engine”.

8.11.3 Concurrent Inserts

The MyISAM storage engine supports concurrent inserts to reduce contention between readers and writers
for a given table: If a MyISAM table has no holes in the data file (deleted rows in the middle), an INSERT
statement can be executed to add rows to the end of the table at the same time that SELECT statements
are reading rows from the table. If there are multiple INSERT statements, they are queued and performed
in sequence, concurrently with the SELECT statements. The results of a concurrent INSERT may not be
visible immediately.

The concurrent_insert system variable can be set to modify the concurrent-insert processing.
By default, the variable is set to 1 and concurrent inserts are handled as just described. If
concurrent_insert is set to 0, concurrent inserts are disabled. If the variable is set to 2, concurrent
inserts at the end of the table are permitted even for tables that have deleted rows. See also the
description of the concurrent_insert system variable.

Under circumstances where concurrent inserts can be used, there is seldom any need to use the DELAYED
modifier for INSERT statements. See Section 13.2.5.2, “INSERT DELAYED Syntax”.

If you are using the binary log, concurrent inserts are converted to normal inserts for CREATE ...
SELECT or INSERT ... SELECT statements. This is done to ensure that you can re-create an exact
copy of your tables by applying the log during a backup operation. See Section 5.4.3, “The Binary Log”. In
addition, for those statements a read lock is placed on the selected-from table such that inserts into that
table are blocked. The effect is that concurrent inserts for that table must wait as well.

With LOAD DATA INFILE, if you specify CONCURRENT with a MyISAM table that satisfies the condition for
concurrent inserts (that is, it contains no free blocks in the middle), other sessions can retrieve data from
the table while LOAD DATA is executing. Use of the CONCURRENT option affects the performance of LOAD
DATA a bit, even if no other session is using the table at the same time.

If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option if the
server was started with that option. It also causes concurrent inserts not to be used.

For LOCK TABLE, the difference between READ LOCAL and READ is that READ LOCAL permits
nonconflicting INSERT statements (concurrent inserts) to execute while the lock is held. However, this
cannot be used if you are going to manipulate the database using processes external to the server while
you hold the lock.

8.11.4 External Locking

External locking is the use of file system locking to manage contention for MyISAM database tables by
multiple processes. External locking is used in situations where a single process such as the MySQL
server cannot be assumed to be the only process that requires access to tables. Here are some examples:

• If you run multiple servers that use the same database directory (not recommended), each server must
have external locking enabled.

Optimizing the MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 799

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• If you use myisamchk to perform table maintenance operations on MyISAM tables, you must either
ensure that the server is not running, or that the server has external locking enabled so that it locks table
files as necessary to coordinate with myisamchk for access to the tables. The same is true for use of
myisampack to pack MyISAM tables.

If the server is run with external locking enabled, you can use myisamchk at any time for read
operations such a checking tables. In this case, if the server tries to update a table that myisamchk is
using, the server will wait for myisamchk to finish before it continues.

If you use myisamchk for write operations such as repairing or optimizing tables, or if you use
myisampack to pack tables, you must always ensure that the mysqld server is not using the table.
If you do not stop mysqld, you should at least do a mysqladmin flush-tables before you run
myisamchk. Your tables may become corrupted if the server and myisamchk access the tables
simultaneously.

With external locking in effect, each process that requires access to a table acquires a file system lock for
the table files before proceeding to access the table. If all necessary locks cannot be acquired, the process
is blocked from accessing the table until the locks can be obtained (after the process that currently holds
the locks releases them).

External locking affects server performance because the server must sometimes wait for other processes
before it can access tables.

External locking is unnecessary if you run a single server to access a given data directory (which is the
usual case) and if no other programs such as myisamchk need to modify tables while the server is
running. If you only read tables with other programs, external locking is not required, although myisamchk
might report warnings if the server changes tables while myisamchk is reading them.

With external locking disabled, to use myisamchk, you must either stop the server while myisamchk
executes or else lock and flush the tables before running myisamchk. (See Section 8.12.1, “System
Factors and Startup Parameter Tuning”.) To avoid this requirement, use the CHECK TABLE and REPAIR
TABLE statements to check and repair MyISAM tables.

For mysqld, external locking is controlled by the value of the skip_external_locking system variable.
When this variable is enabled, external locking is disabled, and vice versa. External locking is disabled by
default.

Use of external locking can be controlled at server startup by using the --external-locking or --
skip-external-locking option.

If you do use external locking option to enable updates to MyISAM tables from many MySQL processes,
you must ensure that the following conditions are satisfied:

• You should not use the query cache for queries that use tables that are updated by another process.

• You should not start the server with the --delay-key-write=ALL option or use the
DELAY_KEY_WRITE=1 table option for any shared tables. Otherwise, index corruption can occur.

The easiest way to satisfy these conditions is to always use --external-locking together with --
delay-key-write=OFF and --query-cache-size=0. (This is not done by default because in many
setups it is useful to have a mixture of the preceding options.)

8.12 Optimizing the MySQL Server

8.12.1 System Factors and Startup Parameter Tuning

Tuning Server Parameters

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 800

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

We start with system-level factors, because some of these decisions must be made very early to achieve
large performance gains. In other cases, a quick look at this section may suffice. However, it is always nice
to have a sense of how much can be gained by changing factors that apply at this level.

Before using MySQL in production, we advise you to test it on your intended platform.

Other tips:

• If you have enough RAM, you could remove all swap devices. Some operating systems use a swap
device in some contexts even if you have free memory.

• Avoid external locking for MyISAM tables. The default is for external locking to be disabled. The --
external-locking and --skip-external-locking options explicitly enable and disable external
locking.

Disabling external locking does not affect MySQL's functionality as long as you run only one server. Just
remember to take down the server (or lock and flush the relevant tables) before you run myisamchk. On
some systems it is mandatory to disable external locking because it does not work, anyway.

The only case in which you cannot disable external locking is when you run multiple MySQL servers
(not clients) on the same data, or if you run myisamchk to check (not repair) a table without telling the
server to flush and lock the tables first. Note that using multiple MySQL servers to access the same data
concurrently is generally not recommended, except when using MySQL Cluster.

The LOCK TABLES and UNLOCK TABLES statements use internal locking, so you can use them even if
external locking is disabled.

8.12.2 Tuning Server Parameters

You can determine the default buffer sizes used by the mysqld server using this command:

shell> mysqld --verbose --help

This command produces a list of all mysqld options and configurable system variables. The output
includes the default variable values and looks something like this:

help TRUE
abort-slave-event-count 0
allow-suspicious-udfs FALSE
auto-increment-increment 1
auto-increment-offset 1
automatic-sp-privileges TRUE
basedir /home/jon/bin/mysql-5.0/
...
tmpdir (No default value)
transaction_alloc_block_size 8192
transaction_prealloc_size 4096
updatable_views_with_limit 1
use-symbolic-links TRUE
verbose TRUE
wait_timeout 28800
warnings 1

For a mysqld server that is currently running, you can see the current values of its system variables by
connecting to it and issuing this statement:

Tuning Server Parameters

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 801

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SHOW VARIABLES;

You can also see some statistical and status indicators for a running server by issuing this statement:

mysql> SHOW STATUS;

System variable and status information also can be obtained using mysqladmin:

shell> mysqladmin variables
shell> mysqladmin extended-status

For a full description of all system and status variables, see Section 5.1.4, “Server System Variables”, and
Section 5.1.6, “Server Status Variables”.

MySQL uses algorithms that are very scalable, so you can usually run with very little memory. However,
normally better performance results from giving MySQL more memory.

When tuning a MySQL server, the two most important variables to configure are key_buffer_size
and table_cache. You should first feel confident that you have these set appropriately before trying to
change any other variables.

The following examples indicate some typical variable values for different runtime configurations.

• If you have at least 1-2GB of memory and many tables and want maximum performance with a
moderate number of clients, use something like this:

shell> mysqld_safe --key_buffer_size=384M --table_open_cache=4000 \
 --sort_buffer_size=4M --read_buffer_size=1M &

• If you have only 256MB of memory and only a few tables, but you still do a lot of sorting, you can use
something like this:

shell> mysqld_safe --key_buffer_size=64M --sort_buffer_size=1M

If there are very many simultaneous connections, swapping problems may occur unless mysqld has
been configured to use very little memory for each connection. mysqld performs better if you have
enough memory for all connections.

• With little memory and lots of connections, use something like this:

shell> mysqld_safe --key_buffer_size=512K --sort_buffer_size=100K \
 --read_buffer_size=100K &

Or even this:

shell> mysqld_safe --key_buffer_size=512K --sort_buffer_size=16K \
 --table_cache=32 --read_buffer_size=8K \
 --net_buffer_length=1K &

If you are performing GROUP BY or ORDER BY operations on tables that are much larger than your
available memory, increase the value of read_rnd_buffer_size to speed up the reading of rows
following sorting operations.

You can make use of the example option files included with your MySQL distribution; see Section 5.1.2,
“Server Configuration Defaults”.

Optimizing Disk I/O

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 802

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you specify an option on the command line for mysqld or mysqld_safe, it remains in effect only for that
invocation of the server. To use the option every time the server runs, put it in an option file.

To see the effects of a parameter change, do something like this:

shell> mysqld --key_buffer_size=128M --verbose --help

The variable values are listed near the end of the output. Make sure that the --verbose and --help
options are last. Otherwise, the effect of any options listed after them on the command line are not
reflected in the output.

For information on tuning the InnoDB storage engine, see Section 8.6, “Optimizing for InnoDB Tables”.

8.12.3 Optimizing Disk I/O

This section describes ways to configure storage devices when you can devote more and faster storage
hardware to the database server.

• Disk seeks are a huge performance bottleneck. This problem becomes more apparent when the amount
of data starts to grow so large that effective caching becomes impossible. For large databases where
you access data more or less randomly, you can be sure that you need at least one disk seek to read
and a couple of disk seeks to write things. To minimize this problem, use disks with low seek times.

• Increase the number of available disk spindles (and thereby reduce the seek overhead) by either
symlinking files to different disks or striping the disks:

• Using symbolic links

This means that, for MyISAM tables, you symlink the index file and data files from their usual location
in the data directory to another disk (that may also be striped). This makes both the seek and read
times better, assuming that the disk is not used for other purposes as well. See Section 8.12.4, “Using
Symbolic Links”.

• Striping

Striping means that you have many disks and put the first block on the first disk, the second block
on the second disk, and the N-th block on the (N MOD number_of_disks) disk, and so on. This
means if your normal data size is less than the stripe size (or perfectly aligned), you get much better
performance. Striping is very dependent on the operating system and the stripe size, so benchmark
your application with different stripe sizes. See Section 8.13.3, “Using Your Own Benchmarks”.

The speed difference for striping is very dependent on the parameters. Depending on how you set the
striping parameters and number of disks, you may get differences measured in orders of magnitude.
You have to choose to optimize for random or sequential access.

• For reliability, you may want to use RAID 0+1 (striping plus mirroring), but in this case, you need 2 × N
drives to hold N drives of data. This is probably the best option if you have the money for it. However,
you may also have to invest in some volume-management software to handle it efficiently.

• A good option is to vary the RAID level according to how critical a type of data is. For example, store
semi-important data that can be regenerated on a RAID 0 disk, but store really important data such as
host information and logs on a RAID 0+1 or RAID N disk. RAID N can be a problem if you have many
writes, due to the time required to update the parity bits.

• On Linux, you can get much better performance by using hdparm to configure your disk's interface. (Up
to 100% under load is not uncommon.) The following hdparm options should be quite good for MySQL,
and probably for many other applications:

Using Symbolic Links

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 803

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

hdparm -m 16 -d 1

Performance and reliability when using this command depend on your hardware, so we strongly suggest
that you test your system thoroughly after using hdparm. Please consult the hdparm manual page for
more information. If hdparm is not used wisely, file system corruption may result, so back up everything
before experimenting!

• You can also set the parameters for the file system that the database uses:

If you do not need to know when files were last accessed (which is not really useful on a database
server), you can mount your file systems with the -o noatime option. That skips updates to the last
access time in inodes on the file system, which avoids some disk seeks.

On many operating systems, you can set a file system to be updated asynchronously by mounting it with
the -o async option. If your computer is reasonably stable, this should give you better performance
without sacrificing too much reliability. (This flag is on by default on Linux.)

8.12.4 Using Symbolic Links

You can move databases or tables from the database directory to other locations and replace them with
symbolic links to the new locations. You might want to do this, for example, to move a database to a file
system with more free space or increase the speed of your system by spreading your tables to different
disks.

The recommended way to do this is to symlink entire database directories to a different disk. Symlink
MyISAM tables only as a last resort.

To determine the location of your data directory, use this statement:

SHOW VARIABLES LIKE 'datadir';

8.12.4.1 Using Symbolic Links for Databases on Unix

On Unix, the way to symlink a database is first to create a directory on some disk where you have free
space and then to create a soft link to it from the MySQL data directory.

shell> mkdir /dr1/databases/test
shell> ln -s /dr1/databases/test /path/to/datadir

MySQL does not support linking one directory to multiple databases. Replacing a database directory with
a symbolic link works as long as you do not make a symbolic link between databases. Suppose that you
have a database db1 under the MySQL data directory, and then make a symlink db2 that points to db1:

shell> cd /path/to/datadir
shell> ln -s db1 db2

The result is that, or any table tbl_a in db1, there also appears to be a table tbl_a in db2. If one client
updates db1.tbl_a and another client updates db2.tbl_a, problems are likely to occur.

8.12.4.2 Using Symbolic Links for MyISAM Tables on Unix

Symlinks are fully supported only for MyISAM tables. For files used by tables for other storage engines, you
may get strange problems if you try to use symbolic links.

Using Symbolic Links

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 804

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Do not symlink tables on systems that do not have a fully operational realpath() call. (Linux and Solaris
support realpath()). To determine whether your system supports symbolic links, check the value of the
have_symlink system variable using this statement:

SHOW VARIABLES LIKE 'have_symlink';

The handling of symbolic links for MyISAM tables works as follows:

• In the data directory, you always have the table format (.frm) file, the data (.MYD) file, and the index
(.MYI) file. The data file and index file can be moved elsewhere and replaced in the data directory by
symlinks. The format file cannot.

• You can symlink the data file and the index file independently to different directories.

• To instruct a running MySQL server to perform the symlinking, use the DATA DIRECTORY and INDEX
DIRECTORY options to CREATE TABLE. See Section 13.1.10, “CREATE TABLE Syntax”. Alternatively, if
mysqld is not running, symlinking can be accomplished manually using ln -s from the command line.

Note

Beginning with MySQL 5.0.60, the path used with either or both of the DATA
DIRECTORY and INDEX DIRECTORY options may not include the MySQL data
directory. (Bug #32167)

• myisamchk does not replace a symlink with the data file or index file. It works directly on the file to
which the symlink points. Any temporary files are created in the directory where the data file or index file
is located. The same is true for the ALTER TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements.

• Note

When you drop a table that is using symlinks, both the symlink and the file to
which the symlink points are dropped. This is an extremely good reason not to
run mysqld as the system root or permit system users to have write access to
MySQL database directories.

• If you rename a table with ALTER TABLE ... RENAME or RENAME TABLE and you do not move the
table to another database, the symlinks in the database directory are renamed to the new names and the
data file and index file are renamed accordingly.

• If you use ALTER TABLE ... RENAME or RENAME TABLE to move a table to another database,
the table is moved to the other database directory. If the table name changed, the symlinks in the
new database directory are renamed to the new names and the data file and index file are renamed
accordingly.

• If you are not using symlinks, start mysqld with the --skip-symbolic-links option to ensure that no
one can use mysqld to drop or rename a file outside of the data directory.

These table symlink operations are not supported:

• ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

• BACKUP TABLE and RESTORE TABLE do not respect symbolic links.

• As indicated previously, only the data and index files can be symbolic links. The .frm file must never
be a symbolic link. Attempting to do this (for example, to make one table name a synonym for another)
produces incorrect results. Suppose that you have a database db1 under the MySQL data directory, a
table tbl1 in this database, and in the db1 directory you make a symlink tbl2 that points to tbl1:

Using Symbolic Links

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 805

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> cd /path/to/datadir/db1
shell> ln -s tbl1.frm tbl2.frm
shell> ln -s tbl1.MYD tbl2.MYD
shell> ln -s tbl1.MYI tbl2.MYI

Problems result if one thread reads db1.tbl1 and another thread updates db1.tbl2:

• The query cache is “fooled” (it has no way of knowing that tbl1 has not been updated, so it returns
outdated results).

• ALTER statements on tbl2 fail.

8.12.4.3 Using Symbolic Links for Databases on Windows

On Windows, symbolic links can be used for database directories. This enables you to put a database
directory at a different location (for example, on a different disk) by setting up a symbolic link to it. Use of
database symlinks on Windows is similar to their use on Unix, although the procedure for setting up the link
differs.

Suppose that you want to place the database directory for a database named mydb at D:\data\mydb. To
do this, create a symbolic link in the MySQL data directory that points to D:\data\mydb. However, before
creating the symbolic link, make sure that the D:\data\mydb directory exists by creating it if necessary. If
you already have a database directory named mydb in the data directory, move it to D:\data. Otherwise,
the symbolic link will be ineffective. To avoid problems, make sure that the server is not running when you
move the database directory.

On Windows, create a symbolic link to a MySQL database by creating a .sym file in the data directory that
contains the path to the destination directory. The file should be named db_name.sym, where db_name is
the database name.

Support for database symbolic links on Windows using .sym files is enabled by default. If you do not
need .sym file symbolic links, you can disable support for them by starting mysqld with the --skip-
symbolic-links option. To determine whether your system supports .sym file symbolic links, check the
value of the have_symlink system variable using this statement:

SHOW VARIABLES LIKE 'have_symlink';

To create a .sym file symlink, use this procedure:

1. Change location into the data directory:

C:\> cd \path\to\datadir

2. In the data directory, create a text file named mydb.sym that contains this path name: D:\data\mydb
\

Note

The path name to the new database and tables should be absolute. If you
specify a relative path, the location will be relative to the mydb.sym file.

After this, all tables created in the database mydb are created in D:\data\mydb.

The following limitations apply to the use of .sym files for database symbolic linking on Windows:

Optimizing Memory Use

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 806

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The symbolic link is not used if a directory with the same name as the database exists in the MySQL
data directory.

• The --innodb_file_per_table option cannot be used.

• If you run mysqld as a service, you cannot use a mapped drive to a remote server as the destination of
the symbolic link. As a workaround, you can use the full path (\\servername\path\).

8.12.5 Optimizing Memory Use

8.12.5.1 How MySQL Uses Memory

MySQL allocates buffers and caches to improve performance of database operations. You can improve
MySQL performance by increasing the values of certain cache and buffer-related system variables. You
can also modify these variables to run MySQL on systems with limited memory.

The following list describes some of the ways that MySQL uses memory. Where applicable, relevant
system variables are referenced. Some items are storage engine specific.

• The InnoDB buffer pool is a memory area that holds cached InnoDB data for tables, indexes, and other
auxiliary buffers. For efficiency of high-volume read operations, the buffer pool is divided into pages that
can potentially hold multiple rows. For efficiency of cache management, the buffer pool is implemented
as a linked list of pages; data that is rarely used is aged out of the cache, using a variation of the LRU
algorithm. For more information, see Section 8.10.2, “The InnoDB Buffer Pool”.

The size of the buffer pool is important for system performance.

• Typically, it is recommended that innodb_buffer_pool_size is configured to 50 to 75 percent of
system memory.

• InnoDB allocates memory for the entire buffer pool at server startup. Memory allocation is performed
by malloc() operations. Buffer pool size is defined by the innodb_buffer_pool_size
configuration option.

• On systems with a large amount of memory, you can improve concurrency by dividing the buffer
pool into multiple buffer pool instances. The number of buffer pool instances is controlled by
innodb_buffer_pool_instances.

• A buffer pool that is too small may cause excessive churning as pages are flushed from the buffer pool
only to be required again a short time later.

• A buffer pool that is too large may cause swapping due to competition for memory.

• All threads share the MyISAM key buffer; its size is determined by the key_buffer_size variable.
Other buffers used by the server are allocated as needed. See Section 8.12.2, “Tuning Server
Parameters”.

For each MyISAM table that is opened, the index file is opened once; the data file is opened once for
each concurrently running thread. For each concurrent thread, a table structure, column structures
for each column, and a buffer of size 3 * N are allocated (where N is the maximum row length, not
counting BLOB columns). A BLOB column requires five to eight bytes plus the length of the BLOB data.
The MyISAM storage engine maintains one extra row buffer for internal use.

• Each thread that is used to manage client connections uses some thread-specific space. The following
list indicates these and which variables control their size:

• A stack (variable thread_stack)

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_page
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_lru
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_buffer_pool_instance
http://dev.mysql.com/doc/refman/5.5/en/innodb-parameters.html#sysvar_innodb_buffer_pool_instances

Optimizing Memory Use

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 807

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• A connection buffer (variable net_buffer_length)

• A result buffer (variable net_buffer_length)

The connection buffer and result buffer each begin with a size equal to net_buffer_length bytes,
but are dynamically enlarged up to max_allowed_packet bytes as needed. The result buffer shrinks
to net_buffer_length bytes after each SQL statement. While a statement is running, a copy of the
current statement string is also allocated.

• All threads share the same base memory.

• When a thread is no longer needed, the memory allocated to it is released and returned to the system
unless the thread goes back into the thread cache. In that case, the memory remains allocated.

• Only compressed MyISAM tables are memory mapped. This is because the 32-bit memory space of
4GB is not large enough for most big tables. When systems with a 64-bit address space become more
common, we may add general support for memory mapping.

• Each request that performs a sequential scan of a table allocates a read buffer (variable
read_buffer_size).

• When reading rows in an arbitrary sequence (for example, following a sort), a random-read buffer
(variable read_rnd_buffer_size) may be allocated to avoid disk seeks.

• All joins are executed in a single pass, and most joins can be done without even using a temporary
table. Most temporary tables are memory-based hash tables. Temporary tables with a large row length
(calculated as the sum of all column lengths) or that contain BLOB columns are stored on disk.

If an internal in-memory temporary table becomes too large, MySQL handles this automatically by
changing the table from in-memory to on-disk format, to be handled by the MyISAM storage engine. You
can increase the permissible temporary table size as described in Section 8.4.4, “Internal Temporary
Table Use in MySQL”.

• Most requests that perform a sort allocate a sort buffer and zero to two temporary files depending on the
result set size. See Section B.5.3.5, “Where MySQL Stores Temporary Files”.

• Almost all parsing and calculating is done in thread-local and reusable memory pools. No memory
overhead is needed for small items, so the normal slow memory allocation and freeing is avoided.
Memory is allocated only for unexpectedly large strings.

• For each table having BLOB columns, a buffer is enlarged dynamically to read in larger BLOB values. If
you scan a table, a buffer as large as the largest BLOB value is allocated.

• MySQL requires memory and descriptors for the table cache. Handler structures for all in-use tables
are saved in the table cache and managed as “First In, First Out” (FIFO). The initial table cache size is
defined by the table_cache system variable; see Section 8.4.3.1, “How MySQL Opens and Closes
Tables”.

• A FLUSH TABLES statement or mysqladmin flush-tables command closes all tables that are not
in use at once and marks all in-use tables to be closed when the currently executing thread finishes. This
effectively frees most in-use memory. FLUSH TABLES does not return until all tables have been closed.

• The server caches information in memory as a result of GRANT and CREATE USER statements. This
memory is not released by the corresponding REVOKE and DROP USER statements, so for a server that
executes many instances of the statements that cause caching, there will be an increase in memory use.
This cached memory can be freed with FLUSH PRIVILEGES.

Optimizing Memory Use

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 808

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ps and other system status programs may report that mysqld uses a lot of memory. This may be caused
by thread stacks on different memory addresses. For example, the Solaris version of ps counts the unused
memory between stacks as used memory. To verify this, check available swap with swap -s. We test
mysqld with several memory-leakage detectors (both commercial and Open Source), so there should be
no memory leaks.

8.12.5.2 Enabling Large Page Support

Some hardware/operating system architectures support memory pages greater than the default (usually
4KB). The actual implementation of this support depends on the underlying hardware and operating
system. Applications that perform a lot of memory accesses may obtain performance improvements by
using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

In MySQL, large pages can be used by InnoDB, to allocate memory for its buffer pool and additional
memory pool.

MySQL supports only the Linux implementation of large page support (which is called HugeTLB in Linux).

Before large pages can be used on Linux, the kernel must be enabled to support them and it is necessary
to configure the HugeTLB memory pool. For reference, the HugeTBL API is documented in the
Documentation/vm/hugetlbpage.txt file of your Linux sources.

The kernel for some recent systems such as Red Hat Enterprise Linux appear to have the large pages
feature enabled by default. To check whether this is true for your kernel, use the following command and
look for output lines containing “huge”:

shell> cat /proc/meminfo | grep -i huge
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 4096 kB

The nonempty command output indicates that large page support is present, but the zero values indicate
that no pages are configured for use.

If your kernel needs to be reconfigured to support large pages, consult the hugetlbpage.txt file for
instructions.

Assuming that your Linux kernel has large page support enabled, configure it for use by MySQL using
the following commands. Normally, you put these in an rc file or equivalent startup file that is executed
during the system boot sequence, so that the commands execute each time the system starts. The
commands should execute early in the boot sequence, before the MySQL server starts. Be sure to change
the allocation numbers and the group number as appropriate for your system.

Set the number of pages to be used.
Each page is normally 2MB, so a value of 20 = 40MB.
This command actually allocates memory, so this much
memory must be available.
echo 20 > /proc/sys/vm/nr_hugepages

Set the group number that is permitted to access this
memory (102 in this case). The mysql user must be a
member of this group.
echo 102 > /proc/sys/vm/hugetlb_shm_group

Increase the amount of shmem permitted per segment

Optimizing Network Use

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 809

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

(12G in this case).
echo 1560281088 > /proc/sys/kernel/shmmax

Increase total amount of shared memory. The value
is the number of pages. At 4KB/page, 4194304 = 16GB.
echo 4194304 > /proc/sys/kernel/shmall

For MySQL usage, you normally want the value of shmmax to be close to the value of shmall.

To verify the large page configuration, check /proc/meminfo again as described previously. Now you
should see some nonzero values:

shell> cat /proc/meminfo | grep -i huge
HugePages_Total: 20
HugePages_Free: 20
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 4096 kB

The final step to make use of the hugetlb_shm_group is to give the mysql user an “unlimited” value for
the memlock limit. This can by done either by editing /etc/security/limits.conf or by adding the
following command to your mysqld_safe script:

ulimit -l unlimited

Adding the ulimit command to mysqld_safe causes the root user to set the memlock limit to
unlimited before switching to the mysql user. (This assumes that mysqld_safe is started by root.)

Large page support in MySQL is disabled by default. To enable it, start the server with the --large-
pages option. For example, you can use the following lines in your server's my.cnf file:

[mysqld]
large-pages

With this option, InnoDB uses large pages automatically for its buffer pool and additional memory pool.
If InnoDB cannot do this, it falls back to use of traditional memory and writes a warning to the error log:
Warning: Using conventional memory pool

To verify that large pages are being used, check /proc/meminfo again:

shell> cat /proc/meminfo | grep -i huge
HugePages_Total: 20
HugePages_Free: 20
HugePages_Rsvd: 2
HugePages_Surp: 0
Hugepagesize: 4096 kB

8.12.6 Optimizing Network Use

8.12.6.1 How MySQL Uses Threads for Client Connections

Connection manager threads handle client connection requests on the network interfaces that the server
listens to. On all platforms, one manager thread handles TCP/IP connection requests. On Unix, this
manager thread also handles Unix socket file connection requests. On Windows, a manager thread
handles shared-memory connection requests, and another handles named-pipe connection requests.

Optimizing Network Use

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 810

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The server does not create threads to handle interfaces that it does not listen to. For example, a Windows
server that does not have support for named-pipe connections enabled does not create a thread to handle
them.

Connection manager threads associate each client connection with a thread dedicated to it that handles
authentication and request processing for that connection. Manager threads create a new thread when
necessary but try to avoid doing so by consulting the thread cache first to see whether it contains a thread
that can be used for the connection. When a connection ends, its thread is returned to the thread cache if
the cache is not full.

In this connection thread model, there are as many threads as there are clients currently connected, which
has some disadvantages when server workload must scale to handle large numbers of connections.
For example, thread creation and disposal becomes expensive. Also, each thread requires server and
kernel resources, such as stack space. To accommodate a large number of simultaneous connections,
the stack size per thread must be kept small, leading to a situation where it is either too small or the server
consumes large amounts of memory. Exhaustion of other resources can occur as well, and scheduling
overhead can become significant.

To control and monitor how the server manages threads that handle client connections, several system
and status variables are relevant. (See Section 5.1.4, “Server System Variables”, and Section 5.1.6,
“Server Status Variables”.)

The thread cache has a size determined by the thread_cache_size system variable. The default
value is 0 (no caching), which causes a thread to be set up for each new connection and disposed of
when the connection terminates. Set thread_cache_size to N to enable N inactive connection threads
to be cached. thread_cache_size can be set at server startup or changed while the server runs. A
connection thread becomes inactive when the client connection with which it was associated terminates.

To monitor the number of threads in the cache and how many threads have been created because a
thread could not be taken from the cache, monitor the Threads_cached and Threads_created status
variables.

You can set max_connections at server startup or at runtime to control the maximum number of clients
that can connect simultaneously.

When the thread stack is too small, this limits the complexity of the SQL statements which the server can
handle, the recursion depth of stored procedures, and other memory-consuming actions. To set a stack
size of N bytes for each thread, start the server with --thread_stack=N.

8.12.6.2 DNS Lookup Optimization and the Host Cache

The MySQL server maintains a host cache in memory that contains information about clients: IP address,
host name, and error information. The server uses this cache for nonlocal TCP connections. It does not
use the cache for TCP connections established using the loopback interface address (127.0.0.1), or for
connections established using a Unix socket file, named pipe, or shared memory.

For each new client connection, the server uses the client IP address to check whether the client host
name is in the host cache. If not, the server attempts to resolve the host name. First, it resolves the IP
address to a host name and resolves that host name back to an IP address. Then it compares the result to
the original IP address to ensure that they are the same. The server stores information about the result of
this operation in the host cache. If the cache is full, the least recently used entry is discarded.

The server performs host name resolution using the thread-safe gethostbyaddr_r() and
gethostbyname_r() calls if the operating system supports them. Otherwise, the thread performing the
lookup locks a mutex and calls gethostbyaddr() and gethostbyname() instead. In this case, no

Measuring Performance (Benchmarking)

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 811

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

other thread can resolve host names that are not in the host cache until the thread holding the mutex lock
releases it.

The server uses the host cache for several purposes:

• By caching the results of IP-to-host name lookups, the server avoids doing a DNS lookup for each client
connection. Instead, for a given host, it needs to perform a lookup only for the first connection from that
host.

• The cache contains information about errors that occur during the connection process. Some errors are
considered “blocking.” If too many of these occur successively from a given host without a successful
connection, the server blocks further connections from that host. The max_connect_errors system
variable determines the number of permitted errors before blocking occurs. See Section B.5.2.6, “Host
'host_name' is blocked”.

To unblock blocked hosts, flush the host cache by issuing a FLUSH HOSTS statement or executing a
mysqladmin flush-hosts command.

It is possible for a blocked host to become unblocked even without FLUSH HOSTS if activity from other
hosts has occurred since the last connection attempt from the blocked host. This can occur because the
server discards the least recently used cache entry to make room for a new entry if the cache is full when
a connection arrives from a client IP not in the cache. If the discarded entry is for a blocked host, that host
becomes unblocked.

The host cache is enabled by default. To disable it, start the server with the --skip-host-cache option.

To disable DNS host name lookups, start the server with the --skip-name-resolve option. In this case,
the server uses only IP addresses and not host names to match connecting hosts to rows in the MySQL
grant tables. Only accounts specified in those tables using IP addresses can be used. (Be sure that an
account exists that specifies an IP address or you may not be able to connect.)

If you have a very slow DNS and many hosts, you might be able to improve performance either by
disabling DNS lookups with --skip-name-resolve or by increasing the HOST_CACHE_SIZE define
(default value: 128) and recompiling the server

To disallow TCP/IP connections entirely, start the server with the --skip-networking option.

Some connection errors are not associated with TCP connections, occur very early in the connection
process (even before an IP address is known), or are not specific to any particular IP address (such as out-
of-memory conditions).

8.13 Measuring Performance (Benchmarking)
To measure performance, consider the following factors:

• Whether you are measuring the speed of a single operation on a quiet system, or how a set of
operations (a “workload”) works over a period of time. With simple tests, you usually test how changing
one aspect (a configuration setting, the set of indexes on a table, the SQL clauses in a query) affects
performance. Benchmarks are typically long-running and elaborate performance tests, where the results
could dictate high-level choices such as hardware and storage configuration, or how soon to upgrade to
a new MySQL version.

• For benchmarking, sometimes you must simulate a heavy database workload to get an accurate picture.

• Performance can vary depending on so many different factors that a difference of a few percentage
points might not be a decisive victory. The results might shift the opposite way when you test in a
different environment.

Measuring the Speed of Expressions and Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 812

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Certain MySQL features help or do not help performance depending on the workload. For completeness,
always test performance with those features turned on and turned off. The two most important features
to try with each workload are the MySQL query cache, and the adaptive hash index for InnoDB tables.

This section progresses from simple and direct measurement techniques that a single developer can do, to
more complicated ones that require additional expertise to perform and interpret the results.

8.13.1 Measuring the Speed of Expressions and Functions

To measure the speed of a specific MySQL expression or function, invoke the BENCHMARK() function
using the mysql client program. Its syntax is BENCHMARK(loop_count,expression). The return value
is always zero, but mysql prints a line displaying approximately how long the statement took to execute.
For example:

mysql> SELECT BENCHMARK(1000000,1+1);
+------------------------+
| BENCHMARK(1000000,1+1) |
+------------------------+
| 0 |
+------------------------+
1 row in set (0.32 sec)

This result was obtained on a Pentium II 400MHz system. It shows that MySQL can execute 1,000,000
simple addition expressions in 0.32 seconds on that system.

The built-in MySQL functions are typically highly optimized, but there may be some exceptions.
BENCHMARK() is an excellent tool for finding out if some function is a problem for your queries.

8.13.2 The MySQL Benchmark Suite

This benchmark suite is meant to tell any user what operations a given SQL implementation performs well
or poorly. You can get a good idea for how the benchmarks work by looking at the code and results in the
sql-bench directory in any MySQL source distribution.

To use the benchmark suite, the following requirements must be satisfied:

• The benchmark suite is provided with MySQL source distributions. You can either download a released
distribution from http://dev.mysql.com/downloads/, or use the current development source tree. (See
Section 2.17.2, “Installing MySQL Using a Development Source Tree”.)

• The benchmark scripts are written in Perl and use the Perl DBI module to access database servers, so
DBI must be installed. You also need the server-specific DBD drivers for each of the servers you want to
test. For example, to test MySQL, PostgreSQL, and DB2, you must have the DBD::mysql, DBD::Pg,
and DBD::DB2 modules installed. See Section 2.22, “Perl Installation Notes”.

After you obtain a MySQL source distribution, you can find the benchmark suite located in its sql-bench
directory. To run the benchmark tests, build MySQL, and then change location into the sql-bench
directory and execute the run-all-tests script:

shell> cd sql-bench
shell> perl run-all-tests --server=server_name

server_name should be the name of one of the supported servers. To get a list of all options and
supported servers, invoke this command:

http://dev.mysql.com/downloads/

Using Your Own Benchmarks

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 813

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> perl run-all-tests --help

The crash-me script also is located in the sql-bench directory. crash-me tries to determine what
features a database system supports and what its capabilities and limitations are by actually running
queries. For example, it determines:

• What data types are supported

• How many indexes are supported

• What functions are supported

• How big a query can be

• How big a VARCHAR column can be

For more information about benchmark results, visit http://www.mysql.com/why-mysql/benchmarks/.

8.13.3 Using Your Own Benchmarks

Benchmark your application and database to find out where the bottlenecks are. After fixing one bottleneck
(or by replacing it with a “dummy” module), you can proceed to identify the next bottleneck. Even if the
overall performance for your application currently is acceptable, you should at least make a plan for each
bottleneck and decide how to solve it if someday you really need the extra performance.

For examples of portable benchmark programs, look at those in the MySQL benchmark suite. See
Section 8.13.2, “The MySQL Benchmark Suite”. You can take any program from this suite and modify it
for your own needs. By doing this, you can try different solutions to your problem and test which really is
fastest for you.

Another free benchmark suite is the Open Source Database Benchmark, available at http://
osdb.sourceforge.net/.

It is very common for a problem to occur only when the system is very heavily loaded. We have had many
customers who contact us when they have a (tested) system in production and have encountered load
problems. In most cases, performance problems turn out to be due to issues of basic database design (for
example, table scans are not good under high load) or problems with the operating system or libraries.
Most of the time, these problems would be much easier to fix if the systems were not already in production.

To avoid problems like this, benchmark your whole application under the worst possible load. For example,
you can try benchmarking packages such as SysBench and DBT2, available at https://launchpad.net/
sysbench, and http://osdldbt.sourceforge.net/#dbt2. These packages can bring a system to its knees, so be
sure to use them only on your development systems.

8.14 Examining Thread Information
When you are attempting to ascertain what your MySQL server is doing, it can be helpful to examine the
process list, which is the set of threads currently executing within the server. Process list information is
available from these sources:

• The SHOW [FULL] PROCESSLIST statement: Section 13.7.5.27, “SHOW PROCESSLIST Syntax”

• The SHOW PROFILE statement: Section 13.7.5.29, “SHOW PROFILES Syntax”

• The mysqladmin processlist command: Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”

http://www.mysql.com/why-mysql/benchmarks/
http://osdb.sourceforge.net/
http://osdb.sourceforge.net/
https://launchpad.net/sysbench
https://launchpad.net/sysbench
http://osdldbt.sourceforge.net/#dbt2

Thread Command Values

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 814

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

You can always view information about your own threads. To view information about threads being
executed for other accounts, you must have the PROCESS privilege.

Each process list entry contains several pieces of information:

• Id is the connection identifier for the client associated with the thread.

• User and Host indicate the account associated with the thread.

• db is the default database for the thread, or NULL if none is selected.

• Command and State indicate what the thread is doing.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

• Time indicates how long the thread has been in its current state. The thread's notion of the current time
may be altered in some cases: The thread can change the time with SET TIMESTAMP = value. For
a thread running on a slave that is processing events from the master, the thread time is set to the time
found in the events and thus reflects current time on the master and not the slave.

• Info contains the text of the statement being executed by the thread, or NULL if it is not executing
one. By default, this value contains only the first 100 characters of the statement. To see the complete
statements, use SHOW FULL PROCESSLIST.

The following sections list the possible Command values, and State values grouped by category. The
meaning for some of these values is self-evident. For others, additional description is provided.

8.14.1 Thread Command Values

A thread can have any of the following Command values:

• Binlog Dump

This is a thread on a master server for sending binary log contents to a slave server.

• Change user

The thread is executing a change-user operation.

• Close stmt

The thread is closing a prepared statement.

• Connect

A replication slave is connected to its master.

• Connect Out

A replication slave is connecting to its master.

• Create DB

The thread is executing a create-database operation.

• Daemon

This thread is internal to the server, not a thread that services a client connection.

Thread Command Values

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 815

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Debug

The thread is generating debugging information.

• Delayed insert

The thread is a delayed-insert handler.

• Drop DB

The thread is executing a drop-database operation.

• Error

• Execute

The thread is executing a prepared statement.

• Fetch

The thread is fetching the results from executing a prepared statement.

• Field List

The thread is retrieving information for table columns.

• Init DB

The thread is selecting a default database.

• Kill

The thread is killing another thread.

• Long Data

The thread is retrieving long data in the result of executing a prepared statement.

• Ping

The thread is handling a server-ping request.

• Prepare

The thread is preparing a prepared statement.

• Processlist

The thread is producing information about server threads.

• Query

The thread is executing a statement.

• Quit

The thread is terminating.

• Refresh

General Thread States

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 816

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The thread is flushing table, logs, or caches, or resetting status variable or replication server information.

• Register Slave

The thread is registering a slave server.

• Reset stmt

The thread is resetting a prepared statement.

• Set option

The thread is setting or resetting a client statement-execution option.

• Shutdown

The thread is shutting down the server.

• Sleep

The thread is waiting for the client to send a new statement to it.

• Statistics

The thread is producing server-status information.

• Table Dump

The thread is sending table contents to a slave server.

• Time

Unused.

8.14.2 General Thread States

The following list describes thread State values that are associated with general query processing and
not more specialized activities such as replication. Many of these are useful only for finding bugs in the
server.

• After create

This occurs when the thread creates a table (including internal temporary tables), at the end of the
function that creates the table. This state is used even if the table could not be created due to some
error.

• Analyzing

The thread is calculating a MyISAM table key distributions (for example, for ANALYZE TABLE).

• checking permissions

The thread is checking whether the server has the required privileges to execute the statement.

• Checking table

The thread is performing a table check operation.

General Thread States

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 817

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• cleaning up

The thread has processed one command and is preparing to free memory and reset certain state
variables.

• closing tables

The thread is flushing the changed table data to disk and closing the used tables. This should be a fast
operation. If not, you should verify that you do not have a full disk and that the disk is not in very heavy
use.

• converting HEAP to MyISAM

The thread is converting an internal temporary table from a MEMORY table to an on-disk MyISAM table.

• copy to tmp table

The thread is processing an ALTER TABLE statement. This state occurs after the table with the new
structure has been created but before rows are copied into it.

• Copying to group table

If a statement has different ORDER BY and GROUP BY criteria, the rows are sorted by group and copied
to a temporary table.

• Copying to tmp table

The server is copying to a temporary table in memory.

• Copying to tmp table on disk

The server is copying to a temporary table on disk. The temporary result set has become too large (see
Section 8.4.4, “Internal Temporary Table Use in MySQL”). Consequently, the thread is changing the
temporary table from in-memory to disk-based format to save memory.

• Creating index

The thread is processing ALTER TABLE ... ENABLE KEYS for a MyISAM table.

• Creating sort index

The thread is processing a SELECT that is resolved using an internal temporary table.

• creating table

The thread is creating a table. This includes creation of temporary tables.

• Creating tmp table

The thread is creating a temporary table in memory or on disk. If the table is created in memory but later
is converted to an on-disk table, the state during that operation will be Copying to tmp table on
disk.

• deleting from main table

The server is executing the first part of a multiple-table delete. It is deleting only from the first table, and
saving columns and offsets to be used for deleting from the other (reference) tables.

• deleting from reference tables

General Thread States

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 818

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The server is executing the second part of a multiple-table delete and deleting the matched rows from
the other tables.

• discard_or_import_tablespace

The thread is processing an ALTER TABLE ... DISCARD TABLESPACE or ALTER TABLE ...
IMPORT TABLESPACE statement.

• end

This occurs at the end but before the cleanup of ALTER TABLE, CREATE VIEW, DELETE, INSERT,
SELECT, or UPDATE statements.

• executing

The thread has begun executing a statement.

• Execution of init_command

The thread is executing statements in the value of the init_command system variable.

• freeing items

The thread has executed a command. Some freeing of items done during this state involves the query
cache. This state is usually followed by cleaning up.

• Flushing tables

The thread is executing FLUSH TABLES and is waiting for all threads to close their tables.

• FULLTEXT initialization

The server is preparing to perform a natural-language full-text search.

• init

This occurs before the initialization of ALTER TABLE, DELETE, INSERT, SELECT, or UPDATE
statements. Actions taken by the server in this state include flushing the binary log, the InnoDB log, and
some query cache cleanup operations.

For the end state, the following operations could be happening:

• Removing query cache entries after data in a table is changed

• Writing an event to the binary log

• Freeing memory buffers, including for blobs

• Killed

Someone has sent a KILL statement to the thread and it should abort next time it checks the kill flag.
The flag is checked in each major loop in MySQL, but in some cases it might still take a short time for
the thread to die. If the thread is locked by some other thread, the kill takes effect as soon as the other
thread releases its lock.

• Locked

The query is locked by another query.

General Thread States

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 819

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• logging slow query

The thread is writing a statement to the slow-query log.

• login

The initial state for a connection thread until the client has been authenticated successfully.

• NULL

This state is used for the SHOW PROCESSLIST state.

• Opening tables, Opening table

The thread is trying to open a table. This is should be very fast procedure, unless something prevents
opening. For example, an ALTER TABLE or a LOCK TABLE statement can prevent opening a table until
the statement is finished. It is also worth checking that your table_cache value is large enough.

• optimizing

The server is performing initial optimizations for a query.

• preparing

This state occurs during query optimization.

• Purging old relay logs

The thread is removing unneeded relay log files.

• query end

This state occurs after processing a query but before the freeing items state.

• Reading from net

The server is reading a packet from the network.

• Removing duplicates

The query was using SELECT DISTINCT in such a way that MySQL could not optimize away the
distinct operation at an early stage. Because of this, MySQL requires an extra stage to remove all
duplicated rows before sending the result to the client.

• removing tmp table

The thread is removing an internal temporary table after processing a SELECT statement. This state is
not used if no temporary table was created.

• rename

The thread is renaming a table.

• rename result table

The thread is processing an ALTER TABLE statement, has created the new table, and is renaming it to
replace the original table.

• Reopen tables

General Thread States

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 820

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The thread got a lock for the table, but noticed after getting the lock that the underlying table structure
changed. It has freed the lock, closed the table, and is trying to reopen it.

• Repair by sorting

The repair code is using a sort to create indexes.

• Repair done

The thread has completed a multi-threaded repair for a MyISAM table.

• Repair with keycache

The repair code is using creating keys one by one through the key cache. This is much slower than
Repair by sorting.

• Rolling back

The thread is rolling back a transaction.

• Saving state

For MyISAM table operations such as repair or analysis, the thread is saving the new table state to the
.MYI file header. State includes information such as number of rows, the AUTO_INCREMENT counter,
and key distributions.

• Searching rows for update

The thread is doing a first phase to find all matching rows before updating them. This has to be done if
the UPDATE is changing the index that is used to find the involved rows.

• Sending data

The thread is reading and processing rows for a SELECT statement, and sending data to the client.
Because operations occurring during this this state tend to perform large amounts of disk access (reads),
it is often the longest-running state over the lifetime of a given query.

• setup

The thread is beginning an ALTER TABLE operation.

• Sorting for group

The thread is doing a sort to satisfy a GROUP BY.

• Sorting for order

The thread is doing a sort to satisfy an ORDER BY.

• Sorting index

The thread is sorting index pages for more efficient access during a MyISAM table optimization
operation.

• Sorting result

For a SELECT statement, this is similar to Creating sort index, but for nontemporary tables.

• statistics

General Thread States

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 821

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The server is calculating statistics to develop a query execution plan. If a thread is in this state for a long
time, the server is probably disk-bound performing other work.

• System lock

The thread is going to request or is waiting for an internal or external system lock for the table. For
example, this can occur when InnoDB waits for a table-level lock during execution of LOCK TABLES. If
this state is being caused by requests for external locks and you are not using multiple mysqld servers
that are accessing the same MyISAM tables, you can disable external system locks with the --skip-
external-locking option. However, external locking is disabled by default, so it is likely that this
option will have no effect. For SHOW PROFILE, this state means the thread is requesting the lock (not
waiting for it).

• Table lock

The next thread state after System lock. After acquiring a system lock, the thread is going to request
an internal table lock (a THR_LOCK lock).

For more information about table lock indicators, see Section 8.11.1, “Internal Locking Methods”.

• update

The thread is getting ready to start updating the table.

• Updating

The thread is searching for rows to update and is updating them.

• updating main table

The server is executing the first part of a multiple-table update. It is updating only the first table, and
saving columns and offsets to be used for updating the other (reference) tables.

• updating reference tables

The server is executing the second part of a multiple-table update and updating the matched rows from
the other tables.

• User lock

The thread is going to request or is waiting for an advisory lock requested with a GET_LOCK() call. For
SHOW PROFILE, this state means the thread is requesting the lock (not waiting for it).

• Waiting for release of readlock

The thread is waiting for a global read lock obtained by another thread (with FLUSH TABLES WITH
READ LOCK) to be released.

• Waiting for tables, Waiting for table

The thread got a notification that the underlying structure for a table has changed and it needs to reopen
the table to get the new structure. However, to reopen the table, it must wait until all other threads have
closed the table in question.

This notification takes place if another thread has used FLUSH TABLES or one of the following
statements on the table in question: FLUSH TABLES tbl_name, ALTER TABLE, RENAME TABLE,
REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.

Delayed-Insert Thread States

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 822

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Waiting on cond

A generic state in which the thread is waiting for a condition to become true. No specific state information
is available.

• Waiting to get readlock

The thread has issued a FLUSH TABLES WITH READ LOCK statement to obtain a global read lock and
is waiting to obtain the lock.

• Writing to net

The server is writing a packet to the network.

8.14.3 Delayed-Insert Thread States

These thread states are associated with processing for DELAYED inserts (see Section 13.2.5.2, “INSERT
DELAYED Syntax”). Some states are associated with connection threads that process INSERT DELAYED
statements from clients. Other states are associated with delayed-insert handler threads that insert the
rows. There is a delayed-insert handler thread for each table for which INSERT DELAYED statements are
issued.

States associated with a connection thread that processes an INSERT DELAYED statement from the client:

• allocating local table

The thread is preparing to feed rows to the delayed-insert handler thread.

• Creating delayed handler

The thread is creating a handler for DELAYED inserts.

• got handler lock

This occurs before the allocating local table state and after the waiting for handler lock
state, when the connection thread gets access to the delayed-insert handler thread.

• got old table

This occurs after the waiting for handler open state. The delayed-insert handler thread has
signaled that it has ended its initialization phase, which includes opening the table for delayed inserts.

• storing row into queue

The thread is adding a new row to the list of rows that the delayed-insert handler thread must insert.

• waiting for delay_list

This occurs during the initialization phase when the thread is trying to find the delayed-insert handler
thread for the table, and before attempting to gain access to the list of delayed-insert threads.

• waiting for handler insert

An INSERT DELAYED handler has processed all pending inserts and is waiting for new ones.

• waiting for handler lock

This occurs before the allocating local table state when the connection thread waits for access
to the delayed-insert handler thread.

Query Cache Thread States

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 823

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• waiting for handler open

This occurs after the Creating delayed handler state and before the got old table state.
The delayed-insert handler thread has just been started, and the connection thread is waiting for it to
initialize.

States associated with a delayed-insert handler thread that inserts the rows:

• insert

The state that occurs just before inserting rows into the table.

• reschedule

After inserting a number of rows, the delayed-insert thread sleeps to let other threads do work.

• upgrading lock

A delayed-insert handler is trying to get a lock for the table to insert rows.

• Waiting for INSERT

A delayed-insert handler is waiting for a connection thread to add rows to the queue (see storing row
into queue).

8.14.4 Query Cache Thread States

These thread states are associated with the query cache (see Section 8.10.3, “The MySQL Query Cache”).

• checking privileges on cached query

The server is checking whether the user has privileges to access a cached query result.

• checking query cache for query

The server is checking whether the current query is present in the query cache.

• invalidating query cache entries

Query cache entries are being marked invalid because the underlying tables have changed.

• sending cached result to client

The server is taking the result of a query from the query cache and sending it to the client.

• storing result in query cache

The server is storing the result of a query in the query cache.

8.14.5 Replication Master Thread States

The following list shows the most common states you may see in the State column for the master's
Binlog Dump thread. If you see no Binlog Dump threads on a master server, this means that replication
is not running—that is, that no slaves are currently connected.

• Sending binlog event to slave

Binary logs consist of events, where an event is usually an update plus some other information. The
thread has read an event from the binary log and is now sending it to the slave.

Replication Slave I/O Thread States

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 824

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Finished reading one binlog; switching to next binlog

The thread has finished reading a binary log file and is opening the next one to send to the slave.

• Has sent all binlog to slave; waiting for binlog to be updated

The thread has read all outstanding updates from the binary logs and sent them to the slave. The thread
is now idle, waiting for new events to appear in the binary log resulting from new updates occurring on
the master.

• Waiting to finalize termination

A very brief state that occurs as the thread is stopping.

8.14.6 Replication Slave I/O Thread States

The following list shows the most common states you see in the State column for a slave server I/O
thread. This state also appears in the Slave_IO_State column displayed by SHOW SLAVE STATUS, so
you can get a good view of what is happening by using that statement.

• Waiting for master update

The initial state before Connecting to master.

• Connecting to master

The thread is attempting to connect to the master.

• Checking master version

A state that occurs very briefly, after the connection to the master is established.

• Registering slave on master

A state that occurs very briefly after the connection to the master is established.

• Requesting binlog dump

A state that occurs very briefly, after the connection to the master is established. The thread sends to the
master a request for the contents of its binary logs, starting from the requested binary log file name and
position.

• Waiting to reconnect after a failed binlog dump request

If the binary log dump request failed (due to disconnection), the thread goes into this state while it
sleeps, then tries to reconnect periodically. The interval between retries can be specified using the
CHANGE MASTER TO statement or the --master-connect-retry option.

• Reconnecting after a failed binlog dump request

The thread is trying to reconnect to the master.

• Waiting for master to send event

The thread has connected to the master and is waiting for binary log events to arrive. This can last for a
long time if the master is idle. If the wait lasts for slave_net_timeout seconds, a timeout occurs. At
that point, the thread considers the connection to be broken and makes an attempt to reconnect.

• Queueing master event to the relay log

Replication Slave SQL Thread States

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 825

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The thread has read an event and is copying it to the relay log so that the SQL thread can process it.

• Waiting to reconnect after a failed master event read

An error occurred while reading (due to disconnection). The thread is sleeping for the number of seconds
set by the CHANGE MASTER TO statement or --master-connect-retry option (default 60) before
attempting to reconnect.

• Reconnecting after a failed master event read

The thread is trying to reconnect to the master. When connection is established again, the state
becomes Waiting for master to send event.

• Waiting for the slave SQL thread to free enough relay log space

You are using a nonzero relay_log_space_limit value, and the relay logs have grown large
enough that their combined size exceeds this value. The I/O thread is waiting until the SQL thread frees
enough space by processing relay log contents so that it can delete some relay log files.

• Waiting for slave mutex on exit

A state that occurs briefly as the thread is stopping.

8.14.7 Replication Slave SQL Thread States

The following list shows the most common states you may see in the State column for a slave server SQL
thread:

• Waiting for the next event in relay log

The initial state before Reading event from the relay log.

• Reading event from the relay log

The thread has read an event from the relay log so that the event can be processed.

• Has read all relay log; waiting for the slave I/O thread to update it

The thread has processed all events in the relay log files, and is now waiting for the I/O thread to write
new events to the relay log.

• Making temp file

The thread is executing a LOAD DATA INFILE statement and is creating a temporary file containing the
data from which the slave will read rows.

• Waiting for slave mutex on exit

A very brief state that occurs as the thread is stopping.

The State column for the I/O thread may also show the text of a statement. This indicates that the thread
has read an event from the relay log, extracted the statement from it, and is executing it.

8.14.8 Replication Slave Connection Thread States

These thread states occur on a replication slave but are associated with connection threads, not with the I/
O or SQL threads.

MySQL Cluster Thread States

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 826

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Changing master

The thread is processing a CHANGE MASTER TO statement.

• Creating table from master dump

The slave is creating a table using the CREATE TABLE statement contained in the dump from the
master. Used for LOAD TABLE FROM MASTER and LOAD DATA FROM MASTER.

• Killing slave

The thread is processing a STOP SLAVE statement.

• Opening master dump table

This state occurs after Creating table from master dump.

• Reading master dump table data

This state occurs after Opening master dump table.

• Rebuilding the index on master dump table

This state occurs after Reading master dump table data.

• starting slave

The thread is starting the slave threads after processing a successful LOAD DATA FROM MASTER load
operation.

8.14.9 MySQL Cluster Thread States

• Committing events to binlog

• Opening mysql.ndb_apply_status

• Processing events

The thread is processing events for binary logging.

• Processing events from schema table

The thread is doing the work of schema replication.

• Shutting down

• Syncing ndb table schema operation and binlog

This is used to have a correct binary log of schema operations for NDB.

• Waiting for event from ndbcluster

The server is acting as an SQL node in a MySQL Cluster, and is connected to a cluster management
node.

• Waiting for first event from ndbcluster

• Waiting for ndbcluster binlog update to reach current position

MySQL Cluster Thread States

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 827

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Waiting for ndbcluster to start

• Waiting for schema epoch

The thread is waiting for a schema epoch (that is, a global checkpoint).

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 828

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 829

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 9 Language Structure

Table of Contents
9.1 Literal Values ... 829

9.1.1 String Literals .. 829
9.1.2 Number Literals ... 832
9.1.3 Date and Time Literals ... 832
9.1.4 Hexadecimal Literals .. 834
9.1.5 Boolean Literals ... 835
9.1.6 Bit-Field Literals ... 835
9.1.7 NULL Values ... 836

9.2 Schema Object Names ... 836
9.2.1 Identifier Qualifiers ... 838
9.2.2 Identifier Case Sensitivity ... 838
9.2.3 Function Name Parsing and Resolution .. 840

9.3 Keywords and Reserved Words .. 843
9.4 User-Defined Variables ... 849
9.5 Expression Syntax .. 852
9.6 Comment Syntax .. 854

This chapter discusses the rules for writing the following elements of SQL statements when using MySQL:

• Literal values such as strings and numbers

• Identifiers such as database, table, and column names

• Keywords and reserved words

• User-defined and system variables

• Comments

9.1 Literal Values
This section describes how to write literal values in MySQL. These include strings, numbers, hexadecimal
values, boolean values, and NULL. The section also covers the various nuances and “gotchas” that you
may run into when dealing with these basic types in MySQL.

9.1.1 String Literals

A string is a sequence of bytes or characters, enclosed within either single quote (“'”) or double quote (“"”)
characters. Examples:

'a string'
"another string"

Quoted strings placed next to each other are concatenated to a single string. The following lines are
equivalent:

'a string'
'a' ' ' 'string'

String Literals

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 830

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If the ANSI_QUOTES SQL mode is enabled, string literals can be quoted only within single quotation marks
because a string quoted within double quotation marks is interpreted as an identifier.

A binary string is a string of bytes that has no character set or collation. A nonbinary string is a string of
characters that has a character set and collation. For both types of strings, comparisons are based on the
numeric values of the string unit. For binary strings, the unit is the byte. For nonbinary strings the unit is the
character and some character sets support multibyte characters. Character value ordering is a function of
the string collation.

String literals may have an optional character set introducer and COLLATE clause:

[_charset_name]'string' [COLLATE collation_name]

Examples:

SELECT _latin1'string';
SELECT _latin1'string' COLLATE latin1_danish_ci;

You can use N'literal' (or n'literal') to create a string in the national character set. These
statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

For more information about these forms of string syntax, see Section 10.1.3.5, “Character String Literal
Character Set and Collation”, and Section 10.1.3.6, “National Character Set”.

Within a string, certain sequences have special meaning unless the NO_BACKSLASH_ESCAPES SQL
mode is enabled. Each of these sequences begins with a backslash (“\”), known as the escape character.
MySQL recognizes the escape sequences shown in Table 9.1, “Special Character Escape Sequences”.
For all other escape sequences, backslash is ignored. That is, the escaped character is interpreted as
if it was not escaped. For example, “\x” is just “x”. These sequences are case sensitive. For example,
“\b” is interpreted as a backspace, but “\B” is interpreted as “B”. Escape processing is done according
to the character set indicated by the character_set_connection system variable. This is true even
for strings that are preceded by an introducer that indicates a different character set, as discussed in
Section 10.1.3.5, “Character String Literal Character Set and Collation”.

Table 9.1 Special Character Escape Sequences

Escape
Sequence

Character Represented by Sequence

\0 An ASCII NUL (X'00') character

\' A single quote (“'”) character

\" A double quote (“"”) character

\b A backspace character

\n A newline (linefeed) character

\r A carriage return character

\t A tab character

\Z ASCII 26 (Control+Z); see note following the table

\\ A backslash (“\”) character

\% A “%” character; see note following the table

String Literals

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 831

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Escape
Sequence

Character Represented by Sequence

_ A “_” character; see note following the table

The ASCII 26 character can be encoded as “\Z” to enable you to work around the problem that ASCII
26 stands for END-OF-FILE on Windows. ASCII 26 within a file causes problems if you try to use mysql
db_name < file_name.

The “\%” and “_” sequences are used to search for literal instances of “%” and “_” in pattern-matching
contexts where they would otherwise be interpreted as wildcard characters. See the description of the
LIKE operator in Section 12.5.1, “String Comparison Functions”. If you use “\%” or “_” outside of pattern-
matching contexts, they evaluate to the strings “\%” and “_”, not to “%” and “_”.

There are several ways to include quote characters within a string:

• A “'” inside a string quoted with “'” may be written as “''”.

• A “"” inside a string quoted with “"” may be written as “""”.

• Precede the quote character by an escape character (“\”).

• A “'” inside a string quoted with “"” needs no special treatment and need not be doubled or escaped. In
the same way, “"” inside a string quoted with “'” needs no special treatment.

The following SELECT statements demonstrate how quoting and escaping work:

mysql> SELECT 'hello', '"hello"', '""hello""', 'hel''lo', '\'hello';
+-------+---------+-----------+--------+--------+
| hello | "hello" | ""hello"" | hel'lo | 'hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT "hello", "'hello'", "''hello''", "hel""lo", "\"hello";
+-------+---------+-----------+--------+--------+
| hello | 'hello' | ''hello'' | hel"lo | "hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT 'This\nIs\nFour\nLines';
+--------------------+
| This
Is
Four
Lines |
+--------------------+

mysql> SELECT 'disappearing\ backslash';
+------------------------+
| disappearing backslash |
+------------------------+

If you want to insert binary data into a string column (such as a BLOB column), you should represent
certain characters by escape sequences. Backslash (“\”) and the quote character used to quote the string
must be escaped. In certain client environments, it may also be necessary to escape NUL or Control+Z.
The mysql client truncates quoted strings containing NUL characters if they are not escaped, and Control
+Z may be taken for END-OF-FILE on Windows if not escaped. For the escape sequences that represent
each of these characters, see Table 9.1, “Special Character Escape Sequences”.

When writing application programs, any string that might contain any of these special characters must be
properly escaped before the string is used as a data value in an SQL statement that is sent to the MySQL
server. You can do this in two ways:

Number Literals

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 832

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Process the string with a function that escapes the special characters. In a C program, you can use
the mysql_real_escape_string() C API function to escape characters. See Section 20.6.7.53,
“mysql_real_escape_string()”. Within SQL statements that construct other SQL statements, you can use
the QUOTE() function. The Perl DBI interface provides a quote method to convert special characters
to the proper escape sequences. See Section 20.8, “MySQL Perl API”. Other language interfaces may
provide a similar capability.

• As an alternative to explicitly escaping special characters, many MySQL APIs provide a placeholder
capability that enables you to insert special markers into a statement string, and then bind data values
to them when you issue the statement. In this case, the API takes care of escaping special characters in
the values for you.

9.1.2 Number Literals

Number literals include exact-value (integer and DECIMAL) literals and approximate-value (floating-point)
literals.

Integers are represented as a sequence of digits. Numbers may include “.” as a decimal separator.
Numbers may be preceded by “-” or “+” to indicate a negative or positive value, respectively. Numbers
represented in scientific notation with a mantissa and exponent are approximate-value numbers.

Exact-value numeric literals have an integer part or fractional part, or both. They may be signed. Examples:
1, .2, 3.4, -5, -6.78, +9.10.

Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent.
Either or both parts may be signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.

Two numbers that look similar may be treated differently. For example, 2.34 is an exact-value (fixed-point)
number, whereas 2.34E0 is an approximate-value (floating-point) number.

The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type
has several synonyms: NUMERIC, DEC, FIXED. The integer types also are exact-value types. For more
information about exact-value calculations, see Section 12.17, “Precision Math”.

The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In MySQL,
types that are synonymous with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.

An integer may be used in a floating-point context; it is interpreted as the equivalent floating-point number.

9.1.3 Date and Time Literals

Date and time values can be represented in several formats, such as quoted strings or as numbers,
depending on the exact type of the value and other factors. For example, in contexts where MySQL
expects a date, it interprets any of '2015-07-21', '20150721', and 20150721 as a date.

This section describes the acceptable formats for date and time literals. For more information about the
temporal data types, such as the range of permitted values, consult these sections:

• Section 11.1.2, “Date and Time Type Overview”

• Section 11.3, “Date and Time Types”

Standard SQL and ODBC Date and Time Literals. Standard SQL permits temporal literals to be
specified using a type keyword and a string. The space between the keyword and string is optional.

DATE 'str'
TIME 'str'
TIMESTAMP 'str'

Date and Time Literals

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 833

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL recognizes those constructions and also the corresponding ODBC syntax:

{ d 'str' }
{ t 'str' }
{ ts 'str' }

However, MySQL ignores the type keyword and each of the preceding constructions produces the string
value 'str', with a type of VARCHAR.

String and Numeric Literals in Date and Time Context. MySQL recognizes DATE values in these
formats:

• As a string in either 'YYYY-MM-DD' or 'YY-MM-DD' format. A “relaxed” syntax is permitted: Any
punctuation character may be used as the delimiter between date parts. For example, '2012-12-31',
'2012/12/31', '2012^12^31', and '2012@12@31' are equivalent.

• As a string with no delimiters in either 'YYYYMMDD' or 'YYMMDD' format, provided that the string makes
sense as a date. For example, '20070523' and '070523' are interpreted as '2007-05-23', but
'071332' is illegal (it has nonsensical month and day parts) and becomes '0000-00-00'.

• As a number in either YYYYMMDD or YYMMDD format, provided that the number makes sense as a date.
For example, 19830905 and 830905 are interpreted as '1983-09-05'.

MySQL recognizes DATETIME and TIMESTAMP values in these formats:

• As a string in either 'YYYY-MM-DD HH:MM:SS' or 'YY-MM-DD HH:MM:SS' format. A “relaxed” syntax
is permitted here, too: Any punctuation character may be used as the delimiter between date parts or
time parts. For example, '2012-12-31 11:30:45', '2012^12^31 11+30+45', '2012/12/31
11*30*45', and '2012@12@31 11^30^45' are equivalent.

The date and time parts can be separated by T rather than a space. For example, '2012-12-31
11:30:45' '2012-12-31T11:30:45' are equivalent.

• As a string with no delimiters in either 'YYYYMMDDHHMMSS' or 'YYMMDDHHMMSS' format, provided
that the string makes sense as a date. For example, '20070523091528' and '070523091528' are
interpreted as '2007-05-23 09:15:28', but '071122129015' is illegal (it has a nonsensical minute
part) and becomes '0000-00-00 00:00:00'.

• As a number in either YYYYMMDDHHMMSS or YYMMDDHHMMSS format, provided that the number
makes sense as a date. For example, 19830905132800 and 830905132800 are interpreted as
'1983-09-05 13:28:00'.

A DATETIME or TIMESTAMP value can include a trailing fractional seconds part in up to microseconds
(6 digits) precision. Although this fractional part is recognized, it is discarded from values stored into
DATETIME or TIMESTAMP columns. For information about fractional seconds support in MySQL, see
Section 11.3.6, “Fractional Seconds in Time Values”.

Dates containing two-digit year values are ambiguous because the century is unknown. MySQL interprets
two-digit year values using these rules:

• Year values in the range 70-99 are converted to 1970-1999.

• Year values in the range 00-69 are converted to 2000-2069.

See also Section 11.3.8, “Two-Digit Years in Dates”.

For values specified as strings that include date part delimiters, it is unnecessary to specify two digits for
month or day values that are less than 10. '2015-6-9' is the same as '2015-06-09'. Similarly, for

Hexadecimal Literals

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 834

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

values specified as strings that include time part delimiters, it is unnecessary to specify two digits for hour,
minute, or second values that are less than 10. '2015-10-30 1:2:3' is the same as '2015-10-30
01:02:03'.

Values specified as numbers should be 6, 8, 12, or 14 digits long. If a number is 8 or 14 digits long, it is
assumed to be in YYYYMMDD or YYYYMMDDHHMMSS format and that the year is given by the first 4 digits.
If the number is 6 or 12 digits long, it is assumed to be in YYMMDD or YYMMDDHHMMSS format and that the
year is given by the first 2 digits. Numbers that are not one of these lengths are interpreted as though
padded with leading zeros to the closest length.

Values specified as nondelimited strings are interpreted according their length. For a string 8 or 14
characters long, the year is assumed to be given by the first 4 characters. Otherwise, the year is assumed
to be given by the first 2 characters. The string is interpreted from left to right to find year, month, day,
hour, minute, and second values, for as many parts as are present in the string. This means you should not
use strings that have fewer than 6 characters. For example, if you specify '9903', thinking that represents
March, 1999, MySQL converts it to the “zero” date value. This occurs because the year and month values
are 99 and 03, but the day part is completely missing. However, you can explicitly specify a value of zero
to represent missing month or day parts. For example, to insert the value '1999-03-00', use '990300'.

MySQL recognizes TIME values in these formats:

• As a string in 'D HH:MM:SS' format. You can also use one of the following “relaxed” syntaxes:
'HH:MM:SS', 'HH:MM', 'D HH:MM', 'D HH', or 'SS'. Here D represents days and can have a value
from 0 to 34.

• As a string with no delimiters in 'HHMMSS' format, provided that it makes sense as a time. For example,
'101112' is understood as '10:11:12', but '109712' is illegal (it has a nonsensical minute part)
and becomes '00:00:00'.

• As a number in HHMMSS format, provided that it makes sense as a time. For example, 101112 is
understood as '10:11:12'. The following alternative formats are also understood: SS, MMSS, or
HHMMSS.

A trailing fractional seconds part is recognized in the 'D HH:MM:SS.fraction',
'HH:MM:SS.fraction', 'HHMMSS.fraction', and HHMMSS.fraction time formats, where
fraction is the fractional part in up to microseconds (6 digits) precision. Although this fractional part is
recognized, it is discarded from values stored into TIME columns. For information about fractional seconds
support in MySQL, see Section 11.3.6, “Fractional Seconds in Time Values”.

For TIME values specified as strings that include a time part delimiter, it is unnecessary to specify two
digits for hours, minutes, or seconds values that are less than 10. '8:3:2' is the same as '08:03:02'.

9.1.4 Hexadecimal Literals

MySQL supports hexadecimal values, written using X'val', x'val', or 0xval format, where val
contains hexadecimal digits (0..9, A..F). Lettercase of the digits does not matter. For values written
using X'val' or x'val' format, val must contain an even number of digits. For values written using
0xval syntax, values that contain an odd number of digits are treated as having an extra leading 0. For
example, 0x0a and 0xaaa are interpreted as 0x0a and 0x0aaa.

In numeric contexts, hexadecimal values act like integers (64-bit precision). In string contexts, they act like
binary strings, where each pair of hex digits is converted to a character:

mysql> SELECT X'4D7953514C';
 -> 'MySQL'
mysql> SELECT x'0a'+0;
 -> 10

Boolean Literals

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 835

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT 0x5061756c;
 -> 'Paul'

The default type of a hexadecimal value is a string. If you want to ensure that the value is treated as a
number, you can use CAST(... AS UNSIGNED):

mysql> SELECT X'41', CAST(X'41' AS UNSIGNED);
 -> 'A', 65

The X'hexstring' and x'val' syntaxes are based on standard SQL. The 0x syntax is based on
ODBC. Hexadecimal strings are often used by ODBC to supply values for BLOB columns.

To convert a string or a number to a string in hexadecimal format, use the HEX() function:

mysql> SELECT HEX('cat');
 -> '636174'
mysql> SELECT X'636174';
 -> 'cat'

9.1.5 Boolean Literals

The constants TRUE and FALSE evaluate to 1 and 0, respectively. The constant names can be written in
any lettercase.

mysql> SELECT TRUE, true, FALSE, false;
 -> 1, 1, 0, 0

9.1.6 Bit-Field Literals

Beginning with MySQL 5.0.3, bit-field values can be written using b'value' or 0bvalue notation. value
is a binary value written using zeros and ones.

Bit-field notation is convenient for specifying values to be assigned to BIT columns:

mysql> CREATE TABLE t (b BIT(8));
mysql> INSERT INTO t SET b = b'11111111';
mysql> INSERT INTO t SET b = b'1010';
mysql> INSERT INTO t SET b = b'0101';

Bit values are returned as binary values. To display them in printable form, add 0 or use a conversion
function such as BIN(). High-order 0 bits are not displayed in the converted value.

mysql> SELECT b+0, BIN(b+0), OCT(b+0), HEX(b+0) FROM t;
+------+----------+----------+----------+
| b+0 | BIN(b+0) | OCT(b+0) | HEX(b+0) |
+------+----------+----------+----------+
255	11111111	377	FF
10	1010	12	A
5	101	5	5
+------+----------+----------+----------+

Bit values assigned to user variables are treated as binary strings. To assign a bit value as a number to a
user variable, use CAST() or +0:

mysql> SET @v1 = 0b1000001;
mysql> SET @v2 = CAST(0b1000001 AS UNSIGNED), @v3 = 0b1000001+0;
mysql> SELECT @v1, @v2, @v3;

NULL Values

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 836

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+

9.1.7 NULL Values

The NULL value means “no data.” NULL can be written in any lettercase. A synonym is \N (case sensitive).

For text file import or export operations performed with LOAD DATA INFILE or SELECT ... INTO
OUTFILE, NULL is represented by the \N sequence. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

Be aware that the NULL value is different from values such as 0 for numeric types or the empty string for
string types. For more information, see Section B.5.4.3, “Problems with NULL Values”.

9.2 Schema Object Names
Certain objects within MySQL, including database, table, index, column, alias, view, stored procedure,
partition, and other object names are known as identifiers. This section describes the permissible syntax
for identifiers in MySQL. Section 9.2.2, “Identifier Case Sensitivity”, describes which types of identifiers are
case sensitive and under what conditions.

An identifier may be quoted or unquoted. If an identifier contains special characters or is a reserved word,
you must quote it whenever you refer to it. (Exception: A reserved word that follows a period in a qualified
name must be an identifier, so it need not be quoted.) Reserved words are listed at Section 9.3, “Keywords
and Reserved Words”.

Identifiers are converted to Unicode internally. They may contain these characters:

• Permitted characters in unquoted identifiers:

• ASCII: [0-9,a-z,A-Z$_] (basic Latin letters, digits 0-9, dollar, underscore)

• Extended: U+0080 .. U+FFFF

• Permitted characters in quoted identifiers include the full Unicode Basic Multilingual Plane (BMP), except
U+0000:

• ASCII: U+0001 .. U+007F

• Extended: U+0080 .. U+FFFF

• ASCII NUL (U+0000) and supplementary characters (U+10000 and higher) are not permitted in quoted
or unquoted identifiers.

• Identifiers may begin with a digit but unless quoted may not consist solely of digits.

• Database, table, and column names cannot end with space characters.

• Database and table names cannot contain “/”, “\”, “.”, or characters that are not permitted in file names.

The identifier quote character is the backtick (“`”):

mysql> SELECT * FROM `select` WHERE `select`.id > 100;

If the ANSI_QUOTES SQL mode is enabled, it is also permissible to quote identifiers within double
quotation marks:

Schema Object Names

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 837

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> CREATE TABLE "test" (col INT);
ERROR 1064: You have an error in your SQL syntax...
mysql> SET sql_mode='ANSI_QUOTES';
mysql> CREATE TABLE "test" (col INT);
Query OK, 0 rows affected (0.00 sec)

The ANSI_QUOTES mode causes the server to interpret double-quoted strings as identifiers. Consequently,
when this mode is enabled, string literals must be enclosed within single quotation marks. They cannot be
enclosed within double quotation marks. The server SQL mode is controlled as described in Section 5.1.7,
“Server SQL Modes”.

Identifier quote characters can be included within an identifier if you quote the identifier. If the character
to be included within the identifier is the same as that used to quote the identifier itself, then you need to
double the character. The following statement creates a table named a`b that contains a column named
c"d:

mysql> CREATE TABLE `a``b` (`c"d` INT);

In the select list of a query, a quoted column alias can be specified using identifier or string quoting
characters:

mysql> SELECT 1 AS `one`, 2 AS 'two';
+-----+-----+
| one | two |
+-----+-----+
| 1 | 2 |
+-----+-----+

Elsewhere in the statement, quoted references to the alias must use identifier quoting or the reference is
treated as a string literal.

It is recommended that you do not use names that begin with Me or MeN, where M and N are integers. For
example, avoid using 1e as an identifier, because an expression such as 1e+3 is ambiguous. Depending
on context, it might be interpreted as the expression 1e + 3 or as the number 1e+3.

Be careful when using MD5() to produce table names because it can produce names in illegal or
ambiguous formats such as those just described.

A user variable cannot be used directly in an SQL statement as an identifier or as part of an identifier. See
Section 9.4, “User-Defined Variables”, for more information and examples of workarounds.

The following table describes the maximum length for each type of identifier.

Identifier Maximum Length (characters)

Database 64 (NDB storage engine: 63)

Table 64 (NDB storage engine: 63)

Column 64

Index 64

Constraint 64

Stored Program 64

View 64

Alias 256 (see exception following table)

Identifier Qualifiers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 838

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Identifier Maximum Length (characters)

Compound Statement Label 16

As of MySQL 5.0.52, aliases for column names in CREATE VIEW statements are checked against the
maximum column length of 64 characters (not the maximum alias length of 256 characters).

Identifiers are stored using Unicode (UTF-8). This applies to identifiers in table definitions that are stored
in .frm files and to identifiers stored in the grant tables in the mysql database. The sizes of the identifier
string columns in the grant tables are measured in characters. You can use multibyte characters without
reducing the number of characters permitted for values stored in these columns. As indicated earlier, the
permissible Unicode characters are those in the Basic Multilingual Plane (BMP). Supplementary characters
are not permitted.

For tables using the NDB storage engine, there is an additional requirement that the combined length of
a table name and the name of the database in which it is found must not exceed 122 characters. See
Section 17.1.5.5, “Limits Associated with Database Objects in MySQL Cluster”.

9.2.1 Identifier Qualifiers

MySQL permits names that consist of a single identifier or multiple identifiers. The components of a
multiple-part name must be separated by period (“.”) characters. The initial parts of a multiple-part name
act as qualifiers that affect the context within which the final identifier is interpreted.

In MySQL, you can refer to a table column using any of the following forms.

Column Reference Meaning

col_name The column col_name from whichever table used in the statement
contains a column of that name.

tbl_name.col_name The column col_name from table tbl_name of the default database.

db_name.tbl_name.col_nameThe column col_name from table tbl_name of the database db_name.

The qualifier character is a separate token and need not be contiguous with the associated identifiers. For
example, tbl_name.col_name and tbl_name . col_name are equivalent.

If any components of a multiple-part name require quoting, quote them individually rather than quoting the
name as a whole. For example, write `my-table`.`my-column`, not `my-table.my-column`.

A reserved word that follows a period in a qualified name must be an identifier, so in that context it need
not be quoted.

You need not specify a tbl_name or db_name.tbl_name prefix for a column reference in a statement
unless the reference would be ambiguous. Suppose that tables t1 and t2 each contain a column c, and
you retrieve c in a SELECT statement that uses both t1 and t2. In this case, c is ambiguous because it is
not unique among the tables used in the statement. You must qualify it with a table name as t1.c or t2.c
to indicate which table you mean. Similarly, to retrieve from a table t in database db1 and from a table t in
database db2 in the same statement, you must refer to columns in those tables as db1.t.col_name and
db2.t.col_name.

The syntax .tbl_name means the table tbl_name in the default database. This syntax is accepted for
ODBC compatibility because some ODBC programs prefix table names with a “.” character.

9.2.2 Identifier Case Sensitivity

In MySQL, databases correspond to directories within the data directory. Each table within a database
corresponds to at least one file within the database directory (and possibly more, depending on the storage

Identifier Case Sensitivity

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 839

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

engine). Consequently, the case sensitivity of the underlying operating system plays a part in the case
sensitivity of database and table names. This means database and table names are not case sensitive
in Windows, and case sensitive in most varieties of Unix. One notable exception is OS X, which is Unix-
based but uses a default file system type (HFS+) that is not case sensitive. However, OS X also supports
UFS volumes, which are case sensitive just as on any Unix. See Section 1.8.1, “MySQL Extensions to
Standard SQL”. The lower_case_table_names system variable also affects how the server handles
identifier case sensitivity, as described later in this section.

Note

Although database and table names are not case sensitive on some platforms, you
should not refer to a given database or table using different cases within the same
statement. The following statement would not work because it refers to a table both
as my_table and as MY_TABLE:

mysql> SELECT * FROM my_table WHERE MY_TABLE.col=1;

Column, index, and stored routine names are not case sensitive on any platform, nor are column aliases.
Trigger names are case sensitive, which differs from standard SQL.

By default, table aliases are case sensitive on Unix, but not so on Windows or OS X. The following
statement would not work on Unix, because it refers to the alias both as a and as A:

mysql> SELECT col_name FROM tbl_name AS a
 -> WHERE a.col_name = 1 OR A.col_name = 2;

However, this same statement is permitted on Windows. To avoid problems caused by such differences,
it is best to adopt a consistent convention, such as always creating and referring to databases and tables
using lowercase names. This convention is recommended for maximum portability and ease of use.

How table and database names are stored on disk and used in MySQL is affected by the
lower_case_table_names system variable, which you can set when starting mysqld.
lower_case_table_names can take the values shown in the following table. On Unix, the default value
of lower_case_table_names is 0. On Windows, the default value is 1. On OS X, the default value is 2.

Value Meaning

0 Table and database names are stored on disk using the lettercase specified in the CREATE
TABLE or CREATE DATABASE statement. Name comparisons are case sensitive. You should
not set this variable to 0 if you are running MySQL on a system that has case-insensitive
file names (such as Windows or OS X). If you force this variable to 0 with --lower-case-
table-names=0 on a case-insensitive file system and access MyISAM tablenames using
different lettercases, index corruption may result.

1 Table names are stored in lowercase on disk and name comparisons are not case sensitive.
MySQL converts all table names to lowercase on storage and lookup. This behavior also
applies to database names and table aliases.

2 Table and database names are stored on disk using the lettercase specified in the
CREATE TABLE or CREATE DATABASE statement, but MySQL converts them to
lowercase on lookup. Name comparisons are not case sensitive. This works only on file
systems that are not case sensitive! InnoDB table names are stored in lowercase, as for
lower_case_table_names=1.

If you are using MySQL on only one platform, you do not normally have to change the
lower_case_table_names variable from its default value. However, you may encounter difficulties if you
want to transfer tables between platforms that differ in file system case sensitivity. For example, on Unix,

Function Name Parsing and Resolution

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 840

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

you can have two different tables named my_table and MY_TABLE, but on Windows these two names are
considered identical. To avoid data transfer problems arising from lettercase of database or table names,
you have two options:

• Use lower_case_table_names=1 on all systems. The main disadvantage with this is that when you
use SHOW TABLES or SHOW DATABASES, you do not see the names in their original lettercase.

• Use lower_case_table_names=0 on Unix and lower_case_table_names=2 on Windows. This
preserves the lettercase of database and table names. The disadvantage of this is that you must ensure
that your statements always refer to your database and table names with the correct lettercase on
Windows. If you transfer your statements to Unix, where lettercase is significant, they do not work if the
lettercase is incorrect.

Exception: If you are using InnoDB tables and you are trying to avoid these data transfer problems,
you should set lower_case_table_names to 1 on all platforms to force names to be converted to
lowercase.

If you plan to set the lower_case_table_names system variable to 1 on Unix, you must first convert
your old database and table names to lowercase before stopping mysqld and restarting it with the new
variable setting. To do this for an individual table, use RENAME TABLE:

RENAME TABLE T1 TO t1;

To convert one or more entire databases, dump them before setting lower_case_table_names, then
drop the databases, and reload them after setting lower_case_table_names:

1. Use mysqldump to dump each database:

mysqldump --databases db1 > db1.sql
mysqldump --databases db2 > db2.sql
...

Do this for each database that must be recreated.

2. Use DROP DATABASE to drop each database.

3. Stop the server, set lower_case_table_names, and restart the server.

4. Reload the dump file for each database. Because lower_case_table_names is set, each database
and table name will be converted to lowercase as it is recreated:

mysql < db1.sql
mysql < db2.sql
...

Object names may be considered duplicates if their uppercase forms are equal according to a binary
collation. That is true for names of cursors, conditions, procedures, functions, savepoints, stored routine
parameters and stored program local variables. It is not true for names of names of columns, constraints,
databases, statements prepared with PREPARE, tables, triggers, users, and user-defined variables.

9.2.3 Function Name Parsing and Resolution

MySQL 5.0 supports built-in (native) functions, user-defined functions (UDFs), and stored functions. This
section describes how the server recognizes whether the name of a built-in function is used as a function
call or as an identifier, and how the server determines which function to use in cases when functions of
different types exist with a given name.

Function Name Parsing and Resolution

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 841

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Built-In Function Name Parsing

The parser uses default rules for parsing names of built-in functions. These rules can be changed by
enabling the IGNORE_SPACE SQL mode.

When the parser encounters a word that is the name of a built-in function, it must determine whether the
name signifies a function call or is instead a nonexpression reference to an identifier such as a table or
column name. For example, in the following statements, the first reference to count is a function call,
whereas the second reference is a table name:

SELECT COUNT(*) FROM mytable;
CREATE TABLE count (i INT);

The parser should recognize the name of a built-in function as indicating a function call only when parsing
what is expected to be an expression. That is, in nonexpression context, function names are permitted as
identifiers.

However, some built-in functions have special parsing or implementation considerations, so the parser
uses the following rules by default to distinguish whether their names are being used as function calls or as
identifiers in nonexpression context:

• To use the name as a function call in an expression, there must be no whitespace between the name
and the following “(” parenthesis character.

• Conversely, to use the function name as an identifier, it must not be followed immediately by a
parenthesis.

The requirement that function calls be written with no whitespace between the name and the parenthesis
applies only to the built-in functions that have special considerations. COUNT is one such name. The
sql_functions[] array in the sql/lex.h source file lists the names of these special functions for
which following whitespace determines their interpretation. Before MySQL 5.1, these are rather numerous
(about 200). In MySQL 5.1, parser improvements reduce to about 30 the number of affected function
names. You may find it easiest to treat the no-whitespace requirement as applying to all function calls.

For functions not listed as special in sql/lex.h, whitespace does not matter. They are interpreted as
function calls only when used in expression context and may be used freely as identifiers otherwise. ASCII
is one such name. However, for these nonaffected function names, interpretation may vary in expression
context: func_name () is interpreted as a built-in function if there is one with the given name; if not,
func_name () is interpreted as a user-defined function or stored function if one exists with that name.

The IGNORE_SPACE SQL mode can be used to modify how the parser treats function names that are
whitespace-sensitive:

• With IGNORE_SPACE disabled, the parser interprets the name as a function call when there is no
whitespace between the name and the following parenthesis. This occurs even when the function name
is used in nonexpression context:

mysql> CREATE TABLE count(i INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'count(i INT)'

To eliminate the error and cause the name to be treated as an identifier, either use whitespace following
the name or write it as a quoted identifier (or both):

CREATE TABLE count (i INT);
CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

Function Name Parsing and Resolution

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 842

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• With IGNORE_SPACE enabled, the parser loosens the requirement that there be no whitespace between
the function name and the following parenthesis. This provides more flexibility in writing function calls.
For example, either of the following function calls are legal:

SELECT COUNT(*) FROM mytable;
SELECT COUNT (*) FROM mytable;

However, enabling IGNORE_SPACE also has the side effect that the parser treats the affected function
names as reserved words (see Section 9.3, “Keywords and Reserved Words”). This means that a space
following the name no longer signifies its use as an identifier. The name can be used in function calls
with or without following whitespace, but causes a syntax error in nonexpression context unless it is
quoted. For example, with IGNORE_SPACE enabled, both of the following statements fail with a syntax
error because the parser interprets count as a reserved word:

CREATE TABLE count(i INT);
CREATE TABLE count (i INT);

To use the function name in nonexpression context, write it as a quoted identifier:

CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

To enable the IGNORE_SPACE SQL mode, use this statement:

SET sql_mode = 'IGNORE_SPACE';

IGNORE_SPACE is also enabled by certain other composite modes such as ANSI that include it in their
value:

SET sql_mode = 'ANSI';

Check Section 5.1.7, “Server SQL Modes”, to see which composite modes enable IGNORE_SPACE.

To minimize the dependency of SQL code on the IGNORE_SPACE setting, use these guidelines:

• Avoid creating UDFs or stored functions that have the same name as a built-in function.

• Avoid using function names in nonexpression context. For example, these statements use count (one
of the affected function names affected by IGNORE_SPACE), so they fail with or without whitespace
following the name if IGNORE_SPACE is enabled:

CREATE TABLE count(i INT);
CREATE TABLE count (i INT);

If you must use a function name in nonexpression context, write it as a quoted identifier:

CREATE TABLE `count`(i INT);
CREATE TABLE `count` (i INT);

Function Name Resolution

The following rules describe how the server resolves references to function names for function creation
and invocation:

• Built-in functions and user-defined functions

Keywords and Reserved Words

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 843

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A UDF can be created with the same name as a built-in function but the UDF cannot be invoked
because the parser resolves invocations of the function to refer to the built-in function. For example, if
you create a UDF named ABS, references to ABS() invoke the built-in function.

• Built-in functions and stored functions

It is possible to create a stored function with the same name as a built-in function, but to invoke the
stored function it is necessary to qualify it with a database name. For example, if you create a stored
function named PI in the test database, you invoke it as test.PI() because the server resolves
PI() as a reference to the built-in function.

• User-defined functions and stored functions

User-defined functions and stored functions share the same namespace, so you cannot create a UDF
and a stored function with the same name.

The preceding function name resolution rules have implications for upgrading to versions of MySQL that
implement new built-in functions:

• If you have already created a user-defined function with a given name and upgrade MySQL to a version
that implements a new built-in function with the same name, the UDF becomes inaccessible. To correct
this, use DROP FUNCTION to drop the UDF and CREATE FUNCTION to re-create the UDF with a
different nonconflicting name. Then modify any affected code to use the new name.

• If a new version of MySQL implements a built-in function with the same name as an existing stored
function, you have two choices: Rename the stored function to use a nonconflicting name, or change
calls to the function so that they use a schema qualifier (that is, use schema_name.func_name()
syntax). In either case, modify any affected code accordingly.

9.3 Keywords and Reserved Words
Keywords are words that have significance in SQL. Certain keywords, such as SELECT, DELETE, or
BIGINT, are reserved and require special treatment for use as identifiers such as table and column names.
This may also be true for the names of built-in functions.

Nonreserved keywords are permitted as identifiers without quoting. Reserved words are permitted as
identifiers if you quote them as described in Section 9.2, “Schema Object Names”:

mysql> CREATE TABLE interval (begin INT, end INT);
ERROR 1064 (42000): You have an error in your SQL syntax ...
near 'interval (begin INT, end INT)'

BEGIN and END are keywords but not reserved, so their use as identifiers does not require quoting.
INTERVAL is a reserved keyword and must be quoted to be used as an identifier:

mysql> CREATE TABLE `interval` (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

Exception: A word that follows a period in a qualified name must be an identifier, so it need not be quoted
even if it is reserved:

mysql> CREATE TABLE mydb.interval (begin INT, end INT);
Query OK, 0 rows affected (0.01 sec)

Names of built-in functions are permitted as identifiers but may require care to be used as such. For
example, COUNT is acceptable as a column name. However, by default, no whitespace is permitted in

Keywords and Reserved Words

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 844

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

function invocations between the function name and the following “(” character. This requirement enables
the parser to distinguish whether the name is used in a function call or in nonfunction context. For further
details on recognition of function names, see Section 9.2.3, “Function Name Parsing and Resolution”.

The following table shows the keywords and reserved words in MySQL 5.0. Reserved keywords are
marked with (R).

At some point, you might upgrade to a higher version, so it is a good idea to have a look at future reserved
words, too. You can find these in the manuals that cover higher versions of MySQL. Most of the reserved
words in the table are forbidden by standard SQL as column or table names (for example, GROUP). A few
are reserved because MySQL needs them and uses a yacc parser.

Table 9.2 Keywords and Reserved Words in MySQL 5.0

ACTION ADD (R) AFTER

AGAINST AGGREGATE ALGORITHM

ALL (R) ALTER (R) ANALYZE (R)

AND (R) ANY AS (R)

ASC (R) ASCII ASENSITIVE (R)

AUTO_INCREMENT AVG AVG_ROW_LENGTH

BACKUP BDB BEFORE (R)

BEGIN BERKELEYDB BETWEEN (R)

BIGINT (R) BINARY (R) BINLOG

BIT BLOB (R) BLOCK

BOOL BOOLEAN BOTH (R)

BTREE BY (R) BYTE

CACHE CALL (R) CASCADE (R)

CASCADED CASE (R) CHAIN

CHANGE (R) CHANGED CHAR (R)

CHARACTER (R) CHARSET CHECK (R)

CHECKSUM CIPHER CLIENT

CLOSE CODE COLLATE (R)

COLLATION COLUMN (R) COLUMNS

COMMENT COMMIT COMMITTED

COMPACT COMPRESSED CONCURRENT

CONDITION (R) CONNECTION CONSISTENT

CONSTRAINT (R) CONTAINS CONTEXT

CONTINUE (R) CONVERT (R) CPU

CREATE (R) CROSS (R) CUBE

CURRENT_DATE (R) CURRENT_TIME (R) CURRENT_TIMESTAMP (R)

CURRENT_USER (R) CURSOR (R) DATA

DATABASE (R) DATABASES (R) DATE

DATETIME DAY DAY_HOUR (R)

DAY_MICROSECOND (R) DAY_MINUTE (R) DAY_SECOND (R)

Keywords and Reserved Words

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 845

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

DEALLOCATE DEC (R) DECIMAL (R)

DECLARE (R) DEFAULT (R) DEFINER

DELAYED (R) DELAY_KEY_WRITE DELETE (R)

DESC (R) DESCRIBE (R) DES_KEY_FILE

DETERMINISTIC (R) DIRECTORY DISABLE

DISCARD DISTINCT (R) DISTINCTROW (R)

DIV (R) DO DOUBLE (R)

DROP (R) DUAL (R) DUMPFILE

DUPLICATE DYNAMIC EACH (R)

ELSE (R) ELSEIF (R) ENABLE

ENCLOSED (R) END ENGINE

ENGINES ENUM ERRORS

ESCAPE ESCAPED (R) EVENTS

EXECUTE EXISTS (R) EXIT (R)

EXPANSION EXPLAIN (R) EXTENDED

FALSE (R) FAST FAULTS

FETCH (R) FIELDS FILE

FIRST FIXED FLOAT (R)

FLOAT4 (R) FLOAT8 (R) FLUSH

FOR (R) FORCE (R) FOREIGN (R)

FOUND FRAC_SECOND FROM (R)

FULL FULLTEXT (R) FUNCTION

GEOMETRY GEOMETRYCOLLECTION GET_FORMAT

GLOBAL GRANT (R) GRANTS

GROUP (R) HANDLER HASH

HAVING (R) HELP HIGH_PRIORITY (R)

HOSTS HOUR HOUR_MICROSECOND (R)

HOUR_MINUTE (R) HOUR_SECOND (R) IDENTIFIED

IF (R) IGNORE (R) IMPORT

IN (R) INDEX (R) INDEXES

INFILE (R) INNER (R) INNOBASE

INNODB INOUT (R) INSENSITIVE (R)

INSERT (R) INSERT_METHOD INT (R)

INT1 (R) INT2 (R) INT3 (R)

INT4 (R) INT8 (R) INTEGER (R)

INTERVAL (R) INTO (R) INVOKER

IO IO_THREAD IPC

IS (R) ISOLATION ISSUER

ITERATE (R) JOIN (R) KEY (R)

Keywords and Reserved Words

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 846

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

KEYS (R) KILL (R) LANGUAGE

LAST LEADING (R) LEAVE (R)

LEAVES LEFT (R) LEVEL

LIKE (R) LIMIT (R) LINES (R)

LINESTRING LOAD (R) LOCAL

LOCALTIME (R) LOCALTIMESTAMP (R) LOCK (R)

LOCKS LOGS LONG (R)

LONGBLOB (R) LONGTEXT (R) LOOP (R)

LOW_PRIORITY (R) MASTER MASTER_CONNECT_RETRY

MASTER_HOST MASTER_LOG_FILE MASTER_LOG_POS

MASTER_PASSWORD MASTER_PORT MASTER_SERVER_ID

MASTER_SSL MASTER_SSL_CA MASTER_SSL_CAPATH

MASTER_SSL_CERT MASTER_SSL_CIPHER MASTER_SSL_KEY

MASTER_USER MATCH (R) MAX_CONNECTIONS_PER_HOUR

MAX_QUERIES_PER_HOUR MAX_ROWS MAX_UPDATES_PER_HOUR

MAX_USER_CONNECTIONS MEDIUM MEDIUMBLOB (R)

MEDIUMINT (R) MEDIUMTEXT (R) MEMORY

MERGE MICROSECOND MIDDLEINT (R)

MIGRATE MINUTE MINUTE_MICROSECOND (R)

MINUTE_SECOND (R) MIN_ROWS MOD (R)

MODE MODIFIES (R) MODIFY

MONTH MULTILINESTRING MULTIPOINT

MULTIPOLYGON MUTEX NAME

NAMES NATIONAL NATURAL (R)

NCHAR NDB NDBCLUSTER

NEW NEXT NO

NONE NOT (R) NO_WRITE_TO_BINLOG (R)

NULL (R) NUMERIC (R) NVARCHAR

OFFSET OLD_PASSWORD ON (R)

ONE ONE_SHOT OPEN

OPTIMIZE (R) OPTION (R) OPTIONALLY (R)

OR (R) ORDER (R) OUT (R)

OUTER (R) OUTFILE (R) PACK_KEYS

PAGE PARTIAL PASSWORD

PHASE POINT POLYGON

PRECISION (R) PREPARE PREV

PRIMARY (R) PRIVILEGES PROCEDURE (R)

PROCESSLIST PROFILE PROFILES

PURGE (R) QUARTER QUERY

Keywords and Reserved Words

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 847

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

QUICK RAID0 RAID_CHUNKS

RAID_CHUNKSIZE RAID_TYPE READ (R)

READS (R) REAL (R) RECOVER

REDUNDANT REFERENCES (R) REGEXP (R)

RELAY_LOG_FILE RELAY_LOG_POS RELAY_THREAD

RELEASE (R) RELOAD RENAME (R)

REPAIR REPEAT (R) REPEATABLE

REPLACE (R) REPLICATION REQUIRE (R)

RESET RESTORE RESTRICT (R)

RESUME RETURN (R) RETURNS

REVOKE (R) RIGHT (R) RLIKE (R)

ROLLBACK ROLLUP ROUTINE

ROW ROWS ROW_FORMAT

RTREE SAVEPOINT SCHEMA (R)

SCHEMAS (R) SECOND SECOND_MICROSECOND (R)

SECURITY SELECT (R) SENSITIVE (R)

SEPARATOR (R) SERIAL SERIALIZABLE

SESSION SET (R) SHARE

SHOW (R) SHUTDOWN SIGNED

SIMPLE SLAVE SMALLINT (R)

SNAPSHOT SOME SONAME (R)

SOUNDS SOURCE SPATIAL (R)

SPECIFIC (R) SQL (R) SQLEXCEPTION (R)

SQLSTATE (R) SQLWARNING (R) SQL_BIG_RESULT (R)

SQL_BUFFER_RESULT SQL_CACHE SQL_CALC_FOUND_ROWS (R)

SQL_NO_CACHE SQL_SMALL_RESULT (R) SQL_THREAD

SQL_TSI_DAY SQL_TSI_FRAC_SECOND SQL_TSI_HOUR

SQL_TSI_MINUTE SQL_TSI_MONTH SQL_TSI_QUARTER

SQL_TSI_SECOND SQL_TSI_WEEK SQL_TSI_YEAR

SSL (R) START STARTING (R)

STATUS STOP STORAGE

STRAIGHT_JOIN (R) STRING STRIPED

SUBJECT SUPER SUSPEND

SWAPS SWITCHES TABLE (R)

TABLES TABLESPACE TEMPORARY

TEMPTABLE TERMINATED (R) TEXT

THEN (R) TIME TIMESTAMP

TIMESTAMPADD TIMESTAMPDIFF TINYBLOB (R)

TINYINT (R) TINYTEXT (R) TO (R)

Keywords and Reserved Words

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 848

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

TRAILING (R) TRANSACTION TRIGGER (R)

TRIGGERS TRUE (R) TRUNCATE

TYPE TYPES UNCOMMITTED

UNDEFINED UNDO (R) UNICODE

UNION (R) UNIQUE (R) UNKNOWN

UNLOCK (R) UNSIGNED (R) UNTIL

UPDATE (R) UPGRADE USAGE (R)

USE (R) USER USER_RESOURCES

USE_FRM USING (R) UTC_DATE (R)

UTC_TIME (R) UTC_TIMESTAMP (R) VALUE

VALUES (R) VARBINARY (R) VARCHAR (R)

VARCHARACTER (R) VARIABLES VARYING (R)

VIEW WARNINGS WEEK

WHEN (R) WHERE (R) WHILE (R)

WITH (R) WORK WRITE (R)

X509 XA XOR (R)

YEAR YEAR_MONTH (R) ZEROFILL (R)

The following table shows the keywords and reserved words that are new in MySQL 5.0. Reserved
keywords are marked with (R).

Table 9.3 New Keywords and Reserved Words in MySQL 5.0 compared to MySQL 4.1

ALGORITHM ASENSITIVE (R) BLOCK

CALL (R) CASCADED CHAIN

CODE COMPACT CONDITION (R)

CONNECTION CONTAINS CONTEXT

CONTINUE (R) CPU CURSOR (R)

DECLARE (R) DEFINER DETERMINISTIC (R)

EACH (R) ELSEIF (R) EXIT (R)

FAULTS FETCH (R) FOUND

FRAC_SECOND INOUT (R) INSENSITIVE (R)

INVOKER IO IPC

ITERATE (R) LANGUAGE LEAVE (R)

LOOP (R) MAX_USER_CONNECTIONS MEMORY

MERGE MIGRATE MODIFIES (R)

MUTEX NAME ONE

OUT (R) PAGE PHASE

PROFILE PROFILES QUARTER

READS (R) RECOVER REDUNDANT

RELEASE (R) REPEAT (R) RESUME

User-Defined Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 849

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

RETURN (R) ROUTINE SCHEMA (R)

SCHEMAS (R) SECURITY SENSITIVE (R)

SOURCE SPECIFIC (R) SQL (R)

SQLEXCEPTION (R) SQLSTATE (R) SQLWARNING (R)

SQL_TSI_DAY SQL_TSI_FRAC_SECOND SQL_TSI_HOUR

SQL_TSI_MINUTE SQL_TSI_MONTH SQL_TSI_QUARTER

SQL_TSI_SECOND SQL_TSI_WEEK SQL_TSI_YEAR

SUSPEND SWAPS SWITCHES

TEMPTABLE TIMESTAMPADD TIMESTAMPDIFF

TRIGGER (R) TRIGGERS UNDEFINED

UNDO (R) UNKNOWN UPGRADE

VIEW WEEK WHILE (R)

XA

9.4 User-Defined Variables

You can store a value in a user-defined variable in one statement and then refer to it later in another
statement. This enables you to pass values from one statement to another.

User variables are written as @var_name, where the variable name var_name consists of alphanumeric
characters, “.”, “_”, and “$”. A user variable name can contain other characters if you quote it as a string or
identifier (for example, @'my-var', @"my-var", or @`my-var`).

User-defined variables are session-specific. That is, a user variable defined by one client cannot be seen
or used by other clients. All variables for a given client session are automatically freed when that client
exits.

User variable names are not case sensitive in MySQL 5.0 and up, but are case sensitive before MySQL
5.0.

One way to set a user-defined variable is by issuing a SET statement:

SET @var_name = expr [, @var_name = expr] ...

For SET, either = or := can be used as the assignment operator.

You can also assign a value to a user variable in statements other than SET. In this case, the assignment
operator must be := and not = because the latter is treated as the comparison operator = in non-SET
statements:

mysql> SET @t1=1, @t2=2, @t3:=4;
mysql> SELECT @t1, @t2, @t3, @t4 := @t1+@t2+@t3;
+------+------+------+--------------------+
| @t1 | @t2 | @t3 | @t4 := @t1+@t2+@t3 |
+------+------+------+--------------------+
| 1 | 2 | 4 | 7 |
+------+------+------+--------------------+

User variables can be assigned a value from a limited set of data types: integer, decimal, floating-point,
binary or nonbinary string, or NULL value. Assignment of decimal and real values does not preserve the

User-Defined Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 850

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

precision or scale of the value. A value of a type other than one of the permissible types is converted to
a permissible type. For example, a value having a temporal or spatial data type is converted to a binary
string.

If a user variable is assigned a nonbinary (character) string value, it has the same character set and
collation as the string. The coercibility of user variables is implicit as of MySQL 5.0.3. (This is the same
coercibility as for table column values.)

Bit values assigned to user variables are treated as binary strings. To assign a bit value as a number to a
user variable, use CAST() or +0:

mysql> SET @v1 = b'1000001';
mysql> SET @v2 = CAST(b'1000001' AS UNSIGNED), @v3 = b'1000001'+0;
mysql> SELECT @v1, @v2, @v3;
+------+------+------+
| @v1 | @v2 | @v3 |
+------+------+------+
| A | 65 | 65 |
+------+------+------+

If the value of a user variable is selected in a result set, it is returned to the client as a string.

If you refer to a variable that has not been initialized, it has a value of NULL and a type of string.

User variables may be used in most contexts where expressions are permitted. This does not currently
include contexts that explicitly require a literal value, such as in the LIMIT clause of a SELECT statement,
or the IGNORE N LINES clause of a LOAD DATA statement.

As a general rule, other than in SET statements, you should never assign a value to a user variable and
read the value within the same statement. For example, to increment a variable, this is okay:

SET @a = @a + 1;

For other statements, such as SELECT, you might get the results you expect, but this is not guaranteed.
In the following statement, you might think that MySQL will evaluate @a first and then do an assignment
second:

SELECT @a, @a:=@a+1, ...;

However, the order of evaluation for expressions involving user variables is undefined.

Another issue with assigning a value to a variable and reading the value within the same non-SET
statement is that the default result type of a variable is based on its type at the start of the statement. The
following example illustrates this:

mysql> SET @a='test';
mysql> SELECT @a,(@a:=20) FROM tbl_name;

For this SELECT statement, MySQL reports to the client that column one is a string and converts all
accesses of @a to strings, even though @a is set to a number for the second row. After the SELECT
statement executes, @a is regarded as a number for the next statement.

To avoid problems with this behavior, either do not assign a value to and read the value of the same
variable within a single statement, or else set the variable to 0, 0.0, or '' to define its type before you use
it.

User-Defined Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 851

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In a SELECT statement, each select expression is evaluated only when sent to the client. This means that
in a HAVING, GROUP BY, or ORDER BY clause, referring to a variable that is assigned a value in the select
expression list does not work as expected:

mysql> SELECT (@aa:=id) AS a, (@aa+3) AS b FROM tbl_name HAVING b=5;

The reference to b in the HAVING clause refers to an alias for an expression in the select list that uses
@aa. This does not work as expected: @aa contains the value of id from the previous selected row, not
from the current row.

User variables are intended to provide data values. They cannot be used directly in an SQL statement as
an identifier or as part of an identifier, such as in contexts where a table or database name is expected, or
as a reserved word such as SELECT. This is true even if the variable is quoted, as shown in the following
example:

mysql> SELECT c1 FROM t;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)

mysql> SET @col = "c1";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| c1 |
+------+
1 row in set (0.00 sec)

mysql> SELECT `@col` FROM t;
ERROR 1054 (42S22): Unknown column '@col' in 'field list'

mysql> SET @col = "`c1`";
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @col FROM t;
+------+
| @col |
+------+
| `c1` |
+------+
1 row in set (0.00 sec)

An exception to this principle that user variables cannot be used to provide identifiers is that if you are
constructing a string for use as a prepared statement to be executed later. In this case, user variables can
be used to provide any part of the statement. The following example illustrates how this can be done:

mysql> SET @c = "c1";
Query OK, 0 rows affected (0.00 sec)

mysql> SET @s = CONCAT("SELECT ", @c, " FROM t");
Query OK, 0 rows affected (0.00 sec)

mysql> PREPARE stmt FROM @s;

Expression Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 852

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Query OK, 0 rows affected (0.04 sec)
Statement prepared

mysql> EXECUTE stmt;
+----+
| c1 |
+----+
| 0 |
+----+
| 1 |
+----+
2 rows in set (0.00 sec)

mysql> DEALLOCATE PREPARE stmt;
Query OK, 0 rows affected (0.00 sec)

See Section 13.5, “SQL Syntax for Prepared Statements”, for more information.

A similar technique can be used in application programs to construct SQL statements using program
variables, as shown here using PHP 5:

<?php
 $mysqli = new mysqli("localhost", "user", "pass", "test");

 if(mysqli_connect_errno())
 die("Connection failed: %s\n", mysqli_connect_error());

 $col = "c1";

 $query = "SELECT $col FROM t";

 $result = $mysqli->query($query);

 while($row = $result->fetch_assoc())
 {
 echo "<p>" . $row["$col"] . "</p>\n";
 }

 $result->close();

 $mysqli->close();
?>

Assembling an SQL statement in this fashion is sometimes known as “Dynamic SQL”.

9.5 Expression Syntax

The following rules define expression syntax in MySQL. The grammar shown here is based on that given in
the sql/sql_yacc.yy file of MySQL source distributions. See the notes after the grammar for additional
information about some of the terms.

expr:
 expr OR expr
 | expr || expr
 | expr XOR expr
 | expr AND expr
 | expr && expr
 | NOT expr
 | ! expr
 | boolean_primary IS [NOT] {TRUE | FALSE | UNKNOWN}
 | boolean_primary

Expression Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 853

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

boolean_primary:
 boolean_primary IS [NOT] NULL
 | boolean_primary <=> predicate
 | boolean_primary comparison_operator predicate
 | boolean_primary comparison_operator {ALL | ANY} (subquery)
 | predicate

comparison_operator: = | >= | > | <= | < | <> | !=

predicate:
 bit_expr [NOT] IN (subquery)
 | bit_expr [NOT] IN (expr [, expr] ...)
 | bit_expr [NOT] BETWEEN bit_expr AND predicate
 | bit_expr SOUNDS LIKE bit_expr
 | bit_expr [NOT] LIKE simple_expr [ESCAPE simple_expr]
 | bit_expr [NOT] REGEXP bit_expr
 | bit_expr

bit_expr:
 bit_expr | bit_expr
 | bit_expr & bit_expr
 | bit_expr << bit_expr
 | bit_expr >> bit_expr
 | bit_expr + bit_expr
 | bit_expr - bit_expr
 | bit_expr * bit_expr
 | bit_expr / bit_expr
 | bit_expr DIV bit_expr
 | bit_expr MOD bit_expr
 | bit_expr % bit_expr
 | bit_expr ^ bit_expr
 | bit_expr + interval_expr
 | bit_expr - interval_expr
 | simple_expr

simple_expr:
 literal
 | identifier
 | function_call
 | simple_expr COLLATE collation_name
 | param_marker
 | variable
 | simple_expr || simple_expr
 | + simple_expr
 | - simple_expr
 | ~ simple_expr
 | ! simple_expr
 | BINARY simple_expr
 | (expr [, expr] ...)
 | ROW (expr, expr [, expr] ...)
 | (subquery)
 | EXISTS (subquery)
 | {identifier expr}
 | match_expr
 | case_expr
 | interval_expr

Notes:

For operator precedence, see in Section 12.3.1, “Operator Precedence”.

For literal value syntax, see Section 9.1, “Literal Values”.

For identifier syntax, see Section 9.2, “Schema Object Names”.

Variables can be user variables, system variables, or stored program local variables or parameters:

Comment Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 854

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• User variables: Section 9.4, “User-Defined Variables”

• System variables: Section 5.1.5, “Using System Variables”

• Local variables: Section 13.6.4.1, “Local Variable DECLARE Syntax”

• Parameters: Section 13.1.9, “CREATE PROCEDURE and CREATE FUNCTION Syntax”

param_marker is ? as used in prepared statements for placeholders. See Section 13.5.1, “PREPARE
Syntax”.

(subquery) indicates a subquery that returns a single value; that is, a scalar subquery. See
Section 13.2.9.1, “The Subquery as Scalar Operand”.

{identifier expr} is ODBC escape syntax and is accepted for ODBC compatibility. The value is
expr. The curly braces in the syntax should be written literally; they are not metasyntax as used elsewhere
in syntax descriptions.

match_expr indicates a MATCH expression. See Section 12.9, “Full-Text Search Functions”.

case_expr indicates a CASE expression. See Section 12.4, “Control Flow Functions”.

interval_expr represents a time interval. The syntax is INTERVAL expr unit, where unit is
a specifier such as HOUR, DAY, or WEEK. For the full list of unit specifiers, see the description of the
DATE_ADD() function in Section 12.7, “Date and Time Functions”.

The meaning of some operators depends on the SQL mode:

• By default, || is a logical OR operator. With PIPES_AS_CONCAT enabled, || is string concatenation,
with a precedence between ^ and the unary operators.

• By default, ! has a higher precedence than NOT as of MySQL 5.0.2. For earlier versions, or from 5.0.2
on with HIGH_NOT_PRECEDENCE enabled, ! and NOT have the same precedence.

See Section 5.1.7, “Server SQL Modes”.

9.6 Comment Syntax

MySQL Server supports three comment styles:

• From a “#” character to the end of the line.

• From a “-- ” sequence to the end of the line. In MySQL, the “-- ” (double-dash) comment style
requires the second dash to be followed by at least one whitespace or control character (such as a
space, tab, newline, and so on). This syntax differs slightly from standard SQL comment syntax, as
discussed in Section 1.8.2.5, “'--' as the Start of a Comment”.

• From a /* sequence to the following */ sequence, as in the C programming language. This syntax
enables a comment to extend over multiple lines because the beginning and closing sequences need not
be on the same line.

The following example demonstrates all three comment styles:

mysql> SELECT 1+1; # This comment continues to the end of line
mysql> SELECT 1+1; -- This comment continues to the end of line
mysql> SELECT 1 /* this is an in-line comment */ + 1;
mysql> SELECT 1+

Comment Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 855

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

/*
this is a
multiple-line comment
*/
1;

Nested comments are not supported.

MySQL Server supports some variants of C-style comments. These enable you to write code that includes
MySQL extensions, but is still portable, by using comments of the following form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other SQL
statement, but other SQL servers will ignore the extensions. For example, MySQL Server recognizes the
STRAIGHT_JOIN keyword in the following statement, but other servers will not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

If you add a version number after the “!” character, the syntax within the comment is executed only if the
MySQL version is greater than or equal to the specified version number. The TEMPORARY keyword in the
following comment is executed only by servers from MySQL 3.23.02 or higher:

CREATE /*!32302 TEMPORARY */ TABLE t (a INT);

The comment syntax just described applies to how the mysqld server parses SQL statements. The mysql
client program also performs some parsing of statements before sending them to the server. (It does this to
determine statement boundaries within a multiple-statement input line.)

Comments in this format, /*!12345 ... */, are not stored on the server. If this format is used to
comment stored routines, the comments will not be retained on the server.

The use of short-form mysql commands such as \C within multiple-line /* ... */ comments is not
supported.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 856

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 857

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 10 Globalization

Table of Contents
10.1 Character Set Support .. 857

10.1.1 Character Sets and Collations in General .. 858
10.1.2 Character Sets and Collations in MySQL ... 859
10.1.3 Specifying Character Sets and Collations .. 860
10.1.4 Connection Character Sets and Collations ... 868
10.1.5 Configuring the Character Set and Collation for Applications .. 870
10.1.6 Character Set for Error Messages ... 872
10.1.7 Collation Issues .. 872
10.1.8 String Repertoire .. 880
10.1.9 Operations Affected by Character Set Support ... 882
10.1.10 Unicode Support .. 885
10.1.11 UTF-8 for Metadata .. 886
10.1.12 Column Character Set Conversion .. 887
10.1.13 Character Sets and Collations That MySQL Supports ... 889

10.2 Setting the Error Message Language ... 899
10.3 Adding a Character Set ... 900

10.3.1 Character Definition Arrays ... 902
10.3.2 String Collating Support for Complex Character Sets ... 903
10.3.3 Multi-Byte Character Support for Complex Character Sets .. 904

10.4 Adding a Collation to a Character Set .. 904
10.4.1 Collation Implementation Types .. 905
10.4.2 Choosing a Collation ID ... 906
10.4.3 Adding a Simple Collation to an 8-Bit Character Set .. 907
10.4.4 Adding a UCA Collation to a Unicode Character Set .. 908

10.5 Character Set Configuration .. 912
10.6 MySQL Server Time Zone Support .. 913

10.6.1 Staying Current with Time Zone Changes ... 915
10.6.2 Time Zone Leap Second Support ... 917

10.7 MySQL Server Locale Support .. 918

This chapter covers issues of globalization, which includes internationalization (MySQL's capabilities for
adapting to local use) and localization (selecting particular local conventions):

• MySQL support for character sets in SQL statements.

• How to configure the server to support different character sets.

• Selecting the language for error messages.

• How to set the server's time zone and enable per-connection time zone support.

• Selecting the locale for day and month names.

10.1 Character Set Support

MySQL includes character set support that enables you to store data using a variety of character sets and
perform comparisons according to a variety of collations. You can specify character sets at the server,

Character Sets and Collations in General

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 858

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

database, table, and column level. MySQL supports the use of character sets for the MyISAM, MEMORY,
NDBCLUSTER, and InnoDB storage engines.

This chapter discusses the following topics:

• What are character sets and collations?

• The multiple-level default system for character set assignment

• Syntax for specifying character sets and collations

• Affected functions and operations

• Unicode support

• The character sets and collations that are available, with notes

Character set issues affect not only data storage, but also communication between client programs and
the MySQL server. If you want the client program to communicate with the server using a character
set different from the default, you'll need to indicate which one. For example, to use the utf8 Unicode
character set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about configuring character sets for application use and character set-related issues
in client/server communication, see Section 10.1.5, “Configuring the Character Set and Collation for
Applications”, and Section 10.1.4, “Connection Character Sets and Collations”.

10.1.1 Character Sets and Collations in General

A character set is a set of symbols and encodings. A collation is a set of rules for comparing characters in
a character set. Let's make the distinction clear with an example of an imaginary character set.

Suppose that we have an alphabet with four letters: “A”, “B”, “a”, “b”. We give each letter a number: “A”
= 0, “B” = 1, “a” = 2, “b” = 3. The letter “A” is a symbol, the number 0 is the encoding for “A”, and the
combination of all four letters and their encodings is a character set.

Suppose that we want to compare two string values, “A” and “B”. The simplest way to do this is to look at
the encodings: 0 for “A” and 1 for “B”. Because 0 is less than 1, we say “A” is less than “B”. What we've
just done is apply a collation to our character set. The collation is a set of rules (only one rule in this case):
“compare the encodings.” We call this simplest of all possible collations a binary collation.

But what if we want to say that the lowercase and uppercase letters are equivalent? Then we would have
at least two rules: (1) treat the lowercase letters “a” and “b” as equivalent to “A” and “B”; (2) then compare
the encodings. We call this a case-insensitive collation. It is a little more complex than a binary collation.

In real life, most character sets have many characters: not just “A” and “B” but whole alphabets, sometimes
multiple alphabets or eastern writing systems with thousands of characters, along with many special
symbols and punctuation marks. Also in real life, most collations have many rules, not just for whether
to distinguish lettercase, but also for whether to distinguish accents (an “accent” is a mark attached to a
character as in German “Ö”), and for multiple-character mappings (such as the rule that “Ö” = “OE” in one of
the two German collations).

MySQL can do these things for you:

• Store strings using a variety of character sets

• Compare strings using a variety of collations

Character Sets and Collations in MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 859

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Mix strings with different character sets or collations in the same server, the same database, or even the
same table

• Enable specification of character set and collation at any level

In these respects, MySQL is far ahead of most other database management systems. However, to use
these features effectively, you need to know what character sets and collations are available, how to
change the defaults, and how they affect the behavior of string operators and functions.

10.1.2 Character Sets and Collations in MySQL

The MySQL server can support multiple character sets. To list the available character sets, use the SHOW
CHARACTER SET statement. A partial listing follows. For more complete information, see Section 10.1.13,
“Character Sets and Collations That MySQL Supports”.

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
swe7	7bit Swedish	swe7_swedish_ci	1
ascii	US ASCII	ascii_general_ci	1
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci	1
tis620	TIS620 Thai	tis620_thai_ci	1
euckr	EUC-KR Korean	euckr_korean_ci	2
koi8u	KOI8-U Ukrainian	koi8u_general_ci	1
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
greek	ISO 8859-7 Greek	greek_general_ci	1
cp1250	Windows Central European	cp1250_general_ci	1
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
...

Any given character set always has at least one collation. It may have several collations. To list the
collations for a character set, use the SHOW COLLATION statement. For example, to see the collations for
the latin1 (cp1252 West European) character set, use this statement to find those collation names that
begin with latin1:

mysql> SHOW COLLATION LIKE 'latin1%';
+---------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	1
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	1
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
latin1_spanish_ci	latin1	94			0
+---------------------+---------+----+---------+----------+---------+

The latin1 collations have the following meanings.

Specifying Character Sets and Collations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 860

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Collation Meaning

latin1_german1_ci German DIN-1

latin1_swedish_ci Swedish/Finnish

latin1_danish_ci Danish/Norwegian

latin1_german2_ci German DIN-2

latin1_bin Binary according to latin1 encoding

latin1_general_ci Multilingual (Western European)

latin1_general_cs Multilingual (ISO Western European), case sensitive

latin1_spanish_ci Modern Spanish

Collations have these general characteristics:

• Two different character sets cannot have the same collation.

• Each character set has one collation that is the default collation. For example, the default collation for
latin1 is latin1_swedish_ci. The output for SHOW CHARACTER SET indicates which collation is
the default for each displayed character set.

• There is a convention for collation names: They start with the name of the character set with which they
are associated, they usually include a language name, and they end with _ci (case insensitive), _cs
(case sensitive), or _bin (binary).

In cases where a character set has multiple collations, it might not be clear which collation is most
suitable for a given application. To avoid choosing the wrong collation, it can be helpful to perform some
comparisons with representative data values to make sure that a given collation sorts values the way you
expect.

Collation-Charts.Org is a useful site for information that shows how one collation compares to another.

10.1.3 Specifying Character Sets and Collations

There are default settings for character sets and collations at four levels: server, database, table, and
column. The description in the following sections may appear complex, but it has been found in practice
that multiple-level defaulting leads to natural and obvious results.

CHARACTER SET is used in clauses that specify a character set. CHARSET can be used as a synonym for
CHARACTER SET.

Character set issues affect not only data storage, but also communication between client programs and
the MySQL server. If you want the client program to communicate with the server using a character
set different from the default, you'll need to indicate which one. For example, to use the utf8 Unicode
character set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about character set-related issues in client/server communication, see
Section 10.1.4, “Connection Character Sets and Collations”.

10.1.3.1 Server Character Set and Collation

MySQL Server has a server character set and a server collation. These can be set at server startup on the
command line or in an option file and changed at runtime.

http://www.collation-charts.org/

Specifying Character Sets and Collations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 861

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Initially, the server character set and collation depend on the options that you use when you start
mysqld. You can use --character-set-server for the character set. Along with it, you can add --
collation-server for the collation. If you don't specify a character set, that is the same as saying
--character-set-server=latin1. If you specify only a character set (for example, latin1) but
not a collation, that is the same as saying --character-set-server=latin1 --collation-
server=latin1_swedish_ci because latin1_swedish_ci is the default collation for latin1.
Therefore, the following three commands all have the same effect:

shell> mysqld
shell> mysqld --character-set-server=latin1
shell> mysqld --character-set-server=latin1 \
 --collation-server=latin1_swedish_ci

One way to change the settings is by recompiling. If you want to change the default server character set
and collation when building from sources, use: --with-charset and --with-collation as arguments
for configure. For example:

shell> ./configure --with-charset=latin1

Or:

shell> ./configure --with-charset=latin1 \
 --with-collation=latin1_german1_ci

Both mysqld and configure verify that the character set/collation combination is valid. If not, each
program displays an error message and terminates.

The server character set and collation are used as default values if the database character set and
collation are not specified in CREATE DATABASE statements. They have no other purpose.

The current server character set and collation can be determined from the values of the
character_set_server and collation_server system variables. These variables can be changed
at runtime.

10.1.3.2 Database Character Set and Collation

Every database has a database character set and a database collation. The CREATE DATABASE and
ALTER DATABASE statements have optional clauses for specifying the database character set and
collation:

CREATE DATABASE db_name
 [[DEFAULT] CHARACTER SET charset_name]
 [[DEFAULT] COLLATE collation_name]

ALTER DATABASE db_name
 [[DEFAULT] CHARACTER SET charset_name]
 [[DEFAULT] COLLATE collation_name]

The keyword SCHEMA can be used instead of DATABASE.

All database options are stored in a text file named db.opt that can be found in the database directory.

The CHARACTER SET and COLLATE clauses make it possible to create databases with different character
sets and collations on the same MySQL server.

Example:

Specifying Character Sets and Collations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 862

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CREATE DATABASE db_name CHARACTER SET latin1 COLLATE latin1_swedish_ci;

MySQL chooses the database character set and database collation in the following manner:

• If both CHARACTER SET X and COLLATE Y are specified, character set X and collation Y are used.

• If CHARACTER SET X is specified without COLLATE, character set X and its default collation are used.
To see the default collation for each character set, use the SHOW COLLATION statement.

• If COLLATE Y is specified without CHARACTER SET, the character set associated with Y and collation Y
are used.

• Otherwise, the server character set and server collation are used.

The character set and collation for the default database can be determined from the values of the
character_set_database and collation_database system variables. The server sets these
variables whenever the default database changes. If there is no default database, the variables have
the same value as the corresponding server-level system variables, character_set_server and
collation_server.

To see the default character set and collation for a given database, use these statements:

USE db_name;
SELECT @@character_set_database, @@collation_database;

Alternatively, to display the values without changing the default database:

SELECT DEFAULT_CHARACTER_SET_NAME, DEFAULT_COLLATION_NAME
FROM INFORMATION_SCHEMA.SCHEMATA WHERE SCHEMA_NAME = 'db_name';

The database character set and collation affect these aspects of server operation:

• For CREATE TABLE statements, the database character set and collation are used as default values for
table definitions if the table character set and collation are not specified. To override this, provide explicit
CHARACTER SET and COLLATE table options.

• For LOAD DATA statements that include no CHARACTER SET clause, the server uses the character set
indicated by the character_set_database system variable to interpret the information in the file. To
override this, provide an explicit CHARACTER SET clause.

• For stored routines (procedures and functions), the database character set and collation in effect at
routine creation time are used as the character set and collation of character data parameters for which
the declaration includes no CHARACTER SET attribute. To override this, provide an explicit CHARACTER
SET attribute.

10.1.3.3 Table Character Set and Collation

Every table has a table character set and a table collation. The CREATE TABLE and ALTER TABLE
statements have optional clauses for specifying the table character set and collation:

CREATE TABLE tbl_name (column_list)
 [[DEFAULT] CHARACTER SET charset_name]
 [COLLATE collation_name]]

ALTER TABLE tbl_name

Specifying Character Sets and Collations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 863

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 [[DEFAULT] CHARACTER SET charset_name]
 [COLLATE collation_name]

Example:

CREATE TABLE t1 (...)
CHARACTER SET latin1 COLLATE latin1_danish_ci;

MySQL chooses the table character set and collation in the following manner:

• If both CHARACTER SET X and COLLATE Y are specified, character set X and collation Y are used.

• If CHARACTER SET X is specified without COLLATE, character set X and its default collation are used.
To see the default collation for each character set, use the SHOW COLLATION statement.

• If COLLATE Y is specified without CHARACTER SET, the character set associated with Y and collation Y
are used.

• Otherwise, the database character set and collation are used.

The table character set and collation are used as default values for column definitions if the column
character set and collation are not specified in individual column definitions. The table character set and
collation are MySQL extensions; there are no such things in standard SQL.

10.1.3.4 Column Character Set and Collation

Every “character” column (that is, a column of type CHAR, VARCHAR, or TEXT) has a column character
set and a column collation. Column definition syntax for CREATE TABLE and ALTER TABLE has optional
clauses for specifying the column character set and collation:

col_name {CHAR | VARCHAR | TEXT} (col_length)
 [CHARACTER SET charset_name]
 [COLLATE collation_name]

These clauses can also be used for ENUM and SET columns:

col_name {ENUM | SET} (val_list)
 [CHARACTER SET charset_name]
 [COLLATE collation_name]

Examples:

CREATE TABLE t1
(
 col1 VARCHAR(5)
 CHARACTER SET latin1
 COLLATE latin1_german1_ci
);

ALTER TABLE t1 MODIFY
 col1 VARCHAR(5)
 CHARACTER SET latin1
 COLLATE latin1_swedish_ci;

MySQL chooses the column character set and collation in the following manner:

• If both CHARACTER SET X and COLLATE Y are specified, character set X and collation Y are used.

Specifying Character Sets and Collations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 864

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CREATE TABLE t1
(
 col1 CHAR(10) CHARACTER SET utf8 COLLATE utf8_unicode_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set and collation are specified for the column, so they are used. The column has character
set utf8 and collation utf8_unicode_ci.

• If CHARACTER SET X is specified without COLLATE, character set X and its default collation are used.

CREATE TABLE t1
(
 col1 CHAR(10) CHARACTER SET utf8
) CHARACTER SET latin1 COLLATE latin1_bin;

The character set is specified for the column, but the collation is not. The column has character set utf8
and the default collation for utf8, which is utf8_general_ci. To see the default collation for each
character set, use the SHOW COLLATION statement.

• If COLLATE Y is specified without CHARACTER SET, the character set associated with Y and collation Y
are used.

CREATE TABLE t1
(
 col1 CHAR(10) COLLATE utf8_polish_ci
) CHARACTER SET latin1 COLLATE latin1_bin;

The collation is specified for the column, but the character set is not. The column has collation
utf8_polish_ci and the character set is the one associated with the collation, which is utf8.

• Otherwise, the table character set and collation are used.

CREATE TABLE t1
(
 col1 CHAR(10)
) CHARACTER SET latin1 COLLATE latin1_bin;

Neither the character set nor collation are specified for the column, so the table defaults are used. The
column has character set latin1 and collation latin1_bin.

The CHARACTER SET and COLLATE clauses are standard SQL.

If you use ALTER TABLE to convert a column from one character set to another, MySQL attempts to map
the data values, but if the character sets are incompatible, there may be data loss.

10.1.3.5 Character String Literal Character Set and Collation

Every character string literal has a character set and a collation.

A character string literal may have an optional character set introducer and COLLATE clause:

[_charset_name]'string' [COLLATE collation_name]

Examples:

Specifying Character Sets and Collations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 865

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT 'string';
SELECT _latin1'string';
SELECT _latin1'string' COLLATE latin1_danish_ci;

For the simple statement SELECT 'string', the string has the character set and collation defined by the
character_set_connection and collation_connection system variables.

The _charset_name expression is formally called an introducer. It tells the parser, “the string that is
about to follow uses character set X.” Because this has confused people in the past, we emphasize that an
introducer does not change the string to the introducer character set like CONVERT() would do. It does not
change the string's value, although padding may occur. The introducer is just a signal. An introducer is also
legal before standard hex literal and numeric hex literal notation (x'literal' and 0xnnnn), or before bit-
field literal notation (b'literal' and 0bnnnn).

Examples:

SELECT _latin1 x'AABBCC';
SELECT _latin1 0xAABBCC;
SELECT _latin1 b'1100011';
SELECT _latin1 0b1100011;

MySQL determines a literal's character set and collation in the following manner:

• If both _X and COLLATE Y are specified, character set X and collation Y are used.

• If _X is specified but COLLATE is not specified, character set X and its default collation are used. To see
the default collation for each character set, use the SHOW COLLATION statement.

• Otherwise, the character set and collation given by the character_set_connection and
collation_connection system variables are used.

Examples:

• A string with latin1 character set and latin1_german1_ci collation:

SELECT _latin1'Müller' COLLATE latin1_german1_ci;

• A string with latin1 character set and its default collation (that is, latin1_swedish_ci):

SELECT _latin1'Müller';

• A string with the connection default character set and collation:

SELECT 'Müller';

Character set introducers and the COLLATE clause are implemented according to standard SQL
specifications.

An introducer indicates the character set for the following string, but does not change now how the parser
performs escape processing within the string. Escapes are always interpreted by the parser according to
the character set given by character_set_connection.

The following examples show that escape processing occurs using character_set_connection
even in the presence of an introducer. The examples use SET NAMES (which changes
character_set_connection, as discussed in Section 10.1.4, “Connection Character Sets and

Specifying Character Sets and Collations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 866

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Collations”), and display the resulting strings using the HEX() function so that the exact string contents can
be seen.

Example 1:

mysql> SET NAMES latin1;
Query OK, 0 rows affected (0.01 sec)

mysql> SELECT HEX('à\n'), HEX(_sjis'à\n');
+------------+-----------------+
| HEX('à\n') | HEX(_sjis'à\n') |
+------------+-----------------+
| E00A | E00A |
+------------+-----------------+
1 row in set (0.00 sec)

Here, “à” (hex value E0) is followed by “\n”, the escape sequence for newline. The escape sequence is
interpreted using the character_set_connection value of latin1 to produce a literal newline (hex
value 0A). This happens even for the second string. That is, the introducer of _sjis does not affect the
parser's escape processing.

Example 2:

mysql> SET NAMES sjis;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT HEX('à\n'), HEX(_latin1'à\n');
+------------+-------------------+
| HEX('à\n') | HEX(_latin1'à\n') |
+------------+-------------------+
| E05C6E | E05C6E |
+------------+-------------------+
1 row in set (0.04 sec)

Here, character_set_connection is sjis, a character set in which the sequence of “à” followed
by “\” (hex values 05 and 5C) is a valid multibyte character. Hence, the first two bytes of the string are
interpreted as a single sjis character, and the “\” is not interpreted as an escape character. The following
“n” (hex value 6E) is not interpreted as part of an escape sequence. This is true even for the second string;
the introducer of _latin1 does not affect escape processing.

10.1.3.6 National Character Set

Standard SQL defines NCHAR or NATIONAL CHAR as a way to indicate that a CHAR column should use
some predefined character set. MySQL uses utf8 as this predefined character set. For example, these
data type declarations are equivalent:

CHAR(10) CHARACTER SET utf8
NATIONAL CHARACTER(10)
NCHAR(10)

As are these:

VARCHAR(10) CHARACTER SET utf8
NATIONAL VARCHAR(10)
NVARCHAR(10)
NCHAR VARCHAR(10)
NATIONAL CHARACTER VARYING(10)

Specifying Character Sets and Collations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 867

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

NATIONAL CHAR VARYING(10)

You can use N'literal' (or n'literal') to create a string in the national character set. These
statements are equivalent:

SELECT N'some text';
SELECT n'some text';
SELECT _utf8'some text';

For information on upgrading character sets to MySQL 5.0 from versions prior to 4.1, see the MySQL 3.23,
4.0, 4.1 Reference Manual.

10.1.3.7 Examples of Character Set and Collation Assignment

The following examples show how MySQL determines default character set and collation values.

Example 1: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10) CHARACTER SET latin1 COLLATE latin1_german1_ci
) DEFAULT CHARACTER SET latin2 COLLATE latin2_bin;

Here we have a column with a latin1 character set and a latin1_german1_ci collation. The definition
is explicit, so that is straightforward. Notice that there is no problem with storing a latin1 column in a
latin2 table.

Example 2: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10) CHARACTER SET latin1
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

This time we have a column with a latin1 character set and a default collation. Although it might seem
natural, the default collation is not taken from the table level. Instead, because the default collation for
latin1 is always latin1_swedish_ci, column c1 has a collation of latin1_swedish_ci (not
latin1_danish_ci).

Example 3: Table and Column Definition

CREATE TABLE t1
(
 c1 CHAR(10)
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

We have a column with a default character set and a default collation. In this circumstance, MySQL checks
the table level to determine the column character set and collation. Consequently, the character set for
column c1 is latin1 and its collation is latin1_danish_ci.

Example 4: Database, Table, and Column Definition

CREATE DATABASE d1
 DEFAULT CHARACTER SET latin2 COLLATE latin2_czech_ci;
USE d1;

Connection Character Sets and Collations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 868

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CREATE TABLE t1
(
 c1 CHAR(10)
);

We create a column without specifying its character set and collation. We're also not specifying a character
set and a collation at the table level. In this circumstance, MySQL checks the database level to determine
the table settings, which thereafter become the column settings.) Consequently, the character set for
column c1 is latin2 and its collation is latin2_czech_ci.

10.1.3.8 Compatibility with Other DBMSs

For MaxDB compatibility these two statements are the same:

CREATE TABLE t1 (f1 CHAR(N) UNICODE);
CREATE TABLE t1 (f1 CHAR(N) CHARACTER SET ucs2);

10.1.4 Connection Character Sets and Collations

Several character set and collation system variables relate to a client's interaction with the server. Some of
these have been mentioned in earlier sections:

• The server character set and collation are the values of the character_set_server and
collation_server system variables.

• The character set and collation of the default database are the values of the
character_set_database and collation_database system variables.

Additional character set and collation system variables are involved in handling traffic for the connection
between a client and the server. Every client has connection-related character set and collation system
variables.

A “connection” is what you make when you connect to the server. The client sends SQL statements, such
as queries, over the connection to the server. The server sends responses, such as result sets or error
messages, over the connection back to the client. This leads to several questions about character set and
collation handling for client connections, each of which can be answered in terms of system variables:

• What character set is the statement in when it leaves the client?

The server takes the character_set_client system variable to be the character set in which
statements are sent by the client.

• What character set should the server translate a statement to after receiving it?

For this, the server uses the character_set_connection and collation_connection
system variables. It converts statements sent by the client from character_set_client to
character_set_connection (except for string literals that have an introducer such as _latin1 or
_utf8). collation_connection is important for comparisons of literal strings. For comparisons of
strings with column values, collation_connection does not matter because columns have their own
collation, which has a higher collation precedence.

• What character set should the server translate to before shipping result sets back to the client?

The character_set_results system variable indicates the character set in which the server returns
query results to the client. This includes result data such as column values, and result metadata such as
column names.

Connection Character Sets and Collations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 869

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Clients can fine-tune the settings for these variables, or depend on the defaults (in which case, you can
skip the rest of this section). If you do not use the defaults, you must change the character settings for
each connection to the server.

Two statements affect the connection-related character set variables as a group:

• SET NAMES 'charset_name' [COLLATE 'collation_name']

SET NAMES indicates what character set the client will use to send SQL statements to the server. Thus,
SET NAMES 'cp1251' tells the server, “future incoming messages from this client are in character
set cp1251.” It also specifies the character set that the server should use for sending results back to
the client. (For example, it indicates what character set to use for column values if you use a SELECT
statement.)

A SET NAMES 'charset_name' statement is equivalent to these three statements:

SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET character_set_connection = charset_name;

Setting character_set_connection to charset_name also implicitly sets
collation_connection to the default collation for charset_name. It is unnecessary to set that
collation explicitly. To specify a particular collation, use the optional COLLATE clause:

SET NAMES 'charset_name' COLLATE 'collation_name'

• SET CHARACTER SET charset_name

SET CHARACTER SET is similar to SET NAMES but sets character_set_connection and
collation_connection to character_set_database and collation_database. A SET
CHARACTER SET charset_name statement is equivalent to these three statements:

SET character_set_client = charset_name;
SET character_set_results = charset_name;
SET collation_connection = @@collation_database;

Setting collation_connection also implicitly sets character_set_connection to the character
set associated with the collation (equivalent to executing SET character_set_connection =
@@character_set_database). It is unnecessary to set character_set_connection explicitly.

Note

ucs2 cannot be used as a client character set, which means that it does not work
for SET NAMES or SET CHARACTER SET.

The MySQL client programs mysql, mysqladmin, mysqlcheck, mysqlimport, and mysqlshow
determine the default character set to use as follows:

• In the absence of other information, the programs use the compiled-in default character set, usually
latin1.

• The programs support a --default-character-set option, which enables users to specify the
character set explicitly to override whatever default the client otherwise determines.

When a client connects to the server, it sends the name of the character set that it wants to use.
The server uses the name to set the character_set_client, character_set_results, and

Configuring the Character Set and Collation for Applications

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 870

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

character_set_connection system variables. In effect, the server performs a SET NAMES operation
using the character set name.

With the mysql client, to use a character set different from the default, you could explicitly execute
SET NAMES every time you start up. To accomplish the same result more easily, add the --default-
character-set option setting to your mysql command line or in your option file. For example, the
following option file setting changes the three connection-related character set variables set to koi8r each
time you invoke mysql:

[mysql]
default-character-set=koi8r

If you are using the mysql client with auto-reconnect enabled (which is not recommended), it is preferable
to use the charset command rather than SET NAMES. For example:

mysql> charset utf8
Charset changed

The charset command issues a SET NAMES statement, and also changes the default character set that
mysql uses when it reconnects after the connection has dropped.

Example: Suppose that column1 is defined as CHAR(5) CHARACTER SET latin2. If you do not say
SET NAMES or SET CHARACTER SET, then for SELECT column1 FROM t, the server sends back all
the values for column1 using the character set that the client specified when it connected. On the other
hand, if you say SET NAMES 'latin1' or SET CHARACTER SET latin1 before issuing the SELECT
statement, the server converts the latin2 values to latin1 just before sending results back. Conversion
may be lossy if there are characters that are not in both character sets.

If you want the server to perform no conversion of result sets or error messages, set
character_set_results to NULL or binary:

SET character_set_results = NULL;

To see the values of the character set and collation system variables that apply to your connection, use
these statements:

SHOW VARIABLES LIKE 'character_set%';
SHOW VARIABLES LIKE 'collation%';

You must also consider the environment within which your MySQL applications execute. See
Section 10.1.5, “Configuring the Character Set and Collation for Applications”.

For more information about character sets and error messages, see Section 10.1.6, “Character Set for
Error Messages”.

10.1.5 Configuring the Character Set and Collation for Applications

For applications that store data using the default MySQL character set and collation (latin1,
latin1_swedish_ci), no special configuration should be needed. If applications require data storage
using a different character set or collation, you can configure character set information several ways:

• Specify character settings per database. For example, applications that use one database might require
utf8, whereas applications that use another database might require sjis.

Configuring the Character Set and Collation for Applications

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 871

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Specify character settings at server startup. This causes the server to use the given settings for all
applications that do not make other arrangements.

• Specify character settings at configuration time, if you build MySQL from source. This causes the server
to use the given settings for all applications, without having to specify them at server startup.

When different applications require different character settings, the per-database technique provides a
good deal of flexibility. If most or all applications use the same character set, specifying character settings
at server startup or configuration time may be most convenient.

For the per-database or server-startup techniques, the settings control the character set for data storage.
Applications must also tell the server which character set to use for client/server communications, as
described in the following instructions.

The examples shown here assume use of the utf8 character set and utf8_general_ci collation.

Specify character settings per database. To create a database such that its tables will use a given
default character set and collation for data storage, use a CREATE DATABASE statement like this:

CREATE DATABASE mydb
 DEFAULT CHARACTER SET utf8
 DEFAULT COLLATE utf8_general_ci;

Tables created in the database will use utf8 and utf8_general_ci by default for any character
columns.

Applications that use the database should also configure their connection to the server each time they
connect. This can be done by executing a SET NAMES 'utf8' statement after connecting. The statement
can be used regardless of connection method: The mysql client, PHP scripts, and so forth.

In some cases, it may be possible to configure the connection to use the desired character set some other
way. For example, for connections made using mysql, you can specify the --default-character-
set=utf8 command-line option to achieve the same effect as SET NAMES 'utf8'.

For more information about configuring client connections, see Section 10.1.4, “Connection Character Sets
and Collations”.

If you change the default character set or collation for a database, stored routines that use the database
defaults must be dropped and recreated so that they use the new defaults. (In a stored routine, variables
with character data types use the database defaults if the character set or collation are not specified
explicitly. See Section 13.1.9, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.)

Specify character settings at server startup. To select a character set and collation at server startup,
use the --character-set-server and --collation-server options. For example, to specify the
options in an option file, include these lines:

[mysqld]
character-set-server=utf8
collation-server=utf8_general_ci

These settings apply server-wide and apply as the defaults for databases created by any application, and
for tables created in those databases.

It is still necessary for applications to configure their connection using SET NAMES or equivalent
after they connect, as described previously. You might be tempted to start the server with the --

Character Set for Error Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 872

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

init_connect="SET NAMES 'utf8'" option to cause SET NAMES to be executed automatically for
each client that connects. However, this will yield inconsistent results because the init_connect value is
not executed for users who have the SUPER privilege.

Specify character settings at MySQL configuration time. To select a character set and collation when
you configure and build MySQL from source, use the --with-charset and --with-collation
options:

shell> ./configure --with-charset=utf8 --with-collation=utf8_general_ci

The resulting server uses utf8 and utf8_general_ci as the default for databases and tables and for
client connections. It is unnecessary to use --character-set-server and --collation-server to
specify those defaults at server startup. It is also unnecessary for applications to configure their connection
using SET NAMES or equivalent after they connect to the server.

Regardless of how you configure the MySQL character set for application use, you must also consider
the environment within which those applications execute. If you will send statements using UTF-8 text
taken from a file that you create in an editor, you should edit the file with the locale of your environment
set to UTF-8 so that the file encoding is correct and so that the operating system handles it correctly. If
you use the mysql client from within a terminal window, the window must be configured to use UTF-8
or characters may not display properly. For a script that executes in a Web environment, the script must
handle character encoding properly for its interaction with the MySQL server, and it must generate pages
that correctly indicate the encoding so that browsers know how to display the content of the pages. For
example, you can include this <meta> tag within your <head> element:

<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

10.1.6 Character Set for Error Messages

This section describes how the server uses character sets for constructing error messages and returning
them to clients. For information about the language of error messages (rather than the character set), see
Section 10.2, “Setting the Error Message Language”.

In MySQL, the server constructs error messages and returns them to clients as follows:

• The message template has the character set associated with the error message language. For example,
English, Korean, and Russian messages use latin1, euckr, and koi8r, respectively.

• Parameters in the message template are replaced with values that apply to a specific error occurrence.
These parameters use their own character set. Identifiers such as table or column names use UTF-8.
Data values retain their character set. For example, in the following duplicate-key message, 'xxx' has
the character set of the table column associated with key 1:

Duplicate entry 'xxx' for key1

The preceding method of error-message construction can result in messages that contain a mix of
character sets unless all items involved contain only ASCII characters. This issue is resolved in MySQL
5.5, in which error messages are constructed internally within the server using UTF-8 and returned to the
client in the character set specified by the character_set_results system variable.

10.1.7 Collation Issues

The following sections discuss various aspects of character set collations.

Collation Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 873

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

10.1.7.1 Collation Naming Conventions

MySQL collation names follow these conventions:

• A name ending in _ci indicates a case-insensitive collation.

• A name ending in _cs indicates a case-sensitive collation.

• A name ending in _bin indicates a binary collation. Character comparisons are based on character
binary code values.

10.1.7.2 Using COLLATE in SQL Statements

With the COLLATE clause, you can override whatever the default collation is for a comparison. COLLATE
may be used in various parts of SQL statements. Here are some examples:

• With ORDER BY:

SELECT k
FROM t1
ORDER BY k COLLATE latin1_german2_ci;

• With AS:

SELECT k COLLATE latin1_german2_ci AS k1
FROM t1
ORDER BY k1;

• With GROUP BY:

SELECT k
FROM t1
GROUP BY k COLLATE latin1_german2_ci;

• With aggregate functions:

SELECT MAX(k COLLATE latin1_german2_ci)
FROM t1;

• With DISTINCT:

SELECT DISTINCT k COLLATE latin1_german2_ci
FROM t1;

• With WHERE:

 SELECT *
 FROM t1
 WHERE _latin1 'Müller' COLLATE latin1_german2_ci = k;

 SELECT *
 FROM t1
 WHERE k LIKE _latin1 'Müller' COLLATE latin1_german2_ci;

• With HAVING:

Collation Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 874

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT k
FROM t1
GROUP BY k
HAVING k = _latin1 'Müller' COLLATE latin1_german2_ci;

10.1.7.3 COLLATE Clause Precedence

The COLLATE clause has high precedence (higher than ||), so the following two expressions are
equivalent:

x || y COLLATE z
x || (y COLLATE z)

10.1.7.4 Collations Must Be for the Right Character Set

Each character set has one or more collations, but each collation is associated with one and only one
character set. Therefore, the following statement causes an error message because the latin2_bin
collation is not legal with the latin1 character set:

mysql> SELECT _latin1 'x' COLLATE latin2_bin;
ERROR 1253 (42000): COLLATION 'latin2_bin' is not valid
for CHARACTER SET 'latin1'

10.1.7.5 Collation of Expressions

In the great majority of statements, it is obvious what collation MySQL uses to resolve a comparison
operation. For example, in the following cases, it should be clear that the collation is the collation of column
charset_name:

SELECT x FROM T ORDER BY x;
SELECT x FROM T WHERE x = x;
SELECT DISTINCT x FROM T;

However, with multiple operands, there can be ambiguity. For example:

SELECT x FROM T WHERE x = 'Y';

Should the comparison use the collation of the column x, or of the string literal 'Y'? Both x and 'Y' have
collations, so which collation takes precedence?

Standard SQL resolves such questions using what used to be called “coercibility” rules. MySQL assigns
coercibility values as follows:

• An explicit COLLATE clause has a coercibility of 0. (Not coercible at all.)

• The concatenation of two strings with different collations has a coercibility of 1.

• The collation of a column or a stored routine parameter or local variable has a coercibility of 2.

• A “system constant” (the string returned by functions such as USER() or VERSION()) has a coercibility
of 3.

• The collation of a literal has a coercibility of 4.

Collation Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 875

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• NULL or an expression that is derived from NULL has a coercibility of 5.

The preceding coercibility values are current as of MySQL 5.0.3. Prior to 5.0.3, there is no system constant
or NULL coercibility. Functions such as USER() have a coercibility of 2 rather than 3, and literals have a
coercibility of 3 rather than 4.

MySQL uses coercibility values with the following rules to resolve ambiguities:

• Use the collation with the lowest coercibility value.

• If both sides have the same coercibility, then:

• If both sides are Unicode, or both sides are not Unicode, it is an error.

• If one of the sides has a Unicode character set, and another side has a non-Unicode character set, the
side with Unicode character set wins, and automatic character set conversion is applied to the non-
Unicode side. For example, the following statement does not return an error:

SELECT CONCAT(utf8_column, latin1_column) FROM t1;

It returns a result that has a character set of utf8 and the same collation as utf8_column. Values of
latin1_column are automatically converted to utf8 before concatenating.

• For an operation with operands from the same character set but that mix a _bin collation and a _ci
or _cs collation, the _bin collation is used. This is similar to how operations that mix nonbinary and
binary strings evaluate the operands as binary strings, except that it is for collations rather than data
types.

Although automatic conversion is not in the SQL standard, the SQL standard document does say that
every character set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-known
principle that “what applies to a superset can apply to a subset,” we believe that a collation for Unicode can
apply for comparisons with non-Unicode strings.

Examples:

Comparison Collation Used

column1 = 'A' Use collation of column1

column1 = 'A' COLLATE x Use collation of 'A' COLLATE x

column1 COLLATE x = 'A' COLLATE y Error

The COERCIBILITY() function can be used to determine the coercibility of a string expression:

mysql> SELECT COERCIBILITY('A' COLLATE latin1_swedish_ci);
 -> 0
mysql> SELECT COERCIBILITY(VERSION());
 -> 3
mysql> SELECT COERCIBILITY('A');
 -> 4

See Section 12.13, “Information Functions”.

For implicit conversion of a numeric or temporal value to a string, such as occurs for the argument 1 in the
expression CONCAT(1, 'abc'), the result is a binary string for which the character set and collation are
binary. See Section 12.2, “Type Conversion in Expression Evaluation”.

Collation Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 876

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

10.1.7.6 The _bin and binary Collations

This section describes how _bin collations for nonbinary strings differ from the binary “collation” for
binary strings.

Nonbinary strings (as stored in the CHAR, VARCHAR, and TEXT data types) have a character set and
collation. A given character set can have several collations, each of which defines a particular sorting and
comparison order for the characters in the set. One of these is the binary collation for the character set,
indicated by a _bin suffix in the collation name. For example, latin1 and utf8 have binary collations
named latin1_bin and utf8_bin.

Binary strings (as stored in the BINARY, VARBINARY, and BLOB data types) have no character set
or collation in the sense that nonbinary strings do. (Applied to a binary string, the CHARSET() and
COLLATION() functions both return a value of binary.) Binary strings are sequences of bytes and the
numeric values of those bytes determine sort order.

The _bin collations differ from the binary collation in several respects.

The unit for sorting and comparison. Binary strings are sequences of bytes. Sorting and comparison
is always based on numeric byte values. Nonbinary strings are sequences of characters, which might
be multibyte. Collations for nonbinary strings define an ordering of the character values for sorting and
comparison. For the _bin collation, this ordering is based solely on binary code values of the characters
(which is similar to ordering for binary strings except that a _bin collation must take into account that
a character might contain multiple bytes). For other collations, character ordering might take additional
factors such as lettercase into account.

Character set conversion. A nonbinary string has a character set and is converted to another character
set in many cases, even when the string has a _bin collation:

• When assigning column values from another column that has a different character set:

UPDATE t1 SET utf8_bin_column=latin1_column;
INSERT INTO t1 (latin1_column) SELECT utf8_bin_column FROM t2;

• When assigning column values for INSERT or UPDATE using a string literal:

SET NAMES latin1;
INSERT INTO t1 (utf8_bin_column) VALUES ('string-in-latin1');

• When sending results from the server to a client:

SET NAMES latin1;
SELECT utf8_bin_column FROM t2;

For binary string columns, no conversion occurs. For the preceding cases, the string value is copied byte-
wise.

Lettercase conversion. Collations provide information about lettercase of characters, so characters in
a nonbinary string can be converted from one lettercase to another, even for _bin collations that ignore
lettercase for ordering:

mysql> SET NAMES latin1 COLLATE latin1_bin;
Query OK, 0 rows affected (0.02 sec)

Collation Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 877

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT LOWER('aA'), UPPER('zZ');
+-------------+-------------+
| LOWER('aA') | UPPER('zZ') |
+-------------+-------------+
| aa | ZZ |
+-------------+-------------+
1 row in set (0.13 sec)

The concept of lettercase does not apply to bytes in a binary string. To perform lettercase conversion, the
string must be converted to a nonbinary string:

mysql> SET NAMES binary;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT LOWER('aA'), LOWER(CONVERT('aA' USING latin1));
+-------------+-----------------------------------+
| LOWER('aA') | LOWER(CONVERT('aA' USING latin1)) |
+-------------+-----------------------------------+
| aA | aa |
+-------------+-----------------------------------+
1 row in set (0.00 sec)

Trailing space handling in comparisons. Nonbinary strings have PADSPACE behavior for all collations,
including _bin collations. Trailing spaces are insignificant in comparisons:

mysql> SET NAMES utf8 COLLATE utf8_bin;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 1 |
+------------+
1 row in set (0.00 sec)

For binary strings, all characters are significant in comparisons, including trailing spaces:

mysql> SET NAMES binary;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT 'a ' = 'a';
+------------+
| 'a ' = 'a' |
+------------+
| 0 |
+------------+
1 row in set (0.00 sec)

Trailing space handling for inserts and retrievals. CHAR(N) columns store nonbinary strings. Values
shorter than N characters are extended with spaces on insertion. For retrieval, trailing spaces are removed.

BINARY(N) columns store binary strings. Values shorter than N bytes are extended with 0x00 bytes on
insertion. For retrieval, nothing is removed; a value of the declared length is always returned.

mysql> CREATE TABLE t1 (
 -> a CHAR(10) CHARACTER SET utf8 COLLATE utf8_bin,
 -> b BINARY(10)
 ->);
Query OK, 0 rows affected (0.09 sec)

Collation Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 878

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> INSERT INTO t1 VALUES ('a','a');
Query OK, 1 row affected (0.01 sec)

mysql> SELECT HEX(a), HEX(b) FROM t1;
+--------+----------------------+
| HEX(a) | HEX(b) |
+--------+----------------------+
| 61 | 61000000000000000000 |
+--------+----------------------+
1 row in set (0.04 sec)

10.1.7.7 The BINARY Operator

The BINARY operator casts the string following it to a binary string. This is an easy way to force a
comparison to be done byte by byte rather than character by character. BINARY also causes trailing
spaces to be significant.

mysql> SELECT 'a' = 'A';
 -> 1
mysql> SELECT BINARY 'a' = 'A';
 -> 0
mysql> SELECT 'a' = 'a ';
 -> 1
mysql> SELECT BINARY 'a' = 'a ';
 -> 0

BINARY str is shorthand for CAST(str AS BINARY).

The BINARY attribute in character column definitions has a different effect. A character column defined with
the BINARY attribute is assigned the binary collation of the column character set. Every character set has
a binary collation. For example, the binary collation for the latin1 character set is latin1_bin, so if the
table default character set is latin1, these two column definitions are equivalent:

CHAR(10) BINARY
CHAR(10) CHARACTER SET latin1 COLLATE latin1_bin

The use of CHARACTER SET binary in the definition of a CHAR, VARCHAR, or TEXT column causes the
column to be treated as a binary data type. For example, the following pairs of definitions are equivalent:

CHAR(10) CHARACTER SET binary
BINARY(10)

VARCHAR(10) CHARACTER SET binary
VARBINARY(10)

TEXT CHARACTER SET binary
BLOB

10.1.7.8 Examples of the Effect of Collation

Example 1: Sorting German Umlauts

Suppose that column X in table T has these latin1 column values:

Muffler
Müller
MX Systems

Collation Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 879

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL

Suppose also that the column values are retrieved using the following statement:

SELECT X FROM T ORDER BY X COLLATE collation_name;

The following table shows the resulting order of the values if we use ORDER BY with different collations.

latin1_swedish_ci latin1_german1_ci latin1_german2_ci

Muffler Muffler Müller

MX Systems Müller Muffler

Müller MX Systems MX Systems

MySQL MySQL MySQL

The character that causes the different sort orders in this example is the U with two dots over it (ü), which
the Germans call “U-umlaut.”

• The first column shows the result of the SELECT using the Swedish/Finnish collating rule, which says
that U-umlaut sorts with Y.

• The second column shows the result of the SELECT using the German DIN-1 rule, which says that U-
umlaut sorts with U.

• The third column shows the result of the SELECT using the German DIN-2 rule, which says that U-umlaut
sorts with UE.

Example 2: Searching for German Umlauts

Suppose that you have three tables that differ only by the character set and collation used:

mysql> SET NAMES utf8;
mysql> CREATE TABLE german1 (
 -> c CHAR(10)
 ->) CHARACTER SET latin1 COLLATE latin1_german1_ci;
mysql> CREATE TABLE german2 (
 -> c CHAR(10)
 ->) CHARACTER SET latin1 COLLATE latin1_german2_ci;
mysql> CREATE TABLE germanutf8 (
 -> c CHAR(10)
 ->) CHARACTER SET utf8 COLLATE utf8_unicode_ci;

Each table contains two records:

mysql> INSERT INTO german1 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO german2 VALUES ('Bar'), ('Bär');
mysql> INSERT INTO germanutf8 VALUES ('Bar'), ('Bär');

Two of the above collations have an A = Ä equality, and one has no such equality
(latin1_german2_ci). For that reason, you'll get these results in comparisons:

mysql> SELECT * FROM german1 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |

String Repertoire

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 880

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| Bär |
+------+
mysql> SELECT * FROM german2 WHERE c = 'Bär';
+------+
| c |
+------+
| Bär |
+------+
mysql> SELECT * FROM germanutf8 WHERE c = 'Bär';
+------+
| c |
+------+
| Bar |
| Bär |
+------+

This is not a bug but rather a consequence of the sorting properties of latin1_german1_ci and
utf8_unicode_ci (the sorting shown is done according to the German DIN 5007 standard).

10.1.8 String Repertoire

The repertoire of a character set is the collection of characters in the set.

As of MySQL 5.0.48, string expressions have a repertoire attribute, which can have two values:

• ASCII: The expression can contain only characters in the Unicode range U+0000 to U+007F.

• UNICODE: The expression can contain characters in the Unicode range U+0000 to U+FFFF.

The ASCII range is a subset of UNICODE range, so a string with ASCII repertoire can be converted safely
without loss of information to the character set of any string with UNICODE repertoire or to a character
set that is a superset of ASCII. (All MySQL character sets are supersets of ASCII with the exception of
swe7, which reuses some punctuation characters for Swedish accented characters.) The use of repertoire
enables character set conversion in expressions for many cases where MySQL would otherwise return an
“illegal mix of collations” error.

The following discussion provides examples of expressions and their repertoires, and describes how the
use of repertoire changes string expression evaluation:

• The repertoire for string constants depends on string content:

SET NAMES utf8; SELECT 'abc';
SELECT _utf8'def';
SELECT N'MySQL';

Although the character set is utf8 in each of the preceding cases, the strings do not actually contain
any characters outside the ASCII range, so their repertoire is ASCII rather than UNICODE.

• Columns having the ascii character set have ASCII repertoire because of their character set. In the
following table, c1 has ASCII repertoire:

CREATE TABLE t1 (c1 CHAR(1) CHARACTER SET ascii);

The following example illustrates how repertoire enables a result to be determined in a case where an
error occurs without repertoire:

CREATE TABLE t1 (
 c1 CHAR(1) CHARACTER SET latin1,

String Repertoire

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 881

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 c2 CHAR(1) CHARACTER SET ascii
);
INSERT INTO t1 VALUES ('a','b');
SELECT CONCAT(c1,c2) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (latin1_swedish_ci,IMPLICIT)
and (ascii_general_ci,IMPLICIT) for operation 'concat'

Using repertoire, subset to superset (ascii to latin1) conversion can occur and a result is returned:

+---------------+
| CONCAT(c1,c2) |
+---------------+
| ab |
+---------------+

• Functions with one string argument inherit the repertoire of their argument. The result of
UPPER(_utf8'abc') has ASCII repertoire, because its argument has ASCII repertoire.

• For functions that return a string but do not have string arguments and use
character_set_connection as the result character set, the result repertoire is ASCII if
character_set_connection is ascii, and UNICODE otherwise:

FORMAT(numeric_column, 4);

Use of repertoire changes how MySQL evaluates the following example:

SET NAMES ascii;
CREATE TABLE t1 (a INT, b VARCHAR(10) CHARACTER SET latin1);
INSERT INTO t1 VALUES (1,'b');
SELECT CONCAT(FORMAT(a, 4), b) FROM t1;

Without repertoire, this error occurs:

ERROR 1267 (HY000): Illegal mix of collations (ascii_general_ci,COERCIBLE)
and (latin1_swedish_ci,IMPLICIT) for operation 'concat'

With repertoire, a result is returned:

+-------------------------+
| CONCAT(FORMAT(a, 4), b) |
+-------------------------+
| 1.0000b |
+-------------------------+

• Functions with two or more string arguments use the “widest” argument repertoire for the result
repertoire (UNICODE is wider than ASCII). Consider the following CONCAT() calls:

CONCAT(_ucs2 X'0041', _ucs2 X'0042')
CONCAT(_ucs2 X'0041', _ucs2 X'00C2')

For the first call, the repertoire is ASCII because both arguments are within the range of the ascii
character set. For the second call, the repertoire is UNICODE because the second argument is outside
the ascii character set range.

Operations Affected by Character Set Support

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 882

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The repertoire for function return values is determined based only on the repertoire of the arguments that
affect the result's character set and collation.

IF(column1 < column2, 'smaller', 'greater')

The result repertoire is ASCII because the two string arguments (the second argument and the third
argument) both have ASCII repertoire. The first argument does not matter for the result repertoire, even
if the expression uses string values.

10.1.9 Operations Affected by Character Set Support

This section describes operations that take character set information into account.

10.1.9.1 Result Strings

MySQL has many operators and functions that return a string. This section answers the question: What is
the character set and collation of such a string?

For simple functions that take string input and return a string result as output, the output's character set
and collation are the same as those of the principal input value. For example, UPPER(X) returns a string
whose character string and collation are the same as that of X. The same applies for INSTR(), LCASE(),
LOWER(), LTRIM(), MID(), REPEAT(), REPLACE(), REVERSE(), RIGHT(), RPAD(), RTRIM(),
SOUNDEX(), SUBSTRING(), TRIM(), UCASE(), and UPPER().

Note: The REPLACE() function, unlike all other functions, always ignores the collation of the string input
and performs a case-sensitive comparison.

If a string input or function result is a binary string, the string has no character set or collation. This can be
checked by using the CHARSET() and COLLATION() functions, both of which return binary to indicate
that their argument is a binary string:

mysql> SELECT CHARSET(BINARY 'a'), COLLATION(BINARY 'a');
+---------------------+-----------------------+
| CHARSET(BINARY 'a') | COLLATION(BINARY 'a') |
+---------------------+-----------------------+
| binary | binary |
+---------------------+-----------------------+

For operations that combine multiple string inputs and return a single string output, the “aggregation rules”
of standard SQL apply for determining the collation of the result:

• If an explicit COLLATE X occurs, use X.

• If explicit COLLATE X and COLLATE Y occur, raise an error.

• Otherwise, if all collations are X, use X.

• Otherwise, the result has no collation.

For example, with CASE ... WHEN a THEN b WHEN b THEN c COLLATE X END, the resulting
collation is X. The same applies for UNION, ||, CONCAT(), ELT(), GREATEST(), IF(), and LEAST().

For operations that convert to character data, the character set and collation of the strings that result from
the operations are defined by the character_set_connection and collation_connection system
variables. This applies only to CAST(), CONV(), FORMAT(), HEX(), SPACE(). Before MySQL 5.0.15, it
also applies to CHAR().

Operations Affected by Character Set Support

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 883

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you are uncertain about the character set or collation of the result returned by a string function, you can
use the CHARSET() or COLLATION() function to find out:

mysql> SELECT USER(), CHARSET(USER()), COLLATION(USER());
+----------------+-----------------+-------------------+
| USER() | CHARSET(USER()) | COLLATION(USER()) |
+----------------+-----------------+-------------------+
| test@localhost | utf8 | utf8_general_ci |
+----------------+-----------------+-------------------+

10.1.9.2 CONVERT() and CAST()

CONVERT() provides a way to convert data between different character sets. The syntax is:

CONVERT(expr USING transcoding_name)

In MySQL, transcoding names are the same as the corresponding character set names.

Examples:

SELECT CONVERT(_latin1'Müller' USING utf8);
INSERT INTO utf8table (utf8column)
 SELECT CONVERT(latin1field USING utf8) FROM latin1table;

CONVERT(... USING ...) is implemented according to the standard SQL specification.

You may also use CAST() to convert a string to a different character set. The syntax is:

CAST(character_string AS character_data_type CHARACTER SET charset_name)

Example:

SELECT CAST(_latin1'test' AS CHAR CHARACTER SET utf8);

If you use CAST() without specifying CHARACTER SET, the resulting character set and collation are
defined by the character_set_connection and collation_connection system variables. If you
use CAST() with CHARACTER SET X, the resulting character set and collation are X and the default
collation of X.

You may not use a COLLATE clause inside a CONVERT() or CAST() call, but you may use it outside. For
example, CAST(... COLLATE ...) is illegal, but CAST(...) COLLATE ... is legal:

SELECT CAST(_latin1'test' AS CHAR CHARACTER SET utf8) COLLATE utf8_bin;

10.1.9.3 SHOW Statements and INFORMATION_SCHEMA

Several SHOW statements provide additional character set information. These include SHOW CHARACTER
SET, SHOW COLLATION, SHOW CREATE DATABASE, SHOW CREATE TABLE and SHOW COLUMNS. These
statements are described here briefly. For more information, see Section 13.7.5, “SHOW Syntax”.

INFORMATION_SCHEMA has several tables that contain information similar to that displayed by the
SHOW statements. For example, the CHARACTER_SETS and COLLATIONS tables contain the information
displayed by SHOW CHARACTER SET and SHOW COLLATION. See Chapter 19, INFORMATION_SCHEMA
Tables.

Operations Affected by Character Set Support

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 884

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The SHOW CHARACTER SET statement shows all available character sets. It takes an optional LIKE
clause that indicates which character set names to match. For example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+

The output from SHOW COLLATION includes all available character sets. It takes an optional LIKE clause
that indicates which collation names to match. For example:

mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	0
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	0
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
latin1_spanish_ci	latin1	94			0
+-------------------+---------+----+---------+----------+---------+

SHOW CREATE DATABASE displays the CREATE DATABASE statement that creates a given database:

mysql> SHOW CREATE DATABASE test;
+----------+---+
| Database | Create Database |
+----------+---+
| test | CREATE DATABASE `test` /*!40100 DEFAULT CHARACTER SET latin1 */ |
+----------+---+

If no COLLATE clause is shown, the default collation for the character set applies.

SHOW CREATE TABLE is similar, but displays the CREATE TABLE statement to create a given table. The
column definitions indicate any character set specifications, and the table options include character set
information.

The SHOW COLUMNS statement displays the collations of a table's columns when invoked as SHOW
FULL COLUMNS. Columns with CHAR, VARCHAR, or TEXT data types have collations. Numeric and other
noncharacter types have no collation (indicated by NULL as the Collation value). For example:

mysql> SHOW FULL COLUMNS FROM person\G
*************************** 1. row ***************************
 Field: id
 Type: smallint(5) unsigned
 Collation: NULL
 Null: NO
 Key: PRI
 Default: NULL
 Extra: auto_increment
Privileges: select,insert,update,references
 Comment:

Unicode Support

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 885

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

*************************** 2. row ***************************
 Field: name
 Type: char(60)
 Collation: latin1_swedish_ci
 Null: NO
 Key:
 Default:
 Extra:
Privileges: select,insert,update,references
 Comment:

The character set is not part of the display but is implied by the collation name.

10.1.10 Unicode Support

MySQL supports two character sets for storing Unicode data:

• ucs2, the UCS-2 encoding of the Unicode character set using 16 bits per character.

• utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character.

These two character sets support the characters from the Basic Multilingual Plane (BMP) of Unicode
Version 3.0. BMP characters have these characteristics:

• Their code values are between 0 and 65535 (or U+0000 .. U+FFFF).

• They can be encoded with a fixed 16-bit word, as in ucs2.

• They can be encoded with 8, 16, or 24 bits, as in utf8.

• They are sufficient for almost all characters in major languages.

The ucs2 and utf8 character sets do not support supplementary characters that lie outside the BMP.
Characters outside the BMP compare as REPLACEMENT CHARACTER and convert to '?' when
converted to a Unicode character set.

A similar set of collations is available for each Unicode character set. For example, each has a Danish
collation, the names of which are ucs2_danish_ci and utf8_danish_ci. All Unicode collations are
listed at Section 10.1.13.1, “Unicode Character Sets”.

The MySQL implementation of UCS-2 stores characters in big-endian byte order and does not use a byte
order mark (BOM) at the beginning of values. Other database systems might use little-endian byte order
or a BOM. In such cases, conversion of values will need to be performed when transferring data between
those systems and MySQL.

MySQL uses no BOM for UTF-8 values.

Client applications that need to communicate with the server using Unicode should set the client character
set accordingly; for example, by issuing a SET NAMES 'utf8' statement. ucs2 cannot be used as a
client character set, which means that it does not work for SET NAMES or SET CHARACTER SET. (See
Section 10.1.4, “Connection Character Sets and Collations”.)

The following sections provide additional detail on the Unicode character sets in MySQL.

10.1.10.1 The ucs2 Character Set (UCS-2 Unicode Encoding)

In UCS-2, every character is represented by a 2-byte Unicode code with the most significant byte first. For
example: LATIN CAPITAL LETTER A has the code 0x0041 and it is stored as a 2-byte sequence: 0x00

UTF-8 for Metadata

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 886

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

0x41. CYRILLIC SMALL LETTER YERU (Unicode 0x044B) is stored as a 2-byte sequence: 0x04 0x4B.
For Unicode characters and their codes, please refer to the Unicode Home Page.

In MySQL, the ucs2 character set is a fixed-length 16-bit encoding for Unicode BMP characters.

10.1.10.2 The utf8 Character Set (3-Byte UTF-8 Unicode Encoding)

UTF-8 (Unicode Transformation Format with 8-bit units) is an alternative way to store Unicode data.
It is implemented according to RFC 3629, which describes encoding sequences that take from one to
four bytes. MySQL support for UTF-8 does not include 4-byte sequences. (An older standard for UTF-8
encoding, RFC 2279, describes UTF-8 sequences that take from one to six bytes. RFC 3629 renders RFC
2279 obsolete; for this reason, sequences with five and six bytes are no longer used.)

The idea of UTF-8 is that various Unicode characters are encoded using byte sequences of different
lengths:

• Basic Latin letters, digits, and punctuation signs use one byte.

• Most European and Middle East script letters fit into a 2-byte sequence: extended Latin letters (with tilde,
macron, acute, grave and other accents), Cyrillic, Greek, Armenian, Hebrew, Arabic, Syriac, and others.

• Korean, Chinese, and Japanese ideographs use 3-byte sequences.

Tip: To save space with UTF-8, use VARCHAR instead of CHAR. Otherwise, MySQL must reserve three
bytes for each character in a CHAR CHARACTER SET utf8 column because that is the maximum
possible length. For example, MySQL must reserve 30 bytes for a CHAR(10) CHARACTER SET utf8
column.

For additional information about data type storage, see Section 11.7, “Data Type Storage Requirements”.
For information about InnoDB physical row storage, including how InnoDB tables that use COMPACT row
format handle UTF-8 CHAR(N) columns internally, see Section 14.2.10.5, “Physical Row Structure”.

10.1.11 UTF-8 for Metadata

Metadata is “the data about the data.” Anything that describes the database—as opposed to being the
contents of the database—is metadata. Thus column names, database names, user names, version
names, and most of the string results from SHOW are metadata. This is also true of the contents of tables in
INFORMATION_SCHEMA because those tables by definition contain information about database objects.

Representation of metadata must satisfy these requirements:

• All metadata must be in the same character set. Otherwise, neither the SHOW statements nor SELECT
statements for tables in INFORMATION_SCHEMA would work properly because different rows in the same
column of the results of these operations would be in different character sets.

• Metadata must include all characters in all languages. Otherwise, users would not be able to name
columns and tables using their own languages.

To satisfy both requirements, MySQL stores metadata in a Unicode character set, namely UTF-8. This
does not cause any disruption if you never use accented or non-Latin characters. But if you do, you should
be aware that metadata is in UTF-8.

The metadata requirements mean that the return values of the USER(), CURRENT_USER(),
SESSION_USER(), SYSTEM_USER(), DATABASE(), and VERSION() functions have the UTF-8 character
set by default.

http://www.unicode.org/

Column Character Set Conversion

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 887

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The server sets the character_set_system system variable to the name of the metadata character set:

mysql> SHOW VARIABLES LIKE 'character_set_system';
+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| character_set_system | utf8 |
+----------------------+-------+

Storage of metadata using Unicode does not mean that the server returns headers of columns and the
results of DESCRIBE functions in the character_set_system character set by default. When you use
SELECT column1 FROM t, the name column1 itself is returned from the server to the client in the
character set determined by the value of the character_set_results system variable, which has a
default value of latin1. If you want the server to pass metadata results back in a different character set,
use the SET NAMES statement to force the server to perform character set conversion. SET NAMES sets
the character_set_results and other related system variables. (See Section 10.1.4, “Connection
Character Sets and Collations”.) Alternatively, a client program can perform the conversion after receiving
the result from the server. It is more efficient for the client to perform the conversion, but this option is not
always available for all clients.

If character_set_results is set to NULL, no conversion is performed and the server returns metadata
using its original character set (the set indicated by character_set_system).

Error messages returned from the server to the client are converted to the client character set
automatically, as with metadata.

If you are using (for example) the USER() function for comparison or assignment within a single statement,
don't worry. MySQL performs some automatic conversion for you.

SELECT * FROM t1 WHERE USER() = latin1_column;

This works because the contents of latin1_column are automatically converted to UTF-8 before the
comparison.

INSERT INTO t1 (latin1_column) SELECT USER();

This works because the contents of USER() are automatically converted to latin1 before the
assignment.

Although automatic conversion is not in the SQL standard, the SQL standard document does say that
every character set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-known
principle that “what applies to a superset can apply to a subset,” we believe that a collation for Unicode
can apply for comparisons with non-Unicode strings. For more information about coercion of strings, see
Section 10.1.7.5, “Collation of Expressions”.

10.1.12 Column Character Set Conversion

To convert a binary or nonbinary string column to use a particular character set, use ALTER TABLE. For
successful conversion to occur, one of the following conditions must apply:

• If the column has a binary data type (BINARY, VARBINARY, BLOB), all the values that it contains must
be encoded using a single character set (the character set you're converting the column to). If you use a
binary column to store information in multiple character sets, MySQL has no way to know which values
use which character set and cannot convert the data properly.

Column Character Set Conversion

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 888

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• If the column has a nonbinary data type (CHAR, VARCHAR, TEXT), its contents should be encoded in the
column character set, not some other character set. If the contents are encoded in a different character
set, you can convert the column to use a binary data type first, and then to a nonbinary column with the
desired character set.

Suppose that a table t has a binary column named col1 defined as VARBINARY(50). Assuming that
the information in the column is encoded using a single character set, you can convert it to a nonbinary
column that has that character set. For example, if col1 contains binary data representing characters in
the greek character set, you can convert it as follows:

ALTER TABLE t MODIFY col1 VARCHAR(50) CHARACTER SET greek;

If your original column has a type of BINARY(50), you could convert it to CHAR(50), but the resulting
values will be padded with 0x00 bytes at the end, which may be undesirable. To remove these bytes, use
the TRIM() function:

UPDATE t SET col1 = TRIM(TRAILING 0x00 FROM col1);

Suppose that table t has a nonbinary column named col1 defined as CHAR(50) CHARACTER SET
latin1 but you want to convert it to use utf8 so that you can store values from many languages. The
following statement accomplishes this:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET utf8;

Conversion may be lossy if the column contains characters that are not in both character sets.

A special case occurs if you have old tables from before MySQL 4.1 where a nonbinary column contains
values that actually are encoded in a character set different from the server's default character set. For
example, an application might have stored sjis values in a column, even though MySQL's default
character set was latin1. It is possible to convert the column to use the proper character set but an
additional step is required. Suppose that the server's default character set was latin1 and col1 is
defined as CHAR(50) but its contents are sjis values. The first step is to convert the column to a
binary data type, which removes the existing character set information without performing any character
conversion:

ALTER TABLE t MODIFY col1 BLOB;

The next step is to convert the column to a nonbinary data type with the proper character set:

ALTER TABLE t MODIFY col1 CHAR(50) CHARACTER SET sjis;

This procedure requires that the table not have been modified already with statements such as INSERT
or UPDATE after an upgrade to MySQL 4.1 or later. In that case, MySQL would store new values in the
column using latin1, and the column will contain a mix of sjis and latin1 values and cannot be
converted properly.

If you specified attributes when creating a column initially, you should also specify them when altering the
table with ALTER TABLE. For example, if you specified NOT NULL and an explicit DEFAULT value, you
should also provide them in the ALTER TABLE statement. Otherwise, the resulting column definition will
not include those attributes.

To convert all character columns in a table, the ALTER TABLE ... CONVERT TO CHARACTER SET
charset statement may be useful. See Section 13.1.4, “ALTER TABLE Syntax”.

Character Sets and Collations That MySQL Supports

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 889

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

10.1.13 Character Sets and Collations That MySQL Supports

MySQL supports 70+ collations for 30+ character sets. This section indicates which character sets MySQL
supports. There is one subsection for each group of related character sets. For each character set, the
permissible collations are listed.

You can always list the available character sets and their default collations with the SHOW CHARACTER
SET statement:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+
| Charset | Description | Default collation |
+----------+-----------------------------+---------------------+
big5	Big5 Traditional Chinese	big5_chinese_ci
dec8	DEC West European	dec8_swedish_ci
cp850	DOS West European	cp850_general_ci
hp8	HP West European	hp8_english_ci
koi8r	KOI8-R Relcom Russian	koi8r_general_ci
latin1	cp1252 West European	latin1_swedish_ci
latin2	ISO 8859-2 Central European	latin2_general_ci
swe7	7bit Swedish	swe7_swedish_ci
ascii	US ASCII	ascii_general_ci
ujis	EUC-JP Japanese	ujis_japanese_ci
sjis	Shift-JIS Japanese	sjis_japanese_ci
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci
tis620	TIS620 Thai	tis620_thai_ci
euckr	EUC-KR Korean	euckr_korean_ci
koi8u	KOI8-U Ukrainian	koi8u_general_ci
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci
greek	ISO 8859-7 Greek	greek_general_ci
cp1250	Windows Central European	cp1250_general_ci
gbk	GBK Simplified Chinese	gbk_chinese_ci
latin5	ISO 8859-9 Turkish	latin5_turkish_ci
armscii8	ARMSCII-8 Armenian	armscii8_general_ci
utf8	UTF-8 Unicode	utf8_general_ci
ucs2	UCS-2 Unicode	ucs2_general_ci
cp866	DOS Russian	cp866_general_ci
keybcs2	DOS Kamenicky Czech-Slovak	keybcs2_general_ci
macce	Mac Central European	macce_general_ci
macroman	Mac West European	macroman_general_ci
cp852	DOS Central European	cp852_general_ci
latin7	ISO 8859-13 Baltic	latin7_general_ci
cp1251	Windows Cyrillic	cp1251_general_ci
cp1256	Windows Arabic	cp1256_general_ci
cp1257	Windows Baltic	cp1257_general_ci
binary	Binary pseudo charset	binary
geostd8	GEOSTD8 Georgian	geostd8_general_ci
cp932	SJIS for Windows Japanese	cp932_japanese_ci
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci
+----------+-----------------------------+---------------------+

In cases where a character set has multiple collations, it might not be clear which collation is most
suitable for a given application. To avoid choosing the wrong collation, it can be helpful to perform some
comparisons with representative data values to make sure that a given collation sorts values the way you
expect.

Collation-Charts.Org is a useful site for information that shows how one collation compares to another.

10.1.13.1 Unicode Character Sets

MySQL has two Unicode character sets:

• ucs2, the UCS-2 encoding of the Unicode character set using 16 bits per character.

http://www.collation-charts.org/

Character Sets and Collations That MySQL Supports

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 890

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• utf8, a UTF-8 encoding of the Unicode character set using one to three bytes per character.

You can store text in about 650 languages using these character sets. This section lists the collations
available for each Unicode character set and describes their differentiating properties. For general
information about the character sets, see Section 10.1.10, “Unicode Support”.

A similar set of collations is available for each Unicode character set. These are shown in the following
list, where xxx represents the character set name. For example, xxx_danish_ci represents the Danish
collations, the specific names of which are ucs2_danish_ci and utf8_danish_ci.

• xxx_bin

• xxx_czech_ci

• xxx_danish_ci

• xxx_esperanto_ci

• xxx_estonian_ci

• xxx_general_ci (default)

• xxx_hungarian_ci

• xxx_icelandic_ci

• xxx_latvian_ci

• xxx_lithuanian_ci

• xxx_persian_ci

• xxx_polish_ci

• xxx_roman_ci

• xxx_romanian_ci

• xxx_slovak_ci

• xxx_slovenian_ci

• xxx_spanish_ci

• xxx_spanish2_ci

• xxx_swedish_ci

• xxx_turkish_ci

• xxx_unicode_ci

The xxx_esperanto_ci collations were added in MySQL 5.0.13. The xxx_hungarian_ci collations
were added in MySQL 5.0.19.

MySQL implements the xxx_unicode_ci collations according to the Unicode Collation Algorithm
(UCA) described at http://www.unicode.org/reports/tr10/. The collation uses the version-4.0.0 UCA weight
keys: http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. The xxx_unicode_ci collations have
only partial support for the Unicode Collation Algorithm. Some characters are not supported yet. Also,

http://www.unicode.org/reports/tr10/
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

Character Sets and Collations That MySQL Supports

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 891

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

combining marks are not fully supported. This affects primarily Vietnamese, Yoruba, and some smaller
languages such as Navajo. A combined character will be considered different from the same character
written with a single unicode character in string comparisons, and the two characters are considered
to have a different length (for example, as returned by the CHAR_LENGTH() function or in result set
metadata).

MySQL implements language-specific Unicode collations only if the ordering with xxx_unicode_ci
does not work well for a language. Language-specific collations are UCA-based. They are derived from
xxx_unicode_ci with additional language tailoring rules.

For any Unicode character set, operations performed using the xxx_general_ci collation are faster than
those for the xxx_unicode_ci collation. For example, comparisons for the utf8_general_ci collation
are faster, but slightly less correct, than comparisons for utf8_unicode_ci. The reason for this is that
utf8_unicode_ci supports mappings such as expansions; that is, when one character compares as
equal to combinations of other characters. For example, in German and some other languages “ß” is equal
to “ss”. utf8_unicode_ci also supports contractions and ignorable characters. utf8_general_ci is a
legacy collation that does not support expansions, contractions, or ignorable characters. It can make only
one-to-one comparisons between characters.

To further illustrate, the following equalities hold in both utf8_general_ci and utf8_unicode_ci (for
the effect this has in comparisons or when doing searches, see Section 10.1.7.8, “Examples of the Effect
of Collation”):

Ä = A
Ö = O
Ü = U

A difference between the collations is that this is true for utf8_general_ci:

ß = s

Whereas this is true for utf8_unicode_ci, which supports the German DIN-1 ordering (also known as
dictionary order):

ß = ss

MySQL implements language-specific collations for the utf8 character set only if the ordering with
utf8_unicode_ci does not work well for a language. For example, utf8_unicode_ci works fine for
German dictionary order and French, so there is no need to create special utf8 collations.

utf8_general_ci also is satisfactory for both German and French, except that “ß” is equal to “s”, and
not to “ss”. If this is acceptable for your application, you should use utf8_general_ci because it is
faster. Otherwise, use utf8_unicode_ci because it is more accurate.

xxx_swedish_ci includes Swedish rules. For example, in Swedish, the following relationship holds,
which is not something expected by a German or French speaker:

Ü = Y < Ö

The xxx_spanish_ci and xxx_spanish2_ci collations correspond to modern Spanish and traditional
Spanish, respectively. In both collations, “ñ” (n-tilde) is a separate letter between “n” and “o”. In addition,
for traditional Spanish, “ch” is a separate letter between “c” and “d”, and “ll” is a separate letter between
“l” and “m”

The xxx_spanish2_ci collations may also be used for Asturian and Galician.

Character Sets and Collations That MySQL Supports

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 892

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The xxx_danich_ci collations may also be used for Norwegian.

In the xxx_roman_ci collations, I and J compare as equal, and U and V compare as equal.

For additional information about Unicode collations in MySQL, see Collation-Charts.Org (utf8).

10.1.13.2 West European Character Sets

Western European character sets cover most West European languages, such as French, Spanish,
Catalan, Basque, Portuguese, Italian, Albanian, Dutch, German, Danish, Swedish, Norwegian, Finnish,
Faroese, Icelandic, Irish, Scottish, and English.

• ascii (US ASCII) collations:

• ascii_bin

• ascii_general_ci (default)

• cp850 (DOS West European) collations:

• cp850_bin

• cp850_general_ci (default)

• dec8 (DEC Western European) collations:

• dec8_bin

• dec8_swedish_ci (default)

• hp8 (HP Western European) collations:

• hp8_bin

• hp8_english_ci (default)

• latin1 (cp1252 West European) collations:

• latin1_bin

• latin1_danish_ci

• latin1_general_ci

• latin1_general_cs

• latin1_german1_ci

• latin1_german2_ci

• latin1_spanish_ci

• latin1_swedish_ci (default)

latin1 is the default character set. MySQL's latin1 is the same as the Windows cp1252 character
set. This means it is the same as the official ISO 8859-1 or IANA (Internet Assigned Numbers
Authority) latin1, except that IANA latin1 treats the code points between 0x80 and 0x9f as
“undefined,” whereas cp1252, and therefore MySQL's latin1, assign characters for those positions.

http://www.collation-charts.org/mysql60/by-charset.html#utf8

Character Sets and Collations That MySQL Supports

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 893

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For example, 0x80 is the Euro sign. For the “undefined” entries in cp1252, MySQL translates 0x81 to
Unicode 0x0081, 0x8d to 0x008d, 0x8f to 0x008f, 0x90 to 0x0090, and 0x9d to 0x009d.

The latin1_swedish_ci collation is the default that probably is used by the majority of MySQL
customers. Although it is frequently said that it is based on the Swedish/Finnish collation rules, there are
Swedes and Finns who disagree with this statement.

The latin1_german1_ci and latin1_german2_ci collations are based on the DIN-1 and DIN-2
standards, where DIN stands for Deutsches Institut für Normung (the German equivalent of ANSI). DIN-1
is called the “dictionary collation” and DIN-2 is called the “phone book collation.” For an example of the
effect this has in comparisons or when doing searches, see Section 10.1.7.8, “Examples of the Effect of
Collation”.

• latin1_german1_ci (dictionary) rules:

Ä = A
Ö = O
Ü = U
ß = s

• latin1_german2_ci (phone-book) rules:

Ä = AE
Ö = OE
Ü = UE
ß = ss

In the latin1_spanish_ci collation, “ñ” (n-tilde) is a separate letter between “n” and “o”.

• macroman (Mac West European) collations:

• macroman_bin

• macroman_general_ci (default)

• swe7 (7bit Swedish) collations:

• swe7_bin

• swe7_swedish_ci (default)

For additional information about Western European collations in MySQL, see Collation-Charts.Org (ascii,
cp850, dec8, hp8, latin1, macroman, swe7).

10.1.13.3 Central European Character Sets

MySQL provides some support for character sets used in the Czech Republic, Slovakia, Hungary,
Romania, Slovenia, Croatia, Poland, and Serbia (Latin).

• cp1250 (Windows Central European) collations:

• cp1250_bin

• cp1250_croatian_ci

• cp1250_czech_cs

• cp1250_general_ci (default)

http://www.collation-charts.org/mysql60/by-charset.html#ascii
http://www.collation-charts.org/mysql60/by-charset.html#cp850
http://www.collation-charts.org/mysql60/by-charset.html#dec8
http://www.collation-charts.org/mysql60/by-charset.html#hp8
http://www.collation-charts.org/mysql60/by-charset.html#latin1
http://www.collation-charts.org/mysql60/by-charset.html#macroman
http://www.collation-charts.org/mysql60/by-charset.html#swe7

Character Sets and Collations That MySQL Supports

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 894

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• cp852 (DOS Central European) collations:

• cp852_bin

• cp852_general_ci (default)

• keybcs2 (DOS Kamenicky Czech-Slovak) collations:

• keybcs2_bin

• keybcs2_general_ci (default)

• latin2 (ISO 8859-2 Central European) collations:

• latin2_bin

• latin2_croatian_ci

• latin2_czech_cs

• latin2_general_ci (default)

• latin2_hungarian_ci

• macce (Mac Central European) collations:

• macce_bin

• macce_general_ci (default)

For additional information about Central European collations in MySQL, see Collation-Charts.Org (cp1250,
cp852, keybcs2, latin2, macce).

10.1.13.4 South European and Middle East Character Sets

South European and Middle Eastern character sets supported by MySQL include Armenian, Arabic,
Georgian, Greek, Hebrew, and Turkish.

• armscii8 (ARMSCII-8 Armenian) collations:

• armscii8_bin

• armscii8_general_ci (default)

• cp1256 (Windows Arabic) collations:

• cp1256_bin

• cp1256_general_ci (default)

• geostd8 (GEOSTD8 Georgian) collations:

• geostd8_bin

• geostd8_general_ci (default)

• greek (ISO 8859-7 Greek) collations:

• greek_bin

http://www.collation-charts.org/mysql60/by-charset.html#cp1250
http://www.collation-charts.org/mysql60/by-charset.html#cp852
http://www.collation-charts.org/mysql60/by-charset.html#keybcs2
http://www.collation-charts.org/mysql60/by-charset.html#latin2
http://www.collation-charts.org/mysql60/by-charset.html#macce

Character Sets and Collations That MySQL Supports

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 895

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• greek_general_ci (default)

• hebrew (ISO 8859-8 Hebrew) collations:

• hebrew_bin

• hebrew_general_ci (default)

• latin5 (ISO 8859-9 Turkish) collations:

• latin5_bin

• latin5_turkish_ci (default)

For additional information about South European and Middle Eastern collations in MySQL, see Collation-
Charts.Org (armscii8, cp1256, geostd8, greek, hebrew, latin5).

10.1.13.5 Baltic Character Sets

The Baltic character sets cover Estonian, Latvian, and Lithuanian languages.

• cp1257 (Windows Baltic) collations:

• cp1257_bin

• cp1257_general_ci (default)

• cp1257_lithuanian_ci

• latin7 (ISO 8859-13 Baltic) collations:

• latin7_bin

• latin7_estonian_cs

• latin7_general_ci (default)

• latin7_general_cs

For additional information about Baltic collations in MySQL, see Collation-Charts.Org (cp1257, latin7).

10.1.13.6 Cyrillic Character Sets

The Cyrillic character sets and collations are for use with Belarusian, Bulgarian, Russian, Ukrainian, and
Serbian (Cyrillic) languages.

• cp1251 (Windows Cyrillic) collations:

• cp1251_bin

• cp1251_bulgarian_ci

• cp1251_general_ci (default)

• cp1251_general_cs

• cp1251_ukrainian_ci

http://www.collation-charts.org/mysql60/by-charset.html#armscii8
http://www.collation-charts.org/mysql60/by-charset.html#cp1256
http://www.collation-charts.org/mysql60/by-charset.html#geostd8
http://www.collation-charts.org/mysql60/by-charset.html#greek
http://www.collation-charts.org/mysql60/by-charset.html#hebrew
http://www.collation-charts.org/mysql60/by-charset.html#latin5
http://www.collation-charts.org/mysql60/by-charset.html#cp1257
http://www.collation-charts.org/mysql60/by-charset.html#latin7

Character Sets and Collations That MySQL Supports

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 896

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• cp866 (DOS Russian) collations:

• cp866_bin

• cp866_general_ci (default)

• koi8r (KOI8-R Relcom Russian) collations:

• koi8r_bin

• koi8r_general_ci (default)

• koi8u (KOI8-U Ukrainian) collations:

• koi8u_bin

• koi8u_general_ci (default)

For additional information about Cyrillic collations in MySQL, see Collation-Charts.Org (cp1251, cp866,
koi8r, koi8u).).

10.1.13.7 Asian Character Sets

The Asian character sets that we support include Chinese, Japanese, Korean, and Thai. These can be
complicated. For example, the Chinese sets must allow for thousands of different characters. See The
cp932 Character Set, for additional information about the cp932 and sjis character sets.

For answers to some common questions and problems relating support for Asian character sets in MySQL,
see Section A.11, “MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”.

• big5 (Big5 Traditional Chinese) collations:

• big5_bin

• big5_chinese_ci (default)

• cp932 (SJIS for Windows Japanese) collations:

• cp932_bin

• cp932_japanese_ci (default)

• eucjpms (UJIS for Windows Japanese) collations:

• eucjpms_bin

• eucjpms_japanese_ci (default)

• euckr (EUC-KR Korean) collations:

• euckr_bin

• euckr_korean_ci (default)

• gb2312 (GB2312 Simplified Chinese) collations:

• gb2312_bin

• gb2312_chinese_ci (default)

http://www.collation-charts.org/mysql60/by-charset.html#cp1251
http://www.collation-charts.org/mysql60/by-charset.html#cp866
http://www.collation-charts.org/mysql60/by-charset.html#koi8r
http://www.collation-charts.org/mysql60/by-charset.html#koi8u

Character Sets and Collations That MySQL Supports

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 897

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• gbk (GBK Simplified Chinese) collations:

• gbk_bin

• gbk_chinese_ci (default)

• sjis (Shift-JIS Japanese) collations:

• sjis_bin

• sjis_japanese_ci (default)

• tis620 (TIS620 Thai) collations:

• tis620_bin

• tis620_thai_ci (default)

• ujis (EUC-JP Japanese) collations:

• ujis_bin

• ujis_japanese_ci (default)

The big5_chinese_ci collation sorts on number of strokes.

For additional information about Asian collations in MySQL, see Collation-Charts.Org (big5, cp932,
eucjpms, euckr, gb2312, gbk, sjis, tis620, ujis).

The cp932 Character Set

Why is cp932 needed?

In MySQL, the sjis character set corresponds to the Shift_JIS character set defined by IANA, which
supports JIS X0201 and JIS X0208 characters. (See http://www.iana.org/assignments/character-sets.)

However, the meaning of “SHIFT JIS” as a descriptive term has become very vague and it often includes
the extensions to Shift_JIS that are defined by various vendors.

For example, “SHIFT JIS” used in Japanese Windows environments is a Microsoft extension of
Shift_JIS and its exact name is Microsoft Windows Codepage : 932 or cp932. In addition to
the characters supported by Shift_JIS, cp932 supports extension characters such as NEC special
characters, NEC selected—IBM extended characters, and IBM selected characters.

Many Japanese users have experienced problems using these extension characters. These problems
stem from the following factors:

• MySQL automatically converts character sets.

• Character sets are converted using Unicode (ucs2).

• The sjis character set does not support the conversion of these extension characters.

• There are several conversion rules from so-called “SHIFT JIS” to Unicode, and some characters are
converted to Unicode differently depending on the conversion rule. MySQL supports only one of these
rules (described later).

The MySQL cp932 character set is designed to solve these problems. It is available as of MySQL 5.0.3.

http://www.collation-charts.org/mysql60/by-charset.html#big5
http://www.collation-charts.org/mysql60/by-charset.html#cp932
http://www.collation-charts.org/mysql60/by-charset.html#eucjpms
http://www.collation-charts.org/mysql60/by-charset.html#euckr
http://www.collation-charts.org/mysql60/by-charset.html#gb2312
http://www.collation-charts.org/mysql60/by-charset.html#gbk
http://www.collation-charts.org/mysql60/by-charset.html#sjis
http://www.collation-charts.org/mysql60/by-charset.html#tis620
http://www.collation-charts.org/mysql60/by-charset.html#ujis
http://www.iana.org/assignments/character-sets

Character Sets and Collations That MySQL Supports

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 898

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Because MySQL supports character set conversion, it is important to separate IANA Shift_JIS and
cp932 into two different character sets because they provide different conversion rules.

How does cp932 differ from sjis?

The cp932 character set differs from sjis in the following ways:

• cp932 supports NEC special characters, NEC selected—IBM extended characters, and IBM selected
characters.

• Some cp932 characters have two different code points, both of which convert to the same Unicode code
point. When converting from Unicode back to cp932, one of the code points must be selected. For this
“round trip conversion,” the rule recommended by Microsoft is used. (See http://support.microsoft.com/
kb/170559/EN-US/.)

The conversion rule works like this:

• If the character is in both JIS X 0208 and NEC special characters, use the code point of JIS X 0208.

• If the character is in both NEC special characters and IBM selected characters, use the code point of
NEC special characters.

• If the character is in both IBM selected characters and NEC selected—IBM extended characters, use
the code point of IBM extended characters.

The table shown at https://msdn.microsoft.com/en-us/goglobal/cc305152.aspx provides information
about the Unicode values of cp932 characters. For cp932 table entries with characters under which
a four-digit number appears, the number represents the corresponding Unicode (ucs2) encoding. For
table entries with an underlined two-digit value appears, there is a range of cp932 character values that
begin with those two digits. Clicking such a table entry takes you to a page that displays the Unicode
value for each of the cp932 characters that begin with those digits.

The following links are of special interest. They correspond to the encodings for the following sets of
characters:

• NEC special characters (lead byte 0x87):

https://msdn.microsoft.com/en-us/goglobal/gg674964

• NEC selected—IBM extended characters (lead byte 0xED and 0xEE):

https://msdn.microsoft.com/en-us/goglobal/gg671837
https://msdn.microsoft.com/en-us/goglobal/gg671838

• IBM selected characters (lead byte 0xFA, 0xFB, 0xFC):

https://msdn.microsoft.com/en-us/goglobal/gg671839
https://msdn.microsoft.com/en-us/goglobal/gg671840
https://msdn.microsoft.com/en-us/goglobal/gg671841

• Starting from version 5.0.3, cp932 supports conversion of user-defined characters in combination
with eucjpms, and solves the problems with sjis/ujis conversion. For details, please refer to http://
www.opengroup.or.jp/jvc/cde/sjis-euc-e.html.

For some characters, conversion to and from ucs2 is different for sjis and cp932. The following tables
illustrate these differences.

http://support.microsoft.com/kb/170559/EN-US/
http://support.microsoft.com/kb/170559/EN-US/
https://msdn.microsoft.com/en-us/goglobal/cc305152.aspx
https://msdn.microsoft.com/en-us/goglobal/gg674964
https://msdn.microsoft.com/en-us/goglobal/gg671837
https://msdn.microsoft.com/en-us/goglobal/gg671838
https://msdn.microsoft.com/en-us/goglobal/gg671839
https://msdn.microsoft.com/en-us/goglobal/gg671840
https://msdn.microsoft.com/en-us/goglobal/gg671841
http://www.opengroup.or.jp/jvc/cde/sjis-euc-e.html
http://www.opengroup.or.jp/jvc/cde/sjis-euc-e.html

Setting the Error Message Language

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 899

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Conversion to ucs2:

sjis/cp932 Value sjis -> ucs2 Conversion cp932 -> ucs2 Conversion

5C 005C 005C

7E 007E 007E

815C 2015 2015

815F 005C FF3C

8160 301C FF5E

8161 2016 2225

817C 2212 FF0D

8191 00A2 FFE0

8192 00A3 FFE1

81CA 00AC FFE2

Conversion from ucs2:

ucs2 value ucs2 -> sjis Conversion ucs2 -> cp932 Conversion

005C 815F 5C

007E 7E 7E

00A2 8191 3F

00A3 8192 3F

00AC 81CA 3F

2015 815C 815C

2016 8161 3F

2212 817C 3F

2225 3F 8161

301C 8160 3F

FF0D 3F 817C

FF3C 3F 815F

FF5E 3F 8160

FFE0 3F 8191

FFE1 3F 8192

FFE2 3F 81CA

Users of any Japanese character sets should be aware that using --character-set-client-
handshake (or --skip-character-set-client-handshake) has an important effect. See
Section 5.1.3, “Server Command Options”.

10.2 Setting the Error Message Language

By default, mysqld produces error messages in English, but they can also be displayed in any of several
other languages: Czech, Danish, Dutch, Estonian, French, German, Greek, Hungarian, Italian, Japanese,
Korean, Norwegian, Norwegian-ny, Polish, Portuguese, Romanian, Russian, Slovak, Spanish, or Swedish.

Adding a Character Set

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 900

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

You can select which language the server uses for error messages using the instructions in this section.

To start mysqld with a particular language for error messages, use the --language or -L option. The
option value can be a language name or the full path to the error message file. For example:

shell> mysqld --language=swedish

Or:

shell> mysqld --language=/usr/local/share/swedish

The language name should be specified in lowercase.

By default, the language files are located in the share/mysql/LANGUAGE directory under the MySQL
base directory.

For information about changing the character set for error messages (rather than the language), see
Section 10.1.6, “Character Set for Error Messages”.

You can change the content of the error messages produced by the server using the instructions in the
MySQL Internals manual, available at MySQL Internals: Error Messages. If you do change the content of
error messages, remember to repeat your changes after each upgrade to a newer version of MySQL.

10.3 Adding a Character Set

This section discusses the procedure for adding a character set to MySQL. The proper procedure depends
on whether the character set is simple or complex:

• If the character set does not need special string collating routines for sorting and does not need multibyte
character support, it is simple.

• If the character set needs either of those features, it is complex.

For example, greek and swe7 are simple character sets, whereas big5 and czech are complex
character sets.

To use the following instructions, you must have a MySQL source distribution. In the instructions, MYSET
represents the name of the character set that you want to add.

1. Add a <charset> element for MYSET to the sql/share/charsets/Index.xml file. Use the
existing contents in the file as a guide to adding new contents. A partial listing for the latin1
<charset> element follows:

<charset name="latin1">
 <family>Western</family>
 <description>cp1252 West European</description>
 ...
 <collation name="latin1_swedish_ci" id="8" order="Finnish, Swedish">
 <flag>primary</flag>
 <flag>compiled</flag>
 </collation>
 <collation name="latin1_danish_ci" id="15" order="Danish"/>
 ...
 <collation name="latin1_bin" id="47" order="Binary">
 <flag>binary</flag>
 <flag>compiled</flag>

http://dev.mysql.com/doc/internals/en/error-messages.html

Adding a Character Set

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 901

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 </collation>
 ...
</charset>

The <charset> element must list all the collations for the character set. These must include at least a
binary collation and a default (primary) collation. The default collation is often named using a suffix of
general_ci (general, case insensitive). It is possible for the binary collation to be the default collation,
but usually they are different. The default collation should have a primary flag. The binary collation
should have a binary flag.

You must assign a unique ID number to each collation, chosen from the range 1 to 254. To find the
maximum of the currently used collation IDs, use this query:

SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;

2. This step depends on whether you are adding a simple or complex character set. A simple character
set requires only a configuration file, whereas a complex character set requires C source file that
defines collation functions, multibyte functions, or both.

For a simple character set, create a configuration file, MYSET.xml, that describes the character
set properties. Create this file in the sql/share/charsets directory. You can use a copy of
latin1.xml as the basis for this file. The syntax for the file is very simple:

• Comments are written as ordinary XML comments (<!-- text -->).

• Words within <map> array elements are separated by arbitrary amounts of whitespace.

• Each word within <map> array elements must be a number in hexadecimal format.

• The <map> array element for the <ctype> element has 257 words. The other <map> array elements
after that have 256 words. See Section 10.3.1, “Character Definition Arrays”.

• For each collation listed in the <charset> element for the character set in Index.xml, MYSET.xml
must contain a <collation> element that defines the character ordering.

For a complex character set, create a C source file that describes the character set properties and
defines the support routines necessary to properly perform operations on the character set:

• Create the file ctype-MYSET.c in the strings directory. Look at one of the existing ctype-*.c
files (such as ctype-big5.c) to see what needs to be defined. The arrays in your file must have
names like ctype_MYSET, to_lower_MYSET, and so on. These correspond to the arrays for a
simple character set. See Section 10.3.1, “Character Definition Arrays”.

• For each <collation> element listed in the <charset> element for the character set in
Index.xml, the ctype-MYSET.c file must provide an implementation of the collation.

• If the character set requires string collating functions, see Section 10.3.2, “String Collating Support
for Complex Character Sets”.

• If the character set requires multibyte character support, see Section 10.3.3, “Multi-Byte Character
Support for Complex Character Sets”.

3. Modify the configuration information. Use the existing configuration information as a guide to adding
information for MYSYS. The example here assumes that the character set has default and binary
collations, but more lines are needed if MYSET has additional collations.

a. Edit mysys/charset-def.c, and “register” the collations for the new character set.

Character Definition Arrays

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 902

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Add these lines to the “declaration” section:

#ifdef HAVE_CHARSET_MYSET
extern CHARSET_INFO my_charset_MYSET_general_ci;
extern CHARSET_INFO my_charset_MYSET_bin;
#endif

Add these lines to the “registration” section:

#ifdef HAVE_CHARSET_MYSET
 add_compiled_collation(&my_charset_MYSET_general_ci);
 add_compiled_collation(&my_charset_MYSET_bin);
#endif

b. If the character set uses ctype-MYSET.c, edit strings/Makefile.am and add
ctype-MYSET.c to each definition of the CSRCS variable, and to the EXTRA_DIST variable.

c. If the character set uses ctype-MYSET.c, edit libmysql/Makefile.shared and add
ctype-MYSET.lo to the mystringsobjects definition.

d. Edit config/ac-macros/character_sets.m4:

i. Add MYSET to one of the define(CHARSETS_AVAILABLE...) lines in alphabetic order.

ii. Add MYSET to CHARSETS_COMPLEX. This is needed even for simple character sets, or
configure will not recognize --with-charset=MYSET.

iii. Add MYSET to the first case control structure. Omit the USE_MB and USE_MB_IDENT lines for 8-
bit character sets.

MYSET)
 AC_DEFINE(HAVE_CHARSET_MYSET, 1, [Define to enable charset MYSET])
 AC_DEFINE([USE_MB], 1, [Use multi-byte character routines])
 AC_DEFINE(USE_MB_IDENT, 1)
 ;;

iv. Add MYSET to the second case control structure:

MYSET)
 default_charset_default_collation="MYSET_general_ci"
 default_charset_collations="MYSET_general_ci MYSET_bin"
 ;;

4. Reconfigure, recompile, and test.

10.3.1 Character Definition Arrays

Each simple character set has a configuration file located in the sql/share/charsets directory. For a
character set named MYSYS, the file is named MYSET.xml. It uses <map> array elements to list character
set properties. <map> elements appear within these elements:

• <ctype> defines attributes for each character.

• <lower> and <upper> list the lowercase and uppercase characters.

• <unicode> maps 8-bit character values to Unicode values.

String Collating Support for Complex Character Sets

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 903

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• <collation> elements indicate character ordering for comparisons and sorts, one element per
collation. Binary collations need no <map> element because the character codes themselves provide the
ordering.

For a complex character set as implemented in a ctype-MYSET.c file in the strings directory,
there are corresponding arrays: ctype_MYSET[], to_lower_MYSET[], and so forth. Not every
complex character set has all of the arrays. See also the existing ctype-*.c files for examples. See the
CHARSET_INFO.txt file in the strings directory for additional information.

Most of the arrays are indexed by character value and have 256 elements. The <ctype> array is indexed
by character value + 1 and has 257 elements. This is a legacy convention for handling EOF.

<ctype> array elements are bit values. Each element describes the attributes of a single character in the
character set. Each attribute is associated with a bitmask, as defined in include/m_ctype.h:

#define _MY_U 01 /* Upper case */
#define _MY_L 02 /* Lower case */
#define _MY_NMR 04 /* Numeral (digit) */
#define _MY_SPC 010 /* Spacing character */
#define _MY_PNT 020 /* Punctuation */
#define _MY_CTR 040 /* Control character */
#define _MY_B 0100 /* Blank */
#define _MY_X 0200 /* heXadecimal digit */

The <ctype> value for a given character should be the union of the applicable bitmask values that
describe the character. For example, 'A' is an uppercase character (_MY_U) as well as a hexadecimal
digit (_MY_X), so its ctype value should be defined like this:

ctype['A'+1] = _MY_U | _MY_X = 01 | 0200 = 0201

The bitmask values in m_ctype.h are octal values, but the elements of the <ctype> array in MYSET.xml
should be written as hexadecimal values.

The <lower> and <upper> arrays hold the lowercase and uppercase characters corresponding to each
member of the character set. For example:

lower['A'] should contain 'a'
upper['a'] should contain 'A'

Each <collation> array indicates how characters should be ordered for comparison and sorting
purposes. MySQL sorts characters based on the values of this information. In some cases, this is the
same as the <upper> array, which means that sorting is case-insensitive. For more complicated sorting
rules (for complex character sets), see the discussion of string collating in Section 10.3.2, “String Collating
Support for Complex Character Sets”.

10.3.2 String Collating Support for Complex Character Sets

For a simple character set named MYSET, sorting rules are specified in the MYSET.xml configuration
file using <map> array elements within <collation> elements. If the sorting rules for your language
are too complex to be handled with simple arrays, you must define string collating functions in the
ctype-MYSET.c source file in the strings directory.

The existing character sets provide the best documentation and examples to show how these functions
are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the big5,
czech, gbk, sjis, and tis160 character sets. Take a look at the MY_COLLATION_HANDLER structures

Multi-Byte Character Support for Complex Character Sets

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 904

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

to see how they are used. See also the CHARSET_INFO.txt file in the strings directory for additional
information.

10.3.3 Multi-Byte Character Support for Complex Character Sets

If you want to add support for a new character set named MYSET that includes multibyte characters, you
must use multibyte character functions in the ctype-MYSET.c source file in the strings directory.

The existing character sets provide the best documentation and examples to show how these functions
are implemented. Look at the ctype-*.c files in the strings directory, such as the files for the euc_kr,
gb2312, gbk, sjis, and ujis character sets. Take a look at the MY_CHARSET_HANDLER structures to
see how they are used. See also the CHARSET_INFO.txt file in the strings directory for additional
information.

10.4 Adding a Collation to a Character Set
A collation is a set of rules that defines how to compare and sort character strings. Each collation in
MySQL belongs to a single character set. Every character set has at least one collation, and most have
two or more collations.

A collation orders characters based on weights. Each character in a character set maps to a weight.
Characters with equal weights compare as equal, and characters with unequal weights compare according
to the relative magnitude of their weights.

MySQL supports several collation implementations, as discussed in Section 10.4.1, “Collation
Implementation Types”. Some of these can be added to MySQL without recompiling:

• Simple collations for 8-bit character sets

• UCA-based collations for Unicode character sets

• Binary (xxx_bin) collations

The following sections describe how to add collations of the first two types to existing character sets. All
existing character sets already have a binary collation, so there is no need here to describe how to add
one.

Summary of the procedure for adding a new collation:

1. Choose a collation ID

2. Add configuration information that names the collation and describes the character-ordering rules

3. Restart the server

4. Verify that the collation is present

The instructions here cover only collations that can be added without recompiling MySQL. To add a
collation that does require recompiling (as implemented by means of functions in a C source file), use
the instructions in Section 10.3, “Adding a Character Set”. However, instead of adding all the information
required for a complete character set, just modify the appropriate files for an existing character set. That is,
based on what is already present for the character set's current collations, add data structures, functions,
and configuration information for the new collation.

Note

If you modify an existing collation, that may affect the ordering of rows for indexes
on columns that use the collation. In this case, rebuild any such indexes to

Additional Resources

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 905

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

avoid problems such as incorrect query results. For further information, see
Section 2.19.3, “Checking Whether Tables or Indexes Must Be Rebuilt”.

Additional Resources

• The Unicode Collation Algorithm (UCA) specification: http://www.unicode.org/reports/tr10/

• The Locale Data Markup Language (LDML) specification: http://www.unicode.org/reports/tr35/

10.4.1 Collation Implementation Types

MySQL implements several types of collations:

Simple collations for 8-bit character sets

This kind of collation is implemented using an array of 256 weights that defines a one-to-one mapping from
character codes to weights. latin1_swedish_ci is an example. It is a case-insensitive collation, so the
uppercase and lowercase versions of a character have the same weights and they compare as equal.

mysql> SET NAMES 'latin1' COLLATE 'latin1_swedish_ci';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT 'a' = 'A';
+-----------+
| 'a' = 'A' |
+-----------+
| 1 |
+-----------+
1 row in set (0.00 sec)

For implementation instructions, see Section 10.4.3, “Adding a Simple Collation to an 8-Bit Character Set”.

Complex collations for 8-bit character sets

This kind of collation is implemented using functions in a C source file that define how to order characters,
as described in Section 10.3, “Adding a Character Set”.

Collations for non-Unicode multibyte character sets

For this type of collation, 8-bit (single-byte) and multibyte characters are handled differently. For 8-bit
characters, character codes map to weights in case-insensitive fashion. (For example, the single-byte
characters 'a' and 'A' both have a weight of 0x41.) For multibyte characters, there are two types of
relationship between character codes and weights:

• Weights equal character codes. sjis_japanese_ci is an example of this kind of collation. The
multibyte character 'ぢ' has a character code of 0x82C0, and the weight is also 0x82C0.

• Character codes map one-to-one to weights, but a code is not necessarily equal to the weight.
gbk_chinese_ci is an example of this kind of collation. The multibyte character '膰' has a character
code of 0x81B0 but a weight of 0xC286.

For implementation instructions, see Section 10.3, “Adding a Character Set”.

Collations for Unicode multibyte character sets

Some of these collations are based on the Unicode Collation Algorithm (UCA), others are not.

http://www.unicode.org/reports/tr10/
http://www.unicode.org/reports/tr35/

Choosing a Collation ID

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 906

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Non-UCA collations have a one-to-one mapping from character code to weight. In MySQL, such collations
are case insensitive and accent insensitive. utf8_general_ci is an example: 'a', 'A', 'À', and 'á'
each have different character codes but all have a weight of 0x0041 and compare as equal.

mysql> SET NAMES 'utf8' COLLATE 'utf8_general_ci';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT 'a' = 'A', 'a' = 'À', 'a' = 'á';
+-----------+-----------+-----------+
| 'a' = 'A' | 'a' = 'À' | 'a' = 'á' |
+-----------+-----------+-----------+
| 1 | 1 | 1 |
+-----------+-----------+-----------+
1 row in set (0.06 sec)

UCA-based collations in MySQL have these properties:

• If a character has weights, each weight uses 2 bytes (16 bits)

• A character may have zero weights (or an empty weight). In this case, the character is ignorable.
Example: "U+0000 NULL" does not have a weight and is ignorable.

• A character may have one weight. Example: 'a' has a weight of 0x0E33.

• A character may have many weights. This is an expansion. Example: The German letter 'ß' (SZ
ligature, or SHARP S) has a weight of 0x0FEA0FEA.

• Many characters may have one weight. This is a contraction. Example: 'ch' is a single letter in Czech
and has a weight of 0x0EE2.

A many-characters-to-many-weights mapping is also possible (this is contraction with expansion), but is
not supported by MySQL.

For implementation instructions, for a non-UCA collation, see Section 10.3, “Adding a Character Set”. For a
UCA collation, see Section 10.4.4, “Adding a UCA Collation to a Unicode Character Set”.

Miscellaneous collations

There are also a few collations that do not fall into any of the previous categories.

10.4.2 Choosing a Collation ID

Each collation must have a unique ID. To add a collation, you must choose an ID value that is not currently
used. The value must be in the range from 1 to 254. The collation ID that you choose will appear in these
contexts:

• The ID column of the INFORMATION_SCHEMA.COLLATIONS table

• The Id column of SHOW COLLATION output

• The charsetnr member of the MYSQL_FIELD C API data structure

• The number member of the MY_CHARSET_INFO data structure returned by the
mysql_get_character_set_info() C API function

To determine the largest currently used ID, issue the following statement:

Adding a Simple Collation to an 8-Bit Character Set

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 907

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT MAX(ID) FROM INFORMATION_SCHEMA.COLLATIONS;
+---------+
| MAX(ID) |
+---------+
| 210 |
+---------+

For the output just shown, you could choose an ID higher than 210 for the new collation.

To display a list of all currently used IDs, issue this statement:

mysql> SELECT ID FROM INFORMATION_SCHEMA.COLLATIONS ORDER BY ID;
+-----+
| ID |
+-----+
| 1 |
| 2 |
| ... |
| 52 |
| 53 |
| 57 |
| 58 |
| ... |
| 98 |
| 99 |
| 128 |
| 129 |
| ... |
| 210 |
+-----+

In this case, you can either choose an unused ID from within the current range of IDs, or choose an ID
that is higher than the current maximum ID. For example, in the output just shown, there are unused IDs
between 53 and 57, and between 99 and 128. Or you could choose an ID higher than 210.

Warning

If you upgrade MySQL, you may find that the collation ID you choose has been
assigned to a collation included in the new MySQL distribution. In this case, you will
need to choose a new value for your own collation.

In addition, before upgrading, you should save the configuration files that you
change. If you upgrade in place, the process will replace the your modified files.

10.4.3 Adding a Simple Collation to an 8-Bit Character Set

This section describes how to add a simple collation for an 8-bit character set by writing the <collation>
elements associated with a <charset> character set description in the MySQL Index.xml file. The
procedure described here does not require recompiling MySQL. The example adds a collation named
latin1_test_ci to the latin1 character set.

1. Choose a collation ID, as shown in Section 10.4.2, “Choosing a Collation ID”. The following steps use
an ID of 56.

2. Modify the Index.xml and latin1.xml configuration files. These files will be located in the directory
named by the character_sets_dir system variable. You can check the variable value as follows,
although the path name might be different on your system:

mysql> SHOW VARIABLES LIKE 'character_sets_dir';

Adding a UCA Collation to a Unicode Character Set

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 908

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+--------------------+---+
| Variable_name | Value |
+--------------------+---+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+---+

3. Choose a name for the collation and list it in the Index.xml file. Find the <charset> element for the
character set to which the collation is being added, and add a <collation> element that indicates the
collation name and ID, to associate the name with the ID. For example:

<charset name="latin1">
 ...
 <collation name="latin1_test_ci" id="56"/>
 ...
</charset>

4. In the latin1.xml configuration file, add a <collation> element that names the collation and that
contains a <map> element that defines a character code-to-weight mapping table for character codes 0
to 255. Each value within the <map> element must be a number in hexadecimal format.

<collation name="latin1_test_ci">
<map>
 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
 60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
 50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
 A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
 B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
 41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
 44 4E 4F 4F 4F 4F 5C D7 5C 55 55 55 59 59 DE DF
 41 41 41 41 5B 5D 5B 43 45 45 45 45 49 49 49 49
 44 4E 4F 4F 4F 4F 5C F7 5C 55 55 55 59 59 DE FF
</map>
</collation>

5. Restart the server and use this statement to verify that the collation is present:

mysql> SHOW COLLATION LIKE 'latin1_test_ci';
+----------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+----------------+---------+----+---------+----------+---------+
| latin1_test_ci | latin1 | 56 | | | 1 |
+----------------+---------+----+---------+----------+---------+

10.4.4 Adding a UCA Collation to a Unicode Character Set

This section describes how to add a UCA collation for a Unicode character set by writing the
<collation> element within a <charset> character set description in the MySQL Index.xml file.
The procedure described here does not require recompiling MySQL. It uses a subset of the Locale Data
Markup Language (LDML) specification, which is available at http://www.unicode.org/reports/tr35/. In 5.0,
this method of adding collations is supported as of MySQL 5.0.46. With this method, you need not define
the entire collation. Instead, you begin with an existing “base” collation and describe the new collation in
terms of how it differs from the base collation. The following table lists the base collations of the Unicode
character sets for which UCA collations can be defined.

http://www.unicode.org/reports/tr35/

Adding a UCA Collation to a Unicode Character Set

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 909

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Table 10.1 MySQL Character Sets Available for User-Defined UCA Collations

Character Set Base Collation

utf8 utf8_unicode_ci

ucs2 ucs2_unicode_ci

The following sections show how to add a collation that is defined using LDML syntax, and provide a
summary of LDML rules supported in MySQL.

10.4.4.1 Defining a UCA Collation Using LDML Syntax

To add a UCA collation for a Unicode character set without recompiling MySQL, use the following
procedure. If you are unfamiliar with the LDML rules used to describe the collation's sort characteristics,
see Section 10.4.4.2, “LDML Syntax Supported in MySQL”.

The example adds a collation named utf8_phone_ci to the utf8 character set. The collation is
designed for a scenario involving a Web application for which users post their names and phone numbers.
Phone numbers can be given in very different formats:

+7-12345-67
+7-12-345-67
+7 12 345 67
+7 (12) 345 67
+71234567

The problem raised by dealing with these kinds of values is that the varying permissible formats make
searching for a specific phone number very difficult. The solution is to define a new collation that reorders
punctuation characters, making them ignorable.

1. Choose a collation ID, as shown in Section 10.4.2, “Choosing a Collation ID”. The following steps use
an ID of 252.

2. To modify the Index.xml configuration file. This file will be located in the directory named by the
character_sets_dir system variable. You can check the variable value as follows, although the
path name might be different on your system:

mysql> SHOW VARIABLES LIKE 'character_sets_dir';
+--------------------+---+
| Variable_name | Value |
+--------------------+---+
| character_sets_dir | /user/local/mysql/share/mysql/charsets/ |
+--------------------+---+

3. Choose a name for the collation and list it in the Index.xml file. In addition, you'll need to provide the
collation ordering rules. Find the <charset> element for the character set to which the collation is
being added, and add a <collation> element that indicates the collation name and ID, to associate
the name with the ID. Within the <collation> element, provide a <rules> element containing the
ordering rules:

<charset name="utf8">
 ...
 <collation name="utf8_phone_ci" id="252">
 <rules>
 <reset>\u0000</reset>
 <s>\u0020</s> <!-- space -->
 <s>\u0028</s> <!-- left parenthesis -->

Adding a UCA Collation to a Unicode Character Set

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 910

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 <s>\u0029</s> <!-- right parenthesis -->
 <s>\u002B</s> <!-- plus -->
 <s>\u002D</s> <!-- hyphen -->
 </rules>
 </collation>
 ...
</charset>

4. If you want a similar collation for other Unicode character sets, add other <collation> elements. For
example, to define ucs2_phone_ci, add a <collation> element to the <charset name="ucs2">
element. Remember that each collation must have its own unique ID.

5. Restart the server and use this statement to verify that the collation is present:

mysql> SHOW COLLATION LIKE 'utf8_phone_ci';
+---------------+---------+-----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------+---------+-----+---------+----------+---------+
| utf8_phone_ci | utf8 | 252 | | | 8 |
+---------------+---------+-----+---------+----------+---------+

Now test the collation to make sure that it has the desired properties.

Create a table containing some sample phone numbers using the new collation:

mysql> CREATE TABLE phonebook (
 -> name VARCHAR(64),
 -> phone VARCHAR(64) CHARACTER SET utf8 COLLATE utf8_phone_ci
 ->);
Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO phonebook VALUES ('Svoj','+7 912 800 80 02');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Hf','+7 (912) 800 80 04');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Bar','+7-912-800-80-01');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Ramil','(7912) 800 80 03');
Query OK, 1 row affected (0.00 sec)

mysql> INSERT INTO phonebook VALUES ('Sanja','+380 (912) 8008005');
Query OK, 1 row affected (0.00 sec)

Run some queries to see whether the ignored punctuation characters are in fact ignored for sorting and
comparisons:

mysql> SELECT * FROM phonebook ORDER BY phone;
+-------+--------------------+
| name | phone |
+-------+--------------------+
Sanja	+380 (912) 8008005
Bar	+7-912-800-80-01
Svoj	+7 912 800 80 02
Ramil	(7912) 800 80 03
Hf	+7 (912) 800 80 04
+-------+--------------------+
5 rows in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='+7(912)800-80-01';

Adding a UCA Collation to a Unicode Character Set

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 911

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='79128008001';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM phonebook WHERE phone='7 9 1 2 8 0 0 8 0 0 1';
+------+------------------+
| name | phone |
+------+------------------+
| Bar | +7-912-800-80-01 |
+------+------------------+
1 row in set (0.00 sec)

10.4.4.2 LDML Syntax Supported in MySQL

This section describes the LDML syntax that MySQL recognizes. This is a subset of the syntax described
in the LDML specification available at http://www.unicode.org/reports/tr35/, which should be consulted for
further information. The rules described here are all supported except that character sorting occurs only at
the primary level. Rules that specify differences at secondary or higher sort levels are recognized (and thus
can be included in collation definitions) but are treated as equality at the primary level.

Character Representation

Characters named in LDML rules can be written in \unnnn format, where nnnn is the hexadecimal
Unicode code point value. Within hexadecimal values, the digits A through F are not case sensitive;
\u00E1 and \u00e1 are equivalent. Basic Latin letters A-Z and a-z can also be written literally (this
is a MySQL limitation; the LDML specification permits literal non-Latin1 characters in the rules). Only
characters in the Basic Multilingual Plane can be specified. This notation does not apply to characters
outside the BMP range of 0000 to FFFF.

The Index.xml file itself should be written using ASCII encoding.

Syntax Rules

LDML has reset rules and shift rules to specify character ordering. Orderings are given as a set of rules
that begin with a reset rule that establishes an anchor point, followed by shift rules that indicate how
characters sort relative to the anchor point.

• A <reset> rule does not specify any ordering in and of itself. Instead, it “resets” the ordering for
subsequent shift rules to cause them to be taken in relation to a given character. Either of the following
rules resets subsequent shift rules to be taken in relation to the letter 'A':

<reset>A</reset>

<reset>\u0041</reset>

• The <p>, <s>, and <t> shift rules define primary, secondary, and tertiary differences of a character from
another character:

• Use primary differences to distinguish separate letters.

http://www.unicode.org/reports/tr35/

Character Set Configuration

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 912

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Use secondary differences to distinguish accent variations.

• Use tertiary differences to distinguish lettercase variations.

Either of these rules specifies a primary shift rule for the 'G' character:

<p>G</p>

<p>\u0047</p>

10.5 Character Set Configuration
You can change the default server character set and collation with the --character-set-server and
--collation-server options when you start the server. The collation must be a legal collation for the
default character set. (Use the SHOW COLLATION statement to determine which collations are available for
each character set.) See Section 5.1.3, “Server Command Options”.

If you try to use a character set that is not compiled into your binary, you might run into the following
problems:

• Your program uses an incorrect path to determine where the character sets are stored (which is typically
the share/mysql/charsets or share/charsets directory under the MySQL installation directory).
This can be fixed by using the --character-sets-dir option when you run the program in question.
For example, to specify a directory to be used by MySQL client programs, list it in the [client] group
of your option file. The examples given here show what the setting might look like for Unix or Windows,
respectively:

[client]
character-sets-dir=/usr/local/mysql/share/mysql/charsets

[client]
character-sets-dir="C:/Program Files/MySQL/MySQL Server 5.0/share/charsets"

• The character set is a complex character set that cannot be loaded dynamically. In this case, you must
recompile the program with support for the character set.

For Unicode character sets, you can define collations without recompiling by using LDML notation. See
Section 10.4.4, “Adding a UCA Collation to a Unicode Character Set”.

• The character set is a dynamic character set, but you do not have a configuration file for it. In this case,
you should install the configuration file for the character set from a new MySQL distribution.

• If your character set index file does not contain the name for the character set, your program displays an
error message. The file is named Index.xml and the message is:

Character set 'charset_name' is not a compiled character set and is not
specified in the '/usr/share/mysql/charsets/Index.xml' file

To solve this problem, you should either get a new index file or manually add the name of any missing
character sets to the current file.

You can force client programs to use specific character set as follows:

[client]
default-character-set=charset_name

MySQL Server Time Zone Support

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 913

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This is normally unnecessary. However, when character_set_system differs from
character_set_server or character_set_client, and you input characters manually (as database
object identifiers, column values, or both), these may be displayed incorrectly in output from the client or
the output itself may be formatted incorrectly. In such cases, starting the mysql client with --default-
character-set=system_character_set—that is, setting the client character set to match the system
character set—should fix the problem.

For MyISAM tables, you can check the character set name and number for a table with myisamchk -dvv
tbl_name.

10.6 MySQL Server Time Zone Support

The MySQL server maintains several time zone settings:

• The system time zone. When the server starts, it attempts to determine the time zone of the host
machine and uses it to set the system_time_zone system variable. The value does not change
thereafter.

You can set the system time zone for MySQL Server at startup with the --timezone=timezone_name
option to mysqld_safe. You can also set it by setting the TZ environment variable before you start
mysqld. The permissible values for --timezone or TZ are system dependent. Consult your operating
system documentation to see what values are acceptable.

• The server's current time zone. The global time_zone system variable indicates the time zone the
server currently is operating in. The initial value for time_zone is 'SYSTEM', which indicates that the
server time zone is the same as the system time zone.

The initial global server time zone value can be specified explicitly at startup with the --default-
time-zone=timezone option on the command line, or you can use the following line in an option file:

default-time-zone='timezone'

If you have the SUPER privilege, you can set the global server time zone value at runtime with this
statement:

mysql> SET GLOBAL time_zone = timezone;

• Per-connection time zones. Each client that connects has its own time zone setting, given by the session
time_zone variable. Initially, the session variable takes its value from the global time_zone variable,
but the client can change its own time zone with this statement:

mysql> SET time_zone = timezone;

The current session time zone setting affects display and storage of time values that are zone-sensitive.
This includes the values displayed by functions such as NOW() or CURTIME(), and values stored in and
retrieved from TIMESTAMP columns. Values for TIMESTAMP columns are converted from the current time
zone to UTC for storage, and from UTC to the current time zone for retrieval.

The current time zone setting does not affect values displayed by functions such as UTC_TIMESTAMP() or
values in DATE, TIME, or DATETIME columns. Nor are values in those data types stored in UTC; the time
zone applies for them only when converting from TIMESTAMP values. If you want locale-specific arithmetic
for DATE, TIME, or DATETIME values, convert them to UTC, perform the arithmetic, and then convert back.

The current values of the global and client-specific time zones can be retrieved like this:

Populating the Time Zone Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 914

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT @@global.time_zone, @@session.time_zone;

timezone values can be given in several formats, none of which are case sensitive:

• The value 'SYSTEM' indicates that the time zone should be the same as the system time zone.

• The value can be given as a string indicating an offset from UTC, such as '+10:00' or '-6:00'.

• The value can be given as a named time zone, such as 'Europe/Helsinki', 'US/Eastern', or
'MET'. Named time zones can be used only if the time zone information tables in the mysql database
have been created and populated.

Populating the Time Zone Tables

Several tables in the mysql system database exist to maintain time zone information (see Section 5.3,
“The mysql System Database”). The MySQL installation procedure creates the time zone tables, but does
not load them. You must do so manually using the following instructions.

Note

Loading the time zone information is not necessarily a one-time operation because
the information changes occasionally. When such changes occur, applications that
use the old rules become out of date and you may find it necessary to reload the
time zone tables to keep the information used by your MySQL server current. See
the notes at the end of this section.

If your system has its own zoneinfo database (the set of files describing time zones), you should use the
mysql_tzinfo_to_sql program for filling the time zone tables. Examples of such systems are Linux,
FreeBSD, Solaris, and OS X. One likely location for these files is the /usr/share/zoneinfo directory. If
your system does not have a zoneinfo database, you can use the downloadable package described later in
this section.

The mysql_tzinfo_to_sql program is used to load the time zone tables. On the command line,
pass the zoneinfo directory path name to mysql_tzinfo_to_sql and send the output into the mysql
program. For example:

shell> mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from them.
mysql processes those statements to load the time zone tables.

mysql_tzinfo_to_sql also can be used to load a single time zone file or to generate leap second
information:

• To load a single time zone file tz_file that corresponds to a time zone name tz_name, invoke
mysql_tzinfo_to_sql like this:

shell> mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql

With this approach, you must execute a separate command to load the time zone file for each named
zone that the server needs to know about.

• If your time zone needs to account for leap seconds, initialize the leap second information like this,
where tz_file is the name of your time zone file:

Staying Current with Time Zone Changes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 915

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql

• After running mysql_tzinfo_to_sql, it is best to restart the server so that it does not continue to use
any previously cached time zone data.

If your system is one that has no zoneinfo database (for example, Windows or HP-UX), you can use a
package that is available for download at the MySQL Developer Zone:

http://dev.mysql.com/downloads/timezones.html

You can use either a package that contains SQL statements to populate your existing time zone tables, or
a package that contains pre-built MyISAM time zone tables to replace your existing tables:

• To use a time zone package that contains SQL statements, download and unpack it, then load the
package file contents into your existing time zone tables:

shell> mysql -u root mysql < file_name

Then restart the server.

• To use a time zone package that contains .frm, .MYD, and .MYI files for the MyISAM time zone tables,
download and unpack it. These table files are part of the mysql database, so you should place the files
in the mysql subdirectory of your MySQL server's data directory. Stop the server before doing this and
restart it afterward.

Warning

Do not use a downloadable package if your system has a zoneinfo database. Use
the mysql_tzinfo_to_sql utility instead. Otherwise, you may cause a difference
in datetime handling between MySQL and other applications on your system.

For information about time zone settings in replication setup, please see Section 16.4.1, “Replication
Features and Issues”.

10.6.1 Staying Current with Time Zone Changes

When time zone rules change, applications that use the old rules become out of date. To stay current, it is
necessary to make sure that your system uses current time zone information is used. For MySQL, there
are two factors to consider in staying current:

• The operating system time affects the value that the MySQL server uses for times if its time zone is set
to SYSTEM. Make sure that your operating system is using the latest time zone information. For most
operating systems, the latest update or service pack prepares your system for the time changes. Check
the Web site for your operating system vendor for an update that addresses the time changes.

• If you replace the system's /etc/localtime timezone file with a version that uses rules differing
from those in effect at mysqld startup, you should restart mysqld so that it uses the updated rules.
Otherwise, mysqld might not notice when the system changes its time.

• If you use named time zones with MySQL, make sure that the time zone tables in the mysql database
are up to date. If your system has its own zoneinfo database, you should reload the MySQL time zone
tables whenever the zoneinfo database is updated. For systems that do not have their own zoneinfo
database, check the MySQL Developer Zone for updates. When a new update is available, download
it and use it to replace the content of your current time zone tables. For instructions for both methods,

http://dev.mysql.com/downloads/timezones.html

Staying Current with Time Zone Changes

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 916

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

see Populating the Time Zone Tables. mysqld caches time zone information that it looks up, so after
updating the time zone tables, you should restart mysqld to make sure that it does not continue to serve
outdated time zone data.

If you are uncertain whether named time zones are available, for use either as the server's time zone
setting or by clients that set their own time zone, check whether your time zone tables are empty. The
following query determines whether the table that contains time zone names has any rows:

mysql> SELECT COUNT(*) FROM mysql.time_zone_name;
+----------+
| COUNT(*) |
+----------+
| 0 |
+----------+

A count of zero indicates that the table is empty. In this case, no one can be using named time zones, and
you don't need to update the tables. A count greater than zero indicates that the table is not empty and
that its contents are available to be used for named time zone support. In this case, you should be sure to
reload your time zone tables so that anyone who uses named time zones will get correct query results.

To check whether your MySQL installation is updated properly for a change in Daylight Saving Time rules,
use a test like the one following. The example uses values that are appropriate for the 2007 DST 1-hour
change that occurs in the United States on March 11 at 2 a.m.

The test uses these two queries:

SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');

The two time values indicate the times at which the DST change occurs, and the use of named time zones
requires that the time zone tables be used. The desired result is that both queries return the same result
(the input time, converted to the equivalent value in the 'US/Central' time zone).

Before updating the time zone tables, you would see an incorrect result like this:

mysql> SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
+--+
| CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') |
+--+
| 2007-03-11 01:00:00 |
+--+

mysql> SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');
+--+
| CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') |
+--+
| 2007-03-11 02:00:00 |
+--+

After updating the tables, you should see the correct result:

mysql> SELECT CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central');
+--+
| CONVERT_TZ('2007-03-11 2:00:00','US/Eastern','US/Central') |
+--+
| 2007-03-11 01:00:00 |
+--+

mysql> SELECT CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central');

Time Zone Leap Second Support

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 917

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+--+
| CONVERT_TZ('2007-03-11 3:00:00','US/Eastern','US/Central') |
+--+
| 2007-03-11 01:00:00 |
+--+

10.6.2 Time Zone Leap Second Support

Before MySQL 5.0.74, if the operating system is configured to return leap seconds from OS time calls or if
the MySQL server uses a time zone definition that has leap seconds, functions such as NOW() could return
a value having a time part that ends with :59:60 or :59:61. If such values are inserted into a table, they
would be dumped as is by mysqldump but considered invalid when reloaded, leading to backup/restore
problems.

As of MySQL 5.0.74, leap second values are returned with a time part that ends with :59:59. This means
that a function such as NOW() can return the same value for two or three consecutive seconds during
the leap second. It remains true that literal temporal values having a time part that ends with :59:60 or
:59:61 are considered invalid.

If it is necessary to search for TIMESTAMP values one second before the leap second, anomalous results
may be obtained if you use a comparison with 'YYYY-MM-DD hh:mm:ss' values. The following example
demonstrates this. It changes the local time zone to UTC so there is no difference between internal values
(which are in UTC) and displayed values (which have time zone correction applied).

mysql> CREATE TABLE t1 (
 -> a INT,
 -> ts TIMESTAMP DEFAULT NOW(),
 -> PRIMARY KEY (ts)
 ->);
Query OK, 0 rows affected (0.01 sec)

mysql> -- change to UTC
mysql> SET time_zone = '+00:00';
Query OK, 0 rows affected (0.00 sec)

mysql> -- Simulate NOW() = '2008-12-31 23:59:59'
mysql> SET timestamp = 1230767999;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 (a) VALUES (1);
Query OK, 1 row affected (0.00 sec)

mysql> -- Simulate NOW() = '2008-12-31 23:59:60'
mysql> SET timestamp = 1230768000;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t1 (a) VALUES (2);
Query OK, 1 row affected (0.00 sec)

mysql> -- values differ internally but display the same
mysql> SELECT a, ts, UNIX_TIMESTAMP(ts) FROM t1;
+------+---------------------+--------------------+
| a | ts | UNIX_TIMESTAMP(ts) |
+------+---------------------+--------------------+
| 1 | 2008-12-31 23:59:59 | 1230767999 |
| 2 | 2008-12-31 23:59:59 | 1230768000 |
+------+---------------------+--------------------+
2 rows in set (0.00 sec)

mysql> -- only the non-leap value matches
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:59';
+------+---------------------+

MySQL Server Locale Support

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 918

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| a | ts |
+------+---------------------+
| 1 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)

mysql> -- the leap value with seconds=60 is invalid
mysql> SELECT * FROM t1 WHERE ts = '2008-12-31 23:59:60';
Empty set, 2 warnings (0.00 sec)

To work around this, you can use a comparison based on the UTC value actually stored in column, which
has the leap second correction applied:

mysql> -- selecting using UNIX_TIMESTAMP value return leap value
mysql> SELECT * FROM t1 WHERE UNIX_TIMESTAMP(ts) = 1230768000;
+------+---------------------+
| a | ts |
+------+---------------------+
| 2 | 2008-12-31 23:59:59 |
+------+---------------------+
1 row in set (0.00 sec)

10.7 MySQL Server Locale Support

Beginning with MySQL 5.0.25, the locale indicated by the lc_time_names system variable controls the
language used to display day and month names and abbreviations. This variable affects the output from
the DATE_FORMAT(), DAYNAME(), and MONTHNAME() functions.

lc_time_names does not affect the STR_TO_DATE() or GET_FORMAT() function.

Locale names have language and region subtags listed by IANA (http://www.iana.org/assignments/
language-subtag-registry) such as 'ja_JP' or 'pt_BR'. The default value is 'en_US' regardless of your
system's locale setting, but you can set the value at server startup or set the GLOBAL value if you have the
SUPER privilege. Any client can examine the value of lc_time_names or set its SESSION value to affect
the locale for its own connection.

mysql> SET NAMES 'utf8';
Query OK, 0 rows affected (0.09 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| en_US |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| Friday | January |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+---+
| Friday Fri January Jan |
+---+

http://www.iana.org/assignments/language-subtag-registry
http://www.iana.org/assignments/language-subtag-registry

MySQL Server Locale Support

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 919

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

1 row in set (0.00 sec)

mysql> SET lc_time_names = 'es_MX';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| es_MX |
+-----------------+
1 row in set (0.00 sec)

mysql> SELECT DAYNAME('2010-01-01'), MONTHNAME('2010-01-01');
+-----------------------+-------------------------+
| DAYNAME('2010-01-01') | MONTHNAME('2010-01-01') |
+-----------------------+-------------------------+
| viernes | enero |
+-----------------------+-------------------------+
1 row in set (0.00 sec)

mysql> SELECT DATE_FORMAT('2010-01-01','%W %a %M %b');
+---+
| DATE_FORMAT('2010-01-01','%W %a %M %b') |
+---+
| viernes vie enero ene |
+---+
1 row in set (0.00 sec)

The day or month name for each of the affected functions is converted from utf8 to the character set
indicated by the character_set_connection system variable.

lc_time_names may be set to any of the following locale values. The set of locales supported by MySQL
may differ from those supported by your operating system.

ar_AE: Arabic - United Arab Emirates ar_BH: Arabic - Bahrain

ar_DZ: Arabic - Algeria ar_EG: Arabic - Egypt

ar_IN: Arabic - India ar_IQ: Arabic - Iraq

ar_JO: Arabic - Jordan ar_KW: Arabic - Kuwait

ar_LB: Arabic - Lebanon ar_LY: Arabic - Libya

ar_MA: Arabic - Morocco ar_OM: Arabic - Oman

ar_QA: Arabic - Qatar ar_SA: Arabic - Saudi Arabia

ar_SD: Arabic - Sudan ar_SY: Arabic - Syria

ar_TN: Arabic - Tunisia ar_YE: Arabic - Yemen

be_BY: Belarusian - Belarus bg_BG: Bulgarian - Bulgaria

ca_ES: Catalan - Spain cs_CZ: Czech - Czech Republic

da_DK: Danish - Denmark de_AT: German - Austria

de_BE: German - Belgium de_CH: German - Switzerland

de_DE: German - Germany de_LU: German - Luxembourg

en_AU: English - Australia en_CA: English - Canada

en_GB: English - United Kingdom en_IN: English - India

en_NZ: English - New Zealand en_PH: English - Philippines

en_US: English - United States en_ZA: English - South Africa

MySQL Server Locale Support

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 920

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

en_ZW: English - Zimbabwe es_AR: Spanish - Argentina

es_BO: Spanish - Bolivia es_CL: Spanish - Chile

es_CO: Spanish - Columbia es_CR: Spanish - Costa Rica

es_DO: Spanish - Dominican Republic es_EC: Spanish - Ecuador

es_ES: Spanish - Spain es_GT: Spanish - Guatemala

es_HN: Spanish - Honduras es_MX: Spanish - Mexico

es_NI: Spanish - Nicaragua es_PA: Spanish - Panama

es_PE: Spanish - Peru es_PR: Spanish - Puerto Rico

es_PY: Spanish - Paraguay es_SV: Spanish - El Salvador

es_US: Spanish - United States es_UY: Spanish - Uruguay

es_VE: Spanish - Venezuela et_EE: Estonian - Estonia

eu_ES: Basque - Basque fi_FI: Finnish - Finland

fo_FO: Faroese - Faroe Islands fr_BE: French - Belgium

fr_CA: French - Canada fr_CH: French - Switzerland

fr_FR: French - France fr_LU: French - Luxembourg

gl_ES: Galician - Spain gu_IN: Gujarati - India

he_IL: Hebrew - Israel hi_IN: Hindi - India

hr_HR: Croatian - Croatia hu_HU: Hungarian - Hungary

id_ID: Indonesian - Indonesia is_IS: Icelandic - Iceland

it_CH: Italian - Switzerland it_IT: Italian - Italy

ja_JP: Japanese - Japan ko_KR: Korean - Republic of Korea

lt_LT: Lithuanian - Lithuania lv_LV: Latvian - Latvia

mk_MK: Macedonian - FYROM mn_MN: Mongolia - Mongolian

ms_MY: Malay - Malaysia nb_NO: Norwegian(Bokmål) - Norway

nl_BE: Dutch - Belgium nl_NL: Dutch - The Netherlands

no_NO: Norwegian - Norway pl_PL: Polish - Poland

pt_BR: Portugese - Brazil pt_PT: Portugese - Portugal

ro_RO: Romanian - Romania ru_RU: Russian - Russia

ru_UA: Russian - Ukraine sk_SK: Slovak - Slovakia

sl_SI: Slovenian - Slovenia sq_AL: Albanian - Albania

sr_YU: Serbian - Yugoslavia sv_FI: Swedish - Finland

sv_SE: Swedish - Sweden ta_IN: Tamil - India

te_IN: Telugu - India th_TH: Thai - Thailand

tr_TR: Turkish - Turkey uk_UA: Ukrainian - Ukraine

ur_PK: Urdu - Pakistan vi_VN: Vietnamese - Viet Nam

zh_CN: Chinese - China zh_HK: Chinese - Hong Kong

zh_TW: Chinese - Taiwan Province of China

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 921

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 11 Data Types

Table of Contents
11.1 Data Type Overview ... 922

11.1.1 Numeric Type Overview ... 922
11.1.2 Date and Time Type Overview ... 926
11.1.3 String Type Overview ... 927

11.2 Numeric Types ... 931
11.2.1 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT,
BIGINT ... 931
11.2.2 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC .. 932
11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE .. 932
11.2.4 Bit-Value Type - BIT .. 933
11.2.5 Numeric Type Attributes ... 933
11.2.6 Out-of-Range and Overflow Handling .. 934

11.3 Date and Time Types ... 935
11.3.1 The DATE, DATETIME, and TIMESTAMP Types ... 937
11.3.2 The TIME Type .. 938
11.3.3 The YEAR Type ... 939
11.3.4 YEAR(2) Limitations and Migrating to YEAR(4) .. 939
11.3.5 Automatic Initialization and Updating for TIMESTAMP .. 941
11.3.6 Fractional Seconds in Time Values ... 944
11.3.7 Conversion Between Date and Time Types ... 944
11.3.8 Two-Digit Years in Dates .. 945

11.4 String Types ... 946
11.4.1 The CHAR and VARCHAR Types ... 946
11.4.2 The BINARY and VARBINARY Types ... 948
11.4.3 The BLOB and TEXT Types ... 949
11.4.4 The ENUM Type .. 951
11.4.5 The SET Type ... 953

11.5 Extensions for Spatial Data ... 955
11.5.1 Spatial Data Types ... 957
11.5.2 The OpenGIS Geometry Model ... 958
11.5.3 Using Spatial Data ... 963

11.6 Data Type Default Values ... 971
11.7 Data Type Storage Requirements .. 972
11.8 Choosing the Right Type for a Column .. 976
11.9 Using Data Types from Other Database Engines .. 976

MySQL supports a number of data types in several categories: numeric types, date and time types, string
(character and byte) types, and spatial types. This chapter provides an overview of these data types, a
more detailed description of the properties of the types in each category, and a summary of the data type
storage requirements. The initial overview is intentionally brief. The more detailed descriptions later in the
chapter should be consulted for additional information about particular data types, such as the permissible
formats in which you can specify values.

Data type descriptions use these conventions:

• M indicates the maximum display width for integer types. For floating-point and fixed-point types, M is
the total number of digits that can be stored (the precision). For string types, M is the maximum length.
The maximum permissible value of M depends on the data type.

Data Type Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 922

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• D applies to floating-point and fixed-point types and indicates the number of digits following the
decimal point (the scale). The maximum possible value is 30, but should be no greater than M−2.

• Square brackets (“[” and “]”) indicate optional parts of type definitions.

11.1 Data Type Overview

11.1.1 Numeric Type Overview

A summary of the numeric data types follows. For additional information about properties and storage
requirements of the numeric types, see Section 11.2, “Numeric Types”, and Section 11.7, “Data Type
Storage Requirements”.

M indicates the maximum display width for integer types. The maximum legal display width is 255. Display
width is unrelated to the range of values a type can contain, as described in Section 11.2, “Numeric
Types”. For floating-point and fixed-point types, M is the total number of digits that can be stored.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to the
column.

Numeric data types that permit the UNSIGNED attribute also permit SIGNED. However, these data types
are signed by default, so the SIGNED attribute has no effect.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL
AUTO_INCREMENT UNIQUE.

Warning

When you use subtraction between integer values where one is of type UNSIGNED,
the result is unsigned unless the NO_UNSIGNED_SUBTRACTION SQL mode is
enabled. See Section 12.10, “Cast Functions and Operators”.

• BIT[(M)]

A bit-field type. M indicates the number of bits per value, from 1 to 64. The default is 1 if M is omitted.

This data type was added in MySQL 5.0.3 for MyISAM, and extended in 5.0.5 to MEMORY, InnoDB, BDB,
and NDBCLUSTER. Before 5.0.3, BIT is a synonym for TINYINT(1).

• TINYINT[(M)] [UNSIGNED] [ZEROFILL]

A very small integer. The signed range is -128 to 127. The unsigned range is 0 to 255.

• BOOL, BOOLEAN

These types are synonyms for TINYINT(1). A value of zero is considered false. Nonzero values are
considered true:

mysql> SELECT IF(0, 'true', 'false');
+------------------------+
| IF(0, 'true', 'false') |
+------------------------+
| false |
+------------------------+

mysql> SELECT IF(1, 'true', 'false');
+------------------------+

Numeric Type Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 923

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| IF(1, 'true', 'false') |
+------------------------+
| true |
+------------------------+

mysql> SELECT IF(2, 'true', 'false');
+------------------------+
| IF(2, 'true', 'false') |
+------------------------+
| true |
+------------------------+

However, the values TRUE and FALSE are merely aliases for 1 and 0, respectively, as shown here:

mysql> SELECT IF(0 = FALSE, 'true', 'false');
+--------------------------------+
| IF(0 = FALSE, 'true', 'false') |
+--------------------------------+
| true |
+--------------------------------+

mysql> SELECT IF(1 = TRUE, 'true', 'false');
+-------------------------------+
| IF(1 = TRUE, 'true', 'false') |
+-------------------------------+
| true |
+-------------------------------+

mysql> SELECT IF(2 = TRUE, 'true', 'false');
+-------------------------------+
| IF(2 = TRUE, 'true', 'false') |
+-------------------------------+
| false |
+-------------------------------+

mysql> SELECT IF(2 = FALSE, 'true', 'false');
+--------------------------------+
| IF(2 = FALSE, 'true', 'false') |
+--------------------------------+
| false |
+--------------------------------+

The last two statements display the results shown because 2 is equal to neither 1 nor 0.

• SMALLINT[(M)] [UNSIGNED] [ZEROFILL]

A small integer. The signed range is -32768 to 32767. The unsigned range is 0 to 65535.

• MEDIUMINT[(M)] [UNSIGNED] [ZEROFILL]

A medium-sized integer. The signed range is -8388608 to 8388607. The unsigned range is 0 to
16777215.

• INT[(M)] [UNSIGNED] [ZEROFILL]

A normal-size integer. The signed range is -2147483648 to 2147483647. The unsigned range is 0 to
4294967295.

• INTEGER[(M)] [UNSIGNED] [ZEROFILL]

This type is a synonym for INT.

• BIGINT[(M)] [UNSIGNED] [ZEROFILL]

Numeric Type Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 924

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A large integer. The signed range is -9223372036854775808 to 9223372036854775807. The
unsigned range is 0 to 18446744073709551615.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

Some things you should be aware of with respect to BIGINT columns:

• All arithmetic is done using signed BIGINT or DOUBLE values, so you should not use unsigned big
integers larger than 9223372036854775807 (63 bits) except with bit functions! If you do that, some
of the last digits in the result may be wrong because of rounding errors when converting a BIGINT
value to a DOUBLE.

MySQL can handle BIGINT in the following cases:

• When using integers to store large unsigned values in a BIGINT column.

• In MIN(col_name) or MAX(col_name), where col_name refers to a BIGINT column.

• When using operators (+, -, *, and so on) where both operands are integers.

• You can always store an exact integer value in a BIGINT column by storing it using a string. In this
case, MySQL performs a string-to-number conversion that involves no intermediate double-precision
representation.

• The -, +, and * operators use BIGINT arithmetic when both operands are integer values. This
means that if you multiply two big integers (or results from functions that return integers), you may get
unexpected results when the result is larger than 9223372036854775807.

• DECIMAL[(M[,D])] [UNSIGNED] [ZEROFILL]

For MySQL 5.0.3 and above:

A packed “exact” fixed-point number. M is the total number of digits (the precision) and D is the number
of digits after the decimal point (the scale). The decimal point and (for negative numbers) the “-” sign are
not counted in M. If D is 0, values have no decimal point or fractional part. The maximum number of digits
(M) for DECIMAL is 65 (64 from 5.0.3 to 5.0.5). The maximum number of supported decimals (D) is 30. If
D is omitted, the default is 0. If M is omitted, the default is 10.

UNSIGNED, if specified, disallows negative values.

All basic calculations (+, -, *, /) with DECIMAL columns are done with a precision of 65 digits.

Before MySQL 5.0.3:

An unpacked fixed-point number. Behaves like a CHAR column; “unpacked” means the number is stored
as a string, using one character for each digit of the value. M is the total number of digits and D is the
number of digits after the decimal point. The decimal point and (for negative numbers) the “-” sign are
not counted in M, although space for them is reserved. If D is 0, values have no decimal point or fractional
part. The maximum range of DECIMAL values is the same as for DOUBLE, but the actual range for a
given DECIMAL column may be constrained by the choice of M and D. If D is omitted, the default is 0. If M
is omitted, the default is 10.

UNSIGNED, if specified, disallows negative values.

The behavior used by the server for DECIMAL columns in a table depends on the version of MySQL
used to create the table. If your server is from MySQL 5.0.3 or higher, but you have DECIMAL columns

Numeric Type Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 925

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

in tables that were created before 5.0.3, the old behavior still applies to those columns. To convert the
tables to the newer DECIMAL format, dump them with mysqldump and reload them.

• DEC[(M[,D])] [UNSIGNED] [ZEROFILL], NUMERIC[(M[,D])] [UNSIGNED] [ZEROFILL],
FIXED[(M[,D])] [UNSIGNED] [ZEROFILL]

These types are synonyms for DECIMAL. The FIXED synonym is available for compatibility with other
database systems.

• FLOAT[(M,D)] [UNSIGNED] [ZEROFILL]

A small (single-precision) floating-point number. Permissible values are -3.402823466E+38 to
-1.175494351E-38, 0, and 1.175494351E-38 to 3.402823466E+38. These are the theoretical
limits, based on the IEEE standard. The actual range might be slightly smaller depending on your
hardware or operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are
omitted, values are stored to the limits permitted by the hardware. A single-precision floating-point
number is accurate to approximately 7 decimal places.

UNSIGNED, if specified, disallows negative values.

Using FLOAT might give you some unexpected problems because all calculations in MySQL are done
with double precision. See Section B.5.4.7, “Solving Problems with No Matching Rows”.

• DOUBLE[(M,D)] [UNSIGNED] [ZEROFILL]

A normal-size (double-precision) floating-point number. Permissible values are
-1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and
2.2250738585072014E-308 to 1.7976931348623157E+308. These are the theoretical limits,
based on the IEEE standard. The actual range might be slightly smaller depending on your hardware or
operating system.

M is the total number of digits and D is the number of digits following the decimal point. If M and D are
omitted, values are stored to the limits permitted by the hardware. A double-precision floating-point
number is accurate to approximately 15 decimal places.

UNSIGNED, if specified, disallows negative values.

• DOUBLE PRECISION[(M,D)] [UNSIGNED] [ZEROFILL], REAL[(M,D)] [UNSIGNED]
[ZEROFILL]

These types are synonyms for DOUBLE. Exception: If the REAL_AS_FLOAT SQL mode is enabled, REAL
is a synonym for FLOAT rather than DOUBLE.

• FLOAT(p) [UNSIGNED] [ZEROFILL]

A floating-point number. p represents the precision in bits, but MySQL uses this value only to determine
whether to use FLOAT or DOUBLE for the resulting data type. If p is from 0 to 24, the data type becomes
FLOAT with no M or D values. If p is from 25 to 53, the data type becomes DOUBLE with no M or D values.
The range of the resulting column is the same as for the single-precision FLOAT or double-precision
DOUBLE data types described earlier in this section.

 FLOAT(p) syntax is provided for ODBC compatibility.

Date and Time Type Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 926

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

11.1.2 Date and Time Type Overview

A summary of the temporal data types follows. For additional information about properties and storage
requirements of the temporal types, see Section 11.3, “Date and Time Types”, and Section 11.7,
“Data Type Storage Requirements”. For descriptions of functions that operate on temporal values, see
Section 12.7, “Date and Time Functions”.

For the DATE and DATETIME range descriptions, “supported” means that although earlier values might
work, there is no guarantee.

• DATE

A date. The supported range is '1000-01-01' to '9999-12-31'. MySQL displays DATE values
in 'YYYY-MM-DD' format, but permits assignment of values to DATE columns using either strings or
numbers.

• DATETIME

A date and time combination. The supported range is '1000-01-01 00:00:00' to '9999-12-31
23:59:59'. MySQL displays DATETIME values in 'YYYY-MM-DD HH:MM:SS' format, but permits
assignment of values to DATETIME columns using either strings or numbers.

• TIMESTAMP

A timestamp. The range is '1970-01-01 00:00:01' UTC to '2038-01-19 03:14:07' UTC.
TIMESTAMP values are stored as the number of seconds since the epoch ('1970-01-01 00:00:00'
UTC). A TIMESTAMP cannot represent the value '1970-01-01 00:00:00' because that is equivalent
to 0 seconds from the epoch and the value 0 is reserved for representing '0000-00-00 00:00:00',
the “zero” TIMESTAMP value.

Unless specified otherwise, the first TIMESTAMP column in a table is defined to be automatically set
to the date and time of the most recent modification if not explicitly assigned a value. This makes
TIMESTAMP useful for recording the timestamp of an INSERT or UPDATE operation. You can also set
any TIMESTAMP column to the current date and time by assigning it a NULL value, unless it has been
defined with the NULL attribute to permit NULL values. The automatic initialization and updating to
the current date and time can be specified using DEFAULT CURRENT_TIMESTAMP and ON UPDATE
CURRENT_TIMESTAMP clauses, as described in Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP”.

Note

The TIMESTAMP format that was used prior to MySQL 4.1 is not supported
in MySQL 5.0; see MySQL 3.23, 4.0, 4.1 Reference Manual for information
regarding the old format.

• TIME

A time. The range is '-838:59:59' to '838:59:59'. MySQL displays TIME values in 'HH:MM:SS'
format, but permits assignment of values to TIME columns using either strings or numbers.

• YEAR[(2|4)]

A year in two-digit or four-digit format. The default is four-digit format. YEAR(2) or YEAR(4) differ in
display format, but have the same range of values. In four-digit format, values display as 1901 to 2155,
and 0000. In two-digit format, values display as 70 to 69, representing years from 1970 to 2069. MySQL
displays YEAR values in YYYY or YY format, but permits assignment of values to YEAR columns using
either strings or numbers.

String Type Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 927

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For additional information about YEAR display format and interpretation of input values, see
Section 11.3.3, “The YEAR Type”.

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values to
numbers, losing everything after the first nonnumeric character.) To work around this problem, convert to
numeric units, perform the aggregate operation, and convert back to a temporal value. Examples:

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

Note

The MySQL server can be run with the MAXDB SQL mode enabled. In this case,
TIMESTAMP is identical with DATETIME. If this mode is enabled at the time that a
table is created, TIMESTAMP columns are created as DATETIME columns. As a
result, such columns use DATETIME display format, have the same range of values,
and there is no automatic initialization or updating to the current date and time. See
Section 5.1.7, “Server SQL Modes”.

11.1.3 String Type Overview

A summary of the string data types follows. For additional information about properties and storage
requirements of the string types, see Section 11.4, “String Types”, and Section 11.7, “Data Type Storage
Requirements”.

In some cases, MySQL may change a string column to a type different from that given in a CREATE TABLE
or ALTER TABLE statement. See Section 13.1.10.4, “Silent Column Specification Changes”.

In MySQL 4.1 and up, string data types include some features that you may not have encountered in
working with versions of MySQL prior to 4.1:

• MySQL interprets length specifications in character column definitions in character units. (Before MySQL
4.1, column lengths were interpreted in bytes.) This applies to CHAR, VARCHAR, and the TEXT types.

• Column definitions for many string data types can include attributes that specify the character set or
collation of the column. These attributes apply to the CHAR, VARCHAR, the TEXT types, ENUM, and SET
data types:

• The CHARACTER SET attribute specifies the character set, and the COLLATE attribute specifies a
collation for the character set. For example:

CREATE TABLE t
(
 c1 VARCHAR(20) CHARACTER SET utf8,
 c2 TEXT CHARACTER SET latin1 COLLATE latin1_general_cs
);

This table definition creates a column named c1 that has a character set of utf8 with the default
collation for that character set, and a column named c2 that has a character set of latin1 and a
case-sensitive collation.

The rules for assigning the character set and collation when either or both of the CHARACTER SET
and COLLATE attributes are missing are described in Section 10.1.3.4, “Column Character Set and
Collation”.

CHARSET is a synonym for CHARACTER SET.

String Type Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 928

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Specifying the CHARACTER SET binary attribute for a character data type causes the column
to be created as the corresponding binary data type: CHAR becomes BINARY, VARCHAR becomes
VARBINARY, and TEXT becomes BLOB. For the ENUM and SET data types, this does not occur; they
are created as declared. Suppose that you specify a table using this definition:

CREATE TABLE t
(
 c1 VARCHAR(10) CHARACTER SET binary,
 c2 TEXT CHARACTER SET binary,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

The resulting table has this definition:

CREATE TABLE t
(
 c1 VARBINARY(10),
 c2 BLOB,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

• The ASCII attribute is shorthand for CHARACTER SET latin1.

• The UNICODE attribute is shorthand for CHARACTER SET ucs2.

• The BINARY attribute is shorthand for specifying the binary collation of the column character set.
In this case, sorting and comparison are based on numeric character values. (Before MySQL 4.1,
BINARY caused a column to store binary strings and sorting and comparison were based on numeric
byte values. This is the same as using character values for single-byte character sets, but not for
multibyte character sets.)

• Character column sorting and comparison are based on the character set assigned to the column.
(Before MySQL 4.1, sorting and comparison were based on the collation of the server character set.) For
the CHAR, VARCHAR, TEXT, ENUM, and SET data types, you can declare a column with a binary collation
or the BINARY attribute to cause sorting and comparison to use the underlying character code values
rather than a lexical ordering.

Section 10.1, “Character Set Support”, provides additional information about use of character sets in
MySQL.

• [NATIONAL] CHAR[(M)] [CHARACTER SET charset_name] [COLLATE
collation_name]

A fixed-length string that is always right-padded with spaces to the specified length when stored. M
represents the column length in characters. The range of M is 0 to 255. If M is omitted, the length is 1.

Note

Trailing spaces are removed when CHAR values are retrieved.

Before MySQL 5.0.3, a CHAR column with a length specification greater than 255 is converted to the
smallest TEXT type that can hold values of the given length. For example, CHAR(500) is converted to
TEXT, and CHAR(200000) is converted to MEDIUMTEXT. However, this conversion causes the column
to become a variable-length column, and also affects trailing-space removal.

In MySQL 5.0.3 and later, a CHAR length greater than 255 is illegal and fails with an error:

String Type Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 929

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> CREATE TABLE c1 (col1 INT, col2 CHAR(500));
ERROR 1074 (42000): Column length too big for column 'col' (max = 255);
use BLOB or TEXT instead

CHAR is shorthand for CHARACTER. NATIONAL CHAR (or its equivalent short form, NCHAR) is the
standard SQL way to define that a CHAR column should use some predefined character set. MySQL
uses utf8 as this predefined character set. Section 10.1.3.6, “National Character Set”.

The CHAR BYTE data type is an alias for the BINARY data type. This is a compatibility feature.

MySQL permits you to create a column of type CHAR(0). This is useful primarily when you have to be
compliant with old applications that depend on the existence of a column but that do not actually use
its value. CHAR(0) is also quite nice when you need a column that can take only two values: A column
that is defined as CHAR(0) NULL occupies only one bit and can take only the values NULL and '' (the
empty string).

• [NATIONAL] VARCHAR(M) [CHARACTER SET charset_name] [COLLATE
collation_name]

A variable-length string. M represents the maximum column length in characters. The range of M is 0 to
255 before MySQL 5.0.3, and 0 to 65,535 in MySQL 5.0.3 and later. The effective maximum length of a
VARCHAR in MySQL 5.0.3 and later is subject to the maximum row size (65,535 bytes, which is shared
among all columns) and the character set used. For example, utf8 characters can require up to three
bytes per character, so a VARCHAR column that uses the utf8 character set can be declared to be a
maximum of 21,844 characters. See Section C.7.4, “Limits on Table Column Count and Row Size”.

MySQL stores VARCHAR values as a 1-byte or 2-byte length prefix plus data. The length prefix indicates
the number of bytes in the value. A VARCHAR column uses one length byte if values require no more
than 255 bytes, two length bytes if values may require more than 255 bytes.

Note

Before 5.0.3, trailing spaces were removed when VARCHAR values were stored,
which differs from the standard SQL specification.

Prior to MySQL 5.0.3, a VARCHAR column with a length specification greater than 255 is converted
to the smallest TEXT type that can hold values of the given length. For example, VARCHAR(500) is
converted to TEXT, and VARCHAR(200000) is converted to MEDIUMTEXT. However, this conversion
affects trailing-space removal.

VARCHAR is shorthand for CHARACTER VARYING. NATIONAL VARCHAR is the standard SQL way
to define that a VARCHAR column should use some predefined character set. MySQL uses utf8 as
this predefined character set. Section 10.1.3.6, “National Character Set”. NVARCHAR is shorthand for
NATIONAL VARCHAR.

• BINARY(M)

The BINARY type is similar to the CHAR type, but stores binary byte strings rather than nonbinary
character strings. M represents the column length in bytes.

• VARBINARY(M)

The VARBINARY type is similar to the VARCHAR type, but stores binary byte strings rather than nonbinary
character strings. M represents the maximum column length in bytes.

• TINYBLOB

String Type Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 930

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A BLOB column with a maximum length of 255 (28 − 1) bytes. Each TINYBLOB value is stored using a 1-
byte length prefix that indicates the number of bytes in the value.

• TINYTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 255 (28 − 1) characters. The effective maximum length is less
if the value contains multibyte characters. Each TINYTEXT value is stored using a 1-byte length prefix
that indicates the number of bytes in the value.

• BLOB[(M)]

A BLOB column with a maximum length of 65,535 (216 − 1) bytes. Each BLOB value is stored using a 2-
byte length prefix that indicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MySQL creates the column as the smallest
BLOB type large enough to hold values M bytes long.

• TEXT[(M)] [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 65,535 (216 − 1) characters. The effective maximum length
is less if the value contains multibyte characters. Each TEXT value is stored using a 2-byte length prefix
that indicates the number of bytes in the value.

An optional length M can be given for this type. If this is done, MySQL creates the column as the smallest
TEXT type large enough to hold values M characters long.

• MEDIUMBLOB

A BLOB column with a maximum length of 16,777,215 (224 − 1) bytes. Each MEDIUMBLOB value is stored
using a 3-byte length prefix that indicates the number of bytes in the value.

• MEDIUMTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 16,777,215 (224 − 1) characters. The effective maximum
length is less if the value contains multibyte characters. Each MEDIUMTEXT value is stored using a 3-
byte length prefix that indicates the number of bytes in the value.

• LONGBLOB

A BLOB column with a maximum length of 4,294,967,295 or 4GB (232 − 1) bytes. The effective maximum
length of LONGBLOB columns depends on the configured maximum packet size in the client/server
protocol and available memory. Each LONGBLOB value is stored using a 4-byte length prefix that
indicates the number of bytes in the value.

• LONGTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 4,294,967,295 or 4GB (232 − 1) characters. The effective
maximum length is less if the value contains multibyte characters. The effective maximum length of
LONGTEXT columns also depends on the configured maximum packet size in the client/server protocol
and available memory. Each LONGTEXT value is stored using a 4-byte length prefix that indicates the
number of bytes in the value.

• ENUM('value1','value2',...) [CHARACTER SET charset_name] [COLLATE
collation_name]

An enumeration. A string object that can have only one value, chosen from the list of values 'value1',
'value2', ..., NULL or the special '' error value. ENUM values are represented internally as integers.

Numeric Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 931

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

An ENUM column can have a maximum of 65,535 distinct elements. (The practical limit is less than
3000.) A table can have no more than 255 unique element list definitions among its ENUM and SET
columns considered as a group. For more information on these limits, see Section C.7.5, “Limits
Imposed by .frm File Structure”.

• SET('value1','value2',...) [CHARACTER SET charset_name] [COLLATE
collation_name]

A set. A string object that can have zero or more values, each of which must be chosen from the list of
values 'value1', 'value2', ... SET values are represented internally as integers.

A SET column can have a maximum of 64 distinct members. A table can have no more than 255 unique
element list definitions among its ENUM and SET columns considered as a group. For more information
on this limit, see Section C.7.5, “Limits Imposed by .frm File Structure”.

11.2 Numeric Types
MySQL supports all standard SQL numeric data types. These types include the exact numeric data types
(INTEGER, SMALLINT, DECIMAL, and NUMERIC), as well as the approximate numeric data types (FLOAT,
REAL, and DOUBLE PRECISION). The keyword INT is a synonym for INTEGER, and the keywords DEC
and FIXED are synonyms for DECIMAL. MySQL treats DOUBLE as a synonym for DOUBLE PRECISION (a
nonstandard extension). MySQL also treats REAL as a synonym for DOUBLE PRECISION (a nonstandard
variation), unless the REAL_AS_FLOAT SQL mode is enabled.

As of MySQL 5.0.3, a BIT data type is available for storing bit-field values. (Before 5.0.3, MySQL interprets
BIT as TINYINT(1).) In MySQL 5.0.3, BIT is supported only for MyISAM. MySQL 5.0.5 extends BIT
support to MEMORY, InnoDB, BDB, and NDBCLUSTER.

For information about how MySQL handles assignment of out-of-range values to columns and overflow
during expression evaluation, see Section 11.2.6, “Out-of-Range and Overflow Handling”.

For information about numeric type storage requirements, see Section 11.7, “Data Type Storage
Requirements”.

The data type used for the result of a calculation on numeric operands depends on the types of the
operands and the operations performed on them. For more information, see Section 12.6.1, “Arithmetic
Operators”.

11.2.1 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT,
MEDIUMINT, BIGINT

MySQL supports the SQL standard integer types INTEGER (or INT) and SMALLINT. As an extension to
the standard, MySQL also supports the integer types TINYINT, MEDIUMINT, and BIGINT. The following
table shows the required storage and range for each integer type.

Type Storage Minimum Value Maximum Value

 (Bytes) (Signed/Unsigned) (Signed/Unsigned)

TINYINT 1 -128 127

 0 255

SMALLINT 2 -32768 32767

 0 65535

MEDIUMINT 3 -8388608 8388607

Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 932

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type Storage Minimum Value Maximum Value

 (Bytes) (Signed/Unsigned) (Signed/Unsigned)

 0 16777215

INT 4 -2147483648 2147483647

 0 4294967295

BIGINT 8 -9223372036854775808 9223372036854775807

 0 18446744073709551615

11.2.2 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC

The DECIMAL and NUMERIC types store exact numeric data values. These types are used when it
is important to preserve exact precision, for example with monetary data. In MySQL, NUMERIC is
implemented as DECIMAL, so the following remarks about DECIMAL apply equally to NUMERIC.

As of MySQL 5.0.3, DECIMAL values are stored in binary format. Previously, they were stored as strings,
with one character used for each digit of the value, the decimal point (if the scale is greater than 0), and the
“-” sign (for negative numbers). See Section 12.17, “Precision Math”.

In a DECIMAL column declaration, the precision and scale can be (and usually is) specified; for example:

salary DECIMAL(5,2)

In this example, 5 is the precision and 2 is the scale. The precision represents the number of significant
digits that are stored for values, and the scale represents the number of digits that can be stored following
the decimal point.

Standard SQL requires that DECIMAL(5,2) be able to store any value with five digits and two decimals,
so values that can be stored in the salary column range from -999.99 to 999.99. MySQL enforces
this limit as of MySQL 5.0.3. Before 5.0.3, on the positive end of the range, the column could actually store
numbers up to 9999.99. (For positive numbers, MySQL 5.0.2 and earlier used the byte reserved for the
sign to extend the upper end of the range.)

In standard SQL, the syntax DECIMAL(M) is equivalent to DECIMAL(M,0). Similarly, the syntax DECIMAL
is equivalent to DECIMAL(M,0), where the implementation is permitted to decide the value of M. MySQL
supports both of these variant forms of DECIMAL syntax. The default value of M is 10.

If the scale is 0, DECIMAL values contain no decimal point or fractional part.

The maximum number of digits for DECIMAL is 65 (64 from MySQL 5.0.3 to 5.0.5). Before MySQL 5.0.3,
the maximum range of DECIMAL values is the same as for DOUBLE, but the actual range for a given
DECIMAL column can be constrained by the precision or scale for a given column. When such a column is
assigned a value with more digits following the decimal point than are permitted by the specified scale, the
value is converted to that scale. (The precise behavior is operating system-specific, but generally the effect
is truncation to the permissible number of digits.)

11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE

The FLOAT and DOUBLE types represent approximate numeric data values. MySQL uses four bytes for
single-precision values and eight bytes for double-precision values.

For FLOAT, the SQL standard permits an optional specification of the precision (but not the range of the
exponent) in bits following the keyword FLOAT in parentheses. MySQL also supports this optional precision
specification, but the precision value is used only to determine storage size. A precision from 0 to 23

Bit-Value Type - BIT

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 933

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

results in a 4-byte single-precision FLOAT column. A precision from 24 to 53 results in an 8-byte double-
precision DOUBLE column.

MySQL permits a nonstandard syntax: FLOAT(M,D) or REAL(M,D) or DOUBLE PRECISION(M,D). Here,
“(M,D)” means than values can be stored with up to M digits in total, of which D digits may be after the
decimal point. For example, a column defined as FLOAT(7,4) will look like -999.9999 when displayed.
MySQL performs rounding when storing values, so if you insert 999.00009 into a FLOAT(7,4) column,
the approximate result is 999.0001.

Because floating-point values are approximate and not stored as exact values, attempts to treat them
as exact in comparisons may lead to problems. They are also subject to platform or implementation
dependencies. For more information, see Section B.5.4.8, “Problems with Floating-Point Values”

For maximum portability, code requiring storage of approximate numeric data values should use FLOAT or
DOUBLE PRECISION with no specification of precision or number of digits.

11.2.4 Bit-Value Type - BIT

As of MySQL 5.0.3, the BIT data type is used to store bit-field values. A type of BIT(M) enables storage
of M-bit values. M can range from 1 to 64.

To specify bit values, b'value' notation can be used. value is a binary value written using zeros and
ones. For example, b'111' and b'10000000' represent 7 and 128, respectively. See Section 9.1.6, “Bit-
Field Literals”.

If you assign a value to a BIT(M) column that is less than M bits long, the value is padded on the left with
zeros. For example, assigning a value of b'101' to a BIT(6) column is, in effect, the same as assigning
b'000101'.

MySQL Cluster. The maximum combined size of all BIT columns used in a given NDB table must not
exceed 4096 bits.

11.2.5 Numeric Type Attributes

MySQL supports an extension for optionally specifying the display width of integer data types in
parentheses following the base keyword for the type. For example, INT(4) specifies an INT with a display
width of four digits. This optional display width may be used by applications to display integer values
having a width less than the width specified for the column by left-padding them with spaces. (That is, this
width is present in the metadata returned with result sets. Whether it is used or not is up to the application.)

The display width does not constrain the range of values that can be stored in the column. Nor does it
prevent values wider than the column display width from being displayed correctly. For example, a column
specified as SMALLINT(3) has the usual SMALLINT range of -32768 to 32767, and values outside the
range permitted by three digits are displayed in full using more than three digits.

When used in conjunction with the optional (nonstandard) attribute ZEROFILL, the default padding of
spaces is replaced with zeros. For example, for a column declared as INT(4) ZEROFILL, a value of 5 is
retrieved as 0005.

Note

The ZEROFILL attribute is ignored when a column is involved in expressions or
UNION queries.

If you store values larger than the display width in an integer column that has
the ZEROFILL attribute, you may experience problems when MySQL generates

Out-of-Range and Overflow Handling

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 934

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

temporary tables for some complicated joins. In these cases, MySQL assumes that
the data values fit within the column display width.

All integer types can have an optional (nonstandard) attribute UNSIGNED. Unsigned type can be used
to permit only nonnegative numbers in a column or when you need a larger upper numeric range for the
column. For example, if an INT column is UNSIGNED, the size of the column's range is the same but its
endpoints shift from -2147483648 and 2147483647 up to 0 and 4294967295.

Floating-point and fixed-point types also can be UNSIGNED. As with integer types, this attribute prevents
negative values from being stored in the column. Unlike the integer types, the upper range of column
values remains the same.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute to the
column.

Integer or floating-point data types can have the additional attribute AUTO_INCREMENT. When you insert
a value of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column, the column is set to the
next sequence value. Typically this is value+1, where value is the largest value for the column currently
in the table. AUTO_INCREMENT sequences begin with 1. (Inserting NULL to generate AUTO_INCREMENT
values requires that the column be declared NOT NULL. If the column is declared NULL, inserting NULL
stores a NULL.) When you insert any other value into an AUTO_INCREMENT column, the column is set to
that value and the sequence is reset so that the next automatically generated value follows sequentially
from the inserted value.

11.2.6 Out-of-Range and Overflow Handling

When MySQL stores a value in a numeric column that is outside the permissible range of the column data
type, the result depends on the SQL mode in effect at the time:

• If strict SQL mode is enabled, MySQL rejects the out-of-range value with an error, and the insert fails, in
accordance with the SQL standard.

• If no restrictive modes are enabled, MySQL clips the value to the appropriate endpoint of the range and
stores the resulting value instead.

When an out-of-range value is assigned to an integer column, MySQL stores the value representing the
corresponding endpoint of the column data type range. If you store 256 into a TINYINT or TINYINT
UNSIGNED column, MySQL stores 127 or 255, respectively.

When a floating-point or fixed-point column is assigned a value that exceeds the range implied by the
specified (or default) precision and scale, MySQL stores the value representing the corresponding
endpoint of that range.

Column-assignment conversions that occur due to clipping when MySQL is not operating in strict mode
are reported as warnings for ALTER TABLE, LOAD DATA INFILE, UPDATE, and multiple-row INSERT
statements. In strict mode, these statements fail, and some or all the values will not be inserted or
changed, depending on whether the table is a transactional table and other factors. For details, see
Section 5.1.7, “Server SQL Modes”.

Overflow handling during numeric expression evaluation depends on the types of the operands:

• Integer overflow results in silent wraparound.

• DECIMAL overflow results in a truncated result and a warning.

• Floating-point overflow produces a NULL result. Overflow for some operations can result in +INF, -INF,
or NaN.

Date and Time Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 935

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For example, the largest signed BIGINT value is 9223372036854775807, so the following expression
wraps around to the minimum BIGINT value:

mysql> SELECT 9223372036854775807 + 1;
+-------------------------+
| 9223372036854775807 + 1 |
+-------------------------+
| -9223372036854775808 |
+-------------------------+

To enable the operation to succeed in this case, convert the value to unsigned;

mysql> SELECT CAST(9223372036854775807 AS UNSIGNED) + 1;
+---+
| CAST(9223372036854775807 AS UNSIGNED) + 1 |
+---+
| 9223372036854775808 |
+---+

Whether overflow occurs depends on the range of the operands, so another way to handle the preceding
expression is to use exact-value arithmetic because DECIMAL values have a larger range than integers:

mysql> SELECT 9223372036854775807.0 + 1;
+---------------------------+
| 9223372036854775807.0 + 1 |
+---------------------------+
| 9223372036854775808.0 |
+---------------------------+

Subtraction between integer values, where one is of type UNSIGNED, produces an unsigned result by
default. If the result would otherwise have been negative, it becomes the maximum integer value. If the
NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is negative.

mysql> SET sql_mode = '';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| 18446744073709551615 |
+-------------------------+

mysql> SET sql_mode = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| -1 |
+-------------------------+

If the result of such an operation is used to update an UNSIGNED integer column, the result is clipped to the
maximum value for the column type, or clipped to 0 if NO_UNSIGNED_SUBTRACTION is enabled. If strict
SQL mode is enabled, an error occurs and the column remains unchanged.

11.3 Date and Time Types

The date and time types for representing temporal values are DATE, TIME, DATETIME, TIMESTAMP, and
YEAR. Each temporal type has a range of legal values, as well as a “zero” value that may be used when
you specify an illegal value that MySQL cannot represent. The TIMESTAMP type has special automatic

Date and Time Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 936

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

updating behavior, described later. For temporal type storage requirements, see Section 11.7, “Data Type
Storage Requirements”.

Keep in mind these general considerations when working with date and time types:

• MySQL retrieves values for a given date or time type in a standard output format, but it attempts to
interpret a variety of formats for input values that you supply (for example, when you specify a value to
be assigned to or compared to a date or time type). For a description of the permitted formats for date
and time types, see Section 9.1.3, “Date and Time Literals”. It is expected that you supply legal values.
Unpredictable results may occur if you use values in other formats.

• Although MySQL tries to interpret values in several formats, date parts must always be given in year-
month-day order (for example, '98-09-04'), rather than in the month-day-year or day-month-year
orders commonly used elsewhere (for example, '09-04-98', '04-09-98').

• Dates containing two-digit year values are ambiguous because the century is unknown. MySQL
interprets two-digit year values using these rules:

• Year values in the range 70-99 are converted to 1970-1999.

• Year values in the range 00-69 are converted to 2000-2069.

See also Section 11.3.8, “Two-Digit Years in Dates”.

• Conversion of values from one temporal type to another occurs according to the rules in Section 11.3.7,
“Conversion Between Date and Time Types”.

• MySQL automatically converts a date or time value to a number if the value is used in a numeric context
and vice versa.

• By default, when MySQL encounters a value for a date or time type that is out of range or otherwise
illegal for the type, it converts the value to the “zero” value for that type. The exception is that out-of-
range TIME values are clipped to the appropriate endpoint of the TIME range.

• Starting from MySQL 5.0.2, by setting the SQL mode to the appropriate value, you can specify
more exactly what kind of dates you want MySQL to support. (See Section 5.1.7, “Server SQL
Modes”.) You can get MySQL to accept certain dates, such as '2009-11-31', by enabling the
ALLOW_INVALID_DATES SQL mode. (Before 5.0.2, this mode was the default behavior for MySQL.)
This is useful when you want to store a “possibly wrong” value which the user has specified (for
example, in a web form) in the database for future processing. Under this mode, MySQL verifies only
that the month is in the range from 1 to 12 and that the day is in the range from 1 to 31.

• MySQL permits you to store dates where the day or month and day are zero in a DATE or DATETIME
column. This is useful for applications that need to store birthdates for which you may not know the
exact date. In this case, you simply store the date as '2009-00-00' or '2009-01-00'. If you store
dates such as these, you should not expect to get correct results for functions such as DATE_SUB()
or DATE_ADD() that require complete dates. To disallow zero month or day parts in dates, enable the
NO_ZERO_IN_DATE SQL mode.

• MySQL permits you to store a “zero” value of '0000-00-00' as a “dummy date.” This is in some
cases more convenient than using NULL values, and uses less data and index space. To disallow
'0000-00-00', enable the NO_ZERO_DATE SQL mode.

• “Zero” date or time values used through Connector/ODBC are converted automatically to NULL because
ODBC cannot handle such values.

The following table shows the format of the “zero” value for each type. The “zero” values are special, but
you can store or refer to them explicitly using the values shown in the table. You can also do this using the

The DATE, DATETIME, and TIMESTAMP Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 937

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

values '0' or 0, which are easier to write. For temporal types that include a date part (DATE, DATETIME,
and TIMESTAMP), use of these values produces warnings if the NO_ZERO_DATE SQL mode is enabled.

Data Type “Zero” Value

DATE '0000-00-00'

TIME '00:00:00'

DATETIME '0000-00-00 00:00:00'

TIMESTAMP '0000-00-00 00:00:00'

YEAR 0000

11.3.1 The DATE, DATETIME, and TIMESTAMP Types

The DATE, DATETIME, and TIMESTAMP types are related. This section describes their characteristics,
how they are similar, and how they differ. MySQL recognizes DATE, DATETIME, and TIMESTAMP values in
several formats, described in Section 9.1.3, “Date and Time Literals”. For the DATE and DATETIME range
descriptions, “supported” means that although earlier values might work, there is no guarantee.

The DATE type is used for values with a date part but no time part. MySQL retrieves and displays DATE
values in 'YYYY-MM-DD' format. The supported range is '1000-01-01' to '9999-12-31'.

The DATETIME type is used for values that contain both date and time parts. MySQL retrieves and
displays DATETIME values in 'YYYY-MM-DD HH:MM:SS' format. The supported range is '1000-01-01
00:00:00' to '9999-12-31 23:59:59'.

The TIMESTAMP data type is used for values that contain both date and time parts. TIMESTAMP has a
range of '1970-01-01 00:00:01' UTC to '2038-01-19 03:14:07' UTC.

MySQL converts TIMESTAMP values from the current time zone to UTC for storage, and back from UTC to
the current time zone for retrieval. (This does not occur for other types such as DATETIME.) By default, the
current time zone for each connection is the server's time. The time zone can be set on a per-connection
basis. As long as the time zone setting remains constant, you get back the same value you store. If you
store a TIMESTAMP value, and then change the time zone and retrieve the value, the retrieved value is
different from the value you stored. This occurs because the same time zone was not used for conversion
in both directions. The current time zone is available as the value of the time_zone system variable. For
more information, see Section 10.6, “MySQL Server Time Zone Support”.

The TIMESTAMP data type offers automatic initialization and updating to the current date and time. For
more information, see Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP”.

A DATETIME or TIMESTAMP value can include a trailing fractional seconds part in up to microseconds
(6 digits) precision. Although this fractional part is recognized, it is discarded from values stored into
DATETIME or TIMESTAMP columns. For information about fractional seconds support in MySQL, see
Section 11.3.6, “Fractional Seconds in Time Values”.

Illegal DATE, DATETIME, or TIMESTAMP values are converted to the “zero” value of the appropriate type
('0000-00-00' or '0000-00-00 00:00:00').

Be aware of certain properties of date value interpretation in MySQL:

• MySQL permits a “relaxed” format for values specified as strings, in which any punctuation character
may be used as the delimiter between date parts or time parts. In some cases, this syntax can be
deceiving. For example, a value such as '10:11:12' might look like a time value because of the
“:” delimiter, but is interpreted as the year '2010-11-12' if used in a date context. The value
'10:45:15' is converted to '0000-00-00' because '45' is not a legal month.

The TIME Type

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 938

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• As of 5.0.2, the server requires that month and day values be legal, and not merely in the range 1 to 12
and 1 to 31, respectively. With strict mode disabled, invalid dates such as '2004-04-31' are converted
to '0000-00-00' and a warning is generated. With strict mode enabled, invalid dates generate an
error. To permit such dates, enable ALLOW_INVALID_DATES. See Section 5.1.7, “Server SQL Modes”,
for more information.

Before MySQL 5.0.2, the MySQL server performs only basic checking on the validity of a date: The
ranges for year, month, and day are 1000 to 9999, 00 to 12, and 00 to 31, respectively. Any date
containing parts not within these ranges is subject to conversion to '0000-00-00'. Please note that
this still permits you to store invalid dates such as '2002-04-31'. To ensure that a date is valid, you
should perform a check in your application.

• As of MySQL 5.0.2, MySQL does not accept TIMESTAMP values that include a zero in the day or month
column or values that are not a valid date. The sole exception to this rule is the special “zero” value
'0000-00-00 00:00:00'.

• CAST() treats a TIMESTAMP value as a string when not selecting from a table. (This is true even if you
specify FROM DUAL.) See Section 12.10, “Cast Functions and Operators”.

• Dates containing two-digit year values are ambiguous because the century is unknown. MySQL
interprets two-digit year values using these rules:

• Year values in the range 00-69 are converted to 2000-2069.

• Year values in the range 70-99 are converted to 1970-1999.

See also Section 11.3.8, “Two-Digit Years in Dates”.

Note

The MySQL server can be run with the MAXDB SQL mode enabled. In this case,
TIMESTAMP is identical with DATETIME. If this mode is enabled at the time that a
table is created, TIMESTAMP columns are created as DATETIME columns. As a
result, such columns use DATETIME display format, have the same range of values,
and there is no automatic initialization or updating to the current date and time. See
Section 5.1.7, “Server SQL Modes”.

11.3.2 The TIME Type

MySQL retrieves and displays TIME values in 'HH:MM:SS' format (or 'HHH:MM:SS' format for large
hours values). TIME values may range from '-838:59:59' to '838:59:59'. The hours part may be so
large because the TIME type can be used not only to represent a time of day (which must be less than 24
hours), but also elapsed time or a time interval between two events (which may be much greater than 24
hours, or even negative).

MySQL recognizes TIME values in several formats, described in Section 9.1.3, “Date and Time Literals”.
Some of these formats can include a trailing fractional seconds part in up to microseconds (6 digits)
precision. Although this fractional part is recognized, it is discarded from values stored into TIME columns.
For information about fractional seconds support in MySQL, see Section 11.3.6, “Fractional Seconds in
Time Values”.

Be careful about assigning abbreviated values to a TIME column. MySQL interprets abbreviated TIME
values with colons as time of the day. That is, '11:12' means '11:12:00', not '00:11:12'. MySQL
interprets abbreviated values without colons using the assumption that the two rightmost digits represent
seconds (that is, as elapsed time rather than as time of day). For example, you might think of '1112' and
1112 as meaning '11:12:00' (12 minutes after 11 o'clock), but MySQL interprets them as '00:11:12'
(11 minutes, 12 seconds). Similarly, '12' and 12 are interpreted as '00:00:12'.

The YEAR Type

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 939

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

By default, values that lie outside the TIME range but are otherwise legal are clipped to the closest
endpoint of the range. For example, '-850:00:00' and '850:00:00' are converted to '-838:59:59'
and '838:59:59'. Illegal TIME values are converted to '00:00:00'. Note that because '00:00:00' is
itself a legal TIME value, there is no way to tell, from a value of '00:00:00' stored in a table, whether the
original value was specified as '00:00:00' or whether it was illegal.

For more restrictive treatment of invalid TIME values, enable strict SQL mode to cause errors to occur. See
Section 5.1.7, “Server SQL Modes”.

11.3.3 The YEAR Type

The YEAR type is a 1-byte type used to represent year values. It can be declared as YEAR(4) or YEAR(2)
to specify a display width of four or two characters. The default is four characters if no width is given.

Note

The YEAR(2) data type has certain issues that you should consider before
choosing to use it. For more information, see Section 11.3.4, “YEAR(2) Limitations
and Migrating to YEAR(4)”.

YEAR(4) and YEAR(2) differ in display format, but have the same range of values. For 4-digit format,
MySQL displays YEAR values in YYYY format, with a range of 1901 to 2155, or 0000. For 2-digit format,
MySQL displays only the last two (least significant) digits; for example, 70 (1970 or 2070) or 69 (2069).

You can specify input YEAR values in a variety of formats:

• As a 4-digit number in the range 1901 to 2155.

• As a 4-digit string in the range '1901' to '2155'.

• As a 1- or 2-digit number in the range 1 to 99. MySQL converts values in the ranges 1 to 69 and 70 to
99 to YEAR values in the ranges 2001 to 2069 and 1970 to 1999.

• As a 1- or 2-digit string in the range '0' to '99'. MySQL converts values in the ranges '0' to '69'
and '70' to '99' to YEAR values in the ranges 2000 to 2069 and 1970 to 1999.

• Inserting a numeric 0 has a different effect for YEAR(2) and YEAR(4). For YEAR(2), the result has a
display value of 00 and an internal value of 2000. For YEAR(4), the result has a display value of 0000
and an internal value of 0000. To specify zero for YEAR(4) and have it be interpreted as 2000, specify
it as a string '0' or '00'.

• As the result of a function that returns a value that is acceptable in a YEAR context, such as NOW().

MySQL converts invalid YEAR values to 0000.

See also Section 11.3.8, “Two-Digit Years in Dates”.

11.3.4 YEAR(2) Limitations and Migrating to YEAR(4)

This section describes problems that can occur when using YEAR(2) and provides information about
converting existing YEAR(2) columns to YEAR(4).

Although the internal range of values for YEAR(4) and YEAR(2) is the same (1901 to 2155, and 0000),
the display width for YEAR(2) makes that type inherently ambiguous because displayed values indicate
only the last two digits of the internal values and omit the century digits. The result can be a loss of
information under certain circumstances. For this reason, consider avoiding YEAR(2) throughout your
applications and using YEAR(4) wherever you need a YEAR data type. Note that conversion will become

YEAR(2) Limitations and Migrating to YEAR(4)

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 940

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

necessary at some point because support for YEAR data types with display values other than 4, most
notably YEAR(2), is reduced as of MySQL 5.6.6 and will be removed entirely in a future release.

YEAR(2) Limitations

Issues with the YEAR(2) data type include ambiguity of displayed values, and possible loss of information
when values are dumped and reloaded or converted to strings.

• Displayed YEAR(2) values can be ambiguous. It is possible for up to three YEAR(2) values that have
different internal values to have the same displayed value, as the following example demonstrates:

mysql> CREATE TABLE t (y2 YEAR(2), y4 YEAR(4));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t (y2) VALUES(1912),(2012),(2112);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> UPDATE t SET y4 = y2;
Query OK, 3 rows affected (0.00 sec)
Rows matched: 3 Changed: 3 Warnings: 0

mysql> SELECT * FROM t;
+------+------+
| y2 | y4 |
+------+------+
12	1912
12	2012
12	2112
+------+------+
3 rows in set (0.00 sec)

• If you use mysqldump to dump the table created in the preceding item, the dump file represents all y2
values using the same 2-digit representation (12). If you reload the table from the dump file, all resulting
rows have internal value 2012 and display value 12, thus losing the distinctions among them.

• Conversion of a YEAR(2) or YEAR(4) data value to string form uses the display width of the YEAR type.
Suppose that YEAR(2) and YEAR(4) columns both contain the value 1970. Assigning each column
to a string results in a value of '70' or '1970', respectively. That is, loss of information occurs for
conversion from YEAR(2) to string.

• Values outside the range from 1970 to 2069 are stored incorrectly when inserted into a YEAR(2)
column in a CSV table. For example, inserting 2111 results in a display value of 11 but an internal value
of 2011.

To avoid these problems, use YEAR(4) rather than YEAR(2). Suggestions regarding migration strategies
appear later in this section.

Migrating from YEAR(2) to YEAR(4)

To convert YEAR(2) columns to YEAR(4), use ALTER TABLE. Suppose that a table t1 has this definition:

CREATE TABLE t1 (ycol YEAR(2) NOT NULL DEFAULT '70');

Modify the column using ALTER TABLE as follows. Remember to include any column attributes such as
NOT NULL or DEFAULT:

ALTER TABLE t1 MODIFY ycol YEAR(4) NOT NULL DEFAULT '1970';

Automatic Initialization and Updating for TIMESTAMP

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 941

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The ALTER TABLE statement converts the table without changing YEAR(2) values. If the server is a
replication master, the ALTER TABLE statement replicates to slaves and makes the corresponding table
change on each one.

One migration method should be avoided: Do not dump your data with mysqldump and reload the dump
file after upgrading. This has the potential to change YEAR(2) values, as described previously.

A migration from YEAR(2) to YEAR(4) should also involve examining application code for the possibility of
changed behavior under conditions such as these:

• Code that expects selecting a YEAR column to produce exactly two digits.

• Code that does not account for different handling for inserts of numeric 0: Inserting 0 into YEAR(2) or
YEAR(4) results in an internal value of 2000 or 0000, respectively.

11.3.5 Automatic Initialization and Updating for TIMESTAMP

Note

In older versions of MySQL (prior to 4.1), the properties of the TIMESTAMP data
type differed significantly in several ways from what is described in this section
(see the MySQL 3.23, 4.0, 4.1 Reference Manual for details); these include syntax
extensions which are deprecated in MySQL 5.1, and no longer supported in MySQL
5.5. This has implications for performing a dump and restore or replicating between
MySQL Server versions. If you are using columns that are defined using the old
TIMESTAMP(N) syntax, see Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”,
prior to upgrading to MySQL 5.1 or later.

The TIMESTAMP data type offers automatic initialization and updating to the current date and time (that is,
the current timestamp). You can choose whether to use these properties and which column should have
them:

• One TIMESTAMP column in a table can have the current timestamp as the default value for initializing the
column, as the auto-update value, or both. It is not possible to have the current timestamp be the default
value for one column and the auto-update value for another column.

• If the column is auto-initialized, it is set to the current timestamp for inserted rows that specify no value
for the column.

• If the column is auto-updated, it is automatically updated to the current timestamp when the value of
any other column in the row is changed from its current value. The column remains unchanged if all
other columns are set to their current values. To prevent the column from updating when other columns
change, explicitly set it to its current value. To update the column even when other columns do not
change, explicitly set it to the value it should have (for example, set it to CURRENT_TIMESTAMP).

In addition, you can initialize or update any TIMESTAMP column to the current date and time by assigning it
a NULL value, unless it has been defined with the NULL attribute to permit NULL values.

To specify automatic properties, use the DEFAULT CURRENT_TIMESTAMP and ON UPDATE
CURRENT_TIMESTAMP clauses. The order of the clauses does not matter. If both are present in a column
definition, either can occur first. Any of the synonyms for CURRENT_TIMESTAMP have the same meaning
as CURRENT_TIMESTAMP. These are CURRENT_TIMESTAMP(), NOW(), LOCALTIME, LOCALTIME(),
LOCALTIMESTAMP, and LOCALTIMESTAMP().

Use of DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP is specific to
TIMESTAMP. The DEFAULT clause also can be used to specify a constant (nonautomatic) default value; for
example, DEFAULT 0 or DEFAULT '2000-01-01 00:00:00'.

Automatic Initialization and Updating for TIMESTAMP

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 942

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

The following examples use DEFAULT 0, a default that can produce warnings or
errors depending on whether strict SQL mode or the NO_ZERO_DATE SQL mode
is enabled. Be aware that the TRADITIONAL SQL mode includes strict mode and
NO_ZERO_DATE. See Section 5.1.7, “Server SQL Modes”.

The following rules describe the possibilities for defining the first TIMESTAMP column in a table with the
current timestamp for both the default and auto-update values, for one but not the other, or for neither:

• With both DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP, the column has
the current timestamp for its default value and is automatically updated to the current timestamp.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP
);

• With neither DEFAULT CURRENT_TIMESTAMP nor ON UPDATE CURRENT_TIMESTAMP, it is the same
as specifying both DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP.

CREATE TABLE t1 (
 ts TIMESTAMP
);

• With a DEFAULT clause but no ON UPDATE CURRENT_TIMESTAMP clause, the column has the given
default value and is not automatically updated to the current timestamp.

The default depends on whether the DEFAULT clause specifies CURRENT_TIMESTAMP or a constant
value. With CURRENT_TIMESTAMP, the default is the current timestamp.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);

With a constant, the default is the given value. In this case, the column has no automatic properties at
all.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT 0
);

• With an ON UPDATE CURRENT_TIMESTAMP clause and a constant DEFAULT clause, the column is
automatically updated to the current timestamp and has the given constant default value.

CREATE TABLE t1 (
 ts TIMESTAMP DEFAULT 0 ON UPDATE CURRENT_TIMESTAMP
);

• With an ON UPDATE CURRENT_TIMESTAMP clause but no DEFAULT clause, the column is automatically
updated to the current timestamp. The default is 0 unless the column is defined with the NULL attribute,
in which case the default is NULL.

CREATE TABLE t1 (
 ts TIMESTAMP ON UPDATE CURRENT_TIMESTAMP -- default 0
);
CREATE TABLE t2 (

Automatic Initialization and Updating for TIMESTAMP

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 943

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 ts TIMESTAMP NULL ON UPDATE CURRENT_TIMESTAMP -- default NULL
);

It need not be the first TIMESTAMP column in a table that is automatically initialized or updated to the
current timestamp. However, to specify automatic initialization or updating for a different TIMESTAMP
column, you must suppress the automatic properties for the first one. Then, for the other TIMESTAMP
column, the rules for the DEFAULT and ON UPDATE clauses are the same as for the first TIMESTAMP
column, except that if you omit both clauses, no automatic initialization or updating occurs.

To suppress automatic properties for the first TIMESTAMP column, do either of the following:

• Define the column with a DEFAULT clause that specifies a constant default value.

• Specify the NULL attribute. This also causes the column to permit NULL values, which means that you
cannot assign the current timestamp by setting the column to NULL. Assigning NULL sets the column to
NULL.

Consider these table definitions:

CREATE TABLE t1 (
 ts1 TIMESTAMP DEFAULT 0,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t2 (
 ts1 TIMESTAMP NULL,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t3 (
 ts1 TIMESTAMP NULL DEFAULT 0,
 ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP
 ON UPDATE CURRENT_TIMESTAMP);

The tables have these properties:

• In each table definition, the first TIMESTAMP column has no automatic initialization or updating.

• The tables differ in how the ts1 column handles NULL values. For t1, ts1 is NOT NULL and assigning
it a value of NULL sets it to the current timestamp. For t2 and t3, ts1 permits NULL and assigning it a
value of NULL sets it to NULL.

• t2 and t3 differ in the default value for ts1. For t2, ts1 is defined to permit NULL, so the default is also
NULL in the absence of an explicit DEFAULT clause. For t3, ts1 permits NULL but has an explicit default
of 0.

TIMESTAMP Initialization and the NULL Attribute

By default, TIMESTAMP columns are NOT NULL, cannot contain NULL values, and assigning NULL assigns
the current timestamp. To permit a TIMESTAMP column to contain NULL, explicitly declare it with the NULL
attribute. In this case, the default value also becomes NULL unless overridden with a DEFAULT clause that
specifies a different default value. DEFAULT NULL can be used to explicitly specify NULL as the default
value. (For a TIMESTAMP column not declared with the NULL attribute, DEFAULT NULL is illegal.) If a
TIMESTAMP column permits NULL values, assigning NULL sets it to NULL, not to the current timestamp.

The following table contains several TIMESTAMP columns that permit NULL values:

CREATE TABLE t
(
 ts1 TIMESTAMP NULL DEFAULT NULL,

Fractional Seconds in Time Values

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 944

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 ts2 TIMESTAMP NULL DEFAULT 0,
 ts3 TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP
);

A TIMESTAMP column that permits NULL values does not take on the current timestamp at insert time
except under one of the following conditions:

• Its default value is defined as CURRENT_TIMESTAMP and no value is specified for the column

• CURRENT_TIMESTAMP or any of its synonyms such as NOW() is explicitly inserted into the column

In other words, a TIMESTAMP column defined to permit NULL values auto-initializes only if its definition
includes DEFAULT CURRENT_TIMESTAMP:

CREATE TABLE t (ts TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP);

If the TIMESTAMP column permits NULL values but its definition does not include DEFAULT
CURRENT_TIMESTAMP, you must explicitly insert a value corresponding to the current date and time.
Suppose that tables t1 and t2 have these definitions:

CREATE TABLE t1 (ts TIMESTAMP NULL DEFAULT '0000-00-00 00:00:00');
CREATE TABLE t2 (ts TIMESTAMP NULL DEFAULT NULL);

To set the TIMESTAMP column in either table to the current timestamp at insert time, explicitly assign it that
value. For example:

INSERT INTO t1 VALUES (NOW());
INSERT INTO t2 VALUES (CURRENT_TIMESTAMP);

11.3.6 Fractional Seconds in Time Values

A trailing fractional seconds part is permissible for temporal values in contexts such as literal values, and in
the arguments to or return values from some temporal functions. Example:

mysql> SELECT MICROSECOND('2010-12-10 14:12:09.019473');
+---+
| MICROSECOND('2010-12-10 14:12:09.019473') |
+---+
| 19473 |
+---+

However, when MySQL stores a value into a column of any temporal data type, it discards any fractional
part and does not store it.

11.3.7 Conversion Between Date and Time Types

To some extent, you can convert a value from one temporal type to another. However, there may be some
alteration of the value or loss of information. In all cases, conversion between temporal types is subject to
the range of legal values for the resulting type. For example, although DATE, DATETIME, and TIMESTAMP
values all can be specified using the same set of formats, the types do not all have the same range of
values. TIMESTAMP values cannot be earlier than 1970 UTC or later than '2038-01-19 03:14:07'
UTC. This means that a date such as '1968-01-01', while legal as a DATE or DATETIME value, is not
valid as a TIMESTAMP value and is converted to 0.

Conversion of DATE values:

Two-Digit Years in Dates

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 945

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Conversion to a DATETIME or TIMESTAMP value adds a time part of '00:00:00' because the DATE
value contains no time information.

• Conversion to a TIME value is not useful; the result is '00:00:00'.

Conversion of DATETIME and TIMESTAMP values:

• Conversion to a DATE value discards the time part because the DATE type contains no time information.

• Conversion to a TIME value discards the date part because the TIME type contains no date information.

Conversion of TIME values:

MySQL converts a time value to a date or date-and-time value by parsing the string value of the time as
a date or date-and-time. This is unlikely to be useful. For example, '23:12:31' interpreted as a date
becomes '2023-12-31'. Time values not valid as dates become '0000-00-00' or NULL.

Prior to MySQL 5.0.42, when DATE values are compared with DATETIME values, the time portion of the
DATETIME value is ignored, or the comparison could be performed as a string compare. Starting from
MySQL 5.0.42, a DATE value is coerced to the DATETIME type by adding the time portion as '00:00:00'.
To mimic the old behavior, use the CAST() function to cause the comparison operands to be treated as
previously. For example:

date_col = CAST(datetime_col AS DATE)

As of MySQL 5.0.8, conversion of TIME or DATETIME values to numeric form (for example, by adding +0)
results in a double-precision value with a microseconds part of .000000:

mysql> SELECT CURTIME(), CURTIME()+0;
+-----------+---------------+
| CURTIME() | CURTIME()+0 |
+-----------+---------------+
| 10:41:36 | 104136.000000 |
+-----------+---------------+
mysql> SELECT NOW(), NOW()+0;
+---------------------+-----------------------+
| NOW() | NOW()+0 |
+---------------------+-----------------------+
| 2007-11-30 10:41:47 | 20071130104147.000000 |
+---------------------+-----------------------+

Before MySQL 5.0.8, the conversion results in an integer value with no microseconds part.

11.3.8 Two-Digit Years in Dates

Date values with two-digit years are ambiguous because the century is unknown. Such values must be
interpreted into four-digit form because MySQL stores years internally using four digits.

For DATETIME, DATE, and TIMESTAMP types, MySQL interprets dates specified with ambiguous year
values using these rules:

• Year values in the range 00-69 are converted to 2000-2069.

• Year values in the range 70-99 are converted to 1970-1999.

For YEAR, the rules are the same, with this exception: A numeric 00 inserted into YEAR(4) results in 0000
rather than 2000. To specify zero for YEAR(4) and have it be interpreted as 2000, specify it as a string
'0' or '00'.

String Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 946

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Remember that these rules are only heuristics that provide reasonable guesses as to what your data
values mean. If the rules used by MySQL do not produce the values you require, you must provide
unambiguous input containing four-digit year values.

ORDER BY properly sorts YEAR values that have two-digit years.

Some functions like MIN() and MAX() convert a YEAR to a number. This means that a value with a two-
digit year does not work properly with these functions. The fix in this case is to convert the YEAR to four-
digit year format.

11.4 String Types
The string types are CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT, ENUM, and SET. This
section describes how these types work and how to use them in your queries. For string type storage
requirements, see Section 11.7, “Data Type Storage Requirements”.

11.4.1 The CHAR and VARCHAR Types

The CHAR and VARCHAR types are similar, but differ in the way they are stored and retrieved. As of MySQL
5.0.3, they also differ in maximum length and in whether trailing spaces are retained.

The CHAR and VARCHAR types are declared with a length that indicates the maximum number of characters
you want to store. For example, CHAR(30) can hold up to 30 characters.

The length of a CHAR column is fixed to the length that you declare when you create the table. The length
can be any value from 0 to 255. When CHAR values are stored, they are right-padded with spaces to the
specified length. When CHAR values are retrieved, trailing spaces are removed.

Values in VARCHAR columns are variable-length strings. The length can be specified as a value from 0 to
255 before MySQL 5.0.3, and 0 to 65,535 in 5.0.3 and later versions. The effective maximum length of
a VARCHAR in MySQL 5.0.3 and later is subject to the maximum row size (65,535 bytes, which is shared
among all columns) and the character set used. See Section C.7.4, “Limits on Table Column Count and
Row Size”.

In contrast to CHAR, VARCHAR values are stored as a 1-byte or 2-byte length prefix plus data. The length
prefix indicates the number of bytes in the value. A column uses one length byte if values require no more
than 255 bytes, two length bytes if values may require more than 255 bytes.

If strict SQL mode is not enabled and you assign a value to a CHAR or VARCHAR column that exceeds
the column's maximum length, the value is truncated to fit and a warning is generated. For truncation of
nonspace characters, you can cause an error to occur (rather than a warning) and suppress insertion of
the value by using strict SQL mode. See Section 5.1.7, “Server SQL Modes”.

For VARCHAR columns, trailing spaces in excess of the column length are truncated prior to insertion and a
warning is generated, regardless of the SQL mode in use. For CHAR columns, truncation of excess trailing
spaces from inserted values is performed silently regardless of the SQL mode.

VARCHAR values are not padded when they are stored. Handling of trailing spaces is version-dependent.
As of MySQL 5.0.3, trailing spaces are retained when values are stored and retrieved, in conformance with
standard SQL. Before MySQL 5.0.3, trailing spaces are removed from values when they are stored into a
VARCHAR column; this means that the spaces also are absent from retrieved values.

Before MySQL 5.0.3, if you need a data type for which trailing spaces are not removed, consider using
a BLOB or TEXT type. Also, if you want to store binary values such as results from an encryption or
compression function that might contain arbitrary byte values, use a BLOB column rather than a CHAR or
VARCHAR column, to avoid potential problems with trailing space removal that would change data values.

The CHAR and VARCHAR Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 947

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The following table illustrates the differences between CHAR and VARCHAR by showing the result of storing
various string values into CHAR(4) and VARCHAR(4) columns (assuming that the column uses a single-
byte character set such as latin1).

Value CHAR(4) Storage Required VARCHAR(4) Storage Required

'' ' ' 4 bytes '' 1 byte

'ab' 'ab ' 4 bytes 'ab' 3 bytes

'abcd' 'abcd' 4 bytes 'abcd' 5 bytes

'abcdefgh' 'abcd' 4 bytes 'abcd' 5 bytes

The values shown as stored in the last row of the table apply only when not using strict mode; if MySQL is
running in strict mode, values that exceed the column length are not stored, and an error results.

If a given value is stored into the CHAR(4) and VARCHAR(4) columns, the values retrieved from the
columns are not always the same because trailing spaces are removed from CHAR columns upon retrieval.
The following example illustrates this difference:

mysql> CREATE TABLE vc (v VARCHAR(4), c CHAR(4));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO vc VALUES ('ab ', 'ab ');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT CONCAT('(', v, ')'), CONCAT('(', c, ')') FROM vc;
+---------------------+---------------------+
| CONCAT('(', v, ')') | CONCAT('(', c, ')') |
+---------------------+---------------------+
| (ab) | (ab) |
+---------------------+---------------------+
1 row in set (0.06 sec)

Values in CHAR and VARCHAR columns are sorted and compared according to the character set collation
assigned to the column.

All MySQL collations are of type PADSPACE. This means that all CHAR, VARCHAR, and TEXT values in
MySQL are compared without regard to any trailing spaces. “Comparison” in this context does not include
the LIKE pattern-matching operator, for which trailing spaces are significant. For example:

mysql> CREATE TABLE names (myname CHAR(10));
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO names VALUES ('Monty');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT myname = 'Monty', myname = 'Monty ' FROM names;
+------------------+--------------------+
| myname = 'Monty' | myname = 'Monty ' |
+------------------+--------------------+
| 1 | 1 |
+------------------+--------------------+
1 row in set (0.00 sec)

mysql> SELECT myname LIKE 'Monty', myname LIKE 'Monty ' FROM names;
+---------------------+-----------------------+
| myname LIKE 'Monty' | myname LIKE 'Monty ' |
+---------------------+-----------------------+
| 1 | 0 |
+---------------------+-----------------------+

The BINARY and VARBINARY Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 948

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

1 row in set (0.00 sec)

This is true for all MySQL versions, and it makes no difference whether your version trims trailing spaces
from VARCHAR values before storing them. Nor does the server SQL mode make any difference in this
regard.

Note

For more information about MySQL character sets and collations, see Section 10.1,
“Character Set Support”. For additional information about storage requirements, see
Section 11.7, “Data Type Storage Requirements”.

For those cases where trailing pad characters are stripped or comparisons ignore them, if a column has
an index that requires unique values, inserting into the column values that differ only in number of trailing
pad characters will result in a duplicate-key error. For example, if a table contains 'a', an attempt to store
'a ' causes a duplicate-key error.

11.4.2 The BINARY and VARBINARY Types

The BINARY and VARBINARY types are similar to CHAR and VARCHAR, except that they contain binary
strings rather than nonbinary strings. That is, they contain byte strings rather than character strings. This
means that they have no character set, and sorting and comparison are based on the numeric values of
the bytes in the values.

The permissible maximum length is the same for BINARY and VARBINARY as it is for CHAR and VARCHAR,
except that the length for BINARY and VARBINARY is a length in bytes rather than in characters.

The BINARY and VARBINARY data types are distinct from the CHAR BINARY and VARCHAR BINARY data
types. For the latter types, the BINARY attribute does not cause the column to be treated as a binary string
column. Instead, it causes the binary collation for the column character set to be used, and the column
itself contains nonbinary character strings rather than binary byte strings. For example, CHAR(5) BINARY
is treated as CHAR(5) CHARACTER SET latin1 COLLATE latin1_bin, assuming that the default
character set is latin1. This differs from BINARY(5), which stores 5-bytes binary strings that have no
character set or collation. For information about differences between nonbinary string binary collations and
binary strings, see Section 10.1.7.6, “The _bin and binary Collations”.

If strict SQL mode is not enabled and you assign a value to a BINARY or VARBINARY column that exceeds
the column's maximum length, the value is truncated to fit and a warning is generated. For cases of
truncation, you can cause an error to occur (rather than a warning) and suppress insertion of the value by
using strict SQL mode. See Section 5.1.7, “Server SQL Modes”.

When BINARY values are stored, they are right-padded with the pad value to the specified length. The pad
value and how it is handled is version specific:

• As of MySQL 5.0.15, the pad value is 0x00 (the zero byte). Values are right-padded with 0x00 on insert,
and no trailing bytes are removed on select. All bytes are significant in comparisons, including ORDER
BY and DISTINCT operations. 0x00 bytes and spaces are different in comparisons, with 0x00 < space.

Example: For a BINARY(3) column, 'a ' becomes 'a \0' when inserted. 'a\0' becomes 'a\0\0'
when inserted. Both inserted values remain unchanged when selected.

• Before MySQL 5.0.15, the pad value is space. Values are right-padded with space on insert, and trailing
spaces are removed on select. Trailing spaces are ignored in comparisons, including ORDER BY and
DISTINCT operations. 0x00 bytes and spaces are different in comparisons, with 0x00 < space.

Example: For a BINARY(3) column, 'a ' becomes 'a ' when inserted and 'a' when selected. 'a
\0' becomes 'a\0 ' when inserted and 'a\0' when selected.

The BLOB and TEXT Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 949

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For VARBINARY, there is no padding on insert and no bytes are stripped on select. All bytes are significant
in comparisons, including ORDER BY and DISTINCT operations. 0x00 bytes and spaces are different in
comparisons, with 0x00 < space. (Exceptions: Before MySQL 5.0.3, trailing spaces are removed when
values are stored. Before MySQL 5.0.15, trailing 0x00 bytes are removed for ORDER BY operations.)

Note: The InnoDB storage engine continues to preserve trailing spaces in BINARY and VARBINARY
column values through MySQL 5.0.18. Beginning with MySQL 5.0.19, InnoDB uses trailing space
characters in making comparisons as do other MySQL storage engines.

For those cases where trailing pad bytes are stripped or comparisons ignore them, if a column has an
index that requires unique values, inserting into the column values that differ only in number of trailing pad
bytes will result in a duplicate-key error. For example, if a table contains 'a', an attempt to store 'a\0'
causes a duplicate-key error.

You should consider the preceding padding and stripping characteristics carefully if you plan to use the
BINARY data type for storing binary data and you require that the value retrieved be exactly the same as
the value stored. The following example illustrates how 0x00-padding of BINARY values affects column
value comparisons:

mysql> CREATE TABLE t (c BINARY(3));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET c = 'a';
Query OK, 1 row affected (0.01 sec)

mysql> SELECT HEX(c), c = 'a', c = 'a\0\0' from t;
+--------+---------+-------------+
| HEX(c) | c = 'a' | c = 'a\0\0' |
+--------+---------+-------------+
| 610000 | 0 | 1 |
+--------+---------+-------------+
1 row in set (0.09 sec)

If the value retrieved must be the same as the value specified for storage with no padding, it might be
preferable to use VARBINARY or one of the BLOB data types instead.

11.4.3 The BLOB and TEXT Types

A BLOB is a binary large object that can hold a variable amount of data. The four BLOB types are
TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB. These differ only in the maximum length of the
values they can hold. The four TEXT types are TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT. These
correspond to the four BLOB types and have the same maximum lengths and storage requirements. See
Section 11.7, “Data Type Storage Requirements”.

BLOB values are treated as binary strings (byte strings). They have no character set, and sorting and
comparison are based on the numeric values of the bytes in column values. TEXT values are treated as
nonbinary strings (character strings). They have a character set, and values are sorted and compared
based on the collation of the character set.

If strict SQL mode is not enabled and you assign a value to a BLOB or TEXT column that exceeds the
column's maximum length, the value is truncated to fit and a warning is generated. For truncation of
nonspace characters, you can cause an error to occur (rather than a warning) and suppress insertion of
the value by using strict SQL mode. See Section 5.1.7, “Server SQL Modes”.

Beginning with MySQL 5.0.60, truncation of excess trailing spaces from values to be inserted into TEXT
columns always generates a warning, regardless of the SQL mode.

For TEXT and BLOB columns, there is no padding on insert and no bytes are stripped on select.

The BLOB and TEXT Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 950

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If a TEXT column is indexed, index entry comparisons are space-padded at the end. This means that, if
the index requires unique values, duplicate-key errors will occur for values that differ only in the number
of trailing spaces. For example, if a table contains 'a', an attempt to store 'a ' causes a duplicate-key
error. This is not true for BLOB columns.

In most respects, you can regard a BLOB column as a VARBINARY column that can be as large as you like.
Similarly, you can regard a TEXT column as a VARCHAR column. BLOB and TEXT differ from VARBINARY
and VARCHAR in the following ways:

• There is no trailing-space removal for BLOB and TEXT columns when values are stored or retrieved.
Before MySQL 5.0.3, this differs from VARBINARY and VARCHAR, for which trailing spaces are removed
when values are stored.

On comparisons, TEXT is space extended to fit the compared object, exactly like CHAR and VARCHAR.

• For indexes on BLOB and TEXT columns, you must specify an index prefix length. For CHAR and
VARCHAR, a prefix length is optional. See Section 8.3.4, “Column Indexes”.

• BLOB and TEXT columns cannot have DEFAULT values.

If you use the BINARY attribute with a TEXT data type, the column is assigned the binary collation of the
column character set.

LONG and LONG VARCHAR map to the MEDIUMTEXT data type. This is a compatibility feature.

MySQL Connector/ODBC defines BLOB values as LONGVARBINARY and TEXT values as LONGVARCHAR.

Because BLOB and TEXT values can be extremely long, you might encounter some constraints in using
them:

• Only the first max_sort_length bytes of the column are used when sorting. The default value of
max_sort_length is 1024. You can make more bytes significant in sorting or grouping by increasing
the value of max_sort_length at server startup or runtime. Any client can change the value of its
session max_sort_length variable:

mysql> SET max_sort_length = 2000;
mysql> SELECT id, comment FROM t
 -> ORDER BY comment;

• Instances of BLOB or TEXT columns in the result of a query that is processed using a temporary table
causes the server to use a table on disk rather than in memory because the MEMORY storage engine
does not support those data types (see Section 8.4.4, “Internal Temporary Table Use in MySQL”). Use of
disk incurs a performance penalty, so include BLOB or TEXT columns in the query result only if they are
really needed. For example, avoid using SELECT *, which selects all columns.

• The maximum size of a BLOB or TEXT object is determined by its type, but the largest value you
actually can transmit between the client and server is determined by the amount of available memory
and the size of the communications buffers. You can change the message buffer size by changing
the value of the max_allowed_packet variable, but you must do so for both the server and your
client program. For example, both mysql and mysqldump enable you to change the client-side
max_allowed_packet value. See Section 8.12.2, “Tuning Server Parameters”, Section 4.5.1, “mysql
— The MySQL Command-Line Tool”, and Section 4.5.4, “mysqldump — A Database Backup Program”.
You may also want to compare the packet sizes and the size of the data objects you are storing with the
storage requirements, see Section 11.7, “Data Type Storage Requirements”

Each BLOB or TEXT value is represented internally by a separately allocated object. This is in contrast to all
other data types, for which storage is allocated once per column when the table is opened.

The ENUM Type

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 951

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In some cases, it may be desirable to store binary data such as media files in BLOB or TEXT columns. You
may find MySQL's string handling functions useful for working with such data. See Section 12.5, “String
Functions”. For security and other reasons, it is usually preferable to do so using application code rather
than giving application users the FILE privilege. You can discuss specifics for various languages and
platforms in the MySQL Forums (http://forums.mysql.com/).

11.4.4 The ENUM Type

An ENUM is a string object with a value chosen from a list of permitted values that are enumerated explicitly
in the column specification at table creation time.

An enumeration value must be a quoted string literal; it may not be an expression, even one that evaluates
to a string value. For example, you can create a table with an ENUM column like this:

CREATE TABLE sizes (
 name ENUM('small', 'medium', 'large')
);

However, this version of the previous CREATE TABLE statement does not work:

CREATE TABLE sizes (
 c1 ENUM('small', CONCAT('med','ium'), 'large')
);

You also may not employ a user variable as an enumeration value. This pair of statements do not work:

SET @mysize = 'medium';

CREATE TABLE sizes (
 name ENUM('small', @mysize, 'large')
);

If you wish to use a number as an enumeration value, you must enclose it in quotation marks. If the
quotation marks are omitted, the number is regarded as an index. For this and other reasons—as
explained later in this section—we strongly recommend that you do not use numbers as enumeration
values.

Duplicate values in the definition cause a warning, or an error if strict SQL mode is enabled.

The value may also be the empty string ('') or NULL under certain circumstances:

• If you insert an invalid value into an ENUM (that is, a string not present in the list of permitted values), the
empty string is inserted instead as a special error value. This string can be distinguished from a “normal”
empty string by the fact that this string has the numeric value 0. More about this later.

If strict SQL mode is enabled, attempts to insert invalid ENUM values result in an error.

• If an ENUM column is declared to permit NULL, the NULL value is a legal value for the column, and the
default value is NULL. If an ENUM column is declared NOT NULL, its default value is the first element of
the list of permitted values.

Each enumeration value has an index:

• Values from the list of permissible elements in the column specification are numbered beginning with 1.

• The index value of the empty string error value is 0. This means that you can use the following SELECT
statement to find rows into which invalid ENUM values were assigned:

http://forums.mysql.com/

The ENUM Type

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 952

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT * FROM tbl_name WHERE enum_col=0;

• The index of the NULL value is NULL.

• The term “index” here refers only to position within the list of enumeration values. It has nothing to do
with table indexes.

For example, a column specified as ENUM('one', 'two', 'three') can have any of the values
shown here. The index of each value is also shown.

Value Index

NULL NULL

'' 0

'one' 1

'two' 2

'three' 3

An ENUM column can have a maximum of 65,535 distinct elements. (The practical limit is less than 3000.)
A table can have no more than 255 unique element list definitions among its ENUM and SET columns
considered as a group. For more information on these limits, see Section C.7.5, “Limits Imposed by .frm
File Structure”.

Trailing spaces are automatically deleted from ENUM member values in the table definition when a table is
created.

When retrieved, values stored into an ENUM column are displayed using the lettercase that was used in
the column definition. Note that ENUM columns can be assigned a character set and collation. For binary or
case-sensitive collations, lettercase is taken into account when assigning values to the column.

If you retrieve an ENUM value in a numeric context, the column value's index is returned. For example, you
can retrieve numeric values from an ENUM column like this:

mysql> SELECT enum_col+0 FROM tbl_name;

If you store a number into an ENUM column, the number is treated as the index into the possible values,
and the value stored is the enumeration member with that index. (However, this does not work with LOAD
DATA, which treats all input as strings.) If the numeric value is quoted, it is still interpreted as an index
if there is no matching string in the list of enumeration values. For these reasons, it is not advisable to
define an ENUM column with enumeration values that look like numbers, because this can easily become
confusing. For example, the following column has enumeration members with string values of '0', '1',
and '2', but numeric index values of 1, 2, and 3:

numbers ENUM('0','1','2')

If you store 2, it is interpreted as an index value, and becomes '1' (the value with index 2). If you store
'2', it matches an enumeration value, so it is stored as '2'. If you store '3', it does not match any
enumeration value, so it is treated as an index and becomes '2' (the value with index 3).

mysql> INSERT INTO t (numbers) VALUES(2),('2'),('3');
mysql> SELECT * FROM t;
+---------+

The SET Type

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 953

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| numbers |
+---------+
| 1 |
| 2 |
| 2 |
+---------+

ENUM values are sorted according to the order in which the enumeration members were listed in the
column specification. (In other words, ENUM values are sorted according to their index numbers.) For
example, 'a' sorts before 'b' for ENUM('a', 'b'), but 'b' sorts before 'a' for ENUM('b', 'a').
The empty string sorts before nonempty strings, and NULL values sort before all other enumeration values.
To prevent unexpected results, specify the ENUM list in alphabetic order. You can also use ORDER BY
CAST(col AS CHAR) or ORDER BY CONCAT(col) to make sure that the column is sorted lexically
rather than by index number.

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For ENUM values, the cast operation causes the index number to be used.

To determine all possible values for an ENUM column, use SHOW COLUMNS FROM tbl_name LIKE
'enum_col' and parse the ENUM definition in the Type column of the output.

In the C API, ENUM values are returned as strings. For information about using result set metadata to
distinguish them from other strings, see Section 20.6.5, “C API Data Structures”.

11.4.5 The SET Type

A SET is a string object that can have zero or more values, each of which must be chosen from a list
of permitted values specified when the table is created. SET column values that consist of multiple set
members are specified with members separated by commas (“,”). A consequence of this is that SET
member values should not themselves contain commas.

For example, a column specified as SET('one', 'two') NOT NULL can have any of these values:

''
'one'
'two'
'one,two'

A SET column can have a maximum of 64 distinct members. A table can have no more than 255 unique
element list definitions among its ENUM and SET columns considered as a group. For more information on
this limit, see Section C.7.5, “Limits Imposed by .frm File Structure”.

Duplicate values in the definition cause a warning, or an error if strict SQL mode is enabled.

Trailing spaces are automatically deleted from SET member values in the table definition when a table is
created.

When retrieved, values stored in a SET column are displayed using the lettercase that was used in the
column definition. Note that SET columns can be assigned a character set and collation. For binary or
case-sensitive collations, lettercase is taken into account when assigning values to the column.

MySQL stores SET values numerically, with the low-order bit of the stored value corresponding to
the first set member. If you retrieve a SET value in a numeric context, the value retrieved has bits set
corresponding to the set members that make up the column value. For example, you can retrieve numeric
values from a SET column like this:

mysql> SELECT set_col+0 FROM tbl_name;

The SET Type

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 954

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If a number is stored into a SET column, the bits that are set in the binary representation of the number
determine the set members in the column value. For a column specified as SET('a','b','c','d'), the
members have the following decimal and binary values.

SET Member Decimal Value Binary Value

'a' 1 0001

'b' 2 0010

'c' 4 0100

'd' 8 1000

If you assign a value of 9 to this column, that is 1001 in binary, so the first and fourth SET value members
'a' and 'd' are selected and the resulting value is 'a,d'.

For a value containing more than one SET element, it does not matter what order the elements are listed
in when you insert the value. It also does not matter how many times a given element is listed in the value.
When the value is retrieved later, each element in the value appears once, with elements listed according
to the order in which they were specified at table creation time. For example, suppose that a column is
specified as SET('a','b','c','d'):

mysql> CREATE TABLE myset (col SET('a', 'b', 'c', 'd'));

If you insert the values 'a,d', 'd,a', 'a,d,d', 'a,d,a', and 'd,a,d':

mysql> INSERT INTO myset (col) VALUES
-> ('a,d'), ('d,a'), ('a,d,a'), ('a,d,d'), ('d,a,d');
Query OK, 5 rows affected (0.01 sec)
Records: 5 Duplicates: 0 Warnings: 0

Then all these values appear as 'a,d' when retrieved:

mysql> SELECT col FROM myset;
+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
5 rows in set (0.04 sec)

If you set a SET column to an unsupported value, the value is ignored and a warning is issued:

mysql> INSERT INTO myset (col) VALUES ('a,d,d,s');
Query OK, 1 row affected, 1 warning (0.03 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1265 | Data truncated for column 'col' at row 1 |
+---------+------+--+
1 row in set (0.04 sec)

mysql> SELECT col FROM myset;

Extensions for Spatial Data

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 955

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
6 rows in set (0.01 sec)

If strict SQL mode is enabled, attempts to insert invalid SET values result in an error.

SET values are sorted numerically. NULL values sort before non-NULL SET values.

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For SET values, the cast operation causes the numeric value to be used.

Normally, you search for SET values using the FIND_IN_SET() function or the LIKE operator:

mysql> SELECT * FROM tbl_name WHERE FIND_IN_SET('value',set_col)>0;
mysql> SELECT * FROM tbl_name WHERE set_col LIKE '%value%';

The first statement finds rows where set_col contains the value set member. The second is similar, but
not the same: It finds rows where set_col contains value anywhere, even as a substring of another set
member.

The following statements also are legal:

mysql> SELECT * FROM tbl_name WHERE set_col & 1;
mysql> SELECT * FROM tbl_name WHERE set_col = 'val1,val2';

The first of these statements looks for values containing the first set member. The second looks for an
exact match. Be careful with comparisons of the second type. Comparing set values to 'val1,val2'
returns different results than comparing values to 'val2,val1'. You should specify the values in the
same order they are listed in the column definition.

To determine all possible values for a SET column, use SHOW COLUMNS FROM tbl_name LIKE
set_col and parse the SET definition in the Type column of the output.

In the C API, SET values are returned as strings. For information about using result set metadata to
distinguish them from other strings, see Section 20.6.5, “C API Data Structures”.

11.5 Extensions for Spatial Data

The Open Geospatial Consortium (OGC) is an international consortium of more than 250 companies,
agencies, and universities participating in the development of publicly available conceptual solutions that
can be useful with all kinds of applications that manage spatial data.

The Open Geospatial Consortium publishes the OpenGIS® Implementation Standard for Geographic
information - Simple feature access - Part 2: SQL option, a document that proposes several conceptual
ways for extending an SQL RDBMS to support spatial data. This specification is available from the OGC
Web site at http://www.opengeospatial.org/standards/sfs.

Following the OGC specification, MySQL implements spatial extensions as a subset of the SQL with
Geometry Types environment. This term refers to an SQL environment that has been extended with a set

http://www.opengeospatial.org/standards/sfs

MySQL GIS Conformance and Compatibility

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 956

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

of geometry types. A geometry-valued SQL column is implemented as a column that has a geometry type.
The specification describes a set of SQL geometry types, as well as functions on those types to create and
analyze geometry values.

MySQL spatial extensions enable the generation, storage, and analysis of geographic features:

• Data types for representing spatial values

• Functions for manipulating spatial values

• Spatial indexing for improved access times to spatial columns

Before MySQL 5.0.16, these features are available for MyISAM tables only. As of MySQL 5.0.16, InnoDB,
NDB, BDB, and ARCHIVE also support spatial features.

For spatial columns, MyISAM supports both SPATIAL and non-SPATIAL indexes. The other storage
engines support non-SPATIAL indexes, as described in Section 13.1.8, “CREATE INDEX Syntax”.

A geographic feature is anything in the world that has a location. A feature can be:

• An entity. For example, a mountain, a pond, a city.

• A space. For example, town district, the tropics.

• A definable location. For example, a crossroad, as a particular place where two streets intersect.

Some documents use the term geospatial feature to refer to geographic features.

Geometry is another word that denotes a geographic feature. Originally the word geometry meant
measurement of the earth. Another meaning comes from cartography, referring to the geometric features
that cartographers use to map the world.

The discussion here considers these terms synonymous: geographic feature, geospatial feature,
feature, or geometry. The term most commonly used is geometry, defined as a point or an aggregate of
points representing anything in the world that has a location.

The following material covers these topics:

• The spatial data types implemented in MySQL model

• The basis of the spatial extensions in the OpenGIS geometry model

• Data formats for representing spatial data

• How to use spatial data in MySQL

• Use of indexing for spatial data

• MySQL differences from the OpenGIS specification

For information about functions that operate on spatial data, see Section 12.14, “Spatial Analysis
Functions”.

MySQL GIS Conformance and Compatibility

MySQL does not implement the following GIS features:

Additional Resources

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 957

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Additional Metadata Views

OpenGIS specifications propose several additional metadata views. For example, a system view named
GEOMETRY_COLUMNS contains a description of geometry columns, one row for each geometry column in
the database.

• The OpenGIS function Length() on LineString and MultiLineString should be called in MySQL
as GLength()

The problem is that there is an existing SQL function Length() that calculates the length of string
values, and sometimes it is not possible to distinguish whether the function is called in a textual or spatial
context.

Additional Resources

• The Open Geospatial Consortium publishes the OpenGIS® Implementation Standard for Geographic
information - Simple feature access - Part 2: SQL option, a document that proposes several conceptual
ways for extending an SQL RDBMS to support spatial data. The Open Geospatial Consortium (OGC)
maintains a Web site at http://www.opengeospatial.org/. The specification is available there at http://
www.opengeospatial.org/standards/sfs. It contains additional information relevant to the material here.

• If you have questions or concerns about the use of the spatial extensions to MySQL, you can discuss
them in the GIS forum: http://forums.mysql.com/list.php?23.

11.5.1 Spatial Data Types

MySQL has data types that correspond to OpenGIS classes. Some of these types hold single geometry
values:

• GEOMETRY

• POINT

• LINESTRING

• POLYGON

GEOMETRY can store geometry values of any type. The other single-value types (POINT, LINESTRING,
and POLYGON) restrict their values to a particular geometry type.

The other data types hold collections of values:

• MULTIPOINT

• MULTILINESTRING

• MULTIPOLYGON

• GEOMETRYCOLLECTION

GEOMETRYCOLLECTION can store a collection of objects of any type. The other collection types
(MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, and GEOMETRYCOLLECTION) restrict collection
members to those having a particular geometry type.

MySQL spatial data types have their basis in the OpenGIS geometry model, described in Section 11.5.2,
“The OpenGIS Geometry Model”. For examples showing how to use spatial data types in MySQL, see
Section 11.5.3, “Using Spatial Data”.

http://www.opengeospatial.org/
http://www.opengeospatial.org/standards/sfs
http://www.opengeospatial.org/standards/sfs
http://forums.mysql.com/list.php?23

The OpenGIS Geometry Model

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 958

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

11.5.2 The OpenGIS Geometry Model

The set of geometry types proposed by OGC's SQL with Geometry Types environment is based on the
OpenGIS Geometry Model. In this model, each geometric object has the following general properties:

• It is associated with a Spatial Reference System, which describes the coordinate space in which the
object is defined.

• It belongs to some geometry class.

11.5.2.1 The Geometry Class Hierarchy

The geometry classes define a hierarchy as follows:

• Geometry (noninstantiable)

• Point (instantiable)

• Curve (noninstantiable)

• LineString (instantiable)

• Line

• LinearRing

• Surface (noninstantiable)

• Polygon (instantiable)

• GeometryCollection (instantiable)

• MultiPoint (instantiable)

• MultiCurve (noninstantiable)

• MultiLineString (instantiable)

• MultiSurface (noninstantiable)

• MultiPolygon (instantiable)

It is not possible to create objects in noninstantiable classes. It is possible to create objects in instantiable
classes. All classes have properties, and instantiable classes may also have assertions (rules that define
valid class instances).

Geometry is the base class. It is an abstract class. The instantiable subclasses of Geometry are
restricted to zero-, one-, and two-dimensional geometric objects that exist in two-dimensional coordinate
space. All instantiable geometry classes are defined so that valid instances of a geometry class are
topologically closed (that is, all defined geometries include their boundary).

The base Geometry class has subclasses for Point, Curve, Surface, and GeometryCollection:

• Point represents zero-dimensional objects.

• Curve represents one-dimensional objects, and has subclass LineString, with sub-subclasses Line
and LinearRing.

The OpenGIS Geometry Model

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 959

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Surface is designed for two-dimensional objects and has subclass Polygon.

• GeometryCollection has specialized zero-, one-, and two-dimensional collection classes named
MultiPoint, MultiLineString, and MultiPolygon for modeling geometries corresponding to
collections of Points, LineStrings, and Polygons, respectively. MultiCurve and MultiSurface
are introduced as abstract superclasses that generalize the collection interfaces to handle Curves and
Surfaces.

Geometry, Curve, Surface, MultiCurve, and MultiSurface are defined as noninstantiable classes.
They define a common set of methods for their subclasses and are included for extensibility.

Point, LineString, Polygon, GeometryCollection, MultiPoint, MultiLineString, and
MultiPolygon are instantiable classes.

11.5.2.2 Geometry Class

Geometry is the root class of the hierarchy. It is a noninstantiable class but has a number of properties,
described in the following list, that are common to all geometry values created from any of the Geometry
subclasses. Particular subclasses have their own specific properties, described later.

Geometry Properties

A geometry value has the following properties:

• Its type. Each geometry belongs to one of the instantiable classes in the hierarchy.

• Its SRID, or Spatial Reference Identifier. This value identifies the geometry's associated Spatial
Reference System that describes the coordinate space in which the geometry object is defined.

In MySQL, the SRID value is an integer associated with the geometry value. All calculations are done
assuming Euclidean (planar) geometry. The maximum usable SRID value is 232−1. If a larger value is
given, only the lower 32 bits are used.

• Its coordinates in its Spatial Reference System, represented as double-precision (8-byte) numbers.
All nonempty geometries include at least one pair of (X,Y) coordinates. Empty geometries contain no
coordinates.

Coordinates are related to the SRID. For example, in different coordinate systems, the distance between
two objects may differ even when objects have the same coordinates, because the distance on the
planar coordinate system and the distance on the geodetic system (coordinates on the Earth's surface)
are different things.

• Its interior, boundary, and exterior.

Every geometry occupies some position in space. The exterior of a geometry is all space not occupied
by the geometry. The interior is the space occupied by the geometry. The boundary is the interface
between the geometry's interior and exterior.

• Its MBR (minimum bounding rectangle), or envelope. This is the bounding geometry, formed by the
minimum and maximum (X,Y) coordinates:

((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

• Whether the value is simple or nonsimple. Geometry values of types (LineString, MultiPoint,
MultiLineString) are either simple or nonsimple. Each type determines its own assertions for being
simple or nonsimple.

The OpenGIS Geometry Model

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 960

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Whether the value is closed or not closed. Geometry values of types (LineString, MultiString)
are either closed or not closed. Each type determines its own assertions for being closed or not closed.

• Whether the value is empty or nonempty A geometry is empty if it does not have any points. Exterior,
interior, and boundary of an empty geometry are not defined (that is, they are represented by a NULL
value). An empty geometry is defined to be always simple and has an area of 0.

• Its dimension. A geometry can have a dimension of −1, 0, 1, or 2:

• −1 for an empty geometry.

• 0 for a geometry with no length and no area.

• 1 for a geometry with nonzero length and zero area.

• 2 for a geometry with nonzero area.

Point objects have a dimension of zero. LineString objects have a dimension of 1. Polygon objects
have a dimension of 2. The dimensions of MultiPoint, MultiLineString, and MultiPolygon
objects are the same as the dimensions of the elements they consist of.

11.5.2.3 Point Class

A Point is a geometry that represents a single location in coordinate space.

Point Examples

• Imagine a large-scale map of the world with many cities. A Point object could represent each city.

• On a city map, a Point object could represent a bus stop.

Point Properties

• X-coordinate value.

• Y-coordinate value.

• Point is defined as a zero-dimensional geometry.

• The boundary of a Point is the empty set.

11.5.2.4 Curve Class

A Curve is a one-dimensional geometry, usually represented by a sequence of points. Particular
subclasses of Curve define the type of interpolation between points. Curve is a noninstantiable class.

Curve Properties

• A Curve has the coordinates of its points.

• A Curve is defined as a one-dimensional geometry.

• A Curve is simple if it does not pass through the same point twice.

• A Curve is closed if its start point is equal to its endpoint.

• The boundary of a closed Curve is empty.

• The boundary of a nonclosed Curve consists of its two endpoints.

The OpenGIS Geometry Model

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 961

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• A Curve that is simple and closed is a LinearRing.

11.5.2.5 LineString Class

A LineString is a Curve with linear interpolation between points.

LineString Examples

• On a world map, LineString objects could represent rivers.

• In a city map, LineString objects could represent streets.

LineString Properties

• A LineString has coordinates of segments, defined by each consecutive pair of points.

• A LineString is a Line if it consists of exactly two points.

• A LineString is a LinearRing if it is both closed and simple.

11.5.2.6 Surface Class

A Surface is a two-dimensional geometry. It is a noninstantiable class. Its only instantiable subclass is
Polygon.

Surface Properties

• A Surface is defined as a two-dimensional geometry.

• The OpenGIS specification defines a simple Surface as a geometry that consists of a single “patch”
that is associated with a single exterior boundary and zero or more interior boundaries.

• The boundary of a simple Surface is the set of closed curves corresponding to its exterior and interior
boundaries.

11.5.2.7 Polygon Class

A Polygon is a planar Surface representing a multisided geometry. It is defined by a single exterior
boundary and zero or more interior boundaries, where each interior boundary defines a hole in the
Polygon.

Polygon Examples

• On a region map, Polygon objects could represent forests, districts, and so on.

Polygon Assertions

• The boundary of a Polygon consists of a set of LinearRing objects (that is, LineString objects that
are both simple and closed) that make up its exterior and interior boundaries.

• A Polygon has no rings that cross. The rings in the boundary of a Polygon may intersect at a Point,
but only as a tangent.

• A Polygon has no lines, spikes, or punctures.

• A Polygon has an interior that is a connected point set.

• A Polygon may have holes. The exterior of a Polygon with holes is not connected. Each hole defines a
connected component of the exterior.

The OpenGIS Geometry Model

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 962

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The preceding assertions make a Polygon a simple geometry.

11.5.2.8 GeometryCollection Class

A GeometryCollection is a geometry that is a collection of one or more geometries of any class.

All the elements in a GeometryCollection must be in the same Spatial Reference System
(that is, in the same coordinate system). There are no other constraints on the elements of a
GeometryCollection, although the subclasses of GeometryCollection described in the following
sections may restrict membership. Restrictions may be based on:

• Element type (for example, a MultiPoint may contain only Point elements)

• Dimension

• Constraints on the degree of spatial overlap between elements

11.5.2.9 MultiPoint Class

A MultiPoint is a geometry collection composed of Point elements. The points are not connected or
ordered in any way.

MultiPoint Examples

• On a world map, a MultiPoint could represent a chain of small islands.

• On a city map, a MultiPoint could represent the outlets for a ticket office.

MultiPoint Properties

• A MultiPoint is a zero-dimensional geometry.

• A MultiPoint is simple if no two of its Point values are equal (have identical coordinate values).

• The boundary of a MultiPoint is the empty set.

11.5.2.10 MultiCurve Class

A MultiCurve is a geometry collection composed of Curve elements. MultiCurve is a noninstantiable
class.

MultiCurve Properties

• A MultiCurve is a one-dimensional geometry.

• A MultiCurve is simple if and only if all of its elements are simple; the only intersections between any
two elements occur at points that are on the boundaries of both elements.

• A MultiCurve boundary is obtained by applying the “mod 2 union rule” (also known as the “odd-
even rule”): A point is in the boundary of a MultiCurve if it is in the boundaries of an odd number of
MultiCurve elements.

• A MultiCurve is closed if all of its elements are closed.

• The boundary of a closed MultiCurve is always empty.

11.5.2.11 MultiLineString Class

A MultiLineString is a MultiCurve geometry collection composed of LineString elements.

Using Spatial Data

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 963

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MultiLineString Examples

• On a region map, a MultiLineString could represent a river system or a highway system.

11.5.2.12 MultiSurface Class

A MultiSurface is a geometry collection composed of surface elements. MultiSurface is a
noninstantiable class. Its only instantiable subclass is MultiPolygon.

MultiSurface Assertions

• Two MultiSurface surfaces have no interiors that intersect.

• Two MultiSurface elements have boundaries that intersect at most at a finite number of points.

11.5.2.13 MultiPolygon Class

A MultiPolygon is a MultiSurface object composed of Polygon elements.

MultiPolygon Examples

• On a region map, a MultiPolygon could represent a system of lakes.

MultiPolygon Assertions

• A MultiPolygon has no two Polygon elements with interiors that intersect.

• A MultiPolygon has no two Polygon elements that cross (crossing is also forbidden by the previous
assertion), or that touch at an infinite number of points.

• A MultiPolygon may not have cut lines, spikes, or punctures. A MultiPolygon is a regular, closed
point set.

• A MultiPolygon that has more than one Polygon has an interior that is not connected. The number of
connected components of the interior of a MultiPolygon is equal to the number of Polygon values in
the MultiPolygon.

MultiPolygon Properties

• A MultiPolygon is a two-dimensional geometry.

• A MultiPolygon boundary is a set of closed curves (LineString values) corresponding to the
boundaries of its Polygon elements.

• Each Curve in the boundary of the MultiPolygon is in the boundary of exactly one Polygon element.

• Every Curve in the boundary of an Polygon element is in the boundary of the MultiPolygon.

11.5.3 Using Spatial Data

This section describes how to create tables that include spatial data type columns, and how to manipulate
spatial information.

11.5.3.1 Supported Spatial Data Formats

Two standard spatial data formats are used to represent geometry objects in queries:

• Well-Known Text (WKT) format

Using Spatial Data

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 964

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Well-Known Binary (WKB) format

Internally, MySQL stores geometry values in a format that is not identical to either WKT or WKB format.

There are functions available to convert between different data formats; see Section 12.14.6, “Geometry
Format Conversion Functions”.

Well-Known Text (WKT) Format

The Well-Known Text (WKT) representation of geometry values is designed for exchanging geometry
data in ASCII form. The OpenGIS specification provides a Backus-Naur grammar that specifies the formal
production rules for writing WKT values (see Section 11.5, “Extensions for Spatial Data”).

Examples of WKT representations of geometry objects:

• A Point:

POINT(15 20)

The point coordinates are specified with no separating comma. This differs from the syntax for the SQL
Point() function, which requires a comma between the coordinates. Take care to use the syntax
appropriate to the context of a given spatial operation. For example, the following statements both
extract the X-coordinate from a Point object. The first produces the object directly using the Point()
function. The second uses a WKT representation converted to a Point with GeomFromText().

mysql> SELECT X(Point(15, 20));
+------------------+
| X(POINT(15, 20)) |
+------------------+
| 15 |
+------------------+

mysql> SELECT X(GeomFromText('POINT(15 20)'));
+---------------------------------+
| X(GeomFromText('POINT(15 20)')) |
+---------------------------------+
| 15 |
+---------------------------------+

• A LineString with four points:

LINESTRING(0 0, 10 10, 20 25, 50 60)

The point coordinate pairs are separated by commas.

• A Polygon with one exterior ring and one interior ring:

POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))

• A MultiPoint with three Point values:

MULTIPOINT(0 0, 20 20, 60 60)

• A MultiLineString with two LineString values:

MULTILINESTRING((10 10, 20 20), (15 15, 30 15))

Using Spatial Data

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 965

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• A MultiPolygon with two Polygon values:

MULTIPOLYGON(((0 0,10 0,10 10,0 10,0 0)),((5 5,7 5,7 7,5 7, 5 5)))

• A GeometryCollection consisting of two Point values and one LineString:

GEOMETRYCOLLECTION(POINT(10 10), POINT(30 30), LINESTRING(15 15, 20 20))

Well-Known Binary (WKB) Format

The Well-Known Binary (WKB) representation of geometric values is used for exchanging geometry data
as binary streams represented by BLOB values containing geometric WKB information. This format is
defined by the OpenGIS specification (see Section 11.5, “Extensions for Spatial Data”). It is also defined in
the ISO SQL/MM Part 3: Spatial standard.

WKB uses 1-byte unsigned integers, 4-byte unsigned integers, and 8-byte double-precision numbers (IEEE
754 format). A byte is eight bits.

For example, a WKB value that corresponds to POINT(1 1) consists of this sequence of 21 bytes, each
represented by two hex digits:

0101000000000000000000F03F000000000000F03F

The sequence consists of these components:

Byte order: 01
WKB type: 01000000
X coordinate: 000000000000F03F
Y coordinate: 000000000000F03F

Component representation is as follows:

• The byte order is either 1 or 0 to indicate little-endian or big-endian storage. The little-endian and
big-endian byte orders are also known as Network Data Representation (NDR) and External Data
Representation (XDR), respectively.

• The WKB type is a code that indicates the geometry type. Values from 1 through 7 indicate
Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and
GeometryCollection.

• A Point value has X and Y coordinates, each represented as a double-precision value.

WKB values for more complex geometry values have more complex data structures, as detailed in the
OpenGIS specification.

11.5.3.2 Creating Spatial Columns

MySQL provides a standard way of creating spatial columns for geometry types, for example, with CREATE
TABLE or ALTER TABLE. Spatial columns are supported for MyISAM, InnoDB, NDB, BDB, and ARCHIVE
tables. (Support for storage engines other than MyISAM was added in MySQL 5.0.16.) See also the notes
about spatial indexes under Section 11.5.3.6, “Creating Spatial Indexes”.

• Use the CREATE TABLE statement to create a table with a spatial column:

Using Spatial Data

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 966

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CREATE TABLE geom (g GEOMETRY);

• Use the ALTER TABLE statement to add or drop a spatial column to or from an existing table:

ALTER TABLE geom ADD pt POINT;
ALTER TABLE geom DROP pt;

11.5.3.3 Populating Spatial Columns

After you have created spatial columns, you can populate them with spatial data.

Values should be stored in internal geometry format, but you can convert them to that format from either
Well-Known Text (WKT) or Well-Known Binary (WKB) format. The following examples demonstrate how to
insert geometry values into a table by converting WKT values to internal geometry format:

• Perform the conversion directly in the INSERT statement:

INSERT INTO geom VALUES (GeomFromText('POINT(1 1)'));

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (GeomFromText(@g));

• Perform the conversion prior to the INSERT:

SET @g = GeomFromText('POINT(1 1)');
INSERT INTO geom VALUES (@g);

The following examples insert more complex geometries into the table:

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (GeomFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (GeomFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomFromText(@g));

The preceding examples use GeomFromText() to create geometry values. You can also use type-specific
functions:

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (PointFromText(@g));

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (LineStringFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (PolygonFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomCollFromText(@g));

A client application program that wants to use WKB representations of geometry values is responsible for
sending correctly formed WKB in queries to the server. There are several ways to satisfy this requirement.
For example:

Using Spatial Data

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 967

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Inserting a POINT(1 1) value with hex literal syntax:

mysql> INSERT INTO geom VALUES
 -> (GeomFromWKB(0x0101000000000000000000F03F000000000000F03F));

• An ODBC application can send a WKB representation, binding it to a placeholder using an argument of
BLOB type:

INSERT INTO geom VALUES (GeomFromWKB(?))

Other programming interfaces may support a similar placeholder mechanism.

• In a C program, you can escape a binary value using mysql_real_escape_string() and include the
result in a query string that is sent to the server. See Section 20.6.7.53, “mysql_real_escape_string()”.

11.5.3.4 Fetching Spatial Data

Geometry values stored in a table can be fetched in internal format. You can also convert them to WKT or
WKB format.

• Fetching spatial data in internal format:

Fetching geometry values using internal format can be useful in table-to-table transfers:

CREATE TABLE geom2 (g GEOMETRY) SELECT g FROM geom;

• Fetching spatial data in WKT format:

The AsText() function converts a geometry from internal format to a WKT string.

SELECT AsText(g) FROM geom;

• Fetching spatial data in WKB format:

The AsBinary() function converts a geometry from internal format to a BLOB containing the WKB
value.

SELECT AsBinary(g) FROM geom;

11.5.3.5 Optimizing Spatial Analysis

For MyISAM tables, search operations in columns containing spatial data can be optimized using SPATIAL
indexes. The most typical operations are:

• Point queries that search for all objects that contain a given point

• Region queries that search for all objects that overlap a given region

MySQL uses R-Trees with quadratic splitting for SPATIAL indexes on spatial columns. A SPATIAL
index is built using the minimum bounding rectangle (MBR) of a geometry. For most geometries, the MBR
is a minimum rectangle that surrounds the geometries. For a horizontal or a vertical linestring, the MBR is a
rectangle degenerated into the linestring. For a point, the MBR is a rectangle degenerated into the point.

It is also possible to create normal indexes on spatial columns. In a non-SPATIAL index, you must declare
a prefix for any spatial column except for POINT columns.

Using Spatial Data

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 968

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MyISAM supports both SPATIAL and non-SPATIAL indexes. Other storage engines support non-SPATIAL
indexes, as described in Section 13.1.8, “CREATE INDEX Syntax”.

11.5.3.6 Creating Spatial Indexes

For MyISAM tables, MySQL can create spatial indexes using syntax similar to that for creating regular
indexes, but using the SPATIAL keyword. Columns in spatial indexes must be declared NOT NULL. The
following examples demonstrate how to create spatial indexes:

• With CREATE TABLE:

CREATE TABLE geom (g GEOMETRY NOT NULL, SPATIAL INDEX(g)) ENGINE=MyISAM;

• With ALTER TABLE:

ALTER TABLE geom ADD SPATIAL INDEX(g);

• With CREATE INDEX:

CREATE SPATIAL INDEX sp_index ON geom (g);

SPATIAL INDEX creates an R-tree index. For storage engines that support nonspatial indexing of spatial
columns, the engine creates a B-tree index. A B-tree index on spatial values is useful for exact-value
lookups, but not for range scans.

For more information on indexing spatial columns, see Section 13.1.8, “CREATE INDEX Syntax”.

To drop spatial indexes, use ALTER TABLE or DROP INDEX:

• With ALTER TABLE:

ALTER TABLE geom DROP INDEX g;

• With DROP INDEX:

DROP INDEX sp_index ON geom;

Example: Suppose that a table geom contains more than 32,000 geometries, which are stored in the
column g of type GEOMETRY. The table also has an AUTO_INCREMENT column fid for storing object ID
values.

mysql> DESCRIBE geom;
+-------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------+------+-----+---------+----------------+
| fid | int(11) | | PRI | NULL | auto_increment |
| g | geometry | | | | |
+-------+----------+------+-----+---------+----------------+
2 rows in set (0.00 sec)

mysql> SELECT COUNT(*) FROM geom;
+----------+
| count(*) |
+----------+
| 32376 |
+----------+

Using Spatial Data

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 969

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

1 row in set (0.00 sec)

To add a spatial index on the column g, use this statement:

mysql> ALTER TABLE geom ADD SPATIAL INDEX(g) ENGINE=MyISAM;
Query OK, 32376 rows affected (4.05 sec)
Records: 32376 Duplicates: 0 Warnings: 0

11.5.3.7 Using Spatial Indexes

The optimizer investigates whether available spatial indexes can be involved in the search for queries that
use a function such as MBRContains() or MBRWithin() in the WHERE clause. The following query finds
all objects that are in the given rectangle:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> SELECT fid,AsText(g) FROM geom WHERE
 -> MBRContains(GeomFromText(@poly),g);
+-----+---+
| fid | AsText(g) |
+-----+---+
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ...
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ...
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ...
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ...
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ...
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ...
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ...
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ...
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ...
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ...
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ...
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ...
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ...
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ...
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ...
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ...
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ...
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ...
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ...
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ...
+-----+---+
20 rows in set (0.00 sec)

Use EXPLAIN to check the way this query is executed:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> EXPLAIN SELECT fid,AsText(g) FROM geom WHERE
 -> MBRContains(GeomFromText(@poly),g)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: geom

Using Spatial Data

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 970

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 type: range
possible_keys: g
 key: g
 key_len: 32
 ref: NULL
 rows: 50
 Extra: Using where
1 row in set (0.00 sec)

Check what would happen without a spatial index:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> EXPLAIN SELECT fid,AsText(g) FROM g IGNORE INDEX (g) WHERE
 -> MBRContains(GeomFromText(@poly),g)\G
*************************** 1. row ***************************
 id: 1
 select_type: SIMPLE
 table: geom
 type: ALL
possible_keys: NULL
 key: NULL
 key_len: NULL
 ref: NULL
 rows: 32376
 Extra: Using where
1 row in set (0.00 sec)

Executing the SELECT statement without the spatial index yields the same result but causes the execution
time to rise from 0.00 seconds to 0.46 seconds:

mysql> SET @poly =
 -> 'Polygon((30000 15000,
 31000 15000,
 31000 16000,
 30000 16000,
 30000 15000))';
mysql> SELECT fid,AsText(g) FROM geom IGNORE INDEX (g) WHERE
 -> MBRContains(GeomFromText(@poly),g);
+-----+---+
| fid | AsText(g) |
+-----+---+
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ...
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ...
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ...
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ...
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ...
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ...
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ...
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ...
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ...
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ...
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ...
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ...
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ...
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ...
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ...
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ...
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ...
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ...
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ...

Data Type Default Values

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 971

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| 249 | LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ... |
+-----+---+
20 rows in set (0.46 sec)

11.6 Data Type Default Values
The DEFAULT value clause in a data type specification indicates a default value for a column. With one
exception, the default value must be a constant; it cannot be a function or an expression. This means, for
example, that you cannot set the default for a date column to be the value of a function such as NOW()
or CURRENT_DATE. The exception is that you can specify CURRENT_TIMESTAMP as the default for a
TIMESTAMP column. See Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP”.

Prior to MySQL 5.0.2, if a column definition includes no explicit DEFAULT value, MySQL determines the
default value as follows:

If the column can take NULL as a value, the column is defined with an explicit DEFAULT NULL clause.

If the column cannot take NULL as the value, MySQL defines the column with an explicit DEFAULT clause,
using the implicit default value for the column data type. Implicit defaults are defined as follows:

• For numeric types, the default is 0, with the exception that for integer or floating-point types declared with
the AUTO_INCREMENT attribute, the default is the next value in the sequence.

• For date and time types other than TIMESTAMP, the default is the appropriate “zero” value for the
type. For the first TIMESTAMP column in a table, the default value is the current date and time. See
Section 11.3, “Date and Time Types”.

• For string types other than ENUM, the default value is the empty string. For ENUM, the default is the first
enumeration value.

BLOB and TEXT columns cannot be assigned a default value.

As of MySQL 5.0.2, if a column definition includes no explicit DEFAULT value, MySQL determines the
default value as follows:

If the column can take NULL as a value, the column is defined with an explicit DEFAULT NULL clause. This
is the same as before 5.0.2.

If the column cannot take NULL as the value, MySQL defines the column with no explicit DEFAULT clause.
Exception: If the column is defined as part of a PRIMARY KEY but not explicitly as NOT NULL, MySQL
creates it as a NOT NULL column (because PRIMARY KEY columns must be NOT NULL), but also assigns
it a DEFAULT clause using the implicit default value. To prevent this, include an explicit NOT NULL in the
definition of any PRIMARY KEY column.

For data entry into a NOT NULL column that has no explicit DEFAULT clause, if an INSERT or REPLACE
statement includes no value for the column, or an UPDATE statement sets the column to NULL, MySQL
handles the column according to the SQL mode in effect at the time:

• If strict SQL mode is enabled, an error occurs for transactional tables and the statement is rolled back.
For nontransactional tables, an error occurs, but if this happens for the second or subsequent row of a
multiple-row statement, the preceding rows will have been inserted.

• If strict mode is not enabled, MySQL sets the column to the implicit default value for the column data
type.

Suppose that a table t is defined as follows:

Data Type Storage Requirements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 972

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CREATE TABLE t (i INT NOT NULL);

In this case, i has no explicit default, so in strict mode each of the following statements produce an error
and no row is inserted. When not using strict mode, only the third statement produces an error; the implicit
default is inserted for the first two statements, but the third fails because DEFAULT(i) cannot produce a
value:

INSERT INTO t VALUES();
INSERT INTO t VALUES(DEFAULT);
INSERT INTO t VALUES(DEFAULT(i));

See Section 5.1.7, “Server SQL Modes”.

For a given table, you can use the SHOW CREATE TABLE statement to see which columns have an explicit
DEFAULT clause.

SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL
AUTO_INCREMENT UNIQUE.

11.7 Data Type Storage Requirements

The storage requirements for data vary, according to the storage engine being used for the table in
question. Different storage engines use different methods for recording the raw data and different data
types. In addition, some engines may compress the information in a given row, either on a column or entire
row basis, making calculation of the storage requirements for a given table or column structure.

However, all storage engines must communicate and exchange information on a given row within a table
using the same structure, and this information is consistent, irrespective of the storage engine used to write
the information to disk.

This sections includes some guideliness and information for the storage requirements for each data type
supported by MySQL, including details for the internal format and the sizes used by storage engines that
used a fixed size representation for different types. Information is listed by category or storage engine.

The internal representation of a table has a maximum row size of 65,535 bytes, even if the storage engine
is capable of supporting larger rows. This figure excludes BLOB or TEXT columns, which contribute only
9 to 12 bytes toward this size. For BLOB and TEXT data, the information is stored internally in a different
area of memory than the row buffer. Different storage engines handle the allocation and storage of this
data in different ways, according to the method they use for handling the corresponding types. For more
information, see Chapter 14, Storage Engines, and Section C.7.4, “Limits on Table Column Count and Row
Size”.

Storage Requirements for InnoDB Tables

See Section 14.2.10.5, “Physical Row Structure” for information about storage requirements for InnoDB
tables.

Storage Requirements for NDBCLUSTER Tables

Important

For tables using the NDBCLUSTER storage engine, there is the factor of 4-byte
alignment to be taken into account when calculating storage requirements. This
means that all NDB data storage is done in multiples of 4 bytes. Thus, a column
value that would take 15 bytes in a table using a storage engine other than NDB

Storage Requirements for Numeric Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 973

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

requires 16 bytes in an NDB table. This requirement applies in addition to any other
considerations that are discussed in this section. For example, in NDBCLUSTER
tables, the TINYINT, SMALLINT, MEDIUMINT, and INTEGER (INT) column types
each require 4 bytes storage per record due to the alignment factor.

An exception to this rule is the BIT type, which is not 4-byte aligned. In MySQL
Cluster tables, a BIT(M) column takes M bits of storage space. However, if a
table definition contains 1 or more BIT columns (up to 32 BIT columns), then
NDBCLUSTER reserves 4 bytes (32 bits) per row for these. If a table definition
contains more than 32 BIT columns (up to 64 such columns), then NDBCLUSTER
reserves 8 bytes (that is, 64 bits) per row.

In addition, while a NULL itself does not require any storage space, NDBCLUSTER
reserves 4 bytes per row if the table definition contains any columns defined as
NULL, up to 32 NULL columns. (If a MySQL Cluster table is defined with more than
32 NULL columns up to 64 NULL columns, then 8 bytes per row is reserved.)

When calculating storage requirements for MySQL Cluster tables, you must also remember that every
table using the NDBCLUSTER storage engine requires a primary key; if no primary key is defined by the
user, then a “hidden” primary key will be created by NDB. This hidden primary key consumes 31-35 bytes
per table record.

You may find the ndb_size.pl utility to be useful for estimating NDB storage requirements. This Perl
script connects to a current MySQL (non-Cluster) database and creates a report on how much space that
database would require if it used the NDBCLUSTER storage engine. See Section 17.4.18, “ndb_size.pl
— NDBCLUSTER Size Requirement Estimator”, for more information.

Storage Requirements for Numeric Types

Data Type Storage Required

TINYINT 1 byte

SMALLINT 2 bytes

MEDIUMINT 3 bytes

INT, INTEGER 4 bytes

BIGINT 8 bytes

FLOAT(p) 4 bytes if 0 <= p <= 24, 8 bytes if 25 <= p <= 53

FLOAT 4 bytes

DOUBLE [PRECISION], REAL 8 bytes

DECIMAL(M,D), NUMERIC(M,D) Varies; see following discussion

BIT(M) approximately (M+7)/8 bytes

The storage requirements for DECIMAL (and NUMERIC) are version-specific:

As of MySQL 5.0.3, values for DECIMAL columns are represented using a binary format that packs nine
decimal (base 10) digits into four bytes. Storage for the integer and fractional parts of each value are
determined separately. Each multiple of nine digits requires four bytes, and the “leftover” digits require
some fraction of four bytes. The storage required for excess digits is given by the following table.

Leftover Digits Number of Bytes

0 0

Storage Requirements for Date and Time Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 974

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Leftover Digits Number of Bytes

1 1

2 1

3 2

4 2

5 3

6 3

7 4

8 4

Before MySQL 5.0.3, DECIMAL columns are represented as strings and storage requirements are: M+2
bytes if D > 0, M+1 bytes if D = 0, D+2 if M < D

Storage Requirements for Date and Time Types

Data Type Storage Required

DATE 3 bytes

TIME 3 bytes

DATETIME 8 bytes

TIMESTAMP 4 bytes

YEAR 1 byte

For details about internal representation of temporal values, see MySQL Internals: Important Algorithms
and Structures.

Storage Requirements for String Types

In the following table, M represents the declared column length in characters for nonbinary string types and
bytes for binary string types. L represents the actual length in bytes of a given string value.

Data Type Storage Required

CHAR(M) M × w bytes, 0 <= M <= 255, where w is the number of bytes
required for the maximum-length character in the character
set. See Section 14.2.10.5, “Physical Row Structure” for
information about CHAR data type storage requirements for
InnoDB tables.

BINARY(M) M bytes, 0 <= M <= 255

VARCHAR(M), VARBINARY(M) L + 1 bytes if column values require 0 − 255 bytes, L + 2 bytes
if values may require more than 255 bytes

TINYBLOB, TINYTEXT L + 1 bytes, where L < 28

BLOB, TEXT L + 2 bytes, where L < 216

MEDIUMBLOB, MEDIUMTEXT L + 3 bytes, where L < 224

LONGBLOB, LONGTEXT L + 4 bytes, where L < 232

ENUM('value1','value2',...) 1 or 2 bytes, depending on the number of enumeration values
(65,535 values maximum)

http://dev.mysql.com/doc/internals/en/algorithms.html
http://dev.mysql.com/doc/internals/en/algorithms.html

Storage Requirements for String Types

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 975

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Data Type Storage Required

SET('value1','value2',...) 1, 2, 3, 4, or 8 bytes, depending on the number of set members
(64 members maximum)

Variable-length string types are stored using a length prefix plus data. The length prefix requires from one
to four bytes depending on the data type, and the value of the prefix is L (the byte length of the string). For
example, storage for a MEDIUMTEXT value requires L bytes to store the value plus three bytes to store the
length of the value.

To calculate the number of bytes used to store a particular CHAR, VARCHAR, or TEXT column value, you
must take into account the character set used for that column and whether the value contains multibyte
characters. In particular, when using the utf8 Unicode character set, you must keep in mind that not
all characters use the same number of bytes and can require up to three bytes per character. For a
breakdown of the storage used for different categories of utf8 characters, see Section 10.1.10, “Unicode
Support”.

VARCHAR, VARBINARY, and the BLOB and TEXT types are variable-length types. For each, the storage
requirements depend on these factors:

• The actual length of the column value

• The column's maximum possible length

• The character set used for the column, because some character sets contain multibyte characters

For example, a VARCHAR(255) column can hold a string with a maximum length of 255 characters.
Assuming that the column uses the latin1 character set (one byte per character), the actual storage
required is the length of the string (L), plus one byte to record the length of the string. For the string
'abcd', L is 4 and the storage requirement is five bytes. If the same column is instead declared to use the
ucs2 double-byte character set, the storage requirement is 10 bytes: The length of 'abcd' is eight bytes
and the column requires two bytes to store lengths because the maximum length is greater than 255 (up to
510 bytes).

The effective maximum number of bytes that can be stored in a VARCHAR or VARBINARY column is subject
to the maximum row size of 65,535 bytes, which is shared among all columns. For a VARCHAR column
that stores multibyte characters, the effective maximum number of characters is less. For example, utf8
characters can require up to three bytes per character, so a VARCHAR column that uses the utf8 character
set can be declared to be a maximum of 21,844 characters. See Section C.7.4, “Limits on Table Column
Count and Row Size”.

As of MySQL 5.0.3, the NDBCLUSTER engine supports only fixed-width columns. This means that a
VARCHAR column from a table in a MySQL Cluster will behave as follows:

• If the size of the column is fewer than 256 characters, the column requires one byte extra storage per
row.

• If the size of the column is 256 characters or more, the column requires two bytes extra storage per row.

The number of bytes required per character varies according to the character set used. For example, if a
VARCHAR(100) column in a Cluster table uses the utf8 character set, each character requires 3 bytes
storage. This means that each record in such a column takes up 100 × 3 + 1 = 301 bytes for storage,
regardless of the length of the string actually stored in any given record. For a VARCHAR(1000) column
in a table using the NDBCLUSTER storage engine with the utf8 character set, each record will use 1000 ×
3 + 2 = 3002 bytes storage; that is, the column is 1,000 characters wide, each character requires 3 bytes
storage, and each record has a 2-byte overhead because 1,000 >= 256.

Choosing the Right Type for a Column

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 976

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

TEXT and BLOB columns are implemented differently in the NDB Cluster storage engine, wherein each
row in a TEXT column is made up of two separate parts. One of these is of fixed size (256 bytes), and is
actually stored in the original table. The other consists of any data in excess of 256 bytes, which is stored
in a hidden table. The rows in this second table are always 2,000 bytes long. This means that the size of a
TEXT column is 256 if size <= 256 (where size represents the size of the row); otherwise, the size is 256
+ size + (2000 − (size − 256) % 2000).

The size of an ENUM object is determined by the number of different enumeration values. One byte is used
for enumerations with up to 255 possible values. Two bytes are used for enumerations having between
256 and 65,535 possible values. See Section 11.4.4, “The ENUM Type”.

The size of a SET object is determined by the number of different set members. If the set size is N, the
object occupies (N+7)/8 bytes, rounded up to 1, 2, 3, 4, or 8 bytes. A SET can have a maximum of 64
members. See Section 11.4.5, “The SET Type”.

11.8 Choosing the Right Type for a Column

For optimum storage, you should try to use the most precise type in all cases. For example, if an integer
column is used for values in the range from 1 to 99999, MEDIUMINT UNSIGNED is the best type. Of the
types that represent all the required values, this type uses the least amount of storage.

Tables created in MySQL 5.0.3 and above use a new storage format for DECIMAL columns. All basic
calculations (+, -, *, and /) with DECIMAL columns are done with precision of 65 decimal (base 10) digits.
See Section 11.1.1, “Numeric Type Overview”.

Prior to MySQL 5.0.3, calculations on DECIMAL values are performed using double-precision operations. If
accuracy is not too important or if speed is the highest priority, the DOUBLE type may be good enough. For
high precision, you can always convert to a fixed-point type stored in a BIGINT. This enables you to do all
calculations with 64-bit integers and then convert results back to floating-point values as necessary.

PROCEDURE ANALYSE can be used to obtain suggestions for optimal column data types. For more
information, see Section 8.4.2.4, “Using PROCEDURE ANALYSE”.

11.9 Using Data Types from Other Database Engines

To facilitate the use of code written for SQL implementations from other vendors, MySQL maps data types
as shown in the following table. These mappings make it easier to import table definitions from other
database systems into MySQL.

Other Vendor Type MySQL Type

BOOL TINYINT

BOOLEAN TINYINT

CHARACTER VARYING(M) VARCHAR(M)

FIXED DECIMAL

FLOAT4 FLOAT

FLOAT8 DOUBLE

INT1 TINYINT

INT2 SMALLINT

INT3 MEDIUMINT

INT4 INT

Using Data Types from Other Database Engines

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 977

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Other Vendor Type MySQL Type

INT8 BIGINT

LONG VARBINARY MEDIUMBLOB

LONG VARCHAR MEDIUMTEXT

LONG MEDIUMTEXT

MIDDLEINT MEDIUMINT

NUMERIC DECIMAL

Data type mapping occurs at table creation time, after which the original type specifications are discarded.
If you create a table with types used by other vendors and then issue a DESCRIBE tbl_name statement,
MySQL reports the table structure using the equivalent MySQL types. For example:

mysql> CREATE TABLE t (a BOOL, b FLOAT8, c LONG VARCHAR, d NUMERIC);
Query OK, 0 rows affected (0.00 sec)

mysql> DESCRIBE t;
+-------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------+------+-----+---------+-------+
a	tinyint(1)	YES		NULL	
b	double	YES		NULL	
c	mediumtext	YES		NULL	
d	decimal(10,0)	YES		NULL	
+-------+---------------+------+-----+---------+-------+
4 rows in set (0.01 sec)

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 978

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 979

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 12 Functions and Operators

Table of Contents
12.1 Function and Operator Reference .. 980
12.2 Type Conversion in Expression Evaluation ... 989
12.3 Operators ... 991

12.3.1 Operator Precedence ... 992
12.3.2 Comparison Functions and Operators ... 993
12.3.3 Logical Operators ... 1000
12.3.4 Assignment Operators .. 1001

12.4 Control Flow Functions .. 1003
12.5 String Functions .. 1005

12.5.1 String Comparison Functions .. 1018
12.5.2 Regular Expressions .. 1021

12.6 Numeric Functions and Operators .. 1027
12.6.1 Arithmetic Operators ... 1028
12.6.2 Mathematical Functions .. 1030

12.7 Date and Time Functions .. 1039
12.8 What Calendar Is Used By MySQL? .. 1060
12.9 Full-Text Search Functions .. 1061

12.9.1 Natural Language Full-Text Searches .. 1062
12.9.2 Boolean Full-Text Searches .. 1065
12.9.3 Full-Text Searches with Query Expansion ... 1067
12.9.4 Full-Text Stopwords .. 1068
12.9.5 Full-Text Restrictions .. 1071
12.9.6 Fine-Tuning MySQL Full-Text Search .. 1072
12.9.7 Adding a Collation for Full-Text Indexing ... 1074

12.10 Cast Functions and Operators ... 1075
12.11 Bit Functions and Operators .. 1079
12.12 Encryption and Compression Functions .. 1081
12.13 Information Functions .. 1087
12.14 Spatial Analysis Functions ... 1095

12.14.1 Spatial Function Reference ... 1095
12.14.2 Argument Handling by Spatial Functions ... 1097
12.14.3 Functions That Create Geometry Values from WKT Values .. 1098
12.14.4 Functions That Create Geometry Values from WKB Values .. 1098
12.14.5 MySQL-Specific Functions That Create Geometry Values ... 1099
12.14.6 Geometry Format Conversion Functions .. 1100
12.14.7 Geometry Property Functions .. 1101
12.14.8 Spatial Operator Functions .. 1106
12.14.9 Functions That Test Spatial Relations Between Geometry Objects 1106

12.15 Miscellaneous Functions .. 1109
12.16 GROUP BY (Aggregate) Functions .. 1113

12.16.1 GROUP BY (Aggregate) Function Descriptions .. 1113
12.16.2 GROUP BY Modifiers ... 1118
12.16.3 MySQL Handling of GROUP BY ... 1121

12.17 Precision Math .. 1122
12.17.1 Types of Numeric Values .. 1123
12.17.2 DECIMAL Data Type Characteristics ... 1123
12.17.3 Expression Handling ... 1125
12.17.4 Rounding Behavior ... 1127

Function and Operator Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 980

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

12.17.5 Precision Math Examples .. 1127

Expressions can be used at several points in SQL statements, such as in the ORDER BY or HAVING
clauses of SELECT statements, in the WHERE clause of a SELECT, DELETE, or UPDATE statement, or in
SET statements. Expressions can be written using literal values, column values, NULL, built-in functions,
stored functions, user-defined functions, and operators. This chapter describes the functions and operators
that are permitted for writing expressions in MySQL. Instructions for writing stored functions and user-
defined functions are given in Section 18.2, “Using Stored Routines (Procedures and Functions)”, and
Section 21.2, “Adding New Functions to MySQL”. See Section 9.2.3, “Function Name Parsing and
Resolution”, for the rules describing how the server interprets references to different kinds of functions.

An expression that contains NULL always produces a NULL value unless otherwise indicated in the
documentation for a particular function or operator.

Note

By default, there must be no whitespace between a function name and the
parenthesis following it. This helps the MySQL parser distinguish between function
calls and references to tables or columns that happen to have the same name as a
function. However, spaces around function arguments are permitted.

You can tell the MySQL server to accept spaces after function names by starting it with the --sql-
mode=IGNORE_SPACE option. (See Section 5.1.7, “Server SQL Modes”.) Individual client programs can
request this behavior by using the CLIENT_IGNORE_SPACE option for mysql_real_connect(). In
either case, all function names become reserved words.

For the sake of brevity, most examples in this chapter display the output from the mysql program in
abbreviated form. Rather than showing examples in this format:

mysql> SELECT MOD(29,9);
+-----------+
| mod(29,9) |
+-----------+
| 2 |
+-----------+
1 rows in set (0.00 sec)

This format is used instead:

mysql> SELECT MOD(29,9);
 -> 2

12.1 Function and Operator Reference
Table 12.1 Functions/Operators

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ADDDATE() Add time values (intervals) to a date value

ADDTIME() Add time

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

AND, && Logical AND

Function and Operator Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 981

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

Area() Return Polygon or MultiPolygon area

AsBinary(), AsWKB() Convert from internal geometry format to WKB

ASCII() Return numeric value of left-most character

ASIN() Return the arc sine

= Assign a value (as part of a SET statement, or as part of the
SET clause in an UPDATE statement)

:= Assign a value

AsText(), AsWKT() Convert from internal geometry format to WKT

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent of the two arguments

AVG() Return the average value of the argument

BENCHMARK() Repeatedly execute an expression

BETWEEN ... AND ... Check whether a value is within a range of values

BIN() Return a string containing binary representation of a number

BINARY Cast a string to a binary string

BIT_AND() Return bitwise AND

BIT_COUNT() Return the number of bits that are set

BIT_LENGTH() Return length of argument in bits

BIT_OR() Return bitwise OR

BIT_XOR() Return bitwise XOR

& Bitwise AND

~ Bitwise inversion

| Bitwise OR

^ Bitwise XOR

CASE Case operator

CAST() Cast a value as a certain type

CEIL() Return the smallest integer value not less than the argument

CEILING() Return the smallest integer value not less than the argument

Centroid() Return centroid as a point

CHAR() Return the character for each integer passed

CHAR_LENGTH() Return number of characters in argument

CHARACTER_LENGTH() Synonym for CHAR_LENGTH()

CHARSET() Return the character set of the argument

COALESCE() Return the first non-NULL argument

COERCIBILITY() Return the collation coercibility value of the string argument

COLLATION() Return the collation of the string argument

COMPRESS() Return result as a binary string

CONCAT() Return concatenated string

Function and Operator Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 982

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

CONCAT_WS() Return concatenate with separator

CONNECTION_ID() Return the connection ID (thread ID) for the connection

Contains() Whether MBR of one geometry contains MBR of another

CONV() Convert numbers between different number bases

CONVERT() Cast a value as a certain type

CONVERT_TZ() Convert from one timezone to another

COS() Return the cosine

COT() Return the cotangent

COUNT() Return a count of the number of rows returned

COUNT(DISTINCT) Return the count of a number of different values

CRC32() Compute a cyclic redundancy check value

Crosses() Whether one geometry crosses another

CURDATE() Return the current date

CURRENT_DATE(), CURRENT_DATE Synonyms for CURDATE()

CURRENT_TIME(), CURRENT_TIME Synonyms for CURTIME()

CURRENT_TIMESTAMP(),
CURRENT_TIMESTAMP

Synonyms for NOW()

CURRENT_USER(), CURRENT_USER The authenticated user name and host name

CURTIME() Return the current time

DATABASE() Return the default (current) database name

DATE() Extract the date part of a date or datetime expression

DATE_ADD() Add time values (intervals) to a date value

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract a time value (interval) from a date

DATEDIFF() Subtract two dates

DAY() Synonym for DAYOFMONTH()

DAYNAME() Return the name of the weekday

DAYOFMONTH() Return the day of the month (0-31)

DAYOFWEEK() Return the weekday index of the argument

DAYOFYEAR() Return the day of the year (1-366)

DECODE() Decodes a string encrypted using ENCODE()

DEFAULT() Return the default value for a table column

DEGREES() Convert radians to degrees

DES_DECRYPT() Decrypt a string

DES_ENCRYPT() Encrypt a string

Dimension() Dimension of geometry

Disjoint() Whether MBRs of two geometries are disjoint

DIV Integer division

Function and Operator Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 983

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

/ Division operator

ELT() Return string at index number

ENCODE() Encode a string

ENCRYPT() Encrypt a string

EndPoint() End Point of LineString

Envelope() Return MBR of geometry

= Equal operator

<=> NULL-safe equal to operator

Equals() Whether MBRs of two geometries are equal

EXP() Raise to the power of

EXPORT_SET() Return a string such that for every bit set in the value bits, you
get an on string and for every unset bit, you get an off string

ExteriorRing() Return exterior ring of Polygon

EXTRACT() Extract part of a date

FIELD() Return the index (position) of the first argument in the
subsequent arguments

FIND_IN_SET() Return the index position of the first argument within the
second argument

FLOOR() Return the largest integer value not greater than the argument

FORMAT() Return a number formatted to specified number of decimal
places

FOUND_ROWS() For a SELECT with a LIMIT clause, the number of rows that
would be returned were there no LIMIT clause

FROM_DAYS() Convert a day number to a date

FROM_UNIXTIME() Format UNIX timestamp as a date

GeomCollFromText(),
GeometryCollectionFromText()

Return geometry collection from WKT

GeomCollFromWKB(),
GeometryCollectionFromWKB()

Return geometry collection from WKB

GeometryCollection() Construct geometry collection from geometries

GeometryN() Return N-th geometry from geometry collection

GeometryType() Return name of geometry type

GeomFromText(),
GeometryFromText()

Return geometry from WKT

GeomFromWKB(),
GeometryFromWKB()

Return geometry from WKB

GET_FORMAT() Return a date format string

GET_LOCK() Get a named lock

GLength() Return length of LineString

> Greater than operator

Function and Operator Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 984

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

>= Greater than or equal operator

GREATEST() Return the largest argument

GROUP_CONCAT() Return a concatenated string

HEX() Return a hexadecimal representation of a decimal or string
value

HOUR() Extract the hour

IF() If/else construct

IFNULL() Null if/else construct

IN() Check whether a value is within a set of values

INET_ATON() Return the numeric value of an IP address

INET_NTOA() Return the IP address from a numeric value

INSERT() Insert a substring at the specified position up to the specified
number of characters

INSTR() Return the index of the first occurrence of substring

InteriorRingN() Return N-th interior ring of Polygon

Intersects() Whether MBRs of two geometries intersect

INTERVAL() Return the index of the argument that is less than the first
argument

IS Test a value against a boolean

IS_FREE_LOCK() Whether the named lock is free

IS NOT Test a value against a boolean

IS NOT NULL NOT NULL value test

IS NULL NULL value test

IS_USED_LOCK() Whether the named lock is in use; return connection identifier if
true

IsClosed() Whether a geometry is closed and simple

IsEmpty() Placeholder function

ISNULL() Test whether the argument is NULL

IsSimple() Whether a geometry is simple

LAST_DAY Return the last day of the month for the argument

LAST_INSERT_ID() Value of the AUTOINCREMENT column for the last INSERT

LCASE() Synonym for LOWER()

LEAST() Return the smallest argument

LEFT() Return the leftmost number of characters as specified

<< Left shift

LENGTH() Return the length of a string in bytes

< Less than operator

<= Less than or equal operator

LIKE Simple pattern matching

Function and Operator Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 985

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

LineFromText(),
LineStringFromText()

Construct LineString from WKT

LineFromWKB(),
LineStringFromWKB()

Construct LineString from WKB

LineString() Construct LineString from Point values

LN() Return the natural logarithm of the argument

LOAD_FILE() Load the named file

LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP,
LOCALTIMESTAMP()

Synonym for NOW()

LOCATE() Return the position of the first occurrence of substring

LOG() Return the natural logarithm of the first argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

LOWER() Return the argument in lowercase

LPAD() Return the string argument, left-padded with the specified
string

LTRIM() Remove leading spaces

MAKE_SET() Return a set of comma-separated strings that have the
corresponding bit in bits set

MAKEDATE() Create a date from the year and day of year

MAKETIME() Create time from hour, minute, second

MASTER_POS_WAIT() Block until the slave has read and applied all updates up to the
specified position

MATCH Perform full-text search

MAX() Return the maximum value

MBRContains() Whether MBR of one geometry contains MBR of another

MBRDisjoint() Whether MBRs of two geometries are disjoint

MBREqual() Whether MBRs of two geometries are equal

MBRIntersects() Whether MBRs of two geometries intersect

MBROverlaps() Whether MBRs of two geometries overlap

MBRTouches() Whether MBRs of two geometries touch

MBRWithin() Whether MBR of one geometry is within MBR of another

MD5() Calculate MD5 checksum

MICROSECOND() Return the microseconds from argument

MID() Return a substring starting from the specified position

MIN() Return the minimum value

- Minus operator

MINUTE() Return the minute from the argument

Function and Operator Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 986

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

MLineFromText(),
MultiLineStringFromText()

Construct MultiLineString from WKT

MLineFromWKB(),
MultiLineStringFromWKB()

Construct MultiLineString from WKB

MOD() Return the remainder

%, MOD Modulo operator

MONTH() Return the month from the date passed

MONTHNAME() Return the name of the month

MPointFromText(),
MultiPointFromText()

Construct MultiPoint from WKT

MPointFromWKB(),
MultiPointFromWKB()

Construct MultiPoint from WKB

MPolyFromText(),
MultiPolygonFromText()

Construct MultiPolygon from WKT

MPolyFromWKB(),
MultiPolygonFromWKB()

Construct MultiPolygon from WKB

MultiLineString() Contruct MultiLineString from LineString values

MultiPoint() Construct MultiPoint from Point values

MultiPolygon() Construct MultiPolygon from Polygon values

NAME_CONST() Causes the column to have the given name

NOT, ! Negates value

NOT BETWEEN ... AND ... Check whether a value is not within a range of values

!=, <> Not equal operator

NOT IN() Check whether a value is not within a set of values

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

NOW() Return the current date and time

NULLIF() Return NULL if expr1 = expr2

NumGeometries() Return number of geometries in geometry collection

NumInteriorRings() Return number of interior rings in Polygon

NumPoints() Return number of points in LineString

OCT() Return a string containing octal representation of a number

OCTET_LENGTH() Synonym for LENGTH()

OLD_PASSWORD() Return the value of the pre-4.1 implementation of PASSWORD

||, OR Logical OR

ORD() Return character code for leftmost character of the argument

Overlaps() Whether MBRs of two geometries overlap

PASSWORD() Calculate and return a password string

PERIOD_ADD() Add a period to a year-month

Function and Operator Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 987

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

PERIOD_DIFF() Return the number of months between periods

PI() Return the value of pi

+ Addition operator

Point() Construct Point from coordinates

PointFromText() Construct Point from WKT

PointFromWKB() Construct Point from WKB

PointN() Return N-th point from LineString

PolyFromText(),
PolygonFromText()

Construct Polygon from WKT

PolyFromWKB(), PolygonFromWKB() Construct Polygon from WKB

Polygon() Construct Polygon from LineString arguments

POSITION() Synonym for LOCATE()

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

PROCEDURE ANALYSE() Analyze the results of a query

QUARTER() Return the quarter from a date argument

QUOTE() Escape the argument for use in an SQL statement

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

REGEXP Pattern matching using regular expressions

RELEASE_LOCK() Releases the named lock

REPEAT() Repeat a string the specified number of times

REPLACE() Replace occurrences of a specified string

REVERSE() Reverse the characters in a string

RIGHT() Return the specified rightmost number of characters

>> Right shift

RLIKE Synonym for REGEXP

ROUND() Round the argument

ROW_COUNT() The number of rows updated

RPAD() Append string the specified number of times

RTRIM() Remove trailing spaces

SCHEMA() Synonym for DATABASE()

SEC_TO_TIME() Converts seconds to 'HH:MM:SS' format

SECOND() Return the second (0-59)

SESSION_USER() Synonym for USER()

SHA1(), SHA() Calculate an SHA-1 160-bit checksum

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

Function and Operator Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 988

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

SLEEP() Sleep for a number of seconds

SOUNDEX() Return a soundex string

SOUNDS LIKE Compare sounds

SPACE() Return a string of the specified number of spaces

SQRT() Return the square root of the argument

SRID() Return spatial reference system ID for geometry

StartPoint() Start Point of LineString

STD() Return the population standard deviation

STDDEV() Return the population standard deviation

STDDEV_POP() Return the population standard deviation

STDDEV_SAMP() Return the sample standard deviation

STR_TO_DATE() Convert a string to a date

STRCMP() Compare two strings

SUBDATE() Synonym for DATE_SUB() when invoked with three arguments

SUBSTR() Return the substring as specified

SUBSTRING() Return the substring as specified

SUBSTRING_INDEX() Return a substring from a string before the specified number of
occurrences of the delimiter

SUBTIME() Subtract times

SUM() Return the sum

SYSDATE() Return the time at which the function executes

SYSTEM_USER() Synonym for USER()

TAN() Return the tangent of the argument

TIME() Extract the time portion of the expression passed

TIME_FORMAT() Format as time

TIME_TO_SEC() Return the argument converted to seconds

TIMEDIFF() Subtract time

* Multiplication operator

TIMESTAMP() With a single argument, this function returns the date or
datetime expression; with two arguments, the sum of the
arguments

TIMESTAMPADD() Add an interval to a datetime expression

TIMESTAMPDIFF() Subtract an interval from a datetime expression

TO_DAYS() Return the date argument converted to days

Touches() Whether one geometry touches another

TRIM() Remove leading and trailing spaces

TRUNCATE() Truncate to specified number of decimal places

UCASE() Synonym for UPPER()

- Change the sign of the argument

Type Conversion in Expression Evaluation

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 989

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

UNCOMPRESS() Uncompress a string compressed

UNCOMPRESSED_LENGTH() Return the length of a string before compression

UNHEX() Return a string containing hex representation of a number

UNIX_TIMESTAMP() Return a UNIX timestamp

UPPER() Convert to uppercase

USER() The user name and host name provided by the client

UTC_DATE() Return the current UTC date

UTC_TIME() Return the current UTC time

UTC_TIMESTAMP() Return the current UTC date and time

UUID() Return a Universal Unique Identifier (UUID)

VALUES() Defines the values to be used during an INSERT

VAR_POP() Return the population standard variance

VAR_SAMP() Return the sample variance

VARIANCE() Return the population standard variance

VERSION() Return a string that indicates the MySQL server version

WEEK() Return the week number

WEEKDAY() Return the weekday index

WEEKOFYEAR() Return the calendar week of the date (1-53)

Within() Whether MBR of one geometry is within MBR of another

X() Return X coordinate of Point

XOR Logical XOR

Y() Return Y coordinate of Point

YEAR() Return the year

YEARWEEK() Return the year and week

12.2 Type Conversion in Expression Evaluation

When an operator is used with operands of different types, type conversion occurs to make the operands
compatible. Some conversions occur implicitly. For example, MySQL automatically converts numbers to
strings as necessary, and vice versa.

mysql> SELECT 1+'1';
 -> 2
mysql> SELECT CONCAT(2,' test');
 -> '2 test'

It is also possible to convert a number to a string explicitly using the CAST() function. Conversion occurs
implicitly with the CONCAT() function because it expects string arguments.

mysql> SELECT 38.8, CAST(38.8 AS CHAR);
 -> 38.8, '38.8'
mysql> SELECT 38.8, CONCAT(38.8);
 -> 38.8, '38.8'

Type Conversion in Expression Evaluation

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 990

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

See later in this section for information about the character set of implicit number-to-string conversions.

The following rules describe how conversion occurs for comparison operations:

• If one or both arguments are NULL, the result of the comparison is NULL, except for the NULL-safe <=>
equality comparison operator. For NULL <=> NULL, the result is true. No conversion is needed.

• If both arguments in a comparison operation are strings, they are compared as strings.

• If both arguments are integers, they are compared as integers.

• Hexadecimal values are treated as binary strings if not compared to a number.

• If one of the arguments is a TIMESTAMP or DATETIME column and the other argument is a constant,
the constant is converted to a timestamp before the comparison is performed. This is done to be more
ODBC-friendly. Note that this is not done for the arguments to IN()! To be safe, always use complete
datetime, date, or time strings when doing comparisons. For example, to achieve best results when
using BETWEEN with date or time values, use CAST() to explicitly convert the values to the desired data
type.

• If one of the arguments is a decimal value, comparison depends on the other argument. The arguments
are compared as decimal values if the other argument is a decimal or integer value, or as floating-point
values if the other argument is a floating-point value.

• In all other cases, the arguments are compared as floating-point (real) numbers.

For information about conversion of values from one temporal type to another, see Section 11.3.7,
“Conversion Between Date and Time Types”.

The following examples illustrate conversion of strings to numbers for comparison operations:

mysql> SELECT 1 > '6x';
 -> 0
mysql> SELECT 7 > '6x';
 -> 1
mysql> SELECT 0 > 'x6';
 -> 0
mysql> SELECT 0 = 'x6';
 -> 1

For comparisons of a string column with a number, MySQL cannot use an index on the column to look up
the value quickly. If str_col is an indexed string column, the index cannot be used when performing the
lookup in the following statement:

SELECT * FROM tbl_name WHERE str_col=1;

The reason for this is that there are many different strings that may convert to the value 1, such as '1', '
1', or '1a'.

Comparisons that use floating-point numbers (or values that are converted to floating-point numbers) are
approximate because such numbers are inexact. This might lead to results that appear inconsistent:

mysql> SELECT '18015376320243458' = 18015376320243458;
 -> 1
mysql> SELECT '18015376320243459' = 18015376320243459;
 -> 0

Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 991

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Such results can occur because the values are converted to floating-point numbers, which have only 53
bits of precision and are subject to rounding:

mysql> SELECT '18015376320243459'+0.0;
 -> 1.8015376320243e+16

Furthermore, the conversion from string to floating-point and from integer to floating-point do not
necessarily occur the same way. The integer may be converted to floating-point by the CPU, whereas the
string is converted digit by digit in an operation that involves floating-point multiplications.

The results shown will vary on different systems, and can be affected by factors such as computer
architecture or the compiler version or optimization level. One way to avoid such problems is to use
CAST() so that a value will not be converted implicitly to a float-point number:

mysql> SELECT CAST('18015376320243459' AS UNSIGNED) = 18015376320243459;
 -> 1

For more information about floating-point comparisons, see Section B.5.4.8, “Problems with Floating-Point
Values”.

Implicit conversion of a numeric or temporal value to a string produces a binary string (a BINARY,
VARBINARY, or BLOB value). Such implicit conversions to string typically occur for functions that are
passed numeric or temporal values when string values are more usual, and thus can have effects beyond
the type of the converted value. Consider the expression CONCAT(1, 'abc'). The numeric argument 1
is converted to the binary string '1' and the concatenation of that value with the nonbinary string 'abc'
produces the binary string '1abc'.

12.3 Operators

Table 12.2 Operators

Name Description

AND, && Logical AND

= Assign a value (as part of a SET statement, or as part of the
SET clause in an UPDATE statement)

:= Assign a value

BETWEEN ... AND ... Check whether a value is within a range of values

BINARY Cast a string to a binary string

& Bitwise AND

~ Bitwise inversion

| Bitwise OR

^ Bitwise XOR

CASE Case operator

DIV Integer division

/ Division operator

= Equal operator

<=> NULL-safe equal to operator

Operator Precedence

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 992

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

> Greater than operator

>= Greater than or equal operator

IS Test a value against a boolean

IS NOT Test a value against a boolean

IS NOT NULL NOT NULL value test

IS NULL NULL value test

<< Left shift

< Less than operator

<= Less than or equal operator

LIKE Simple pattern matching

- Minus operator

%, MOD Modulo operator

NOT, ! Negates value

NOT BETWEEN ... AND ... Check whether a value is not within a range of values

!=, <> Not equal operator

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

||, OR Logical OR

+ Addition operator

REGEXP Pattern matching using regular expressions

>> Right shift

RLIKE Synonym for REGEXP

SOUNDS LIKE Compare sounds

* Multiplication operator

- Change the sign of the argument

XOR Logical XOR

12.3.1 Operator Precedence

Operator precedences are shown in the following list, from highest precedence to the lowest. Operators
that are shown together on a line have the same precedence.

INTERVAL
BINARY, COLLATE
!
- (unary minus), ~ (unary bit inversion)
^
*, /, DIV, %, MOD
-, +
<<, >>
&
|
= (comparison), <=>, >=, >, <=, <, <>, !=, IS, LIKE, REGEXP, IN
BETWEEN, CASE, WHEN, THEN, ELSE
NOT

Comparison Functions and Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 993

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

AND, &&
XOR
OR, ||
= (assignment), :=

The precedence of = depends on whether it is used as a comparison operator (=) or as an assignment
operator (=). When used as a comparison operator, it has the same precedence as <=>, >=, >, <=, <,
<>, !=, IS, LIKE, REGEXP, and IN. When used as an assignment operator, it has the same precedence
as :=. Section 13.7.4, “SET Syntax”, and Section 9.4, “User-Defined Variables”, explain how MySQL
determines which interpretation of = should apply.

For operators that occur at the same precedence level within an expression, evaluation proceeds left to
right, with the exception that assignments evaluate right to left.

The meaning of some operators depends on the SQL mode:

• By default, || is a logical OR operator. With PIPES_AS_CONCAT enabled, || is string concatenation,
with a precedence between ^ and the unary operators.

• By default, ! has a higher precedence than NOT as of MySQL 5.0.2. For earlier versions, or from 5.0.2
on with HIGH_NOT_PRECEDENCE enabled, ! and NOT have the same precedence.

See Section 5.1.7, “Server SQL Modes”.

The precedence of operators determines the order of evaluation of terms in an expression. To override this
order and group terms explicitly, use parentheses. For example:

mysql> SELECT 1+2*3;
 -> 7
mysql> SELECT (1+2)*3;
 -> 9

12.3.2 Comparison Functions and Operators

Table 12.3 Comparison Operators

Name Description

BETWEEN ... AND ... Check whether a value is within a range of values

COALESCE() Return the first non-NULL argument

= Equal operator

<=> NULL-safe equal to operator

> Greater than operator

>= Greater than or equal operator

GREATEST() Return the largest argument

IN() Check whether a value is within a set of values

INTERVAL() Return the index of the argument that is less than the first
argument

IS Test a value against a boolean

IS NOT Test a value against a boolean

IS NOT NULL NOT NULL value test

IS NULL NULL value test

Comparison Functions and Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 994

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

ISNULL() Test whether the argument is NULL

LEAST() Return the smallest argument

< Less than operator

<= Less than or equal operator

LIKE Simple pattern matching

NOT BETWEEN ... AND ... Check whether a value is not within a range of values

!=, <> Not equal operator

NOT IN() Check whether a value is not within a set of values

NOT LIKE Negation of simple pattern matching

STRCMP() Compare two strings

Comparison operations result in a value of 1 (TRUE), 0 (FALSE), or NULL. These operations work for
both numbers and strings. Strings are automatically converted to numbers and numbers to strings as
necessary.

The following relational comparison operators can be used to compare not only scalar operands, but row
operands:

= > < >= <= <> !=

The descriptions for those operators later in this section detail how they work with row operands. For
additional examples of row comparisons in the context of row subqueries, see Section 13.2.9.5, “Row
Subqueries”.

Some of the functions in this section (such as LEAST() and GREATEST()) return values other than 1
(TRUE), 0 (FALSE), or NULL. However, the value they return is based on comparison operations performed
according to the rules described in Section 12.2, “Type Conversion in Expression Evaluation”.

To convert a value to a specific type for comparison purposes, you can use the CAST() function. String
values can be converted to a different character set using CONVERT(). See Section 12.10, “Cast Functions
and Operators”.

By default, string comparisons are not case sensitive and use the current character set. The default is
latin1 (cp1252 West European), which also works well for English.

• =

Equal:

mysql> SELECT 1 = 0;
 -> 0
mysql> SELECT '0' = 0;
 -> 1
mysql> SELECT '0.0' = 0;
 -> 1
mysql> SELECT '0.01' = 0;
 -> 0
mysql> SELECT '.01' = 0.01;
 -> 1

Comparison Functions and Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 995

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For row comparisons, (a, b) = (x, y) is equivalent to:

(a = x) AND (b = y)

• <=>

NULL-safe equal. This operator performs an equality comparison like the = operator, but returns 1 rather
than NULL if both operands are NULL, and 0 rather than NULL if one operand is NULL.

The <=> operator is equivalent to the standard SQL IS NOT DISTINCT FROM operator.

mysql> SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;
 -> 1, 1, 0
mysql> SELECT 1 = 1, NULL = NULL, 1 = NULL;
 -> 1, NULL, NULL

For row comparisons, (a, b) <=> (x, y) is equivalent to:

(a <=> x) AND (b <=> y)

• <>, !=

Not equal:

mysql> SELECT '.01' <> '0.01';
 -> 1
mysql> SELECT .01 <> '0.01';
 -> 0
mysql> SELECT 'zapp' <> 'zappp';
 -> 1

For row comparisons, (a, b) <> (x, y) and (a, b) != (x, y) are equivalent to:

(a <> x) OR (b <> y)

• <=

Less than or equal:

mysql> SELECT 0.1 <= 2;
 -> 1

For row comparisons, (a, b) <= (x, y) is equivalent to:

(a < x) OR ((a = x) AND (b <= y))

• <

Less than:

mysql> SELECT 2 < 2;
 -> 0

For row comparisons, (a, b) < (x, y) is equivalent to:

Comparison Functions and Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 996

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

(a < x) OR ((a = x) AND (b < y))

• >=

Greater than or equal:

mysql> SELECT 2 >= 2;
 -> 1

For row comparisons, (a, b) >= (x, y) is equivalent to:

(a > x) OR ((a = x) AND (b >= y))

• >

Greater than:

mysql> SELECT 2 > 2;
 -> 0

For row comparisons, (a, b) > (x, y) is equivalent to:

(a > x) OR ((a = x) AND (b > y))

• IS boolean_value

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

mysql> SELECT 1 IS TRUE, 0 IS FALSE, NULL IS UNKNOWN;
 -> 1, 1, 1

IS boolean_value syntax was added in MySQL 5.0.2.

• IS NOT boolean_value

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UNKNOWN.

mysql> SELECT 1 IS NOT UNKNOWN, 0 IS NOT UNKNOWN, NULL IS NOT UNKNOWN;
 -> 1, 1, 0

IS NOT boolean_value syntax was added in MySQL 5.0.2.

• IS NULL

Tests whether a value is NULL.

mysql> SELECT 1 IS NULL, 0 IS NULL, NULL IS NULL;
 -> 0, 0, 1

 To work well with ODBC programs, MySQL supports the following extra features when using IS NULL:

• If sql_auto_is_null variable is set to 1 (the default), then after a statement that successfully
inserts an automatically generated AUTO_INCREMENT value, you can find that value by issuing a
statement of the following form:

Comparison Functions and Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 997

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT * FROM tbl_name WHERE auto_col IS NULL

If the statement returns a row, the value returned is the same as if you invoked the
LAST_INSERT_ID() function. For details, including the return value after a multiple-row insert, see
Section 12.13, “Information Functions”. If no AUTO_INCREMENT value was successfully inserted, the
SELECT statement returns no row.

The behavior of retrieving an AUTO_INCREMENT value by using an IS NULL comparison can be
disabled by setting sql_auto_is_null = 0. See Section 5.1.4, “Server System Variables”.

• For DATE and DATETIME columns that are declared as NOT NULL, you can find the special date
'0000-00-00' by using a statement like this:

SELECT * FROM tbl_name WHERE date_column IS NULL

This is needed to get some ODBC applications to work because ODBC does not support a
'0000-00-00' date value.

See Obtaining Auto-Increment Values, and the description for the FLAG_AUTO_IS_NULL option at
Connector/ODBC Connection Parameters.

• IS NOT NULL

Tests whether a value is not NULL.

mysql> SELECT 1 IS NOT NULL, 0 IS NOT NULL, NULL IS NOT NULL;
 -> 1, 1, 0

• expr BETWEEN min AND max

If expr is greater than or equal to min and expr is less than or equal to max, BETWEEN returns 1,
otherwise it returns 0. This is equivalent to the expression (min <= expr AND expr <= max) if
all the arguments are of the same type. Otherwise type conversion takes place according to the rules
described in Section 12.2, “Type Conversion in Expression Evaluation”, but applied to all the three
arguments.

mysql> SELECT 2 BETWEEN 1 AND 3, 2 BETWEEN 3 and 1;
 -> 1, 0
mysql> SELECT 1 BETWEEN 2 AND 3;
 -> 0
mysql> SELECT 'b' BETWEEN 'a' AND 'c';
 -> 1
mysql> SELECT 2 BETWEEN 2 AND '3';
 -> 1
mysql> SELECT 2 BETWEEN 2 AND 'x-3';
 -> 0

For best results when using BETWEEN with date or time values, use CAST() to explicitly convert the
values to the desired data type. Examples: If you compare a DATETIME to two DATE values, convert the
DATE values to DATETIME values. If you use a string constant such as '2001-1-1' in a comparison to
a DATE, cast the string to a DATE.

• expr NOT BETWEEN min AND max

This is the same as NOT (expr BETWEEN min AND max).

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html
http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration-connection-parameters.html

Comparison Functions and Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 998

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• COALESCE(value,...)

Returns the first non-NULL value in the list, or NULL if there are no non-NULL values.

mysql> SELECT COALESCE(NULL,1);
 -> 1
mysql> SELECT COALESCE(NULL,NULL,NULL);
 -> NULL

• GREATEST(value1,value2,...)

With two or more arguments, returns the largest (maximum-valued) argument. The arguments are
compared using the same rules as for LEAST().

mysql> SELECT GREATEST(2,0);
 -> 2
mysql> SELECT GREATEST(34.0,3.0,5.0,767.0);
 -> 767.0
mysql> SELECT GREATEST('B','A','C');
 -> 'C'

Before MySQL 5.0.13, GREATEST() returns NULL only if all arguments are NULL. As of 5.0.13, it returns
NULL if any argument is NULL.

• expr IN (value,...)

Returns 1 if expr is equal to any of the values in the IN list, else returns 0. If all values are constants,
they are evaluated according to the type of expr and sorted. The search for the item then is done using
a binary search. This means IN is very quick if the IN value list consists entirely of constants. Otherwise,
type conversion takes place according to the rules described in Section 12.2, “Type Conversion in
Expression Evaluation”, but applied to all the arguments.

mysql> SELECT 2 IN (0,3,5,7);
 -> 0
mysql> SELECT 'wefwf' IN ('wee','wefwf','weg');
 -> 1

IN can be used to compare row constructors:

mysql> SELECT (3,4) IN ((1,2), (3,4));
 -> 1
mysql> SELECT (3,4) IN ((1,2), (3,5));
 -> 0

You should never mix quoted and unquoted values in an IN list because the comparison rules for quoted
values (such as strings) and unquoted values (such as numbers) differ. Mixing types may therefore lead
to inconsistent results. For example, do not write an IN expression like this:

SELECT val1 FROM tbl1 WHERE val1 IN (1,2,'a');

Instead, write it like this:

SELECT val1 FROM tbl1 WHERE val1 IN ('1','2','a');

The number of values in the IN list is only limited by the max_allowed_packet value.

Comparison Functions and Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 999

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To comply with the SQL standard, IN returns NULL not only if the expression on the left hand side is
NULL, but also if no match is found in the list and one of the expressions in the list is NULL.

IN() syntax can also be used to write certain types of subqueries. See Section 13.2.9.3, “Subqueries
with ANY, IN, or SOME”.

• expr NOT IN (value,...)

This is the same as NOT (expr IN (value,...)).

• ISNULL(expr)

If expr is NULL, ISNULL() returns 1, otherwise it returns 0.

mysql> SELECT ISNULL(1+1);
 -> 0
mysql> SELECT ISNULL(1/0);
 -> 1

ISNULL() can be used instead of = to test whether a value is NULL. (Comparing a value to NULL using
= always yields false.)

The ISNULL() function shares some special behaviors with the IS NULL comparison operator. See the
description of IS NULL.

• INTERVAL(N,N1,N2,N3,...)

Returns 0 if N < N1, 1 if N < N2 and so on or -1 if N is NULL. All arguments are treated as integers. It is
required that N1 < N2 < N3 < ... < Nn for this function to work correctly. This is because a binary search
is used (very fast).

mysql> SELECT INTERVAL(23, 1, 15, 17, 30, 44, 200);
 -> 3
mysql> SELECT INTERVAL(10, 1, 10, 100, 1000);
 -> 2
mysql> SELECT INTERVAL(22, 23, 30, 44, 200);
 -> 0

• LEAST(value1,value2,...)

With two or more arguments, returns the smallest (minimum-valued) argument. The arguments are
compared using the following rules:

• If the return value is used in an INTEGER context or all arguments are integer-valued, they are
compared as integers.

• If the return value is used in a REAL context or all arguments are real-valued, they are compared as
reals.

• If the arguments comprise a mix of numbers and strings, they are compared as numbers.

• If any argument is a nonbinary (character) string, the arguments are compared as nonbinary strings.

• In all other cases, the arguments are compared as binary strings.

Before MySQL 5.0.13, LEAST() returns NULL only if all arguments are NULL. As of 5.0.13, it returns
NULL if any argument is NULL.

Logical Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1000

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT LEAST(2,0);
 -> 0
mysql> SELECT LEAST(34.0,3.0,5.0,767.0);
 -> 3.0
mysql> SELECT LEAST('B','A','C');
 -> 'A'

Note that the preceding conversion rules can produce strange results in some borderline cases:

mysql> SELECT CAST(LEAST(3600, 9223372036854775808.0) AS SIGNED);
 -> -9223372036854775808

This happens because MySQL reads 9223372036854775808.0 in an integer context. The integer
representation is not good enough to hold the value, so it wraps to a signed integer.

12.3.3 Logical Operators

Table 12.4 Logical Operators

Name Description

AND, && Logical AND

NOT, ! Negates value

||, OR Logical OR

XOR Logical XOR

In SQL, all logical operators evaluate to TRUE, FALSE, or NULL (UNKNOWN). In MySQL, these are
implemented as 1 (TRUE), 0 (FALSE), and NULL. Most of this is common to different SQL database
servers, although some servers may return any nonzero value for TRUE.

MySQL evaluates any nonzero, non-NULL value to TRUE. For example, the following statements all assess
to TRUE:

mysql> SELECT 10 IS TRUE;
-> 1
mysql> SELECT -10 IS TRUE;
-> 1
mysql> SELECT 'string' IS NOT NULL;
-> 1

• NOT, !

Logical NOT. Evaluates to 1 if the operand is 0, to 0 if the operand is nonzero, and NOT NULL returns
NULL.

mysql> SELECT NOT 10;
 -> 0
mysql> SELECT NOT 0;
 -> 1
mysql> SELECT NOT NULL;
 -> NULL
mysql> SELECT ! (1+1);
 -> 0
mysql> SELECT ! 1+1;
 -> 1

Assignment Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1001

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The last example produces 1 because the expression evaluates the same way as (!1)+1.

Note that the precedence of the NOT operator changed in MySQL 5.0.2. See Section 12.3.1, “Operator
Precedence”.

• AND, &&

Logical AND. Evaluates to 1 if all operands are nonzero and not NULL, to 0 if one or more operands are
0, otherwise NULL is returned.

mysql> SELECT 1 AND 1;
 -> 1
mysql> SELECT 1 AND 0;
 -> 0
mysql> SELECT 1 AND NULL;
 -> NULL
mysql> SELECT 0 AND NULL;
 -> 0
mysql> SELECT NULL AND 0;
 -> 0

• OR, ||

Logical OR. When both operands are non-NULL, the result is 1 if any operand is nonzero, and 0
otherwise. With a NULL operand, the result is 1 if the other operand is nonzero, and NULL otherwise. If
both operands are NULL, the result is NULL.

mysql> SELECT 1 OR 1;
 -> 1
mysql> SELECT 1 OR 0;
 -> 1
mysql> SELECT 0 OR 0;
 -> 0
mysql> SELECT 0 OR NULL;
 -> NULL
mysql> SELECT 1 OR NULL;
 -> 1

• XOR

Logical XOR. Returns NULL if either operand is NULL. For non-NULL operands, evaluates to 1 if an odd
number of operands is nonzero, otherwise 0 is returned.

mysql> SELECT 1 XOR 1;
 -> 0
mysql> SELECT 1 XOR 0;
 -> 1
mysql> SELECT 1 XOR NULL;
 -> NULL
mysql> SELECT 1 XOR 1 XOR 1;
 -> 1

a XOR b is mathematically equal to (a AND (NOT b)) OR ((NOT a) and b).

12.3.4 Assignment Operators

Assignment Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1002

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Table 12.5 Assignment Operators

Name Description

= Assign a value (as part of a SET statement, or as part of the
SET clause in an UPDATE statement)

:= Assign a value

• :=

Assignment operator. Causes the user variable on the left hand side of the operator to take on the value
to its right. The value on the right hand side may be a literal value, another variable storing a value, or
any legal expression that yields a scalar value, including the result of a query (provided that this value
is a scalar value). You can perform multiple assignments in the same SET statement. You can perform
multiple assignments in the same statement-

Unlike =, the := operator is never interpreted as a comparison operator. This means you can use := in
any valid SQL statement (not just in SET statements) to assign a value to a variable.

mysql> SELECT @var1, @var2;
 -> NULL, NULL
mysql> SELECT @var1 := 1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2 := @var1;
 -> 1, 1
mysql> SELECT @var1, @var2;
 -> 1, 1

mysql> SELECT @var1:=COUNT(*) FROM t1;
 -> 4
mysql> SELECT @var1;
 -> 4

You can make value assignments using := in other statements besides SELECT, such as UPDATE, as
shown here:

mysql> SELECT @var1;
 -> 4
mysql> SELECT * FROM t1;
 -> 1, 3, 5, 7

mysql> UPDATE t1 SET c1 = 2 WHERE c1 = @var1:= 1;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1 Changed: 1 Warnings: 0

mysql> SELECT @var1;
 -> 1
mysql> SELECT * FROM t1;
 -> 2, 3, 5, 7

While it is also possible both to set and to read the value of the same variable in a single SQL statement
using the := operator, this is not recommended. Section 9.4, “User-Defined Variables”, explains why you
should avoid doing this.

• =

This operator is used to perform value assignments in two cases, described in the next two paragraphs.

Control Flow Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1003

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Within a SET statement, = is treated as an assignment operator that causes the user variable on the
left hand side of the operator to take on the value to its right. (In other words, when used in a SET
statement, = is treated identically to :=.) The value on the right hand side may be a literal value, another
variable storing a value, or any legal expression that yields a scalar value, including the result of a query
(provided that this value is a scalar value). You can perform multiple assignments in the same SET
statement.

In the SET clause of an UPDATE statement, = also acts as an assignment operator; in this case,
however, it causes the column named on the left hand side of the operator to assume the value given
to the right, provided any WHERE conditions that are part of the UPDATE are met. You can make multiple
assignments in the same SET clause of an UPDATE statement.

In any other context, = is treated as a comparison operator.

mysql> SELECT @var1, @var2;
 -> NULL, NULL
mysql> SELECT @var1 := 1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2;
 -> 1, NULL
mysql> SELECT @var1, @var2 := @var1;
 -> 1, 1
mysql> SELECT @var1, @var2;
 -> 1, 1

For more information, see Section 13.7.4, “SET Syntax”, Section 13.2.10, “UPDATE Syntax”, and
Section 13.2.9, “Subquery Syntax”.

12.4 Control Flow Functions
Table 12.6 Flow Control Operators

Name Description

CASE Case operator

IF() If/else construct

IFNULL() Null if/else construct

NULLIF() Return NULL if expr1 = expr2

• CASE value WHEN [compare_value] THEN result [WHEN [compare_value] THEN
result ...] [ELSE result] END

CASE WHEN [condition] THEN result [WHEN [condition] THEN result ...] [ELSE
result] END

The first version returns the result where value=compare_value. The second version returns the
result for the first condition that is true. If there was no matching result value, the result after ELSE is
returned, or NULL if there is no ELSE part.

mysql> SELECT CASE 1 WHEN 1 THEN 'one'
 -> WHEN 2 THEN 'two' ELSE 'more' END;
 -> 'one'
mysql> SELECT CASE WHEN 1>0 THEN 'true' ELSE 'false' END;
 -> 'true'
mysql> SELECT CASE BINARY 'B'
 -> WHEN 'a' THEN 1 WHEN 'b' THEN 2 END;

Control Flow Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1004

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 -> NULL

The return type of a CASE expression is the compatible aggregated type of all return values, but also
depends on the context in which it is used. If used in a string context, the result is returned as a string. If
used in a numeric context, the result is returned as a decimal, real, or integer value.

Note

The syntax of the CASE expression shown here differs slightly from that of the
SQL CASE statement described in Section 13.6.5.1, “CASE Syntax”, for use
inside stored programs. The CASE statement cannot have an ELSE NULL clause,
and it is terminated with END CASE instead of END.

• IF(expr1,expr2,expr3)

If expr1 is TRUE (expr1 <> 0 and expr1 <> NULL) then IF() returns expr2; otherwise it returns
expr3. IF() returns a numeric or string value, depending on the context in which it is used.

mysql> SELECT IF(1>2,2,3);
 -> 3
mysql> SELECT IF(1<2,'yes','no');
 -> 'yes'
mysql> SELECT IF(STRCMP('test','test1'),'no','yes');
 -> 'no'

If only one of expr2 or expr3 is explicitly NULL, the result type of the IF() function is the type of the
non-NULL expression.

The default return type of IF() (which may matter when it is stored into a temporary table) is calculated
as follows.

Expression Return Value

expr2 or expr3 returns a string string

expr2 or expr3 returns a floating-point value floating-point

expr2 or expr3 returns an integer integer

If expr2 and expr3 are both strings, the result is case sensitive if either string is case sensitive.

Note

There is also an IF statement, which differs from the IF() function described
here. See Section 13.6.5.2, “IF Syntax”.

• IFNULL(expr1,expr2)

If expr1 is not NULL, IFNULL() returns expr1; otherwise it returns expr2. IFNULL() returns a
numeric or string value, depending on the context in which it is used.

mysql> SELECT IFNULL(1,0);
 -> 1
mysql> SELECT IFNULL(NULL,10);
 -> 10
mysql> SELECT IFNULL(1/0,10);
 -> 10
mysql> SELECT IFNULL(1/0,'yes');
 -> 'yes'

String Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1005

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The default result value of IFNULL(expr1,expr2) is the more “general” of the two expressions, in the
order STRING, REAL, or INTEGER. Consider the case of a table based on expressions or where MySQL
must internally store a value returned by IFNULL() in a temporary table:

mysql> CREATE TABLE tmp SELECT IFNULL(1,'test') AS test;
mysql> DESCRIBE tmp;
+-------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+--------------+------+-----+---------+-------+
| test | varbinary(4) | NO | | | |
+-------+--------------+------+-----+---------+-------+

In this example, the type of the test column is VARBINARY(4).

• NULLIF(expr1,expr2)

Returns NULL if expr1 = expr2 is true, otherwise returns expr1. This is the same as CASE WHEN
expr1 = expr2 THEN NULL ELSE expr1 END.

mysql> SELECT NULLIF(1,1);
 -> NULL
mysql> SELECT NULLIF(1,2);
 -> 1

Note that MySQL evaluates expr1 twice if the arguments are not equal.

12.5 String Functions

Table 12.7 String Operators

Name Description

ASCII() Return numeric value of left-most character

BIN() Return a string containing binary representation of a number

BIT_LENGTH() Return length of argument in bits

CHAR() Return the character for each integer passed

CHAR_LENGTH() Return number of characters in argument

CHARACTER_LENGTH() Synonym for CHAR_LENGTH()

CONCAT() Return concatenated string

CONCAT_WS() Return concatenate with separator

ELT() Return string at index number

EXPORT_SET() Return a string such that for every bit set in the value bits, you
get an on string and for every unset bit, you get an off string

FIELD() Return the index (position) of the first argument in the
subsequent arguments

FIND_IN_SET() Return the index position of the first argument within the
second argument

FORMAT() Return a number formatted to specified number of decimal
places

String Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1006

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

HEX() Return a hexadecimal representation of a decimal or string
value

INSERT() Insert a substring at the specified position up to the specified
number of characters

INSTR() Return the index of the first occurrence of substring

LCASE() Synonym for LOWER()

LEFT() Return the leftmost number of characters as specified

LENGTH() Return the length of a string in bytes

LIKE Simple pattern matching

LOAD_FILE() Load the named file

LOCATE() Return the position of the first occurrence of substring

LOWER() Return the argument in lowercase

LPAD() Return the string argument, left-padded with the specified
string

LTRIM() Remove leading spaces

MAKE_SET() Return a set of comma-separated strings that have the
corresponding bit in bits set

MATCH Perform full-text search

MID() Return a substring starting from the specified position

NOT LIKE Negation of simple pattern matching

NOT REGEXP Negation of REGEXP

OCT() Return a string containing octal representation of a number

OCTET_LENGTH() Synonym for LENGTH()

ORD() Return character code for leftmost character of the argument

POSITION() Synonym for LOCATE()

QUOTE() Escape the argument for use in an SQL statement

REGEXP Pattern matching using regular expressions

REPEAT() Repeat a string the specified number of times

REPLACE() Replace occurrences of a specified string

REVERSE() Reverse the characters in a string

RIGHT() Return the specified rightmost number of characters

RLIKE Synonym for REGEXP

RPAD() Append string the specified number of times

RTRIM() Remove trailing spaces

SOUNDEX() Return a soundex string

SOUNDS LIKE Compare sounds

SPACE() Return a string of the specified number of spaces

STRCMP() Compare two strings

SUBSTR() Return the substring as specified

String Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1007

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

SUBSTRING() Return the substring as specified

SUBSTRING_INDEX() Return a substring from a string before the specified number of
occurrences of the delimiter

TRIM() Remove leading and trailing spaces

UCASE() Synonym for UPPER()

UNHEX() Return a string containing hex representation of a number

UPPER() Convert to uppercase

String-valued functions return NULL if the length of the result would be greater than the value of the
max_allowed_packet system variable. See Section 8.12.2, “Tuning Server Parameters”.

For functions that operate on string positions, the first position is numbered 1.

For functions that take length arguments, noninteger arguments are rounded to the nearest integer.

• ASCII(str)

Returns the numeric value of the leftmost character of the string str. Returns 0 if str is the empty
string. Returns NULL if str is NULL. ASCII() works for 8-bit characters.

mysql> SELECT ASCII('2');
 -> 50
mysql> SELECT ASCII(2);
 -> 50
mysql> SELECT ASCII('dx');
 -> 100

See also the ORD() function.

• BIN(N)

Returns a string representation of the binary value of N, where N is a longlong (BIGINT) number. This is
equivalent to CONV(N,10,2). Returns NULL if N is NULL.

mysql> SELECT BIN(12);
 -> '1100'

• BIT_LENGTH(str)

Returns the length of the string str in bits.

mysql> SELECT BIT_LENGTH('text');
 -> 32

• CHAR(N,... [USING charset_name])

CHAR() interprets each argument N as an integer and returns a string consisting of the characters given
by the code values of those integers. NULL values are skipped.

mysql> SELECT CHAR(77,121,83,81,'76');
 -> 'MySQL'
mysql> SELECT CHAR(77,77.3,'77.3');
 -> 'MMM'

String Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1008

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

As of MySQL 5.0.15, CHAR() arguments larger than 255 are converted into multiple result bytes.
For example, CHAR(256) is equivalent to CHAR(1,0), and CHAR(256*256) is equivalent to
CHAR(1,0,0):

mysql> SELECT HEX(CHAR(1,0)), HEX(CHAR(256));
+----------------+----------------+
| HEX(CHAR(1,0)) | HEX(CHAR(256)) |
+----------------+----------------+
| 0100 | 0100 |
+----------------+----------------+
mysql> SELECT HEX(CHAR(1,0,0)), HEX(CHAR(256*256));
+------------------+--------------------+
| HEX(CHAR(1,0,0)) | HEX(CHAR(256*256)) |
+------------------+--------------------+
| 010000 | 010000 |
+------------------+--------------------+

By default, CHAR() returns a binary string. To produce a string in a given character set, use the optional
USING clause:

mysql> SELECT CHARSET(CHAR(X'65')), CHARSET(CHAR(X'65' USING utf8));
+----------------------+---------------------------------+
| CHARSET(CHAR(X'65')) | CHARSET(CHAR(X'65' USING utf8)) |
+----------------------+---------------------------------+
| binary | utf8 |
+----------------------+---------------------------------+

If USING is given and the result string is illegal for the given character set, a warning is issued. Also, if
strict SQL mode is enabled, the result from CHAR() becomes NULL.

Before MySQL 5.0.15, CHAR() returns a string in the connection character set and the USING clause is
unavailable. In addition, each argument is interpreted modulo 256, so CHAR(256) and CHAR(256*256)
both are equivalent to CHAR(0).

• CHAR_LENGTH(str)

Returns the length of the string str, measured in characters. A multibyte character counts as a single
character. This means that for a string containing five 2-byte characters, LENGTH() returns 10, whereas
CHAR_LENGTH() returns 5.

• CHARACTER_LENGTH(str)

CHARACTER_LENGTH() is a synonym for CHAR_LENGTH().

• CONCAT(str1,str2,...)

Returns the string that results from concatenating the arguments. May have one or more arguments. If
all arguments are nonbinary strings, the result is a nonbinary string. If the arguments include any binary
strings, the result is a binary string. A numeric argument is converted to its equivalent binary string form;
if you want to avoid that, you can use an explicit type cast, as in this example:

SELECT CONCAT(CAST(int_col AS CHAR), char_col);

CONCAT() returns NULL if any argument is NULL.

mysql> SELECT CONCAT('My', 'S', 'QL');
 -> 'MySQL'

String Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1009

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT CONCAT('My', NULL, 'QL');
 -> NULL
mysql> SELECT CONCAT(14.3);
 -> '14.3'

For quoted strings, concatenation can be performed by placing the strings next to each other:

mysql> SELECT 'My' 'S' 'QL';
 -> 'MySQL'

• CONCAT_WS(separator,str1,str2,...)

CONCAT_WS() stands for Concatenate With Separator and is a special form of CONCAT(). The first
argument is the separator for the rest of the arguments. The separator is added between the strings to
be concatenated. The separator can be a string, as can the rest of the arguments. If the separator is
NULL, the result is NULL.

mysql> SELECT CONCAT_WS(',','First name','Second name','Last Name');
 -> 'First name,Second name,Last Name'
mysql> SELECT CONCAT_WS(',','First name',NULL,'Last Name');
 -> 'First name,Last Name'

CONCAT_WS() does not skip empty strings. However, it does skip any NULL values after the separator
argument.

• ELT(N,str1,str2,str3,...)

ELT() returns the Nth element of the list of strings: str1 if N = 1, str2 if N = 2, and so on. Returns
NULL if N is less than 1 or greater than the number of arguments. ELT() is the complement of FIELD().

mysql> SELECT ELT(1, 'ej', 'Heja', 'hej', 'foo');
 -> 'ej'
mysql> SELECT ELT(4, 'ej', 'Heja', 'hej', 'foo');
 -> 'foo'

• EXPORT_SET(bits,on,off[,separator[,number_of_bits]])

Returns a string such that for every bit set in the value bits, you get an on string and for every bit not
set in the value, you get an off string. Bits in bits are examined from right to left (from low-order to
high-order bits). Strings are added to the result from left to right, separated by the separator string (the
default being the comma character “,”). The number of bits examined is given by number_of_bits,
which has a default of 64 if not specified. number_of_bits is silently clipped to 64 if larger than 64. It is
treated as an unsigned integer, so a value of −1 is effectively the same as 64.

mysql> SELECT EXPORT_SET(5,'Y','N',',',4);
 -> 'Y,N,Y,N'
mysql> SELECT EXPORT_SET(6,'1','0',',',10);
 -> '0,1,1,0,0,0,0,0,0,0'

• FIELD(str,str1,str2,str3,...)

Returns the index (position) of str in the str1, str2, str3, ... list. Returns 0 if str is not found.

If all arguments to FIELD() are strings, all arguments are compared as strings. If all arguments are
numbers, they are compared as numbers. Otherwise, the arguments are compared as double.

String Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1010

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If str is NULL, the return value is 0 because NULL fails equality comparison with any value. FIELD() is
the complement of ELT().

mysql> SELECT FIELD('ej', 'Hej', 'ej', 'Heja', 'hej', 'foo');
 -> 2
mysql> SELECT FIELD('fo', 'Hej', 'ej', 'Heja', 'hej', 'foo');
 -> 0

• FIND_IN_SET(str,strlist)

Returns a value in the range of 1 to N if the string str is in the string list strlist consisting of N
substrings. A string list is a string composed of substrings separated by “,” characters. If the first
argument is a constant string and the second is a column of type SET, the FIND_IN_SET() function
is optimized to use bit arithmetic. Returns 0 if str is not in strlist or if strlist is the empty string.
Returns NULL if either argument is NULL. This function does not work properly if the first argument
contains a comma (“,”) character.

mysql> SELECT FIND_IN_SET('b','a,b,c,d');
 -> 2

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns
the result as a string. If D is 0, the result has no decimal point or fractional part. D should be a constant
value.

mysql> SELECT FORMAT(12332.123456, 4);
 -> '12,332.1235'
mysql> SELECT FORMAT(12332.1,4);
 -> '12,332.1000'
mysql> SELECT FORMAT(12332.2,0);
 -> '12,332'

• HEX(str), HEX(N)

For a string argument str, HEX() returns a hexadecimal string representation of str where each byte
of each character in str is converted to two hexadecimal digits. (Multibyte characters therefore become
more than two digits.) The inverse of this operation is performed by the UNHEX() function.

For a numeric argument N, HEX() returns a hexadecimal string representation of the value of N treated
as a longlong (BIGINT) number. This is equivalent to CONV(N,10,16). The inverse of this operation is
performed by CONV(HEX(N),16,10).

mysql> SELECT X'616263', HEX('abc'), UNHEX(HEX('abc'));
 -> 'abc', 616263, 'abc'
mysql> SELECT HEX(255), CONV(HEX(255),16,10);
 -> 'FF', 255

• INSERT(str,pos,len,newstr)

Returns the string str, with the substring beginning at position pos and len characters long replaced
by the string newstr. Returns the original string if pos is not within the length of the string. Replaces the
rest of the string from position pos if len is not within the length of the rest of the string. Returns NULL if
any argument is NULL.

String Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1011

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT INSERT('Quadratic', 3, 4, 'What');
 -> 'QuWhattic'
mysql> SELECT INSERT('Quadratic', -1, 4, 'What');
 -> 'Quadratic'
mysql> SELECT INSERT('Quadratic', 3, 100, 'What');
 -> 'QuWhat'

This function is multibyte safe.

• INSTR(str,substr)

Returns the position of the first occurrence of substring substr in string str. This is the same as the
two-argument form of LOCATE(), except that the order of the arguments is reversed.

mysql> SELECT INSTR('foobarbar', 'bar');
 -> 4
mysql> SELECT INSTR('xbar', 'foobar');
 -> 0

This function is multibyte safe, and is case sensitive only if at least one argument is a binary string.

• LCASE(str)

LCASE() is a synonym for LOWER().

• LEFT(str,len)

Returns the leftmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT LEFT('foobarbar', 5);
 -> 'fooba'

This function is multibyte safe.

• LENGTH(str)

Returns the length of the string str, measured in bytes. A multibyte character counts as multiple
bytes. This means that for a string containing five 2-byte characters, LENGTH() returns 10, whereas
CHAR_LENGTH() returns 5.

mysql> SELECT LENGTH('text');
 -> 4

Note

The Length() OpenGIS spatial function is named GLength() in MySQL.

• LOAD_FILE(file_name)

Reads the file and returns the file contents as a string. To use this function, the file must be located
on the server host, you must specify the full path name to the file, and you must have the FILE
privilege. The file must be readable by all and its size less than max_allowed_packet bytes. If the
secure_file_priv system variable is set to a nonempty directory name, the file to be loaded must be
located in that directory.

If the file does not exist or cannot be read because one of the preceding conditions is not satisfied, the
function returns NULL.

String Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1012

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

As of MySQL 5.0.19, the character_set_filesystem system variable controls interpretation of file
names that are given as literal strings.

mysql> UPDATE t
 SET blob_col=LOAD_FILE('/tmp/picture')
 WHERE id=1;

• LOCATE(substr,str), LOCATE(substr,str,pos)

The first syntax returns the position of the first occurrence of substring substr in string str. The
second syntax returns the position of the first occurrence of substring substr in string str, starting at
position pos. Returns 0 if substr is not in str.

mysql> SELECT LOCATE('bar', 'foobarbar');
 -> 4
mysql> SELECT LOCATE('xbar', 'foobar');
 -> 0
mysql> SELECT LOCATE('bar', 'foobarbar', 5);
 -> 7

This function is multibyte safe, and is case-sensitive only if at least one argument is a binary string.

• LOWER(str)

Returns the string str with all characters changed to lowercase according to the current character set
mapping. The default is latin1 (cp1252 West European).

mysql> SELECT LOWER('QUADRATICALLY');
 -> 'quadratically'

LOWER() (and UPPER()) are ineffective when applied to binary strings (BINARY, VARBINARY, BLOB).
To perform lettercase conversion, convert the string to a nonbinary string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING latin1));
+-------------+-----------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING latin1)) |
+-------------+-----------------------------------+
| New York | new york |
+-------------+-----------------------------------+

This function is multibyte safe.

• LPAD(str,len,padstr)

Returns the string str, left-padded with the string padstr to a length of len characters. If str is longer
than len, the return value is shortened to len characters.

mysql> SELECT LPAD('hi',4,'??');
 -> '??hi'
mysql> SELECT LPAD('hi',1,'??');
 -> 'h'

• LTRIM(str)

Returns the string str with leading space characters removed.

String Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1013

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT LTRIM(' barbar');
 -> 'barbar'

This function is multibyte safe.

• MAKE_SET(bits,str1,str2,...)

Returns a set value (a string containing substrings separated by “,” characters) consisting of the strings
that have the corresponding bit in bits set. str1 corresponds to bit 0, str2 to bit 1, and so on. NULL
values in str1, str2, ... are not appended to the result.

mysql> SELECT MAKE_SET(1,'a','b','c');
 -> 'a'
mysql> SELECT MAKE_SET(1 | 4,'hello','nice','world');
 -> 'hello,world'
mysql> SELECT MAKE_SET(1 | 4,'hello','nice',NULL,'world');
 -> 'hello'
mysql> SELECT MAKE_SET(0,'a','b','c');
 -> ''

• MID(str,pos,len)

MID(str,pos,len) is a synonym for SUBSTRING(str,pos,len).

• OCT(N)

Returns a string representation of the octal value of N, where N is a longlong (BIGINT) number. This is
equivalent to CONV(N,10,8). Returns NULL if N is NULL.

mysql> SELECT OCT(12);
 -> '14'

• OCTET_LENGTH(str)

OCTET_LENGTH() is a synonym for LENGTH().

• ORD(str)

If the leftmost character of the string str is a multibyte character, returns the code for that character,
calculated from the numeric values of its constituent bytes using this formula:

 (1st byte code)
+ (2nd byte code * 256)
+ (3rd byte code * 2562) ...

If the leftmost character is not a multibyte character, ORD() returns the same value as the ASCII()
function.

mysql> SELECT ORD('2');
 -> 50

• POSITION(substr IN str)

POSITION(substr IN str) is a synonym for LOCATE(substr,str).

• QUOTE(str)

String Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1014

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Quotes a string to produce a result that can be used as a properly escaped data value in an SQL
statement. The string is returned enclosed by single quotation marks and with each instance of
backslash (“\”), single quote (“'”), ASCII NUL, and Control+Z preceded by a backslash. If the argument
is NULL, the return value is the word “NULL” without enclosing single quotation marks.

mysql> SELECT QUOTE('Don\'t!');
 -> 'Don\'t!'
mysql> SELECT QUOTE(NULL);
 -> NULL

For comparison, see the quoting rules for literal strings and within the C API in Section 9.1.1, “String
Literals”, and Section 20.6.7.53, “mysql_real_escape_string()”.

• REPEAT(str,count)

Returns a string consisting of the string str repeated count times. If count is less than 1, returns an
empty string. Returns NULL if str or count are NULL.

mysql> SELECT REPEAT('MySQL', 3);
 -> 'MySQLMySQLMySQL'

• REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str replaced by the string to_str.
REPLACE() performs a case-sensitive match when searching for from_str.

mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
 -> 'WwWwWw.mysql.com'

This function is multibyte safe.

• REVERSE(str)

Returns the string str with the order of the characters reversed.

mysql> SELECT REVERSE('abc');
 -> 'cba'

This function is multibyte safe.

• RIGHT(str,len)

Returns the rightmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT RIGHT('foobarbar', 4);
 -> 'rbar'

This function is multibyte safe.

• RPAD(str,len,padstr)

Returns the string str, right-padded with the string padstr to a length of len characters. If str is
longer than len, the return value is shortened to len characters.

String Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1015

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT RPAD('hi',5,'?');
 -> 'hi???'
mysql> SELECT RPAD('hi',1,'?');
 -> 'h'

This function is multibyte safe.

• RTRIM(str)

Returns the string str with trailing space characters removed.

mysql> SELECT RTRIM('barbar ');
 -> 'barbar'

This function is multibyte safe.

• SOUNDEX(str)

Returns a soundex string from str. Two strings that sound almost the same should have identical
soundex strings. A standard soundex string is four characters long, but the SOUNDEX() function returns
an arbitrarily long string. You can use SUBSTRING() on the result to get a standard soundex string.
All nonalphabetic characters in str are ignored. All international alphabetic characters outside the A-Z
range are treated as vowels.

Important

When using SOUNDEX(), you should be aware of the following limitations:

• This function, as currently implemented, is intended to work well with strings that are in the English
language only. Strings in other languages may not produce reliable results.

• This function is not guaranteed to provide consistent results with strings that use multibyte character
sets, including utf-8.

We hope to remove these limitations in a future release. See Bug #22638 for more information.

mysql> SELECT SOUNDEX('Hello');
 -> 'H400'
mysql> SELECT SOUNDEX('Quadratically');
 -> 'Q36324'

Note

This function implements the original Soundex algorithm, not the more popular
enhanced version (also described by D. Knuth). The difference is that original
version discards vowels first and duplicates second, whereas the enhanced
version discards duplicates first and vowels second.

• expr1 SOUNDS LIKE expr2

This is the same as SOUNDEX(expr1) = SOUNDEX(expr2).

• SPACE(N)

Returns a string consisting of N space characters.

mysql> SELECT SPACE(6);

String Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1016

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 -> ' '

• SUBSTR(str,pos), SUBSTR(str FROM pos), SUBSTR(str,pos,len), SUBSTR(str FROM pos
FOR len)

SUBSTR() is a synonym for SUBSTRING().

• SUBSTRING(str,pos), SUBSTRING(str FROM pos), SUBSTRING(str,pos,len),
SUBSTRING(str FROM pos FOR len)

The forms without a len argument return a substring from string str starting at position pos. The forms
with a len argument return a substring len characters long from string str, starting at position pos.
The forms that use FROM are standard SQL syntax. It is also possible to use a negative value for pos.
In this case, the beginning of the substring is pos characters from the end of the string, rather than the
beginning. A negative value may be used for pos in any of the forms of this function.

For all forms of SUBSTRING(), the position of the first character in the string from which the substring is
to be extracted is reckoned as 1.

mysql> SELECT SUBSTRING('Quadratically',5);
 -> 'ratically'
mysql> SELECT SUBSTRING('foobarbar' FROM 4);
 -> 'barbar'
mysql> SELECT SUBSTRING('Quadratically',5,6);
 -> 'ratica'
mysql> SELECT SUBSTRING('Sakila', -3);
 -> 'ila'
mysql> SELECT SUBSTRING('Sakila', -5, 3);
 -> 'aki'
mysql> SELECT SUBSTRING('Sakila' FROM -4 FOR 2);
 -> 'ki'

This function is multibyte safe.

If len is less than 1, the result is the empty string.

• SUBSTRING_INDEX(str,delim,count)

Returns the substring from string str before count occurrences of the delimiter delim. If count
is positive, everything to the left of the final delimiter (counting from the left) is returned. If count
is negative, everything to the right of the final delimiter (counting from the right) is returned.
SUBSTRING_INDEX() performs a case-sensitive match when searching for delim.

mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', 2);
 -> 'www.mysql'
mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', -2);
 -> 'mysql.com'

This function is multibyte safe.

• TRIM([{BOTH | LEADING | TRAILING} [remstr] FROM] str), TRIM([remstr FROM]
str)

Returns the string str with all remstr prefixes or suffixes removed. If none of the specifiers BOTH,
LEADING, or TRAILING is given, BOTH is assumed. remstr is optional and, if not specified, spaces are
removed.

mysql> SELECT TRIM(' bar ');

String Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1017

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 -> 'bar'
mysql> SELECT TRIM(LEADING 'x' FROM 'xxxbarxxx');
 -> 'barxxx'
mysql> SELECT TRIM(BOTH 'x' FROM 'xxxbarxxx');
 -> 'bar'
mysql> SELECT TRIM(TRAILING 'xyz' FROM 'barxxyz');
 -> 'barx'

This function is multibyte safe.

• UCASE(str)

UCASE() is a synonym for UPPER().

• UNHEX(str)

For a string argument str, UNHEX(str) interprets each pair of characters in the argument as a
hexadecimal number and converts it to the byte represented by the number. The return value is a binary
string.

mysql> SELECT UNHEX('4D7953514C');
 -> 'MySQL'
mysql> SELECT X'4D7953514C';
 -> 'MySQL'
mysql> SELECT UNHEX(HEX('string'));
 -> 'string'
mysql> SELECT HEX(UNHEX('1267'));
 -> '1267'

The characters in the argument string must be legal hexadecimal digits: '0' .. '9', 'A' .. 'F', 'a' ..
'f'. If the argument contains any nonhexadecimal digits, the result is NULL:

mysql> SELECT UNHEX('GG');
+-------------+
| UNHEX('GG') |
+-------------+
| NULL |
+-------------+

A NULL result can occur if the argument to UNHEX() is a BINARY column, because values are padded
with 0x00 bytes when stored but those bytes are not stripped on retrieval. For example, '41' is stored
into a CHAR(3) column as '41 ' and retrieved as '41' (with the trailing pad space stripped), so
UNHEX() for the column value returns 'A'. By contrast '41' is stored into a BINARY(3) column as
'41\0' and retrieved as '41\0' (with the trailing pad 0x00 byte not stripped). '\0' is not a legal
hexadecimal digit, so UNHEX() for the column value returns NULL.

For a numeric argument N, the inverse of HEX(N) is not performed by UNHEX(). Use
CONV(HEX(N),16,10) instead. See the description of HEX().

• UPPER(str)

Returns the string str with all characters changed to uppercase according to the current character set
mapping. The default is latin1 (cp1252 West European).

mysql> SELECT UPPER('Hej');
 -> 'HEJ'

String Comparison Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1018

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

See the description of LOWER() for information that also applies to UPPER(), such as information about
how to perform lettercase conversion of binary strings (BINARY, VARBINARY, BLOB) for which these
functions are ineffective.

This function is multibyte safe.

12.5.1 String Comparison Functions
Table 12.8 String Comparison Operators

Name Description

LIKE Simple pattern matching

NOT LIKE Negation of simple pattern matching

STRCMP() Compare two strings

If a string function is given a binary string as an argument, the resulting string is also a binary string. A
number converted to a string is treated as a binary string. This affects only comparisons.

Normally, if any expression in a string comparison is case sensitive, the comparison is performed in case-
sensitive fashion.

• expr LIKE pat [ESCAPE 'escape_char']

Pattern matching using an SQL pattern. Returns 1 (TRUE) or 0 (FALSE). If either expr or pat is NULL,
the result is NULL.

The pattern need not be a literal string. For example, it can be specified as a string expression or table
column.

Per the SQL standard, LIKE performs matching on a per-character basis, thus it can produce results
different from the = comparison operator:

mysql> SELECT 'ä' LIKE 'ae' COLLATE latin1_german2_ci;
+---+
| 'ä' LIKE 'ae' COLLATE latin1_german2_ci |
+---+
| 0 |
+---+
mysql> SELECT 'ä' = 'ae' COLLATE latin1_german2_ci;
+--------------------------------------+
| 'ä' = 'ae' COLLATE latin1_german2_ci |
+--------------------------------------+
| 1 |
+--------------------------------------+

In particular, trailing spaces are significant, which is not true for CHAR or VARCHAR comparisons
performed with the = operator:

mysql> SELECT 'a' = 'a ', 'a' LIKE 'a ';
+------------+---------------+
| 'a' = 'a ' | 'a' LIKE 'a ' |
+------------+---------------+
| 1 | 0 |
+------------+---------------+
1 row in set (0.00 sec)

With LIKE you can use the following two wildcard characters in the pattern:

String Comparison Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1019

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• % matches any number of characters, even zero characters.

• _ matches exactly one character.

mysql> SELECT 'David!' LIKE 'David_';
 -> 1
mysql> SELECT 'David!' LIKE '%D%v%';
 -> 1

To test for literal instances of a wildcard character, precede it by the escape character. If you do not
specify the ESCAPE character, “\” is assumed.

• \% matches one “%” character.

• _ matches one “_” character.

mysql> SELECT 'David!' LIKE 'David_';
 -> 0
mysql> SELECT 'David_' LIKE 'David_';
 -> 1

To specify a different escape character, use the ESCAPE clause:

mysql> SELECT 'David_' LIKE 'David|_' ESCAPE '|';
 -> 1

The escape sequence should be empty or one character long. The expression must evaluate as a
constant at execution time. As of MySQL 5.0.16, if the NO_BACKSLASH_ESCAPES SQL mode is enabled,
the sequence cannot be empty.

The following two statements illustrate that string comparisons are not case sensitive unless one of the
operands is a case sensitive (uses a case-sensitive collation or is a binary string):

mysql> SELECT 'abc' LIKE 'ABC';
 -> 1
mysql> SELECT 'abc' LIKE _latin1 'ABC' COLLATE latin1_general_cs;
 -> 0
mysql> SELECT 'abc' LIKE _latin1 'ABC' COLLATE latin1_bin;
 -> 0
mysql> SELECT 'abc' LIKE BINARY 'ABC';
 -> 0

As an extension to standard SQL, MySQL permits LIKE on numeric expressions.

mysql> SELECT 10 LIKE '1%';
 -> 1

Note

Because MySQL uses C escape syntax in strings (for example, “\n” to represent
a newline character), you must double any “\” that you use in LIKE strings. For
example, to search for “\n”, specify it as “\\n”. To search for “\”, specify it as
“\\\\”; this is because the backslashes are stripped once by the parser and
again when the pattern match is made, leaving a single backslash to be matched
against.

String Comparison Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1020

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Exception: At the end of the pattern string, backslash can be specified as “\
\”. At the end of the string, backslash stands for itself because there is nothing
following to escape. Suppose that a table contains the following values:

mysql> SELECT filename FROM t1;
+--------------+
| filename |
+--------------+
| C: |
| C:\ |
| C:\Programs |
| C:\Programs\ |
+--------------+

To test for values that end with backslash, you can match the values using either
of the following patterns:

mysql> SELECT filename, filename LIKE '%\\' FROM t1;
+--------------+---------------------+
| filename | filename LIKE '%\\' |
+--------------+---------------------+
C:	0
C:\	1
C:\Programs	0
C:\Programs\	1
+--------------+---------------------+

mysql> SELECT filename, filename LIKE '%\\\\' FROM t1;
+--------------+-----------------------+
| filename | filename LIKE '%\\\\' |
+--------------+-----------------------+
C:	0
C:\	1
C:\Programs	0
C:\Programs\	1
+--------------+-----------------------+

• expr NOT LIKE pat [ESCAPE 'escape_char']

This is the same as NOT (expr LIKE pat [ESCAPE 'escape_char']).

Note

Aggregate queries involving NOT LIKE comparisons with columns containing
NULL may yield unexpected results. For example, consider the following table
and data:

CREATE TABLE foo (bar VARCHAR(10));

INSERT INTO foo VALUES (NULL), (NULL);

The query SELECT COUNT(*) FROM foo WHERE bar LIKE '%baz%';
returns 0. You might assume that SELECT COUNT(*) FROM foo WHERE bar
NOT LIKE '%baz%'; would return 2. However, this is not the case: The second
query returns 0. This is because NULL NOT LIKE expr always returns NULL,
regardless of the value of expr. The same is true for aggregate queries involving
NULL and comparisons using NOT RLIKE or NOT REGEXP. In such cases, you
must test explicitly for NOT NULL using OR (and not AND), as shown here:

Regular Expressions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1021

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT COUNT(*) FROM foo WHERE bar NOT LIKE '%baz%' OR bar IS NULL;

• STRCMP(expr1,expr2)

STRCMP() returns 0 if the strings are the same, -1 if the first argument is smaller than the second
according to the current sort order, and 1 otherwise.

mysql> SELECT STRCMP('text', 'text2');
 -> -1
mysql> SELECT STRCMP('text2', 'text');
 -> 1
mysql> SELECT STRCMP('text', 'text');
 -> 0

STRCMP() performs the comparison using the collation of the arguments.

mysql> SET @s1 = _latin1 'x' COLLATE latin1_general_ci;
mysql> SET @s2 = _latin1 'X' COLLATE latin1_general_ci;
mysql> SET @s3 = _latin1 'x' COLLATE latin1_general_cs;
mysql> SET @s4 = _latin1 'X' COLLATE latin1_general_cs;
mysql> SELECT STRCMP(@s1, @s2), STRCMP(@s3, @s4);
+------------------+------------------+
| STRCMP(@s1, @s2) | STRCMP(@s3, @s4) |
+------------------+------------------+
| 0 | 1 |
+------------------+------------------+

If the collations are incompatible, one of the arguments must be converted to be compatible with the
other. See Section 10.1.7.5, “Collation of Expressions”.

mysql> SELECT STRCMP(@s1, @s3);
ERROR 1267 (HY000): Illegal mix of collations (latin1_general_ci,IMPLICIT)
and (latin1_general_cs,IMPLICIT) for operation 'strcmp'
mysql> SELECT STRCMP(@s1, @s3 COLLATE latin1_general_ci);
+--+
| STRCMP(@s1, @s3 COLLATE latin1_general_ci) |
+--+
| 0 |
+--+

12.5.2 Regular Expressions

Table 12.9 String Regular Expression Operators

Name Description

NOT REGEXP Negation of REGEXP

REGEXP Pattern matching using regular expressions

RLIKE Synonym for REGEXP

A regular expression is a powerful way of specifying a pattern for a complex search.

MySQL uses Henry Spencer's implementation of regular expressions, which is aimed at conformance with
POSIX 1003.2. MySQL uses the extended version to support pattern-matching operations performed with
the REGEXP operator in SQL statements.

Regular Expressions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1022

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This section summarizes, with examples, the special characters and constructs that can be used in MySQL
for REGEXP operations. It does not contain all the details that can be found in Henry Spencer's regex(7)
manual page. That manual page is included in MySQL source distributions, in the regex.7 file under the
regex directory. See also Section 3.3.4.7, “Pattern Matching”.

Regular Expression Operators

• expr NOT REGEXP pat, expr NOT RLIKE pat

This is the same as NOT (expr REGEXP pat).

• expr REGEXP pat, expr RLIKE pat

Performs a pattern match of a string expression expr against a pattern pat. The pattern can be an
extended regular expression, the syntax for which is discussed later in this section. Returns 1 if expr
matches pat; otherwise it returns 0. If either expr or pat is NULL, the result is NULL. RLIKE is a
synonym for REGEXP, provided for mSQL compatibility.

The pattern need not be a literal string. For example, it can be specified as a string expression or table
column.

Note

Because MySQL uses the C escape syntax in strings (for example, “\n” to
represent the newline character), you must double any “\” that you use in your
REGEXP strings.

REGEXP is not case sensitive, except when used with binary strings.

mysql> SELECT 'Monty!' REGEXP '.*';
 -> 1
mysql> SELECT 'new*\n*line' REGEXP 'new*.*line';
 -> 1
mysql> SELECT 'a' REGEXP 'A', 'a' REGEXP BINARY 'A';
 -> 1 0
mysql> SELECT 'a' REGEXP '^[a-d]';
 -> 1

REGEXP and RLIKE use the character set and collations of the arguments when deciding the type of a
character and performing the comparison. If the arguments have different character sets or collations,
coercibility rules apply as described in Section 10.1.7.5, “Collation of Expressions”.

Warning

The REGEXP and RLIKE operators work in byte-wise fashion, so they are not
multibyte safe and may produce unexpected results with multibyte character
sets. In addition, these operators compare characters by their byte values and
accented characters may not compare as equal even if a given collation treats
them as equal.

Syntax of Regular Expressions

A regular expression describes a set of strings. The simplest regular expression is one that has no special
characters in it. For example, the regular expression hello matches hello and nothing else.

Nontrivial regular expressions use certain special constructs so that they can match more than one string.
For example, the regular expression hello|word matches either the string hello or the string word.

Regular Expressions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1023

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

As a more complex example, the regular expression B[an]*s matches any of the strings Bananas,
Baaaaas, Bs, and any other string starting with a B, ending with an s, and containing any number of a or n
characters in between.

A regular expression for the REGEXP operator may use any of the following special characters and
constructs:

• ^

Match the beginning of a string.

mysql> SELECT 'fo\nfo' REGEXP '^fo$'; -> 0
mysql> SELECT 'fofo' REGEXP '^fo'; -> 1

• $

Match the end of a string.

mysql> SELECT 'fo\no' REGEXP '^fo\no$'; -> 1
mysql> SELECT 'fo\no' REGEXP '^fo$'; -> 0

• .

Match any character (including carriage return and newline).

mysql> SELECT 'fofo' REGEXP '^f.*$'; -> 1
mysql> SELECT 'fo\r\nfo' REGEXP '^f.*$'; -> 1

• a*

Match any sequence of zero or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Baaan' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba*n'; -> 1

• a+

Match any sequence of one or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba+n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba+n'; -> 0

• a?

Match either zero or one a character.

mysql> SELECT 'Bn' REGEXP '^Ba?n'; -> 1
mysql> SELECT 'Ban' REGEXP '^Ba?n'; -> 1
mysql> SELECT 'Baan' REGEXP '^Ba?n'; -> 0

• de|abc

Match either of the sequences de or abc.

mysql> SELECT 'pi' REGEXP 'pi|apa'; -> 1

Regular Expressions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1024

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT 'axe' REGEXP 'pi|apa'; -> 0
mysql> SELECT 'apa' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'apa' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pi' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pix' REGEXP '^(pi|apa)$'; -> 0

• (abc)*

Match zero or more instances of the sequence abc.

mysql> SELECT 'pi' REGEXP '^(pi)*$'; -> 1
mysql> SELECT 'pip' REGEXP '^(pi)*$'; -> 0
mysql> SELECT 'pipi' REGEXP '^(pi)*$'; -> 1

• {1}, {2,3}

{n} or {m,n} notation provides a more general way of writing regular expressions that match many
occurrences of the previous atom (or “piece”) of the pattern. m and n are integers.

• a*

Can be written as a{0,}.

• a+

Can be written as a{1,}.

• a?

Can be written as a{0,1}.

To be more precise, a{n} matches exactly n instances of a. a{n,} matches n or more instances of a.
a{m,n} matches m through n instances of a, inclusive.

m and n must be in the range from 0 to RE_DUP_MAX (default 255), inclusive. If both m and n are given, m
must be less than or equal to n.

mysql> SELECT 'abcde' REGEXP 'a[bcd]{2}e'; -> 0
mysql> SELECT 'abcde' REGEXP 'a[bcd]{3}e'; -> 1
mysql> SELECT 'abcde' REGEXP 'a[bcd]{1,10}e'; -> 1

• [a-dX], [^a-dX]

Matches any character that is (or is not, if ^ is used) either a, b, c, d or X. A - character between two
other characters forms a range that matches all characters from the first character to the second. For
example, [0-9] matches any decimal digit. To include a literal] character, it must immediately follow
the opening bracket [. To include a literal - character, it must be written first or last. Any character that
does not have a defined special meaning inside a [] pair matches only itself.

mysql> SELECT 'aXbc' REGEXP '[a-dXYZ]'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]$'; -> 0
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]+$'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[^a-dXYZ]+$'; -> 0
mysql> SELECT 'gheis' REGEXP '^[^a-dXYZ]+$'; -> 1
mysql> SELECT 'gheisa' REGEXP '^[^a-dXYZ]+$'; -> 0

• [.characters.]

Regular Expressions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1025

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Within a bracket expression (written using [and]), matches the sequence of characters of that collating
element. characters is either a single character or a character name like newline. The following
table lists the permissible character names.

The following table shows the permissible character names and the characters that they match. For
characters given as numeric values, the values are represented in octal.

Name Character Name Character

NUL 0 SOH 001

STX 002 ETX 003

EOT 004 ENQ 005

ACK 006 BEL 007

alert 007 BS 010

backspace '\b' HT 011

tab '\t' LF 012

newline '\n' VT 013

vertical-tab '\v' FF 014

form-feed '\f' CR 015

carriage-return '\r' SO 016

SI 017 DLE 020

DC1 021 DC2 022

DC3 023 DC4 024

NAK 025 SYN 026

ETB 027 CAN 030

EM 031 SUB 032

ESC 033 IS4 034

FS 034 IS3 035

GS 035 IS2 036

RS 036 IS1 037

US 037 space ' '

exclamation-mark '!' quotation-mark '"'

number-sign '#' dollar-sign '$'

percent-sign '%' ampersand '&'

apostrophe '\'' left-parenthesis '('

right-parenthesis ')' asterisk '*'

plus-sign '+' comma ','

hyphen '-' hyphen-minus '-'

period '.' full-stop '.'

slash '/' solidus '/'

zero '0' one '1'

Regular Expressions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1026

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Character Name Character

two '2' three '3'

four '4' five '5'

six '6' seven '7'

eight '8' nine '9'

colon ':' semicolon ';'

less-than-sign '<' equals-sign '='

greater-than-sign '>' question-mark '?'

commercial-at '@' left-square-
bracket

'['

backslash '\\' reverse-solidus '\\'

right-square-
bracket

']' circumflex '^'

circumflex-accent '^' underscore '_'

low-line '_' grave-accent '`'

left-brace '{' left-curly-bracket '{'

vertical-line '|' right-brace '}'

right-curly-
bracket

'}' tilde '~'

DEL 177

mysql> SELECT '~' REGEXP '[[.~.]]'; -> 1
mysql> SELECT '~' REGEXP '[[.tilde.]]'; -> 1

• [=character_class=]

Within a bracket expression (written using [and]), [=character_class=] represents an
equivalence class. It matches all characters with the same collation value, including itself. For example,
if o and (+) are the members of an equivalence class, [[=o=]], [[=(+)=]], and [o(+)] are all
synonymous. An equivalence class may not be used as an endpoint of a range.

• [:character_class:]

Within a bracket expression (written using [and]), [:character_class:] represents a character
class that matches all characters belonging to that class. The following table lists the standard class
names. These names stand for the character classes defined in the ctype(3) manual page. A
particular locale may provide other class names. A character class may not be used as an endpoint of a
range.

Character Class
Name

Meaning

alnum Alphanumeric characters

alpha Alphabetic characters

blank Whitespace characters

cntrl Control characters

digit Digit characters

Numeric Functions and Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1027

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Character Class
Name

Meaning

graph Graphic characters

lower Lowercase alphabetic characters

print Graphic or space characters

punct Punctuation characters

space Space, tab, newline, and carriage return

upper Uppercase alphabetic characters

xdigit Hexadecimal digit characters

mysql> SELECT 'justalnums' REGEXP '[[:alnum:]]+'; -> 1
mysql> SELECT '!!' REGEXP '[[:alnum:]]+'; -> 0

• [[:<:]], [[:>:]]

These markers stand for word boundaries. They match the beginning and end of words, respectively. A
word is a sequence of word characters that is not preceded by or followed by word characters. A word
character is an alphanumeric character in the alnum class or an underscore (_).

mysql> SELECT 'a word a' REGEXP '[[:<:]]word[[:>:]]'; -> 1
mysql> SELECT 'a xword a' REGEXP '[[:<:]]word[[:>:]]'; -> 0

To use a literal instance of a special character in a regular expression, precede it by two backslash (\)
characters. The MySQL parser interprets one of the backslashes, and the regular expression library
interprets the other. For example, to match the string 1+2 that contains the special + character, only the
last of the following regular expressions is the correct one:

mysql> SELECT '1+2' REGEXP '1+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\\+2'; -> 1

12.6 Numeric Functions and Operators
Table 12.10 Numeric Functions and Operators

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent of the two arguments

CEIL() Return the smallest integer value not less than the argument

CEILING() Return the smallest integer value not less than the argument

CONV() Convert numbers between different number bases

COS() Return the cosine

COT() Return the cotangent

CRC32() Compute a cyclic redundancy check value

Arithmetic Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1028

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

DEGREES() Convert radians to degrees

DIV Integer division

/ Division operator

EXP() Raise to the power of

FLOOR() Return the largest integer value not greater than the argument

LN() Return the natural logarithm of the argument

LOG() Return the natural logarithm of the first argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

- Minus operator

MOD() Return the remainder

%, MOD Modulo operator

PI() Return the value of pi

+ Addition operator

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

ROUND() Round the argument

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

* Multiplication operator

TRUNCATE() Truncate to specified number of decimal places

- Change the sign of the argument

12.6.1 Arithmetic Operators
Table 12.11 Arithmetic Operators

Name Description

DIV Integer division

/ Division operator

- Minus operator

%, MOD Modulo operator

+ Addition operator

* Multiplication operator

- Change the sign of the argument

The usual arithmetic operators are available. The result is determined according to the following rules:

Arithmetic Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1029

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• In the case of -, +, and *, the result is calculated with BIGINT (64-bit) precision if both operands are
integers.

• If both operands are integers and any of them are unsigned, the result is an unsigned integer. For
subtraction, if the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the result is signed even if any
operand is unsigned.

• If any of the operands of a +, -, /, *, % is a real or string value, the precision of the result is the precision
of the operand with the maximum precision.

• In division performed with /, the scale of the result when using two exact-value operands is the scale
of the first operand plus the value of the div_precision_increment system variable (which is 4 by
default). For example, the result of the expression 5.05 / 0.014 has a scale of six decimal places
(360.714286).

These rules are applied for each operation, such that nested calculations imply the precision of each
component. Hence, (14620 / 9432456) / (24250 / 9432456), resolves first to (0.0014) /
(0.0026), with the final result having 8 decimal places (0.60288653).

Because of these rules and the way they are applied, care should be taken to ensure that components and
subcomponents of a calculation use the appropriate level of precision. See Section 12.10, “Cast Functions
and Operators”.

For information about handling of overflow in numeric expression evaluation, see Section 11.2.6, “Out-of-
Range and Overflow Handling”.

Arithmetic operators apply to numbers. For other types of values, alternative operations may be available.
For example, to add date values, use DATE_ADD(); see Section 12.7, “Date and Time Functions”.

• +

Addition:

mysql> SELECT 3+5;
 -> 8

• -

Subtraction:

mysql> SELECT 3-5;
 -> -2

• -

Unary minus. This operator changes the sign of the operand.

mysql> SELECT - 2;
 -> -2

Note

If this operator is used with a BIGINT, the return value is also a BIGINT. This
means that you should avoid using - on integers that may have the value of −263.

• *

Mathematical Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1030

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Multiplication:

mysql> SELECT 3*5;
 -> 15
mysql> SELECT 18014398509481984*18014398509481984.0;
 -> 324518553658426726783156020576256.0

• /

Division:

mysql> SELECT 3/5;
 -> 0.60

Division by zero produces a NULL result:

mysql> SELECT 102/(1-1);
 -> NULL

A division is calculated with BIGINT arithmetic only if performed in a context where its result is converted
to an integer.

• DIV

Integer division. Discards from the division result any fractional part to the right of the decimal point.
Incorrect results may occur for noninteger operands that exceed BIGINT range.

mysql> SELECT 5 DIV 2, -5 DIV 2, 5 DIV -2, -5 DIV -2;
 -> 2, -2, -2, 2

• N % M, N MOD M

Modulo operation. Returns the remainder of N divided by M. For more information, see the description for
the MOD() function in Section 12.6.2, “Mathematical Functions”.

12.6.2 Mathematical Functions

Table 12.12 Mathematical Functions

Name Description

ABS() Return the absolute value

ACOS() Return the arc cosine

ASIN() Return the arc sine

ATAN() Return the arc tangent

ATAN2(), ATAN() Return the arc tangent of the two arguments

CEIL() Return the smallest integer value not less than the argument

CEILING() Return the smallest integer value not less than the argument

CONV() Convert numbers between different number bases

COS() Return the cosine

COT() Return the cotangent

Mathematical Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1031

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

CRC32() Compute a cyclic redundancy check value

DEGREES() Convert radians to degrees

EXP() Raise to the power of

FLOOR() Return the largest integer value not greater than the argument

LN() Return the natural logarithm of the argument

LOG() Return the natural logarithm of the first argument

LOG10() Return the base-10 logarithm of the argument

LOG2() Return the base-2 logarithm of the argument

MOD() Return the remainder

PI() Return the value of pi

POW() Return the argument raised to the specified power

POWER() Return the argument raised to the specified power

RADIANS() Return argument converted to radians

RAND() Return a random floating-point value

ROUND() Round the argument

SIGN() Return the sign of the argument

SIN() Return the sine of the argument

SQRT() Return the square root of the argument

TAN() Return the tangent of the argument

TRUNCATE() Truncate to specified number of decimal places

All mathematical functions return NULL in the event of an error.

• ABS(X)

Returns the absolute value of X.

mysql> SELECT ABS(2);
 -> 2
mysql> SELECT ABS(-32);
 -> 32

This function is safe to use with BIGINT values.

• ACOS(X)

Returns the arc cosine of X, that is, the value whose cosine is X. Returns NULL if X is not in the range -1
to 1.

mysql> SELECT ACOS(1);
 -> 0
mysql> SELECT ACOS(1.0001);
 -> NULL
mysql> SELECT ACOS(0);
 -> 1.5707963267949

• ASIN(X)

Mathematical Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1032

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Returns the arc sine of X, that is, the value whose sine is X. Returns NULL if X is not in the range -1 to 1.

mysql> SELECT ASIN(0.2);
 -> 0.20135792079033
mysql> SELECT ASIN('foo');

+-------------+
| ASIN('foo') |
+-------------+
| 0 |
+-------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1292 | Truncated incorrect DOUBLE value: 'foo' |
+---------+------+---+

• ATAN(X)

Returns the arc tangent of X, that is, the value whose tangent is X.

mysql> SELECT ATAN(2);
 -> 1.1071487177941
mysql> SELECT ATAN(-2);
 -> -1.1071487177941

• ATAN(Y,X), ATAN2(Y,X)

Returns the arc tangent of the two variables X and Y. It is similar to calculating the arc tangent of Y / X,
except that the signs of both arguments are used to determine the quadrant of the result.

mysql> SELECT ATAN(-2,2);
 -> -0.78539816339745
mysql> SELECT ATAN2(PI(),0);
 -> 1.5707963267949

• CEIL(X)

CEIL() is a synonym for CEILING().

• CEILING(X)

Returns the smallest integer value not less than X.

mysql> SELECT CEILING(1.23);
 -> 2
mysql> SELECT CEILING(-1.23);
 -> -1

For exact-value numeric arguments, the return value has an exact-value numeric type. For string or
floating-point arguments, the return value has a floating-point type.

• CONV(N,from_base,to_base)

Converts numbers between different number bases. Returns a string representation of the number
N, converted from base from_base to base to_base. Returns NULL if any argument is NULL. The

Mathematical Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1033

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

argument N is interpreted as an integer, but may be specified as an integer or a string. The minimum
base is 2 and the maximum base is 36. If from_base is a negative number, N is regarded as a signed
number. Otherwise, N is treated as unsigned. CONV() works with 64-bit precision.

mysql> SELECT CONV('a',16,2);
 -> '1010'
mysql> SELECT CONV('6E',18,8);
 -> '172'
mysql> SELECT CONV(-17,10,-18);
 -> '-H'
mysql> SELECT CONV(10+'10'+'10'+X'0a',10,10);
 -> '40'

• COS(X)

Returns the cosine of X, where X is given in radians.

mysql> SELECT COS(PI());
 -> -1

• COT(X)

Returns the cotangent of X.

mysql> SELECT COT(12);
 -> -1.5726734063977
mysql> SELECT COT(0);
 -> NULL

• CRC32(expr)

Computes a cyclic redundancy check value and returns a 32-bit unsigned value. The result is NULL if the
argument is NULL. The argument is expected to be a string and (if possible) is treated as one if it is not.

mysql> SELECT CRC32('MySQL');
 -> 3259397556
mysql> SELECT CRC32('mysql');
 -> 2501908538

• DEGREES(X)

Returns the argument X, converted from radians to degrees.

mysql> SELECT DEGREES(PI());
 -> 180
mysql> SELECT DEGREES(PI() / 2);
 -> 90

• EXP(X)

Returns the value of e (the base of natural logarithms) raised to the power of X. The inverse of this
function is LOG() (using a single argument only) or LN().

mysql> SELECT EXP(2);
 -> 7.3890560989307
mysql> SELECT EXP(-2);
 -> 0.13533528323661
mysql> SELECT EXP(0);

Mathematical Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1034

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 -> 1

• FLOOR(X)

Returns the largest integer value not greater than X.

mysql> SELECT FLOOR(1.23), FLOOR(-1.23);
 -> 1, -2

For exact-value numeric arguments, the return value has an exact-value numeric type. For string or
floating-point arguments, the return value has a floating-point type.

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns the
result as a string. For details, see Section 12.5, “String Functions”.

• HEX(N_or_S)

This function can be used to obtain a hexadecimal representation of a decimal number or a string; the
manner in which it does so varies according to the argument's type. See this function's description in
Section 12.5, “String Functions”, for details.

• LN(X)

Returns the natural logarithm of X; that is, the base-e logarithm of X. If X is less than or equal to 0, then
NULL is returned.

mysql> SELECT LN(2);
 -> 0.69314718055995
mysql> SELECT LN(-2);
 -> NULL

This function is synonymous with LOG(X). The inverse of this function is the EXP() function.

• LOG(X), LOG(B,X)

If called with one parameter, this function returns the natural logarithm of X. If X is less than or equal to 0,
then NULL is returned.

The inverse of this function (when called with a single argument) is the EXP() function.

mysql> SELECT LOG(2);
 -> 0.69314718055995
mysql> SELECT LOG(-2);
 -> NULL

If called with two parameters, this function returns the logarithm of X to the base B. If X is less than or
equal to 0, or if B is less than or equal to 1, then NULL is returned.

mysql> SELECT LOG(2,65536);
 -> 16
mysql> SELECT LOG(10,100);
 -> 2
mysql> SELECT LOG(1,100);
 -> NULL

LOG(B,X) is equivalent to LOG(X) / LOG(B).

Mathematical Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1035

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• LOG2(X)

Returns the base-2 logarithm of X.

mysql> SELECT LOG2(65536);
 -> 16
mysql> SELECT LOG2(-100);
 -> NULL

LOG2() is useful for finding out how many bits a number requires for storage. This function is equivalent
to the expression LOG(X) / LOG(2).

• LOG10(X)

Returns the base-10 logarithm of X.

mysql> SELECT LOG10(2);
 -> 0.30102999566398
mysql> SELECT LOG10(100);
 -> 2
mysql> SELECT LOG10(-100);
 -> NULL

LOG10(X) is equivalent to LOG(10,X).

• MOD(N,M), N % M, N MOD M

Modulo operation. Returns the remainder of N divided by M.

mysql> SELECT MOD(234, 10);
 -> 4
mysql> SELECT 253 % 7;
 -> 1
mysql> SELECT MOD(29,9);
 -> 2
mysql> SELECT 29 MOD 9;
 -> 2

This function is safe to use with BIGINT values.

MOD() also works on values that have a fractional part and returns the exact remainder after division:

mysql> SELECT MOD(34.5,3);
 -> 1.5

MOD(N,0) returns NULL.

• PI()

Returns the value of π (pi). The default number of decimal places displayed is seven, but MySQL uses
the full double-precision value internally.

mysql> SELECT PI();
 -> 3.141593
mysql> SELECT PI()+0.000000000000000000;
 -> 3.141592653589793116

• POW(X,Y)

Mathematical Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1036

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Returns the value of X raised to the power of Y.

mysql> SELECT POW(2,2);
 -> 4
mysql> SELECT POW(2,-2);
 -> 0.25

• POWER(X,Y)

This is a synonym for POW().

• RADIANS(X)

Returns the argument X, converted from degrees to radians. (Note that π radians equals 180 degrees.)

mysql> SELECT RADIANS(90);
 -> 1.5707963267949

• RAND(), RAND(N)

Returns a random floating-point value v in the range 0 <= v < 1.0. If a constant integer argument N is
specified, it is used as the seed value, which produces a repeatable sequence of column values. In the
following example, note that the sequences of values produced by RAND(3) is the same both places
where it occurs.

mysql> CREATE TABLE t (i INT);
Query OK, 0 rows affected (0.42 sec)

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT i, RAND() FROM t;
+------+------------------+
| i | RAND() |
+------+------------------+
1	0.61914388706828
2	0.93845168309142
3	0.83482678498591
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND(3) FROM t;
+------+------------------+
| i | RAND(3) |
+------+------------------+
1	0.90576975597606
2	0.37307905813035
3	0.14808605345719
+------+------------------+
3 rows in set (0.00 sec)

mysql> SELECT i, RAND() FROM t;
+------+------------------+
| i | RAND() |
+------+------------------+
1	0.35877890638893
2	0.28941420772058
3	0.37073435016976
+------+------------------+

Mathematical Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1037

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

3 rows in set (0.00 sec)

mysql> SELECT i, RAND(3) FROM t;
+------+------------------+
| i | RAND(3) |
+------+------------------+
1	0.90576975597606
2	0.37307905813035
3	0.14808605345719
+------+------------------+
3 rows in set (0.01 sec)

The effect of using a nonconstant argument is undefined. As of MySQL 5.0.13, nonconstant arguments
are not permitted.

To obtain a random integer R in the range i <= R < j, use the expression FLOOR(i + RAND() * (j
− i)). For example, to obtain a random integer in the range the range 7 <= R < 12, you could use the
following statement:

SELECT FLOOR(7 + (RAND() * 5));

RAND() in a WHERE clause is re-evaluated every time the WHERE is executed.

Use of a column with RAND() values in an ORDER BY or GROUP BY clause may yield unexpected
results because for either clause a RAND() expression can be evaluated multiple times for the same
row, each time returning a different result. However, you can retrieve rows in random order like this:

mysql> SELECT * FROM tbl_name ORDER BY RAND();

ORDER BY RAND() combined with LIMIT is useful for selecting a random sample from a set of rows:

mysql> SELECT * FROM table1, table2 WHERE a=b AND c<d ORDER BY RAND() LIMIT 1000;

RAND() is not meant to be a perfect random generator. It is a fast way to generate random numbers on
demand that is portable between platforms for the same MySQL version.

• ROUND(X), ROUND(X,D)

Rounds the argument X to D decimal places. The rounding algorithm depends on the data type of X. D
defaults to 0 if not specified. D can be negative to cause D digits left of the decimal point of the value X to
become zero.

mysql> SELECT ROUND(-1.23);
 -> -1
mysql> SELECT ROUND(-1.58);
 -> -2
mysql> SELECT ROUND(1.58);
 -> 2
mysql> SELECT ROUND(1.298, 1);
 -> 1.3
mysql> SELECT ROUND(1.298, 0);
 -> 1
mysql> SELECT ROUND(23.298, -1);
 -> 20

The return type is the same type as that of the first argument (assuming that it is integer, double, or
decimal). This means that for an integer argument, the result is an integer (no decimal places):

Mathematical Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1038

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT ROUND(150.000,2), ROUND(150,2);
+------------------+--------------+
| ROUND(150.000,2) | ROUND(150,2) |
+------------------+--------------+
| 150.00 | 150 |
+------------------+--------------+

Before MySQL 5.0.3, the behavior of ROUND() when the argument is halfway between two integers
depends on the C library implementation. Different implementations round to the nearest even number,
always up, always down, or always toward zero. If you need one kind of rounding, you should use a well-
defined function such as TRUNCATE() or FLOOR() instead.

As of MySQL 5.0.3, ROUND() uses the following rules depending on the type of the first argument:

• For exact-value numbers, ROUND() uses the “round half away from zero” or “round toward nearest”
rule: A value with a fractional part of .5 or greater is rounded up to the next integer if positive or down
to the next integer if negative. (In other words, it is rounded away from zero.) A value with a fractional
part less than .5 is rounded down to the next integer if positive or up to the next integer if negative.

• For approximate-value numbers, the result depends on the C library. On many systems, this means
that ROUND() uses the "round to nearest even" rule: A value with any fractional part is rounded to the
nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+

For more information, see Section 12.17, “Precision Math”.

• SIGN(X)

Returns the sign of the argument as -1, 0, or 1, depending on whether X is negative, zero, or positive.

mysql> SELECT SIGN(-32);
 -> -1
mysql> SELECT SIGN(0);
 -> 0
mysql> SELECT SIGN(234);
 -> 1

• SIN(X)

Returns the sine of X, where X is given in radians.

mysql> SELECT SIN(PI());
 -> 1.2246063538224e-16
mysql> SELECT ROUND(SIN(PI()));
 -> 0

• SQRT(X)

Returns the square root of a nonnegative number X.

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1039

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT SQRT(4);
 -> 2
mysql> SELECT SQRT(20);
 -> 4.4721359549996
mysql> SELECT SQRT(-16);
 -> NULL

• TAN(X)

Returns the tangent of X, where X is given in radians.

mysql> SELECT TAN(PI());
 -> -1.2246063538224e-16
mysql> SELECT TAN(PI()+1);
 -> 1.5574077246549

• TRUNCATE(X,D)

Returns the number X, truncated to D decimal places. If D is 0, the result has no decimal point or
fractional part. D can be negative to cause D digits left of the decimal point of the value X to become
zero.

mysql> SELECT TRUNCATE(1.223,1);
 -> 1.2
mysql> SELECT TRUNCATE(1.999,1);
 -> 1.9
mysql> SELECT TRUNCATE(1.999,0);
 -> 1
mysql> SELECT TRUNCATE(-1.999,1);
 -> -1.9
mysql> SELECT TRUNCATE(122,-2);
 -> 100
mysql> SELECT TRUNCATE(10.28*100,0);
 -> 1028

All numbers are rounded toward zero.

12.7 Date and Time Functions
This section describes the functions that can be used to manipulate temporal values. See Section 11.3,
“Date and Time Types”, for a description of the range of values each date and time type has and the valid
formats in which values may be specified.

Table 12.13 Date/Time Functions

Name Description

ADDDATE() Add time values (intervals) to a date value

ADDTIME() Add time

CONVERT_TZ() Convert from one timezone to another

CURDATE() Return the current date

CURRENT_DATE(), CURRENT_DATE Synonyms for CURDATE()

CURRENT_TIME(), CURRENT_TIME Synonyms for CURTIME()

CURRENT_TIMESTAMP(),
CURRENT_TIMESTAMP

Synonyms for NOW()

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1040

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

CURTIME() Return the current time

DATE() Extract the date part of a date or datetime expression

DATE_ADD() Add time values (intervals) to a date value

DATE_FORMAT() Format date as specified

DATE_SUB() Subtract a time value (interval) from a date

DATEDIFF() Subtract two dates

DAY() Synonym for DAYOFMONTH()

DAYNAME() Return the name of the weekday

DAYOFMONTH() Return the day of the month (0-31)

DAYOFWEEK() Return the weekday index of the argument

DAYOFYEAR() Return the day of the year (1-366)

EXTRACT() Extract part of a date

FROM_DAYS() Convert a day number to a date

FROM_UNIXTIME() Format UNIX timestamp as a date

GET_FORMAT() Return a date format string

HOUR() Extract the hour

LAST_DAY Return the last day of the month for the argument

LOCALTIME(), LOCALTIME Synonym for NOW()

LOCALTIMESTAMP,
LOCALTIMESTAMP()

Synonym for NOW()

MAKEDATE() Create a date from the year and day of year

MAKETIME() Create time from hour, minute, second

MICROSECOND() Return the microseconds from argument

MINUTE() Return the minute from the argument

MONTH() Return the month from the date passed

MONTHNAME() Return the name of the month

NOW() Return the current date and time

PERIOD_ADD() Add a period to a year-month

PERIOD_DIFF() Return the number of months between periods

QUARTER() Return the quarter from a date argument

SEC_TO_TIME() Converts seconds to 'HH:MM:SS' format

SECOND() Return the second (0-59)

STR_TO_DATE() Convert a string to a date

SUBDATE() Synonym for DATE_SUB() when invoked with three arguments

SUBTIME() Subtract times

SYSDATE() Return the time at which the function executes

TIME() Extract the time portion of the expression passed

TIME_FORMAT() Format as time

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1041

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

TIME_TO_SEC() Return the argument converted to seconds

TIMEDIFF() Subtract time

TIMESTAMP() With a single argument, this function returns the date or
datetime expression; with two arguments, the sum of the
arguments

TIMESTAMPADD() Add an interval to a datetime expression

TIMESTAMPDIFF() Subtract an interval from a datetime expression

TO_DAYS() Return the date argument converted to days

UNIX_TIMESTAMP() Return a UNIX timestamp

UTC_DATE() Return the current UTC date

UTC_TIME() Return the current UTC time

UTC_TIMESTAMP() Return the current UTC date and time

WEEK() Return the week number

WEEKDAY() Return the weekday index

WEEKOFYEAR() Return the calendar week of the date (1-53)

YEAR() Return the year

YEARWEEK() Return the year and week

Here is an example that uses date functions. The following query selects all rows with a date_col value
from within the last 30 days:

mysql> SELECT something FROM tbl_name
 -> WHERE DATE_SUB(CURDATE(),INTERVAL 30 DAY) <= date_col;

The query also selects rows with dates that lie in the future.

Functions that expect date values usually accept datetime values and ignore the time part. Functions that
expect time values usually accept datetime values and ignore the date part.

Functions that return the current date or time each are evaluated only once per query at the start of query
execution. This means that multiple references to a function such as NOW() within a single query always
produce the same result. (For our purposes, a single query also includes a call to a stored program (stored
routine or trigger) and all subprograms called by that program.) This principle also applies to CURDATE(),
CURTIME(), UTC_DATE(), UTC_TIME(), UTC_TIMESTAMP(), and to any of their synonyms.

The CURRENT_TIMESTAMP(), CURRENT_TIME(), CURRENT_DATE(), and FROM_UNIXTIME() functions
return values in the connection's current time zone, which is available as the value of the time_zone
system variable. In addition, UNIX_TIMESTAMP() assumes that its argument is a datetime value in the
current time zone. See Section 10.6, “MySQL Server Time Zone Support”.

Some date functions can be used with “zero” dates or incomplete dates such as '2001-11-00', whereas
others cannot. Functions that extract parts of dates typically work with incomplete dates and thus can
return 0 when you might otherwise expect a nonzero value. For example:

mysql> SELECT DAYOFMONTH('2001-11-00'), MONTH('2005-00-00');
 -> 0, 0

Other functions expect complete dates and return NULL for incomplete dates. These include functions that
perform date arithmetic or that map parts of dates to names. For example:

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1042

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT DATE_ADD('2006-05-00',INTERVAL 1 DAY);
 -> NULL
mysql> SELECT DAYNAME('2006-05-00');
 -> NULL

• ADDDATE(date,INTERVAL expr unit), ADDDATE(expr,days)

When invoked with the INTERVAL form of the second argument, ADDDATE() is a synonym for
DATE_ADD(). The related function SUBDATE() is a synonym for DATE_SUB(). For information on the
INTERVAL unit argument, see the discussion for DATE_ADD().

mysql> SELECT DATE_ADD('2008-01-02', INTERVAL 31 DAY);
 -> '2008-02-02'
mysql> SELECT ADDDATE('2008-01-02', INTERVAL 31 DAY);
 -> '2008-02-02'

When invoked with the days form of the second argument, MySQL treats it as an integer number of
days to be added to expr.

mysql> SELECT ADDDATE('2008-01-02', 31);
 -> '2008-02-02'

• ADDTIME(expr1,expr2)

ADDTIME() adds expr2 to expr1 and returns the result. expr1 is a time or datetime expression, and
expr2 is a time expression.

mysql> SELECT ADDTIME('2007-12-31 23:59:59.999999', '1 1:1:1.000002');
 -> '2008-01-02 01:01:01.000001'
mysql> SELECT ADDTIME('01:00:00.999999', '02:00:00.999998');
 -> '03:00:01.999997'

• CONVERT_TZ(dt,from_tz,to_tz)

CONVERT_TZ() converts a datetime value dt from the time zone given by from_tz to the time zone
given by to_tz and returns the resulting value. Time zones are specified as described in Section 10.6,
“MySQL Server Time Zone Support”. This function returns NULL if the arguments are invalid.

If the value falls out of the supported range of the TIMESTAMP type when converted from from_tz to
UTC, no conversion occurs. The TIMESTAMP range is described in Section 11.1.2, “Date and Time Type
Overview”.

mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','GMT','MET');
 -> '2004-01-01 13:00:00'
mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','+00:00','+10:00');
 -> '2004-01-01 22:00:00'

Note

To use named time zones such as 'MET' or 'Europe/Moscow', the time zone
tables must be properly set up. See Section 10.6, “MySQL Server Time Zone
Support”, for instructions.

If you intend to use CONVERT_TZ() while other tables are locked with LOCK TABLES, you must also
lock the mysql.time_zone_name table.

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1043

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• CURDATE()

Returns the current date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether the
function is used in a string or numeric context.

mysql> SELECT CURDATE();
 -> '2008-06-13'
mysql> SELECT CURDATE() + 0;
 -> 20080613

• CURRENT_DATE, CURRENT_DATE()

CURRENT_DATE and CURRENT_DATE() are synonyms for CURDATE().

• CURRENT_TIME, CURRENT_TIME()

CURRENT_TIME and CURRENT_TIME() are synonyms for CURTIME().

• CURRENT_TIMESTAMP, CURRENT_TIMESTAMP()

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP() are synonyms for NOW().

• CURTIME()

Returns the current time as a value in 'HH:MM:SS' or HHMMSS.uuuuuu format, depending on whether
the function is used in a string or numeric context. The value is expressed in the current time zone.

mysql> SELECT CURTIME();
 -> '23:50:26'
mysql> SELECT CURTIME() + 0;
 -> 235026.000000

• DATE(expr)

Extracts the date part of the date or datetime expression expr.

mysql> SELECT DATE('2003-12-31 01:02:03');
 -> '2003-12-31'

• DATEDIFF(expr1,expr2)

DATEDIFF() returns expr1 − expr2 expressed as a value in days from one date to the other. expr1
and expr2 are date or date-and-time expressions. Only the date parts of the values are used in the
calculation.

mysql> SELECT DATEDIFF('2007-12-31 23:59:59','2007-12-30');
 -> 1
mysql> SELECT DATEDIFF('2010-11-30 23:59:59','2010-12-31');
 -> -31

• DATE_ADD(date,INTERVAL expr unit), DATE_SUB(date,INTERVAL expr unit)

These functions perform date arithmetic. The date argument specifies the starting date or datetime
value. expr is an expression specifying the interval value to be added or subtracted from the starting
date. expr is a string; it may start with a “-” for negative intervals. unit is a keyword indicating the units
in which the expression should be interpreted.

The INTERVAL keyword and the unit specifier are not case sensitive.

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1044

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The following table shows the expected form of the expr argument for each unit value.

unit Value Expected expr Format

MICROSECOND MICROSECONDS

SECOND SECONDS

MINUTE MINUTES

HOUR HOURS

DAY DAYS

WEEK WEEKS

MONTH MONTHS

QUARTER QUARTERS

YEAR YEARS

SECOND_MICROSECOND 'SECONDS.MICROSECONDS'

MINUTE_MICROSECOND 'MINUTES:SECONDS.MICROSECONDS'

MINUTE_SECOND 'MINUTES:SECONDS'

HOUR_MICROSECOND 'HOURS:MINUTES:SECONDS.MICROSECONDS'

HOUR_SECOND 'HOURS:MINUTES:SECONDS'

HOUR_MINUTE 'HOURS:MINUTES'

DAY_MICROSECOND 'DAYS
HOURS:MINUTES:SECONDS.MICROSECONDS'

DAY_SECOND 'DAYS HOURS:MINUTES:SECONDS'

DAY_MINUTE 'DAYS HOURS:MINUTES'

DAY_HOUR 'DAYS HOURS'

YEAR_MONTH 'YEARS-MONTHS'

The return value depends on the arguments:

• DATETIME if the first argument is a DATETIME (or TIMESTAMP) value, or if the first argument is a
DATE and the unit value uses HOURS, MINUTES, or SECONDS.

• String otherwise.

To ensure that the result is DATETIME, you can use CAST() to convert the first argument to DATETIME.

MySQL permits any punctuation delimiter in the expr format. Those shown in the table are the
suggested delimiters. If the date argument is a DATE value and your calculations involve only YEAR,
MONTH, and DAY parts (that is, no time parts), the result is a DATE value. Otherwise, the result is a
DATETIME value.

Date arithmetic also can be performed using INTERVAL together with the + or - operator:

date + INTERVAL expr unit
date - INTERVAL expr unit

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1045

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

INTERVAL expr unit is permitted on either side of the + operator if the expression on the other side
is a date or datetime value. For the - operator, INTERVAL expr unit is permitted only on the right
side, because it makes no sense to subtract a date or datetime value from an interval.

mysql> SELECT '2008-12-31 23:59:59' + INTERVAL 1 SECOND;
 -> '2009-01-01 00:00:00'
mysql> SELECT INTERVAL 1 DAY + '2008-12-31';
 -> '2009-01-01'
mysql> SELECT '2005-01-01' - INTERVAL 1 SECOND;
 -> '2004-12-31 23:59:59'
mysql> SELECT DATE_ADD('2000-12-31 23:59:59',
 -> INTERVAL 1 SECOND);
 -> '2001-01-01 00:00:00'
mysql> SELECT DATE_ADD('2010-12-31 23:59:59',
 -> INTERVAL 1 DAY);
 -> '2011-01-01 23:59:59'
mysql> SELECT DATE_ADD('2100-12-31 23:59:59',
 -> INTERVAL '1:1' MINUTE_SECOND);
 -> '2101-01-01 00:01:00'
mysql> SELECT DATE_SUB('2005-01-01 00:00:00',
 -> INTERVAL '1 1:1:1' DAY_SECOND);
 -> '2004-12-30 22:58:59'
mysql> SELECT DATE_ADD('1900-01-01 00:00:00',
 -> INTERVAL '-1 10' DAY_HOUR);
 -> '1899-12-30 14:00:00'
mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);
 -> '1997-12-02'
mysql> SELECT DATE_ADD('1992-12-31 23:59:59.000002',
 -> INTERVAL '1.999999' SECOND_MICROSECOND);
 -> '1993-01-01 00:00:01.000001'

If you specify an interval value that is too short (does not include all the interval parts that would be
expected from the unit keyword), MySQL assumes that you have left out the leftmost parts of the
interval value. For example, if you specify a unit of DAY_SECOND, the value of expr is expected to
have days, hours, minutes, and seconds parts. If you specify a value like '1:10', MySQL assumes that
the days and hours parts are missing and the value represents minutes and seconds. In other words,
'1:10' DAY_SECOND is interpreted in such a way that it is equivalent to '1:10' MINUTE_SECOND.
This is analogous to the way that MySQL interprets TIME values as representing elapsed time rather
than as a time of day.

Because expr is treated as a string, be careful if you specify a nonstring value with INTERVAL. For
example, with an interval specifier of HOUR_MINUTE, 6/4 evaluates to 1.5000 and is treated as 1 hour,
5000 minutes:

mysql> SELECT 6/4;
 -> 1.5000
mysql> SELECT DATE_ADD('2009-01-01', INTERVAL 6/4 HOUR_MINUTE);
 -> '2009-01-04 12:20:00'

To ensure interpretation of the interval value as you expect, a CAST() operation may be used. To treat
6/4 as 1 hour, 5 minutes, cast it to a DECIMAL value with a single fractional digit:

mysql> SELECT CAST(6/4 AS DECIMAL(3,1));
 -> 1.5
mysql> SELECT DATE_ADD('1970-01-01 12:00:00',
 -> INTERVAL CAST(6/4 AS DECIMAL(3,1)) HOUR_MINUTE);
 -> '1970-01-01 13:05:00'

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1046

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you add to or subtract from a date value something that contains a time part, the result is automatically
converted to a datetime value:

mysql> SELECT DATE_ADD('2013-01-01', INTERVAL 1 DAY);
 -> '2013-01-02'
mysql> SELECT DATE_ADD('2013-01-01', INTERVAL 1 HOUR);
 -> '2013-01-01 01:00:00'

If you add MONTH, YEAR_MONTH, or YEAR and the resulting date has a day that is larger than the
maximum day for the new month, the day is adjusted to the maximum days in the new month:

mysql> SELECT DATE_ADD('2009-01-30', INTERVAL 1 MONTH);
 -> '2009-02-28'

Date arithmetic operations require complete dates and do not work with incomplete dates such as
'2006-07-00' or badly malformed dates:

mysql> SELECT DATE_ADD('2006-07-00', INTERVAL 1 DAY);
 -> NULL
mysql> SELECT '2005-03-32' + INTERVAL 1 MONTH;
 -> NULL

• DATE_FORMAT(date,format)

Formats the date value according to the format string.

The following specifiers may be used in the format string. The “%” character is required before format
specifier characters.

Specifier Description

%a Abbreviated weekday name (Sun..Sat)

%b Abbreviated month name (Jan..Dec)

%c Month, numeric (0..12)

%D Day of the month with English suffix (0th, 1st, 2nd, 3rd, …)

%d Day of the month, numeric (00..31)

%e Day of the month, numeric (0..31)

%f Microseconds (000000..999999)

%H Hour (00..23)

%h Hour (01..12)

%I Hour (01..12)

%i Minutes, numeric (00..59)

%j Day of year (001..366)

%k Hour (0..23)

%l Hour (1..12)

%M Month name (January..December)

%m Month, numeric (00..12)

%p AM or PM

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1047

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Specifier Description

%r Time, 12-hour (hh:mm:ss followed by AM or PM)

%S Seconds (00..59)

%s Seconds (00..59)

%T Time, 24-hour (hh:mm:ss)

%U Week (00..53), where Sunday is the first day of the week; WEEK() mode 0

%u Week (00..53), where Monday is the first day of the week; WEEK() mode 1

%V Week (01..53), where Sunday is the first day of the week; WEEK() mode 2;
used with %X

%v Week (01..53), where Monday is the first day of the week; WEEK() mode 3;
used with %x

%W Weekday name (Sunday..Saturday)

%w Day of the week (0=Sunday..6=Saturday)

%X Year for the week where Sunday is the first day of the week, numeric, four digits;
used with %V

%x Year for the week, where Monday is the first day of the week, numeric, four
digits; used with %v

%Y Year, numeric, four digits

%y Year, numeric (two digits)

%% A literal “%” character

%x x, for any “x” not listed above

Ranges for the month and day specifiers begin with zero due to the fact that MySQL permits the storing
of incomplete dates such as '2014-00-00'.

As of MySQL 5.0.25, the language used for day and month names and abbreviations is controlled by the
value of the lc_time_names system variable (Section 10.7, “MySQL Server Locale Support”).

For the %U, %u, %V, and %v specifiers, see the description of the WEEK() function for information about
the mode values. The mode affects how week numbering occurs.

As of MySQL 5.0.36, DATE_FORMAT() returns a string with a character set and collation given by
character_set_connection and collation_connection so that it can return month and
weekday names containing non-ASCII characters. Before 5.0.36, the return value is a binary string.

mysql> SELECT DATE_FORMAT('2009-10-04 22:23:00', '%W %M %Y');
 -> 'Sunday October 2009'
mysql> SELECT DATE_FORMAT('2007-10-04 22:23:00', '%H:%i:%s');
 -> '22:23:00'
mysql> SELECT DATE_FORMAT('1900-10-04 22:23:00',
 -> '%D %y %a %d %m %b %j');
 -> '4th 00 Thu 04 10 Oct 277'
mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00',
 -> '%H %k %I %r %T %S %w');
 -> '22 22 10 10:23:00 PM 22:23:00 00 6'
mysql> SELECT DATE_FORMAT('1999-01-01', '%X %V');
 -> '1998 52'
mysql> SELECT DATE_FORMAT('2006-06-00', '%d');
 -> '00'

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1048

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• DATE_SUB(date,INTERVAL expr unit)

See the description for DATE_ADD().

• DAY(date)

DAY() is a synonym for DAYOFMONTH().

• DAYNAME(date)

Returns the name of the weekday for date. As of MySQL 5.0.25, the language used for the name is
controlled by the value of the lc_time_names system variable (Section 10.7, “MySQL Server Locale
Support”).

mysql> SELECT DAYNAME('2007-02-03');
 -> 'Saturday'

• DAYOFMONTH(date)

Returns the day of the month for date, in the range 1 to 31, or 0 for dates such as '0000-00-00' or
'2008-00-00' that have a zero day part.

mysql> SELECT DAYOFMONTH('2007-02-03');
 -> 3

• DAYOFWEEK(date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, …, 7 = Saturday). These index values
correspond to the ODBC standard.

mysql> SELECT DAYOFWEEK('2007-02-03');
 -> 7

• DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366.

mysql> SELECT DAYOFYEAR('2007-02-03');
 -> 34

• EXTRACT(unit FROM date)

The EXTRACT() function uses the same kinds of unit specifiers as DATE_ADD() or DATE_SUB(), but
extracts parts from the date rather than performing date arithmetic.

mysql> SELECT EXTRACT(YEAR FROM '2009-07-02');
 -> 2009
mysql> SELECT EXTRACT(YEAR_MONTH FROM '2009-07-02 01:02:03');
 -> 200907
mysql> SELECT EXTRACT(DAY_MINUTE FROM '2009-07-02 01:02:03');
 -> 20102
mysql> SELECT EXTRACT(MICROSECOND
 -> FROM '2003-01-02 10:30:00.000123');
 -> 123

• FROM_DAYS(N)

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1049

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Given a day number N, returns a DATE value.

mysql> SELECT FROM_DAYS(730669);
 -> '2007-07-03'

Use FROM_DAYS() with caution on old dates. It is not intended for use with values that precede the
advent of the Gregorian calendar (1582). See Section 12.8, “What Calendar Is Used By MySQL?”.

• FROM_UNIXTIME(unix_timestamp), FROM_UNIXTIME(unix_timestamp,format)

Returns a representation of the unix_timestamp argument as a value in 'YYYY-MM-DD HH:MM:SS'
or YYYYMMDDHHMMSS.uuuuuu format, depending on whether the function is used in a string or numeric
context. The value is expressed in the current time zone. unix_timestamp is an internal timestamp
value such as is produced by the UNIX_TIMESTAMP() function.

If format is given, the result is formatted according to the format string, which is used the same way
as listed in the entry for the DATE_FORMAT() function.

mysql> SELECT FROM_UNIXTIME(1447430881);
 -> '2015-11-13 10:08:01'
mysql> SELECT FROM_UNIXTIME(1447430881) + 0;
 -> 20151113100801
mysql> SELECT FROM_UNIXTIME(UNIX_TIMESTAMP(),
 -> '%Y %D %M %h:%i:%s %x');
 -> '2015 13th November 10:08:01 2015'

Note: If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between TIMESTAMP values
and Unix timestamp values, the conversion is lossy because the mapping is not one-to-one in both
directions. For details, see the description of the UNIX_TIMESTAMP() function.

• GET_FORMAT({DATE|TIME|DATETIME}, {'EUR'|'USA'|'JIS'|'ISO'|'INTERNAL'})

Returns a format string. This function is useful in combination with the DATE_FORMAT() and the
STR_TO_DATE() functions.

The possible values for the first and second arguments result in several possible format strings (for the
specifiers used, see the table in the DATE_FORMAT() function description). ISO format refers to ISO
9075, not ISO 8601.

Function Call Result

GET_FORMAT(DATE,'USA') '%m.%d.%Y'

GET_FORMAT(DATE,'JIS') '%Y-%m-%d'

GET_FORMAT(DATE,'ISO') '%Y-%m-%d'

GET_FORMAT(DATE,'EUR') '%d.%m.%Y'

GET_FORMAT(DATE,'INTERNAL') '%Y%m%d'

GET_FORMAT(DATETIME,'USA') '%Y-%m-%d %H.%i.%s'

GET_FORMAT(DATETIME,'JIS') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'ISO') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'EUR') '%Y-%m-%d %H.%i.%s'

GET_FORMAT(DATETIME,'INTERNAL') '%Y%m%d%H%i%s'

GET_FORMAT(TIME,'USA') '%h:%i:%s %p'

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1050

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Function Call Result

GET_FORMAT(TIME,'JIS') '%H:%i:%s'

GET_FORMAT(TIME,'ISO') '%H:%i:%s'

GET_FORMAT(TIME,'EUR') '%H.%i.%s'

GET_FORMAT(TIME,'INTERNAL') '%H%i%s'

TIMESTAMP can also be used as the first argument to GET_FORMAT(), in which case the function
returns the same values as for DATETIME.

mysql> SELECT DATE_FORMAT('2003-10-03',GET_FORMAT(DATE,'EUR'));
 -> '03.10.2003'
mysql> SELECT STR_TO_DATE('10.31.2003',GET_FORMAT(DATE,'USA'));
 -> '2003-10-31'

• HOUR(time)

Returns the hour for time. The range of the return value is 0 to 23 for time-of-day values. However, the
range of TIME values actually is much larger, so HOUR can return values greater than 23.

mysql> SELECT HOUR('10:05:03');
 -> 10
mysql> SELECT HOUR('272:59:59');
 -> 272

• LAST_DAY(date)

Takes a date or datetime value and returns the corresponding value for the last day of the month.
Returns NULL if the argument is invalid.

mysql> SELECT LAST_DAY('2003-02-05');
 -> '2003-02-28'
mysql> SELECT LAST_DAY('2004-02-05');
 -> '2004-02-29'
mysql> SELECT LAST_DAY('2004-01-01 01:01:01');
 -> '2004-01-31'
mysql> SELECT LAST_DAY('2003-03-32');
 -> NULL

• LOCALTIME, LOCALTIME()

LOCALTIME and LOCALTIME() are synonyms for NOW().

• LOCALTIMESTAMP, LOCALTIMESTAMP()

LOCALTIMESTAMP and LOCALTIMESTAMP() are synonyms for NOW().

• MAKEDATE(year,dayofyear)

Returns a date, given year and day-of-year values. dayofyear must be greater than 0 or the result is
NULL.

mysql> SELECT MAKEDATE(2011,31), MAKEDATE(2011,32);
 -> '2011-01-31', '2011-02-01'
mysql> SELECT MAKEDATE(2011,365), MAKEDATE(2014,365);
 -> '2011-12-31', '2014-12-31'
mysql> SELECT MAKEDATE(2011,0);

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1051

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 -> NULL

• MAKETIME(hour,minute,second)

Returns a time value calculated from the hour, minute, and second arguments.

mysql> SELECT MAKETIME(12,15,30);
 -> '12:15:30'

• MICROSECOND(expr)

Returns the microseconds from the time or datetime expression expr as a number in the range from 0
to 999999.

mysql> SELECT MICROSECOND('12:00:00.123456');
 -> 123456
mysql> SELECT MICROSECOND('2009-12-31 23:59:59.000010');
 -> 10

• MINUTE(time)

Returns the minute for time, in the range 0 to 59.

mysql> SELECT MINUTE('2008-02-03 10:05:03');
 -> 5

• MONTH(date)

Returns the month for date, in the range 1 to 12 for January to December, or 0 for dates such as
'0000-00-00' or '2008-00-00' that have a zero month part.

mysql> SELECT MONTH('2008-02-03');
 -> 2

• MONTHNAME(date)

Returns the full name of the month for date. As of MySQL 5.0.25, the language used for the name is
controlled by the value of the lc_time_names system variable (Section 10.7, “MySQL Server Locale
Support”).

mysql> SELECT MONTHNAME('2008-02-03');
 -> 'February'

• NOW()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or
YYYYMMDDHHMMSS.uuuuuu format, depending on whether the function is used in a string or numeric
context. The value is expressed in the current time zone.

mysql> SELECT NOW();
 -> '2007-12-15 23:50:26'
mysql> SELECT NOW() + 0;
 -> 20071215235026.000000

NOW() returns a constant time that indicates the time at which the statement began to execute. (Within
a stored function or trigger, NOW() returns the time at which the function or triggering statement began

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1052

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

to execute.) This differs from the behavior for SYSDATE(), which returns the exact time at which it
executes as of MySQL 5.0.12.

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by SYSDATE().
This means that timestamp settings in the binary log have no effect on invocations of SYSDATE().
Setting the timestamp to a nonzero value causes each subsequent invocation of NOW() to return that
value. Setting the timestamp to zero cancels this effect so that NOW() once again returns the current
date and time.

See the description for SYSDATE() for additional information about the differences between the two
functions.

• PERIOD_ADD(P,N)

Adds N months to period P (in the format YYMM or YYYYMM). Returns a value in the format YYYYMM. Note
that the period argument P is not a date value.

mysql> SELECT PERIOD_ADD(200801,2);
 -> 200803

• PERIOD_DIFF(P1,P2)

Returns the number of months between periods P1 and P2. P1 and P2 should be in the format YYMM or
YYYYMM. Note that the period arguments P1 and P2 are not date values.

mysql> SELECT PERIOD_DIFF(200802,200703);
 -> 11

• QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4.

mysql> SELECT QUARTER('2008-04-01');
 -> 2

• SECOND(time)

Returns the second for time, in the range 0 to 59.

mysql> SELECT SECOND('10:05:03');
 -> 3

• SEC_TO_TIME(seconds)

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1053

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Returns the seconds argument, converted to hours, minutes, and seconds, as a TIME value. The range
of the result is constrained to that of the TIME data type. A warning occurs if the argument corresponds
to a value outside that range.

mysql> SELECT SEC_TO_TIME(2378);
 -> '00:39:38'
mysql> SELECT SEC_TO_TIME(2378) + 0;
 -> 3938

• STR_TO_DATE(str,format)

This is the inverse of the DATE_FORMAT() function. It takes a string str and a format string format.
STR_TO_DATE() returns a DATETIME value if the format string contains both date and time parts, or
a DATE or TIME value if the string contains only date or time parts. If the date, time, or datetime value
extracted from str is illegal, STR_TO_DATE() returns NULL and, as of MySQL 5.0.3, produces a
warning.

The server scans str attempting to match format to it. The format string can contain literal characters
and format specifiers beginning with %. Literal characters in format must match literally in str. Format
specifiers in format must match a date or time part in str. For the specifiers that can be used in
format, see the DATE_FORMAT() function description.

mysql> SELECT STR_TO_DATE('01,5,2013','%d,%m,%Y');
 -> '2013-05-01'
mysql> SELECT STR_TO_DATE('May 1, 2013','%M %d,%Y');
 -> '2013-05-01'

Scanning starts at the beginning of str and fails if format is found not to match. Extra characters at the
end of str are ignored.

mysql> SELECT STR_TO_DATE('a09:30:17','a%h:%i:%s');
 -> '09:30:17'
mysql> SELECT STR_TO_DATE('a09:30:17','%h:%i:%s');
 -> NULL
mysql> SELECT STR_TO_DATE('09:30:17a','%h:%i:%s');
 -> '09:30:17'

Unspecified date or time parts have a value of 0, so incompletely specified values in str produce a
result with some or all parts set to 0:

mysql> SELECT STR_TO_DATE('abc','abc');
 -> '0000-00-00'
mysql> SELECT STR_TO_DATE('9','%m');
 -> '0000-09-00'
mysql> SELECT STR_TO_DATE('9','%s');
 -> '00:00:09'

Range checking on the parts of date values is as described in Section 11.3.1, “The DATE, DATETIME,
and TIMESTAMP Types”. This means, for example, that “zero” dates or dates with part values of 0 are
permitted unless the SQL mode is set to disallow such values.

mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
 -> '0000-00-00'
mysql> SELECT STR_TO_DATE('04/31/2004', '%m/%d/%Y');
 -> '2004-04-31'

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1054

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

You cannot use format "%X%V" to convert a year-week string to a date because
the combination of a year and week does not uniquely identify a year and month
if the week crosses a month boundary. To convert a year-week to a date, you
should also specify the weekday:

mysql> SELECT STR_TO_DATE('200442 Monday', '%X%V %W');
 -> '2004-10-18'

• SUBDATE(date,INTERVAL expr unit), SUBDATE(expr,days)

When invoked with the INTERVAL form of the second argument, SUBDATE() is a synonym for
DATE_SUB(). For information on the INTERVAL unit argument, see the discussion for DATE_ADD().

mysql> SELECT DATE_SUB('2008-01-02', INTERVAL 31 DAY);
 -> '2007-12-02'
mysql> SELECT SUBDATE('2008-01-02', INTERVAL 31 DAY);
 -> '2007-12-02'

The second form enables the use of an integer value for days. In such cases, it is interpreted as the
number of days to be subtracted from the date or datetime expression expr.

mysql> SELECT SUBDATE('2008-01-02 12:00:00', 31);
 -> '2007-12-02 12:00:00'

• SUBTIME(expr1,expr2)

SUBTIME() returns expr1 − expr2 expressed as a value in the same format as expr1. expr1 is a
time or datetime expression, and expr2 is a time expression.

mysql> SELECT SUBTIME('2007-12-31 23:59:59.999999','1 1:1:1.000002');
 -> '2007-12-30 22:58:58.999997'
mysql> SELECT SUBTIME('01:00:00.999999', '02:00:00.999998');
 -> '-00:59:59.999999'

• SYSDATE()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or
YYYYMMDDHHMMSS.uuuuuu format, depending on whether the function is used in a string or numeric
context.

As of MySQL 5.0.12, SYSDATE() returns the time at which it executes. This differs from the behavior for
NOW(), which returns a constant time that indicates the time at which the statement began to execute.
(Within a stored function or trigger, NOW() returns the time at which the function or triggering statement
began to execute.)

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1055

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by SYSDATE().
This means that timestamp settings in the binary log have no effect on invocations of SYSDATE().

Because SYSDATE() can return different values even within the same statement, and is not affected
by SET TIMESTAMP, it is nondeterministic and therefore unsafe for replication. If that is a problem, you
can start the server with the --sysdate-is-now option to cause SYSDATE() to be an alias for NOW().
The nondeterministic nature of SYSDATE() also means that indexes cannot be used for evaluating
expressions that refer to it.

• TIME(expr)

Extracts the time part of the time or datetime expression expr and returns it as a string.

mysql> SELECT TIME('2003-12-31 01:02:03');
 -> '01:02:03'
mysql> SELECT TIME('2003-12-31 01:02:03.000123');
 -> '01:02:03.000123'

• TIMEDIFF(expr1,expr2)

TIMEDIFF() returns expr1 − expr2 expressed as a time value. expr1 and expr2 are time or date-
and-time expressions, but both must be of the same type.

The result returned by TIMEDIFF() is limited to the range allowed for TIME values. Alternatively, you
can use either of the functions TIMESTAMPDIFF() and UNIX_TIMESTAMP(), both of which return
integers.

mysql> SELECT TIMEDIFF('2000:01:01 00:00:00',
 -> '2000:01:01 00:00:00.000001');
 -> '-00:00:00.000001'
mysql> SELECT TIMEDIFF('2008-12-31 23:59:59.000001',
 -> '2008-12-30 01:01:01.000002');
 -> '46:58:57.999999'

• TIMESTAMP(expr), TIMESTAMP(expr1,expr2)

With a single argument, this function returns the date or datetime expression expr as a datetime value.
With two arguments, it adds the time expression expr2 to the date or datetime expression expr1 and
returns the result as a datetime value.

mysql> SELECT TIMESTAMP('2003-12-31');
 -> '2003-12-31 00:00:00'
mysql> SELECT TIMESTAMP('2003-12-31 12:00:00','12:00:00');
 -> '2004-01-01 00:00:00'

• TIMESTAMPADD(unit,interval,datetime_expr)

Adds the integer expression interval to the date or datetime expression datetime_expr. The
unit for interval is given by the unit argument, which should be one of the following values:
FRAC_SECOND (microseconds), SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, or YEAR.

Beginning with MySQL 5.0.60, it is possible to use MICROSECOND in place of FRAC_SECOND with this
function, and FRAC_SECOND is deprecated. FRAC_SECOND is removed in MySQL 5.5.

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1056

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The unit value may be specified using one of keywords as shown, or with a prefix of SQL_TSI_. For
example, DAY and SQL_TSI_DAY both are legal.

mysql> SELECT TIMESTAMPADD(MINUTE,1,'2003-01-02');
 -> '2003-01-02 00:01:00'
mysql> SELECT TIMESTAMPADD(WEEK,1,'2003-01-02');
 -> '2003-01-09'

• TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2)

Returns datetime_expr2 − datetime_expr1, where datetime_expr1 and datetime_expr2
are date or datetime expressions. One expression may be a date and the other a datetime; a date value
is treated as a datetime having the time part '00:00:00' where necessary. The unit for the result (an
integer) is given by the unit argument. The legal values for unit are the same as those listed in the
description of the TIMESTAMPADD() function.

mysql> SELECT TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01');
 -> 3
mysql> SELECT TIMESTAMPDIFF(YEAR,'2002-05-01','2001-01-01');
 -> -1
mysql> SELECT TIMESTAMPDIFF(MINUTE,'2003-02-01','2003-05-01 12:05:55');
 -> 128885

Note

The order of the date or datetime arguments for this function is the opposite of
that used with the TIMESTAMP() function when invoked with 2 arguments.

• TIME_FORMAT(time,format)

This is used like the DATE_FORMAT() function, but the format string may contain format specifiers only
for hours, minutes, seconds, and microseconds. Other specifiers produce a NULL value or 0.

If the time value contains an hour part that is greater than 23, the %H and %k hour format specifiers
produce a value larger than the usual range of 0..23. The other hour format specifiers produce the hour
value modulo 12.

mysql> SELECT TIME_FORMAT('100:00:00', '%H %k %h %I %l');
 -> '100 100 04 04 4'

• TIME_TO_SEC(time)

Returns the time argument, converted to seconds.

mysql> SELECT TIME_TO_SEC('22:23:00');
 -> 80580
mysql> SELECT TIME_TO_SEC('00:39:38');
 -> 2378

• TO_DAYS(date)

Given a date date, returns a day number (the number of days since year 0).

mysql> SELECT TO_DAYS(950501);
 -> 728779
mysql> SELECT TO_DAYS('2007-10-07');

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1057

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 -> 733321

TO_DAYS() is not intended for use with values that precede the advent of the Gregorian calendar
(1582), because it does not take into account the days that were lost when the calendar was changed.
For dates before 1582 (and possibly a later year in other locales), results from this function are not
reliable. See Section 12.8, “What Calendar Is Used By MySQL?”, for details.

Remember that MySQL converts two-digit year values in dates to four-digit form using the rules in
Section 11.3, “Date and Time Types”. For example, '2008-10-07' and '08-10-07' are seen as
identical dates:

mysql> SELECT TO_DAYS('2008-10-07'), TO_DAYS('08-10-07');
 -> 733687, 733687

In MySQL, the zero date is defined as '0000-00-00', even though this date is itself considered invalid.
This means that, for '0000-00-00' and '0000-01-01', TO_DAYS() returns the values shown here:

mysql> SELECT TO_DAYS('0000-00-00');
+-----------------------+
| to_days('0000-00-00') |
+-----------------------+
| NULL |
+-----------------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Incorrect datetime value: '0000-00-00' |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT TO_DAYS('0000-01-01');
+-----------------------+
| to_days('0000-01-01') |
+-----------------------+
| 1 |
+-----------------------+
1 row in set (0.00 sec)

This is true whether or not the ALLOW_INVALID_DATES SQL server mode (available in MySQL 5.0.2
and later) is enabled.

• UNIX_TIMESTAMP(), UNIX_TIMESTAMP(date)

If called with no argument, returns a Unix timestamp (seconds since '1970-01-01 00:00:00' UTC)
as an unsigned integer. If UNIX_TIMESTAMP() is called with a date argument, it returns the value
of the argument as seconds since '1970-01-01 00:00:00' UTC. date may be a DATE string, a
DATETIME string, a TIMESTAMP, or a number in the format YYMMDD or YYYYMMDD. The server interprets
date as a value in the current time zone and converts it to an internal value in UTC. Clients can set their
time zone as described in Section 10.6, “MySQL Server Time Zone Support”.

mysql> SELECT UNIX_TIMESTAMP();
 -> 1447431666
mysql> SELECT UNIX_TIMESTAMP('2015-11-13 10:20:19');
 -> 1447431619

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1058

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When UNIX_TIMESTAMP() is used on a TIMESTAMP column, the function returns the internal
timestamp value directly, with no implicit “string-to-Unix-timestamp” conversion. If you pass an out-of-
range date to UNIX_TIMESTAMP(), it returns 0.

Note: If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between TIMESTAMP
values and Unix timestamp values, the conversion is lossy because the mapping is not one-to-
one in both directions. For example, due to conventions for local time zone changes, it is possible
for two UNIX_TIMESTAMP() to map two TIMESTAMP values to the same Unix timestamp value.
FROM_UNIXTIME() will map that value back to only one of the original TIMESTAMP values. Here is an
example, using TIMESTAMP values in the CET time zone:

mysql> SELECT UNIX_TIMESTAMP('2005-03-27 03:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 03:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT UNIX_TIMESTAMP('2005-03-27 02:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 02:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT FROM_UNIXTIME(1111885200);
+---------------------------+
| FROM_UNIXTIME(1111885200) |
+---------------------------+
| 2005-03-27 03:00:00 |
+---------------------------+

If you want to subtract UNIX_TIMESTAMP() columns, you might want to cast the result to signed
integers. See Section 12.10, “Cast Functions and Operators”.

• UTC_DATE, UTC_DATE()

Returns the current UTC date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on whether
the function is used in a string or numeric context.

mysql> SELECT UTC_DATE(), UTC_DATE() + 0;
 -> '2003-08-14', 20030814

• UTC_TIME, UTC_TIME()

Returns the current UTC time as a value in 'HH:MM:SS' or HHMMSS.uuuuuu format, depending on
whether the function is used in a string or numeric context.

mysql> SELECT UTC_TIME(), UTC_TIME() + 0;
 -> '18:07:53', 180753.000000

• UTC_TIMESTAMP, UTC_TIMESTAMP()

Returns the current UTC date and time as a value in 'YYYY-MM-DD HH:MM:SS' or
YYYYMMDDHHMMSS.uuuuuu format, depending on whether the function is used in a string or numeric
context.

mysql> SELECT UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0;

Date and Time Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1059

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 -> '2003-08-14 18:08:04', 20030814180804.000000

• WEEK(date[,mode])

This function returns the week number for date. The two-argument form of WEEK() enables you
to specify whether the week starts on Sunday or Monday and whether the return value should
be in the range from 0 to 53 or from 1 to 53. If the mode argument is omitted, the value of the
default_week_format system variable is used. See Section 5.1.4, “Server System Variables”.

The following table describes how the mode argument works.

Mode First day of week Range Week 1 is the first week …

0 Sunday 0-53 with a Sunday in this year

1 Monday 0-53 with 4 or more days this year

2 Sunday 1-53 with a Sunday in this year

3 Monday 1-53 with 4 or more days this year

4 Sunday 0-53 with 4 or more days this year

5 Monday 0-53 with a Monday in this year

6 Sunday 1-53 with 4 or more days this year

7 Monday 1-53 with a Monday in this year

For mode values with a meaning of “with 4 or more days this year,” weeks are numbered according to
ISO 8601:1988:

• If the week containing January 1 has 4 or more days in the new year, it is week 1.

• Otherwise, it is the last week of the previous year, and the next week is week 1.

mysql> SELECT WEEK('2008-02-20');
 -> 7
mysql> SELECT WEEK('2008-02-20',0);
 -> 7
mysql> SELECT WEEK('2008-02-20',1);
 -> 8
mysql> SELECT WEEK('2008-12-31',1);
 -> 53

Note that if a date falls in the last week of the previous year, MySQL returns 0 if you do not use 2, 3, 6,
or 7 as the optional mode argument:

mysql> SELECT YEAR('2000-01-01'), WEEK('2000-01-01',0);
 -> 2000, 0

One might argue that WEEK() should return 52 because the given date actually occurs in the 52nd week
of 1999. WEEK() returns 0 instead so that the return value is “the week number in the given year.” This
makes use of the WEEK() function reliable when combined with other functions that extract a date part
from a date.

If you prefer a result evaluated with respect to the year that contains the first day of the week for the
given date, use 0, 2, 5, or 7 as the optional mode argument.

mysql> SELECT WEEK('2000-01-01',2);
 -> 52

What Calendar Is Used By MySQL?

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1060

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Alternatively, use the YEARWEEK() function:

mysql> SELECT YEARWEEK('2000-01-01');
 -> 199952
mysql> SELECT MID(YEARWEEK('2000-01-01'),5,2);
 -> '52'

• WEEKDAY(date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, … 6 = Sunday).

mysql> SELECT WEEKDAY('2008-02-03 22:23:00');
 -> 6
mysql> SELECT WEEKDAY('2007-11-06');
 -> 1

• WEEKOFYEAR(date)

Returns the calendar week of the date as a number in the range from 1 to 53. WEEKOFYEAR() is a
compatibility function that is equivalent to WEEK(date,3).

mysql> SELECT WEEKOFYEAR('2008-02-20');
 -> 8

• YEAR(date)

Returns the year for date, in the range 1000 to 9999, or 0 for the “zero” date.

mysql> SELECT YEAR('1987-01-01');
 -> 1987

• YEARWEEK(date), YEARWEEK(date,mode)

Returns year and week for a date. The year in the result may be different from the year in the date
argument for the first and the last week of the year.

The mode argument works exactly like the mode argument to WEEK(). For the single-argument syntax,
a mode value of 0 is used. Unlike WEEK(), the value of default_week_format does not influence
YEARWEEK().

mysql> SELECT YEARWEEK('1987-01-01');
 -> 198652

Note that the week number is different from what the WEEK() function would return (0) for optional
arguments 0 or 1, as WEEK() then returns the week in the context of the given year.

12.8 What Calendar Is Used By MySQL?

MySQL uses what is known as a proleptic Gregorian calendar.

Every country that has switched from the Julian to the Gregorian calendar has had to discard at least ten
days during the switch. To see how this works, consider the month of October 1582, when the first Julian-
to-Gregorian switch occurred.

Full-Text Search Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1061

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 2 3 4 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

There are no dates between October 4 and October 15. This discontinuity is called the cutover. Any dates
before the cutover are Julian, and any dates following the cutover are Gregorian. Dates during a cutover
are nonexistent.

A calendar applied to dates when it was not actually in use is called proleptic. Thus, if we assume there
was never a cutover and Gregorian rules always rule, we have a proleptic Gregorian calendar. This is what
is used by MySQL, as is required by standard SQL. For this reason, dates prior to the cutover stored as
MySQL DATE or DATETIME values must be adjusted to compensate for the difference. It is important to
realize that the cutover did not occur at the same time in all countries, and that the later it happened, the
more days were lost. For example, in Great Britain, it took place in 1752, when Wednesday September
2 was followed by Thursday September 14. Russia remained on the Julian calendar until 1918, losing 13
days in the process, and what is popularly referred to as its “October Revolution” occurred in November
according to the Gregorian calendar.

12.9 Full-Text Search Functions
MATCH (col1,col2,...) AGAINST (expr [search_modifier])

search_modifier: { IN BOOLEAN MODE | WITH QUERY EXPANSION }

MySQL has support for full-text indexing and searching:

• A full-text index in MySQL is an index of type FULLTEXT.

• Full-text indexes can be used only with MyISAM tables, and can be created only for CHAR, VARCHAR, or
TEXT columns.

• A FULLTEXT index definition can be given in the CREATE TABLE statement when a table is created, or
added later using ALTER TABLE or CREATE INDEX.

• For large data sets, it is much faster to load your data into a table that has no FULLTEXT index and then
create the index after that, than to load data into a table that has an existing FULLTEXT index.

Full-text searching is performed using MATCH() ... AGAINST syntax. MATCH() takes a comma-
separated list that names the columns to be searched. AGAINST takes a string to search for, and an
optional modifier that indicates what type of search to perform. The search string must be a string value
that is constant during query evaluation. This rules out, for example, a table column because that can differ
for each row.

There are three types of full-text searches:

• A boolean search interprets the search string using the rules of a special query language. The string
contains the words to search for. It can also contain operators that specify requirements such that a word
must be present or absent in matching rows, or that it should be weighted higher or lower than usual.
Common words such as “some” or “then” are stopwords and do not match if present in the search string.
The IN BOOLEAN MODE modifier specifies a boolean search. For more information, see Section 12.9.2,
“Boolean Full-Text Searches”.

• A natural language search interprets the search string as a phrase in natural human language (a phrase
in free text). There are no special operators. The stopword list applies. In addition, words that are

Natural Language Full-Text Searches

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1062

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

present in 50% or more of the rows are considered common and do not match. Full-text searches are
natural language searches if no modifier is given.

• A query expansion search is a modification of a natural language search. The search string is used to
perform a natural language search. Then words from the most relevant rows returned by the search
are added to the search string and the search is done again. The query returns the rows from the
second search. The WITH QUERY EXPANSION modifier specifies a query expansion search. For more
information, see Section 12.9.3, “Full-Text Searches with Query Expansion”.

Constraints on full-text searching are listed in Section 12.9.5, “Full-Text Restrictions”.

The myisam_ftdump utility can be used to dump the contents of a full-text index. This may be helpful for
debugging full-text queries. See Section 4.6.2, “myisam_ftdump — Display Full-Text Index information”.

12.9.1 Natural Language Full-Text Searches

By default, the MATCH() function performs a natural language search for a string against a text collection.
A collection is a set of one or more columns included in a FULLTEXT index. The search string is given
as the argument to AGAINST(). For each row in the table, MATCH() returns a relevance value; that
is, a similarity measure between the search string and the text in that row in the columns named in the
MATCH() list.

mysql> CREATE TABLE articles (
 -> id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 -> title VARCHAR(200),
 -> body TEXT,
 -> FULLTEXT (title,body)
 ->) ENGINE=MyISAM;
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO articles (title,body) VALUES
 -> ('MySQL Tutorial','DBMS stands for DataBase ...'),
 -> ('How To Use MySQL Well','After you went through a ...'),
 -> ('Optimizing MySQL','In this tutorial we will show ...'),
 -> ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 -> ('MySQL vs. YourSQL','In the following database comparison ...'),
 -> ('MySQL Security','When configured properly, MySQL ...');
Query OK, 6 rows affected (0.00 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM articles
 -> WHERE MATCH (title,body) AGAINST ('database');
+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
+----+-------------------+--+
2 rows in set (0.00 sec)

By default, the search is performed in case-insensitive fashion. However, you can perform a case-sensitive
full-text search by using a binary collation for the indexed columns. For example, a column that uses the
latin1 character set of can be assigned a collation of latin1_bin to make it case sensitive for full-text
searches.

When MATCH() is used in a WHERE clause, as in the example shown earlier, the rows returned are
automatically sorted with the highest relevance first. Relevance values are nonnegative floating-point
numbers. Zero relevance means no similarity. Relevance is computed based on the number of words
in the row, the number of unique words in that row, the total number of words in the collection, and the
number of documents (rows) that contain a particular word.

Natural Language Full-Text Searches

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1063

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To simply count matches, you could use a query like this:

mysql> SELECT COUNT(*) FROM articles
 -> WHERE MATCH (title,body)
 -> AGAINST ('database');
+----------+
| COUNT(*) |
+----------+
| 2 |
+----------+
1 row in set (0.00 sec)

However, you might find it quicker to rewrite the query as follows:

mysql> SELECT
 -> COUNT(IF(MATCH (title,body) AGAINST ('database'), 1, NULL))
 -> AS count
 -> FROM articles;
+-------+
| count |
+-------+
| 2 |
+-------+
1 row in set (0.00 sec)

The first query sorts the results by relevance whereas the second does not. However, the second query
performs a full table scan and the first does not. The first may be faster if the search matches few rows;
otherwise, the second may be faster because it would read many rows anyway.

For natural-language full-text searches, it is a requirement that the columns named in the MATCH()
function be the same columns included in some FULLTEXT index in your table. For the preceding query,
note that the columns named in the MATCH() function (title and body) are the same as those named
in the definition of the article table's FULLTEXT index. If you wanted to search the title or body
separately, you would need to create separate FULLTEXT indexes for each column.

It is also possible to perform a boolean search or a search with query expansion. These search types are
described in Section 12.9.2, “Boolean Full-Text Searches”, and Section 12.9.3, “Full-Text Searches with
Query Expansion”.

A full-text search that uses an index can name columns only from a single table in the MATCH() clause
because an index cannot span multiple tables. A boolean search can be done in the absence of an index
(albeit more slowly), in which case it is possible to name columns from multiple tables.

The preceding example is a basic illustration that shows how to use the MATCH() function where rows
are returned in order of decreasing relevance. The next example shows how to retrieve the relevance
values explicitly. Returned rows are not ordered because the SELECT statement includes neither WHERE
nor ORDER BY clauses:

mysql> SELECT id, MATCH (title,body) AGAINST ('Tutorial')
 -> FROM articles;
+----+---+
| id | MATCH (title,body) AGAINST ('Tutorial') |
+----+---+
1	0.65545833110809
2	0
3	0.66266459226608
4	0
5	0
6	0
+----+---+

Natural Language Full-Text Searches

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1064

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

6 rows in set (0.00 sec)

The following example is more complex. The query returns the relevance values and it also sorts the rows
in order of decreasing relevance. To achieve this result, specify MATCH() twice: once in the SELECT list
and once in the WHERE clause. This causes no additional overhead, because the MySQL optimizer notices
that the two MATCH() calls are identical and invokes the full-text search code only once.

mysql> SELECT id, body, MATCH (title,body) AGAINST
 -> ('Security implications of running MySQL as root') AS score
 -> FROM articles WHERE MATCH (title,body) AGAINST
 -> ('Security implications of running MySQL as root');
+----+-------------------------------------+-----------------+
| id | body | score |
+----+-------------------------------------+-----------------+
| 4 | 1. Never run mysqld as root. 2. ... | 1.5219271183014 |
| 6 | When configured properly, MySQL ... | 1.3114095926285 |
+----+-------------------------------------+-----------------+
2 rows in set (0.00 sec)

The MySQL FULLTEXT implementation regards any sequence of true word characters (letters, digits,
and underscores) as a word. That sequence may also contain apostrophes (“'”), but not more than one
in a row. This means that aaa'bbb is regarded as one word, but aaa''bbb is regarded as two words.
Apostrophes at the beginning or the end of a word are stripped by the FULLTEXT parser; 'aaa'bbb'
would be parsed as aaa'bbb.

The FULLTEXT parser determines where words start and end by looking for certain delimiter characters;
for example, “ ” (space), “,” (comma), and “.” (period). If words are not separated by delimiters (as in, for
example, Chinese), the FULLTEXT parser cannot determine where a word begins or ends. To be able to
add words or other indexed terms in such languages to a FULLTEXT index, you must preprocess them so
that they are separated by some arbitrary delimiter such as “"”.

Some words are ignored in full-text searches:

• Any word that is too short is ignored. The default minimum length of words that are found by full-text
searches is four characters.

• Words in the stopword list are ignored. A stopword is a word such as “the” or “some” that is so
common that it is considered to have zero semantic value. There is a built-in stopword list, but it can be
overwritten by a user-defined list.

The default stopword list is given in Section 12.9.4, “Full-Text Stopwords”. The default minimum word
length and stopword list can be changed as described in Section 12.9.6, “Fine-Tuning MySQL Full-Text
Search”.

Every correct word in the collection and in the query is weighted according to its significance in the
collection or query. Consequently, a word that is present in many documents has a lower weight (and may
even have a zero weight), because it has lower semantic value in this particular collection. Conversely,
if the word is rare, it receives a higher weight. The weights of the words are combined to compute the
relevance of the row.

Such a technique works best with large collections (in fact, it was carefully tuned this way). For very small
tables, word distribution does not adequately reflect their semantic value, and this model may sometimes
produce bizarre results. For example, although the word “MySQL” is present in every row of the articles
table shown earlier, a search for the word produces no results:

mysql> SELECT * FROM articles
 -> WHERE MATCH (title,body) AGAINST ('MySQL');
Empty set (0.00 sec)

Boolean Full-Text Searches

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1065

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The search result is empty because the word “MySQL” is present in at least 50% of the rows. As such,
it is effectively treated as a stopword. For large data sets, this is the most desirable behavior: A natural
language query should not return every second row from a 1GB table. For small data sets, it may be less
desirable.

A word that matches half of the rows in a table is less likely to locate relevant documents. In fact, it most
likely finds plenty of irrelevant documents. We all know this happens far too often when we are trying to
find something on the Internet with a search engine. It is with this reasoning that rows containing the word
are assigned a low semantic value for the particular data set in which they occur. A given word may reach
the 50% threshold in one data set but not another.

The 50% threshold has a significant implication when you first try full-text searching to see how it works:
If you create a table and insert only one or two rows of text into it, every word in the text occurs in at least
50% of the rows. As a result, no search returns any results. Be sure to insert at least three rows, and
preferably many more. Users who need to bypass the 50% limitation can use the boolean search mode;
see Section 12.9.2, “Boolean Full-Text Searches”.

12.9.2 Boolean Full-Text Searches

MySQL can perform boolean full-text searches using the IN BOOLEAN MODE modifier. With this modifier,
certain characters have special meaning at the beginning or end of words in the search string. In the
following query, the + and - operators indicate that a word is required to be present or absent, respectively,
for a match to occur. Thus, the query retrieves all the rows that contain the word “MySQL” but that do not
contain the word “YourSQL”:

mysql> SELECT * FROM articles WHERE MATCH (title,body)
 -> AGAINST ('+MySQL -YourSQL' IN BOOLEAN MODE);
+----+-----------------------+-------------------------------------+
| id | title | body |
+----+-----------------------+-------------------------------------+
1	MySQL Tutorial	DBMS stands for DataBase ...
2	How To Use MySQL Well	After you went through a ...
3	Optimizing MySQL	In this tutorial we will show ...
4	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...
6	MySQL Security	When configured properly, MySQL ...
+----+-----------------------+-------------------------------------+

Note

In implementing this feature, MySQL uses what is sometimes referred to as implied
Boolean logic, in which

• + stands for AND

• - stands for NOT

• [no operator] implies OR

Boolean full-text searches have these characteristics:

• They do not use the 50% threshold.

• They do not automatically sort rows in order of decreasing relevance. You can see this from the
preceding query result: The row with the highest relevance is the one that contains “MySQL” twice, but it
is listed last, not first.

• They can work even without a FULLTEXT index, although a search executed in this fashion would be
quite slow.

Boolean Full-Text Searches

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1066

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The minimum and maximum word length full-text parameters apply.

• The stopword list applies.

The boolean full-text search capability supports the following operators:

• +

A leading plus sign indicates that this word must be present in each row that is returned.

• -

A leading minus sign indicates that this word must not be present in any of the rows that are returned.

Note: The - operator acts only to exclude rows that are otherwise matched by other search terms. Thus,
a boolean-mode search that contains only terms preceded by - returns an empty result. It does not
return “all rows except those containing any of the excluded terms.”

• (no operator)

By default (when neither + nor - is specified) the word is optional, but the rows that contain it are rated
higher. This mimics the behavior of MATCH() ... AGAINST() without the IN BOOLEAN MODE
modifier.

• > <

These two operators are used to change a word's contribution to the relevance value that is assigned
to a row. The > operator increases the contribution and the < operator decreases it. See the example
following this list.

• ()

Parentheses group words into subexpressions. Parenthesized groups can be nested.

• ~

A leading tilde acts as a negation operator, causing the word's contribution to the row's relevance to
be negative. This is useful for marking “noise” words. A row containing such a word is rated lower than
others, but is not excluded altogether, as it would be with the - operator.

• *

The asterisk serves as the truncation (or wildcard) operator. Unlike the other operators, it should be
appended to the word to be affected. Words match if they begin with the word preceding the * operator.

If a word is specified with the truncation operator, it is not stripped from a boolean query, even if it is too
short (as determined from the ft_min_word_len setting) or a stopword. This occurs because the word
is not seen as too short or a stopword, but as a prefix that must be present in the document in the form
of a word that begins with the prefix. Suppose that ft_min_word_len=4. ft_min_word_len=4. Then
a search for '+word +the*' will likely return fewer rows than a search for '+word +the':

• The former query remains as is and requires both word and the* (a word starting with the) to be
present in the document.

• The latter query is transformed to +word (requiring only word to be present). the is both too short
and a stopword, and either condition is enough to cause it to be ignored.

• "

Full-Text Searches with Query Expansion

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1067

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A phrase that is enclosed within double quote (“"”) characters matches only rows that contain the phrase
literally, as it was typed. The full-text engine splits the phrase into words and performs a search in the
FULLTEXT index for the words. Prior to MySQL 5.0.3, the engine then performed a substring search for
the phrase in the records that were found, so the match must include nonword characters in the phrase.
As of MySQL 5.0.3, nonword characters need not be matched exactly: Phrase searching requires only
that matches contain exactly the same words as the phrase and in the same order. For example, "test
phrase" matches "test, phrase" in MySQL 5.0.3, but not before.

If the phrase contains no words that are in the index, the result is empty. For example, if all words are
either stopwords or shorter than the minimum length of indexed words, the result is empty.

The following examples demonstrate some search strings that use boolean full-text operators:

• 'apple banana'

Find rows that contain at least one of the two words.

• '+apple +juice'

Find rows that contain both words.

• '+apple macintosh'

Find rows that contain the word “apple”, but rank rows higher if they also contain “macintosh”.

• '+apple -macintosh'

Find rows that contain the word “apple” but not “macintosh”.

• '+apple ~macintosh'

Find rows that contain the word “apple”, but if the row also contains the word “macintosh”, rate it lower
than if row does not. This is “softer” than a search for '+apple -macintosh', for which the presence
of “macintosh” causes the row not to be returned at all.

• '+apple +(>turnover <strudel)'

Find rows that contain the words “apple” and “turnover”, or “apple” and “strudel” (in any order), but rank
“apple turnover” higher than “apple strudel”.

• 'apple*'

Find rows that contain words such as “apple”, “apples”, “applesauce”, or “applet”.

• '"some words"'

Find rows that contain the exact phrase “some words” (for example, rows that contain “some words of
wisdom” but not “some noise words”). Note that the “"” characters that enclose the phrase are operator
characters that delimit the phrase. They are not the quotation marks that enclose the search string itself.

12.9.3 Full-Text Searches with Query Expansion

Full-text search supports query expansion (and in particular, its variant “blind query expansion”). This is
generally useful when a search phrase is too short, which often means that the user is relying on implied
knowledge that the full-text search engine lacks. For example, a user searching for “database” may really
mean that “MySQL”, “Oracle”, “DB2”, and “RDBMS” all are phrases that should match “databases” and
should be returned, too. This is implied knowledge.

Full-Text Stopwords

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1068

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Blind query expansion (also known as automatic relevance feedback) is enabled by adding WITH QUERY
EXPANSION following the search phrase. It works by performing the search twice, where the search
phrase for the second search is the original search phrase concatenated with the few most highly relevant
documents from the first search. Thus, if one of these documents contains the word “databases” and the
word “MySQL”, the second search finds the documents that contain the word “MySQL” even if they do not
contain the word “database”. The following example shows this difference:

mysql> SELECT * FROM articles
 -> WHERE MATCH (title,body) AGAINST ('database');
+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
+----+-------------------+--+
2 rows in set (0.00 sec)

mysql> SELECT * FROM articles
 -> WHERE MATCH (title,body)
 -> AGAINST ('database' WITH QUERY EXPANSION);
+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
1	MySQL Tutorial	DBMS stands for DataBase ...
5	MySQL vs. YourSQL	In the following database comparison ...
3	Optimizing MySQL	In this tutorial we will show ...
+----+-------------------+--+
3 rows in set (0.00 sec)

Another example could be searching for books by Georges Simenon about Maigret, when a user is not
sure how to spell “Maigret”. A search for “Megre and the reluctant witnesses” finds only “Maigret and the
Reluctant Witnesses” without query expansion. A search with query expansion finds all books with the
word “Maigret” on the second pass.

Note

Because blind query expansion tends to increase noise significantly by returning
nonrelevant documents, it is meaningful to use only when a search phrase is rather
short.

12.9.4 Full-Text Stopwords

The stopword list is loaded and searched for full-text queries using the server character set and
collation (the values of the character_set_server and collation_server system variables).
False hits or misses may occur for stopword lookups if the stopword file or columns used for full-text
indexing or searches have a character set or collation different from character_set_server or
collation_server.

Case sensitivity of stopword lookups depends on the server collation. For example, lookups are case
insensitive if the collation is latin1_swedish_ci, whereas lookups are case sensitive if the collation is
latin1_general_cs or latin1_bin.

The following table shows the default list of full-text stopwords. In a MySQL source distribution, you can
find this list in the myisam/ft_static.c file.

a's able about above according

accordingly across actually after afterwards

again against ain't all allow

Full-Text Stopwords

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1069

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

allows almost alone along already

also although always am among

amongst an and another any

anybody anyhow anyone anything anyway

anyways anywhere apart appear appreciate

appropriate are aren't around as

aside ask asking associated at

available away awfully be became

because become becomes becoming been

before beforehand behind being believe

below beside besides best better

between beyond both brief but

by c'mon c's came can

can't cannot cant cause causes

certain certainly changes clearly co

com come comes concerning consequently

consider considering contain containing contains

corresponding could couldn't course currently

definitely described despite did didn't

different do does doesn't doing

don't done down downwards during

each edu eg eight either

else elsewhere enough entirely especially

et etc even ever every

everybody everyone everything everywhere ex

exactly example except far few

fifth first five followed following

follows for former formerly forth

four from further furthermore get

gets getting given gives go

goes going gone got gotten

greetings had hadn't happens hardly

has hasn't have haven't having

he he's hello help hence

her here here's hereafter hereby

herein hereupon hers herself hi

him himself his hither hopefully

how howbeit however i'd i'll

i'm i've ie if ignored

Full-Text Stopwords

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1070

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

immediate in inasmuch inc indeed

indicate indicated indicates inner insofar

instead into inward is isn't

it it'd it'll it's its

itself just keep keeps kept

know known knows last lately

later latter latterly least less

lest let let's like liked

likely little look looking looks

ltd mainly many may maybe

me mean meanwhile merely might

more moreover most mostly much

must my myself name namely

nd near nearly necessary need

needs neither never nevertheless new

next nine no nobody non

none noone nor normally not

nothing novel now nowhere obviously

of off often oh ok

okay old on once one

ones only onto or other

others otherwise ought our ours

ourselves out outside over overall

own particular particularly per perhaps

placed please plus possible presumably

probably provides que quite qv

rather rd re really reasonably

regarding regardless regards relatively respectively

right said same saw say

saying says second secondly see

seeing seem seemed seeming seems

seen self selves sensible sent

serious seriously seven several shall

she should shouldn't since six

so some somebody somehow someone

something sometime sometimes somewhat somewhere

soon sorry specified specify specifying

still sub such sup sure

t's take taken tell tends

Full-Text Restrictions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1071

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

th than thank thanks thanx

that that's thats the their

theirs them themselves then thence

there there's thereafter thereby therefore

therein theres thereupon these they

they'd they'll they're they've think

third this thorough thoroughly those

though three through throughout thru

thus to together too took

toward towards tried tries truly

try trying twice two un

under unfortunately unless unlikely until

unto up upon us use

used useful uses using usually

value various very via viz

vs want wants was wasn't

way we we'd we'll we're

we've welcome well went were

weren't what what's whatever when

whence whenever where where's whereafter

whereas whereby wherein whereupon wherever

whether which while whither who

who's whoever whole whom whose

why will willing wish with

within without won't wonder would

wouldn't yes yet you you'd

you'll you're you've your yours

yourself yourselves zero

12.9.5 Full-Text Restrictions

• Full-text searches are supported for MyISAM tables only.

• Full-text searches can be used with most multibyte character sets. The exception is that for Unicode, the
utf8 character set can be used, but not the ucs2 character set. However, although FULLTEXT indexes
on ucs2 columns cannot be used, you can perform IN BOOLEAN MODE searches on a ucs2 column
that has no such index.

• Ideographic languages such as Chinese and Japanese do not have word delimiters. Therefore, the
FULLTEXT parser cannot determine where words begin and end in these and other such languages.
The implications of this and some workarounds for the problem are described in Section 12.9, “Full-Text
Search Functions”.

Fine-Tuning MySQL Full-Text Search

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1072

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Although the use of multiple character sets within a single table is supported, all columns in a FULLTEXT
index must use the same character set and collation.

• The MATCH() column list must match exactly the column list in some FULLTEXT index definition for the
table, unless this MATCH() is IN BOOLEAN MODE. Boolean-mode searches can be done on nonindexed
columns, although they are likely to be slow.

• The argument to AGAINST() must be a string value that is constant during query evaluation. This rules
out, for example, a table column because that can differ for each row.

• Index hints are more limited for FULLTEXT searches than for non-FULLTEXT searches. See
Section 8.9.2, “Index Hints”.

• The '%' character is not a supported wildcard character for full-text searches.

12.9.6 Fine-Tuning MySQL Full-Text Search

MySQL's full-text search capability has few user-tunable parameters. You can exert more control over full-
text searching behavior if you have a MySQL source distribution because some changes require source
code modifications. See Section 2.17, “Installing MySQL from Source”.

Full-text search is carefully tuned for the most effectiveness. Modifying the default behavior in most cases
can actually decrease effectiveness. Do not alter the MySQL sources unless you know what you are doing.

Most full-text variables described in this section must be set at server startup time. A server restart is
required to change them; they cannot be modified while the server is running.

Some variable changes require that you rebuild the FULLTEXT indexes in your tables. Instructions for
doing so are given later in this section.

• The minimum and maximum lengths of words to be indexed are defined by the ft_min_word_len
and ft_max_word_len system variables. (See Section 5.1.4, “Server System Variables”.) The default
minimum value is four characters; the default maximum is version dependent. If you change either
value, you must rebuild your FULLTEXT indexes. For example, if you want three-character words to be
searchable, you can set the ft_min_word_len variable by putting the following lines in an option file:

[mysqld]
ft_min_word_len=3

Then restart the server and rebuild your FULLTEXT indexes. Note particularly the remarks regarding
myisamchk in the instructions following this list.

• To override the default stopword list, set the ft_stopword_file system variable. (See Section 5.1.4,
“Server System Variables”.) The variable value should be the path name of the file containing the
stopword list, or the empty string to disable stopword filtering. The server looks for the file in the data
directory unless an absolute path name is given to specify a different directory. After changing the
value of this variable or the contents of the stopword file, restart the server and rebuild your FULLTEXT
indexes.

The stopword list is free-form. That is, you may use any nonalphanumeric character such as newline,
space, or comma to separate stopwords. Exceptions are the underscore character (“_”) and a single
apostrophe (“'”) which are treated as part of a word. The character set of the stopword list is the server's
default character set; see Section 10.1.3.1, “Server Character Set and Collation”.

• The 50% threshold for natural language searches is determined by the particular weighting scheme
chosen. To disable it, look for the following line in myisam/ftdefs.h:

Fine-Tuning MySQL Full-Text Search

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1073

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

#define GWS_IN_USE GWS_PROB

Change that line to this:

#define GWS_IN_USE GWS_FREQ

Then recompile MySQL. There is no need to rebuild the indexes in this case.

Note

By making this change, you severely decrease MySQL's ability to provide
adequate relevance values for the MATCH() function. If you really need to search
for such common words, it would be better to search using IN BOOLEAN MODE
instead, which does not observe the 50% threshold.

• To change the operators used for boolean full-text searches, set the ft_boolean_syntax system
variable. This variable can be changed while the server is running, but you must have the SUPER
privilege to do so. No rebuilding of indexes is necessary in this case. See Section 5.1.4, “Server System
Variables”, which describes the rules governing how to set this variable.

• If you want to change the set of characters that are considered word characters, you can do so in
several ways, as described in the following list. After making the modification, you must rebuild the
indexes for each table that contains any FULLTEXT indexes. Suppose that you want to treat the hyphen
character ('-') as a word character. Use one of these methods:

• Modify the MySQL source: In myisam/ftdefs.h, see the true_word_char() and
misc_word_char() macros. Add '-' to one of those macros and recompile MySQL.

• Modify a character set file: This requires no recompilation. The true_word_char() macro uses
a “character type” table to distinguish letters and numbers from other characters. . You can edit the
contents of the <ctype><map> array in one of the character set XML files to specify that '-' is
a “letter.” Then use the given character set for your FULLTEXT indexes. For information about the
<ctype><map> array format, see Section 10.3.1, “Character Definition Arrays”.

• Add a new collation for the character set used by the indexed columns, and alter the columns to use
that collation. For general information about adding collations, see Section 10.4, “Adding a Collation to
a Character Set”. For an example specific to full-text indexing, see Section 12.9.7, “Adding a Collation
for Full-Text Indexing”.

If you modify full-text variables that affect indexing (ft_min_word_len, ft_max_word_len, or
ft_stopword_file), or if you change the stopword file itself, you must rebuild your FULLTEXT indexes
after making the changes and restarting the server. To rebuild the indexes in this case, it is sufficient to do
a QUICK repair operation:

mysql> REPAIR TABLE tbl_name QUICK;

Alternatively, use ALTER TABLE with the DROP INDEX and ADD INDEX options to drop and re-create
each FULLTEXT index. In some cases, this may be faster than a repair operation.

Each table that contains any FULLTEXT index must be repaired as just shown. Otherwise, queries for the
table may yield incorrect results, and modifications to the table will cause the server to see the table as
corrupt and in need of repair.

If you use myisamchk to perform an operation that modifies table indexes (such as repair or analyze),
the FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum word length,
maximum word length, and stopword file unless you specify otherwise. This can result in queries failing.

Adding a Collation for Full-Text Indexing

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1074

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The problem occurs because these parameters are known only by the server. They are not stored in
MyISAM index files. To avoid the problem if you have modified the minimum or maximum word length or
stopword file values used by the server, specify the same ft_min_word_len, ft_max_word_len, and
ft_stopword_file values for myisamchk that you use for mysqld. For example, if you have set the
minimum word length to 3, you can repair a table with myisamchk like this:

shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, place each one in
both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk for index modification is to use the REPAIR TABLE, ANALYZE TABLE,
OPTIMIZE TABLE, or ALTER TABLE statements. These statements are performed by the server, which
knows the proper full-text parameter values to use.

12.9.7 Adding a Collation for Full-Text Indexing

This section describes how to add a new collation for full-text searches. The sample collation is like
latin1_swedish_ci but treats the '-' character as a letter rather than as a punctuation character
so that it can be indexed as a word character. General information about adding collations is given in
Section 10.4, “Adding a Collation to a Character Set”; it is assumed that you have read it and are familiar
with the files involved.

To add a collation for full-text indexing, use this procedure:

1. Add a collation to the Index.xml file. The collation ID must be unused, so choose a value different
from 62 if that ID is already taken on your system.

<charset name="latin1">
...
<collation name="latin1_fulltext_ci" id="62"/>
</charset>

2. Declare the sort order for the collation in the latin1.xml file. In this case, the order can be copied
from latin1_swedish_ci:

<collation name="latin1_fulltext_ci">
<map>
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F
60 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
50 51 52 53 54 55 56 57 58 59 5A 7B 7C 7D 7E 7F
80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F
90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF
B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF
41 41 41 41 5C 5B 5C 43 45 45 45 45 49 49 49 49

Cast Functions and Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1075

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

44 4E 4F 4F 4F 4F 5D D7 D8 55 55 55 59 59 DE DF
41 41 41 41 5C 5B 5C 43 45 45 45 45 49 49 49 49
44 4E 4F 4F 4F 4F 5D F7 D8 55 55 55 59 59 DE FF
</map>
</collation>

3. Modify the ctype array in latin1.xml. Change the value corresponding to 0x2D (which is the
code for the '-' character) from 10 (punctuation) to 01 (small letter). In the following array, this is the
element in the fourth row down, third value from the end.

<ctype>
<map>
00
20 20 20 20 20 20 20 20 20 28 28 28 28 28 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
48 10 10 10 10 10 10 10 10 10 10 10 10 01 10 10
84 84 84 84 84 84 84 84 84 84 10 10 10 10 10 10
10 81 81 81 81 81 81 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 01 01 01 01 10 10 10 10 10
10 82 82 82 82 82 82 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 02 02 02 02 10 10 10 10 20
10 00 10 02 10 10 10 10 10 10 01 10 01 00 01 00
00 10 10 10 10 10 10 10 10 10 02 10 02 00 02 01
48 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
01 01 01 01 01 01 01 10 01 01 01 01 01 01 01 02
02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02
02 02 02 02 02 02 02 10 02 02 02 02 02 02 02 02
</map>
</ctype>

4. Restart the server.

5. To employ the new collation, include it in the definition of columns that are to use it:

mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected (0.13 sec)

mysql> CREATE TABLE t1 (
 -> a TEXT CHARACTER SET latin1 COLLATE latin1_fulltext_ci,
 -> FULLTEXT INDEX(a)
 ->) ENGINE=MyISAM;
Query OK, 0 rows affected (0.47 sec)

6. Test the collation to verify that hyphen is considered as a word character:

mysql> INSERT INTO t1 VALUEs ('----'),('....'),('abcd');
Query OK, 3 rows affected (0.22 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t1 WHERE MATCH a AGAINST ('----' IN BOOLEAN MODE);
+------+
| a |
+------+
| ---- |
+------+
1 row in set (0.00 sec)

12.10 Cast Functions and Operators

Cast Functions and Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1076

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Table 12.14 Cast Functions

Name Description

BINARY Cast a string to a binary string

CAST() Cast a value as a certain type

CONVERT() Cast a value as a certain type

• BINARY

The BINARY operator casts the string following it to a binary string. This is an easy way to force a
column comparison to be done byte by byte rather than character by character. This causes the
comparison to be case sensitive even if the column is not defined as BINARY or BLOB. BINARY also
causes trailing spaces to be significant.

mysql> SELECT 'a' = 'A';
 -> 1
mysql> SELECT BINARY 'a' = 'A';
 -> 0
mysql> SELECT 'a' = 'a ';
 -> 1
mysql> SELECT BINARY 'a' = 'a ';
 -> 0

In a comparison, BINARY affects the entire operation; it can be given before either operand with the
same result.

BINARY str is shorthand for CAST(str AS BINARY).

Note that in some contexts, if you cast an indexed column to BINARY, MySQL is not able to use the
index efficiently.

• CAST(expr AS type)

The CAST() function takes an expression of any type and produces a result value of a specified type,
similar to CONVERT(). See the description of CONVERT() for more information.

• CONVERT(expr,type), CONVERT(expr USING transcoding_name)

The CONVERT() and CAST() functions take an expression of any type and produce a result value of a
specified type.

CAST() and CONVERT(... USING ...) are standard SQL syntax. The non-USING form of
CONVERT() is ODBC syntax.

CONVERT() with USING converts data between different character sets. In MySQL, transcoding names
are the same as the corresponding character set names. For example, this statement converts the string
'abc' in the default character set to the corresponding string in the utf8 character set:

SELECT CONVERT('abc' USING utf8);

The type for the result can be one of the following values:

• BINARY[(N)]

• CHAR[(N)]

Cast Functions and Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1077

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• DATE

• DATETIME

• DECIMAL[(M[,D])]

• SIGNED [INTEGER]

• TIME

• UNSIGNED [INTEGER]

BINARY produces a string with the BINARY data type. See Section 11.4.2, “The BINARY and
VARBINARY Types” for a description of how this affects comparisons. If the optional length N is given,
BINARY(N) causes the cast to use no more than N bytes of the argument. As of MySQL 5.0.17, values
shorter than N bytes are padded with 0x00 bytes to a length of N.

CHAR(N) causes the cast to use no more than N characters of the argument.

The DECIMAL type is available as of MySQL 5.0.8.

Normally, you cannot compare a BLOB value or other binary string in case-insensitive fashion because
binary strings have no character set, and thus no concept of lettercase. To perform a case-insensitive
comparison, use the CONVERT() function to convert the value to a nonbinary string. Comparisons of
the result use the string collation. For example, if the character set of the result has a case-insensitive
collation, a LIKE operation is not case sensitive:

SELECT 'A' LIKE CONVERT(blob_col USING latin1) FROM tbl_name;

To use a different character set, substitute its name for latin1 in the preceding statement. To specify
a particular collation for the converted string, use a COLLATE clause following the CONVERT() call, as
described in Section 10.1.9.2, “CONVERT() and CAST()”. For example, to use latin1_german1_ci:

SELECT 'A' LIKE CONVERT(blob_col USING latin1) COLLATE latin1_german1_ci
 FROM tbl_name;

CONVERT() can be used more generally for comparing strings that are represented in different character
sets.

LOWER() (and UPPER()) are ineffective when applied to binary strings (BINARY, VARBINARY, BLOB). To
perform lettercase conversion, convert the string to a nonbinary string:

mysql> SET @str = BINARY 'New York';
mysql> SELECT LOWER(@str), LOWER(CONVERT(@str USING latin1));
+-------------+-----------------------------------+
| LOWER(@str) | LOWER(CONVERT(@str USING latin1)) |
+-------------+-----------------------------------+
| New York | new york |
+-------------+-----------------------------------+

The cast functions are useful when you want to create a column with a specific type in a CREATE
TABLE ... SELECT statement:

CREATE TABLE new_table SELECT CAST('2000-01-01' AS DATE);

Cast Functions and Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1078

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The functions also can be useful for sorting ENUM columns in lexical order. Normally, sorting of ENUM
columns occurs using the internal numeric values. Casting the values to CHAR results in a lexical sort:

SELECT enum_col FROM tbl_name ORDER BY CAST(enum_col AS CHAR);

CAST(str AS BINARY) is the same thing as BINARY str. CAST(expr AS CHAR) treats the
expression as a string with the default character set.

CAST() also changes the result if you use it as part of a more complex expression such as
CONCAT('Date: ',CAST(NOW() AS DATE)).

You should not use CAST() to extract data in different formats but instead use string functions like LEFT()
or EXTRACT(). See Section 12.7, “Date and Time Functions”.

To cast a string to a numeric value in numeric context, you normally do not have to do anything other than
to use the string value as though it were a number:

mysql> SELECT 1+'1';
 -> 2

If you use a string in an arithmetic operation, it is converted to a floating-point number during expression
evaluation.

If you use a number in string context, the number automatically is converted to a string:

mysql> SELECT CONCAT('hello you ',2);
 -> 'hello you 2'

For information about implicit conversion of numbers to strings, see Section 12.2, “Type Conversion in
Expression Evaluation”.

When using an explicit CAST() on a TIMESTAMP value in a statement that does not select from any tables,
the value is treated by MySQL as a string prior to performing any conversion. This results in the value
being truncated when casting to a numeric type, as shown here:

mysql> SELECT CAST(TIMESTAMP '2014-09-08 18:07:54' AS SIGNED);
+---+
| CAST(TIMESTAMP '2014-09-08 18:07:54' AS SIGNED) |
+---+
| 2014 |
+---+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1292 | Truncated incorrect INTEGER value: '2014-09-08 18:07:54' |
+---------+------+--+
1 row in set (0.00 sec)

This does not apply when selecting rows from a table, as shown here:

mysql> USE test;

Database changed
mysql> CREATE TABLE c_test (col TIMESTAMP);
Query OK, 0 rows affected (0.07 sec)

Bit Functions and Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1079

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> INSERT INTO c_test VALUES ('2014-09-08 18:07:54');
Query OK, 1 row affected (0.05 sec)

mysql> SELECT col, CAST(col AS UNSIGNED) AS c_col FROM c_test;
+---------------------+----------------+
| col | c_col |
+---------------------+----------------+
| 2014-09-08 18:07:54 | 20140908180754 |
+---------------------+----------------+
1 row in set (0.00 sec)

This is a known issue which is resolved in MySQL 5.6.

MySQL supports arithmetic with both signed and unsigned 64-bit values. If you are using numeric
operators (such as + or -) and one of the operands is an unsigned integer, the result is unsigned by default
(see Section 12.6.1, “Arithmetic Operators”). You can override this by using the SIGNED or UNSIGNED cast
operator to cast a value to a signed or unsigned 64-bit integer, respectively.

mysql> SELECT CAST(1-2 AS UNSIGNED);
 -> 18446744073709551615
mysql> SELECT CAST(CAST(1-2 AS UNSIGNED) AS SIGNED);
 -> -1

If either operand is a floating-point value, the result is a floating-point value and is not affected by the
preceding rule. (In this context, DECIMAL column values are regarded as floating-point values.)

mysql> SELECT CAST(1 AS UNSIGNED) - 2.0;
 -> -1.0

The SQL mode affects the result of conversion operations. Examples:

• If you convert a “zero” date string to a date, CONVERT() and CAST() return NULL when the
NO_ZERO_DATE SQL mode is enabled. As of MySQL 5.0.4, they also produce a warning.

• For integer subtraction, if the NO_UNSIGNED_SUBTRACTION SQL mode is enabled, the subtraction
result is signed even if any operand is unsigned.

For more information, see Section 5.1.7, “Server SQL Modes”.

12.11 Bit Functions and Operators
Table 12.15 Bit Functions and Operators

Name Description

BIT_COUNT() Return the number of bits that are set

& Bitwise AND

~ Bitwise inversion

| Bitwise OR

^ Bitwise XOR

<< Left shift

>> Right shift

Bit functions and operators comprise BIT_COUNT(), BIT_AND(), BIT_OR(), BIT_XOR(), &, |, ^, ~, <<,
and >>. (BIT_AND(), BIT_OR(), and BIT_XOR() are aggregate functions described at Section 12.16.1,
“GROUP BY (Aggregate) Function Descriptions”.) Bit functions and operators require BIGINT (64-bit
integer) arguments and return BIGINT values, so they have a maximum range of 64 bits. Arguments

Bit Functions and Operators

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1080

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

of other types (such as the BINARY and VARBINARY binary string types) are converted to BIGINT and
truncation might occur.

The following list describes available bit functions and operators:

• |

Bitwise OR:

mysql> SELECT 29 | 15;
 -> 31

The result is an unsigned 64-bit integer.

• &

Bitwise AND:

mysql> SELECT 29 & 15;
 -> 13

The result is an unsigned 64-bit integer.

• ^

Bitwise XOR:

mysql> SELECT 1 ^ 1;
 -> 0
mysql> SELECT 1 ^ 0;
 -> 1
mysql> SELECT 11 ^ 3;
 -> 8

The result is an unsigned 64-bit integer.

• <<

Shifts a longlong (BIGINT) number to the left.

mysql> SELECT 1 << 2;
 -> 4

The result is an unsigned 64-bit integer. The value is truncated to 64 bits. In particular, if the shift count is
greater or equal to the width of an unsigned 64-bit number, the result is zero.

• >>

Shifts a longlong (BIGINT) number to the right.

mysql> SELECT 4 >> 2;
 -> 1

The result is an unsigned 64-bit integer. The value is truncated to 64 bits. In particular, if the shift count is
greater or equal to the width of an unsigned 64-bit number, the result is zero.

• ~

Encryption and Compression Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1081

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Invert all bits.

mysql> SELECT 5 & ~1;
 -> 4

The result is an unsigned 64-bit integer.

• BIT_COUNT(N)

Returns the number of bits that are set in the argument N.

mysql> SELECT BIT_COUNT(29), BIT_COUNT(b'101010');
 -> 4, 3

12.12 Encryption and Compression Functions
Table 12.16 Encryption Functions

Name Description

AES_DECRYPT() Decrypt using AES

AES_ENCRYPT() Encrypt using AES

COMPRESS() Return result as a binary string

DECODE() Decodes a string encrypted using ENCODE()

DES_DECRYPT() Decrypt a string

DES_ENCRYPT() Encrypt a string

ENCODE() Encode a string

ENCRYPT() Encrypt a string

MD5() Calculate MD5 checksum

OLD_PASSWORD() Return the value of the pre-4.1 implementation of PASSWORD

PASSWORD() Calculate and return a password string

SHA1(), SHA() Calculate an SHA-1 160-bit checksum

UNCOMPRESS() Uncompress a string compressed

UNCOMPRESSED_LENGTH() Return the length of a string before compression

Many encryption and compression functions return strings for which the result might contain arbitrary byte
values. If you want to store these results, use a column with a VARBINARY or BLOB binary string data
type. This will avoid potential problems with trailing space removal or character set conversion that would
change data values, such as may occur if you use a nonbinary string data type (CHAR, VARCHAR, TEXT).

For functions such as MD5() or SHA1() that return a string of hex digits, the return value cannot be
converted to uppercase or compared in case-insensitive fashion as is. You must convert the value to a
nonbinary string. See the discussion of binary string conversion in Section 12.10, “Cast Functions and
Operators”.

If an application stores values from a function such as MD5() or SHA1() that returns a string of hex digits,
more efficient storage and comparisons can be obtained by converting the hex representation to binary
using UNHEX() and storing the result in a BINARY(N) column. Each pair of hex digits requires one byte in
binary form, so the value of N depends on the length of the hex string. N is 16 for an MD5() value and 20
for a SHA1() value.

Encryption and Compression Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1082

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The size penalty for storing the hex string in a CHAR column is at least two times, up to six times if the
value is stored in a column that uses the utf8 character set (where each character uses 3 bytes). Storing
the string also results in slower comparisons because of the larger values and the need to take character
set collation rules into account.

Suppose that an application stores MD5() string values in a CHAR(32) column:

CREATE TABLE md5_tbl (md5_val CHAR(32), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(MD5('abcdef'), ...);

To convert hex strings to more compact form, modify the application to use UNHEX() and BINARY(16)
instead as follows:

CREATE TABLE md5_tbl (md5_val BINARY(16), ...);
INSERT INTO md5_tbl (md5_val, ...) VALUES(UNHEX(MD5('abcdef')), ...);

Applications should be prepared to handle the very rare case that a hashing function produces the same
value for two different input values. One way to make collisions detectable is to make the hash column a
primary key.

Note

Exploits for the MD5 and SHA-1 algorithms have become known. You may wish
to consider using one of the other encryption functions described in this section
instead.

Caution

Passwords or other sensitive values supplied as arguments to encryption functions
are sent in cleartext to the MySQL server unless an SSL connection is used. Also,
such values will appear in any MySQL logs to which they are written. To avoid
these types of exposure, applications can encrypt sensitive values on the client side
before sending them to the server. The same considerations apply to encryption
keys. To avoid exposing these, applications can use stored procedures to encrypt
and decrypt values on the server side.

• AES_DECRYPT(crypt_str,key_str)

This function decrypts data using the official AES (Advanced Encryption Standard) algorithm. For more
information, see the description of AES_ENCRYPT().

• AES_ENCRYPT(str,key_str)

AES_ENCRYPT() and AES_DECRYPT() implement encryption and decryption of data using the official
AES (Advanced Encryption Standard) algorithm, previously known as “Rijndael.” The AES standard
permits various key lengths. These functions implement AES with a 128-bit key length, but you can
extend them to 256 bits by modifying the source. The key length is a trade off between performance and
security.

AES_ENCRYPT() encrypts the string str using the key string key_str and returns a binary string
containing the encrypted output. AES_DECRYPT() decrypts the encrypted string crypt_str using the
key string key_str and returns the original cleartext string. If either function argument is NULL, the
function returns NULL.

The str and crypt_str arguments can be any length, and padding is automatically added to str
so it is a multiple of a block as required by block-based algorithms such as AES. This padding is

Encryption and Compression Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1083

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

automatically removed by the AES_DECRYPT() function. The length of crypt_str can be calculated
using this formula:

16 * (trunc(string_length / 16) + 1)

For a key length of 128 bits, the most secure way to pass a key to the key_str argument is to create a
truly random 128-bit value and pass it as a binary value. For example:

INSERT INTO t
VALUES (1,AES_ENCRYPT('text',UNHEX('F3229A0B371ED2D9441B830D21A390C3')));

A passphrase can be used to generate an AES key by hashing the passphrase. For example:

INSERT INTO t VALUES (1,AES_ENCRYPT('text', SHA1('My secret passphrase')));

Do not pass a password or passphrase directly to crypt_str, hash it first. Previous versions of this
documentation suggested the former approach, but it is no longer recommended as the examples shown
here are more secure.

If AES_DECRYPT() detects invalid data or incorrect padding, it returns NULL. However, it is possible for
AES_DECRYPT() to return a non-NULL value (possibly garbage) if the input data or the key is invalid.

• COMPRESS(string_to_compress)

Compresses a string and returns the result as a binary string. This function requires MySQL to have
been compiled with a compression library such as zlib. Otherwise, the return value is always NULL.
The compressed string can be uncompressed with UNCOMPRESS().

mysql> SELECT LENGTH(COMPRESS(REPEAT('a',1000)));
 -> 21
mysql> SELECT LENGTH(COMPRESS(''));
 -> 0
mysql> SELECT LENGTH(COMPRESS('a'));
 -> 13
mysql> SELECT LENGTH(COMPRESS(REPEAT('a',16)));
 -> 15

The compressed string contents are stored the following way:

• Empty strings are stored as empty strings.

• Nonempty strings are stored as a 4-byte length of the uncompressed string (low byte first), followed by
the compressed string. If the string ends with space, an extra “.” character is added to avoid problems
with endspace trimming should the result be stored in a CHAR or VARCHAR column. (However,
use of nonbinary string data types such as CHAR or VARCHAR to store compressed strings is not
recommended anyway because character set conversion may occur. Use a VARBINARY or BLOB
binary string column instead.)

• DECODE(crypt_str,pass_str)

Decrypts the encrypted string crypt_str using pass_str as the password. crypt_str should be a
string returned from ENCODE().

• DES_DECRYPT(crypt_str[,key_str])

Decrypts a string encrypted with DES_ENCRYPT(). If an error occurs, this function returns NULL.

Encryption and Compression Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1084

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This function works only if MySQL has been configured with SSL support. See Section 6.3.6, “Using
Secure Connections”.

If no key_str argument is given, DES_DECRYPT() examines the first byte of the encrypted string to
determine the DES key number that was used to encrypt the original string, and then reads the key from
the DES key file to decrypt the message. For this to work, the user must have the SUPER privilege. The
key file can be specified with the --des-key-file server option.

If you pass this function a key_str argument, that string is used as the key for decrypting the message.

If the crypt_str argument does not appear to be an encrypted string, MySQL returns the given
crypt_str.

• DES_ENCRYPT(str[,{key_num|key_str}])

Encrypts the string with the given key using the Triple-DES algorithm.

This function works only if MySQL has been configured with SSL support. See Section 6.3.6, “Using
Secure Connections”.

The encryption key to use is chosen based on the second argument to DES_ENCRYPT(), if one was
given. With no argument, the first key from the DES key file is used. With a key_num argument, the
given key number (0 to 9) from the DES key file is used. With a key_str argument, the given key string
is used to encrypt str.

The key file can be specified with the --des-key-file server option.

The return string is a binary string where the first character is CHAR(128 | key_num). If an error
occurs, DES_ENCRYPT() returns NULL.

The 128 is added to make it easier to recognize an encrypted key. If you use a string key, key_num is
127.

The string length for the result is given by this formula:

new_len = orig_len + (8 - (orig_len % 8)) + 1

Each line in the DES key file has the following format:

key_num des_key_str

Each key_num value must be a number in the range from 0 to 9. Lines in the file may be in any order.
des_key_str is the string that is used to encrypt the message. There should be at least one space
between the number and the key. The first key is the default key that is used if you do not specify any
key argument to DES_ENCRYPT().

You can tell MySQL to read new key values from the key file with the FLUSH DES_KEY_FILE
statement. This requires the RELOAD privilege.

One benefit of having a set of default keys is that it gives applications a way to check for the existence of
encrypted column values, without giving the end user the right to decrypt those values.

mysql> SELECT customer_address FROM customer_table
 > WHERE crypted_credit_card = DES_ENCRYPT('credit_card_number');

Encryption and Compression Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1085

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• ENCODE(str,pass_str)

Encrypt str using pass_str as the password. The result is a binary string of the same length as str.
To decrypt the result, use DECODE().

The strength of the encryption is based on how good the random generator is. It should suffice for short
strings.

• ENCRYPT(str[,salt])

Encrypts str using the Unix crypt() system call and returns a binary string. The salt argument
must be a string with at least two characters or the result will be NULL. If no salt argument is given, a
random value is used.

mysql> SELECT ENCRYPT('hello');
 -> 'VxuFAJXVARROc'

ENCRYPT() ignores all but the first eight characters of str, at least on some systems. This behavior is
determined by the implementation of the underlying crypt() system call.

The use of ENCRYPT() with the ucs2 multibyte character set is not recommended because the system
call expects a string terminated by a zero byte.

If crypt() is not available on your system (as is the case with Windows), ENCRYPT() always returns
NULL.

• MD5(str)

Calculates an MD5 128-bit checksum for the string. The value is returned as a binary string of 32 hex
digits, or NULL if the argument was NULL. The return value can, for example, be used as a hash key.
See the notes at the beginning of this section about storing hash values efficiently.

mysql> SELECT MD5('testing');
 -> 'ae2b1fca515949e5d54fb22b8ed95575'

This is the “RSA Data Security, Inc. MD5 Message-Digest Algorithm.”

See the note regarding the MD5 algorithm at the beginning this section.

• OLD_PASSWORD(str)

OLD_PASSWORD() was added when the implementation of PASSWORD() was changed in MySQL 4.1
to improve security. OLD_PASSWORD() returns the value of the pre-4.1 implementation of PASSWORD()
as a binary string, and is intended to permit you to reset passwords for any pre-4.1 clients that need to
connect to your version MySQL 5.0 server without locking them out. See Section 6.1.2.4, “Password
Hashing in MySQL”.

• PASSWORD(str)

Returns a hashed password string calculated from the cleartext password str. The return value is a
binary string, or NULL if the argument is NULL. This function is the SQL interface to the algorithm used
by the server to encrypt MySQL passwords for storage in the mysql.user grant table.

The old_passwords system variable controls the password hashing method used by the PASSWORD()
function. It also influences password hashing performed by CREATE USER and GRANT statements that
specify a password using an IDENTIFIED BY clause.

Encryption and Compression Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1086

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The value determines whether or not to use “old” native MySQL password hashing. A value of 0 (or OFF)
causes passwords to be encrypted using the format available from MySQL 4.1 on. A value of 1 (or ON)
causes password encryption to use the older pre-4.1 format.

If old_passwords=1, PASSWORD(str) returns the same value as OLD_PASSWORD(str). The latter
function is not affected by the value of old_passwords.

mysql> SET old_passwords = 0;
mysql> SELECT PASSWORD('mypass'), OLD_PASSWORD('mypass');
+---+------------------------+
| PASSWORD('mypass') | OLD_PASSWORD('mypass') |
+---+------------------------+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 | 6f8c114b58f2ce9e |
+---+------------------------+

mysql> SET old_passwords = 1;
mysql> SELECT PASSWORD('mypass'), OLD_PASSWORD('mypass');
+--------------------+------------------------+
| PASSWORD('mypass') | OLD_PASSWORD('mypass') |
+--------------------+------------------------+
| 6f8c114b58f2ce9e | 6f8c114b58f2ce9e |
+--------------------+------------------------+

 Encryption performed by PASSWORD() is one-way (not reversible). It is not the same type of encryption
as used for Unix passwords; for that, use ENCRYPT().

Note

PASSWORD() is used by the authentication system in MySQL Server; you should
not use it in your own applications. For that purpose, consider MD5() or SHA1()
instead. Also see RFC 2195, section 2 (Challenge-Response Authentication
Mechanism (CRAM)), for more information about handling passwords and
authentication securely in your applications.

Caution

Statements that invoke PASSWORD() may be recorded in server logs or on
the client side in a history file such as ~/.mysql_history, which means
that cleartext passwords may be read by anyone having read access to that
information. For information about password logging in the server logs, see
Section 6.1.2.3, “Passwords and Logging”. For similar information about client-
side logging, see Section 4.5.1.3, “mysql Logging”.

• SHA1(str), SHA(str)

Calculates an SHA-1 160-bit checksum for the string, as described in RFC 3174 (Secure Hash
Algorithm). The value is returned as a binary string of 40 hex digits, or NULL if the argument was NULL.
One of the possible uses for this function is as a hash key. See the notes at the beginning of this section
about storing hash values efficiently. You can also use SHA1() as a cryptographic function for storing
passwords. SHA() is synonymous with SHA1().

mysql> SELECT SHA1('abc');
 -> 'a9993e364706816aba3e25717850c26c9cd0d89d'

SHA1() can be considered a cryptographically more secure equivalent of MD5(). However, see the note
regarding the MD5 and SHA-1 algorithms at the beginning this section.

http://www.faqs.org/rfcs/rfc2195.html
http://www.faqs.org/rfcs/rfc2195.html

Information Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1087

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• UNCOMPRESS(string_to_uncompress)

Uncompresses a string compressed by the COMPRESS() function. If the argument is not a compressed
value, the result is NULL. This function requires MySQL to have been compiled with a compression
library such as zlib. Otherwise, the return value is always NULL.

mysql> SELECT UNCOMPRESS(COMPRESS('any string'));
 -> 'any string'
mysql> SELECT UNCOMPRESS('any string');
 -> NULL

• UNCOMPRESSED_LENGTH(compressed_string)

Returns the length that the compressed string had before being compressed.

mysql> SELECT UNCOMPRESSED_LENGTH(COMPRESS(REPEAT('a',30)));
 -> 30

12.13 Information Functions
Table 12.17 Information Functions

Name Description

BENCHMARK() Repeatedly execute an expression

CHARSET() Return the character set of the argument

COERCIBILITY() Return the collation coercibility value of the string argument

COLLATION() Return the collation of the string argument

CONNECTION_ID() Return the connection ID (thread ID) for the connection

CURRENT_USER(), CURRENT_USER The authenticated user name and host name

DATABASE() Return the default (current) database name

FOUND_ROWS() For a SELECT with a LIMIT clause, the number of rows that
would be returned were there no LIMIT clause

LAST_INSERT_ID() Value of the AUTOINCREMENT column for the last INSERT

ROW_COUNT() The number of rows updated

SCHEMA() Synonym for DATABASE()

SESSION_USER() Synonym for USER()

SYSTEM_USER() Synonym for USER()

USER() The user name and host name provided by the client

VERSION() Return a string that indicates the MySQL server version

• BENCHMARK(count,expr)

The BENCHMARK() function executes the expression expr repeatedly count times. It may be used to
time how quickly MySQL processes the expression. The result value is always 0. The intended use is
from within the mysql client, which reports query execution times:

mysql> SELECT BENCHMARK(1000000,ENCODE('hello','goodbye'));
+--+
| BENCHMARK(1000000,ENCODE('hello','goodbye')) |
+--+

Information Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1088

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| 0 |
+--+
1 row in set (4.74 sec)

The time reported is elapsed time on the client end, not CPU time on the server end. It is advisable to
execute BENCHMARK() several times, and to interpret the result with regard to how heavily loaded the
server machine is.

BENCHMARK() is intended for measuring the runtime performance of scalar expressions, which has
some significant implications for the way that you use it and interpret the results:

• Only scalar expressions can be used. Although the expression can be a subquery, it must return a
single column and at most a single row. For example, BENCHMARK(10, (SELECT * FROM t)) will
fail if the table t has more than one column or more than one row.

• Executing a SELECT expr statement N times differs from executing SELECT BENCHMARK(N,
expr) in terms of the amount of overhead involved. The two have very different execution profiles
and you should not expect them to take the same amount of time. The former involves the parser,
optimizer, table locking, and runtime evaluation N times each. The latter involves only runtime
evaluation N times, and all the other components just once. Memory structures already allocated are
reused, and runtime optimizations such as local caching of results already evaluated for aggregate
functions can alter the results. Use of BENCHMARK() thus measures performance of the runtime
component by giving more weight to that component and removing the “noise” introduced by the
network, parser, optimizer, and so forth.

• CHARSET(str)

Returns the character set of the string argument.

mysql> SELECT CHARSET('abc');
 -> 'latin1'
mysql> SELECT CHARSET(CONVERT('abc' USING utf8));
 -> 'utf8'
mysql> SELECT CHARSET(USER());
 -> 'utf8'

• COERCIBILITY(str)

Returns the collation coercibility value of the string argument.

mysql> SELECT COERCIBILITY('abc' COLLATE latin1_swedish_ci);
 -> 0
mysql> SELECT COERCIBILITY(USER());
 -> 3
mysql> SELECT COERCIBILITY('abc');
 -> 4

The return values have the meanings shown in the following table. Lower values have higher
precedence.

Coercibility Meaning Example

0 Explicit
collation

Value with COLLATE clause

1 No collation Concatenation of strings with different collations

2 Implicit
collation

Column value

Information Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1089

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Coercibility Meaning Example

3 System
constant

USER() return value

4 Coercible Literal string

5 Ignorable NULL or an expression derived from NULL

Before MySQL 5.0.3, the return values are shown as follows, and functions such as USER() have a
coercibility of 2:

Coercibility Meaning Example

0 Explicit
collation

Value with COLLATE clause

1 No collation Concatenation of strings with different collations

2 Implicit
collation

Column value, stored routine parameter or local variable

3 Coercible Literal string

• COLLATION(str)

Returns the collation of the string argument.

mysql> SELECT COLLATION('abc');
 -> 'latin1_swedish_ci'
mysql> SELECT COLLATION(_utf8'abc');
 -> 'utf8_general_ci'

• CONNECTION_ID()

Returns the connection ID (thread ID) for the connection. Every connection has an ID that is unique
among the set of currently connected clients.

The value returned by CONNECTION_ID() is the same type of value as displayed in the Id column of
SHOW PROCESSLIST output.

mysql> SELECT CONNECTION_ID();
 -> 23786

• CURRENT_USER, CURRENT_USER()

Returns the user name and host name combination for the MySQL account that the server used to
authenticate the current client. This account determines your access privileges. The return value is a
string in the utf8 character set.

The value of CURRENT_USER() can differ from the value of USER().

mysql> SELECT USER();
 -> 'davida@localhost'
mysql> SELECT * FROM mysql.user;
ERROR 1044: Access denied for user ''@'localhost' to
database 'mysql'
mysql> SELECT CURRENT_USER();
 -> '@localhost'

Information Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1090

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The example illustrates that although the client specified a user name of davida (as indicated by the
value of the USER() function), the server authenticated the client using an anonymous user account (as
seen by the empty user name part of the CURRENT_USER() value). One way this might occur is that
there is no account listed in the grant tables for davida.

Within a stored program or view, CURRENT_USER() returns the account for the user who defined the
object (as given by its DEFINER value) unless defined with the SQL SECURITY INVOKER characteristic.
In the latter case, CURRENT_USER() returns the object's invoker. This applies to stored programs as
of MySQL 5.0.10 and to views as of MySQL 5.0.24. (For older versions, CURRENT_USER() returns the
account for the object's invoker.)

Triggers and events have no option to define the SQL SECURITY characteristic, so for these objects,
CURRENT_USER() returns the account for the user who defined the object. To return the invoker, use
USER() or SESSION_USER().

• DATABASE()

Returns the default (current) database name as a string in the utf8 character set. If there is no default
database, DATABASE() returns NULL. Within a stored routine, the default database is the database that
the routine is associated with, which is not necessarily the same as the database that is the default in the
calling context.

mysql> SELECT DATABASE();
 -> 'test'

• FOUND_ROWS()

A SELECT statement may include a LIMIT clause to restrict the number of rows the server returns to
the client. In some cases, it is desirable to know how many rows the statement would have returned
without the LIMIT, but without running the statement again. To obtain this row count, include a
SQL_CALC_FOUND_ROWS option in the SELECT statement, and then invoke FOUND_ROWS() afterward:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM tbl_name
 -> WHERE id > 100 LIMIT 10;
mysql> SELECT FOUND_ROWS();

The second SELECT returns a number indicating how many rows the first SELECT would have returned
had it been written without the LIMIT clause.

In the absence of the SQL_CALC_FOUND_ROWS option in the most recent successful SELECT statement,
FOUND_ROWS() returns the number of rows in the result set returned by that statement. If the statement
includes a LIMIT clause, FOUND_ROWS() returns the number of rows up to the limit. For example,
FOUND_ROWS() returns 10 or 60, respectively, if the statement includes LIMIT 10 or LIMIT 50, 10.

The row count available through FOUND_ROWS() is transient and not intended to be available past the
statement following the SELECT SQL_CALC_FOUND_ROWS statement. If you need to refer to the value
later, save it:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM ... ;
mysql> SET @rows = FOUND_ROWS();

If you are using SELECT SQL_CALC_FOUND_ROWS, MySQL must calculate how many rows are in the
full result set. However, this is faster than running the query again without LIMIT, because the result set
need not be sent to the client.

Information Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1091

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SQL_CALC_FOUND_ROWS and FOUND_ROWS() can be useful in situations when you want to restrict the
number of rows that a query returns, but also determine the number of rows in the full result set without
running the query again. An example is a Web script that presents a paged display containing links to
the pages that show other sections of a search result. Using FOUND_ROWS() enables you to determine
how many other pages are needed for the rest of the result.

The use of SQL_CALC_FOUND_ROWS and FOUND_ROWS() is more complex for UNION statements than
for simple SELECT statements, because LIMIT may occur at multiple places in a UNION. It may be
applied to individual SELECT statements in the UNION, or global to the UNION result as a whole.

The intent of SQL_CALC_FOUND_ROWS for UNION is that it should return the row count that would be
returned without a global LIMIT. The conditions for use of SQL_CALC_FOUND_ROWS with UNION are:

• The SQL_CALC_FOUND_ROWS keyword must appear in the first SELECT of the UNION.

• The value of FOUND_ROWS() is exact only if UNION ALL is used. If UNION without ALL is used,
duplicate removal occurs and the value of FOUND_ROWS() is only approximate.

• If no LIMIT is present in the UNION, SQL_CALC_FOUND_ROWS is ignored and returns the number of
rows in the temporary table that is created to process the UNION.

Beyond the cases described here, the behavior of FOUND_ROWS() is undefined (for example, its value
following a SELECT statement that fails with an error).

Important

FOUND_ROWS() is not replicated reliably, and should not be used with databases
that are to be replicated.

• LAST_INSERT_ID(), LAST_INSERT_ID(expr)

LAST_INSERT_ID() (with no argument) returns a BIGINT (64-bit) value representing the first
automatically generated value that was set for an AUTO_INCREMENT column by the most recently
executed INSERT statement to affect such a column. For example, after inserting a row that generates
an AUTO_INCREMENT value, you can get the value like this:

mysql> SELECT LAST_INSERT_ID();
 -> 195

if a table contains an AUTO_INCREMENT column and INSERT ... ON DUPLICATE KEY UPDATE
updates (rather than inserts) a row, the value of LAST_INSERT_ID() is not meaningful. For a
workaround, see Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”.

The currently executing statement does not affect the value of LAST_INSERT_ID(). Suppose that
you generate an AUTO_INCREMENT value with one statement, and then refer to LAST_INSERT_ID()
in a multiple-row INSERT statement that inserts rows into a table with its own AUTO_INCREMENT
column. The value of LAST_INSERT_ID() will remain stable in the second statement; its value for the
second and later rows is not affected by the earlier row insertions. (However, if you mix references to
LAST_INSERT_ID() and LAST_INSERT_ID(expr), the effect is undefined.)

If the previous statement returned an error, the value of LAST_INSERT_ID() is undefined. For
transactional tables, if the statement is rolled back due to an error, the value of LAST_INSERT_ID() is
left undefined. For manual ROLLBACK, the value of LAST_INSERT_ID() is not restored to that before
the transaction; it remains as it was at the point of the ROLLBACK.

Information Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1092

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Within the body of a stored routine (procedure or function) or a trigger, the value of LAST_INSERT_ID()
changes the same way as for statements executed outside the body of these kinds of objects. The effect
of a stored routine or trigger upon the value of LAST_INSERT_ID() that is seen by following statements
depends on the kind of routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the
changed value is seen by statements that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or
trigger ends, so following statements do not see a changed value. (Before MySQL 5.0.12, the value is
not restored and following statements do see a changed value.)

The ID that was generated is maintained in the server on a per-connection basis. This means that the
value returned by the function to a given client is the first AUTO_INCREMENT value generated for most
recent statement affecting an AUTO_INCREMENT column by that client. This value cannot be affected by
other clients, even if they generate AUTO_INCREMENT values of their own. This behavior ensures that
each client can retrieve its own ID without concern for the activity of other clients, and without the need
for locks or transactions.

The value of LAST_INSERT_ID() is not changed if you set the AUTO_INCREMENT column of a row to a
non-“magic” value (that is, a value that is not NULL and not 0).

Important

If you insert multiple rows using a single INSERT statement,
LAST_INSERT_ID() returns the value generated for the first inserted row only.
The reason for this is to make it possible to reproduce easily the same INSERT
statement against some other server.

For example:

mysql> USE test;
Database changed
mysql> CREATE TABLE t (
 -> id INT AUTO_INCREMENT NOT NULL PRIMARY KEY,
 -> name VARCHAR(10) NOT NULL
 ->);
Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO t VALUES (NULL, 'Bob');
Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
| 1 | Bob |
+----+------+
1 row in set (0.01 sec)

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+
1 row in set (0.00 sec)

mysql> INSERT INTO t VALUES

Information Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1093

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 -> (NULL, 'Mary'), (NULL, 'Jane'), (NULL, 'Lisa');
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
1	Bob
2	Mary
3	Jane
4	Lisa
+----+------+
4 rows in set (0.01 sec)

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 2 |
+------------------+
1 row in set (0.00 sec)

Although the second INSERT statement inserted three new rows into t, the ID generated for the first of
these rows was 2, and it is this value that is returned by LAST_INSERT_ID() for the following SELECT
statement.

If you use INSERT IGNORE and the row is ignored, the AUTO_INCREMENT counter is not incremented
and LAST_INSERT_ID() returns 0, which reflects that no row was inserted.

 If expr is given as an argument to LAST_INSERT_ID(), the value of the argument is returned by the
function and is remembered as the next value to be returned by LAST_INSERT_ID(). This can be used
to simulate sequences:

1. Create a table to hold the sequence counter and initialize it:

mysql> CREATE TABLE sequence (id INT NOT NULL);
mysql> INSERT INTO sequence VALUES (0);

2. Use the table to generate sequence numbers like this:

mysql> UPDATE sequence SET id=LAST_INSERT_ID(id+1);
mysql> SELECT LAST_INSERT_ID();

The UPDATE statement increments the sequence counter and causes the next call to
LAST_INSERT_ID() to return the updated value. The SELECT statement retrieves that value. The
mysql_insert_id() C API function can also be used to get the value. See Section 20.6.7.37,
“mysql_insert_id()”.

You can generate sequences without calling LAST_INSERT_ID(), but the utility of using the function
this way is that the ID value is maintained in the server as the last automatically generated value. It is
multi-user safe because multiple clients can issue the UPDATE statement and get their own sequence
value with the SELECT statement (or mysql_insert_id()), without affecting or being affected by other
clients that generate their own sequence values.

Note that mysql_insert_id() is only updated after INSERT and UPDATE statements, so you cannot
use the C API function to retrieve the value for LAST_INSERT_ID(expr) after executing other SQL
statements like SELECT or SET.

Information Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1094

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• ROW_COUNT()

ROW_COUNT() returns the number of rows changed, deleted, or inserted by the last statement if it was
an UPDATE, DELETE, or INSERT. For other statements, the value may not be meaningful.

For UPDATE statements, the affected-rows value by default is the number of rows actually changed. If
you specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to mysqld,
the affected-rows value is the number of rows “found”; that is, matched by the WHERE clause.

For REPLACE statements, the affected-rows value is 2 if the new row replaced an old row, because in
this case, one row was inserted after the duplicate was deleted.

For INSERT ... ON DUPLICATE KEY UPDATE statements, the affected-rows value is 1 if the row is
inserted as a new row and 2 if an existing row is updated.

The ROW_COUNT() value is similar to the value from the mysql_affected_rows() C API function and
the row count that the mysql client displays following statement execution.

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 3 |
+-------------+
1 row in set (0.00 sec)

mysql> DELETE FROM t WHERE i IN(1,2);
Query OK, 2 rows affected (0.00 sec)

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 2 |
+-------------+
1 row in set (0.00 sec)

ROW_COUNT() was added in MySQL 5.0.1.

Important

ROW_COUNT() is not replicated reliably.

• SCHEMA()

This function is a synonym for DATABASE(). It was added in MySQL 5.0.2.

• SESSION_USER()

SESSION_USER() is a synonym for USER().

• SYSTEM_USER()

SYSTEM_USER() is a synonym for USER().

• USER()

Spatial Analysis Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1095

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Returns the current MySQL user name and host name as a string in the utf8 character set.

mysql> SELECT USER();
 -> 'davida@localhost'

The value indicates the user name you specified when connecting to the server, and the client host from
which you connected. The value can be different from that of CURRENT_USER().

• VERSION()

Returns a string that indicates the MySQL server version. The string uses the utf8 character set. The
value might have a suffix in addition to the version number. See the description of the version system
variable in Section 5.1.4, “Server System Variables”.

mysql> SELECT VERSION();
 -> '5.0.96-standard'

12.14 Spatial Analysis Functions

MySQL provides functions to perform various operations on spatial data. These functions can be grouped
into several major categories according to the type of operation they perform:

• Functions that create geometries in various formats (WKT, WKB, internal)

• Functions that convert geometries between formats

• Functions that access qualitative or quantitative properties of a geometry

• Functions that describe relations between two geometries

• Functions that create new geometries from existing ones

For general background about MySQL support for using spatial data, see Section 11.5, “Extensions for
Spatial Data”.

12.14.1 Spatial Function Reference

The following table lists each spatial function and provides a short description of each one.

Table 12.18 Spatial Functions

Name Description

Area() Return Polygon or MultiPolygon area

AsBinary(), AsWKB() Convert from internal geometry format to WKB

AsText(), AsWKT() Convert from internal geometry format to WKT

Centroid() Return centroid as a point

Contains() Whether MBR of one geometry contains MBR of another

Crosses() Whether one geometry crosses another

Dimension() Dimension of geometry

Disjoint() Whether MBRs of two geometries are disjoint

Spatial Function Reference

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1096

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

EndPoint() End Point of LineString

Envelope() Return MBR of geometry

Equals() Whether MBRs of two geometries are equal

ExteriorRing() Return exterior ring of Polygon

GeomCollFromText(),
GeometryCollectionFromText()

Return geometry collection from WKT

GeomCollFromWKB(),
GeometryCollectionFromWKB()

Return geometry collection from WKB

GeometryCollection() Construct geometry collection from geometries

GeometryN() Return N-th geometry from geometry collection

GeometryType() Return name of geometry type

GeomFromText(),
GeometryFromText()

Return geometry from WKT

GeomFromWKB(),
GeometryFromWKB()

Return geometry from WKB

GLength() Return length of LineString

InteriorRingN() Return N-th interior ring of Polygon

Intersects() Whether MBRs of two geometries intersect

IsClosed() Whether a geometry is closed and simple

IsEmpty() Placeholder function

IsSimple() Whether a geometry is simple

LineFromText(),
LineStringFromText()

Construct LineString from WKT

LineFromWKB(),
LineStringFromWKB()

Construct LineString from WKB

LineString() Construct LineString from Point values

MBRContains() Whether MBR of one geometry contains MBR of another

MBRDisjoint() Whether MBRs of two geometries are disjoint

MBREqual() Whether MBRs of two geometries are equal

MBRIntersects() Whether MBRs of two geometries intersect

MBROverlaps() Whether MBRs of two geometries overlap

MBRTouches() Whether MBRs of two geometries touch

MBRWithin() Whether MBR of one geometry is within MBR of another

MLineFromText(),
MultiLineStringFromText()

Construct MultiLineString from WKT

MLineFromWKB(),
MultiLineStringFromWKB()

Construct MultiLineString from WKB

MPointFromText(),
MultiPointFromText()

Construct MultiPoint from WKT

MPointFromWKB(),
MultiPointFromWKB()

Construct MultiPoint from WKB

Argument Handling by Spatial Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1097

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

MPolyFromText(),
MultiPolygonFromText()

Construct MultiPolygon from WKT

MPolyFromWKB(),
MultiPolygonFromWKB()

Construct MultiPolygon from WKB

MultiLineString() Contruct MultiLineString from LineString values

MultiPoint() Construct MultiPoint from Point values

MultiPolygon() Construct MultiPolygon from Polygon values

NumGeometries() Return number of geometries in geometry collection

NumInteriorRings() Return number of interior rings in Polygon

NumPoints() Return number of points in LineString

Overlaps() Whether MBRs of two geometries overlap

Point() Construct Point from coordinates

PointFromText() Construct Point from WKT

PointFromWKB() Construct Point from WKB

PointN() Return N-th point from LineString

PolyFromText(),
PolygonFromText()

Construct Polygon from WKT

PolyFromWKB(), PolygonFromWKB() Construct Polygon from WKB

Polygon() Construct Polygon from LineString arguments

SRID() Return spatial reference system ID for geometry

StartPoint() Start Point of LineString

Touches() Whether one geometry touches another

Within() Whether MBR of one geometry is within MBR of another

X() Return X coordinate of Point

Y() Return Y coordinate of Point

12.14.2 Argument Handling by Spatial Functions

Spatial values, or geometries, have the properties described at Section 11.5.2.2, “Geometry Class”. The
following discussion lists general spatial function argument-handling characteristics. Specific functions or
groups of functions may have additional argument-handling characteristics, as discussed in the sections
where those function descriptions occur.

Spatial functions are defined only for valid geometry values. If an invalid geometry is passed to a spatial
function, the result is undefined.

The Spatial Reference Identifier (SRID) of a geometry identifies the coordinate space in which the
geometry is defined. In MySQL, the SRID value is an integer associated with the geometry value.
However, all calculations are done assuming SRID 0, representing cartesian (planar) coordinates,
regardless of the actual SRID value. In the future, calculations may use the specified SRID values. To
ensure SRID 0 behavior, create geometries using SRID 0. SRID 0 is the default for new geometries if no
SRID is specified.

The maximum usable SRID value is 232−1. If a larger value is given, only the lower 32 bits are used.

Functions That Create Geometry Values from WKT Values

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1098

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Geometry values produced by any spatial function inherit the SRID of the geometry arguments.

12.14.3 Functions That Create Geometry Values from WKT Values

These functions take as arguments a Well-Known Text (WKT) representation and, optionally, a spatial
reference system identifier (SRID). They return the corresponding geometry.

GeomFromText() accepts a WKT value of any geometry type as its first argument. Other functions
provide type-specific construction functions for construction of geometry values of each geometry type.

For a description of WKT format, see Well-Known Text (WKT) Format.

• GeomCollFromText(wkt[,srid]), GeometryCollectionFromText(wkt[,srid])

Constructs a GeometryCollection value using its WKT representation and SRID.

• GeomFromText(wkt[,srid]), GeometryFromText(wkt[,srid])

Constructs a geometry value of any type using its WKT representation and SRID.

• LineFromText(wkt[,srid]), LineStringFromText(wkt[,srid])

Constructs a LineString value using its WKT representation and SRID.

• MLineFromText(wkt[,srid]), MultiLineStringFromText(wkt[,srid])

Constructs a MultiLineString value using its WKT representation and SRID.

• MPointFromText(wkt[,srid]), MultiPointFromText(wkt[,srid])

Constructs a MultiPoint value using its WKT representation and SRID.

• MPolyFromText(wkt[,srid]), MultiPolygonFromText(wkt[,srid])

Constructs a MultiPolygon value using its WKT representation and SRID.

• PointFromText(wkt[,srid])

Constructs a Point value using its WKT representation and SRID.

• PolyFromText(wkt[,srid]), PolygonFromText(wkt[,srid])

Constructs a Polygon value using its WKT representation and SRID.

12.14.4 Functions That Create Geometry Values from WKB Values

These functions take as arguments a BLOB containing a Well-Known Binary (WKB) representation and,
optionally, a spatial reference system identifier (SRID). They return the corresponding geometry.

As of MySQL 5.0.82, these functions also accept geometry objects for compatibility with the changes made
in MySQL 5.0.82 to the return value of the functions in Section 12.14.5, “MySQL-Specific Functions That
Create Geometry Values”. Thus, those functions may continue to be used to provide the first argument to
the functions in this section.

GeomFromWKB() accepts a WKB value of any geometry type as its first argument. Other functions provide
type-specific construction functions for construction of geometry values of each geometry type.

For a description of WKB format, see Well-Known Binary (WKB) Format.

MySQL-Specific Functions That Create Geometry Values

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1099

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• GeomCollFromWKB(wkb[,srid]), GeometryCollectionFromWKB(wkb[,srid])

Constructs a GeometryCollection value using its WKB representation and SRID.

• GeomFromWKB(wkb[,srid]), GeometryFromWKB(wkb[,srid])

Constructs a geometry value of any type using its WKB representation and SRID.

• LineFromWKB(wkb[,srid]), LineStringFromWKB(wkb[,srid])

Constructs a LineString value using its WKB representation and SRID.

• MLineFromWKB(wkb[,srid]), MultiLineStringFromWKB(wkb[,srid])

Constructs a MultiLineString value using its WKB representation and SRID.

• MPointFromWKB(wkb[,srid]), MultiPointFromWKB(wkb[,srid])

Constructs a MultiPoint value using its WKB representation and SRID.

• MPolyFromWKB(wkb[,srid]), MultiPolygonFromWKB(wkb[,srid])

Constructs a MultiPolygon value using its WKB representation and SRID.

• PointFromWKB(wkb[,srid])

Constructs a Point value using its WKB representation and SRID.

• PolyFromWKB(wkb[,srid]), PolygonFromWKB(wkb[,srid])

Constructs a Polygon value using its WKB representation and SRID.

12.14.5 MySQL-Specific Functions That Create Geometry Values

MySQL provides a set of useful nonstandard functions for creating geometry values. The functions
described in this section are MySQL extensions to the OpenGIS specification.

As of MySQL 5.0.82, these functions produce geometry objects from either WKB values or geometry
objects as arguments. If any argument is not a proper WKB or geometry representation of the proper
object type, the return value is NULL.

Before MySQL 5.0.82, these functions produce BLOB values containing WKB representations of geometry
values with no SRID from WKB arguments. The WKB value returned from these functions can be
converted to geometry arguments by using them as the first argument to functions in the GeomFromWKB()
function family.

For example, as of MySQL 5.0.82, you can insert the geometry return value from Point() directly into a
POINT column:

INSERT INTO t1 (pt_col) VALUES(Point(1,2));

Prior to MySQL 5.0.82, convert the WKB return value to a Point before inserting it:

INSERT INTO t1 (pt_col) VALUES(GeomFromWKB(Point(1,2)));

• GeometryCollection(g1,g2,...)

Geometry Format Conversion Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1100

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Constructs a GeometryCollection.

If the argument contains a nonsupported geometry, the return value is NULL.

• LineString(pt1,pt2,...)

Constructs a LineString value from a number of Point or WKB Point arguments. If the number of
arguments is less than two, the return value is NULL.

• MultiLineString(ls1,ls2,...)

Constructs a MultiLineString value using LineString or WKB LineString arguments.

• MultiPoint(pt1,pt2,...)

Constructs a MultiPoint value using Point or WKB Point arguments.

• MultiPolygon(poly1,poly2,...)

Constructs a MultiPolygon value from a set of Polygon or WKB Polygon arguments.

• Point(x,y)

Constructs a Point using its coordinates.

• Polygon(ls1,ls2,...)

Constructs a Polygon value from a number of LineString or WKB LineString arguments. If any
argument does not represent a LinearRing (that is, not a closed and simple LineString), the return
value is NULL.

12.14.6 Geometry Format Conversion Functions

MySQL supports the functions listed in this section for converting geometry values from internal geometry
format to WKT or WKB format.

In addition, there are functions to convert a string from WKT or WKB format to internal geometry format.
See Section 12.14.3, “Functions That Create Geometry Values from WKT Values”, and Section 12.14.4,
“Functions That Create Geometry Values from WKB Values”.

• AsBinary(g), AsWKB(g)

Converts a value in internal geometry format to its WKB representation and returns the binary result.

SELECT AsBinary(g) FROM geom;

• AsText(g), AsWKT(g)

Converts a value in internal geometry format to its WKT representation and returns the string result.

mysql> SET @g = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(GeomFromText(@g));
+--------------------------+
| AsText(GeomFromText(@g)) |
+--------------------------+
| LINESTRING(1 1,2 2,3 3) |
+--------------------------+

Geometry Property Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1101

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

12.14.7 Geometry Property Functions

Each function that belongs to this group takes a geometry value as its argument and returns some
quantitative or qualitative property of the geometry. Some functions restrict their argument type. Such
functions return NULL if the argument is of an incorrect geometry type. For example, the Area() polygon
function returns NULL if the object type is neither Polygon nor MultiPolygon.

12.14.7.1 General Geometry Property Functions

The functions listed in this section do not restrict their argument and accept a geometry value of any type.

• Dimension(g)

Returns the inherent dimension of the geometry value g. The result can be −1, 0, 1, or 2. The meaning of
these values is given in Section 11.5.2.2, “Geometry Class”.

mysql> SELECT Dimension(GeomFromText('LineString(1 1,2 2)'));
+--+
| Dimension(GeomFromText('LineString(1 1,2 2)')) |
+--+
| 1 |
+--+

• Envelope(g)

Returns the minimum bounding rectangle (MBR) for the geometry value g. The result is returned as a
Polygon value that is defined by the corner points of the bounding box:

POLYGON((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

mysql> SELECT AsText(Envelope(GeomFromText('LineString(1 1,2 2)')));
+---+
| AsText(Envelope(GeomFromText('LineString(1 1,2 2)'))) |
+---+
| POLYGON((1 1,2 1,2 2,1 2,1 1)) |
+---+

• GeometryType(g)

Returns a binary string indicating the name of the geometry type of which the geometry instance g is a
member. The name corresponds to one of the instantiable Geometry subclasses.

mysql> SELECT GeometryType(GeomFromText('POINT(1 1)'));
+--+
| GeometryType(GeomFromText('POINT(1 1)')) |
+--+
| POINT |
+--+

• IsEmpty(g)

This function is a placeholder that returns 0 for any valid geometry value, 1 for any invalid geometry
value or NULL.

MySQL does not support GIS EMPTY values such as POINT EMPTY.

• IsSimple(g)

Geometry Property Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1102

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In MySQL 5.0, this function is a placeholder that always returns 0.

The description of each instantiable geometric class given earlier in the chapter includes the specific
conditions that cause an instance of that class to be classified as not simple. (See Section 11.5.2.1, “The
Geometry Class Hierarchy”.)

• SRID(g)

Returns an integer indicating the Spatial Reference System ID for the geometry value g.

In MySQL, the SRID value is just an integer associated with the geometry value. All calculations are
done assuming Euclidean (planar) geometry.

mysql> SELECT SRID(GeomFromText('LineString(1 1,2 2)',101));
+---+
| SRID(GeomFromText('LineString(1 1,2 2)',101)) |
+---+
| 101 |
+---+

12.14.7.2 Point Property Functions

A Point consists of X and Y coordinates, which may be obtained using the following functions:

• X(p)

Returns the X-coordinate value for the Point object p as a double-precision number.

mysql> SELECT X(POINT(56.7, 53.34));
+-----------------------+
| X(POINT(56.7, 53.34)) |
+-----------------------+
| 56.7 |
+-----------------------+

• Y(p)

Returns the Y-coordinate value for the Point object p as a double-precision number.

mysql> SELECT Y(POINT(56.7, 53.34));
+-----------------------+
| Y(POINT(56.7, 53.34)) |
+-----------------------+
| 53.34 |
+-----------------------+

12.14.7.3 LineString and MultiLineString Property Functions

A LineString consists of Point values. You can extract particular points of a LineString, count the
number of points that it contains, or obtain its length.

Some functions in this section also work for MultiLineString values.

• EndPoint(ls)

Returns the Point that is the endpoint of the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';

Geometry Property Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1103

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT AsText(EndPoint(GeomFromText(@ls)));
+-------------------------------------+
| AsText(EndPoint(GeomFromText(@ls))) |
+-------------------------------------+
| POINT(3 3) |
+-------------------------------------+

• GLength(ls)

Returns a double-precision number indicating the length of the LineString or MultiLineString
value ls in its associated spatial reference. The length of a MultiLineString value is equal to the
sum of the lengths of its elements.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT GLength(GeomFromText(@ls));
+----------------------------+
| GLength(GeomFromText(@ls)) |
+----------------------------+
| 2.8284271247461903 |
+----------------------------+

mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT GLength(GeomFromText(@mls));
+-----------------------------+
| GLength(GeomFromText(@mls)) |
+-----------------------------+
| 4.242640687119286 |
+-----------------------------+

GLength() is a nonstandard name. It corresponds to the OpenGIS Length() function. (There is an
existing SQL function Length() that calculates the length of string values.)

• IsClosed(ls)

For a LineString value ls, IsClosed() returns 1 if ls is closed (that is, its StartPoint() and
EndPoint() values are the same).

For a MultiLineString value ls, IsClosed() returns 1 if ls is closed (that is, the StartPoint()
and EndPoint() values are the same for each LineString in ls).

IsClosed() returns 0 if ls is not closed, and NULL if ls is NULL.

mysql> SET @ls1 = 'LineString(1 1,2 2,3 3,2 2)';
mysql> SET @ls2 = 'LineString(1 1,2 2,3 3,1 1)';

mysql> SELECT IsClosed(GeomFromText(@ls1));
+------------------------------+
| IsClosed(GeomFromText(@ls1)) |
+------------------------------+
| 0 |
+------------------------------+

mysql> SELECT IsClosed(GeomFromText(@ls2));
+------------------------------+
| IsClosed(GeomFromText(@ls2)) |
+------------------------------+
| 1 |
+------------------------------+

mysql> SET @ls3 = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';

mysql> SELECT IsClosed(GeomFromText(@ls3));

Geometry Property Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1104

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+------------------------------+
| IsClosed(GeomFromText(@ls3)) |
+------------------------------+
| 0 |
+------------------------------+

• NumPoints(ls)

Returns the number of Point objects in the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT NumPoints(GeomFromText(@ls));
+------------------------------+
| NumPoints(GeomFromText(@ls)) |
+------------------------------+
| 3 |
+------------------------------+

• PointN(ls,N)

Returns the N-th Point in the Linestring value ls. Points are numbered beginning with 1.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(PointN(GeomFromText(@ls),2));
+-------------------------------------+
| AsText(PointN(GeomFromText(@ls),2)) |
+-------------------------------------+
| POINT(2 2) |
+-------------------------------------+

• StartPoint(ls)

Returns the Point that is the start point of the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(StartPoint(GeomFromText(@ls)));
+---------------------------------------+
| AsText(StartPoint(GeomFromText(@ls))) |
+---------------------------------------+
| POINT(1 1) |
+---------------------------------------+

12.14.7.4 Polygon and MultiPolygon Property Functions

These functions return properties of Polygon or MultiPolygon values.

• Area(poly)

Returns a double-precision number indicating the area of the argument, as measured in its spatial
reference system. For arguments of dimension 0 or 1, the result is 0.

mysql> SET @poly = 'Polygon((0 0,0 3,3 0,0 0),(1 1,1 2,2 1,1 1))';
mysql> SELECT Area(GeomFromText(@poly));
+---------------------------+
| Area(GeomFromText(@poly)) |
+---------------------------+
| 4 |
+---------------------------+

mysql> SET @mpoly =

Geometry Property Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1105

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 -> 'MultiPolygon(((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1)))';
mysql> SELECT Area(GeomFromText(@mpoly));
+----------------------------+
| Area(GeomFromText(@mpoly)) |
+----------------------------+
| 8 |
+----------------------------+

• Centroid(mpoly)

Returns the mathematical centroid for the MultiPolygon value mpoly as a Point. The result is not
guaranteed to be on the MultiPolygon.

mysql> SET @poly =
 -> GeomFromText('POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7,5 5))');
mysql> SELECT GeometryType(@poly),AsText(Centroid(@poly));
+---------------------+--+
| GeometryType(@poly) | AsText(Centroid(@poly)) |
+---------------------+--+
| POLYGON | POINT(4.958333333333333 4.958333333333333) |
+---------------------+--+

• ExteriorRing(poly)

Returns the exterior ring of the Polygon value poly as a LineString.

mysql> SET @poly =
 -> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT AsText(ExteriorRing(GeomFromText(@poly)));
+---+
| AsText(ExteriorRing(GeomFromText(@poly))) |
+---+
| LINESTRING(0 0,0 3,3 3,3 0,0 0) |
+---+

• InteriorRingN(poly,N)

Returns the N-th interior ring for the Polygon value poly as a LineString. Rings are numbered
beginning with 1.

mysql> SET @poly =
 -> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT AsText(InteriorRingN(GeomFromText(@poly),1));
+--+
| AsText(InteriorRingN(GeomFromText(@poly),1)) |
+--+
| LINESTRING(1 1,1 2,2 2,2 1,1 1) |
+--+

• NumInteriorRings(poly)

Returns the number of interior rings in the Polygon value poly.

mysql> SET @poly =
 -> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';
mysql> SELECT NumInteriorRings(GeomFromText(@poly));
+---------------------------------------+
| NumInteriorRings(GeomFromText(@poly)) |
+---------------------------------------+
| 1 |
+---------------------------------------+

Spatial Operator Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1106

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

12.14.7.5 GeometryCollection Property Functions

These functions return properties of GeometryCollection values.

• GeometryN(gc,N)

Returns the N-th geometry in the GeometryCollection value gc. Geometries are numbered
beginning with 1.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT AsText(GeometryN(GeomFromText(@gc),1));
+--+
| AsText(GeometryN(GeomFromText(@gc),1)) |
+--+
| POINT(1 1) |
+--+

• NumGeometries(gc)

Returns the number of geometries in the GeometryCollection value gc.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT NumGeometries(GeomFromText(@gc));
+----------------------------------+
| NumGeometries(GeomFromText(@gc)) |
+----------------------------------+
| 2 |
+----------------------------------+

12.14.8 Spatial Operator Functions

Section 12.14.7, “Geometry Property Functions”, discusses several functions that construct new
geometries from existing ones. See that section for descriptions of these functions:

• Envelope(g)

• StartPoint(ls)

• EndPoint(ls)

• PointN(ls,N)

• ExteriorRing(poly)

• InteriorRingN(poly,N)

• GeometryN(gc,N)

12.14.9 Functions That Test Spatial Relations Between Geometry Objects

The functions described in this section take two geometries as arguments and return a qualitative or
quantitative relation between them.

MySQL implements two sets of functions using function names defined by the OpenGIS specification. One
set tests the relationship between two geometry values using precise object shapes, the other set uses
object minimum bounding rectangles (MBRs).

There is also a MySQL-specific set of MBR-based functions available to test the relationship between two
geometry values.

Functions That Test Spatial Relations Between Geometry Objects

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1107

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

12.14.9.1 Spatial Relation Functions That Use Object Shapes

The OpenGIS specification defines the following functions. They test the relationship between two
geometry values g1 and g2, using precise object shapes. The return values 1 and 0 indicate true and
false, respectively.

• Crosses(g1,g2)

Returns 1 if g1 spatially crosses g2. Returns NULL if g1 is a Polygon or a MultiPolygon, or if g2 is a
Point or a MultiPoint. Otherwise, returns 0.

The term spatially crosses denotes a spatial relation between two given geometries that has the
following properties:

• The two geometries intersect

• Their intersection results in a geometry that has a dimension that is one less than the maximum
dimension of the two given geometries

• Their intersection is not equal to either of the two given geometries

• Touches(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially touches g2. Two geometries spatially touch if the interiors
of the geometries do not intersect, but the boundary of one of the geometries intersects either the
boundary or the interior of the other.

12.14.9.2 Spatial Relation Functions That Use Minimum Bounding Rectangles (MBRs)

The OpenGIS specification defines the following functions that test the relationship between two geometry
values g1 and g2. The MySQL implementation uses minimum bounding rectangles, so these functions
return the same result as the corresponding MBR-based functions. The return values 1 and 0 indicate true
and false, respectively.

• Contains(g1,g2)

Returns 1 or 0 to indicate whether g1 completely contains g2. This tests the opposite relationship as
Within().

• Disjoint(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially disjoint from (does not intersect) g2.

• Equals(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially equal to g2.

• Intersects(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially intersects g2.

• Overlaps(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially overlaps g2. The term spatially overlaps is used if two
geometries intersect and their intersection results in a geometry of the same dimension but not equal to
either of the given geometries.

• Within(g1,g2)

Functions That Test Spatial Relations Between Geometry Objects

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1108

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Returns 1 or 0 to indicate whether g1 is spatially within g2. This tests the opposite relationship as
Contains().

12.14.9.3 MySQL-Specific Spatial Relation Functions That Use Minimum Bounding
Rectangles (MBRs)

MySQL provides several MySQL-specific functions that test relations between minimum bounding
rectangles of two geometries g1 and g2. The return values 1 and 0 indicate true and false, respectively.

• MBRContains(g1,g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 contains the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRWithin().

mysql> SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = GeomFromText('Point(1 1)');
mysql> SELECT MBRContains(@g1,@g2), MBRWithin(@g2,@g1);
+----------------------+--------------------+
| MBRContains(@g1,@g2) | MBRWithin(@g2,@g1) |
+----------------------+--------------------+
| 1 | 1 |
+----------------------+--------------------+

• MBRDisjoint(g1,g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and g2
are disjoint (do not intersect).

• MBREqual(g1,g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and g2
are the same.

• MBRIntersects(g1,g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and g2
intersect.

• MBROverlaps(g1,g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and g2
overlap. The term spatially overlaps is used if two geometries intersect and their intersection results in a
geometry of the same dimension but not equal to either of the given geometries.

• MBRTouches(g1,g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangles of the two geometries g1 and g2
touch. Two geometries spatially touch if the interiors of the geometries do not intersect, but the boundary
of one of the geometries intersects either the boundary or the interior of the other.

• MBRWithin(g1,g2)

Returns 1 or 0 to indicate whether the minimum bounding rectangle of g1 is within the minimum
bounding rectangle of g2. This tests the opposite relationship as MBRContains().

mysql> SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))');

Miscellaneous Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1109

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT MBRWithin(@g1,@g2), MBRWithin(@g2,@g1);
+--------------------+--------------------+
| MBRWithin(@g1,@g2) | MBRWithin(@g2,@g1) |
+--------------------+--------------------+
| 1 | 0 |
+--------------------+--------------------+

12.15 Miscellaneous Functions

Table 12.19 Miscellaneous Functions

Name Description

DEFAULT() Return the default value for a table column

GET_LOCK() Get a named lock

INET_ATON() Return the numeric value of an IP address

INET_NTOA() Return the IP address from a numeric value

IS_FREE_LOCK() Whether the named lock is free

IS_USED_LOCK() Whether the named lock is in use; return connection identifier if
true

MASTER_POS_WAIT() Block until the slave has read and applied all updates up to the
specified position

NAME_CONST() Causes the column to have the given name

RAND() Return a random floating-point value

RELEASE_LOCK() Releases the named lock

SLEEP() Sleep for a number of seconds

UUID() Return a Universal Unique Identifier (UUID)

VALUES() Defines the values to be used during an INSERT

• DEFAULT(col_name)

Returns the default value for a table column. Starting with MySQL 5.0.2, an error results if the column
has no default value.

mysql> UPDATE t SET i = DEFAULT(i)+1 WHERE id < 100;

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and returns the
result as a string. For details, see Section 12.5, “String Functions”.

• GET_LOCK(str,timeout)

Tries to obtain a lock with a name given by the string str, using a timeout of timeout seconds. Returns
1 if the lock was obtained successfully, 0 if the attempt timed out (for example, because another client
has previously locked the name), or NULL if an error occurred (such as running out of memory or the
thread was killed with mysqladmin kill).

A lock obtained with GET_LOCK() is released explicitly by executing RELEASE_LOCK() or a new
GET_LOCK(), or implicitly when your session terminates (either normally or abnormally).

Locks obtained with GET_LOCK() are not released when transactions commit or roll back.

Miscellaneous Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1110

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

GET_LOCK() can be used to implement application locks or to simulate record locks. Names are locked
on a server-wide basis. If a name has been locked within one session, GET_LOCK() blocks any request
by another session for a lock with the same name. This enables clients that agree on a given lock name
to use the name to perform cooperative advisory locking. But be aware that it also enables a client that
is not among the set of cooperating clients to lock a name, either inadvertently or deliberately, and thus
prevent any of the cooperating clients from locking that name. One way to reduce the likelihood of this is
to use lock names that are database-specific or application-specific. For example, use lock names of the
form db_name.str or app_name.str.

mysql> SELECT GET_LOCK('lock1',10);
 -> 1
mysql> SELECT IS_FREE_LOCK('lock2');
 -> 1
mysql> SELECT GET_LOCK('lock2',10);
 -> 1
mysql> SELECT RELEASE_LOCK('lock2');
 -> 1
mysql> SELECT RELEASE_LOCK('lock1');
 -> NULL

The second RELEASE_LOCK() call returns NULL because the lock 'lock1' was automatically released
by the second GET_LOCK() call.

If multiple clients are waiting for a lock, the order in which they will acquire it is undefined. Applications
should not assume that clients will acquire the lock in the same order that they issued the lock requests.

Note

If a client attempts to acquire a lock that is already held by another client, it blocks
according to the timeout argument. If the blocked client terminates, its thread
does not die until the lock request times out. This is a known bug (fixed in MySQL
5.5).

• INET_ATON(expr)

Given the dotted-quad representation of an IPv4 network address as a string, returns an integer that
represents the numeric value of the address in network byte order (big endian). INET_ATON() returns
NULL if it does not understand its argument.

mysql> SELECT INET_ATON('10.0.5.9');
 -> 167773449

For this example, the return value is calculated as 10×2563 + 0×2562 + 5×256 + 9.

INET_ATON() may or may not return a non-NULL result for short-form IP addresses (such as '127.1'
as a representation of '127.0.0.1'). Because of this, INET_ATON()a should not be used for such
addresses.

Note

To store values generated by INET_ATON(), use an INT UNSIGNED
column rather than INT, which is signed. If you use a signed column, values
corresponding to IP addresses for which the first octet is greater than 127 cannot
be stored correctly. See Section 11.2.6, “Out-of-Range and Overflow Handling”.

• INET_NTOA(expr)

Miscellaneous Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1111

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Given a numeric IPv4 network address in network byte order, returns the dotted-quad representation of
the address as a binary string. INET_NTOA() returns NULL if it does not understand its argument.

mysql> SELECT INET_NTOA(167773449);
 -> '10.0.5.9'

• IS_FREE_LOCK(str)

Checks whether the lock named str is free to use (that is, not locked). Returns 1 if the lock is free (no
one is using the lock), 0 if the lock is in use, and NULL if an error occurs (such as an incorrect argument).

• IS_USED_LOCK(str)

Checks whether the lock named str is in use (that is, locked). If so, it returns the connection identifier of
the client session that holds the lock. Otherwise, it returns NULL.

• MASTER_POS_WAIT(log_name,log_pos[,timeout])

This function is useful for control of master/slave synchronization. It blocks until the slave has read
and applied all updates up to the specified position in the master log. The return value is the number
of log events the slave had to wait for to advance to the specified position. The function returns NULL if
the slave SQL thread is not started, the slave's master information is not initialized, the arguments are
incorrect, or an error occurs. It returns -1 if the timeout has been exceeded. If the slave SQL thread
stops while MASTER_POS_WAIT() is waiting, the function returns NULL. If the slave is past the specified
position, the function returns immediately.

If a timeout value is specified, MASTER_POS_WAIT() stops waiting when timeout seconds have
elapsed. timeout must be greater than 0; a zero or negative timeout means no timeout. The lock is
exclusive. While held by one session, other sessions cannot obtain a lock of the same name.

• NAME_CONST(name,value)

Returns the given value. When used to produce a result set column, NAME_CONST() causes the column
to have the given name. The arguments should be constants.

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+

This function was added in MySQL 5.0.12. It is for internal use only. The server uses it when writing
statements from stored programs that contain references to local program variables, as described
in Section 18.6, “Binary Logging of Stored Programs”, You might see this function in the output from
mysqlbinlog.

For your applications, you can obtain exactly the same result as in the example just shown by using
simple aliasing, like this:

mysql> SELECT 14 AS myname;
+--------+
| myname |
+--------+
| 14 |
+--------+

Miscellaneous Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1112

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

1 row in set (0.00 sec)

See Section 13.2.8, “SELECT Syntax”, for more information about column aliases.

• RELEASE_LOCK(str)

Releases the lock named by the string str that was obtained with GET_LOCK(). Returns 1 if the lock
was released, 0 if the lock was not established by this thread (in which case the lock is not released),
and NULL if the named lock did not exist. The lock does not exist if it was never obtained by a call to
GET_LOCK() or if it has previously been released.

The DO statement is convenient to use with RELEASE_LOCK(). See Section 13.2.3, “DO Syntax”.

• SLEEP(duration)

Sleeps (pauses) for the number of seconds given by the duration argument, then returns 0. If
SLEEP() is interrupted, it returns 1. The duration may have a fractional part. This function was added in
MySQL 5.0.12.

• UUID()

Returns a Universal Unique Identifier (UUID) generated according to RFC 4122, “A Universally Unique
IDentifier (UUID) URN Namespace” (http://www.ietf.org/rfc/rfc4122.txt).

A UUID is designed as a number that is globally unique in space and time. Two calls to UUID() are
expected to generate two different values, even if these calls are performed on two separate devices not
connected to each other.

Warning

Although UUID() values are intended to be unique, they are not necessarily
unguessable or unpredictable. If unpredictability is required, UUID values should
be generated some other way.

UUID() returns a value that conforms to UUID version 1 as described in RFC 4122. The value is a 128-
bit number represented as a utf8 string of five hexadecimal numbers in aaaaaaaa-bbbb-cccc-
dddd-eeeeeeeeeeee format:

• The first three numbers are generated from the low, middle, and high parts of a timestamp. The high
part also includes the UUID version number.

• The fourth number preserves temporal uniqueness in case the timestamp value loses monotonicity
(for example, due to daylight saving time).

• The fifth number is an IEEE 802 node number that provides spatial uniqueness. A random number is
substituted if the latter is not available (for example, because the host device has no Ethernet card,
or it is unknown how to find the hardware address of an interface on the host operating system). In
this case, spatial uniqueness cannot be guaranteed. Nevertheless, a collision should have very low
probability.

The MAC address of an interface is taken into account only on FreeBSD and Linux. On other
operating systems, MySQL uses a randomly generated 48-bit number.

mysql> SELECT UUID();
 -> '6ccd780c-baba-1026-9564-0040f4311e29'

http://www.ietf.org/rfc/rfc4122.txt

GROUP BY (Aggregate) Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1113

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

UUID() does not work with statement-based replication.

• VALUES(col_name)

In an INSERT ... ON DUPLICATE KEY UPDATE statement, you can use the VALUES(col_name)
function in the UPDATE clause to refer to column values from the INSERT portion of the statement. In
other words, VALUES(col_name) in the UPDATE clause refers to the value of col_name that would
be inserted, had no duplicate-key conflict occurred. This function is especially useful in multiple-row
inserts. The VALUES() function is meaningful only in the ON DUPLICATE KEY UPDATE clause of
INSERT statements and returns NULL otherwise. See Section 13.2.5.3, “INSERT ... ON DUPLICATE
KEY UPDATE Syntax”.

When sleep returns normally (without interruption), it returns 0:

mysql> SELECT SLEEP(1000);
+-------------+
| SLEEP(1000) |
+-------------+
| 0 |
+-------------+

When SLEEP() is the only thing invoked by a query that is interrupted, it returns 1 and the query itself
returns no error. This statement is interrupted using KILL QUERY from another session:

mysql> SELECT SLEEP(1000);
+-------------+
| SLEEP(1000) |
+-------------+
| 1 |
+-------------+

When SLEEP() is only part of a query that is interrupted, the query returns an error. This statement is
interrupted using KILL QUERY from another session:

mysql> SELECT 1 FROM t1 WHERE SLEEP(1000);
ERROR 1317 (70100): Query execution was interrupted

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
 -> ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

12.16 GROUP BY (Aggregate) Functions

12.16.1 GROUP BY (Aggregate) Function Descriptions
Table 12.20 Aggregate (GROUP BY) Functions

Name Description

AVG() Return the average value of the argument

BIT_AND() Return bitwise AND

BIT_OR() Return bitwise OR

BIT_XOR() Return bitwise XOR

GROUP BY (Aggregate) Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1114

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Description

COUNT() Return a count of the number of rows returned

COUNT(DISTINCT) Return the count of a number of different values

GROUP_CONCAT() Return a concatenated string

MAX() Return the maximum value

MIN() Return the minimum value

STD() Return the population standard deviation

STDDEV() Return the population standard deviation

STDDEV_POP() Return the population standard deviation

STDDEV_SAMP() Return the sample standard deviation

SUM() Return the sum

VAR_POP() Return the population standard variance

VAR_SAMP() Return the sample variance

VARIANCE() Return the population standard variance

This section describes group (aggregate) functions that operate on sets of values. Unless otherwise stated,
group functions ignore NULL values.

If you use a group function in a statement containing no GROUP BY clause, it is equivalent to grouping on
all rows. For more information, see Section 12.16.3, “MySQL Handling of GROUP BY”.

For numeric arguments, the variance and standard deviation functions return a DOUBLE value. The SUM()
and AVG() functions return a DECIMAL value for exact-value arguments (integer or DECIMAL), and a
DOUBLE value for approximate-value arguments (FLOAT or DOUBLE). (Before MySQL 5.0.3, SUM() and
AVG() return DOUBLE for all numeric arguments.)

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values to
numbers, losing everything after the first nonnumeric character.) To work around this problem, convert to
numeric units, perform the aggregate operation, and convert back to a temporal value. Examples:

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

Functions such as SUM() or AVG() that expect a numeric argument cast the argument to a number if
necessary. For SET or ENUM values, the cast operation causes the underlying numeric value to be used.

The BIT_AND(), BIT_OR(), and BIT_XOR() aggregate functions perform bit operations. They require
BIGINT (64-bit integer) arguments and return BIGINT values. Arguments of other types are converted to
BIGINT and truncation might occur.

• AVG([DISTINCT] expr)

Returns the average value of expr. The DISTINCT option can be used as of MySQL 5.0.3 to return the
average of the distinct values of expr.

AVG() returns NULL if there were no matching rows.

mysql> SELECT student_name, AVG(test_score)
 -> FROM student
 -> GROUP BY student_name;

GROUP BY (Aggregate) Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1115

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• BIT_AND(expr)

Returns the bitwise AND of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision.

BIT_AND() returns 18446744073709551615 if there were no matching rows. (This is the value of an
unsigned BIGINT value with all bits set to 1.)

• BIT_OR(expr)

Returns the bitwise OR of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision.

BIT_OR() returns 0 if there were no matching rows.

• BIT_XOR(expr)

Returns the bitwise XOR of all bits in expr. The calculation is performed with 64-bit (BIGINT) precision.

BIT_XOR() returns 0 if there were no matching rows.

• COUNT(expr)

Returns a count of the number of non-NULL values of expr in the rows retrieved by a SELECT
statement. The result is a BIGINT value.

COUNT() returns 0 if there were no matching rows.

mysql> SELECT student.student_name,COUNT(*)
 -> FROM student,course
 -> WHERE student.student_id=course.student_id
 -> GROUP BY student_name;

COUNT(*) is somewhat different in that it returns a count of the number of rows retrieved, whether or not
they contain NULL values.

COUNT(*) is optimized to return very quickly if the SELECT retrieves from one table, no other columns
are retrieved, and there is no WHERE clause. For example:

mysql> SELECT COUNT(*) FROM student;

This optimization applies only to MyISAM tables only, because an exact row count is stored for this
storage engine and can be accessed very quickly. For transactional storage engines such as InnoDB
and BDB, storing an exact row count is more problematic because multiple transactions may be
occurring, each of which may affect the count.

• COUNT(DISTINCT expr,[expr...])

Returns a count of the number of rows with different non-NULL expr values.

COUNT(DISTINCT) returns 0 if there were no matching rows.

mysql> SELECT COUNT(DISTINCT results) FROM student;

In MySQL, you can obtain the number of distinct expression combinations that do not contain NULL by
giving a list of expressions. In standard SQL, you would have to do a concatenation of all expressions
inside COUNT(DISTINCT ...).

• GROUP_CONCAT(expr)

GROUP BY (Aggregate) Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1116

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This function returns a string result with the concatenated non-NULL values from a group. It returns NULL
if there are no non-NULL values. The full syntax is as follows:

GROUP_CONCAT([DISTINCT] expr [,expr ...]
 [ORDER BY {unsigned_integer | col_name | expr}
 [ASC | DESC] [,col_name ...]]
 [SEPARATOR str_val])

mysql> SELECT student_name,
 -> GROUP_CONCAT(test_score)
 -> FROM student
 -> GROUP BY student_name;

Or:

mysql> SELECT student_name,
 -> GROUP_CONCAT(DISTINCT test_score
 -> ORDER BY test_score DESC SEPARATOR ' ')
 -> FROM student
 -> GROUP BY student_name;

In MySQL, you can get the concatenated values of expression combinations. To eliminate duplicate
values, use the DISTINCT clause. To sort values in the result, use the ORDER BY clause. To sort in
reverse order, add the DESC (descending) keyword to the name of the column you are sorting by in
the ORDER BY clause. The default is ascending order; this may be specified explicitly using the ASC
keyword. The default separator between values in a group is comma (“,”). To specify a separator
explicitly, use SEPARATOR followed by the string literal value that should be inserted between group
values. To eliminate the separator altogether, specify SEPARATOR ''.

The result is truncated to the maximum length that is given by the group_concat_max_len system
variable, which has a default value of 1024. The value can be set higher, although the effective
maximum length of the return value is constrained by the value of max_allowed_packet. The syntax
to change the value of group_concat_max_len at runtime is as follows, where val is an unsigned
integer:

SET [GLOBAL | SESSION] group_concat_max_len = val;

The return value is a nonbinary or binary string, depending on whether the arguments are nonbinary
or binary strings. The result type is TEXT or BLOB unless group_concat_max_len is less than
or equal to 512, in which case the result type is VARCHAR or VARBINARY. (Prior to MySQL 5.0.19,
GROUP_CONCAT() returned TEXT or BLOB group_concat_max_len greater than 512 only if the query
included an ORDER BY clause.)

See also CONCAT() and CONCAT_WS(): Section 12.5, “String Functions”.

• MAX([DISTINCT] expr)

Returns the maximum value of expr. MAX() may take a string argument; in such cases, it returns the
maximum string value. See Section 8.3.1, “How MySQL Uses Indexes”. The DISTINCT keyword can
be used to find the maximum of the distinct values of expr, however, this produces the same result as
omitting DISTINCT.

MAX() returns NULL if there were no matching rows.

GROUP BY (Aggregate) Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1117

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
 -> FROM student
 -> GROUP BY student_name;

For MAX(), MySQL currently compares ENUM and SET columns by their string value rather than by the
string's relative position in the set. This differs from how ORDER BY compares them. This is expected to
be rectified in a future MySQL release.

• MIN([DISTINCT] expr)

Returns the minimum value of expr. MIN() may take a string argument; in such cases, it returns the
minimum string value. See Section 8.3.1, “How MySQL Uses Indexes”. The DISTINCT keyword can
be used to find the minimum of the distinct values of expr, however, this produces the same result as
omitting DISTINCT.

MIN() returns NULL if there were no matching rows.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
 -> FROM student
 -> GROUP BY student_name;

For MIN(), MySQL currently compares ENUM and SET columns by their string value rather than by the
string's relative position in the set. This differs from how ORDER BY compares them. This is expected to
be rectified in a future MySQL release.

• STD(expr)

Returns the population standard deviation of expr. This is an extension to standard SQL. As of MySQL
5.0.3, the standard SQL function STDDEV_POP() can be used instead.

STD() returns NULL if there were no matching rows.

• STDDEV(expr)

Returns the population standard deviation of expr. This function is provided for compatibility with
Oracle. As of MySQL 5.0.3, the standard SQL function STDDEV_POP() can be used instead.

STDDEV() returns NULL if there were no matching rows.

• STDDEV_POP(expr)

Returns the population standard deviation of expr (the square root of VAR_POP()). This function was
added in MySQL 5.0.3. Before 5.0.3, you can use STD() or STDDEV(), which are equivalent but not
standard SQL.

STDDEV_POP() returns NULL if there were no matching rows.

• STDDEV_SAMP(expr)

Returns the sample standard deviation of expr (the square root of VAR_SAMP(). This function was
added in MySQL 5.0.3.

STDDEV_SAMP() returns NULL if there were no matching rows.

• SUM([DISTINCT] expr)

Returns the sum of expr. If the return set has no rows, SUM() returns NULL. The DISTINCT keyword
can be used to sum only the distinct values of expr.

GROUP BY Modifiers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1118

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SUM() returns NULL if there were no matching rows.

• VAR_POP(expr)

Returns the population standard variance of expr. It considers rows as the whole population, not as
a sample, so it has the number of rows as the denominator. This function was added in MySQL 5.0.3.
Before 5.0.3, you can use VARIANCE(), which is equivalent but is not standard SQL.

VAR_POP() returns NULL if there were no matching rows.

• VAR_SAMP(expr)

Returns the sample variance of expr. That is, the denominator is the number of rows minus one. This
function was added in MySQL 5.0.3.

VAR_SAMP() returns NULL if there were no matching rows.

• VARIANCE(expr)

Returns the population standard variance of expr. This is an extension to standard SQL. As of MySQL
5.0.3, the standard SQL function VAR_POP() can be used instead.

VARIANCE() returns NULL if there were no matching rows.

12.16.2 GROUP BY Modifiers

The GROUP BY clause permits a WITH ROLLUP modifier that causes extra rows to be added to the
summary output. These rows represent higher-level (or super-aggregate) summary operations. ROLLUP
thus enables you to answer questions at multiple levels of analysis with a single query. It can be used, for
example, to provide support for OLAP (Online Analytical Processing) operations.

Suppose that a table named sales has year, country, product, and profit columns for recording
sales profitability:

CREATE TABLE sales
(
 year INT NOT NULL,
 country VARCHAR(20) NOT NULL,
 product VARCHAR(32) NOT NULL,
 profit INT
);

The table's contents can be summarized per year with a simple GROUP BY like this:

mysql> SELECT year, SUM(profit) FROM sales GROUP BY year;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
| 2000 | 4525 |
| 2001 | 3010 |
+------+-------------+

This output shows the total profit for each year, but if you also want to determine the total profit summed
over all years, you must add up the individual values yourself or run an additional query.

Or you can use ROLLUP, which provides both levels of analysis with a single query. Adding a WITH
ROLLUP modifier to the GROUP BY clause causes the query to produce another row that shows the grand
total over all year values:

GROUP BY Modifiers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1119

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT year, SUM(profit) FROM sales GROUP BY year WITH ROLLUP;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
2000	4525
2001	3010
NULL	7535
+------+-------------+

The grand total super-aggregate line is identified by the value NULL in the year column.

ROLLUP has a more complex effect when there are multiple GROUP BY columns. In this case, each time
there is a “break” (change in value) in any but the last grouping column, the query produces an extra
super-aggregate summary row.

For example, without ROLLUP, a summary on the sales table based on year, country, and product
might look like this:

mysql> SELECT year, country, product, SUM(profit)
 -> FROM sales
 -> GROUP BY year, country, product;
+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	India	Calculator	150
2000	India	Computer	1200
2000	USA	Calculator	75
2000	USA	Computer	1500
2001	Finland	Phone	10
2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
+------+---------+------------+-------------+

The output indicates summary values only at the year/country/product level of analysis. When ROLLUP is
added, the query produces several extra rows:

mysql> SELECT year, country, product, SUM(profit)
 -> FROM sales
 -> GROUP BY year, country, product WITH ROLLUP;
+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
2000	India	NULL	1350
2000	USA	Calculator	75
2000	USA	Computer	1500
2000	USA	NULL	1575
2000	NULL	NULL	4525
2001	Finland	Phone	10
2001	Finland	NULL	10
2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
2001	USA	NULL	3000
2001	NULL	NULL	3010

GROUP BY Modifiers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1120

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| NULL | NULL | NULL | 7535 |
+------+---------+------------+-------------+

For this query, adding ROLLUP causes the output to include summary information at four levels of analysis,
not just one. Here is how to interpret the ROLLUP output:

• Following each set of product rows for a given year and country, an extra summary row is produced
showing the total for all products. These rows have the product column set to NULL.

• Following each set of rows for a given year, an extra summary row is produced showing the total for all
countries and products. These rows have the country and products columns set to NULL.

• Finally, following all other rows, an extra summary row is produced showing the grand total for all years,
countries, and products. This row has the year, country, and products columns set to NULL.

Other Considerations When using ROLLUP

The following items list some behaviors specific to the MySQL implementation of ROLLUP.

When you use ROLLUP, you cannot also use an ORDER BY clause to sort the results. In other words,
ROLLUP and ORDER BY are mutually exclusive. However, you still have some control over sort order.
GROUP BY in MySQL sorts results, and you can use explicit ASC and DESC keywords with columns named
in the GROUP BY list to specify sort order for individual columns. (The higher-level summary rows added by
ROLLUP still appear after the rows from which they are calculated, regardless of the sort order.)

LIMIT can be used to restrict the number of rows returned to the client. LIMIT is applied after ROLLUP, so
the limit applies against the extra rows added by ROLLUP. For example:

mysql> SELECT year, country, product, SUM(profit)
 -> FROM sales
 -> GROUP BY year, country, product WITH ROLLUP
 -> LIMIT 5;
+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
+------+---------+------------+-------------+

Using LIMIT with ROLLUP may produce results that are more difficult to interpret, because you have less
context for understanding the super-aggregate rows.

The NULL indicators in each super-aggregate row are produced when the row is sent to the client. The
server looks at the columns named in the GROUP BY clause following the leftmost one that has changed
value. For any column in the result set with a name that is a lexical match to any of those names, its value
is set to NULL. (If you specify grouping columns by column number, the server identifies which columns to
set to NULL by number.)

Because the NULL values in the super-aggregate rows are placed into the result set at such a late stage
in query processing, you cannot test them as NULL values within the query itself. For example, you cannot
add HAVING product IS NULL to the query to eliminate from the output all but the super-aggregate
rows.

On the other hand, the NULL values do appear as NULL on the client side and can be tested as such using
any MySQL client programming interface.

MySQL Handling of GROUP BY

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1121

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL permits a column that does not appear in the GROUP BY list to be named in the select list. In
this case, the server is free to choose any value from this nonaggregated column in summary rows, and
this includes the extra rows added by WITH ROLLUP. For example, in the following query, country is a
nonaggregated column that does not appear in the GROUP BY list and values chosen for this column are
indeterminate:

mysql> SELECT year, country, SUM(profit)
 -> FROM sales GROUP BY year WITH ROLLUP;
+------+---------+-------------+
| year | country | SUM(profit) |
+------+---------+-------------+
2000	India	4525
2001	USA	3010
NULL	USA	7535
+------+---------+-------------+

This behavior occurs if the ONLY_FULL_GROUP_BY SQL mode is not enabled. If that mode is enabled,
the server rejects the query as illegal because country is not listed in the GROUP BY clause. For more
information about nonaggregated columns and GROUP BY, see Section 12.16.3, “MySQL Handling of
GROUP BY”.

12.16.3 MySQL Handling of GROUP BY

In standard SQL, a query that includes a GROUP BY clause cannot refer to nonaggregated columns in the
select list that are not named in the GROUP BY clause. For example, this query is illegal in standard SQL
because the nonaggregated name column in the select list does not appear in the GROUP BY:

SELECT o.custid, c.name, MAX(o.payment)
 FROM orders AS o, customers AS c
 WHERE o.custid = c.custid
 GROUP BY o.custid;

For the query to be legal, the name column must be omitted from the select list or named in the GROUP BY
clause.

MySQL extends the standard SQL use of GROUP BY so that the select list can refer to nonaggregated
columns not named in the GROUP BY clause. This means that the preceding query is legal in MySQL.
You can use this feature to get better performance by avoiding unnecessary column sorting and grouping.
However, this is useful primarily when all values in each nonaggregated column not named in the GROUP
BY are the same for each group. The server is free to choose any value from each group, so unless they
are the same, the values chosen are indeterminate. Furthermore, the selection of values from each group
cannot be influenced by adding an ORDER BY clause. Result set sorting occurs after values have been
chosen, and ORDER BY does not affect which values within each group the server chooses.

A similar MySQL extension applies to the HAVING clause. In standard SQL, a query cannot refer to
nonaggregated columns in the HAVING clause that are not named in the GROUP BY clause. To simplify
calculations, a MySQL extension permits references to such columns. This extension assumes that the
nongrouped columns have the same group-wise values. Otherwise, the result is indeterminate.

To disable the MySQL GROUP BY extension and enable standard SQL behavior, enable the
ONLY_FULL_GROUP_BY SQL mode. In this case, columns not named in the GROUP BY clause cannot be
used in the select list or HAVING clause unless enclosed in an aggregate function.

The select list extension also applies to ORDER BY. That is, you can refer to nonaggregated columns in the
ORDER BY clause that do not appear in the GROUP BY clause. (However, as mentioned previously, ORDER
BY does not affect which values are chosen from nonaggregated columns; it only sorts them after they
have been chosen.) This extension does not apply if the ONLY_FULL_GROUP_BY SQL mode is enabled.

Precision Math

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1122

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If a query has aggregate functions and no GROUP BY clause, it cannot have nonaggregated columns in the
select list, HAVING condition, or ORDER BY list with ONLY_FULL_GROUP_BY enabled:

mysql> SELECT name, MAX(age) FROM t;
ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT(),...)
with no GROUP columns is illegal if there is no GROUP BY clause

Without GROUP BY, there is a single group and it is indeterminate which name value to choose for the
group.

Another MySQL extension to standard SQL permits references in the HAVING clause to aliased
expressions in the select list. Enabling ONLY_FULL_GROUP_BY prevents this. For example, the following
query returns name values that occur only once in table orders; the query is accepted regardless of
whether ONLY_FULL_GROUP_BY is enabled:

SELECT name, COUNT(name) FROM orders
 GROUP BY name
 HAVING COUNT(name) = 1;

The following query is accepted only if ONLY_FULL_GROUP_BY is disabled.

SELECT name, COUNT(name) AS c FROM orders
 GROUP BY name
 HAVING c = 1;

In some cases, you can use MIN() and MAX() to obtain a specific column value even if it is not unique. If
the sort column contains integers no larger than 6 digits, the following query gives the value of column
from the row containing the smallest sort value:

SUBSTR(MIN(CONCAT(LPAD(sort,6,'0'),column)),7)

See Section 3.6.4, “The Rows Holding the Group-wise Maximum of a Certain Column”.

If you are trying to follow standard SQL, you cannot use expressions in GROUP BY clauses. As a
workaround, use an alias for the expression:

SELECT id, FLOOR(value/100) AS val
 FROM tbl_name
 GROUP BY id, val;

MySQL permits expressions in GROUP BY clauses, so the alias is unnecessary:

SELECT id, FLOOR(value/100)
 FROM tbl_name
 GROUP BY id, FLOOR(value/100);

12.17 Precision Math
MySQL 5.0 introduces precision math: numeric value handling that results in more accurate results
and more control over invalid values than in earlier versions of MySQL. Precision math is based on two
implementation changes:

• The introduction of SQL modes in MySQL 5.0 that control how strict the server is about accepting or
rejecting invalid data.

Types of Numeric Values

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1123

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The introduction in MySQL 5.0.3 of a library for fixed-point arithmetic.

These changes result in the following characteristics for numeric operations and provide improved
compliance with standard SQL:

• Precise calculations: For exact-value numbers, calculations do not introduce floating-point errors.
Instead, exact precision is used. For example, MySQL treats a number such as .0001 as an exact value
rather than as an approximation, and summing it 10,000 times produces a result of exactly 1, not a value
that is merely “close” to 1.

• Well-defined rounding behavior: For exact-value numbers, the result of ROUND() depends on its
argument, not on environmental factors such as how the underlying C library works.

• Platform independence: Operations on exact numeric values are the same across different platforms
such as Windows and Unix.

• Control over handling of invalid values: Overflow and division by zero are detectable and can be
treated as errors. For example, you can treat a value that is too large for a column as an error rather
than having the value truncated to lie within the range of the column's data type. Similarly, you can treat
division by zero as an error rather than as an operation that produces a result of NULL. The choice of
which approach to take is determined by the setting of the server SQL mode.

The following discussion covers several aspects of how precision math works, including possible
incompatibilities with older applications. At the end, some examples are given that demonstrate how
MySQL handles numeric operations precisely. For information about controlling the SQL mode, see
Section 5.1.7, “Server SQL Modes”.

12.17.1 Types of Numeric Values

The scope of precision math for exact-value operations includes the exact-value data types (integer and
DECIMAL types) and exact-value numeric literals. Approximate-value data types and numeric literals are
handled as floating-point numbers.

Exact-value numeric literals have an integer part or fractional part, or both. They may be signed. Examples:
1, .2, 3.4, -5, -6.78, +9.10.

Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent.
Either or both parts may be signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.

Two numbers that look similar may be treated differently. For example, 2.34 is an exact-value (fixed-point)
number, whereas 2.34E0 is an approximate-value (floating-point) number.

The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type has
several synonyms: NUMERIC, DEC, FIXED. The integer types also are exact-value types.

The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In MySQL,
types that are synonymous with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.

12.17.2 DECIMAL Data Type Characteristics

This section discusses the characteristics of the DECIMAL data type (and its synonyms) as of MySQL
5.0.3, with particular regard to the following topics:

• Maximum number of digits

• Storage format

DECIMAL Data Type Characteristics

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1124

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Storage requirements

• The nonstandard MySQL extension to the upper range of DECIMAL columns

Some of these characteristics result in possible incompatibilities for applications that are written for older
versions of MySQL. These incompatibilities are noted throughout this section.

The declaration syntax for a DECIMAL column remains DECIMAL(M,D), although the range of values for
the arguments has changed somewhat:

• M is the maximum number of digits (the precision). It has a range of 1 to 65. This introduces a possible
incompatibility for older applications, because previous versions of MySQL permit a range of 1 to 254.
(The precision of 65 digits actually applies as of MySQL 5.0.6. From 5.0.3 to 5.0.5, the precision is 64
digits.)

• D is the number of digits to the right of the decimal point (the scale). It has a range of 0 to 30 and must
be no larger than M.

The maximum value of 65 for M means that calculations on DECIMAL values are accurate up to 65 digits.
This limit of 65 digits of precision also applies to exact-value numeric literals, so the maximum range
of such literals differs from before. (Prior to MySQL 5.0.3, decimal values could have up to 254 digits.
However, calculations were done using floating-point and thus were approximate, not exact.) This change
in the range of literal values is another possible source of incompatibility for older applications.

Values for DECIMAL columns no longer are represented as strings that require 1 byte per digit or sign
character. Instead, a binary format is used that packs nine decimal digits into 4 bytes. This change to
DECIMAL storage format changes the storage requirements as well. The storage requirements for the
integer and fractional parts of each value are determined separately. Each multiple of nine digits requires 4
bytes, and any remaining digits require some fraction of 4 bytes. The storage required for remaining digits
is given by the following table.

Leftover Digits Number of Bytes

0 0

1–2 1

3–4 2

5–6 3

7–9 4

For example, a DECIMAL(18,9) column has nine digits on either side of the decimal point, so the integer
part and the fractional part each require 4 bytes. A DECIMAL(20,6) column has fourteen integer digits
and six fractional digits. The integer digits require four bytes for nine of the digits and 3 bytes for the
remaining five digits. The six fractional digits require 3 bytes.

As a result of the change from string to numeric format for DECIMAL storage, DECIMAL columns no longer
store a leading + or - character or leading 0 digits. Before MySQL 5.0.3, if you inserted +0003.1 into a
DECIMAL(5,1) column, it was stored as +0003.1. As of MySQL 5.0.3, it is stored as 3.1. For negative
numbers, a literal - character is no longer stored. Applications that rely on the older behavior must be
modified to account for this change.

The change of storage format also means that DECIMAL columns no longer support the nonstandard
extension that permitted values larger than the range implied by the column definition. Formerly, 1
byte was allocated for storing the sign character. For positive values that needed no sign byte, MySQL
permitted an extra digit to be stored instead. For example, a DECIMAL(3,0) column must support a range
of at least −999 to 999, but MySQL would permit storing values from 1000 to 9999 as well, by using

Expression Handling

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1125

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

the sign byte to store an extra digit. This extension to the upper range of DECIMAL columns is no longer
supported. As of MySQL 5.0.3, a DECIMAL(M,D) column permits at most M - D digits to the left of the
decimal point. This can result in an incompatibility if an application has a reliance on MySQL permitting
“too-large” values.

The SQL standard requires that the precision of NUMERIC(M,D) be exactly M digits. For DECIMAL(M,D),
the standard requires a precision of at least M digits but permits more. In MySQL, DECIMAL(M,D) and
NUMERIC(M,D) are the same, and both have a precision of exactly M digits.

Summary of incompatibilities:

The following list summarizes the incompatibilities that result from changes to DECIMAL column and value
handling. You can use it as guide when porting older applications for use with MySQL 5.0.3 and up.

• For DECIMAL(M,D), the maximum M is 65, not 254.

• Calculations involving exact-value decimal numbers are accurate to 65 digits. This is fewer than the
maximum number of digits permitted before MySQL 5.0.3 (254 digits), but the exact-value precision is
greater. Calculations formerly were done with double-precision floating-point, which has a precision of 52
bits (about 15 decimal digits).

• The nonstandard MySQL extension to the upper range of DECIMAL columns is no longer supported.

• Leading “+” and “0” characters are not stored.

The behavior used by the server for DECIMAL columns in a table depends on the version of MySQL used
to create the table. If your server is from MySQL 5.0.3 or higher, but a table that was created before 5.0.3
has DECIMAL columns, the old behavior still applies to those columns. To convert the table to the newer
DECIMAL format, dump it with mysqldump and reload it.

For a full explanation of the internal format of DECIMAL values, see the file strings/decimal.c in a
MySQL source distribution. The format is explained (with an example) in the decimal2bin() function.

12.17.3 Expression Handling

With precision math, exact-value numbers are used as given whenever possible. For example, numbers in
comparisons are used exactly as given without a change in value. In strict SQL mode, for INSERT into a
column with an exact data type (DECIMAL or integer), a number is inserted with its exact value if it is within
the column range. When retrieved, the value should be the same as what was inserted. (If strict SQL mode
is not enabled, truncation for INSERT is permissible.)

Handling of a numeric expression depends on what kind of values the expression contains:

• If any approximate values are present, the expression is approximate and is evaluated using floating-
point arithmetic.

• If no approximate values are present, the expression contains only exact values. If any exact value
contains a fractional part (a value following the decimal point), the expression is evaluated using
DECIMAL exact arithmetic and has a precision of 65 digits. The term “exact” is subject to the limits of
what can be represented in binary. For example, 1.0/3.0 can be approximated in decimal notation as
.333..., but not written as an exact number, so (1.0/3.0)*3.0 does not evaluate to exactly 1.0.

• Otherwise, the expression contains only integer values. The expression is exact and is evaluated using
integer arithmetic and has a precision the same as BIGINT (64 bits).

If a numeric expression contains any strings, they are converted to double-precision floating-point values
and the expression is approximate.

Expression Handling

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1126

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Inserts into numeric columns are affected by the SQL mode, which is controlled by the sql_mode
system variable. (See Section 5.1.7, “Server SQL Modes”.) The following discussion mentions
strict mode (selected by the STRICT_ALL_TABLES or STRICT_TRANS_TABLES mode values) and
ERROR_FOR_DIVISION_BY_ZERO. To turn on all restrictions, you can simply use TRADITIONAL mode,
which includes both strict mode values and ERROR_FOR_DIVISION_BY_ZERO:

mysql> SET sql_mode='TRADITIONAL';

If a number is inserted into an exact type column (DECIMAL or integer), it is inserted with its exact value if it
is within the column range.

If the value has too many digits in the fractional part, rounding occurs and a warning is generated.
Rounding is done as described in Section 12.17.4, “Rounding Behavior”.

If the value has too many digits in the integer part, it is too large and is handled as follows:

• If strict mode is not enabled, the value is truncated to the nearest legal value and a warning is generated.

• If strict mode is enabled, an overflow error occurs.

Underflow is not detected, so underflow handling is undefined.

For inserts of strings into numeric columns, conversion from string to number is handled as follows if the
string has nonnumeric contents:

• A string that does not begin with a number cannot be used as a number and produces an error in strict
mode, or a warning otherwise. This includes the empty string.

• A string that begins with a number can be converted, but the trailing nonnumeric portion is truncated.
If the truncated portion contains anything other than spaces, this produces an error in strict mode, or a
warning otherwise.

By default, division by zero produces a result of NULL and no warning. By setting the SQL mode
appropriately, division by zero can be restricted.

With the ERROR_FOR_DIVISION_BY_ZERO SQL mode enabled, MySQL handles division by zero
differently:

• If strict mode is not enabled, a warning occurs.

• If strict mode is enabled, inserts and updates involving division by zero are prohibited, and an error
occurs.

In other words, inserts and updates involving expressions that perform division by zero can be treated as
errors, but this requires ERROR_FOR_DIVISION_BY_ZERO in addition to strict mode.

Suppose that we have this statement:

INSERT INTO t SET i = 1/0;

This is what happens for combinations of strict and ERROR_FOR_DIVISION_BY_ZERO modes.

sql_mode Value Result

'' (Default) No warning, no error; i is set to NULL.

strict No warning, no error; i is set to NULL.

Rounding Behavior

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1127

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

sql_mode Value Result

ERROR_FOR_DIVISION_BY_ZERO Warning, no error; i is set to NULL.

strict,ERROR_FOR_DIVISION_BY_ZERO Error condition; no row is inserted.

12.17.4 Rounding Behavior

This section discusses precision math rounding for the ROUND() function and for inserts into columns with
exact-value types (DECIMAL and integer).

The ROUND() function rounds differently depending on whether its argument is exact or approximate:

• For exact-value numbers, ROUND() uses the “round half up” rule: A value with a fractional part of .5
or greater is rounded up to the next integer if positive or down to the next integer if negative. (In other
words, it is rounded away from zero.) A value with a fractional part less than .5 is rounded down to the
next integer if positive or up to the next integer if negative.

• For approximate-value numbers, the result depends on the C library. On many systems, this means that
ROUND() uses the “round to nearest even” rule: A value with any fractional part is rounded to the nearest
even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+

For inserts into a DECIMAL or integer column, the target is an exact data type, so rounding uses “round half
away from zero,” regardless of whether the value to be inserted is exact or approximate:

mysql> CREATE TABLE t (d DECIMAL(10,0));
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t VALUES(2.5),(2.5E0);
Query OK, 2 rows affected, 2 warnings (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 2

mysql> SELECT d FROM t;
+------+
| d |
+------+
| 3 |
| 3 |
+------+

12.17.5 Precision Math Examples

This section provides some examples that show how precision math improves query results in MySQL 5.0
compared to older versions. These examples demonstrate the principles described in Section 12.17.3,
“Expression Handling”, and Section 12.17.4, “Rounding Behavior”.

Example 1. Numbers are used with their exact value as given when possible.

Before MySQL 5.0.3, numbers that are treated as floating-point values produce inexact results:

Precision Math Examples

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1128

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT (.1 + .2) = .3;
+----------------+
| (.1 + .2) = .3 |
+----------------+
| 1 |
+----------------+

As of MySQL 5.0.3, numbers are used as given when possible:

mysql> SELECT (.1 + .2) = .3;
+----------------+
| (.1 + .2) = .3 |
+----------------+
| 1 |
+----------------+

For floating-point values, results are inexact:

mysql> SELECT (.1E0 + .2E0) = .3E0;
+----------------------+
| (.1E0 + .2E0) = .3E0 |
+----------------------+
| 0 |
+----------------------+

Another way to see the difference in exact and approximate value handling is to add a small number to a
sum many times. Consider the following stored procedure, which adds .0001 to a variable 1,000 times.

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 0;
 DECLARE d DECIMAL(10,4) DEFAULT 0;
 DECLARE f FLOAT DEFAULT 0;
 WHILE i < 10000 DO
 SET d = d + .0001;
 SET f = f + .0001E0;
 SET i = i + 1;
 END WHILE;
 SELECT d, f;
END;

The sum for both d and f logically should be 1, but that is true only for the decimal calculation. The
floating-point calculation introduces small errors:

+--------+------------------+
| d | f |
+--------+------------------+
| 1.0000 | 0.99999999999991 |
+--------+------------------+

Example 2. Multiplication is performed with the scale required by standard SQL. That is, for two numbers
X1 and X2 that have scale S1 and S2, the scale of the result is S1 + S2:

Before MySQL 5.0.3, this is what happens:

mysql> SELECT .01 * .01;
+-----------+
| .01 * .01 |
+-----------+

Precision Math Examples

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1129

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| 0.00 |
+-----------+

The displayed value is incorrect. The value was calculated correctly in this case, but not displayed to the
required scale. To see that the calculated value actually was .0001, try this:

mysql> SELECT .01 * .01 + .0000;
+-------------------+
| .01 * .01 + .0000 |
+-------------------+
| 0.0001 |
+-------------------+

As of MySQL 5.0.3, the displayed scale is correct:

mysql> SELECT .01 * .01;
+-----------+
| .01 * .01 |
+-----------+
| 0.0001 |
+-----------+

Example 3. Rounding behavior for exact-value numbers is well-defined.

Before MySQL 5.0.3, rounding behavior (for example, with the ROUND() function) is dependent on the
implementation of the underlying C library. This results in inconsistencies from platform to platform. For
example, you might get a different value on Windows than on Linux, or a different value on x86 machines
than on PowerPC machines.

As of MySQL 5.0.3, rounding happens like this:

• Rounding for exact-value columns (DECIMAL and integer) and exact-valued numbers uses the “round
half away from zero” rule. Values with a fractional part of .5 or greater are rounded away from zero to the
nearest integer, as shown here:

mysql> SELECT ROUND(2.5), ROUND(-2.5);
+------------+-------------+
| ROUND(2.5) | ROUND(-2.5) |
+------------+-------------+
| 3 | -3 |
+------------+-------------+

• Rounding for floating-point values uses the C library, which on many systems uses the “round to nearest
even” rule. Values with any fractional part on such systems are rounded to the nearest even integer:

mysql> SELECT ROUND(2.5E0), ROUND(-2.5E0);
+--------------+---------------+
| ROUND(2.5E0) | ROUND(-2.5E0) |
+--------------+---------------+
| 2 | -2 |
+--------------+---------------+

Example 4. In strict mode, inserting a value that is out of range for a column causes an error, rather than
truncation to a legal value.

Before MySQL 5.0.2 (or in 5.0.2 and later, without strict mode), truncation to a legal value occurs:

mysql> CREATE TABLE t (i TINYINT);

Precision Math Examples

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1130

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET i = 128;
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i |
+------+
| 127 |
+------+
1 row in set (0.00 sec)

As of MySQL 5.0.2, an error occurs if strict mode is in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 128;
ERROR 1264 (22003): Out of range value adjusted for column 'i' at row 1

mysql> SELECT i FROM t;
Empty set (0.00 sec)

Example 5: In strict mode and with ERROR_FOR_DIVISION_BY_ZERO set, division by zero causes an
error, not a result of NULL.

Before MySQL 5.0.2 (or when not using strict mode in 5.0.2 or a later version), division by zero has a result
of NULL:

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET i = 1 / 0;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i |
+------+
| NULL |
+------+
1 row in set (0.00 sec)

As of MySQL 5.0.2, division by zero is an error if the proper SQL modes are in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 1 / 0;
ERROR 1365 (22012): Division by 0

mysql> SELECT i FROM t;
Empty set (0.01 sec)

Example 6. Exact-value literals are evaluated as exact values.

Precision Math Examples

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1131

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Prior to MySQL 5.0.3, exact-value and approximate-value literals both are evaluated as double-precision
floating-point values:

mysql> SELECT VERSION();
+------------+
| VERSION() |
+------------+
| 4.1.18-log |
+------------+
1 row in set (0.01 sec)

mysql> CREATE TABLE t SELECT 2.5 AS a, 25E-1 AS b;
Query OK, 1 row affected (0.07 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> DESCRIBE t;
+-------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| a | double(3,1) | | | 0.0 | |
| b | double | | | 0 | |
+-------+-------------+------+-----+---------+-------+
2 rows in set (0.04 sec)

As of MySQL 5.0.3, the approximate-value literal is evaluated using floating point, but the exact-value
literal is handled as DECIMAL:

mysql> SELECT VERSION();
+------------+
| VERSION() |
+------------+
| 5.0.19-log |
+------------+
1 row in set (0.17 sec)

mysql> CREATE TABLE t SELECT 2.5 AS a, 25E-1 AS b;
Query OK, 1 row affected (0.19 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> DESCRIBE t;
+-------+-----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-----------------------+------+-----+---------+-------+
| a | decimal(2,1) unsigned | NO | | 0.0 | |
| b | double | NO | | 0 | |
+-------+-----------------------+------+-----+---------+-------+
2 rows in set (0.02 sec)

Example 7. If the argument to an aggregate function is an exact numeric type, the result is also an exact
numeric type, with a scale at least that of the argument.

Consider these statements:

mysql> CREATE TABLE t (i INT, d DECIMAL, f FLOAT);
mysql> INSERT INTO t VALUES(1,1,1);
mysql> CREATE TABLE y SELECT AVG(i), AVG(d), AVG(f) FROM t;

Before MySQL 5.0.3, the result is a double no matter the argument type:

mysql> DESCRIBE y;
+--------+--------------+------+-----+---------+-------+

Precision Math Examples

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1132

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| Field | Type | Null | Key | Default | Extra |
+--------+--------------+------+-----+---------+-------+
AVG(i)	double(17,4)	YES		NULL	
AVG(d)	double(17,4)	YES		NULL	
AVG(f)	double	YES		NULL	
+--------+--------------+------+-----+---------+-------+

As of MySQL 5.0.3, the result is a double only for the floating-point argument. For exact type arguments,
the result is also an exact type:

mysql> DESCRIBE y;
+--------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+---------------+------+-----+---------+-------+
AVG(i)	decimal(14,4)	YES		NULL	
AVG(d)	decimal(14,4)	YES		NULL	
AVG(f)	double	YES		NULL	
+--------+---------------+------+-----+---------+-------+

From MySQL 5.0.3 to 5.0.6, the first two columns are DECIMAL(64,0).

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1133

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 13 SQL Statement Syntax

Table of Contents
13.1 Data Definition Statements .. 1134

13.1.1 ALTER DATABASE Syntax .. 1134
13.1.2 ALTER FUNCTION Syntax ... 1134
13.1.3 ALTER PROCEDURE Syntax ... 1135
13.1.4 ALTER TABLE Syntax .. 1135
13.1.5 ALTER VIEW Syntax .. 1143
13.1.6 CREATE DATABASE Syntax .. 1144
13.1.7 CREATE FUNCTION Syntax .. 1144
13.1.8 CREATE INDEX Syntax ... 1144
13.1.9 CREATE PROCEDURE and CREATE FUNCTION Syntax ... 1147
13.1.10 CREATE TABLE Syntax ... 1153
13.1.11 CREATE TRIGGER Syntax .. 1173
13.1.12 CREATE VIEW Syntax ... 1175
13.1.13 DROP DATABASE Syntax .. 1180
13.1.14 DROP FUNCTION Syntax .. 1181
13.1.15 DROP INDEX Syntax ... 1181
13.1.16 DROP PROCEDURE and DROP FUNCTION Syntax ... 1181
13.1.17 DROP TABLE Syntax ... 1182
13.1.18 DROP TRIGGER Syntax .. 1182
13.1.19 DROP VIEW Syntax ... 1183
13.1.20 RENAME TABLE Syntax .. 1183
13.1.21 TRUNCATE TABLE Syntax .. 1184

13.2 Data Manipulation Statements ... 1185
13.2.1 CALL Syntax .. 1185
13.2.2 DELETE Syntax ... 1187
13.2.3 DO Syntax ... 1191
13.2.4 HANDLER Syntax .. 1191
13.2.5 INSERT Syntax .. 1193
13.2.6 LOAD DATA INFILE Syntax ... 1200
13.2.7 REPLACE Syntax ... 1210
13.2.8 SELECT Syntax ... 1211
13.2.9 Subquery Syntax .. 1228
13.2.10 UPDATE Syntax ... 1240

13.3 MySQL Transactional and Locking Statements ... 1242
13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax ... 1243
13.3.2 Statements That Cannot Be Rolled Back ... 1245
13.3.3 Statements That Cause an Implicit Commit ... 1245
13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT, and Syntax ... 1246
13.3.5 LOCK TABLES and UNLOCK TABLES Syntax .. 1247
13.3.6 SET TRANSACTION Syntax ... 1252
13.3.7 XA Transactions ... 1254

13.4 Replication Statements .. 1258
13.4.1 SQL Statements for Controlling Master Servers ... 1258
13.4.2 SQL Statements for Controlling Slave Servers ... 1260

13.5 SQL Syntax for Prepared Statements .. 1267
13.5.1 PREPARE Syntax .. 1270
13.5.2 EXECUTE Syntax .. 1271
13.5.3 DEALLOCATE PREPARE Syntax ... 1271

Data Definition Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1134

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

13.6 MySQL Compound-Statement Syntax .. 1271
13.6.1 BEGIN ... END Compound-Statement Syntax .. 1271
13.6.2 Statement Label Syntax .. 1272
13.6.3 DECLARE Syntax .. 1273
13.6.4 Variables in Stored Programs ... 1273
13.6.5 Flow Control Statements .. 1275
13.6.6 Cursors .. 1279
13.6.7 Condition Handling ... 1281

13.7 Database Administration Statements .. 1286
13.7.1 Account Management Statements ... 1286
13.7.2 Table Maintenance Statements ... 1301
13.7.3 User-Defined Function Statements .. 1309
13.7.4 SET Syntax .. 1310
13.7.5 SHOW Syntax .. 1313
13.7.6 Other Administrative Statements ... 1349

13.8 MySQL Utility Statements .. 1354
13.8.1 DESCRIBE Syntax ... 1354
13.8.2 EXPLAIN Syntax .. 1355
13.8.3 HELP Syntax ... 1356
13.8.4 USE Syntax ... 1358

This chapter describes the syntax for the SQL statements supported by MySQL.

13.1 Data Definition Statements

13.1.1 ALTER DATABASE Syntax

ALTER {DATABASE | SCHEMA} [db_name]
 alter_specification ...

alter_specification:
 [DEFAULT] CHARACTER SET [=] charset_name
 | [DEFAULT] COLLATE [=] collation_name

ALTER DATABASE enables you to change the overall characteristics of a database. These characteristics
are stored in the db.opt file in the database directory. To use ALTER DATABASE, you need the ALTER
privilege on the database. ALTER SCHEMA is a synonym for ALTER DATABASE as of MySQL 5.0.2.

The CHARACTER SET clause changes the default database character set. The COLLATE clause changes
the default database collation. Section 10.1, “Character Set Support”, discusses character set and collation
names.

You can see what character sets and collations are available using, respectively, the SHOW CHARACTER
SET and SHOW COLLATION statements. See Section 13.7.5.3, “SHOW CHARACTER SET Syntax”, and
Section 13.7.5.4, “SHOW COLLATION Syntax”, for more information.

If you change the default character set or collation for a database, stored routines that use the database
defaults must be dropped and recreated so that they use the new defaults. (In a stored routine, variables
with character data types use the database defaults if the character set or collation are not specified
explicitly. See Section 13.1.9, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.)

The database name can be omitted, in which case the statement applies to the default database.

13.1.2 ALTER FUNCTION Syntax

ALTER PROCEDURE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1135

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ALTER FUNCTION func_name [characteristic ...]

characteristic:
 COMMENT 'string'
 | LANGUAGE SQL
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }

This statement can be used to change the characteristics of a stored function. More than one change may
be specified in an ALTER FUNCTION statement. However, you cannot change the parameters or body of
a stored function using this statement; to make such changes, you must drop and re-create the function
using DROP FUNCTION and CREATE FUNCTION.

As of MySQL 5.0.3, you must have the ALTER ROUTINE privilege for the function. (That privilege
is granted automatically to the function creator.) If binary logging is enabled, the ALTER FUNCTION
statement might also require the SUPER privilege, as described in Section 18.6, “Binary Logging of Stored
Programs”.

13.1.3 ALTER PROCEDURE Syntax

ALTER PROCEDURE proc_name [characteristic ...]

characteristic:
 COMMENT 'string'
 | LANGUAGE SQL
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }

This statement can be used to change the characteristics of a stored procedure. More than one change
may be specified in an ALTER PROCEDURE statement. However, you cannot change the parameters or
body of a stored procedure using this statement; to make such changes, you must drop and re-create the
procedure using DROP PROCEDURE and CREATE PROCEDURE.

As of MySQL 5.0.3, you must have the ALTER ROUTINE privilege for the procedure. By default, that
privilege is granted automatically to the procedure creator. This behavior can be changed by disabling
the automatic_sp_privileges system variable. See Section 18.2.2, “Stored Routines and MySQL
Privileges”.

13.1.4 ALTER TABLE Syntax

ALTER [IGNORE] TABLE tbl_name
 [alter_specification [, alter_specification] ...]

alter_specification:
 table_options
 | ADD [COLUMN] col_name column_definition
 [FIRST | AFTER col_name]
 | ADD [COLUMN] (col_name column_definition,...)
 | ADD {INDEX|KEY} [index_name]
 [index_type] (index_col_name,...) [index_type]
 | ADD [CONSTRAINT [symbol]] PRIMARY KEY
 [index_type] (index_col_name,...) [index_type]
 | ADD [CONSTRAINT [symbol]]
 UNIQUE [INDEX|KEY] [index_name]
 [index_type] (index_col_name,...) [index_type]
 | ADD [FULLTEXT|SPATIAL] [INDEX|KEY] [index_name]
 (index_col_name,...) [index_type]
 | ADD [CONSTRAINT [symbol]]
 FOREIGN KEY [index_name] (index_col_name,...)
 reference_definition
 | ALTER [COLUMN] col_name {SET DEFAULT literal | DROP DEFAULT}

ALTER TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1136

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 | CHANGE [COLUMN] old_col_name new_col_name column_definition
 [FIRST|AFTER col_name]
 | MODIFY [COLUMN] col_name column_definition
 [FIRST | AFTER col_name]
 | DROP [COLUMN] col_name
 | DROP PRIMARY KEY
 | DROP {INDEX|KEY} index_name
 | DROP FOREIGN KEY fk_symbol
 | DISABLE KEYS
 | ENABLE KEYS
 | RENAME [TO|AS] new_tbl_name
 | ORDER BY col_name [, col_name] ...
 | CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]
 | [DEFAULT] CHARACTER SET [=] charset_name [COLLATE [=] collation_name]
 | DISCARD TABLESPACE
 | IMPORT TABLESPACE

index_col_name:
 col_name [(length)] [ASC | DESC]

index_type:
 USING {BTREE | HASH}

table_options:
 table_option [[,] table_option] ... (see CREATE TABLE options)

ALTER TABLE changes the structure of a table. For example, you can add or delete columns, create or
destroy indexes, change the type of existing columns, or rename columns or the table itself. You can also
change characteristics such as the storage engine used for the table or the table comment.

Following the table name, specify the alterations to be made. If none are given, ALTER TABLE does
nothing.

The syntax for many of the permissible alterations is similar to clauses of the CREATE TABLE statement.
See Section 13.1.10, “CREATE TABLE Syntax”, for more information.

table_options signifies table options of the kind that can be used in the CREATE TABLE statement,
such as ENGINE, AUTO_INCREMENT, AVG_ROW_LENGTH, MAX_ROWS, or ROW_FORMAT. For a list of all
table options and a description of each, see Section 13.1.10, “CREATE TABLE Syntax”. However, ALTER
TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

Some operations may result in warnings if attempted on a table for which the storage engine does not
support the operation. These warnings can be displayed with SHOW WARNINGS. See Section 13.7.5.37,
“SHOW WARNINGS Syntax”.

If you use ALTER TABLE to change a column specification but DESCRIBE tbl_name indicates that
your column was not changed, it is possible that MySQL ignored your modification for one of the reasons
described in Section 13.1.10.4, “Silent Column Specification Changes”.

Some operations may result in warnings if attempted on a table for which the storage engine does not
support the operation. These warnings can be displayed with SHOW WARNINGS. See Section 13.7.5.37,
“SHOW WARNINGS Syntax”.

For information on troubleshooting ALTER TABLE, see Section B.5.6.1, “Problems with ALTER TABLE”.

Storage, Performance, and Concurrency Considerations

In most cases, ALTER TABLE makes a temporary copy of the original table. MySQL waits for other
operations that are modifying the table, then proceeds. It incorporates the alteration into the copy, deletes
the original table, and renames the new one. While ALTER TABLE is executing, the original table is
readable by other sessions. Updates and writes to the table that begin after the ALTER TABLE operation

ALTER TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1137

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

begins are stalled until the new table is ready, then are automatically redirected to the new table without
any failed updates. The temporary copy of the original table is created in the database directory of the new
table. This can differ from the database directory of the original table for ALTER TABLE operations that
rename the table to a different database.

If you use ALTER TABLE tbl_name RENAME TO new_tbl_name without any other options, MySQL
simply renames any files that correspond to the table tbl_name without making a copy. (You can also
use the RENAME TABLE statement to rename tables. See Section 13.1.20, “RENAME TABLE Syntax”.)
Any privileges granted specifically for the renamed table are not migrated to the new name. They must be
changed manually.

If you use any option to ALTER TABLE other than RENAME, MySQL always creates a temporary table,
even if the data wouldn't strictly need to be copied (such as when you change the name of a column). For
MyISAM tables, you can speed up index re-creation (the slowest part of the alteration process) by setting
the myisam_sort_buffer_size system variable to a high value.

• To use ALTER TABLE, you need ALTER, CREATE, and INSERT privileges for the table. Renaming a
table requires ALTER and DROP on the old table, ALTER, CREATE, and INSERT on the new table.

• IGNORE is a MySQL extension to standard SQL. It controls how ALTER TABLE works if there are
duplicates on unique keys in the new table or if warnings occur when strict mode is enabled. If IGNORE
is not specified, the copy is aborted and rolled back if duplicate-key errors occur. If IGNORE is specified,
only one row is used of rows with duplicates on a unique key. The other conflicting rows are deleted.
Incorrect values are truncated to the closest matching acceptable value.

• Pending INSERT DELAYED statements are lost if a table is write locked and ALTER TABLE is used to
modify the table structure.

• table_options signifies table options of the kind that can be used in the CREATE TABLE statement,
such as ENGINE, AUTO_INCREMENT, AVG_ROW_LENGTH, MAX_ROWS, or ROW_FORMAT. For a list of
all table options and a description of each, see Section 13.1.10, “CREATE TABLE Syntax”. However,
ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

For example, to convert a table to be an InnoDB table, use this statement:

ALTER TABLE t1 ENGINE = InnoDB;

When you specify an ENGINE clause, ALTER TABLE rebuilds the table. This is true even if the table
already has the specified storage engine.

The outcome of attempting to change a table's storage engine is affected by whether the desired storage
engine is available and the setting of the NO_ENGINE_SUBSTITUTION SQL mode, as described in
Section 5.1.7, “Server SQL Modes”.

As of MySQL 5.0.23, to prevent inadvertent loss of data, ALTER TABLE cannot be used to change the
storage engine of a table to MERGE or BLACKHOLE.

To change the value of the AUTO_INCREMENT counter to be used for new rows, do this:

ALTER TABLE t2 AUTO_INCREMENT = value;

You cannot reset the counter to a value less than or equal to any that have already been used. For
MyISAM, if the value is less than or equal to the maximum value currently in the AUTO_INCREMENT
column, the value is reset to the current maximum plus one. For InnoDB, you can use ALTER
TABLE ... AUTO_INCREMENT = value as of MySQL 5.0.3, but if the value is less than the current
maximum value in the column, no error occurs and the current sequence value is not changed.

ALTER TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1138

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• You can issue multiple ADD, ALTER, DROP, and CHANGE clauses in a single ALTER TABLE statement,
separated by commas. This is a MySQL extension to standard SQL, which permits only one of each
clause per ALTER TABLE statement. For example, to drop multiple columns in a single statement, do
this:

ALTER TABLE t2 DROP COLUMN c, DROP COLUMN d;

• CHANGE col_name, DROP col_name, and DROP INDEX are MySQL extensions to standard SQL.

• The word COLUMN is optional and can be omitted.

• column_definition clauses use the same syntax for ADD and CHANGE as for CREATE TABLE. See
Section 13.1.10, “CREATE TABLE Syntax”.

• You can rename a column using a CHANGE old_col_name new_col_name column_definition
clause. To do so, specify the old and new column names and the definition that the column currently
has. For example, to rename an INTEGER column from a to b, you can do this:

ALTER TABLE t1 CHANGE a b INTEGER;

To change a column's type but not the name, CHANGE syntax still requires an old and new column name,
even if they are the same. For example:

ALTER TABLE t1 CHANGE b b BIGINT NOT NULL;

You can also use MODIFY to change a column's type without renaming it:

ALTER TABLE t1 MODIFY b BIGINT NOT NULL;

MODIFY is an extension to ALTER TABLE for Oracle compatibility.

When you use CHANGE or MODIFY, column_definition must include the data type and all attributes
that should apply to the new column, other than index attributes such as PRIMARY KEY or UNIQUE.
Attributes present in the original definition but not specified for the new definition are not carried forward.
Suppose that a column col1 is defined as INT UNSIGNED DEFAULT 1 COMMENT 'my column' and
you modify the column as follows:

ALTER TABLE t1 MODIFY col1 BIGINT;

The resulting column will be defined as BIGINT, but will not include the attributes UNSIGNED DEFAULT
1 COMMENT 'my column'. To retain them, the statement should be:

ALTER TABLE t1 MODIFY col1 BIGINT UNSIGNED DEFAULT 1 COMMENT 'my column';

• When you change a data type using CHANGE or MODIFY, MySQL tries to convert existing column values
to the new type as well as possible.

Warning

This conversion may result in alteration of data. For example, if you shorten
a string column, values may be truncated. To prevent the operation from
succeeding if conversions to the new data type would result in loss of data,

ALTER TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1139

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

enable strict SQL mode before using ALTER TABLE (see Section 5.1.7, “Server
SQL Modes”).

• To add a column at a specific position within a table row, use FIRST or AFTER col_name. The default
is to add the column last. You can also use FIRST and AFTER in CHANGE or MODIFY operations to
reorder columns within a table.

• ALTER ... SET DEFAULT or ALTER ... DROP DEFAULT specify a new default value for a
column or remove the old default value, respectively. If the old default is removed and the column can
be NULL, the new default is NULL. If the column cannot be NULL, MySQL assigns a default value as
described in Section 11.6, “Data Type Default Values”.

• DROP INDEX removes an index. This is a MySQL extension to standard SQL. See Section 13.1.15,
“DROP INDEX Syntax”. If you are unsure of the index name, use SHOW INDEX FROM tbl_name.

• If columns are dropped from a table, the columns are also removed from any index of which they are a
part. If all columns that make up an index are dropped, the index is dropped as well. If you use CHANGE
or MODIFY to shorten a column for which an index exists on the column, and the resulting column length
is less than the index length, MySQL shortens the index automatically.

• If a table contains only one column, the column cannot be dropped. If what you intend is to remove the
table, use DROP TABLE instead.

• DROP PRIMARY KEY drops the primary key. If there is no primary key, an error occurs.

If you add a UNIQUE INDEX or PRIMARY KEY to a table, MySQL stores it before any nonunique index
to permit detection of duplicate keys as early as possible.

• Some storage engines permit you to specify an index type when creating an index. The syntax for the
index_type specifier is USING type_name. For details about USING, see Section 13.1.8, “CREATE
INDEX Syntax”. Before MySQL 5.0.60, USING can be given only before the index column list. As of
5.0.60, the preferred position is after the column list. Support for use of the option before the column list
will be removed in a future MySQL release.

index_option values specify additional options for an index. USING is one such option. For details
about permissible index_option values, see Section 13.1.8, “CREATE INDEX Syntax”.

• After an ALTER TABLE statement, it may be necessary to run ANALYZE TABLE to update index
cardinality information. See Section 13.7.5.18, “SHOW INDEX Syntax”.

• ORDER BY enables you to create the new table with the rows in a specific order. This option is useful
primarily when you know that you are mostly to query the rows in a certain order most of the time. By
using this option after major changes to the table, you might be able to get higher performance. In some
cases, it might make sorting easier for MySQL if the table is in order by the column that you want to
order it by later.

Note

The table does not remain in the specified order after inserts and deletes.

ORDER BY syntax permits one or more column names to be specified for sorting, each of which
optionally can be followed by ASC or DESC to indicate ascending or descending sort order, respectively.
The default is ascending order. Only column names are permitted as sort criteria; arbitrary expressions
are not permitted. This clause should be given last after any other clauses.

ALTER TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1140

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ORDER BY does not make sense for InnoDB tables because InnoDB always orders table rows
according to the clustered index. The same is true for BDB tables that contain a user-defined PRIMARY
KEY.

• If you use ALTER TABLE on a MyISAM table, all nonunique indexes are created in a separate batch
(as for REPAIR TABLE). This should make ALTER TABLE much faster when you have many indexes.

For MyISAM tables, key updating can be controlled explicitly. Use ALTER TABLE ... DISABLE KEYS
to tell MySQL to stop updating nonunique indexes. Then use ALTER TABLE ... ENABLE KEYS to
re-create missing indexes. MyISAM does this with a special algorithm that is much faster than inserting
keys one by one, so disabling keys before performing bulk insert operations should give a considerable
speedup. Using ALTER TABLE ... DISABLE KEYS requires the INDEX privilege in addition to the
privileges mentioned earlier.

While the nonunique indexes are disabled, they are ignored for statements such as SELECT and
EXPLAIN that otherwise would use them.

• If ALTER TABLE for an InnoDB table results in changes to column values (for example, because a
column is truncated), InnoDB's FOREIGN KEY constraint checks do not notice possible violations
caused by changing the values.

• The FOREIGN KEY and REFERENCES clauses are supported by the InnoDB storage engine,
which implements ADD [CONSTRAINT [symbol]] FOREIGN KEY [index_name] (...)
REFERENCES ... (...). See Section 14.2.3.4, “InnoDB and FOREIGN KEY Constraints”. For other
storage engines, the clauses are parsed but ignored. The CHECK clause is parsed but ignored by all
storage engines. See Section 13.1.10, “CREATE TABLE Syntax”. The reason for accepting but ignoring
syntax clauses is for compatibility, to make it easier to port code from other SQL servers, and to run
applications that create tables with references. See Section 1.8.2, “MySQL Differences from Standard
SQL”.

For ALTER TABLE, unlike CREATE TABLE, ADD FOREIGN KEY ignores index_name if given and uses
an automatically generated foreign key name. As a workaround, include the CONSTRAINT clause to
specify the foreign key name:

ADD CONSTRAINT name FOREIGN KEY (....) ...

Important

The inline REFERENCES specifications where the references are defined as part
of the column specification are silently ignored by InnoDB. InnoDB only accepts
REFERENCES clauses defined as part of a separate FOREIGN KEY specification.

• InnoDB supports the use of ALTER TABLE to drop foreign keys:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

For more information, see Section 14.2.3.4, “InnoDB and FOREIGN KEY Constraints”.

• Adding and dropping a foreign key in separate clauses of a single ALTER TABLE statement may be
problematic in some cases and is therefore unsupported. Use separate statements for each operation.

• For an InnoDB table that is created with its own tablespace in an .ibd file, that file can be discarded
and imported. To discard the .ibd file, use this statement:

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_clustered_index

ALTER TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1141

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ALTER TABLE tbl_name DISCARD TABLESPACE;

This deletes the current .ibd file, so be sure that you have a backup first. Attempting to access the table
while the tablespace file is discarded results in an error.

To import the backup .ibd file back into the table, copy it into the database directory, and then issue
this statement:

ALTER TABLE tbl_name IMPORT TABLESPACE;

The tablespace file must have been created on the server into which it is imported later.

See Section 14.2.1.4, “InnoDB File-Per-Table Tablespaces”.

• To change the table default character set and all character columns (CHAR, VARCHAR, TEXT) to a new
character set, use a statement like this:

ALTER TABLE tbl_name
CONVERT TO CHARACTER SET charset_name [COLLATE collation_name];

The statement also changes the collation of all character columns. If you specify no COLLATE clause to
indicate which collation to use, the statement uses default collation for the character set. If this collation
is inappropriate for the intended table use (for example, if it would change from a case-sensitive collation
to a case-insensitive collation), specify a collation explicitly.

For a column that has a data type of VARCHAR or one of the TEXT types, CONVERT TO CHARACTER
SET will change the data type as necessary to ensure that the new column is long enough to store
as many characters as the original column. For example, a TEXT column has two length bytes, which
store the byte-length of values in the column, up to a maximum of 65,535. For a latin1 TEXT column,
each character requires a single byte, so the column can store up to 65,535 characters. If the column
is converted to utf8, each character might require up to 3 bytes, for a maximum possible length of 3 ×
65,535 = 196,605 bytes. That length will not fit in a TEXT column's length bytes, so MySQL will convert
the data type to MEDIUMTEXT, which is the smallest string type for which the length bytes can record a
value of 196,605. Similarly, a VARCHAR column might be converted to MEDIUMTEXT.

To avoid data type changes of the type just described, do not use CONVERT TO CHARACTER SET.
Instead, use MODIFY to change individual columns. For example:

ALTER TABLE t MODIFY latin1_text_col TEXT CHARACTER SET utf8;
ALTER TABLE t MODIFY latin1_varchar_col VARCHAR(M) CHARACTER SET utf8;

If you specify CONVERT TO CHARACTER SET binary, the CHAR, VARCHAR, and TEXT columns are
converted to their corresponding binary string types (BINARY, VARBINARY, BLOB). This means that the
columns no longer will have a character set and a subsequent CONVERT TO operation will not apply to
them.

If charset_name is DEFAULT, the database character set is used.

Warning

The CONVERT TO operation converts column values between the character sets.
This is not what you want if you have a column in one character set (like latin1)
but the stored values actually use some other, incompatible character set (like
utf8). In this case, you have to do the following for each such column:

ALTER TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1142

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ALTER TABLE t1 CHANGE c1 c1 BLOB;
ALTER TABLE t1 CHANGE c1 c1 TEXT CHARACTER SET utf8;

The reason this works is that there is no conversion when you convert to or from
BLOB columns.

To change only the default character set for a table, use this statement:

ALTER TABLE tbl_name DEFAULT CHARACTER SET charset_name;

The word DEFAULT is optional. The default character set is the character set that is used if you do not
specify the character set for columns that you add to a table later (for example, with ALTER TABLE ...
ADD column).

When foreign_key_checks is enabled, which is the default setting, character set conversion is
not permitted on tables that include a character string column used in a foreign key constraint. The
workaround is to disable foreign_key_checks before performing the character set conversion.
You must perform the conversion on both tables involved in the foreign key constraint before re-
enabling foreign_key_checks. If you re-enable foreign_key_checks after converting only one
of the tables, an ON DELETE CASCADE or ON UPDATE CASCADE operation could corrupt data in the
referencing table due to implicit conversion that occurs during these operations (Bug #45290, Bug
#74816).

With the mysql_info() C API function, you can find out how many rows were copied by ALTER TABLE,
and (when IGNORE is used) how many rows were deleted due to duplication of unique key values. See
Section 20.6.7.35, “mysql_info()”.

13.1.4.1 ALTER TABLE Examples

Begin with a table t1 that is created as shown here:

CREATE TABLE t1 (a INTEGER,b CHAR(10));

To rename the table from t1 to t2:

ALTER TABLE t1 RENAME t2;

To change column a from INTEGER to TINYINT NOT NULL (leaving the name the same), and to change
column b from CHAR(10) to CHAR(20) as well as renaming it from b to c:

ALTER TABLE t2 MODIFY a TINYINT NOT NULL, CHANGE b c CHAR(20);

To add a new TIMESTAMP column named d:

ALTER TABLE t2 ADD d TIMESTAMP;

To add an index on column d and a UNIQUE index on column a:

ALTER TABLE t2 ADD INDEX (d), ADD UNIQUE (a);

To remove column c:

ALTER VIEW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1143

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ALTER TABLE t2 DROP COLUMN c;

To add a new AUTO_INCREMENT integer column named c:

ALTER TABLE t2 ADD c INT UNSIGNED NOT NULL AUTO_INCREMENT,
 ADD PRIMARY KEY (c);

Note that we indexed c (as a PRIMARY KEY) because AUTO_INCREMENT columns must be indexed, and
also that we declare c as NOT NULL because primary key columns cannot be NULL.

When you add an AUTO_INCREMENT column, column values are filled in with sequence numbers
automatically. For MyISAM tables, you can set the first sequence number by executing SET
INSERT_ID=value before ALTER TABLE or by using the AUTO_INCREMENT=value table option. See
Section 5.1.4, “Server System Variables”.

With MyISAM tables, if you do not change the AUTO_INCREMENT column, the sequence number is not
affected. If you drop an AUTO_INCREMENT column and then add another AUTO_INCREMENT column, the
numbers are resequenced beginning with 1.

When replication is used, adding an AUTO_INCREMENT column to a table might not produce the same
ordering of the rows on the slave and the master. This occurs because the order in which the rows are
numbered depends on the specific storage engine used for the table and the order in which the rows
were inserted. If it is important to have the same order on the master and slave, the rows must be ordered
before assigning an AUTO_INCREMENT number. Assuming that you want to add an AUTO_INCREMENT
column to the table t1, the following statements produce a new table t2 identical to t1 but with an
AUTO_INCREMENT column:

CREATE TABLE t2 (id INT AUTO_INCREMENT PRIMARY KEY)
SELECT * FROM t1 ORDER BY col1, col2;

This assumes that the table t1 has columns col1 and col2.

This set of statements will also produce a new table t2 identical to t1, with the addition of an
AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important

To guarantee the same ordering on both master and slave, all columns of t1 must
be referenced in the ORDER BY clause.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column, the
final step is to drop the original table and then rename the copy:

DROP TABLE t1;
ALTER TABLE t2 RENAME t1;

13.1.5 ALTER VIEW Syntax

ALTER
 [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 [DEFINER = { user | CURRENT_USER }]
 [SQL SECURITY { DEFINER | INVOKER }]

CREATE DATABASE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1144

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 VIEW view_name [(column_list)]
 AS select_statement
 [WITH [CASCADED | LOCAL] CHECK OPTION]

This statement changes the definition of a view, which must exist. The syntax is similar to that for CREATE
VIEW and the effect is the same as for CREATE OR REPLACE VIEW. See Section 13.1.12, “CREATE
VIEW Syntax”. This statement requires the CREATE VIEW and DROP privileges for the view, and some
privilege for each column referred to in the SELECT statement. As of MySQL 5.0.52, ALTER VIEW is
permitted only to the original definer or users with the SUPER privilege.

This statement was added in MySQL 5.0.1. The DEFINER and SQL SECURITY clauses may be used
as of MySQL 5.0.16 to specify the security context to be used when checking access privileges at view
invocation time. For details, see Section 13.1.12, “CREATE VIEW Syntax”.

13.1.6 CREATE DATABASE Syntax

CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name
 [create_specification] ...

create_specification:
 [DEFAULT] CHARACTER SET [=] charset_name
 | [DEFAULT] COLLATE [=] collation_name

CREATE DATABASE creates a database with the given name. To use this statement, you need the CREATE
privilege for the database. CREATE SCHEMA is a synonym for CREATE DATABASE as of MySQL 5.0.2.

An error occurs if the database exists and you did not specify IF NOT EXISTS.

create_specification options specify database characteristics. Database characteristics are stored
in the db.opt file in the database directory. The CHARACTER SET clause specifies the default database
character set. The COLLATE clause specifies the default database collation. Section 10.1, “Character Set
Support”, discusses character set and collation names.

A database in MySQL is implemented as a directory containing files that correspond to tables in the
database. Because there are no tables in a database when it is initially created, the CREATE DATABASE
statement creates only a directory under the MySQL data directory and the db.opt file. Rules for
permissible database names are given in Section 9.2, “Schema Object Names”.

If you manually create a directory under the data directory (for example, with mkdir), the server considers
it a database directory and it shows up in the output of SHOW DATABASES.

You can also use the mysqladmin program to create databases. See Section 4.5.2, “mysqladmin —
Client for Administering a MySQL Server”.

13.1.7 CREATE FUNCTION Syntax

The CREATE FUNCTION statement is used to create stored functions and user-defined functions (UDFs):

• For information about creating stored functions, see Section 13.1.9, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”.

• For information about creating user-defined functions, see Section 13.7.3.1, “CREATE FUNCTION
Syntax for User-defined Functions”.

13.1.8 CREATE INDEX Syntax

CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name

CREATE INDEX Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1145

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 [index_type]
 ON tbl_name (index_col_name,...)
 [index_type]

index_col_name:
 col_name [(length)] [ASC | DESC]

index_type:
 USING {BTREE | HASH}

CREATE INDEX is mapped to an ALTER TABLE statement to create indexes. See Section 13.1.4, “ALTER
TABLE Syntax”. CREATE INDEX cannot be used to create a PRIMARY KEY; use ALTER TABLE instead.
For more information about indexes, see Section 8.3.1, “How MySQL Uses Indexes”.

Normally, you create all indexes on a table at the time the table itself is created with CREATE TABLE. See
Section 13.1.10, “CREATE TABLE Syntax”. CREATE INDEX enables you to add indexes to existing tables.

A column list of the form (col1,col2,...) creates a multiple-column index. Index key values are
formed by concatenating the values of the given columns.

For string columns, indexes can be created that use only the leading part of column values, using
col_name(length) syntax to specify an index prefix length:

• Prefixes can be specified for CHAR, VARCHAR, BINARY, and VARBINARY column indexes.

• Prefixes must be specified for BLOB and TEXT column indexes.

• Prefix limits are measured in bytes, whereas the prefix length in CREATE TABLE, ALTER TABLE, and
CREATE INDEX statements is interpreted as number of characters for nonbinary string types (CHAR,
VARCHAR, TEXT) and number of bytes for binary string types (BINARY, VARBINARY, BLOB). Take
this into account when specifying a prefix length for a nonbinary string column that uses a multibyte
character set.

• For spatial columns, prefix values can be given as described later in this section.

The statement shown here creates an index using the first 10 characters of the name column (assuming
that name has a nonbinary string type):

CREATE INDEX part_of_name ON customer (name(10));

If names in the column usually differ in the first 10 characters, this index should not be much slower than
an index created from the entire name column. Also, using column prefixes for indexes can make the index
file much smaller, which could save a lot of disk space and might also speed up INSERT operations.

Prefix support and lengths of prefixes (where supported) are storage engine dependent. For example, a
prefix can be up to 1000 bytes long for MyISAM tables, and 767 bytes for InnoDB tables. The NDB storage
engine does not support prefixes (see Section 17.1.5.6, “Unsupported or Missing Features in MySQL
Cluster”).

A UNIQUE index creates a constraint such that all values in the index must be distinct. An error occurs if
you try to add a new row with a key value that matches an existing row. This constraint does not apply to
NULL values except for the BDB storage engine. For other engines, a UNIQUE index permits multiple NULL
values for columns that can contain NULL. If you specify a prefix value for a column in a UNIQUE index, the
column values must be unique within the prefix.

FULLTEXT indexes are supported only for MyISAM tables and can include only CHAR, VARCHAR, and
TEXT columns. Indexing always happens over the entire column; column prefix indexing is not supported
and any prefix length is ignored if specified. See Section 12.9, “Full-Text Search Functions”, for details of
operation.

CREATE INDEX Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1146

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The MyISAM, InnoDB, NDB, BDB, and ARCHIVE storage engines support spatial columns such as (POINT
and GEOMETRY. (Section 11.5, “Extensions for Spatial Data”, describes the spatial data types.) However,
support for spatial column indexing varies among engines. Spatial and nonspatial indexes are available
according to the following rules.

Spatial indexes (created using SPATIAL INDEX) have these characteristics:

• Available only for MyISAM tables. Specifying SPATIAL INDEX for other storage engines results in an
error.

• Indexed columns must be NOT NULL.

• In MySQL 5.0, the full width of each column is indexed by default, but column prefix lengths are
permitted. However, as of MySQL 5.0.40, the length is not displayed in SHOW CREATE TABLE output.
mysqldump uses that statement. As of that version, if a table with SPATIAL indexes containing prefixed
columns is dumped and reloaded, the index is created with no prefixes. (The full column width of each
column is indexed.)

Characteristics of nonspatial indexes (created with INDEX, UNIQUE, or PRIMARY KEY):

• Permitted for any storage engine that supports spatial columns except ARCHIVE.

• Columns can be NULL unless the index is a primary key.

• For each spatial column in a non-SPATIAL index except POINT columns, a column prefix length must
be specified. (This is the same requirement as for indexed BLOB columns.) The prefix length is given in
bytes.

• The index type for a non-SPATIAL index depends on the storage engine. Currently, B-tree is used.

• You can add an index on a column that can have NULL values only for MyISAM, InnoDB, BDB, and
MEMORY tables.

• You can add an index on a BLOB or TEXT column only for MyISAM, BDB, and InnoDB tables.

An index_col_name specification can end with ASC or DESC. These keywords are permitted for future
extensions for specifying ascending or descending index value storage. Currently, they are parsed but
ignored; index values are always stored in ascending order.

Some storage engines permit you to specify an index type when creating an index. Table 13.1, “Index
Types Per Storage Engine” shows the permissible index type values supported by different storage
engines. Where multiple index types are listed, the first one is the default when no index type specifier is
given.

Table 13.1 Index Types Per Storage Engine

Storage Engine Permissible Index Types

MyISAM BTREE

InnoDB BTREE

MEMORY/HEAP HASH, BTREE

NDB BTREE, HASH (see note in text)

Example:

CREATE TABLE lookup (id INT) ENGINE = MEMORY;
CREATE INDEX id_index ON lookup (id) USING BTREE;

CREATE PROCEDURE and CREATE FUNCTION Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1147

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Storage engines not listed in the table do not support an index_type clause in index definitions.

The index_type clause cannot be used for FULLTEXT INDEX or SPATIAL INDEX specifications.
Full-text index implementation is storage engine dependent. Spatial indexes are implemented as R-tree
indexes.

BTREE indexes are implemented by the NDB storage engine as T-tree indexes.

Note

For indexes on NDB table columns, the USING option can be specified only
for a unique index or primary key. USING HASH prevents the creation of an
ordered index; otherwise, creating a unique index or primary key on an NDB table
automatically results in the creation of both an ordered index and a hash index,
each of which indexes the same set of columns.

For unique indexes that include one or more NULL columns of an NDB table, the
hash index can be used only to look up literal values, which means that IS [NOT]
NULL conditions require a full scan of the table. One workaround is to make sure
that a unique index using one or more NULL columns on such a table is always
created in such a way that it includes the ordered index; that is, avoid employing
USING HASH when creating the index.

If you specify an index type that is not legal for a given storage engine, but there is another index type
available that the engine can use without affecting query results, the engine uses the available type. The
parser recognizes RTREE as a type name, but currently this cannot be specified for any storage engine.

Before MySQL 5.0.60, this option can be given only before the ON tbl_name clause. Use of the option in
this position is deprecated as of 5.0.60 and support for it there will be removed in a future MySQL release.
If an index_type option is given in both the earlier and later positions, the final option applies.

TYPE type_name is recognized as a synonym for USING type_name. However, USING is the preferred
form.

13.1.9 CREATE PROCEDURE and CREATE FUNCTION Syntax

CREATE
 [DEFINER = { user | CURRENT_USER }]
 PROCEDURE sp_name ([proc_parameter[,...]])
 [characteristic ...] routine_body

CREATE
 [DEFINER = { user | CURRENT_USER }]
 FUNCTION sp_name ([func_parameter[,...]])
 RETURNS type
 [characteristic ...] routine_body

proc_parameter:
 [IN | OUT | INOUT] param_name type

func_parameter:
 param_name type

type:
 Any valid MySQL data type

characteristic:
 COMMENT 'string'
 | LANGUAGE SQL

CREATE PROCEDURE and CREATE FUNCTION Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1148

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 | [NOT] DETERMINISTIC
 | { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
 | SQL SECURITY { DEFINER | INVOKER }

routine_body:
 Valid SQL routine statement

These statements create stored routines. By default, a routine is associated with the default database. To
associate the routine explicitly with a given database, specify the name as db_name.sp_name when you
create it.

The CREATE FUNCTION statement is also used in MySQL to support UDFs (user-defined functions). See
Section 21.2, “Adding New Functions to MySQL”. A UDF can be regarded as an external stored function.
Stored functions share their namespace with UDFs. See Section 9.2.3, “Function Name Parsing and
Resolution”, for the rules describing how the server interprets references to different kinds of functions.

To invoke a stored procedure, use the CALL statement (see Section 13.2.1, “CALL Syntax”). To invoke a
stored function, refer to it in an expression. The function returns a value during expression evaluation.

As of MySQL 5.0.3, CREATE PROCEDURE and CREATE FUNCTION require the CREATE ROUTINE
privilege. They might also require the SUPER privilege, depending on the DEFINER value, as described
later in this section. If binary logging is enabled, CREATE FUNCTION might require the SUPER privilege, as
described in Section 18.6, “Binary Logging of Stored Programs”.

By default, MySQL automatically grants the ALTER ROUTINE and EXECUTE privileges to the routine
creator. This behavior can be changed by disabling the automatic_sp_privileges system variable.
See Section 18.2.2, “Stored Routines and MySQL Privileges”.

The DEFINER and SQL SECURITY clauses specify the security context to be used when checking access
privileges at routine execution time, as described later in this section.

If the routine name is the same as the name of a built-in SQL function, a syntax error occurs unless you
use a space between the name and the following parenthesis when defining the routine or invoking it later.
For this reason, avoid using the names of existing SQL functions for your own stored routines.

The IGNORE_SPACE SQL mode applies to built-in functions, not to stored routines. It is always permissible
to have spaces after a stored routine name, regardless of whether IGNORE_SPACE is enabled.

The parameter list enclosed within parentheses must always be present. If there are no parameters, an
empty parameter list of () should be used. Parameter names are not case sensitive.

Each parameter is an IN parameter by default. To specify otherwise for a parameter, use the keyword OUT
or INOUT before the parameter name.

Note

Specifying a parameter as IN, OUT, or INOUT is valid only for a PROCEDURE. For a
FUNCTION, parameters are always regarded as IN parameters.

An IN parameter passes a value into a procedure. The procedure might modify the value, but the
modification is not visible to the caller when the procedure returns. An OUT parameter passes a value from
the procedure back to the caller. Its initial value is NULL within the procedure, and its value is visible to the
caller when the procedure returns. An INOUT parameter is initialized by the caller, can be modified by the
procedure, and any change made by the procedure is visible to the caller when the procedure returns.

For each OUT or INOUT parameter, pass a user-defined variable in the CALL statement that invokes the
procedure so that you can obtain its value when the procedure returns. If you are calling the procedure

CREATE PROCEDURE and CREATE FUNCTION Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1149

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

from within another stored procedure or function, you can also pass a routine parameter or local routine
variable as an IN or INOUT parameter.

Routine parameters cannot be referenced in statements prepared within the routine; see Section C.1,
“Restrictions on Stored Programs”.

The following example shows a simple stored procedure that uses an OUT parameter:

mysql> delimiter //

mysql> CREATE PROCEDURE simpleproc (OUT param1 INT)
 -> BEGIN
 -> SELECT COUNT(*) INTO param1 FROM t;
 -> END//
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL simpleproc(@a);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @a;
+------+
| @a |
+------+
| 3 |
+------+
1 row in set (0.00 sec)

The example uses the mysql client delimiter command to change the statement delimiter from ; to //
while the procedure is being defined. This enables the ; delimiter used in the procedure body to be passed
through to the server rather than being interpreted by mysql itself. See Section 18.1, “Defining Stored
Programs”.

The RETURNS clause may be specified only for a FUNCTION, for which it is mandatory. It indicates the
return type of the function, and the function body must contain a RETURN value statement. If the RETURN
statement returns a value of a different type, the value is coerced to the proper type. For example, if a
function specifies an ENUM or SET value in the RETURNS clause, but the RETURN statement returns an
integer, the value returned from the function is the string for the corresponding ENUM member of set of SET
members.

The following example function takes a parameter, performs an operation using an SQL function, and
returns the result. In this case, it is unnecessary to use delimiter because the function definition
contains no internal ; statement delimiters:

mysql> CREATE FUNCTION hello (s CHAR(20))
mysql> RETURNS CHAR(50) DETERMINISTIC
 -> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+
1 row in set (0.00 sec)

Parameter types and function return types can be declared to use any valid data type, except that the
COLLATE attribute cannot be used.

CREATE PROCEDURE and CREATE FUNCTION Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1150

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The routine_body consists of a valid SQL routine statement. This can be a simple statement such as
SELECT or INSERT, or a compound statement written using BEGIN and END. Compound statements can
contain declarations, loops, and other control structure statements. The syntax for these statements is
described in Section 13.6, “MySQL Compound-Statement Syntax”.

MySQL permits routines to contain DDL statements, such as CREATE and DROP. MySQL also permits
stored procedures (but not stored functions) to contain SQL transaction statements such as COMMIT.
Stored functions may not contain statements that perform explicit or implicit commit or rollback. Support for
these statements is not required by the SQL standard, which states that each DBMS vendor may decide
whether to permit them.

Statements that return a result set can be used within a stored procedure but not within a stored function.
This prohibition includes SELECT statements that do not have an INTO var_list clause and other
statements such as SHOW, EXPLAIN, and CHECK TABLE. For statements that can be determined at
function definition time to return a result set, a Not allowed to return a result set from a
function error occurs (ER_SP_NO_RETSET). For statements that can be determined only at runtime to
return a result set, a PROCEDURE %s can't return a result set in the given context error
occurs (ER_SP_BADSELECT).

Note

Before MySQL 5.0.10, stored functions created with CREATE FUNCTION must
not contain references to tables, with limited exceptions. They may include some
SET statements that contain table references, for example SET a:= (SELECT
MAX(id) FROM t), and SELECT statements that fetch values directly into
variables, for example SELECT i INTO var1 FROM t.

USE statements within stored routines are not permitted. When a routine is invoked, an implicit USE
db_name is performed (and undone when the routine terminates). This causes the routine to have the
given default database while it executes. References to objects in databases other than the routine default
database should be qualified with the appropriate database name.

For additional information about statements that are not permitted in stored routines, see Section C.1,
“Restrictions on Stored Programs”.

For information about invoking stored procedures from within programs written in a language that has a
MySQL interface, see Section 13.2.1, “CALL Syntax”.

MySQL stores the sql_mode system variable setting in effect when a routine is created or altered, and
always executes the routine with this setting in force, regardless of the current server SQL mode when the
routine begins executing.

The switch from the SQL mode of the invoker to that of the routine occurs after evaluation of arguments
and assignment of the resulting values to routine parameters. If you define a routine in strict SQL mode
but invoke it in nonstrict mode, assignment of arguments to routine parameters does not take place in strict
mode. If you require that expressions passed to a routine be assigned in strict SQL mode, you should
invoke the routine with strict mode in effect.

The COMMENT characteristic is a MySQL extension, and may be used to describe the stored routine. This
information is displayed by the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements.

The LANGUAGE characteristic indicates the language in which the routine is written. The server ignores this
characteristic; only SQL routines are supported.

A routine is considered “deterministic” if it always produces the same result for the same input parameters,
and “not deterministic” otherwise. If neither DETERMINISTIC nor NOT DETERMINISTIC is given in the

CREATE PROCEDURE and CREATE FUNCTION Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1151

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

routine definition, the default is NOT DETERMINISTIC. To declare that a function is deterministic, you must
specify DETERMINISTIC explicitly.

Assessment of the nature of a routine is based on the “honesty” of the creator: MySQL does not check that
a routine declared DETERMINISTIC is free of statements that produce nondeterministic results. However,
misdeclaring a routine might affect results or affect performance. Declaring a nondeterministic routine as
DETERMINISTIC might lead to unexpected results by causing the optimizer to make incorrect execution
plan choices. Declaring a deterministic routine as NONDETERMINISTIC might diminish performance by
causing available optimizations not to be used. Prior to MySQL 5.0.44, the DETERMINISTIC characteristic
is accepted, but not used by the optimizer.

If binary logging is enabled, the DETERMINISTIC characteristic affects which routine definitions MySQL
accepts. See Section 18.6, “Binary Logging of Stored Programs”.

A routine that contains the NOW() function (or its synonyms) or RAND() is nondeterministic, but it might
still be replication-safe. For NOW(), the binary log includes the timestamp and replicates correctly. RAND()
also replicates correctly as long as it is called only a single time during the execution of a routine. (You can
consider the routine execution timestamp and random number seed as implicit inputs that are identical on
the master and slave.)

Several characteristics provide information about the nature of data use by the routine. In MySQL, these
characteristics are advisory only. The server does not use them to constrain what kinds of statements a
routine will be permitted to execute.

• CONTAINS SQL indicates that the routine does not contain statements that read or write data. This is the
default if none of these characteristics is given explicitly. Examples of such statements are SET @x = 1
or DO RELEASE_LOCK('abc'), which execute but neither read nor write data.

• NO SQL indicates that the routine contains no SQL statements.

• READS SQL DATA indicates that the routine contains statements that read data (for example, SELECT),
but not statements that write data.

• MODIFIES SQL DATA indicates that the routine contains statements that may write data (for example,
INSERT or DELETE).

The SQL SECURITY characteristic can be DEFINER or INVOKER to specify the security context; that is,
whether the routine executes using the privileges of the account named in the routine DEFINER clause or
the user who invokes it. This account must have permission to access the database with which the routine
is associated. The default value is DEFINER. As of MySQL 5.0.3, the user who invokes the routine must
have the EXECUTE privilege for it, as must the DEFINER account if the routine executes in definer security
context.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at routine
execution time for routines that have the SQL SECURITY DEFINER characteristic. The DEFINER clause
was added in MySQL 5.0.20.

If a user value is given for the DEFINER clause, it should be a MySQL account specified as
'user_name'@'host_name' (the same format used in the GRANT statement), CURRENT_USER, or
CURRENT_USER(). The default DEFINER value is the user who executes the CREATE PROCEDURE or
CREATE FUNCTION statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

If you specify the DEFINER clause, these rules determine the legal DEFINER user values:

• If you do not have the SUPER privilege, the only legal user value is your own account, either specified
literally or by using CURRENT_USER. You cannot set the definer to some other account.

CREATE PROCEDURE and CREATE FUNCTION Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1152

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• If you have the SUPER privilege, you can specify any syntactically legal account name. If the account
does not exist, a warning is generated.

• Although it is possible to create a routine with a nonexistent DEFINER account, an error occurs at routine
execution time if the SQL SECURITY value is DEFINER but the definer account does not exist.

For more information about stored routine security, see Section 18.5, “Access Control for Stored Programs
and Views”.

Within a stored routine that is defined with the SQL SECURITY DEFINER characteristic, CURRENT_USER
returns the routine's DEFINER value. For information about user auditing within stored routines, see
Section 6.3.9, “SQL-Based MySQL Account Activity Auditing”.

Consider the following procedure, which displays a count of the number of MySQL accounts listed in the
mysql.user table:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE account_count()
BEGIN
 SELECT 'Number of accounts:', COUNT(*) FROM mysql.user;
END;

The procedure is assigned a DEFINER account of 'admin'@'localhost' no matter which user defines
it. It executes with the privileges of that account no matter which user invokes it (because the default
security characteristic is DEFINER). The procedure succeeds or fails depending on whether invoker has
the EXECUTE privilege for it and 'admin'@'localhost' has the SELECT privilege for the mysql.user
table.

Now suppose that the procedure is defined with the SQL SECURITY INVOKER characteristic:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE account_count()
SQL SECURITY INVOKER
BEGIN
 SELECT 'Number of accounts:', COUNT(*) FROM mysql.user;
END;

The procedure still has a DEFINER of 'admin'@'localhost', but in this case, it executes with the
privileges of the invoking user. Thus, the procedure succeeds or fails depending on whether the invoker
has the EXECUTE privilege for it and the SELECT privilege for the mysql.user table.

As of MySQL 5.0.18, the handles the data type of a routine parameter, local routine variable created with
DECLARE, or function return value as follows:

• Assignments are checked for data type mismatches and overflow. Conversion and overflow problems
result in warnings, or errors in strict SQL mode.

• Only scalar values can be assigned. For example, a statement such as SET x = (SELECT 1, 2) is
invalid.

• For character data types, if there is a CHARACTER SET attribute in the declaration, the specified
character set and its default collation are used. If there is no such attribute, as of MySQL 5.0.25, the
database character set and collation that are in effect at the time the server loads the routine into
the routine cache are used. (These are given by the values of the character_set_database and
collation_database system variables.) If the database character set or collation change while
the routine is in the cache, routine execution is unaffected by the change until the next time the server
reloads the routine into the cache. The COLLATE attribute is not supported. (This includes use of
BINARY, which in this context specifies the binary collation of the character set.)

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1153

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you change the database default character set or collation, stored routines that use the database
defaults must be dropped and recreated so that they use the new defaults.

Before MySQL 5.0.18, parameters, return values, and local variables are treated as items in expressions,
and are subject to automatic (silent) conversion and truncation. Stored functions ignore the sql_mode
setting.

13.1.10 CREATE TABLE Syntax

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 (create_definition,...)
 [table_options]

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 [(create_definition,...)]
 [table_options]
 select_statement

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
 { LIKE old_tbl_name | (LIKE old_tbl_name) }

create_definition:
 col_name column_definition
 | [CONSTRAINT [symbol]] PRIMARY KEY [index_type] (index_col_name,...)
 [index_type]
 | {INDEX|KEY} [index_name] [index_type] (index_col_name,...)
 [index_type]
 | [CONSTRAINT [symbol]] UNIQUE [INDEX|KEY]
 [index_name] [index_type] (index_col_name,...)
 [index_type]
 | {FULLTEXT|SPATIAL} [INDEX|KEY] [index_name] (index_col_name,...)
 [index_type]
 | [CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (index_col_name,...) reference_definition
 | CHECK (expr)

column_definition:
 data_type [NOT NULL | NULL] [DEFAULT default_value]
 [AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY]
 [COMMENT 'string'] [reference_definition]

data_type:
 BIT[(length)]
 | TINYINT[(length)] [UNSIGNED] [ZEROFILL]
 | SMALLINT[(length)] [UNSIGNED] [ZEROFILL]
 | MEDIUMINT[(length)] [UNSIGNED] [ZEROFILL]
 | INT[(length)] [UNSIGNED] [ZEROFILL]
 | INTEGER[(length)] [UNSIGNED] [ZEROFILL]
 | BIGINT[(length)] [UNSIGNED] [ZEROFILL]
 | REAL[(length,decimals)] [UNSIGNED] [ZEROFILL]
 | DOUBLE[(length,decimals)] [UNSIGNED] [ZEROFILL]
 | FLOAT[(length,decimals)] [UNSIGNED] [ZEROFILL]
 | DECIMAL[(length[,decimals])] [UNSIGNED] [ZEROFILL]
 | NUMERIC[(length[,decimals])] [UNSIGNED] [ZEROFILL]
 | DATE
 | TIME
 | TIMESTAMP
 | DATETIME
 | YEAR
 | CHAR[(length)] [BINARY]
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | VARCHAR(length) [BINARY]
 [CHARACTER SET charset_name] [COLLATE collation_name]

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1154

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 | BINARY[(length)]
 | VARBINARY(length)
 | TINYBLOB
 | BLOB
 | MEDIUMBLOB
 | LONGBLOB
 | TINYTEXT [BINARY]
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | TEXT [BINARY]
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | MEDIUMTEXT [BINARY]
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | LONGTEXT [BINARY]
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | ENUM(value1,value2,value3,...)
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | SET(value1,value2,value3,...)
 [CHARACTER SET charset_name] [COLLATE collation_name]
 | spatial_type

index_col_name:
 col_name [(length)] [ASC | DESC]

index_type:
 USING {BTREE | HASH}

reference_definition:
 REFERENCES tbl_name (index_col_name,...)
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

reference_option:
 RESTRICT | CASCADE | SET NULL | NO ACTION

table_options:
 table_option [[,] table_option] ...

table_option:
 {ENGINE|TYPE} [=] engine_name
 | AUTO_INCREMENT [=] value
 | AVG_ROW_LENGTH [=] value
 | [DEFAULT] CHARACTER SET [=] charset_name
 | CHECKSUM [=] {0 | 1}
 | [DEFAULT] COLLATE [=] collation_name
 | COMMENT [=] 'string'
 | CONNECTION [=] 'connect_string'
 | DATA DIRECTORY [=] 'absolute path to directory'
 | DELAY_KEY_WRITE [=] {0 | 1}
 | INDEX DIRECTORY [=] 'absolute path to directory'
 | INSERT_METHOD [=] { NO | FIRST | LAST }
 | MAX_ROWS [=] value
 | MIN_ROWS [=] value
 | PACK_KEYS [=] {0 | 1 | DEFAULT}
 | PASSWORD [=] 'string'
 | ROW_FORMAT [=] {DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT}
 | UNION [=] (tbl_name[,tbl_name]...)

select_statement:
 [IGNORE | REPLACE] [AS] SELECT ... (Some legal select statement)

CREATE TABLE creates a table with the given name. You must have the CREATE privilege for the table.

Rules for permissible table names are given in Section 9.2, “Schema Object Names”. By default, the table
is created in the default database. An error occurs if the table exists, if there is no default database, or if
the database does not exist.

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1155

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The table name can be specified as db_name.tbl_name to create the table in a specific database. This
works regardless of whether there is a default database, assuming that the database exists. If you use
quoted identifiers, quote the database and table names separately. For example, write `mydb`.`mytbl`,
not `mydb.mytbl`.

Cloning or Copying a Table

Use CREATE TABLE ... LIKE to create an empty table based on the definition of another table,
including any column attributes and indexes defined in the original table:

CREATE TABLE new_tbl LIKE orig_tbl;

For more information, see Section 13.1.10.1, “CREATE TABLE ... LIKE Syntax”.

To create one table from another, add a SELECT statement at the end of the CREATE TABLE statement:

CREATE TABLE new_tbl SELECT * FROM orig_tbl;

For more information, see Section 13.1.10.2, “CREATE TABLE ... SELECT Syntax”.

Temporary Tables

You can use the TEMPORARY keyword when creating a table. A TEMPORARY table is visible only to the
current session, and is dropped automatically when the session is closed. This means that two different
sessions can use the same temporary table name without conflicting with each other or with an existing
non-TEMPORARY table of the same name. (The existing table is hidden until the temporary table is
dropped.) To create temporary tables, you must have the CREATE TEMPORARY TABLES privilege.

Note

CREATE TABLE does not automatically commit the current active transaction if you
use the TEMPORARY keyword.

Note

TEMPORARY tables have a very loose relationship with databases (schemas).
Dropping a database does not automatically drop any TEMPORARY tables created
within that database. Also, you can create a TEMPORARY table in a nonexistent
database if you qualify the table name with the database name in the CREATE
TABLE statement. In this case, all subsequent references to the table must be
qualified with the database name.

Existing Table with Same Name

The keywords IF NOT EXISTS prevent an error from occurring if the table exists. However, there is
no verification that the existing table has a structure identical to that indicated by the CREATE TABLE
statement.

Physical Representation

MySQL represents each table by an .frm table format (definition) file in the database directory. The
storage engine for the table might create other files as well.

For InnoDB tables, the file storage is controlled by the innodb_file_per_table configuration option.
For each InnoDB table created when this option is turned on, the table data and all associated indexes are

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1156

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

stored in a .ibd file located inside the database directory. When this option is turned off, all InnoDB tables
and indexes are stored in the system tablespace, represented by one or more ibdata* files.

For MyISAM tables, the storage engine creates data and index files. Thus, for each MyISAM table
tbl_name, there are three disk files.

File Purpose

tbl_name.frm Table format (definition) file

tbl_name.MYD Data file

tbl_name.MYI Index file

Chapter 14, Storage Engines, describes what files each storage engine creates to represent tables.

Data Types and Attributes for Columns

data_type represents the data type in a column definition. spatial_type represents a spatial data
type. The data type syntax shown is representative only. For a full description of the syntax available for
specifying column data types, as well as information about the properties of each type, see Chapter 11,
Data Types, and Section 11.5, “Extensions for Spatial Data”.

Some attributes do not apply to all data types. AUTO_INCREMENT applies only to integer and floating-point
types. DEFAULT does not apply to the BLOB or TEXT types.

• If neither NULL nor NOT NULL is specified, the column is treated as though NULL had been specified.

• An integer or floating-point column can have the additional attribute AUTO_INCREMENT. When you insert
a value of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column, the column is set to
the next sequence value. Typically this is value+1, where value is the largest value for the column
currently in the table. AUTO_INCREMENT sequences begin with 1.

To retrieve an AUTO_INCREMENT value after inserting a row, use the LAST_INSERT_ID() SQL
function or the mysql_insert_id() C API function. See Section 12.13, “Information Functions”, and
Section 20.6.7.37, “mysql_insert_id()”.

If the NO_AUTO_VALUE_ON_ZERO SQL mode is enabled, you can store 0 in AUTO_INCREMENT columns
as 0 without generating a new sequence value. See Section 5.1.7, “Server SQL Modes”.

Note

There can be only one AUTO_INCREMENT column per table, it must be indexed,
and it cannot have a DEFAULT value. An AUTO_INCREMENT column works
properly only if it contains only positive values. Inserting a negative number
is regarded as inserting a very large positive number. This is done to avoid
precision problems when numbers “wrap” over from positive to negative and also
to ensure that you do not accidentally get an AUTO_INCREMENT column that
contains 0.

For MyISAM and BDB tables, you can specify an AUTO_INCREMENT secondary column in a multiple-
column key. See Section 3.6.9, “Using AUTO_INCREMENT”.

To make MySQL compatible with some ODBC applications, you can find the AUTO_INCREMENT value
for the last inserted row with the following query:

SELECT * FROM tbl_name WHERE auto_col IS NULL

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_ibd_file
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_system_tablespace
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_ibdata_file

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1157

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This method requires that sql_auto_is_null variable is not set to 0. See Section 5.1.4, “Server
System Variables”.

For information about InnoDB and AUTO_INCREMENT, see Section 14.2.3.3, “AUTO_INCREMENT
Handling in InnoDB”.

• Character data types (CHAR, VARCHAR, TEXT) can include CHARACTER SET and COLLATE attributes
to specify the character set and collation for the column. For details, see Section 10.1, “Character Set
Support”. CHARSET is a synonym for CHARACTER SET. Example:

CREATE TABLE t (c CHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);

MySQL 5.0 interprets length specifications in character column definitions in characters. Lengths for
BINARY and VARBINARY are in bytes.

• The DEFAULT clause specifies a default value for a column. With one exception, the default value
must be a constant; it cannot be a function or an expression. This means, for example, that you cannot
set the default for a date column to be the value of a function such as NOW() or CURRENT_DATE. The
exception is that you can specify CURRENT_TIMESTAMP as the default for a TIMESTAMP column. See
Section 11.3.5, “Automatic Initialization and Updating for TIMESTAMP”.

If a column definition includes no explicit DEFAULT value, MySQL determines the default value as
described in Section 11.6, “Data Type Default Values”.

BLOB and TEXT columns cannot be assigned a default value.

CREATE TABLE fails if a date-valued default is not correct according to the NO_ZERO_IN_DATE SQL
mode, even if strict SQL mode is not enabled. For example, c1 DATE DEFAULT '2010-00-00'
causes CREATE TABLE to fail with Invalid default value for 'c1'.

• A comment for a column can be specified with the COMMENT option, up to 255 characters long. The
comment is displayed by the SHOW CREATE TABLE and SHOW FULL COLUMNS statements.

• KEY is normally a synonym for INDEX. The key attribute PRIMARY KEY can also be specified as just
KEY when given in a column definition. This was implemented for compatibility with other database
systems.

• A UNIQUE index creates a constraint such that all values in the index must be distinct. An error occurs if
you try to add a new row with a key value that matches an existing row. This constraint does not apply
to NULL values except for the BDB storage engine. For other engines, a UNIQUE index permits multiple
NULL values for columns that can contain NULL.

• A PRIMARY KEY is a unique index where all key columns must be defined as NOT NULL. If they are not
explicitly declared as NOT NULL, MySQL declares them so implicitly (and silently). A table can have only
one PRIMARY KEY. The name of a PRIMARY KEY is always PRIMARY, which thus cannot be used as
the name for any other kind of index.

If you do not have a PRIMARY KEY and an application asks for the PRIMARY KEY in your tables,
MySQL returns the first UNIQUE index that has no NULL columns as the PRIMARY KEY.

In InnoDB tables, having a long PRIMARY KEY wastes a lot of space. (See Section 14.2.10, “InnoDB
Table and Index Structures”.)

• In the created table, a PRIMARY KEY is placed first, followed by all UNIQUE indexes, and then the
nonunique indexes. This helps the MySQL optimizer to prioritize which index to use and also more
quickly to detect duplicated UNIQUE keys.

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1158

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• A PRIMARY KEY can be a multiple-column index. However, you cannot create a multiple-column index
using the PRIMARY KEY key attribute in a column specification. Doing so only marks that single column
as primary. You must use a separate PRIMARY KEY(index_col_name, ...) clause.

• If a PRIMARY KEY or UNIQUE index consists of only one column that has an integer type, you can also
refer to the column as _rowid in SELECT statements.

• In MySQL, the name of a PRIMARY KEY is PRIMARY. For other indexes, if you do not assign a name,
the index is assigned the same name as the first indexed column, with an optional suffix (_2, _3, ...)
to make it unique. You can see index names for a table using SHOW INDEX FROM tbl_name. See
Section 13.7.5.18, “SHOW INDEX Syntax”.

• Some storage engines permit you to specify an index type when creating an index. The syntax for the
index_type specifier is USING type_name.

Example:

CREATE TABLE lookup
 (id INT, INDEX USING BTREE (id))
 ENGINE = MEMORY;

Before MySQL 5.0.60, USING can be given only before the index column list. As of 5.0.60, the preferred
position is after the column list. Support for use of the option before the column list will be removed in a
future MySQL release.

index_option values specify additional options for an index. USING is one such option. For details
about permissible index_option values, see Section 13.1.8, “CREATE INDEX Syntax”.

For more information about indexes, see Section 8.3.1, “How MySQL Uses Indexes”.

• In MySQL 5.0, only the MyISAM, InnoDB, BDB, and MEMORY storage engines support indexes on
columns that can have NULL values. In other cases, you must declare indexed columns as NOT NULL or
an error results.

• For CHAR, VARCHAR, BINARY, and VARBINARY columns, indexes can be created that use only the
leading part of column values, using col_name(length) syntax to specify an index prefix length. BLOB
and TEXT columns also can be indexed, but a prefix length must be given. Prefix lengths are given in
characters for nonbinary string types and in bytes for binary string types. That is, index entries consist of
the first length characters of each column value for CHAR, VARCHAR, and TEXT columns, and the first
length bytes of each column value for BINARY, VARBINARY, and BLOB columns. Indexing only a prefix
of column values like this can make the index file much smaller. For additional information about index
prefixes, see Section 13.1.8, “CREATE INDEX Syntax”.

Only the MyISAM, BDB, and InnoDB storage engines support indexing on BLOB and TEXT columns. For
example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 1000 bytes long (767 bytes for InnoDB tables).

Note

Prefix limits are measured in bytes, whereas the prefix length in CREATE TABLE,
ALTER TABLE, and CREATE INDEX statements is interpreted as number of
characters for nonbinary string types (CHAR, VARCHAR, TEXT) and number
of bytes for binary string types (BINARY, VARBINARY, BLOB). Take this into

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1159

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

account when specifying a prefix length for a nonbinary string column that uses a
multibyte character set.

• An index_col_name specification can end with ASC or DESC. These keywords are permitted for future
extensions for specifying ascending or descending index value storage. Currently, they are parsed but
ignored; index values are always stored in ascending order.

• When you use ORDER BY or GROUP BY on a column in a SELECT, the server sorts values using only the
initial number of bytes indicated by the max_sort_length system variable.

• You can create special FULLTEXT indexes, which are used for full-text searches. Only the MyISAM
storage engine supports FULLTEXT indexes. They can be created only from CHAR, VARCHAR, and TEXT
columns. Indexing always happens over the entire column; column prefix indexing is not supported and
any prefix length is ignored if specified. See Section 12.9, “Full-Text Search Functions”, for details of
operation.

• You can create SPATIAL indexes on spatial data types. Spatial types are supported only for MyISAM
tables and indexed columns must be declared as NOT NULL. See Section 11.5, “Extensions for Spatial
Data”.

• InnoDB tables support checking of foreign key constraints. The columns of the referenced table must
always be explicitly named. Both ON DELETE and ON UPDATE actions on foreign keys. For more
detailed information and examples, see Section 13.1.10.3, “Using FOREIGN KEY Constraints”. For
information specific to foreign keys in InnoDB, see Section 14.2.3.4, “InnoDB and FOREIGN KEY
Constraints”.

For other storage engines, MySQL Server parses and ignores the FOREIGN KEY and REFERENCES
syntax in CREATE TABLE statements. The CHECK clause is parsed but ignored by all storage engines.
See Section 1.8.2.4, “Foreign Key Differences”.

Important

For users familiar with the ANSI/ISO SQL Standard, please note that no storage
engine, including InnoDB, recognizes or enforces the MATCH clause used in
referential integrity constraint definitions. Use of an explicit MATCH clause will not
have the specified effect, and also causes ON DELETE and ON UPDATE clauses
to be ignored. For these reasons, specifying MATCH should be avoided.

The MATCH clause in the SQL standard controls how NULL values in a composite
(multiple-column) foreign key are handled when comparing to a primary key.
InnoDB essentially implements the semantics defined by MATCH SIMPLE, which
permit a foreign key to be all or partially NULL. In that case, the (child table) row
containing such a foreign key is permitted to be inserted, and does not match any
row in the referenced (parent) table. It is possible to implement other semantics
using triggers.

Additionally, MySQL requires that the referenced columns be indexed for
performance. However, InnoDB does not enforce any requirement that the
referenced columns be declared UNIQUE or NOT NULL. The handling of foreign
key references to nonunique keys or keys that contain NULL values is not well
defined for operations such as UPDATE or DELETE CASCADE. You are advised
to use foreign keys that reference only keys that are both UNIQUE (or PRIMARY)
and NOT NULL.

MySQL parses but ignores “inline REFERENCES specifications” (as defined
in the SQL standard) where the references are defined as part of the column

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1160

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

specification. MySQL accepts REFERENCES clauses only when specified as part
of a separate FOREIGN KEY specification.

• There is a hard limit of 4096 columns per table, but the effective maximum may be less for a given table
and depends on the factors discussed in Section C.7.4, “Limits on Table Column Count and Row Size”.

Storage Engines

The ENGINE table option specifies the storage engine for the table. TYPE is a synonym, but ENGINE is the
preferred option name.

The ENGINE table option specifies the storage engine for the table, using one of the names shown in the
following table. The engine name can be unquoted or quoted. The quoted name 'DEFAULT' is equivalent
to specifying the default storage engine name.

Storage Engine Description

ARCHIVE The archiving storage engine. See Section 14.8, “The ARCHIVE Storage
Engine”.

BDB Transaction-safe tables with page locking. Also known as BerkeleyDB. See
Section 14.5, “The BDB (BerkeleyDB) Storage Engine”.

CSV Tables that store rows in comma-separated values format. See Section 14.9,
“The CSV Storage Engine”.

EXAMPLE An example engine. See Section 14.6, “The EXAMPLE Storage Engine”.

FEDERATED Storage engine that accesses remote tables. See Section 14.7, “The
FEDERATED Storage Engine”.

HEAP This is a synonym for MEMORY.

ISAM (OBSOLETE) Not available in MySQL 5.0. If you are upgrading to MySQL 5.0 from a
previous version, you should convert any existing ISAM tables to MyISAM
before performing the upgrade.

InnoDB Transaction-safe tables with row locking and foreign keys. See Section 14.2,
“The InnoDB Storage Engine”.

MEMORY The data for this storage engine is stored only in memory. See Section 14.4,
“The MEMORY (HEAP) Storage Engine”.

MERGE A collection of MyISAM tables used as one table. Also known as
MRG_MyISAM. See Section 14.3, “The MERGE Storage Engine”.

MyISAM The binary portable storage engine that is the default storage engine used by
MySQL. See Section 14.1, “The MyISAM Storage Engine”.

NDBCLUSTER Clustered, fault-tolerant, memory-based tables. Also known as NDB. See
Chapter 17, MySQL Cluster.

If a storage engine is specified that is not available, MySQL uses the default engine instead. Normally,
this is MyISAM. For example, if a table definition includes the ENGINE=BDB option but the MySQL server
does not support BDB tables, the table is created as a MyISAM table. This makes it possible to have a
replication setup where you have transactional tables on the master but tables created on the slave are
nontransactional (to get more speed). In MySQL 5.0, a warning occurs if the storage engine specification is
not honored.

Engine substitution can be controlled by the setting of the NO_ENGINE_SUBSTITUTION SQL mode, as
described in Section 5.1.7, “Server SQL Modes”.

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1161

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Optimizing Performance

The other table options are used to optimize the behavior of the table. In most cases, you do not have to
specify any of them. These options apply to all storage engines unless otherwise indicated. Options that do
not apply to a given storage engine may be accepted and remembered as part of the table definition. Such
options then apply if you later use ALTER TABLE to convert the table to use a different storage engine.

• AUTO_INCREMENT

The initial AUTO_INCREMENT value for the table. In MySQL 5.0, this works for MyISAM and MEMORY
tables. It is also supported for InnoDB as of MySQL 5.0.3. To set the first auto-increment value for
engines that do not support the AUTO_INCREMENT table option, insert a “dummy” row with a value one
less than the desired value after creating the table, and then delete the dummy row.

For engines that support the AUTO_INCREMENT table option in CREATE TABLE statements, you can
also use ALTER TABLE tbl_name AUTO_INCREMENT = N to reset the AUTO_INCREMENT value. The
value cannot be set lower than the maximum value currently in the column.

• AVG_ROW_LENGTH

An approximation of the average row length for your table. You need to set this only for large tables with
variable-size rows.

When you create a MyISAM table, MySQL uses the product of the MAX_ROWS and AVG_ROW_LENGTH
options to decide how big the resulting table is. If you don't specify either option, the maximum size
for MyISAM data and index table files is 256TB of data by default (4GB before MySQL 5.0.6). (If your
operating system does not support files that large, table sizes are constrained by the file size limit.) If you
want to keep down the pointer sizes to make the index smaller and faster and you don't really need big
files, you can decrease the default pointer size by setting the myisam_data_pointer_size system
variable, which was added in MySQL 4.1.2. (See Section 5.1.4, “Server System Variables”.) If you want
all your tables to be able to grow above the default limit and are willing to have your tables slightly slower
and larger than necessary, you can increase the default pointer size by setting this variable. Setting the
value to 7 permits table sizes up to 65,536TB.

• [DEFAULT] CHARACTER SET

Specify a default character set for the table. CHARSET is a synonym for CHARACTER SET. If the
character set name is DEFAULT, the database character set is used.

• CHECKSUM

Set this to 1 if you want MySQL to maintain a live checksum for all rows (that is, a checksum that MySQL
updates automatically as the table changes). This makes the table a little slower to update, but also
makes it easier to find corrupted tables. The CHECKSUM TABLE statement reports the checksum.
(MyISAM only.)

• [DEFAULT] COLLATE

Specify a default collation for the table.

• COMMENT

A comment for the table, up to 60 characters long.

• CONNECTION

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1162

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The connection string for a FEDERATED table. This option is available as of MySQL 5.0.13; before that,
use a COMMENT option for the connection string.

• DATA DIRECTORY, INDEX DIRECTORY

By using DATA DIRECTORY='directory' or INDEX DIRECTORY='directory' you can specify
where the MyISAM storage engine should put a table's data file and index file. The directory must be the
full path name to the directory, not a relative path.

These options work only when you are not using the --skip-symbolic-links option. Your operating
system must also have a working, thread-safe realpath() call. See Section 8.12.4.2, “Using Symbolic
Links for MyISAM Tables on Unix”, for more complete information.

If a MyISAM table is created with no DATA DIRECTORY option, the .MYD file is created in the database
directory. By default, if MyISAM finds an existing .MYD file in this case, it overwrites it. The same applies
to .MYI files for tables created with no INDEX DIRECTORY option. As of MySQL 5.0.48, to suppress this
behavior, start the server with the --keep_files_on_create option, in which case MyISAM will not
overwrite existing files and returns an error instead.

If a MyISAM table is created with a DATA DIRECTORY or INDEX DIRECTORY option and an existing
.MYD or .MYI file is found, MyISAM always returns an error. It will not overwrite a file in the specified
directory.

Important

Beginning with MySQL 5.0.60, you cannot use path names that contain the
MySQL data directory with DATA DIRECTORY or INDEX DIRECTORY. (See Bug
#32167.)

• DELAY_KEY_WRITE

Set this to 1 if you want to delay key updates for the table until the table is closed. See the description of
the delay_key_write system variable in Section 5.1.4, “Server System Variables”. (MyISAM only.)

• INSERT_METHOD

If you want to insert data into a MERGE table, you must specify with INSERT_METHOD the table into which
the row should be inserted. INSERT_METHOD is an option useful for MERGE tables only. Use a value
of FIRST or LAST to have inserts go to the first or last table, or a value of NO to prevent inserts. See
Section 14.3, “The MERGE Storage Engine”.

• MAX_ROWS

The maximum number of rows you plan to store in the table. This is not a hard limit, but rather a hint to
the storage engine that the table must be able to store at least this many rows.

 The NDB storage engine treats this value as a maximum. If you plan to create very large MySQL Cluster
tables (containing millions of rows), you should use this option to insure that NDB allocates sufficient
number of index slots in the hash table used for storing hashes of the table's primary keys by setting
MAX_ROWS = 2 * rows, where rows is the number of rows that you expect to insert into the table.

The maximum MAX_ROWS value is 4294967295; larger values are truncated to this limit.

• MIN_ROWS

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1163

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The minimum number of rows you plan to store in the table. The MEMORY storage engine uses this option
as a hint about memory use.

• PACK_KEYS

PACK_KEYS takes effect only with MyISAM tables. Set this option to 1 if you want to have smaller
indexes. This usually makes updates slower and reads faster. Setting the option to 0 disables all packing
of keys. Setting it to DEFAULT tells the storage engine to pack only long CHAR, VARCHAR, BINARY, or
VARBINARY columns.

If you do not use PACK_KEYS, the default is to pack strings, but not numbers. If you use PACK_KEYS=1,
numbers are packed as well.

When packing binary number keys, MySQL uses prefix compression:

• Every key needs one extra byte to indicate how many bytes of the previous key are the same for the
next key.

• The pointer to the row is stored in high-byte-first order directly after the key, to improve compression.

This means that if you have many equal keys on two consecutive rows, all following “same” keys usually
only take two bytes (including the pointer to the row). Compare this to the ordinary case where the
following keys takes storage_size_for_key + pointer_size (where the pointer size is usually
4). Conversely, you get a significant benefit from prefix compression only if you have many numbers that
are the same. If all keys are totally different, you use one byte more per key, if the key is not a key that
can have NULL values. (In this case, the packed key length is stored in the same byte that is used to
mark if a key is NULL.)

• PASSWORD

This option is unused. If you have a need to scramble your .frm files and make them unusable to any
other MySQL server, please contact our sales department.

• ROW_FORMAT

Defines how the rows should be stored. For MyISAM tables, the option value can be FIXED or DYNAMIC
for static or variable-length row format. myisampack sets the type to COMPRESSED. See Section 14.1.3,
“MyISAM Table Storage Formats”.

Starting with MySQL 5.0.3, for InnoDB tables, rows are stored in compact format
(ROW_FORMAT=COMPACT) by default. The noncompact format used in older versions of MySQL can still
be requested by specifying ROW_FORMAT=REDUNDANT.

Note

When executing a CREATE TABLE statement, if you specify a row format which is
not supported by the storage engine that is used for the table, the table is created
using that storage engine's default row format. The information reported in this
column in response to SHOW TABLE STATUS is the actual row format used. This
may differ from the value in the Create_options column because the original
CREATE TABLE definition is retained during creation.

• RAID_TYPE

RAID support has been removed as of MySQL 5.0.

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1164

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• UNION

UNION is used when you want to access a collection of identical MyISAM tables as one. This works only
with MERGE tables. See Section 14.3, “The MERGE Storage Engine”.

You must have SELECT, UPDATE, and DELETE privileges for the tables you map to a MERGE table.

Note

Formerly, all tables used had to be in the same database as the MERGE table
itself. This restriction no longer applies.

Important

The original CREATE TABLE statement, including all specifications and table
options are stored by MySQL when the table is created. The information is retained
so that if you change storage engines, collations or other settings using an ALTER
TABLE statement, the original table options specified are retained. This enables you
to change between InnoDB and MyISAM table types even though the row formats
supported by the two engines are different.

Because the text of the original statement is retained, but due to the way that
certain values and options may be silently reconfigured (such as the ROW_FORMAT),
the active table definition (accessible through DESCRIBE or with SHOW TABLE
STATUS) and the table creation string (accessible through SHOW CREATE TABLE)
will report different values.

13.1.10.1 CREATE TABLE ... LIKE Syntax

Use CREATE TABLE ... LIKE to create an empty table based on the definition of another table,
including any column attributes and indexes defined in the original table:

CREATE TABLE new_tbl LIKE orig_tbl;

The copy is created using the same version of the table storage format as the original table. The SELECT
privilege is required on the original table.

LIKE works only for base tables, not for views.

CREATE TABLE ... LIKE does not preserve any DATA DIRECTORY or INDEX DIRECTORY table
options that were specified for the original table, or any foreign key definitions.

If the original table is a TEMPORARY table, CREATE TABLE ... LIKE does not preserve TEMPORARY. To
create a TEMPORARY destination table, use CREATE TEMPORARY TABLE ... LIKE.

In MySQL 5.0, changes to the SQL mode do not affect CREATE TABLE ... LIKE. If the current SQL
mode is different from the mode in effect when the original table was created, the statement succeeds
even if the table definition is invalid for the new mode.

13.1.10.2 CREATE TABLE ... SELECT Syntax

You can create one table from another by adding a SELECT statement at the end of the CREATE TABLE
statement:

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1165

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CREATE TABLE new_tbl [AS] SELECT * FROM orig_tbl;

MySQL creates new columns for all elements in the SELECT. For example:

mysql> CREATE TABLE test (a INT NOT NULL AUTO_INCREMENT,
 -> PRIMARY KEY (a), KEY(b))
 -> ENGINE=MyISAM SELECT b,c FROM test2;

This creates a MyISAM table with three columns, a, b, and c. The ENGINE option is part of the CREATE
TABLE statement, and should not be used following the SELECT; this would result in a syntax error. The
same is true for other CREATE TABLE options such as CHARSET.

Notice that the columns from the SELECT statement are appended to the right side of the table, not
overlapped onto it. Take the following example:

mysql> SELECT * FROM foo;
+---+
| n |
+---+
| 1 |
+---+

mysql> CREATE TABLE bar (m INT) SELECT n FROM foo;
Query OK, 1 row affected (0.02 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM bar;
+------+---+
| m | n |
+------+---+
| NULL | 1 |
+------+---+
1 row in set (0.00 sec)

For each row in table foo, a row is inserted in bar with the values from foo and default values for the new
columns.

In a table resulting from CREATE TABLE ... SELECT, columns named only in the CREATE TABLE part
come first. Columns named in both parts or only in the SELECT part come after that. The data type of
SELECT columns can be overridden by also specifying the column in the CREATE TABLE part.

If any errors occur while copying the data to the table, it is automatically dropped and not created.

You can precede the SELECT by IGNORE or REPLACE to indicate how to handle rows that duplicate unique
key values. With IGNORE, rows that duplicate an existing row on a unique key value are discarded. With
REPLACE, new rows replace rows that have the same unique key value. If neither IGNORE nor REPLACE is
specified, duplicate unique key values result in an error.

CREATE TABLE ... SELECT does not automatically create any indexes for you. This is done
intentionally to make the statement as flexible as possible. If you want to have indexes in the created table,
you should specify these before the SELECT statement:

mysql> CREATE TABLE bar (UNIQUE (n)) SELECT n FROM foo;

Some conversion of data types might occur. For example, the AUTO_INCREMENT attribute is not
preserved, and VARCHAR columns can become CHAR columns. Retrained attributes are NULL (or NOT
NULL) and, for those columns that have them, CHARACTER SET, COLLATION, COMMENT, and the
DEFAULT clause.

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1166

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When creating a table with CREATE TABLE ... SELECT, make sure to alias any function calls or
expressions in the query. If you do not, the CREATE statement might fail or result in undesirable column
names.

CREATE TABLE artists_and_works
 SELECT artist.name, COUNT(work.artist_id) AS number_of_works
 FROM artist LEFT JOIN work ON artist.id = work.artist_id
 GROUP BY artist.id;

You can also explicitly specify the data type for a column in the created table:

CREATE TABLE foo (a TINYINT NOT NULL) SELECT b+1 AS a FROM bar;

For CREATE TABLE ... SELECT, if IF NOT EXISTS is given and the destination table already exists,
MySQL handles the statement as follows:

• The table definition given in the CREATE TABLE part is ignored. No error occurs, even if the definition
does not match that of the existing table. MySQL attempts to insert the rows from the SELECT part
anyway.

• If there is a mismatch between the number of columns in the table and the number of columns produced
by the SELECT part, the selected values are assigned to the rightmost columns. For example, if the
table contains n columns and the SELECT produces m columns, where m < n, the selected values are
assigned to the m rightmost columns in the table. Each of the initial n − m columns is assigned its default
value, either that specified explicitly in the column definition or the implicit column data type default if the
definition contains no default. If the SELECT part produces too many columns (m > n), an error occurs.

• If strict SQL mode is enabled and any of these initial columns do not have an explicit default value, the
statement fails with an error.

The following example illustrates IF NOT EXISTS handling:

mysql> CREATE TABLE t1 (i1 INT DEFAULT 0, i2 INT, i3 INT, i4 INT);
Query OK, 0 rows affected (0.05 sec)

mysql> CREATE TABLE IF NOT EXISTS t1 (c1 CHAR(10)) SELECT 1, 2;
Query OK, 1 row affected, 1 warning (0.01 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t1;
+------+------+------+------+
| i1 | i2 | i3 | i4 |
+------+------+------+------+
| 0 | NULL | 1 | 2 |
+------+------+------+------+
1 row in set (0.00 sec)

To ensure that the binary log can be used to re-create the original tables, MySQL does not permit
concurrent inserts during CREATE TABLE ... SELECT.

13.1.10.3 Using FOREIGN KEY Constraints

MySQL supports foreign keys, which let you cross-reference related data across tables, and foreign
key constraints, which help keep this spread-out data consistent. The essential syntax for a foreign key
constraint definition in a CREATE TABLE or ALTER TABLE statement looks like this:

[CONSTRAINT [symbol]] FOREIGN KEY

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key_constraint
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key_constraint

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1167

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 [index_name] (index_col_name, ...)
 REFERENCES tbl_name (index_col_name,...)
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

reference_option:
 RESTRICT | CASCADE | SET NULL | NO ACTION

index_name represents a foreign key ID. The index_name value is ignored if there is already an
explicitly defined index on the child table that can support the foreign key. Otherwise, MySQL implicitly
creates a foreign key index that is named according to the following rules:

• If defined, the CONSTRAINT symbol value is used. Otherwise, the FOREIGN KEY index_name value is
used.

• If neither a CONSTRAINT symbol or FOREIGN KEY index_name is defined, the foreign key index name
is generated using the name of the referencing foreign key column.

Foreign keys definitions are subject to the following conditions:

• Foreign key relationships involve a parent table that holds the central data values, and a child table with
identical values pointing back to its parent. The FOREIGN KEY clause is specified in the child table. The
parent and child tables must use the same storage engine. They must not be TEMPORARY tables.

• Corresponding columns in the foreign key and the referenced key must have similar data types. The
size and sign of integer types must be the same. The length of string types need not be the same. For
nonbinary (character) string columns, the character set and collation must be the same.

• When foreign_key_checks is enabled, which is the default setting, character set conversion is
not permitted on tables that include a character string column used in a foreign key constraint. The
workaround is described in Section 13.1.4, “ALTER TABLE Syntax”.

• MySQL requires indexes on foreign keys and referenced keys so that foreign key checks can be fast
and not require a table scan. In the referencing table, there must be an index where the foreign key
columns are listed as the first columns in the same order. Such an index is created on the referencing
table automatically if it does not exist. This index might be silently dropped later, if you create another
index that can be used to enforce the foreign key constraint. index_name, if given, is used as described
previously.

• InnoDB permits a foreign key to reference any index column or group of columns. However, in the
referenced table, there must be an index where the referenced columns are listed as the first columns in
the same order.

• Index prefixes on foreign key columns are not supported. One consequence of this is that BLOB and
TEXT columns cannot be included in a foreign key because indexes on those columns must always
include a prefix length.

• If the CONSTRAINT symbol clause is given, the symbol value, if used, must be unique in the database.
A duplicate symbol will result in an error similar to: ERROR 1005 (HY000): Can't create table
'test.#sql-211d_3' (errno: 121). If the clause is not given, or a symbol is not included
following the CONSTRAINT keyword, a name for the constraint is created automatically.

• InnoDB does not currently support foreign keys for tables with user-defined partitioning. This includes
both parent and child tables.

Referential Actions

This section describes how foreign keys help guarantee referential integrity.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_parent_table
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_child_table
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_referential_integrity

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1168

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For storage engines supporting foreign keys, MySQL rejects any INSERT or UPDATE operation that
attempts to create a foreign key value in a child table if there is no a matching candidate key value in the
parent table.

When an UPDATE or DELETE operation affects a key value in the parent table that has matching rows in
the child table, the result depends on the referential action specified using ON UPDATE and ON DELETE
subclauses of the FOREIGN KEY clause. MySQL supports five options regarding the action to be taken,
listed here:

• CASCADE: Delete or update the row from the parent table, and automatically delete or update the
matching rows in the child table. Both ON DELETE CASCADE and ON UPDATE CASCADE are supported.
Between two tables, do not define several ON UPDATE CASCADE clauses that act on the same column
in the parent table or in the child table.

Note

Cascaded foreign key actions do not activate triggers.

• SET NULL: Delete or update the row from the parent table, and set the foreign key column or columns
in the child table to NULL. Both ON DELETE SET NULL and ON UPDATE SET NULL clauses are
supported.

If you specify a SET NULL action, make sure that you have not declared the columns in the child table
as NOT NULL.

• RESTRICT: Rejects the delete or update operation for the parent table. Specifying RESTRICT (or NO
ACTION) is the same as omitting the ON DELETE or ON UPDATE clause.

• NO ACTION: A keyword from standard SQL. In MySQL, equivalent to RESTRICT. The MySQL Server
rejects the delete or update operation for the parent table if there is a related foreign key value in the
referenced table. Some database systems have deferred checks, and NO ACTION is a deferred check.
In MySQL, foreign key constraints are checked immediately, so NO ACTION is the same as RESTRICT.

• SET DEFAULT: This action is recognized by the MySQL parser, but InnoDB rejects table definitions
containing ON DELETE SET DEFAULT or ON UPDATE SET DEFAULT clauses.

For an ON DELETE or ON UPDATE that is not specified, the default action is always RESTRICT.

MySQL supports foreign key references between one column and another within a table. (A column cannot
have a foreign key reference to itself.) In these cases, “child table records” really refers to dependent
records within the same table.

Examples of Foreign Key Clauses

Here is a simple example that relates parent and child tables through a single-column foreign key:

CREATE TABLE parent (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=INNODB;

CREATE TABLE child (
 id INT,
 parent_id INT,
 INDEX par_ind (parent_id),
 FOREIGN KEY (parent_id)
 REFERENCES parent(id)
 ON DELETE CASCADE

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1169

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

) ENGINE=INNODB;

A more complex example in which a product_order table has foreign keys for two other tables. One
foreign key references a two-column index in the product table. The other references a single-column
index in the customer table:

CREATE TABLE product (
 category INT NOT NULL, id INT NOT NULL,
 price DECIMAL,
 PRIMARY KEY(category, id)
) ENGINE=INNODB;

CREATE TABLE customer (
 id INT NOT NULL,
 PRIMARY KEY (id)
) ENGINE=INNODB;

CREATE TABLE product_order (
 no INT NOT NULL AUTO_INCREMENT,
 product_category INT NOT NULL,
 product_id INT NOT NULL,
 customer_id INT NOT NULL,

 PRIMARY KEY(no),
 INDEX (product_category, product_id),
 INDEX (customer_id),

 FOREIGN KEY (product_category, product_id)
 REFERENCES product(category, id)
 ON UPDATE CASCADE ON DELETE RESTRICT,

 FOREIGN KEY (customer_id)
 REFERENCES customer(id)
) ENGINE=INNODB;

Adding foreign keys

You can add a new foreign key constraint to an existing table by using ALTER TABLE. The syntax relating
to foreign keys for this statement is shown here:

ALTER TABLE tbl_name
 ADD [CONSTRAINT [symbol]] FOREIGN KEY
 [index_name] (index_col_name, ...)
 REFERENCES tbl_name (index_col_name,...)
 [ON DELETE reference_option]
 [ON UPDATE reference_option]

The foreign key can be self referential (referring to the same table). When you add a foreign key constraint
to a table using ALTER TABLE, remember to create the required indexes first.

Dropping Foreign Keys

You can also use ALTER TABLE to drop foreign keys, using the syntax shown here:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

If the FOREIGN KEY clause included a CONSTRAINT name when you created the foreign key, you can
refer to that name to drop the foreign key. Otherwise, the fk_symbol value is generated internally when
the foreign key is created. To find out the symbol value when you want to drop a foreign key, use a SHOW
CREATE TABLE statement, as shown here:

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1170

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SHOW CREATE TABLE ibtest11c\G
*************************** 1. row ***************************
 Table: ibtest11c
Create Table: CREATE TABLE `ibtest11c` (
 `A` int(11) NOT NULL auto_increment,
 `D` int(11) NOT NULL default '0',
 `B` varchar(200) NOT NULL default '',
 `C` varchar(175) default NULL,
 PRIMARY KEY (`A`,`D`,`B`),
 KEY `B` (`B`,`C`),
 KEY `C` (`C`),
 CONSTRAINT `0_38775` FOREIGN KEY (`A`, `D`)
REFERENCES `ibtest11a` (`A`, `D`)
ON DELETE CASCADE ON UPDATE CASCADE,
 CONSTRAINT `0_38776` FOREIGN KEY (`B`, `C`)
REFERENCES `ibtest11a` (`B`, `C`)
ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=INNODB CHARSET=latin1
1 row in set (0.01 sec)

mysql> ALTER TABLE ibtest11c DROP FOREIGN KEY `0_38775`;

Adding and dropping a foreign key in separate clauses of a single ALTER TABLE statement may be
problematic in some cases and is therefore unsupported. Use separate statements for each operation.

If an ALTER TABLE statement results in changes to column values (for example, because a column is
truncated), MySQL's foreign key constraint checks do not notice possible violations caused by changing
the values.

Foreign Keys and Other MySQL Statements

Table and column identifiers in a FOREIGN KEY ... REFERENCES ... clause can be quoted within
backticks (`). Alternatively, double quotation marks (") can be used if the ANSI_QUOTES SQL mode is
enabled. The setting of the lower_case_table_names system variable is also taken into account.

You can view a child table's foreign key definitions as part of the output of the SHOW CREATE TABLE
statement:

SHOW CREATE TABLE tbl_name;

You can also obtain information about foreign keys by querying the
INFORMATION_SCHEMA.KEY_COLUMN_USAGE table.

mysqldump produces correct definitions of tables in the dump file, including the foreign keys for child
tables.

To make it easier to reload dump files for tables that have foreign key relationships, mysqldump
automatically includes a statement in the dump output to set foreign_key_checks to 0. This avoids
problems with tables having to be reloaded in a particular order when the dump is reloaded. It is also
possible to set this variable manually:

mysql> SET foreign_key_checks = 0;
mysql> SOURCE dump_file_name;
mysql> SET foreign_key_checks = 1;

This enables you to import the tables in any order if the dump file contains tables that are not correctly
ordered for foreign keys. It also speeds up the import operation. Setting foreign_key_checks to 0
can also be useful for ignoring foreign key constraints during LOAD DATA and ALTER TABLE operations.

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1171

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

However, even if foreign_key_checks = 0, MySQL does not permit the creation of a foreign key
constraint where a column references a nonmatching column type. Also, if a table has foreign key
constraints, ALTER TABLE cannot be used to alter the table to use another storage engine. To change the
storage engine, you must drop any foreign key constraints first.

You cannot issue DROP TABLE for a table that is referenced by a FOREIGN KEY constraint, unless you
do SET foreign_key_checks = 0. When you drop a table, any constraints that were defined in the
statement used to create that table are also dropped.

If you re-create a table that was dropped, it must have a definition that conforms to the foreign key
constraints referencing it. It must have the correct column names and types, and it must have indexes
on the referenced keys, as stated earlier. If these are not satisfied, MySQL returns Error 1005 and refers
to Error 150 in the error message, which means that a foreign key constraint was not correctly formed.
Similarly, if an ALTER TABLE fails due to Error 150, this means that a foreign key definition would be
incorrectly formed for the altered table.

For InnoDB tables, you can obtain a detailed explanation of the most recent InnoDB foreign key error in
the MySQL Server, by checking the output of SHOW ENGINE INNODB STATUS.

Important

For users familiar with the ANSI/ISO SQL Standard, please note that no storage
engine, including InnoDB, recognizes or enforces the MATCH clause used in
referential-integrity constraint definitions. Use of an explicit MATCH clause will not
have the specified effect, and also causes ON DELETE and ON UPDATE clauses to
be ignored. For these reasons, specifying MATCH should be avoided.

The MATCH clause in the SQL standard controls how NULL values in a composite
(multiple-column) foreign key are handled when comparing to a primary key.
MySQL essentially implements the semantics defined by MATCH SIMPLE, which
permit a foreign key to be all or partially NULL. In that case, the (child table) row
containing such a foreign key is permitted to be inserted, and does not match any
row in the referenced (parent) table. It is possible to implement other semantics
using triggers.

Additionally, MySQL requires that the referenced columns be indexed for
performance reasons. However, the system does not enforce a requirement that the
referenced columns be UNIQUE or be declared NOT NULL. The handling of foreign
key references to nonunique keys or keys that contain NULL values is not well
defined for operations such as UPDATE or DELETE CASCADE. You are advised to
use foreign keys that reference only UNIQUE (including PRIMARY) and NOT NULL
keys.

Furthermore, MySQL parses but ignores “inline REFERENCES specifications” (as
defined in the SQL standard) where the references are defined as part of the
column specification. MySQL accepts REFERENCES clauses only when specified
as part of a separate FOREIGN KEY specification. For storage engines that do not
support foreign keys (such as MyISAM), MySQL Server parses and ignores foreign
key specifications.

13.1.10.4 Silent Column Specification Changes

In some cases, MySQL silently changes column specifications from those given in a CREATE TABLE or
ALTER TABLE statement. These might be changes to a data type, to attributes associated with a data
type, or to an index specification.

CREATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1172

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

All changes are subject to the internal row-size limit of 65,535 bytes, which may cause some attempts at
data type changes to fail. See Section C.7.4, “Limits on Table Column Count and Row Size”.

Some silent column specification changes include modifications to attribute or index specifications:

• TIMESTAMP display sizes are discarded.

Also note that TIMESTAMP columns are NOT NULL by default.

• Columns that are part of a PRIMARY KEY are made NOT NULL even if not declared that way.

• Trailing spaces are automatically deleted from ENUM and SET member values when the table is created.

• MySQL maps certain data types used by other SQL database vendors to MySQL types. See
Section 11.9, “Using Data Types from Other Database Engines”.

• If you include a USING clause to specify an index type that is not legal for a given storage engine, but
there is another index type available that the engine can use without affecting query results, the engine
uses the available type.

Possible data type changes are given in the following list. If a version number is given, the change occurs
only up to the versions listed. After that, an error occurs if a column cannot be created using the specified
data type.

• Before MySQL 5.0.3, VARCHAR columns with a length less than four are changed to CHAR.

• Before MySQL 5.0.3, if any column in a table has a variable length, the entire row becomes variable-
length as a result. Therefore, if a table contains any variable-length columns (VARCHAR, TEXT, or BLOB),
all CHAR columns longer than three characters are changed to VARCHAR columns. This does not affect
how you use the columns in any way; in MySQL, VARCHAR is just a different way to store characters.
MySQL performs this conversion because it saves space and makes table operations faster. See
Chapter 14, Storage Engines.

• Before MySQL 5.0.3, a CHAR or VARCHAR column with a length specification greater than 255
is converted to the smallest TEXT type that can hold values of the given length. For example,
VARCHAR(500) is converted to TEXT, and VARCHAR(200000) is converted to MEDIUMTEXT. Similar
conversions occur for BINARY and VARBINARY, except that they are converted to a BLOB type.

Note that these conversions result in a change in behavior with regard to treatment of trailing spaces.

As of MySQL 5.0.3, a CHAR or BINARY column with a length specification greater than 255 is not
silently converted. Instead, an error occurs. From MySQL 5.0.6 on, silent conversion of VARCHAR and
VARBINARY columns with a length specification greater than 65535 does not occur if strict SQL mode is
enabled. Instead, an error occurs.

• Before MySQL 5.0.10, for a specification of DECIMAL(M,D), if M is not larger than D, it is adjusted
upward. For example, DECIMAL(10,10) becomes DECIMAL(11,10). As of MySQL 5.0.10,
DECIMAL(10,10) is created as specified.

• Specifying the CHARACTER SET binary attribute for a character data type causes the column
to be created as the corresponding binary data type: CHAR becomes BINARY, VARCHAR becomes
VARBINARY, and TEXT becomes BLOB. For the ENUM and SET data types, this does not occur; they are
created as declared. Suppose that you specify a table using this definition:

CREATE TABLE t
(
 c1 VARCHAR(10) CHARACTER SET binary,

CREATE TRIGGER Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1173

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 c2 TEXT CHARACTER SET binary,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

The resulting table has this definition:

CREATE TABLE t
(
 c1 VARBINARY(10),
 c2 BLOB,
 c3 ENUM('a','b','c') CHARACTER SET binary
);

To see whether MySQL used a data type other than the one you specified, issue a DESCRIBE or SHOW
CREATE TABLE statement after creating or altering the table.

Certain other data type changes can occur if you compress a table using myisampack. See
Section 14.1.3.3, “Compressed Table Characteristics”.

13.1.11 CREATE TRIGGER Syntax

CREATE
 [DEFINER = { user | CURRENT_USER }]
 TRIGGER trigger_name
 trigger_time trigger_event
 ON tbl_name FOR EACH ROW
 trigger_body

trigger_time: { BEFORE | AFTER }

trigger_event: { INSERT | UPDATE | DELETE }

This statement creates a new trigger. A trigger is a named database object that is associated with a table,
and that activates when a particular event occurs for the table. The trigger becomes associated with the
table named tbl_name, which must refer to a permanent table. You cannot associate a trigger with a
TEMPORARY table or a view. CREATE TRIGGER was added in MySQL 5.0.2.

Trigger names exist in the schema namespace, meaning that all triggers must have unique names within a
schema. Triggers in different schemas can have the same name.

This section describes CREATE TRIGGER syntax. For additional discussion, see Section 18.3.1, “Trigger
Syntax and Examples”.

In MySQL 5.0 CREATE TRIGGER requires the SUPER privilege.

The DEFINER clause determines the security context to be used when checking access privileges at
trigger activation time. It was added in MySQL 5.0.17. See later in this section for more information.

trigger_time is the trigger action time. It can be BEFORE or AFTER to indicate that the trigger activates
before or after each row to be modified.

trigger_event indicates the kind of operation that activates the trigger. These trigger_event values
are permitted:

• INSERT: The trigger activates whenever a new row is inserted into the table; for example, through
INSERT, LOAD DATA, and REPLACE statements.

• UPDATE: The trigger activates whenever a row is modified; for example, through UPDATE statements.

CREATE TRIGGER Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1174

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• DELETE: The trigger activates whenever a row is deleted from the table; for example, through DELETE
and REPLACE statements. DROP TABLE and TRUNCATE TABLE statements on the table do not activate
this trigger, because they do not use DELETE.

The trigger_event does not represent a literal type of SQL statement that activates the trigger so much
as it represents a type of table operation. For example, an INSERT trigger activates not only for INSERT
statements but also LOAD DATA statements because both statements insert rows into a table.

A potentially confusing example of this is the INSERT INTO ... ON DUPLICATE KEY UPDATE ...
syntax: a BEFORE INSERT trigger activates for every row, followed by either an AFTER INSERT trigger or
both the BEFORE UPDATE and AFTER UPDATE triggers, depending on whether there was a duplicate key
for the row.

Note

Cascaded foreign key actions do not activate triggers.

There cannot be multiple triggers for a given table that have the same trigger event and action time. For
example, you cannot have two BEFORE UPDATE triggers for a table. But you can have a BEFORE UPDATE
and a BEFORE INSERT trigger, or a BEFORE UPDATE and an AFTER UPDATE trigger.

trigger_body is the statement to execute when the trigger activates. To execute multiple statements,
use the BEGIN ... END compound statement construct. This also enables you to use the same
statements that are permissible within stored routines. See Section 13.6.1, “BEGIN ... END Compound-
Statement Syntax”. Some statements are not permitted in triggers; see Section C.1, “Restrictions on
Stored Programs”.

Within the trigger body, you can refer to columns in the subject table (the table associated with the trigger)
by using the aliases OLD and NEW. OLD.col_name refers to a column of an existing row before it is
updated or deleted. NEW.col_name refers to the column of a new row to be inserted or an existing row
after it is updated.

MySQL stores the sql_mode system variable setting in effect when a trigger is created, and always
executes the trigger body with this setting in force, regardless of the current server SQL mode when the
trigger begins executing.

The DEFINER clause specifies the MySQL account to be used when checking access privileges
at trigger activation time. If a user value is given, it should be a MySQL account specified as
'user_name'@'host_name' (the same format used in the GRANT statement), CURRENT_USER,
or CURRENT_USER(). The default DEFINER value is the user who executes the CREATE TRIGGER
statement. This is the same as specifying DEFINER = CURRENT_USER explicitly.

If you specify the DEFINER clause, these rules determine the legal DEFINER user values:

• If you do not have the SUPER privilege, the only legal user value is your own account, either specified
literally or by using CURRENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically legal account name. If the account
does not exist, a warning is generated.

• Although it is possible to create a trigger with a nonexistent DEFINER account, it is not a good idea for
such triggers to be activated until the account actually does exist. Otherwise, the behavior with respect to
privilege checking is undefined.

Note: Because MySQL currently requires the SUPER privilege for the use of CREATE TRIGGER, only the
second of the preceding rules applies. (MySQL 5.1.6 implements the TRIGGER privilege and requires

http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_trigger

CREATE VIEW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1175

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

that privilege for trigger creation, so at that point both rules come into play and SUPER is required only for
specifying a DEFINER value other than your own account.)

From MySQL 5.0.17 on, MySQL takes the DEFINER user into account when checking trigger privileges as
follows:

• At CREATE TRIGGER time, the user who issues the statement must have the SUPER privilege.

• At trigger activation time, privileges are checked against the DEFINER user. This user must have these
privileges:

• The SUPER privilege.

• The SELECT privilege for the subject table if references to table columns occur using OLD.col_name
or NEW.col_name in the trigger body.

• The UPDATE privilege for the subject table if table columns are targets of SET NEW.col_name =
value assignments in the trigger body.

• Whatever other privileges normally are required for the statements executed by the trigger.

Before MySQL 5.0.17, DEFINER is not available and MySQL checks trigger privileges like this:

• At CREATE TRIGGER time, the user who issues the statement must have the SUPER privilege.

• At trigger activation time, privileges are checked against the user whose actions cause the trigger to be
activated. This user must have whatever privileges normally are required for the statements executed by
the trigger.

For more information about trigger security, see Section 18.5, “Access Control for Stored Programs and
Views”.

Within a trigger body, the CURRENT_USER() function returns the account used to check privileges
at trigger activation time. Consistent with the privilege-checking rules just given, CURRENT_USER()
returns the DEFINER user from MySQL 5.0.17 on. Before 5.0.17, CURRENT_USER() returns the user
whose actions caused the trigger to be activated. For information about user auditing within triggers, see
Section 6.3.9, “SQL-Based MySQL Account Activity Auditing”.

If you use LOCK TABLES to lock a table that has triggers, the tables used within the trigger are also locked,
as described in Section 13.3.5.2, “LOCK TABLES and Triggers”.

For additional discussion of trigger use, see Section 18.3.1, “Trigger Syntax and Examples”.

13.1.12 CREATE VIEW Syntax

CREATE
 [OR REPLACE]
 [ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
 [DEFINER = { user | CURRENT_USER }]
 [SQL SECURITY { DEFINER | INVOKER }]
 VIEW view_name [(column_list)]
 AS select_statement
 [WITH [CASCADED | LOCAL] CHECK OPTION]

The CREATE VIEW statement creates a new view, or replaces an existing view if the OR REPLACE clause
is given. This statement was added in MySQL 5.0.1. If the view does not exist, CREATE OR REPLACE
VIEW is the same as CREATE VIEW. If the view does exist, CREATE OR REPLACE VIEW is the same as
ALTER VIEW.

CREATE VIEW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1176

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The select_statement is a SELECT statement that provides the definition of the view. (Selecting from
the view selects, in effect, using the SELECT statement.) The select_statement can select from base
tables or other views.

The view definition is “frozen” at creation time and is not affected by subsequent changes to the definitions
of the underlying tables. For example, if a view is defined as SELECT * on a table, new columns added to
the table later do not become part of the view, and columns dropped from the table will result in an error
when selecting from the view.

The ALGORITHM clause affects how MySQL processes the view. The DEFINER and SQL SECURITY
clauses specify the security context to be used when checking access privileges at view invocation
time. The WITH CHECK OPTION clause can be given to constrain inserts or updates to rows in tables
referenced by the view. These clauses are described later in this section.

The CREATE VIEW statement requires the CREATE VIEW privilege for the view, and some privilege for
each column selected by the SELECT statement. For columns used elsewhere in the SELECT statement,
you must have the SELECT privilege. If the OR REPLACE clause is present, you must also have the DROP
privilege for the view. CREATE VIEW might also require the SUPER privilege, depending on the DEFINER
value, as described later in this section.

When a view is referenced, privilege checking occurs as described later in this section.

A view belongs to a database. By default, a new view is created in the default database. To create the
view explicitly in a given database, use db_name.view_name syntax to qualify the view name with the
database name:

mysql> CREATE VIEW test.v AS SELECT * FROM t;

Within a database, base tables and views share the same namespace, so a base table and a view cannot
have the same name.

Columns retrieved by the SELECT statement can be simple references to table columns, or expressions
that use functions, constant values, operators, and so forth.

A view must have unique column names with no duplicates, just like a base table. By default, the names
of the columns retrieved by the SELECT statement are used for the view column names. To define explicit
names for the view columns, the optional column_list clause can be given as a list of comma-separated
identifiers. The number of names in column_list must be the same as the number of columns retrieved
by the SELECT statement.

Note

Prior to MySQL 5.0.72, when you modify an existing view, the server saves a
backup of the current view definition under the view database directory, in a
subdirectory named arc. The backup file for a view v is named v.frm-00001. If
you alter the view again, the next backup is named v.frm-00002. The three latest
view backup definitions are stored.

Backed up view definitions are not preserved by mysqldump, or any other such
programs, but you can retain them using a file copy operation. However, they are
not needed for anything but to provide you with a backup of your previous view
definition.

It is safe to remove these backup definitions, but only while mysqld is not running.
If you delete the arc subdirectory or its files while mysqld is running, an error
occurs the next time you try to alter the view:

CREATE VIEW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1177

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> ALTER VIEW v AS SELECT * FROM t;
ERROR 6 (HY000): Error on delete of '.\test\arc/v.frm-0004' (Errcode:
2)

Unqualified table or view names in the SELECT statement are interpreted with respect to the default
database. A view can refer to tables or views in other databases by qualifying the table or view name with
the appropriate database name.

A view can be created from many kinds of SELECT statements. It can refer to base tables or other views. It
can use joins, UNION, and subqueries. The SELECT need not even refer to any tables.

The following example defines a view that selects two columns from another table as well as an expression
calculated from those columns:

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
+------+-------+-------+

A view definition is subject to the following restrictions:

• The SELECT statement cannot contain a subquery in the FROM clause.

• The SELECT statement cannot refer to system variables or user-defined variables.

• Within a stored program, the SELECT statement cannot refer to program parameters or local variables.

• The SELECT statement cannot refer to prepared statement parameters.

• Any table or view referred to in the definition must exist. After the view has been created, it is possible to
drop a table or view that the definition refers to. In this case, use of the view results in an error. To check
a view definition for problems of this kind, use the CHECK TABLE statement.

• The definition cannot refer to a TEMPORARY table, and you cannot create a TEMPORARY view.

• You cannot associate a trigger with a view.

• As of MySQL 5.0.52, aliases for column names in the SELECT statement are checked against the
maximum column length of 64 characters (not the maximum alias length of 256 characters).

ORDER BY is permitted in a view definition, but it is ignored if you select from a view using a statement that
has its own ORDER BY.

For other options or clauses in the definition, they are added to the options or clauses of the statement that
references the view, but the effect is undefined. For example, if a view definition includes a LIMIT clause,
and you select from the view using a statement that has its own LIMIT clause, it is undefined which limit
applies. This same principle applies to options such as ALL, DISTINCT, or SQL_SMALL_RESULT that
follow the SELECT keyword, and to clauses such as INTO, FOR UPDATE, LOCK IN SHARE MODE, and
PROCEDURE.

If you create a view and then change the query processing environment by changing system variables, that
may affect the results you get from the view:

CREATE VIEW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1178

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> CREATE VIEW v (mycol) AS SELECT 'abc';
Query OK, 0 rows affected (0.01 sec)

mysql> SET sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT "mycol" FROM v;
+-------+
| mycol |
+-------+
| mycol |
+-------+
1 row in set (0.01 sec)

mysql> SET sql_mode = 'ANSI_QUOTES';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT "mycol" FROM v;
+-------+
| mycol |
+-------+
| abc |
+-------+
1 row in set (0.00 sec)

The DEFINER and SQL SECURITY clauses determine which MySQL account to use when checking
access privileges for the view when a statement is executed that references the view. These clauses were
addded in MySQL 5.0.13, but have no effect until MySQL 5.0.16. The legal SQL SECURITY characteristic
values are DEFINER (the default) and INVOKER. These indicate that the required privileges must be held
by the user who defined or invoked the view, respectively.

If a user value is given for the DEFINER clause, it should be a MySQL account specified as
'user_name'@'host_name' (the same format used in the GRANT statement), CURRENT_USER, or
CURRENT_USER(). The default DEFINER value is the user who executes the CREATE VIEW statement.
This is the same as specifying DEFINER = CURRENT_USER explicitly.

If you specify the DEFINER clause, these rules determine the valid DEFINER user values:

• If you do not have the SUPER privilege, the only valid user value is your own account, either specified
literally or by using CURRENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically valid account name. If the account
does not exist, a warning is generated.

• Although it is possible to create a view with a nonexistent DEFINER account, an error occurs when the
view is referenced if the SQL SECURITY value is DEFINER but the definer account does not exist.

For more information about view security, see Section 18.5, “Access Control for Stored Programs and
Views”.

Within a view definition, CURRENT_USER returns the view's DEFINER value by default as of MySQL
5.0.24. For older versions, and for views defined with the SQL SECURITY INVOKER characteristic,
CURRENT_USER returns the account for the view's invoker. For information about user auditing within
views, see Section 6.3.9, “SQL-Based MySQL Account Activity Auditing”.

Within a stored routine that is defined with the SQL SECURITY DEFINER characteristic, CURRENT_USER
returns the routine's DEFINER value. This also affects a view defined within such a routine, if the view
definition contains a DEFINER value of CURRENT_USER.

As of MySQL 5.0.16 (when the DEFINER and SQL SECURITY clauses were implemented), view privileges
are checked like this:

CREATE VIEW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1179

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• At view definition time, the view creator must have the privileges needed to use the top-level objects
accessed by the view. For example, if the view definition refers to table columns, the creator must have
some privilege for each column in the select list of the definition, and the SELECT privilege for each
column used elsewhere in the definition. If the definition refers to a stored function, only the privileges
needed to invoke the function can be checked. The privileges required at function invocation time can be
checked only as it executes: For different invocations, different execution paths within the function might
be taken.

• The user who references a view must have appropriate privileges to access it (SELECT to select from it,
INSERT to insert into it, and so forth.)

• When a view has been referenced, privileges for objects accessed by the view are checked against the
privileges held by the view DEFINER account or invoker, depending on whether the SQL SECURITY
characteristic is DEFINER or INVOKER, respectively.

• If reference to a view causes execution of a stored function, privilege checking for statements executed
within the function depend on whether the function SQL SECURITY characteristic is DEFINER or
INVOKER. If the security characteristic is DEFINER, the function runs with the privileges of the DEFINER
account. If the characteristic is INVOKER, the function runs with the privileges determined by the view's
SQL SECURITY characteristic.

Prior to MySQL 5.0.16 (before the DEFINER and SQL SECURITY clauses were implemented), privileges
required for objects used in a view are checked at view creation time.

Example: A view might depend on a stored function, and that function might invoke other stored routines.
For example, the following view invokes a stored function f():

CREATE VIEW v AS SELECT * FROM t WHERE t.id = f(t.name);

Suppose that f() contains a statement such as this:

IF name IS NULL then
 CALL p1();
ELSE
 CALL p2();
END IF;

The privileges required for executing statements within f() need to be checked when f() executes. This
might mean that privileges are needed for p1() or p2(), depending on the execution path within f().
Those privileges must be checked at runtime, and the user who must possess the privileges is determined
by the SQL SECURITY values of the view v and the function f().

The DEFINER and SQL SECURITY clauses for views are extensions to standard SQL. In standard SQL,
views are handled using the rules for SQL SECURITY DEFINER. The standard says that the definer of
the view, which is the same as the owner of the view's schema, gets applicable privileges on the view (for
example, SELECT) and may grant them. MySQL has no concept of a schema “owner”, so MySQL adds
a clause to identify the definer. The DEFINER clause is an extension where the intent is to have what the
standard has; that is, a permanent record of who defined the view. This is why the default DEFINER value
is the account of the view creator.

If you invoke a view that was created before MySQL 5.0.13, it is treated as though it was created with a
SQL SECURITY DEFINER characteristic and with a DEFINER value that is the same as your account.
However, because the actual definer is unknown, MySQL issues a warning. To eliminate the warning, it is
sufficient to re-create the view so that the view definition includes a DEFINER clause.

The optional ALGORITHM clause is a MySQL extension to standard SQL. It affects how MySQL processes
the view. ALGORITHM takes three values: MERGE, TEMPTABLE, or UNDEFINED. The default algorithm

DROP DATABASE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1180

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

is UNDEFINED if no ALGORITHM clause is present. For more information, see Section 18.4.2, “View
Processing Algorithms”.

Some views are updatable. That is, you can use them in statements such as UPDATE, DELETE, or INSERT
to update the contents of the underlying table. For a view to be updatable, there must be a one-to-one
relationship between the rows in the view and the rows in the underlying table. There are also certain other
constructs that make a view nonupdatable.

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts or updates to
rows except those for which the WHERE clause in the select_statement is true. The WITH CHECK
OPTION clause was implemented in MySQL 5.0.2.

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords determine
the scope of check testing when the view is defined in terms of another view. The LOCAL keyword restricts
the CHECK OPTION only to the view being defined. CASCADED causes the checks for underlying views to
be evaluated as well. When neither keyword is given, the default is CASCADED.

For more information about updatable views and the WITH CHECK OPTION clause, see Section 18.4.3,
“Updatable and Insertable Views”, and Section 18.4.4, “The View WITH CHECK OPTION Clause”.

13.1.13 DROP DATABASE Syntax

DROP {DATABASE | SCHEMA} [IF EXISTS] db_name

DROP DATABASE drops all tables in the database and deletes the database. Be very careful with this
statement! To use DROP DATABASE, you need the DROP privilege on the database. DROP SCHEMA is a
synonym for DROP DATABASE as of MySQL 5.0.2.

Important

When a database is dropped, user privileges on the database are not automatically
dropped. See Section 13.7.1.3, “GRANT Syntax”.

IF EXISTS is used to prevent an error from occurring if the database does not exist.

If the default database is dropped, the default database is unset (the DATABASE() function returns NULL).

If you use DROP DATABASE on a symbolically linked database, both the link and the original database are
deleted.

DROP DATABASE returns the number of tables that were removed. This corresponds to the number of
.frm files removed.

The DROP DATABASE statement removes from the given database directory those files and directories that
MySQL itself may create during normal operation:

• All files with the following extensions.

.BAK .DAT .HSH .MRG

.MYD .MYI .TRG .TRN

.db .frm .ibd .ndb

• All subdirectories with names that consist of two hex digits 00-ff. These are subdirectories used for
RAID tables. (These directories are not removed as of MySQL 5.0, when support for RAID tables was

DROP FUNCTION Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1181

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

removed. You should convert any existing RAID tables and remove these directories manually before
upgrading to MySQL 5.0. See Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”.)

• The db.opt file, if it exists.

If other files or directories remain in the database directory after MySQL removes those just listed, the
database directory cannot be removed. In this case, you must remove any remaining files or directories
manually and issue the DROP DATABASE statement again.

Dropping a database does not remove any TEMPORARY tables that were created in that database.
TEMPORARY tables are automatically removed when the session that created them ends. See Temporary
Tables.

You can also drop databases with mysqladmin. See Section 4.5.2, “mysqladmin — Client for
Administering a MySQL Server”.

13.1.14 DROP FUNCTION Syntax

The DROP FUNCTION statement is used to drop stored functions and user-defined functions (UDFs):

• For information about dropping stored functions, see Section 13.1.16, “DROP PROCEDURE and DROP
FUNCTION Syntax”.

• For information about dropping user-defined functions, see Section 13.7.3.2, “DROP FUNCTION
Syntax”.

13.1.15 DROP INDEX Syntax

DROP INDEX index_name ON tbl_name

DROP INDEX drops the index named index_name from the table tbl_name. This statement is mapped to
an ALTER TABLE statement to drop the index. See Section 13.1.4, “ALTER TABLE Syntax”.

To drop a primary key, the index name is always PRIMARY, which must be specified as a quoted identifier
because PRIMARY is a reserved word:

DROP INDEX `PRIMARY` ON t;

13.1.16 DROP PROCEDURE and DROP FUNCTION Syntax

DROP {PROCEDURE | FUNCTION} [IF EXISTS] sp_name

This statement is used to drop a stored procedure or function. That is, the specified routine is removed
from the server. As of MySQL 5.0.3, you must have the ALTER ROUTINE privilege for the routine. (If
the automatic_sp_privileges system variable is enabled, that privilege and EXECUTE are granted
automatically to the routine creator when the routine is created and dropped from the creator when the
routine is dropped. See Section 18.2.2, “Stored Routines and MySQL Privileges”.)

The IF EXISTS clause is a MySQL extension. It prevents an error from occurring if the procedure or
function does not exist. A warning is produced that can be viewed with SHOW WARNINGS.

Note

DROP PROCEDURE IF EXISTS and DROP FUNCTION IF EXISTS are not written
to the binary log (and thus not replicated) if the stored procedure or function named

DROP TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1182

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

in the DROP statement does not exist on the master. This is a known issue, which is
resolved in MySQL 5.1 and later. (Bug #13684)

DROP FUNCTION is also used to drop user-defined functions (see Section 13.7.3.2, “DROP FUNCTION
Syntax”).

13.1.17 DROP TABLE Syntax

DROP [TEMPORARY] TABLE [IF EXISTS]
 tbl_name [, tbl_name] ...
 [RESTRICT | CASCADE]

DROP TABLE removes one or more tables. You must have the DROP privilege for each table. All table
data and the table definition are removed, so be careful with this statement! If any of the tables named in
the argument list do not exist, MySQL returns an error indicating by name which nonexisting tables it was
unable to drop, but it also drops all of the tables in the list that do exist.

Important

When a table is dropped, user privileges on the table are not automatically dropped.
See Section 13.7.1.3, “GRANT Syntax”.

Use IF EXISTS to prevent an error from occurring for tables that do not exist. A NOTE is generated for
each nonexistent table when using IF EXISTS. See Section 13.7.5.37, “SHOW WARNINGS Syntax”.

RESTRICT and CASCADE are permitted to make porting easier. In MySQL 5.0, they do nothing.

Note

DROP TABLE automatically commits the current active transaction, unless you use
the TEMPORARY keyword.

The TEMPORARY keyword has the following effects:

• The statement drops only TEMPORARY tables.

• The statement does not end an ongoing transaction.

• No access rights are checked. (A TEMPORARY table is visible only to the session that created it, so no
check is necessary.)

Using TEMPORARY is a good way to ensure that you do not accidentally drop a non-TEMPORARY table.

13.1.18 DROP TRIGGER Syntax

DROP TRIGGER [IF EXISTS] [schema_name.]trigger_name

This statement drops a trigger. The schema (database) name is optional. If the schema is omitted, the
trigger is dropped from the default schema. DROP TRIGGER was added in MySQL 5.0.2. Its use requires
the SUPER privilege.

Use IF EXISTS to prevent an error from occurring for a trigger that does not exist. A NOTE is generated
for a nonexistent trigger when using IF EXISTS. See Section 13.7.5.37, “SHOW WARNINGS Syntax”.
The IF EXISTS clause was added in MySQL 5.0.32.

Triggers for a table are also dropped if you drop the table.

DROP VIEW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1183

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

Prior to MySQL 5.0.10, the table name was required instead of the schema
name (table_name.trigger_name). When upgrading from a previous version
of MySQL 5.0 to MySQL 5.0.10 or newer, you must drop all triggers and re-
create them. Otherwise, DROP TRIGGER does not work for older triggers after
the upgrade. See Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”, for a
suggested upgrade procedure.

In addition, triggers created in MySQL 5.0.16 or later cannot be dropped following
a downgrade to MySQL 5.0.15 or earlier. If you wish to perform such a downgrade,
you must also in this case drop all triggers prior to the downgrade, and then re-
create them afterward.

(For more information about these two issues, see Bug #15921 and Bug #18588.)

13.1.19 DROP VIEW Syntax

DROP VIEW [IF EXISTS]
 view_name [, view_name] ...
 [RESTRICT | CASCADE]

DROP VIEW removes one or more views. You must have the DROP privilege for each view. If any of
the views named in the argument list do not exist, MySQL returns an error indicating by name which
nonexisting views it was unable to drop, but it also drops all of the views in the list that do exist.

The IF EXISTS clause prevents an error from occurring for views that don't exist. When this clause
is given, a NOTE is generated for each nonexistent view. See Section 13.7.5.37, “SHOW WARNINGS
Syntax”.

RESTRICT and CASCADE, if given, are parsed and ignored.

This statement was added in MySQL 5.0.1.

13.1.20 RENAME TABLE Syntax

RENAME TABLE tbl_name TO new_tbl_name
 [, tbl_name2 TO new_tbl_name2] ...

This statement renames one or more tables. The rename operation is done atomically, which means that
no other session can access any of the tables while the rename is running.

For example, a table named old_table can be renamed to new_table as shown here:

RENAME TABLE old_table TO new_table;

This statement is equivalent to the following ALTER TABLE statement:

ALTER TABLE old_table RENAME new_table;

If the statement renames more than one table, renaming operations are done from left to right. If you want
to swap two table names, you can do so like this (assuming that tmp_table does not already exist):

TRUNCATE TABLE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1184

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

RENAME TABLE old_table TO tmp_table,
 new_table TO old_table,
 tmp_table TO new_table;

MySQL checks the destination table name before checking whether the source table exists. For example, if
new_table already exists and old_table does not, the following statement fails as shown here:

mysql> SHOW TABLES;
+----------------+
| Tables_in_mydb |
+----------------+
| table_a |
+----------------+
1 row in set (0.00 sec)

mysql> RENAME TABLE table_b TO table_a;
ERROR 1050 (42S01): Table 'table_a' already exists

As long as two databases are on the same file system, you can use RENAME TABLE to move a table from
one database to another:

RENAME TABLE current_db.tbl_name TO other_db.tbl_name;

You can use this method to move all tables from one database to a different one, in effect renaming the
database. (MySQL has no single statement to perform this task.)

Foreign keys that point to the renamed table are not automatically updated. In such cases, you must drop
and re-create the foreign keys in order for them to function properly.

As of MySQL 5.0.14, RENAME TABLE also works for views, as long as you do not try to rename a view into
a different database.

Any privileges granted specifically for the renamed table or view are not migrated to the new name. They
must be changed manually.

When you execute RENAME TABLE, you cannot have any locked tables or active transactions. You must
also have the ALTER and DROP privileges on the original table, and the CREATE and INSERT privileges on
the new table.

If MySQL encounters any errors in a multiple-table rename, it does a reverse rename for all renamed
tables to return everything to its original state.

You cannot use RENAME TABLE to rename a TEMPORARY table. However, you can use ALTER TABLE
with temporary tables.

Like RENAME TABLE, ALTER TABLE ... RENAME can also be used to move a table to a different
database. Regardless of the statement used to perform the rename, if the rename operation would move
the table to a database located on a different file system, the success of the outcome is platform specific
and depends on the underlying operating system calls used to move the table files.

13.1.21 TRUNCATE TABLE Syntax

TRUNCATE [TABLE] tbl_name

TRUNCATE TABLE empties a table completely. Logically, this is equivalent to a DELETE statement that
deletes all rows, but there are practical differences under some circumstances.

Data Manipulation Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1185

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For an InnoDB table before version 5.0.3, InnoDB processes TRUNCATE TABLE by deleting rows one
by one. As of MySQL 5.0.3, row by row deletion is used only if there are any FOREIGN KEY constraints
that reference the table. If there are no FOREIGN KEY constraints, InnoDB performs fast truncation by
dropping the original table and creating an empty one with the same definition, which is much faster than
deleting rows one by one. (When fast truncation is used, it resets any AUTO_INCREMENT counter to zero.
From MySQL 5.0.13 on, the AUTO_INCREMENT counter is reset to zero by TRUNCATE TABLE, regardless
of whether there is a foreign key constraint.)

In the case that FOREIGN KEY constraints reference the table, InnoDB deletes rows one by one and
processes the constraints on each one. If the FOREIGN KEY constraint specifies DELETE CASCADE, rows
from the child (referenced) table are deleted, and the truncated table becomes empty. If the FOREIGN KEY
constraint does not specify CASCADE, the TRUNCATE TABLE statement deletes rows one by one and stops
if it encounters a parent row that is referenced by the child, returning this error:

ERROR 1451 (23000): Cannot delete or update a parent row: a foreign
key constraint fails (`test`.`child`, CONSTRAINT `child_ibfk_1`
FOREIGN KEY (`parent_id`) REFERENCES `parent` (`id`))

This is the same as a DELETE statement with no WHERE clause.

The count of rows affected by TRUNCATE TABLE is accurate only when it is mapped to a DELETE
statement.

For other storage engines, TRUNCATE TABLE differs from DELETE in the following ways in MySQL 5.0:

• Truncate operations drop and re-create the table, which is much faster than deleting rows one by one,
particularly for large tables.

• As of MySQL 5.0.8, truncate operations cause an implicit commit. Before 5.0.8, truncate operations are
not transaction-safe; an error occurs when attempting one in the course of an active transaction.

• Truncation operations cannot be performed if the session holds an active table lock.

• Truncation operations do not return a meaningful value for the number of deleted rows. The usual result
is “0 rows affected,” which should be interpreted as “no information.”

• As long as the table format file tbl_name.frm is valid, the table can be re-created as an empty table
with TRUNCATE TABLE, even if the data or index files have become corrupted.

• The table handler does not remember the last used AUTO_INCREMENT value, but starts counting from
the beginning. This is true even for MyISAM and InnoDB, which normally do not reuse sequence values.

• Since truncation of a table does not make any use of DELETE, the TRUNCATE TABLE statement does
not invoke ON DELETE triggers.

13.2 Data Manipulation Statements

13.2.1 CALL Syntax

CALL sp_name([parameter[,...]])
CALL sp_name[()]

The CALL statement invokes a stored procedure that was defined previously with CREATE PROCEDURE.

As of MySQL 5.0.30, stored procedures that take no arguments can be invoked without parentheses. That
is, CALL p() and CALL p are equivalent.

CALL Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1186

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CALL can pass back values to its caller using parameters that are declared as OUT or INOUT parameters.
When the procedure returns, a client program can also obtain the number of rows affected for the final
statement executed within the routine: At the SQL level, call the ROW_COUNT() function; from the C API,
call the mysql_affected_rows() function.

To get back a value from a procedure using an OUT or INOUT parameter, pass the parameter by means of
a user variable, and then check the value of the variable after the procedure returns. (If you are calling the
procedure from within another stored procedure or function, you can also pass a routine parameter or local
routine variable as an IN or INOUT parameter.) For an INOUT parameter, initialize its value before passing
it to the procedure. The following procedure has an OUT parameter that the procedure sets to the current
server version, and an INOUT value that the procedure increments by one from its current value:

CREATE PROCEDURE p (OUT ver_param VARCHAR(25), INOUT incr_param INT)
BEGIN
 # Set value of OUT parameter
 SELECT VERSION() INTO ver_param;
 # Increment value of INOUT parameter
 SET incr_param = incr_param + 1;
END;

Before calling the procedure, initialize the variable to be passed as the INOUT parameter. After calling the
procedure, the values of the two variables will have been set or modified:

mysql> SET @increment = 10;
mysql> CALL p(@version, @increment);
mysql> SELECT @version, @increment;
+------------+------------+
| @version | @increment |
+------------+------------+
| 5.0.25-log | 11 |
+------------+------------+

In prepared CALL statements used with PREPARE and EXECUTE, placeholder support is available in
MySQL 5.0 for IN parameters, but not for OUT or INOUT parameters. To work around this limitation for OUT
and INOUT parameters, to forgo the use of placeholders: Refer to user variables in the CALL statement
itself and do not specify them in the EXECUTE statement:

mysql> SET @increment = 10;
mysql> PREPARE s FROM 'CALL p(@version, @increment)';
mysql> EXECUTE s;
mysql> SELECT @version, @increment;
+-----------------+------------+
| @version | @increment |
+-----------------+------------+
| 6.0.7-alpha-log | 11 |
+-----------------+------------+

To write C programs that use the CALL SQL statement to execute stored procedures that produce result
sets, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each CALL returns a result to
indicate the call status, in addition to any result sets that might be returned by statements executed within
the procedure. CLIENT_MULTI_RESULTS must also be enabled if CALL is used to execute any stored
procedure that contains prepared statements. It cannot be determined when such a procedure is loaded
whether those statements will produce result sets, so it is necessary to assume that they will.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(), either explicitly by
passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing CLIENT_MULTI_STATEMENTS
(which also enables CLIENT_MULTI_RESULTS).

DELETE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1187

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To process the result of a CALL statement executed using mysql_query() or mysql_real_query(),
use a loop that calls mysql_next_result() to determine whether there are more results. For an
example, see Section 20.6.16, “C API Support for Multiple Statement Execution”.

For programs written in a language that provides a MySQL interface, there is no native method for
directly retrieving the results of OUT or INOUT parameters from CALL statements. To get the parameter
values, pass user-defined variables to the procedure in the CALL statement and then execute a SELECT
statement to produce a result set containing the variable values. To handle an INOUT parameter, execute
a statement prior to the CALL that sets the corresponding user variable to the value to be passed to the
procedure.

The following example illustrates the technique (without error checking) for the stored procedure p
described earlier that has an OUT parameter and an INOUT parameter:

mysql_query(mysql, "SET @increment = 10");
mysql_query(mysql, "CALL p(@version, @increment)");
mysql_query(mysql, "SELECT @version, @increment");
result = mysql_store_result(mysql);
row = mysql_fetch_row(result);
mysql_free_result(result);

After the preceding code executes, row[0] and row[1] contain the values of @version and
@increment, respectively.

13.2.2 DELETE Syntax

Single-table syntax:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name
 [WHERE where_condition]
 [ORDER BY ...]
 [LIMIT row_count]

Multiple-table syntax:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
 tbl_name[.*] [, tbl_name[.*]] ...
 FROM table_references
 [WHERE where_condition]

Or:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
 FROM tbl_name[.*] [, tbl_name[.*]] ...
 USING table_references
 [WHERE where_condition]

For the single-table syntax, the DELETE statement deletes rows from tbl_name and returns a count
of the number of deleted rows. This count can be obtained by calling the ROW_COUNT() function (see
Section 12.13, “Information Functions”). The WHERE clause, if given, specifies the conditions that identify
which rows to delete. With no WHERE clause, all rows are deleted. If the ORDER BY clause is specified, the
rows are deleted in the order that is specified. The LIMIT clause places a limit on the number of rows that
can be deleted.

For the multiple-table syntax, DELETE deletes from each tbl_name the rows that satisfy the conditions. In
this case, ORDER BY and LIMIT cannot be used.

DELETE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1188

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

where_condition is an expression that evaluates to true for each row to be deleted. It is specified as
described in Section 13.2.8, “SELECT Syntax”.

You cannot delete from a table and select from the same table in a subquery.

You need the DELETE privilege on a table to delete rows from it. You need only the SELECT privilege for
any columns that are only read, such as those named in the WHERE clause.

As stated, a DELETE statement with no WHERE clause deletes all rows. A faster way to do this, when
you do not need to know the number of deleted rows, is to use TRUNCATE TABLE. However, within a
transaction or if you have a lock on the table, TRUNCATE TABLE cannot be used whereas DELETE can.
See Section 13.1.21, “TRUNCATE TABLE Syntax”, and Section 13.3.5, “LOCK TABLES and UNLOCK
TABLES Syntax”.

If you delete the row containing the maximum value for an AUTO_INCREMENT column, the value is reused
later for a BDB table, but not for a MyISAM or InnoDB table. If you delete all rows in the table with DELETE
FROM tbl_name (without a WHERE clause) in autocommit mode, the sequence starts over for all storage
engines except InnoDB and MyISAM. There are some exceptions to this behavior for InnoDB tables, as
discussed in Section 14.2.3.3, “AUTO_INCREMENT Handling in InnoDB”.

For MyISAM and BDB tables, you can specify an AUTO_INCREMENT secondary column in a multiple-
column key. In this case, reuse of values deleted from the top of the sequence occurs even for MyISAM
tables. See Section 3.6.9, “Using AUTO_INCREMENT”.

The DELETE statement supports the following modifiers:

• If you specify LOW_PRIORITY, the server delays execution of the DELETE until no other clients are
reading from the table. This affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE).

• For MyISAM tables, if you use the QUICK keyword, the storage engine does not merge index leaves
during delete, which may speed up some kinds of delete operations.

• The IGNORE keyword causes MySQL to ignore errors during the process of deleting rows. (Errors
encountered during the parsing stage are processed in the usual manner.) Errors that are ignored due to
the use of IGNORE are returned as warnings.

The speed of delete operations may also be affected by factors discussed in Section 8.2.2.3, “Speed of
DELETE Statements”.

In MyISAM tables, deleted rows are maintained in a linked list and subsequent INSERT operations reuse
old row positions. To reclaim unused space and reduce file sizes, use the OPTIMIZE TABLE statement or
the myisamchk utility to reorganize tables. OPTIMIZE TABLE is easier to use, but myisamchk is faster.
See Section 13.7.2.5, “OPTIMIZE TABLE Syntax”, and Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”.

The QUICK modifier affects whether index leaves are merged for delete operations. DELETE QUICK is
most useful for applications where index values for deleted rows are replaced by similar index values from
rows inserted later. In this case, the holes left by deleted values are reused.

DELETE QUICK is not useful when deleted values lead to underfilled index blocks spanning a range of
index values for which new inserts occur again. In this case, use of QUICK can lead to wasted space in the
index that remains unreclaimed. Here is an example of such a scenario:

1. Create a table that contains an indexed AUTO_INCREMENT column.

2. Insert many rows into the table. Each insert results in an index value that is added to the high end of
the index.

DELETE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1189

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

3. Delete a block of rows at the low end of the column range using DELETE QUICK.

In this scenario, the index blocks associated with the deleted index values become underfilled but are not
merged with other index blocks due to the use of QUICK. They remain underfilled when new inserts occur,
because new rows do not have index values in the deleted range. Furthermore, they remain underfilled
even if you later use DELETE without QUICK, unless some of the deleted index values happen to lie in
index blocks within or adjacent to the underfilled blocks. To reclaim unused index space under these
circumstances, use OPTIMIZE TABLE.

If you are going to delete many rows from a table, it might be faster to use DELETE QUICK followed by
OPTIMIZE TABLE. This rebuilds the index rather than performing many index block merge operations.

The MySQL-specific LIMIT row_count option to DELETE tells the server the maximum number of rows
to be deleted before control is returned to the client. This can be used to ensure that a given DELETE
statement does not take too much time. You can simply repeat the DELETE statement until the number of
affected rows is less than the LIMIT value.

If the DELETE statement includes an ORDER BY clause, rows are deleted in the order specified by the
clause. This is useful primarily in conjunction with LIMIT. For example, the following statement finds rows
matching the WHERE clause, sorts them by timestamp_column, and deletes the first (oldest) one:

DELETE FROM somelog WHERE user = 'jcole'
ORDER BY timestamp_column LIMIT 1;

ORDER BY may also be useful in some cases to delete rows in an order required to avoid referential
integrity violations.

If you are deleting many rows from a large table, you may exceed the lock table size for an InnoDB table.
To avoid this problem, or simply to minimize the time that the table remains locked, the following strategy
(which does not use DELETE at all) might be helpful:

1. Select the rows not to be deleted into an empty table that has the same structure as the original table:

INSERT INTO t_copy SELECT * FROM t WHERE ... ;

2. Use RENAME TABLE to atomically move the original table out of the way and rename the copy to the
original name:

RENAME TABLE t TO t_old, t_copy TO t;

3. Drop the original table:

DROP TABLE t_old;

No other sessions can access the tables involved while RENAME TABLE executes, so the rename
operation is not subject to concurrency problems. See Section 13.1.20, “RENAME TABLE Syntax”.

You can specify multiple tables in a DELETE statement to delete rows from one or more tables depending
on the particular condition in the WHERE clause. However, you cannot use ORDER BY or LIMIT in a
multiple-table DELETE. The table_references clause lists the tables involved in the join. Its syntax is
described in Section 13.2.8.2, “JOIN Syntax”.

For the first multiple-table syntax, only matching rows from the tables listed before the FROM clause are
deleted. For the second multiple-table syntax, only matching rows from the tables listed in the FROM clause

DELETE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1190

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

(before the USING clause) are deleted. The effect is that you can delete rows from many tables at the
same time and have additional tables that are used only for searching:

DELETE t1, t2 FROM t1 INNER JOIN t2 INNER JOIN t3
WHERE t1.id=t2.id AND t2.id=t3.id;

Or:

DELETE FROM t1, t2 USING t1 INNER JOIN t2 INNER JOIN t3
WHERE t1.id=t2.id AND t2.id=t3.id;

These statements use all three tables when searching for rows to delete, but delete matching rows only
from tables t1 and t2.

The preceding examples use INNER JOIN, but multiple-table DELETE statements can use other types of
join permitted in SELECT statements, such as LEFT JOIN. For example, to delete rows that exist in t1
that have no match in t2, use a LEFT JOIN:

DELETE t1 FROM t1 LEFT JOIN t2 ON t1.id=t2.id WHERE t2.id IS NULL;

The syntax permits .* after each tbl_name for compatibility with Access.

If you use a multiple-table DELETE statement involving InnoDB tables for which there are foreign key
constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/child
relationship. In this case, the statement fails and rolls back. Instead, you should delete from a single table
and rely on the ON DELETE capabilities that InnoDB provides to cause the other tables to be modified
accordingly.

Note

If you declare an alias for a table, you must use the alias when referring to the table:

DELETE t1 FROM test AS t1, test2 WHERE ...

Table aliases in a multiple-table DELETE should be declared only in the table_references part of the
statement. Declaration of aliases other than in the table_references part should be avoided because
that can lead to ambiguous statements that have unexpected results such as deleting rows from the wrong
table. This is such a statement:

DELETE t1 AS a2 FROM t1 AS a1 INNER JOIN t2 AS a2;

For alias references in the list of tables from which to delete rows in a multiple-table delete, the default
database is used unless one is specified explicitly. For example, if the default database is db1, the
following statement does not work because the unqualified alias reference a2 is interpreted as having a
database of db1:

DELETE a1, a2 FROM db1.t1 AS a1 INNER JOIN db2.t2 AS a2
WHERE a1.id=a2.id;

To correctly match an alias that refers to a table outside the default database, you must explicitly qualify
the reference with the name of the proper database:

DELETE a1, db2.a2 FROM db1.t1 AS a1 INNER JOIN db2.t2 AS a2
WHERE a1.id=a2.id;

DO Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1191

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

13.2.3 DO Syntax

DO expr [, expr] ...

DO executes the expressions but does not return any results. In most respects, DO is shorthand for SELECT
expr, ..., but has the advantage that it is slightly faster when you do not care about the result.

DO is useful primarily with functions that have side effects, such as RELEASE_LOCK().

Example: This SELECT statement pauses, but also produces a result set:

mysql> SELECT SLEEP(5);
+----------+
| SLEEP(5) |
+----------+
| 0 |
+----------+
1 row in set (5.02 sec)

DO, on the other hand, pauses without producing a result set.:

mysql> DO SLEEP(5);
Query OK, 0 rows affected (4.99 sec)

This could be useful, for example in a stored function or trigger, which prohibit statements that produce
result sets.

DO only executes expressions. It cannot be used in all cases where SELECT can be used. For example, DO
id FROM t1 is invalid because it references a table.

13.2.4 HANDLER Syntax

HANDLER tbl_name OPEN [[AS] alias]

HANDLER tbl_name READ index_name { = | <= | >= | < | > } (value1,value2,...)
 [WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ index_name { FIRST | NEXT | PREV | LAST }
 [WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ { FIRST | NEXT }
 [WHERE where_condition] [LIMIT ...]

HANDLER tbl_name CLOSE

The HANDLER statement provides direct access to table storage engine interfaces. It is available for
MyISAM and InnoDB tables.

The HANDLER ... OPEN statement opens a table, making it accessible using subsequent HANDLER ...
READ statements. This table object is not shared by other sessions and is not closed until the session calls
HANDLER ... CLOSE or the session terminates.

If you open the table using an alias, further references to the open table with other HANDLER statements
must use the alias rather than the table name. If you do not use an alias, but open the table using a
table name qualified by the database name, further references must use the unqualified table name. For
example, for a table opened using mydb.mytable, further references must use mytable.

The first HANDLER ... READ syntax fetches a row where the index specified satisfies the given values
and the WHERE condition is met. If you have a multiple-column index, specify the index column values as a

HANDLER Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1192

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

comma-separated list. Either specify values for all the columns in the index, or specify values for a leftmost
prefix of the index columns. Suppose that an index my_idx includes three columns named col_a, col_b,
and col_c, in that order. The HANDLER statement can specify values for all three columns in the index, or
for the columns in a leftmost prefix. For example:

HANDLER ... READ my_idx = (col_a_val,col_b_val,col_c_val) ...
HANDLER ... READ my_idx = (col_a_val,col_b_val) ...
HANDLER ... READ my_idx = (col_a_val) ...

To employ the HANDLER interface to refer to a table's PRIMARY KEY, use the quoted identifier
`PRIMARY`:

HANDLER tbl_name READ `PRIMARY` ...

The second HANDLER ... READ syntax fetches a row from the table in index order that matches the
WHERE condition.

The third HANDLER ... READ syntax fetches a row from the table in natural row order that matches the
WHERE condition. It is faster than HANDLER tbl_name READ index_name when a full table scan is
desired. Natural row order is the order in which rows are stored in a MyISAM table data file. This statement
works for InnoDB tables as well, but there is no such concept because there is no separate data file.

Without a LIMIT clause, all forms of HANDLER ... READ fetch a single row if one is available. To return
a specific number of rows, include a LIMIT clause. It has the same syntax as for the SELECT statement.
See Section 13.2.8, “SELECT Syntax”.

HANDLER ... CLOSE closes a table that was opened with HANDLER ... OPEN.

There are several reasons to use the HANDLER interface instead of normal SELECT statements:

• HANDLER is faster than SELECT:

• A designated storage engine handler object is allocated for the HANDLER ... OPEN. The object is
reused for subsequent HANDLER statements for that table; it need not be reinitialized for each one.

• There is less parsing involved.

• There is no optimizer or query-checking overhead.

• The handler interface does not have to provide a consistent look of the data (for example, dirty reads
are permitted), so the storage engine can use optimizations that SELECT does not normally permit.

• HANDLER makes it easier to port to MySQL applications that use a low-level ISAM-like interface.

• HANDLER enables you to traverse a database in a manner that is difficult (or even impossible) to
accomplish with SELECT. The HANDLER interface is a more natural way to look at data when working
with applications that provide an interactive user interface to the database.

HANDLER is a somewhat low-level statement. For example, it does not provide consistency. That is,
HANDLER ... OPEN does not take a snapshot of the table, and does not lock the table. This means
that after a HANDLER ... OPEN statement is issued, table data can be modified (by the current session
or other sessions) and these modifications might be only partially visible to HANDLER ... NEXT or
HANDLER ... PREV scans.

An open handler can be closed and marked for reopen, in which case the handler loses its position in the
table. This occurs when both of the following circumstances are true:

INSERT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1193

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Any session executes FLUSH TABLES or DDL statements on the handler's table.

• The session in which the handler is open executes non-HANDLER statements that use tables.

13.2.5 INSERT Syntax

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name [(col_name,...)]
 {VALUES | VALUE} ({expr | DEFAULT},...),(...),...
 [ON DUPLICATE KEY UPDATE
 col_name=expr
 [, col_name=expr] ...]

Or:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name
 SET col_name={expr | DEFAULT}, ...
 [ON DUPLICATE KEY UPDATE
 col_name=expr
 [, col_name=expr] ...]

Or:

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name [(col_name,...)]
 SELECT ...
 [ON DUPLICATE KEY UPDATE
 col_name=expr
 [, col_name=expr] ...]

INSERT inserts new rows into an existing table. The INSERT ... VALUES and INSERT ... SET forms
of the statement insert rows based on explicitly specified values. The INSERT ... SELECT form inserts
rows selected from another table or tables. INSERT ... SELECT is discussed further in Section 13.2.5.1,
“INSERT ... SELECT Syntax”.

You can use REPLACE instead of INSERT to overwrite old rows. REPLACE is the counterpart to INSERT
IGNORE in the treatment of new rows that contain unique key values that duplicate old rows: The new rows
are used to replace the old rows rather than being discarded. See Section 13.2.7, “REPLACE Syntax”.

tbl_name is the table into which rows should be inserted. The columns for which the statement provides
values can be specified as follows:

• You can provide a comma-separated list of column names following the table name. In this case, a value
for each named column must be provided by the VALUES list or the SELECT statement.

• If you do not specify a list of column names for INSERT ... VALUES or INSERT ... SELECT, values
for every column in the table must be provided by the VALUES list or the SELECT statement. If you do not
know the order of the columns in the table, use DESCRIBE tbl_name to find out.

• The SET clause indicates the column names explicitly.

Column values can be given in several ways:

• If you are not running in strict SQL mode, any column not explicitly given a value is set to its default
(explicit or implicit) value. For example, if you specify a column list that does not name all the columns
in the table, unnamed columns are set to their default values. Default value assignment is described in
Section 11.6, “Data Type Default Values”. See also Section 1.8.3.3, “Constraints on Invalid Data”.

INSERT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1194

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you want an INSERT statement to generate an error unless you explicitly specify values for all columns
that do not have a default value, you should use strict mode. See Section 5.1.7, “Server SQL Modes”.

• Use the keyword DEFAULT to set a column explicitly to its default value. This makes it easier to write
INSERT statements that assign values to all but a few columns, because it enables you to avoid writing
an incomplete VALUES list that does not include a value for each column in the table. Otherwise, you
would have to write out the list of column names corresponding to each value in the VALUES list.

You can also use DEFAULT(col_name) as a more general form that can be used in expressions to
produce a given column's default value.

• If both the column list and the VALUES list are empty, INSERT creates a row with each column set to its
default value:

INSERT INTO tbl_name () VALUES();

In strict mode, an error occurs if any column doesn't have a default value. Otherwise, MySQL uses the
implicit default value for any column that does not have an explicitly defined default.

• You can specify an expression expr to provide a column value. This might involve type conversion
if the type of the expression does not match the type of the column, and conversion of a given value
can result in different inserted values depending on the data type. For example, inserting the string
'1999.0e-2' into an INT, FLOAT, DECIMAL(10,6), or YEAR column results in the values 1999,
19.9921, 19.992100, and 1999 being inserted, respectively. The reason the value stored in the INT
and YEAR columns is 1999 is that the string-to-integer conversion looks only at as much of the initial part
of the string as may be considered a valid integer or year. For the floating-point and fixed-point columns,
the string-to-floating-point conversion considers the entire string a valid floating-point value.

An expression expr can refer to any column that was set earlier in a value list. For example, you can do
this because the value for col2 refers to col1, which has previously been assigned:

INSERT INTO tbl_name (col1,col2) VALUES(15,col1*2);

But the following is not legal, because the value for col1 refers to col2, which is assigned after col1:

INSERT INTO tbl_name (col1,col2) VALUES(col2*2,15);

One exception involves columns that contain AUTO_INCREMENT values. Because the
AUTO_INCREMENT value is generated after other value assignments, any reference to an
AUTO_INCREMENT column in the assignment returns a 0.

INSERT statements that use VALUES syntax can insert multiple rows. To do this, include multiple lists of
column values, each enclosed within parentheses and separated by commas. Example:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3),(4,5,6),(7,8,9);

The values list for each row must be enclosed within parentheses. The following statement is illegal
because the number of values in the list does not match the number of column names:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3,4,5,6,7,8,9);

VALUE is a synonym for VALUES in this context. Neither implies anything about the number of values lists,
and either may be used whether there is a single values list or multiple lists.

INSERT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1195

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The affected-rows value for an INSERT can be obtained using the ROW_COUNT() function (see
Section 12.13, “Information Functions”), or the mysql_affected_rows() C API function (see
Section 20.6.7.1, “mysql_affected_rows()”).

If you use an INSERT ... VALUES statement with multiple value lists or INSERT ... SELECT, the
statement returns an information string in this format:

Records: 100 Duplicates: 0 Warnings: 0

Records indicates the number of rows processed by the statement. (This is not necessarily the number
of rows actually inserted because Duplicates can be nonzero.) Duplicates indicates the number of
rows that could not be inserted because they would duplicate some existing unique index value. Warnings
indicates the number of attempts to insert column values that were problematic in some way. Warnings can
occur under any of the following conditions:

• Inserting NULL into a column that has been declared NOT NULL. For multiple-row INSERT statements or
INSERT INTO ... SELECT statements, the column is set to the implicit default value for the column
data type. This is 0 for numeric types, the empty string ('') for string types, and the “zero” value for date
and time types. INSERT INTO ... SELECT statements are handled the same way as multiple-row
inserts because the server does not examine the result set from the SELECT to see whether it returns
a single row. (For a single-row INSERT, no warning occurs when NULL is inserted into a NOT NULL
column. Instead, the statement fails with an error.)

• Setting a numeric column to a value that lies outside the column's range. The value is clipped to the
closest endpoint of the range.

• Assigning a value such as '10.34 a' to a numeric column. The trailing nonnumeric text is stripped off
and the remaining numeric part is inserted. If the string value has no leading numeric part, the column is
set to 0.

• Inserting a string into a string column (CHAR, VARCHAR, TEXT, or BLOB) that exceeds the column's
maximum length. The value is truncated to the column's maximum length.

• Inserting a value into a date or time column that is illegal for the data type. The column is set to the
appropriate zero value for the type.

If you are using the C API, the information string can be obtained by invoking the mysql_info() function.
See Section 20.6.7.35, “mysql_info()”.

If INSERT inserts a row into a table that has an AUTO_INCREMENT column, you can find the value
used for that column by using the SQL LAST_INSERT_ID() function. From within the C API, use the
mysql_insert_id() function. However, you should note that the two functions do not always behave
identically. The behavior of INSERT statements with respect to AUTO_INCREMENT columns is discussed
further in Section 12.13, “Information Functions”, and Section 20.6.7.37, “mysql_insert_id()”.

The INSERT statement supports the following modifiers:

• If you use the DELAYED keyword, the server puts the row or rows to be inserted into a buffer, and the
client issuing the INSERT DELAYED statement can then continue immediately. If the table is in use, the
server holds the rows. When the table is free, the server begins inserting rows, checking periodically
to see whether there are any new read requests for the table. If there are, the delayed row queue is
suspended until the table becomes free again. See Section 13.2.5.2, “INSERT DELAYED Syntax”.

DELAYED is ignored with INSERT ... SELECT or INSERT ... ON DUPLICATE KEY UPDATE.

INSERT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1196

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Beginning with MySQL 5.0.42, DELAYED is also disregarded for an INSERT that uses functions
accessing tables or triggers, or that is called from a function or a trigger.

• If you use the LOW_PRIORITY keyword, execution of the INSERT is delayed until no other clients are
reading from the table. This includes other clients that began reading while existing clients are reading,
and while the INSERT LOW_PRIORITY statement is waiting. It is possible, therefore, for a client that
issues an INSERT LOW_PRIORITY statement to wait for a very long time (or even forever) in a read-
heavy environment. (This is in contrast to INSERT DELAYED, which lets the client continue at once.)

Note

LOW_PRIORITY should normally not be used with MyISAM tables because doing
so disables concurrent inserts. See Section 8.11.3, “Concurrent Inserts”.

If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates option if the
server was started with that option. It also causes concurrent inserts not to be used. See Section 8.11.3,
“Concurrent Inserts”.

LOW_PRIORITY and HIGH_PRIORITY affect only storage engines that use only table-level locking (such
as MyISAM, MEMORY, and MERGE).

• If you use the IGNORE keyword, errors that occur while executing the INSERT statement are ignored.
For example, without IGNORE, a row that duplicates an existing UNIQUE index or PRIMARY KEY value in
the table causes a duplicate-key error and the statement is aborted. With IGNORE, the row is discarded
and no error occurs. Ignored errors may generate warnings instead, although duplicate-key errors do
not.

Data conversions that would trigger errors abort the statement if IGNORE is not specified. With IGNORE,
invalid values are adjusted to the closest values and inserted; warnings are produced but the statement
does not abort. You can determine with the mysql_info() C API function how many rows were
actually inserted into the table.

• If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate value
in a UNIQUE index or PRIMARY KEY, an UPDATE of the old row is performed. The affected-rows value
per row is 1 if the row is inserted as a new row and 2 if an existing row is updated. See Section 13.2.5.3,
“INSERT ... ON DUPLICATE KEY UPDATE Syntax”.

Inserting into a table requires the INSERT privilege for the table. If the ON DUPLICATE KEY UPDATE
clause is used and a duplicate key causes an UPDATE to be performed instead, the statement requires the
UPDATE privilege for the columns to be updated. For columns that are read but not modified you need only
the SELECT privilege (such as for a column referenced only on the right hand side of an col_name=expr
assignment in an ON DUPLICATE KEY UPDATE clause).

13.2.5.1 INSERT ... SELECT Syntax

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
 [INTO] tbl_name [(col_name,...)]
 SELECT ...
 [ON DUPLICATE KEY UPDATE col_name=expr, ...]

With INSERT ... SELECT, you can quickly insert many rows into a table from one or many tables. For
example:

INSERT INTO tbl_temp2 (fld_id)
 SELECT tbl_temp1.fld_order_id

INSERT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1197

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

The following conditions hold for a INSERT ... SELECT statements:

• Specify IGNORE to ignore rows that would cause duplicate-key violations.

• DELAYED is ignored with INSERT ... SELECT.

• The target table of the INSERT statement may appear in the FROM clause of the SELECT part of the
query. (This was not possible in some older versions of MySQL.) However, you cannot insert into a table
and select from the same table in a subquery.

When selecting from and inserting into a table at the same time, MySQL creates a temporary table to
hold the rows from the SELECT and then inserts those rows into the target table. However, it remains
true that you cannot use INSERT INTO t ... SELECT ... FROM t when t is a TEMPORARY table,
because TEMPORARY tables cannot be referred to twice in the same statement (see Section B.5.6.2,
“TEMPORARY Table Problems”).

• AUTO_INCREMENT columns work as usual.

• To ensure that the binary log can be used to re-create the original tables, MySQL does not permit
concurrent inserts for INSERT ... SELECT statements.

• To avoid ambiguous column reference problems when the SELECT and the INSERT refer to the same
table, provide a unique alias for each table used in the SELECT part, and qualify column names in that
part with the appropriate alias.

In the values part of ON DUPLICATE KEY UPDATE, you can refer to columns in other tables, as long as
you do not use GROUP BY in the SELECT part. One side effect is that you must qualify nonunique column
names in the values part.

The order in which rows are returned by a SELECT statement with no ORDER BY clause is not determined.
This means that, when using replication, there is no guarantee that such a SELECT returns rows in the
same order on the master and the slave; this can lead to inconsistencies between them. To prevent this
from occurring, you should always write INSERT ... SELECT statements that are to be replicated
as INSERT ... SELECT ... ORDER BY column. The choice of column does not matter as
long as the same order for returning the rows is enforced on both the master and the slave. See also
Section 16.4.1.10, “Replication and LIMIT”.

13.2.5.2 INSERT DELAYED Syntax

INSERT DELAYED ...

The DELAYED option for the INSERT statement is a MySQL extension to standard SQL that is very useful if
you have clients that cannot or need not wait for the INSERT to complete. This is a common situation when
you use MySQL for logging and you also periodically run SELECT and UPDATE statements that take a long
time to complete.

When a client uses INSERT DELAYED, it gets an okay from the server at once, and the row is queued to
be inserted when the table is not in use by any other thread.

Another major benefit of using INSERT DELAYED is that inserts from many clients are bundled together
and written in one block. This is much faster than performing many separate inserts.

Note that INSERT DELAYED is slower than a normal INSERT if the table is not otherwise in use. There is
also the additional overhead for the server to handle a separate thread for each table for which there are

INSERT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1198

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

delayed rows. This means that you should use INSERT DELAYED only when you are really sure that you
need it.

The queued rows are held only in memory until they are inserted into the table. This means that if you
terminate mysqld forcibly (for example, with kill -9) or if mysqld dies unexpectedly, any queued rows
that have not been written to disk are lost.

There are some constraints on the use of DELAYED:

• INSERT DELAYED works only with MyISAM, MEMORY, and ARCHIVE tables. For engines that do not
support DELAYED, an error occurs.

• An error occurs for INSERT DELAYED if used with a table that has been locked with LOCK TABLES
because the insert must be handled by a separate thread, not by the session that holds the lock.

• For MyISAM tables, if there are no free blocks in the middle of the data file, concurrent SELECT and
INSERT statements are supported. Under these circumstances, you very seldom need to use INSERT
DELAYED with MyISAM.

• INSERT DELAYED should be used only for INSERT statements that specify value lists. The server
ignores DELAYED for INSERT ... SELECT or INSERT ... ON DUPLICATE KEY UPDATE
statements.

• Because the INSERT DELAYED statement returns immediately, before the rows are inserted, you cannot
use LAST_INSERT_ID() to get the AUTO_INCREMENT value that the statement might generate.

• DELAYED rows are not visible to SELECT statements until they actually have been inserted.

• INSERT DELAYED is treated as a normal INSERT if the statement inserts multiple rows and binary
logging is enabled.

• DELAYED is ignored on slave replication servers, so that INSERT DELAYED is treated as a normal
INSERT on slaves. This is because DELAYED could cause the slave to have different data than the
master.

• Pending INSERT DELAYED statements are lost if a table is write locked and ALTER TABLE is used to
modify the table structure.

• INSERT DELAYED is not supported for views.

The following describes in detail what happens when you use the DELAYED option to INSERT or REPLACE.
In this description, the “thread” is the thread that received an INSERT DELAYED statement and “handler” is
the thread that handles all INSERT DELAYED statements for a particular table.

• When a thread executes a DELAYED statement for a table, a handler thread is created to process all
DELAYED statements for the table, if no such handler already exists.

• The thread checks whether the handler has previously acquired a DELAYED lock; if not, it tells the
handler thread to do so. The DELAYED lock can be obtained even if other threads have a READ or WRITE
lock on the table. However, the handler waits for all ALTER TABLE locks or FLUSH TABLES statements
to finish, to ensure that the table structure is up to date.

• The thread executes the INSERT statement, but instead of writing the row to the table, it puts a copy of
the final row into a queue that is managed by the handler thread. Any syntax errors are noticed by the
thread and reported to the client program.

• The client cannot obtain from the server the number of duplicate rows or the AUTO_INCREMENT value for
the resulting row, because the INSERT returns before the insert operation has been completed. (If you
use the C API, the mysql_info() function does not return anything meaningful, for the same reason.)

INSERT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1199

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The binary log is updated by the handler thread when the row is inserted into the table. In case of
multiple-row inserts, the binary log is updated when the first row is inserted.

• Each time that delayed_insert_limit rows are written, the handler checks whether any SELECT
statements are still pending. If so, it permits these to execute before continuing.

• When the handler has no more rows in its queue, the table is unlocked. If no new INSERT DELAYED
statements are received within delayed_insert_timeout seconds, the handler terminates.

• If more than delayed_queue_size rows are pending in a specific handler queue, the thread
requesting INSERT DELAYED waits until there is room in the queue. This is done to ensure that mysqld
does not use all memory for the delayed memory queue.

• The handler thread shows up in the MySQL process list with delayed_insert in the Command column.
It is killed if you execute a FLUSH TABLES statement or kill it with KILL thread_id. However, before
exiting, it first stores all queued rows into the table. During this time it does not accept any new INSERT
statements from other threads. If you execute an INSERT DELAYED statement after this, a new handler
thread is created.

Note that this means that INSERT DELAYED statements have higher priority than normal INSERT
statements if there is an INSERT DELAYED handler running. Other update statements have to wait
until the INSERT DELAYED queue is empty, someone terminates the handler thread (with KILL
thread_id), or someone executes a FLUSH TABLES.

• The following status variables provide information about INSERT DELAYED statements.

Status Variable Meaning

Delayed_insert_threads Number of handler threads

Delayed_writes Number of rows written with INSERT DELAYED

Not_flushed_delayed_rows Number of rows waiting to be written

You can view these variables by issuing a SHOW STATUS statement or by executing a mysqladmin
extended-status command.

13.2.5.3 INSERT ... ON DUPLICATE KEY UPDATE Syntax

If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate value in
a UNIQUE index or PRIMARY KEY, an UPDATE of the old row is performed. For example, if column a is
declared as UNIQUE and contains the value 1, the following two statements have identical effect:

INSERT INTO table (a,b,c) VALUES (1,2,3)
 ON DUPLICATE KEY UPDATE c=c+1;

UPDATE table SET c=c+1 WHERE a=1;

The ON DUPLICATE KEY UPDATE clause can contain multiple column assignments, separated by
commas.

With ON DUPLICATE KEY UPDATE, the affected-rows value per row is 1 if the row is inserted as a new
row, and 2 if an existing row is updated.

If column b is also unique, the INSERT is equivalent to this UPDATE statement instead:

UPDATE table SET c=c+1 WHERE a=1 OR b=2 LIMIT 1;

LOAD DATA INFILE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1200

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If a=1 OR b=2 matches several rows, only one row is updated. In general, you should try to avoid using
an ON DUPLICATE KEY UPDATE clause on tables with multiple unique indexes.

You can use the VALUES(col_name) function in the UPDATE clause to refer to column values from the
INSERT portion of the INSERT ... UPDATE statement. In other words, VALUES(col_name) in the
UPDATE clause refers to the value of col_name that would be inserted, had no duplicate-key conflict
occurred. This function is especially useful in multiple-row inserts. The VALUES() function is meaningful
only in INSERT ... UPDATE statements and returns NULL otherwise. Example:

INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
 ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

That statement is identical to the following two statements:

INSERT INTO table (a,b,c) VALUES (1,2,3)
 ON DUPLICATE KEY UPDATE c=3;
INSERT INTO table (a,b,c) VALUES (4,5,6)
 ON DUPLICATE KEY UPDATE c=9;

If a table contains an AUTO_INCREMENT column and INSERT ... UPDATE inserts a row, the
LAST_INSERT_ID() function returns the AUTO_INCREMENT value. If the statement updates
a row instead, LAST_INSERT_ID() is not meaningful. However, you can work around this by
using LAST_INSERT_ID(expr). Suppose that id is the AUTO_INCREMENT column. To make
LAST_INSERT_ID() meaningful for updates, insert rows as follows:

INSERT INTO table (a,b,c) VALUES (1,2,3)
 ON DUPLICATE KEY UPDATE id=LAST_INSERT_ID(id), c=3;

The DELAYED option is ignored when you use ON DUPLICATE KEY UPDATE.

13.2.6 LOAD DATA INFILE Syntax

LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'
 [REPLACE | IGNORE]
 INTO TABLE tbl_name
 [CHARACTER SET charset_name]
 [{FIELDS | COLUMNS}
 [TERMINATED BY 'string']
 [[OPTIONALLY] ENCLOSED BY 'char']
 [ESCAPED BY 'char']
]
 [LINES
 [STARTING BY 'string']
 [TERMINATED BY 'string']
]
 [IGNORE number LINES]
 [(col_name_or_user_var,...)]
 [SET col_name = expr,...]

The LOAD DATA INFILE statement reads rows from a text file into a table at a very high speed. LOAD
DATA INFILE is the complement of SELECT ... INTO OUTFILE. (See Section 13.2.8.1, “SELECT ...
INTO Syntax”.) To write data from a table to a file, use SELECT ... INTO OUTFILE. To read the file
back into a table, use LOAD DATA INFILE. The syntax of the FIELDS and LINES clauses is the same for
both statements. Both clauses are optional, but FIELDS must precede LINES if both are specified.

You can also load data files by using the mysqlimport utility; it operates by sending a LOAD DATA
INFILE statement to the server. The --local option causes mysqlimport to read data files from the

LOAD DATA INFILE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1201

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

client host. You can specify the --compress option to get better performance over slow networks if the
client and server support the compressed protocol. See Section 4.5.5, “mysqlimport — A Data Import
Program”.

For more information about the efficiency of INSERT versus LOAD DATA INFILE and speeding up LOAD
DATA INFILE, see Section 8.2.2.1, “Speed of INSERT Statements”.

The file name must be given as a literal string. On Windows, specify backslashes in path names as forward
slashes or doubled backslashes. As of MySQL 5.0.19, the character_set_filesystem system
variable controls the interpretation of the file name.

The server uses the character set indicated by the character_set_database system variable to
interpret the information in the file. SET NAMES and the setting of character_set_client do not affect
interpretation of input. If the contents of the input file use a character set that differs from the default, it is
usually preferable to specify the character set of the file by using the CHARACTER SET clause, which is
available as of MySQL 5.0.38. A character set of binary specifies “no conversion.”

LOAD DATA INFILE interprets all fields in the file as having the same character set, regardless of the
data types of the columns into which field values are loaded. For proper interpretation of file contents,
you must ensure that it was written with the correct character set. For example, if you write a data file with
mysqldump -T or by issuing a SELECT ... INTO OUTFILE statement in mysql, be sure to use a --
default-character-set option so that output is written in the character set to be used when the file is
loaded with LOAD DATA INFILE.

Note that it is currently not possible to load data files that use the ucs2 character set.

If you use LOW_PRIORITY, execution of the LOAD DATA statement is delayed until no other clients are
reading from the table. This affects only storage engines that use only table-level locking (such as MyISAM,
MEMORY, and MERGE).

If you specify CONCURRENT with a MyISAM table that satisfies the condition for concurrent inserts (that is,
it contains no free blocks in the middle), other threads can retrieve data from the table while LOAD DATA
is executing. This option affects the performance of LOAD DATA a bit, even if no other thread is using the
table at the same time.

CONCURRENT is not replicated. See Section 16.4.1.11, “Replication and LOAD Operations”, for more
information.

The LOCAL keyword affects expected location of the file and error handling, as described later. LOCAL
works only if your server and your client both have been configured to permit it. For example, if mysqld
was started with --local-infile=0, LOCAL does not work. See Section 6.1.6, “Security Issues with
LOAD DATA LOCAL”.

The LOCAL keyword affects where the file is expected to be found:

• If LOCAL is specified, the file is read by the client program on the client host and sent to the server. The
file can be given as a full path name to specify its exact location. If given as a relative path name, the
name is interpreted relative to the directory in which the client program was started.

When using LOCAL with LOAD DATA, a copy of the file is created in the server's temporary directory.
This is not the directory determined by the value of tmpdir or slave_load_tmpdir, but rather the
operating system's temporary directory, and is not configurable in the MySQL Server. (Typically the
system temporary directory is /tmp on Linux systems and C:\WINDOWS\TEMP on Windows.) Lack of
sufficient space for the copy in this directory can cause the LOAD DATA LOCAL statement to fail.

• If LOCAL is not specified, the file must be located on the server host and is read directly by the server.
The server uses the following rules to locate the file:

LOAD DATA INFILE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1202

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• If the file name is an absolute path name, the server uses it as given.

• If the file name is a relative path name with one or more leading components, the server searches for
the file relative to the server's data directory.

• If a file name with no leading components is given, the server looks for the file in the database
directory of the default database.

In the non-LOCAL case, these rules mean that a file named as ./myfile.txt is read from the server's
data directory, whereas the file named as myfile.txt is read from the database directory of the default
database. For example, if db1 is the default database, the following LOAD DATA statement reads the file
data.txt from the database directory for db1, even though the statement explicitly loads the file into a
table in the db2 database:

LOAD DATA INFILE 'data.txt' INTO TABLE db2.my_table;

For security reasons, when reading text files located on the server, the files must either reside in the
database directory or be readable by all. Also, to use LOAD DATA INFILE on server files, you must have
the FILE privilege. See Section 6.2.1, “Privileges Provided by MySQL”. For non-LOCAL load operations, if
the secure_file_priv system variable is set to a nonempty directory name, the file to be loaded must
be located in that directory.

Using LOCAL is a bit slower than letting the server access the files directly, because the contents of the file
must be sent over the connection by the client to the server. On the other hand, you do not need the FILE
privilege to load local files.

LOCAL also affects error handling:

• With LOAD DATA INFILE, data-interpretation and duplicate-key errors terminate the operation.

• With LOAD DATA LOCAL INFILE, data-interpretation and duplicate-key errors become warnings and
the operation continues because the server has no way to stop transmission of the file in the middle of
the operation. For duplicate-key errors, this is the same as if IGNORE is specified. IGNORE is explained
further later in this section.

The REPLACE and IGNORE keywords control handling of input rows that duplicate existing rows on unique
key values:

• If you specify REPLACE, input rows replace existing rows. In other words, rows that have the same value
for a primary key or unique index as an existing row. See Section 13.2.7, “REPLACE Syntax”.

• If you specify IGNORE, rows that duplicate an existing row on a unique key value are discarded.

• If you do not specify either option, the behavior depends on whether the LOCAL keyword is specified.
Without LOCAL, an error occurs when a duplicate key value is found, and the rest of the text file is
ignored. With LOCAL, the default behavior is the same as if IGNORE is specified; this is because the
server has no way to stop transmission of the file in the middle of the operation.

To ignore foreign key constraints during the load operation, issue a SET foreign_key_checks = 0
statement before executing LOAD DATA.

If you use LOAD DATA INFILE on an empty MyISAM table, all nonunique indexes are created in a
separate batch (as for REPAIR TABLE). Normally, this makes LOAD DATA INFILE much faster when
you have many indexes. In some extreme cases, you can create the indexes even faster by turning them
off with ALTER TABLE ... DISABLE KEYS before loading the file into the table and using ALTER

LOAD DATA INFILE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1203

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

TABLE ... ENABLE KEYS to re-create the indexes after loading the file. See Section 8.2.2.1, “Speed of
INSERT Statements”.

For both the LOAD DATA INFILE and SELECT ... INTO OUTFILE statements, the syntax of the
FIELDS and LINES clauses is the same. Both clauses are optional, but FIELDS must precede LINES if
both are specified.

If you specify a FIELDS clause, each of its subclauses (TERMINATED BY, [OPTIONALLY] ENCLOSED
BY, and ESCAPED BY) is also optional, except that you must specify at least one of them.

If you specify no FIELDS or LINES clause, the defaults are the same as if you had written this:

FIELDS TERMINATED BY '\t' ENCLOSED BY '' ESCAPED BY '\\'
LINES TERMINATED BY '\n' STARTING BY ''

(Backslash is the MySQL escape character within strings in SQL statements, so to specify a literal
backslash, you must specify two backslashes for the value to be interpreted as a single backslash. The
escape sequences '\t' and '\n' specify tab and newline characters, respectively.)

In other words, the defaults cause LOAD DATA INFILE to act as follows when reading input:

• Look for line boundaries at newlines.

• Do not skip over any line prefix.

• Break lines into fields at tabs.

• Do not expect fields to be enclosed within any quoting characters.

• Interpret characters preceded by the escape character “\” as escape sequences. For example,
“\t”, “\n”, and “\\” signify tab, newline, and backslash, respectively. See the discussion of FIELDS
ESCAPED BY later for the full list of escape sequences.

Conversely, the defaults cause SELECT ... INTO OUTFILE to act as follows when writing output:

• Write tabs between fields.

• Do not enclose fields within any quoting characters.

• Use “\” to escape instances of tab, newline, or “\” that occur within field values.

• Write newlines at the ends of lines.

Note

If you have generated the text file on a Windows system, you might have to use
LINES TERMINATED BY '\r\n' to read the file properly, because Windows
programs typically use two characters as a line terminator. Some programs, such as
WordPad, might use \r as a line terminator when writing files. To read such files,
use LINES TERMINATED BY '\r'.

If all the lines you want to read in have a common prefix that you want to ignore, you can use LINES
STARTING BY 'prefix_string' to skip over the prefix, and anything before it. If a line does not
include the prefix, the entire line is skipped. Suppose that you issue the following statement:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test

LOAD DATA INFILE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1204

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 FIELDS TERMINATED BY ',' LINES STARTING BY 'xxx';

If the data file looks like this:

xxx"abc",1
something xxx"def",2
"ghi",3

The resulting rows will be ("abc",1) and ("def",2). The third row in the file is skipped because it does
not contain the prefix.

The IGNORE number LINES option can be used to ignore lines at the start of the file. For example, you
can use IGNORE 1 LINES to skip over an initial header line containing column names:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test IGNORE 1 LINES;

When you use SELECT ... INTO OUTFILE in tandem with LOAD DATA INFILE to write data from a
database into a file and then read the file back into the database later, the field- and line-handling options
for both statements must match. Otherwise, LOAD DATA INFILE will not interpret the contents of the
file properly. Suppose that you use SELECT ... INTO OUTFILE to write a file with fields delimited by
commas:

SELECT * INTO OUTFILE 'data.txt'
 FIELDS TERMINATED BY ','
 FROM table2;

To read the comma-delimited file back in, the correct statement would be:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
 FIELDS TERMINATED BY ',';

If instead you tried to read in the file with the statement shown following, it wouldn't work because it
instructs LOAD DATA INFILE to look for tabs between fields:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
 FIELDS TERMINATED BY '\t';

The likely result is that each input line would be interpreted as a single field.

LOAD DATA INFILE can be used to read files obtained from external sources. For example, many
programs can export data in comma-separated values (CSV) format, such that lines have fields separated
by commas and enclosed within double quotation marks, with an initial line of column names. If the lines in
such a file are terminated by carriage return/newline pairs, the statement shown here illustrates the field-
and line-handling options you would use to load the file:

LOAD DATA INFILE 'data.txt' INTO TABLE tbl_name
 FIELDS TERMINATED BY ',' ENCLOSED BY '"'
 LINES TERMINATED BY '\r\n'
 IGNORE 1 LINES;

If the input values are not necessarily enclosed within quotation marks, use OPTIONALLY before the
ENCLOSED BY keywords.

Any of the field- or line-handling options can specify an empty string (''). If not empty, the FIELDS
[OPTIONALLY] ENCLOSED BY and FIELDS ESCAPED BY values must be a single character. The

LOAD DATA INFILE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1205

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

FIELDS TERMINATED BY, LINES STARTING BY, and LINES TERMINATED BY values can be more
than one character. For example, to write lines that are terminated by carriage return/linefeed pairs, or to
read a file containing such lines, specify a LINES TERMINATED BY '\r\n' clause.

To read a file containing jokes that are separated by lines consisting of %%, you can do this

CREATE TABLE jokes
 (a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 joke TEXT NOT NULL);
LOAD DATA INFILE '/tmp/jokes.txt' INTO TABLE jokes
 FIELDS TERMINATED BY ''
 LINES TERMINATED BY '\n%%\n' (joke);

FIELDS [OPTIONALLY] ENCLOSED BY controls quoting of fields. For output (SELECT ... INTO
OUTFILE), if you omit the word OPTIONALLY, all fields are enclosed by the ENCLOSED BY character. An
example of such output (using a comma as the field delimiter) is shown here:

"1","a string","100.20"
"2","a string containing a , comma","102.20"
"3","a string containing a \" quote","102.20"
"4","a string containing a \", quote and comma","102.20"

If you specify OPTIONALLY, the ENCLOSED BY character is used only to enclose values from columns that
have a string data type (such as CHAR, BINARY, TEXT, or ENUM):

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a \" quote",102.20
4,"a string containing a \", quote and comma",102.20

Occurrences of the ENCLOSED BY character within a field value are escaped by prefixing them with
the ESCAPED BY character. Also note that if you specify an empty ESCAPED BY value, it is possible to
inadvertently generate output that cannot be read properly by LOAD DATA INFILE. For example, the
preceding output just shown would appear as follows if the escape character is empty. Observe that
the second field in the fourth line contains a comma following the quote, which (erroneously) appears to
terminate the field:

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a " quote",102.20
4,"a string containing a ", quote and comma",102.20

For input, the ENCLOSED BY character, if present, is stripped from the ends of field values. (This is true
regardless of whether OPTIONALLY is specified; OPTIONALLY has no effect on input interpretation.)
Occurrences of the ENCLOSED BY character preceded by the ESCAPED BY character are interpreted as
part of the current field value.

If the field begins with the ENCLOSED BY character, instances of that character are recognized as
terminating a field value only if followed by the field or line TERMINATED BY sequence. To avoid
ambiguity, occurrences of the ENCLOSED BY character within a field value can be doubled and are
interpreted as a single instance of the character. For example, if ENCLOSED BY '"' is specified,
quotation marks are handled as shown here:

"The ""BIG"" boss" -> The "BIG" boss
The "BIG" boss -> The "BIG" boss

LOAD DATA INFILE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1206

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The ""BIG"" boss -> The ""BIG"" boss

FIELDS ESCAPED BY controls how to read or write special characters:

• For input, if the FIELDS ESCAPED BY character is not empty, occurrences of that character are stripped
and the following character is taken literally as part of a field value. Some two-character sequences that
are exceptions, where the first character is the escape character. These sequences are shown in the
following table (using “\” for the escape character). The rules for NULL handling are described later in
this section.

Character Escape Sequence

\0 An ASCII NUL (X'00') character

\b A backspace character

\n A newline (linefeed) character

\r A carriage return character

\t A tab character.

\Z ASCII 26 (Control+Z)

\N NULL

For more information about “\”-escape syntax, see Section 9.1.1, “String Literals”.

If the FIELDS ESCAPED BY character is empty, escape-sequence interpretation does not occur.

• For output, if the FIELDS ESCAPED BY character is not empty, it is used to prefix the following
characters on output:

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values

• ASCII 0 (what is actually written following the escape character is ASCII “0”, not a zero-valued byte)

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as
NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly if field
values in your data contain any of the characters in the list just given.

In certain cases, field- and line-handling options interact:

• If LINES TERMINATED BY is an empty string and FIELDS TERMINATED BY is nonempty, lines are
also terminated with FIELDS TERMINATED BY.

• If the FIELDS TERMINATED BY and FIELDS ENCLOSED BY values are both empty (''), a fixed-row
(nondelimited) format is used. With fixed-row format, no delimiters are used between fields (but you can
still have a line terminator). Instead, column values are read and written using a field width wide enough
to hold all values in the field. For TINYINT, SMALLINT, MEDIUMINT, INT, and BIGINT, the field widths
are 4, 6, 8, 11, and 20, respectively, no matter what the declared display width is.

LINES TERMINATED BY is still used to separate lines. If a line does not contain all fields, the rest of the
columns are set to their default values. If you do not have a line terminator, you should set this to ''. In
this case, the text file must contain all fields for each row.

Fixed-row format also affects handling of NULL values, as described later.

LOAD DATA INFILE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1207

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

Fixed-size format does not work if you are using a multibyte character set.

Note

Before MySQL 5.0.6, fixed-row format used the display width of the column. For
example, INT(4) was read or written using a field with a width of 4. However, if
the column contained wider values, they were dumped to their full width, leading
to the possibility of a “ragged” field holding values of different widths. Using a field
wide enough to hold all values in the field prevents this problem. However, data
files written before this change was made might not be reloaded correctly with
LOAD DATA INFILE for MySQL 5.0.6 and up. This change also affects data
files read by mysqlimport and written by mysqldump --tab, which use LOAD
DATA INFILE and SELECT ... INTO OUTFILE.

Handling of NULL values varies according to the FIELDS and LINES options in use:

• For the default FIELDS and LINES values, NULL is written as a field value of \N for output, and a field
value of \N is read as NULL for input (assuming that the ESCAPED BY character is “\”).

• If FIELDS ENCLOSED BY is not empty, a field containing the literal word NULL as its value is read as a
NULL value. This differs from the word NULL enclosed within FIELDS ENCLOSED BY characters, which
is read as the string 'NULL'.

• If FIELDS ESCAPED BY is empty, NULL is written as the word NULL.

• With fixed-row format (which is used when FIELDS TERMINATED BY and FIELDS ENCLOSED BY are
both empty), NULL is written as an empty string. This causes both NULL values and empty strings in the
table to be indistinguishable when written to the file because both are written as empty strings. If you
need to be able to tell the two apart when reading the file back in, you should not use fixed-row format.

An attempt to load NULL into a NOT NULL column causes assignment of the implicit default value for the
column's data type and a warning, or an error in strict SQL mode. Implicit default values are discussed in
Section 11.6, “Data Type Default Values”.

Some cases are not supported by LOAD DATA INFILE:

• Fixed-size rows (FIELDS TERMINATED BY and FIELDS ENCLOSED BY both empty) and BLOB or
TEXT columns.

• If you specify one separator that is the same as or a prefix of another, LOAD DATA INFILE cannot
interpret the input properly. For example, the following FIELDS clause would cause problems:

FIELDS TERMINATED BY '"' ENCLOSED BY '"'

• If FIELDS ESCAPED BY is empty, a field value that contains an occurrence of FIELDS ENCLOSED
BY or LINES TERMINATED BY followed by the FIELDS TERMINATED BY value causes LOAD DATA
INFILE to stop reading a field or line too early. This happens because LOAD DATA INFILE cannot
properly determine where the field or line value ends.

The following example loads all columns of the persondata table:

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata;

LOAD DATA INFILE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1208

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

By default, when no column list is provided at the end of the LOAD DATA INFILE statement, input lines
are expected to contain a field for each table column. If you want to load only some of a table's columns,
specify a column list:

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata (col1,col2,...);

You must also specify a column list if the order of the fields in the input file differs from the order of the
columns in the table. Otherwise, MySQL cannot tell how to match input fields with table columns.

Before MySQL 5.0.3, the column list must contain only names of columns in the table being loaded, and
the SET clause is not supported. As of MySQL 5.0.3, the column list can contain either column names or
user variables. With user variables, the SET clause enables you to perform transformations on their values
before assigning the result to columns.

User variables in the SET clause can be used in several ways. The following example uses the first input
column directly for the value of t1.column1, and assigns the second input column to a user variable that
is subjected to a division operation before being used for the value of t1.column2:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, @var1)
 SET column2 = @var1/100;

The SET clause can be used to supply values not derived from the input file. The following statement sets
column3 to the current date and time:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, column2)
 SET column3 = CURRENT_TIMESTAMP;

You can also discard an input value by assigning it to a user variable and not assigning the variable to a
table column:

LOAD DATA INFILE 'file.txt'
 INTO TABLE t1
 (column1, @dummy, column2, @dummy, column3);

Use of the column/variable list and SET clause is subject to the following restrictions:

• Assignments in the SET clause should have only column names on the left hand side of assignment
operators.

• You can use subqueries in the right hand side of SET assignments. A subquery that returns a value to be
assigned to a column may be a scalar subquery only. Also, you cannot use a subquery to select from the
table that is being loaded.

• Lines ignored by an IGNORE clause are not processed for the column/variable list or SET clause.

• User variables cannot be used when loading data with fixed-row format because user variables do not
have a display width.

When processing an input line, LOAD DATA splits it into fields and uses the values according to the
column/variable list and the SET clause, if they are present. Then the resulting row is inserted into the
table. If there are BEFORE INSERT or AFTER INSERT triggers for the table, they are activated before or
after inserting the row, respectively.

LOAD DATA INFILE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1209

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If an input line has too many fields, the extra fields are ignored and the number of warnings is incremented.

If an input line has too few fields, the table columns for which input fields are missing are set to their default
values. Default value assignment is described in Section 11.6, “Data Type Default Values”.

An empty field value is interpreted different from a missing field:

• For string types, the column is set to the empty string.

• For numeric types, the column is set to 0.

• For date and time types, the column is set to the appropriate “zero” value for the type. See Section 11.3,
“Date and Time Types”.

These are the same values that result if you assign an empty string explicitly to a string, numeric, or date or
time type explicitly in an INSERT or UPDATE statement.

Treatment of empty or incorrect field values differs from that just described if the SQL mode is set to a
restrictive value. For example, if sql_mode is set to TRADITIONAL, conversion of an empty value or a
value such as 'x' for a numeric column results in an error, not conversion to 0. (With LOCAL or IGNORE,
warnings occur rather than errors, even with a restrictive sql_mode value, and the row is inserted using
the same closest-value behavior used for nonrestrictive SQL modes. This occurs because the server has
no way to stop transmission of the file in the middle of the operation.)

TIMESTAMP columns are set to the current date and time only if there is a NULL value for the column (that
is, \N) and the column is not declared to permit NULL values, or if the TIMESTAMP column's default value
is the current timestamp and it is omitted from the field list when a field list is specified.

LOAD DATA INFILE regards all input as strings, so you cannot use numeric values for ENUM or SET
columns the way you can with INSERT statements. All ENUM and SET values must be specified as strings.

BIT values cannot be loaded using binary notation (for example, b'011010'). To work around this,
specify the values as regular integers and use the SET clause to convert them so that MySQL performs a
numeric type conversion and loads them into the BIT column properly:

shell> cat /tmp/bit_test.txt
2
127
shell> mysql test
mysql> LOAD DATA INFILE '/tmp/bit_test.txt'
 -> INTO TABLE bit_test (@var1) SET b = CAST(@var1 AS UNSIGNED);
Query OK, 2 rows affected (0.00 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT BIN(b+0) FROM bit_test;
+----------+
| bin(b+0) |
+----------+
| 10 |
| 1111111 |
+----------+
2 rows in set (0.00 sec)

On Unix, if you need LOAD DATA to read from a pipe, you can use the following technique (the example
loads a listing of the / directory into the table db1.t1):

mkfifo /mysql/data/db1/ls.dat
chmod 666 /mysql/data/db1/ls.dat
find / -ls > /mysql/data/db1/ls.dat &
mysql -e "LOAD DATA INFILE 'ls.dat' INTO TABLE t1" db1

REPLACE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1210

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Here you must run the command that generates the data to be loaded and the mysql commands either
on separate terminals, or run the data generation process in the background (as shown in the preceding
example). If you do not do this, the pipe will block until data is read by the mysql process.

When the LOAD DATA INFILE statement finishes, it returns an information string in the following format:

Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

Warnings occur under the same circumstances as when values are inserted using the INSERT statement
(see Section 13.2.5, “INSERT Syntax”), except that LOAD DATA INFILE also generates warnings when
there are too few or too many fields in the input row.

You can use SHOW WARNINGS to get a list of the first max_error_count warnings as information about
what went wrong. See Section 13.7.5.37, “SHOW WARNINGS Syntax”.

If you are using the C API, you can get information about the statement by calling the mysql_info()
function. See Section 20.6.7.35, “mysql_info()”.

13.2.7 REPLACE Syntax

REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name [(col_name,...)]
 {VALUES | VALUE} ({expr | DEFAULT},...),(...),...

Or:

REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name
 SET col_name={expr | DEFAULT}, ...

Or:

REPLACE [LOW_PRIORITY | DELAYED]
 [INTO] tbl_name [(col_name,...)]
 SELECT ...

REPLACE works exactly like INSERT, except that if an old row in the table has the same value as a new
row for a PRIMARY KEY or a UNIQUE index, the old row is deleted before the new row is inserted. See
Section 13.2.5, “INSERT Syntax”.

REPLACE is a MySQL extension to the SQL standard. It either inserts, or deletes and inserts. For another
MySQL extension to standard SQL—that either inserts or updates—see Section 13.2.5.3, “INSERT ... ON
DUPLICATE KEY UPDATE Syntax”.

Note

REPLACE makes sense only if a table has a PRIMARY KEY or UNIQUE index.
Otherwise, it becomes equivalent to INSERT, because there is no index to be used
to determine whether a new row duplicates another.

Values for all columns are taken from the values specified in the REPLACE statement. Any missing columns
are set to their default values, just as happens for INSERT. You cannot refer to values from the current
row and use them in the new row. If you use an assignment such as SET col_name = col_name +
1, the reference to the column name on the right hand side is treated as DEFAULT(col_name), so the
assignment is equivalent to SET col_name = DEFAULT(col_name) + 1.

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1211

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To use REPLACE, you must have both the INSERT and DELETE privileges for the table.

The REPLACE statement returns a count to indicate the number of rows affected. This is the sum of the
rows deleted and inserted. If the count is 1 for a single-row REPLACE, a row was inserted and no rows
were deleted. If the count is greater than 1, one or more old rows were deleted before the new row was
inserted. It is possible for a single row to replace more than one old row if the table contains multiple
unique indexes and the new row duplicates values for different old rows in different unique indexes.

The affected-rows count makes it easy to determine whether REPLACE only added a row or whether it also
replaced any rows: Check whether the count is 1 (added) or greater (replaced).

If you are using the C API, the affected-rows count can be obtained using the mysql_affected_rows()
function.

You cannot replace into a table and select from the same table in a subquery.

MySQL uses the following algorithm for REPLACE (and LOAD DATA ... REPLACE):

1. Try to insert the new row into the table

2. While the insertion fails because a duplicate-key error occurs for a primary key or unique index:

a. Delete from the table the conflicting row that has the duplicate key value

b. Try again to insert the new row into the table

It is possible that in the case of a duplicate-key error, a storage engine may perform the REPLACE as an
update rather than a delete plus insert, but the semantics are the same. There are no user-visible effects
other than a possible difference in how the storage engine increments Handler_xxx status variables.

13.2.8 SELECT Syntax

SELECT
 [ALL | DISTINCT | DISTINCTROW]
 [HIGH_PRIORITY]
 [STRAIGHT_JOIN]
 [SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
 [SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]
 select_expr [, select_expr ...]
 [FROM table_references
 [WHERE where_condition]
 [GROUP BY {col_name | expr | position}
 [ASC | DESC], ... [WITH ROLLUP]]
 [HAVING where_condition]
 [ORDER BY {col_name | expr | position}
 [ASC | DESC], ...]
 [LIMIT {[offset,] row_count | row_count OFFSET offset}]
 [PROCEDURE procedure_name(argument_list)]
 [INTO OUTFILE 'file_name' export_options
 | INTO DUMPFILE 'file_name'
 | INTO var_name [, var_name]]
 [FOR UPDATE | LOCK IN SHARE MODE]]

SELECT is used to retrieve rows selected from one or more tables, and can include UNION statements and
subqueries. See Section 13.2.8.3, “UNION Syntax”, and Section 13.2.9, “Subquery Syntax”.

The most commonly used clauses of SELECT statements are these:

• Each select_expr indicates a column that you want to retrieve. There must be at least one
select_expr.

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1212

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• table_references indicates the table or tables from which to retrieve rows. Its syntax is described in
Section 13.2.8.2, “JOIN Syntax”.

• The WHERE clause, if given, indicates the condition or conditions that rows must satisfy to be selected.
where_condition is an expression that evaluates to true for each row to be selected. The statement
selects all rows if there is no WHERE clause.

In the WHERE expression, you can use any of the functions and operators that MySQL supports, except
for aggregate (summary) functions. See Section 9.5, “Expression Syntax”, and Chapter 12, Functions
and Operators.

SELECT can also be used to retrieve rows computed without reference to any table.

For example:

mysql> SELECT 1 + 1;
 -> 2

 You are permitted to specify DUAL as a dummy table name in situations where no tables are referenced:

mysql> SELECT 1 + 1 FROM DUAL;
 -> 2

DUAL is purely for the convenience of people who require that all SELECT statements should have FROM
and possibly other clauses. MySQL may ignore the clauses. MySQL does not require FROM DUAL if no
tables are referenced.

In general, clauses used must be given in exactly the order shown in the syntax description. For example,
a HAVING clause must come after any GROUP BY clause and before any ORDER BY clause. The exception
is that the INTO clause can appear either as shown in the syntax description or immediately following the
select_expr list. For more information about INTO, see Section 13.2.8.1, “SELECT ... INTO Syntax”.

The list of select_expr terms comprises the select list that indicates which columns to retrieve. Terms
specify a column or expression or can use *-shorthand:

• A select list consisting only of a single unqualified * can be used as shorthand to select all columns from
all tables:

SELECT * FROM t1 INNER JOIN t2 ...

• tbl_name.* can be used as a qualified shorthand to select all columns from the named table:

SELECT t1.*, t2.* FROM t1 INNER JOIN t2 ...

• Use of an unqualified * with other items in the select list may produce a parse error. To avoid this
problem, use a qualified tbl_name.* reference

SELECT AVG(score), t1.* FROM t1 ...

The following list provides additional information about other SELECT clauses:

• A select_expr can be given an alias using AS alias_name. The alias is used as the expression's
column name and can be used in GROUP BY, ORDER BY, or HAVING clauses. For example:

SELECT CONCAT(last_name,', ',first_name) AS full_name

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1213

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 FROM mytable ORDER BY full_name;

The AS keyword is optional when aliasing a select_expr with an identifier. The preceding example
could have been written like this:

SELECT CONCAT(last_name,', ',first_name) full_name
 FROM mytable ORDER BY full_name;

However, because the AS is optional, a subtle problem can occur if you forget the comma between
two select_expr expressions: MySQL interprets the second as an alias name. For example, in the
following statement, columnb is treated as an alias name:

SELECT columna columnb FROM mytable;

For this reason, it is good practice to be in the habit of using AS explicitly when specifying column
aliases.

It is not permissible to refer to a column alias in a WHERE clause, because the column value might not
yet be determined when the WHERE clause is executed. See Section B.5.4.4, “Problems with Column
Aliases”.

• The FROM table_references clause indicates the table or tables from which to retrieve rows.
If you name more than one table, you are performing a join. For information on join syntax, see
Section 13.2.8.2, “JOIN Syntax”. For each table specified, you can optionally specify an alias.

tbl_name [[AS] alias] [index_hint]

The use of index hints provides the optimizer with information about how to choose indexes during query
processing. For a description of the syntax for specifying these hints, see Section 8.9.2, “Index Hints”.

You can use SET max_seeks_for_key=value as an alternative way to force MySQL to prefer key
scans instead of table scans. See Section 5.1.4, “Server System Variables”.

• You can refer to a table within the default database as tbl_name, or as db_name.tbl_name to
specify a database explicitly. You can refer to a column as col_name, tbl_name.col_name, or
db_name.tbl_name.col_name. You need not specify a tbl_name or db_name.tbl_name prefix for a
column reference unless the reference would be ambiguous. See Section 9.2.1, “Identifier Qualifiers”, for
examples of ambiguity that require the more explicit column reference forms.

• A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name:

SELECT t1.name, t2.salary FROM employee AS t1, info AS t2
 WHERE t1.name = t2.name;

SELECT t1.name, t2.salary FROM employee t1, info t2
 WHERE t1.name = t2.name;

• Columns selected for output can be referred to in ORDER BY and GROUP BY clauses using column
names, column aliases, or column positions. Column positions are integers and begin with 1:

SELECT college, region, seed FROM tournament
 ORDER BY region, seed;

SELECT college, region AS r, seed AS s FROM tournament
 ORDER BY r, s;

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1214

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT college, region, seed FROM tournament
 ORDER BY 2, 3;

To sort in reverse order, add the DESC (descending) keyword to the name of the column in the ORDER
BY clause that you are sorting by. The default is ascending order; this can be specified explicitly using
the ASC keyword.

If ORDER BY occurs within a subquery and also is applied in the outer query, the outermost ORDER BY
takes precedence. For example, results for the following statement are sorted in descending order, not
ascending order:

(SELECT ... ORDER BY a) ORDER BY a DESC;

Use of column positions is deprecated because the syntax has been removed from the SQL standard.

• If you use GROUP BY, output rows are sorted according to the GROUP BY columns as if you had an
ORDER BY for the same columns. To avoid the overhead of sorting that GROUP BY produces, add
ORDER BY NULL:

SELECT a, COUNT(b) FROM test_table GROUP BY a ORDER BY NULL;

• MySQL extends the GROUP BY clause so that you can also specify ASC and DESC after columns named
in the clause:

SELECT a, COUNT(b) FROM test_table GROUP BY a DESC;

• MySQL extends the use of GROUP BY to permit selecting fields that are not mentioned in the GROUP BY
clause. If you are not getting the results that you expect from your query, please read the description of
GROUP BY found in Section 12.16, “GROUP BY (Aggregate) Functions”.

• GROUP BY permits a WITH ROLLUP modifier. See Section 12.16.2, “GROUP BY Modifiers”.

• The HAVING clause is applied nearly last, just before items are sent to the client, with no optimization.
(LIMIT is applied after HAVING.)

A HAVING clause can refer to any column or alias named in a select_expr in the SELECT list or
in outer subqueries, and to aggregate functions. However, the SQL standard requires that HAVING
must reference only columns in the GROUP BY clause or columns used in aggregate functions. To
accommodate both standard SQL and the MySQL-specific behavior of being able to refer columns in the
SELECT list, MySQL 5.0.2 and up permit HAVING to refer to columns in the SELECT list, columns in the
GROUP BY clause, columns in outer subqueries, and to aggregate functions.

For example, the following statement works in MySQL 5.0.2 but produces an error for earlier versions:

mysql> SELECT COUNT(*) FROM t GROUP BY col1 HAVING col1 = 2;

If the HAVING clause refers to a column that is ambiguous, a warning occurs. In the following statement,
col2 is ambiguous because it is used as both an alias and a column name:

SELECT COUNT(col1) AS col2 FROM t GROUP BY col2 HAVING col2 = 2;

Preference is given to standard SQL behavior, so if a HAVING column name is used both in GROUP BY
and as an aliased column in the output column list, preference is given to the column in the GROUP BY
column.

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1215

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Do not use HAVING for items that should be in the WHERE clause. For example, do not write the
following:

SELECT col_name FROM tbl_name HAVING col_name > 0;

Write this instead:

SELECT col_name FROM tbl_name WHERE col_name > 0;

• The HAVING clause can refer to aggregate functions, which the WHERE clause cannot:

SELECT user, MAX(salary) FROM users
 GROUP BY user HAVING MAX(salary) > 10;

(This did not work in some older versions of MySQL.)

• MySQL permits duplicate column names. That is, there can be more than one select_expr with
the same name. This is an extension to standard SQL. Because MySQL also permits GROUP BY and
HAVING to refer to select_expr values, this can result in an ambiguity:

SELECT 12 AS a, a FROM t GROUP BY a;

In that statement, both columns have the name a. To ensure that the correct column is used for
grouping, use different names for each select_expr.

• MySQL resolves unqualified column or alias references in ORDER BY clauses by searching in the
select_expr values, then in the columns of the tables in the FROM clause. For GROUP BY or HAVING
clauses, it searches the FROM clause before searching in the select_expr values. (For GROUP BY and
HAVING, this differs from the pre-MySQL 5.0 behavior that used the same rules as for ORDER BY.)

• The LIMIT clause can be used to constrain the number of rows returned by the SELECT statement.
LIMIT takes one or two numeric arguments, which must both be nonnegative integer constants (except
when using prepared statements).

With two arguments, the first argument specifies the offset of the first row to return, and the second
specifies the maximum number of rows to return. The offset of the initial row is 0 (not 1):

SELECT * FROM tbl LIMIT 5,10; # Retrieve rows 6-15

To retrieve all rows from a certain offset up to the end of the result set, you can use some large number
for the second parameter. This statement retrieves all rows from the 96th row to the last:

SELECT * FROM tbl LIMIT 95,18446744073709551615;

With one argument, the value specifies the number of rows to return from the beginning of the result set:

SELECT * FROM tbl LIMIT 5; # Retrieve first 5 rows

In other words, LIMIT row_count is equivalent to LIMIT 0, row_count.

For prepared statements, you can use placeholders (supported as of MySQL version 5.0.7). The
following statements will return one row from the tbl table:

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1216

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SET @a=1;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?';
EXECUTE STMT USING @a;

The following statements will return the second to sixth row from the tbl table:

SET @skip=1; SET @numrows=5;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?, ?';
EXECUTE STMT USING @skip, @numrows;

For compatibility with PostgreSQL, MySQL also supports the LIMIT row_count OFFSET offset
syntax.

If LIMIT occurs within a subquery and also is applied in the outer query, the outermost LIMIT takes
precedence. For example, the following statement produces two rows, not one:

(SELECT ... LIMIT 1) LIMIT 2;

• A PROCEDURE clause names a procedure that should process the data in the result set. For an example,
see Section 8.4.2.4, “Using PROCEDURE ANALYSE”, which describes ANALYSE, a procedure that can
be used to obtain suggestions for optimal column data types that may help reduce table sizes.

A PROCEDURE clause is not permitted in a UNION statement.

• The SELECT ... INTO form of SELECT enables the query result to be written to a file or stored in
variables. For more information, see Section 13.2.8.1, “SELECT ... INTO Syntax”.

• If you use FOR UPDATE with a storage engine that uses page or row locks, rows examined by the
query are write-locked until the end of the current transaction. Using LOCK IN SHARE MODE sets a
shared lock that permits other transactions to read the examined rows but not to update or delete them.
See Section 14.2.8.5, “SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE Locking
Reads”.

Following the SELECT keyword, you can use a number of options that affect the operation of the statement.
HIGH_PRIORITY, STRAIGHT_JOIN, and options beginning with SQL_ are MySQL extensions to standard
SQL.

• The ALL and DISTINCT options specify whether duplicate rows should be returned. ALL (the default)
specifies that all matching rows should be returned, including duplicates. DISTINCT specifies removal of
duplicate rows from the result set. It is an error to specify both options. DISTINCTROW is a synonym for
DISTINCT.

• HIGH_PRIORITY gives the SELECT higher priority than a statement that updates a table. You should
use this only for queries that are very fast and must be done at once. A SELECT HIGH_PRIORITY
query that is issued while the table is locked for reading runs even if there is an update statement waiting
for the table to be free. This affects only storage engines that use only table-level locking (such as
MyISAM, MEMORY, and MERGE).

HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION.

• STRAIGHT_JOIN forces the optimizer to join the tables in the order in which they are listed in the
FROM clause. You can use this to speed up a query if the optimizer joins the tables in nonoptimal order.
STRAIGHT_JOIN also can be used in the table_references list. See Section 13.2.8.2, “JOIN
Syntax”.

 STRAIGHT_JOIN does not apply to any table that the optimizer treats as a const or system table.
Such a table produces a single row, is read during the optimization phase of query execution, and

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1217

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

references to its columns are replaced with the appropriate column values before query execution
proceeds. These tables will appear first in the query plan displayed by EXPLAIN. See Section 8.8.1,
“Optimizing Queries with EXPLAIN”. This exception may not apply to const or system tables that are
used on the NULL-complemented side of an outer join (that is, the right-side table of a LEFT JOIN or the
left-side table of a RIGHT JOIN.

• SQL_BIG_RESULT or SQL_SMALL_RESULT can be used with GROUP BY or DISTINCT to tell the
optimizer that the result set has many rows or is small, respectively. For SQL_BIG_RESULT, MySQL
directly uses disk-based temporary tables if needed, and prefers sorting to using a temporary table with
a key on the GROUP BY elements. For SQL_SMALL_RESULT, MySQL uses fast temporary tables to store
the resulting table instead of using sorting. This should not normally be needed.

• SQL_BUFFER_RESULT forces the result to be put into a temporary table. This helps MySQL free the
table locks early and helps in cases where it takes a long time to send the result set to the client. This
option can be used only for top-level SELECT statements, not for subqueries or following UNION.

• SQL_CALC_FOUND_ROWS tells MySQL to calculate how many rows there would be in the result
set, disregarding any LIMIT clause. The number of rows can then be retrieved with SELECT
FOUND_ROWS(). See Section 12.13, “Information Functions”.

• The SQL_CACHE and SQL_NO_CACHE options affect caching of query results in the query cache (see
Section 8.10.3, “The MySQL Query Cache”). SQL_CACHE tells MySQL to store the result in the query
cache if it is cacheable and the value of the query_cache_type system variable is 2 or DEMAND. With
SQL_NO_CACHE, the server does not use the query cache. It neither checks the query cache to see
whether the result is already cached, nor does it cache the query result. (Due to a limitation in the parser,
a space character must precede and follow the SQL_NO_CACHE keyword; a nonspace such as a newline
causes the server to check the query cache to see whether the result is already cached.)

For a query that uses UNION, subqueries, or views, the following rules apply:

• SQL_NO_CACHE applies if it appears in any SELECT in the query.

• For a cacheable query, SQL_CACHE applies if it appears in the first SELECT of the query, or in the first
SELECT of a view referred to by the query.

13.2.8.1 SELECT ... INTO Syntax

The SELECT ... INTO form of SELECT enables a query result to be stored in variables or written to a
file:

• SELECT ... INTO var_list selects column values and stores them into variables.

• SELECT ... INTO OUTFILE writes the selected rows to a file. Column and line terminators can be
specified to produce a specific output format.

• SELECT ... INTO DUMPFILE writes a single row to a file without any formatting.

The SELECT syntax description (see Section 13.2.8, “SELECT Syntax”) shows the INTO clause near the
end of the statement. It is also possible to use INTO immediately following the select_expr list.

An INTO clause should not be used in a nested SELECT because such a SELECT must return its result to
the outer context.

The INTO clause can name a list of one or more variables, which can be user-defined variables, stored
procedure or function parameters, or stored program local variables. (Within a prepared SELECT ...
INTO OUTFILE statement, only user-defined variables are permitted;see Section 13.6.4.2, “Local Variable
Scope and Resolution”.)

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1218

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The selected values are assigned to the variables. The number of variables must match the number of
columns. The query should return a single row. If the query returns no rows, a warning with error code
1329 occurs (No data), and the variable values remain unchanged. If the query returns multiple rows,
error 1172 occurs (Result consisted of more than one row). If it is possible that the statement
may retrieve multiple rows, you can use LIMIT 1 to limit the result set to a single row.

SELECT id, data INTO @x, @y FROM test.t1 LIMIT 1;

User variable names are not case sensitive. See Section 9.4, “User-Defined Variables”.

The SELECT ... INTO OUTFILE 'file_name' form of SELECT writes the selected rows to a file.
The file is created on the server host, so you must have the FILE privilege to use this syntax. file_name
cannot be an existing file, which among other things prevents files such as /etc/passwd and database
tables from being destroyed. As of MySQL 5.0.19, the character_set_filesystem system variable
controls the interpretation of the file name.

The SELECT ... INTO OUTFILE statement is intended primarily to let you very quickly dump a table to
a text file on the server machine. If you want to create the resulting file on some other host than the server
host, you normally cannot use SELECT ... INTO OUTFILE since there is no way to write a path to the
file relative to the server host's file system.

However, if the MySQL client software is installed on the remote machine, you can instead use a client
command such as mysql -e "SELECT ..." > file_name to generate the file on the client host.

It is also possible to create the resulting file on a different host other than the server host, if the location of
the file on the remote host can be accessed using a network-mapped path on the server's file system. In
this case, the presence of mysql (or some other MySQL client program) is not required on the target host.

SELECT ... INTO OUTFILE is the complement of LOAD DATA INFILE. Column values are dumped
using the binary character set. In effect, there is no character set conversion. If a result set contains
columns in several character sets, the output data file will as well and you may not be able to reload the file
correctly.

The syntax for the export_options part of the statement consists of the same FIELDS and LINES
clauses that are used with the LOAD DATA INFILE statement. See Section 13.2.6, “LOAD DATA
INFILE Syntax”, for information about the FIELDS and LINES clauses, including their default values and
permissible values.

FIELDS ESCAPED BY controls how to write special characters. If the FIELDS ESCAPED BY character is
not empty, it is used when necessary to avoid ambiguity as a prefix that precedes following characters on
output:

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values

• ASCII NUL (the zero-valued byte; what is actually written following the escape character is ASCII “0”, not
a zero-valued byte)

The FIELDS TERMINATED BY, ENCLOSED BY, ESCAPED BY, or LINES TERMINATED BY characters
must be escaped so that you can read the file back in reliably. ASCII NUL is escaped to make it easier to
view with some pagers.

The resulting file does not have to conform to SQL syntax, so nothing else need be escaped.

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1219

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as NULL,
not \N. It is probably not a good idea to specify an empty escape character, particularly if field values in
your data contain any of the characters in the list just given.

Here is an example that produces a file in the comma-separated values (CSV) format used by many
programs:

SELECT a,b,a+b INTO OUTFILE '/tmp/result.txt'
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 LINES TERMINATED BY '\n'
 FROM test_table;

If you use INTO DUMPFILE instead of INTO OUTFILE, MySQL writes only one row into the file, without
any column or line termination and without performing any escape processing. This is useful if you want to
store a BLOB value in a file.

Note

Any file created by INTO OUTFILE or INTO DUMPFILE is writable by all users
on the server host. The reason for this is that the MySQL server cannot create a
file that is owned by anyone other than the user under whose account it is running.
(You should never run mysqld as root for this and other reasons.) The file thus
must be world-writable so that you can manipulate its contents.

If the secure_file_priv system variable is set to a nonempty directory name,
the file to be written must be located in that directory.

13.2.8.2 JOIN Syntax

MySQL supports the following JOIN syntaxes for the table_references part of SELECT statements and
multiple-table DELETE and UPDATE statements:

table_references:
 escaped_table_reference [, escaped_table_reference] ...

escaped_table_reference:
 table_reference
 | { OJ table_reference }

table_reference:
 table_factor
 | join_table

table_factor:
 tbl_name [[AS] alias] [index_hint]
 | table_subquery [AS] alias
 | (table_references)

join_table:
 table_reference [INNER | CROSS] JOIN table_factor [join_condition]
 | table_reference STRAIGHT_JOIN table_factor
 | table_reference STRAIGHT_JOIN table_factor ON conditional_expr
 | table_reference {LEFT|RIGHT} [OUTER] JOIN table_reference join_condition
 | table_reference NATURAL [{LEFT|RIGHT} [OUTER]] JOIN table_factor

join_condition:
 ON conditional_expr
 | USING (column_list)

index_hint:

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1220

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 USE {INDEX|KEY} [FOR JOIN] (index_list)
 | IGNORE {INDEX|KEY} [FOR JOIN] (index_list)
 | FORCE {INDEX|KEY} [FOR JOIN] (index_list)

index_list:
 index_name [, index_name] ...

A table reference is also known as a join expression.

The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts only
table_reference, not a list of them inside a pair of parentheses.

This is a conservative extension if we consider each comma in a list of table_reference items as
equivalent to an inner join. For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
 ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

In MySQL, JOIN, CROSS JOIN, and INNER JOIN are syntactic equivalents (they can replace each other).
In standard SQL, they are not equivalent. INNER JOIN is used with an ON clause, CROSS JOIN is used
otherwise.

In versions of MySQL prior to 5.0.1, parentheses in table_references were just omitted and all join
operations were grouped to the left. In general, parentheses can be ignored in join expressions containing
only inner join operations. As of 5.0.1, nested joins are permitted (see Section 8.2.1.9, “Nested Join
Optimization”).

Further changes in join processing were made in 5.0.12 to make MySQL more compliant with standard
SQL. These charges are described later in this section.

Index hints can be specified to affect how the MySQL optimizer makes use of indexes. For more
information, see Section 8.9.2, “Index Hints”.

The following list describes general factors to take into account when writing joins.

• A table reference can be aliased using tbl_name AS alias_name or tbl_name alias_name:

SELECT t1.name, t2.salary
 FROM employee AS t1 INNER JOIN info AS t2 ON t1.name = t2.name;

SELECT t1.name, t2.salary
 FROM employee t1 INNER JOIN info t2 ON t1.name = t2.name;

• A table_subquery is also known as a subquery in the FROM clause. Such subqueries must include
an alias to give the subquery result a table name. A trivial example follows; see also Section 13.2.9.8,
“Subqueries in the FROM Clause”.

SELECT * FROM (SELECT 1, 2, 3) AS t1;

• INNER JOIN and , (comma) are semantically equivalent in the absence of a join condition: both
produce a Cartesian product between the specified tables (that is, each and every row in the first table is
joined to each and every row in the second table).

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1221

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

However, the precedence of the comma operator is less than of INNER JOIN, CROSS JOIN, LEFT
JOIN, and so on. If you mix comma joins with the other join types when there is a join condition, an error
of the form Unknown column 'col_name' in 'on clause' may occur. Information about dealing
with this problem is given later in this section.

• The conditional_expr used with ON is any conditional expression of the form that can be used in a
WHERE clause. Generally, you should use the ON clause for conditions that specify how to join tables, and
the WHERE clause to restrict which rows you want in the result set.

• If there is no matching row for the right table in the ON or USING part in a LEFT JOIN, a row with all
columns set to NULL is used for the right table. You can use this fact to find rows in a table that have no
counterpart in another table:

SELECT left_tbl.*
 FROM left_tbl LEFT JOIN right_tbl ON left_tbl.id = right_tbl.id
 WHERE right_tbl.id IS NULL;

This example finds all rows in left_tbl with an id value that is not present in right_tbl (that is, all
rows in left_tbl with no corresponding row in right_tbl). This assumes that right_tbl.id is
declared NOT NULL. See Section 8.2.1.7, “LEFT JOIN and RIGHT JOIN Optimization”.

• The USING(column_list) clause names a list of columns that must exist in both tables. If tables a
and b both contain columns c1, c2, and c3, the following join compares corresponding columns from the
two tables:

a LEFT JOIN b USING (c1,c2,c3)

• The NATURAL [LEFT] JOIN of two tables is defined to be semantically equivalent to an INNER JOIN
or a LEFT JOIN with a USING clause that names all columns that exist in both tables.

• RIGHT JOIN works analogously to LEFT JOIN. To keep code portable across databases, it is
recommended that you use LEFT JOIN instead of RIGHT JOIN.

• The { OJ ... } syntax shown in the join syntax description exists only for compatibility with ODBC.
The curly braces in the syntax should be written literally; they are not metasyntax as used elsewhere in
syntax descriptions.

SELECT left_tbl.*
 FROM { OJ left_tbl LEFT OUTER JOIN right_tbl ON left_tbl.id = right_tbl.id }
 WHERE right_tbl.id IS NULL;

• STRAIGHT_JOIN is similar to JOIN, except that the left table is always read before the right table. This
can be used for those (few) cases for which the join optimizer puts the tables in the wrong order.

Some join examples:

SELECT * FROM table1, table2;

SELECT * FROM table1 INNER JOIN table2 ON table1.id=table2.id;

SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id;

SELECT * FROM table1 LEFT JOIN table2 USING (id);

SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id
 LEFT JOIN table3 ON table2.id=table3.id;

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1222

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Join Processing Changes in MySQL 5.0.12

Beginning with MySQL 5.0.12, natural joins and joins with USING, including outer join variants, are
processed according to the SQL:2003 standard. The goal was to align the syntax and semantics of MySQL
with respect to NATURAL JOIN and JOIN ... USING according to SQL:2003. However, these changes
in join processing can result in different output columns for some joins. Also, some queries that appeared
to work correctly in older versions must be rewritten to comply with the standard.

These changes have five main aspects:

• The way that MySQL determines the result columns of NATURAL or USING join operations (and thus the
result of the entire FROM clause).

• Expansion of SELECT * and SELECT tbl_name.* into a list of selected columns.

• Resolution of column names in NATURAL or USING joins.

• Transformation of NATURAL or USING joins into JOIN ... ON.

• Resolution of column names in the ON condition of a JOIN ... ON.

The following list provides more detail about several effects of the 5.0.12 change in join processing. The
term “previously” means “prior to MySQL 5.0.12.”

• The columns of a NATURAL join or a USING join may be different from previously. Specifically, redundant
output columns no longer appear, and the order of columns for SELECT * expansion may be different
from before.

Consider this set of statements:

CREATE TABLE t1 (i INT, j INT);
CREATE TABLE t2 (k INT, j INT);
INSERT INTO t1 VALUES(1,1);
INSERT INTO t2 VALUES(1,1);
SELECT * FROM t1 NATURAL JOIN t2;
SELECT * FROM t1 JOIN t2 USING (j);

Previously, the statements produced this output:

+------+------+------+------+
| i | j | k | j |
+------+------+------+------+
| 1 | 1 | 1 | 1 |
+------+------+------+------+
+------+------+------+------+
| i | j | k | j |
+------+------+------+------+
| 1 | 1 | 1 | 1 |
+------+------+------+------+

In the first SELECT statement, column j appears in both tables and thus becomes a join column, so,
according to standard SQL, it should appear only once in the output, not twice. Similarly, in the second
SELECT statement, column j is named in the USING clause and should appear only once in the output,
not twice. But in both cases, the redundant column is not eliminated. Also, the order of the columns is
not correct according to standard SQL.

Now the statements produce this output:

+------+------+------+

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1223

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+
+------+------+------+
| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+

The redundant column is eliminated and the column order is correct according to standard SQL:

• First, coalesced common columns of the two joined tables, in the order in which they occur in the first
table

• Second, columns unique to the first table, in order in which they occur in that table

• Third, columns unique to the second table, in order in which they occur in that table

The single result column that replaces two common columns is defined using the coalesce operation.
That is, for two t1.a and t2.a the resulting single join column a is defined as a = COALESCE(t1.a,
t2.a), where:

COALESCE(x, y) = (CASE WHEN V1 IS NOT NULL THEN V1 ELSE V2 END)

If the join operation is any other join, the result columns of the join consists of the concatenation of all
columns of the joined tables. This is the same as previously.

A consequence of the definition of coalesced columns is that, for outer joins, the coalesced column
contains the value of the non-NULL column if one of the two columns is always NULL. If neither or
both columns are NULL, both common columns have the same value, so it doesn't matter which one
is chosen as the value of the coalesced column. A simple way to interpret this is to consider that a
coalesced column of an outer join is represented by the common column of the inner table of a JOIN.
Suppose that the tables t1(a,b) and t2(a,c) have the following contents:

t1 t2
---- ----
1 x 2 z
2 y 3 w

Then:

mysql> SELECT * FROM t1 NATURAL LEFT JOIN t2;
+------+------+------+
| a | b | c |
+------+------+------+
| 1 | x | NULL |
| 2 | y | z |
+------+------+------+

Here column a contains the values of t1.a.

mysql> SELECT * FROM t1 NATURAL RIGHT JOIN t2;
+------+------+------+
| a | c | b |
+------+------+------+
| 2 | z | y |
| 3 | w | NULL |

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1224

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+------+------+------+

Here column a contains the values of t2.a.

Compare these results to the otherwise equivalent queries with JOIN ... ON:

mysql> SELECT * FROM t1 LEFT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 1 | x | NULL | NULL |
| 2 | y | 2 | z |
+------+------+------+------+

mysql> SELECT * FROM t1 RIGHT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 2 | y | 2 | z |
| NULL | NULL | 3 | w |
+------+------+------+------+

• Previously, a USING clause could be rewritten as an ON clause that compares corresponding columns.
For example, the following two clauses were semantically identical:

a LEFT JOIN b USING (c1,c2,c3)
a LEFT JOIN b ON a.c1=b.c1 AND a.c2=b.c2 AND a.c3=b.c3

Now the two clauses no longer are quite the same:

• With respect to determining which rows satisfy the join condition, both joins remain semantically
identical.

• With respect to determining which columns to display for SELECT * expansion, the two joins are
not semantically identical. The USING join selects the coalesced value of corresponding columns,
whereas the ON join selects all columns from all tables. For the preceding USING join, SELECT *
selects these values:

COALESCE(a.c1,b.c1), COALESCE(a.c2,b.c2), COALESCE(a.c3,b.c3)

For the ON join, SELECT * selects these values:

a.c1, a.c2, a.c3, b.c1, b.c2, b.c3

With an inner join, COALESCE(a.c1,b.c1) is the same as either a.c1 or b.c1 because both
columns will have the same value. With an outer join (such as LEFT JOIN), one of the two columns
can be NULL. That column will be omitted from the result.

• The evaluation of multi-way natural joins differs in a very important way that affects the result of
NATURAL or USING joins and that can require query rewriting. Suppose that you have three tables
t1(a,b), t2(c,b), and t3(a,c) that each have one row: t1(1,2), t2(10,2), and t3(7,10).
Suppose also that you have this NATURAL JOIN on the three tables:

SELECT ... FROM t1 NATURAL JOIN t2 NATURAL JOIN t3;

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1225

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Previously, the left operand of the second join was considered to be t2, whereas it should be the nested
join (t1 NATURAL JOIN t2). As a result, the columns of t3 are checked for common columns only
in t2, and, if t3 has common columns with t1, these columns are not used as equi-join columns. Thus,
previously, the preceding query was transformed to the following equi-join:

SELECT ... FROM t1, t2, t3
 WHERE t1.b = t2.b AND t2.c = t3.c;

That join is missing one more equi-join predicate (t1.a = t3.a). As a result, it produces one row, not
the empty result that it should. The correct equivalent query is this:

SELECT ... FROM t1, t2, t3
 WHERE t1.b = t2.b AND t2.c = t3.c AND t1.a = t3.a;

If you require the same query result in current versions of MySQL as in older versions, rewrite the natural
join as the first equi-join.

• Previously, the comma operator (,) and JOIN both had the same precedence, so the join expression
t1, t2 JOIN t3 was interpreted as ((t1, t2) JOIN t3). Now JOIN has higher precedence, so
the expression is interpreted as (t1, (t2 JOIN t3)). This change affects statements that use an
ON clause, because that clause can refer only to columns in the operands of the join, and the change in
precedence changes interpretation of what those operands are.

Example:

CREATE TABLE t1 (i1 INT, j1 INT);
CREATE TABLE t2 (i2 INT, j2 INT);
CREATE TABLE t3 (i3 INT, j3 INT);
INSERT INTO t1 VALUES(1,1);
INSERT INTO t2 VALUES(1,1);
INSERT INTO t3 VALUES(1,1);
SELECT * FROM t1, t2 JOIN t3 ON (t1.i1 = t3.i3);

Previously, the SELECT was legal due to the implicit grouping of t1,t2 as (t1,t2). Now the JOIN
takes precedence, so the operands for the ON clause are t2 and t3. Because t1.i1 is not a column in
either of the operands, the result is an Unknown column 't1.i1' in 'on clause' error. To allow
the join to be processed, group the first two tables explicitly with parentheses so that the operands for
the ON clause are (t1,t2) and t3:

SELECT * FROM (t1, t2) JOIN t3 ON (t1.i1 = t3.i3);

Alternatively, avoid the use of the comma operator and use JOIN instead:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (t1.i1 = t3.i3);

This change also applies to statements that mix the comma operator with INNER JOIN, CROSS JOIN,
LEFT JOIN, and RIGHT JOIN, all of which now have higher precedence than the comma operator.

• Previously, the ON clause could refer to columns in tables named to its right. Now an ON clause can refer
only to its operands.

Example:

CREATE TABLE t1 (i1 INT);

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1226

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CREATE TABLE t2 (i2 INT);
CREATE TABLE t3 (i3 INT);
SELECT * FROM t1 JOIN t2 ON (i1 = i3) JOIN t3;

Previously, the SELECT statement was legal. Now the statement fails with an Unknown column 'i3'
in 'on clause' error because i3 is a column in t3, which is not an operand of the ON clause. The
statement should be rewritten as follows:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (i1 = i3);

• Resolution of column names in NATURAL or USING joins is different than previously. For column names
that are outside the FROM clause, MySQL now handles a superset of the queries compared to previously.
That is, in cases when MySQL formerly issued an error that some column is ambiguous, the query now
is handled correctly. This is due to the fact that MySQL now treats the common columns of NATURAL or
USING joins as a single column, so when a query refers to such columns, the query compiler does not
consider them as ambiguous.

Example:

SELECT * FROM t1 NATURAL JOIN t2 WHERE b > 1;

Previously, this query would produce an error ERROR 1052 (23000): Column 'b' in where
clause is ambiguous. Now the query produces the correct result:

+------+------+------+
| b | c | y |
+------+------+------+
| 4 | 2 | 3 |
+------+------+------+

One extension of MySQL compared to the SQL:2003 standard is that MySQL enables you to qualify
the common (coalesced) columns of NATURAL or USING joins (just as previously), while the standard
disallows that.

13.2.8.3 UNION Syntax

SELECT ...
UNION [ALL | DISTINCT] SELECT ...
[UNION [ALL | DISTINCT] SELECT ...]

UNION is used to combine the result from multiple SELECT statements into a single result set.

The column names from the first SELECT statement are used as the column names for the results
returned. Selected columns listed in corresponding positions of each SELECT statement should have the
same data type. (For example, the first column selected by the first statement should have the same type
as the first column selected by the other statements.)

If the data types of corresponding SELECT columns do not match, the types and lengths of the columns
in the UNION result take into account the values retrieved by all of the SELECT statements. For example,
consider the following:

mysql> SELECT REPEAT('a',1) UNION SELECT REPEAT('b',10);
+---------------+
| REPEAT('a',1) |
+---------------+
| a |

SELECT Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1227

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| bbbbbbbbbb |
+---------------+

(In some earlier versions of MySQL, only the type and length from the first SELECT would have been used
and the second row would have been truncated to a length of 1.)

The SELECT statements are normal select statements, but with the following restrictions:

• Only the last SELECT statement can use INTO OUTFILE. (However, the entire UNION result is written to
the file.)

• HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION. If you specify it for
the first SELECT, it has no effect. If you specify it for any subsequent SELECT statements, a syntax error
results.

The default behavior for UNION is that duplicate rows are removed from the result. The optional DISTINCT
keyword has no effect other than the default because it also specifies duplicate-row removal. With the
optional ALL keyword, duplicate-row removal does not occur and the result includes all matching rows from
all the SELECT statements.

You can mix UNION ALL and UNION DISTINCT in the same query. Mixed UNION types are treated such
that a DISTINCT union overrides any ALL union to its left. A DISTINCT union can be produced explicitly
by using UNION DISTINCT or implicitly by using UNION with no following DISTINCT or ALL keyword.

To apply ORDER BY or LIMIT to an individual SELECT, place the clause inside the parentheses that
enclose the SELECT:

(SELECT a FROM t1 WHERE a=10 AND B=1 ORDER BY a LIMIT 10)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2 ORDER BY a LIMIT 10);

However, use of ORDER BY for individual SELECT statements implies nothing about the order in which the
rows appear in the final result because UNION by default produces an unordered set of rows. Therefore,
the use of ORDER BY in this context is typically in conjunction with LIMIT, so that it is used to determine
the subset of the selected rows to retrieve for the SELECT, even though it does not necessarily affect
the order of those rows in the final UNION result. If ORDER BY appears without LIMIT in a SELECT, it is
optimized away because it will have no effect anyway.

To use an ORDER BY or LIMIT clause to sort or limit the entire UNION result, parenthesize the individual
SELECT statements and place the ORDER BY or LIMIT after the last one. The following example uses
both clauses:

(SELECT a FROM t1 WHERE a=10 AND B=1)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2)
ORDER BY a LIMIT 10;

A statement without parentheses is equivalent to one parenthesized as just shown.

This kind of ORDER BY cannot use column references that include a table name (that is, names in
tbl_name.col_name format). Instead, provide a column alias in the first SELECT statement and refer to
the alias in the ORDER BY. (Alternatively, refer to the column in the ORDER BY using its column position.
However, use of column positions is deprecated.)

Also, if a column to be sorted is aliased, the ORDER BY clause must refer to the alias, not the column
name. The first of the following statements will work, but the second will fail with an Unknown column
'a' in 'order clause' error:

Subquery Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1228

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY b;
(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY a;

To cause rows in a UNION result to consist of the sets of rows retrieved by each SELECT one after
the other, select an additional column in each SELECT to use as a sort column and add an ORDER BY
following the last SELECT:

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col;

To additionally maintain sort order within individual SELECT results, add a secondary column to the ORDER
BY clause:

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col, col1a;

Use of an additional column also enables you to determine which SELECT each row comes from. Extra
columns can provide other identifying information as well, such as a string that indicates a table name.

13.2.9 Subquery Syntax

A subquery is a SELECT statement within another statement.

All subquery forms and operations that the SQL standard requires are supported, as well as a few features
that are MySQL-specific.

Here is an example of a subquery:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

In this example, SELECT * FROM t1 ... is the outer query (or outer statement), and (SELECT
column1 FROM t2) is the subquery. We say that the subquery is nested within the outer query, and in
fact it is possible to nest subqueries within other subqueries, to a considerable depth. A subquery must
always appear within parentheses.

The main advantages of subqueries are:

• They allow queries that are structured so that it is possible to isolate each part of a statement.

• They provide alternative ways to perform operations that would otherwise require complex joins and
unions.

• Many people find subqueries more readable than complex joins or unions. Indeed, it was the innovation
of subqueries that gave people the original idea of calling the early SQL “Structured Query Language.”

Here is an example statement that shows the major points about subquery syntax as specified by the SQL
standard and supported in MySQL:

DELETE FROM t1
WHERE s11 > ANY
 (SELECT COUNT(*) /* no hint */ FROM t2
 WHERE NOT EXISTS

Subquery Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1229

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 (SELECT * FROM t3
 WHERE ROW(5*t2.s1,77)=
 (SELECT 50,11*s1 FROM t4 UNION SELECT 50,77 FROM
 (SELECT * FROM t5) AS t5)));

A subquery can return a scalar (a single value), a single row, a single column, or a table (one or more rows
of one or more columns). These are called scalar, column, row, and table subqueries. Subqueries that
return a particular kind of result often can be used only in certain contexts, as described in the following
sections.

There are few restrictions on the type of statements in which subqueries can be used. A subquery can
contain many of the keywords or clauses that an ordinary SELECT can contain: DISTINCT, GROUP BY,
ORDER BY, LIMIT, joins, index hints, UNION constructs, comments, functions, and so on.

A subquery's outer statement can be any one of: SELECT, INSERT, UPDATE, DELETE, SET, or DO.

In MySQL, you cannot modify a table and select from the same table in a subquery. This applies to
statements such as DELETE, INSERT, REPLACE, UPDATE, and (because subqueries can be used in the
SET clause) LOAD DATA INFILE.

For information about how the optimizer handles subqueries, see Section 8.2.1.14, “Optimizing Subqueries
with EXISTS Strategy”. For a discussion of restrictions on subquery use, including performance issues for
certain forms of subquery syntax, see Section C.3, “Restrictions on Subqueries”.

13.2.9.1 The Subquery as Scalar Operand

In its simplest form, a subquery is a scalar subquery that returns a single value. A scalar subquery is a
simple operand, and you can use it almost anywhere a single column value or literal is legal, and you can
expect it to have those characteristics that all operands have: a data type, a length, an indication that it can
be NULL, and so on. For example:

CREATE TABLE t1 (s1 INT, s2 CHAR(5) NOT NULL);
INSERT INTO t1 VALUES(100, 'abcde');
SELECT (SELECT s2 FROM t1);

The subquery in this SELECT returns a single value ('abcde') that has a data type of CHAR, a length of 5,
a character set and collation equal to the defaults in effect at CREATE TABLE time, and an indication that
the value in the column can be NULL. Nullability of the value selected by a scalar subquery is not copied
because if the subquery result is empty, the result is NULL. For the subquery just shown, if t1 were empty,
the result would be NULL even though s2 is NOT NULL.

There are a few contexts in which a scalar subquery cannot be used. If a statement permits only a literal
value, you cannot use a subquery. For example, LIMIT requires literal integer arguments, and LOAD
DATA INFILE requires a literal string file name. You cannot use subqueries to supply these values.

When you see examples in the following sections that contain the rather spartan construct (SELECT
column1 FROM t1), imagine that your own code contains much more diverse and complex
constructions.

Suppose that we make two tables:

CREATE TABLE t1 (s1 INT);
INSERT INTO t1 VALUES (1);
CREATE TABLE t2 (s1 INT);
INSERT INTO t2 VALUES (2);

Subquery Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1230

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Then perform a SELECT:

SELECT (SELECT s1 FROM t2) FROM t1;

The result is 2 because there is a row in t2 containing a column s1 that has a value of 2.

A scalar subquery can be part of an expression, but remember the parentheses, even if the subquery is an
operand that provides an argument for a function. For example:

SELECT UPPER((SELECT s1 FROM t1)) FROM t2;

13.2.9.2 Comparisons Using Subqueries

The most common use of a subquery is in the form:

non_subquery_operand comparison_operator (subquery)

Where comparison_operator is one of these operators:

= > < >= <= <> != <=>

For example:

... WHERE 'a' = (SELECT column1 FROM t1)

MySQL also permits this construct:

non_subquery_operand LIKE (subquery)

At one time the only legal place for a subquery was on the right side of a comparison, and you might still
find some old DBMSs that insist on this.

Here is an example of a common-form subquery comparison that you cannot do with a join. It finds all the
rows in table t1 for which the column1 value is equal to a maximum value in table t2:

SELECT * FROM t1
 WHERE column1 = (SELECT MAX(column2) FROM t2);

Here is another example, which again is impossible with a join because it involves aggregating for one of
the tables. It finds all rows in table t1 containing a value that occurs twice in a given column:

SELECT * FROM t1 AS t
 WHERE 2 = (SELECT COUNT(*) FROM t1 WHERE t1.id = t.id);

For a comparison of the subquery to a scalar, the subquery must return a scalar. For a comparison of the
subquery to a row constructor, the subquery must be a row subquery that returns a row with the same
number of values as the row constructor. See Section 13.2.9.5, “Row Subqueries”.

13.2.9.3 Subqueries with ANY, IN, or SOME

Syntax:

Subquery Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1231

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

operand comparison_operator ANY (subquery)
operand IN (subquery)
operand comparison_operator SOME (subquery)

Where comparison_operator is one of these operators:

= > < >= <= <> !=

The ANY keyword, which must follow a comparison operator, means “return TRUE if the comparison is
TRUE for ANY of the values in the column that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ANY (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains
(21,14,7) because there is a value 7 in t2 that is less than 10. The expression is FALSE if table t2
contains (20,10), or if table t2 is empty. The expression is unknown (that is, NULL) if table t2 contains
(NULL,NULL,NULL).

When used with a subquery, the word IN is an alias for = ANY. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 IN (SELECT s1 FROM t2);

IN and = ANY are not synonyms when used with an expression list. IN can take an expression list, but =
ANY cannot. See Section 12.3.2, “Comparison Functions and Operators”.

NOT IN is not an alias for <> ANY, but for <> ALL. See Section 13.2.9.4, “Subqueries with ALL”.

The word SOME is an alias for ANY. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 <> SOME (SELECT s1 FROM t2);

Use of the word SOME is rare, but this example shows why it might be useful. To most people, the English
phrase “a is not equal to any b” means “there is no b which is equal to a,” but that is not what is meant by
the SQL syntax. The syntax means “there is some b to which a is not equal.” Using <> SOME instead helps
ensure that everyone understands the true meaning of the query.

13.2.9.4 Subqueries with ALL

Syntax:

operand comparison_operator ALL (subquery)

The word ALL, which must follow a comparison operator, means “return TRUE if the comparison is TRUE for
ALL of the values in the column that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ALL (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains
(-5,0,+5) because 10 is greater than all three values in t2. The expression is FALSE if table t2

Subquery Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1232

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

contains (12,6,NULL,-100) because there is a single value 12 in table t2 that is greater than 10. The
expression is unknown (that is, NULL) if table t2 contains (0,NULL,1).

Finally, the expression is TRUE if table t2 is empty. So, the following expression is TRUE when table t2 is
empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT s1 FROM t2);

But this expression is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > (SELECT s1 FROM t2);

In addition, the following expression is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT MAX(s1) FROM t2);

In general, tables containing NULL values and empty tables are “edge cases.” When writing subqueries,
always consider whether you have taken those two possibilities into account.

NOT IN is an alias for <> ALL. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ALL (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 NOT IN (SELECT s1 FROM t2);

13.2.9.5 Row Subqueries

Scalar or column subqueries return a single value or a column of values. A row subquery is a subquery
variant that returns a single row and can thus return more than one column value. Legal operators for row
subquery comparisons are:

= > < >= <= <> != <=>

Here are two examples:

SELECT * FROM t1
 WHERE (col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);
SELECT * FROM t1
 WHERE ROW(col1,col2) = (SELECT col3, col4 FROM t2 WHERE id = 10);

For both queries, if the table t2 contains a single row with id = 10, the subquery returns a single row.
If this row has col3 and col4 values equal to the col1 and col2 values of any rows in t1, the WHERE
expression is TRUE and each query returns those t1 rows. If the t2 row col3 and col4 values are not
equal the col1 and col2 values of any t1 row, the expression is FALSE and the query returns an empty
result set. The expression is unknown (that is, NULL) if the subquery produces no rows. An error occurs if
the subquery produces multiple rows because a row subquery can return at most one row.

For information about how each operator works for row comparisons, see Section 12.3.2, “Comparison
Functions and Operators”.

The expressions (1,2) and ROW(1,2) are sometimes called row constructors. The two are equivalent.
The row constructor and the row returned by the subquery must contain the same number of values.

A row constructor is used for comparisons with subqueries that return two or more columns. When a
subquery returns a single column, this is regarded as a scalar value and not as a row, so a row constructor

Subquery Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1233

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

cannot be used with a subquery that does not return at least two columns. Thus, the following query fails
with a syntax error:

SELECT * FROM t1 WHERE ROW(1) = (SELECT column1 FROM t2)

Row constructors are legal in other contexts. For example, the following two statements are semantically
equivalent:

SELECT * FROM t1 WHERE (column1,column2) = (1,1);
SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

Prior to MySQL 5.0.26, only the second of the preceding two expressions could be optimized. (Bug
#16081)

The following query answers the request, “find all rows in table t1 that also exist in table t2”:

SELECT column1,column2,column3
 FROM t1
 WHERE (column1,column2,column3) IN
 (SELECT column1,column2,column3 FROM t2);

For more information about the optimizer and row constructors, see Section 8.2.1.16, “Row Constructor
Expression Optimization”

13.2.9.6 Subqueries with EXISTS or NOT EXISTS

If a subquery returns any rows at all, EXISTS subquery is TRUE, and NOT EXISTS subquery is
FALSE. For example:

SELECT column1 FROM t1 WHERE EXISTS (SELECT * FROM t2);

Traditionally, an EXISTS subquery starts with SELECT *, but it could begin with SELECT 5 or SELECT
column1 or anything at all. MySQL ignores the SELECT list in such a subquery, so it makes no difference.

For the preceding example, if t2 contains any rows, even rows with nothing but NULL values, the EXISTS
condition is TRUE. This is actually an unlikely example because a [NOT] EXISTS subquery almost always
contains correlations. Here are some more realistic examples:

• What kind of store is present in one or more cities?

SELECT DISTINCT store_type FROM stores
 WHERE EXISTS (SELECT * FROM cities_stores
 WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in no cities?

SELECT DISTINCT store_type FROM stores
 WHERE NOT EXISTS (SELECT * FROM cities_stores
 WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in all cities?

SELECT DISTINCT store_type FROM stores s1
 WHERE NOT EXISTS (

Subquery Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1234

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 SELECT * FROM cities WHERE NOT EXISTS (
 SELECT * FROM cities_stores
 WHERE cities_stores.city = cities.city
 AND cities_stores.store_type = stores.store_type));

The last example is a double-nested NOT EXISTS query. That is, it has a NOT EXISTS clause within
a NOT EXISTS clause. Formally, it answers the question “does a city exist with a store that is not in
Stores”? But it is easier to say that a nested NOT EXISTS answers the question “is x TRUE for all y?”

13.2.9.7 Correlated Subqueries

A correlated subquery is a subquery that contains a reference to a table that also appears in the outer
query. For example:

SELECT * FROM t1
 WHERE column1 = ANY (SELECT column1 FROM t2
 WHERE t2.column2 = t1.column2);

Notice that the subquery contains a reference to a column of t1, even though the subquery's FROM clause
does not mention a table t1. So, MySQL looks outside the subquery, and finds t1 in the outer query.

Suppose that table t1 contains a row where column1 = 5 and column2 = 6; meanwhile, table t2
contains a row where column1 = 5 and column2 = 7. The simple expression ... WHERE column1
= ANY (SELECT column1 FROM t2) would be TRUE, but in this example, the WHERE clause within the
subquery is FALSE (because (5,6) is not equal to (5,7)), so the expression as a whole is FALSE.

Scoping rule: MySQL evaluates from inside to outside. For example:

SELECT column1 FROM t1 AS x
 WHERE x.column1 = (SELECT column1 FROM t2 AS x
 WHERE x.column1 = (SELECT column1 FROM t3
 WHERE x.column2 = t3.column1));

In this statement, x.column2 must be a column in table t2 because SELECT column1 FROM t2 AS
x ... renames t2. It is not a column in table t1 because SELECT column1 FROM t1 ... is an outer
query that is farther out.

For subqueries in HAVING or ORDER BY clauses, MySQL also looks for column names in the outer select
list.

For certain cases, a correlated subquery is optimized. For example:

val IN (SELECT key_val FROM tbl_name WHERE correlated_condition)

Otherwise, they are inefficient and likely to be slow. Rewriting the query as a join might improve
performance.

Aggregate functions in correlated subqueries may contain outer references, provided the function contains
nothing but outer references, and provided the function is not contained in another function or expression.

13.2.9.8 Subqueries in the FROM Clause

Subqueries are legal in a SELECT statement's FROM clause. The actual syntax is:

Subquery Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1235

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT ... FROM (subquery) [AS] name ...

The [AS] name clause is mandatory, because every table in a FROM clause must have a name. Any
columns in the subquery select list must have unique names.

For the sake of illustration, assume that you have this table:

CREATE TABLE t1 (s1 INT, s2 CHAR(5), s3 FLOAT);

Here is how to use a subquery in the FROM clause, using the example table:

INSERT INTO t1 VALUES (1,'1',1.0);
INSERT INTO t1 VALUES (2,'2',2.0);
SELECT sb1,sb2,sb3
 FROM (SELECT s1 AS sb1, s2 AS sb2, s3*2 AS sb3 FROM t1) AS sb
 WHERE sb1 > 1;

Result: 2, '2', 4.0.

Here is another example: Suppose that you want to know the average of a set of sums for a grouped table.
This does not work:

SELECT AVG(SUM(column1)) FROM t1 GROUP BY column1;

However, this query provides the desired information:

SELECT AVG(sum_column1)
 FROM (SELECT SUM(column1) AS sum_column1
 FROM t1 GROUP BY column1) AS t1;

Notice that the column name used within the subquery (sum_column1) is recognized in the outer query.

Subqueries in the FROM clause can return a scalar, column, row, or table. Subqueries in the FROM clause
cannot be correlated subqueries, unless used within the ON clause of a JOIN operation.

Subqueries in the FROM clause are executed even for the EXPLAIN statement (that is, derived temporary
tables are materialized). This occurs because upper-level queries need information about all tables during
the optimization phase, and the table represented by a subquery in the FROM clause is unavailable unless
the subquery is executed.

It is possible under certain circumstances to modify table data using EXPLAIN SELECT. This can occur
if the outer query accesses any tables and an inner query invokes a stored function that changes one or
more rows of a table. Suppose that there are two tables t1 and t2 in database d1, created as shown here:

mysql> CREATE DATABASE d1;
Query OK, 1 row affected (0.00 sec)

mysql> USE d1;
Database changed

mysql> CREATE TABLE t1 (c1 INT);
Query OK, 0 rows affected (0.15 sec)

mysql> CREATE TABLE t2 (c1 INT);
Query OK, 0 rows affected (0.08 sec)

Now we create a stored function f1 which modifies t2:

Subquery Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1236

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> DELIMITER //
mysql> CREATE FUNCTION f1(p1 INT) RETURNS INT
mysql> BEGIN
mysql> INSERT INTO t2 VALUES (p1);
mysql> RETURN p1;
mysql> END //
Query OK, 0 rows affected (0.01 sec)

mysql> DELIMITER ;

Referencing the function directly in an EXPLAIN SELECT does not have any effect on t2, as shown here:

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

mysql> EXPLAIN SELECT f1(5);
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| 1 | SIMPLE | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

This is because the SELECT statement did not reference any tables, as can be seen in the table and
Extra columns of the output. This is also true of the following nested SELECT:

mysql> EXPLAIN SELECT NOW() AS a1, (SELECT f1(5)) AS a2;
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
| 1 | PRIMARY | NULL | NULL | NULL | NULL | NULL | NULL | NULL | No tables used |
+----+-------------+-------+------+---------------+------+---------+------+------+----------------+
1 row in set, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+--+
| Level | Code | Message |
+-------+------+--+
| Note | 1249 | Select 2 was reduced during optimization |
+-------+------+--+
1 row in set (0.00 sec)

mysql> SELECT * FROM t2;
Empty set (0.00 sec)

However, if the outer SELECT references any tables, the optimizer executes the statement in the subquery
as well:

mysql> EXPLAIN SELECT * FROM t1 AS a1, (SELECT f1(5)) AS a2;
+----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+
1	PRIMARY	a1	system	NULL	NULL	NULL	NULL	0	const row not found
1	PRIMARY	<derived2>	system	NULL	NULL	NULL	NULL	1	
2	DERIVED	NULL	NULL	NULL	NULL	NULL	NULL	NULL	No tables used
+----+-------------+------------+--------+---------------+------+---------+------+------+---------------------+
3 rows in set (0.00 sec)

mysql> SELECT * FROM t2;

Subquery Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1237

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+------+
| c1 |
+------+
| 5 |
+------+
1 row in set (0.00 sec)

This also means that an EXPLAIN SELECT statement such as the one shown here may take a long time to
execute because the BENCHMARK() function is executed once for each row in t1:

EXPLAIN SELECT * FROM t1 AS a1, (SELECT BENCHMARK(1000000, MD5(NOW())));

13.2.9.9 Subquery Errors

There are some errors that apply only to subqueries. This section describes them.

• Unsupported subquery syntax:

ERROR 1235 (ER_NOT_SUPPORTED_YET)
SQLSTATE = 42000
Message = "This version of MySQL doesn't yet support
'LIMIT & IN/ALL/ANY/SOME subquery'"

This means that MySQL does not support statements of the following form:

SELECT * FROM t1 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1)

• Incorrect number of columns from subquery:

ERROR 1241 (ER_OPERAND_COL)
SQLSTATE = 21000
Message = "Operand should contain 1 column(s)"

This error occurs in cases like this:

SELECT (SELECT column1, column2 FROM t2) FROM t1;

You may use a subquery that returns multiple columns, if the purpose is row comparison. In other
contexts, the subquery must be a scalar operand. See Section 13.2.9.5, “Row Subqueries”.

• Incorrect number of rows from subquery:

ERROR 1242 (ER_SUBSELECT_NO_1_ROW)
SQLSTATE = 21000
Message = "Subquery returns more than 1 row"

This error occurs for statements where the subquery must return at most one row but returns multiple
rows. Consider the following example:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

If SELECT column1 FROM t2 returns just one row, the previous query will work. If the subquery
returns more than one row, error 1242 will occur. In that case, the query should be rewritten as:

SELECT * FROM t1 WHERE column1 = ANY (SELECT column1 FROM t2);

Subquery Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1238

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Incorrectly used table in subquery:

Error 1093 (ER_UPDATE_TABLE_USED)
SQLSTATE = HY000
Message = "You can't specify target table 'x'
for update in FROM clause"

This error occurs in cases such as the following, which attempts to modify a table and select from the
same table in the subquery:

UPDATE t1 SET column2 = (SELECT MAX(column1) FROM t1);

You can use a subquery for assignment within an UPDATE statement because subqueries are legal in
UPDATE and DELETE statements as well as in SELECT statements. However, you cannot use the same
table (in this case, table t1) for both the subquery FROM clause and the update target.

For transactional storage engines, the failure of a subquery causes the entire statement to fail. For
nontransactional storage engines, data modifications made before the error was encountered are
preserved.

13.2.9.10 Optimizing Subqueries

Development is ongoing, so no optimization tip is reliable for the long term. The following list provides
some interesting tricks that you might want to play with:

• Use subquery clauses that affect the number or order of the rows in the subquery. For example:

SELECT * FROM t1 WHERE t1.column1 IN
 (SELECT column1 FROM t2 ORDER BY column1);
SELECT * FROM t1 WHERE t1.column1 IN
 (SELECT DISTINCT column1 FROM t2);
SELECT * FROM t1 WHERE EXISTS
 (SELECT * FROM t2 LIMIT 1);

• Replace a join with a subquery. For example, try this:

SELECT DISTINCT column1 FROM t1 WHERE t1.column1 IN (
 SELECT column1 FROM t2);

Instead of this:

SELECT DISTINCT t1.column1 FROM t1, t2
 WHERE t1.column1 = t2.column1;

• Some subqueries can be transformed to joins for compatibility with older versions of MySQL that do not
support subqueries. However, in some cases, converting a subquery to a join may improve performance.
See Section 13.2.9.11, “Rewriting Subqueries as Joins”.

• Move clauses from outside to inside the subquery. For example, use this query:

SELECT * FROM t1
 WHERE s1 IN (SELECT s1 FROM t1 UNION ALL SELECT s1 FROM t2);

Instead of this query:

Subquery Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1239

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT * FROM t1
 WHERE s1 IN (SELECT s1 FROM t1) OR s1 IN (SELECT s1 FROM t2);

For another example, use this query:

SELECT (SELECT column1 + 5 FROM t1) FROM t2;

Instead of this query:

SELECT (SELECT column1 FROM t1) + 5 FROM t2;

• Use a row subquery instead of a correlated subquery. For example, use this query:

SELECT * FROM t1
 WHERE (column1,column2) IN (SELECT column1,column2 FROM t2);

Instead of this query:

SELECT * FROM t1
 WHERE EXISTS (SELECT * FROM t2 WHERE t2.column1=t1.column1
 AND t2.column2=t1.column2);

• Use NOT (a = ANY (...)) rather than a <> ALL (...).

• Use x = ANY (table containing (1,2)) rather than x=1 OR x=2.

• Use = ANY rather than EXISTS.

• For uncorrelated subqueries that always return one row, IN is always slower than =. For example, use
this query:

SELECT * FROM t1
 WHERE t1.col_name = (SELECT a FROM t2 WHERE b = some_const);

Instead of this query:

SELECT * FROM t1
 WHERE t1.col_name IN (SELECT a FROM t2 WHERE b = some_const);

These tricks might cause programs to go faster or slower. Using MySQL facilities like the BENCHMARK()
function, you can get an idea about what helps in your own situation. See Section 12.13, “Information
Functions”.

Some optimizations that MySQL itself makes are:

• MySQL executes uncorrelated subqueries only once. Use EXPLAIN to make sure that a given subquery
really is uncorrelated.

• MySQL rewrites IN, ALL, ANY, and SOME subqueries in an attempt to take advantage of the possibility
that the select-list columns in the subquery are indexed.

• MySQL replaces subqueries of the following form with an index-lookup function, which EXPLAIN
describes as a special join type (unique_subquery or index_subquery):

... IN (SELECT indexed_column FROM single_table ...)

UPDATE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1240

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• MySQL enhances expressions of the following form with an expression involving MIN() or MAX(),
unless NULL values or empty sets are involved:

value {ALL|ANY|SOME} {> | < | >= | <=} (uncorrelated subquery)

For example, this WHERE clause:

WHERE 5 > ALL (SELECT x FROM t)

might be treated by the optimizer like this:

WHERE 5 > (SELECT MAX(x) FROM t)

See also MySQL Internals: How MySQL Transforms Subqueries.

13.2.9.11 Rewriting Subqueries as Joins

Sometimes there are other ways to test membership in a set of values than by using a subquery. Also, on
some occasions, it is not only possible to rewrite a query without a subquery, but it can be more efficient to
make use of some of these techniques rather than to use subqueries. One of these is the IN() construct:

For example, this query:

SELECT * FROM t1 WHERE id IN (SELECT id FROM t2);

Can be rewritten as:

SELECT DISTINCT t1.* FROM t1, t2 WHERE t1.id=t2.id;

The queries:

SELECT * FROM t1 WHERE id NOT IN (SELECT id FROM t2);
SELECT * FROM t1 WHERE NOT EXISTS (SELECT id FROM t2 WHERE t1.id=t2.id);

Can be rewritten as:

SELECT table1.*
 FROM table1 LEFT JOIN table2 ON table1.id=table2.id
 WHERE table2.id IS NULL;

A LEFT [OUTER] JOIN can be faster than an equivalent subquery because the server might be able to
optimize it better—a fact that is not specific to MySQL Server alone. Prior to SQL-92, outer joins did not
exist, so subqueries were the only way to do certain things. Today, MySQL Server and many other modern
database systems offer a wide range of outer join types.

MySQL Server supports multiple-table DELETE statements that can be used to efficiently delete rows
based on information from one table or even from many tables at the same time. Multiple-table UPDATE
statements are also supported. See Section 13.2.2, “DELETE Syntax”, and Section 13.2.10, “UPDATE
Syntax”.

13.2.10 UPDATE Syntax

Single-table syntax:

http://dev.mysql.com/doc/internals/en/transformations.html

UPDATE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1241

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

UPDATE [LOW_PRIORITY] [IGNORE] table_reference
 SET col_name1={expr1|DEFAULT} [, col_name2={expr2|DEFAULT}] ...
 [WHERE where_condition]
 [ORDER BY ...]
 [LIMIT row_count]

Multiple-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_references
 SET col_name1={expr1|DEFAULT} [, col_name2={expr2|DEFAULT}] ...
 [WHERE where_condition]

For the single-table syntax, the UPDATE statement updates columns of existing rows in the named table
with new values. The SET clause indicates which columns to modify and the values they should be given.
Each value can be given as an expression, or the keyword DEFAULT to set a column explicitly to its default
value. The WHERE clause, if given, specifies the conditions that identify which rows to update. With no
WHERE clause, all rows are updated. If the ORDER BY clause is specified, the rows are updated in the order
that is specified. The LIMIT clause places a limit on the number of rows that can be updated.

For the multiple-table syntax, UPDATE updates rows in each table named in table_references that
satisfy the conditions. Each matching row is updated once, even if it matches the conditions multiple times.
For multiple-table syntax, ORDER BY and LIMIT cannot be used.

where_condition is an expression that evaluates to true for each row to be updated. For expression
syntax, see Section 9.5, “Expression Syntax”.

table_references and where_condition are is specified as described in Section 13.2.8, “SELECT
Syntax”.

You need the UPDATE privilege only for columns referenced in an UPDATE that are actually updated. You
need only the SELECT privilege for any columns that are read but not modified.

The UPDATE statement supports the following modifiers:

• With the LOW_PRIORITY keyword, execution of the UPDATE is delayed until no other clients are reading
from the table. This affects only storage engines that use only table-level locking (such as MyISAM,
MEMORY, and MERGE).

• With the IGNORE keyword, the update statement does not abort even if errors occur during the update.
Rows for which duplicate-key conflicts occur on a unique key value are not updated. Rows updated to
values that would cause data conversion errors are updated to the closest valid values instead.

If you access a column from the table to be updated in an expression, UPDATE uses the current value of
the column. For example, the following statement sets col1 to one more than its current value:

UPDATE t1 SET col1 = col1 + 1;

The second assignment in the following statement sets col2 to the current (updated) col1 value, not the
original col1 value. The result is that col1 and col2 have the same value. This behavior differs from
standard SQL.

UPDATE t1 SET col1 = col1 + 1, col2 = col1;

Single-table UPDATE assignments are generally evaluated from left to right. For multiple-table updates,
there is no guarantee that assignments are carried out in any particular order.

MySQL Transactional and Locking Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1242

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you set a column to the value it currently has, MySQL notices this and does not update it.

If you update a column that has been declared NOT NULL by setting to NULL, an error occurs if strict SQL
mode is enabled; otherwise, the column is set to the implicit default value for the column data type and the
warning count is incremented. The implicit default value is 0 for numeric types, the empty string ('') for
string types, and the “zero” value for date and time types. See Section 11.6, “Data Type Default Values”.

UPDATE returns the number of rows that were actually changed. The mysql_info() C API function
returns the number of rows that were matched and updated and the number of warnings that occurred
during the UPDATE.

You can use LIMIT row_count to restrict the scope of the UPDATE. A LIMIT clause is a rows-matched
restriction. The statement stops as soon as it has found row_count rows that satisfy the WHERE clause,
whether or not they actually were changed.

If an UPDATE statement includes an ORDER BY clause, the rows are updated in the order specified by the
clause. This can be useful in certain situations that might otherwise result in an error. Suppose that a table
t contains a column id that has a unique index. The following statement could fail with a duplicate-key
error, depending on the order in which rows are updated:

UPDATE t SET id = id + 1;

For example, if the table contains 1 and 2 in the id column and 1 is updated to 2 before 2 is updated to 3,
an error occurs. To avoid this problem, add an ORDER BY clause to cause the rows with larger id values
to be updated before those with smaller values:

UPDATE t SET id = id + 1 ORDER BY id DESC;

You can also perform UPDATE operations covering multiple tables. However, you cannot use ORDER BY or
LIMIT with a multiple-table UPDATE. The table_references clause lists the tables involved in the join.
Its syntax is described in Section 13.2.8.2, “JOIN Syntax”. Here is an example:

UPDATE items,month SET items.price=month.price
WHERE items.id=month.id;

The preceding example shows an inner join that uses the comma operator, but multiple-table UPDATE
statements can use any type of join permitted in SELECT statements, such as LEFT JOIN.

If you use a multiple-table UPDATE statement involving InnoDB tables for which there are foreign key
constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/child
relationship. In this case, the statement fails and rolls back. Instead, update a single table and rely on the
ON UPDATE capabilities that InnoDB provides to cause the other tables to be modified accordingly. See
Section 14.2.3.4, “InnoDB and FOREIGN KEY Constraints”.

You cannot update a table and select from the same table in a subquery.

Index hints (see Section 8.9.2, “Index Hints”) are accepted but ignored for UPDATE statements.

13.3 MySQL Transactional and Locking Statements

MySQL supports local transactions (within a given client session) through statements such as SET
autocommit, START TRANSACTION, COMMIT, and ROLLBACK. See Section 13.3.1, “START
TRANSACTION, COMMIT, and ROLLBACK Syntax”. Beginning with MySQL 5.0, XA transaction support is

START TRANSACTION, COMMIT, and ROLLBACK Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1243

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

available, which enables MySQL to participate in distributed transactions as well. See Section 13.3.7, “XA
Transactions”.

13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax

START TRANSACTION [WITH CONSISTENT SNAPSHOT]
BEGIN [WORK]
COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
SET autocommit = {0 | 1}

These statements provide control over use of transactions:

• START TRANSACTION or BEGIN start a new transaction

• COMMIT commits the current transaction, making its changes permanent

• ROLLBACK rolls back the current transaction, canceling its changes

• SET autocommit disables or enables the default autocommit mode for the current session

By default, MySQL runs with autocommit mode enabled. This means that as soon as you execute a
statement that updates (modifies) a table, MySQL stores the update on disk to make it permanent.

To disable autocommit mode implicitly for a single series of statements, use the START TRANSACTION
statement:

START TRANSACTION;
SELECT @A:=SUM(salary) FROM table1 WHERE type=1;
UPDATE table2 SET summary=@A WHERE type=1;
COMMIT;

With START TRANSACTION, autocommit remains disabled until you end the transaction with COMMIT or
ROLLBACK. The autocommit mode then reverts to its previous state.

You can also begin a transaction like this:

START TRANSACTION WITH CONSISTENT SNAPSHOT;

The WITH CONSISTENT SNAPSHOT option starts a consistent read for storage engines that are capable
of it. This applies only to InnoDB. The effect is the same as issuing a START TRANSACTION followed
by a SELECT from any InnoDB table. See Section 14.2.8.4, “Consistent Nonlocking Reads”. The WITH
CONSISTENT SNAPSHOT option does not change the current transaction isolation level, so it provides a
consistent snapshot only if the current isolation level is one that permits consistent read (REPEATABLE
READ or SERIALIZABLE).

Important

Many APIs used for writing MySQL client applications (such as JDBC) provide
their own methods for starting transactions that can (and sometimes should) be
used instead of sending a START TRANSACTION statement from the client. See
Chapter 20, Connectors and APIs, or the documentation for your API, for more
information.

To disable autocommit mode explicitly, use the following statement:

START TRANSACTION, COMMIT, and ROLLBACK Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1244

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SET autocommit=0;

After disabling autocommit mode by setting the autocommit variable to zero, changes to transaction-safe
tables (such as those for InnoDB, BDB, or NDBCLUSTER) are not made permanent immediately. You must
use COMMIT to store your changes to disk or ROLLBACK to ignore the changes.

autocommit is a session variable and must be set for each session. To disable autocommit mode for
each new connection, see the description of the autocommit system variable at Section 5.1.4, “Server
System Variables”.

BEGIN and BEGIN WORK are supported as aliases of START TRANSACTION for initiating a transaction.
START TRANSACTION is standard SQL syntax and is the recommended way to start an ad-hoc
transaction.

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END compound
statement. The latter does not begin a transaction. See Section 13.6.1, “BEGIN ... END Compound-
Statement Syntax”.

Note

Within all stored programs (stored procedures and functions, and triggers), the
parser treats BEGIN [WORK] as the beginning of a BEGIN ... END block. Begin
a transaction in this context with START TRANSACTION instead.

Beginning with MySQL 5.0.3, the optional WORK keyword is supported for COMMIT and ROLLBACK, as are
the CHAIN and RELEASE clauses. CHAIN and RELEASE can be used for additional control over transaction
completion. The value of the completion_type system variable determines the default completion
behavior. See Section 5.1.4, “Server System Variables”.

The AND CHAIN clause causes a new transaction to begin as soon as the current one ends, and the new
transaction has the same isolation level as the just-terminated transaction. The RELEASE clause causes
the server to disconnect the current client session after terminating the current transaction. Including the
NO keyword suppresses CHAIN or RELEASE completion, which can be useful if the completion_type
system variable is set to cause chaining or release completion by default.

Beginning a transaction causes any pending transaction to be committed. See Section 13.3.3, “Statements
That Cause an Implicit Commit”, for more information.

Beginning a transaction also causes table locks acquired with LOCK TABLES to be released, as though
you had executed UNLOCK TABLES. Beginning a transaction does not release a global read lock acquired
with FLUSH TABLES WITH READ LOCK.

For best results, transactions should be performed using only tables managed by a single transaction-safe
storage engine. Otherwise, the following problems can occur:

• If you use tables from more than one transaction-safe storage engine (such as InnoDB and BDB),
and the transaction isolation level is not SERIALIZABLE, it is possible that when one transaction
commits, another ongoing transaction that uses the same tables will see only some of the changes
made by the first transaction. That is, the atomicity of transactions is not guaranteed with mixed
engines and inconsistencies can result. (If mixed-engine transactions are infrequent, you can use SET
TRANSACTION ISOLATION LEVEL to set the isolation level to SERIALIZABLE on a per-transaction
basis as necessary.)

• If you use tables that are not transaction-safe within a transaction, changes to those tables are stored at
once, regardless of the status of autocommit mode.

Statements That Cannot Be Rolled Back

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1245

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• If you issue a ROLLBACK statement after updating a nontransactional table within a transaction, an
ER_WARNING_NOT_COMPLETE_ROLLBACK warning occurs. Changes to transaction-safe tables are
rolled back, but not changes to nontransaction-safe tables.

Each transaction is stored in the binary log in one chunk, upon COMMIT. Transactions that are rolled back
are not logged. (Exception: Modifications to nontransactional tables cannot be rolled back. If a transaction
that is rolled back includes modifications to nontransactional tables, the entire transaction is logged with a
ROLLBACK statement at the end to ensure that modifications to the nontransactional tables are replicated.)
See Section 5.4.3, “The Binary Log”.

You can change the isolation level for transactions with the SET TRANSACTION statement. See
Section 13.3.6, “SET TRANSACTION Syntax”.

Rolling back can be a slow operation that may occur implicitly without the user having explicitly asked for
it (for example, when an error occurs). Because of this, SHOW PROCESSLIST displays Rolling back in
the State column for the session, not only for explicit rollbacks performed with the ROLLBACK statement
but also for implicit rollbacks.

Note

Beginning with MySQL 5.0.84, BEGIN, COMMIT, and ROLLBACK are no longer
affected by --replicate-do-db or --replicate-ignore-db rules. (Bug
#43263)

13.3.2 Statements That Cannot Be Rolled Back

Some statements cannot be rolled back. In general, these include data definition language (DDL)
statements, such as those that create or drop databases, those that create, drop, or alter tables or stored
routines.

You should design your transactions not to include such statements. If you issue a statement early in
a transaction that cannot be rolled back, and then another statement later fails, the full effect of the
transaction cannot be rolled back in such cases by issuing a ROLLBACK statement.

13.3.3 Statements That Cause an Implicit Commit

The statements listed in this section (and any synonyms for them) implicitly end any transaction active in
the current session, as if you had done a COMMIT before executing the statement.

• Data definition language (DDL) statements that define or modify database objects. ALTER TABLE,
CREATE INDEX, DROP INDEX, DROP TABLE, RENAME TABLE.

CREATE TABLE and DROP TABLE statements do not commit a transaction if the TEMPORARY keyword
is used. (This does not apply to other operations on temporary tables such as ALTER TABLE and
CREATE INDEX, which do cause a commit.) However, although no implicit commit occurs, neither
can the statement be rolled back, which means that the use of such statements causes transactional
atomicity to be violated. For example, if you use CREATE TEMPORARY TABLE and then roll back the
transaction, the table remains in existence.

The CREATE TABLE statement in InnoDB is processed as a single transaction. This means that
a ROLLBACK from the user does not undo CREATE TABLE statements the user made during that
transaction.

Beginning with MySQL 5.0.8, CREATE TABLE, CREATE DATABASE DROP DATABASE, and TRUNCATE
TABLE cause an implicit commit.

SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT, and Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1246

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Beginning with MySQL 5.0.13, ALTER PROCEDURE, CREATE PROCEDURE, and DROP PROCEDURE
cause an implicit commit.

Also beginning with MySQL 5.0.13, ALTER FUNCTION, CREATE FUNCTION and DROP FUNCTION
cause an implicit commit when used with stored functions, but not with user-defined functions. (ALTER
FUNCTION can only be used with stored functions.)

Beginning with MySQL 5.0.15, ALTER VIEW, CREATE TRIGGER, CREATE VIEW, DROP TRIGGER, and
DROP VIEW cause an implicit commit.

• Statements that implicitly use or modify tables in the mysql database. Beginning with MySQL
5.0.15, CREATE USER, DROP USER, and RENAME USER cause an implicit commit.

• Transaction-control and locking statements. BEGIN, LOCK TABLES, SET autocommit = 1 (if the
value is not already 1), START TRANSACTION, UNLOCK TABLES.

UNLOCK TABLES commits a transaction only if any tables currently have been locked with LOCK
TABLES. This does not occur for UNLOCK TABLES following FLUSH TABLES WITH READ LOCK
because the latter statement does not acquire table-level locks.

Transactions cannot be nested. This is a consequence of the implicit commit performed for any current
transaction when you issue a START TRANSACTION statement or one of its synonyms.

Statements that cause an implicit commit cannot be used in an XA transaction while the transaction is in
an ACTIVE state.

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END
compound statement. The latter does not cause an implicit commit. See Section 13.6.1, “BEGIN ... END
Compound-Statement Syntax”.

• Data loading statements. LOAD MASTER DATA, LOAD DATA INFILE. Before MySQL 5.0.26, LOAD
DATA INFILE caused an implicit commit for all storage engines. As of MySQL 5.0.26, it causes an
implicit commit only for tables using the NDB storage engine. For more information, see Bug #11151.

13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT,
and Syntax

SAVEPOINT identifier
ROLLBACK [WORK] TO [SAVEPOINT] identifier
RELEASE SAVEPOINT identifier

InnoDB supports the SQL statements SAVEPOINT and ROLLBACK TO SAVEPOINT. Starting from MySQL
5.0.3, RELEASE SAVEPOINT and the optional WORK keyword for ROLLBACK are supported as well.

The SAVEPOINT statement sets a named transaction savepoint with a name of identifier. If the current
transaction has a savepoint with the same name, the old savepoint is deleted and a new one is set.

The ROLLBACK TO SAVEPOINT statement rolls back a transaction to the named savepoint without
terminating the transaction. (The SAVEPOINT keyword is optional as of MySQL 5.0.3.) Modifications that
the current transaction made to rows after the savepoint was set are undone in the rollback, but InnoDB
does not release the row locks that were stored in memory after the savepoint. (For a new inserted row,
the lock information is carried by the transaction ID stored in the row; the lock is not separately stored in
memory. In this case, the row lock is released in the undo.) Savepoints that were set at a later time than
the named savepoint are deleted.

LOCK TABLES and UNLOCK TABLES Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1247

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If the ROLLBACK TO SAVEPOINT statement returns the following error, it means that no savepoint with the
specified name exists:

ERROR 1305 (42000): SAVEPOINT identifier does not exist

The RELEASE SAVEPOINT statement removes the named savepoint from the set of savepoints of the
current transaction. No commit or rollback occurs. It is an error if the savepoint does not exist.

All savepoints of the current transaction are deleted if you execute a COMMIT, or a ROLLBACK that does not
name a savepoint.

Beginning with MySQL 5.0.17, a new savepoint level is created when a stored function is invoked or
a trigger is activated. The savepoints on previous levels become unavailable and thus do not conflict
with savepoints on the new level. When the function or trigger terminates, any savepoints it created are
released and the previous savepoint level is restored.

13.3.5 LOCK TABLES and UNLOCK TABLES Syntax

LOCK TABLES
 tbl_name [[AS] alias] lock_type
 [, tbl_name [[AS] alias] lock_type] ...

lock_type:
 READ [LOCAL]
 | [LOW_PRIORITY] WRITE

UNLOCK TABLES

MySQL enables client sessions to acquire table locks explicitly for the purpose of cooperating with other
sessions for access to tables, or to prevent other sessions from modifying tables during periods when
a session requires exclusive access to them. A session can acquire or release locks only for itself. One
session cannot acquire locks for another session or release locks held by another session.

Locks may be used to emulate transactions or to get more speed when updating tables. This is explained
in more detail later in this section.

LOCK TABLES explicitly acquires table locks for the current client session. Table locks can be acquired for
base tables or (as of MySQL 5.0.6) views. You must have the LOCK TABLES privilege, and the SELECT
privilege for each object to be locked.

For view locking, LOCK TABLES adds all base tables used in the view to the set of tables to be locked and
locks them automatically. If you lock a table explicitly with LOCK TABLES, any tables used in triggers are
also locked implicitly, as described in Section 13.3.5.2, “LOCK TABLES and Triggers”.

UNLOCK TABLES explicitly releases any table locks held by the current session. LOCK TABLES implicitly
releases any table locks held by the current session before acquiring new locks.

Another use for UNLOCK TABLES is to release the global read lock acquired with the FLUSH TABLES
WITH READ LOCK statement, which enables you to lock all tables in all databases. See Section 13.7.6.2,
“FLUSH Syntax”. (This is a very convenient way to get backups if you have a file system such as Veritas
that can take snapshots in time.)

A table lock protects only against inappropriate reads or writes by other sessions. The session holding the
lock, even a read lock, can perform table-level operations such as DROP TABLE. Truncate operations are
not transaction-safe, so an error occurs if the session attempts one during an active transaction or while
holding a table lock.

LOCK TABLES and UNLOCK TABLES Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1248

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The following discussion applies only to non-TEMPORARY tables. LOCK TABLES is permitted (but ignored)
for a TEMPORARY table. The table can be accessed freely by the session within which it was created,
regardless of what other locking may be in effect. No lock is necessary because no other session can see
the table.

For information about other conditions on the use of LOCK TABLES and statements that cannot be used
while LOCK TABLES is in effect, see Section 13.3.5.3, “Table-Locking Restrictions and Conditions”

Rules for Lock Acquisition

To acquire table locks within the current session, use the LOCK TABLES statement. The following lock
types are available:

READ [LOCAL] lock:

• The session that holds the lock can read the table (but not write it).

• Multiple sessions can acquire a READ lock for the table at the same time.

• Other sessions can read the table without explicitly acquiring a READ lock.

• The LOCAL modifier enables nonconflicting INSERT statements (concurrent inserts) by other sessions
to execute while the lock is held. (See Section 8.11.3, “Concurrent Inserts”.) However, READ LOCAL
cannot be used if you are going to manipulate the database using processes external to the server while
you hold the lock. For InnoDB tables, READ LOCAL is the same as READ as of MySQL 5.0.13. (Before
that, READ LOCAL essentially does nothing: It does not lock the table at all, so for InnoDB tables, the
use of READ LOCAL is deprecated because a plain consistent-read SELECT does the same thing, and
no locks are needed.)

[LOW_PRIORITY] WRITE lock:

• The session that holds the lock can read and write the table.

• Only the session that holds the lock can access the table. No other session can access it until the lock is
released.

• Lock requests for the table by other sessions block while the WRITE lock is held.

• The LOW_PRIORITY modifier affects lock scheduling if the WRITE lock request must wait, as described
later.

If the LOCK TABLES statement must wait due to locks held by other sessions on any of the tables, it blocks
until all locks can be acquired.

A session that requires locks must acquire all the locks that it needs in a single LOCK TABLES statement.
While the locks thus obtained are held, the session can access only the locked tables. For example, in the
following sequence of statements, an error occurs for the attempt to access t2 because it was not locked
in the LOCK TABLES statement:

mysql> LOCK TABLES t1 READ;
mysql> SELECT COUNT(*) FROM t1;
+----------+
| COUNT(*) |
+----------+
| 3 |
+----------+
mysql> SELECT COUNT(*) FROM t2;
ERROR 1100 (HY000): Table 't2' was not locked with LOCK TABLES

LOCK TABLES and UNLOCK TABLES Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1249

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Tables in the INFORMATION_SCHEMA database are an exception. They can be accessed without being
locked explicitly even while a session holds table locks obtained with LOCK TABLES.

You cannot refer to a locked table multiple times in a single query using the same name. Use aliases
instead, and obtain a separate lock for the table and each alias:

mysql> LOCK TABLE t WRITE, t AS t1 READ;
mysql> INSERT INTO t SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> INSERT INTO t SELECT * FROM t AS t1;

The error occurs for the first INSERT because there are two references to the same name for a locked
table. The second INSERT succeeds because the references to the table use different names.

If your statements refer to a table by means of an alias, you must lock the table using that same alias. It
does not work to lock the table without specifying the alias:

mysql> LOCK TABLE t READ;
mysql> SELECT * FROM t AS myalias;
ERROR 1100: Table 'myalias' was not locked with LOCK TABLES

Conversely, if you lock a table using an alias, you must refer to it in your statements using that alias:

mysql> LOCK TABLE t AS myalias READ;
mysql> SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> SELECT * FROM t AS myalias;

WRITE locks normally have higher priority than READ locks to ensure that updates are processed
as soon as possible. This means that if one session obtains a READ lock and then another session
requests a WRITE lock, subsequent READ lock requests wait until the session that requested the WRITE
lock has obtained the lock and released it. A request for a LOW_PRIORITY WRITE lock, by contrast,
permits subsequent READ lock requests by other sessions to be satisfied first if they occur while the
LOW_PRIORITY WRITE request is waiting. You should use LOW_PRIORITY WRITE locks only if you
are sure that eventually there will be a time when no sessions have a READ lock. For InnoDB tables in
transactional mode (autocommit = 0), a waiting LOW_PRIORITY WRITE lock acts like a regular WRITE lock
and causes subsequent READ lock requests to wait.

LOCK TABLES acquires locks as follows:

1. Sort all tables to be locked in an internally defined order. From the user standpoint, this order is
undefined.

2. If a table is to be locked with a read and a write lock, put the write lock request before the read lock
request.

3. Lock one table at a time until the session gets all locks.

This policy ensures that table locking is deadlock free. There are, however, other things you need to be
aware of about this policy: If you are using a LOW_PRIORITY WRITE lock for a table, it means only that
MySQL waits for this particular lock until there are no other sessions that want a READ lock. When the
session has gotten the WRITE lock and is waiting to get the lock for the next table in the lock table list,
all other sessions wait for the WRITE lock to be released. If this becomes a serious problem with your
application, you should consider converting some of your tables to transaction-safe tables.

Rules for Lock Release

LOCK TABLES and UNLOCK TABLES Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1250

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When the table locks held by a session are released, they are all released at the same time. A session can
release its locks explicitly, or locks may be released implicitly under certain conditions.

• A session can release its locks explicitly with UNLOCK TABLES.

• If a session issues a LOCK TABLES statement to acquire a lock while already holding locks, its existing
locks are released implicitly before the new locks are granted.

• If a session begins a transaction (for example, with START TRANSACTION), an implicit UNLOCK
TABLES is performed, which causes existing locks to be released. (For additional information about the
interaction between table locking and transactions, see Section 13.3.5.1, “Interaction of Table Locking
and Transactions”.)

If the connection for a client session terminates, whether normally or abnormally, the server implicitly
releases all table locks held by the session (transactional and nontransactional). If the client reconnects,
the locks will no longer be in effect. In addition, if the client had an active transaction, the server rolls
back the transaction upon disconnect, and if reconnect occurs, the new session begins with autocommit
enabled. For this reason, clients may wish to disable auto-reconnect. With auto-reconnect in effect, the
client is not notified if reconnect occurs but any table locks or current transaction will have been lost. With
auto-reconnect disabled, if the connection drops, an error occurs for the next statement issued. The client
can detect the error and take appropriate action such as reacquiring the locks or redoing the transaction.
See Section 20.6.15, “Controlling Automatic Reconnection Behavior”.

Note

If you use ALTER TABLE on a locked table, it may become unlocked. For example,
if you attempt a second ALTER TABLE operation, the result may be an error Table
'tbl_name' was not locked with LOCK TABLES. To handle this, lock the
table again prior to the second alteration. See also Section B.5.6.1, “Problems with
ALTER TABLE”.

13.3.5.1 Interaction of Table Locking and Transactions

LOCK TABLES and UNLOCK TABLES interact with the use of transactions as follows:

• LOCK TABLES is not transaction-safe and implicitly commits any active transaction before attempting to
lock the tables.

• UNLOCK TABLES implicitly commits any active transaction, but only if LOCK TABLES has been used
to acquire table locks. For example, in the following set of statements, UNLOCK TABLES releases the
global read lock but does not commit the transaction because no table locks are in effect:

FLUSH TABLES WITH READ LOCK;
START TRANSACTION;
SELECT ... ;
UNLOCK TABLES;

• Beginning a transaction (for example, with START TRANSACTION) implicitly commits any current
transaction and releases existing table locks.

• FLUSH TABLES WITH READ LOCK acquires a global read lock and not table locks, so it is not
subject to the same behavior as LOCK TABLES and UNLOCK TABLES with respect to table locking
and implicit commits. For example, START TRANSACTION does not release the global read lock. See
Section 13.7.6.2, “FLUSH Syntax”.

• Other statements that implicitly cause transactions to be committed do not release existing table locks.
For a list of such statements, see Section 13.3.3, “Statements That Cause an Implicit Commit”.

LOCK TABLES and UNLOCK TABLES Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1251

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The correct way to use LOCK TABLES and UNLOCK TABLES with transactional tables, such as InnoDB
tables, is to begin a transaction with SET autocommit = 0 (not START TRANSACTION) followed by
LOCK TABLES, and to not call UNLOCK TABLES until you commit the transaction explicitly. For example,
if you need to write to table t1 and read from table t2, you can do this:

SET autocommit=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
... do something with tables t1 and t2 here ...
COMMIT;
UNLOCK TABLES;

When you call LOCK TABLES, InnoDB internally takes its own table lock, and MySQL takes its own
table lock. InnoDB releases its internal table lock at the next commit, but for MySQL to release its table
lock, you have to call UNLOCK TABLES. You should not have autocommit = 1, because then InnoDB
releases its internal table lock immediately after the call of LOCK TABLES, and deadlocks can very
easily happen. InnoDB does not acquire the internal table lock at all if autocommit = 1, to help old
applications avoid unnecessary deadlocks.

• ROLLBACK does not release table locks.

13.3.5.2 LOCK TABLES and Triggers

If you lock a table explicitly with LOCK TABLES, any tables used in triggers are also locked implicitly:

• The locks are taken as the same time as those acquired explicitly with the LOCK TABLES statement.

• The lock on a table used in a trigger depends on whether the table is used only for reading. If so, a read
lock suffices. Otherwise, a write lock is used.

• If a table is locked explicitly for reading with LOCK TABLES, but needs to be locked for writing because it
might be modified within a trigger, a write lock is taken rather than a read lock. (That is, an implicit write
lock needed due to the table's appearance within a trigger causes an explicit read lock request for the
table to be converted to a write lock request.)

Suppose that you lock two tables, t1 and t2, using this statement:

LOCK TABLES t1 WRITE, t2 READ;

If t1 or t2 have any triggers, tables used within the triggers will also be locked. Suppose that t1 has a
trigger defined like this:

CREATE TRIGGER t1_a_ins AFTER INSERT ON t1 FOR EACH ROW
BEGIN
 UPDATE t4 SET count = count+1
 WHERE id = NEW.id AND EXISTS (SELECT a FROM t3);
 INSERT INTO t2 VALUES(1, 2);
END;

The result of the LOCK TABLES statement is that t1 and t2 are locked because they appear in the
statement, and t3 and t4 are locked because they are used within the trigger:

• t1 is locked for writing per the WRITE lock request.

• t2 is locked for writing, even though the request is for a READ lock. This occurs because t2 is inserted
into within the trigger, so the READ request is converted to a WRITE request.

• t3 is locked for reading because it is only read from within the trigger.

SET TRANSACTION Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1252

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• t4 is locked for writing because it might be updated within the trigger.

13.3.5.3 Table-Locking Restrictions and Conditions

You can safely use KILL to terminate a session that is waiting for a table lock. See Section 13.7.6.3, “KILL
Syntax”.

You should not lock any tables that you are using with INSERT DELAYED. An INSERT DELAYED in this
case results in an error because the insert must be handled by a separate thread, not by the session which
holds the lock.

LOCK TABLES and UNLOCK TABLES cannot be used within stored programs.

Normally, you do not need to lock tables, because all single UPDATE statements are atomic; no other
session can interfere with any other currently executing SQL statement. However, there are a few cases
when locking tables may provide an advantage:

• If you are going to run many operations on a set of MyISAM tables, it is much faster to lock the tables you
are going to use. Locking MyISAM tables speeds up inserting, updating, or deleting on them because
MySQL does not flush the key cache for the locked tables until UNLOCK TABLES is called. Normally, the
key cache is flushed after each SQL statement.

The downside to locking the tables is that no session can update a READ-locked table (including the one
holding the lock) and no session can access a WRITE-locked table other than the one holding the lock.

• If you are using tables for a nontransactional storage engine, you must use LOCK TABLES if you want
to ensure that no other session modifies the tables between a SELECT and an UPDATE. The example
shown here requires LOCK TABLES to execute safely:

LOCK TABLES trans READ, customer WRITE;
SELECT SUM(value) FROM trans WHERE customer_id=some_id;
UPDATE customer
 SET total_value=sum_from_previous_statement
 WHERE customer_id=some_id;
UNLOCK TABLES;

Without LOCK TABLES, it is possible that another session might insert a new row in the trans table
between execution of the SELECT and UPDATE statements.

You can avoid using LOCK TABLES in many cases by using relative updates (UPDATE customer SET
value=value+new_value) or the LAST_INSERT_ID() function. See Section 1.8.2.3, “Transactions and
Atomic Operations”.

You can also avoid locking tables in some cases by using the user-level advisory lock functions
GET_LOCK() and RELEASE_LOCK(). These locks are saved in a hash table in the server and
implemented with pthread_mutex_lock() and pthread_mutex_unlock() for high speed. See
Section 12.15, “Miscellaneous Functions”.

See Section 8.11.1, “Internal Locking Methods”, for more information on locking policy.

13.3.6 SET TRANSACTION Syntax

SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL
 {
 REPEATABLE READ
 | READ COMMITTED
 | READ UNCOMMITTED
 | SERIALIZABLE

SET TRANSACTION Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1253

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 }

This statement sets the transaction isolation level, used for operations on InnoDB tables.

Scope of the Isolation Level

You can set the isolation level globally, for the current session, or for the next transaction:

• With the GLOBAL keyword, the statement sets the default transaction level globally for all subsequent
sessions. Existing sessions are unaffected.

• With the SESSION keyword, the statement sets the default transaction level for all subsequent
transactions performed within the current session.

• Without any SESSION or GLOBAL keyword, the statement sets the isolation level for the next (not
started) transaction performed within the current session. Subsequent transactions revert to using the
SESSION isolation level.

A change to the global default isolation level requires the SUPER privilege. Any session is free to change its
session isolation level (even in the middle of a transaction), or the isolation level for its next transaction.

To set the global default isolation level at server startup, use the --transaction-isolation=level
option to mysqld on the command line or in an option file. Values of level for this option use
dashes rather than spaces, so the permissible values are READ-UNCOMMITTED, READ-COMMITTED,
REPEATABLE-READ, or SERIALIZABLE. For example, to set the default isolation level to REPEATABLE
READ, use these lines in the [mysqld] section of an option file:

[mysqld]
transaction-isolation = REPEATABLE-READ

It is possible to check or set the global and session transaction isolation levels at runtime by using the
tx_isolation system variable:

SELECT @@GLOBAL.tx_isolation, @@tx_isolation;
SET GLOBAL tx_isolation='REPEATABLE-READ';
SET SESSION tx_isolation='SERIALIZABLE';

Details and Usage of Isolation Levels

InnoDB supports each of the transaction isolation levels described here using different locking strategies.
You can enforce a high degree of consistency with the default REPEATABLE READ level, for operations
on crucial data where ACID compliance is important. Or you can relax the consistency rules with
READ COMMITTED or even READ UNCOMMITTED, in situations such as bulk reporting where precise
consistency and repeatable results are less important than minimizing the amount of overhead for locking.
SERIALIZABLE enforces even stricter rules than REPEATABLE READ, and is used mainly in specialized
situations, such as with XA transactions and for troubleshooting issues with concurrency and deadlocks.

For full information about how these isolation levels work with InnoDB transactions, see Section 14.2.8,
“InnoDB Transaction Model and Locking”. In particular, for additional information about InnoDB record-
level locks and how it uses them to execute various types of statements, see Section 14.2.8.2, “InnoDB
Record, Gap, and Next-Key Locks” and Section 14.2.8.6, “Locks Set by Different SQL Statements in
InnoDB”.

The following list describes how MySQL supports the different transaction levels. The list goes from the
most commonly used level to the least used.

• REPEATABLE READ

XA Transactions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1254

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This is the default isolation level for InnoDB. For consistent reads, there is an important difference from
the READ COMMITTED isolation level: All consistent reads within the same transaction read the snapshot
established by the first read. This convention means that if you issue several plain (nonlocking) SELECT
statements within the same transaction, these SELECT statements are consistent also with respect to
each other. See Section 14.2.8.4, “Consistent Nonlocking Reads”.

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), UPDATE, and DELETE
statements, locking depends on whether the statement uses a unique index with a unique search
condition, or a range-type search condition. For a unique index with a unique search condition, InnoDB
locks only the index record found, not the gap before it. For other search conditions, InnoDB locks the
index range scanned, using gap locks or next-key (gap plus index-record) locks to block insertions by
other sessions into the gaps covered by the range.

• READ COMMITTED

A somewhat Oracle-like isolation level with respect to consistent (nonlocking) reads: Each consistent
read, even within the same transaction, sets and reads its own fresh snapshot. See Section 14.2.8.4,
“Consistent Nonlocking Reads”.

For locking reads (SELECT with FOR UPDATE or LOCK IN SHARE MODE), InnoDB locks only index
records, not the gaps before them, and thus permits the free insertion of new records next to locked
records. For UPDATE and DELETE statements, locking depends on whether the statement uses a unique
index with a unique search condition (such as WHERE id = 100), or a range-type search condition
(such as WHERE id > 100). For a unique index with a unique search condition, InnoDB locks only
the index record found, not the gap before it. For range-type searches, InnoDB locks the index range
scanned, using gap locks or next-key (gap plus index-record) locks to block insertions by other sessions
into the gaps covered by the range. This is necessary because “phantom rows” must be blocked for
MySQL replication and recovery to work.

• READ UNCOMMITTED

SELECT statements are performed in a nonlocking fashion, but a possible earlier version of a row might
be used. Thus, using this isolation level, such reads are not consistent. This is also called a “dirty read.”
Otherwise, this isolation level works like READ COMMITTED.

• SERIALIZABLE

This level is like REPEATABLE READ, but InnoDB implicitly converts all plain SELECT statements to
SELECT ... LOCK IN SHARE MODE if autocommit is disabled. If autocommit is enabled, the
SELECT is its own transaction. It therefore is known to be read only and can be serialized if performed
as a consistent (nonlocking) read and need not block for other transactions. (To force a plain SELECT to
block if other transactions have modified the selected rows, disable autocommit.)

13.3.7 XA Transactions

As of MySQL 5.0.3, support for XA transactions is available for the InnoDB storage engine. The MySQL
XA implementation is based on the X/Open CAE document Distributed Transaction Processing: The XA
Specification. This document is published by The Open Group and available at http://www.opengroup.org/
public/pubs/catalog/c193.htm. Limitations of the current XA implementation are described in Section C.5,
“Restrictions on XA Transactions”.

On the client side, there are no special requirements. The XA interface to a MySQL server consists of SQL
statements that begin with the XA keyword. MySQL client programs must be able to send SQL statements
and to understand the semantics of the XA statement interface. They do not need be linked against a
recent client library. Older client libraries also will work.

http://www.opengroup.org/public/pubs/catalog/c193.htm
http://www.opengroup.org/public/pubs/catalog/c193.htm

XA Transactions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1255

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Among the MySQL Connectors, MySQL Connector/J 5.0.0 supports XA directly (by means of a class
interface that handles the XA SQL statement interface for you).

XA supports distributed transactions, that is, the ability to permit multiple separate transactional resources
to participate in a global transaction. Transactional resources often are RDBMSs but may be other kinds of
resources.

A global transaction involves several actions that are transactional in themselves, but that all must
either complete successfully as a group, or all be rolled back as a group. In essence, this extends ACID
properties “up a level” so that multiple ACID transactions can be executed in concert as components of a
global operation that also has ACID properties. (However, for a distributed transaction, you must use the
SERIALIZABLE isolation level to achieve ACID properties. It is enough to use REPEATABLE READ for a
nondistributed transaction, but not for a distributed transaction.)

Some examples of distributed transactions:

• An application may act as an integration tool that combines a messaging service with an RDBMS.
The application makes sure that transactions dealing with message sending, retrieval, and processing
that also involve a transactional database all happen in a global transaction. You can think of this as
“transactional email.”

• An application performs actions that involve different database servers, such as a MySQL server and an
Oracle server (or multiple MySQL servers), where actions that involve multiple servers must happen as
part of a global transaction, rather than as separate transactions local to each server.

• A bank keeps account information in an RDBMS and distributes and receives money through automated
teller machines (ATMs). It is necessary to ensure that ATM actions are correctly reflected in the
accounts, but this cannot be done with the RDBMS alone. A global transaction manager integrates the
ATM and database resources to ensure overall consistency of financial transactions.

Applications that use global transactions involve one or more Resource Managers and a Transaction
Manager:

• A Resource Manager (RM) provides access to transactional resources. A database server is one kind of
resource manager. It must be possible to either commit or roll back transactions managed by the RM.

• A Transaction Manager (TM) coordinates the transactions that are part of a global transaction. It
communicates with the RMs that handle each of these transactions. The individual transactions within a
global transaction are “branches” of the global transaction. Global transactions and their branches are
identified by a naming scheme described later.

The MySQL implementation of XA MySQL enables a MySQL server to act as a Resource Manager that
handles XA transactions within a global transaction. A client program that connects to the MySQL server
acts as the Transaction Manager.

To carry out a global transaction, it is necessary to know which components are involved, and bring each
component to a point when it can be committed or rolled back. Depending on what each component
reports about its ability to succeed, they must all commit or roll back as an atomic group. That is, either
all components must commit, or all components must roll back. To manage a global transaction, it is
necessary to take into account that any component or the connecting network might fail.

The process for executing a global transaction uses two-phase commit (2PC). This takes place after the
actions performed by the branches of the global transaction have been executed.

1. In the first phase, all branches are prepared. That is, they are told by the TM to get ready to commit.
Typically, this means each RM that manages a branch records the actions for the branch in stable

XA Transactions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1256

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

storage. The branches indicate whether they are able to do this, and these results are used for the
second phase.

2. In the second phase, the TM tells the RMs whether to commit or roll back. If all branches indicated
when they were prepared that they will be able to commit, all branches are told to commit. If any branch
indicated when it was prepared that it will not be able to commit, all branches are told to roll back.

In some cases, a global transaction might use one-phase commit (1PC). For example, when a Transaction
Manager finds that a global transaction consists of only one transactional resource (that is, a single
branch), that resource can be told to prepare and commit at the same time.

13.3.7.1 XA Transaction SQL Syntax

To perform XA transactions in MySQL, use the following statements:

XA {START|BEGIN} xid [JOIN|RESUME]

XA END xid [SUSPEND [FOR MIGRATE]]

XA PREPARE xid

XA COMMIT xid [ONE PHASE]

XA ROLLBACK xid

XA RECOVER

For XA START, the JOIN and RESUME clauses are not supported.

For XA END the SUSPEND [FOR MIGRATE] clause is not supported.

Each XA statement begins with the XA keyword, and most of them require an xid value. An xid is an XA
transaction identifier. It indicates which transaction the statement applies to. xid values are supplied by
the client, or generated by the MySQL server. An xid value has from one to three parts:

xid: gtrid [, bqual [, formatID]]

gtrid is a global transaction identifier, bqual is a branch qualifier, and formatID is a number that
identifies the format used by the gtrid and bqual values. As indicated by the syntax, bqual and
formatID are optional. The default bqual value is '' if not given. The default formatID value is 1 if not
given.

gtrid and bqual must be string literals, each up to 64 bytes (not characters) long. gtrid and bqual can
be specified in several ways. You can use a quoted string ('ab'), hex string (X'6162', 0x6162), or bit
value (b'nnnn').

formatID is an unsigned integer.

The gtrid and bqual values are interpreted in bytes by the MySQL server's underlying XA support
routines. However, while an SQL statement containing an XA statement is being parsed, the server works
with some specific character set. To be safe, write gtrid and bqual as hex strings.

xid values typically are generated by the Transaction Manager. Values generated by one TM must be
different from values generated by other TMs. A given TM must be able to recognize its own xid values in
a list of values returned by the XA RECOVER statement.

For XA START xid starts an XA transaction with the given xid value. Each XA transaction must have
a unique xid value, so the value must not currently be used by another XA transaction. Uniqueness is

XA Transactions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1257

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

assessed using the gtrid and bqual values. All following XA statements for the XA transaction must
be specified using the same xid value as that given in the XA START statement. If you use any of those
statements but specify an xid value that does not correspond to some existing XA transaction, an error
occurs.

One or more XA transactions can be part of the same global transaction. All XA transactions within a given
global transaction must use the same gtrid value in the xid value. For this reason, gtrid values must
be globally unique so that there is no ambiguity about which global transaction a given XA transaction
is part of. The bqual part of the xid value must be different for each XA transaction within a global
transaction. (The requirement that bqual values be different is a limitation of the current MySQL XA
implementation. It is not part of the XA specification.)

The XA RECOVER statement returns information for those XA transactions on the MySQL server that are in
the PREPARED state. (See Section 13.3.7.2, “XA Transaction States”.) The output includes a row for each
such XA transaction on the server, regardless of which client started it.

XA RECOVER output rows look like this (for an example xid value consisting of the parts 'abc', 'def',
and 7):

mysql> XA RECOVER;
+----------+--------------+--------------+--------+
| formatID | gtrid_length | bqual_length | data |
+----------+--------------+--------------+--------+
| 7 | 3 | 3 | abcdef |
+----------+--------------+--------------+--------+

The output columns have the following meanings:

• formatID is the formatID part of the transaction xid

• gtrid_length is the length in bytes of the gtrid part of the xid

• bqual_length is the length in bytes of the bqual part of the xid

• data is the concatenation of the gtrid and bqual parts of the xid

13.3.7.2 XA Transaction States

An XA transaction progresses through the following states:

1. Use XA START to start an XA transaction and put it in the ACTIVE state.

2. For an ACTIVE XA transaction, issue the SQL statements that make up the transaction, and then issue
an XA END statement. XA END puts the transaction in the IDLE state.

3. For an IDLE XA transaction, you can issue either an XA PREPARE statement or an XA COMMIT ...
ONE PHASE statement:

• XA PREPARE puts the transaction in the PREPARED state. An XA RECOVER statement at this point
will include the transaction's xid value in its output, because XA RECOVER lists all XA transactions
that are in the PREPARED state.

• XA COMMIT ... ONE PHASE prepares and commits the transaction. The xid value will not be
listed by XA RECOVER because the transaction terminates.

4. For a PREPARED XA transaction, you can issue an XA COMMIT statement to commit and terminate the
transaction, or XA ROLLBACK to roll back and terminate the transaction.

Replication Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1258

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Here is a simple XA transaction that inserts a row into a table as part of a global transaction:

mysql> XA START 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO mytable (i) VALUES(10);
Query OK, 1 row affected (0.04 sec)

mysql> XA END 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA PREPARE 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA COMMIT 'xatest';
Query OK, 0 rows affected (0.00 sec)

Within the context of a given client connection, XA transactions and local (non-XA) transactions are
mutually exclusive. For example, if XA START has been issued to begin an XA transaction, a local
transaction cannot be started until the XA transaction has been committed or rolled back. Conversely, if
a local transaction has been started with START TRANSACTION, no XA statements can be used until the
transaction has been committed or rolled back.

If an XA transaction is in the ACTIVE state, you cannot issue any statements that cause an implicit commit.
That would violate the XA contract because you could not roll back the XA transaction. You will receive the
following error if you try to execute such a statement:

ERROR 1399 (XAE07): XAER_RMFAIL: The command cannot be executed
when global transaction is in the ACTIVE state

Statements to which the preceding remark applies are listed at Section 13.3.3, “Statements That Cause an
Implicit Commit”.

13.4 Replication Statements
Replication can be controlled through the SQL interface using the statements described in this section.
One group of statements controls master servers, the other controls slave servers.

13.4.1 SQL Statements for Controlling Master Servers

This section discusses statements for managing master replication servers. Section 13.4.2, “SQL
Statements for Controlling Slave Servers”, discusses statements for managing slave servers.

In addition to the statements described here, the following SHOW statements are used with master servers
in replication. For information about these statements, see Section 13.7.5, “SHOW Syntax”.

• SHOW BINARY LOGS

• SHOW BINLOG EVENTS

• SHOW MASTER STATUS

• SHOW SLAVE HOSTS

13.4.1.1 PURGE BINARY LOGS Syntax

PURGE { BINARY | MASTER } LOGS

SQL Statements for Controlling Master Servers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1259

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 { TO 'log_name' | BEFORE datetime_expr }

The binary log is a set of files that contain information about data modifications made by the MySQL
server. The log consists of a set of binary log files, plus an index file (see Section 5.4.3, “The Binary Log”).

The PURGE BINARY LOGS statement deletes all the binary log files listed in the log index file prior to the
specified log file name or date. BINARY and MASTER are synonyms. Deleted log files also are removed
from the list recorded in the index file, so that the given log file becomes the first in the list.

This statement has no effect if the server was not started with the --log-bin option to enable binary
logging.

Examples:

PURGE BINARY LOGS TO 'mysql-bin.010';
PURGE BINARY LOGS BEFORE '2008-04-02 22:46:26';

The BEFORE variant's datetime_expr argument should evaluate to a DATETIME value (a value in
'YYYY-MM-DD hh:mm:ss' format).

This statement is safe to run while slaves are replicating. You need not stop them. If you have an active
slave that currently is reading one of the log files you are trying to delete, this statement does nothing and
fails with an error. However, if a slave is not connected and you happen to purge one of the log files it has
yet to read, the slave will be unable to replicate after it reconnects.

To safely purge binary log files, follow this procedure:

1. On each slave server, use SHOW SLAVE STATUS to check which log file it is reading.

2. Obtain a listing of the binary log files on the master server with SHOW BINARY LOGS.

3. Determine the earliest log file among all the slaves. This is the target file. If all the slaves are up to date,
this is the last log file on the list.

4. Make a backup of all the log files you are about to delete. (This step is optional, but always advisable.)

5. Purge all log files up to but not including the target file.

You can also set the expire_logs_days system variable to expire binary log files automatically after
a given number of days (see Section 5.1.4, “Server System Variables”). If you are using replication, you
should set the variable no lower than the maximum number of days your slaves might lag behind the
master.

Prior to MySQL 5.0.60, PURGE BINARY LOGS TO and PURGE BINARY LOGS BEFORE did not behave
in the same way (and neither one behaved correctly) when binary log files listed in the .index file had
been removed from the system by some other means (such as using rm on Linux). Beginning with MySQL
5.0.60, both variants of the statement fail with an error in such cases. (Bug #18199, Bug #18453) To
handle such errors, edit the .index file (which is a simple text file) manually to ensure that it lists only the
binary log files that are actually present, then run again the PURGE BINARY LOGS statement that failed.

13.4.1.2 RESET MASTER Syntax

RESET MASTER

Deletes all binary log files listed in the index file, resets the binary log index file to be empty, and creates a
new binary log file. This statement is intended to be used only when the master is started for the first time.

SQL Statements for Controlling Slave Servers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1260

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Important

The effects of RESET MASTER differ from those of PURGE BINARY LOGS in 2 key
ways:

1. RESET MASTER removes all binary log files that are listed in the index file,
leaving only a single, empty binary log file with a numeric suffix of .000001,
whereas the numbering is not reset by PURGE BINARY LOGS.

2. RESET MASTER is not intended to be used while any replication slaves are
running. The behavior of RESET MASTER when used while slaves are running
is undefined (and thus unsupported), whereas PURGE BINARY LOGS may be
safely used while replication slaves are running.

See also Section 13.4.1.1, “PURGE BINARY LOGS Syntax”.

RESET MASTER can prove useful when you first set up the master and the slave, so that you can verify the
setup as follows:

1. Start the master and slave, and start replication (see Section 16.1.1, “How to Set Up Replication”).

2. Execute a few test queries on the master.

3. Check that the queries were replicated to the slave.

4. When replication is running correctly, issue STOP SLAVE followed by RESET SLAVE on the slave, then
verify that any unwanted data no longer exists on the slave.

5. Issue RESET MASTER on the master to clean up the test queries.

After verifying the setup and getting rid of any unwanted and log files generated by testing, you can start
the slave and begin replicating.

13.4.1.3 SET sql_log_bin Syntax

SET sql_log_bin = {0|1}

Disables or enables binary logging for the current session (sql_log_bin is a session variable) if the client
has the SUPER privilege. The statement fails with an error if the client does not have that privilege.

13.4.2 SQL Statements for Controlling Slave Servers

This section discusses statements for managing slave replication servers. Section 13.4.1, “SQL
Statements for Controlling Master Servers”, discusses statements for managing master servers.

In addition to the statements described here, SHOW SLAVE STATUS is also used with replication slaves.
For information about this statement, see Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”.

13.4.2.1 CHANGE MASTER TO Syntax

CHANGE MASTER TO option [, option] ...

option:
 MASTER_HOST = 'host_name'
 | MASTER_USER = 'user_name'
 | MASTER_PASSWORD = 'password'

SQL Statements for Controlling Slave Servers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1261

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 | MASTER_PORT = port_num
 | MASTER_CONNECT_RETRY = interval
 | MASTER_LOG_FILE = 'master_log_name'
 | MASTER_LOG_POS = master_log_pos
 | RELAY_LOG_FILE = 'relay_log_name'
 | RELAY_LOG_POS = relay_log_pos
 | MASTER_SSL = {0|1}
 | MASTER_SSL_CA = 'ca_file_name'
 | MASTER_SSL_CAPATH = 'ca_directory_name'
 | MASTER_SSL_CERT = 'cert_file_name'
 | MASTER_SSL_KEY = 'key_file_name'
 | MASTER_SSL_CIPHER = 'cipher_list'

CHANGE MASTER TO changes the parameters that the slave server uses for connecting to the master
server, for reading the master binary log, and reading the slave relay log. It also updates the contents
of the master.info and relay-log.info files. To use CHANGE MASTER TO, the slave replication
threads must be stopped (use STOP SLAVE if necessary).

Options not specified retain their value, except as indicated in the following discussion. Thus, in most
cases, there is no need to specify options that do not change. For example, if the password to connect to
your MySQL master has changed, you just need to issue these statements to tell the slave about the new
password:

STOP SLAVE; -- if replication was running
CHANGE MASTER TO MASTER_PASSWORD='new3cret';
START SLAVE; -- if you want to restart replication

MASTER_HOST, MASTER_USER, MASTER_PASSWORD, and MASTER_PORT provide information to the slave
about how to connect to its master:

• MASTER_HOST and MASTER_PORT are the host name (or IP address) of the master host and its TCP/IP
port.

Note

Replication cannot use Unix socket files. You must be able to connect to the
master MySQL server using TCP/IP.

If you specify the MASTER_HOST or MASTER_PORT option, the slave assumes that the master server
is different from before (even if the option value is the same as its current value.) In this case, the old
values for the master binary log file name and position are considered no longer applicable, so if you do
not specify MASTER_LOG_FILE and MASTER_LOG_POS in the statement, MASTER_LOG_FILE='' and
MASTER_LOG_POS=4 are silently appended to it.

Setting MASTER_HOST=''—that is, setting its value explicitly to an empty string—is not the same as not
setting it at all. Setting this option to an empty string causes START SLAVE subsequently to fail. (Bug
#28796)

• MASTER_USER and MASTER_PASSWORD are the user name and password of the account to use for
connecting to the master.

The password used for a MySQL Replication slave account in a CHANGE MASTER TO statement is
limited to 32 characters in length; if the password is longer, the statement succeeds, but any excess
characters are silently truncated. This is an issue specific to MySQL Replication, which is fixed in MySQL
5.7. (Bug #11752299, Bug #43439)

The text of a running CHANGE MASTER TO statement, including values for MASTER_USER and
MASTER_PASSWORD, can be seen in the output of a concurrent SHOW PROCESSLIST statement.

SQL Statements for Controlling Slave Servers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1262

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The MASTER_SSL_xxx options provide information about using SSL for the connection. They correspond
to the --ssl-xxx options described in Section 6.3.6.5, “Command Options for Secure Connections”, and
Section 16.3.7, “Setting Up Replication to Use Secure Connections”. These options can be changed even
on slaves that are compiled without SSL support. They are saved to the master.info file, but are ignored
if the slave does not have SSL support enabled.

MASTER_CONNECT_RETRY specifies how many seconds to wait between connect retries. The default is 60.
The number of reconnection attempts is limited by the --master-retry-count server option; for more
information, see Section 16.1.2, “Replication and Binary Logging Options and Variables”.

MASTER_LOG_FILE and MASTER_LOG_POS are the coordinates at which the slave I/O thread should
begin reading from the master the next time the thread starts. RELAY_LOG_FILE and RELAY_LOG_POS
are the coordinates at which the slave SQL thread should begin reading from the relay log the next
time the thread starts. If you specify either of MASTER_LOG_FILE or MASTER_LOG_POS, you cannot
specify RELAY_LOG_FILE or RELAY_LOG_POS. If neither of MASTER_LOG_FILE or MASTER_LOG_POS
is specified, the slave uses the last coordinates of the slave SQL thread before CHANGE MASTER TO was
issued. This ensures that there is no discontinuity in replication, even if the slave SQL thread was late
compared to the slave I/O thread, when you merely want to change, say, the password to use.

CHANGE MASTER TO deletes all relay log files and starts a new one, unless you specify
RELAY_LOG_FILE or RELAY_LOG_POS. In that case, relay log files are kept; the relay_log_purge
global variable is set silently to 0.

CHANGE MASTER TO is useful for setting up a slave when you have the snapshot of the master and
have recorded the master binary log coordinates corresponding to the time of the snapshot. After
loading the snapshot into the slave to synchronize it with the master, you can run CHANGE MASTER TO
MASTER_LOG_FILE='log_name', MASTER_LOG_POS=log_pos on the slave to specify the coordinates
at which the slave should begin reading the master binary log.

The following example changes the master server the slave uses and establishes the master binary
log coordinates from which the slave begins reading. This is used when you want to set up the slave to
replicate the master:

CHANGE MASTER TO
 MASTER_HOST='master2.mycompany.com',
 MASTER_USER='replication',
 MASTER_PASSWORD='bigs3cret',
 MASTER_PORT=3306,
 MASTER_LOG_FILE='master2-bin.001',
 MASTER_LOG_POS=4,
 MASTER_CONNECT_RETRY=10;

The next example shows an operation that is less frequently employed. It is used when the slave has relay
log files that you want it to execute again for some reason. To do this, the master need not be reachable.
You need only use CHANGE MASTER TO and start the SQL thread (START SLAVE SQL_THREAD):

CHANGE MASTER TO
 RELAY_LOG_FILE='slave-relay-bin.006',
 RELAY_LOG_POS=4025;

You can even use the second operation in a nonreplication setup with a standalone, nonslave server for
recovery following a crash. Suppose that your server has crashed and you have restored it from a backup.
You want to replay the server's own binary log files (not relay log files, but regular binary log files), named
(for example) myhost-bin.*. First, make a backup copy of these binary log files in some safe place,
in case you don't exactly follow the procedure below and accidentally have the server purge the binary
log. Use SET GLOBAL relay_log_purge=0 for additional safety. Then start the server without the --

SQL Statements for Controlling Slave Servers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1263

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

log-bin option, Instead, use the --replicate-same-server-id, --relay-log=myhost-bin (to
make the server believe that these regular binary log files are relay log files) and --skip-slave-start
options. After the server starts, issue these statements:

CHANGE MASTER TO
 RELAY_LOG_FILE='myhost-bin.153',
 RELAY_LOG_POS=410,
 MASTER_HOST='some_dummy_string';
START SLAVE SQL_THREAD;

The server reads and executes its own binary log files, thus achieving crash recovery. Once the recovery
is finished, run STOP SLAVE, shut down the server, delete the master.info and relay-log.info files,
and restart the server with its original options.

Specifying the MASTER_HOST option (even with a dummy value) is required to make the server think it is a
slave.

13.4.2.2 LOAD DATA FROM MASTER Syntax

LOAD DATA FROM MASTER

Note

This feature is deprecated and should be avoided. It is subject to removal in a future
version of MySQL.

Since the current implementation of LOAD DATA FROM MASTER and LOAD TABLE FROM MASTER is very
limited, these statements are deprecated as of MySQL 4.1 and removed in MySQL 5.5.

The recommended alternative solution to using LOAD DATA FROM MASTER or LOAD TABLE FROM
MASTER is using mysqldump or mysqlhotcopy. The latter requires Perl and two Perl modules (DBI and
DBD:mysql) and works for MyISAM and ARCHIVE tables only. With mysqldump, you can create SQL
dumps on the master and pipe (or copy) these to a mysql client on the slave. This has the advantage of
working for all storage engines, but can be quite slow, since it works using SELECT.

This statement takes a snapshot of the master and copies it to the slave. It updates the values of
MASTER_LOG_FILE and MASTER_LOG_POS so that the slave starts replicating from the correct position.
Any table and database exclusion rules specified with the --replicate-*-do-* and --replicate-*-
ignore-* options are honored. --replicate-rewrite-db is not taken into account because a user
could use this option to set up a nonunique mapping such as --replicate-rewrite-db="db1->db3"
and --replicate-rewrite-db="db2->db3", which would confuse the slave when loading tables from
the master.

Use of this statement is subject to the following conditions:

• It works only for MyISAM tables. Attempting to load a non-MyISAM table results in the following error:

ERROR 1189 (08S01): Net error reading from master

• It acquires a global read lock on the master while taking the snapshot, which prevents updates on the
master during the load operation.

If you are loading large tables, you might have to increase the values of net_read_timeout and
net_write_timeout on both the master and slave servers. See Section 5.1.4, “Server System
Variables”.

SQL Statements for Controlling Slave Servers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1264

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

LOAD DATA FROM MASTER does not copy any tables from the mysql database. This makes it easy to
have different users and privileges on the master and the slave.

To use LOAD DATA FROM MASTER, the replication account that is used to connect to the master must
have the RELOAD and SUPER privileges on the master and the SELECT privilege for all master tables
you want to load. All master tables for which the user does not have the SELECT privilege are ignored by
LOAD DATA FROM MASTER. This is because the master hides them from the user: LOAD DATA FROM
MASTER calls SHOW DATABASES to know the master databases to load, but SHOW DATABASES returns
only databases for which the user has some privilege. See Section 13.7.5.11, “SHOW DATABASES
Syntax”. On the slave side, the user that issues LOAD DATA FROM MASTER must have privileges for
dropping and creating the databases and tables that are copied.

13.4.2.3 LOAD TABLE tbl_name FROM MASTER Syntax

LOAD TABLE tbl_name FROM MASTER

Note

This feature is deprecated and should be avoided. It is subject to removal in a future
version of MySQL.

Since the current implementation of LOAD DATA FROM MASTER and LOAD TABLE FROM MASTER is very
limited, these statements are deprecated as of MySQL 4.1 and removed in MySQL 5.5.

The recommended alternative solution to using LOAD DATA FROM MASTER or LOAD TABLE FROM
MASTER is using mysqldump or mysqlhotcopy. The latter requires Perl and two Perl modules (DBI and
DBD:mysql) and works for MyISAM and ARCHIVE tables only. With mysqldump, you can create SQL
dumps on the master and pipe (or copy) these to a mysql client on the slave. This has the advantage of
working for all storage engines, but can be quite slow, since it works using SELECT.

Transfers a copy of the table from the master to the slave. This statement is implemented mainly
debugging LOAD DATA FROM MASTER operations. To use LOAD TABLE, the account used for connecting
to the master server must have the RELOAD and SUPER privileges on the master and the SELECT privilege
for the master table to load. On the slave side, the user that issues LOAD TABLE FROM MASTER must
have privileges for dropping and creating the table.

The conditions for LOAD DATA FROM MASTER apply here as well. For example, LOAD TABLE FROM
MASTER works only for MyISAM tables. The timeout notes for LOAD DATA FROM MASTER apply as well.

13.4.2.4 MASTER_POS_WAIT() Syntax

SELECT MASTER_POS_WAIT('master_log_file', master_log_pos [, timeout])

This is actually a function, not a statement. It is used to ensure that the slave has read and executed
events up to a given position in the master's binary log. See Section 12.15, “Miscellaneous Functions”, for
a full description.

The following table shows the maximum permissible length for the string-valued options.

Option Maximum Length

MASTER_HOST 60

MASTER_USER 16

SQL Statements for Controlling Slave Servers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1265

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option Maximum Length

MASTER_PASSWORD 32

MASTER_LOG_FILE 255

RELAY_LOG_FILE 255

MASTER_SSL_CA 255

MASTER_SSL_CAPATH 255

MASTER_SSL_CERT 255

MASTER_SSL_KEY 255

MASTER_SSL_CIPHER 511

13.4.2.5 RESET SLAVE Syntax

RESET SLAVE

RESET SLAVE makes the slave forget its replication position in the master's binary log. This statement
is meant to be used for a clean start: It deletes the master.info and relay-log.info files, all the
relay log files, and starts a new relay log file. To use RESET SLAVE, the slave replication threads must be
stopped (use STOP SLAVE if necessary).

Note

All relay log files are deleted, even if they have not been completely executed by
the slave SQL thread. (This is a condition likely to exist on a replication slave if you
have issued a STOP SLAVE statement or if the slave is highly loaded.)

Connection information stored in the master.info file is immediately reset using any values specified
in the corresponding startup options. This information includes values such as master host, master port,
master user, and master password. Options for which values are not specified are cleared. If the slave
SQL thread was in the middle of replicating temporary tables when it was stopped, and RESET SLAVE is
issued, these replicated temporary tables are deleted on the slave.

13.4.2.6 SET GLOBAL sql_slave_skip_counter Syntax

SET GLOBAL sql_slave_skip_counter = N

This statement skips the next N events from the master. This is useful for recovering from replication stops
caused by a statement.

This statement is valid only when the slave threads are not running. Otherwise, it produces an error.

When using this statement, it is important to understand that the binary log is actually organized as a
sequence of groups known as event groups. Each event group consists of a sequence of events.

• For transactional tables, an event group corresponds to a transaction.

• For nontransactional tables, an event group corresponds to a single SQL statement.

Note

A single transaction can contain changes to both transactional and nontransactional
tables.

SQL Statements for Controlling Slave Servers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1266

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When you use SET GLOBAL sql_slave_skip_counter to skip events and the result is in the middle of
a group, the slave continues to skip events until it reaches the end of the group. Execution then starts with
the next event group.

13.4.2.7 START SLAVE Syntax

START SLAVE [thread_types]

START SLAVE [SQL_THREAD] UNTIL
 MASTER_LOG_FILE = 'log_name', MASTER_LOG_POS = log_pos

START SLAVE [SQL_THREAD] UNTIL
 RELAY_LOG_FILE = 'log_name', RELAY_LOG_POS = log_pos

thread_types:
 [thread_type [, thread_type] ...]

thread_type: IO_THREAD | SQL_THREAD

START SLAVE with no thread_type options starts both of the slave threads. The I/O thread reads events
from the master server and stores them in the relay log. The SQL thread reads events from the relay log
and executes them. START SLAVE requires the SUPER privilege.

If START SLAVE succeeds in starting the slave threads, it returns without any error. However, even in that
case, it might be that the slave threads start and then later stop (for example, because they do not manage
to connect to the master or read its binary log, or some other problem). START SLAVE does not warn you
about this. You must check the slave's error log for error messages generated by the slave threads, or
check that they are running satisfactorily with SHOW SLAVE STATUS.

START SLAVE sends an acknowledgment to the user after both the I/O thread and the SQL thread
have started. However, the I/O thread may not yet have connected. For this reason, a successful START
SLAVE causes SHOW SLAVE STATUS to show Slave_SQL_Running=Yes, but this does not guarantee
that Slave_IO_Running=Yes (because Slave_IO_Running=Yes only if the I/O thread is running
and connected). For more information, see Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”, and
Section 16.1.3.1, “Checking Replication Status”.

You can add IO_THREAD and SQL_THREAD options to the statement to name which of the threads to start.

An UNTIL clause may be added to specify that the slave should start and run until the SQL thread reaches
a given point in the master binary log or in the slave relay log. When the SQL thread reaches that point,
it stops. If the SQL_THREAD option is specified in the statement, it starts only the SQL thread. Otherwise,
it starts both slave threads. If the SQL thread is running, the UNTIL clause is ignored and a warning is
issued.

For an UNTIL clause, you must specify both a log file name and position. Do not mix master and relay log
options.

Any UNTIL condition is reset by a subsequent STOP SLAVE statement, a START SLAVE statement that
includes no UNTIL clause, or a server restart.

The UNTIL clause can be useful for debugging replication, or to cause replication to proceed until just
before the point where you want to avoid having the slave replicate an event. For example, if an unwise
DROP TABLE statement was executed on the master, you can use UNTIL to tell the slave to execute up to
that point but no farther. To find what the event is, use mysqlbinlog with the master binary log or slave
relay log, or by using a SHOW BINLOG EVENTS statement.

If you are using UNTIL to have the slave process replicated queries in sections, it is recommended that
you start the slave with the --skip-slave-start option to prevent the SQL thread from running when

SQL Syntax for Prepared Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1267

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

the slave server starts. It is probably best to use this option in an option file rather than on the command
line, so that an unexpected server restart does not cause it to be forgotten.

The SHOW SLAVE STATUS statement includes output fields that display the current values of the UNTIL
condition.

In old versions of MySQL (before 4.0.5), this statement was called SLAVE START. This usage is still
accepted in MySQL 5.0 for backward compatibility, but is deprecated and is removed in MySQL 5.6.

13.4.2.8 STOP SLAVE Syntax

STOP SLAVE [thread_types]

thread_types:
 [thread_type [, thread_type] ...]

thread_type: IO_THREAD | SQL_THREAD

Stops the slave threads. STOP SLAVE requires the SUPER privilege. Recommended best practice is to
execute STOP SLAVE on the slave before stopping the slave server (see Section 5.1.10, “The Server
Shutdown Process”, for more information).

Like START SLAVE, this statement may be used with the IO_THREAD and SQL_THREAD options to name
the thread or threads to be stopped.

Note

The transactional behavior of STOP SLAVE changed in MySQL 5.0.82. Previously,
it took effect immediately; beginning with MySQL 5.0.82, it waits until the current
replication event group (if any) has finished executing, or until the user issues a
KILL QUERY or KILL CONNECTION statement. (Bug #319, Bug #38205)

In old versions of MySQL (before 4.0.5), this statement was called SLAVE STOP. This usage is still
accepted in MySQL 5.0 for backward compatibility, but is deprecated and is removed in MySQL 5.6.

13.5 SQL Syntax for Prepared Statements

MySQL 5.0 provides support for server-side prepared statements. This support takes advantage of the
efficient client/server binary protocol, provided that you use an appropriate client programming interface.
Candidate interfaces include the MySQL C API client library (for C programs), MySQL Connector/J (for
Java programs), and MySQL Connector/Net. For example, the C API provides a set of function calls that
make up its prepared statement API. See Section 20.6.8, “C API Prepared Statements”. Other language
interfaces can provide support for prepared statements that use the binary protocol by linking in the C
client library, one example being the mysqli extension, available in PHP 5.0 and later.

An alternative SQL interface to prepared statements is available. This interface is not as efficient as using
the binary protocol through a prepared statement API, but requires no programming because it is available
directly at the SQL level:

• You can use it when no programming interface is available to you.

• You can use it from any program that enables you to send SQL statements to the server to be executed,
such as the mysql client program.

• You can use it even if the client is using an old version of the client library. The only requirement is that
you be able to connect to a server that is recent enough to support SQL syntax for prepared statements.

http://php.net/mysqli

SQL Syntax for Prepared Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1268

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SQL syntax for prepared statements is intended to be used for situations such as these:

• You want to test how prepared statements work in your application before coding it.

• An application has problems executing prepared statements and you want to determine interactively
what the problem is.

• You want to create a test case that describes a problem you are having with prepared statements, so
that you can file a bug report.

• You need to use prepared statements but do not have access to a programming API that supports them.

SQL syntax for prepared statements is based on three SQL statements:

• PREPARE prepares a statement for execution (see Section 13.5.1, “PREPARE Syntax”).

• EXECUTE executes a prepared statement (see Section 13.5.2, “EXECUTE Syntax”).

• DEALLOCATE PREPARE releases a prepared statement (see Section 13.5.3, “DEALLOCATE PREPARE
Syntax”).

The following examples show two equivalent ways of preparing a statement that computes the hypotenuse
of a triangle given the lengths of the two sides.

The first example shows how to create a prepared statement by using a string literal to supply the text of
the statement:

mysql> PREPARE stmt1 FROM 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> SET @a = 3;
mysql> SET @b = 4;
mysql> EXECUTE stmt1 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 5 |
+------------+
mysql> DEALLOCATE PREPARE stmt1;

The second example is similar, but supplies the text of the statement as a user variable:

mysql> SET @s = 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> PREPARE stmt2 FROM @s;
mysql> SET @a = 6;
mysql> SET @b = 8;
mysql> EXECUTE stmt2 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 10 |
+------------+
mysql> DEALLOCATE PREPARE stmt2;

Here is an additional example which demonstrates how to choose the table on which to perform a query at
runtime, by storing the name of the table as a user variable:

mysql> USE test;
mysql> CREATE TABLE t1 (a INT NOT NULL);
mysql> INSERT INTO t1 VALUES (4), (8), (11), (32), (80);

SQL Syntax for Prepared Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1269

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SET @table = 't1';
mysql> SET @s = CONCAT('SELECT * FROM ', @table);

mysql> PREPARE stmt3 FROM @s;
mysql> EXECUTE stmt3;
+----+
| a |
+----+
| 4 |
| 8 |
| 11 |
| 32 |
| 80 |
+----+

mysql> DEALLOCATE PREPARE stmt3;

A prepared statement is specific to the session in which it was created. If you terminate a session without
deallocating a previously prepared statement, the server deallocates it automatically.

A prepared statement is also global to the session. If you create a prepared statement within a stored
routine, it is not deallocated when the stored routine ends.

To guard against too many prepared statements being created simultaneously, set the
max_prepared_stmt_count system variable. To prevent the use of prepared statements, set the value
to 0.

The following SQL statements can be used in prepared statements:

ALTER TABLE
CALL
COMMIT
{CREATE | DROP} INDEX
{CREATE | DROP} TABLE
DELETE
DO
INSERT
RENAME TABLE
REPLACE
SELECT
SET
SHOW (most variants)
TRUNCATE TABLE
UPDATE

As of MySQL 5.0.15, the following additional statements are supported:

{CREATE | DROP} VIEW

As of MySQL 5.0.23, the following additional statements are supported:

ANALYZE TABLE
OPTIMIZE TABLE
REPAIR TABLE

Other statements are not supported in MySQL 5.0.

Generally, statements not permitted in SQL prepared statements are also not permitted in stored
programs. Exceptions are noted in Section C.1, “Restrictions on Stored Programs”.

PREPARE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1270

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

As of MySQL 5.0.7, placeholders can be used for the arguments of the LIMIT clause when using prepared
statements. See Section 13.2.8, “SELECT Syntax”.

In prepared CALL statements used with PREPARE and EXECUTE, placeholder support for OUT and INOUT
parameters is not available in MySQL 5.0. See Section 13.2.1, “CALL Syntax”, for an example and a
workaround. Placeholders can be used for IN parameters regardless of version.

SQL syntax for prepared statements cannot be used in nested fashion. That is, a statement passed to
PREPARE cannot itself be a PREPARE, EXECUTE, or DEALLOCATE PREPARE statement.

SQL syntax for prepared statements is distinct from using prepared statement API calls. For example,
you cannot use the mysql_stmt_prepare() C API function to prepare a PREPARE, EXECUTE, or
DEALLOCATE PREPARE statement.

SQL syntax for prepared statements cannot be used within stored routines (procedures or functions), or
triggers. This restriction is lifted as of MySQL 5.0.13 for stored procedures, but not for stored functions or
triggers. However, a cursor cannot be used for a dynamic statement that is prepared and executed with
PREPARE and EXECUTE. The statement for a cursor is checked at cursor creation time, so the statement
cannot be dynamic.

SQL syntax for prepared statements does not support multi-statements (that is, multiple statements within
a single string separated by “;” characters).

To write C programs that use the CALL SQL statement to execute stored procedures that contain prepared
statements, the CLIENT_MULTI_RESULTS flag must be enabled. This is because each CALL returns
a result to indicate the call status, in addition to any result sets that might be returned by statements
executed within the procedure.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(), either explicitly by
passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing CLIENT_MULTI_STATEMENTS
(which also enables CLIENT_MULTI_RESULTS). For additional information, see Section 13.2.1, “CALL
Syntax”.

13.5.1 PREPARE Syntax

PREPARE stmt_name FROM preparable_stmt

The PREPARE statement prepares a SQL statement and assigns it a name, stmt_name, by which to refer
to the statement later. The prepared statement is executed with EXECUTE and released with DEALLOCATE
PREPARE. For examples, see Section 13.5, “SQL Syntax for Prepared Statements”.

Statement names are not case sensitive. preparable_stmt is either a string literal or a user variable
that contains the text of the SQL statement. The text must represent a single statement, not multiple
statements. Within the statement, ? characters can be used as parameter markers to indicate where data
values are to be bound to the query later when you execute it. The ? characters should not be enclosed
within quotation marks, even if you intend to bind them to string values. Parameter markers can be used
only where data values should appear, not for SQL keywords, identifiers, and so forth.

If a prepared statement with the given name already exists, it is deallocated implicitly before the new
statement is prepared. This means that if the new statement contains an error and cannot be prepared, an
error is returned and no statement with the given name exists.

The scope of a prepared statement is the session within which it is created, which as several implications:

• A prepared statement created in one session is not available to other sessions.

EXECUTE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1271

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• When a session ends, whether normally or abnormally, its prepared statements no longer exist. If auto-
reconnect is enabled, the client is not notified that the connection was lost. For this reason, clients may
wish to disable auto-reconnect. See Section 20.6.15, “Controlling Automatic Reconnection Behavior”.

• A prepared statement created within a stored program continues to exist after the program finishes
executing and can be executed outside the program later.

• A statement prepared in stored program context cannot refer to stored procedure or function parameters
or local variables because they go out of scope when the program ends and would be unavailable were
the statement to be executed later outside the program. As a workaround, refer instead to user-defined
variables, which also have session scope; see Section 9.4, “User-Defined Variables”.

13.5.2 EXECUTE Syntax

EXECUTE stmt_name
 [USING @var_name [, @var_name] ...]

After preparing a statement with PREPARE, you execute it with an EXECUTE statement that refers to
the prepared statement name. If the prepared statement contains any parameter markers, you must
supply a USING clause that lists user variables containing the values to be bound to the parameters.
Parameter values can be supplied only by user variables, and the USING clause must name exactly as
many variables as the number of parameter markers in the statement.

You can execute a given prepared statement multiple times, passing different variables to it or setting the
variables to different values before each execution.

For examples, see Section 13.5, “SQL Syntax for Prepared Statements”.

13.5.3 DEALLOCATE PREPARE Syntax

{DEALLOCATE | DROP} PREPARE stmt_name

To deallocate a prepared statement produced with PREPARE, use a DEALLOCATE PREPARE statement
that refers to the prepared statement name. Attempting to execute a prepared statement after deallocating
it results in an error.

For examples, see Section 13.5, “SQL Syntax for Prepared Statements”.

13.6 MySQL Compound-Statement Syntax

This section describes the syntax for the BEGIN ... END compound statement and other statements that
can be used in the body of stored programs: Stored procedures and functions and triggers. These objects
are defined in terms of SQL code that is stored on the server for later invocation (see Chapter 18, Stored
Programs and Views).

A compound statement is a block that can contain other blocks; declarations for variables, condition
handlers, and cursors; and flow control constructs such as loops and conditional tests.

13.6.1 BEGIN ... END Compound-Statement Syntax

[begin_label:] BEGIN
 [statement_list]

Statement Label Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1272

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

END [end_label]

BEGIN ... END syntax is used for writing compound statements, which can appear within stored
programs (stored procedures and functions, and triggers). A compound statement can contain multiple
statements, enclosed by the BEGIN and END keywords. statement_list represents a list of one or
more statements, each terminated by a semicolon (;) statement delimiter. The statement_list itself is
optional, so the empty compound statement (BEGIN END) is legal.

BEGIN ... END blocks can be nested.

Use of multiple statements requires that a client is able to send statement strings containing the ;
statement delimiter. In the mysql command-line client, this is handled with the delimiter command.
Changing the ; end-of-statement delimiter (for example, to //) permit ; to be used in a program body. For
an example, see Section 18.1, “Defining Stored Programs”.

A BEGIN ... END block can be labeled. See Section 13.6.2, “Statement Label Syntax”.

The optional [NOT] ATOMIC clause is not supported. This means that no transactional savepoint is set
at the start of the instruction block and the BEGIN clause used in this context has no effect on the current
transaction.

Note

Within all stored programs, the parser treats BEGIN [WORK] as the beginning
of a BEGIN ... END block. To begin a transaction in this context, use START
TRANSACTION instead.

13.6.2 Statement Label Syntax

[begin_label:] BEGIN
 [statement_list]
END [end_label]

[begin_label:] LOOP
 statement_list
END LOOP [end_label]

[begin_label:] REPEAT
 statement_list
UNTIL search_condition
END REPEAT [end_label]

[begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]

Labels are permitted for BEGIN ... END blocks and for the LOOP, REPEAT, and WHILE statements. Label
use for those statements follows these rules:

• begin_label must be followed by a colon.

• begin_label can be given without end_label. If end_label is present, it must be the same as
begin_label.

• end_label cannot be given without begin_label.

• Labels at the same nesting level must be distinct.

• Labels can be up to 16 characters long.

DECLARE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1273

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To refer to a label within the labeled construct, use an ITERATE or LEAVE statement. The following
example uses those statements to continue iterating or terminate the loop:

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
 label1: LOOP
 SET p1 = p1 + 1;
 IF p1 < 10 THEN ITERATE label1; END IF;
 LEAVE label1;
 END LOOP label1;
END;

The scope of a block label does not include the code for handlers declared within the block. For details,
see Section 13.6.7.2, “DECLARE ... HANDLER Syntax”.

13.6.3 DECLARE Syntax

The DECLARE statement is used to define various items local to a program:

• Local variables. See Section 13.6.4, “Variables in Stored Programs”.

• Conditions and handlers. See Section 13.6.7, “Condition Handling”.

• Cursors. See Section 13.6.6, “Cursors”.

DECLARE is permitted only inside a BEGIN ... END compound statement and must be at its start, before
any other statements.

Declarations must follow a certain order. Cursor declarations must appear before handler declarations.
Variable and condition declarations must appear before cursor or handler declarations.

13.6.4 Variables in Stored Programs

System variables and user-defined variables can be used in stored programs, just as they can be used
outside stored-program context. In addition, stored programs can use DECLARE to define local variables,
and stored routines (procedures and functions) can be declared to take parameters that communicate
values between the routine and its caller.

• To declare local variables, use the DECLARE statement, as described in Section 13.6.4.1, “Local Variable
DECLARE Syntax”.

• Variables can be set directly with the SET statement. See Section 13.7.4, “SET Syntax”.

• Results from queries can be retrieved into local variables using SELECT ... INTO var_list or by
opening a cursor and using FETCH ... INTO var_list. See Section 13.2.8.1, “SELECT ... INTO
Syntax”, and Section 13.6.6, “Cursors”.

For information about the scope of local variables and how MySQL resolves ambiguous names, see
Section 13.6.4.2, “Local Variable Scope and Resolution”.

13.6.4.1 Local Variable DECLARE Syntax

DECLARE var_name [, var_name] ... type [DEFAULT value]

This statement declares local variables within stored programs. To provide a default value for a variable,
include a DEFAULT clause. The value can be specified as an expression; it need not be a constant. If the
DEFAULT clause is missing, the initial value is NULL.

Variables in Stored Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1274

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Local variables are treated like stored routine parameters with respect to data type and overflow checking.
See Section 13.1.9, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.

Variable declarations must appear before cursor or handler declarations.

Local variable names are not case sensitive. Permissible characters and quoting rules are the same as for
other identifiers, as described in Section 9.2, “Schema Object Names”.

The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can be
referred to in blocks nested within the declaring block, except those blocks that declare a variable with the
same name.

13.6.4.2 Local Variable Scope and Resolution

The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can be
referred to in blocks nested within the declaring block, except those blocks that declare a variable with the
same name.

Because local variables are in scope only during stored program execution, references to them are not
permitted in prepared statements created within a stored program. Prepared statement scope is the current
session, not the stored program, so the statement could be executed after the program ends, at which
point the variables would no longer be in scope. For example, SELECT ... INTO local_var cannot be
used as a prepared statement. This restriction also applies to stored procedure and function parameters.
See Section 13.5.1, “PREPARE Syntax”.

A local variable should not have the same name as a table column. If an SQL statement, such as a
SELECT ... INTO statement, contains a reference to a column and a declared local variable with the
same name, MySQL currently interprets the reference as the name of a variable. Consider the following
procedure definition:

CREATE PROCEDURE sp1 (x VARCHAR(5))
BEGIN
 DECLARE xname VARCHAR(5) DEFAULT 'bob';
 DECLARE newname VARCHAR(5);
 DECLARE xid INT;

 SELECT xname, id INTO newname, xid
 FROM table1 WHERE xname = xname;
 SELECT newname;
END;

MySQL interprets xname in the SELECT statement as a reference to the xname variable rather than the
xname column. Consequently, when the procedure sp1()is called, the newname variable returns the value
'bob' regardless of the value of the table1.xname column.

Similarly, the cursor definition in the following procedure contains a SELECT statement that refers to
xname. MySQL interprets this as a reference to the variable of that name rather than a column reference.

CREATE PROCEDURE sp2 (x VARCHAR(5))
BEGIN
 DECLARE xname VARCHAR(5) DEFAULT 'bob';
 DECLARE newname VARCHAR(5);
 DECLARE xid INT;
 DECLARE done TINYINT DEFAULT 0;
 DECLARE cur1 CURSOR FOR SELECT xname, id FROM table1;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;

Flow Control Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1275

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 OPEN cur1;
 read_loop: LOOP
 FETCH FROM cur1 INTO newname, xid;
 IF done THEN LEAVE read_loop; END IF;
 SELECT newname;
 END LOOP;
 CLOSE cur1;
END;

See also Section C.1, “Restrictions on Stored Programs”.

13.6.5 Flow Control Statements

MySQL supports the IF, CASE, ITERATE, LEAVE LOOP, WHILE, and REPEAT constructs for flow control
within stored programs. It also supports RETURN within stored functions.

Many of these constructs contain other statements, as indicated by the grammar specifications in the
following sections. Such constructs may be nested. For example, an IF statement might contain a WHILE
loop, which itself contains a CASE statement.

MySQL does not support FOR loops.

13.6.5.1 CASE Syntax

CASE case_value
 WHEN when_value THEN statement_list
 [WHEN when_value THEN statement_list] ...
 [ELSE statement_list]
END CASE

Or:

CASE
 WHEN search_condition THEN statement_list
 [WHEN search_condition THEN statement_list] ...
 [ELSE statement_list]
END CASE

The CASE statement for stored programs implements a complex conditional construct.

Note

There is also a CASE expression, which differs from the CASE statement described
here. See Section 12.4, “Control Flow Functions”. The CASE statement cannot have
an ELSE NULL clause, and it is terminated with END CASE instead of END.

For the first syntax, case_value is an expression. This value is compared to the when_value
expression in each WHEN clause until one of them is equal. When an equal when_value is found, the
corresponding THEN clause statement_list executes. If no when_value is equal, the ELSE clause
statement_list executes, if there is one.

This syntax cannot be used to test for equality with NULL because NULL = NULL is false. See
Section 3.3.4.6, “Working with NULL Values”.

For the second syntax, each WHEN clause search_condition expression is evaluated until one is true,
at which point its corresponding THEN clause statement_list executes. If no search_condition is
equal, the ELSE clause statement_list executes, if there is one.

Flow Control Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1276

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If no when_value or search_condition matches the value tested and the CASE statement contains no
ELSE clause, a Case not found for CASE statement error results.

Each statement_list consists of one or more SQL statements; an empty statement_list is not
permitted.

To handle situations where no value is matched by any WHEN clause, use an ELSE containing an empty
BEGIN ... END block, as shown in this example. (The indentation used here in the ELSE clause is for
purposes of clarity only, and is not otherwise significant.)

DELIMITER |

CREATE PROCEDURE p()
 BEGIN
 DECLARE v INT DEFAULT 1;

 CASE v
 WHEN 2 THEN SELECT v;
 WHEN 3 THEN SELECT 0;
 ELSE
 BEGIN
 END;
 END CASE;
 END;
 |

13.6.5.2 IF Syntax

IF search_condition THEN statement_list
 [ELSEIF search_condition THEN statement_list] ...
 [ELSE statement_list]
END IF

The IF statement for stored programs implements a basic conditional construct.

Note

There is also an IF() function, which differs from the IF statement described here.
See Section 12.4, “Control Flow Functions”. The IF statement can have THEN,
ELSE, and ELSEIF clauses, and it is terminated with END IF.

If the search_condition evaluates to true, the corresponding THEN or ELSEIF clause
statement_list executes. If no search_condition matches, the ELSE clause statement_list
executes.

Each statement_list consists of one or more SQL statements; an empty statement_list is not
permitted.

An IF ... END IF block, like all other flow-control blocks used within stored programs, must be
terminated with a semicolon, as shown in this example:

DELIMITER //

CREATE FUNCTION SimpleCompare(n INT, m INT)
 RETURNS VARCHAR(20)

 BEGIN
 DECLARE s VARCHAR(20);

Flow Control Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1277

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 IF n > m THEN SET s = '>';
 ELSEIF n = m THEN SET s = '=';
 ELSE SET s = '<';
 END IF;

 SET s = CONCAT(n, ' ', s, ' ', m);

 RETURN s;
 END //

DELIMITER ;

As with other flow-control constructs, IF ... END IF blocks may be nested within other flow-control
constructs, including other IF statements. Each IF must be terminated by its own END IF followed by a
semicolon. You can use indentation to make nested flow-control blocks more easily readable by humans
(although this is not required by MySQL), as shown here:

DELIMITER //

CREATE FUNCTION VerboseCompare (n INT, m INT)
 RETURNS VARCHAR(50)

 BEGIN
 DECLARE s VARCHAR(50);

 IF n = m THEN SET s = 'equals';
 ELSE
 IF n > m THEN SET s = 'greater';
 ELSE SET s = 'less';
 END IF;

 SET s = CONCAT('is ', s, ' than');
 END IF;

 SET s = CONCAT(n, ' ', s, ' ', m, '.');

 RETURN s;
 END //

DELIMITER ;

In this example, the inner IF is evaluated only if n is not equal to m.

13.6.5.3 ITERATE Syntax

ITERATE label

ITERATE can appear only within LOOP, REPEAT, and WHILE statements. ITERATE means “start the loop
again.”

For an example, see Section 13.6.5.5, “LOOP Syntax”.

13.6.5.4 LEAVE Syntax

LEAVE label

This statement is used to exit the flow control construct that has the given label. If the label is for the
outermost stored program block, LEAVE exits the program.

LEAVE can be used within BEGIN ... END or loop constructs (LOOP, REPEAT, WHILE).

Flow Control Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1278

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For an example, see Section 13.6.5.5, “LOOP Syntax”.

13.6.5.5 LOOP Syntax

[begin_label:] LOOP
 statement_list
END LOOP [end_label]

LOOP implements a simple loop construct, enabling repeated execution of the statement list, which consists
of one or more statements, each terminated by a semicolon (;) statement delimiter. The statements within
the loop are repeated until the loop is terminated. Usually, this is accomplished with a LEAVE statement.
Within a stored function, RETURN can also be used, which exits the function entirely.

Neglecting to include a loop-termination statement results in an infinite loop.

A LOOP statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement Label
Syntax”.

Example:

CREATE PROCEDURE doiterate(p1 INT)
BEGIN
 label1: LOOP
 SET p1 = p1 + 1;
 IF p1 < 10 THEN
 ITERATE label1;
 END IF;
 LEAVE label1;
 END LOOP label1;
 SET @x = p1;
END;

13.6.5.6 REPEAT Syntax

[begin_label:] REPEAT
 statement_list
UNTIL search_condition
END REPEAT [end_label]

The statement list within a REPEAT statement is repeated until the search_condition expression is
true. Thus, a REPEAT always enters the loop at least once. statement_list consists of one or more
statements, each terminated by a semicolon (;) statement delimiter.

A REPEAT statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement
Label Syntax”.

Example:

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
 -> BEGIN
 -> SET @x = 0;
 -> REPEAT
 -> SET @x = @x + 1;
 -> UNTIL @x > p1 END REPEAT;
 -> END

Cursors

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1279

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 -> //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL dorepeat(1000)//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)

13.6.5.7 RETURN Syntax

RETURN expr

The RETURN statement terminates execution of a stored function and returns the value expr to the
function caller. There must be at least one RETURN statement in a stored function. There may be more than
one if the function has multiple exit points.

This statement is not used in stored procedures or triggers. The LEAVE statement can be used to exit a
stored program of those types.

13.6.5.8 WHILE Syntax

[begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]

The statement list within a WHILE statement is repeated as long as the search_condition expression
is true. statement_list consists of one or more SQL statements, each terminated by a semicolon (;)
statement delimiter.

A WHILE statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement Label
Syntax”.

Example:

CREATE PROCEDURE dowhile()
BEGIN
 DECLARE v1 INT DEFAULT 5;

 WHILE v1 > 0 DO
 ...
 SET v1 = v1 - 1;
 END WHILE;
END;

13.6.6 Cursors

MySQL supports cursors inside stored programs. The syntax is as in embedded SQL. Cursors have these
properties:

• Asensitive: The server may or may not make a copy of its result table

• Read only: Not updatable

Cursors

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1280

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Nonscrollable: Can be traversed only in one direction and cannot skip rows

Cursor declarations must appear before handler declarations and after variable and condition declarations.

Example:

CREATE PROCEDURE curdemo()
BEGIN
 DECLARE done INT DEFAULT FALSE;
 DECLARE a CHAR(16);
 DECLARE b, c INT;
 DECLARE cur1 CURSOR FOR SELECT id,data FROM test.t1;
 DECLARE cur2 CURSOR FOR SELECT i FROM test.t2;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = TRUE;

 OPEN cur1;
 OPEN cur2;

 read_loop: LOOP
 FETCH cur1 INTO a, b;
 FETCH cur2 INTO c;
 IF done THEN
 LEAVE read_loop;
 END IF;
 IF b < c THEN
 INSERT INTO test.t3 VALUES (a,b);
 ELSE
 INSERT INTO test.t3 VALUES (a,c);
 END IF;
 END LOOP;

 CLOSE cur1;
 CLOSE cur2;
END;

13.6.6.1 Cursor CLOSE Syntax

CLOSE cursor_name

This statement closes a previously opened cursor. For an example, see Section 13.6.6, “Cursors”.

An error occurs if the cursor is not open.

If not closed explicitly, a cursor is closed at the end of the BEGIN ... END block in which it was declared.

13.6.6.2 Cursor DECLARE Syntax

DECLARE cursor_name CURSOR FOR select_statement

This statement declares a cursor and associates it with a SELECT statement that retrieves the rows to be
traversed by the cursor. To fetch the rows later, use a FETCH statement. The number of columns retrieved
by the SELECT statement must match the number of output variables specified in the FETCH statement.

The SELECT statement cannot have an INTO clause.

Cursor declarations must appear before handler declarations and after variable and condition declarations.

A stored program may contain multiple cursor declarations, but each cursor declared in a given block must
have a unique name. For an example, see Section 13.6.6, “Cursors”.

Condition Handling

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1281

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For information available through SHOW statements, it is possible in many cases to obtain equivalent
information by using a cursor with an INFORMATION_SCHEMA table.

13.6.6.3 Cursor FETCH Syntax

FETCH [[NEXT] FROM] cursor_name INTO var_name [, var_name] ...

This statement fetches the next row for the SELECT statement associated with the specified cursor (which
must be open), and advances the cursor pointer. If a row exists, the fetched columns are stored in the
named variables. The number of columns retrieved by the SELECT statement must match the number of
output variables specified in the FETCH statement.

If no more rows are available, a No Data condition occurs with SQLSTATE value '02000'. To detect
this condition, you can set up a handler for it (or for a NOT FOUND condition). For an example, see
Section 13.6.6, “Cursors”.

13.6.6.4 Cursor OPEN Syntax

OPEN cursor_name

This statement opens a previously declared cursor. For an example, see Section 13.6.6, “Cursors”.

13.6.7 Condition Handling

Conditions may arise during stored program execution that require special handling, such as exiting the
current program block or continuing execution. Handlers can be defined for general conditions such as
warnings or exceptions, or for specific conditions such as a particular error code. Specific conditions can
be assigned names and referred to that way in handlers.

To name a condition, use the DECLARE ... CONDITION statement. To declare a handler, use the
DECLARE ... HANDLER statement. See Section 13.6.7.1, “DECLARE ... CONDITION Syntax”, and
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”.

Other statements related to conditions are SIGNAL, RESIGNAL, and GET DIAGNOSTICS. The SIGNAL
and RESIGNAL statements are not supported until MySQL 5.5. The GET DIAGNOSTICS statement is not
supported until MySQL 5.6.

13.6.7.1 DECLARE ... CONDITION Syntax

DECLARE condition_name CONDITION FOR condition_value

condition_value:
 mysql_error_code
 | SQLSTATE [VALUE] sqlstate_value

The DECLARE ... CONDITION statement declares a named error condition, associating a name with
a condition that needs specific handling. The name can be referred to in a subsequent DECLARE ...
HANDLER statement (see Section 13.6.7.2, “DECLARE ... HANDLER Syntax”).

Condition declarations must appear before cursor or handler declarations.

The condition_value for DECLARE ... CONDITION indicates the specific condition or class of
conditions to associate with the condition name. It can take the following forms:

• mysql_error_code: An integer literal indicating a MySQL error code.

Condition Handling

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1282

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Do not use MySQL error code 0 because that indicates success rather than an error condition. For a list
of MySQL error codes, see Section B.3, “Server Error Codes and Messages”.

• SQLSTATE [VALUE] sqlstate_value: A 5-character string literal indicating an SQLSTATE value.

Do not use SQLSTATE values that begin with '00' because those indicate success rather than an error
condition. For a list of SQLSTATE values, see Section B.3, “Server Error Codes and Messages”.

Using names for conditions can help make stored program code clearer. For example, this handler applies
to attempts to drop a nonexistent table, but that is apparent only if you know that 1051 is the MySQL error
code for “unknown table”:

DECLARE CONTINUE HANDLER FOR 1051
 BEGIN
 -- body of handler
 END;

By declaring a name for the condition, the purpose of the handler is more readily seen:

DECLARE no_such_table CONDITION FOR 1051;
DECLARE CONTINUE HANDLER FOR no_such_table
 BEGIN
 -- body of handler
 END;

Here is a named condition for the same condition, but based on the corresponding SQLSTATE value
rather than the MySQL error code:

DECLARE no_such_table CONDITION FOR SQLSTATE '42S02';
DECLARE CONTINUE HANDLER FOR no_such_table
 BEGIN
 -- body of handler
 END;

13.6.7.2 DECLARE ... HANDLER Syntax

DECLARE handler_action HANDLER
 FOR condition_value [, condition_value] ...
 statement

handler_action:
 CONTINUE
 | EXIT
 | UNDO

condition_value:
 mysql_error_code
 | SQLSTATE [VALUE] sqlstate_value
 | condition_name
 | SQLWARNING
 | NOT FOUND
 | SQLEXCEPTION

The DECLARE ... HANDLER statement specifies a handler that deals with one or more conditions.
If one of these conditions occurs, the specified statement executes. statement can be a simple
statement such as SET var_name = value, or a compound statement written using BEGIN and END
(see Section 13.6.1, “BEGIN ... END Compound-Statement Syntax”).

Condition Handling

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1283

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Handler declarations must appear after variable or condition declarations.

The handler_action value indicates what action the handler takes after execution of the handler
statement:

• CONTINUE: Execution of the current program continues.

• EXIT: Execution terminates for the BEGIN ... END compound statement in which the handler is
declared. This is true even if the condition occurs in an inner block.

• UNDO: Not supported.

The condition_value for DECLARE ... HANDLER indicates the specific condition or class of
conditions that activates the handler. It can take the following forms:

• mysql_error_code: An integer literal indicating a MySQL error code, such as 1051 to specify
“unknown table”:

DECLARE CONTINUE HANDLER FOR 1051
 BEGIN
 -- body of handler
 END;

Do not use MySQL error code 0 because that indicates success rather than an error condition. For a list
of MySQL error codes, see Section B.3, “Server Error Codes and Messages”.

• SQLSTATE [VALUE] sqlstate_value: A 5-character string literal indicating an SQLSTATE value,
such as '42S01' to specify “unknown table”:

DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 BEGIN
 -- body of handler
 END;

Do not use SQLSTATE values that begin with '00' because those indicate success rather than an error
condition. For a list of SQLSTATE values, see Section B.3, “Server Error Codes and Messages”.

• condition_name: A condition name previously specified with DECLARE ... CONDITION. A
condition name can be associated with a MySQL error code or SQLSTATE value. See Section 13.6.7.1,
“DECLARE ... CONDITION Syntax”.

• SQLWARNING: Shorthand for the class of SQLSTATE values that begin with '01'.

DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 -- body of handler
 END;

• NOT FOUND: Shorthand for the class of SQLSTATE values that begin with '02'. This is relevant within
the context of cursors and is used to control what happens when a cursor reaches the end of a data set.
If no more rows are available, a No Data condition occurs with SQLSTATE value '02000'. To detect
this condition, you can set up a handler for it or for a NOT FOUND condition.

DECLARE CONTINUE HANDLER FOR NOT FOUND
 BEGIN
 -- body of handler
 END;

Condition Handling

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1284

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For another example, see Section 13.6.6, “Cursors”. The NOT FOUND condition also occurs for
SELECT ... INTO var_list statements that retrieve no rows.

• SQLEXCEPTION: Shorthand for the class of SQLSTATE values that do not begin with '00', '01', or
'02'.

DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 -- body of handler
 END;

If a condition occurs for which no handler has been declared, the action taken depends on the condition
class:

• For SQLEXCEPTION conditions, the stored program terminates at the statement that raised the condition,
as if there were an EXIT handler. If the program was called by another stored program, the calling
program handles the condition using the handler selection rules applied to its own handlers.

• For SQLWARNING or NOT FOUND conditions, the program continues executing, as if there were a
CONTINUE handler.

The following example uses a handler for SQLSTATE '23000', which occurs for a duplicate-key error:

mysql> CREATE TABLE test.t (s1 INT, PRIMARY KEY (s1));
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter //

mysql> CREATE PROCEDURE handlerdemo ()
 -> BEGIN
 -> DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET @x2 = 1;
 -> SET @x = 1;
 -> INSERT INTO test.t VALUES (1);
 -> SET @x = 2;
 -> INSERT INTO test.t VALUES (1);
 -> SET @x = 3;
 -> END;
 -> //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL handlerdemo()//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
 +------+
 | @x |
 +------+
 | 3 |
 +------+
 1 row in set (0.00 sec)

Notice that @x is 3 after the procedure executes, which shows that execution continued to the end of
the procedure after the error occurred. If the DECLARE ... HANDLER statement had not been present,
MySQL would have taken the default action (EXIT) after the second INSERT failed due to the PRIMARY
KEY constraint, and SELECT @x would have returned 2.

To ignore a condition, declare a CONTINUE handler for it and associate it with an empty block. For
example:

Condition Handling

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1285

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

DECLARE CONTINUE HANDLER FOR SQLWARNING BEGIN END;

The scope of a block label does not include the code for handlers declared within the block. Therefore,
the statement associated with a handler cannot use ITERATE or LEAVE to refer to labels for blocks that
enclose the handler declaration. Consider the following example, where the REPEAT block has a label of
retry:

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 3;
 retry:
 REPEAT
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 ITERATE retry; # illegal
 END;
 IF i < 0 THEN
 LEAVE retry; # legal
 END IF;
 SET i = i - 1;
 END;
 UNTIL FALSE END REPEAT;
END;

The retry label is in scope for the IF statement within the block. It is not in scope for the CONTINUE
handler, so the reference there is invalid and results in an error:

ERROR 1308 (42000): LEAVE with no matching label: retry

To avoid references to outer labels in handlers, use one of these strategies:

• To leave the block, use an EXIT handler. If no block cleanup is required, the BEGIN ... END handler
body can be empty:

DECLARE EXIT HANDLER FOR SQLWARNING BEGIN END;

Otherwise, put the cleanup statements in the handler body:

DECLARE EXIT HANDLER FOR SQLWARNING
 BEGIN
 block cleanup statements
 END;

• To continue execution, set a status variable in a CONTINUE handler that can be checked in the enclosing
block to determine whether the handler was invoked. The following example uses the variable done for
this purpose:

CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 3;
 DECLARE done INT DEFAULT FALSE;
 retry:
 REPEAT
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 SET done = TRUE;
 END;

Database Administration Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1286

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 IF done OR i < 0 THEN
 LEAVE retry;
 END IF;
 SET i = i - 1;
 END;
 UNTIL FALSE END REPEAT;
END;

13.7 Database Administration Statements

13.7.1 Account Management Statements

MySQL account information is stored in the tables of the mysql database. This database and the access
control system are discussed extensively in Chapter 5, MySQL Server Administration, which you should
consult for additional details.

Important

Some releases of MySQL introduce changes to the structure of the grant tables to
add new privileges or features. To ensure that you can take advantage of any new
capabilities, update your grant tables to have the current structure whenever you
update to a new version of MySQL. See Section 4.4.9, “mysql_upgrade — Check
Tables for MySQL Upgrade”.

13.7.1.1 CREATE USER Syntax

CREATE USER user_specification [, user_specification] ...

user_specification:
 user [identified_option]

identified_option: {
 IDENTIFIED BY 'auth_string'
 | IDENTIFIED BY PASSWORD 'hash_string'
}

The CREATE USER statement creates new MySQL accounts. An error occurs if you try to create an
account that already exists. To use this statement, you must have the global CREATE USER privilege or
the INSERT privilege for the mysql database. For each account, CREATE USER creates a new row in the
mysql.user table with no privileges. Depending on the syntax used, CREATE USER may also assign the
account a password.

Each user_specification clause consists of an account name and information about how
authentication occurs for clients that use the account. This part of CREATE USER syntax is shared with
GRANT, so the description here applies to GRANT as well.

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For example:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';

If you specify only the user name part of the account name, a host name part of '%' is used.

CREATE USER examples:

• To enable the user to connect with no password, include no IDENTIFIED BY clause:

Account Management Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1287

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CREATE USER 'jeffrey'@'localhost';

• To assign a password, use IDENTIFIED BY with the literal cleartext password value:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';

• To avoid specifying the cleartext password if you know its hash value (the value that PASSWORD() would
return for the password), specify the hash value preceded by the keyword PASSWORD:

CREATE USER 'jeffrey'@'localhost'
IDENTIFIED BY PASSWORD '*90E462C37378CED12064BB3388827D2BA3A9B689';

For additional information about setting passwords, see Section 6.3.5, “Assigning Account Passwords”.

Important

CREATE USER may be recorded in server logs or on the client side in a history file
such as ~/.mysql_history, which means that cleartext passwords may be read
by anyone having read access to that information. For information about password
logging in the server logs, see Section 6.1.2.3, “Passwords and Logging”. For
similar information about client-side logging, see Section 4.5.1.3, “mysql Logging”.

The CREATE USER statement was added in MySQL 5.0.2.

13.7.1.2 DROP USER Syntax

DROP USER user [, user] ...

The DROP USER statement removes one or more MySQL accounts. An error occurs for accounts that do
not exist. To use this statement, you must have the global CREATE USER privilege or the DELETE privilege
for the mysql database.

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For example:

DROP USER 'jeffrey'@'localhost';

If you specify only the user name part of the account name, a host name part of '%' is used.

DROP USER as present in MySQL 5.0.0 removes only accounts that have no privileges. In MySQL 5.0.2, it
was modified to remove account privileges as well. This means that the procedure for removing an account
depends on your version of MySQL.

As of MySQL 5.0.2, you can remove an account and its privileges as follows:

DROP USER user;

The statement removes privilege rows for the account from all grant tables.

Before MySQL 5.0.2, DROP USER serves only to remove account rows from the user table for accounts
that have no privileges. To remove a MySQL account completely (including all of its privileges), you should
use the following procedure, performing these steps in the order shown:

1. Use SHOW GRANTS to determine what privileges the account has. See Section 13.7.5.17, “SHOW
GRANTS Syntax”.

Account Management Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1288

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2. Use REVOKE to revoke the privileges displayed by SHOW GRANTS. This removes rows for the account
from all the grant tables except the user table, and revokes any global privileges listed in the user
table. See Section 13.7.1.3, “GRANT Syntax”.

3. Delete the account by using DROP USER to remove the user table row.

Important

DROP USER does not automatically close any open user sessions. Rather, in the
event that a user with an open session is dropped, the statement does not take
effect until that user's session is closed. Once the session is closed, the user is
dropped, and that user's next attempt to log in will fail. This is by design.

DROP USER does not automatically drop or invalidate databases or objects within them that the old user
created. This includes stored programs or views for which the DEFINER attribute names the dropped user.
Attempts to access such objects may produce an error if they execute in definer security context. (For
information about security context, see Section 18.5, “Access Control for Stored Programs and Views”.)

13.7.1.3 GRANT Syntax

GRANT
 priv_type [(column_list)]
 [, priv_type [(column_list)]] ...
 ON [object_type] priv_level
 TO user_specification [, user_specification] ...
 [REQUIRE {NONE | tsl_option [[AND] tsl_option] ...}]
 [WITH {GRANT OPTION | resource_option} ...]

object_type: {
 TABLE
 | FUNCTION
 | PROCEDURE
}

priv_level: {
 *
 | *.*
 | db_name.*
 | db_name.tbl_name
 | tbl_name
 | db_name.routine_name
}

user_specification:
 user [auth_option]

auth_option: {
 IDENTIFIED BY 'auth_string'
 | IDENTIFIED BY PASSWORD 'hash_string'
}

tsl_option: {
 SSL
 | X509
 | CIPHER 'cipher'
 | ISSUER 'issuer'
 | SUBJECT 'subject'
}

resource_option: {
 | MAX_QUERIES_PER_HOUR count
 | MAX_UPDATES_PER_HOUR count
 | MAX_CONNECTIONS_PER_HOUR count

Account Management Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1289

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 | MAX_USER_CONNECTIONS count
}

The GRANT statement grants privileges to MySQL user accounts. To use GRANT, you must have the GRANT
OPTION privilege, and you must have the privileges that you are granting.

GRANT also serves to specify other account characteristics such as use of secure connections and limits on
access to server resources.

The REVOKE statement is related to GRANT and enables administrators to remove account privileges. See
Section 13.7.1.5, “REVOKE Syntax”.

Normally, a database administrator first uses CREATE USER to create an account, then GRANT to define its
privileges and characteristics. For example:

CREATE USER 'jeffrey'@'localhost' IDENTIFIED BY 'mypass';
GRANT ALL ON db1.* TO 'jeffrey'@'localhost';
GRANT SELECT ON db2.invoice TO 'jeffrey'@'localhost';
GRANT USAGE ON *.* TO 'jeffrey'@'localhost' WITH MAX_QUERIES_PER_HOUR 90;

Note

Examples shown here include no IDENTIFIED clause. It is assumed that you
establish passwords with CREATE USER at account-creation time to avoid creating
insecure accounts.

If an account named in a GRANT statement does not already exist, GRANT may create it under the
conditions described later in the discussion of the NO_AUTO_CREATE_USER SQL mode.

From the mysql program, GRANT responds with Query OK, 0 rows affected when executed
successfully. To determine what privileges result from the operation, use SHOW GRANTS. See
Section 13.7.5.17, “SHOW GRANTS Syntax”.

There are several aspects to the GRANT statement, described under the following topics in this section:

• Privileges Supported by MySQL

• Global Privileges

• Database Privileges

• Table Privileges

• Column Privileges

• Stored Routine Privileges

• Account Names and Passwords

• Implicit Account Creation

• Other Account Characteristics

• MySQL and Standard SQL Versions of GRANT

GRANT supports host names up to 60 characters long. Database, table, column, and routine names can be
up to 64 characters. User names can be up to 16 characters.

Account Management Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1290

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Warning

The permissible length for user names cannot be changed by altering the
mysql.user table. Attempting to do so results in unpredictable behavior which
may even make it impossible for users to log in to the MySQL server. You should
never alter the structure of tables in the mysql database in any manner whatsoever
except by means of the procedure described in Section 4.4.9, “mysql_upgrade —
Check Tables for MySQL Upgrade”.

Important

GRANT may be recorded in server logs or on the client side in a history file such
as ~/.mysql_history, which means that cleartext passwords may be read by
anyone having read access to that information. For information about password
logging in the server logs, see Section 6.1.2.3, “Passwords and Logging”. For
similar information about client-side logging, see Section 4.5.1.3, “mysql Logging”.

Privileges Supported by MySQL

The following table summarizes the permissible priv_type privilege types that can be specified for the
GRANT and REVOKE statements, and the levels at which each privilege can be granted. For additional
information about these privileges, see Section 6.2.1, “Privileges Provided by MySQL”.

Table 13.2 Permissible Privileges for GRANT and REVOKE

Privilege Meaning and Grantable Levels

ALL [PRIVILEGES] Grant all privileges at specified access level except GRANT OPTION

ALTER Enable use of ALTER TABLE. Levels: Global, database, table.

ALTER ROUTINE Enable stored routines to be altered or dropped. Levels: Global,
database, procedure.

CREATE Enable database and table creation. Levels: Global, database, table.

CREATE ROUTINE Enable stored routine creation. Levels: Global, database.

CREATE TEMPORARY
TABLES

Enable use of CREATE TEMPORARY TABLE. Levels: Global, database.

CREATE USER Enable use of CREATE USER, DROP USER, RENAME USER, and REVOKE
ALL PRIVILEGES. Level: Global.

CREATE VIEW Enable views to be created or altered. Levels: Global, database, table.

DELETE Enable use of DELETE. Level: Global, database, table.

DROP Enable databases, tables, and views to be dropped. Levels: Global,
database, table.

EXECUTE Enable the user to execute stored routines. Levels: Global, database,
table.

FILE Enable the user to cause the server to read or write files. Level: Global.

GRANT OPTION Enable privileges to be granted to or removed from other accounts.
Levels: Global, database, table, procedure.

INDEX Enable indexes to be created or dropped. Levels: Global, database, table.

INSERT Enable use of INSERT. Levels: Global, database, table, column.

LOCK TABLES Enable use of LOCK TABLES on tables for which you have the SELECT
privilege. Levels: Global, database.

Account Management Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1291

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Privilege Meaning and Grantable Levels

PROCESS Enable the user to see all processes with SHOW PROCESSLIST. Level:
Global.

REFERENCES Not implemented

RELOAD Enable use of FLUSH operations. Level: Global.

REPLICATION CLIENT Enable the user to ask where master or slave servers are. Level: Global.

REPLICATION SLAVE Enable replication slaves to read binary log events from the master.
Level: Global.

SELECT Enable use of SELECT. Levels: Global, database, table, column.

SHOW DATABASES Enable SHOW DATABASES to show all databases. Level: Global.

SHOW VIEW Enable use of SHOW CREATE VIEW. Levels: Global, database, table.

SHUTDOWN Enable use of mysqladmin shutdown. Level: Global.

SUPER Enable use of other administrative operations such as CHANGE MASTER
TO, KILL, PURGE BINARY LOGS, SET GLOBAL, and mysqladmin
debug command. Level: Global.

UPDATE Enable use of UPDATE. Levels: Global, database, table, column.

USAGE Synonym for “no privileges”

The EXECUTE privilege is not operational until MySQL 5.0.3. CREATE VIEW and SHOW VIEW were added
in MySQL 5.0.1. CREATE USER, CREATE ROUTINE, and ALTER ROUTINE were added in MySQL 5.0.3.

In GRANT statements, the ALL [PRIVILEGES] privilege is named by itself and cannot be specified along
with other privileges. It stands for all privileges available for the level at which privileges are to be granted
except for the GRANT OPTION privilege.

USAGE can be specified to create a user that has no privileges, or to specify the REQUIRE or WITH clauses
for an account without changing its existing privileges.

MySQL account information is stored in the tables of the mysql database. For additional details, consult
Section 6.2, “The MySQL Access Privilege System”, which discusses the mysql database and the access
control system extensively.

If the grant tables hold privilege rows that contain mixed-case database or table names and the
lower_case_table_names system variable is set to a nonzero value, REVOKE cannot be used to revoke
these privileges. It will be necessary to manipulate the grant tables directly. (GRANT will not create such
rows when lower_case_table_names is set, but such rows might have been created prior to setting
that variable.)

Privileges can be granted at several levels, depending on the syntax used for the ON clause. For REVOKE,
the same ON syntax specifies which privileges to remove.

For the global, database, table, and routine levels, GRANT ALL assigns only the privileges that exist at
the level you are granting. For example, GRANT ALL ON db_name.* is a database-level statement, so it
does not grant any global-only privileges such as FILE. Granting ALL does not assign the GRANT OPTION
privilege.

The object_type clause was added in MySQL 5.0.6. If present, it should be specified as TABLE,
FUNCTION, or PROCEDURE when the following object is a table, a stored function, or a stored procedure.

The privileges for a database, table, column, or routine are formed additively as the logical OR of the
privileges at each of the privilege levels. For example, if a user has a global SELECT privilege, the

Account Management Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1292

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

privilege cannot be denied by an absence of the privilege at the database, table, or column level. Details
of the privilege-checking procedure are presented in Section 6.2.5, “Access Control, Stage 2: Request
Verification”.

If you are using table, column, or routine privileges for even one user, the server examines table, column,
and routine privileges for all users and this slows down MySQL a bit. Similarly, if you limit the number of
queries, updates, or connections for any users, the server must monitor these values.

MySQL enables you to grant privileges on databases or tables that do not exist. For tables, the privileges
to be granted must include the CREATE privilege. This behavior is by design, and is intended to enable
the database administrator to prepare user accounts and privileges for databases or tables that are to be
created at a later time.

Important

MySQL does not automatically revoke any privileges when you drop a database or
table. However, if you drop a routine, any routine-level privileges granted for that
routine are revoked.

Global Privileges

Global privileges are administrative or apply to all databases on a given server. To assign global privileges,
use ON *.* syntax:

GRANT ALL ON *.* TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON *.* TO 'someuser'@'somehost';

Before MySQL 5.0.23, privileges also are assigned at the global level if you use ON * syntax and you have
not selected a default database. As of 5.0.23, ON * requires a default database and produces an error if
there is none.

The CREATE USER, FILE, PROCESS, RELOAD, REPLICATION CLIENT, REPLICATION SLAVE, SHOW
DATABASES, SHUTDOWN, and SUPER privileges are administrative and can only be granted globally.

Other privileges can be granted globally or at more specific levels.

MySQL stores global privileges in the mysql.user table.

Database Privileges

Database privileges apply to all objects in a given database. To assign database-level privileges, use ON
db_name.* syntax:

GRANT ALL ON mydb.* TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.* TO 'someuser'@'somehost';

If you use ON * syntax (rather than ON *.*) and you have selected a default database, privileges are
assigned at the database level for the default database. An error occurs if there is no default database.

The CREATE, DROP, GRANT OPTION, and LOCK TABLES privileges can be specified at the database level.
Table or routine privileges also can be specified at the database level, in which case they apply to all tables
or routines in the database.

MySQL stores database privileges in the mysql.db table.

Account Management Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1293

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Table Privileges

Table privileges apply to all columns in a given table. To assign table-level privileges, use ON
db_name.tbl_name syntax:

GRANT ALL ON mydb.mytbl TO 'someuser'@'somehost';
GRANT SELECT, INSERT ON mydb.mytbl TO 'someuser'@'somehost';

If you specify tbl_name rather than db_name.tbl_name, the statement applies to tbl_name in the
default database. An error occurs if there is no default database.

The permissible priv_type values at the table level are ALTER, CREATE VIEW, CREATE, DELETE, DROP,
GRANT OPTION, INDEX, INSERT, SELECT, SHOW VIEW, and UPDATE.

MySQL stores table privileges in the mysql.tables_priv table.

Column Privileges

Column privileges apply to single columns in a given table. Each privilege to be granted at the column level
must be followed by the column or columns, enclosed within parentheses.

GRANT SELECT (col1), INSERT (col1,col2) ON mydb.mytbl TO 'someuser'@'somehost';

The permissible priv_type values for a column (that is, when you use a column_list clause) are
INSERT, SELECT, and UPDATE.

MySQL stores column privileges in the mysql.columns_priv table.

Stored Routine Privileges

The ALTER ROUTINE, CREATE ROUTINE, EXECUTE, and GRANT OPTION privileges apply to stored
routines (procedures and functions). They can be granted at the global and database levels. Except for
CREATE ROUTINE, these privileges can be granted at the routine level for individual routines.

GRANT CREATE ROUTINE ON mydb.* TO 'someuser'@'somehost';
GRANT EXECUTE ON PROCEDURE mydb.myproc TO 'someuser'@'somehost';

The permissible priv_type values at the routine level are ALTER ROUTINE, EXECUTE, and GRANT
OPTION. CREATE ROUTINE is not a routine-level privilege because you must have this privilege to create
a routine in the first place.

MySQL stores routine-level privileges in the mysql.procs_priv table.

Account Names and Passwords

The user_specification clause names a user and optionally provides authentication information such
as a password.

The user value indicates the MySQL account to which the GRANT statement applies. To accommodate
granting rights to users from arbitrary hosts, MySQL supports specifying the user value in the form
user_name@host_name. If a user_name or host_name value is legal as an unquoted identifier, you
need not quote it. However, quotation marks are necessary to specify a user_name string containing
special characters (such as “-”), or a host_name string containing special characters or wildcard
characters (such as “%”); for example, 'test-user'@'%.com'. Quote the user name and host name
separately.

Account Management Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1294

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

You can specify wildcards in the host name. For example, user_name@'%.example.com' applies to
user_name for any host in the example.com domain, and user_name@'192.168.1.%' applies to
user_name for any host in the 192.168.1 class C subnet.

The simple form user_name is a synonym for user_name@'%'.

MySQL does not support wildcards in user names. To refer to an anonymous user, specify an account with
an empty user name with the GRANT statement:

GRANT ALL ON test.* TO ''@'localhost' ...;

In this case, any user who connects from the local host with the correct password for the anonymous user
will be permitted access, with the privileges associated with the anonymous-user account.

For additional information about user name and host name values in account names, see Section 6.2.3,
“Specifying Account Names”.

To specify quoted values, quote database, table, column, and routine names as identifiers. Quote user
names and host names as identifiers or as strings. Quote passwords as strings. For string-quoting and
identifier-quoting guidelines, see Section 9.1.1, “String Literals”, and Section 9.2, “Schema Object Names”.

The “_” and “%” wildcards are permitted when specifying database names in GRANT statements that grant
privileges at the global or database levels. This means, for example, that if you want to use a “_” character
as part of a database name, you should specify it as “_” in the GRANT statement, to prevent the user from
being able to access additional databases matching the wildcard pattern; for example, GRANT ... ON
`foo_bar`.* TO

Warning

If you permit anonymous users to connect to the MySQL server, you should also
grant privileges to all local users as user_name@localhost. Otherwise, the
anonymous user account for localhost in the mysql.user table (created during
MySQL installation) is used when named users try to log in to the MySQL server
from the local machine. For details, see Section 6.2.4, “Access Control, Stage 1:
Connection Verification”.

To determine whether the preceding warning applies to you, execute the following query, which lists any
anonymous users:

SELECT Host, User FROM mysql.user WHERE User='';

To avoid the problem just described, delete the local anonymous user account using this statement:

DROP USER ''@'localhost';

To indicate how a user should authenticate when connecting to the server, the user_specification
value may include an IDENTIFIED clause to specify a password. Syntax of the user specification is the
same as for the CREATE USER statement. For details, see Section 13.7.1.1, “CREATE USER Syntax”.

When IDENTIFIED BY is present and you have the global grant privilege (GRANT OPTION), the
password becomes the new password for the account, even if the account exists and already has a
password. Without IDENTIFIED BY, the account password remains unchanged.

If the NO_AUTO_CREATE_USER SQL mode is not enabled and the account named in a GRANT statement
does not exist in the mysql.user table, GRANT creates it. If you specify no IDENTIFIED BY clause or
provide an empty password, the user has no password. This is very insecure.

Account Management Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1295

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If NO_AUTO_CREATE_USER is enabled and the account does not exist, GRANT fails and does not create the
account unless the IDENTIFIED BY clause is given to provide a nonempty password.

Other Account Characteristics

MySQL can check X509 certificate attributes in addition to the usual authentication that is based on the
user name and credentials. For background information on the use of SSL with MySQL, see Section 6.3.6,
“Using Secure Connections”.

The optional REQUIRE clause specifies SSL-related options for a MySQL account, using one or more
tsl_option values.

Implicit Account Creation

GRANT permits these tsl_option values:

• NONE

Indicates that the account has no SSL or X509 requirements. Unencrypted connections are permitted if
the user name and password are valid. However, encrypted connections can also be used, at the client's
option, if the client has the proper certificate and key files. That is, the client need not specify any SSL
command options, in which case the connection will be unencrypted. To use an encrypted connection,
the client must specify either the --ssl-ca option, or all three of the --ssl-ca, --ssl-key, and --
ssl-cert options.

NONE is the default if no SSL-related REQUIRE options are specified.

• SSL

Tells the server to permit only encrypted connections for the account.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 REQUIRE SSL;

To connect, the client must specify the --ssl-ca option to authenticate the server certificate, and may
additionally specify the --ssl-key and --ssl-cert options. If neither the --ssl-ca option nor --
ssl-capath option is specified, the client does not authenticate the server certificate.

• X509

Requires that the client must have a valid certificate but the exact certificate, issuer, and subject do
not matter. The only requirement is that it should be possible to verify its signature with one of the CA
certificates. Use of X509 certificates always implies encryption, so the SSL option is unnecessary in this
case.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 REQUIRE X509;

The client must specify the --ssl-key and --ssl-cert options to connect. (It is recommended but
not required that --ssl-ca also be specified so that the public certificate provided by the server can
be verified.) This is true for ISSUER and SUBJECT as well because those REQUIRE options imply the
requirements of X509.

• ISSUER 'issuer'

Places the restriction on connection attempts that the client must present a valid X509 certificate
issued by CA 'issuer'. If the client presents a certificate that is valid but has a different issuer, the

Account Management Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1296

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

server rejects the connection. Use of X509 certificates always implies encryption, so the SSL option is
unnecessary in this case.

Because ISSUER implies the requirements of X509, the client must specify the --ssl-key and --ssl-
cert options to connect. (It is recommended but not required that --ssl-ca also be specified so that
the public certificate provided by the server can be verified.)

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 REQUIRE ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL/CN=CA/emailAddress=ca@example.com';

Note

If MySQL is linked against a version of OpenSSL older than 0.9.6h, use Email
rather than emailAddress in the 'issuer' value.

• SUBJECT 'subject'

Places the restriction on connection attempts that the client must present a valid X509 certificate
containing the subject subject. If the client presents a certificate that is valid but has a different subject,
the server rejects the connection. Use of X509 certificates always implies encryption, so the SSL option
is unnecessary in this case.

Because SUBJECT implies the requirements of X509, the client must specify the --ssl-key and --
ssl-cert options to connect. (It is recommended but not required that --ssl-ca also be specified so
that the public certificate provided by the server can be verified.)

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL demo client certificate/
 CN=client/emailAddress=client@example.com';

MySQL does a simple string comparison of the 'subject' value to the value in the certificate, so
lettercase and component ordering must be given exactly as present in the certificate.

Note

Regarding emailAddress, see the note in the description of REQUIRE ISSUER.

• CIPHER 'cipher'

Requests a specific cipher method for encrypting connections. This option is needed to ensure that
ciphers and key lengths of sufficient strength are used. SSL itself can be weak if old algorithms using
short encryption keys are used.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';

The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause like this:

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
 REQUIRE SUBJECT '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL demo client certificate/
 CN=client/emailAddress=client@example.com'
 AND ISSUER '/C=SE/ST=Stockholm/L=Stockholm/
 O=MySQL/CN=CA/emailAddress=ca@example.com'

Account Management Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1297

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

The order of the options does not matter, but no option can be specified twice. The AND keyword is optional
between REQUIRE options.

The optional WITH clause is used for these purposes:

• To enable a user to grant privileges to other users

• To specify resource limits for a user

The WITH GRANT OPTION clause gives the user the ability to give to other users any privileges the user
has at the specified privilege level.

To grant the GRANT OPTION privilege to an account without otherwise changing its privileges, do this:

GRANT USAGE ON *.* TO 'someuser'@'somehost' WITH GRANT OPTION;

Be careful to whom you give the GRANT OPTION privilege because two users with different privileges may
be able to combine privileges!

You cannot grant another user a privilege which you yourself do not have; the GRANT OPTION privilege
enables you to assign only those privileges which you yourself possess.

Be aware that when you grant a user the GRANT OPTION privilege at a particular privilege level, any
privileges the user possesses (or may be given in the future) at that level can also be granted by that user
to other users. Suppose that you grant a user the INSERT privilege on a database. If you then grant the
SELECT privilege on the database and specify WITH GRANT OPTION, that user can give to other users
not only the SELECT privilege, but also INSERT. If you then grant the UPDATE privilege to the user on the
database, the user can grant INSERT, SELECT, and UPDATE.

For a nonadministrative user, you should not grant the ALTER privilege globally or for the mysql database.
If you do that, the user can try to subvert the privilege system by renaming tables!

For additional information about security risks associated with particular privileges, see Section 6.2.1,
“Privileges Provided by MySQL”.

It is possible to place limits on use of server resources by an account, as discussed in Section 6.3.4,
“Setting Account Resource Limits”. To do so, use a WITH clause that specifies one or more
resource_option values. Limits not specified retain their current values.

GRANT permits these resource_option values:

• MAX_QUERIES_PER_HOUR count, MAX_UPDATES_PER_HOUR count,
MAX_CONNECTIONS_PER_HOUR count

These options restrict the number of queries, updates, and connections to the server permitted to this
account during any given one-hour period. (Queries for which results are served from the query cache
do not count against the MAX_QUERIES_PER_HOUR limit.) If count is 0 (the default), this means that
there is no limitation for the account.

• MAX_USER_CONNECTIONS count

Restricts the maximum number of simultaneous connections to the server by the account. A
nonzero count specifies the limit for the account explicitly. If count is 0 (the default), the server
determines the number of simultaneous connections for the account from the global value of the

Account Management Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1298

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

max_user_connections system variable. If max_user_connections is also zero, there is no limit
for the account.

If a given resource limit is specified multiple times, the last instance takes precedence.

To specify resource limits for an existing user without affecting existing privileges, use GRANT USAGE at
the global level (ON *.*) and name the limits to be changed. For example:

GRANT USAGE ON *.* TO ...
 WITH MAX_QUERIES_PER_HOUR 500 MAX_UPDATES_PER_HOUR 100;

MySQL and Standard SQL Versions of GRANT

The biggest differences between the MySQL and standard SQL versions of GRANT are:

• MySQL associates privileges with the combination of a host name and user name and not with only a
user name.

• Standard SQL does not have global or database-level privileges, nor does it support all the privilege
types that MySQL supports.

• MySQL does not support the standard SQL UNDER privilege, and does not support the TRIGGER
privilege until MySQL 5.1.6.

• Standard SQL privileges are structured in a hierarchical manner. If you remove a user, all privileges the
user has been granted are revoked. This is also true in MySQL 5.0.2 and up if you use DROP USER.
Before 5.0.2, the granted privileges are not automatically revoked; you must revoke them yourself. See
Section 13.7.1.2, “DROP USER Syntax”.

• In standard SQL, when you drop a table, all privileges for the table are revoked. In standard SQL,
when you revoke a privilege, all privileges that were granted based on that privilege are also revoked.
In MySQL, privileges can be dropped only with explicit DROP USER or REVOKE statements or by
manipulating the MySQL grant tables directly.

• In MySQL, it is possible to have the INSERT privilege for only some of the columns in a table. In this
case, you can still execute INSERT statements on the table, provided that you insert values only for
those columns for which you have the INSERT privilege. The omitted columns are set to their implicit
default values if strict SQL mode is not enabled. In strict mode, the statement is rejected if any of the
omitted columns have no default value. (Standard SQL requires you to have the INSERT privilege on all
columns.) For information about strict SQL mode and implicit default values, see Section 5.1.7, “Server
SQL Modes”, and Section 11.6, “Data Type Default Values”.

13.7.1.4 RENAME USER Syntax

RENAME USER old_user TO new_user
 [, old_user TO new_user] ...

The RENAME USER statement renames existing MySQL accounts. An error occurs for old accounts that
do not exist or new accounts that already exist. To use this statement, you must have the global CREATE
USER privilege or the UPDATE privilege for the mysql database.

Each account name uses the format described in Section 6.2.3, “Specifying Account Names”. For example:

RENAME USER 'jeffrey'@'localhost' TO 'jeff'@'127.0.0.1';

If you specify only the user name part of the account name, a host name part of '%' is used.

http://dev.mysql.com/doc/refman/5.1/en/privileges-provided.html#priv_trigger

Account Management Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1299

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

RENAME USER causes the privileges held by the old user to be those held by the new user. However,
RENAME USER does not automatically drop or invalidate databases or objects within them that the old
user created. This includes stored programs or views for which the DEFINER attribute names the old user.
Attempts to access such objects may produce an error if they execute in definer security context. (For
information about security context, see Section 18.5, “Access Control for Stored Programs and Views”.)

The privilege changes take effect as indicated in Section 6.2.6, “When Privilege Changes Take Effect”.

The RENAME USER statement was added in MySQL 5.0.2.

13.7.1.5 REVOKE Syntax

REVOKE
 priv_type [(column_list)]
 [, priv_type [(column_list)]] ...
 ON [object_type] priv_level
 FROM user [, user] ...

REVOKE ALL PRIVILEGES, GRANT OPTION
 FROM user [, user] ...

The REVOKE statement enables system administrators to revoke privileges from MySQL accounts. Each
account name uses the format described in Section 6.2.3, “Specifying Account Names”. For example:

REVOKE INSERT ON *.* FROM 'jeffrey'@'localhost';

If you specify only the user name part of the account name, a host name part of '%' is used.

For details on the levels at which privileges exist, the permissible priv_type and priv_level values,
and the syntax for specifying users and passwords, see Section 13.7.1.3, “GRANT Syntax”

To use the first REVOKE syntax, you must have the GRANT OPTION privilege, and you must have the
privileges that you are revoking.

To revoke all privileges, use the second syntax, which drops all global, database, table, column, and
routine privileges for the named user or users:

REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...

To use this REVOKE syntax, you must have the global CREATE USER privilege or the UPDATE privilege for
the mysql database.

REVOKE removes privileges, but does not drop mysql.user table entries. To remove a user account
entirely, use DROP USER (see Section 13.7.1.2, “DROP USER Syntax”) or DELETE.

If the grant tables hold privilege rows that contain mixed-case database or table names and the
lower_case_table_names system variable is set to a nonzero value, REVOKE cannot be used to revoke
these privileges. It will be necessary to manipulate the grant tables directly. (GRANT will not create such
rows when lower_case_table_names is set, but such rows might have been created prior to setting the
variable.)

When successfully executed from the mysql program, REVOKE responds with Query OK, 0
rows affected. To determine what privileges result from the operation, use SHOW GRANTS. See
Section 13.7.5.17, “SHOW GRANTS Syntax”.

13.7.1.6 SET PASSWORD Syntax

Account Management Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1300

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SET PASSWORD [FOR user] = password_option

password_option: {
 PASSWORD('auth_string')
 | OLD_PASSWORD('auth_string')
 | 'hash_string'
}

The SET PASSWORD statement assigns a password to a MySQL user account, specified as either a
cleartext (unencrypted) or encrypted value:

• 'auth_string' represents a cleartext password.

• 'hash_string' represents an encrypted password.

SET PASSWORD can be used with or without an explicitly named user account:

• With a FOR user clause, the statement sets the password for the named account, which must exist:

SET PASSWORD FOR 'jeffrey'@'localhost' = password_option;

In this case, you must have the UPDATE privilege for the mysql database.

• With no FOR user clause, the statement sets the password for the current user:

SET PASSWORD = password_option;

Any client who connects to the server using a nonanonymous account can change the password for that
account. To see which account the server authenticated you as, invoke the CURRENT_USER() function:

SELECT CURRENT_USER();

In MySQL 5.0, enabling the read_only system variable does not prevent use of SET PASSWORD.

If a FOR user clause is given, the account name uses the format described in Section 6.2.3,
“Specifying Account Names”. The user value should be given as 'user_name'@'host_name', where
'user_name' and 'host_name' are exactly as listed in the User and Host columns of the account's
mysql.user table row. If you specify only a user name, a host name of '%' is used. For example, to set
the password for an account with User and Host column values of 'bob' and '%.example.org', write
the statement like this:

SET PASSWORD FOR 'bob'@'%.example.org' = PASSWORD('auth_string');

The password can be specified in these ways:

• Using the PASSWORD() function

The 'auth_string' function argument is the cleartext (unencrypted) password. PASSWORD() hashes
the password and returns the encrypted password string for storage in the mysql.user account row.

The PASSWORD() function hashes the password using the hashing method determined by the value of
the old_passwords system variable value. For descriptions of the permitted values, see Section 5.1.4,
“Server System Variables”.

• Using the OLD_PASSWORD() function:

Table Maintenance Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1301

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The 'auth_string' function argument is the cleartext (unencrypted) password. OLD_PASSWORD()
hashes the password using pre-4.1 hashing and returns the encrypted password string for storage in the
mysql.user account row.

• Using an already encrypted password string

The password is specified as a string literal. It must represent the already encrypted password value, in
the hash format required by the authentication method used for the account.

For more information about setting passwords, see Section 6.3.5, “Assigning Account Passwords”.

Important

SET PASSWORD may be recorded in server logs or on the client side in a history file
such as ~/.mysql_history, which means that cleartext passwords may be read
by anyone having read access to that information. For information about password
logging in the server logs, see Section 6.1.2.3, “Passwords and Logging”. For
similar information about client-side logging, see Section 4.5.1.3, “mysql Logging”.

Caution

If you are connecting to a MySQL 4.1 or later server using a pre-4.1 client program,
do not change your password without first reading Section 6.1.2.4, “Password
Hashing in MySQL”. The default password hashing format changed in MySQL 4.1,
and if you change your password, it might be stored using a hashing format that
pre-4.1 clients cannot generate, thus preventing you from connecting to the server
afterward.

If you are using MySQL Replication, be aware that, currently, a password used by a replication slave as
part of a CHANGE MASTER TO statement is effectively limited to 32 characters in length; if the password
is longer, any excess characters are truncated. This is not due to any limit imposed by the MySQL Server
generally, but rather is an issue specific to MySQL Replication. (For more information, see Bug #43439.)

13.7.2 Table Maintenance Statements

13.7.2.1 ANALYZE TABLE Syntax

ANALYZE [NO_WRITE_TO_BINLOG | LOCAL] TABLE
 tbl_name [, tbl_name] ...

ANALYZE TABLE analyzes and stores the key distribution for a table. During the analysis, the table is
locked with a read lock for MyISAM, BDB, and InnoDB. This statement works with MyISAM, BDB, InnoDB,
and NDB tables. For MyISAM tables, this statement is equivalent to using myisamchk --analyze. This
statement does not work with views.

For more information on how the analysis works within InnoDB, see Section 14.2.14, “Limits on InnoDB
Tables”.

MySQL uses the stored key distribution to decide the order in which tables should be joined when you
perform a join on something other than a constant. In addition, key distributions can be used when deciding
which indexes to use for a specific table within a query.

This statement requires SELECT and INSERT privileges for the table.

ANALYZE TABLE returns a result set with the following columns.

Table Maintenance Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1302

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Column Value

Table The table name

Op Always analyze

Msg_type status, error, info, note, or warning

Msg_text An informational message

You can check the stored key distribution with the SHOW INDEX statement. See Section 13.7.5.18, “SHOW
INDEX Syntax”.

If the table has not changed since the last ANALYZE TABLE statement, the table is not analyzed again.

By default, the server writes ANALYZE TABLE statements to the binary log so that they replicate to
replication slaves. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias
LOCAL.

13.7.2.2 BACKUP TABLE Syntax

BACKUP TABLE tbl_name [, tbl_name] ... TO '/path/to/backup/directory'

Note

This statement is deprecated and is removed in MySQL 5.5. As an alternative,
mysqldump or mysqlhotcopy can be used instead.

BACKUP TABLE copies to the backup directory the minimum number of table files needed to restore the
table, after flushing any buffered changes to disk. The statement works only for MyISAM tables; it does
not work for views. BACKUP TABLE works by copying the table's .frm definition and .MYD data files. The
.MYI index file can be rebuilt from those two files. The directory should be specified as a full path name.
To restore the table, use RESTORE TABLE.

During the backup, a read lock is held for each table, one at time, as they are being backed up. If you want
to back up several tables as a snapshot (preventing any of them from being changed during the backup
operation), issue a LOCK TABLES statement first, to obtain a read lock for all tables in the group.

BACKUP TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always backup

Msg_type status, error, info, note, or warning

Msg_text An informational message

13.7.2.3 CHECK TABLE Syntax

CHECK TABLE tbl_name [, tbl_name] ... [option] ...

option = {
 FOR UPGRADE
 | QUICK
 | FAST
 | MEDIUM
 | EXTENDED
 | CHANGED

Table Maintenance Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1303

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

}

CHECK TABLE checks a table or tables for errors. CHECK TABLE works for MyISAM, InnoDB, and (as of
MySQL 5.0.16) ARCHIVE tables. For MyISAM tables, the key statistics are updated as well.

As of MySQL 5.0.2, CHECK TABLE can also check views for problems, such as tables that are referenced
in the view definition that no longer exist.

CHECK TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always check

Msg_type status, error, info, note, or warning

Msg_text An informational message

Note that the statement might produce many rows of information for each checked table. The last row has
a Msg_type value of status and the Msg_text normally should be OK. If you don't get OK, or Table
is already up to date you should or Table is already up to date for a MyISAM table,
you should normally run a repair of the table. See Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”. Table is already up to date means that the storage engine for the table indicated that
there was no need to check the table.

The FOR UPGRADE option checks whether the named tables are compatible with the current version of
MySQL. This option was added in MySQL 5.0.19. With FOR UPGRADE, the server checks each table to
determine whether there have been any incompatible changes in any of the table's data types or indexes
since the table was created. If not, the check succeeds. Otherwise, if there is a possible incompatibility, the
server runs a full check on the table (which might take some time). If the full check succeeds, the server
marks the table's .frm file with the current MySQL version number. Marking the .frm file ensures that
further checks for the table with the same version of the server will be fast.

Incompatibilities might occur because the storage format for a data type has changed or because its sort
order has changed. Our aim is to avoid these changes, but occasionally they are necessary to correct
problems that would be worse than an incompatibility between releases.

FOR UPGRADE discovers these incompatibilities:

• The indexing order for end-space in TEXT columns for InnoDB and MyISAM tables changed between
MySQL 4.1 and 5.0.

• The storage method of the new DECIMAL data type changed between MySQL 5.0.3 and 5.0.5.

• As of MySQL 5.0.62, if your table was created by a different version of the MySQL server than the one
you are currently running, FOR UPGRADE indicates that the table has an .frm file with an incompatible
version. In this case, the result set returned by CHECK TABLE contains a line with a Msg_type value
of error and a Msg_text value of Table upgrade required. Please do "REPAIR TABLE
`tbl_name`" to fix it!

• Changes are sometimes made to character sets or collations that require table indexes to be rebuilt.
For details about these changes and when FOR UPGRADE detects them, see Section 2.19.3, “Checking
Whether Tables or Indexes Must Be Rebuilt”.

The following table shows the other check options that can be given. These options are passed to the
storage engine, which may use them or not. MyISAM uses them; they are ignored for InnoDB tables and
views.

Table Maintenance Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1304

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type Meaning

QUICK Do not scan the rows to check for incorrect links.

FAST Check only tables that have not been closed properly.

CHANGED Check only tables that have been changed since the last check or that have not been
closed properly.

MEDIUM Scan rows to verify that deleted links are valid. This also calculates a key checksum for
the rows and verifies this with a calculated checksum for the keys.

EXTENDED Do a full key lookup for all keys for each row. This ensures that the table is 100%
consistent, but takes a long time.

If none of the options QUICK, MEDIUM, or EXTENDED are specified, the default check type for dynamic-
format MyISAM tables is MEDIUM. This has the same result as running myisamchk --medium-check
tbl_name on the table. The default check type also is MEDIUM for static-format MyISAM tables, unless
CHANGED or FAST is specified. In that case, the default is QUICK. The row scan is skipped for CHANGED
and FAST because the rows are very seldom corrupted.

You can combine check options, as in the following example that does a quick check on the table to
determine whether it was closed properly:

CHECK TABLE test_table FAST QUICK;

Note

CHECK TABLE may change the table if the table is marked as “corrupted” or “not
closed properly” but CHECK TABLE does not find any problems in the table. In this
case, CHECK TABLE marks the table as okay.

If a table is corrupted, the problem is most likely in the indexes and not in the data part. All of the preceding
check types check the indexes thoroughly and should thus find most errors.

If you just want to check a table that you assume is okay, you should use no check options or the QUICK
option. The latter should be used when you are in a hurry and can take the very small risk that QUICK does
not find an error in the data file. (In most cases, under normal usage, MySQL should find any error in the
data file. If this happens, the table is marked as “corrupted” and cannot be used until it is repaired.)

FAST and CHANGED are mostly intended to be used from a script (for example, to be executed from cron)
if you want to check tables from time to time. In most cases, FAST is to be preferred over CHANGED. (The
only case when it is not preferred is when you suspect that you have found a bug in the MyISAM code.)

EXTENDED is to be used only after you have run a normal check but still get strange errors from a table
when MySQL tries to update a row or find a row by key. This is very unlikely if a normal check has
succeeded.

Use of CHECK TABLE ... EXTENDED might influence the execution plan generated by the query
optimizer.

Some problems reported by CHECK TABLE cannot be corrected automatically:

• Found row where the auto_increment column has the value 0.

This means that you have a row in the table where the AUTO_INCREMENT index column contains the
value 0. (It is possible to create a row where the AUTO_INCREMENT column is 0 by explicitly setting the
column to 0 with an UPDATE statement.)

Table Maintenance Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1305

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This is not an error in itself, but could cause trouble if you decide to dump the table and restore it or do
an ALTER TABLE on the table. In this case, the AUTO_INCREMENT column changes value according to
the rules of AUTO_INCREMENT columns, which could cause problems such as a duplicate-key error.

To get rid of the warning, execute an UPDATE statement to set the column to some value other than 0.

• If CHECK TABLE finds a problem for an InnoDB table, the server shuts down to prevent error
propagation. Details of the error will be written to the error log.

13.7.2.4 CHECKSUM TABLE Syntax

CHECKSUM TABLE tbl_name [, tbl_name] ... [QUICK | EXTENDED]

CHECKSUM TABLE reports a table checksum.

This statement is not supported for views. If you run CHECKSUM TABLE against a view, the Checksum
column value is always NULL, and a warning is returned.

With QUICK, the live table checksum is reported if it is available, or NULL otherwise. This is very fast. A live
checksum is enabled by specifying the CHECKSUM=1 table option when you create the table; currently, this
is supported only for MyISAM tables. See Section 13.1.10, “CREATE TABLE Syntax”.

With EXTENDED, the entire table is read row by row and the checksum is calculated. This can be very slow
for large tables.

If neither QUICK nor EXTENDED is specified, MySQL returns a live checksum if the table storage engine
supports it and scans the table otherwise.

For a nonexistent table, CHECKSUM TABLE returns NULL and, as of MySQL 5.0.3, generates a warning.

The checksum value depends on the table row format. If the row format changes, the checksum also
changes. For example, the storage format for VARCHAR changed between MySQL 4.1 and 5.0, so if a 4.1
table is upgraded to MySQL 5.0, the checksum value may change.

Important

If the checksums for two tables are different, then it is almost certain that the
tables are different in some way. However, because the hashing function used by
CHECKSUM TABLE is not guaranteed to be collision-free, there is a slight chance
that two tables which are not identical can produce the same checksum.

13.7.2.5 OPTIMIZE TABLE Syntax

OPTIMIZE [NO_WRITE_TO_BINLOG | LOCAL] TABLE
 tbl_name [, tbl_name] ...

OPTIMIZE TABLE should be used if you have deleted a large part of a table or if you have made many
changes to a table with variable-length rows (tables that have VARCHAR, VARBINARY, BLOB, or TEXT
columns). Deleted rows are maintained in a linked list and subsequent INSERT operations reuse old row
positions. You can use OPTIMIZE TABLE to reclaim the unused space and to defragment the data file.
After extensive changes to a table, this statement may also improve performance of statements that use
the table, sometimes significantly. This statement does not work with views.

This statement requires SELECT and INSERT privileges for the table.

OPTIMIZE TABLE works for MyISAM, InnoDB, and (as of MySQL 5.0.16) ARCHIVE tables.

Table Maintenance Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1306

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For BDB tables, OPTIMIZE TABLE currently is mapped to ANALYZE TABLE. See Section 13.7.2.1,
“ANALYZE TABLE Syntax”.

For InnoDB tables, OPTIMIZE TABLE is mapped to ALTER TABLE, which rebuilds the table to update
index statistics and free unused space in the clustered index.

By default, OPTIMIZE TABLE does not work for tables created using any other storage engine and returns
a result indicating this lack of support. You can make OPTIMIZE TABLE work for other storage engines by
starting mysqld with the --skip-new option. In this case, OPTIMIZE TABLE is just mapped to ALTER
TABLE.

For MyISAM tables, OPTIMIZE TABLE works as follows:

1. If the table has deleted or split rows, repair the table.

2. If the index pages are not sorted, sort them.

3. If the table's statistics are not up to date (and the repair could not be accomplished by sorting the
index), update them.

OPTIMIZE TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always optimize

Msg_type status, error, info, note, or warning

Msg_text An informational message

Note that MySQL locks the table during the time OPTIMIZE TABLE is running.

By default, the server writes OPTIMIZE TABLE statements to the binary log so that they replicate to
replication slaves. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias
LOCAL.

OPTIMIZE TABLE does not sort R-tree indexes, such as spatial indexes on POINT columns. (Bug
#23578)

13.7.2.6 REPAIR TABLE Syntax

REPAIR [NO_WRITE_TO_BINLOG | LOCAL] TABLE
 tbl_name [, tbl_name] ...
 [QUICK] [EXTENDED] [USE_FRM]

REPAIR TABLE repairs a possibly corrupted table. By default, it has the same effect as myisamchk --
recover tbl_name. REPAIR TABLE works for MyISAM and for ARCHIVE tables. See Section 14.1, “The
MyISAM Storage Engine”, and Section 14.8, “The ARCHIVE Storage Engine”. This statement does not
work with views.

This statement requires SELECT and INSERT privileges for the table.

Normally, you should never have to run this statement. However, if disaster strikes, REPAIR TABLE is very
likely to get back all your data from a MyISAM table. If your tables become corrupted often, you should try
to find the reason for it, to eliminate the need to use REPAIR TABLE. See Section B.5.3.3, “What to Do If
MySQL Keeps Crashing”, and Section 14.1.4, “MyISAM Table Problems”.

Table Maintenance Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1307

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Caution

It is best to make a backup of a table before performing a table repair operation;
under some circumstances the operation might cause data loss. Possible causes
include but are not limited to file system errors. See Chapter 7, Backup and
Recovery.

Warning

If the server crashes during a REPAIR TABLE operation, it is essential after
restarting it that you immediately execute another REPAIR TABLE statement for
the table before performing any other operations on it. In the worst case, you might
have a new clean index file without information about the data file, and then the
next operation you perform could overwrite the data file. This is an unlikely but
possible scenario that underscores the value of making a backup first.

REPAIR TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always repair

Msg_type status, error, info, note, or warning

Msg_text An informational message

The REPAIR TABLE statement might produce many rows of information for each repaired table. The last
row has a Msg_type value of status and Msg_test normally should be OK. If you do not get OK for a
MyISAM table, you should try repairing it with myisamchk --safe-recover. (REPAIR TABLE does not
implement all the options of myisamchk.) With myisamchk --safe-recover, you can also use options
that REPAIR TABLE does not support, such as --max-record-length.

If you use the QUICK option, REPAIR TABLE tries to repair only the index file, and not the data file. This
type of repair is like that done by myisamchk --recover --quick.

If you use the EXTENDED option, MySQL creates the index row by row instead of creating one index at a
time with sorting. This type of repair is like that done by myisamchk --safe-recover.

The USE_FRM option is available for use if the .MYI index file is missing or if its header is corrupted. This
option tells MySQL not to trust the information in the .MYI file header and to re-create it using information
from the .frm file. This kind of repair cannot be done with myisamchk.

Note

Use the USE_FRM option only if you cannot use regular REPAIR modes! Telling the
server to ignore the .MYI file makes important table metadata stored in the .MYI
unavailable to the repair process, which can have deleterious consequences:

• The current AUTO_INCREMENT value is lost.

• The link to deleted records in the table is lost, which means that free space for
deleted records will remain unoccupied thereafter.

• The .MYI header indicates whether the table is compressed. If the server ignores
this information, it cannot tell that a table is compressed and repair can cause
change or loss of table contents. This means that USE_FRM should not be used

Table Maintenance Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1308

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

with compressed tables. That should not be necessary, anyway: Compressed
tables are read only, so they should not become corrupt.

Caution

As of MySQL 5.0.62, if you use USE_FRM for a table that was created by a different
version of the MySQL server than the one you are currently running, REPAIR
TABLE will not attempt to repair the table. In this case, the result set returned by
REPAIR TABLE contains a line with a Msg_type value of error and a Msg_text
value of Failed repairing incompatible .FRM file.

Prior to MySQL 5.0.62, do not use USE_FRM if your table was created by a different
version of the MySQL server. Doing so risks the loss of all rows in the table. It is
particularly dangerous to use USE_FRM after the server returns this message:

Table upgrade required. Please do
"REPAIR TABLE `tbl_name`" to fix it!

If USE_FRM is not used, REPAIR TABLE checks the table to see whether an upgrade is required. If
so, it performs the upgrade, following the same rules as CHECK TABLE ... FOR UPGRADE. See
Section 13.7.2.3, “CHECK TABLE Syntax”, for more information. As of MySQL 5.0.62, REPAIR TABLE
without USE_FRM upgrades the .frm file to the current version.

By default, the server writes REPAIR TABLE statements to the binary log so that they replicate to
replication slaves. To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias
LOCAL.

Important

In the event that a table on the master becomes corrupted and you run REPAIR
TABLE on it, any resulting changes to the original table are not propagated to
slaves.

You may be able to increase REPAIR TABLE performance by setting certain system variables. See
Section 8.5.3, “Speed of REPAIR TABLE Statements”.

13.7.2.7 RESTORE TABLE Syntax

RESTORE TABLE tbl_name [, tbl_name] ... FROM '/path/to/backup/directory'

Note

This statement is deprecated and is removed in MySQL 5.5.

RESTORE TABLE restores the table or tables from a backup that was made with BACKUP TABLE. The
directory should be specified as a full path name.

Existing tables are not overwritten; if you try to restore over an existing table, an error occurs. Just as
for BACKUP TABLE, RESTORE TABLE currently works only for MyISAM tables. Restored tables are not
replicated from master to slave. If there is an existing view of the same name, the view is overwritten
(views cannot be backed up using BACKUP TABLE).

The backup for each table consists of its .frm format file and .MYD data file. The restore operation
restores those files, and then uses them to rebuild the .MYI index file. Restoring takes longer than backing
up due to the need to rebuild the indexes. The more indexes the table has, the longer it takes.

User-Defined Function Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1309

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

RESTORE TABLE returns a result set with the following columns.

Column Value

Table The table name

Op Always restore

Msg_type status, error, info, note, or warning

Msg_text An informational message

13.7.3 User-Defined Function Statements

13.7.3.1 CREATE FUNCTION Syntax for User-defined Functions

CREATE [AGGREGATE] FUNCTION function_name RETURNS {STRING|INTEGER|REAL|DECIMAL}
 SONAME shared_library_name

A user-defined function (UDF) is a way to extend MySQL with a new function that works like a native (built-
in) MySQL function such as ABS() or CONCAT().

function_name is the name that should be used in SQL statements to invoke the function. The RETURNS
clause indicates the type of the function's return value. As of MySQL 5.0.3, DECIMAL is a legal value
after RETURNS, but currently DECIMAL functions return string values and should be written like STRING
functions.

shared_library_name is the base name of the shared object file that contains the code that implements
the function. As of MySQL 5.0.67, the file must be located in the plugin directory. This directory is given
by the value of the plugin_dir system variable. If the value of plugin_dir is empty, the behavior that
is used before 5.0.67 applies: The file must be located in a directory that is searched by your system's
dynamic linker. For more information, see Section 21.2.2.5, “UDF Compiling and Installing”.

To create a function, you must have the INSERT privilege for the mysql database. This is necessary
because CREATE FUNCTION adds a row to the mysql.func system table that records the function's
name, type, and shared library name. If you do not have this table, you should run the mysql_upgrade
command to create it. See Section 4.4.9, “mysql_upgrade — Check Tables for MySQL Upgrade”.

An active function is one that has been loaded with CREATE FUNCTION and not removed with DROP
FUNCTION. All active functions are reloaded each time the server starts, unless you start mysqld with the
--skip-grant-tables option. In this case, UDF initialization is skipped and UDFs are unavailable.

For instructions on writing user-defined functions, see Section 21.2.2, “Adding a New User-Defined
Function”. For the UDF mechanism to work, functions must be written in C or C++ (or another language
that can use C calling conventions), your operating system must support dynamic loading and you must
have compiled mysqld dynamically (not statically).

An AGGREGATE function works exactly like a native MySQL aggregate (summary) function such as SUM
or COUNT(). For AGGREGATE to work, your mysql.func table must contain a type column. If your
mysql.func table does not have this column, you should run the mysql_upgrade program to create it
(see Section 4.4.9, “mysql_upgrade — Check Tables for MySQL Upgrade”).

Note

To upgrade the shared library associated with a UDF, issue a DROP FUNCTION
statement, upgrade the shared library, and then issue a CREATE FUNCTION
statement. If you upgrade the shared library first and then use DROP FUNCTION,
the server may crash.

SET Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1310

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

13.7.3.2 DROP FUNCTION Syntax

DROP FUNCTION function_name

This statement drops the user-defined function (UDF) named function_name.

To drop a function, you must have the DELETE privilege for the mysql database. This is because DROP
FUNCTION removes a row from the mysql.func system table that records the function's name, type, and
shared library name.

Note

To upgrade the shared library associated with a UDF, issue a DROP FUNCTION
statement, upgrade the shared library, and then issue a CREATE FUNCTION
statement. If you upgrade the shared library first and then use DROP FUNCTION,
the server may crash.

DROP FUNCTION is also used to drop stored functions (see Section 13.1.16, “DROP PROCEDURE and
DROP FUNCTION Syntax”).

13.7.4 SET Syntax

SET variable_assignment [, variable_assignment] ...

variable_assignment:
 user_var_name = expr
 | [GLOBAL | SESSION] system_var_name = expr
 | [@@global. | @@session. | @@]system_var_name = expr

The SET statement assigns values to different types of variables that affect the operation of the server or
your client. Older versions of MySQL employed SET OPTION, but this syntax is deprecated in favor of SET
without OPTION.

This section describes use of SET for assigning values to variables. The SET statement can be used to
assign values to these types of variables:

• System variables. See Section 5.1.4, “Server System Variables”. System variables also can be set at
server startup, as described in Section 5.1.5, “Using System Variables”.

User-defined variables. See Section 9.4, “User-Defined Variables”.

• Stored procedure and function parameters, and stored program local variables. See Section 13.6.4,
“Variables in Stored Programs”.

Some variants of SET syntax are used in other contexts:

• SET CHARACTER SET and SET NAMES assign values to character set and collation variables
associated with the connection to the server. SET ONE_SHOT is used for replication. These variants are
described later in this section.

• SET PASSWORD assigns account passwords. See Section 13.7.1.6, “SET PASSWORD Syntax”.

• SET TRANSACTION ISOLATION LEVEL sets the isolation level for transaction processing. See
Section 13.3.6, “SET TRANSACTION Syntax”.

The following discussion shows the different SET syntaxes that you can use to set variables. The examples
use the = assignment operator, but you can also use the := assignment operator for this purpose.

SET Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1311

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A user variable is written as @var_name and can be set as follows:

SET @var_name = expr;

Many system variables are dynamic and can be changed while the server runs by using the SET
statement. For a list, see Section 5.1.5.2, “Dynamic System Variables”. To change a system variable with
SET, refer to it as var_name, optionally preceded by a modifier:

• To indicate explicitly that a variable is a global variable, precede its name by GLOBAL or @@global..
The SUPER privilege is required to set global variables.

• To indicate explicitly that a variable is a session variable, precede its name by SESSION, @@session.,
or @@. Setting a session variable normally requires no special privilege, although there are exceptions
(such as sql_log_bin.) A client can change its own session variables, but not those of any other client.

• LOCAL and @@local. are synonyms for SESSION and @@session..

• If no modifier is present, SET changes the session variable.

A SET statement can contain multiple variable assignments, separated by commas. For example, the
statement can assign values to a user-defined variable and a system variable. If you set several system
variables, the most recent GLOBAL or SESSION modifier in the statement is used for following variables
that have no modifier specified.

Examples:

SET sort_buffer_size=10000;
SET @@local.sort_buffer_size=10000;
SET GLOBAL sort_buffer_size=1000000, SESSION sort_buffer_size=1000000;
SET @@sort_buffer_size=1000000;
SET @@global.sort_buffer_size=1000000, @@local.sort_buffer_size=1000000;

The @@var_name syntax for system variables is supported for compatibility with some other database
systems.

If you change a session system variable, the value remains in effect until your session ends or until you
change the variable to a different value. The change is not visible to other clients.

If you change a global system variable, the value is remembered and used for new connections until the
server restarts. (To make a global system variable setting permanent, you should set it in an option file.)
The change is visible to any client that accesses that global variable. However, the change affects the
corresponding session variable only for clients that connect after the change. The global variable change
does not affect the session variable for any client that is currently connected (not even that of the client that
issues the SET GLOBAL statement).

To prevent incorrect usage, MySQL produces an error if you use SET GLOBAL with a variable that can
only be used with SET SESSION or if you do not specify GLOBAL (or @@global.) when setting a global
variable.

To set a SESSION variable to the GLOBAL value or a GLOBAL value to the compiled-in MySQL default
value, use the DEFAULT keyword. For example, the following two statements are identical in setting the
session value of max_join_size to the global value:

SET max_join_size=DEFAULT;
SET @@session.max_join_size=@@global.max_join_size;

Not all system variables can be set to DEFAULT. In such cases, use of DEFAULT results in an error.

SET Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1312

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

It is not permitted to assign the value DEFAULT to user-defined variables, and not supported for stored
procedure or function parameters or stored program local variables. This results in a syntax error for user-
defined variables, and the results are undefined for parameters or local variables.

You can refer to the values of specific global or session system variables in expressions by using one of
the @@-modifiers. For example, you can retrieve values in a SELECT statement like this:

SELECT @@global.sql_mode, @@session.sql_mode, @@sql_mode;

When you refer to a system variable in an expression as @@var_name (that is, when you do not specify
@@global. or @@session.), MySQL returns the session value if it exists and the global value otherwise.
(This differs from SET @@var_name = value, which always refers to the session value.)

Note

Some variables displayed by SHOW VARIABLES may not be available using
SELECT @@var_name syntax; an Unknown system variable occurs. As a
workaround in such cases, you can use SHOW VARIABLES LIKE 'var_name'.

Suffixes for specifying a value multiplier can be used when setting a variable at server startup, but not to
set the value with SET at runtime. On the other hand, with SET you can assign a variable's value using
an expression, which is not true when you set a variable at server startup. For example, the first of the
following lines is legal at server startup, but the second is not:

shell> mysql --max_allowed_packet=16M
shell> mysql --max_allowed_packet=16*1024*1024

Conversely, the second of the following lines is legal at runtime, but the first is not:

mysql> SET GLOBAL max_allowed_packet=16M;
mysql> SET GLOBAL max_allowed_packet=16*1024*1024;

To display system variables names and values, use the SHOW VARIABLES statement. (See
Section 13.7.5.36, “SHOW VARIABLES Syntax”.)

The following list describes SET options that have nonstandard syntax (that is, options that are not set with
name = value syntax).

• CHARACTER SET {charset_name | DEFAULT}

This maps all strings from and to the client with the given mapping. You can add new mappings by
editing sql/convert.cc in the MySQL source distribution. SET CHARACTER SET sets three session
system variables: character_set_client and character_set_results are set to the given
character set, and character_set_connection to the value of character_set_database. See
Section 10.1.4, “Connection Character Sets and Collations”.

The default mapping can be restored by using the value DEFAULT. The default depends on the server
configuration.

ucs2 cannot be used as a client character set, which means that it does not work for SET CHARACTER
SET.

• NAMES {'charset_name' [COLLATE 'collation_name'] | DEFAULT}

SET NAMES sets the three session system variables character_set_client,
character_set_connection, and character_set_results to the given character set. Setting

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1313

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

character_set_connection to charset_name also sets collation_connection to the default
collation for charset_name. The optional COLLATE clause may be used to specify a collation explicitly.
See Section 10.1.4, “Connection Character Sets and Collations”.

The default mapping can be restored by using a value of DEFAULT. The default depends on the server
configuration.

ucs2 cannot be used as a client character set, which means that it does not work for SET NAMES.

• ONE_SHOT

This option is a modifier, not a variable. It is only for internal use for replication: mysqlbinlog uses SET
ONE_SHOT to modify temporarily the values of character set, collation, and time zone variables to reflect
at rollforward what they were originally. ONE_SHOT is for internal use only and is deprecated for MySQL
5.0 and up.

ONE_SHOT is intended for use only with the permitted set of variables. With other variables, an error
occurs:

mysql> SET ONE_SHOT max_allowed_packet = 1;
ERROR 1382 (HY000): The 'SET ONE_SHOT' syntax is reserved for purposes
internal to the MySQL server

If ONE_SHOT is used with the permitted variables, it changes the variables as requested, but only for the
next non-SET statement. After that, the server resets all character set, collation, and time zone-related
system variables to their previous values. Example:

mysql> SET ONE_SHOT character_set_connection = latin5;

mysql> SET ONE_SHOT collation_connection = latin5_turkish_ci;

mysql> SHOW VARIABLES LIKE '%_connection';
+--------------------------+-------------------+
| Variable_name | Value |
+--------------------------+-------------------+
| character_set_connection | latin5 |
| collation_connection | latin5_turkish_ci |
+--------------------------+-------------------+

mysql> SHOW VARIABLES LIKE '%_connection';
+--------------------------+-------------------+
| Variable_name | Value |
+--------------------------+-------------------+
| character_set_connection | latin1 |
| collation_connection | latin1_swedish_ci |
+--------------------------+-------------------+

13.7.5 SHOW Syntax

SHOW has many forms that provide information about databases, tables, columns, or status information
about the server. This section describes those following:

SHOW {BINARY | MASTER} LOGS
SHOW BINLOG EVENTS [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]
SHOW CHARACTER SET [like_or_where]
SHOW COLLATION [like_or_where]
SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [like_or_where]
SHOW CREATE DATABASE db_name
SHOW CREATE FUNCTION func_name

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1314

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SHOW CREATE PROCEDURE proc_name
SHOW CREATE TABLE tbl_name
SHOW DATABASES [like_or_where]
SHOW ENGINE engine_name {LOGS | STATUS }
SHOW [STORAGE] ENGINES
SHOW ERRORS [LIMIT [offset,] row_count]
SHOW FUNCTION CODE func_name
SHOW FUNCTION STATUS [like_or_where]
SHOW GRANTS FOR user
SHOW INDEX FROM tbl_name [FROM db_name]
SHOW INNODB STATUS
SHOW PROCEDURE CODE proc_name
SHOW PROCEDURE STATUS [like_or_where]
SHOW [BDB] LOGS
SHOW MASTER STATUS
SHOW MUTEX STATUS
SHOW OPEN TABLES [FROM db_name] [like_or_where]
SHOW PRIVILEGES
SHOW [FULL] PROCESSLIST
SHOW SLAVE HOSTS
SHOW SLAVE STATUS
SHOW PROFILE [types] [FOR QUERY n] [OFFSET n] [LIMIT n]
SHOW PROFILES
SHOW [GLOBAL | SESSION] STATUS [like_or_where]
SHOW TABLE STATUS [FROM db_name] [like_or_where]
SHOW [FULL] TABLES [FROM db_name] [like_or_where]
SHOW TRIGGERS [FROM db_name] [like_or_where]
SHOW [GLOBAL | SESSION] VARIABLES [like_or_where]
SHOW WARNINGS [LIMIT [offset,] row_count]

like_or_where:
 LIKE 'pattern'
 | WHERE expr

If the syntax for a given SHOW statement includes a LIKE 'pattern' part, 'pattern' is a string that
can contain the SQL “%” and “_” wildcard characters. The pattern is useful for restricting statement output
to matching values.

Several SHOW statements also accept a WHERE clause that provides more flexibility in specifying which
rows to display. See Section 19.18, “Extensions to SHOW Statements”.

Many MySQL APIs (such as PHP) enable you to treat the result returned from a SHOW statement as you
would a result set from a SELECT; see Chapter 20, Connectors and APIs, or your API documentation
for more information. In addition, you can work in SQL with results from queries on tables in the
INFORMATION_SCHEMA database, which you cannot easily do with results from SHOW statements. See
Chapter 19, INFORMATION_SCHEMA Tables.

13.7.5.1 SHOW BINARY LOGS Syntax

SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as part of the procedure described in
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”, that shows how to determine which logs can be
purged.

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1315

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| binlog.000016 | 733481 |
+---------------+-----------+

SHOW MASTER LOGS is equivalent to SHOW BINARY LOGS. The File_size column is displayed as of
MySQL 5.0.7.

You must have the SUPER privilege to use this statement.

13.7.5.2 SHOW BINLOG EVENTS Syntax

SHOW BINLOG EVENTS
 [IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]

Shows the events in the binary log. If you do not specify 'log_name', the first binary log is displayed.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.8, “SELECT
Syntax”.

Note

Issuing a SHOW BINLOG EVENTS with no LIMIT clause could start a very time-
and resource-consuming process because the server returns to the client the
complete contents of the binary log (which includes all statements executed by
the server that modify data). As an alternative to SHOW BINLOG EVENTS, use the
mysqlbinlog utility to save the binary log to a text file for later examination and
analysis. See Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log
Files”.

Note

Some events relating to the setting of user and system variables are not included in
the output from SHOW BINLOG EVENTS. To get complete coverage of events within
a binary log, use mysqlbinlog.

13.7.5.3 SHOW CHARACTER SET Syntax

SHOW CHARACTER SET
 [LIKE 'pattern' | WHERE expr]

The SHOW CHARACTER SET statement shows all available character sets. The LIKE clause, if present,
indicates which character set names to match. The WHERE clause can be given to select rows using more
general conditions, as discussed in Section 19.18, “Extensions to SHOW Statements”. For example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+

The Maxlen column shows the maximum number of bytes required to store one character.

13.7.5.4 SHOW COLLATION Syntax

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1316

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SHOW COLLATION
 [LIKE 'pattern' | WHERE expr]

This statement lists collations supported by the server. By default, the output from SHOW COLLATION
includes all available collations. The LIKE clause, if present, indicates which collation names to match. The
WHERE clause can be given to select rows using more general conditions, as discussed in Section 19.18,
“Extensions to SHOW Statements”. For example:

mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	0
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	0
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
latin1_spanish_ci	latin1	94			0
+-------------------+---------+----+---------+----------+---------+

The Collation and Charset columns indicate the names of the collation and the character set with
which it is associated. Id is the collation ID. Default indicates whether the collation is the default for
its character set. Compiled indicates whether the character set is compiled into the server. Sortlen is
related to the amount of memory required to sort strings expressed in the character set.

To see the default collation for each character set, use the following statement. Default is a reserved
word, so to use it as an identifier, it must be quoted as such:

mysql> SHOW COLLATION WHERE `Default` = 'Yes';
+---------------------+----------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------------+----------+----+---------+----------+---------+
big5_chinese_ci	big5	1	Yes	Yes	1
dec8_swedish_ci	dec8	3	Yes	Yes	1
cp850_general_ci	cp850	4	Yes	Yes	1
hp8_english_ci	hp8	6	Yes	Yes	1
koi8r_general_ci	koi8r	7	Yes	Yes	1
latin1_swedish_ci	latin1	8	Yes	Yes	1
...

13.7.5.5 SHOW COLUMNS Syntax

SHOW [FULL] COLUMNS {FROM | IN} tbl_name [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW COLUMNS displays information about the columns in a given table. It also works for views as of
MySQL 5.0.1. The LIKE clause, if present, indicates which column names to match. The WHERE clause
can be given to select rows using more general conditions, as discussed in Section 19.18, “Extensions to
SHOW Statements”.

mysql> SHOW COLUMNS FROM City;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
| Id | int(11) | NO | PRI | NULL | auto_increment |
| Name | char(35) | NO | | | |

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1317

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Country	char(3)	NO	UNI		
District	char(20)	YES	MUL		
Population	int(11)	NO		0	
+------------+----------+------+-----+---------+----------------+
5 rows in set (0.00 sec)

If the data types differ from what you expect them to be based on a CREATE TABLE statement, note that
MySQL sometimes changes data types when you create or alter a table. The conditions under which this
occurs are described in Section 13.1.10.4, “Silent Column Specification Changes”.

The FULL keyword causes the output to include the column collation and comments, as well as the
privileges you have for each column.

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. In other
words, these two statements are equivalent:

mysql> SHOW COLUMNS FROM mytable FROM mydb;
mysql> SHOW COLUMNS FROM mydb.mytable;

SHOW COLUMNS displays the following values for each table column:

Field indicates the column name.

Type indicates the column data type.

Collation indicates the collation for nonbinary string columns, or NULL for other columns. This value is
displayed only if you use the FULL keyword.

The Null field contains YES if NULL values can be stored in the column. If not, the column contains NO as
of MySQL 5.0.3, and '' before that.

The Key field indicates whether the column is indexed:

• If Key is empty, the column either is not indexed or is indexed only as a secondary column in a multiple-
column, nonunique index.

• If Key is PRI, the column is a PRIMARY KEY or is one of the columns in a multiple-column PRIMARY
KEY.

• If Key is UNI, the column is the first column of a unique-valued index that cannot contain NULL values.

• If Key is MUL, multiple occurrences of a given value are permitted within the column. The column is the
first column of a nonunique index or a unique-valued index that can contain NULL values.

If more than one of the Key values applies to a given column of a table, Key displays the one with the
highest priority, in the order PRI, UNI, MUL.

A UNIQUE index may be displayed as PRI if it cannot contain NULL values and there is no PRIMARY KEY
in the table. A UNIQUE index may display as MUL if several columns form a composite UNIQUE index;
although the combination of the columns is unique, each column can still hold multiple occurrences of a
given value.

Before MySQL 5.0.11, if the column permits NULL values, the Key value can be MUL even when a single-
column UNIQUE index is used. The rationale was that multiple rows in a UNIQUE index can hold a NULL
value if the column is not declared NOT NULL. As of MySQL 5.0.11, the display is UNI rather than MUL
regardless of whether the column permits NULL; you can see from the Null field whether or not the
column can contain NULL.

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1318

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The Default field indicates the default value that is assigned to the column. This is NULL if the column
has an explicit default of NULL. As of MySQL 5.0.50, Default is also NULL if the column definition has no
DEFAULT clause.

The Extra field contains any additional information that is available about a given column. The value is
auto_increment for columns that have the AUTO_INCREMENT attribute and empty otherwise.

Privileges indicates the privileges you have for the column. This value is displayed only if you use the
FULL keyword.

Comment indicates any comment the column has. This value is displayed only if you use the FULL
keyword.

SHOW FIELDS is a synonym for SHOW COLUMNS. You can also list a table's columns with the mysqlshow
db_name tbl_name command.

The DESCRIBE statement provides information similar to SHOW COLUMNS. See Section 13.8.1,
“DESCRIBE Syntax”.

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide
information about tables. See Section 13.7.5, “SHOW Syntax”.

13.7.5.6 SHOW CREATE DATABASE Syntax

SHOW CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name

Shows the CREATE DATABASE statement that creates the named database. If the SHOW statement
includes an IF NOT EXISTS clause, the output too includes such a clause. SHOW CREATE SCHEMA is a
synonym for SHOW CREATE DATABASE as of MySQL 5.0.2.

mysql> SHOW CREATE DATABASE test\G
*************************** 1. row ***************************
 Database: test
Create Database: CREATE DATABASE `test`
 /*!40100 DEFAULT CHARACTER SET latin1 */

mysql> SHOW CREATE SCHEMA test\G
*************************** 1. row ***************************
 Database: test
Create Database: CREATE DATABASE `test`
 /*!40100 DEFAULT CHARACTER SET latin1 */

SHOW CREATE DATABASE quotes table and column names according to the value of the
sql_quote_show_create option. See Section 5.1.4, “Server System Variables”.

13.7.5.7 SHOW CREATE FUNCTION Syntax

SHOW CREATE FUNCTION func_name

This statement is similar to SHOW CREATE PROCEDURE but for stored functions. See Section 13.7.5.8,
“SHOW CREATE PROCEDURE Syntax”.

13.7.5.8 SHOW CREATE PROCEDURE Syntax

SHOW CREATE PROCEDURE proc_name

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1319

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This statement is a MySQL extension. It returns the exact string that can be used to re-create the named
stored procedure. A similar statement, SHOW CREATE FUNCTION, displays information about stored
functions (see Section 13.7.5.7, “SHOW CREATE FUNCTION Syntax”).

To use either statement, you must be the user named in the routine DEFINER clause or have SELECT
access to the mysql.proc table. If you do not have privileges for the routine itself, the value displayed for
the Create Procedure or Create Function field will be NULL.

mysql> SHOW CREATE PROCEDURE test.simpleproc\G
*************************** 1. row ***************************
 Procedure: simpleproc
 sql_mode:
Create Procedure: CREATE PROCEDURE `simpleproc`(OUT param1 INT)
 BEGIN
 SELECT COUNT(*) INTO param1 FROM t;
 END

mysql> SHOW CREATE FUNCTION test.hello\G
*************************** 1. row ***************************
 Function: hello
 sql_mode:
Create Function: CREATE FUNCTION `hello`(s CHAR(20))
 RETURNS CHAR(50)
 RETURN CONCAT('Hello, ',s,'!')

13.7.5.9 SHOW CREATE TABLE Syntax

SHOW CREATE TABLE tbl_name

Shows the CREATE TABLE statement that creates the named table. To use this statement, you must have
some privilege for the table. As of MySQL 5.0.1, this statement also works with views.

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************
 Table: t
Create Table: CREATE TABLE t (
 id INT(11) default NULL auto_increment,
 s char(60) default NULL,
 PRIMARY KEY (id)
) ENGINE=MyISAM

SHOW CREATE TABLE quotes table and column names according to the value of the
sql_quote_show_create option. See Section 5.1.4, “Server System Variables”.

13.7.5.10 SHOW CREATE VIEW Syntax

SHOW CREATE VIEW view_name

This statement shows the CREATE VIEW statement that creates the named view.

mysql> SHOW CREATE VIEW v;
+------+--+
| View | Create View |
+------+--+
| v | CREATE VIEW `test`.`v` AS select 1 AS `a`,2 AS `b` |
+------+--+

This statement was added in MySQL 5.0.1.

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1320

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Prior to MySQL 5.0.11, the output columns from this statement were shown as Table and Create
Table.

Use of SHOW CREATE VIEW requires the SHOW VIEW privilege and the SELECT privilege for the view in
question.

You can also obtain information about view objects from INFORMATION_SCHEMA, which contains a VIEWS
table. See Section 19.17, “The INFORMATION_SCHEMA VIEWS Table”.

MySQL lets you use different sql_mode settings to tell the server the type of SQL syntax to support. For
example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard SQL
concatenation operator, the double bar (||), in your queries. If you then create a view that concatenates
items, you might worry that changing the sql_mode setting to a value different from ANSI could cause
the view to become invalid. But this is not the case. No matter how you write out a view definition, MySQL
always stores it the same way, in a canonical form. Here is an example that shows how the server changes
a double bar concatenation operator to a CONCAT() function:

mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW CREATE VIEW test.v\G
*************************** 1. row ***************************
 View: v
 Create View: CREATE VIEW "v" AS select concat('a','b') AS "col1"
...
1 row in set (0.00 sec)

The advantage of storing a view definition in canonical form is that changes made later to the value of
sql_mode will not affect the results from the view. However an additional consequence is that comments
prior to SELECT are stripped from the definition by the server.

13.7.5.11 SHOW DATABASES Syntax

SHOW {DATABASES | SCHEMAS}
 [LIKE 'pattern' | WHERE expr]

SHOW DATABASES lists the databases on the MySQL server host. SHOW SCHEMAS is a synonym for
SHOW DATABASES as of MySQL 5.0.2. The LIKE clause, if present, indicates which database names to
match. The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 19.18, “Extensions to SHOW Statements”.

You see only those databases for which you have some kind of privilege, unless you have the global SHOW
DATABASES privilege. You can also get this list using the mysqlshow command.

If the server was started with the --skip-show-database option, you cannot use this statement at all
unless you have the SHOW DATABASES privilege.

MySQL implements databases as directories in the data directory, so this statement simply lists directories
in that location. However, the output may include names of directories that do not correspond to actual
databases.

13.7.5.12 SHOW ENGINE Syntax

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1321

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SHOW ENGINE engine_name {LOGS | STATUS }

SHOW ENGINE displays log or status information about a storage engine. The statement has these
variants:

SHOW ENGINE BDB LOGS
SHOW ENGINE INNODB STATUS
SHOW ENGINE NDB STATUS
SHOW ENGINE NDBCLUSTER STATUS

With LOGS, this statement requires the FILE privilege. With STATUS, it requires the PROCESS privilege.

SHOW ENGINE BDB LOGS displays status information about existing BDB log files. It returns the following
fields:

• File

The full path to the log file.

• Type

The log file type (BDB for Berkeley DB log files).

• Status

The status of the log file (FREE if the file can be removed, or IN USE if the file is needed by the
transaction subsystem)

SHOW ENGINE INNODB STATUS displays extensive information from the standard InnoDB Monitor about
the state of the InnoDB storage engine. For information about the standard monitor and other InnoDB
Monitors that provide information about InnoDB processing, see Section 14.2.13.1, “SHOW ENGINE
INNODB STATUS and the InnoDB Monitors”.

Older (and now deprecated) synonyms for SHOW ENGINE BDB LOGS and SHOW ENGINE INNODB
STATUS are SHOW [BDB] LOGS and SHOW INNODB STATUS, respectively.

If the server has the NDBCLUSTER storage engine enabled, SHOW ENGINE NDB STATUS can be used to
display cluster status information. Sample output from this statement is shown here:

mysql> SHOW ENGINE NDB STATUS;
+-----------------------+---------+------+--------+
| free_list | created | free | sizeof |
+-----------------------+---------+------+--------+
NdbTransaction	5	0	208
NdbOperation	4	4	660
NdbIndexScanOperation	1	1	736
NdbIndexOperation	0	0	1060
NdbRecAttr	645	645	72
NdbApiSignal	16	16	136
NdbLabel	0	0	196
NdbBranch	0	0	24
NdbSubroutine	0	0	68
NdbCall	0	0	16
NdbBlob	2	2	204
NdbReceiver	2	0	68
+-----------------------+---------+------+--------+
12 rows in set (0.00 sec)

The most useful of the rows from the output of this statement are described in the following list:

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1322

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• NdbTransaction: The number and size of NdbTransaction objects that have been created. An
NdbTransaction is created each time a table schema operation (such as CREATE TABLE or ALTER
TABLE) is performed on an NDB table.

• NdbOperation: The number and size of NdbOperation objects that have been created.

• NdbIndexScanOperation: The number and size of NdbIndexScanOperation objects that have
been created.

• NdbIndexOperation: The number and size of NdbIndexOperation objects that have been created.

• NdbRecAttr: The number and size of NdbRecAttr objects that have been created. In general, one of
these is created each time a data manipulation statement is performed by an SQL node.

• NdbBlob: The number and size of NdbBlob objects that have been created. An NdbBlob is created for
each new operation involving a BLOB column in an NDB table.

• NdbReceiver: The number and size of any NdbReceiver object that have been created. The number
in the created column is the same as the number of data nodes in the cluster to which the MySQL
server has connected.

Note

SHOW ENGINE NDB STATUS returns an empty result if no operations involving NDB
tables have been performed by the MySQL client accessing the SQL node on which
this statement is run.

SHOW ENGINE NDBCLUSTER STATUS is a synonym for SHOW ENGINE NDB STATUS.

13.7.5.13 SHOW ENGINES Syntax

SHOW [STORAGE] ENGINES

SHOW ENGINES displays status information about the server's storage engines. This is particularly useful
for checking whether a storage engine is supported, or to see what the default engine is. SHOW TABLE
TYPES is a synonym, but is deprecated and is removed in MySQL 5.5.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: MyISAM
Support: DEFAULT
Comment: Default engine as of MySQL 3.23 with great performance
*************************** 2. row ***************************
 Engine: MEMORY
Support: YES
Comment: Hash based, stored in memory, useful for temporary tables
*************************** 3. row ***************************
 Engine: HEAP
Support: YES
Comment: Alias for MEMORY
*************************** 4. row ***************************
 Engine: MERGE
Support: YES
Comment: Collection of identical MyISAM tables
*************************** 5. row ***************************
 Engine: MRG_MYISAM
Support: YES
Comment: Alias for MERGE
*************************** 6. row ***************************
 Engine: ISAM

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1323

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Support: NO
Comment: Obsolete storage engine, now replaced by MyISAM
*************************** 7. row ***************************
 Engine: MRG_ISAM
Support: NO
Comment: Obsolete storage engine, now replaced by MERGE
*************************** 8. row ***************************
 Engine: InnoDB
Support: YES
Comment: Supports transactions, row-level locking, and foreign keys
*************************** 9. row ***************************
 Engine: INNOBASE
Support: YES
Comment: Alias for INNODB
*************************** 10. row ***************************
 Engine: BDB
Support: YES
Comment: Supports transactions and page-level locking
*************************** 11. row ***************************
 Engine: BERKELEYDB
Support: YES
Comment: Alias for BDB
*************************** 12. row ***************************
 Engine: NDBCLUSTER
Support: NO
Comment: Clustered, fault-tolerant, memory-based tables
*************************** 13. row ***************************
 Engine: NDB
Support: NO
Comment: Alias for NDBCLUSTER
*************************** 14. row ***************************
 Engine: EXAMPLE
Support: NO
Comment: Example storage engine
*************************** 15. row ***************************
 Engine: ARCHIVE
Support: YES
Comment: Archive storage engine
*************************** 16. row ***************************
 Engine: CSV
Support: NO
Comment: CSV storage engine
*************************** 17. row ***************************
 Engine: FEDERATED
Support: YES
Comment: Federated MySQL storage engine
*************************** 18. row ***************************
 Engine: BLACKHOLE
Support: YES
Comment: /dev/null storage engine (anything you write to it disappears)

The output from SHOW ENGINES may vary according to the MySQL version used and other factors. The
values shown in the Support column indicate the server's level of support for the storage engine, as
shown in the following table.

Value Meaning

YES The engine is supported and is active

DEFAULT Like YES, plus this is the default engine

NO The engine is not supported

DISABLED The engine is supported but has been disabled

A value of NO means that the server was compiled without support for the engine, so it cannot be activated
at runtime.

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1324

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A value of DISABLED occurs either because the server was started with an option that disables the engine,
or because not all options required to enable it were given. In the latter case, the error log file should
contain a reason indicating why the option is disabled. See Section 5.4.1, “The Error Log”.

You might also see DISABLED for a storage engine if the server was compiled to support it, but was
started with a --skip-engine_name option. For example, --skip-innodb disables the InnoDB
engine. For the NDBCLUSTER storage engine, DISABLED means the server was compiled with support for
MySQL Cluster, but was not started with the --ndbcluster option.

All MySQL servers support MyISAM tables, because MyISAM is the default storage engine. It is not
possible to disable MyISAM.

13.7.5.14 SHOW ERRORS Syntax

SHOW ERRORS [LIMIT [offset,] row_count]
SHOW COUNT(*) ERRORS

SHOW ERRORS is a diagnostic statement that is similar to SHOW WARNINGS, except that it displays
information only for errors, rather than for errors, warnings, and notes.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.8, “SELECT
Syntax”.

The SHOW COUNT(*) ERRORS statement displays the number of errors. You can also retrieve this number
from the error_count variable:

SHOW COUNT(*) ERRORS;
SELECT @@error_count;

SHOW ERRORS and error_count apply only to errors, not warnings or notes. In other respects, they
are similar to SHOW WARNINGS and warning_count. In particular, SHOW ERRORS cannot display
information for more than max_error_count messages, and error_count can exceed the value of
max_error_count if the number of errors exceeds max_error_count.

For more information, see Section 13.7.5.37, “SHOW WARNINGS Syntax”.

13.7.5.15 SHOW FUNCTION CODE Syntax

SHOW FUNCTION CODE func_name

This statement is similar to SHOW PROCEDURE CODE but for stored functions. See Section 13.7.5.25,
“SHOW PROCEDURE CODE Syntax”. SHOW FUNCTION CODE was added in MySQL 5.0.17.

13.7.5.16 SHOW FUNCTION STATUS Syntax

SHOW FUNCTION STATUS
 [LIKE 'pattern' | WHERE expr]

This statement is similar to SHOW PROCEDURE STATUS but for stored functions. See Section 13.7.5.26,
“SHOW PROCEDURE STATUS Syntax”.

13.7.5.17 SHOW GRANTS Syntax

SHOW GRANTS [FOR user]

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1325

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This statement displays the GRANT statement or statements that must be issued to duplicate the privileges
that are granted to a MySQL user account. SHOW GRANTS requires the SELECT privilege for the mysql
database, except to see the privileges for the current user.

To name the account, use the same format as for the GRANT statement; for example,
'jeffrey'@'localhost'. If you specify only the user name part of the account name, a host name part
of '%' is used. For additional information about specifying account names, see Section 13.7.1.3, “GRANT
Syntax”.

mysql> SHOW GRANTS FOR 'root'@'localhost';
+---+
| Grants for root@localhost |
+---+
| GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION |
+---+

To display the privileges granted to the account that you are using to connect to the server, you can use
any of the following statements:

SHOW GRANTS;
SHOW GRANTS FOR CURRENT_USER;
SHOW GRANTS FOR CURRENT_USER();

As of MySQL 5.0.24, if SHOW GRANTS FOR CURRENT_USER (or any of the equivalent syntaxes) is used in
DEFINER context, such as within a stored procedure that is defined with SQL SECURITY DEFINER), the
grants displayed are those of the definer and not the invoker.

SHOW GRANTS displays only the privileges granted explicitly to the named account. Other privileges that
might be available to the account are not displayed. For example, if an anonymous account exists, the
named account might be able to use its privileges, but SHOW GRANTS will not display them.

13.7.5.18 SHOW INDEX Syntax

SHOW {INDEX | INDEXES | KEYS}
 {FROM | IN} tbl_name
 [{FROM | IN} db_name]
 [WHERE expr]

SHOW INDEX returns table index information. The format resembles that of the SQLStatistics call in
ODBC.

SHOW INDEX returns the following fields:

• Table

The name of the table.

• Non_unique

0 if the index cannot contain duplicates, 1 if it can.

• Key_name

The name of the index. If the index is the primary key, the name is always PRIMARY.

• Seq_in_index

The column sequence number in the index, starting with 1.

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1326

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Column_name

The column name.

• Collation

How the column is sorted in the index. In MySQL, this can have values “A” (Ascending) or NULL (Not
sorted).

• Cardinality

An estimate of the number of unique values in the index. This is updated by running ANALYZE TABLE
or myisamchk -a. Cardinality is counted based on statistics stored as integers, so the value is not
necessarily exact even for small tables. The higher the cardinality, the greater the chance that MySQL
uses the index when doing joins.

• Sub_part

The index prefix. That is, the number of indexed characters if the column is only partly indexed, NULL if
the entire column is indexed.

Note

Prefix limits are measured in bytes, whereas the prefix length in CREATE TABLE,
ALTER TABLE, and CREATE INDEX statements is interpreted as number of
characters for nonbinary string types (CHAR, VARCHAR, TEXT) and number
of bytes for binary string types (BINARY, VARBINARY, BLOB). Take this into
account when specifying a prefix length for a nonbinary string column that uses a
multibyte character set.

For additional information about index prefixes, see Section 13.1.8, “CREATE INDEX Syntax”.

• Packed

Indicates how the key is packed. NULL if it is not.

• Null

Contains YES if the column may contain NULL values and '' if not.

• Index_type

The index method used (BTREE, FULLTEXT, HASH, RTREE).

• Comment

Information about the index not described in its own column, such as disabled if the index is disabled.

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. These two
statements are equivalent:

SHOW INDEX FROM mytable FROM mydb;
SHOW INDEX FROM mydb.mytable;

The WHERE clause can be given to select rows using more general conditions, as discussed in
Section 19.18, “Extensions to SHOW Statements”.

You can also list a table's indexes with the mysqlshow -k db_name tbl_name command.

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1327

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

13.7.5.19 SHOW INNODB STATUS Syntax

SHOW INNODB STATUS

In MySQL 5.0, this is a deprecated synonym for SHOW ENGINE INNODB STATUS. See Section 13.7.5.12,
“SHOW ENGINE Syntax”. SHOW INNODB STATUS is removed in MySQL 5.5.

13.7.5.20 SHOW LOGS Syntax

SHOW [BDB] LOGS

In MySQL 5.0, this is a deprecated synonym for SHOW ENGINE BDB LOGS. See Section 13.7.5.12,
“SHOW ENGINE Syntax”.

13.7.5.21 SHOW MASTER STATUS Syntax

SHOW MASTER STATUS

This statement provides status information about the binary log files of the master. It requires either the
SUPER or REPLICATION CLIENT privilege.

Example:

mysql> SHOW MASTER STATUS;
+---------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+---------------+----------+--------------+------------------+
| mysql-bin.003 | 73 | test | manual,mysql |
+---------------+----------+--------------+------------------+

13.7.5.22 SHOW MUTEX STATUS Syntax

SHOW MUTEX STATUS

SHOW MUTEX STATUS displays InnoDB mutex statistics. From MySQL 5.0.3 to 5.0.32, the statement
displays the following output fields:

• Mutex

The mutex name. The name indicates the mutex purpose. For example, the log_sys mutex is used by
the InnoDB logging subsystem and indicates how intensive logging activity is. The buf_pool mutex
protects the InnoDB buffer pool.

• Module

The source file where the mutex is implemented.

• Count indicates how many times the mutex was requested.

• Spin_waits indicates how many times the spinlock had to run.

• Spin_rounds indicates the number of spinlock rounds. (spin_rounds divided by spin_waits
provides the average round count.)

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1328

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• OS_waits indicates the number of operating system waits. This occurs when the spinlock did not work
(the mutex was not locked during the spinlock and it was necessary to yield to the operating system and
wait).

• OS_yields indicates the number of times that a thread trying to lock a mutex gave up its timeslice and
yielded to the operating system (on the presumption that permitting other threads to run will free the
mutex so that it can be locked).

• OS_waits_time indicates the amount of time (in ms) spent in operating system waits, if the
timed_mutexes system variable is 1 (ON). If timed_mutexes is 0 (OFF), timing is disabled, so
OS_waits_time is 0. timed_mutexes is off by default.

From MySQL 5.0.33 on, the statement uses the same output format as that just described, but only if
UNIV_DEBUG was defined at MySQL compilation time (for example, in include/univ.i in the InnoDB
part of the MySQL source tree). If UNIV_DEBUG was not defined, the statement displays the following
fields. In the latter case (without UNIV_DEBUG), the information on which the statement output is based is
insufficient to distinguish regular mutexes and mutexes that protect rw-locks (which permit multiple readers
or a single writer). Consequently, the output may appear to contain multiple rows for the same mutex.

• File

The source file where the mutex is implemented.

• Line

The line number in the source file where the mutex is created. This may change depending on your
version of MySQL.

• OS_waits

Same as OS_waits_time.

Information from this statement can be used to diagnose system problems. For example, large values of
spin_waits and spin_rounds may indicate scalability problems.

SHOW MUTEX STATUS was added in MySQL 5.0.3. In MySQL 5.1, SHOW MUTEX STATUS is deprecated
and SHOW ENGINE INNODB MUTEX should be used instead. The latter statement displays similar
information but in a somewhat different output format. SHOW MUTEX STATUS is removed in MySQL 5.5.

13.7.5.23 SHOW OPEN TABLES Syntax

SHOW OPEN TABLES [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW OPEN TABLES lists the non-TEMPORARY tables that are currently open in the table cache. See
Section 8.4.3.1, “How MySQL Opens and Closes Tables”. The WHERE clause can be given to select rows
using more general conditions, as discussed in Section 19.18, “Extensions to SHOW Statements”.

The FROM and LIKE clauses may be used as of MySQL 5.0.12. The LIKE clause, if present, indicates
which table names to match. The FROM clause, if present, restricts the tables shown to those present in the
db_name database.

SHOW OPEN TABLES output has the following columns:

• Database

The database containing the table.

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1329

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Table

The table name.

• In_use

The number of table locks or lock requests there are for the table. For example, if one client acquires a
lock for a table using LOCK TABLE t1 WRITE, In_use will be 1. If another client issues LOCK TABLE
t1 WRITE while the table remains locked, the client will block waiting for the lock, but the lock request
causes In_use to be 2. If the count is zero, the table is open but not currently being used. In_use is
also increased by the HANDLER ... OPEN statement and decreased by HANDLER ... CLOSE.

• Name_locked

Whether the table name is locked. Name locking is used for operations such as dropping or renaming
tables.

13.7.5.24 SHOW PRIVILEGES Syntax

SHOW PRIVILEGES

SHOW PRIVILEGES shows the list of system privileges that the MySQL server supports. The exact list of
privileges depends on the version of your server.

mysql> SHOW PRIVILEGES\G
*************************** 1. row ***************************
Privilege: Alter
 Context: Tables
 Comment: To alter the table
*************************** 2. row ***************************
Privilege: Alter routine
 Context: Functions,Procedures
 Comment: To alter or drop stored functions/procedures
*************************** 3. row ***************************
Privilege: Create
 Context: Databases,Tables,Indexes
 Comment: To create new databases and tables
*************************** 4. row ***************************
Privilege: Create routine
 Context: Databases
 Comment: To use CREATE FUNCTION/PROCEDURE
*************************** 5. row ***************************
Privilege: Create temporary tables
 Context: Databases
 Comment: To use CREATE TEMPORARY TABLE
...

Privileges belonging to a specific user are displayed by the SHOW GRANTS statement. See
Section 13.7.5.17, “SHOW GRANTS Syntax”, for more information.

13.7.5.25 SHOW PROCEDURE CODE Syntax

SHOW PROCEDURE CODE proc_name

This statement is a MySQL extension that is available only for servers that have been built with
debugging support. It displays a representation of the internal implementation of the named stored
procedure. A similar statement, SHOW FUNCTION CODE, displays information about stored functions (see
Section 13.7.5.15, “SHOW FUNCTION CODE Syntax”).

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1330

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To use either statement, you must be the owner of the routine or have SELECT access to the mysql.proc
table.

If the named routine is available, each statement produces a result set. Each row in the result set
corresponds to one “instruction” in the routine. The first column is Pos, which is an ordinal number
beginning with 0. The second column is Instruction, which contains an SQL statement (usually
changed from the original source), or a directive which has meaning only to the stored-routine handler.

mysql> DELIMITER //
mysql> CREATE PROCEDURE p1 ()
 -> BEGIN
 -> DECLARE fanta INT DEFAULT 55;
 -> DROP TABLE t2;
 -> LOOP
 -> INSERT INTO t3 VALUES (fanta);
 -> END LOOP;
 -> END//
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW PROCEDURE CODE p1//
+-----+--+
| Pos | Instruction |
+-----+--+
0	set fanta@0 55
1	stmt 9 "DROP TABLE t2"
2	stmt 5 "INSERT INTO t3 VALUES (fanta)"
3	jump 2
+-----+--+
4 rows in set (0.00 sec)

In this example, the nonexecutable BEGIN and END statements have disappeared, and for the DECLARE
variable_name statement, only the executable part appears (the part where the default is assigned). For
each statement that is taken from source, there is a code word stmt followed by a type (9 means DROP, 5
means INSERT, and so on). The final row contains an instruction jump 2, meaning GOTO instruction
#2.

SHOW PROCEDURE CODE was added in MySQL 5.0.17.

13.7.5.26 SHOW PROCEDURE STATUS Syntax

SHOW PROCEDURE STATUS
 [LIKE 'pattern' | WHERE expr]

This statement is a MySQL extension. It returns characteristics of a stored procedure, such as the
database, name, type, creator, creation and modification dates, and character set information. A similar
statement, SHOW FUNCTION STATUS, displays information about stored functions (see Section 13.7.5.16,
“SHOW FUNCTION STATUS Syntax”).

The LIKE clause, if present, indicates which procedure or function names to match. The WHERE clause
can be given to select rows using more general conditions, as discussed in Section 19.18, “Extensions to
SHOW Statements”.

mysql> SHOW PROCEDURE STATUS LIKE 'sp1'\G
*************************** 1. row ***************************
 Db: test
 Name: sp1
 Type: PROCEDURE
 Definer: testuser@localhost
 Modified: 2004-08-03 15:29:37

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1331

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 Created: 2004-08-03 15:29:37
Security_type: DEFINER
 Comment:

You can also get information about stored routines from the ROUTINES table in INFORMATION_SCHEMA.
See Section 19.8, “The INFORMATION_SCHEMA ROUTINES Table”.

13.7.5.27 SHOW PROCESSLIST Syntax

SHOW [FULL] PROCESSLIST

SHOW PROCESSLIST shows you which threads are running. You can also get this information using the
mysqladmin processlist command. If you have the PROCESS privilege, you can see all threads.
Otherwise, you can see only your own threads (that is, threads associated with the MySQL account that
you are using). If you do not use the FULL keyword, only the first 100 characters of each statement are
shown in the Info field.

This statement is very useful if you get the “too many connections” error message and want to find out
what is going on. MySQL reserves one extra connection to be used by accounts that have the SUPER
privilege, to ensure that administrators should always be able to connect and check the system (assuming
that you are not giving this privilege to all your users).

Threads can be killed with the KILL statement. See Section 13.7.6.3, “KILL Syntax”.

Here is an example of SHOW PROCESSLIST output:

mysql> SHOW FULL PROCESSLIST\G
*************************** 1. row ***************************
Id: 1
User: system user
Host:
db: NULL
Command: Connect
Time: 1030455
State: Waiting for master to send event
Info: NULL
*************************** 2. row ***************************
Id: 2
User: system user
Host:
db: NULL
Command: Connect
Time: 1004
State: Has read all relay log; waiting for the slave
 I/O thread to update it
Info: NULL
*************************** 3. row ***************************
Id: 3112
User: replikator
Host: artemis:2204
db: NULL
Command: Binlog Dump
Time: 2144
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL
*************************** 4. row ***************************
Id: 3113
User: replikator
Host: iconnect2:45781
db: NULL
Command: Binlog Dump
Time: 2086

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1332

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL
*************************** 5. row ***************************
Id: 3123
User: stefan
Host: localhost
db: apollon
Command: Query
Time: 0
State: NULL
Info: SHOW FULL PROCESSLIST
5 rows in set (0.00 sec)

The columns produced by SHOW PROCESSLIST have the following meanings:

• Id

The connection identifier. This is the same type of value returned by the CONNECTION_ID() function.

• User

The MySQL user who issued the statement. If this is system user, it refers to a nonclient thread
spawned by the server to handle tasks internally. This could be the I/O or SQL thread used on replication
slaves or a delayed-row handler. unauthenticated user refers to a thread that has become
associated with a client connection but for which authentication of the client user has not yet been done.
For system user, there is no host specified in the Host column.

• Host

The host name of the client issuing the statement (except for system user where there is no host).
SHOW PROCESSLIST reports the host name for TCP/IP connections in host_name:client_port
format to make it easier to determine which client is doing what.

• db

The default database, if one is selected, otherwise NULL.

• Command

The type of command the thread is executing. For descriptions for thread commands, see Section 8.14,
“Examining Thread Information”. The value of this column corresponds to the COM_xxx commands of
the client/server protocol and Com_xxx status variables. See Section 5.1.6, “Server Status Variables”

• Time

The time in seconds that the thread has been in its current state. For a slave SQL thread, the value is
the number of seconds between the timestamp of the last replicated event and the real time of the slave
machine. See Section 16.2.1, “Replication Implementation Details”.

• State

An action, event, or state that indicates what the thread is doing. Descriptions for State values can be
found at Section 8.14, “Examining Thread Information”.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

For the SHOW PROCESSLIST statement, the value of State is NULL.

• Info

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1333

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The statement the thread is executing, or NULL if it is not executing any statement. The statement might
be the one sent to the server, or an innermost statement if the statement executes other statements. For
example, if a CALL statement executes a stored procedure that is executing a SELECT statement, the
Info value shows the SELECT statement.

13.7.5.28 SHOW PROFILE Syntax

SHOW PROFILE [type [, type] ...]
 [FOR QUERY n]
 [LIMIT row_count [OFFSET offset]]

type:
 ALL
 | BLOCK IO
 | CONTEXT SWITCHES
 | CPU
 | IPC
 | MEMORY
 | PAGE FAULTS
 | SOURCE
 | SWAPS

The SHOW PROFILE and SHOW PROFILES statements display profiling information that indicates resource
usage for statements executed during the course of the current session.

Profiling is controlled by the profiling session variable, which has a default value of 0 (OFF). Profiling is
enabled by setting profiling to 1 or ON:

mysql> SET profiling = 1;

SHOW PROFILES displays a list of the most recent statements sent to the server. The size of the list is
controlled by the profiling_history_size session variable, which has a default value of 15. The
maximum value is 100. Setting the value to 0 has the practical effect of disabling profiling.

All statements are profiled except SHOW PROFILE and SHOW PROFILES, so you will find neither of those
statements in the profile list. Malformed statements are profiled. For example, SHOW PROFILING is an
illegal statement, and a syntax error occurs if you try to execute it, but it will show up in the profiling list.

SHOW PROFILE displays detailed information about a single statement. Without the FOR QUERY n clause,
the output pertains to the most recently executed statement. If FOR QUERY n is included, SHOW PROFILE
displays information for statement n. The values of n correspond to the Query_ID values displayed by
SHOW PROFILES.

The LIMIT row_count clause may be given to limit the output to row_count rows. If LIMIT is given,
OFFSET offset may be added to begin the output offset rows into the full set of rows.

By default, SHOW PROFILE displays Status and Duration columns. The Status values are like
the State values displayed by SHOW PROCESSLIST, although there might be some minor differences
in interpretion for the two statements for some status values (see Section 8.14, “Examining Thread
Information”).

Optional type values may be specified to display specific additional types of information:

• ALL displays all information

• BLOCK IO displays counts for block input and output operations

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1334

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• CONTEXT SWITCHES displays counts for voluntary and involuntary context switches

• CPU displays user and system CPU usage times

• IPC displays counts for messages sent and received

• MEMORY is not currently implemented

• PAGE FAULTS displays counts for major and minor page faults

• SOURCE displays the names of functions from the source code, together with the name and line number
of the file in which the function occurs

• SWAPS displays swap counts

Profiling is enabled per session. When a session ends, its profiling information is lost.

mysql> SELECT @@profiling;
+-------------+
| @@profiling |
+-------------+
| 0 |
+-------------+
1 row in set (0.00 sec)

mysql> SET profiling = 1;
Query OK, 0 rows affected (0.00 sec)

mysql> DROP TABLE IF EXISTS t1;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> CREATE TABLE T1 (id INT);
Query OK, 0 rows affected (0.01 sec)

mysql> SHOW PROFILES;
+----------+----------+--------------------------+
| Query_ID | Duration | Query |
+----------+----------+--------------------------+
0	0.000088	SET PROFILING = 1
1	0.000136	DROP TABLE IF EXISTS t1
2	0.011947	CREATE TABLE t1 (id INT)
+----------+----------+--------------------------+
3 rows in set (0.00 sec)

mysql> SHOW PROFILE;
+----------------------+----------+
| Status | Duration |
+----------------------+----------+
checking permissions	0.000040
creating table	0.000056
After create	0.011363
query end	0.000375
freeing items	0.000089
logging slow query	0.000019
cleaning up	0.000005
+----------------------+----------+
7 rows in set (0.00 sec)

mysql> SHOW PROFILE FOR QUERY 1;
+--------------------+----------+
| Status | Duration |
+--------------------+----------+
| query end | 0.000107 |
| freeing items | 0.000008 |

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1335

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| logging slow query | 0.000015 |
| cleaning up | 0.000006 |
+--------------------+----------+
4 rows in set (0.00 sec)

mysql> SHOW PROFILE CPU FOR QUERY 2;
+----------------------+----------+----------+------------+
| Status | Duration | CPU_user | CPU_system |
+----------------------+----------+----------+------------+
checking permissions	0.000040	0.000038	0.000002
creating table	0.000056	0.000028	0.000028
After create	0.011363	0.000217	0.001571
query end	0.000375	0.000013	0.000028
freeing items	0.000089	0.000010	0.000014
logging slow query	0.000019	0.000009	0.000010
cleaning up	0.000005	0.000003	0.000002
+----------------------+----------+----------+------------+
7 rows in set (0.00 sec)

Note

Profiling is only partially functional on some architectures. For values that depend
on the getrusage() system call, NULL is returned on systems such as Windows
that do not support the call. In addition, profiling is per process and not per thread.
This means that activity on threads within the server other than your own may affect
the timing information that you see.

SHOW PROFILES and SHOW PROFILE were added in MySQL 5.0.37.

You can also get profiling information from the PROFILING table in INFORMATION_SCHEMA. See
Section 19.7, “The INFORMATION_SCHEMA PROFILING Table”. For example, the following queries
produce the same result:

SHOW PROFILE FOR QUERY 2;

SELECT STATE, FORMAT(DURATION, 6) AS DURATION
FROM INFORMATION_SCHEMA.PROFILING
WHERE QUERY_ID = 2 ORDER BY SEQ;

Important

Please note that the SHOW PROFILE and SHOW PROFILES functionality is part of
the MySQL 5.0 Community Server only.

13.7.5.29 SHOW PROFILES Syntax

SHOW PROFILES

The SHOW PROFILES statement, together with SHOW PROFILE, displays profiling information that
indicates resource usage for statements executed during the course of the current session. For more
information, see Section 13.7.5.28, “SHOW PROFILE Syntax”.

13.7.5.30 SHOW SLAVE HOSTS Syntax

SHOW SLAVE HOSTS

Displays a list of replication slaves currently registered with the master. Only slaves started with the --
report-host=host_name option are visible in this list.

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1336

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SHOW SLAVE HOSTS should be executed on a server that acts as a replication master. The statement
displays information about servers that are or have been connected as replication slaves, with each row of
the result corresponding to one slave server, as shown here:

mysql> SHOW SLAVE HOSTS;
+------------+-----------+------+-----------+
| Server_id | Host | Port | Master_id |
+------------+-----------+------+-----------+
| 192168010 | iconnect2 | 3306 | 192168011 |
| 1921680101 | athena | 3306 | 192168011 |
+------------+-----------+------+-----------+

• Server_id: The unique server ID of the slave server, as configured in the slave server's option file, or
on the command line with --server-id=value.

• Host: The host name of the slave server as specified on the slave with the --report-host option.
This can differ from the machine name as configured in the operating system.

• User: The slave server user name as, specified on the slave with the --report-user option.
Statement output includes this column only if the master server is started with the --show-slave-
auth-info option.

• Password: The slave server password as, specified on the slave with the --report-password option.
Statement output includes this column only if the master server is started with the --show-slave-
auth-info option.

• Port: The port on the master to which the slave server is listening, as specified on the slave with the --
report-port option.

• Master_id: The unique server ID of the master server that the slave server is replicating from. This is
the server ID of the server on which SHOW SLAVE HOSTS is executed, so this same value is listed for
each row in the result.

Some MySQL versions report another variable, Rpl_recovery_rank. This variable was never used, and
was eventually removed. (Bug #13963)

13.7.5.31 SHOW SLAVE STATUS Syntax

SHOW SLAVE STATUS

This statement provides status information on essential parameters of the slave threads. It requires either
the SUPER or REPLICATION CLIENT privilege.

If you issue this statement using the mysql client, you can use a \G statement terminator rather than a
semicolon to obtain a more readable vertical layout:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: localhost
 Master_User: root
 Master_Port: 3306
 Connect_Retry: 3
 Master_Log_File: gbichot-bin.005
 Read_Master_Log_Pos: 79
 Relay_Log_File: gbichot-relay-bin.005
 Relay_Log_Pos: 548

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1337

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 Relay_Master_Log_File: gbichot-bin.005
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 79
 Relay_Log_Space: 552
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 8

The following list describes the fields returned by SHOW SLAVE STATUS. For additional information about
interpreting their meanings, see Section 16.1.3.1, “Checking Replication Status”.

• Slave_IO_State

A copy of the State field of the SHOW PROCESSLIST output for the slave I/O thread. This tells you what
the thread is doing: trying to connect to the master, waiting for events from the master, reconnecting
to the master, and so on. For a listing of possible states, see Section 8.14.6, “Replication Slave I/O
Thread States”. For versions of MySQL prior to 5.0.12, it is necessary to check this field for connection
problems. In those versions, the thread could be running while unsuccessfully trying to connect to
the master; only this field makes you aware of the problem. The state of the SQL thread is not copied
because it is simpler. If it is running, there is no problem; if it is not, you can find the error in the
Last_Error field (described later).

• Master_Host

The master host that the slave is connected to.

• Master_User

The user name of the account used to connect to the master.

• Master_Port

The port used to connect to the master.

• Connect_Retry

The number of seconds between connect retries (default 60). This can be set with the CHANGE MASTER
TO statement or --master-connect-retry option.

• Master_Log_File

The name of the master binary log file from which the I/O thread is currently reading.

• Read_Master_Log_Pos

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1338

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The position in the current master binary log file up to which the I/O thread has read.

• Relay_Log_File

The name of the relay log file from which the SQL thread is currently reading and executing.

• Relay_Log_Pos

The position in the current relay log file up to which the SQL thread has read and executed.

• Relay_Master_Log_File

The name of the master binary log file containing the most recent event executed by the SQL thread.

• Slave_IO_Running

Whether the I/O thread is started and has connected successfully to the master. Internally, the state of
this thread is represented by one of the following three values:

• MYSQL_SLAVE_NOT_RUN. The slave I/O thread is not running. For this state,
Slave_IO_Running is No.

• MYSQL_SLAVE_RUN_NOT_CONNECT. The slave I/O thread is running, but is not connected to a
replication master. For this state, Slave_IO_Running depends on the server version as shown in the
following table.

MySQL Version Slave_IO_Running

4.1 (4.1.13 and earlier); 5.0 (5.0.11 and earlier) Yes

4.1 (4.1.14 and later); 5.0 (5.0.12 and later) No

5.1 No

5.5 Connecting

• MYSQL_SLAVE_RUN_CONNECT. The slave I/O thread is running, and is connected to a
replication master. For this state, Slave_IO_Running is Yes.

• Slave_SQL_Running

Whether the SQL thread is started.

• Replicate_Do_DB, Replicate_Ignore_DB

The lists of databases that were specified with the --replicate-do-db and --replicate-ignore-
db options, if any.

• Replicate_Do_Table, Replicate_Ignore_Table, Replicate_Wild_Do_Table,
Replicate_Wild_Ignore_Table

The lists of tables that were specified with the --replicate-do-table, --replicate-ignore-
table, --replicate-wild-do-table, and --replicate-wild-ignore-table options, if any.

• Last_Errno, Last_Error

The error number and error message returned by the most recently executed statement. An error
number of 0 and message of the empty string mean “no error.” If the Last_Error value is not empty, it
also appears as a message in the slave's error log. For example:

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1339

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Last_Errno: 1051
Last_Error: error 'Unknown table 'z'' on query 'drop table z'

The message indicates that the table z existed on the master and was dropped there, but it did not exist
on the slave, so DROP TABLE failed on the slave. (This might occur, for example, if you forget to copy
the table to the slave when setting up replication.)

Note

When the slave SQL thread receives an error, it reports the error first, then stops
the SQL thread. This means that there is a small window of time during which
SHOW SLAVE STATUS shows a nonzero value for Last_Errno even though
Slave_SQL_Running still displays Yes.

• Skip_Counter

The current value of the sql_slave_skip_counter system variable. See Section 13.4.2.6, “SET
GLOBAL sql_slave_skip_counter Syntax”.

• Exec_Master_Log_Pos

The position in the current master binary log file to which the SQL thread has read and executed,
marking the start of the next transaction or event to be processed. You can use this value with
the CHANGE MASTER TO statement's MASTER_LOG_POS option when starting a new slave
from an existing slave, so that the new slave reads from this point. The coordinates given by
(Relay_Master_Log_File, Exec_Master_Log_Pos) in the master's binary log correspond to the
coordinates given by (Relay_Log_File, Relay_Log_Pos) in the relay log.

• Relay_Log_Space

The total combined size of all existing relay log files.

• Until_Condition, Until_Log_File, Until_Log_Pos

The values specified in the UNTIL clause of the START SLAVE statement.

Until_Condition has these values:

• None if no UNTIL clause was specified

• Master if the slave is reading until a given position in the master's binary log

• Relay if the slave is reading until a given position in its relay log

Until_Log_File and Until_Log_Pos indicate the log file name and position that define the
coordinates at which the SQL thread stops executing.

• Master_SSL_Allowed, Master_SSL_CA_File, Master_SSL_CA_Path, Master_SSL_Cert,
Master_SSL_Cipher, Master_SSL_Key

These fields show the SSL parameters used by the slave to connect to the master, if any.

Master_SSL_Allowed has these values:

• Yes if an SSL connection to the master is permitted

• No if an SSL connection to the master is not permitted

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1340

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Ignored if an SSL connection is permitted but the slave server does not have SSL support enabled

The values of the other SSL-related fields correspond to the values of the MASTER_SSL_CA,
MASTER_SSL_CAPATH, MASTER_SSL_CERT, MASTER_SSL_CIPHER, and MASTER_SSL_KEY options to
the CHANGE MASTER TO statement. See Section 13.4.2.1, “CHANGE MASTER TO Syntax”.

• Seconds_Behind_Master

This field is an indication of how “late” the slave is:

• When the slave is actively processing updates, this field shows the difference between the current
timestamp on the slave and the original timestamp logged on the master for the event currently being
processed on the slave.

• When no event is currently being processed on the slave, this value is 0.

In essence, this field measures the time difference in seconds between the slave SQL thread and the
slave I/O thread. If the network connection between master and slave is fast, the slave I/O thread is very
close to the master, so this field is a good approximation of how late the slave SQL thread is compared
to the master. If the network is slow, this is not a good approximation; the slave SQL thread may quite
often be caught up with the slow-reading slave I/O thread, so Seconds_Behind_Master often shows
a value of 0, even if the I/O thread is late compared to the master. In other words, this column is useful
only for fast networks.

This time difference computation works even if the master and slave do not have identical clock times,
provided that the difference, computed when the slave I/O thread starts, remains constant from then
on. Any changes—including NTP updates—can lead to clock skews that can make calculation of
Seconds_Behind_Master less reliable.

This field is NULL (undefined or unknown) if the slave SQL thread is not running, or if the slave I/O
thread is not running or is not connected to the master. For example, if the slave I/O thread is running
but is not connected to the master and is sleeping for the number of seconds given by the CHANGE
MASTER TO statement or --master-connect-retry option (default 60) before reconnecting, the
value is NULL. This is because the slave cannot know what the master is doing, and so cannot say
reliably how late it is.

The value of Seconds_Behind_Master is based on the timestamps stored in events, which are
preserved through replication. This means that if a master M1 is itself a slave of M0, any event from M1's
binary log that originates from M0's binary log has M0's timestamp for that event. This enables MySQL
to replicate TIMESTAMP successfully. However, the problem for Seconds_Behind_Master is that if
M1 also receives direct updates from clients, the Seconds_Behind_Master value randomly fluctuates
because sometimes the last event from M1 originates from M0 and sometimes is the result of a direct
update on M1.

13.7.5.32 SHOW STATUS Syntax

SHOW [GLOBAL | SESSION] STATUS
 [LIKE 'pattern' | WHERE expr]

SHOW STATUS provides server status information (see Section 5.1.6, “Server Status Variables”). This
statement does not require any privilege. It requires only the ability to connect to the server.

Status variable information is also available from the mysqladmin extended-status command (see
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”).

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1341

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For SHOW STATUS, a LIKE clause, if present, indicates which variable names to match. A WHERE clause
can be given to select rows using more general conditions, as discussed in Section 19.18, “Extensions to
SHOW Statements”.

As of MySQL 5.0.2, SHOW STATUS accepts an optional GLOBAL or SESSION variable scope modifier:

• With a GLOBAL modifier, the statement displays the global status values. A global status variable
may represent status for some aspect of the server itself (for example, Aborted_connects), or the
aggregated status over all connections to MySQL (for example, Bytes_received and Bytes_sent). If
a variable has no global value, the session value is displayed.

• With a SESSION modifier, the statement displays the system varaible values that are in effect for the
current connection. If a variable has no session value, the global value is displayed. LOCAL is a synonym
for SESSION.

• If no modifier is present, the default is SESSION.

The scope for each status variable is listed at Section 5.1.6, “Server Status Variables”.

Note

Before MySQL 5.0.2, SHOW STATUS returned global status values. Because the
default as of 5.0.2 is to return session values, this is incompatible with previous
versions. To issue a SHOW STATUS statement that will retrieve global status values
for all versions of MySQL, write it like this:

SHOW /*!50002 GLOBAL */ STATUS;

Partial output is shown here. The list of names and values may be different for your server. The meaning of
each variable is given in Section 5.1.6, “Server Status Variables”.

mysql> SHOW STATUS;
+--------------------------+------------+
| Variable_name | Value |
+--------------------------+------------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_tables	8340
Created_tmp_files	60
...	
Open_tables	1
Open_files	2
Open_streams	0
Opened_tables	44600
Questions	2026873
...	
Table_locks_immediate	1920382
Table_locks_waited	0
Threads_cached	0
Threads_created	30022
Threads_connected	1
Threads_running	1
Uptime	80380
+--------------------------+------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the
pattern:

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1342

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SHOW STATUS LIKE 'Key%';
+--------------------+----------+
| Variable_name | Value |
+--------------------+----------+
Key_blocks_used	14955
Key_read_requests	96854827
Key_reads	162040
Key_write_requests	7589728
Key_writes	3813196
+--------------------+----------+

13.7.5.33 SHOW TABLE STATUS Syntax

SHOW TABLE STATUS [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TABLE STATUS works likes SHOW TABLES, but provides a lot of information about each
non-TEMPORARY table. You can also get this list using the mysqlshow --status db_name command.
The LIKE clause, if present, indicates which table names to match. The WHERE clause can be given
to select rows using more general conditions, as discussed in Section 19.18, “Extensions to SHOW
Statements”.

As of MySQL 5.0.1, this statement also displays information about views.

SHOW TABLE STATUS output has the following columns:

• Name

The name of the table.

• Engine

The storage engine for the table. See Chapter 14, Storage Engines.

• Version

The version number of the table's .frm file.

• Row_format

The row-storage format (Fixed, Dynamic, Compressed, Redundant, Compact). For MyISAM tables,
(Dynamic corresponds to what myisamchk -dvv reports as Packed. Starting with MySQL/InnoDB
5.0.3, the format of InnoDB tables is reported as Redundant or Compact. Prior to 5.0.3, InnoDB tables
are always in the Redundant format.

• Rows

The number of rows. Some storage engines, such as MyISAM, store the exact count. For other storage
engines, such as InnoDB, this value is an approximation, and may vary from the actual value by as
much as 40 to 50%. In such cases, use SELECT COUNT(*) to obtain an accurate count.

The Rows value is NULL for tables in the INFORMATION_SCHEMA database.

• Avg_row_length

The average row length.

• Data_length

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1343

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The length of the data file.

• Max_data_length

The maximum length of the data file. This is the total number of bytes of data that can be stored in the
table, given the data pointer size used.

• Index_length

The length of the index file.

• Data_free

The number of allocated but unused bytes.

• Auto_increment

The next AUTO_INCREMENT value.

• Create_time

When the table was created.

• Update_time

When the data file was last updated. For some storage engines, this value is NULL. For example,
InnoDB stores multiple tables in its tablespace and the data file timestamp does not apply. For MyISAM,
the data file timestamp is used; however, on Windows the timestamp is not updated by updates so the
value is inaccurate.

• Check_time

When the table was last checked. Not all storage engines update this time, in which case the value is
always NULL.

• Collation

The table's character set and collation.

• Checksum

The live checksum value (if any).

• Create_options

Extra options used with CREATE TABLE. The original options supplied when CREATE TABLE is called
are retained and the options reported here may differ from the active table settings and options.

• Comment

The comment used when creating the table (or information as to why MySQL could not access the table
information).

In the table comment, InnoDB tables report the free space of the tablespace to which the table belongs.
For a table located in the shared tablespace, this is the free space of the shared tablespace. If you are
using multiple tablespaces and the table has its own tablespace, the free space is for only that table.
Free space means the number of completely free 1MB extents minus a safety margin. Even if free space
displays as 0, it may be possible to insert rows as long as new extents need not be allocated.

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1344

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For MEMORY tables, the Data_length, Max_data_length, and Index_length values approximate the
actual amount of allocated memory. The allocation algorithm reserves memory in large amounts to reduce
the number of allocation operations.

Beginning with MySQL 5.0.3, for NDBCLUSTER tables, the output of this statement shows appropriate
values for the Avg_row_length and Data_length columns, with the exception that BLOB columns
are not taken into account. In addition, the number of replicas is now shown in the Comment column (as
number_of_replicas).

For views, all the fields displayed by SHOW TABLE STATUS are NULL except that Name indicates the view
name and Comment says view.

13.7.5.34 SHOW TABLES Syntax

SHOW [FULL] TABLES [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TABLES lists the non-TEMPORARY tables in a given database. You can also get this list using the
mysqlshow db_name command. The LIKE clause, if present, indicates which table names to match. The
WHERE clause can be given to select rows using more general conditions, as discussed in Section 19.18,
“Extensions to SHOW Statements”.

Matching performed by the LIKE clause is dependent on the setting of the lower_case_table_names
system variable.

Before MySQL 5.0.1, the output from SHOW TABLES contains a single column of table names. Beginning
with MySQL 5.0.1, this statement also lists any views in the database. As of MySQL 5.0.2, the FULL
modifier is supported such that SHOW FULL TABLES displays a second output column. Values for the
second column are BASE TABLE for a table and VIEW for a view.

If you have no privileges for a base table or view, it does not show up in the output from SHOW TABLES or
mysqlshow db_name.

13.7.5.35 SHOW TRIGGERS Syntax

SHOW TRIGGERS [{FROM | IN} db_name]
 [LIKE 'pattern' | WHERE expr]

SHOW TRIGGERS lists the triggers currently defined for tables in a database (the default database unless
a FROM clause is given). This statement returns results only if you have the SUPER privilege. It was
implemented in MySQL 5.0.10. The LIKE clause, if present, indicates which table names to match (not
trigger names) and causes the statement to display triggers for those tables. The WHERE clause can be
given to select rows using more general conditions, as discussed in Section 19.18, “Extensions to SHOW
Statements”.

For the trigger ins_sum as defined in Section 18.3, “Using Triggers”, the output of this statement is as
shown here:

mysql> SHOW TRIGGERS LIKE 'acc%'\G
*************************** 1. row ***************************
 Trigger: ins_sum
 Event: INSERT
 Table: account
Statement: SET @sum = @sum + NEW.amount
 Timing: BEFORE
 Created: NULL

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1345

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 sql_mode:
 Definer: me@localhost

SHOW TRIGGERS output has the following columns:

• Trigger: The trigger name.

• Event: The type of operation that causes trigger activation. The value is 'INSERT', 'UPDATE', or
'DELETE'.

• Table: The table for which the trigger is defined.

• Statement: The trigger body; that is, the statement executed when the trigger activates.

• Timing: Whether the trigger activates before or after the triggering event. The value is 'BEFORE' or
'AFTER'.

• Created: The value of this column is always NULL.

• sql_mode: The SQL mode in effect when the trigger executes. This column was added in MySQL
5.0.11.

• Definer: The account that created the trigger. This column was added in MySQL 5.0.17.

You must have the SUPER privilege to execute SHOW TRIGGERS.

You can also obtain information about trigger objects from INFORMATION_SCHEMA, which contains a
TRIGGERS table. See Section 19.15, “The INFORMATION_SCHEMA TRIGGERS Table”.

13.7.5.36 SHOW VARIABLES Syntax

SHOW [GLOBAL | SESSION] VARIABLES
 [LIKE 'pattern' | WHERE expr]

SHOW VARIABLES shows the values of MySQL system variables (see Section 5.1.4, “Server System
Variables”). This statement does not require any privilege. It requires only the ability to connect to the
server.

System variable information is also available from the mysqladmin variables command (see
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”).

For SHOW VARIABLES, a LIKE clause, if present, indicates which variable names to match. A WHERE
clause can be given to select rows using more general conditions, as discussed in Section 19.18,
“Extensions to SHOW Statements”.

SHOW VARIABLES accepts an optional GLOBAL or SESSION variable scope modifier:

• With a GLOBAL modifier, the statement displays global system variable values. These are the values
used to initialize the corresponding session variables for new connections to MySQL. If a variable has no
global value, the session value is displayed.

• With a SESSION modifier, the statement displays the system varaible values that are in effect for the
current connection. If a variable has no session value, the global value is displayed. LOCAL is a synonym
for SESSION.

• If no modifier is present, the default is SESSION.

The scope for each system variable is listed at Section 5.1.4, “Server System Variables”.

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1346

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Most system variables can be set at server startup (read-only variables such as version_comment are
exceptions). Many can be changed at runtime with the SET statement. See Section 5.1.5, “Using System
Variables”, and Section 13.7.4, “SET Syntax”.

Partial output is shown here. The list of names and values may differ for your server. Section 5.1.4,
“Server System Variables”, describes the meaning of each variable, and Section 8.12.2, “Tuning Server
Parameters”, provides information about tuning them.

mysql> SHOW VARIABLES;
+---------------------------------+-------------------------------------+
| Variable_name | Value |
+---------------------------------+-------------------------------------+
auto_increment_increment	1
auto_increment_offset	1
automatic_sp_privileges	ON
back_log	50
basedir	/
bdb_cache_size	8388600
bdb_home	/var/lib/mysql/
bdb_log_buffer_size	32768
...	
max_connections	100
max_connect_errors	10
max_delayed_threads	20
max_error_count	64
max_heap_table_size	16777216
max_join_size	4294967295
max_relay_log_size	0
max_sort_length	1024
...	
time_zone	SYSTEM
timed_mutexes	OFF
tmp_table_size	33554432
tmpdir	
transaction_alloc_block_size	8192
transaction_prealloc_size	4096
tx_isolation	REPEATABLE-READ
updatable_views_with_limit	YES
version	5.0.19-Max
version_comment	MySQL Community Edition - Max (GPL)
version_compile_machine	i686
version_compile_os	pc-linux-gnu
wait_timeout	28800
+---------------------------------+-------------------------------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the
pattern. To obtain the row for a specific variable, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the “%” wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking,
because “_” is a wildcard that matches any single character, you should escape it as “_” to match it
literally. In practice, this is rarely necessary.

13.7.5.37 SHOW WARNINGS Syntax

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1347

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SHOW WARNINGS [LIMIT [offset,] row_count]
SHOW COUNT(*) WARNINGS

SHOW WARNINGS is a diagnostic statement that displays information about the conditions (errors,
warnings, and notes) resulting from executing a statement in the current session. Warnings are generated
for DML statements such as INSERT, UPDATE, and LOAD DATA INFILE as well as DDL statements such
as CREATE TABLE and ALTER TABLE.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.8, “SELECT
Syntax”.

SHOW WARNINGS is also used following EXPLAIN EXTENDED, to display the extra information generated
by EXPLAIN when the EXTENDED keyword is used. See Section 8.8.3, “EXPLAIN EXTENDED Output
Format”.

SHOW WARNINGS displays information about the conditions resulting from the most recent statement in
the current session that generated messages. It shows nothing if the most recent statement used a table
and generated no messages. (That is, statements that use a table but generate no messages clear the
message list.) Statements that do not use tables and do not generate messages have no effect on the
message list.

The SHOW COUNT(*) WARNINGS diagnostic statement displays the total number of errors, warnings, and
notes. You can also retrieve this number from the warning_count system variable:

SHOW COUNT(*) WARNINGS;
SELECT @@warning_count;

A related diagnostic statement, SHOW ERRORS, shows only error conditions (it excludes warnings
and notes), and SHOW COUNT(*) ERRORS statement displays the total number of errors. See
Section 13.7.5.14, “SHOW ERRORS Syntax”.

Here is a simple example that shows data-conversion warnings for INSERT:

mysql> CREATE TABLE t1 (a TINYINT NOT NULL, b CHAR(4));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t1 VALUES(10,'mysql'), (NULL,'test'), (300,'xyz');
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1265
Message: Data truncated for column 'b' at row 1
*************************** 2. row ***************************
 Level: Warning
 Code: 1048
Message: Column 'a' cannot be null
*************************** 3. row ***************************
 Level: Warning
 Code: 1264
Message: Out of range value adjusted for column 'a' at row 3
3 rows in set (0.00 sec)

The max_error_count system variable controls the maximum number of error, warning, and note
messages for which the server stores information, and thus the number of messages that SHOW

SHOW Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1348

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

WARNINGS displays. To change the number of messages the server can store, change the value of
max_error_count. The default is 64.

max_error_count controls only how many messages are stored, not how many are counted. The
value of warning_count is not limited by max_error_count, even if the number of messages
generated exceeds max_error_count. The following example demonstrates this. The ALTER TABLE
statement produces three warning messages (strict SQL mode is disabled for the example to prevent
an error from occuring after a single conversion issue). Only one message is stored and displayed
because max_error_count has been set to 1, but all three are counted (as shown by the value of
warning_count):

mysql> SHOW VARIABLES LIKE 'max_error_count';
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| max_error_count | 64 |
+-----------------+-------+
1 row in set (0.00 sec)

mysql> SET max_error_count=1, sql_mode = '';
Query OK, 0 rows affected (0.00 sec)

mysql> ALTER TABLE t1 MODIFY b CHAR;
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1263 | Data truncated for column 'b' at row 1 |
+---------+------+--+
1 row in set (0.00 sec)

mysql> SELECT @@warning_count;
+-----------------+
| @@warning_count |
+-----------------+
| 3 |
+-----------------+
1 row in set (0.01 sec)

To disable message storage, set max_error_count to 0. In this case, warning_count still indicates
how many warnings occurred, but messages are not stored and cannot be displayed.

The sql_notes system variable controls whether note messages increment warning_count and
whether the server stores them. By default, sql_notes is 1, but if set to 0, notes do not increment
warning_count and the server does not store them:

mysql> SET sql_notes = 1;
mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS;
+-------+------+-------------------------------+
| Level | Code | Message |
+-------+------+-------------------------------+
| Note | 1051 | Unknown table 'no_such_table' |
+-------+------+-------------------------------+
1 row in set (0.00 sec)

mysql> SET sql_notes = 0;
mysql> DROP TABLE IF EXISTS test.no_such_table;

Other Administrative Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1349

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Query OK, 0 rows affected (0.00 sec)
mysql> SHOW WARNINGS;
Empty set (0.00 sec)

The MySQL server sends to each client a count indicating the total number of errors, warnings, and
notes resulting from the most recent statement executed by that client. From the C API, this value can be
obtained by calling mysql_warning_count(). See Section 20.6.7.72, “mysql_warning_count()”.

In the mysql client, you can enable and disable automatic warnings display using the warnings
and nowarning commands, respectively, or their shortcuts, \W and \w (see Section 4.5.1.2, “mysql
Commands”). For example:

mysql> \W
Show warnings enabled.
mysql> SELECT 1/0;
+------+
| 1/0 |
+------+
| NULL |
+------+
1 row in set, 1 warning (0.03 sec)

Warning (Code 1365): Division by 0
mysql> \w
Show warnings disabled.

13.7.6 Other Administrative Statements

13.7.6.1 CACHE INDEX Syntax

CACHE INDEX
 tbl_index_list [, tbl_index_list] ...
 IN key_cache_name

tbl_index_list:
 tbl_name [[INDEX|KEY] (index_name[, index_name] ...)]

The CACHE INDEX statement assigns table indexes to a specific key cache. It is used only for MyISAM
tables. After the indexes have been assigned, they can be preloaded into the cache if desired with LOAD
INDEX INTO CACHE.

The following statement assigns indexes from the tables t1, t2, and t3 to the key cache named
hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
test.t1	assign_to_keycache	status	OK
test.t2	assign_to_keycache	status	OK
test.t3	assign_to_keycache	status	OK
+---------+--------------------+----------+----------+

The syntax of CACHE INDEX enables you to specify that only particular indexes from a table should be
assigned to the cache. The current implementation assigns all the table's indexes to the cache, so there is
no reason to specify anything other than the table name.

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a parameter
setting statement or in the server parameter settings. For example:

Other Administrative Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1350

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

Key cache parameters can be accessed as members of a structured system variable. See Section 5.1.5.1,
“Structured System Variables”.

A key cache must exist before you can assign indexes to it:

mysql> CACHE INDEX t1 IN non_existent_cache;
ERROR 1284 (HY000): Unknown key cache 'non_existent_cache'

By default, table indexes are assigned to the main (default) key cache created at the server startup. When
a key cache is destroyed, all indexes assigned to it become assigned to the default key cache again.

Index assignment affects the server globally: If one client assigns an index to a given cache, this cache is
used for all queries involving the index, no matter which client issues the queries.

13.7.6.2 FLUSH Syntax

FLUSH [NO_WRITE_TO_BINLOG | LOCAL]
 flush_option [, flush_option] ...

The FLUSH statement has several variant forms that clear or reload various internal caches, flush tables, or
acquire locks. To execute FLUSH, you must have the RELOAD privilege.

By default, the server writes FLUSH statements to the binary log so that they replicate to replication slaves.
To suppress logging, specify the optional NO_WRITE_TO_BINLOG keyword or its alias LOCAL.

Note

FLUSH LOGS, FLUSH MASTER, FLUSH SLAVE, and FLUSH TABLES WITH READ
LOCK are not written to the binary log in any case because they would cause
problems if replicated to a slave.

Sending a SIGHUP signal to the server causes several flush operations to occur that are similar to various
forms of the FLUSH statement. See Section 5.1.9, “Server Response to Signals”.

The FLUSH statement causes an implicit commit. See Section 13.3.3, “Statements That Cause an Implicit
Commit”.

The RESET statement is similar to FLUSH. See Section 13.7.6.5, “RESET Syntax”, for information about
using the RESET statement with replication.

flush_option can be any of the following items:

• DES_KEY_FILE

Reloads the DES keys from the file that was specified with the --des-key-file option at server
startup time.

• HOSTS

Empties the host cache. You should flush the host cache if some of your hosts change IP address or if
the error message Host 'host_name' is blocked occurs. (See Section B.5.2.6, “Host 'host_name'
is blocked”.) When more than max_connect_errors errors occur successively for a given host while

Other Administrative Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1351

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

connecting to the MySQL server, MySQL assumes that something is wrong and blocks the host from
further connection requests. Flushing the host cache enables further connection attempts from the host.
The default value of max_connect_errors is 10. To avoid this error message, start the server with
max_connect_errors set to a large value.

• LOGS

Closes and reopens all log files. If binary logging is enabled, the sequence number of the binary log file
is incremented by one relative to the previous file.

If you execute FLUSH LOGS and mysqld is writing the error log to a file (for example, if it was started
with the --log-error option), log file renaming occurs as described in Section 5.4.1, “The Error Log”.

• MASTER

Deletes all binary logs, resets the binary log index file and creates a new binary log. FLUSH MASTER
is deprecated in favor of RESET MASTER. FLUSH MASTER is still accepted in MySQL 5.0 for backward
compatibility, but is removed in MySQL 5.6. See Section 13.4.1.2, “RESET MASTER Syntax”.

• PRIVILEGES

Reloads the privileges from the grant tables in the mysql database.

The server caches information in memory as a result of GRANT and CREATE USER statements. This
memory is not released by the corresponding REVOKE and DROP USER statements, so for a server that
executes many instances of the statements that cause caching, there will be an increase in memory use.
This cached memory can be freed with FLUSH PRIVILEGES.

• QUERY CACHE

Defragment the query cache to better utilize its memory. FLUSH QUERY CACHE does not remove any
queries from the cache, unlike FLUSH TABLES or RESET QUERY CACHE.

• SLAVE

Resets all replication slave parameters, including relay log files and replication position in the master's
binary logs. FLUSH SLAVE is deprecated in favor of RESET SLAVE. FLUSH SLAVE is still accepted in
MySQL 5.0 for backward compatibility, but is removed in MySQL 5.6. See Section 13.4.2.5, “RESET
SLAVE Syntax”.

• STATUS

This option adds the current thread's session status variable values to the global values and resets the
session values to zero. Some global variables may be reset to zero as well. It also resets the counters
for key caches (default and named) to zero and sets Max_used_connections to the current number
of open connections. This is something you should use only when debugging a query. See Section 1.7,
“How to Report Bugs or Problems”.

• TABLES

FLUSH TABLES flushes tables, and, depending on the variant used, acquires locks. The permitted
syntax is discussed later in this section.

• USER_RESOURCES

Resets all per-hour user resources to zero. This enables clients that have reached their hourly
connection, query, or update limits to resume activity immediately. FLUSH USER_RESOURCES does not

Other Administrative Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1352

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

apply to the limit on maximum simultaneous connections. See Section 6.3.4, “Setting Account Resource
Limits”.

The mysqladmin utility provides a command-line interface to some flush operations, using commands
such as flush-hosts, flush-logs, flush-privileges, flush-status, and flush-tables. See
Section 4.5.2, “mysqladmin — Client for Administering a MySQL Server”.

Note

It is not possible to issue FLUSH statements within stored functions or triggers.
However, you may use FLUSH in stored procedures, so long as these are not
called from stored functions or triggers. See Section C.1, “Restrictions on Stored
Programs”.

FLUSH TABLES Syntax

FLUSH TABLES has several forms, described following. FLUSH TABLE is a synonym for FLUSH TABLES,
except that TABLE does not work with the WITH READ LOCK variant.

• FLUSH TABLES

Closes all open tables, forces all tables in use to be closed, and flushes the query cache. FLUSH
TABLES also removes all query results from the query cache, like the RESET QUERY CACHE statement.

• FLUSH TABLES tbl_name [, tbl_name] ...

With a list of one or more comma-separated table names, this statement is like FLUSH TABLES with no
names except that the server flushes only the named tables. No error occurs if a named table does not
exist.

• FLUSH TABLES WITH READ LOCK

Closes all open tables and locks all tables for all databases with a global read lock. This is a very
convenient way to get backups if you have a file system such as Veritas or ZFS that can take snapshots
in time. Use UNLOCK TABLES to release the lock.

FLUSH TABLES WITH READ LOCK acquires a global read lock and not table locks, so it is not subject
to the same behavior as LOCK TABLES and UNLOCK TABLES with respect to table locking and implicit
commits:

• UNLOCK TABLES implicitly commits any active transaction only if any tables currently have been
locked with LOCK TABLES. The commit does not occur for UNLOCK TABLES following FLUSH
TABLES WITH READ LOCK because the latter statement does not acquire table locks.

• Beginning a transaction causes table locks acquired with LOCK TABLES to be released, as though you
had executed UNLOCK TABLES. Beginning a transaction does not release a global read lock acquired
with FLUSH TABLES WITH READ LOCK.

13.7.6.3 KILL Syntax

KILL [CONNECTION | QUERY] processlist_id

Each connection to mysqld runs in a separate thread. You can kill a thread with the KILL
processlist_id statement.

Thread processlist identifiers can be determined from the Id column of SHOW PROCESSLIST output. The
value for the current thread is returned by the CONNECTION_ID() function.

Other Administrative Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1353

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In MySQL 5.0.0, KILL permits an optional CONNECTION or QUERY modifier:

• KILL CONNECTION is the same as KILL with no modifier: It terminates the connection associated with
the given processlist_id, after terminating any statement the connection is executing.

• KILL QUERY terminates the statement the connection is currently executing, but leaves the connection
itself intact.

If you have the PROCESS privilege, you can see all threads. If you have the SUPER privilege, you can kill all
threads and statements. Otherwise, you can see and kill only your own threads and statements.

You can also use the mysqladmin processlist and mysqladmin kill commands to examine and
kill threads.

Note

You cannot use KILL with the Embedded MySQL Server library because the
embedded server merely runs inside the threads of the host application. It does not
create any connection threads of its own.

When you use KILL, a thread-specific kill flag is set for the thread. In most cases, it might take some time
for the thread to die because the kill flag is checked only at specific intervals:

• During SELECT operations, for ORDER BY and GROUP BY loops, the flag is checked after reading a
block of rows. If the kill flag is set, the statement is aborted.

• During ALTER TABLE operations, the kill flag is checked before each block of rows are read from the
original table. If the kill flag was set, the statement is aborted and the temporary table is deleted.

• During UPDATE or DELETE operations, the kill flag is checked after each block read and after each
updated or deleted row. If the kill flag is set, the statement is aborted. If you are not using transactions,
the changes are not rolled back.

• GET_LOCK() aborts and returns NULL.

• An INSERT DELAYED thread quickly flushes (inserts) all rows it has in memory and then terminates.

• If the thread is in the table lock handler (state: Locked), the table lock is quickly aborted.

• If the thread is waiting for free disk space in a write call, the write is aborted with a “disk full” error
message.

Warning

Killing a REPAIR TABLE or OPTIMIZE TABLE operation on a MyISAM table results
in a table that is corrupted and unusable. Any reads or writes to such a table fail
until you optimize or repair it again (without interruption).

13.7.6.4 LOAD INDEX INTO CACHE Syntax

LOAD INDEX INTO CACHE
 tbl_index_list [, tbl_index_list] ...

tbl_index_list:
 tbl_name
 [[INDEX|KEY] (index_name[, index_name] ...)]
 [IGNORE LEAVES]

MySQL Utility Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1354

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The LOAD INDEX INTO CACHE statement preloads a table index into the key cache to which it has been
assigned by an explicit CACHE INDEX statement, or into the default key cache otherwise. LOAD INDEX
INTO CACHE is used only for MyISAM tables.

The IGNORE LEAVES modifier causes only blocks for the nonleaf nodes of the index to be preloaded.

The following statement preloads nodes (index blocks) of indexes for the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

This statement preloads all index blocks from t1. It preloads only blocks for the nonleaf nodes from t2.

The syntax of LOAD INDEX INTO CACHE enables you to specify that only particular indexes from a table
should be preloaded. The current implementation preloads all the table's indexes into the cache, so there is
no reason to specify anything other than the table name.

LOAD INDEX INTO CACHE ... IGNORE LEAVES fails unless all indexes in a table have the same
block size. (Prior to MySQL 5.0.87, it fails even without IGNORE LEAVES.) You can determine index block
sizes for a table by using myisamchk -dv and checking the Blocksize column.

13.7.6.5 RESET Syntax

RESET reset_option [, reset_option] ...

The RESET statement is used to clear the state of various server operations. You must have the RELOAD
privilege to execute RESET.

RESET acts as a stronger version of the FLUSH statement. See Section 13.7.6.2, “FLUSH Syntax”.

The RESET statement causes an implicit commit. See Section 13.3.3, “Statements That Cause an Implicit
Commit”.

reset_option can be any of the following:

• MASTER

Deletes all binary logs listed in the index file, resets the binary log index file to be empty, and creates a
new binary log file.

• QUERY CACHE

Removes all query results from the query cache.

• SLAVE

Makes the slave forget its replication position in the master binary logs. Also resets the relay log by
deleting any existing relay log files and beginning a new one.

13.8 MySQL Utility Statements

13.8.1 DESCRIBE Syntax

EXPLAIN Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1355

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The DESCRIBE and EXPLAIN statements are synonyms, used either to obtain information about table
structure or query execution plans. For more information, see Section 13.8.2, “EXPLAIN Syntax”.

13.8.2 EXPLAIN Syntax

{EXPLAIN | DESCRIBE | DESC}
 tbl_name [col_name | wild]

{EXPLAIN | DESCRIBE | DESC}
 [EXTENDED] SELECT select_options

The DESCRIBE and EXPLAIN statements are synonyms. In practice, the DESCRIBE keyword is more often
used to obtain information about table structure, whereas EXPLAIN is used to obtain a query execution
plan (that is, an explanation of how MySQL would execute a query). The following discussion uses the
DESCRIBE and EXPLAIN keywords in accordance with those uses, but the MySQL parser treats them as
completely synonymous.

Obtaining Table Structure Information

DESCRIBE provides information about the columns in a table:

mysql> DESCRIBE City;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
Id	int(11)	NO	PRI	NULL	auto_increment
Name	char(35)	NO			
Country	char(3)	NO	UNI		
District	char(20)	YES	MUL		
Population	int(11)	NO		0	
+------------+----------+------+-----+---------+----------------+

DESCRIBE is a shortcut for SHOW COLUMNS. As of MySQL 5.0.1, these statements also display information
for views. The description for SHOW COLUMNS provides more information about the output columns. See
Section 13.7.5.5, “SHOW COLUMNS Syntax”.

By default, DESCRIBE displays information about all columns in the table. col_name, if given, is the
name of a column in the table. In this case, the statement displays information only for the named column.
wild, if given, is a pattern string. It can contain the SQL “%” and “_” wildcard characters. In this case,
the statement displays output only for the columns with names matching the string. There is no need to
enclose the string within quotation marks unless it contains spaces or other special characters.

The DESCRIBE statement is provided for compatibility with Oracle.

The SHOW CREATE TABLE, SHOW TABLE STATUS, and SHOW INDEX statements also provide
information about tables. See Section 13.7.5, “SHOW Syntax”.

Obtaining Execution Plan Information

The EXPLAIN statement provides information about how MySQL executes statements:

• When you precede a SELECT statement with the keyword EXPLAIN, MySQL displays information from
the optimizer about the statement execution plan. That is, MySQL explains how it would process the
statement, including information about how tables are joined and in which order. For information about
using EXPLAIN to obtain execution plan information, see Section 8.8.2, “EXPLAIN Output Format”.

HELP Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1356

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• EXPLAIN EXTENDED can be used to obtain additional execution plan information. See Section 8.8.3,
“EXPLAIN EXTENDED Output Format”.

 With the help of EXPLAIN, you can see where you should add indexes to tables so that the statement
executes faster by using indexes to find rows. You can also use EXPLAIN to check whether the optimizer
joins the tables in an optimal order. To give a hint to the optimizer to use a join order corresponding
to the order in which the tables are named in a SELECT statement, begin the statement with SELECT
STRAIGHT_JOIN rather than just SELECT. (See Section 13.2.8, “SELECT Syntax”.)

If you have a problem with indexes not being used when you believe that they should be, run ANALYZE
TABLE to update table statistics, such as cardinality of keys, that can affect the choices the optimizer
makes. See Section 13.7.2.1, “ANALYZE TABLE Syntax”.

13.8.3 HELP Syntax

HELP 'search_string'

The HELP statement returns online information from the MySQL Reference manual. Its proper operation
requires that the help tables in the mysql database be initialized with help topic information (see
Section 5.1.8, “Server-Side Help”).

The HELP statement searches the help tables for the given search string and displays the result of the
search. The search string is not case sensitive.

The search string can contain the wildcard characters “%” and “_”. These have the same meaning as for
pattern-matching operations performed with the LIKE operator. For example, HELP 'rep%' returns a list
of topics that begin with rep.

The HELP statement understands several types of search strings:

• At the most general level, use contents to retrieve a list of the top-level help categories:

HELP 'contents'

• For a list of topics in a given help category, such as Data Types, use the category name:

HELP 'data types'

• For help on a specific help topic, such as the ASCII() function or the CREATE TABLE statement, use
the associated keyword or keywords:

HELP 'ascii'
HELP 'create table'

In other words, the search string matches a category, many topics, or a single topic. You cannot
necessarily tell in advance whether a given search string will return a list of items or the help information for
a single help topic. However, you can tell what kind of response HELP returned by examining the number
of rows and columns in the result set.

The following descriptions indicate the forms that the result set can take. Output for the example
statements is shown using the familiar “tabular” or “vertical” format that you see when using the mysql
client, but note that mysql itself reformats HELP result sets in a different way.

• Empty result set

HELP Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1357

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

No match could be found for the search string.

• Result set containing a single row with three columns

This means that the search string yielded a hit for the help topic. The result has three columns:

• name: The topic name.

• description: Descriptive help text for the topic.

• example: Usage example or examples. This column might be blank.

Example: HELP 'replace'

Yields:

name: REPLACE
description: Syntax:
REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str
replaced by the string to_str. REPLACE() performs a case-sensitive
match when searching for from_str.
example: mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
 -> 'WwWwWw.mysql.com'

• Result set containing multiple rows with two columns

This means that the search string matched many help topics. The result set indicates the help topic
names:

• name: The help topic name.

• is_it_category: Y if the name represents a help category, N if it does not. If it does not, the name
value when specified as the argument to the HELP statement should yield a single-row result set
containing a description for the named item.

Example: HELP 'status'

Yields:

+-----------------------+----------------+
| name | is_it_category |
+-----------------------+----------------+
SHOW	N
SHOW ENGINE	N
SHOW INNODB STATUS	N
SHOW MASTER STATUS	N
SHOW PROCEDURE STATUS	N
SHOW SLAVE STATUS	N
SHOW STATUS	N
SHOW TABLE STATUS	N
+-----------------------+----------------+

• Result set containing multiple rows with three columns

This means the search string matches a category. The result set contains category entries:

• source_category_name: The help category name.

USE Syntax

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1358

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• name: The category or topic name

• is_it_category: Y if the name represents a help category, N if it does not. If it does not, the name
value when specified as the argument to the HELP statement should yield a single-row result set
containing a description for the named item.

Example: HELP 'functions'

Yields:

+----------------------+-------------------------+----------------+
| source_category_name | name | is_it_category |
+----------------------+-------------------------+----------------+
Functions	CREATE FUNCTION	N
Functions	DROP FUNCTION	N
Functions	Bit Functions	Y
Functions	Comparison operators	Y
Functions	Control flow functions	Y
Functions	Date and Time Functions	Y
Functions	Encryption Functions	Y
Functions	Information Functions	Y
Functions	Logical operators	Y
Functions	Miscellaneous Functions	Y
Functions	Numeric Functions	Y
Functions	String Functions	Y
+----------------------+-------------------------+----------------+

If you intend to use the HELP statement while other tables are locked with LOCK TABLES, you must also
lock the required mysql.help_xxx tables.

13.8.4 USE Syntax

USE db_name

The USE db_name statement tells MySQL to use the db_name database as the default (current) database
for subsequent statements. The database remains the default until the end of the session or another USE
statement is issued:

USE db1;
SELECT COUNT(*) FROM mytable; # selects from db1.mytable
USE db2;
SELECT COUNT(*) FROM mytable; # selects from db2.mytable

Making a particular database the default by means of the USE statement does not preclude you from
accessing tables in other databases. The following example accesses the author table from the db1
database and the editor table from the db2 database:

USE db1;
SELECT author_name,editor_name FROM author,db2.editor
 WHERE author.editor_id = db2.editor.editor_id;

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1359

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 14 Storage Engines

Table of Contents
14.1 The MyISAM Storage Engine .. 1362

14.1.1 MyISAM Startup Options .. 1364
14.1.2 Space Needed for Keys ... 1366
14.1.3 MyISAM Table Storage Formats ... 1366
14.1.4 MyISAM Table Problems .. 1369

14.2 The InnoDB Storage Engine .. 1370
14.2.1 Configuring InnoDB .. 1371
14.2.2 InnoDB Startup Options and System Variables .. 1381
14.2.3 Creating and Using InnoDB Tables ... 1405
14.2.4 Changing the Number or Size of InnoDB Redo Log Files ... 1411
14.2.5 Resizing the InnoDB System Tablespace .. 1411
14.2.6 Backing Up and Recovering an InnoDB Database ... 1412
14.2.7 Moving an InnoDB Database to Another Machine .. 1416
14.2.8 InnoDB Transaction Model and Locking .. 1417
14.2.9 InnoDB Multi-Versioning ... 1430
14.2.10 InnoDB Table and Index Structures ... 1431
14.2.11 InnoDB Disk I/O and File Space Management ... 1434
14.2.12 InnoDB Error Handling .. 1436
14.2.13 InnoDB Troubleshooting ... 1437
14.2.14 Limits on InnoDB Tables ... 1449

14.3 The MERGE Storage Engine ... 1452
14.3.1 MERGE Table Advantages and Disadvantages ... 1455
14.3.2 MERGE Table Problems .. 1456

14.4 The MEMORY (HEAP) Storage Engine .. 1458
14.5 The BDB (BerkeleyDB) Storage Engine ... 1460

14.5.1 Operating Systems Supported by BDB .. 1461
14.5.2 Installing BDB .. 1461
14.5.3 BDB Startup Options .. 1462
14.5.4 Characteristics of BDB Tables .. 1463
14.5.5 Restrictions on BDB Tables .. 1465
14.5.6 Errors That May Occur When Using BDB Tables ... 1465

14.6 The EXAMPLE Storage Engine ... 1466
14.7 The FEDERATED Storage Engine ... 1466

14.7.1 Description of the FEDERATED Storage Engine .. 1467
14.7.2 How to Use FEDERATED Tables ... 1467
14.7.3 Limitations of the FEDERATED Storage Engine ... 1469

14.8 The ARCHIVE Storage Engine .. 1470
14.9 The CSV Storage Engine .. 1471
14.10 The BLACKHOLE Storage Engine ... 1471

MySQL supports several storage engines that act as handlers for different table types. MySQL storage
engines include both those that handle transaction-safe tables and those that handle nontransaction-safe
tables:

• MyISAM manages nontransactional tables. It provides high-speed storage and retrieval, as well as
fulltext searching capabilities. MyISAM is supported in all MySQL configurations, and is the default
storage engine unless you have configured MySQL to use a different one by default.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1360

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The MEMORY storage engine provides in-memory tables. The MERGE storage engine enables a collection
of identical MyISAM tables to be handled as a single table. Like MyISAM, the MEMORY and MERGE storage
engines handle nontransactional tables, and both are also included in MySQL by default.

Note

The MEMORY storage engine formerly was known as the HEAP engine.

• The InnoDB and BDB storage engines provide transaction-safe tables. To maintain data integrity,
InnoDB also supports FOREIGN KEY referential-integrity constraints.

• The EXAMPLE storage engine is a “stub” engine that does nothing. You can create tables with this
engine, but no data can be stored in them or retrieved from them. The purpose of this engine is to serve
as an example in the MySQL source code that illustrates how to begin writing new storage engines. As
such, it is primarily of interest to developers.

• NDBCLUSTER (also known as NDB) is the storage engine used by MySQL Cluster to implement tables
that are partitioned over many computers. It is available in MySQL 5.0 binary distributions. This storage
engine is currently supported on a number of Unix platforms. Experimental support for Windows is
available beginning in MySQL Cluster NDB 7.0; however, we do not intend to backport this functionality
to MySQL 5.0.

MySQL Cluster is covered in a separate chapter of this Manual. See Chapter 17, MySQL Cluster, for
more information.

Note

MySQL Cluster users wishing to upgrade from MySQL 5.0 should instead migrate
to MySQL Cluster NDB 6.3, 7.0, or 7.1; these are based on MySQL 5.1 but
contain the latest improvements and fixes for NDBCLUSTER. The NDBCLUSTER
storage engine is not supported in standard MySQL 5.1 releases.

• The ARCHIVE storage engine is used for storing large amounts of data without indexes with a very small
footprint.

• The CSV storage engine stores data in text files using comma-separated values format.

• The BLACKHOLE storage engine accepts but does not store data and retrievals always return an empty
set.

• The FEDERATED storage engine was added in MySQL 5.0.3. This engine stores data in a remote
database. It works with MySQL only, using the MySQL C Client API.

To determine which storage engines your server supports by using the SHOW ENGINES statement. The
value in the Support column indicates whether an engine can be used. A value of YES, NO, or DEFAULT
indicates that an engine is available, not available, or available and currently set as the default storage
engine.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
 Engine: MyISAM
Support: DEFAULT
Comment: Default engine as of MySQL 3.23 with great performance
*************************** 2. row ***************************
 Engine: MEMORY
Support: YES
Comment: Hash based, stored in memory, useful for temporary tables
*************************** 3. row ***************************

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1361

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 Engine: InnoDB
Support: YES
Comment: Supports transactions, row-level locking, and foreign keys
*************************** 4. row ***************************
 Engine: BerkeleyDB
Support: NO
Comment: Supports transactions and page-level locking
*************************** 5. row ***************************
 Engine: BLACKHOLE
Support: YES
Comment: /dev/null storage engine (anything you write to it disappears)
...

This chapter describes each of the MySQL storage engines except for NDBCLUSTER, which is covered in
Chapter 17, MySQL Cluster.

For information about storage engine support offered in commercial MySQL Server binaries, see MySQL
Enterprise Server 5.1, on the MySQL Web site. The storage engines available might depend on which
edition of Enterprise Server you are using.

For answers to some commonly asked questions about MySQL storage engines, see Section A.2, “MySQL
5.0 FAQ: Storage Engines”.

When you create a new table, you can specify which storage engine to use by adding an ENGINE or TYPE
table option to the CREATE TABLE statement:

CREATE TABLE t (i INT) ENGINE = INNODB;
CREATE TABLE t (i INT) TYPE = MEMORY;

The older term TYPE is supported as a synonym for ENGINE for backward compatibility, but ENGINE is the
preferred term and TYPE is deprecated.

If you omit the ENGINE or TYPE option, the default storage engine is used. Normally, this is MyISAM, but
you can change it by using the --default-storage-engine or --default-table-type server
startup option, or by setting the default-storage-engine or default-table-type option in the
my.cnf configuration file.

You can set the default storage engine to be used during the current session by setting the
storage_engine or table_type variable:

SET storage_engine=MYISAM;
SET table_type=BDB;

When MySQL is installed on Windows using the MySQL Configuration Wizard, the InnoDB or MyISAM
storage engine can be selected as the default. See Section 2.10.3.5, “The Database Usage Dialog”.

To convert a table from one storage engine to another, use an ALTER TABLE statement that indicates the
new engine:

ALTER TABLE t ENGINE = MYISAM;
ALTER TABLE t TYPE = BDB;

See Section 13.1.10, “CREATE TABLE Syntax”, and Section 13.1.4, “ALTER TABLE Syntax”.

If you try to use a storage engine that is not compiled in or that is compiled in but deactivated, MySQL
instead creates a table using the default storage engine. This behavior is convenient when you want to
copy tables between MySQL servers that support different storage engines. (For example, in a replication
setup, perhaps your master server supports transactional storage engines for increased safety, but the
slave servers use only nontransactional storage engines for greater speed.)

http://www.mysql.com/products/enterprise/server.html
http://www.mysql.com/products/enterprise/server.html

The MyISAM Storage Engine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1362

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This automatic substitution of the default storage engine for unavailable engines can be confusing for new
MySQL users. A warning is generated whenever a storage engine is automatically changed.

For new tables, MySQL always creates an .frm file to hold the table and column definitions. The table's
index and data may be stored in one or more other files, depending on the storage engine. The server
creates the .frm file above the storage engine level. Individual storage engines create any additional files
required for the tables that they manage.

A database may contain tables of different types. That is, tables need not all be created with the same
storage engine.

Transaction-safe tables (TSTs) have several advantages over nontransaction-safe tables (NTSTs):

• They are safer. Even if MySQL crashes or you get hardware problems, you can get your data back,
either by automatic recovery or from a backup plus the transaction log.

• You can combine many statements and accept them all at the same time with the COMMIT statement (if
autocommit is disabled).

• You can execute ROLLBACK to ignore your changes (if autocommit is disabled).

• If an update fails, all of your changes are reverted. (With nontransaction-safe tables, all changes that
have taken place are permanent.)

• Transaction-safe storage engines can provide better concurrency for tables that get many updates
concurrently with reads.

You can combine transaction-safe and nontransaction-safe tables in the same statements to get the best
of both worlds. However, although MySQL supports several transaction-safe storage engines, for best
results, you should not mix different storage engines within a transaction with autocommit disabled. For
example, if you do this, changes to nontransaction-safe tables still are committed immediately and cannot
be rolled back. For information about this and other problems that can occur in transactions that use mixed
storage engines, see Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”.

Nontransaction-safe tables have several advantages of their own, all of which occur because there is no
transaction overhead:

• Much faster

• Lower disk space requirements

• Less memory required to perform updates

14.1 The MyISAM Storage Engine
MyISAM is the default storage engine. It is based on the older (and no longer available) ISAM storage
engine but has many useful extensions.

Each MyISAM table is stored on disk in three files. The files have names that begin with the table name and
have an extension to indicate the file type. An .frm file stores the table format. The data file has an .MYD
(MYData) extension. The index file has an .MYI (MYIndex) extension.

To specify explicitly that you want a MyISAM table, indicate that with an ENGINE table option:

CREATE TABLE t (i INT) ENGINE = MYISAM;

The older term TYPE is supported as a synonym for ENGINE for backward compatibility, but ENGINE is the
preferred term and TYPE is deprecated.

The MyISAM Storage Engine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1363

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Normally, it is unnecessary to use ENGINE to specify the MyISAM storage engine. MyISAM is the default
engine unless the default has been changed. To ensure that MyISAM is used in situations where the
default might have been changed, include the ENGINE option explicitly.

You can check or repair MyISAM tables with the mysqlcheck client or myisamchk utility. You can also
compress MyISAM tables with myisampack to take up much less space. See Section 4.5.3, “mysqlcheck
— A Table Maintenance Program”, Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”, and
Section 4.6.5, “myisampack — Generate Compressed, Read-Only MyISAM Tables”.

MyISAM tables have the following characteristics:

• All data values are stored with the low byte first. This makes the data machine and operating system
independent. The only requirements for binary portability are that the machine uses two's-complement
signed integers and IEEE floating-point format. These requirements are widely used among mainstream
machines. Binary compatibility might not be applicable to embedded systems, which sometimes have
peculiar processors.

There is no significant speed penalty for storing data low byte first; the bytes in a table row normally are
unaligned and it takes little more processing to read an unaligned byte in order than in reverse order.
Also, the code in the server that fetches column values is not time critical compared to other code.

• All numeric key values are stored with the high byte first to permit better index compression.

• Large files (up to 63-bit file length) are supported on file systems and operating systems that support
large files.

• There is a limit of 232 (~4.295E+09) rows in a MyISAM table. If you build MySQL with the --with-big-
tables option, the row limitation is increased to (232)2 (1.844E+19) rows. See Section 2.17.3, “MySQL
Source-Configuration Options”. Binary distributions for Unix and Linux are built with this option.

• The maximum number of indexes per MyISAM table is 64. This can be changed by recompiling.
Beginning with MySQL 5.0.18, you can configure the build by invoking configure with the --with-
max-indexes=N option, where N is the maximum number of indexes to permit per MyISAM table. N
must be less than or equal to 128. Before MySQL 5.0.18, you must change the source.

The maximum number of columns per index is 16.

• The maximum key length is 1000 bytes. This can also be changed by changing the source and
recompiling. For the case of a key longer than 250 bytes, a larger key block size than the default of 1024
bytes is used.

• When rows are inserted in sorted order (as when you are using an AUTO_INCREMENT column), the
index tree is split so that the high node only contains one key. This improves space utilization in the
index tree.

• Internal handling of one AUTO_INCREMENT column per table is supported. MyISAM automatically
updates this column for INSERT and UPDATE operations. This makes AUTO_INCREMENT columns
faster (at least 10%). Values at the top of the sequence are not reused after being deleted. (When an
AUTO_INCREMENT column is defined as the last column of a multiple-column index, reuse of values
deleted from the top of a sequence does occur.) The AUTO_INCREMENT value can be reset with ALTER
TABLE or myisamchk.

• Dynamic-sized rows are much less fragmented when mixing deletes with updates and inserts. This is
done by automatically combining adjacent deleted blocks and by extending blocks if the next block is
deleted.

• MyISAM supports concurrent inserts: If a table has no free blocks in the middle of the data file, you can
INSERT new rows into it at the same time that other threads are reading from the table. A free block

Additional Resources

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1364

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

can occur as a result of deleting rows or an update of a dynamic length row with more data than its
current contents. When all free blocks are used up (filled in), future inserts become concurrent again.
See Section 8.11.3, “Concurrent Inserts”.

• You can put the data file and index file in different directories on different physical devices to get more
speed with the DATA DIRECTORY and INDEX DIRECTORY table options to CREATE TABLE. See
Section 13.1.10, “CREATE TABLE Syntax”.

• BLOB and TEXT columns can be indexed.

• NULL values are permitted in indexed columns. This takes 0 to 1 bytes per key.

• Each character column can have a different character set. See Section 10.1, “Character Set Support”.

• There is a flag in the MyISAM index file that indicates whether the table was closed correctly. If mysqld
is started with the --myisam-recover option, MyISAM tables are automatically checked when opened,
and are repaired if the table wasn't closed properly.

• myisamchk marks tables as checked if you run it with the --update-state option. myisamchk --
fast checks only those tables that don't have this mark.

• myisamchk --analyze stores statistics for portions of keys, as well as for entire keys.

• myisampack can pack BLOB and VARCHAR columns.

MyISAM also supports the following features:

• Support for a true VARCHAR type; a VARCHAR column starts with a length stored in one or two bytes.

• Tables with VARCHAR columns may have fixed or dynamic row length.

• The sum of the lengths of the VARCHAR and CHAR columns in a table may be up to 64KB.

• Arbitrary length UNIQUE constraints.

Additional Resources

• A forum dedicated to the MyISAM storage engine is available at http://forums.mysql.com/list.php?21.

14.1.1 MyISAM Startup Options

The following options to mysqld can be used to change the behavior of MyISAM tables. For additional
information, see Section 5.1.3, “Server Command Options”.

Table 14.1 MyISAM Option/Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

bulk_insert_buffer_sizeYes Yes Yes Both Yes

concurrent_insert Yes Yes Yes Global Yes

delay-key-write Yes Yes Global Yes

- Variable:
delay_key_write

 Yes Global Yes

have_rtree_keys Yes Global No

key_buffer_size Yes Yes Yes Global Yes

log-isam Yes Yes

http://forums.mysql.com/list.php?21

MyISAM Startup Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1365

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

myisam-block-
size

Yes Yes

myisam_data_pointer_sizeYes Yes Yes Global Yes

myisam_max_extra_sort_file_sizeYes Yes Yes Global No

myisam_max_sort_file_sizeYes Yes Yes Global Yes

myisam_mmap_sizeYes Yes Yes Global No

myisam-recover Yes Yes

- Variable:
myisam_recover_options

myisam_recover_options Yes Global No

myisam_repair_threadsYes Yes Yes Both Yes

myisam_sort_buffer_sizeYes Yes Yes Both Yes

myisam_stats_methodYes Yes Yes Both Yes

skip-concurrent-
insert

Yes Yes

- Variable:
concurrent_insert

tmp_table_size Yes Yes Yes Both Yes

• --myisam-recover=mode

Set the mode for automatic recovery of crashed MyISAM tables.

• --delay-key-write=ALL

Don't flush key buffers between writes for any MyISAM table.

Note

If you do this, you should not access MyISAM tables from another program (such
as from another MySQL server or with myisamchk) when the tables are in
use. Doing so risks index corruption. Using --external-locking does not
eliminate this risk.

The following system variables affect the behavior of MyISAM tables. For additional information, see
Section 5.1.4, “Server System Variables”.

• bulk_insert_buffer_size

The size of the tree cache used in bulk insert optimization.

Note

This is a limit per thread!

• myisam_max_sort_file_size

The maximum size of the temporary file that MySQL is permitted to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA INFILE). If the file size would be larger

Space Needed for Keys

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1366

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

than this value, the index is created using the key cache instead, which is slower. The value is given in
bytes.

• myisam_sort_buffer_size

Set the size of the buffer used when recovering tables.

Automatic recovery is activated if you start mysqld with the --myisam-recover option. In this case,
when the server opens a MyISAM table, it checks whether the table is marked as crashed or whether the
open count variable for the table is not 0 and you are running the server with external locking disabled. If
either of these conditions is true, the following happens:

• The server checks the table for errors.

• If the server finds an error, it tries to do a fast table repair (with sorting and without re-creating the data
file).

• If the repair fails because of an error in the data file (for example, a duplicate-key error), the server tries
again, this time re-creating the data file.

• If the repair still fails, the server tries once more with the old repair option method (write row by row
without sorting). This method should be able to repair any type of error and has low disk space
requirements.

If the recovery wouldn't be able to recover all rows from previously completed statements and you didn't
specify FORCE in the value of the --myisam-recover option, automatic repair aborts with an error
message in the error log:

Error: Couldn't repair table: test.g00pages

If you specify FORCE, a warning like this is written instead:

Warning: Found 344 of 354 rows when repairing ./test/g00pages

If the automatic recovery value includes BACKUP, the recovery process creates files with names of the form
tbl_name-datetime.BAK. You should have a cron script that automatically moves these files from the
database directories to backup media.

14.1.2 Space Needed for Keys

MyISAM tables use B-tree indexes. You can roughly calculate the size for the index file as (key_length
+4)/0.67, summed over all keys. This is for the worst case when all keys are inserted in sorted order and
the table doesn't have any compressed keys.

String indexes are space compressed. If the first index part is a string, it is also prefix compressed. Space
compression makes the index file smaller than the worst-case figure if a string column has a lot of trailing
space or is a VARCHAR column that is not always used to the full length. Prefix compression is used on
keys that start with a string. Prefix compression helps if there are many strings with an identical prefix.

In MyISAM tables, you can also prefix compress numbers by specifying the PACK_KEYS=1 table option
when you create the table. Numbers are stored with the high byte first, so this helps when you have many
integer keys that have an identical prefix.

14.1.3 MyISAM Table Storage Formats

MyISAM supports three different storage formats. Two of them, fixed and dynamic format, are chosen
automatically depending on the type of columns you are using. The third, compressed format, can be

MyISAM Table Storage Formats

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1367

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

created only with the myisampack utility (see Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”).

When you use CREATE TABLE or ALTER TABLE for a table that has no BLOB or TEXT columns, you can
force the table format to FIXED or DYNAMIC with the ROW_FORMAT table option.

See Section 13.1.10, “CREATE TABLE Syntax”, for information about ROW_FORMAT.

You can decompress (unpack) compressed MyISAM tables using myisamchk --unpack; see
Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”, for more information.

14.1.3.1 Static (Fixed-Length) Table Characteristics

Static format is the default for MyISAM tables. It is used when the table contains no variable-length columns
(VARCHAR, VARBINARY, BLOB, or TEXT). Each row is stored using a fixed number of bytes.

Of the three MyISAM storage formats, static format is the simplest and most secure (least subject to
corruption). It is also the fastest of the on-disk formats due to the ease with which rows in the data file can
be found on disk: To look up a row based on a row number in the index, multiply the row number by the
row length to calculate the row position. Also, when scanning a table, it is very easy to read a constant
number of rows with each disk read operation.

The security is evidenced if your computer crashes while the MySQL server is writing to a fixed-format
MyISAM file. In this case, myisamchk can easily determine where each row starts and ends, so it can
usually reclaim all rows except the partially written one. MyISAM table indexes can always be reconstructed
based on the data rows.

Note

Fixed-length row format is only available for tables without BLOB or TEXT columns.
Creating a table with these columns with an explicit ROW_FORMAT clause will not
raise an error or warning; the format specification will be ignored.

Static-format tables have these characteristics:

• CHAR and VARCHAR columns are space-padded to the specified column width, although the column
type is not altered. This is also true for NUMERIC and DECIMAL columns created before MySQL 5.0.3.
BINARY and VARBINARY columns are space-padded to the column width before MySQL 5.0.15. As of
5.0.15, BINARY and VARBINARY columns are padded with 0x00 bytes.

• Very quick.

• Easy to cache.

• Easy to reconstruct after a crash, because rows are located in fixed positions.

• Reorganization is unnecessary unless you delete a huge number of rows and want to return free disk
space to the operating system. To do this, use OPTIMIZE TABLE or myisamchk -r.

• Usually require more disk space than dynamic-format tables.

14.1.3.2 Dynamic Table Characteristics

Dynamic storage format is used if a MyISAM table contains any variable-length columns (VARCHAR,
VARBINARY, BLOB, or TEXT), or if the table was created with the ROW_FORMAT=DYNAMIC table option.

Dynamic format is a little more complex than static format because each row has a header that indicates
how long it is. A row can become fragmented (stored in noncontiguous pieces) when it is made longer as a
result of an update.

MyISAM Table Storage Formats

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1368

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

You can use OPTIMIZE TABLE or myisamchk -r to defragment a table. If you have fixed-length
columns that you access or change frequently in a table that also contains some variable-length columns, it
might be a good idea to move the variable-length columns to other tables just to avoid fragmentation.

Dynamic-format tables have these characteristics:

• All string columns are dynamic except those with a length less than four.

• Each row is preceded by a bitmap that indicates which columns contain the empty string (for string
columns) or zero (for numeric columns). This does not include columns that contain NULL values. If a
string column has a length of zero after trailing space removal, or a numeric column has a value of zero,
it is marked in the bitmap and not saved to disk. Nonempty strings are saved as a length byte plus the
string contents.

• Much less disk space usually is required than for fixed-length tables.

• Each row uses only as much space as is required. However, if a row becomes larger, it is split into as
many pieces as are required, resulting in row fragmentation. For example, if you update a row with
information that extends the row length, the row becomes fragmented. In this case, you may have to run
OPTIMIZE TABLE or myisamchk -r from time to time to improve performance. Use myisamchk -ei
to obtain table statistics.

• More difficult than static-format tables to reconstruct after a crash, because rows may be fragmented into
many pieces and links (fragments) may be missing.

• The expected row length for dynamic-sized rows is calculated using the following expression:

3
+ (number of columns + 7) / 8
+ (number of char columns)
+ (packed size of numeric columns)
+ (length of strings)
+ (number of NULL columns + 7) / 8

There is a penalty of 6 bytes for each link. A dynamic row is linked whenever an update causes an
enlargement of the row. Each new link is at least 20 bytes, so the next enlargement probably goes in the
same link. If not, another link is created. You can find the number of links using myisamchk -ed. All
links may be removed with OPTIMIZE TABLE or myisamchk -r.

14.1.3.3 Compressed Table Characteristics

Compressed storage format is a read-only format that is generated with the myisampack tool.
Compressed tables can be uncompressed with myisamchk.

Compressed tables have the following characteristics:

• Compressed tables take very little disk space. This minimizes disk usage, which is helpful when using
slow disks (such as CD-ROMs).

• Each row is compressed separately, so there is very little access overhead. The header for a row takes
up one to three bytes depending on the biggest row in the table. Each column is compressed differently.
There is usually a different Huffman tree for each column. Some of the compression types are:

• Suffix space compression.

• Prefix space compression.

• Numbers with a value of zero are stored using one bit.

MyISAM Table Problems

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1369

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• If values in an integer column have a small range, the column is stored using the smallest possible
type. For example, a BIGINT column (eight bytes) can be stored as a TINYINT column (one byte) if
all its values are in the range from -128 to 127.

• If a column has only a small set of possible values, the data type is converted to ENUM.

• A column may use any combination of the preceding compression types.

• Can be used for fixed-length or dynamic-length rows.

Note

While a compressed table is read only, and you cannot therefore update or add
rows in the table, DDL (Data Definition Language) operations are still valid. For
example, you may still use DROP to drop the table, and TRUNCATE TABLE to empty
the table.

14.1.4 MyISAM Table Problems

The file format that MySQL uses to store data has been extensively tested, but there are always
circumstances that may cause database tables to become corrupted. The following discussion describes
how this can happen and how to handle it.

14.1.4.1 Corrupted MyISAM Tables

Even though the MyISAM table format is very reliable (all changes to a table made by an SQL statement
are written before the statement returns), you can still get corrupted tables if any of the following events
occur:

• The mysqld process is killed in the middle of a write.

• An unexpected computer shutdown occurs (for example, the computer is turned off).

• Hardware failures.

• You are using an external program (such as myisamchk) to modify a table that is being modified by the
server at the same time.

• A software bug in the MySQL or MyISAM code.

Typical symptoms of a corrupt table are:

• You get the following error while selecting data from the table:

Incorrect key file for table: '...'. Try to repair it

• Queries don't find rows in the table or return incomplete results.

You can check the health of a MyISAM table using the CHECK TABLE statement, and repair a corrupted
MyISAM table with REPAIR TABLE. When mysqld is not running, you can also check or repair a table with
the myisamchk command. See Section 13.7.2.3, “CHECK TABLE Syntax”, Section 13.7.2.6, “REPAIR
TABLE Syntax”, and Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.

If your tables become corrupted frequently, you should try to determine why this is happening. The
most important thing to know is whether the table became corrupted as a result of a server crash. You
can verify this easily by looking for a recent restarted mysqld message in the error log. If there is
such a message, it is likely that table corruption is a result of the server dying. Otherwise, corruption

The InnoDB Storage Engine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1370

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

may have occurred during normal operation. This is a bug. You should try to create a reproducible test
case that demonstrates the problem. See Section B.5.3.3, “What to Do If MySQL Keeps Crashing”, and
Section 21.3, “Debugging and Porting MySQL”.

14.1.4.2 Problems from Tables Not Being Closed Properly

Each MyISAM index file (.MYI file) has a counter in the header that can be used to check whether a table
has been closed properly. If you get the following warning from CHECK TABLE or myisamchk, it means
that this counter has gone out of sync:

clients are using or haven't closed the table properly

This warning doesn't necessarily mean that the table is corrupted, but you should at least check the table.

The counter works as follows:

• The first time a table is updated in MySQL, a counter in the header of the index files is incremented.

• The counter is not changed during further updates.

• When the last instance of a table is closed (because a FLUSH TABLES operation was performed or
because there is no room in the table cache), the counter is decremented if the table has been updated
at any point.

• When you repair the table or check the table and it is found to be okay, the counter is reset to zero.

• To avoid problems with interaction with other processes that might check the table, the counter is not
decremented on close if it was zero.

In other words, the counter can become incorrect only under these conditions:

• A MyISAM table is copied without first issuing LOCK TABLES and FLUSH TABLES.

• MySQL has crashed between an update and the final close. (The table may still be okay because
MySQL always issues writes for everything between each statement.)

• A table was modified by myisamchk --recover or myisamchk --update-state at the same time
that it was in use by mysqld.

• Multiple mysqld servers are using the table and one server performed a REPAIR TABLE or CHECK
TABLE on the table while it was in use by another server. In this setup, it is safe to use CHECK TABLE,
although you might get the warning from other servers. However, REPAIR TABLE should be avoided
because when one server replaces the data file with a new one, this is not known to the other servers.

In general, it is a bad idea to share a data directory among multiple servers. See Section 5.5, “Running
Multiple MySQL Instances on One Machine”, for additional discussion.

14.2 The InnoDB Storage Engine

Key Advantages of InnoDB

InnoDB is a high-reliability and high-performance storage engine for MySQL. Key advantages of InnoDB
include:

• Its design follows the ACID model, with transactions featuring commit, rollback, and crash-recovery
capabilities to protect user data.

• Row-level locking (without escalation to coarser granularity locks) and Oracle-style consistent reads
increase multi-user concurrency and performance.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_acid
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_transaction
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_commit
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_rollback
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_crash_recovery
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_locking
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_consistent_read

InnoDB Storage Engine Features

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1371

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• InnoDB tables arrange your data on disk to optimize common queries based on primary keys. Each
InnoDB table has a primary key index called the clustered index that organizes the data to minimize I/O
for primary key lookups.

• To maintain data integrity, InnoDB also supports FOREIGN KEY referential-integrity constraints.

• You can freely mix InnoDB tables with tables from other MySQL storage engines, even within the same
statement. For example, you can use a join operation to combine data from InnoDB and MEMORY tables
in a single query.

• InnoDB has been designed for CPU efficiency and maximum performance when processing large data
volumes.

To determine whether your server supports InnoDB use the SHOW ENGINES statement. See
Section 13.7.5.13, “SHOW ENGINES Syntax”.

InnoDB Storage Engine Features

The InnoDB storage engine maintains its own buffer pool for caching data and indexes in main memory.
InnoDB stores its tables and indexes in a tablespace, which may consist of several files (or raw disk
partitions). This is different from, for example, MyISAM tables where each table is stored using separate
files. InnoDB tables can be very large even on operating systems where file size is limited to 2GB.

The Windows Essentials installer makes InnoDB the MySQL default storage engine on Windows, if the
server being installed supports InnoDB.

MySQL Enterprise Backup and InnoDB

The MySQL Enterprise Backup product lets you back up a running MySQL database, including InnoDB
and MyISAM tables, with minimal disruption to operations while producing a consistent snapshot of the
database. When MySQL Enterprise Backup is copying InnoDB tables, reads and writes to both InnoDB
and MyISAM tables can continue. During the copying of MyISAM tables, reads (but not writes) to those
tables are permitted. In addition, MySQL Enterprise Backup supports creating compressed backup files,
and performing backups of subsets of InnoDB tables. In conjunction with MySQL’s binary log, users can
perform point-in-time recovery. MySQL Enterprise Backup is commercially licensed. For a more complete
description of MySQL Enterprise Backup, see Section 22.2, “MySQL Enterprise Backup Overview”.

Additional Resources

A forum dedicated to the InnoDB storage engine is available at http://forums.mysql.com/list.php?22.

InnoDB is published under the same GNU GPL License Version 2 (of June 1991) as MySQL. For more
information on MySQL licensing, see http://www.mysql.com/company/legal/licensing/.

14.2.1 Configuring InnoDB

If you do not want to use InnoDB tables, start the server with the --skip-innodb option to disable the
InnoDB storage engine. In this case, the server will not start if the default storage engine is set to InnoDB.
Use --default-storage-engine to set the default to some other engine if necessary.

Caution

InnoDB is a transaction-safe (ACID compliant) storage engine for MySQL that has
commit, rollback, and crash-recovery capabilities to protect user data. However,
it cannot do so if the underlying operating system or hardware does not work as
advertised. Many operating systems or disk subsystems may delay or reorder write

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_primary_key
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_clustered_index
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key
http://forums.mysql.com/list.php?22
http://www.mysql.com/company/legal/licensing/

Configuring InnoDB

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1372

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

operations to improve performance. On some operating systems, the very fsync()
system call that should wait until all unwritten data for a file has been flushed might
actually return before the data has been flushed to stable storage. Because of this,
an operating system crash or a power outage may destroy recently committed data,
or in the worst case, even corrupt the database because of write operations having
been reordered. If data integrity is important to you, you should perform some “pull-
the-plug” tests before using anything in production. On OS X 10.3 and up, InnoDB
uses a special fcntl() file flush method. Under Linux, it is advisable to disable
the write-back cache.

On ATA/SATA disk drives, a command such hdparm -W0 /dev/hda may work to
disable the write-back cache. Beware that some drives or disk controllers may
be unable to disable the write-back cache.

With regard to InnoDB recovery capabilities that protect user data, InnoDB uses
a file flush technique involving a structure called the doublewrite buffer, which is
enabled by default (innodb_doublewrite=ON). The doublewrite buffer adds
safety to recovery following a crash or power outage, and improves performance
on most varieties of Unix by reducing the need for fsync() operations. It is
recommended that the innodb_doublewrite option remains enabled if you
are concerned with data integrity or possible failures. For additional information
about the doublewrite buffer, see Section 14.2.11, “InnoDB Disk I/O and File Space
Management”.

Overview of InnoDB Tablespace and Log Files

Two important disk-based resources managed by the InnoDB storage engine are its tablespace
data files and its log files. If you specify no InnoDB configuration options, MySQL creates an
auto-extending data file, slightly larger than 10MB, named ibdata1 and two log files named
ib_logfile0 and ib_logfile1 in the MySQL data directory. Their size is given by the size of
the innodb_log_file_size system variable. To get good performance, explicitly provide InnoDB
parameters as discussed in the following examples. Naturally, edit the settings to suit your hardware and
requirements.

Caution

It is not a good idea to configure InnoDB to use data files or log files on NFS
volumes. Otherwise, the files might be locked by other processes and become
unavailable for use by MySQL.

The examples shown here are representative. See Section 14.2.2, “InnoDB Startup Options and System
Variables” for additional information about InnoDB-related configuration parameters.

To set up the InnoDB tablespace files, use the innodb_data_file_path option in the [mysqld]
section of the my.cnf option file. On Windows, you can use my.ini instead. The value of
innodb_data_file_path should be a list of one or more data file specifications. If you name more than
one data file, separate them by semicolon (“;”) characters:

innodb_data_file_path=datafile_spec1[;datafile_spec2]...

For example, the following setting explicitly creates a tablespace having the same characteristics as the
default:

[mysqld]
innodb_data_file_path=ibdata1:10M:autoextend

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_doublewrite_buffer

Configuring InnoDB

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1373

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This setting configures a single 10MB data file named ibdata1 that is auto-extending. No location for the
file is given, so by default, InnoDB creates it in the MySQL data directory.

Sizes are specified using K, M, or G suffix letters to indicate units of KB, MB, or GB.

A tablespace containing a fixed-size 50MB data file named ibdata1 and a 50MB auto-extending file
named ibdata2 in the data directory can be configured like this:

[mysqld]
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

The full syntax for a data file specification includes the file name, its size, and several optional attributes:

file_name:file_size[:autoextend[:max:max_file_size]]

The autoextend and max attributes can be used only for the last data file in the
innodb_data_file_path line.

If you specify the autoextend option for the last data file, InnoDB extends the data file if it runs out of
free space in the tablespace. The increment is 8MB at a time by default. To modify the increment, change
the innodb_autoextend_increment system variable.

If the disk becomes full, you might want to add another data file on another disk. For tablespace
reconfiguration instructions, see Section 14.2.5, “Resizing the InnoDB System Tablespace”.

InnoDB is not aware of the file system maximum file size, so be cautious on file systems where the
maximum file size is a small value such as 2GB. To specify a maximum size for an auto-extending
data file, use the max attribute following the autoextend attribute. The following configuration permits
ibdata1 to grow up to a limit of 500MB:

[mysqld]
innodb_data_file_path=ibdata1:10M:autoextend:max:500M

InnoDB creates tablespace files in the MySQL data directory by default. To specify a location explicitly,
use the innodb_data_home_dir option. For example, to use two files named ibdata1 and ibdata2
but create them in the /ibdata directory, configure InnoDB like this:

[mysqld]
innodb_data_home_dir = /ibdata
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

Note

InnoDB does not create directories, so make sure that the /ibdata directory
exists before you start the server. This is also true of any log file directories that
you configure. Use the Unix or DOS mkdir command to create any necessary
directories.

Make sure that the MySQL server has the proper access rights to create files in the
data directory. More generally, the server must have access rights in any directory
where it needs to create data files or log files.

InnoDB forms the directory path for each data file by textually concatenating the value of
innodb_data_home_dir to the data file name, adding a path name separator (slash or backslash)
between values if necessary. If the innodb_data_home_dir option is not specified in my.cnf at all,

Configuring InnoDB

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1374

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

the default value is the “dot” directory ./, which means the MySQL data directory. (The MySQL server
changes its current working directory to its data directory when it begins executing.)

If you specify innodb_data_home_dir as an empty string, you can specify absolute paths for the data
files listed in the innodb_data_file_path value. The following example is equivalent to the preceding
one:

[mysqld]
innodb_data_home_dir =
innodb_data_file_path=/ibdata/ibdata1:50M;/ibdata/ibdata2:50M:autoextend

Specifying InnoDB Configuration Options

Sample my.cnf file for small systems. Suppose that you have a computer with 512MB RAM and one
hard disk. The following example shows possible configuration parameters in my.cnf or my.ini for
InnoDB, including the autoextend attribute. The example suits most users, both on Unix and Windows,
who do not want to distribute InnoDB data files and log files onto several disks. It creates an auto-
extending data file ibdata1 and two InnoDB log files ib_logfile0 and ib_logfile1 in the MySQL
data directory.

[mysqld]
You can write your other MySQL server options here
...
Data files must be able to hold your data and indexes.
Make sure that you have enough free disk space.
innodb_data_file_path = ibdata1:10M:autoextend
#
Set buffer pool size to 50-80% of your computer's memory
innodb_buffer_pool_size=256M
innodb_additional_mem_pool_size=20M
#
Set the log file size to about 25% of the buffer pool size
innodb_log_file_size=64M
innodb_log_buffer_size=8M
#
innodb_flush_log_at_trx_commit=1

Note that data files must be less than 2GB in some file systems. The combined size of the log files must be
less than 4GB. The combined size of data files must be at least slightly larger than 10MB.

Setting Up the InnoDB System Tablespace

When you create an InnoDB system tablespace for the first time, it is best that you start the MySQL server
from the command prompt. InnoDB then prints the information about the database creation to the screen,
so you can see what is happening. For example, on Windows, if mysqld is located in C:\Program
Files\MySQL\MySQL Server 5.0\bin, you can start it like this:

C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld" --console

If you do not send server output to the screen, check the server's error log to see what InnoDB prints
during the startup process.

For an example of what the information displayed by InnoDB should look like, see Section 14.2.1.1,
“Initializing InnoDB”.

Editing the MySQL Configuration File

You can place InnoDB options in the [mysqld] group of any option file that your server reads when it
starts. The locations for option files are described in Section 4.2.6, “Using Option Files”.

Configuring InnoDB

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1375

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you installed MySQL on Windows using the installation and configuration wizards, the option file will be
the my.ini file located in your MySQL installation directory. See Section 2.10.3.1, “Starting the MySQL
Server Instance Configuration Wizard”.

If your PC uses a boot loader where the C: drive is not the boot drive, your only option is to use the
my.ini file in your Windows directory (typically C:\WINDOWS). You can use the SET command at the
command prompt in a console window to print the value of WINDIR:

C:\> SET WINDIR
windir=C:\WINDOWS

To make sure that mysqld reads options only from a specific file, use the --defaults-file option as
the first option on the command line when starting the server:

mysqld --defaults-file=your_path_to_my_cnf

Sample my.cnf file for large systems. Suppose that you have a Linux computer with 2GB RAM and
three 60GB hard disks at directory paths /, /dr2 and /dr3. The following example shows possible
configuration parameters in my.cnf for InnoDB.

[mysqld]
You can write your other MySQL server options here
...
innodb_data_home_dir =
#
Data files must be able to hold your data and indexes
innodb_data_file_path = /ibdata/ibdata1:2000M;/dr2/ibdata/ibdata2:2000M:autoextend
#
Set buffer pool size to 50-80% of your computer's memory,
but make sure on Linux x86 total memory usage is < 2GB
innodb_buffer_pool_size=1G
innodb_additional_mem_pool_size=20M
innodb_log_group_home_dir = /dr3/iblogs
#
Set the log file size to about 25% of the buffer pool size
innodb_log_file_size=250M
innodb_log_buffer_size=8M
#
innodb_flush_log_at_trx_commit=1
innodb_lock_wait_timeout=50
#
Uncomment the next line if you want to use it
#innodb_thread_concurrency=5

In some cases, database performance improves if the data is not all placed on the same physical disk.
Putting log files on a different disk from data is very often beneficial for performance. The example
illustrates how to do this. It places the two data files on different disks and places the log files on the third
disk. InnoDB fills the tablespace beginning with the first data file. You can also use raw disk partitions (raw
devices) as InnoDB data files, which may speed up I/O. See Section 14.2.1.3, “Using Raw Devices for the
System Tablespace”.

Determining the Maximum Memory Allocation for InnoDB

Warning

On 32-bit GNU/Linux x86, be careful not to set memory usage too high. glibc may
permit the process heap to grow over thread stacks, which crashes your server. It is
a risk if the value of the following expression is close to or exceeds 2GB:

Configuring InnoDB

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1376

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

innodb_buffer_pool_size
+ key_buffer_size
+ max_connections*(sort_buffer_size+read_buffer_size+binlog_cache_size)
+ max_connections*2MB

Each thread uses a stack (often 2MB, but only 256KB in MySQL binaries provided
by Oracle Corporation.) and in the worst case also uses sort_buffer_size +
read_buffer_size additional memory.

By compiling MySQL yourself, you can use up to 64GB of physical memory in 32-
bit Windows. See the description for innodb_buffer_pool_awe_mem_mb in
Section 14.2.2, “InnoDB Startup Options and System Variables”.

Tuning other mysqld server parameters. The following values are typical and suit most users:

[mysqld]
skip-external-locking
max_connections=200
read_buffer_size=1M
sort_buffer_size=1M
#
Set key_buffer to 5 - 50% of your RAM depending on how much
you use MyISAM tables, but keep key_buffer_size + InnoDB
buffer pool size < 80% of your RAM
key_buffer_size=value

On Linux, if the kernel is enabled for large page support, InnoDB can use large pages to allocate memory
for its buffer pool and additional memory pool. See Section 8.12.5.2, “Enabling Large Page Support”.

14.2.1.1 Initializing InnoDB

Suppose that you have installed MySQL and have edited your option file so that it contains the necessary
InnoDB configuration parameters. Before starting MySQL, you should verify that the directories you have
specified for InnoDB data files and log files exist and that the MySQL server has access rights to those
directories. InnoDB does not create directories, only files. Check also that you have enough disk space for
the data and log files.

It is best to run the MySQL server mysqld from the command prompt when you first start the server with
InnoDB enabled, not from mysqld_safe or as a Windows service. When you run from a command
prompt you see what mysqld prints and what is happening. On Unix, just invoke mysqld. On Windows,
start mysqld with the --console option to direct the output to the console window.

When you start the MySQL server after initially configuring InnoDB in your option file, InnoDB creates
your data files and log files, and prints something like this:

InnoDB: The first specified datafile /home/heikki/data/ibdata1
did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file /home/heikki/data/ibdata1 size to 134217728
InnoDB: Database physically writes the file full: wait...
InnoDB: datafile /home/heikki/data/ibdata2 did not exist:
new to be created
InnoDB: Setting file /home/heikki/data/ibdata2 size to 262144000
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file /home/heikki/data/logs/ib_logfile0 did not exist:
new to be created
InnoDB: Setting log file /home/heikki/data/logs/ib_logfile0 size
to 5242880
InnoDB: Log file /home/heikki/data/logs/ib_logfile1 did not exist:
new to be created
InnoDB: Setting log file /home/heikki/data/logs/ib_logfile1 size

Configuring InnoDB

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1377

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

to 5242880
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: Creating foreign key constraint system tables
InnoDB: Foreign key constraint system tables created
InnoDB: Started
mysqld: ready for connections

At this point InnoDB has initialized its tablespace and log files. You can connect to the MySQL server with
the usual MySQL client programs like mysql. When you shut down the MySQL server with mysqladmin
shutdown, the output is like this:

010321 18:33:34 mysqld: Normal shutdown
010321 18:33:34 mysqld: Shutdown Complete
InnoDB: Starting shutdown...
InnoDB: Shutdown completed

You can look at the data file and log directories and you see the files created there. When MySQL is
started again, the data files and log files have been created already, so the output is much briefer:

InnoDB: Started
mysqld: ready for connections

If you add the innodb_file_per_table option to my.cnf, InnoDB stores each table in its own .ibd
file in the same MySQL database directory where the .frm file is created. See Section 14.2.1.4, “InnoDB
File-Per-Table Tablespaces”.

14.2.1.2 Dealing with InnoDB Initialization Problems

If InnoDB prints an operating system error during a file operation, usually the problem has one of the
following causes:

• You did not create the InnoDB data file directory or the InnoDB log directory.

• mysqld does not have access rights to create files in those directories.

• mysqld cannot read the proper my.cnf or my.ini option file, and consequently does not see the
options that you specified.

• The disk is full or a disk quota is exceeded.

• You have created a subdirectory whose name is equal to a data file that you specified, so the name
cannot be used as a file name.

• There is a syntax error in the innodb_data_home_dir or innodb_data_file_path value.

If something goes wrong when InnoDB attempts to initialize its tablespace or its log files, delete all files
created by InnoDB. This means all ibdata files and all ib_logfile files. In case you have already
created some InnoDB tables, delete the corresponding .frm files for these tables (and any .ibd files if
you are using multiple tablespaces) from the MySQL database directories as well. Then you can try the
InnoDB database creation again. It is best to start the MySQL server from a command prompt so that you
see what is happening.

14.2.1.3 Using Raw Devices for the System Tablespace

You can use raw disk partitions as data files in the InnoDB system tablespace. By using a raw disk, you
can perform nonbuffered I/O on Windows and on some Unix systems without file system overhead. This
may improve performance, but you are advised to perform tests with and without raw partitions to verify
whether this is actually so on your system.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_system_tablespace

Configuring InnoDB

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1378

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When you use a raw disk partition, be sure that it has permissions that enable read and write access by
the account used for running the MySQL server. For example, if you run the server as the mysql user, the
partition must permit read and write access to mysql. If you run the server with the --memlock option, the
server must be run as root, so the partition must permit access to root.

The procedures described below involve option file modification. For additional information, see
Section 4.2.6, “Using Option Files”.

Allocating a Raw Disk Partition on Linux and Unix Systems

1. When you create a new data file, specify the keyword newraw immediately after the data file size for
the innodb_data_file_path option. The partition must be at least as large as the size that you
specify. Note that 1MB in InnoDB is 1024 × 1024 bytes, whereas 1MB in disk specifications usually
means 1,000,000 bytes.

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Gnewraw;/dev/hdd2:2Gnewraw

2. Restart the server. InnoDB notices the newraw keyword and initializes the new partition. However,
do not create or change any InnoDB tables yet. Otherwise, when you next restart the server, InnoDB
reinitializes the partition and your changes are lost. (As a safety measure InnoDB prevents users from
modifying data when any partition with newraw is specified.)

3. After InnoDB has initialized the new partition, stop the server, change newraw in the data file
specification to raw:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Graw;/dev/hdd2:2Graw

4. Restart the server. InnoDB now permits changes to be made.

Allocating a Raw Disk Partition on Windows

On Windows systems, the same steps and accompanying guidelines described for Linux and Unix systems
apply except that the innodb_data_file_path setting differs slightly on Windows.

1. When you create a new data file, specify the keyword newraw immediately after the data file size for
the innodb_data_file_path option:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=//./D::10Gnewraw

The //./ corresponds to the Windows syntax of \\.\ for accessing physical drives. In the example
above, D: is the drive letter of the partition.

2. Restart the server. InnoDB notices the newraw keyword and initializes the new partition.

3. After InnoDB has initialized the new partition, stop the server, change newraw in the data file
specification to raw:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=//./D::10Graw

Configuring InnoDB

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1379

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

4. Restart the server. InnoDB now permits changes to be made.

14.2.1.4 InnoDB File-Per-Table Tablespaces

You can store each InnoDB table and its indexes in its own data file. This feature is called “file-per-table
tablespaces” because in effect each table has its own tablespace.

Advantages of File-Per-Table Tablespaces

• You can reclaim disk space when truncating or dropping a table stored in a file-per-table tablepace.
Truncating or dropping tables stored in the system tablespace creates free space internally in the system
tablespace data files (ibdata files) which can only be used for new InnoDB data.

• The TRUNCATE TABLE operation is faster when run on individual .ibd files.

• You can store specific tables on separate storage devices, for I/O optimization, space management, or
backup purposes.

• You can run OPTIMIZE TABLE to compact or recreate a file-per-table tablespace. When you run an
OPTIMIZE TABLE, InnoDB creates a new .ibd file with a temporary name, using only the space
required to store actual data. When the optimization is complete, InnoDB removes the old .ibd file
and replaces it with the new one. If the previous .ibd file grew significantly but the actual data only
accounted for a portion of its size, running OPTIMIZE TABLE can reclaim the unused space.

• You can move individual InnoDB tables rather than entire databases.

• You can enable more efficient storage for tables with large BLOB or TEXT columns using the dynamic
row format.

• File-per-table tablespaces may improve chances for a successful recovery and save time when a
corruption occurs, when a server cannot be restarted, or when backup and binary logs are unavailable.

• You can back up or restore a single table quickly, without interrupting the use of other InnoDB tables.

• You can excluded tables stored in file-per-table tablespaces from a backup. This is beneficial if you have
tables that require backup less frequently or on a different schedule.

• File-per-table tablespaces are convenient for per-table status reporting when copying or backing up
tables.

• You can monitor table size at a file system level, without accessing MySQL.

• Common Linux file systems do not permit concurrent writes to a single file when
innodb_flush_method is set to O_DIRECT. As a result, there are possible performance
improvements when using innodb_file_per_table in conjunction with innodb_flush_method.

• The system tablespace stores the data dictionary and undo logs, and has a 64TB size limit. By
comparison, each file-per-table tablespace has a 64TB size limit, which provides you with room for
growth. See Section C.7.3, “Limits on Table Size” for related information.

Potential Disadvantages of File-Per-Table Tablespaces

• With file-per-table tablespaces, each table may have unused space, which can only be utilized by rows
of the same table. This could lead to wasted space if not properly managed.

• fsync operations must run on each open table rather than on a one file. Because there is a separate
fsync operation for each file, write operations on multiple tables cannot be combined into a single I/O
operation. This may require InnoDB to perform a higher total number of fsync operations.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_ibdata_file
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_dynamic_row_format
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_dynamic_row_format

Configuring InnoDB

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1380

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• mysqld must keep one open file handle per table, which may impact performance if you have numerous
tables in file-per-table tablespaces.

• More file descriptors are used.

• If backward compatibility with MySQL 5.1 is a concern, be aware that enabling
innodb_file_per_table means that ALTER TABLE will move InnoDB tables from the system
tablespace to individual .ibd files.

• If many tables are growing there is potential for more fragmentation which can impede DROP TABLE and
table scan performance. However, when fragmentation is managed, having files in their own tablespace
can improve performance.

• The buffer pool is scanned when dropping a file-per-table tablespace, which can take several seconds
for buffer pools that are tens of gigabytes in size. The scan is performed with a broad internal lock, which
may delay other operations. Tables in the system tablespace are not affected.

• The innodb_autoextend_increment variable, which defines increment size (in MB) for extending
the size of an auto-extending shared tablespace file when it becomes full, does not apply to file-per-table
tablespace files, which are auto-extending regardless of the innodb_autoextend_increment setting.
The initial extensions are by small amounts, after which extensions occur in increments of 4MB.

Enabling and Disabling File-Per-Table Tablespaces

To enable file-per-table tablespaces, start the server with the --innodb_file_per_table option. For
example, add a line to the [mysqld] section of my.cnf:

[mysqld]
innodb_file_per_table

With innodb_file_per_table enabled, InnoDB stores each newly created table in its own
tbl_name.ibd file in the database directory where the table belongs. This is similar to what the MyISAM
storage engine does, but MyISAM divides the table into a tbl_name.MYD data file and an tbl_name.MYI
index file. For InnoDB, the data and the indexes are stored together in the .ibd file. The tbl_name.frm
file is still created as usual.

You cannot freely move .ibd files between database directories as you can with MyISAM table files. This
is because the table definition that is stored in the InnoDB shared tablespace includes the database name,
and because InnoDB must preserve the consistency of transaction IDs and log sequence numbers.

If you remove the innodb_file_per_table line from my.cnf and restart the server, newly created
InnoDB tables are created inside the shared tablespace files again.

The --innodb_file_per_table option affects only table creation, not access to existing tables. If you
start the server with this option, new tables are created using .ibd files, but you can still access tables
that exist in the shared tablespace. If you start the server without this option, new tables are created in the
shared tablespace, but you can still access tables created in file-per-table tablespaces.

Note

InnoDB requires the shared tablespace to store its internal data dictionary and
undo logs. The .ibd files alone are not sufficient for InnoDB to operate.

To move an .ibd file and the associated table from one database to another, use a RENAME TABLE
statement:

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1381

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

RENAME TABLE db1.tbl_name TO db2.tbl_name;

If you have a “clean” backup of an .ibd file, you can restore it to the MySQL installation from which it
originated as follows:

1. Issue this ALTER TABLE statement to delete the current .ibd file:

ALTER TABLE tbl_name DISCARD TABLESPACE;

2. Copy the backup .ibd file to the proper database directory.

3. Issue this ALTER TABLE statement to tell InnoDB to use the new .ibd file for the table:

ALTER TABLE tbl_name IMPORT TABLESPACE;

In this context, a “clean” .ibd file backup is one for which the following requirements are satisfied:

• There are no uncommitted modifications by transactions in the .ibd file.

• There are no unmerged insert buffer entries in the .ibd file.

• Purge has removed all delete-marked index records from the .ibd file.

• mysqld has flushed all modified pages of the .ibd file from the buffer pool to the file.

You can make a clean backup .ibd file using the following method:

1. Stop all activity from the mysqld server and commit all transactions.

2. Wait until SHOW ENGINE INNODB STATUS shows that there are no active transactions in the
database, and the main thread status of InnoDB is Waiting for server activity. Then you can
make a copy of the .ibd file.

Another method for making a clean copy of an .ibd file is to use the commercial InnoDB Hot Backup
tool:

1. Use InnoDB Hot Backup to back up the InnoDB installation.

2. Start a second mysqld server on the backup and let it clean up the .ibd files in the backup.

14.2.2 InnoDB Startup Options and System Variables

This section describes the InnoDB-related command options and system variables.

• System variables that are true or false can be enabled at server startup by naming them, or disabled
by using a --skip- prefix. For example, to enable or disable InnoDB checksums, you can use --
innodb_checksums or --skip-innodb_checksums on the command line, or innodb_checksums
or skip-innodb_checksums in an option file.

• System variables that take a numeric value can be specified as --var_name=value on the command
line or as var_name=value in option files.

• Many system variables can be changed at runtime (see Section 5.1.5.2, “Dynamic System Variables”).

• For information about GLOBAL and SESSION variable scope modifiers, refer to the SET statement
documentation.

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1382

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• For more information on specifying options and system variables, see Section 4.2.3, “Specifying
Program Options”.

Table 14.2 InnoDB Option/Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Com_show_innodb_status Yes Both No

foreign_key_checks Yes Session Yes

have_innodb Yes Global No

innodb Yes Yes

innodb_adaptive_hash_indexYes Yes Yes Global No

innodb_additional_mem_pool_sizeYes Yes Yes Global No

innodb_autoextend_incrementYes Yes Yes Global Yes

innodb_buffer_pool_awe_mem_mbYes Yes Yes Global No

Innodb_buffer_pool_pages_data Yes Global No

Innodb_buffer_pool_pages_dirty Yes Global No

Innodb_buffer_pool_pages_flushed Yes Global No

Innodb_buffer_pool_pages_free Yes Global No

Innodb_buffer_pool_pages_latched Yes Global No

Innodb_buffer_pool_pages_misc Yes Global No

Innodb_buffer_pool_pages_total Yes Global No

Innodb_buffer_pool_read_ahead_rnd Yes Global No

Innodb_buffer_pool_read_ahead_seq Yes Global No

Innodb_buffer_pool_read_requests Yes Global No

Innodb_buffer_pool_reads Yes Global No

innodb_buffer_pool_sizeYes Yes Yes Global No

Innodb_buffer_pool_wait_free Yes Global No

Innodb_buffer_pool_write_requests Yes Global No

innodb_checksumsYes Yes Yes Global No

innodb_commit_concurrencyYes Yes Yes Global Yes

innodb_concurrency_ticketsYes Yes Yes Global Yes

innodb_data_file_pathYes Yes Yes Global No

Innodb_data_fsyncs Yes Global No

innodb_data_home_dirYes Yes Yes Global No

Innodb_data_pending_fsyncs Yes Global No

Innodb_data_pending_reads Yes Global No

Innodb_data_pending_writes Yes Global No

Innodb_data_read Yes Global No

Innodb_data_reads Yes Global No

Innodb_data_writes Yes Global No

Innodb_data_written Yes Global No

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1383

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_dblwr_pages_written Yes Global No

Innodb_dblwr_writes Yes Global No

innodb_doublewriteYes Yes Yes Global No

innodb_fast_shutdownYes Yes Yes Global Yes

innodb_file_io_threadsYes Yes Yes Global No

innodb_file_per_tableYes Yes Yes Global No

innodb_flush_log_at_trx_commitYes Yes Yes Global Yes

innodb_flush_methodYes Yes Yes Global No

innodb_force_recoveryYes Yes Yes Global No

innodb_lock_wait_timeoutYes Yes Yes Global No

innodb_locks_unsafe_for_binlogYes Yes Yes Global No

innodb_log_arch_dirYes Yes Yes Global No

innodb_log_archiveYes Yes Yes Global No

innodb_log_buffer_sizeYes Yes Yes Global No

innodb_log_file_sizeYes Yes Yes Global No

innodb_log_files_in_groupYes Yes Yes Global No

innodb_log_group_home_dirYes Yes Yes Global No

Innodb_log_waits Yes Global No

Innodb_log_write_requests Yes Global No

Innodb_log_writes Yes Global No

innodb_max_dirty_pages_pctYes Yes Yes Global Yes

innodb_max_purge_lagYes Yes Yes Global Yes

innodb_mirrored_log_groupsYes Yes Yes Global No

innodb_open_files Yes Yes Yes Global No

Innodb_os_log_fsyncs Yes Global No

Innodb_os_log_pending_fsyncs Yes Global No

Innodb_os_log_pending_writes Yes Global No

Innodb_os_log_written Yes Global No

Innodb_page_size Yes Global No

Innodb_pages_created Yes Global No

Innodb_pages_read Yes Global No

Innodb_pages_written Yes Global No

innodb_rollback_on_timeoutYes Yes Yes Global No

Innodb_row_lock_current_waits Yes Global No

Innodb_row_lock_time Yes Global No

Innodb_row_lock_time_avg Yes Global No

Innodb_row_lock_time_max Yes Global No

Innodb_row_lock_waits Yes Global No

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1384

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

Innodb_rows_deleted Yes Global No

Innodb_rows_inserted Yes Global No

Innodb_rows_read Yes Global No

Innodb_rows_updated Yes Global No

innodb-safe-
binlog

Yes Yes

innodb-status-file Yes Yes

innodb_support_xaYes Yes Yes Both Yes

innodb_sync_spin_loopsYes Yes Yes Global Yes

innodb_table_locksYes Yes Yes Both Yes

innodb_thread_concurrencyYes Yes Yes Global Yes

innodb_thread_sleep_delayYes Yes Yes Global Yes

innodb_use_legacy_cardinality_algorithmYes Yes Yes Global Yes

timed_mutexes Yes Yes Yes Global Yes

unique_checks Yes Session Yes

InnoDB Command Options

• --innodb

Enables the InnoDB storage engine, if the server was compiled with InnoDB support.

To disable InnoDB, use --skip-innodb. In this case, the server will not start if the default storage
engine is set to InnoDB. Use --default-storage-engine to set the default to some other engine if
necessary.

• --innodb-status-file

Controls whether InnoDB creates a file named innodb_status.<pid> in the MySQL data directory. If
enabled, InnoDB periodically writes the output of SHOW ENGINE INNODB STATUS to this file.

By default, the file is not created. To create it, start mysqld with the --innodb-status-file=1
option. The file is deleted during normal shutdown.

• --skip-innodb

Disable the InnoDB storage engine. See the description of --innodb.

InnoDB System Variables

• innodb_adaptive_hash_index

Introduced 5.0.52

Command-Line Format --innodb_adaptive_hash_index=#

Name innodb_adaptive_hash_indexSystem Variable

Variable
Scope

Global

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1385

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

Whether InnoDB adaptive hash indexes are enabled or disabled (see Section 14.2.10.4, “Adaptive
Hash Indexes”). This variable is enabled by default. Use --skip-innodb_adaptive_hash_index at
server startup to disable it. This variable was added in MySQL 5.0.52.

• innodb_additional_mem_pool_size

Command-Line Format --innodb_additional_mem_pool_size=#

Name innodb_additional_mem_pool_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 1048576

Min
Value

524288

Permitted Values

Max
Value

4294967295

The size in bytes of a memory pool InnoDB uses to store data dictionary information and other internal
data structures. The more tables you have in your application, the more memory you need to allocate
here. If InnoDB runs out of memory in this pool, it starts to allocate memory from the operating system
and writes warning messages to the MySQL error log. The default value is 1MB.

• innodb_autoextend_increment

Command-Line Format --innodb_autoextend_increment=#

Name innodb_autoextend_increment

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 8

Min
Value

1

Permitted Values

Max
Value

1000

The increment size (in MB) for extending the size of an auto-extending shared tablespace file when it
becomes full. The default value is 8. This variable does not affect the file-per-table tablespace files that
are created if you use innodb_file_per_table=1. Those files are auto-extending regardless of the

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1386

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

value of innodb_autoextend_increment. The initial extensions are by small amounts, after which
extensions occur in increments of 4MB.

• innodb_buffer_pool_awe_mem_mb

Command-Line Format --innodb_buffer_pool_awe_mem_mb=#

Name innodb_buffer_pool_awe_mem_mb

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Platform Specific Windows

Type integer

Default 0

Min
Value

0

Permitted Values
(Windows)

Max
Value

63000

The size of the buffer pool (in MB), if it is placed in the AWE memory. If it is greater than 0,
innodb_buffer_pool_size is the window in the 32-bit address space of mysqld where InnoDB
maps that AWE memory. A good value for innodb_buffer_pool_size is 500MB. The maximum
possible value is 63000.

To take advantage of AWE memory, you will need to recompile MySQL yourself. The current project
settings needed for doing this can be found in the innobase/os/os0proc.c source file.

This variable is relevant only in 32-bit Windows. If your 32-bit Windows operating system supports more
than 4GB memory, using so-called “Address Windowing Extensions,” you can allocate the InnoDB
buffer pool into the AWE physical memory using this variable.

• innodb_buffer_pool_size

Command-Line Format --innodb_buffer_pool_size=#

Name innodb_buffer_pool_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 8388608

Permitted Values

Min
Value

1048576

The size in bytes of the memory buffer InnoDB uses to cache data and indexes of its tables. The default
value is 8MB. The larger you set this value, the less disk I/O is needed to access data in tables. On
a dedicated database server, you may set this to up to 80% of the machine physical memory size.
However, do not set it too large because competition for physical memory might cause paging in the
operating system. Also, the time to initialize the buffer pool is roughly proportional to its size. On large

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1387

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

installations, this initialization time may be significant. For example, on a modern Linux x86_64 server,
initialization of a 10GB buffer pool takes approximately 6 seconds. See Section 8.10.2, “The InnoDB
Buffer Pool”

• innodb_checksums

Introduced 5.0.3

Command-Line Format --innodb_checksums

Name innodb_checksums

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

InnoDB can use checksum validation on all pages read from the disk to ensure extra fault tolerance
against broken hardware or data files. This validation is enabled by default. However, under some rare
circumstances (such as when running benchmarks) this extra safety feature is unneeded and can be
disabled with --skip-innodb_checksums. This variable was added in MySQL 5.0.3.

• innodb_commit_concurrency

Introduced 5.0.12

Command-Line Format --innodb_commit_concurrency=#

Name innodb_commit_concurrency

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

1000

The number of threads that can commit at the same time. A value of 0 (the default) permits any number
of transactions to commit simultaneously. This variable was added in MySQL 5.0.12.

• innodb_concurrency_tickets

Introduced 5.0.3

Command-Line Format --innodb_concurrency_tickets=#

Name innodb_concurrency_ticketsSystem Variable

Variable
Scope

Global

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1388

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Dynamic
Variable

Yes

Type integer

Default 500

Min
Value

1

Permitted Values

Max
Value

4294967295

The number of threads that can enter InnoDB concurrently is determined by the
innodb_thread_concurrency variable. A thread is placed in a queue when it tries to enter InnoDB
if the number of threads has already reached the concurrency limit. When a thread is permitted to enter
InnoDB, it is given a number of “free tickets” equal to the value of innodb_concurrency_tickets,
and the thread can enter and leave InnoDB freely until it has used up its tickets. After that point, the
thread again becomes subject to the concurrency check (and possible queuing) the next time it tries to
enter InnoDB. The default value is 500. This variable was added in MySQL 5.0.3.

With a small innodb_concurrency_tickets value, small transactions that only need to process a
few rows compete fairly with larger transactions that process many rows. The disadvantage of a small
innodb_concurrency_tickets value is that large transactions must loop through the queue many
times before they can complete, which extends the length of time required to complete their task.

With a large innodb_concurrency_tickets value, large transactions spend less time waiting for
a position at the end of the queue (controlled by innodb_thread_concurrency) and more time
retrieving rows. Large transactions also require fewer trips through the queue to complete their task. The
disadvantage of a large innodb_concurrency_tickets value is that too many large transactions
running at the same time can starve smaller transactions by making them wait a longer time before
executing.

With a non-zero innodb_thread_concurrency value, you may need to adjust the
innodb_concurrency_tickets value up or down to find the optimal balance between larger
and smaller transactions. The SHOW ENGINE INNODB STATUS report shows the number of tickets
remaining for an executing transaction in its current pass through the queue.

• innodb_data_file_path

Command-Line Format --innodb_data_file_path=name

Name innodb_data_file_path

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type stringPermitted Values

Default ibdata1:10M:autoextend

The paths to individual data files and their sizes. The full directory path to each data file is formed by
concatenating innodb_data_home_dir to each path specified here. The file sizes are specified in KB,
MB, or GB (1024MB) by appending K, M, or G to the size value. The sum of the sizes of the files must
be at least 10MB. If you do not specify innodb_data_file_path, the default behavior is to create
a single 10MB auto-extending data file named ibdata1. The size limit of individual files is determined
by your operating system. You can set the file size to more than 4GB on those operating systems

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1389

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

that support big files. You can also use raw disk partitions as data files. For detailed information on
configuring InnoDB tablespace files, see Section 14.2.1, “Configuring InnoDB”.

• innodb_data_home_dir

Command-Line Format --innodb_data_home_dir=dir_name

Name innodb_data_home_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The common part of the directory path for all InnoDB data files in the shared tablespace. This setting
does not affect the location of per-file tablespaces when innodb_file_per_table is enabled. The
default value is the MySQL data directory. If you specify the value as an empty string, you can use
absolute file paths in innodb_data_file_path.

• innodb_doublewrite

Introduced 5.0.3

Command-Line Format --innodb-doublewrite

Name innodb_doublewrite

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default ON

If this variable is enabled (the default), InnoDB stores all data twice, first to the doublewrite buffer, and
then to the actual data files. This variable can be turned off with --skip-innodb_doublewrite for
benchmarks or cases when top performance is needed rather than concern for data integrity or possible
failures. This variable was added in MySQL 5.0.3.

• innodb_fast_shutdown

Command-Line Format --innodb_fast_shutdown[=#]

Name innodb_fast_shutdown

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

0

Permitted Values

Valid
Values 1

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1390

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2

The InnoDB shutdown mode. By default, the value is 1, which causes a “fast” shutdown (the normal type
of shutdown). If the value is 0, InnoDB does a full purge and an insert buffer merge before a shutdown.
These operations can take minutes, or even hours in extreme cases. If the value is 1, InnoDB skips
these operations at shutdown. If the value is 2, InnoDB will just flush its logs and then shut down cold,
as if MySQL had crashed; no committed transaction will be lost, but crash recovery will be done at the
next startup. The value of 2 can be used as of MySQL 5.0.5, except that it cannot be used on NetWare.

• innodb_file_io_threads

Command-Line Format --innodb_file_io_threads=#

Name innodb_file_io_threads

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 4

Min
Value

4

Permitted Values

Max
Value

64

The number of file I/O threads in InnoDB. Normally, this should be left at the default value of 4, but
disk I/O on Windows may benefit from a larger number. On Unix, increasing the number has no effect;
InnoDB always uses the default value.

• innodb_file_per_table

Command-Line Format --innodb_file_per_table

Name innodb_file_per_table

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

If innodb_file_per_table is disabled (the default), InnoDB creates tables in the shared tablespace.
If innodb_file_per_table is enabled, InnoDB creates each new table using its own .ibd file for
storing data and indexes, rather than in the shared tablespace. See Section 14.2.1.4, “InnoDB File-Per-
Table Tablespaces” for more information including advantages and disadvantages of using file-per-table
tablespaces.

• innodb_flush_log_at_trx_commit

Command-Line Format --innodb_flush_log_at_trx_commit[=#]

System Variable Name innodb_flush_log_at_trx_commit

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1391

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable
Scope

Global

Dynamic
Variable

Yes

Type enumeration

Default 1

0

1

Permitted Values

Valid
Values

2

If the value of innodb_flush_log_at_trx_commit is 0, the log buffer is written out to the log file
once per second and the flush to disk operation is performed on the log file, but nothing is done at a
transaction commit. When the value is 1 (the default), the log buffer is written out to the log file at each
transaction commit and the flush to disk operation is performed on the log file. When the value is 2, the
log buffer is written out to the file at each commit, but the flush to disk operation is not performed on it.
However, the flushing on the log file takes place once per second also when the value is 2. Note that the
once-per-second flushing is not 100% guaranteed to happen every second, due to process scheduling
issues.

The default value of 1 is required for full ACID compliance. You can achieve better performance by
setting the value different from 1, but then you can lose up to one second worth of transactions in a
crash. With a value of 0, any mysqld process crash can erase the last second of transactions. With a
value of 2, only an operating system crash or a power outage can erase the last second of transactions.
InnoDB's crash recovery works regardless of the value.

For the greatest possible durability and consistency in a replication setup using InnoDB with
transactions, you should use innodb_flush_log_at_trx_commit=1, sync_binlog=1, and, before
MySQL 5.0.3, innodb-safe-binlog in your master server my.cnf file. (innodb-safe-binlog is
not needed from 5.0.3 on.)

Caution

Many operating systems and some disk hardware fool the flush-to-disk operation.
They may tell mysqld that the flush has taken place, even though it has not.
Then the durability of transactions is not guaranteed even with the setting 1, and
in the worst case a power outage can even corrupt the InnoDB database. Using
a battery-backed disk cache in the SCSI disk controller or in the disk itself speeds
up file flushes, and makes the operation safer. You can also try using the Unix
command hdparm to disable the caching of disk writes in hardware caches, or
use some other command specific to the hardware vendor.

• innodb_flush_method

Command-Line Format --innodb_flush_method=name

Name innodb_flush_method

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values (Unix) Type string

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_crash_recovery

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1392

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Default NULL

fdatasync

O_DSYNC

littlesync

nosync

Valid
Values

O_DIRECT

Type string

Default NULL

async_unbuffered

normal

Permitted Values
(Windows)

Valid
Values

unbuffered

Defines the method used to flush data to the InnoDB data files and log files, which can affect I/O
throughput.

If innodb_flush_method=NULL on a Unix-like system, the fdatasync option is used by default. If
innodb_flush_method=NULL on Windows, the async_unbuffered option is used by default.

The innodb_flush_method options for Unix-like systems include:

• fdatasync: InnoDB uses the fsync() system call to flush both the data and log files. fsync is the
default setting. The fdatasync option name should not be confused with the fdatasync() system
call, which is not used by InnoDB as of MySQL 3.23.41.

• O_DSYNC: InnoDB uses O_SYNC to open and flush the log files, and fsync() to flush the data files.
InnoDB does not use O_DSYNC directly because there have been problems with it on many varieties
of Unix.

• O_DIRECT: InnoDB uses O_DIRECT (or directio() on Solaris) to open the data files, and uses
fsync() to flush both the data and log files. This option is available on some GNU/Linux versions,
FreeBSD, and Solaris.

• littlesync: This option is used for internal performance testing and is currently unsupported. Use at
your own risk.

• nosync: This option is used for internal performance testing and is currently unsupported. Use at your
own risk.

The innodb_flush_method options for Windows systems include:

• async_unbuffered: InnoDB uses Windows asynchronous I/O and non-buffered I/O.
async_unbuffered is the default setting on Windows systems.

• normal: InnoDB uses a simulated asynchronous I/O and buffered I/O. This option is used for internal
performance testing and is currently unsupported. Use at your own risk.

• unbuffered: InnoDB uses a simulated asynchronous I/O and non-buffered I/O. This option is used
for internal performance testing and is currently unsupported. Use at your own risk.

How each settings affects performance depends on hardware configuration and workload. Benchmark
your particular configuration to decide which setting to use, or whether to keep the default setting.
Examine the Innodb_data_fsyncs status variable to see the overall number of fsync() calls for

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_flush
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_data_files
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_log_file

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1393

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

each setting. The mix of read and write operations in your workload can affect how a setting performs.
For example, on a system with a hardware RAID controller and battery-backed write cache, O_DIRECT
can help to avoid double buffering between the InnoDB buffer pool and the operating system's file
system cache. On some systems where InnoDB data and log files are located on a SAN, the default
value or O_DSYNC might be faster for a read-heavy workload with mostly SELECT statements. Always
test this parameter with hardware and workload that reflect your production environment.

• innodb_force_recovery

Command-Line Format --innodb_force_recovery=#

Name innodb_force_recovery

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

6

The crash recovery mode. Possible values are from 0 to 6. For the meanings of these values and
important information about innodb_force_recovery, see Section 14.2.6.2, “Forcing InnoDB
Recovery”.

Warning

Only set this variable to a value greater than 0 in an emergency situation,
so that you can start InnoDB and dump your tables. As a safety measure,
InnoDB prevents INSERT, UPDATE, or DELETE operations when
innodb_force_recovery is greater than 0.

• innodb_lock_wait_timeout

Command-Line Format --innodb_lock_wait_timeout=#

Name innodb_lock_wait_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 50

Min
Value

1

Permitted Values

Max
Value

1073741824

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1394

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The timeout in seconds an InnoDB transaction may wait for a row lock before giving up. The default
value is 50 seconds. A transaction that tries to access a row that is locked by another InnoDB
transaction will hang for at most this many seconds before issuing the following error:

ERROR 1205 (HY000): Lock wait timeout exceeded; try restarting transaction

When a lock wait timeout occurs, the current statement is not executed. The current transaction
is not rolled back. (Until MySQL 5.0.13 InnoDB rolled back the entire transaction if a lock
wait timeout happened. You can restore this behavior by starting the server with the --
innodb_rollback_on_timeout option, available as of MySQL 5.0.32. See also Section 14.2.12,
“InnoDB Error Handling”.)

innodb_lock_wait_timeout applies to InnoDB row locks only. A MySQL table lock does not
happen inside InnoDB and this timeout does not apply to waits for table locks.

InnoDB does detect transaction deadlocks in its own lock table immediately and rolls back one
transaction. The lock wait timeout value does not apply to such a wait.

• innodb_locks_unsafe_for_binlog

Command-Line Format --innodb_locks_unsafe_for_binlog

Name innodb_locks_unsafe_for_binlog

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

This variable affects how InnoDB uses gap locking for searches and index scans. Normally, InnoDB
uses an algorithm called next-key locking that combines index-row locking with gap locking. InnoDB
performs row-level locking in such a way that when it searches or scans a table index, it sets shared or
exclusive locks on the index records it encounters. Thus, the row-level locks are actually index-record
locks. In addition, a next-key lock on an index record also affects the “gap” before that index record. That
is, a next-key lock is an index-record lock plus a gap lock on the gap preceding the index record. If one
session has a shared or exclusive lock on record R in an index, another session cannot insert a new
index record in the gap immediately before R in the index order. See Section 14.2.8.2, “InnoDB Record,
Gap, and Next-Key Locks”.

By default, the value of innodb_locks_unsafe_for_binlog is 0 (disabled), which means that gap
locking is enabled: InnoDB uses next-key locks for searches and index scans. To enable the variable,
set it to 1. This causes gap locking to be disabled: InnoDB uses only index-record locks for searches
and index scans.

Enabling innodb_locks_unsafe_for_binlog does not disable the use of gap locking for foreign-
key constraint checking or duplicate-key checking.

The effect of enabling innodb_locks_unsafe_for_binlog is similar to but not identical to setting
the transaction isolation level to READ COMMITTED:

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1395

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Enabling innodb_locks_unsafe_for_binlog is a global setting and affects all sessions, whereas
the isolation level can be set globally for all sessions, or individually per session.

• innodb_locks_unsafe_for_binlog can be set only at server startup, whereas the isolation level
can be set at startup or changed at runtime.

READ COMMITTED therefore offers finer and more flexible control than
innodb_locks_unsafe_for_binlog. For additional details about the effect of isolation level on gap
locking, see Section 13.3.6, “SET TRANSACTION Syntax”.

Enabling innodb_locks_unsafe_for_binlog may cause phantom problems because other
sessions can insert new rows into the gaps when gap locking is disabled. Suppose that there is an index
on the id column of the child table and that you want to read and lock all rows from the table having
an identifier value larger than 100, with the intention of updating some column in the selected rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

The query scans the index starting from the first record where id is greater than 100. If the locks set
on the index records in that range do not lock out inserts made in the gaps, another session can insert
a new row into the table. Consequently, if you were to execute the same SELECT again within the
same transaction, you would see a new row in the result set returned by the query. This also means
that if new items are added to the database, InnoDB does not guarantee serializability. Therefore, if
innodb_locks_unsafe_for_binlog is enabled, InnoDB guarantees at most an isolation level
of READ COMMITTED. (Conflict serializability is still guaranteed.) For additional information about
phantoms, see Section 14.2.8.3, “Avoiding the Phantom Problem Using Next-Key Locking”.

Starting from MySQL 5.0.2, enabling innodb_locks_unsafe_for_binlog has an additional effect.
For UPDATE or DELETE statements, InnoDB holds locks only for rows that it updates or deletes. Record
locks for nonmatching rows are released after MySQL has evaluated the WHERE condition. This greatly
reduces the probability of deadlocks, but they can still happen. Note that enabling this variable still does
not permit operations such as UPDATE to overtake other similar operations (such as another UPDATE)
even when they affect different rows.

Consider the following example, beginning with this table:

CREATE TABLE t (a INT NOT NULL, b INT) ENGINE = InnoDB;
INSERT INTO t VALUES (1,2),(2,3),(3,2),(4,3),(5,2);
COMMIT;

In this case, table has no indexes, so searches and index scans use the hidden clustered index for
record locking (see Section 14.2.10.1, “Clustered and Secondary Indexes”).

Suppose that one client performs an UPDATE using these statements:

SET autocommit = 0;
UPDATE t SET b = 5 WHERE b = 3;

Suppose also that a second client performs an UPDATE by executing these statements following those of
the first client:

SET autocommit = 0;
UPDATE t SET b = 4 WHERE b = 2;

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1396

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

As InnoDB executes each UPDATE, it first acquires an exclusive lock for each row, and then determines
whether to modify it. If InnoDB does not modify the row and innodb_locks_unsafe_for_binlog
is enabled, it releases the lock. Otherwise, InnoDB retains the lock until the end of the transaction. This
affects transaction processing as follows.

If innodb_locks_unsafe_for_binlog is disabled, the first UPDATE acquires x-locks and does not
release any of them:

x-lock(1,2); retain x-lock
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); retain x-lock
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); retain x-lock

The second UPDATE blocks as soon as it tries to acquire any locks (because first update has retained
locks on all rows), and does not proceed until the first UPDATE commits or rolls back:

x-lock(1,2); block and wait for first UPDATE to commit or roll back

If innodb_locks_unsafe_for_binlog is enabled, the first UPDATE acquires x-locks and releases
those for rows that it does not modify:

x-lock(1,2); unlock(1,2)
x-lock(2,3); update(2,3) to (2,5); retain x-lock
x-lock(3,2); unlock(3,2)
x-lock(4,3); update(4,3) to (4,5); retain x-lock
x-lock(5,2); unlock(5,2)

The second UPDATE proceeds part way before it blocks. It begins acquiring x-locks, and blocks when it
tries to acquire one for a row still locked by first UPDATE. The second UPDATE does not proceed until the
first UPDATE commits or rolls back:

x-lock(1,2); update(1,2) to (1,4); retain x-lock
x-lock(2,3); block and wait for first UPDATE to commit or roll back

In this case, the second UPDATE must wait for a commit or rollback of the first UPDATE, even though it
affects different rows. The first UPDATE has an exclusive lock on row (2,3) that it has not released. As the
second UPDATE scans rows, it tries to acquire an exclusive lock for that same row, which it cannot have.

• innodb_log_arch_dir

This variable is unused, and is deprecated as of MySQL 5.0.24. It is removed in MySQL 5.1

• innodb_log_archive

Whether to log InnoDB archive files. This variable is present for historical reasons, but is unused.
Recovery from a backup is done by MySQL using its own log files, so there is no need to archive
InnoDB log files. The default for this variable is 0.

• innodb_log_buffer_size

Command-Line Format --innodb_log_buffer_size=#

System Variable Name innodb_log_buffer_size

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1397

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable
Scope

Global

Dynamic
Variable

No

Type integer

Default 1048576

Min
Value

1048576

Permitted Values

Max
Value

4294967295

The size in bytes of the buffer that InnoDB uses to write to the log files on disk. The default value is
1MB. Sensible values range from 1MB to 8MB. A large log buffer enables large transactions to run
without a need to write the log to disk before the transactions commit. Thus, if you have big transactions,
making the log buffer larger saves disk I/O.

• innodb_log_file_size

Command-Line Format --innodb_log_file_size=#

Name innodb_log_file_size

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 5242880

Min
Value

1048576

Permitted Values

Max
Value

4GB / innodb_log_files_in_group

The size in bytes of each log file in a log group. The combined size of log files
(innodb_log_file_size * innodb_log_files_in_group) cannot exceed a maximum value that
is slightly less than 4GB. A pair of 2047 MB log files, for example, would allow you to approach the range
limit but not exceed it. The default value is 5MB. Sensible values range from 1MB to 1/N-th of the size of
the buffer pool, where N is the number of log files in the group. The larger the value, the less checkpoint
flush activity is needed in the buffer pool, saving disk I/O. But larger log files also mean that recovery is
slower in case of a crash.

• innodb_log_files_in_group

Command-Line Format --innodb_log_files_in_group=#

Name innodb_log_files_in_group

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type integer

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_log_file
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_log_group

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1398

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Default 2

Min
Value

2

Max
Value

100

The number of log files in the log group. InnoDB writes to the files in a circular fashion. The default (and
recommended) value is 2.

• innodb_log_group_home_dir

Command-Line Format --innodb_log_group_home_dir=dir_name

Name innodb_log_group_home_dir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type directory name

The directory path to the InnoDB log files. If you do not specify any InnoDB log variables, the default is
to create two files named ib_logfile0 and ib_logfile1 in the MySQL data directory. Their size is
given by the size of the innodb_log_file_size system variable.

• innodb_max_dirty_pages_pct

Command-Line Format --innodb_max_dirty_pages_pct=#

Name innodb_max_dirty_pages_pct

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type numeric

Default 90

Min
Value

0

Permitted Values

Max
Value

100

This is an integer in the range from 0 to 100. The default value is 90. The main thread in InnoDB tries
to write pages from the buffer pool so that the percentage of dirty (not yet written) pages will not exceed
this value.

• innodb_max_purge_lag

Command-Line Format --innodb_max_purge_lag=#

Name innodb_max_purge_lagSystem Variable

Variable
Scope

Global

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1399

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

4294967295

This variable controls how to delay INSERT, UPDATE, and DELETE operations when purge operations
are lagging (see Section 14.2.9, “InnoDB Multi-Versioning”). The default value 0 (no delays).

The InnoDB transaction system maintains a list of transactions that have index records delete-marked
by UPDATE or DELETE operations. Let the length of this list be purge_lag. When purge_lag
exceeds innodb_max_purge_lag, each INSERT, UPDATE, and DELETE operation is delayed by
((purge_lag/innodb_max_purge_lag)×10)−5 milliseconds. The delay is computed in the beginning
of a purge batch, every ten seconds. The operations are not delayed if purge cannot run because of an
old consistent read view that could see the rows to be purged.

A typical setting for a problematic workload might be 1 million, assuming that transactions are small, only
100 bytes in size, and it is permissible to have 100MB of unpurged InnoDB table rows.

The lag value is displayed as the history list length in the TRANSACTIONS section of InnoDB Monitor
output. For example, if the output includes the following lines, the lag value is 20:

TRANSACTIONS

Trx id counter 0 290328385
Purge done for trx's n:o < 0 290315608 undo n:o < 0 17
History list length 20

• innodb_mirrored_log_groups

The number of identical copies of log groups to keep for the database. This should be set to 1.

• innodb_open_files

Command-Line Format --innodb_open_files=#

Name innodb_open_files

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integer

Default 300

Min
Value

10

Permitted Values

Max
Value

4294967295

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1400

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This variable is relevant only if you use multiple tablespaces in InnoDB. It specifies the maximum
number of .ibd files that InnoDB can keep open at one time. The minimum value is 10. The default
value is 300.

The file descriptors used for .ibd files are for InnoDB only. They are independent of those specified by
the --open-files-limit server option, and do not affect the operation of the table cache.

• innodb_rollback_on_timeout

Introduced 5.0.32

Command-Line Format --innodb_rollback_on_timeout

Name innodb_rollback_on_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

In MySQL 5.0.13 and up, InnoDB rolls back only the last statement on a transaction timeout by default.
If --innodb_rollback_on_timeout is specified, a transaction timeout causes InnoDB to abort and
roll back the entire transaction (the same behavior as before MySQL 5.0.13). This variable was added in
MySQL 5.0.32.

• innodb-safe-binlog

Deprecated 5.0.3

Removed 5.0.3

Command-Line Format --innodb-safe-binlog

Permitted Values Type boolean

If this option is given, then after a crash recovery by InnoDB, mysqld truncates the binary log after
the last not-rolled-back transaction in the log. The option also causes InnoDB to print an error if the
binary log is smaller or shorter than it should be. See Section 5.4.3, “The Binary Log”. This variable was
removed in MySQL 5.0.3, having been made obsolete by the introduction of XA transaction support. You
should set innodb_support_xa to ON or 1 to ensure consistency. See innodb_support_xa.

• innodb_support_xa

Introduced 5.0.3

Command-Line Format --innodb_support_xa

Name innodb_support_xa

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1401

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Enables InnoDB support for two-phase commit in XA transactions, causing an extra disk flush for
transaction preparation. This setting is the default. The XA mechanism is used internally and is essential
for any server that has its binary log turned on and is accepting changes to its data from more than one
thread. If you turn it off, transactions can be written to the binary log in a different order from the one
in which the live database is committing them. This can produce different data when the binary log is
replayed in disaster recovery or on a replication slave. Do not turn it off on a replication master server
unless you have an unusual setup where only one thread is able to change data.

For a server that is accepting data changes from only one thread, it is safe and recommended to turn
off this option to improve performance for InnoDB tables. For example, you can turn it off on replication
slaves where only the replication SQL thread is changing data.

You can also turn off this option if you do not need it for safe binary logging or replication, and you also
do not use an external XA transaction manager.

This variable was added in MySQL 5.0.3.

• innodb_sync_spin_loops

Introduced 5.0.3

Command-Line Format --innodb_sync_spin_loops=#

Name innodb_sync_spin_loops

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 20

Min
Value

0

Permitted Values

Max
Value

4294967295

The number of times a thread waits for an InnoDB mutex to be freed before the thread is suspended.
The default value is 20. This variable was added in MySQL 5.0.3.

• innodb_table_locks

Command-Line Format --innodb_table_locks

Name innodb_table_locks

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

If autocommit = 0, InnoDB honors LOCK TABLES; MySQL does not return from LOCK TABLES ...
WRITE until all other threads have released all their locks to the table. The default value of

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1402

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

innodb_table_locks is 1, which means that LOCK TABLES causes InnoDB to lock a table internally
if autocommit = 0.

• innodb_thread_concurrency

Command-Line Format --innodb_thread_concurrency=#

Name innodb_thread_concurrency

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 8

Min
Value

1

Permitted Values (<=
5.0.7)

Max
Value

1000

Type integer

Default 20

Min
Value

1

Permitted Values (>=
5.0.8, <= 5.0.18)

Max
Value

1000

Type integer

Default 0

Min
Value

0

Permitted Values (>=
5.0.19, <= 5.0.20)

Max
Value

1000

Type integer

Default 8

Min
Value

0

Permitted Values (>=
5.0.21)

Max
Value

1000

InnoDB tries to keep the number of operating system threads concurrently inside InnoDB less than
or equal to the limit given by this variable (InnoDB uses operating system threads to process user
transactions). Once the number of threads reaches this limit, additional threads are placed into a wait
state within a “First In, First Out” (FIFO) queue for execution. Threads waiting for locks are not counted
in the number of concurrently executing threads.

The range of this variable is 0 to 1000. A value of 20 or higher is interpreted as infinite concurrency
before MySQL 5.0.19. From 5.0.19 on, you can disable thread concurrency checking by setting the value
to 0. Disabling thread concurrency checking enables InnoDB to create as many threads as it needs.

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1403

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The default value has changed several times: 8 before MySQL 5.0.8, 20 (infinite) from 5.0.8 through
5.0.18, 0 (infinite) from 5.0.19 to 5.0.20, and 8 (finite) from 5.0.21 on.

Consider setting this variable if your MySQL instance shares CPU resources with other applications, or
if your workload or number of concurrent users is growing. The correct setting depends on workload,
computing environment, and the version of MySQL that you are running. You will need to test a range of
values to determine the setting that provides the best performance. innodb_thread_concurrency
is a dynamic variable, which allows you to experiment with different settings on a live test system. If a
particular setting performs poorly, you can quickly set innodb_thread_concurrency back to 0.

Use the following guidelines to help find and maintain an appropriate setting:

• If the number of concurrent user threads for a workload is less than 64, set
innodb_thread_concurrency=0.

• If your workload is consistently heavy or occasionally spikes, start by setting
innodb_thread_concurrency=128, and lowering the value to 96, 80, 64, and so on, until you
find the number of threads that provides the best performance. For example, suppose your system
typically has 40 to 50 users, but periodically the number increases to 60, 70, or even 200. You find that
performance is stable at 80 concurrent users but starts to show a regression above this number. In
this case, you would set innodb_thread_concurrency=80 to avoid impacting performance.

• If you do not want InnoDB to use more than a certain number of vCPUs for user threads (20 vCPUs
for example), set innodb_thread_concurrency to this number (or possibly lower, depending
on performance results). If your goal is to isolate MySQL from other applications, you may consider
binding the mysqld process exclusively to the vCPUs. Be aware, however, that exclusive binding
could result in non-optimal hardware usage if the mysqld process is not consistently busy. In this
case, you might bind the mysqld process to the vCPUs but also allow other applications to use some
or all of the vCPUs.

Note

From an operating system perspective, using a resource management solution
(if available) to manage how CPU time is shared among applications may be
preferable to binding the mysqld process. For example, you could assign 90%
of vCPU time to a given application while other critical process are not running,
and scale that value back to 40% when other critical processes are running.

• innodb_thread_concurrency values that are too high can cause performance regression due to
increased contention on system internals and resources.

• In some cases, the optimal innodb_thread_concurrency setting can be smaller than the number
of vCPUs.

• If an operation, such as an ALTER TABLE operation, completes in a few minutes on an idle
system but takes hours on a busy system (perhaps aborting due to insufficient log space), a
lower but still acceptable innodb_thread_concurrency value has been shown to allow such
operations to complete in times comparable to those on an idle system. A lower but still acceptable
innodb_thread_concurrency value, in this case, is a value that might reduce overall performance
by 10 or 20 percent.

• Monitor and analyze your system regularly. Changes to workload, number of users, or computing
environment may require that you adjust the innodb_thread_concurrency setting.

• innodb_thread_sleep_delay

InnoDB Startup Options and System Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1404

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Introduced 5.0.3

Command-Line Format --innodb_thread_sleep_delay=#

Name innodb_thread_sleep_delay

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

1000

Permitted Values (>=
5.0.8, <= 5.0.18)

Max
Value

4294967295

Type integer

Default 0

Min
Value

1000

Permitted Values (>=
5.0.19, <= 5.0.20)

Max
Value

4294967295

Type integer

Default 8

Min
Value

1000

Permitted Values (>=
5.0.21)

Max
Value

4294967295

How long InnoDB threads sleep before joining the InnoDB queue, in microseconds. The default value is
10,000. A value of 0 disables sleep. This variable was added in MySQL 5.0.3.

• innodb_use_legacy_cardinality_algorithm

Introduced 5.0.82

Command-Line Format --innodb_use_legacy_cardinality_algorithm=#

Name innodb_use_legacy_cardinality_algorithm

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default ON

InnoDB uses random numbers to generate dives into indexes for calculating index cardinality.
However, under certain conditions, the algorithm does not generate random numbers, so
ANALYZE TABLE sometimes does not update cardinality estimates properly. An alternative
algorithm was introduced in MySQL 5.0.82 with better randomization properties, and the

Creating and Using InnoDB Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1405

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

innodb_use_legacy_cardinality_algorithm, system variable which algorithm to use. The
default value of the variable is 1 (ON), to use the original algorithm for compatibility with existing
applications. The variable can be set to 0 (OFF) to use the new algorithm with improved randomness.

You should also take into consideration the value of sync_binlog, which controls synchronization of the
binary log to disk.

14.2.3 Creating and Using InnoDB Tables

To create an InnoDB table, specify an ENGINE = InnoDB option in the CREATE TABLE statement:

CREATE TABLE customers (a INT, b CHAR (20), INDEX (a)) ENGINE=InnoDB;

The older term TYPE is supported as a synonym for ENGINE for backward compatibility, but ENGINE is the
preferred term and TYPE is deprecated.

The statement creates a table and an index on column a in the InnoDB tablespace that consists of the
data files that you specified in my.cnf. In addition, MySQL creates a file customers.frm in the test
directory under the MySQL database directory. Internally, InnoDB adds an entry for the table to its own
data dictionary. The entry includes the database name. For example, if test is the database in which the
customers table is created, the entry is for 'test/customers'. This means you can create a table of
the same name customers in some other database, and the table names do not collide inside InnoDB.

You can query the amount of free space in the InnoDB tablespace by issuing a SHOW TABLE STATUS
statement for any InnoDB table. The amount of free space in the tablespace appears in the Comment
section in the output of SHOW TABLE STATUS. For example:

SHOW TABLE STATUS FROM test LIKE 'customers'

The statistics SHOW displays for InnoDB tables are only approximate. They are used in SQL optimization.
Table and index reserved sizes in bytes are accurate, though.

14.2.3.1 How to Use Transactions in InnoDB with Different APIs

By default, each client that connects to the MySQL server begins with autocommit mode enabled, which
automatically commits every SQL statement as you execute it. To use multiple-statement transactions,
you can switch autocommit off with the SQL statement SET autocommit = 0 and end each transaction
with either COMMIT or ROLLBACK. If you want to leave autocommit on, you can begin your transactions
within START TRANSACTION and end them with COMMIT or ROLLBACK. The following example shows two
transactions. The first is committed; the second is rolled back.

shell> mysql test

mysql> CREATE TABLE customer (a INT, b CHAR (20), INDEX (a))
 -> ENGINE=InnoDB;
Query OK, 0 rows affected (0.00 sec)
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO customer VALUES (10, 'Heikki');
Query OK, 1 row affected (0.00 sec)
mysql> COMMIT;
Query OK, 0 rows affected (0.00 sec)
mysql> SET autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO customer VALUES (15, 'John');
Query OK, 1 row affected (0.00 sec)
mysql> ROLLBACK;

Creating and Using InnoDB Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1406

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Query OK, 0 rows affected (0.00 sec)
mysql> SELECT * FROM customer;
+------+--------+
| a | b |
+------+--------+
| 10 | Heikki |
+------+--------+
1 row in set (0.00 sec)
mysql>

In APIs such as PHP, Perl DBI, JDBC, ODBC, or the standard C call interface of MySQL, you can send
transaction control statements such as COMMIT to the MySQL server as strings just like any other SQL
statements such as SELECT or INSERT. Some APIs also offer separate special transaction commit and
rollback functions or methods.

14.2.3.2 Converting Tables from Other Storage Engines to InnoDB

To convert a non-InnoDB table to use InnoDB use ALTER TABLE:

ALTER TABLE t1 ENGINE=InnoDB;

Important

Do not convert MySQL system tables in the mysql database (such as user or
host) to the InnoDB type. This is an unsupported operation. The system tables
must always be of the MyISAM type.

InnoDB does not have a special optimization for separate index creation the way the MyISAM storage
engine does. Therefore, it does not pay to export and import the table and create indexes afterward. The
fastest way to alter a table to InnoDB is to do the inserts directly to an InnoDB table. That is, use ALTER
TABLE ... ENGINE=INNODB, or create an empty InnoDB table with identical definitions and insert the
rows with INSERT INTO ... SELECT * FROM

If you have UNIQUE constraints on secondary keys, you can speed up a table import by turning off the
uniqueness checks temporarily during the import operation:

SET unique_checks=0;
... import operation ...
SET unique_checks=1;

For big tables, this saves a lot of disk I/O because InnoDB can then use its insert buffer to write secondary
index records as a batch. Be certain that the data contains no duplicate keys. unique_checks permits but
does not require storage engines to ignore duplicate keys.

To get better control over the insertion process, it might be good to insert big tables in pieces:

INSERT INTO newtable SELECT * FROM oldtable
 WHERE yourkey > something AND yourkey <= somethingelse;

After all records have been inserted, you can rename the tables.

During the conversion of big tables, you should increase the size of the InnoDB buffer pool to reduce disk
I/O. Do not use more than 80% of the physical memory, though. You can also increase the sizes of the
InnoDB log files.

Make sure that you do not fill up the tablespace: InnoDB tables require a lot more disk space than MyISAM
tables. If an ALTER TABLE operation runs out of space, it starts a rollback, and that can take hours if it

Creating and Using InnoDB Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1407

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

is disk-bound. For inserts, InnoDB uses the insert buffer to merge secondary index records to indexes in
batches. That saves a lot of disk I/O. For rollback, no such mechanism is used, and the rollback can take
30 times longer than the insertion.

In the case of a runaway rollback, if you do not have valuable data in your database, it may be advisable to
kill the database process rather than wait for millions of disk I/O operations to complete. For the complete
procedure, see Section 14.2.6.2, “Forcing InnoDB Recovery”.

If you want all your (nonsystem) tables to be created as InnoDB tables, add the line default-storage-
engine=innodb to the [mysqld] section of your server option file.

14.2.3.3 AUTO_INCREMENT Handling in InnoDB

To use the AUTO_INCREMENT mechanism with an InnoDB table, an AUTO_INCREMENT column ai_col
must be defined as part of an index such that it is possible to perform the equivalent of an indexed SELECT
MAX(ai_col) lookup on the table to obtain the maximum column value. Typically, this is achieved by
making the column the first column of some table index.

If you specify an AUTO_INCREMENT column for an InnoDB table, the table handle in the InnoDB data
dictionary contains a special counter called the auto-increment counter that is used in assigning new
values for the column. This counter is stored only in main memory, not on disk.

InnoDB uses the following algorithm to initialize the auto-increment counter for a table t that contains an
AUTO_INCREMENT column named ai_col: After a server startup, for the first insert into a table t, InnoDB
executes the equivalent of this statement:

SELECT MAX(ai_col) FROM t FOR UPDATE;

InnoDB increments by one the value retrieved by the statement and assigns it to the column and to the
auto-increment counter for the table. If the table is empty, InnoDB uses the value 1. If a user invokes
a SHOW TABLE STATUS statement that displays output for the table t and the auto-increment counter
has not been initialized, InnoDB initializes but does not increment the value and stores it for use by later
inserts. This initialization uses a normal exclusive-locking read on the table and the lock lasts to the end of
the transaction.

InnoDB follows the same procedure for initializing the auto-increment counter for a freshly created table.

After the auto-increment counter has been initialized, if you do not explicitly specify a value for an
AUTO_INCREMENT column, InnoDB increments the counter and assigns the new value to the column. If
you insert a row that explicitly specifies the column value, and the value is bigger than the current counter
value, the counter is set to the specified column value.

If a user specifies NULL or 0 for the AUTO_INCREMENT column in an INSERT, InnoDB treats the row as if
the value had not been specified and generates a new value for it.

The behavior of the auto-increment mechanism is not defined if a user assigns a negative value to the
column or if the value becomes bigger than the maximum integer that can be stored in the specified integer
type.

When accessing the auto-increment counter, InnoDB uses a special table-level AUTO-INC lock that it
keeps to the end of the current SQL statement, not to the end of the transaction. The special lock release
strategy was introduced to improve concurrency for inserts into a table containing an AUTO_INCREMENT
column. Nevertheless, two transactions cannot have the AUTO-INC lock on the same table simultaneously,
which can have a performance impact if the AUTO-INC lock is held for a long time. That might be the case
for a statement such as INSERT INTO t1 ... SELECT ... FROM t2 that inserts all rows from one
table into another.

Creating and Using InnoDB Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1408

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

InnoDB uses the in-memory auto-increment counter as long as the server runs. When the server is
stopped and restarted, InnoDB reinitializes the counter for each table for the first INSERT to the table, as
described earlier.

A server restart also cancels the effect of the AUTO_INCREMENT = N table option in CREATE TABLE and
ALTER TABLE statements, which you can use with InnoDB tables as of MySQL 5.0.3 to set the initial
counter value or alter the current counter value.

You may see gaps in the sequence of values assigned to the AUTO_INCREMENT column if you roll back
transactions that have generated numbers using the counter.

14.2.3.4 InnoDB and FOREIGN KEY Constraints

This section describes differences in the InnoDB storage engine's handling of foreign keys as compared
with that of the MySQL Server.

Foreign Key Definitions

Foreign key definitions for InnoDB tables are subject to the following conditions:

• InnoDB permits a foreign key to reference any index column or group of columns. However, in the
referenced table, there must be an index where the referenced columns are listed as the first columns in
the same order.

• InnoDB does not currently support foreign keys for tables with user-defined partitioning. This means that
no user-partitioned InnoDB table may contain foreign key references or columns referenced by foreign
keys.

• InnoDB allows a foreign key constraint to reference a non-unique key. This is an InnoDB extension to
standard SQL.

Referential Actions

Referential actions for foreign keys of InnoDB tables are subject to the following conditions:

• While SET DEFAULT is allowed by the MySQL Server, it is rejected as invalid by InnoDB. CREATE
TABLE and ALTER TABLE statements using this clause are not allowed for InnoDB tables.

• If there are several rows in the parent table that have the same referenced key value, InnoDB acts in
foreign key checks as if the other parent rows with the same key value do not exist. For example, if you
have defined a RESTRICT type constraint, and there is a child row with several parent rows, InnoDB
does not permit the deletion of any of those parent rows.

• InnoDB performs cascading operations through a depth-first algorithm, based on records in the indexes
corresponding to the foreign key constraints.

• If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to update the same table it has previously
updated during the cascade, it acts like RESTRICT. This means that you cannot use self-referential ON
UPDATE CASCADE or ON UPDATE SET NULL operations. This is to prevent infinite loops resulting from
cascaded updates. A self-referential ON DELETE SET NULL, on the other hand, is possible, as is a self-
referential ON DELETE CASCADE. Cascading operations may not be nested more than 15 levels deep.

• Like MySQL in general, in an SQL statement that inserts, deletes, or updates many rows, InnoDB
checks UNIQUE and FOREIGN KEY constraints row-by-row. When performing foreign key checks,
InnoDB sets shared row-level locks on child or parent records it has to look at. InnoDB checks foreign
key constraints immediately; the check is not deferred to transaction commit. According to the SQL

Creating and Using InnoDB Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1409

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

standard, the default behavior should be deferred checking. That is, constraints are only checked after
the entire SQL statement has been processed. Until InnoDB implements deferred constraint checking,
some things will be impossible, such as deleting a record that refers to itself using a foreign key.

Foreign Key Usage and Error Information

You can obtain general information about foreign keys and their usage from querying the
INFORMATION_SCHEMA.KEY_COLUMN_USAGE table. See also Section 13.1.10.3, “Using FOREIGN KEY
Constraints”.

In addition to SHOW ERRORS, in the event of a foreign key error involving InnoDB tables (usually Error 150
in the MySQL Server), you can obtain a detailed explanation of the most recent InnoDB foreign key error
by checking the output of SHOW ENGINE INNODB STATUS.

14.2.3.5 InnoDB and MySQL Replication

MySQL replication works for InnoDB tables as it does for MyISAM tables. It is also possible to use
replication in a way where the storage engine on the slave is not the same as the original storage engine
on the master. For example, you can replicate modifications to an InnoDB table on the master to a
MyISAM table on the slave.

To set up a new slave for a master, you have to make a copy of the InnoDB tablespace and the
log files, as well as the .frm files of the InnoDB tables, and move the copies to the slave. If the
innodb_file_per_table variable is enabled, you must also copy the .ibd files as well. For the proper
procedure to do this, see Section 14.2.6, “Backing Up and Recovering an InnoDB Database”.

If you can shut down the master or an existing slave, you can take a cold backup of the InnoDB
tablespace and log files and use that to set up a slave. To make a new slave without taking down any
server you can also use the commercial MySQL Enterprise Backup tool.

You cannot set up replication for InnoDB using the LOAD TABLE FROM MASTER statement, which works
only for MyISAM tables. There are two possible workarounds:

• Dump the table on the master and import the dump file into the slave.

• Use ALTER TABLE tbl_name ENGINE=MyISAM on the master before setting up replication with LOAD
TABLE tbl_name FROM MASTER, and then use ALTER TABLE to convert the master table back to
InnoDB afterward. However, this should not be done for tables that have foreign key definitions because
the definitions will be lost.

Transactions that fail on the master do not affect replication at all. MySQL replication is based on the
binary log where MySQL writes SQL statements that modify data. A transaction that fails (for example,
because of a foreign key violation, or because it is rolled back) is not written to the binary log, so it is not
sent to slaves. See Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”.

Replication and CASCADE. Cascading actions for InnoDB tables on the master are replicated on the
slave only if the tables sharing the foreign key relation use InnoDB on both the master and slave. Suppose
that you have started replication, and then create two tables on the master using the following CREATE
TABLE statements:

CREATE TABLE fc1 (
 i INT PRIMARY KEY,
 j INT
) ENGINE = InnoDB;

CREATE TABLE fc2 (

Creating and Using InnoDB Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1410

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 m INT PRIMARY KEY,
 n INT,
 FOREIGN KEY ni (n) REFERENCES fc1 (i)
 ON DELETE CASCADE
) ENGINE = InnoDB;

Suppose that the slave does not have InnoDB support enabled. If this is the case, then the tables on the
slave are created, but they use the MyISAM storage engine, and the FOREIGN KEY option is ignored. Now
we insert some rows into the tables on the master:

master> INSERT INTO fc1 VALUES (1, 1), (2, 2);
Query OK, 2 rows affected (0.09 sec)
Records: 2 Duplicates: 0 Warnings: 0

master> INSERT INTO fc2 VALUES (1, 1), (2, 2), (3, 1);
Query OK, 3 rows affected (0.19 sec)
Records: 3 Duplicates: 0 Warnings: 0

At this point, on both the master and the slave, table fc1 contains 2 rows, and table fc2 contains 3 rows,
as shown here:

master> SELECT * FROM fc1;
+---+------+
| i | j |
+---+------+
| 1 | 1 |
| 2 | 2 |
+---+------+
2 rows in set (0.00 sec)

master> SELECT * FROM fc2;
+---+------+
| m | n |
+---+------+
1	1
2	2
3	1
+---+------+
3 rows in set (0.00 sec)

slave> SELECT * FROM fc1;
+---+------+
| i | j |
+---+------+
| 1 | 1 |
| 2 | 2 |
+---+------+
2 rows in set (0.00 sec)

slave> SELECT * FROM fc2;
+---+------+
| m | n |
+---+------+
1	1
2	2
3	1
+---+------+
3 rows in set (0.00 sec)

Now suppose that you perform the following DELETE statement on the master:

master> DELETE FROM fc1 WHERE i=1;
Query OK, 1 row affected (0.09 sec)

Changing the Number or Size of InnoDB Redo Log Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1411

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Due to the cascade, table fc2 on the master now contains only 1 row:

master> SELECT * FROM fc2;
+---+---+
| m | n |
+---+---+
| 2 | 2 |
+---+---+
1 row in set (0.00 sec)

However, the cascade does not propagate on the slave because on the slave the DELETE for fc1 deletes
no rows from fc2. The slave's copy of fc2 still contains all of the rows that were originally inserted:

slave> SELECT * FROM fc2;
+---+---+
| m | n |
+---+---+
1	1
3	1
2	2
+---+---+
3 rows in set (0.00 sec)

This difference is due to the fact that the cascading deletes are handled internally by the InnoDB storage
engine, which means that none of the changes are logged.

14.2.4 Changing the Number or Size of InnoDB Redo Log Files

To change the number or the size of your InnoDB redo log files, perform the following steps:

1. If innodb_fast_shutdown is set to 2, set innodb_fast_shutdown to 1:

mysql> SET GLOBAL innodb_fast_shutdown = 1;

2. After ensuring that innodb_fast_shutdown is not set to 2, stop the MySQL server and make sure
that it shuts down without errors (to ensure that there is no information for outstanding transactions in
the log).

3. Copy the old log files into a safe place in case something went wrong during the shutdown and you
need them to recover the tablespace.

4. Delete the old log files from the log file directory.

5. Edit my.cnf to change the log file configuration.

6. Start the MySQL server again. mysqld sees that no InnoDB log files exist at startup and creates new
ones.

14.2.5 Resizing the InnoDB System Tablespace

This section describes how to increase or decrease the size of the InnoDB system tablespace.

Increasing the Size of the InnoDB System Tablespace

The easiest way to increase the size of the InnoDB tablespace is to configure it from the beginning to be
auto-extending. Specify the autoextend attribute for the last data file in the tablespace definition. Then

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_redo_log
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_system_tablespace

Backing Up and Recovering an InnoDB Database

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1412

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

InnoDB increases the size of that file automatically in 8MB increments when it runs out of space. The
increment size can be changed by setting the value of the innodb_autoextend_increment system
variable, which is measured in MB.

You can expand the system tablespace by a defined amount by adding another data file:

1. Shut down the MySQL server.

2. If the previous last data file is defined with the keyword autoextend, change its definition to use a
fixed size, based on how large it has actually grown. Check the size of the data file, round it down
to the closest multiple of 1024 × 1024 bytes (= 1MB), and specify this rounded size explicitly in
innodb_data_file_path.

3. Add a new data file to the end of innodb_data_file_path, optionally making that file auto-
extending. Only the last data file in the innodb_data_file_path can be specified as auto-
extending.

4. Start the MySQL server again.

For example, this tablespace has just one auto-extending data file ibdata1:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:10M:autoextend

Suppose that this data file, over time, has grown to 988MB. Here is the configuration line after modifying
the original data file to not be auto-extending and adding another auto-extending data file:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:988M;/disk2/ibdata2:50M:autoextend

When you add a new file to the tablespace configuration, make sure that it does not exist. InnoDB will
create and initialize the file when you restart the server.

Decreasing the Size of the InnoDB System Tablespace

You cannot remove a data file from the tablespace. To decrease the size of your tablespace, use this
procedure:

1. Use mysqldump to dump all your InnoDB tables.

2. Stop the server.

3. Remove all the existing tablespace files, including the ibdata and ib_log files. If you want to keep a
backup copy of the information, then copy all the ib* files to another location before the removing the
files in your MySQL installation.

4. Remove any .frm files for InnoDB tables.

5. Configure a new tablespace.

6. Restart the server.

7. Import the dump files.

14.2.6 Backing Up and Recovering an InnoDB Database

Backing Up and Recovering an InnoDB Database

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1413

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The key to safe database management is making regular backups.

MySQL Enterprise Backup enables you to back up a running MySQL database, including InnoDB and
MyISAM tables, with minimal disruption to operations while producing a consistent snapshot of the
database. When MySQL Enterprise Backup is copying InnoDB tables, reads and writes to both InnoDB
and MyISAM tables can continue. During the copying of MyISAM tables, reads (but not writes) to those
tables are permitted. In addition, MySQL Enterprise Backup supports creating compressed backup files,
and performing backups of subsets of InnoDB tables. In conjunction with MySQL’s binary log, users can
perform point-in-time recovery. MySQL Enterprise Backup is commercially licensed. For a more complete
description of MySQL Enterprise Backup, see Section 22.2, “MySQL Enterprise Backup Overview”.

If you are able to shut down your MySQL server, you can make a binary backup that consists of all files
used by InnoDB to manage its tables. Use the following procedure:

1. Shut down the MySQL server and make sure that it stops without errors.

2. Copy all InnoDB data files (ibdata files and .ibd files) into a safe place.

3. Copy all the .frm files for InnoDB tables to a safe place.

4. Copy all InnoDB log files (ib_logfile files) to a safe place.

5. Copy your my.cnf configuration file or files to a safe place.

In addition to making binary backups as just described, you should also regularly make dumps of your
tables with mysqldump. The reason for this is that a binary file might be corrupted without you noticing it.
Dumped tables are stored into text files that are human-readable, so spotting table corruption becomes
easier. Also, because the format is simpler, the chance for serious data corruption is smaller. mysqldump
also has a --single-transaction option for making a consistent snapshot without locking out other
clients. See Section 7.3.1, “Establishing a Backup Policy”.

Replication works with InnoDB tables, so you can use MySQL replication capabilities to keep a copy of
your database at database sites requiring high availability.

To be able to recover your InnoDB database to the present from the time at which the binary backup was
made, you must run your MySQL server with binary logging turned on. To achieve point-in-time recovery
after restoring a backup, you can apply changes from the binary log that occurred after the backup was
made. See Section 7.5, “Point-in-Time (Incremental) Recovery Using the Binary Log”.

To recover from a crash of your MySQL server, the only requirement is to restart it. InnoDB automatically
checks the logs and performs a roll-forward of the database to the present. InnoDB automatically rolls
back uncommitted transactions that were present at the time of the crash. During recovery, mysqld
displays output something like this:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745

Backing Up and Recovering an InnoDB Database

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1414

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

If your database becomes corrupted or disk failure occurs, you must perform the recovery using a backup.
In the case of corruption, you should first find a backup that is not corrupted. After restoring the base
backup, do a point-in-time recovery from the binary log files using mysqlbinlog and mysql to restore the
changes that occurred after the backup was made.

In some cases of database corruption it is enough just to dump, drop, and re-create one or a few corrupt
tables. You can use the CHECK TABLE SQL statement to check whether a table is corrupt, although
CHECK TABLE naturally cannot detect every possible kind of corruption. You can use the Tablespace
Monitor to check the integrity of the file space management inside the tablespace files.

In some cases, apparent database page corruption is actually due to the operating system corrupting its
own file cache, and the data on disk may be okay. It is best first to try restarting your computer. Doing so
may eliminate errors that appeared to be database page corruption.

14.2.6.1 The InnoDB Recovery Process

InnoDB crash recovery consists of several steps:

• Applying the redo log: Redo log application is the first step and is performed during initialization, before
accepting any connections. If all changes were flushed from the buffer pool to the tablespaces (ibdata*
and *.ibd files) at the time of the shutdown or crash, the redo log application can be skipped. If the
redo log files are missing at startup, InnoDB skips the redo log application.

Removing redo logs to speed up the recovery process is not recommended, even if some data loss
is acceptable. Removing redo logs should only be considered an option after a clean shutdown is
performed, with innodb_fast_shutdown set to 0 or 1.

• Rolling back incomplete transactions: Any transactions that were active at the time of crash or fast
shutdown. The time it takes to roll back an incomplete transaction can be three or four times the amount
of time a transaction is active before it is interrupted, depending on server load.

You cannot cancel transactions that are in the process of being rolled back. In extreme cases, when
rolling back transactions is expected to take an exceptionally long time, it may be faster to start InnoDB
with an innodb_force_recovery setting of 3 or greater. See Section 14.2.6.2, “Forcing InnoDB
Recovery” for more information.

• Insert buffer merge: Applying changes from the insert buffer (part of the system tablespace) to leaf
pages of secondary indexes, as the index pages are read to the buffer pool.

• Purge: Deleting delete-marked records that are no longer visible for any active transaction.

The steps that follow redo log application do not depend on the redo log (other than for logging the writes)
and are performed in parallel with normal processing. Of these, only rollback of incomplete transactions is
special to crash recovery. The insert buffer merge and the purge are performed during normal processing.

After redo log application, InnoDB attempts to accept connections as early as possible, to reduce
downtime. As part of crash recovery, InnoDB rolls back any transactions that were not committed or in XA
PREPARE state when the server crashed. The rollback is performed by a background thread, executed in
parallel with transactions from new connections. Until the rollback operation is completed, new connections
may encounter locking conflicts with recovered transactions.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_crash_recovery
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_redo_log
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_rollback
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_transaction
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_fast_shutdown
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_fast_shutdown
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_insert_buffer
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_system_tablespace
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_purge

Backing Up and Recovering an InnoDB Database

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1415

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In most situations, even if the MySQL server was killed unexpectedly in the middle of heavy activity,
the recovery process happens automatically and no action is needed from the DBA. If a hardware
failure or severe system error corrupted InnoDB data, MySQL might refuse to start. In that case, see
Section 14.2.6.2, “Forcing InnoDB Recovery” for the steps to troubleshoot such an issue.

For information about the binary log and InnoDB crash recovery, see Section 5.4.3, “The Binary Log”.

14.2.6.2 Forcing InnoDB Recovery

If there is database page corruption, you may want to dump your tables from the database with
SELECT ... INTO OUTFILE. Usually, most of the data obtained in this way is intact. However, it is
possible that the corruption might cause SELECT * FROM tbl_name statements or InnoDB background
operations to crash or assert, or even cause InnoDB roll-forward recovery to crash. In such cases, you
can use the innodb_force_recovery option to force the InnoDB storage engine to start up while
preventing background operations from running, so that you are able to dump your tables. For example,
you can add the following line to the [mysqld] section of your option file before restarting the server:

[mysqld]
innodb_force_recovery = 1

Warning

Only set innodb_force_recovery to a value greater than 0 in an emergency
situation, so that you can start InnoDB and dump your tables. Before doing
so, ensure that you have a backup copy of your database in case you need to
recreate it. Values of 4 or greater can permanently corrupt data files. Only use
an innodb_force_recovery setting of 4 or greater on a production server
instance after you have successfully tested the setting on separate physical copy
of your database. When forcing InnoDB recovery, you should always start with
innodb_force_recovery=1 and only increase the value incrementally, as
necessary.

innodb_force_recovery is 0 by default (normal startup without forced recovery). The permissible
nonzero values for innodb_force_recovery are 1 to 6. A larger value includes the functionality of
lesser values. For example, a value of 3 includes all of the functionality of values 1 and 2.

If you are able to dump your tables with an innodb_force_recovery value of 3 or less, then you are
relatively safe that only some data on corrupt individual pages is lost. A value of 4 or greater is considered
dangerous because data files can be permanently corrupted. A value of 6 is considered drastic because
database pages are left in an obsolete state, which in turn may introduce more corruption into B-trees and
other database structures.

As a safety measure, InnoDB prevents users from performing INSERT, UPDATE, or DELETE operations
when innodb_force_recovery is greater than 0.

• 1 (SRV_FORCE_IGNORE_CORRUPT)

Let the server run even if it detects a corrupt page. Try to make SELECT * FROM tbl_name jump over
corrupt index records and pages, which helps in dumping tables.

• 2 (SRV_FORCE_NO_BACKGROUND)

Prevent the main thread from running. If a crash would occur during the purge operation, this recovery
value prevents it.

• 3 (SRV_FORCE_NO_TRX_UNDO)

Moving an InnoDB Database to Another Machine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1416

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Do not run transaction rollbacks after recovery.

• 4 (SRV_FORCE_NO_IBUF_MERGE)

Prevent insert buffer merge operations. If they would cause a crash, do not do them. Do not calculate
table statistics. This value can permanently corrupt data files. After using this value, be prepared to drop
and recreate all secondary indexes.

• 5 (SRV_FORCE_NO_UNDO_LOG_SCAN)

Do not look at undo logs when starting the database: InnoDB treats even incomplete transactions as
committed. This value can permanently corrupt data files.

• 6 (SRV_FORCE_NO_LOG_REDO)

Do not do the log roll-forward in connection with recovery. This value can permanently corrupt data files.
Leaves database pages in an obsolete state, which in turn may introduce more corruption into B-trees
and other database structures.

You can SELECT from tables to dump them, or DROP or CREATE tables even if forced recovery is used. If
you know that a given table is causing a crash on rollback, you can drop it. You can also use this to stop a
runaway rollback caused by a failing mass import or ALTER TABLE. You can kill the mysqld process and
set innodb_force_recovery to 3 to bring the database up without the rollback, then DROP the table that
is causing the runaway rollback.

14.2.6.3 InnoDB Checkpoints

InnoDB implements a checkpoint mechanism known as “fuzzy” checkpointing. InnoDB flushes modified
database pages from the buffer pool in small batches. There is no need to flush the buffer pool in one
single batch, which would in practice stop processing of user SQL statements during the checkpointing
process.

During crash recovery, InnoDB looks for a checkpoint label written to the log files. It knows that all
modifications to the database before the label are present in the disk image of the database. Then InnoDB
scans the log files forward from the checkpoint, applying the logged modifications to the database.

InnoDB writes to its log files on a rotating basis. It also writes checkpoint information to the first log file at
each checkpoint. All committed modifications that make the database pages in the buffer pool different
from the images on disk must be available in the log files in case InnoDB has to do a recovery. This
means that when InnoDB starts to reuse a log file, it has to make sure that the database page images on
disk contain the modifications logged in the log file that InnoDB is going to reuse. In other words, InnoDB
must create a checkpoint and this often involves flushing of modified database pages to disk.

The preceding description explains why making your log files very large may reduce disk I/O in
checkpointing. It often makes sense to set the total size of the log files as large as the buffer pool or even
larger. The disadvantage of using large log files is that crash recovery can take longer because there is
more logged information to apply to the database.

14.2.7 Moving an InnoDB Database to Another Machine

On Windows, InnoDB always stores database and table names internally in lowercase. To move
databases in a binary format from Unix to Windows or from Windows to Unix, create all databases and
tables using lowercase names. A convenient way to accomplish this is to add the following line to the
[mysqld] section of your my.cnf or my.ini file before creating any databases or tables:

InnoDB Transaction Model and Locking

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1417

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

[mysqld]
lower_case_table_names=1

Like MyISAM data files, InnoDB data and log files are binary-compatible on all platforms having the same
floating-point number format. You can move an InnoDB database simply by copying all the relevant files
listed in Section 14.2.6, “Backing Up and Recovering an InnoDB Database”. If the floating-point formats
differ but you have not used FLOAT or DOUBLE data types in your tables, then the procedure is the same:
simply copy the relevant files. If you use mysqldump to dump your tables on one machine and then import
the dump files on the other machine, it does not matter whether the formats differ or your tables contain
floating-point data.

One way to increase performance is to switch off autocommit mode when importing data, assuming that
the tablespace has enough space for the big rollback segment that the import transactions generate. Do
the commit only after importing a whole table or a segment of a table.

14.2.8 InnoDB Transaction Model and Locking

To implement a large-scale, busy, or highly reliable database application, to port substantial code
from a different database system, or to tune MySQL performance, you must understand the notions of
transactions and locking as they relate to the InnoDB storage engine.

In the InnoDB transaction model, the goal is to combine the best properties of a multi-versioning database
with traditional two-phase locking. InnoDB does locking on the row level and runs queries as nonlocking
consistent reads by default, in the style of Oracle. The lock information in InnoDB is stored so space-
efficiently that lock escalation is not needed: Typically, several users are permitted to lock every row in
InnoDB tables, or any random subset of the rows, without causing InnoDB memory exhaustion.

In InnoDB, all user activity occurs inside a transaction. If autocommit mode is enabled, each SQL
statement forms a single transaction on its own. By default, MySQL starts the session for each new
connection with autocommit enabled, so MySQL does a commit after each SQL statement if that statement
did not return an error. If a statement returns an error, the commit or rollback behavior depends on the
error. See Section 14.2.12, “InnoDB Error Handling”.

A session that has autocommit enabled can perform a multiple-statement transaction by starting it with an
explicit START TRANSACTION or BEGIN statement and ending it with a COMMIT or ROLLBACK statement.
See Section 13.3.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”.

If autocommit mode is disabled within a session with SET autocommit = 0, the session always has a
transaction open. A COMMIT or ROLLBACK statement ends the current transaction and a new one starts.

A COMMIT means that the changes made in the current transaction are made permanent and become
visible to other sessions. A ROLLBACK statement, on the other hand, cancels all modifications made by the
current transaction. Both COMMIT and ROLLBACK release all InnoDB locks that were set during the current
transaction.

In terms of the SQL:1992 transaction isolation levels, the default InnoDB level is REPEATABLE READ.
InnoDB offers all four transaction isolation levels described by the SQL standard: READ UNCOMMITTED,
READ COMMITTED, REPEATABLE READ, and SERIALIZABLE.

A user can change the isolation level for a single session or for all subsequent connections with the
SET TRANSACTION statement. To set the server's default isolation level for all connections, use the --
transaction-isolation option on the command line or in an option file. For detailed information about
isolation levels and level-setting syntax, see Section 13.3.6, “SET TRANSACTION Syntax”.

In row-level locking, InnoDB normally uses next-key locking. That means that besides index records,
InnoDB can also lock the “gap” preceding an index record to block insertions by other sessions in the gap

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_transaction
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_locking

InnoDB Transaction Model and Locking

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1418

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

immediately before the index record. A next-key lock refers to a lock that locks an index record and the gap
before it. A gap lock refers to a lock that locks only the gap before some index record.

For more information about row-level locking, and the circumstances under which gap locking is disabled,
see Section 14.2.8.2, “InnoDB Record, Gap, and Next-Key Locks”.

14.2.8.1 InnoDB Lock Modes

InnoDB implements standard row-level locking where there are two types of locks, shared (S) locks and
exclusive (X) locks. For information about record, gap, and next-key lock types, see Section 14.2.8.2,
“InnoDB Record, Gap, and Next-Key Locks”.

• A shared (S) lock permits a transaction to read a row.

• An exclusive (X) lock permits a transaction to update or delete a row.

If transaction T1 holds a shared (S) lock on row r, then requests from some distinct transaction T2 for a
lock on row r are handled as follows:

• A request by T2 for an S lock can be granted immediately. As a result, both T1 and T2 hold an S lock on
r.

• A request by T2 for an X lock cannot be granted immediately.

If a transaction T1 holds an exclusive (X) lock on row r, a request from some distinct transaction T2 for a
lock of either type on r cannot be granted immediately. Instead, transaction T2 has to wait for transaction
T1 to release its lock on row r.

Intention Locks

Additionally, InnoDB supports multiple granularity locking which permits coexistence of record locks and
locks on entire tables. To make locking at multiple granularity levels practical, additional types of locks
called intention locks are used. Intention locks are table locks in InnoDB. The idea behind intention locks
is for a transaction to indicate which type of lock (shared or exclusive) it will require later for a row in that
table. There are two types of intention locks used in InnoDB (assume that transaction T has requested a
lock of the indicated type on table t):

• Intention shared (IS): Transaction T intends to set S locks on individual rows in table t.

• Intention exclusive (IX): Transaction T intends to set X locks on those rows.

For example, SELECT ... LOCK IN SHARE MODE sets an IS lock and SELECT ... FOR UPDATE
sets an IX lock.

The intention locking protocol is as follows:

• Before a transaction can acquire an S lock on a row in table t, it must first acquire an IS or stronger lock
on t.

• Before a transaction can acquire an X lock on a row, it must first acquire an IX lock on t.

These rules can be conveniently summarized by means of the following lock type compatibility matrix.

 X IX S IS

X Conflict Conflict Conflict Conflict

IX Conflict Compatible Conflict Compatible

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_shared_lock
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_exclusive_lock

InnoDB Transaction Model and Locking

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1419

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 X IX S IS

S Conflict Conflict Compatible Compatible

IS Conflict Compatible Compatible Compatible

A lock is granted to a requesting transaction if it is compatible with existing locks, but not if it conflicts with
existing locks. A transaction waits until the conflicting existing lock is released. If a lock request conflicts
with an existing lock and cannot be granted because it would cause deadlock, an error occurs.

Thus, intention locks do not block anything except full table requests (for example, LOCK TABLES ...
WRITE). The main purpose of IX and IS locks is to show that someone is locking a row, or going to lock a
row in the table.

Deadlock Example

The following example illustrates how an error can occur when a lock request would cause a deadlock. The
example involves two clients, A and B.

First, client A creates a table containing one row, and then begins a transaction. Within the transaction, A
obtains an S lock on the row by selecting it in share mode:

mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
Query OK, 0 rows affected (1.07 sec)

mysql> INSERT INTO t (i) VALUES(1);
Query OK, 1 row affected (0.09 sec)

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM t WHERE i = 1 LOCK IN SHARE MODE;
+------+
| i |
+------+
| 1 |
+------+
1 row in set (0.10 sec)

Next, client B begins a transaction and attempts to delete the row from the table:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> DELETE FROM t WHERE i = 1;

The delete operation requires an X lock. The lock cannot be granted because it is incompatible with the S
lock that client A holds, so the request goes on the queue of lock requests for the row and client B blocks.

Finally, client A also attempts to delete the row from the table:

mysql> DELETE FROM t WHERE i = 1;
ERROR 1213 (40001): Deadlock found when trying to get lock;
try restarting transaction

Deadlock occurs here because client A needs an X lock to delete the row. However, that lock request
cannot be granted because client B already has a request for an X lock and is waiting for client A to release
its S lock. Nor can the S lock held by A be upgraded to an X lock because of the prior request by B for an X

InnoDB Transaction Model and Locking

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1420

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

lock. As a result, InnoDB generates an error for one of the clients and releases its locks. The client returns
this error:

ERROR 1213 (40001): Deadlock found when trying to get lock;
try restarting transaction

At that point, the lock request for the other client can be granted and it deletes the row from the table.

Note

If the LATEST DETECTED DEADLOCK section of InnoDB Monitor output includes a
message stating, “TOO DEEP OR LONG SEARCH IN THE LOCK TABLE WAITS-
FOR GRAPH, WE WILL ROLL BACK FOLLOWING TRANSACTION,” this indicates
that the number of transactions on the wait-for list has reached a limit of 200,
which is defined by LOCK_MAX_DEPTH_IN_DEADLOCK_CHECK. A wait-for list that
exceeds 200 transactions is treated as a deadlock and the transaction attempting to
check the wait-for list is rolled back.

The same error may also occur if the locking thread must look at more than
1,000,000 locks owned by the transactions on the wait-for list. The limit of
1,000,000 locks is defined by LOCK_MAX_N_STEPS_IN_DEADLOCK_CHECK.

14.2.8.2 InnoDB Record, Gap, and Next-Key Locks

InnoDB has several types of record-level locks including record locks, gap locks, and next-key locks. For
information about shared locks, exclusive locks, and intention locks, see Section 14.2.8.1, “InnoDB Lock
Modes”.

• Record lock: This is a lock on an index record.

• Gap lock: This is a lock on a gap between index records, or a lock on the gap before the first or after the
last index record.

• Next-key lock: This is a combination of a record lock on the index record and a gap lock on the gap
before the index record.

Record Locks

Record locks always lock index records, even if a table is defined with no indexes. For such cases,
InnoDB creates a hidden clustered index and uses this index for record locking. See Section 14.2.10.1,
“Clustered and Secondary Indexes”.

Next-key Locks

By default, InnoDB operates in REPEATABLE READ transaction isolation level and with the
innodb_locks_unsafe_for_binlog system variable disabled. In this case, InnoDB uses next-key
locks for searches and index scans, which prevents phantom rows (see Section 14.2.8.3, “Avoiding the
Phantom Problem Using Next-Key Locking”).

Next-key locking combines index-row locking with gap locking. InnoDB performs row-level locking in such
a way that when it searches or scans a table index, it sets shared or exclusive locks on the index records
it encounters. Thus, the row-level locks are actually index-record locks. In addition, a next-key lock on an
index record also affects the “gap” before that index record. That is, a next-key lock is an index-record lock
plus a gap lock on the gap preceding the index record. If one session has a shared or exclusive lock on
record R in an index, another session cannot insert a new index record in the gap immediately before R in
the index order.

InnoDB Transaction Model and Locking

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1421

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Suppose that an index contains the values 10, 11, 13, and 20. The possible next-key locks for this index
cover the following intervals, where (or) denote exclusion of the interval endpoint and [or] denote
inclusion of the endpoint:

(negative infinity, 10]
(10, 11]
(11, 13]
(13, 20]
(20, positive infinity)

For the last interval, the next-key lock locks the gap above the largest value in the index and the
“supremum” pseudo-record having a value higher than any value actually in the index. The supremum is
not a real index record, so, in effect, this next-key lock locks only the gap following the largest index value.

Gap Locks

The next-key locking example in the previous section shows that a gap might span a single index value,
multiple index values, or even be empty.

Gap locking is not needed for statements that lock rows using a unique index to search for a unique row.
(This does not include the case that the search condition includes only some columns of a multiple-column
unique index; in that case, gap locking does occur.) For example, if the id column has a unique index, the
following statement uses only an index-record lock for the row having id value 100 and it does not matter
whether other sessions insert rows in the preceding gap:

SELECT * FROM child WHERE id = 100;

If id is not indexed or has a nonunique index, the statement does lock the preceding gap.

A type of gap lock called an insert intention gap lock is set by INSERT operations prior to row insertion.
This lock signals the intent to insert in such a way that multiple transactions inserting into the same index
gap need not wait for each other if they are not inserting at the same position within the gap. Suppose that
there are index records with values of 4 and 7. Separate transactions that attempt to insert values of 5 and
6 each lock the gap between 4 and 7 with insert intention locks prior to obtaining the exclusive lock on the
inserted row, but do not block each other because the rows are nonconflicting.

It is also worth noting here that conflicting locks can be held on a gap by different transactions. For
example, transaction A can hold a shared gap lock (gap S-lock) on a gap while transaction B holds an
exclusive gap lock (gap X-lock) on the same gap. The reason conflicting gap locks are allowed is that if a
record is purged from an index, the gap locks held on the record by different transactions must be merged.

Gap locks in InnoDB are “purely inhibitive”, which means they only stop other transactions from inserting
to the gap. Thus, a gap X-lock has the same effect as a gap S-lock.

Disabling Gap Locking

Gap locking can be disabled explicitly. This occurs if you change the transaction isolation level to READ
COMMITTED or enable the innodb_locks_unsafe_for_binlog system variable. Under these
circumstances, gap locking is disabled for searches and index scans and is used only for foreign-key
constraint checking and duplicate-key checking.

There is also another effect of using the READ COMMITTED isolation level or enabling
innodb_locks_unsafe_for_binlog: Record locks for nonmatching rows are released after MySQL
has evaluated the WHERE condition.

14.2.8.3 Avoiding the Phantom Problem Using Next-Key Locking

InnoDB Transaction Model and Locking

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1422

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The so-called phantom problem occurs within a transaction when the same query produces different sets
of rows at different times. For example, if a SELECT is executed twice, but returns a row the second time
that was not returned the first time, the row is a “phantom” row.

Suppose that there is an index on the id column of the child table and that you want to read and lock all
rows from the table having an identifier value larger than 100, with the intention of updating some column
in the selected rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

The query scans the index starting from the first record where id is bigger than 100. Let the table contain
rows having id values of 90 and 102. If the locks set on the index records in the scanned range do not
lock out inserts made in the gaps (in this case, the gap between 90 and 102), another session can insert
a new row into the table with an id of 101. If you were to execute the same SELECT within the same
transaction, you would see a new row with an id of 101 (a “phantom”) in the result set returned by the
query. If we regard a set of rows as a data item, the new phantom child would violate the isolation principle
of transactions that a transaction should be able to run so that the data it has read does not change during
the transaction.

To prevent phantoms, InnoDB uses an algorithm called next-key locking that combines index-row locking
with gap locking. InnoDB performs row-level locking in such a way that when it searches or scans a table
index, it sets shared or exclusive locks on the index records it encounters. Thus, the row-level locks are
actually index-record locks. In addition, a next-key lock on an index record also affects the “gap” before
that index record. That is, a next-key lock is an index-record lock plus a gap lock on the gap preceding the
index record. If one session has a shared or exclusive lock on record R in an index, another session cannot
insert a new index record in the gap immediately before R in the index order.

When InnoDB scans an index, it can also lock the gap after the last record in the index. Just that happens
in the preceding example: To prevent any insert into the table where id would be bigger than 100, the
locks set by InnoDB include a lock on the gap following id value 102.

You can use next-key locking to implement a uniqueness check in your application: If you read your data
in share mode and do not see a duplicate for a row you are going to insert, then you can safely insert
your row and know that the next-key lock set on the successor of your row during the read prevents
anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking enables you to “lock” the
nonexistence of something in your table.

Gap locking can be disabled as discussed in Section 14.2.8.2, “InnoDB Record, Gap, and Next-Key
Locks”. This may cause phantom problems because other sessions can insert new rows into the gaps
when gap locking is disabled.

14.2.8.4 Consistent Nonlocking Reads

A consistent read means that InnoDB uses multi-versioning to present to a query a snapshot of the
database at a point in time. The query sees the changes made by transactions that committed before that
point of time, and no changes made by later or uncommitted transactions. The exception to this rule is
that the query sees the changes made by earlier statements within the same transaction. This exception
causes the following anomaly: If you update some rows in a table, a SELECT sees the latest version of the
updated rows, but it might also see older versions of any rows. If other sessions simultaneously update the
same table, the anomaly means that you might see the table in a state that never existed in the database.

If the transaction isolation level is REPEATABLE READ (the default level), all consistent reads within the
same transaction read the snapshot established by the first such read in that transaction. You can get a
fresher snapshot for your queries by committing the current transaction and after that issuing new queries.

InnoDB Transaction Model and Locking

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1423

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

With READ COMMITTED isolation level, each consistent read within a transaction sets and reads its own
fresh snapshot.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ COMMITTED
and REPEATABLE READ isolation levels. A consistent read does not set any locks on the tables it
accesses, and therefore other sessions are free to modify those tables at the same time a consistent read
is being performed on the table.

Suppose that you are running in the default REPEATABLE READ isolation level. When you issue a
consistent read (that is, an ordinary SELECT statement), InnoDB gives your transaction a timepoint
according to which your query sees the database. If another transaction deletes a row and commits after
your timepoint was assigned, you do not see the row as having been deleted. Inserts and updates are
treated similarly.

You can advance your timepoint by committing your transaction and then doing another SELECT or START
TRANSACTION WITH CONSISTENT SNAPSHOT.

This is called multi-versioned concurrency control.

In the following example, session A sees the row inserted by B only when B has committed the insert and
A has committed as well, so that the timepoint is advanced past the commit of B.

 Session A Session B

 SET autocommit=0; SET autocommit=0;
time
| SELECT * FROM t;
| empty set
| INSERT INTO t VALUES (1, 2);
|
v SELECT * FROM t;
 empty set
 COMMIT;

 SELECT * FROM t;
 empty set

 COMMIT;

 SELECT * FROM t;

 | 1 | 2 |

 1 row in set

If you want to see the “freshest” state of the database, you should use either the READ COMMITTED
isolation level or a locking read:

SELECT * FROM t LOCK IN SHARE MODE;

With READ COMMITTED isolation level, each consistent read within a transaction sets and reads its own
fresh snapshot. With LOCK IN SHARE MODE, a locking read occurs instead: A SELECT blocks until the
transaction containing the freshest rows ends (see Section 14.2.8.5, “SELECT ... FOR UPDATE and
SELECT ... LOCK IN SHARE MODE Locking Reads”).

Consistent read does not work over certain DDL statements:

• Consistent read does not work over DROP TABLE, because MySQL cannot use a table that has been
dropped and InnoDB destroys the table.

InnoDB Transaction Model and Locking

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1424

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Consistent read does not work over ALTER TABLE, because that statement makes a temporary copy
of the original table and deletes the original table when the temporary copy is built. When you reissue
a consistent read within a transaction, rows in the new table are not visible because those rows did not
exist when the transaction's snapshot was taken.

InnoDB uses a consistent read for select in clauses like INSERT INTO ... SELECT, UPDATE ...
(SELECT), and CREATE TABLE ... SELECT that do not specify FOR UPDATE or LOCK IN SHARE
MODE if the innodb_locks_unsafe_for_binlog option is set and the isolation level of the transaction
is not set to SERIALIZABLE. Thus, no locks are set on rows read from the selected table. Otherwise,
InnoDB uses stronger locks and the SELECT part acts like READ COMMITTED, where each consistent
read, even within the same transaction, sets and reads its own fresh snapshot.

14.2.8.5 SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE Locking Reads

In some circumstances, a consistent (nonlocking) read is not convenient and a locking read is required
instead. InnoDB supports two types of locking reads:

• SELECT ... LOCK IN SHARE MODE sets a shared mode lock on any rows that are read. Other
sessions can read the rows, but cannot modify them until your transaction commits. If any of these rows
were changed by another transaction that has not yet committed, your query waits until that transaction
ends and then uses the latest values.

• For index records the search encounters, SELECT ... FOR UPDATE blocks other sessions from doing
SELECT ... LOCK IN SHARE MODE or from reading in certain transaction isolation levels. Consistent
reads will ignore any locks set on the records that exist in the read view. (Old versions of a record cannot
be locked; they will be reconstructed by applying undo logs on an in-memory copy of the record.)

These clauses are primarily useful when dealing with tree-structured or graph-structured data, either in a
single table or split across multiple tables.

Locks set by LOCK IN SHARE MODE and FOR UPDATE reads are released when the transaction is
committed or rolled back.

As an example of a situation in which a locking read is useful, suppose that you want to insert a new row
into a table child, and make sure that the child row has a parent row in table parent. The following
discussion describes how to implement referential integrity in application code.

Suppose that you use a consistent read to read the table parent and indeed see the parent row of the
to-be-inserted child row in the table. Can you safely insert the child row to table child? No, because it is
possible for some other session to delete the parent row from the table parent in the meantime without
you being aware of it.

The solution is to perform the SELECT in a locking mode using LOCK IN SHARE MODE:

SELECT * FROM parent WHERE NAME = 'Jones' LOCK IN SHARE MODE;

A read performed with LOCK IN SHARE MODE reads the latest available data and sets a shared mode
lock on the rows read. A shared mode lock prevents others from updating or deleting the row read. Also, if
the latest data belongs to a yet uncommitted transaction of another session, we wait until that transaction
ends. After we see that the LOCK IN SHARE MODE query returns the parent 'Jones', we can safely add
the child record to the child table and commit our transaction.

Let us look at another example: We have an integer counter field in a table child_codes that we use to
assign a unique identifier to each child added to table child. It is not a good idea to use either consistent
read or a shared mode read to read the present value of the counter because two users of the database

InnoDB Transaction Model and Locking

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1425

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

may then see the same value for the counter, and a duplicate-key error occurs if two users attempt to add
children with the same identifier to the table.

Here, LOCK IN SHARE MODE is not a good solution because if two users read the counter at the same
time, at least one of them ends up in deadlock when it attempts to update the counter.

To implement reading and incrementing the counter, first perform a locking read of the counter using FOR
UPDATE, and then increment the counter. For example:

SELECT counter_field FROM child_codes FOR UPDATE;
UPDATE child_codes SET counter_field = counter_field + 1;

A SELECT ... FOR UPDATE reads the latest available data, setting exclusive locks on each row it reads.
Thus, it sets the same locks a searched SQL UPDATE would set on the rows.

The preceding description is merely an example of how SELECT ... FOR UPDATE works. In MySQL, the
specific task of generating a unique identifier actually can be accomplished using only a single access to
the table:

UPDATE child_codes SET counter_field = LAST_INSERT_ID(counter_field + 1);
SELECT LAST_INSERT_ID();

The SELECT statement merely retrieves the identifier information (specific to the current connection). It
does not access any table.

Note

Locking of rows for update using SELECT FOR UPDATE only applies when
autocommit is disabled (either by beginning transaction with START TRANSACTION
or by setting autocommit to 0. If autocommit is enabled, the rows matching the
specification are not locked.

14.2.8.6 Locks Set by Different SQL Statements in InnoDB

A locking read, an UPDATE, or a DELETE generally set record locks on every index record that is scanned
in the processing of the SQL statement. It does not matter whether there are WHERE conditions in the
statement that would exclude the row. InnoDB does not remember the exact WHERE condition, but only
knows which index ranges were scanned. The locks are normally next-key locks that also block inserts into
the “gap” immediately before the record. However, gap locking can be disabled explicitly, which causes
next-key locking not to be used. For more information, see Section 14.2.8.2, “InnoDB Record, Gap, and
Next-Key Locks”. The transaction isolation level also can affect which locks are set; see Section 13.3.6,
“SET TRANSACTION Syntax”.

If a secondary index is used in a search and index record locks to be set are exclusive, InnoDB also
retrieves the corresponding clustered index records and sets locks on them.

Differences between shared and exclusive locks are described in Section 14.2.8.1, “InnoDB Lock Modes”.

If you have no indexes suitable for your statement and MySQL must scan the entire table to process the
statement, every row of the table becomes locked, which in turn blocks all inserts by other users to the
table. It is important to create good indexes so that your queries do not unnecessarily scan many rows.

For SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE, locks are acquired for scanned
rows, and expected to be released for rows that do not qualify for inclusion in the result set (for example,
if they do not meet the criteria given in the WHERE clause). However, in some cases, rows might not be
unlocked immediately because the relationship between a result row and its original source is lost during
query execution. For example, in a UNION, scanned (and locked) rows from a table might be inserted

InnoDB Transaction Model and Locking

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1426

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

into a temporary table before evaluation whether they qualify for the result set. In this circumstance, the
relationship of the rows in the temporary table to the rows in the original table is lost and the latter rows are
not unlocked until the end of query execution.

InnoDB sets specific types of locks as follows.

• SELECT ... FROM is a consistent read, reading a snapshot of the database and setting no locks
unless the transaction isolation level is set to SERIALIZABLE. For SERIALIZABLE level, the search
sets shared next-key locks on the index records it encounters.

• SELECT ... FROM ... LOCK IN SHARE MODE sets shared next-key locks on all index records the
search encounters.

• For index records the search encounters, SELECT ... FROM ... FOR UPDATE blocks other sessions
from doing SELECT ... FROM ... LOCK IN SHARE MODE or from reading in certain transaction
isolation levels. Consistent reads will ignore any locks set on the records that exist in the read view.

• UPDATE ... WHERE ... sets an exclusive next-key lock on every record the search encounters.

• DELETE FROM ... WHERE ... sets an exclusive next-key lock on every record the search
encounters.

• INSERT sets an exclusive lock on the inserted row. This lock is an index-record lock, not a next-key lock
(that is, there is no gap lock) and does not prevent other sessions from inserting into the gap before the
inserted row.

Prior to inserting the row, a type of gap lock called an insertion intention gap lock is set. This lock signals
the intent to insert in such a way that multiple transactions inserting into the same index gap need not
wait for each other if they are not inserting at the same position within the gap. Suppose that there are
index records with values of 4 and 7. Separate transactions that attempt to insert values of 5 and 6
each lock the gap between 4 and 7 with insert intention locks prior to obtaining the exclusive lock on the
inserted row, but do not block each other because the rows are nonconflicting.

If a duplicate-key error occurs, a shared lock on the duplicate index record is set. This use of a shared
lock can result in deadlock should there be multiple sessions trying to insert the same row if another
session already has an exclusive lock. This can occur if another session deletes the row. Suppose that
an InnoDB table t1 has the following structure:

CREATE TABLE t1 (i INT, PRIMARY KEY (i)) ENGINE = InnoDB;

Now suppose that three sessions perform the following operations in order:

Session 1:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 2:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 3:

START TRANSACTION;

InnoDB Transaction Model and Locking

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1427

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

INSERT INTO t1 VALUES(1);

Session 1:

ROLLBACK;

The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions 2 and
3 both result in a duplicate-key error and they both request a shared lock for the row. When session 1
rolls back, it releases its exclusive lock on the row and the queued shared lock requests for sessions 2
and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an exclusive lock for the
row because of the shared lock held by the other.

A similar situation occurs if the table already contains a row with key value 1 and three sessions perform
the following operations in order:

Session 1:

START TRANSACTION;
DELETE FROM t1 WHERE i = 1;

Session 2:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 3:

START TRANSACTION;
INSERT INTO t1 VALUES(1);

Session 1:

COMMIT;

The first operation by session 1 acquires an exclusive lock for the row. The operations by sessions 2 and
3 both result in a duplicate-key error and they both request a shared lock for the row. When session 1
commits, it releases its exclusive lock on the row and the queued shared lock requests for sessions 2
and 3 are granted. At this point, sessions 2 and 3 deadlock: Neither can acquire an exclusive lock for the
row because of the shared lock held by the other.

• INSERT ... ON DUPLICATE KEY UPDATE differs from a simple INSERT in that an exclusive next-key
lock rather than a shared lock is placed on the row to be updated when a duplicate-key error occurs.

• REPLACE is done like an INSERT if there is no collision on a unique key. Otherwise, an exclusive next-
key lock is placed on the row to be replaced.

• INSERT INTO T SELECT ... FROM S WHERE ... sets an exclusive index record without a
gap lock on each row inserted into T. If innodb_locks_unsafe_for_binlog is enabled and the
transaction isolation level is not SERIALIZABLE, InnoDB does the search on S as a consistent read (no
locks). Otherwise, InnoDB sets shared next-key locks on rows from S. InnoDB has to set locks in the
latter case: In roll-forward recovery from a backup, every SQL statement must be executed in exactly the
same way it was done originally.

CREATE TABLE ... SELECT ... performs the SELECT with shared next-key locks or as a consistent
read, as for INSERT ... SELECT.

InnoDB Transaction Model and Locking

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1428

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For REPLACE INTO T SELECT ... FROM S WHERE ..., InnoDB sets shared next-key locks on
rows from S.

• While initializing a previously specified AUTO_INCREMENT column on a table, InnoDB sets an exclusive
lock on the end of the index associated with the AUTO_INCREMENT column. In accessing the auto-
increment counter, InnoDB uses a specific AUTO-INC table lock mode where the lock lasts only to the
end of the current SQL statement, not to the end of the entire transaction. Other sessions cannot insert
into the table while the AUTO-INC table lock is held; see Section 14.2.8, “InnoDB Transaction Model and
Locking”.

InnoDB fetches the value of a previously initialized AUTO_INCREMENT column without setting any locks.

• If a FOREIGN KEY constraint is defined on a table, any insert, update, or delete that requires the
constraint condition to be checked sets shared record-level locks on the records that it looks at to check
the constraint. InnoDB also sets these locks in the case where the constraint fails.

• LOCK TABLES sets table locks, but it is the higher MySQL layer above the InnoDB layer that sets these
locks. InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and autocommit =
0, and the MySQL layer above InnoDB knows about row-level locks.

Otherwise, InnoDB's automatic deadlock detection cannot detect deadlocks where such table locks are
involved. Also, because in this case the higher MySQL layer does not know about row-level locks, it is
possible to get a table lock on a table where another session currently has row-level locks. However,
this does not endanger transaction integrity, as discussed in Section 14.2.8.8, “Deadlock Detection and
Rollback”. See also Section 14.2.14, “Limits on InnoDB Tables”.

14.2.8.7 Implicit Transaction Commit and Rollback

By default, MySQL starts the session for each new connection with autocommit mode enabled, so MySQL
does a commit after each SQL statement if that statement did not return an error. If a statement returns an
error, the commit or rollback behavior depends on the error. See Section 14.2.12, “InnoDB Error Handling”.

If a session that has autocommit disabled ends without explicitly committing the final transaction, MySQL
rolls back that transaction.

Some statements implicitly end a transaction, as if you had done a COMMIT before executing the
statement. For details, see Section 13.3.3, “Statements That Cause an Implicit Commit”.

14.2.8.8 Deadlock Detection and Rollback

InnoDB automatically detects transaction deadlocks and rolls back a transaction or transactions to break
the deadlock. InnoDB tries to pick small transactions to roll back, where the size of a transaction is
determined by the number of rows inserted, updated, or deleted.

InnoDB is aware of table locks if innodb_table_locks = 1 (the default) and autocommit = 0, and
the MySQL layer above it knows about row-level locks. Otherwise, InnoDB cannot detect deadlocks where
a table lock set by a MySQL LOCK TABLES statement or a lock set by a storage engine other than InnoDB
is involved. Resolve these situations by setting the value of the innodb_lock_wait_timeout system
variable.

When InnoDB performs a complete rollback of a transaction, all locks set by the transaction are released.
However, if just a single SQL statement is rolled back as a result of an error, some of the locks set by the
statement may be preserved. This happens because InnoDB stores row locks in a format such that it
cannot know afterward which lock was set by which statement.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_deadlock

InnoDB Transaction Model and Locking

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1429

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

14.2.8.9 How to Cope with Deadlocks

This section builds on the conceptual information about deadlocks in Section 14.2.8.8, “Deadlock Detection
and Rollback”. It explains how to organize database operations to minimize deadlocks and the subsequent
error handling required in applications.

Deadlocks are a classic problem in transactional databases, but they are not dangerous unless they are so
frequent that you cannot run certain transactions at all. Normally, you must write your applications so that
they are always prepared to re-issue a transaction if it gets rolled back because of a deadlock.

InnoDB uses automatic row-level locking. You can get deadlocks even in the case of transactions that just
insert or delete a single row. That is because these operations are not really “atomic”; they automatically
set locks on the (possibly several) index records of the row inserted or deleted.

You can cope with deadlocks and reduce the likelihood of their occurrence with the following techniques:

• Use SHOW ENGINE INNODB STATUS to determine the cause of the latest deadlock. That can help you
to tune your application to avoid deadlocks.

• Always be prepared to re-issue a transaction if it fails due to deadlock. Deadlocks are not dangerous.
Just try again.

• Keep transactions small and short in duration to make them less prone to collision.

• Commit transactions immediately after making a set of related changes to make them less prone
to collision. In particular, do not leave an interactive mysql session open for a long time with an
uncommitted transaction.

• If you are using locking reads (SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE),
try using a lower isolation level such as READ COMMITTED.

• When modifying multiple tables within a transaction, or different sets of rows in the same table, do
those operations in a consistent order each time. Then transactions form well-defined queues and do
not deadlock. For example, organize database operations into functions within your application, or
call stored routines, rather than coding multiple similar sequences of INSERT, UPDATE, and DELETE
statements in different places.

• Add well-chosen indexes to your tables. Then your queries need to scan fewer index records and
consequently set fewer locks. Use EXPLAIN SELECT to determine which indexes the MySQL server
regards as the most appropriate for your queries.

• Use less locking. If you can afford to permit a SELECT to return data from an old snapshot, do not add
the clause FOR UPDATE or LOCK IN SHARE MODE to it. Using the READ COMMITTED isolation level is
good here, because each consistent read within the same transaction reads from its own fresh snapshot.
You should also set the value of innodb_support_xa to 0, which will reduce the number of disk
flushes due to synchronizing on disk data and the binary log.

• If nothing else helps, serialize your transactions with table-level locks. The correct way to use
LOCK TABLES with transactional tables, such as InnoDB tables, is to begin a transaction with SET
autocommit = 0 (not START TRANSACTION) followed by LOCK TABLES, and to not call UNLOCK
TABLES until you commit the transaction explicitly. For example, if you need to write to table t1 and read
from table t2, you can do this:

SET autocommit=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
... do something with tables t1 and t2 here ...

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_deadlock

InnoDB Multi-Versioning

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1430

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

COMMIT;
UNLOCK TABLES;

Table-level locks prevent concurrent updates to the table, avoiding deadlocks at the expense of less
responsiveness for a busy system.

• Another way to serialize transactions is to create an auxiliary “semaphore” table that contains just
a single row. Have each transaction update that row before accessing other tables. In that way, all
transactions happen in a serial fashion. Note that the InnoDB instant deadlock detection algorithm also
works in this case, because the serializing lock is a row-level lock. With MySQL table-level locks, the
timeout method must be used to resolve deadlocks.

14.2.9 InnoDB Multi-Versioning

Because InnoDB is a multi-versioned storage engine, it must keep information about old versions of
rows in the tablespace. This information is stored in a data structure called a rollback segment (after an
analogous data structure in Oracle).

Internally, InnoDB adds three fields to each row stored in the database. A 6-byte DB_TRX_ID field
indicates the transaction identifier for the last transaction that inserted or updated the row. Also, a deletion
is treated internally as an update where a special bit in the row is set to mark it as deleted. Each row also
contains a 7-byte DB_ROLL_PTR field called the roll pointer. The roll pointer points to an undo log record
written to the rollback segment. If the row was updated, the undo log record contains the information
necessary to rebuild the content of the row before it was updated. A 6-byte DB_ROW_ID field contains
a row ID that increases monotonically as new rows are inserted. If InnoDB generates a clustered index
automatically, the index contains row ID values. Otherwise, the DB_ROW_ID column does not appear in
any index.

InnoDB uses the information in the rollback segment to perform the undo operations needed in a
transaction rollback. It also uses the information to build earlier versions of a row for a consistent read.

Undo logs in the rollback segment are divided into insert and update undo logs. Insert undo logs are
needed only in transaction rollback and can be discarded as soon as the transaction commits. Update
undo logs are used also in consistent reads, but they can be discarded only after there is no transaction
present for which InnoDB has assigned a snapshot that in a consistent read could need the information in
the update undo log to build an earlier version of a database row.

Commit your transactions regularly, including those transactions that issue only consistent reads.
Otherwise, InnoDB cannot discard data from the update undo logs, and the rollback segment may grow
too big, filling up your tablespace.

The physical size of an undo log record in the rollback segment is typically smaller than the corresponding
inserted or updated row. You can use this information to calculate the space needed for your rollback
segment.

In the InnoDB multi-versioning scheme, a row is not physically removed from the database immediately
when you delete it with an SQL statement. InnoDB only physically removes the corresponding row and its
index records when it discards the update undo log record written for the deletion. This removal operation
is called a purge, and it is quite fast, usually taking the same order of time as the SQL statement that did
the deletion.

If you insert and delete rows in smallish batches at about the same rate in the table, the purge thread
can start to lag behind and the table can grow bigger and bigger because of all the “dead” rows,
making everything disk-bound and very slow. In such a case, throttle new row operations, and allocate
more resources to the purge thread by tuning the innodb_max_purge_lag system variable. See
Section 14.2.2, “InnoDB Startup Options and System Variables” for more information.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_purge

InnoDB Table and Index Structures

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1431

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Multi-Versioning and Secondary Indexes

InnoDB multiversion concurrency control (MVCC) treats secondary indexes differently than clustered
indexes. Records in a clustered index are updated in-place, and their hidden system columns point undo
log entries from which earlier versions of records can be reconstructed. Unlike clustered index records,
secondary index records do not contain hidden system columns nor are they updated in-place.

When a secondary index column is updated, old secondary index records are delete-marked, new records
are inserted, and delete-marked records are eventually purged. When a secondary index record is delete-
marked or the secondary index page is updated by a newer transaction, InnoDB looks up the database
record in the clustered index. In the clustered index, the record's DB_TRX_ID is checked, and the correct
version of the record is retrieved from the undo log if the record was modified after the reading transaction
was initiated.

If a secondary index record is marked for deletion or the secondary index page is updated by a newer
transaction, the covering index technique is not used. Instead of returning values from the index structure,
InnoDB looks up the record in the clustered index.

14.2.10 InnoDB Table and Index Structures

Role of the .frm File

MySQL stores its data dictionary information for tables in .frm files in database directories. This is true
for all MySQL storage engines, but every InnoDB table also has its own entry in the InnoDB internal data
dictionary inside the tablespace. When MySQL drops a table or a database, it has to delete one or more
.frm files as well as the corresponding entries inside the InnoDB data dictionary. Consequently, you
cannot move InnoDB tables between databases simply by moving the .frm files.

14.2.10.1 Clustered and Secondary Indexes

Every InnoDB table has a special index called the clustered index where the data for the rows is stored.
Typically, the clustered index is synonymous with the primary key. To get the best performance from
queries, inserts, and other database operations, you must understand how InnoDB uses the clustered
index to optimize the most common lookup and DML operations for each table.

• If you define a PRIMARY KEY on your table, InnoDB uses it as the clustered index.

• If you do not define a PRIMARY KEY for your table, MySQL picks the first UNIQUE index that has only
NOT NULL columns as the primary key and InnoDB uses it as the clustered index.

• If the table has no PRIMARY KEY or suitable UNIQUE index, InnoDB internally generates a hidden
clustered index on a synthetic column containing row ID values. The rows are ordered by the ID that
InnoDB assigns to the rows in such a table. The row ID is a 6-byte field that increases monotonically as
new rows are inserted. Thus, the rows ordered by the row ID are physically in insertion order.

How the Clustered Index Speeds Up Queries

Accessing a row through the clustered index is fast because the row data is on the same page where the
index search leads. If a table is large, the clustered index architecture often saves a disk I/O operation
when compared to storage organizations that store row data using a different page from the index record.
(For example, MyISAM uses one file for data rows and another for index records.)

How Secondary Indexes Relate to the Clustered Index

All indexes other than the clustered index are known as secondary indexes. In InnoDB, each record in a
secondary index contains the primary key columns for the row, as well as the columns specified for the
secondary index. InnoDB uses this primary key value to search for the row in the clustered index.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_covering_index
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_primary_key
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_secondary_index

InnoDB Table and Index Structures

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1432

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If the primary key is long, the secondary indexes use more space, so it is advantageous to have a short
primary key.

14.2.10.2 Physical Structure of an InnoDB Index

All InnoDB indexes are B-trees where the index records are stored in the leaf pages of the tree. The
default size of an index page is 16KB. When new records are inserted, InnoDB tries to leave 1/16 of the
page free for future insertions and updates of the index records.

If index records are inserted in a sequential order (ascending or descending), the resulting index pages
are about 15/16 full. If records are inserted in a random order, the pages are from 1/2 to 15/16 full. If the fill
factor of an index page drops below 1/2, InnoDB tries to contract the index tree to free the page.

Note

Changing the page size is not a supported operation and there is no guarantee
that InnoDB will function normally with a page size other than 16KB. Problems
compiling or running InnoDB may occur.

A version of InnoDB built for one page size cannot use data files or log files from a
version built for a different page size.

14.2.10.3 Insert Buffering

It is a common situation in database applications that the primary key is a unique identifier and new rows
are inserted in the ascending order of the primary key. Thus, insertions into the clustered index do not
require random reads from a disk.

On the other hand, secondary indexes are usually nonunique, and insertions into secondary indexes
happen in a relatively random order. This would cause a lot of random disk I/O operations without a special
mechanism used in InnoDB.

If an index record should be inserted into a nonunique secondary index, InnoDB checks whether the
secondary index page is in the buffer pool. If that is the case, InnoDB does the insertion directly to the
index page. If the index page is not found in the buffer pool, InnoDB inserts the record to a special insert
buffer structure. The insert buffer is kept so small that it fits entirely in the buffer pool, and insertions can be
done very fast.

Periodically, the insert buffer is merged into the secondary index trees in the database. Often it is possible
to merge several insertions into the same page of the index tree, saving disk I/O operations. It has been
measured that the insert buffer can speed up insertions into a table up to 15 times.

The insert buffer merging may continue to happen after the transaction has been committed. In fact, it may
continue to happen after a server shutdown and restart (see Section 14.2.6.2, “Forcing InnoDB Recovery”).

Insert buffer merging may take many hours when many secondary indexes must be updated and
many rows have been inserted. During this time, disk I/O will be increased, which can cause significant
slowdown on disk-bound queries. Another significant background I/O operation is the purge thread (see
Section 14.2.9, “InnoDB Multi-Versioning”).

14.2.10.4 Adaptive Hash Indexes

If a table fits almost entirely in main memory, the fastest way to perform queries on it is to use hash
indexes. InnoDB has a mechanism that monitors index searches made to the indexes defined for a table.
If InnoDB notices that queries could benefit from building a hash index, it does so automatically.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_fill_factor
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_fill_factor

InnoDB Table and Index Structures

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1433

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The hash index is always built based on an existing B-tree index on the table. InnoDB can build a hash
index on a prefix of any length of the key defined for the B-tree, depending on the pattern of searches that
InnoDB observes for the B-tree index. A hash index can be partial: It is not required that the whole B-tree
index is cached in the buffer pool. InnoDB builds hash indexes on demand for those pages of the index
that are often accessed.

In a sense, InnoDB tailors itself through the adaptive hash index mechanism to ample main memory,
coming closer to the architecture of main-memory databases.

14.2.10.5 Physical Row Structure

The physical row structure for an InnoDB table depends on the MySQL version and the optional
ROW_FORMAT option used when the table was created. For InnoDB tables in MySQL 5.0.3 and earlier, only
the REDUNDANT row format was available. For MySQL 5.0.3 and later, the default is to use the COMPACT
row format, but you can use the REDUNDANT format to retain compatibility with older versions of InnoDB
tables. To check the row format of an InnoDB table use SHOW TABLE STATUS.

The compact row format decreases row storage space by about 20% at the cost of increasing CPU use
for some operations. If your workload is a typical one that is limited by cache hit rates and disk speed,
compact format is likely to be faster. If the workload is a rare case that is limited by CPU speed, compact
format might be slower.

Rows in InnoDB tables that use REDUNDANT row format have the following characteristics:

• Each index record contains a 6-byte header. The header is used to link together consecutive records,
and also in row-level locking.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a 6-byte
transaction ID field and a 7-byte roll pointer field.

• If no primary key was defined for a table, each clustered index record also contains a 6-byte row ID field.

• Each secondary index record also contains all the primary key fields defined for the clustered index key
that are not in the secondary index.

• A record contains a pointer to each field of the record. If the total length of the fields in a record is less
than 128 bytes, the pointer is one byte; otherwise, two bytes. The array of these pointers is called the
record directory. The area where these pointers point is called the data part of the record.

• Internally, InnoDB stores fixed-length character columns such as CHAR(10) in a fixed-length format.
Before MySQL 5.0.3, InnoDB truncates trailing spaces from VARCHAR columns.

• An SQL NULL value reserves one or two bytes in the record directory. Besides that, an SQL NULL value
reserves zero bytes in the data part of the record if stored in a variable length column. In a fixed-length
column, it reserves the fixed length of the column in the data part of the record. Reserving the fixed
space for NULL values enables an update of the column from NULL to a non-NULL value to be done in
place without causing fragmentation of the index page.

Rows in InnoDB tables that use COMPACT row format have the following characteristics:

• Each index record contains a 5-byte header that may be preceded by a variable-length header. The
header is used to link together consecutive records, and also in row-level locking.

• The variable-length part of the record header contains a bit vector for indicating NULL columns. If the
number of columns in the index that can be NULL is N, the bit vector occupies CEILING(N/8) bytes.
(For example, if there are anywhere from 9 to 15 columns that can be NULL, the bit vector uses two
bytes.) Columns that are NULL do not occupy space other than the bit in this vector. The variable-length

InnoDB Disk I/O and File Space Management

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1434

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

part of the header also contains the lengths of variable-length columns. Each length takes one or two
bytes, depending on the maximum length of the column. If all columns in the index are NOT NULL and
have a fixed length, the record header has no variable-length part.

• For each non-NULL variable-length field, the record header contains the length of the column in one
or two bytes. Two bytes will only be needed if part of the column is stored externally in overflow pages
or the maximum length exceeds 255 bytes and the actual length exceeds 127 bytes. For an externally
stored column, the 2-byte length indicates the length of the internally stored part plus the 20-byte pointer
to the externally stored part. The internal part is 768 bytes, so the length is 768+20. The 20-byte pointer
stores the true length of the column.

• The record header is followed by the data contents of the non-NULL columns.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a 6-byte
transaction ID field and a 7-byte roll pointer field.

• If no primary key was defined for a table, each clustered index record also contains a 6-byte row ID field.

• Each secondary index record also contains all the primary key fields defined for the clustered index key
that are not in the secondary index. If any of these primary key fields are variable length, the record
header for each secondary index will have a variable-length part to record their lengths, even if the
secondary index is defined on fixed-length columns.

• Internally, InnoDB stores fixed-length, fixed-width character columns such as CHAR(10) in a fixed-
length format. Before MySQL 5.0.3, InnoDB truncates trailing spaces from VARCHAR columns.

• Internally, InnoDB attempts to store UTF-8 CHAR(N) columns in N bytes by trimming trailing spaces.
(With REDUNDANT row format, such columns occupy 3 × N bytes.) Reserving the minimum space N in
many cases enables column updates to be done in place without causing fragmentation of the index
page.

14.2.11 InnoDB Disk I/O and File Space Management

14.2.11.1 InnoDB Disk I/O

InnoDB uses simulated asynchronous disk I/O: InnoDB creates a number of threads to take care of I/O
operations, such as read-ahead.

There are two read-ahead heuristics in InnoDB:

• In sequential read-ahead, if InnoDB notices that the access pattern to a segment in the tablespace is
sequential, it posts in advance a batch of reads of database pages to the I/O system.

• In random read-ahead, if InnoDB notices that some area in a tablespace seems to be in the process of
being fully read into the buffer pool, it posts the remaining reads to the I/O system.

InnoDB uses a novel file flush technique involving a structure called the doublewrite buffer, which
is enabled by default (innodb_doublewrite=ON). It adds safety to recovery following a crash or
power outage, and improves performance on most varieties of Unix by reducing the need for fsync()
operations.

Doublewrite means that before writing pages to a data file, InnoDB first writes them to a contiguous
tablespace area called the doublewrite buffer. Only after the write and the flush to the doublewrite buffer
has completed does InnoDB write the pages to their proper positions in the data file. If there is an
operating system, storage subsystem, or mysqld process crash in the middle of a page write (causing a
torn page condition), InnoDB can later find a good copy of the page from the doublewrite buffer during
recovery.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_doublewrite_buffer
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_torn_page

InnoDB Disk I/O and File Space Management

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1435

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

14.2.11.2 File Space Management

The data files that you define in the configuration file form the InnoDB tablespace. The files are logically
concatenated to form the tablespace. There is no striping in use. You cannot define where within the
tablespace your tables are allocated. However, in a newly created tablespace, InnoDB allocates space
starting from the first data file.

The tablespace consists of database pages with a default size of 16KB. The pages are grouped into
extents of size 1MB (64 consecutive pages). The “files” inside a tablespace are called segments in
InnoDB. The term “rollback segment” is somewhat confusing because it actually contains many tablespace
segments.

When a segment grows inside the tablespace, InnoDB allocates the first 32 pages to it individually. After
that, InnoDB starts to allocate whole extents to the segment. InnoDB can add up to 4 extents at a time to
a large segment to ensure good sequentiality of data.

Two segments are allocated for each index in InnoDB. One is for nonleaf nodes of the B-tree, the other
is for the leaf nodes. The idea here is to achieve better sequentiality for the leaf nodes, which contain the
data.

Some pages in the tablespace contain bitmaps of other pages, and therefore a few extents in an InnoDB
tablespace cannot be allocated to segments as a whole, but only as individual pages.

When you ask for available free space in the tablespace by issuing a SHOW TABLE STATUS statement,
InnoDB reports the extents that are definitely free in the tablespace. InnoDB always reserves some
extents for cleanup and other internal purposes; these reserved extents are not included in the free space.

When you delete data from a table, InnoDB contracts the corresponding B-tree indexes. Whether the
freed space becomes available for other users depends on whether the pattern of deletes frees individual
pages or extents to the tablespace. Dropping a table or deleting all rows from it is guaranteed to release
the space to other users, but remember that deleted rows are physically removed only in an (automatic)
purge operation after they are no longer needed for transaction rollbacks or consistent reads. (See
Section 14.2.9, “InnoDB Multi-Versioning”.)

To see information about the tablespace, use the Tablespace Monitor. See Section 14.2.13.1, “SHOW
ENGINE INNODB STATUS and the InnoDB Monitors”.

The maximum row length, except for variable-length columns (VARBINARY, VARCHAR, BLOB and TEXT), is
slightly less than half of a database page. That is, the maximum row length is about 8000 bytes. LONGBLOB
and LONGTEXT columns must be less than 4GB, and the total row length, including BLOB and TEXT
columns, must be less than 4GB.

If a row is less than half a page long, all of it is stored locally within the page. If it exceeds half a page,
variable-length columns are chosen for external off-page storage until the row fits within half a page. For
a column chosen for off-page storage, InnoDB stores the first 768 bytes locally in the row, and the rest
externally into overflow pages. Each such column has its own list of overflow pages. The 768-byte prefix is
accompanied by a 20-byte value that stores the true length of the column and points into the overflow list
where the rest of the value is stored.

14.2.11.3 Defragmenting a Table

If there are random insertions into or deletions from the indexes of a table, the indexes may become
fragmented. Fragmentation means that the physical ordering of the index pages on the disk is not close to
the index ordering of the records on the pages, or that there are many unused pages in the 64-page blocks
that were allocated to the index.

InnoDB Error Handling

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1436

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

One symptom of fragmentation is that a table takes more space than it “should” take. How much that is
exactly, is difficult to determine. All InnoDB data and indexes are stored in B-trees, and their fill factor may
vary from 50% to 100%. Another symptom of fragmentation is that a table scan such as this takes more
time than it “should” take:

SELECT COUNT(*) FROM t WHERE a_non_indexed_column <> 12345;

(In the preceding query, we are “fooling” the SQL optimizer into scanning the clustered index rather than a
secondary index.) Most disks can read 10MB/s to 50MB/s, which can be used to estimate how fast a table
scan should be.

It can speed up index scans if you periodically perform a “null” ALTER TABLE operation, which causes
MySQL to rebuild the table:

ALTER TABLE tbl_name ENGINE=INNODB

Another way to perform a defragmentation operation is to use mysqldump to dump the table to a text file,
drop the table, and reload it from the dump file.

If the insertions into an index are always ascending and records are deleted only from the end, the InnoDB
filespace management algorithm guarantees that fragmentation in the index does not occur.

14.2.12 InnoDB Error Handling

The following items describe how InnoDB performs error handling. InnoDB sometimes rolls back only the
statement that failed, other times it rolls back the entire transaction.

• If you run out of file space in the tablespace, a MySQL Table is full error occurs and InnoDB rolls
back the SQL statement.

• A transaction deadlock causes InnoDB to roll back the entire transaction. Retry the whole transaction
when this happens.

A lock wait timeout causes InnoDB to roll back only the single statement that was waiting for the
lock and encountered the timeout. (Until MySQL 5.0.13 InnoDB rolled back the entire transaction
if a lock wait timeout happened. You can restore this behavior by starting the server with the --
innodb_rollback_on_timeout option, available as of MySQL 5.0.32.) You should normally retry the
statement if using the current behavior or the entire transaction if using the old behavior.

Both deadlocks and lock wait timeouts are normal on busy servers and it is necessary for applications to
be aware that they may happen and handle them by retrying. You can make them less likely by doing as
little work as possible between the first change to data during a transaction and the commit, so the locks
are held for the shortest possible time and for the smallest possible number of rows. Sometimes splitting
work between different transactions may be practical and helpful.

When a transaction rollback occurs due to a deadlock or lock wait timeout, it cancels the effect of the
statements within the transaction. But if the start-transaction statement was START TRANSACTION or
BEGIN statement, rollback does not cancel that statement. Further SQL statements become part of the
transaction until the occurrence of COMMIT, ROLLBACK, or some SQL statement that causes an implicit
commit.

• A duplicate-key error rolls back the SQL statement, if you have not specified the IGNORE option in your
statement.

• A row too long error rolls back the SQL statement.

InnoDB Troubleshooting

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1437

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Other errors are mostly detected by the MySQL layer of code (above the InnoDB storage engine level),
and they roll back the corresponding SQL statement. Locks are not released in a rollback of a single
SQL statement.

During implicit rollbacks, as well as during the execution of an explicit ROLLBACK SQL statement, SHOW
PROCESSLIST displays Rolling back in the State column for the relevant connection.

14.2.13 InnoDB Troubleshooting

14.2.13.1 SHOW ENGINE INNODB STATUS and the InnoDB Monitors

InnoDB Monitors provide information about the InnoDB internal state. This information is useful for
performance tuning. Each Monitor can be enabled by creating a table with a special name, which causes
InnoDB to write Monitor output periodically. Output for the standard InnoDB Monitor is also available
on demand through the SHOW ENGINE INNODB STATUS SQL statement. Additionally, to assist with
troubleshooting, InnoDB temporarily enables standard InnoDB Monitor output under certain conditions.
For more information, see Section 14.2.13, “InnoDB Troubleshooting”.

There are several types of InnoDB Monitors:

• The standard InnoDB Monitor displays the following types of information:

• Table and record locks held by each active transaction

• Lock waits of a transactions

• Semaphore waits of threads

• Pending file I/O requests

• Buffer pool statistics

• Purge and insert buffer merge activity of the main InnoDB thread

For a discussion of InnoDB lock modes, see Section 14.2.8.1, “InnoDB Lock Modes”.

To enable the standard InnoDB Monitor for periodic output, create a table named innodb_monitor.
To obtain Monitor output on demand, use the SHOW ENGINE INNODB STATUS SQL statement to
fetch the output to your client program. If you are using the mysql interactive client, the output is more
readable if you replace the usual semicolon statement terminator with \G:

mysql> SHOW ENGINE INNODB STATUS\G

• The InnoDB Lock Monitor prints additional lock information as part of the standard InnoDB Monitor
output. To enable the InnoDB Lock Monitor, create a table named innodb_lock_monitor.

• The InnoDB Tablespace Monitor prints a list of file segments in the shared tablespace and validates the
tablespace allocation data structures. To enable this Monitor for periodic output, create a table named
innodb_tablespace_monitor.

• The InnoDB Table Monitor prints the contents of the InnoDB internal data dictionary. To enable this
Monitor for periodic output, create a table named innodb_table_monitor.

To enable an InnoDB Monitor for periodic output, use a CREATE TABLE statement to create the
table associated with the Monitor. For example, to enable the standard InnoDB Monitor, create the
innodb_monitor table:

InnoDB Troubleshooting

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1438

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CREATE TABLE innodb_monitor (a INT) ENGINE=INNODB;

To stop the Monitor, drop the table:

DROP TABLE innodb_monitor;

The CREATE TABLE syntax is just a way to pass a command to the InnoDB engine through MySQL's SQL
parser: The only things that matter are the table name innodb_monitor and that it be an InnoDB table.
The structure of the table is not relevant at all for the InnoDB Monitor. If you shut down the server, the
Monitor does not restart automatically when you restart the server. Drop the Monitor table and issue a new
CREATE TABLE statement to start the Monitor. (This syntax may change in a future release.)

When you enable InnoDB Monitors for periodic output, InnoDB writes their output to the mysqld server
standard error output (stderr). In this case, no output is sent to clients. When switched on, InnoDB
Monitors print data about every 15 seconds. Server output usually is directed to the error log (see
Section 5.4.1, “The Error Log”). This data is useful in performance tuning. On Windows, start the server
from a command prompt in a console window with the --console option if you want to direct the output to
the window rather than to the error log.

InnoDB sends diagnostic output to stderr or to files rather than to stdout or fixed-size memory
buffers, to avoid potential buffer overflows. As a side effect, the output of SHOW ENGINE INNODB
STATUS is written to a status file in the MySQL data directory every fifteen seconds. The name of the
file is innodb_status.pid, where pid is the server process ID. InnoDB removes the file for a normal
shutdown. If abnormal shutdowns have occurred, instances of these status files may be present and
must be removed manually. Before removing them, you might want to examine them to see whether they
contain useful information about the cause of abnormal shutdowns. The innodb_status.pid file is
created only if the configuration option innodb-status-file=1 is set.

InnoDB Monitors should be enabled only when you actually want to see Monitor information because
output generation does result in some performance decrement. Also, if you enable monitor output by
creating the associated table, your error log may become quite large if you forget to remove the table later.

For additional information about InnoDB monitors, see:

• Mark Leith: InnoDB Table and Tablespace Monitors

• MySQL Performance Blog: SHOW INNODB STATUS walk through

Each monitor begins with a header containing a timestamp and the monitor name. For example:

=====================================
141017 8:11:59 INNODB MONITOR OUTPUT
=====================================

The header for the standard Monitor (INNODB MONITOR OUTPUT) is also used for the Lock Monitor
because the latter produces the same output with the addition of extra lock information.

The following sections describe the output for each Monitor.

InnoDB Standard Monitor and Lock Monitor Output

The Lock Monitor is the same as the standard Monitor except that it includes additional lock information.
Enabling either monitor for periodic output by creating the associated InnoDB table turns on the same
output stream, but the stream includes the extra information if the Lock Monitor is enabled. For example,
if you create the innodb_monitor and innodb_lock_monitor tables, that turns on a single output
stream. The stream includes extra lock information until you disable the Lock Monitor by removing the
innodb_lock_monitor table.

http://www.markleith.co.uk/?p=25
http://www.mysqlperformanceblog.com/2006/07/17/show-innodb-status-walk-through/

InnoDB Troubleshooting

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1439

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Example InnoDB Monitor output (as of MySQL 5.0.96):

mysql> SHOW ENGINE INNODB STATUS\G
*************************** 1. row ***************************
Status:
=====================================
141017 8:11:59 INNODB MONITOR OUTPUT
=====================================
Per second averages calculated from the last 4 seconds

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 96, signal count 96
Mutex spin waits 0, rounds 1620, OS waits 46
RW-shared spins 92, OS waits 46; RW-excl spins 4, OS waits 4

LATEST FOREIGN KEY ERROR

141017 8:02:40 Transaction:
TRANSACTION 0 1799, ACTIVE 0 sec, process no 3857, OS thread id 140048508237568
inserting, thread declared inside InnoDB 497
mysql tables in use 1, locked 1
5 lock struct(s), heap size 1216, undo log entries 3
MySQL thread id 1, query id 33 localhost msandbox update
INSERT INTO child VALUES
 (NULL, 1)
 , (NULL, 2)
 , (NULL, 3)
 , (NULL, 4)
 , (NULL, 5)
 , (NULL, 6)
Foreign key constraint fails for table `mysql/child`:
,
 CONSTRAINT `child_ibfk_1` FOREIGN KEY (`parent_id`) REFERENCES `parent` (`id`)
 ON DELETE CASCADE ON UPDATE CASCADE
Trying to add in child table, in index `par_ind` tuple:
DATA TUPLE: 2 fields;
 0: len 4; hex 80000003; asc ;; 1: len 4; hex 80000003; asc ;;

But in parent table `mysql/parent`, in index `PRIMARY`,
the closest match we can find is record:
PHYSICAL RECORD: n_fields 3; compact format; info bits 0
 0: len 4; hex 80000004; asc ;; 1: len 6; hex 000000000703; asc ;; 2:
len 7; hex 80000000320134; asc 2 4;;

LATEST DETECTED DEADLOCK

141017 8:04:35
*** (1) TRANSACTION:
TRANSACTION 0 1803, ACTIVE 11 sec, process no 3857, OS thread id 140048507971328
 starting index read
mysql tables in use 1, locked 1
LOCK WAIT 2 lock struct(s), heap size 368
MySQL thread id 2, query id 89 localhost msandbox updating
DELETE FROM t WHERE i = 1
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 4555 n bits 72 index `GEN_CLUST_INDEX` of table
`mysql/t` trx id 0 1803 lock_mode X waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 6; hex 000000000200; asc ;; 1: len 6; hex 000000000709; asc
;; 2: len 7; hex 80000000320110; asc 2 ;; 3: len 4; hex 80000001; asc ;
;

*** (2) TRANSACTION:
TRANSACTION 0 1802, ACTIVE 33 sec, process no 3857, OS thread id 140048508237568

InnoDB Troubleshooting

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1440

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 starting index read, thread declared inside InnoDB 500
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1216
MySQL thread id 1, query id 90 localhost msandbox updating
DELETE FROM t WHERE i = 1
*** (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 0 page no 4555 n bits 72 index `GEN_CLUST_INDEX` of table
`mysql/t` trx id 0 1802 lock mode S
Record lock, heap no 1 PHYSICAL RECORD: n_fields 1; compact format; info bits 0
 0: len 8; hex 73757072656d756d; asc supremum;;

Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 6; hex 000000000200; asc ;; 1: len 6; hex 000000000709; asc
;; 2: len 7; hex 80000000320110; asc 2 ;; 3: len 4; hex 80000001; asc ;
;

*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 4555 n bits 72 index `GEN_CLUST_INDEX` of table
`mysql/t` trx id 0 1802 lock_mode X waiting
Record lock, heap no 2 PHYSICAL RECORD: n_fields 4; compact format; info bits 0
 0: len 6; hex 000000000200; asc ;; 1: len 6; hex 000000000709; asc
;; 2: len 7; hex 80000000320110; asc 2 ;; 3: len 4; hex 80000001; asc ;
;

*** WE ROLL BACK TRANSACTION (2)

TRANSACTIONS

Trx id counter 0 2119
Purge done for trx's n:o < 0 2048 undo n:o < 0 0
History list length 6
Total number of lock structs in row lock hash table 0
LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 0 2118, not started, process no 3857, OS thread id 14004850770508
8
MySQL thread id 4, query id 430 localhost msandbox end
INSERT INTO `salaries` VALUES (53000,67817,'1998-12-05','1999-12-05'),(53000,689
97,'1999-12-05','2000-12-04'),(53000,71070,'2000-12-04','2001-12-04'),(53000,752
14,'2001-12-04','9999-01-01'),(53001,49513,'1985-03-18','1986-03-18'),(53001,493
81,'1986-03-18','1987-03-18'),(53001,49006,'1987-03-18','1988-03-17'),(53001,523
22,'1988-03-17','1989-03-17'),(53001,54980,'1989-03-17','1990-03-17'),(53001,553
51,'1990-03-17','1991-03-17'),(53001,55221,'1991-03-17','1991-08-06'),(53002,400
00,'1998-03-26','1999-03-26'),(53002,41830,'1999-03-26','2000-03-25'),(53002,445
10,'2000-03-25','2001-03-25'),(53002,480
---TRANSACTION 0 1803, not started, process no 3857, OS thread id 14004850797132
8
MySQL thread id 2, query id 336 localhost msandbox
---TRANSACTION 0 1802, not started, process no 3857, OS thread id 14004850823756
8
MySQL thread id 1, query id 431 localhost msandbox
SHOW ENGINE INNODB STATUS

FILE I/O

I/O thread 0 state: waiting for i/o request (insert buffer thread)
I/O thread 1 state: waiting for i/o request (log thread)
I/O thread 2 state: waiting for i/o request (read thread)
I/O thread 3 state: waiting for i/o request (write thread)
Pending normal aio reads: 0, aio writes: 0,
 ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0
Pending flushes (fsync) log: 0; buffer pool: 0
2454 OS file reads, 5144 OS file writes, 1437 OS fsyncs
42.74 reads/s, 26444 avg bytes/read, 86.73 writes/s, 25.24 fsyncs/s

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf: size 1, free list len 0, seg size 2,

InnoDB Troubleshooting

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1441

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

0 inserts, 0 merged recs, 0 merges
Hash table size 17393, used cells 8885, node heap has 20 buffer(s)
329491.13 hash searches/s, 2940.76 non-hash searches/s

LOG

Log sequence number 0 927897901
Log flushed up to 0 927897901
Last checkpoint at 0 923527492
0 pending log writes, 0 pending chkp writes
1837 log i/o's done, 33.49 log i/o's/second

BUFFER POOL AND MEMORY

Total memory allocated 20641866; in additional pool allocated 951040
Buffer pool size 512
Free buffers 1
Database pages 491
Modified db pages 161
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages read 6690, created 17907, written 21574
68.98 reads/s, 325.42 creates/s, 394.65 writes/s
Buffer pool hit rate 1000 / 1000

ROW OPERATIONS

0 queries inside InnoDB, 0 queries in queue
1 read views open inside InnoDB
Main thread process no. 3857, id 140048477996800, state: sleeping
Number of rows inserted 5427964, updated 0, deleted 3, read 4
110594.85 inserts/s, 0.00 updates/s, 0.00 deletes/s, 0.00 reads/s

END OF INNODB MONITOR OUTPUT
============================

InnoDB Monitor output is limited to 64,000 bytes when produced using the SHOW ENGINE INNODB
STATUS statement. This limit does not apply to output written to the server's error output.

Some notes on the output sections:

Status

This section shows the timestamp, the monitor name, and the number of seconds that per-second
averages are based on. The number of seconds is the elapsed time between the current time and the last
time InnoDB Monitor output was printed.

SEMAPHORES

This section reports threads waiting for a semaphore and statistics on how many times threads have
needed a spin or a wait on a mutex or a rw-lock semaphore. A large number of threads waiting for
semaphores may be a result of disk I/O, or contention problems inside InnoDB. Contention can be
due to heavy parallelism of queries or problems in operating system thread scheduling. Setting the
innodb_thread_concurrency system variable smaller than the default value might help in such
situations.

LATEST FOREIGN KEY ERROR

This section provides information about the most recent foreign key constraint error. It is not present if no
such error has occurred. The contents include the statement that failed as well as information about the
constraint that failed and the referenced and referencing tables.

LATEST DETECTED DEADLOCK

InnoDB Troubleshooting

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1442

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This section provides information about the most recent deadlock. It is not present if no deadlock has
occurred. The contents show which transactions are involved, the statement each was attempting to
execute, the locks they have and need, and which transaction InnoDB decided to roll back to break the
deadlock. The lock modes reported in this section are explained in Section 14.2.8.1, “InnoDB Lock Modes”.

TRANSACTIONS

If this section reports lock waits, your applications might have lock contention. The output can also help to
trace the reasons for transaction deadlocks.

FILE I/O

This section provides information about threads that InnoDB uses to perform various types of I/O. The
first few of these are dedicated to general InnoDB processing. The contents also display information for
pending I/O operations and statistics for I/O performance.

On Unix, the number of threads is always 4. On Windows, the number depends on the setting of the
innodb_file_io_threads system variable.

INSERT BUFFER AND ADAPTIVE HASH INDEX

This section shows the status of the InnoDB insert buffer and adaptive hash index. (See
Section 14.2.10.3, “Insert Buffering”, and Section 14.2.10.4, “Adaptive Hash Indexes”.) The contents
include the number of operations performed for each, plus statistics for hash index performance.

LOG

This section displays information about the InnoDB log. The contents include the current log sequence
number, how far the log has been flushed to disk, and the position at which InnoDB last took a checkpoint.
(See Section 14.2.6.3, “InnoDB Checkpoints”.) The section also displays information about pending writes
and write performance statistics.

BUFFER POOL AND MEMORY

This section gives you statistics on pages read and written. You can calculate from these numbers how
many data file I/O operations your queries currently are doing.

For additional information about the operation of the buffer pool, see Section 8.10.2, “The InnoDB Buffer
Pool”.

ROW OPERATIONS

This section shows what the main thread is doing, including the number and performance rate for each
type of row operation.

InnoDB Tablespace Monitor Output

The InnoDB Tablespace Monitor prints information about the file segments in the shared tablespace
and validates the tablespace allocation data structures. If you use individual tablespaces by enabling
innodb_file_per_table, the Tablespace Monitor does not describe those tablespaces.

Example InnoDB Tablespace Monitor output:

==
090408 21:28:09 INNODB TABLESPACE MONITOR OUTPUT
==
FILE SPACE INFO: id 0
size 13440, free limit 3136, free extents 28
not full frag extents 2: used pages 78, full frag extents 3

InnoDB Troubleshooting

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1443

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

first seg id not used 0 23845
SEGMENT id 0 1 space 0; page 2; res 96 used 46; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 14
SEGMENT id 0 2 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 3 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
...
SEGMENT id 0 15 space 0; page 2; res 160 used 160; full ext 2
fragm pages 32; free extents 0; not full extents 0: pages 0
SEGMENT id 0 488 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 17 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
...
SEGMENT id 0 171 space 0; page 2; res 592 used 481; full ext 7
fragm pages 16; free extents 0; not full extents 2: pages 17
SEGMENT id 0 172 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
SEGMENT id 0 173 space 0; page 2; res 96 used 44; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 12
...
SEGMENT id 0 601 space 0; page 2; res 1 used 1; full ext 0
fragm pages 1; free extents 0; not full extents 0: pages 0
NUMBER of file segments: 73
Validating tablespace
Validation ok

END OF INNODB TABLESPACE MONITOR OUTPUT
=======================================

The Tablespace Monitor output includes information about the shared tablespace as a whole, followed by a
list containing a breakdown for each segment within the tablespace.

The tablespace consists of database pages with a default size of 16KB. The pages are grouped into
extents of size 1MB (64 consecutive pages).

The initial part of the output that displays overall tablespace information has this format:

FILE SPACE INFO: id 0
size 13440, free limit 3136, free extents 28
not full frag extents 2: used pages 78, full frag extents 3
first seg id not used 0 23845

Overall tablespace information includes these values:

• id: The tablespace ID. A value of 0 refers to the shared tablespace.

• size: The current tablespace size in pages.

• free limit: The minimum page number for which the free list has not been initialized. Pages at or
above this limit are free.

• free extents: The number of free extents.

• not full frag extents, used pages: The number of fragment extents that are not completely
filled, and the number of pages in those extents that have been allocated.

• full frag extents: The number of completely full fragment extents.

• first seg id not used: The first unused segment ID.

Individual segment information has this format:

InnoDB Troubleshooting

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1444

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SEGMENT id 0 15 space 0; page 2; res 160 used 160; full ext 2
fragm pages 32; free extents 0; not full extents 0: pages 0

Segment information includes these values:

id: The segment ID.

space, page: The tablespace number and page within the tablespace where the segment “inode” is
located. A tablespace number of 0 indicates the shared tablespace. InnoDB uses inodes to keep track of
segments in the tablespace. The other fields displayed for a segment (id, res, and so forth) are derived
from information in the inode.

res: The number of pages allocated (reserved) for the segment.

used: The number of allocated pages in use by the segment.

full ext: The number of extents allocated for the segment that are completely used.

fragm pages: The number of initial pages that have been allocated to the segment.

free extents: The number of extents allocated for the segment that are completely unused.

not full extents: The number of extents allocated for the segment that are partially used.

pages: The number of pages used within the not-full extents.

When a segment grows, it starts as a single page, and InnoDB allocates the first pages for it individually,
up to 32 pages (this is the fragm pages value). After that, InnoDB allocates complete 64-page extents.
InnoDB can add up to 4 extents at a time to a large segment to ensure good sequentiality of data.

For the example segment shown earlier, it has 32 fragment pages, plus 2 full extents (64 pages each), for
a total of 160 pages used out of 160 pages allocated. The following segment has 32 fragment pages and
one partially full extent using 14 pages for a total of 46 pages used out of 96 pages allocated:

SEGMENT id 0 1 space 0; page 2; res 96 used 46; full ext 0
fragm pages 32; free extents 0; not full extents 1: pages 14

It is possible for a segment that has extents allocated to it to have a fragm pages value less than 32 if
some of the individual pages have been deallocated subsequent to extent allocation.

InnoDB Table Monitor Output

The InnoDB Table Monitor prints the contents of the InnoDB internal data dictionary.

The output contains one section per table. The SYS_FOREIGN and SYS_FOREIGN_COLS sections are for
internal data dictionary tables that maintain information about foreign keys. There are also sections for the
Table Monitor table and each user-created InnoDB table. Suppose that the following two tables have been
created in the test database:

CREATE TABLE parent
(
 par_id INT NOT NULL,
 fname CHAR(20),
 lname CHAR(20),
 PRIMARY KEY (par_id),
 UNIQUE INDEX (lname, fname)
) ENGINE = INNODB;

InnoDB Troubleshooting

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1445

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CREATE TABLE child
(
 par_id INT NOT NULL,
 child_id INT NOT NULL,
 name VARCHAR(40),
 birth DATE,
 weight DECIMAL(10,2),
 misc_info VARCHAR(255),
 last_update TIMESTAMP,
 PRIMARY KEY (par_id, child_id),
 INDEX (name),
 FOREIGN KEY (par_id) REFERENCES parent (par_id)
 ON DELETE CASCADE
 ON UPDATE CASCADE
) ENGINE = INNODB;

Then the Table Monitor output will look something like this (reformatted slightly):

===
090420 12:05:26 INNODB TABLE MONITOR OUTPUT
===

TABLE: name SYS_FOREIGN, id 0 11, columns 8, indexes 3, appr.rows 1
 COLUMNS: ID: DATA_VARCHAR DATA_ENGLISH len 0 prec 0;
 FOR_NAME: DATA_VARCHAR DATA_ENGLISH len 0 prec 0;
 REF_NAME: DATA_VARCHAR DATA_ENGLISH len 0 prec 0;
 N_COLS: DATA_INT len 4 prec 0;
 DB_ROW_ID: DATA_SYS prtype 256 len 6 prec 0;
 DB_TRX_ID: DATA_SYS prtype 257 len 6 prec 0;
 DB_ROLL_PTR: DATA_SYS prtype 258 len 7 prec 0;
 INDEX: name ID_IND, id 0 11, fields 1/6, type 3
 root page 46, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: ID DB_TRX_ID DB_ROLL_PTR FOR_NAME REF_NAME N_COLS
 INDEX: name FOR_IND, id 0 12, fields 1/2, type 0
 root page 47, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: FOR_NAME ID
 INDEX: name REF_IND, id 0 13, fields 1/2, type 0
 root page 48, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: REF_NAME ID

TABLE: name SYS_FOREIGN_COLS, id 0 12, columns 8, indexes 1, appr.rows 1
 COLUMNS: ID: DATA_VARCHAR DATA_ENGLISH len 0 prec 0;
 POS: DATA_INT len 4 prec 0;
 FOR_COL_NAME: DATA_VARCHAR DATA_ENGLISH len 0 prec 0;
 REF_COL_NAME: DATA_VARCHAR DATA_ENGLISH len 0 prec 0;
 DB_ROW_ID: DATA_SYS prtype 256 len 6 prec 0;
 DB_TRX_ID: DATA_SYS prtype 257 len 6 prec 0;
 DB_ROLL_PTR: DATA_SYS prtype 258 len 7 prec 0;
 INDEX: name ID_IND, id 0 14, fields 2/6, type 3
 root page 49, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: ID POS DB_TRX_ID DB_ROLL_PTR FOR_COL_NAME REF_COL_NAME

TABLE: name test/child, id 0 14, columns 11, indexes 2, appr.rows 210
 COLUMNS: par_id: DATA_INT len 4 prec 0;
 child_id: DATA_INT len 4 prec 0;
 name: DATA_VARCHAR prtype 524303 len 40 prec 0;
 birth: DATA_INT len 3 prec 0;
 weight: type 3 len 5 prec 0;
 misc_info: DATA_VARCHAR prtype 524303 len 255 prec 0;
 last_update: DATA_INT len 4 prec 0;
 DB_ROW_ID: DATA_SYS prtype 256 len 6 prec 0;
 DB_TRX_ID: DATA_SYS prtype 257 len 6 prec 0;
 DB_ROLL_PTR: DATA_SYS prtype 258 len 7 prec 0;
 INDEX: name PRIMARY, id 0 17, fields 2/9, type 3
 root page 52, appr.key vals 210, leaf pages 1, size pages 1
 FIELDS: par_id child_id DB_TRX_ID DB_ROLL_PTR name birth weight misc_info last_update

InnoDB Troubleshooting

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1446

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 INDEX: name name, id 0 18, fields 1/3, type 0
 root page 53, appr.key vals 1, leaf pages 1, size pages 1
 FIELDS: name par_id child_id
 FOREIGN KEY CONSTRAINT test/child_ibfk_1: test/child (par_id)
 REFERENCES test/parent (par_id)

TABLE: name test/innodb_table_monitor, id 0 15, columns 5, indexes 1, appr.rows 0
 COLUMNS: i: DATA_INT len 4 prec 0;
 DB_ROW_ID: DATA_SYS prtype 256 len 6 prec 0;
 DB_TRX_ID: DATA_SYS prtype 257 len 6 prec 0;
 DB_ROLL_PTR: DATA_SYS prtype 258 len 7 prec 0;
 INDEX: name GEN_CLUST_INDEX, id 0 19, fields 0/4, type 1
 root page 54, appr.key vals 0, leaf pages 1, size pages 1
 FIELDS: DB_ROW_ID DB_TRX_ID DB_ROLL_PTR i

TABLE: name test/parent, id 0 13, columns 7, indexes 2, appr.rows 299
 COLUMNS: par_id: DATA_INT len 4 prec 0;
 fname: DATA_CHAR prtype 524542 len 20 prec 0;
 lname: DATA_CHAR prtype 524542 len 20 prec 0;
 DB_ROW_ID: DATA_SYS prtype 256 len 6 prec 0;
 DB_TRX_ID: DATA_SYS prtype 257 len 6 prec 0;
 DB_ROLL_PTR: DATA_SYS prtype 258 len 7 prec 0;
 INDEX: name PRIMARY, id 0 15, fields 1/5, type 3
 root page 50, appr.key vals 299, leaf pages 2, size pages 3
 FIELDS: par_id DB_TRX_ID DB_ROLL_PTR fname lname
 INDEX: name lname, id 0 16, fields 2/3, type 2
 root page 51, appr.key vals 300, leaf pages 1, size pages 1
 FIELDS: lname fname par_id
 FOREIGN KEY CONSTRAINT test/child_ibfk_1: test/child (par_id)
 REFERENCES test/parent (par_id)

END OF INNODB TABLE MONITOR OUTPUT
==================================

For each table, Table Monitor output contains a section that displays general information about the table
and specific information about its columns, indexes, and foreign keys.

The general information for each table includes the table name (in db_name/tbl_name format except for
internal tables), its ID, the number of columns and indexes, and an approximate row count.

The COLUMNS part of a table section lists each column in the table. Information for each column indicates
its name and data type characteristics. Some internal columns are added by InnoDB, such as DB_ROW_ID
(row ID), DB_TRX_ID (transaction ID), and DB_ROLL_PTR (a pointer to the rollback/undo data).

• DATA_xxx: These symbols indicate the data type. There may be multiple DATA_xxx symbols for a given
column.

• prtype: The column's “precise” type. This field includes information such as the column data type,
character set code, nullability, signedness, and whether it is a binary string. This field is described in the
innobase/include/data0type.h source file.

• len: The column length in bytes.

• prec: The precision of the type.

Each INDEX part of the table section provides the name and characteristics of one table index:

• name: The index name. If the name is PRIMARY, the index is a primary key. If the name is
GEN_CLUST_INDEX, the index is the clustered index that is created automatically if the table definition
doesn't include a primary key or non-NULL unique index. See Section 14.2.10.1, “Clustered and
Secondary Indexes”.

• id: The index ID.

InnoDB Troubleshooting

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1447

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• fields: The number of fields in the index, as a value in m/n format:

• m is the number of user-defined columns; that is, the number of columns you would see in the index
definition in a CREATE TABLE statement.

• n is the total number of index columns, including those added internally. For the clustered index,
the total includes the other columns in the table definition, plus any columns added internally. For
a secondary index, the total includes the columns from the primary key that are not part of the
secondary index.

• type: The index type. This is a bit field. For example, 1 indicates a clustered index and 2 indicates a
unique index, so a clustered index (which always contains unique values), will have a type value of
3. An index with a type value of 0 is neither clustered nor unique. The flag values are defined in the
innobase/include/dict0mem.h source file.

• root page: The index root page number.

• appr. key vals: The approximate index cardinality.

• leaf pages: The approximate number of leaf pages in the index.

• size pages: The approximate total number of pages in the index.

• FIELDS: The names of the fields in the index. For a clustered index that was generated automatically,
the field list begins with the internal DB_ROW_ID (row ID) field. DB_TRX_ID and DB_ROLL_PTR are
always added internally to the clustered index, following the fields that comprise the primary key. For a
secondary index, the final fields are those from the primary key that are not part of the secondary index.

The end of the table section lists the FOREIGN KEY definitions that apply to the table. This information
appears whether the table is a referencing or referenced table.

14.2.13.2 InnoDB General Troubleshooting

The following general guidelines apply to troubleshooting InnoDB problems:

• When an operation fails or you suspect a bug, look at the MySQL server error log (see Section 5.4.1,
“The Error Log”). Section B.3, “Server Error Codes and Messages” provides troubleshooting information
for some of the common InnoDB-specific errors that you may encounter.

• Issues relating to the InnoDB data dictionary include failed CREATE TABLE statements (orphan table
files), inability to open .InnoDB files, and system cannot find the path specified errors. For
information about these sorts of problems and errors, see Section 14.2.13.3, “Troubleshooting InnoDB
Data Dictionary Operations”.

• When troubleshooting, it is usually best to run the MySQL server from the command prompt, rather than
through mysqld_safe or as a Windows service. You can then see what mysqld prints to the console,
and so have a better grasp of what is going on. On Windows, start mysqld with the --console option
to direct the output to the console window.

• Enable the InnoDB Monitors to obtain information about a problem (see Section 14.2.13.1, “SHOW
ENGINE INNODB STATUS and the InnoDB Monitors”). If the problem is performance-related, or your
server appears to be hung, you should enable the standard Monitor to print information about the internal
state of InnoDB. If the problem is with locks, enable the Lock Monitor. If the problem is in creation of
tables or other data dictionary operations, enable the Table Monitor to print the contents of the InnoDB
internal data dictionary. To see tablespace information enable the Tablespace Monitor.

InnoDB temporarily enables standard InnoDB Monitor output under the following conditions:

InnoDB Troubleshooting

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1448

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• A long semaphore wait

• InnoDB cannot find free blocks in the buffer pool

• Over 67% of the buffer pool is occupied by lock heaps or the adaptive hash index

• If you suspect that a table is corrupt, run CHECK TABLE on that table.

14.2.13.3 Troubleshooting InnoDB Data Dictionary Operations

A specific issue with tables is that the MySQL server keeps data dictionary information in .frm files it
stores in the database directories, whereas InnoDB also stores the information into its own data dictionary
inside the tablespace files. If you move .frm files around, or if the server crashes in the middle of a
data dictionary operation, the locations of the .frm files may end up out of synchrony with the locations
recorded in the InnoDB internal data dictionary.

CREATE TABLE Failure Due to Orphan Table

A symptom of an out-of-sync data dictionary is that a CREATE TABLE statement fails. If this occurs, you
should look in the server's error log. If the log says that the table already exists inside the InnoDB internal
data dictionary, you have an orphan table inside the InnoDB tablespace files that has no corresponding
.frm file. The error message looks like this:

InnoDB: Error: table test/parent already exists in InnoDB internal
InnoDB: data dictionary. Have you deleted the .frm file
InnoDB: and not used DROP TABLE? Have you used DROP DATABASE
InnoDB: for InnoDB tables in MySQL version <= 3.23.43?
InnoDB: See the Restrictions section of the InnoDB manual.
InnoDB: You can drop the orphaned table inside InnoDB by
InnoDB: creating an InnoDB table with the same name in another
InnoDB: database and moving the .frm file to the current database.
InnoDB: Then MySQL thinks the table exists, and DROP TABLE will
InnoDB: succeed.

You can drop the orphan table by following the instructions given in the error message. If you are still
unable to use DROP TABLE successfully, the problem may be due to name completion in the mysql client.
To work around this problem, start the mysql client with the --skip-auto-rehash option and try DROP
TABLE again. (With name completion on, mysql tries to construct a list of table names, which fails when a
problem such as just described exists.)

Cannot Open File Error

Another symptom of an out-of-sync data dictionary is that MySQL prints an error that it cannot open an
InnoDB file:

ERROR 1016: Can't open file: 'child2.ibd'. (errno: 1)

In the error log you can find a message like this:

InnoDB: Cannot find table test/child2 from the internal data dictionary
InnoDB: of InnoDB though the .frm file for the table exists. Maybe you
InnoDB: have deleted and recreated InnoDB data files but have forgotten
InnoDB: to delete the corresponding .frm files of InnoDB tables?

This means that there is an orphan .frm file without a corresponding table inside InnoDB. You can drop
the orphan .frm file by deleting it manually.

Limits on InnoDB Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1449

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Orphan Temporary Tables

If MySQL exits in the middle of an ALTER TABLE operation, you may be left with an orphan temporary
table that takes up space on your system. This section describes how to identify and remove orphan
temporary tables.

Orphan temporary table names begin with an #sql- prefix (e.g., #sql-540_3). The accompanying .frm
file has the same base name as the orphan temporary table.

Note

If there is no .frm file, you can recreate it. The .frm file must have the same
table schema as the orphan temporary table (it must have the same columns and
indexes) and must be placed in the database directory of the orphan temporary
table.

To identify orphan temporary tables on your system, you can view Table Monitor output. Look for table
names that begin with #sql. If the original table resides in a file-per-table tablespace, the tablespace file
(the #sql-*.ibd file) for the orphan temporary table should be visible in the database directory.

To remove an orphan temporary table, drop the table by issuing a DROP TABLE statement, enclosing the
table name in backticks. For example:

mysql> DROP TABLE `#sql-540_3`;

Tablespace Does Not Exist

With innodb_file_per_table enabled, the following message might occur if the .frm or .ibd files (or
both) are missing:

InnoDB: in InnoDB data dictionary has tablespace id N,
InnoDB: but tablespace with that id or name does not exist. Have
InnoDB: you deleted or moved .ibd files?
InnoDB: This may also be a table created with CREATE TEMPORARY TABLE
InnoDB: whose .ibd and .frm files MySQL automatically removed, but the
InnoDB: table still exists in the InnoDB internal data dictionary.

If this occurs, try the following procedure to resolve the problem:

1. Create a matching .frm file in some other database directory and copy it to the database directory
where the orphan table is located.

2. Issue DROP TABLE for the original table. That should successfully drop the table and InnoDB should
print a warning to the error log that the .ibd file was missing.

14.2.14 Limits on InnoDB Tables

Warning

Do not convert MySQL system tables in the mysql database from MyISAM to
InnoDB tables. This is an unsupported operation. If you do this, MySQL does not
restart until you restore the old system tables from a backup or regenerate them by
reinitializing the data directory (see Section 2.18.1, “Initializing the Data Directory”).

Warning

 It is not a good idea to configure InnoDB to use data files or log files on NFS
volumes. Otherwise, the files might be locked by other processes and become
unavailable for use by MySQL.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_file_per_table

Limits on InnoDB Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1450

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Maximums and Minimums

• A table can contain a maximum of 1000 columns.

• The InnoDB internal maximum key length is 3500 bytes, but MySQL itself restricts this to 3072 bytes.
(1024 bytes for non-64-bit builds before MySQL 5.0.17, and for all builds before 5.0.15.)

• An index key for a single-column index can be up to 767 bytes. The same length limit applies to any
index key prefix. See Section 13.1.8, “CREATE INDEX Syntax”.

• The maximum row length, except for variable-length columns (VARBINARY, VARCHAR, BLOB and TEXT),
is slightly less than half of a database page. That is, the maximum row length is about 8000 bytes.
LONGBLOB and LONGTEXT columns must be less than 4GB, and the total row length, including BLOB and
TEXT columns, must be less than 4GB.

If a row is less than half a page long, all of it is stored locally within the page. If it exceeds half a page,
variable-length columns are chosen for external off-page storage until the row fits within half a page, as
described in Section 14.2.11.2, “File Space Management”.

• Although InnoDB supports row sizes larger than 65,535 bytes internally, MySQL itself imposes a row-
size limit of 65,535 for the combined size of all columns:

mysql> CREATE TABLE t (a VARCHAR(8000), b VARCHAR(10000),
 -> c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
 -> f VARCHAR(10000), g VARCHAR(10000)) ENGINE=InnoDB;
ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs

See Section C.7.4, “Limits on Table Column Count and Row Size”.

• On some older operating systems, files must be less than 2GB. This is not a limitation of InnoDB itself,
but if you require a large tablespace, you will need to configure it using several smaller data files rather
than one large data file.

• The combined size of the InnoDB log files must be less than 4GB.

• The minimum tablespace size is 10MB. The maximum tablespace size is four billion database pages
(64TB). This is also the maximum size for a table.

• The default database page size in InnoDB is 16KB. By recompiling the code, you can set it
to values ranging from 8KB to 64KB. You must update the values of UNIV_PAGE_SIZE and
UNIV_PAGE_SIZE_SHIFT in the univ.i source file.

Note

Changing the page size is not a supported operation and there is no guarantee
that InnoDB will function normally with a page size other than 16KB. Problems
compiling or running InnoDB may occur.

A version of InnoDB built for one page size cannot use data files or log files from
a version built for a different page size.

Index Types

• InnoDB tables do not support FULLTEXT indexes.

Limits on InnoDB Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1451

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• InnoDB tables do not support spatial data types before MySQL 5.0.16. As of 5.0.16, InnoDB supports
spatial data types, but not indexes on them.

Restrictions on InnoDB Tables

• ANALYZE TABLE determines index cardinality (as displayed in the Cardinality column of SHOW
INDEX output) by doing eight random dives to each of the index trees and updating index cardinality
estimates accordingly. Because these are only estimates, repeated runs of ANALYZE TABLE may
produce different numbers. This makes ANALYZE TABLE fast on InnoDB tables but not 100% accurate
because it does not take all rows into account.

MySQL uses index cardinality estimates only in join optimization. If some join is not optimized in
the right way, you can try using ANALYZE TABLE. In the few cases that ANALYZE TABLE does not
produce values good enough for your particular tables, you can use FORCE INDEX with your queries
to force the use of a particular index, or set the max_seeks_for_key system variable to ensure that
MySQL prefers index lookups over table scans. See Section 5.1.4, “Server System Variables”, and
Section B.5.5, “Optimizer-Related Issues”.

• If statements or transactions are running on a table and ANALYZE TABLE is run on the same table
followed by a second ANALYZE TABLE operation, the second ANALYZE TABLE operation is blocked
until the statements or transactions are completed. This behavior occurs because ANALYZE TABLE
marks the currently loaded table definition as obsolete when ANALYZE TABLE is finished running. New
statements or transactions (including a second ANALYZE TABLE statement) must load the new table
definition into the table cache, which cannot occur until currently running statements or transactions
are completed and the old table definition is purged. Loading multiple concurrent table definitions is not
supported.

• SHOW TABLE STATUS does not give accurate statistics on InnoDB tables, except for the physical size
reserved by the table. The row count is only a rough estimate used in SQL optimization.

• InnoDB does not keep an internal count of rows in a table because concurrent transactions might “see”
different numbers of rows at the same time. To process a SELECT COUNT(*) FROM t statement,
InnoDB scans an index of the table, which takes some time if the index is not entirely in the buffer pool.
If your table does not change often, using the MySQL query cache is a good solution. To get a fast
count, you have to use a counter table you create yourself and let your application update it according to
the inserts and deletes it does. If an approximate row count is sufficient, SHOW TABLE STATUS can be
used.

• On Windows, InnoDB always stores database and table names internally in lowercase. To move
databases in a binary format from Unix to Windows or from Windows to Unix, create all databases and
tables using lowercase names.

• An AUTO_INCREMENT column ai_col must be defined as part of an index such that it is possible
to perform the equivalent of an indexed SELECT MAX(ai_col) lookup on the table to obtain the
maximum column value. Typically, this is achieved by making the column the first column of some table
index.

• In MySQL 5.0 before MySQL 5.0.3, InnoDB does not support the AUTO_INCREMENT table option for
setting the initial sequence value in a CREATE TABLE or ALTER TABLE statement. To set the value with
InnoDB, insert a dummy row with a value one less and delete that dummy row, or insert the first row
with an explicit value specified.

• While initializing a previously specified AUTO_INCREMENT column on a table, InnoDB sets an exclusive
lock on the end of the index associated with the AUTO_INCREMENT column. While accessing the auto-
increment counter, InnoDB uses a specific AUTO-INC table lock mode where the lock lasts only to the
end of the current SQL statement, not to the end of the entire transaction. Other clients cannot insert into

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_statistics

The MERGE Storage Engine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1452

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

the table while the AUTO-INC table lock is held. See Section 14.2.3.3, “AUTO_INCREMENT Handling in
InnoDB”.

• When you restart the MySQL server, InnoDB may reuse an old value that was generated for an
AUTO_INCREMENT column but never stored (that is, a value that was generated during an old
transaction that was rolled back).

• When an AUTO_INCREMENT column runs out of values, InnoDB wraps a BIGINT to
-9223372036854775808 and BIGINT UNSIGNED to 1. However, BIGINT values have 64 bits, so if
you were to insert one million rows per second, it would still take nearly three hundred thousand years
before BIGINT reached its upper bound. With all other integer type columns, a duplicate-key error
results. This is general MySQL behavior, similar to how MyISAM works.

• DELETE FROM tbl_name does not regenerate the table but instead deletes all rows, one by one.

• Under some conditions, TRUNCATE tbl_name for an InnoDB table is mapped to DELETE FROM
tbl_name and does not reset the AUTO_INCREMENT counter. See Section 13.1.21, “TRUNCATE
TABLE Syntax”.

• The LOAD TABLE FROM MASTER statement for setting up replication slave servers does not work for
InnoDB tables. A workaround is to alter the table to MyISAM on the master, then do the load, and after
that alter the master table back to InnoDB. Do not do this if the tables use InnoDB-specific features
such as foreign keys.

• Cascaded foreign key actions do not activate triggers.

• You cannot create a table with a column name that matches the name of an internal InnoDB column
(including DB_ROW_ID, DB_TRX_ID, DB_ROLL_PTR, and DB_MIX_ID). In versions of MySQL before
5.0.21 this would cause a crash, since 5.0.21 the server will report error 1005 and refers to error −1 in
the error message. This restriction applies only to use of the names in uppercase.

• As of MySQL 5.0.19, InnoDB does not ignore trailing spaces when comparing BINARY or VARBINARY
column values. See Section 11.4.2, “The BINARY and VARBINARY Types”.

Locking and Transactions

• LOCK TABLES acquires two locks on each table if innodb_table_locks=1 (the default). In
addition to a table lock on the MySQL layer, it also acquires an InnoDB table lock. Versions of
MySQL before 4.1.2 did not acquire InnoDB table locks; the old behavior can be selected by setting
innodb_table_locks=0. If no InnoDB table lock is acquired, LOCK TABLES completes even if some
records of the tables are being locked by other transactions.

• All InnoDB locks held by a transaction are released when the transaction is committed or aborted. Thus,
it does not make much sense to invoke LOCK TABLES on InnoDB tables in autocommit=1 mode
because the acquired InnoDB table locks would be released immediately.

• You cannot lock additional tables in the middle of a transaction because LOCK TABLES performs an
implicit COMMIT and UNLOCK TABLES.

• InnoDB has a limit of 1023 concurrent transactions that have created undo records by modifying data.
Workarounds include keeping transactions as small and fast as possible, delaying changes until near
the end of the transaction, and using stored routines to reduce client/server latency delays. Applications
should commit transactions before doing time-consuming client-side operations.

14.3 The MERGE Storage Engine
The MERGE storage engine, also known as the MRG_MyISAM engine, is a collection of identical MyISAM
tables that can be used as one. “Identical” means that all tables have identical column and index

The MERGE Storage Engine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1453

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

information. You cannot merge MyISAM tables in which the columns are listed in a different order, do not
have exactly the same columns, or have the indexes in different order. However, any or all of the MyISAM
tables can be compressed with myisampack. See Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”. Differences in table options such as AVG_ROW_LENGTH, MAX_ROWS, or
PACK_KEYS do not matter.

When you create a MERGE table, MySQL creates two files on disk. The files have names that begin with
the table name and have an extension to indicate the file type. An .frm file stores the table format, and an
.MRG file contains the names of the underlying MyISAM tables that should be used as one. The tables do
not have to be in the same database as the MERGE table.

You can use SELECT, DELETE, UPDATE, and INSERT on MERGE tables. You must have SELECT, DELETE,
and UPDATE privileges on the MyISAM tables that you map to a MERGE table.

Note

The use of MERGE tables entails the following security issue: If a user has access to
MyISAM table t, that user can create a MERGE table m that accesses t. However,
if the user's privileges on t are subsequently revoked, the user can continue to
access t by doing so through m. If this behavior is undesirable, you can start the
server with the new --skip-merge option to disable the MERGE storage engine.
This option is available as of MySQL 5.0.24.

Use of DROP TABLE with a MERGE table drops only the MERGE specification. The underlying tables are not
affected.

To create a MERGE table, you must specify a UNION=(list-of-tables) option that indicates which
MyISAM tables to use. You can optionally specify an INSERT_METHOD option to control how inserts into
the MERGE table take place. Use a value of FIRST or LAST to cause inserts to be made in the first or last
underlying table, respectively. If you specify no INSERT_METHOD option or if you specify it with a value of
NO, inserts into the MERGE table are not permitted and attempts to do so result in an error.

The following example shows how to create a MERGE table:

mysql> CREATE TABLE t1 (
 -> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> message CHAR(20)) ENGINE=MyISAM;
mysql> CREATE TABLE t2 (
 -> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 -> message CHAR(20)) ENGINE=MyISAM;
mysql> INSERT INTO t1 (message) VALUES ('Testing'),('table'),('t1');
mysql> INSERT INTO t2 (message) VALUES ('Testing'),('table'),('t2');
mysql> CREATE TABLE total (
 -> a INT NOT NULL AUTO_INCREMENT,
 -> message CHAR(20), INDEX(a))
 -> ENGINE=MERGE UNION=(t1,t2) INSERT_METHOD=LAST;

The older term TYPE is supported as a synonym for ENGINE for backward compatibility, but ENGINE is the
preferred term and TYPE is deprecated.

Column a is indexed as a PRIMARY KEY in the underlying MyISAM tables, but not in the MERGE table.
There it is indexed but not as a PRIMARY KEY because a MERGE table cannot enforce uniqueness over
the set of underlying tables. (Similarly, a column with a UNIQUE index in the underlying tables should be
indexed in the MERGE table but not as a UNIQUE index.)

After creating the MERGE table, you can use it to issue queries that operate on the group of tables as a
whole:

The MERGE Storage Engine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1454

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT * FROM total;
+---+---------+
| a | message |
+---+---------+
1	Testing
2	table
3	t1
1	Testing
2	table
3	t2
+---+---------+

To remap a MERGE table to a different collection of MyISAM tables, you can use one of the following
methods:

• DROP the MERGE table and re-create it.

• Use ALTER TABLE tbl_name UNION=(...) to change the list of underlying tables.

Beginning with MySQL 5.0.60, it is also possible to use ALTER TABLE ... UNION=() (that is, with an
empty UNION clause) to remove all of the underlying tables. However, in this case, the table is effectively
empty and inserts fail because there is no underlying table to take new rows. Such a table might be
useful as a template for creating new MERGE tables with CREATE TABLE ... LIKE.

As of MySQL 5.0.36, the underlying table definitions and indexes must conform more closely than
previously to the definition of the MERGE table. Conformance is checked when a table that is part of a
MERGE table is opened, not when the MERGE table is created. If any table fails the conformance checks, the
operation that triggered the opening of the table fails. This means that changes to the definitions of tables
within a MERGE may cause a failure when the MERGE table is accessed. The conformance checks applied
to each table are:

• The underlying table and the MERGE table must have the same number of columns.

• The column order in the underlying table and the MERGE table must match.

• Additionally, the specification for each corresponding column in the parent MERGE table and the
underlying tables are compared and must satisfy these checks:

• The column type in the underlying table and the MERGE table must be equal.

• The column length in the underlying table and the MERGE table must be equal.

• The column of the underlying table and the MERGE table can be NULL.

• The underlying table must have at least as many indexes as the MERGE table. The underlying table may
have more indexes than the MERGE table, but cannot have fewer.

Note

A known issue exists where indexes on the same columns must be in identical
order, in both the MERGE table and the underlying MyISAM table. See Bug
#33653.

Each index must satisfy these checks:

• The index type of the underlying table and the MERGE table must be the same.

• The number of index parts (that is, multiple columns within a compound index) in the index definition
for the underlying table and the MERGE table must be the same.

Additional Resources

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1455

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• For each index part:

• Index part lengths must be equal.

• Index part types must be equal.

• Index part languages must be equal.

• Check whether index parts can be NULL.

For information about the table checks applied prior to MySQL 5.0.36, see Section 14.3.2, “MERGE Table
Problems”.

As of MySQL 5.0.44, if a MERGE table cannot be opened or used because of a problem with an underlying
table, CHECK TABLE displays information about which table caused the problem.

Additional Resources

• A forum dedicated to the MERGE storage engine is available at http://forums.mysql.com/list.php?93.

14.3.1 MERGE Table Advantages and Disadvantages

MERGE tables can help you solve the following problems:

• Easily manage a set of log tables. For example, you can put data from different months into separate
tables, compress some of them with myisampack, and then create a MERGE table to use them as one.

• Obtain more speed. You can split a large read-only table based on some criteria, and then put individual
tables on different disks. A MERGE table structured this way could be much faster than using a single
large table.

• Perform more efficient searches. If you know exactly what you are looking for, you can search in just one
of the underlying tables for some queries and use a MERGE table for others. You can even have many
different MERGE tables that use overlapping sets of tables.

• Perform more efficient repairs. It is easier to repair individual smaller tables that are mapped to a MERGE
table than to repair a single large table.

• Instantly map many tables as one. A MERGE table need not maintain an index of its own because it uses
the indexes of the individual tables. As a result, MERGE table collections are very fast to create or remap.
(You must still specify the index definitions when you create a MERGE table, even though no indexes are
created.)

• If you have a set of tables from which you create a large table on demand, you can instead create a
MERGE table from them on demand. This is much faster and saves a lot of disk space.

• Exceed the file size limit for the operating system. Each MyISAM table is bound by this limit, but a
collection of MyISAM tables is not.

• You can create an alias or synonym for a MyISAM table by defining a MERGE table that maps to that
single table. There should be no really notable performance impact from doing this (only a couple of
indirect calls and memcpy() calls for each read).

The disadvantages of MERGE tables are:

• You can use only identical MyISAM tables for a MERGE table.

http://forums.mysql.com/list.php?93

MERGE Table Problems

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1456

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Some MyISAM features are unavailable in MERGE tables. For example, you cannot create FULLTEXT
indexes on MERGE tables. (You can create FULLTEXT indexes on the underlying MyISAM tables, but you
cannot search the MERGE table with a full-text search.)

• If the MERGE table is nontemporary, all underlying MyISAM tables must be nontemporary. If the MERGE
table is temporary, the MyISAM tables can be any mix of temporary and nontemporary.

• MERGE tables use more file descriptors than MyISAM tables. If 10 clients are using a MERGE table that
maps to 10 tables, the server uses (10 × 10) + 10 file descriptors. (10 data file descriptors for each of the
10 clients, and 10 index file descriptors shared among the clients.)

• Index reads are slower. When you read an index, the MERGE storage engine needs to issue a read on all
underlying tables to check which one most closely matches a given index value. To read the next index
value, the MERGE storage engine needs to search the read buffers to find the next value. Only when one
index buffer is used up does the storage engine need to read the next index block. This makes MERGE
indexes much slower on eq_ref searches, but not much slower on ref searches. For more information
about eq_ref and ref, see Section 13.8.2, “EXPLAIN Syntax”.

14.3.2 MERGE Table Problems

The following are known problems with MERGE tables:

• If you use ALTER TABLE to change a MERGE table to another storage engine, the mapping to the
underlying tables is lost. Instead, the rows from the underlying MyISAM tables are copied into the altered
table, which then uses the specified storage engine.

• The INSERT_METHOD table option for a MERGE table indicates which underlying MyISAM table to use for
inserts into the MERGE table. However, use of the AUTO_INCREMENT table option for that MyISAM table
has no effect for inserts into the MERGE table until at least one row has been inserted directly into the
MyISAM table.

• A MERGE table cannot maintain uniqueness constraints over the entire table. When you perform an
INSERT, the data goes into the first or last MyISAM table (as determined by the INSERT_METHOD
option). MySQL ensures that unique key values remain unique within that MyISAM table, but not over all
the underlying tables in the collection.

• Because the MERGE engine cannot enforce uniqueness over the set of underlying tables, REPLACE does
not work as expected. The two key facts are:

• REPLACE can detect unique key violations only in the underlying table to which it is going to write
(which is determined by the INSERT_METHOD option). This differs from violations in the MERGE table
itself.

• If REPLACE detects a unique key violation, it will change only the corresponding row in the underlying
table it is writing to; that is, the first or last table, as determined by the INSERT_METHOD option.

Similar considerations apply for INSERT ... ON DUPLICATE KEY UPDATE.

• You should not use ANALYZE TABLE, REPAIR TABLE, OPTIMIZE TABLE, ALTER TABLE, DROP
TABLE, DELETE without a WHERE clause, or TRUNCATE TABLE on any of the tables that are mapped
into an open MERGE table. If you do so, the MERGE table may still refer to the original table and yield
unexpected results. To work around this problem, ensure that no MERGE tables remain open by issuing a
FLUSH TABLES statement prior to performing any of the named operations.

The unexpected results include the possibility that the operation on the MERGE table will report table
corruption. If this occurs after one of the named operations on the underlying MyISAM tables, the

MERGE Table Problems

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1457

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

corruption message is spurious. To deal with this, issue a FLUSH TABLES statement after modifying the
MyISAM tables.

• DROP TABLE on a table that is in use by a MERGE table does not work on Windows because the MERGE
storage engine's table mapping is hidden from the upper layer of MySQL. Windows does not permit open
files to be deleted, so you first must flush all MERGE tables (with FLUSH TABLES) or drop the MERGE
table before dropping the table.

• As of MySQL 5.0.36, the definition of the MyISAM tables and the MERGE table are checked when the
tables are accessed (for example, as part of a SELECT or INSERT statement). The checks ensure that
the definitions of the tables and the parent MERGE table definition match by comparing column order,
types, sizes and associated indexes. If there is a difference between the tables, an error is returned and
the statement fails. Because these checks take place when the tables are opened, any changes to the
definition of a single table, including column changes, column ordering, and engine alterations will cause
the statement to fail.

Prior to MySQL 5.0.36, table checks are applied as follows:

• When you create or alter MERGE table, there is no check to ensure that the underlying tables are
existing MyISAM tables and have identical structures. When the MERGE table is used, MySQL checks
that the row length for all mapped tables is equal, but this is not foolproof. If you create a MERGE table
from dissimilar MyISAM tables, you are very likely to run into strange problems.

• Similarly, if you create a MERGE table from non-MyISAM tables, or if you drop an underlying table or
alter it to be a non-MyISAM table, no error for the MERGE table occurs until later when you attempt to
use it.

• Because the underlying MyISAM tables need not exist when the MERGE table is created, you can
create the tables in any order, as long as you do not use the MERGE table until all of its underlying
tables are in place. Also, if you can ensure that a MERGE table will not be used during a given period,
you can perform maintenance operations on the underlying tables, such as backing up or restoring
them, altering them, or dropping and recreating them. It is not necessary to redefine the MERGE table
temporarily to exclude the underlying tables while you are operating on them.

• The order of indexes in the MERGE table and its underlying tables should be the same. If you use ALTER
TABLE to add a UNIQUE index to a table used in a MERGE table, and then use ALTER TABLE to add a
nonunique index on the MERGE table, the index ordering is different for the tables if there was already a
nonunique index in the underlying table. (This happens because ALTER TABLE puts UNIQUE indexes
before nonunique indexes to facilitate rapid detection of duplicate keys.) Consequently, queries on tables
with such indexes may return unexpected results.

• If you encounter an error message similar to ERROR 1017 (HY000): Can't find file:
'tbl_name.MRG' (errno: 2), it generally indicates that some of the underlying tables do not use
the MyISAM storage engine. Confirm that all of these tables are MyISAM.

• The maximum number of rows in a MERGE table is 232 (~4.295E+09; the same as for a MyISAM table).
It is not possible to merge multiple MyISAM tables into a single MERGE table that would have more than
this number of rows. However, if you build MySQL using the --with-big-tables option, then the
maximum number of rows is increased to 264 (1.844E+19); for more information, see Section 2.17.3,
“MySQL Source-Configuration Options”.

Note

As of MySQL 5.0.4, all standard binaries are built with this option.

• The MERGE storage engine does not support INSERT DELAYED statements.

The MEMORY (HEAP) Storage Engine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1458

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Using MERGE on underlying MyISAM tables that have different row formats is possible.

• In some cases, differing PACK_KEYS table option values among the MERGE and underlying tables cause
unexpected results if the underlying tables contain CHAR or BINARY columns. As a workaround, use
ALTER TABLE to ensure that all involved tables have the same PACK_KEYS value. (Bug #50646)

14.4 The MEMORY (HEAP) Storage Engine

The MEMORY storage engine creates tables with contents that are stored in memory. Formerly, these were
known as HEAP tables. MEMORY is the preferred term, although HEAP remains supported for backward
compatibility.

The MEMORY storage engine associates each table with one disk file. The file name begins with the table
name and has an extension of .frm to indicate that it stores the table definition.

To specify that you want to create a MEMORY table, indicate that with an ENGINE table option:

CREATE TABLE t (i INT) ENGINE = MEMORY;

The older term TYPE is supported as a synonym for ENGINE for backward compatibility, but ENGINE is the
preferred term and TYPE is deprecated.

As indicated by the engine name, MEMORY tables are stored in memory. They use hash indexes by default,
which makes them very fast, and very useful for creating temporary tables. However, when the server
shuts down, all rows stored in MEMORY tables are lost. The tables themselves continue to exist because
their definitions are stored in .frm files on disk, but they are empty when the server restarts.

This example shows how you might create, use, and remove a MEMORY table:

mysql> CREATE TABLE test ENGINE=MEMORY
 -> SELECT ip,SUM(downloads) AS down
 -> FROM log_table GROUP BY ip;
mysql> SELECT COUNT(ip),AVG(down) FROM test;
mysql> DROP TABLE test;

MEMORY tables have the following characteristics:

• Space for MEMORY tables is allocated in small blocks. Tables use 100% dynamic hashing for inserts. No
overflow area or extra key space is needed. No extra space is needed for free lists. Deleted rows are put
in a linked list and are reused when you insert new data into the table. MEMORY tables also have none of
the problems commonly associated with deletes plus inserts in hashed tables.

• MEMORY tables can have up to 64 indexes per table, 16 columns per index and a maximum key length of
3072 bytes.

• The MEMORY storage engine supports both HASH and BTREE indexes. You can specify one or the other
for a given index by adding a USING clause as shown here:

CREATE TABLE lookup
 (id INT, INDEX USING HASH (id))
 ENGINE = MEMORY;
CREATE TABLE lookup
 (id INT, INDEX USING BTREE (id))
 ENGINE = MEMORY;

For general characteristics of B-tree and hash indexes, see Section 8.3.1, “How MySQL Uses Indexes”.

The MEMORY (HEAP) Storage Engine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1459

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• If a MEMORY table hash index has a high degree of key duplication (many index entries containing the
same value), updates to the table that affect key values and all deletes are significantly slower. The
degree of this slowdown is proportional to the degree of duplication (or, inversely proportional to the
index cardinality). You can use a BTREE index to avoid this problem.

• MEMORY tables can have nonunique keys. (This is an uncommon feature for implementations of hash
indexes.)

• Columns that are indexed can contain NULL values.

• MEMORY tables use a fixed-length row-storage format. Variable-length types such as VARCHAR are stored
using a fixed length.

• MEMORY tables cannot contain BLOB or TEXT columns.

• MEMORY includes support for AUTO_INCREMENT columns.

• MEMORY supports INSERT DELAYED. See Section 13.2.5.2, “INSERT DELAYED Syntax”.

• Non-TEMPORARY MEMORY tables are shared among all clients, just like any other non-TEMPORARY table.

• MEMORY table contents are stored in memory, which is a property that MEMORY tables share with internal
temporary tables that the server creates on the fly while processing queries. However, the two types of
tables differ in that MEMORY tables are not subject to storage conversion, whereas internal temporary
tables are:

• MEMORY tables are never converted to disk tables. If an internal temporary table becomes too large,
the server automatically converts it to on-disk storage, as described in Section 8.4.4, “Internal
Temporary Table Use in MySQL”.

• The maximum size of MEMORY tables is limited by the max_heap_table_size system variable,
which has a default value of 16MB. To have larger (or smaller) MEMORY tables, you must change the
value of this variable. The value in effect for CREATE TABLE is the value used for the life of the table.
(If you use ALTER TABLE or TRUNCATE TABLE, the value in effect at that time becomes the new
maximum size for the table. A server restart also sets the maximum size of existing MEMORY tables
to the global max_heap_table_size value.) You can set the size for individual tables as described
later in this section.

• The server needs sufficient memory to maintain all MEMORY tables that are in use at the same time.

• Memory is not reclaimed if you delete individual rows from a MEMORY table. Memory is reclaimed only
when the entire table is deleted. Memory that was previously used for rows that have been deleted will
be re-used for new rows only within the same table. To free up the memory used by rows that have been
deleted, use ALTER TABLE ENGINE=MEMORY to force a table rebuild.

To free all the memory used by a MEMORY table when you no longer require its contents, you should
execute DELETE or TRUNCATE TABLE to remove all rows, or remove the table altogether using DROP
TABLE.

• If you want to populate a MEMORY table when the MySQL server starts, you can use the --init-
file option. For example, you can put statements such as INSERT INTO ... SELECT or LOAD
DATA INFILE into this file to load the table from a persistent data source. See Section 5.1.3, “Server
Command Options”, and Section 13.2.6, “LOAD DATA INFILE Syntax”.

• A server's MEMORY tables become empty when it is shut down and restarted. However, if the server is
a replication master, its slave are not aware that these tables have become empty, so they returns out-
of-date content if you select data from these tables. To handle this, when a MEMORY table is used on a
master for the first time since it was started, a DELETE statement is written to the master's binary log

Additional Resources

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1460

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

automatically, thus synchronizing the slave to the master again. Note that even with this strategy, the
slave still has outdated data in the table during the interval between the master's restart and its first use
of the table. However, if you use the --init-file option to populate the MEMORY table on the master
at startup, it ensures that this time interval is zero.

• The memory needed for one row in a MEMORY table is calculated using the following expression:

SUM_OVER_ALL_BTREE_KEYS(max_length_of_key + sizeof(char*) × 4)
+ SUM_OVER_ALL_HASH_KEYS(sizeof(char*) × 2)
+ ALIGN(length_of_row+1, sizeof(char*))

ALIGN() represents a round-up factor to cause the row length to be an exact multiple of the char
pointer size. sizeof(char*) is 4 on 32-bit machines and 8 on 64-bit machines.

As mentioned earlier, the max_heap_table_size system variable sets the limit on the maximum size
of MEMORY tables. To control the maximum size for individual tables, set the session value of this variable
before creating each table. (Do not change the global max_heap_table_size value unless you intend
the value to be used for MEMORY tables created by all clients.) The following example creates two MEMORY
tables, with a maximum size of 1MB and 2MB, respectively:

mysql> SET max_heap_table_size = 1024*1024;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t1 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.01 sec)

mysql> SET max_heap_table_size = 1024*1024*2;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t2 (id INT, UNIQUE(id)) ENGINE = MEMORY;
Query OK, 0 rows affected (0.00 sec)

Both tables will revert to the server's global max_heap_table_size value if the server restarts.

You can also specify a MAX_ROWS table option in CREATE TABLE statements for MEMORY tables to provide
a hint about the number of rows you plan to store in them. This does not enable the table to grow beyond
the max_heap_table_size value, which still acts as a constraint on maximum table size. For maximum
flexibility in being able to use MAX_ROWS, set max_heap_table_size at least as high as the value to
which you want each MEMORY table to be able to grow.

Additional Resources

• A forum dedicated to the MEMORY storage engine is available at http://forums.mysql.com/list.php?92.

14.5 The BDB (BerkeleyDB) Storage Engine
Sleepycat Software has provided MySQL with the Berkeley DB transactional storage engine. This storage
engine typically is called BDB for short. BDB tables may have a greater chance of surviving crashes and are
also capable of COMMIT and ROLLBACK operations on transactions.

Support for the BDB storage engine is included in MySQL source distributions, which come with a BDB
distribution that is patched to make it work with MySQL. You cannot use an unpatched version of BDB with
MySQL.

BDB support will be removed

As of MySQL 5.1, BDB is not supported.

http://forums.mysql.com/list.php?92

Operating Systems Supported by BDB

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1461

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For general information about Berkeley DB, please visit the Sleepycat Web site, http://
www.sleepycat.com/.

14.5.1 Operating Systems Supported by BDB

We know that the BDB storage engine works with the following operating systems:

• Linux 2.x Intel

• Sun Solaris (SPARC and x86)

• FreeBSD 4.x/5.x (x86, sparc64)

• IBM AIX 4.3.x

• SCO OpenServer

• SCO UnixWare 7.1.x

• Windows

The BDB storage engine does not work with the following operating systems:

• Linux 2.x Alpha

• Linux 2.x AMD64

• Linux 2.x IA-64

• Linux 2.x s390

• OS X

Note

The preceding lists are not complete. We update them as we receive more
information.

If you build MySQL from source with support for BDB tables, but the following error occurs when you start
mysqld, it means that the BDB storage engine is not supported for your architecture:

bdb: architecture lacks fast mutexes: applications cannot be threaded
Can't init databases

In this case, you must rebuild MySQL without BDB support or start the server with the --skip-bdb option.

14.5.2 Installing BDB

If you have downloaded a binary version of MySQL that includes support for Berkeley DB, simply follow the
usual binary distribution installation instructions.

If you build MySQL from source, you can enable BDB support by invoking configure with the --with-
berkeley-db option in addition to any other options that you normally use. Download a MySQL 5.0
distribution, change location into its top-level directory, and run this command:

shell> ./configure --with-berkeley-db [other-options]

For more information, Section 2.16, “Installing MySQL on Unix/Linux Using Generic Binaries”, and
Section 2.17, “Installing MySQL from Source”.

http://www.sleepycat.com/
http://www.sleepycat.com/

BDB Startup Options

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1462

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

14.5.3 BDB Startup Options

The following options to mysqld can be used to change the behavior of the BDB storage engine. For more
information, see Section 5.1.3, “Server Command Options”.

Table 14.3 BDB Option/Variable Reference

Name Cmd-Line Option File System Var Status Var Var Scope Dynamic

bdb_cache_size Yes Global No

bdb-home Yes Yes Global No

- Variable:
bdb_home

 Yes Global No

bdb-lock-detect Yes Yes Yes Global No

bdb_log_buffer_size Yes Global No

bdb-logdir Yes Yes Global No

- Variable:
bdb_logdir

 Yes Global No

bdb_max_lock Yes Global No

bdb-no-recover Yes Yes

bdb-no-sync Yes Yes

bdb-shared-data Yes Yes Global No

- Variable:
bdb_shared_data

 Yes Global No

bdb-tmpdir Yes Yes Global No

- Variable:
bdb_tmpdir

 Yes Global No

have_bdb Yes Global No

skip-bdb Yes Yes

skip-sync-bdb-
logs

Yes Yes Yes Global No

sync-bdb-logs Yes Yes Yes Global No

• --bdb-home=dir_name

The base directory for BDB tables. This should be the same directory that you use for --datadir.

• --bdb-lock-detect=method

The BDB lock detection method. The option value should be DEFAULT, OLDEST, RANDOM, or YOUNGEST.

• --bdb-logdir=file_name

The BDB log file directory.

• --bdb-no-recover

Do not start Berkeley DB in recover mode.

• --bdb-no-sync

Characteristics of BDB Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1463

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Don't synchronously flush the BDB logs. This option is deprecated; use --skip-sync-bdb-logs
instead (see the description for --sync-bdb-logs).

• --bdb-shared-data

Start Berkeley DB in multi-process mode. (Do not use DB_PRIVATE when initializing Berkeley DB.)

• --bdb-tmpdir=dir_name

The BDB temporary file directory.

• --skip-bdb

Disable the BDB storage engine.

• --sync-bdb-logs

Synchronously flush the BDB logs. This option is enabled by default. Use --skip-sync-bdb-logs to
disable it.

If you use the --skip-bdb option, MySQL does not initialize the Berkeley DB library and this saves a lot
of memory. However, if you use this option, you cannot use BDB tables. If you try to create a BDB table,
MySQL uses the default storage engine instead.

Normally, you should start mysqld without the --bdb-no-recover option if you intend to use BDB
tables. However, this may cause problems when you try to start mysqld if the BDB log files are corrupted.
See Section 2.18.2.1, “Troubleshooting Problems Starting the MySQL Server”.

With the bdb_max_lock variable, you can specify the maximum number of locks that can be active on a
BDB table. The default is 10,000. You should increase this if errors such as the following occur when you
perform long transactions or when mysqld has to examine many rows to execute a query:

bdb: Lock table is out of available locks
Got error 12 from ...

You may also want to change the binlog_cache_size and max_binlog_cache_size variables if you
are using large multiple-statement transactions. See Section 5.4.3, “The Binary Log”.

See also Section 5.1.4, “Server System Variables”.

14.5.4 Characteristics of BDB Tables

Each BDB table is stored on disk in two files. The files have names that begin with the table name and have
an extension to indicate the file type. An .frm file stores the table format, and a .db file contains the table
data and indexes.

To specify explicitly that you want a BDB table, indicate that with an ENGINE table option:

CREATE TABLE t (i INT) ENGINE = BDB;

The older term TYPE is supported as a synonym for ENGINE for backward compatibility, but ENGINE is the
preferred term and TYPE is deprecated.

BerkeleyDB is a synonym for BDB in the ENGINE table option.

The BDB storage engine provides transactional tables. The way you use these tables depends on the
autocommit mode:

Characteristics of BDB Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1464

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• If you are running with autocommit enabled (which is the default), changes to BDB tables are committed
immediately and cannot be rolled back.

• If you are running with autocommit disabled, changes do not become permanent until you execute a
COMMIT statement. Instead of committing, you can execute ROLLBACK to forget the changes.

You can start a transaction with the START TRANSACTION or BEGIN statement to suspend autocommit,
or with SET autocommit = 0 to disable autocommit explicitly.

For more information about transactions, see Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”.

The BDB storage engine has the following characteristics:

• BDB tables can have up to 31 indexes per table, 16 columns per index, and a maximum key size of 1024
bytes.

• MySQL requires a primary key in each BDB table so that each row can be uniquely identified. If you don't
create one explicitly by declaring a PRIMARY KEY, MySQL creates and maintains a hidden primary key
for you. The hidden key has a length of five bytes and is incremented for each insert attempt. This key
does not appear in the output of SHOW CREATE TABLE or DESCRIBE.

• The primary key is faster than any other index, because it is stored together with the row data. The other
indexes are stored as the key data plus the primary key, so it is important to keep the primary key as
short as possible to save disk space and get better speed.

This behavior is similar to that of InnoDB, where shorter primary keys save space not only in the primary
index but in secondary indexes as well.

• If all columns that you access in a BDB table are part of the same index or part of the primary key,
MySQL can execute the query without having to access the actual row. In a MyISAM table, this can be
done only if the columns are part of the same index.

• Sequential scanning is slower for BDB tables than for MyISAM tables because the data in BDB tables is
stored in B-trees and not in a separate data file.

• Key values are not prefix- or suffix-compressed like key values in MyISAM tables. In other words, key
information takes a little more space in BDB tables compared to MyISAM tables.

• There are often holes in the BDB table to permit you to insert new rows in the middle of the index tree.
This makes BDB tables somewhat larger than MyISAM tables.

• SELECT COUNT(*) FROM tbl_name is slow for BDB tables, because no row count is maintained in the
table.

• The optimizer needs to know the approximate number of rows in the table. MySQL solves this by
counting inserts and maintaining this in a separate segment in each BDB table. If you don't issue a lot
of DELETE or ROLLBACK statements, this number should be accurate enough for the MySQL optimizer.
However, MySQL stores the number only on close, so it may be incorrect if the server terminates
unexpectedly. It should not be fatal even if this number is not 100% correct. You can update the row
count by using ANALYZE TABLE or OPTIMIZE TABLE. See Section 13.7.2.1, “ANALYZE TABLE
Syntax”, and Section 13.7.2.5, “OPTIMIZE TABLE Syntax”.

• Internal locking in BDB tables is done at the page level.

• LOCK TABLES works on BDB tables as with other tables. If you do not use LOCK TABLES, MySQL
issues an internal multiple-write lock on the table (a lock that does not block other writers) to ensure that
the table is properly locked if another thread issues a table lock.

Restrictions on BDB Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1465

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• To support transaction rollback, the BDB storage engine maintains log files. For maximum performance,
you can use the --bdb-logdir option to place the BDB logs on a different disk than the one where
your databases are located.

• MySQL performs a checkpoint each time a new BDB log file is started, and removes any BDB log files
that are not needed for current transactions. You can also use FLUSH LOGS at any time to checkpoint
the Berkeley DB tables.

For disaster recovery, you should use table backups plus MySQL's binary log. See Section 7.2,
“Database Backup Methods”.

Warning

If you delete old log files that are still in use, BDB is not able to do recovery at all
and you may lose data if something goes wrong.

• Applications must always be prepared to handle cases where any change of a BDB table may cause an
automatic rollback and any read may fail with a deadlock error.

• If you get a full disk with a BDB table, you get an error (probably error 28) and the transaction should roll
back. This contrasts with MyISAM tables, for which mysqld waits for sufficient free disk space before
continuing.

14.5.5 Restrictions on BDB Tables

The following list indicates restrictions that you must observe when using BDB tables:

• Each BDB table stores in its .db file the path to the file as it was created. This is done to enable
detection of locks in a multi-user environment that supports symlinks. As a consequence of this, it is not
possible to move BDB table files from one database directory to another.

• When making backups of BDB tables, you must either use mysqldump or else make a backup that
includes the files for each BDB table (the .frm and .db files) as well as the BDB log files. The BDB
storage engine stores unfinished transactions in its log files and requires them to be present when
mysqld starts. The BDB logs are the files in the data directory with names of the form log.NNNNNNNNNN
(ten digits).

• If a column that permits NULL values has a unique index, only a single NULL value is permitted. This
differs from other storage engines, which permit multiple NULL values in unique indexes.

14.5.6 Errors That May Occur When Using BDB Tables

• If the following error occurs when you start mysqld after upgrading, it means that the current version of
BDB doesn't support the old log file format:

bdb: Ignoring log file: .../log.NNNNNNNNNN:
unsupported log version #

In this case, you must delete all BDB logs from your data directory (the files that have names of the form
log.NNNNNNNNNN) and restart mysqld. We also recommend that you then use mysqldump --opt to
dump your BDB tables, drop the tables, and restore them from the dump file.

• If autocommit mode is disabled and you drop a BDB table that is referenced in another transaction, you
may get error messages of the following form in your MySQL error log:

The EXAMPLE Storage Engine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1466

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

001119 23:43:56 bdb: Missing log fileid entry
001119 23:43:56 bdb: txn_abort: Log undo failed for LSN:
 1 3644744: Invalid

This is not fatal, but the fix is not trivial. Avoid dropping BDB tables except while autocommit mode is
enabled.

14.6 The EXAMPLE Storage Engine
The EXAMPLE storage engine is a stub engine that does nothing. Its purpose is to serve as an example in
the MySQL source code that illustrates how to begin writing new storage engines. As such, it is primarily of
interest to developers.

The EXAMPLE storage engine is included in MySQL binary distributions. To enable this storage engine if
you build MySQL from source, invoke configure with the --with-example-storage-engine option.

To examine the source for the EXAMPLE engine, look in the sql/examples directory of a MySQL source
distribution.

When you create an EXAMPLE table, the server creates a table format file in the database directory. The
file begins with the table name and has an .frm extension. No other files are created. No data can be
stored into the table. Retrievals return an empty result.

mysql> CREATE TABLE test (i INT) ENGINE = EXAMPLE;
Query OK, 0 rows affected (0.78 sec)

mysql> INSERT INTO test VALUES(1),(2),(3);
ERROR 1031 (HY000): Table storage engine for 'test' doesn't have this option

mysql> SELECT * FROM test;
Empty set (0.31 sec)

The EXAMPLE storage engine does not support indexing.

14.7 The FEDERATED Storage Engine
The FEDERATED storage engine is available beginning with MySQL 5.0.3. It is a storage engine that
accesses data in tables of remote databases rather than in local tables.

The FEDERATED storage engine is available beginning with MySQL 5.0.3. This storage engine enables
data to be accessed from a remote MySQL database on a local server without using replication or cluster
technology. When using a FEDERATED table, queries on the local server are automatically executed on the
remote (federated) tables. No data is stored on the local tables.

To include the FEDERATED storage engine if you build MySQL from source, invoke configure with the
--with-federated-storage-engine option.

Beginning with MySQL 5.0.64, the FEDERATED storage engine is not enabled by default in the running
server; to enable FEDERATED, you must start the MySQL server binary using the --federated option.

To examine the source for the FEDERATED engine, look in the sql directory of a source distribution for
MySQL 5.0.3 or newer.

Additional Resources

• A forum dedicated to the FEDERATED storage engine is available at http://forums.mysql.com/list.php?
105.

http://forums.mysql.com/list.php?105
http://forums.mysql.com/list.php?105

Description of the FEDERATED Storage Engine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1467

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

14.7.1 Description of the FEDERATED Storage Engine

When you create a FEDERATED table, the server creates a table format file in the database directory. The
file begins with the table name and has an .frm extension. No other files are created, because the actual
data is in a remote table. This differs from the way that storage engines for local tables work.

For local database tables, data files are local. For example, if you create a MyISAM table named users,
the MyISAM handler creates a data file named users.MYD. A handler for local tables reads, inserts,
deletes, and updates data in local data files, and rows are stored in a format particular to the handler. To
read rows, the handler must parse data into columns. To write rows, column values must be converted to
the row format used by the handler and written to the local data file.

With the MySQL FEDERATED storage engine, there are no local data files for a table (for example, there
is no .MYD file). Instead, a remote database stores the data that normally would be in the table. The local
server connects to a remote server, and uses the MySQL client API to read, delete, update, and insert
data in the remote table. For example, data retrieval is initiated using a SELECT * FROM tbl_name SQL
statement.

When a client issues an SQL statement that refers to a FEDERATED table, the flow of information between
the local server (where the SQL statement is executed) and the remote server (where the data is physically
stored) is as follows:

1. The storage engine looks through each column that the FEDERATED table has and constructs an
appropriate SQL statement that refers to the remote table.

2. The statement is sent to the remote server using the MySQL client API.

3. The remote server processes the statement and the local server retrieves any result that the statement
produces (an affected-rows count or a result set).

4. If the statement produces a result set, each column is converted to internal storage engine format that
the FEDERATED engine expects and can use to display the result to the client that issued the original
statement.

The local server communicates with the remote server using MySQL client C API functions. It invokes
mysql_real_query() to send the statement. To read a result set, it uses mysql_store_result()
and fetches rows one at a time using mysql_fetch_row().

14.7.2 How to Use FEDERATED Tables

The procedure for using FEDERATED tables is very simple. Normally, you have two servers running, either
both on the same host or on different hosts. (It is possible for a FEDERATED table to use another table that
is managed by the same server, although there is little point in doing so.)

First, you must have a table on the remote server that you want to access by using a FEDERATED table.
Suppose that the remote table is in the federated database and is defined like this:

CREATE TABLE test_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),
 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=MyISAM

How to Use FEDERATED Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1468

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

DEFAULT CHARSET=latin1;

The example uses a MyISAM table, but the table could use any storage engine.

Next, create a FEDERATED table on the local server for accessing the remote table:

CREATE TABLE federated_table (
 id INT(20) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32) NOT NULL DEFAULT '',
 other INT(20) NOT NULL DEFAULT '0',
 PRIMARY KEY (id),
 INDEX name (name),
 INDEX other_key (other)
)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
CONNECTION='mysql://fed_user@remote_host:9306/federated/test_table';

(Before MySQL 5.0.13, use COMMENT rather than CONNECTION.)

The basic structure of this table should match that of the remote table, except that the ENGINE table
option should be FEDERATED and the CONNECTION table option is a connection string that indicates to the
FEDERATED engine how to connect to the remote server.

Note

You can improve the performance of a FEDERATED table by adding indexes to the
table on the host. The optimization will occur because the query sent to the remote
server will include the contents of the WHERE clause and will be sent to the remote
server and subsequently executed locally. This reduces the network traffic that
would otherwise request the entire table from the server for local processing.

The FEDERATED engine creates only the test_table.frm file in the federated database.

The remote host information indicates the remote server to which your local server connects, and the
database and table information indicates which remote table to use as the data source. In this example, the
remote server is indicated to be running as remote_host on port 9306, so there must be a MySQL server
running on the remote host and listening to port 9306.

The general format of the connection string in the CONNECTION option is as follows:

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Only mysql is supported as the scheme value at this point; the password and port number are optional.

Sample connection strings:

CONNECTION='mysql://username:password@hostname:port/database/tablename'
CONNECTION='mysql://username@hostname/database/tablename'
CONNECTION='mysql://username:password@hostname/database/tablename'

The use of CONNECTION for specifying the connection string is nonoptimal and is likely to change in
future. Keep this in mind for applications that use FEDERATED tables. Such applications are likely to need
modification if the format for specifying connection information changes.

Because any password given in the connection string is stored as plain text, it can be seen by any user
who can use SHOW CREATE TABLE or SHOW TABLE STATUS for the FEDERATED table, or query the
TABLES table in the INFORMATION_SCHEMA database.

Limitations of the FEDERATED Storage Engine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1469

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

14.7.3 Limitations of the FEDERATED Storage Engine

The following items indicate features that the FEDERATED storage engine does and does not support:

• The remote server must be a MySQL server.

• The remote table that a FEDERATED table points to must exist before you try to access the table through
the FEDERATED table.

• It is possible for one FEDERATED table to point to another, but you must be careful not to create a loop.

• There is no support for transactions.

• A FEDERATED table does not support indexes in the usual sense; because access to the table data is
handled remotely, it is actually the remote table that makes use of indexes. This means that, for a query
that cannot use any indexes and so requires a full table scan, the server fetches all rows from the remote
table and filters them locally. This occurs regardless of any WHERE or LIMIT used with this SELECT
statement; these clauses are applied locally to the returned rows.

Queries that fail to use indexes can thus cause poor performance and network overload. In addition,
since returned rows must be stored in memory, such a query can also lead to the local server swapping,
or even hanging.

• Care should be taken when creating a FEDERATED table since the index definition from an equivalent
MyISAM or other table may not be supported. For example, creating a FEDERATED table with an index
prefix on VARCHAR, TEXT or BLOB columns will fail. The following definition in MyISAM is valid:

CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=MYISAM;

The key prefix in this example is incompatible with the FEDERATED engine, and the equivalent statement
will fail:

CREATE TABLE `T1`(`A` VARCHAR(100),UNIQUE KEY(`A`(30))) ENGINE=FEDERATED
 CONNECTION='MYSQL://127.0.0.1:3306/TEST/T1';

If possible, you should try to separate the column and index definition when creating tables on both the
remote server and the local server to avoid these index issues.

• Internally, the implementation uses SELECT, INSERT, UPDATE, and DELETE, but not HANDLER.

• The FEDERATED storage engine supports SELECT, INSERT, UPDATE, DELETE, and indexes. It does not
support ALTER TABLE, or any Data Definition Language statements that directly affect the structure of
the table, other than DROP TABLE. The current implementation does not use prepared statements.

• FEDERATED accepts INSERT ... ON DUPLICATE KEY UPDATE statements, but if a duplicate-key
violation occurs, the statement fails with an error.

• Performance on a FEDERATED table when performing bulk inserts (for example, on a INSERT
INTO ... SELECT ... statement) is slower than with other table types because each selected row is
treated as an individual INSERT statement on the federated table.

• Before MySQL 5.0.46, for a multiple-row insert into a FEDERATED table that refers to a remote
transactional table, if the insert failed for a row due to constraint failure, the remote table would contain a
partial commit (the rows preceding the failed one) instead of rolling back the statement completely. This
occurred because the rows were treated as individual inserts.

As of MySQL 5.0.46, FEDERATED performs bulk-insert handling such that multiple rows are sent to
the remote table in a batch. This provides a performance improvement. Also, if the remote table is

The ARCHIVE Storage Engine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1470

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

transactional, it enables the remote storage engine to perform statement rollback properly should an
error occur. This capability has the following limitations:

• The size of the insert cannot exceed the maximum packet size between servers. If the insert exceeds
this size, it is broken into multiple packets and the rollback problem can occur.

• Bulk-insert handling does not occur for INSERT ... ON DUPLICATE KEY UPDATE.

• There is no way for the FEDERATED engine to know if the remote table has changed. The reason for
this is that this table must work like a data file that would never be written to by anything other than the
database system. The integrity of the data in the local table could be breached if there was any change
to the remote database.

• Any DROP TABLE statement issued against a FEDERATED table drops only the local table, not the
remote table.

• FEDERATED tables do not work with the query cache.

14.8 The ARCHIVE Storage Engine
The ARCHIVE storage engine is used for storing large amounts of data without indexes in a very small
footprint.

The ARCHIVE storage engine is included in MySQL binary distributions. To enable this storage engine if
you build MySQL from source, invoke configure with the --with-archive-storage-engine option.

To examine the source for the ARCHIVE engine, look in the sql directory of a MySQL source distribution.

You can check whether the ARCHIVE storage engine is available with this statement:

mysql> SHOW VARIABLES LIKE 'have_archive';

When you create an ARCHIVE table, the server creates a table format file in the database directory. The
file begins with the table name and has an .frm extension. The storage engine creates other files, all
having names beginning with the table name. The data and metadata files have extensions of .ARZ and
.ARM, respectively. An .ARN file may appear during optimization operations.

The ARCHIVE engine supports INSERT, REPLACE, and SELECT, but not DELETE or UPDATE. It does
support ORDER BY operations, BLOB columns, and basically all but spatial data types (see Section 11.5.1,
“Spatial Data Types”). The ARCHIVE engine uses row-level locking.

Storage: Rows are compressed as they are inserted. The ARCHIVE engine uses zlib lossless data
compression (see http://www.zlib.net/). You can use OPTIMIZE TABLE to analyze the table and pack
it into a smaller format (for a reason to use OPTIMIZE TABLE, see later in this section). Beginning with
MySQL 5.0.15, the engine also supports CHECK TABLE. There are several types of insertions that are
used:

• An INSERT statement just pushes rows into a compression buffer, and that buffer flushes as necessary.
The insertion into the buffer is protected by a lock. A SELECT forces a flush to occur, unless the only
insertions that have come in were INSERT DELAYED (those flush as necessary). See Section 13.2.5.2,
“INSERT DELAYED Syntax”.

• A bulk insert is visible only after it completes, unless other inserts occur at the same time, in which case
it can be seen partially. A SELECT never causes a flush of a bulk insert unless a normal insert occurs
while it is loading.

Retrieval: On retrieval, rows are uncompressed on demand; there is no row cache. A SELECT operation
performs a complete table scan: When a SELECT occurs, it finds out how many rows are currently

http://www.zlib.net/

Additional Resources

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1471

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

available and reads that number of rows. SELECT is performed as a consistent read. Note that lots of
SELECT statements during insertion can deteriorate the compression, unless only bulk or delayed inserts
are used. To achieve better compression, you can use OPTIMIZE TABLE or REPAIR TABLE. The number
of rows in ARCHIVE tables reported by SHOW TABLE STATUS is always accurate. See Section 13.7.2.5,
“OPTIMIZE TABLE Syntax”, Section 13.7.2.6, “REPAIR TABLE Syntax”, and Section 13.7.5.33, “SHOW
TABLE STATUS Syntax”.

Additional Resources

• A forum dedicated to the ARCHIVE storage engine is available at http://forums.mysql.com/list.php?112.

14.9 The CSV Storage Engine
The CSV storage engine stores data in text files using comma-separated values format. It is unavailable on
Windows until MySQL 5.1.

The CSV storage engine is included in MySQL binary distributions (except on Windows). To enable this
storage engine if you build MySQL from source, invoke configure with the --with-csv-storage-
engine option.

To examine the source for the CSV engine, look in the sql/examples directory of a MySQL source
distribution.

When you create a CSV table, the server creates a table format file in the database directory. The file
begins with the table name and has an .frm extension. The storage engine also creates a data file. Its
name begins with the table name and has a .CSV extension. The data file is a plain text file. When you
store data into the table, the storage engine saves it into the data file in comma-separated values format.

mysql> CREATE TABLE test (i INT NOT NULL, c CHAR(10) NOT NULL)
 -> ENGINE = CSV;
Query OK, 0 rows affected (0.12 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;
+------+------------+
| i | c |
+------+------------+
| 1 | record one |
| 2 | record two |
+------+------------+
2 rows in set (0.00 sec)

If you examine the test.CSV file in the database directory created by executing the preceding statements,
its contents should look like this:

"1","record one"
"2","record two"

This format can be read, and even written, by spreadsheet applications such as Microsoft Excel or
StarOffice Calc.

The CSV storage engine does not support indexing.

14.10 The BLACKHOLE Storage Engine

http://forums.mysql.com/list.php?112

The BLACKHOLE Storage Engine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1472

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The BLACKHOLE storage engine acts as a “black hole” that accepts data but throws it away and does not
store it. Retrievals always return an empty result:

mysql> CREATE TABLE test(i INT, c CHAR(10)) ENGINE = BLACKHOLE;
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;
Empty set (0.00 sec)

The BLACKHOLE storage engine is included in MySQL binary distributions. To enable this storage engine
if you build MySQL from source, invoke configure with the --with-blackhole-storage-engine
option.

To examine the source for the BLACKHOLE engine, look in the sql directory of a MySQL source
distribution.

When you create a BLACKHOLE table, the server creates a table format file in the database directory. The
file begins with the table name and has an .frm extension. There are no other files associated with the
table.

The BLACKHOLE storage engine supports all kinds of indexes. That is, you can include index declarations
in the table definition.

You can check whether the BLACKHOLE storage engine is available with this statement:

mysql> SHOW VARIABLES LIKE 'have_blackhole_engine';

Inserts into a BLACKHOLE table do not store any data, but if the binary log is enabled, the SQL statements
are logged (and replicated to slave servers). This can be useful as a repeater or filter mechanism. Suppose
that your application requires slave-side filtering rules, but transferring all binary log data to the slave first
results in too much traffic. In such a case, it is possible to set up on the master host a “dummy” slave
process whose default storage engine is BLACKHOLE, depicted as follows:

The BLACKHOLE Storage Engine

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1473

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The master writes to its binary log. The “dummy” mysqld process acts as a slave, applying the desired
combination of replicate-do-* and replicate-ignore-* rules, and writes a new, filtered binary log
of its own. (See Section 16.1.2, “Replication and Binary Logging Options and Variables”.) This filtered log
is provided to the slave.

The dummy process does not actually store any data, so there is little processing overhead incurred by
running the additional mysqld process on the replication master host. This type of setup can be repeated
with additional replication slaves.

INSERT triggers for BLACKHOLE tables work as expected. However, because the BLACKHOLE table does
not actually store any data, UPDATE and DELETE triggers are not activated: The FOR EACH ROW clause in
the trigger definition does not apply because there are no rows.

Other possible uses for the BLACKHOLE storage engine include:

• Verification of dump file syntax.

• Measurement of the overhead from binary logging, by comparing performance using BLACKHOLE with
and without binary logging enabled.

• BLACKHOLE is essentially a “no-op” storage engine, so it could be used for finding performance
bottlenecks not related to the storage engine itself.

Blackhole Engine and Auto Increment Columns

The Blackhole engine is a no-op engine. Any operations performed on a table using Blackhole will have
no effect. This should be born in mind when considering the behavior of primary key columns that auto
increment. The engine will not automatically increment field values, and does not retain auto increment
field state. This has important implications in replication.

Consider the following replication scenario where all three of the following conditions apply:

1. On a master server there is a blackhole table with an auto increment field that is a primary key.

2. On a slave the same table exists but using the MyISAM engine.

3. Inserts are performed into the master's table without explicitly setting the auto increment value in the
INSERT statement itself or through using a SET INSERT_ID statement.

In this scenario replication will fail with a duplicate entry error on the primary key column.

In statement based replication, the value of INSERT_ID in the context event will always be the same.
Replication will therefore fail due to trying insert a row with a duplicate value for a primary key column.

In row based replication, the value that the engine returns for the row always be the same for each insert.
This will result in the slave attempting to replay two insert log entries using the same value for the primary
key column, and so replication will fail.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1474

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1475

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 15 High Availability and Scalability

Table of Contents
15.1 Using MySQL within an Amazon EC2 Instance .. 1477

15.1.1 Setting Up MySQL on an EC2 AMI ... 1478
15.1.2 EC2 Instance Limitations .. 1479
15.1.3 Deploying a MySQL Database Using EC2 ... 1480

15.2 Using ZFS Replication ... 1482
15.2.1 Using ZFS for File System Replication .. 1484
15.2.2 Configuring MySQL for ZFS Replication .. 1485
15.2.3 Handling MySQL Recovery with ZFS .. 1485

15.3 Using MySQL with memcached ... 1486
15.3.1 Installing memcached ... 1487
15.3.2 Using memcached .. 1488
15.3.3 Developing a memcached Application ... 1508
15.3.4 Getting memcached Statistics ... 1534
15.3.5 memcached FAQ ... 1543

Data is the currency of today's web, mobile, social, enterprise and cloud applications. Ensuring data is
always available is a top priority for any organization. Minutes of downtime can result in significant loss of
revenue and reputation.

There is no “one size fits all” approach to delivering High Availability (HA). Unique application attributes,
business requirements, operational capabilities and legacy infrastructure can all influence HA technology
selection. And technology is only one element in delivering HA: people and processes are just as critical as
the technology itself.

MySQL is deployed into many applications demanding availability and scalability. Availability refers to
the ability to cope with, and if necessary recover from, failures on the host, including failures of MySQL,
the operating system, or the hardware and maintenance activity that may otherwise cause downtime.
Scalability refers to the ability to spread both the database and the load of your application queries across
multiple MySQL servers.

Because each application has different operational and availability requirements, MySQL offers a range of
certified and supported solutions, delivering the appropriate levels of High Availability (HA) and scalability
to meet service level requirements. Such solutions extend from replication, through virtualization and
geographically redundant, multi-data center solutions delivering 99.999% uptime.

Selecting the right high availability solution for an application largely depends on:

• The level of availability required.

• The type of application being deployed.

• Accepted best practices within your own environment.

The primary solutions supported by MySQL include:

• MySQL Replication. Learn more: Chapter 16, Replication.

• MySQL Fabric. Learn more: MySQL Fabric.

• MySQL Cluster. Learn more: Chapter 17, MySQL Cluster.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_scalability
http://dev.mysql.com/doc/mysql-utilities/1.5/en/fabric.html

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1476

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Oracle Clusterware Agent for MySQL. Learn more about Oracle Clusterware.

• MySQL with Solaris Cluster. Learn more about Solaris Cluster.

Further options are available using third-party solutions.

Each architecture used to achieve highly available database services is differentiated by the levels of
uptime it offers. These architectures can be grouped into three main categories:

• Data Replication.

• Clustered & Virtualized Systems.

• Shared-Nothing, Geographically-Replicated Clusters.

As illustrated in the following figure, each of these architectures offers progressively higher levels of
uptime, which must be balanced against potentially greater levels of cost and complexity that each can
incur. Simply deploying a high availability architecture is not a guarantee of actually delivering HA. In fact,
a poorly implemented and maintained shared-nothing cluster could easily deliver lower levels of availability
than a simple data replication solution.

Figure 15.1 Tradeoffs: Cost and Complexity versus Availability

The following table compares the HA and Scalability capabilities of the various MySQL solutions:

Table 15.1 Feature Comparison of MySQL HA Solutions

Requirement MySQL Replication MySQL Cluster

Availability

Platform Support All Supported by MySQL
Server (http://www.mysql.com/

All Supported by MySQL Cluster
(http://www.mysql.com/support/
supportedplatforms/cluster.html)

http://www.oracle.com/technetwork/database/database-technologies/clusterware/overview/index.html
http://www.oracle.com/technetwork/server-storage/solaris-cluster/overview/index.html
http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/cluster.html
http://www.mysql.com/support/supportedplatforms/cluster.html

Using MySQL within an Amazon EC2 Instance

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1477

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Requirement MySQL Replication MySQL Cluster
support/supportedplatforms/
database.html)

Automated IP Failover No Depends on Connector and
Configuration

Automated Database Failover No Yes

Automatic Data Resynchronization No Yes

Typical Failover Time User / Script Dependent 1 Second and Less

Synchronous Replication No, Asynchronous and
Semisynchronous

Yes

Shared Storage No, Distributed No, Distributed

Geographic redundancy support Yes Yes, via MySQL Replication

Update Schema On-Line No Yes

Scalability

Number of Nodes One Master, Multiple Slaves 255

Built-in Load Balancing Reads, via MySQL Replication Yes, Reads and Writes

Supports Read-Intensive
Workloads

Yes Yes

Supports Write-Intensive
Workloads

Yes, via Application-Level
Sharding

Yes, via Auto-Sharding

Scale On-Line (add nodes,
repartition, etc.)

No Yes

15.1 Using MySQL within an Amazon EC2 Instance
The Amazon Elastic Compute Cloud (EC2) service provides virtual servers that you can build and deploy
to run a variety of different applications and services, including MySQL. The EC2 service is based around
the Xen framework, supporting x86, Linux based, platforms with individual instances of a virtual machine
referred to as an Amazon Machine Image (AMI). You have complete (root) access to the AMI instance that
you create, enabling you to configure and install your AMI in any way you choose.

To use EC2, you create an AMI based on the configuration and applications that you intend to use, and
upload the AMI to the Amazon Simple Storage Service (S3). From the S3 resource, you can deploy one or
more copies of the AMI to run as an instance within the EC2 environment. The EC2 environment provides
management and control of the instance and contextual information about the instance while it is running.

Because you can create and control the AMI, the configuration, and the applications, you can deploy and
create any environment you choose. This includes a basic MySQL server in addition to more extensive
replication, HA and scalability scenarios that enable you to take advantage of the EC2 environment, and
the ability to deploy additional instances as the demand for your MySQL services and applications grow.

To aid the deployment and distribution of work, three different Amazon EC2 instances are available, small
(identified as m1.small), large (m1.large) and extra large (m1.xlarge). The different types provide
different levels of computing power measured in EC2 computer units (ECU). A summary of the different
instance configurations is shown in the following table.

EC2 Attribute Small Large Extra Large

Platform 32-bit 64-bit 64-bit

http://www.mysql.com/support/supportedplatforms/database.html
http://www.mysql.com/support/supportedplatforms/database.html

Setting Up MySQL on an EC2 AMI

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1478

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

EC2 Attribute Small Large Extra Large

CPU cores 1 2 4

ECUs 1 4 8

RAM 1.7GB 7.5GB 15GB

Storage 150GB 840GB 1680GB

I/O Performance Medium High High

The typical model for deploying and using MySQL within the EC2 environment is to create a basic AMI that
you can use to hold your database data and application. Once the basic environment for your database
and application has been created you can then choose to deploy the AMI to a suitable instance. Here the
flexibility of having an AMI that can be re-deployed from the small to the large or extra large EC2 instance
makes it easy to upgrade the hardware environment without rebuilding your application or database stack.

To get started with MySQL on EC2, including information on how to set up and install MySQL within an
EC2 installation and how to port and migrate your data to the running instance, see Section 15.1.1, “Setting
Up MySQL on an EC2 AMI”.

For tips and advice on how to create a scalable EC2 environment using MySQL, including guides on
setting up replication, see Section 15.1.3, “Deploying a MySQL Database Using EC2”.

15.1.1 Setting Up MySQL on an EC2 AMI

There are many different ways of setting up an EC2 AMI with MySQL, including using any of the pre-
configured AMIs supplied by Amazon.

The default Getting Started AMI provided by Amazon uses Fedora Core 4, and you can install MySQL by
using yum:

shell> yum install mysql

This installs both the MySQL server and the Perl DBD::mysql driver for the Perl DBI API.

Alternatively, you can use one of the AMIs that include MySQL within the standard installation.

Finally, you can also install a standard version of MySQL downloaded from the MySQL Web site. The
installation process and instructions are identical to any other installation of MySQL on Linux. See
Chapter 2, Installing and Upgrading MySQL.

The standard configuration for MySQL places the data files in the default location, /var/lib/mysql.
The default data directory on an EC2 instance is /mnt (although on the large and extra large instance you
can alter this configuration). You must edit /etc/my.cnf to set the datadir option to point to the larger
storage area.

Important

The first time you use the main storage location within an EC2 instance it needs to
be initialized. The initialization process starts automatically the first time you write
to the device. You can start using the device right away, but the write performance
of the new device is significantly lower on the initial writes until the initialization
process has finished.

To avoid this problem when setting up a new instance, you should start the
initialization process before populating your MySQL database. One way to do this is
to use dd to write to the file system:

EC2 Instance Limitations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1479

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

root-shell> dd if=/dev/zero of=initialize bs=1024M count=50

The preceding creates a 50GB on the file system and starts the initialization
process. Delete the file once the process has finished.

The initialization process can be time-consuming. On the small instance,
initialization takes between two and three hours. For the large and extra large
drives, the initialization can be 10 or 20 hours, respectively.

In addition to configuring the correct storage location for your MySQL data files, also consider setting the
following other settings in your instance before you save the instance configuration for deployment:

• Set the MySQL server ID, so that when you use it for replication, the ID information is set correctly.

• Enabling binary logging, so that replication can be initialized without starting and stopping the server.

• Set the caching and memory parameters for your storage engines. There are no limitations or
restrictions on what storage engines you use in your EC2 environment. Choose a configuration, possibly
using one of the standard configurations provided with MySQL appropriate for the instance on which you
expect to deploy. The large and extra large instances have RAM that can be dedicated to caching. Be
aware that if you choose to install memcached on the servers as part of your application stack you must
ensure there is enough memory for both MySQL and memcached.

Once you have configured your AMI with MySQL and the rest of your application stack, save the AMI so
that you can deploy and reuse the instance.

Once you have your application stack configured in an AMI, populating your MySQL database with data
should be performed by creating a dump of your database using mysqldump, transferring the dump to the
EC2 instance, and then reloading the information into the EC2 instance database.

Before using your instance with your application in a production situation, be aware of the limitations of the
EC2 instance environment. See Section 15.1.2, “EC2 Instance Limitations”. To begin using your MySQL
AMI, consult the notes on deployment. See Section 15.1.3, “Deploying a MySQL Database Using EC2”.

15.1.2 EC2 Instance Limitations

Be aware of the following limitations of the EC2 instances before deploying your applications. Although
these shouldn't affect your ability to deploy within the Amazon EC2 environment, they may alter the way
you setup and configure your environment to support your application.

• Data stored within instances is not persistent. If you create an instance and populate the instance with
data, then the data only remains in place while the machine is running, and does not survive a reboot. If
you shut down the instance, any data it contained is lost.

To ensure that you do not lose information, take regular backups using mysqldump. If the data being
stored is critical, consider using replication to keep a “live” backup of your data in the event of a failure.
When creating a backup, write the data to the Amazon S3 service to avoid the transfer charges applied
when copying data offsite.

• EC2 instances are not persistent. If the hardware on which an instance is running fails, the instance is
shut down. This can lead to loss of data or service.

However, if you use EBS, you can attach an EBS storage volume to an EC2 instance, and that EBS
volume is persistent. Like a disk, an EBS volume can fail, but it is possible to create point-in-time
snapshots of the volume. Snapshots are persisted to Amazon S3 and can be used to restore data in the
event of volume failure.

Deploying a MySQL Database Using EC2

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1480

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• To replicate your EC2 instances to a non-EC2 environment, be aware of the transfer costs to and from
the EC2 service. Data transfer between different EC2 instances is free, so using replication within the
EC2 environment does not incur additional charges.

• Certain HA features are either not directly supported, or have limiting factors or problems that could
reduce their utility. For example, using DRBD or MySQL Cluster might not work. The default storage
configuration is also not redundant. You can use software-based RAID to improve redundancy, but this
implies a further performance hit.

15.1.3 Deploying a MySQL Database Using EC2

Because you cannot guarantee the uptime and availability of your EC2 instances, when deploying MySQL
within the EC2 environment, use an approach that enables you to easily distribute work among your EC2
instances. There are a number of ways of doing this. Using sharding techniques, where you split the
application across multiple servers dedicating specific blocks of your dataset and users to different servers
is an effective way of doing this. As a general rule, it is easier to create more EC2 instances to support
more users than to upgrade the instance to a larger machine.

The EC2 architecture works best when you treat the EC2 instances as temporary, cache-based solutions,
rather than as a long-term, high availability solution. In addition to using multiple machines, take advantage
of other services, such as memcached to provide additional caching for your application to help reduce
the load on the MySQL server so that it can concentrate on writes. On the large and extra large instances
within EC2, the RAM available can provide a large memory cache for data.

Most types of scale-out topology that you would use with your own hardware can be used and applied
within the EC2 environment. However, use the limitations and advice already given to ensure that any
potential failures do not lose you any data. Also, because the relative power of each EC2 instance is so
low, be prepared to alter your application to use sharding and add further EC2 instances to improve the
performance of your application.

For example, take the typical scale-out environment shown following, where a single master replicates to
one or more slaves (three in this example), with a web server running on each replication slave.

You can reproduce this structure completely within the EC2 environment, using an EC2 instance for the
master, and one instance for each of the web and MySQL slave servers.

Note

Within the EC2 environment, internal (private) IP addresses used by the EC2
instances are constant. Always use these internal addresses and names
when communicating between instances. Only use public IP addresses when

Deploying a MySQL Database Using EC2

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1481

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

communicating with the outside world - for example, when publicizing your
application.

To ensure reliability of your database, add at least one replication slave dedicated to providing an active
backup and storage to the Amazon S3 facility. You can see an example of this in the following topology.

Using memcached within your EC2 instances should provide better performance. The large and extra
large instances have a significant amount of RAM. To use memcached in your application, when loading
information from the database, first check whether the item exists in the cache. If the data you are looking
for exists in the cache, use it. If not, reload the data from the database and populate the cache.

Sharding divides up data in your entire database by allocating individual machines or machine groups to
provide a unique set of data according to an appropriate group. For example, you might put all users with a
surname ending in the letters A-D onto a single server. When a user connects to the application and their
surname is known, queries can be redirected to the appropriate MySQL server.

When using sharding with EC2, separate the web server and MySQL server into separate EC2 instances,
and then apply the sharding decision logic into your application. Once you know which MySQL server you

Using ZFS Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1482

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

should be using for accessing the data you then distribute queries to the appropriate server. You can see a
sample of this in the following illustration.

Warning

With sharding and EC2, be careful that the potential for failure of an instance does
not affect your application. If the EC2 instance that provides the MySQL server for a
particular shard fails, then all of the data on that shard becomes unavailable.

15.2 Using ZFS Replication
To support high availability environments, providing an instant copy of the information on both the currently
active machine and the hot backup is a critical part of the HA solution. There are many solutions to this
problem, such as Chapter 16, Replication.

The ZFS file system provides functionality to create a snapshot of the file system contents, transfer
the snapshot to another machine, and extract the snapshot to recreate the file system. You can create
a snapshot at any time, and you can create as many snapshots as you like. By continually creating,
transferring, and restoring snapshots, you can provide synchronization between one or more machines in a
fashion similar to DRBD.

The following example shows a simple Solaris system running with a single ZFS pool, mounted at /
scratchpool:

Filesystem size used avail capacity Mounted on
/dev/dsk/c0d0s0 4.6G 3.7G 886M 82% /
/devices 0K 0K 0K 0% /devices

Using ZFS Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1483

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ctfs 0K 0K 0K 0% /system/contract
proc 0K 0K 0K 0% /proc
mnttab 0K 0K 0K 0% /etc/mnttab
swap 1.4G 892K 1.4G 1% /etc/svc/volatile
objfs 0K 0K 0K 0% /system/object
/usr/lib/libc/libc_hwcap1.so.1
 4.6G 3.7G 886M 82% /lib/libc.so.1
fd 0K 0K 0K 0% /dev/fd
swap 1.4G 40K 1.4G 1% /tmp
swap 1.4G 28K 1.4G 1% /var/run
/dev/dsk/c0d0s7 26G 913M 25G 4% /export/home
scratchpool 16G 24K 16G 1% /scratchpool

The MySQL data is stored in a directory on /scratchpool. To help demonstrate some of the basic
replication functionality, there are also other items stored in /scratchpool as well:

total 17
drwxr-xr-x 31 root bin 50 Jul 21 07:32 DTT/
drwxr-xr-x 4 root bin 5 Jul 21 07:32 SUNWmlib/
drwxr-xr-x 14 root sys 16 Nov 5 09:56 SUNWspro/
drwxrwxrwx 19 1000 1000 40 Nov 6 19:16 emacs-22.1/

To create a snapshot of the file system, you use zfs snapshot, specifying the pool and the snapshot
name:

root-shell> zfs snapshot scratchpool@snap1

To list the snapshots already taken:

root-shell> zfs list -t snapshot
NAME USED AVAIL REFER MOUNTPOINT
scratchpool@snap1 0 - 24.5K -
scratchpool@snap2 0 - 24.5K -

The snapshots themselves are stored within the file system metadata, and the space required to keep
them varies as time goes on because of the way the snapshots are created. The initial creation of a
snapshot is very quick, because instead of taking an entire copy of the data and metadata required to hold
the entire snapshot, ZFS records only the point in time and metadata of when the snapshot was created.

As more changes to the original file system are made, the size of the snapshot increases because more
space is required to keep the record of the old blocks. If you create lots of snapshots, say one per day, and
then delete the snapshots from earlier in the week, the size of the newer snapshots might also increase, as
the changes that make up the newer state have to be included in the more recent snapshots, rather than
being spread over the seven snapshots that make up the week.

You cannot directly back up the snapshots because they exist within the file system metadata rather than
as regular files. To get the snapshot into a format that you can copy to another file system, tape, and so on,
you use the zfs send command to create a stream version of the snapshot.

For example, to write the snapshot out to a file:

root-shell> zfs send scratchpool@snap1 >/backup/scratchpool-snap1

Or tape:

root-shell> zfs send scratchpool@snap1 >/dev/rmt/0

You can also write out the incremental changes between two snapshots using zfs send:

Using ZFS for File System Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1484

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

root-shell> zfs send scratchpool@snap1 scratchpool@snap2 >/backup/scratchpool-changes

To recover a snapshot, you use zfs recv, which applies the snapshot information either to a new file
system, or to an existing one.

15.2.1 Using ZFS for File System Replication

Because zfs send and zfs recv use streams to exchange data, you can use them to replicate
information from one system to another by combining zfs send, ssh, and zfs recv.

For example, to copy a snapshot of the scratchpool file system to a new file system called slavepool
on a new server, you would use the following command. This sequence combines the snapshot of
scratchpool, the transmission to the slave machine (using ssh with login credentials), and the recovery
of the snapshot on the slave using zfs recv:

root-shell> zfs send scratchpool@snap1 |ssh id@host pfexec zfs recv -F slavepool

The first part of the pipeline, zfs send scratchpool@snap1, streams the snapshot. The ssh
command, and the command that it executes on the other server, pfexec zfs recv -F slavepool,
receives the streamed snapshot data and writes it to slavepool. In this instance, I've specified the -F option
which forces the snapshot data to be applied, and is therefore destructive. This is fine, as I'm creating the
first version of my replicated file system.

On the slave machine, the replicated file system contains the exact same content:

root-shell> ls -al /slavepool/
total 23
drwxr-xr-x 6 root root 7 Nov 8 09:13 ./
drwxr-xr-x 29 root root 34 Nov 9 07:06 ../
drwxr-xr-x 31 root bin 50 Jul 21 07:32 DTT/
drwxr-xr-x 4 root bin 5 Jul 21 07:32 SUNWmlib/
drwxr-xr-x 14 root sys 16 Nov 5 09:56 SUNWspro/
drwxrwxrwx 19 1000 1000 40 Nov 6 19:16 emacs-22.1/

Once a snapshot has been created, to synchronize the file system again, you create a new snapshot and
then use the incremental snapshot feature of zfs send to send the changes between the two snapshots
to the slave machine again:

root-shell> zfs send -i scratchpool@snapshot1 scratchpool@snapshot2 |ssh id@host pfexec zfs recv slavepool

This operation only succeeds if the file system on the slave machine has not been modified at all. You
cannot apply the incremental changes to a destination file system that has changed. In the example above,
the ls command would cause problems by changing the metadata, such as the last access time for files or
directories.

To prevent changes on the slave file system, set the file system on the slave to be read-only:

root-shell> zfs set readonly=on slavepool

Setting readonly means that you cannot change the file system on the slave by normal means, including
the file system metadata. Operations that would normally update metadata (like our ls) silently perform
their function without attempting to update the file system state.

In essence, the slave file system is nothing but a static copy of the original file system. However, even
when configured to be read-only, a file system can have snapshots applied to it. With the file system set to
read only, re-run the initial copy:

Configuring MySQL for ZFS Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1485

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

root-shell> zfs send scratchpool@snap1 |ssh id@host pfexec zfs recv -F slavepool

Now you can make changes to the original file system and replicate them to the slave.

15.2.2 Configuring MySQL for ZFS Replication

Configuring MySQL on the source file system is a case of creating the data on the file system that you
intend to replicate. The configuration file in the example below has been updated to use /scratchpool/
mysql-data as the data directory, and now you can initialize the tables:

root-shell> mysql_install_db --defaults-file=/etc/mysql/5.5/my.cnf --user=mysql

To synchronize the initial information, perform a new snapshot and then send an incremental snapshot to
the slave using zfs send:

root-shell> zfs snapshot scratchpool@snap2
root-shell> zfs send -i scratchpool@snap1 scratchpool@snap2|ssh id@host pfexec zfs recv slavepool

Doublecheck that the slave has the data by looking at the MySQL data directory on the slavepool:

root-shell> ls -al /slavepool/mysql-data/

Now you can start up MySQL, create some data, and then replicate the changes using zfs send/ zfs
recv to the slave to synchronize the changes.

The rate at which you perform the synchronization depends on your application and environment. The
limitation is the speed required to perform the snapshot and then to send the changes over the network.

To automate the process, create a script that performs the snapshot, send, and receive operation, and use
cron to synchronize the changes at set times or intervals.

15.2.3 Handling MySQL Recovery with ZFS

When using ZFS replication to provide a constant copy of your data, ensure that you can recover your
tables, either manually or automatically, in the event of a failure of the original system.

In the event of a failure, follow this sequence:

1. Stop the script on the master, if it is still up and running.

2. Set the slave file system to be read/write:

root-shell> zfs set readonly=off slavepool

3. Start up mysqld on the slave. If you are using InnoDB, you get auto-recovery, if it is needed, to make
sure the table data is correct, as shown here when I started up from our mid-INSERT snapshot:

InnoDB: The log sequence number in ibdata files does not match
InnoDB: the log sequence number in the ib_logfiles!
081109 15:59:59 InnoDB: Database was not shut down normally!
InnoDB: Starting crash recovery.
InnoDB: Reading tablespace information from the .ibd files...
InnoDB: Restoring possible half-written data pages from the doublewrite
InnoDB: buffer...
081109 16:00:03 InnoDB: Started; log sequence number 0 1142807951

Using MySQL with memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1486

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

081109 16:00:03 [Note] /slavepool/mysql-5.0.67-solaris10-i386/bin/mysqld: ready for connections.
Version: '5.0.67' socket: '/tmp/mysql.sock' port: 3306 MySQL Community Server (GPL)

Use InnoDB tables and a regular synchronization schedule to reduce the risk for significant data loss. On
MyISAM tables, you might need to run REPAIR TABLE, and you might even have lost some information.

15.3 Using MySQL with memcached

memcached is a simple, highly scalable key-based cache that stores data and objects wherever dedicated
or spare RAM is available for quick access by applications, without going through layers of parsing or disk
I/O. To use, you run the memcached command on one or more hosts and then use the shared cache to
store objects. For more usage instructions, see Section 15.3.2, “Using memcached”

Benefits of using memcached include:

• Because all information is stored in RAM, the access speed is faster than loading the information each
time from disk.

• Because the “value” portion of the key-value pair does not have any data type restrictions, you can
cache data such as complex structures, documents, images, or a mixture of such things.

• If you use the in-memory cache to hold transient information, or as a read-only cache for information
also stored in a database, the failure of any memcached server is not critical. For persistent data, you
can fall back to an alternative lookup method using database queries, and reload the data into RAM on a
different server.

The typical usage environment is to modify your application so that information is read from the cache
provided by memcached. If the information is not in memcached, then the data is loaded from the MySQL
database and written into the cache so that future requests for the same object benefit from the cached
data.

For a typical deployment layout, see Figure 15.2, “memcached Architecture Overview”.

Figure 15.2 memcached Architecture Overview

In the example structure, any of the clients can contact one of the memcached servers to request a given
key. Each client is configured to talk to all of the servers shown in the illustration. Within the client, when
the request is made to store the information, the key used to reference the data is hashed and this hash is
then used to select one of the memcached servers. The selection of the memcached server takes place on
the client before the server is contacted, keeping the process lightweight.

Installing memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1487

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The same algorithm is used again when a client requests the same key. The same key generates the
same hash, and the same memcached server is selected as the source for the data. Using this method,
the cached data is spread among all of the memcached servers, and the cached information is accessible
from any client. The result is a distributed, memory-based, cache that can return information, particularly
complex data and structures, much faster than natively reading the information from the database.

The data held within a traditional memcached server is never stored on disk (only in RAM, which means
there is no persistence of data), and the RAM cache is always populated from the backing store (a MySQL
database). If a memcached server fails, the data can always be recovered from the MySQL database.

15.3.1 Installing memcached

You can build and install memcached from the source code directly, or you can use an existing operating
system package or installation.

Installing memcached from a Binary Distribution

To install memcached on a Red Hat, or Fedora host, use yum:

root-shell> yum install memcached

Note

On CentOS, you may be able to obtain a suitable RPM from another source, or use
the source tarball.

To install memcached on a Debian or Ubuntu host, use apt-get:

root-shell> apt-get install memcached

To install memcached on a Gentoo host, use emerge:

root-shell> emerge install memcached

Building memcached from Source

On other Unix-based platforms, including Solaris, AIX, HP-UX and OS X, and Linux distributions not
mentioned already, you must install from source. For Linux, make sure you have a 2.6-based kernel, which
includes the improved epoll interface. For all platforms, ensure that you have libevent 1.1 or higher
installed. You can obtain libevent from libevent web page.

You can obtain the source for memcached from memcached Web site.

To build memcached, follow these steps:

1. Extract the memcached source package:

shell> gunzip -c memcached-1.2.5.tar.gz | tar xf -

2. Change to the memcached-1.2.5 directory:

shell> cd memcached-1.2.5

3. Run configure

http://www.monkey.org/~provos/libevent/
http://www.danga.com/memcached

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1488

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> ./configure

Some additional options you might specify to the configure:

• --prefix

To specify a different installation directory, use the --prefix option:

shell> ./configure --prefix=/opt

The default is to use the /usr/local directory.

• --with-libevent

If you have installed libevent and configure cannot find the library, use the --with-libevent
option to specify the location of the installed library.

• --enable-64bit

To build a 64-bit version of memcached (which enables you to use a single instance with a large
RAM allocation), use --enable-64bit.

• --enable-threads

To enable multi-threading support in memcached, which improves the response times on servers
with a heavy load, use --enable-threads. You must have support for the POSIX threads within
your operating system to enable thread support. For more information on the threading support, see
Section 15.3.2.7, “memcached Thread Support”.

• --enable-dtrace

memcached includes a range of DTrace threads that can be used to monitor and benchmark a
memcached instance. For more information, see Section 15.3.2.5, “Using memcached and DTrace”.

4. Run make to build memcached:

shell> make

5. Run make install to install memcached:

shell> make install

15.3.2 Using memcached

To start using memcached, start the memcached service on one or more servers. Running memcached
sets up the server, allocates the memory and starts listening for connections from clients.

Note

You do not need to be a privileged user (root) to run memcached except to listen
on one of the privileged TCP/IP ports (below 1024). You must, however, use a user
that has not had their memory limits restricted using setrlimit or similar.

To start the server, run memcached as a nonprivileged (that is, non-root) user:

shell> memcached

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1489

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

By default, memcached uses the following settings:

• Memory allocation of 64MB

• Listens for connections on all network interfaces, using port 11211

• Supports a maximum of 1024 simultaneous connections

Typically, you would specify the full combination of options that you want when starting memcached, and
normally provide a startup script to handle the initialization of memcached. For example, the following
line starts memcached with a maximum of 1024MB RAM for the cache, listening on port 11211 on the IP
address 192.168.0.110, running as a background daemon:

shell> memcached -d -m 1024 -p 11211 -l 192.168.0.110

To ensure that memcached is started up on boot, check the init script and configuration parameters.

memcached supports the following options:

• -u user

If you start memcached as root, use the -u option to specify the user for executing memcached:

shell> memcached -u memcache

• -m memory

Set the amount of memory allocated to memcached for object storage. Default is 64MB.

To increase the amount of memory allocated for the cache, use the -m option to specify the amount
of RAM to be allocated (in megabytes). The more RAM you allocate, the more data you can store and
therefore the more effective your cache is.

Warning

Do not specify a memory allocation larger than your available RAM. If you specify
too large a value, then some RAM allocated for memcached uses swap space,
and not physical RAM. This may lead to delays when storing and retrieving
values, because data is swapped to disk, instead of storing the data directly in
RAM.

You can use the output of the vmstat command to get the free memory, as
shown in free column:

shell> vmstat
kthr memory page disk faults cpu
r b w swap free re mf pi po fr de sr s1 s2 -- -- in sy cs us sy id
0 0 0 5170504 3450392 2 7 2 0 0 0 4 0 0 0 0 296 54 199 0 0 100

For example, to allocate 3GB of RAM:

shell> memcached -m 3072

On 32-bit x86 systems where you are using PAE to access memory above the 4GB limit, you cannot
allocate RAM beyond the maximum process size. You can get around this by running multiple instances
of memcached, each listening on a different port:

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1490

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> memcached -m 1024 -p11211
shell> memcached -m 1024 -p11212
shell> memcached -m 1024 -p11213

Note

On all systems, particularly 32-bit, ensure that you leave enough room for both
memcached application in addition to the memory setting. For example, if you
have a dedicated memcached host with 4GB of RAM, do not set the memory
size above 3500MB. Failure to do this may cause either a crash or severe
performance issues.

• -l interface

Specify a network interface/address to listen for connections. The default is to listen on all available
address (INADDR_ANY).

shell> memcached -l 192.168.0.110

Support for IPv6 address support was added in memcached 1.2.5.

• -p port

Specify the TCP port to use for connections. Default is 18080.

shell> memcached -p 18080

• -U port

Specify the UDP port to use for connections. Default is 11211, 0 switches UDP off.

shell> memcached -U 18080

• -s socket

Specify a Unix socket to listen on.

If you are running memcached on the same server as the clients, you can disable the network interface
and use a local Unix socket using the -s option:

shell> memcached -s /tmp/memcached

Using a Unix socket automatically disables network support, and saves network ports (allowing more
ports to be used by your web server or other process).

• -a mask

Specify the access mask to be used for the Unix socket, in octal. Default is 0700.

• -c connections

Specify the maximum number of simultaneous connections to the memcached service. The default is
1024.

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1491

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> memcached -c 2048

Use this option, either to reduce the number of connections (to prevent overloading memcached service)
or to increase the number to make more effective use of the server running memcached server.

• -t threads

Specify the number of threads to use when processing incoming requests.

By default, memcached is configured to use 4 concurrent threads. The threading improves the
performance of storing and retrieving data in the cache, using a locking system to prevent different
threads overwriting or updating the same values. To increase or decrease the number of threads, use
the -t option:

shell> memcached -t 8

• -d

Run memcached as a daemon (background) process:

shell> memcached -d

• -r

Maximize the size of the core file limit. In the event of a failure, this attempts to dump the entire memory
space to disk as a core file, up to any limits imposed by setrlimit.

• -M

Return an error to the client when the memory has been exhausted. This replaces the normal behavior
of removing older items from the cache to make way for new items.

• -k

Lock down all paged memory. This reserves the memory before use, instead of allocating new slabs of
memory as new items are stored in the cache.

Note

There is a user-level limit on how much memory you can lock. Trying to allocate
more than the available memory fails. You can set the limit for the user you
started the daemon with (not for the -u user user) within the shell by using
ulimit -S -l NUM_KB

• -v

Verbose mode. Prints errors and warnings while executing the main event loop.

• -vv

Very verbose mode. In addition to information printed by -v, also prints each client command and the
response.

• -vvv

Extremely verbose mode. In addition to information printed by -vv, also show the internal state
transitions.

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1492

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• -h

Print the help message and exit.

• -i

Print the memcached and libevent license.

• -I mem

Specify the maximum size permitted for storing an object within the memcached instance. The size
supports a unit postfix (k for kilobytes, m for megabytes). For example, to increase the maximum
supported object size to 32MB:

shell> memcached -I 32m

The maximum object size you can specify is 128MB, the default remains at 1MB.

This option was added in 1.4.2.

• -b

Set the backlog queue limit. The backlog queue configures how many network connections can be
waiting to be processed by memcached. Increasing this limit may reduce errors received by the client
that it is not able to connect to the memcached instance, but does not improve the performance of the
server. The default is 1024.

• -P pidfile

Save the process ID of the memcached instance into file.

• -f

Set the chunk size growth factor. When allocating new memory chunks, the allocated size of new chunks
is determined by multiplying the default slab size by this factor.

To see the effects of this option without extensive testing, use the -vv command-line option to show the
calculated slab sizes. For more information, see Section 15.3.2.8, “memcached Logs”.

• -n bytes

The minimum space allocated for the key+value+flags information. The default is 48 bytes.

• -L

On systems that support large memory pages, enables large memory page use. Using large memory
pages enables memcached to allocate the item cache in one large chunk, which can improve the
performance by reducing the number misses when accessing memory.

• -C

Disable the use of compare and swap (CAS) operations.

This option was added in memcached 1.3.x.

• -D char

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1493

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Set the default character to be used as a delimiter between the key prefixes and IDs. This is used for
the per-prefix statistics reporting (see Section 15.3.4, “Getting memcached Statistics”). The default is the
colon (:). If this option is used, statistics collection is turned on automatically. If not used, you can enable
stats collection by sending the stats detail on command to the server.

This option was added in memcached 1.3.x.

• -R num

Sets the maximum number of requests per event process. The default is 20.

• -B protocol

Set the binding protocol, that is, the default memcached protocol support for client connections. Options
are ascii, binary or auto. Automatic (auto) is the default.

This option was added in memcached 1.4.0.

15.3.2.1 memcached Deployment

When using memcached you can use a number of different potential deployment strategies and topologies.
The exact strategy to use depends on your application and environment. When developing a system for
deploying memcached within your system, keep in mind the following points:

• memcached is only a caching mechanism. It shouldn't be used to store information that you cannot
otherwise afford to lose and then load from a different location.

• There is no security built into the memcached protocol. At a minimum, make sure that the servers
running memcached are only accessible from inside your network, and that the network ports being used
are blocked (using a firewall or similar). If the information on the memcached servers that is being stored
is any sensitive, then encrypt the information before storing it in memcached.

• memcached does not provide any sort of failover. Because there is no communication between different
memcached instances. If an instance fails, your application must capable of removing it from the list,
reloading the data and then writing data to another memcached instance.

• Latency between the clients and the memcached can be a problem if you are using different physical
machines for these tasks. If you find that the latency is a problem, move the memcached instances to be
on the clients.

• Key length is determined by the memcached server. The default maximum key size is 250 bytes.

• Try to use at least two memcached instances, especially for multiple clients, to avoid having a single
point of failure. Ideally, create as many memcached nodes as possible. When adding and removing
memcached instances from a pool, the hashing and distribution of key/value pairs may be affected. For
information on how to avoid problems, see Section 15.3.2.4, “memcached Hashing/Distribution Types”.

15.3.2.2 Using Namespaces

The memcached cache is a very simple massive key/value storage system, and as such there is no way of
compartmentalizing data automatically into different sections. For example, if you are storing information by
the unique ID returned from a MySQL database, then storing the data from two different tables could run
into issues because the same ID might be valid in both tables.

Some interfaces provide an automated mechanism for creating namespaces when storing information into
the cache. In practice, these namespaces are merely a prefix before a given ID that is applied every time a
value is stored or retrieve from the cache.

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1494

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

You can implement the same basic principle by using keys that describe the object and the unique
identifier within the key that you supply when the object is stored. For example, when storing user data,
prefix the ID of the user with user: or user-.

Note

Using namespaces or prefixes only controls the keys stored/retrieved. There is no
security within memcached, and therefore no way to enforce that a particular client
only accesses keys with a particular namespace. Namespaces are only useful as a
method of identifying data and preventing corruption of key/value pairs.

15.3.2.3 Data Expiry

There are two types of data expiry within a memcached instance. The first type is applied at the point when
you store a new key/value pair into the memcached instance. If there is not enough space within a suitable
slab to store the value, then an existing least recently used (LRU) object is removed (evicted) from the
cache to make room for the new item.

The LRU algorithm ensures that the object that is removed is one that is either no longer in active use or
that was used so long ago that its data is potentially out of date or of little value. However, in a system
where the memory allocated to memcached is smaller than the number of regularly used objects required
in the cache, a lot of expired items could be removed from the cache even though they are in active use.
You use the statistics mechanism to get a better idea of the level of evictions (expired objects). For more
information, see Section 15.3.4, “Getting memcached Statistics”.

You can change this eviction behavior by setting the -M command-line option when starting memcached.
This option forces an error to be returned when the memory has been exhausted, instead of automatically
evicting older data.

The second type of expiry system is an explicit mechanism that you can set when a key/value pair is
inserted into the cache, or when deleting an item from the cache. Using an expiration time can be a
useful way of ensuring that the data in the cache is up to date and in line with your application needs and
requirements.

A typical scenario for explicitly setting the expiry time might include caching session data for a user when
accessing a Web site. memcached uses a lazy expiry mechanism where the explicit expiry time that
has been set is compared with the current time when the object is requested. Only objects that have not
expired are returned.

You can also set the expiry time when explicitly deleting an object from the cache. In this case, the expiry
time is really a timeout and indicates the period when any attempts to set the value for a given key are
rejected.

15.3.2.4 memcached Hashing/Distribution Types

The memcached client interface supports a number of different distribution algorithms that are used in
multi-server configurations to determine which host should be used when setting or getting data from a
given memcached instance. When you get or set a value, a hash is constructed from the supplied key and
then used to select a host from the list of configured servers. Because the hashing mechanism uses the
supplied key as the basis for the hash, the same server is selected during both set and get operations.

You can think of this process as follows. Given an array of servers (a, b, and c), the client uses a hashing
algorithm that returns an integer based on the key being stored or retrieved. The resulting value is then
used to select a server from the list of servers configured in the client. Most standard client hashing within
memcache clients uses a simple modulus calculation on the value against the number of configured
memcached servers. You can summarize the process in pseudocode as:

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1495

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

@memcservers = ['a.memc','b.memc','c.memc'];
$value = hash($key);
$chosen = $value % length(@memcservers);

Replacing the above with values:

@memcservers = ['a.memc','b.memc','c.memc'];
$value = hash('myid');
$chosen = 7009 % 3;

In the above example, the client hashing algorithm chooses the server at index 1 (7009 % 3 = 1), and
store or retrieve the key and value with that server.

Note

This selection and hashing process is handled automatically by the memcached
client you are using; you need only provide the list of memcached servers to use.

You can see a graphical representation of this below in Figure 15.3, “memcached Hash Selection”.

Figure 15.3 memcached Hash Selection

The same hashing and selection process takes place during any operation on the specified key within the
memcached client.

Using this method provides a number of advantages:

• The hashing and selection of the server to contact is handled entirely within the client. This eliminates
the need to perform network communication to determine the right machine to contact.

• Because the determination of the memcached server occurs entirely within the client, the server can be
selected automatically regardless of the operation being executed (set, get, increment, etc.).

• Because the determination is handled within the client, the hashing algorithm returns the same value for
a given key; values are not affected or reset by differences in the server environment.

• Selection is very fast. The hashing algorithm on the key value is quick and the resulting selection of the
server is from a simple array of available machines.

• Using client-side hashing simplifies the distribution of data over each memcached server. Natural
distribution of the values returned by the hashing algorithm means that keys are automatically spread
over the available servers.

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1496

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Providing that the list of servers configured within the client remains the same, the same stored key returns
the same value, and therefore selects the same server.

However, if you do not use the same hashing mechanism then the same data may be recorded on different
servers by different interfaces, both wasting space on your memcached and leading to potential differences
in the information.

Note

One way to use a multi-interface compatible hashing mechanism is to use the
libmemcached library and the associated interfaces. Because the interfaces for
the different languages (including C, Ruby, Perl and Python) use the same client
library interface, they always generate the same hash code from the ID.

The problem with client-side selection of the server is that the list of the servers (including their sequential
order) must remain consistent on each client using the memcached servers, and the servers must be
available. If you try to perform an operation on a key when:

• A new memcached instance has been added to the list of available instances

• A memcached instance has been removed from the list of available instances

• The order of the memcached instances has changed

When the hashing algorithm is used on the given key, but with a different list of servers, the hash
calculation may choose a different server from the list.

If a new memcached instance is added into the list of servers, as new.memc is in the example below, then
a GET operation using the same key, myid, can result in a cache-miss. This is because the same value is
computed from the key, which selects the same index from the array of servers, but index 2 now points to
the new server, not the server c.memc where the data was originally stored. This would result in a cache
miss, even though the key exists within the cache on another memcached instance.

Figure 15.4 memcached Hash Selection with New memcached instance

This means that servers c.memc and new.memc both contain the information for key myid, but the
information stored against the key in eachs server may be different in each instance. A more significant
problem is a much higher number of cache-misses when retrieving data, as the addition of a new server
changes the distribution of keys, and this in turn requires rebuilding the cached data on the memcached
instances, causing an increase in database reads.

The same effect can occur if you actively manage the list of servers configured in your clients, adding
and removing the configured memcached instances as each instance is identified as being available. For
example, removing a memcached instance when the client notices that the instance can no longer be
contacted can cause the server selection to fail as described here.

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1497

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To prevent this causing significant problems and invalidating your cache, you can select the hashing
algorithm used to select the server. There are two common types of hashing algorithm, consistent and
modula.

With consistent hashing algorithms, the same key when applied to a list of servers always uses the same
server to store or retrieve the keys, even if the list of configured servers changes. This means that you can
add and remove servers from the configure list and always use the same server for a given key. There
are two types of consistent hashing algorithms available, Ketama and Wheel. Both types are supported by
libmemcached, and implementations are available for PHP and Java.

Any consistent hashing algorithm has some limitations. When you add servers to an existing list of
configured servers, keys are distributed to the new servers as part of the normal distribution. When you
remove servers from the list, the keys are re-allocated to another server within the list, meaning that the
cache needs to be re-populated with the information. Also, a consistent hashing algorithm does not resolve
the issue where you want consistent selection of a server across multiple clients, but where each client
contains a different list of servers. The consistency is enforced only within a single client.

With a modula hashing algorithm, the client selects a server by first computing the hash and then choosing
a server from the list of configured servers. As the list of servers changes, so the server selected when
using a modula hashing algorithm also changes. The result is the behavior described above; changes to
the list of servers mean that different servers are selected when retrieving data, leading to cache misses
and increase in database load as the cache is re-seeded with information.

If you use only a single memcached instance for each client, or your list of memcached servers configured
for a client never changes, then the selection of a hashing algorithm is irrelevant, as it has no noticeable
effect.

If you change your servers regularly, or you use a common set of servers that are shared among a large
number of clients, then using a consistent hashing algorithm should help to ensure that your cache data is
not duplicated and the data is evenly distributed.

15.3.2.5 Using memcached and DTrace

memcached includes a number of different DTrace probes that can be used to monitor the operation of the
server. The probes included can monitor individual connections, slab allocations, and modifications to the
hash table when a key/value pair is added, updated, or removed.

For more information on DTrace and writing DTrace scripts, read the DTrace User Guide.

Support for DTrace probes was added to memcached 1.2.6 includes a number of DTrace probes that
can be used to help monitor your application. DTrace is supported on Solaris 10, OpenSolaris, OS X 10.5
and FreeBSD. To enable the DTrace probes in memcached, build from source and use the --enable-
dtrace option. For more information, see Section 15.3.1, “Installing memcached”.

The probes supported by memcached are:

• conn-allocate(connid)

Fired when a connection object is allocated from the connection pool.

• connid: The connection ID.

• conn-release(connid)

Fired when a connection object is released back to the connection pool.

Arguments:

http://docs.oracle.com/cd/E19253-01/819-5488/

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1498

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• connid: The connection ID.

• conn-create(ptr)

Fired when a new connection object is being created (that is, there are no free connection objects in the
connection pool).

Arguments:

• ptr: A pointer to the connection. object

• conn-destroy(ptr)

Fired when a connection object is being destroyed.

Arguments:

• ptr: A pointer to the connection object.

• conn-dispatch(connid, threadid)

Fired when a connection is dispatched from the main or connection-management thread to a worker
thread.

Arguments:

• connid: The connection ID.

• threadid: The thread ID.

• slabs-allocate(size, slabclass, slabsize, ptr)

Allocate memory from the slab allocator.

Arguments:

• size: The requested size.

• slabclass: The allocation is fulfilled in this class.

• slabsize: The size of each item in this class.

• ptr: A pointer to allocated memory.

• slabs-allocate-failed(size, slabclass)

Failed to allocate memory (out of memory).

Arguments:

• size: The requested size.

• slabclass: The class that failed to fulfill the request.

• slabs-slabclass-allocate(slabclass)

Fired when a slab class needs more space.

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1499

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Arguments:

• slabclass: The class that needs more memory.

• slabs-slabclass-allocate-failed(slabclass)

Failed to allocate memory (out of memory).

Arguments:

• slabclass: The class that failed to grab more memory.

• slabs-free(size, slabclass, ptr)

Release memory.

Arguments:

• size: The amount of memory to release, in bytes.

• slabclass: The class the memory belongs to.

• ptr: A pointer to the memory to release.

• assoc-find(key, depth)

Fired when we have searched the hash table for a named key. These two elements provide an insight
into how well the hash function operates. Traversals are a sign of a less optimal function, wasting CPU
capacity.

Arguments:

• key: The key searched for.

• depth: The depth in the list of hash table.

• assoc-insert(key, nokeys)

Fired when a new item has been inserted.

Arguments:

• key: The key just inserted.

• nokeys: The total number of keys currently being stored, including the key for which insert was called.

• assoc-delete(key, nokeys)

Fired when a new item has been removed.

Arguments:

• key: The key just deleted.

• nokeys: The total number of keys currently being stored, excluding the key for which delete was
called.

• item-link(key, size)

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1500

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Fired when an item is being linked in the cache.

Arguments:

• key: The items key.

• size: The size of the data.

• item-unlink(key, size)

Fired when an item is being deleted.

Arguments:

• key: The items key.

• size: The size of the data.

• item-remove(key, size)

Fired when the refcount for an item is reduced.

Arguments:

• key: The item's key.

• size: The size of the data.

• item-update(key, size)

Fired when the "last referenced" time is updated.

Arguments:

• key: The item's key.

• size: The size of the data.

• item-replace(oldkey, oldsize, newkey, newsize)

Fired when an item is being replaced with another item.

Arguments:

• oldkey: The key of the item to replace.

• oldsize: The size of the old item.

• newkey: The key of the new item.

• newsize: The size of the new item.

• process-command-start(connid, request, size)

Fired when the processing of a command starts.

Arguments:

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1501

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• connid: The connection ID.

• request: The incoming request.

• size: The size of the request.

• process-command-end(connid, response, size)

Fired when the processing of a command is done.

Arguments:

• connid: The connection ID.

• response: The response to send back to the client.

• size: The size of the response.

• command-get(connid, key, size)

Fired for a get command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The size of the key's data (or -1 if not found).

• command-gets(connid, key, size, casid)

Fired for a gets command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The size of the key's data (or -1 if not found).

• casid: The casid for the item.

• command-add(connid, key, size)

Fired for a add command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-set(connid, key, size)

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1502

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Fired for a set command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-replace(connid, key, size)

Fired for a replace command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-prepend(connid, key, size)

Fired for a prepend command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-append(connid, key, size)

Fired for a append command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The new size of the key's data (or -1 if not found).

• command-cas(connid, key, size, casid)

Fired for a cas command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• size: The size of the key's data (or -1 if not found).

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1503

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• casid: The cas ID requested.

• command-incr(connid, key, val)

Fired for incr command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• val: The new value.

• command-decr(connid, key, val)

Fired for decr command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• val: The new value.

• command-delete(connid, key, exptime)

Fired for a delete command.

Arguments:

• connid: The connection ID.

• key: The requested key.

• exptime: The expiry time.

15.3.2.6 Memory Allocation within memcached

When you first start memcached, the memory that you have configured is not automatically allocated.
Instead, memcached only starts allocating and reserving physical memory once you start saving
information into the cache.

When you start to store data into the cache, memcached does not allocate the memory for the data on
an item by item basis. Instead, a slab allocation is used to optimize memory usage and prevent memory
fragmentation when information expires from the cache.

With slab allocation, memory is reserved in blocks of 1MB. The slab is divided up into a number of blocks
of equal size. When you try to store a value into the cache, memcached checks the size of the value that
you are adding to the cache and determines which slab contains the right size allocation for the item. If a
slab with the item size already exists, the item is written to the block within the slab.

If the new item is bigger than the size of any existing blocks, then a new slab is created, divided up into
blocks of a suitable size. If an existing slab with the right block size already exists, but there are no free
blocks, a new slab is created. If you update an existing item with data that is larger than the existing block
allocation for that key, then the key is re-allocated into a suitable slab.

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1504

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For example, the default size for the smallest block is 88 bytes (40 bytes of value, and the default 48 bytes
for the key and flag data). If the size of the first item you store into the cache is less than 40 bytes, then a
slab with a block size of 88 bytes is created and the value stored.

If the size of the data that you intend to store is larger than this value, then the block size is increased
by the chunk size factor until a block size large enough to hold the value is determined. The block size is
always a function of the scale factor, rounded up to a block size which is exactly divisible into the chunk
size.

For a sample of the structure, see Figure 15.5, “Memory Allocation in memcached”.

Figure 15.5 Memory Allocation in memcached

The result is that you have multiple pages allocated within the range of memory allocated to memcached.
Each page is 1MB in size (by default), and is split into a different number of chunks, according to the
chunk size required to store the key/value pairs. Each instance has multiple pages allocated, and a page
is always created when a new item needs to be created requiring a chunk of a particular size. A slab may
consist of multiple pages, and each page within a slab contains an equal number of chunks.

The chunk size of a new slab is determined by the base chunk size combined with the chunk size growth
factor. For example, if the initial chunks are 104 bytes in size, and the default chunk size growth factor is
used (1.25), then the next chunk size allocated would be the best power of 2 fit for 104*1.25, or 136 bytes.

Allocating the pages in this way ensures that memory does not get fragmented. However, depending on
the distribution of the objects that you store, it may lead to an inefficient distribution of the slabs and chunks
if you have significantly different sized items. For example, having a relatively small number of items within
each chunk size may waste a lot of memory with just few chunks in each allocated page.

You can tune the growth factor to reduce this effect by using the -f command line option, which adapts
the growth factor applied to make more effective use of the chunks and slabs allocated. For information on
how to determine the current slab allocation statistics, see Section 15.3.4.2, “memcached Slabs Statistics”.

If your operating system supports it, you can also start memcached with the -L command line option.
This option preallocates all the memory during startup using large memory pages. This can improve
performance by reducing the number of misses in the CPU memory cache.

15.3.2.7 memcached Thread Support

If you enable the thread implementation within when building memcached from source, then memcached
uses multiple threads in addition to the libevent system to handle requests.

When enabled, the threading implementation operates as follows:

• Threading is handled by wrapping functions within the code to provide basic protection from updating the
same global structures at the same time.

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1505

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Each thread uses its own instance of the libevent to help improve performance.

• TCP/IP connections are handled with a single thread listening on the TCP/IP socket. Each connection
is then distributed to one of the active threads on a simple round-robin basis. Each connection then
operates solely within this thread while the connection remains open.

• For UDP connections, all the threads listen to a single UDP socket for incoming requests. Threads
that are not currently dealing with another request ignore the incoming packet. One of the remaining,
nonbusy, threads reads the request and sends the response. This implementation can lead to increased
CPU load as threads wake from sleep to potentially process the request.

Using threads can increase the performance on servers that have multiple CPU cores available, as the
requests to update the hash table can be spread between the individual threads. To minimize overhead
from the locking mechanism employed, experiment with different thread values to achieve the best
performance based on the number and type of requests within your given workload.

15.3.2.8 memcached Logs

If you enable verbose mode, using the -v, -vv, or -vvv options, then the information output by
memcached includes details of the operations being performed.

Without the verbose options, memcached normally produces no output during normal operating.

• Output when using -v

The lowest verbosity level shows you:

• Errors and warnings

• Transient errors

• Protocol and socket errors, including exhausting available connections

• Each registered client connection, including the socket descriptor number and the protocol used.

For example:

32: Client using the ascii protocol
33: Client using the ascii protocol

The socket descriptor is only valid while the client remains connected. Non-persistent connections
may not be effectively represented.

Examples of the error messages output at this level include:

<%d send buffer was %d, now %d
Can't listen for events on fd %d
Can't read from libevent pipe
Catastrophic: event fd doesn't match conn fd!
Couldn't build response
Couldn't realloc input buffer
Couldn't update event
Failed to build UDP headers
Failed to read, and not due to blocking
Too many open connections
Unexpected state %d

• Output when using -vv

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1506

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When using the second level of verbosity, you get more detailed information about protocol operations,
keys updated, chunk and network operatings and details.

During the initial start-up of memcached with this level of verbosity, you are shown the sizes of the
individual slab classes, the chunk sizes, and the number of entries per slab. These do not show the
allocation of the slabs, just the slabs that would be created when data is added. You are also given
information about the listen queues and buffers used to send information. A sample of the output
generated for a TCP/IP based system with the default memory and growth factors is given below:

shell> memcached -vv
slab class 1: chunk size 80 perslab 13107
slab class 2: chunk size 104 perslab 10082
slab class 3: chunk size 136 perslab 7710
slab class 4: chunk size 176 perslab 5957
slab class 5: chunk size 224 perslab 4681
slab class 6: chunk size 280 perslab 3744
slab class 7: chunk size 352 perslab 2978
slab class 8: chunk size 440 perslab 2383
slab class 9: chunk size 552 perslab 1899
slab class 10: chunk size 696 perslab 1506
slab class 11: chunk size 872 perslab 1202
slab class 12: chunk size 1096 perslab 956
slab class 13: chunk size 1376 perslab 762
slab class 14: chunk size 1720 perslab 609
slab class 15: chunk size 2152 perslab 487
slab class 16: chunk size 2696 perslab 388
slab class 17: chunk size 3376 perslab 310
slab class 18: chunk size 4224 perslab 248
slab class 19: chunk size 5280 perslab 198
slab class 20: chunk size 6600 perslab 158
slab class 21: chunk size 8256 perslab 127
slab class 22: chunk size 10320 perslab 101
slab class 23: chunk size 12904 perslab 81
slab class 24: chunk size 16136 perslab 64
slab class 25: chunk size 20176 perslab 51
slab class 26: chunk size 25224 perslab 41
slab class 27: chunk size 31536 perslab 33
slab class 28: chunk size 39424 perslab 26
slab class 29: chunk size 49280 perslab 21
slab class 30: chunk size 61600 perslab 17
slab class 31: chunk size 77000 perslab 13
slab class 32: chunk size 96256 perslab 10
slab class 33: chunk size 120320 perslab 8
slab class 34: chunk size 150400 perslab 6
slab class 35: chunk size 188000 perslab 5
slab class 36: chunk size 235000 perslab 4
slab class 37: chunk size 293752 perslab 3
slab class 38: chunk size 367192 perslab 2
slab class 39: chunk size 458992 perslab 2
<26 server listening (auto-negotiate)
<29 server listening (auto-negotiate)
<30 send buffer was 57344, now 2097152
<31 send buffer was 57344, now 2097152
<30 server listening (udp)
<30 server listening (udp)
<31 server listening (udp)
<30 server listening (udp)
<30 server listening (udp)
<31 server listening (udp)
<31 server listening (udp)
<31 server listening (udp)

Using memcached

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1507

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Using this verbosity level can be a useful way to check the effects of the growth factor used on slabs with
different memory allocations, which in turn can be used to better tune the growth factor to suit the data
you are storing in the cache. For example, if you set the growth factor to 4 (quadrupling the size of each
slab):

shell> memcached -f 4 -m 1g -vv
slab class 1: chunk size 80 perslab 13107
slab class 2: chunk size 320 perslab 3276
slab class 3: chunk size 1280 perslab 819
slab class 4: chunk size 5120 perslab 204
slab class 5: chunk size 20480 perslab 51
slab class 6: chunk size 81920 perslab 12
slab class 7: chunk size 327680 perslab 3
...

During use of the cache, this verbosity level also prints out detailed information on the storage and
recovery of keys and other information. An example of the output during a typical set/get and increment/
decrement operation is shown below.

32: Client using the ascii protocol
<32 set my_key 0 0 10
>32 STORED
<32 set object_key 1 0 36
>32 STORED
<32 get my_key
>32 sending key my_key
>32 END
<32 get object_key
>32 sending key object_key
>32 END
<32 set key 0 0 6
>32 STORED
<32 incr key 1
>32 789544
<32 decr key 1
>32 789543
<32 incr key 2
>32 789545
<32 set my_key 0 0 10
>32 STORED
<32 set object_key 1 0 36
>32 STORED
<32 get my_key
>32 sending key my_key
>32 END
<32 get object_key
>32 sending key object_key1 1 36

>32 END
<32 set key 0 0 6
>32 STORED
<32 incr key 1
>32 789544
<32 decr key 1
>32 789543
<32 incr key 2
>32 789545

During client communication, for each line, the initial character shows the direction of flow of the
information. The < for communication from the client to the memcached server and > for communication
back to the client. The number is the numeric socket descriptor for the connection.

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1508

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Output when using -vvv

This level of verbosity includes the transitions of connections between different states in the event library
while reading and writing content to/from the clients. It should be used to diagnose and identify issues in
client communication. For example, you can use this information to determine if memcached is taking a
long time to return information to the client, during the read of the client operation or before returning and
completing the operation. An example of the typical sequence for a set operation is provided below:

<32 new auto-negotiating client connection
32: going from conn_new_cmd to conn_waiting
32: going from conn_waiting to conn_read
32: going from conn_read to conn_parse_cmd
32: Client using the ascii protocol
<32 set my_key 0 0 10
32: going from conn_parse_cmd to conn_nread
> NOT FOUND my_key
>32 STORED
32: going from conn_nread to conn_write
32: going from conn_write to conn_new_cmd
32: going from conn_new_cmd to conn_waiting
32: going from conn_waiting to conn_read
32: going from conn_read to conn_closing
<32 connection closed.

All of the verbosity levels in memcached are designed to be used during debugging or examination of
issues. The quantity of information generated, particularly when using -vvv, is significant, particularly on
a busy server. Also be aware that writing the error information out, especially to disk, may negate some
of the performance gains you achieve by using memcached. Therefore, use in production or deployment
environments is not recommended.

15.3.3 Developing a memcached Application

A number of language interfaces let applications store and retrieve information with memcached servers.
You can write memcached applications in popular languages such as Perl, PHP, Python, Ruby, C, and
Java.

Data stored into a memcached server is referred to by a single string (the key), with storage into the cache
and retrieval from the cache using the key as the reference. The cache therefore operates like a large
associative array or hash table. It is not possible to structure or otherwise organize the information stored
in the cache. To emulate database notions such as multiple tables or composite key values, you must
encode the extra information into the strings used as keys. For example, to store or look up the address
corresponding to a specific latitude and longitude, you might turn those two numeric values into a single
comma-separated string to use as a key.

15.3.3.1 Basic memcached Operations

The interface to memcached supports the following methods for storing and retrieving information in the
cache, and these are consistent across all the different APIs, although the language specific mechanics
might be different:

• get(key): Retrieves information from the cache. Returns the value associated with the key if the
specified key exists. Returns NULL, nil, undefined, or the closest equivalent in the corresponding
language, if the specified key does not exist.

• set(key, value [, expiry]): Sets the item associated with a key in the cache to the specified
value. This either updates an existing item if the key already exists, or adds a new key/value pair if the
key doesn't exist. If the expiry time is specified, then the item expires (and is deleted) when the expiry

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1509

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

time is reached. The time is specified in seconds, and is taken as a relative time if the value is less than
30 days (30*24*60*60), or an absolute time (epoch) if larger than this value.

• add(key, value [, expiry]): Adds the key and associated value to the cache, if the specified key
does not already exist.

• replace(key, value [, expiry]): Replaces the item associated with the specified key, only if
the key already exists. The new value is given by the value parameter.

• delete(key [, time]): Deletes the key and its associated item from the cache. If you supply a
time, then adding another item with the specified key is blocked for the specified period.

• incr(key , value): Increments the item associated with the key by the specified value.

• decr(key , value): Decrements the item associated with the key by the specified value.

• flush_all: Invalidates (or expires) all the current items in the cache. Technically they still exist (they
are not deleted), but they are silently destroyed the next time you try to access them.

In all implementations, most or all of these functions are duplicated through the corresponding native
language interface.

When practical, use memcached to store full items, rather than caching a single column value from the
database. For example, when displaying a record about an object (invoice, user history, or blog post), load
all the data for the associated entry from the database, and compile it into the internal structure that would
normally be required by the application. Save the complete object in the cache.

Complex data structures cannot be stored directly. Most interfaces serialize the data for you, that is, put
it in a textual form that can reconstruct the original pointers and nesting. Perl uses Storable, PHP uses
serialize, Python uses cPickle (or Pickle) and Java uses the Serializable interface. In most
cases, the serialization interface used is customizable. To share data stored in memcached instances
between different language interfaces, consider using a common serialization solution such as JSON
(Javascript Object Notation).

15.3.3.2 Using memcached as a MySQL Caching Layer

When using memcached to cache MySQL data, your application must retrieve data from the database and
load the appropriate key-value pairs into the cache. Then, subsequent lookups can be done directly from
the cache.

Because MySQL has its own in-memory caching mechanisms for queried data, such as the InnoDB buffer
pool and the MySQL query cache, look for opportunities beyond loading individual column values or rows
into the cache. Prefer to cache composite values, such as those retrieved from multiple tables through a
join query, or result sets assembled from multiple rows.

Caution

Limit the information in the cache to non-sensitive data, because there is no
security required to access or update the information within a memcached instance.
Anybody with access to the machine has the ability to read, view and potentially
update the information. To keep the data secure, encrypt the information before
caching it. To restrict the users capable of connecting to the server, either disable
network access, or use IPTables or similar techniques to restrict access to the
memcached ports to a select set of hosts.

You can introduce memcached to an existing application, even if caching was not part of the original
design. In many languages and environments the changes to the application will be just a few lines, first

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_buffer_pool
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_buffer_pool

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1510

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

to attempt to read from the cache when loading data, fall back to the old method if the information is not
cached, and to update the cache with information once the data has been read.

The general sequence for using memcached in any language as a caching solution for MySQL is as
follows:

1. Request the item from the cache.

2. If the item exists, use the item data.

3. If the item does not exist, load the data from MySQL, and store the value into the cache. This means
the value is available to the next client that requests it from the cache.

For a flow diagram of this sequence, see Figure 15.6, “Typical memcached Application Flowchart”.

Figure 15.6 Typical memcached Application Flowchart

Adapting Database Best Practices to memcached Applications

The most direct way to cache MySQL data is to use a 2-column table, where the first column is a primary
key. Because of the uniqueness requirements for memcached keys, make sure your database schema
makes appropriate use of primary keys and unique constraints.

If you combine multiple column values into a single memcached item value, choose data types to make
it easy to parse the value back into its components, for example by using a separator character between
numeric values.

The queries that map most easily to memcached lookups are those with a single WHERE clause, using an =
or IN operator. For complicated WHERE clauses, or those using operators such as <, >, BETWEEN, or LIKE,
memcached does not provide a simple or efficient way to scan through or filter the keys or associated
values, so typically you perform those operations as SQL queries on the underlying database.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_primary_key
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_primary_key
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_unique_constraint

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1511

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

15.3.3.3 Using libmemcached with C and C++

The libmemcached library provides both C and C++ interfaces to memcached and is also the basis for a
number of different additional API implementations, including Perl, Python and Ruby. Understanding the
core libmemcached functions can help when using these other interfaces.

The C library is the most comprehensive interface library for memcached and provides functions and
operational systems not always exposed in interfaces not based on the libmemcached library.

The different functions can be divided up according to their basic operation. In addition to functions that
interface to the core API, a number of utility functions provide extended functionality, such as appending
and prepending data.

To build and install libmemcached, download the libmemcached package, run configure, and then
build and install:

shell> tar xjf libmemcached-0.21.tar.gz
shell> cd libmemcached-0.21
shell> ./configure
shell> make
shell> make install

On many Linux operating systems, you can install the corresponding libmemcached package through the
usual yum, apt-get, or similar commands.

To build an application that uses the library, first set the list of servers. Either directly manipulate the
servers configured within the main memcached_st structure, or separately populate a list of servers, and
then add this list to the memcached_st structure. The latter method is used in the following example. Once
the server list has been set, you can call the functions to store or retrieve data. A simple application for
setting a preset value to localhost is provided here:

#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <libmemcached/memcached.h>

int main(int argc, char *argv[])
{
 memcached_server_st *servers = NULL;
 memcached_st *memc;
 memcached_return rc;
 char *key= "keystring";
 char *value= "keyvalue";

 memcached_server_st *memcached_servers_parse (char *server_strings);
 memc= memcached_create(NULL);

 servers= memcached_server_list_append(servers, "localhost", 11211, &rc);
 rc= memcached_server_push(memc, servers);

 if (rc == MEMCACHED_SUCCESS)
 fprintf(stderr,"Added server successfully\n");
 else
 fprintf(stderr,"Couldn't add server: %s\n",memcached_strerror(memc, rc));

 rc= memcached_set(memc, key, strlen(key), value, strlen(value), (time_t)0, (uint32_t)0);

 if (rc == MEMCACHED_SUCCESS)
 fprintf(stderr,"Key stored successfully\n");
 else

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1512

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 fprintf(stderr,"Couldn't store key: %s\n",memcached_strerror(memc, rc));

 return 0;
}

To test the success of an operation, use the return value, or populated result code, for a given function.
The value is always set to MEMCACHED_SUCCESS if the operation succeeded. In the event of a failure, use
the memcached_strerror() function to translate the result code into a printable string.

To build the application, specify the memcached library:

shell> gcc -o memc_basic memc_basic.c -lmemcached

Running the above sample application, after starting a memcached server, should return a success
message:

shell> memc_basic
Added server successfully
Key stored successfully

libmemcached Base Functions

The base libmemcached functions let you create, destroy and clone the main memcached_st structure
that is used to interface with the memcached servers. The main functions are defined below:

memcached_st *memcached_create (memcached_st *ptr);

Creates a new memcached_st structure for use with the other libmemcached API functions. You can
supply an existing, static, memcached_st structure, or NULL to have a new structured allocated. Returns a
pointer to the created structure, or NULL on failure.

void memcached_free (memcached_st *ptr);

Frees the structure and memory allocated to a previously created memcached_st structure.

memcached_st *memcached_clone(memcached_st *clone, memcached_st *source);

Clones an existing memcached structure from the specified source, copying the defaults and list of
servers defined in the structure.

libmemcached Server Functions

The libmemcached API uses a list of servers, stored within the memcached_server_st structure, to act
as the list of servers used by the rest of the functions. To use memcached, you first create the server list,
and then apply the list of servers to a valid libmemcached object.

Because the list of servers, and the list of servers within an active libmemcached object can be
manipulated separately, you can update and manage server lists while an active libmemcached interface
is running.

The functions for manipulating the list of servers within a memcached_st structure are:

memcached_return
 memcached_server_add (memcached_st *ptr,

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1513

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 char *hostname,
 unsigned int port);

Adds a server, using the given hostname and port into the memcached_st structure given in ptr.

memcached_return
 memcached_server_add_unix_socket (memcached_st *ptr,
 char *socket);

Adds a Unix socket to the list of servers configured in the memcached_st structure.

unsigned int memcached_server_count (memcached_st *ptr);

Returns a count of the number of configured servers within the memcached_st structure.

memcached_server_st *
 memcached_server_list (memcached_st *ptr);

Returns an array of all the defined hosts within a memcached_st structure.

memcached_return
 memcached_server_push (memcached_st *ptr,
 memcached_server_st *list);

Pushes an existing list of servers onto list of servers configured for a current memcached_st structure.
This adds servers to the end of the existing list, and duplicates are not checked.

The memcached_server_st structure can be used to create a list of memcached servers which can then
be applied individually to memcached_st structures.

memcached_server_st *
 memcached_server_list_append (memcached_server_st *ptr,
 char *hostname,
 unsigned int port,
 memcached_return *error);

Adds a server, with hostname and port, to the server list in ptr. The result code is handled by the
error argument, which should point to an existing memcached_return variable. The function returns a
pointer to the returned list.

unsigned int memcached_server_list_count (memcached_server_st *ptr);

Returns the number of the servers in the server list.

void memcached_server_list_free (memcached_server_st *ptr);

Frees the memory associated with a server list.

memcached_server_st *memcached_servers_parse (char *server_strings);

Parses a string containing a list of servers, where individual servers are separated by a comma, space,
or both, and where individual servers are of the form server[:port]. The return value is a server list
structure.

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1514

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

libmemcached Set Functions

The set-related functions within libmemcached provide the same functionality as the core functions
supported by the memcached protocol. The full definition for the different functions is the same for
all the base functions (add, replace, prepend, append). For example, the function definition for
memcached_set() is:

memcached_return
 memcached_set (memcached_st *ptr,
 const char *key,
 size_t key_length,
 const char *value,
 size_t value_length,
 time_t expiration,
 uint32_t flags);

The ptr is the memcached_st structure. The key and key_length define the key name and length,
and value and value_length the corresponding value and length. You can also set the expiration and
optional flags. For more information, see Controlling libmemcached Behaviors.

This table outlines the remainder of the set-related libmemcached functions and the equivalent core
functions supported by the memcached protocol.

libmemcached Function Equivalent Core Function

memcached_set(memc, key, key_length,
value, value_length, expiration,
flags)

Generic set() operation.

memcached_add(memc, key, key_length,
value, value_length, expiration,
flags)

Generic add() function.

memcached_replace(memc, key,
key_length, value, value_length,
expiration, flags)

Generic replace().

memcached_prepend(memc, key,
key_length, value, value_length,
expiration, flags)

Prepends the specified value before the current
value of the specified key.

memcached_append(memc, key,
key_length, value, value_length,
expiration, flags)

Appends the specified value after the current value
of the specified key.

memcached_cas(memc, key, key_length,
value, value_length, expiration,
flags, cas)

Overwrites the data for a given key as long as the
corresponding cas value is still the same within the
server.

memcached_set_by_key(memc, master_key,
master_key_length, key, key_length,
value, value_length, expiration,
flags)

Similar to the generic set(), but has the option of
an additional master key that can be used to identify
an individual server.

memcached_add_by_key(memc, master_key,
master_key_length, key, key_length,
value, value_length, expiration,
flags)

Similar to the generic add(), but has the option of
an additional master key that can be used to identify
an individual server.

memcached_replace_by_key(memc,
master_key, master_key_length, key,

Similar to the generic replace(), but has the
option of an additional master key that can be used
to identify an individual server.

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1515

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

libmemcached Function Equivalent Core Function
key_length, value, value_length,
expiration, flags)

memcached_prepend_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the memcached_prepend(), but has the
option of an additional master key that can be used
to identify an individual server.

memcached_append_by_key(memc,
master_key, master_key_length, key,
key_length, value, value_length,
expiration, flags)

Similar to the memcached_append(), but has the
option of an additional master key that can be used
to identify an individual server.

memcached_cas_by_key(memc, master_key,
master_key_length, key, key_length,
value, value_length, expiration,
flags)

Similar to the memcached_cas(), but has the
option of an additional master key that can be used
to identify an individual server.

The by_key methods add two further arguments that define the master key, to be used and applied during
the hashing stage for selecting the servers. You can see this in the following definition:

memcached_return
 memcached_set_by_key(memcached_st *ptr,
 const char *master_key,
 size_t master_key_length,
 const char *key,
 size_t key_length,
 const char *value,
 size_t value_length,
 time_t expiration,
 uint32_t flags);

All the functions return a value of type memcached_return, which you can compare against the
MEMCACHED_SUCCESS constant.

libmemcached Get Functions

The libmemcached functions provide both direct access to a single item, and a multiple-key request
mechanism that provides much faster responses when fetching a large number of keys simultaneously.

The main get-style function, which is equivalent to the generic get() is memcached_get(). This function
returns a string pointer, pointing to the value associated with the specified key.

char *memcached_get (memcached_st *ptr,
 const char *key, size_t key_length,
 size_t *value_length,
 uint32_t *flags,
 memcached_return *error);

A multi-key get, memcached_mget(), is also available. Using a multiple key get operation is much quicker
to do in one block than retrieving the key values with individual calls to memcached_get(). To start the
multi-key get, call memcached_mget():

memcached_return
 memcached_mget (memcached_st *ptr,
 char **keys, size_t *key_length,
 unsigned int number_of_keys);

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1516

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The return value is the success of the operation. The keys parameter should be an array of strings
containing the keys, and key_length an array containing the length of each corresponding key.
number_of_keys is the number of keys supplied in the array.

To fetch the individual values, use memcached_fetch() to get each corresponding value.

char *memcached_fetch (memcached_st *ptr,
 const char *key, size_t *key_length,
 size_t *value_length,
 uint32_t *flags,
 memcached_return *error);

The function returns the key value, with the key, key_length and value_length parameters being
populated with the corresponding key and length information. The function returns NULL when there are no
more values to be returned. A full example, including the populating of the key data and the return of the
information is provided here.

#include <stdio.h>
#include <sstring.h>
#include <unistd.h>
#include <libmemcached/memcached.h>

int main(int argc, char *argv[])
{
 memcached_server_st *servers = NULL;
 memcached_st *memc;
 memcached_return rc;
 char *keys[]= {"huey", "dewey", "louie"};
 size_t key_length[3];
 char *values[]= {"red", "blue", "green"};
 size_t value_length[3];
 unsigned int x;
 uint32_t flags;

 char return_key[MEMCACHED_MAX_KEY];
 size_t return_key_length;
 char *return_value;
 size_t return_value_length;

 memc= memcached_create(NULL);

 servers= memcached_server_list_append(servers, "localhost", 11211, &rc);
 rc= memcached_server_push(memc, servers);

 if (rc == MEMCACHED_SUCCESS)
 fprintf(stderr,"Added server successfully\n");
 else
 fprintf(stderr,"Couldn't add server: %s\n",memcached_strerror(memc, rc));

 for(x= 0; x < 3; x++)
 {
 key_length[x] = strlen(keys[x]);
 value_length[x] = strlen(values[x]);

 rc= memcached_set(memc, keys[x], key_length[x], values[x],
 value_length[x], (time_t)0, (uint32_t)0);
 if (rc == MEMCACHED_SUCCESS)
 fprintf(stderr,"Key %s stored successfully\n",keys[x]);
 else
 fprintf(stderr,"Couldn't store key: %s\n",memcached_strerror(memc, rc));
 }

 rc= memcached_mget(memc, keys, key_length, 3);

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1517

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 if (rc == MEMCACHED_SUCCESS)
 {
 while ((return_value= memcached_fetch(memc, return_key, &return_key_length,
 &return_value_length, &flags, &rc)) != NULL)
 {
 if (rc == MEMCACHED_SUCCESS)
 {
 fprintf(stderr,"Key %s returned %s\n",return_key, return_value);
 }
 }
 }

 return 0;
}

Running the above application produces the following output:

shell> memc_multi_fetch
Added server successfully
Key huey stored successfully
Key dewey stored successfully
Key louie stored successfully
Key huey returned red
Key dewey returned blue
Key louie returned green

Controlling libmemcached Behaviors

The behavior of libmemcached can be modified by setting one or more behavior flags. These can either
be set globally, or they can be applied during the call to individual functions. Some behaviors also accept
an additional setting, such as the hashing mechanism used when selecting servers.

To set global behaviors:

memcached_return
 memcached_behavior_set (memcached_st *ptr,
 memcached_behavior flag,
 uint64_t data);

To get the current behavior setting:

uint64_t
 memcached_behavior_get (memcached_st *ptr,
 memcached_behavior flag);

The following table describes libmemcached behavior flags.

Behavior Description

MEMCACHED_BEHAVIOR_NO_BLOCK Caused libmemcached to use asynchronous I/O.

MEMCACHED_BEHAVIOR_TCP_NODELAY Turns on no-delay for network sockets.

MEMCACHED_BEHAVIOR_HASH Without a value, sets the default hashing algorithm
for keys to use MD5. Other valid values include
MEMCACHED_HASH_DEFAULT, MEMCACHED_HASH_MD5,
MEMCACHED_HASH_CRC, MEMCACHED_HASH_FNV1_64,
MEMCACHED_HASH_FNV1A_64, MEMCACHED_HASH_FNV1_32,
and MEMCACHED_HASH_FNV1A_32.

MEMCACHED_BEHAVIOR_DISTRIBUTION Changes the method of selecting the server
used to store a given value. The default method

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1518

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Behavior Description
is MEMCACHED_DISTRIBUTION_MODULA.
You can enable consistent hashing by setting
MEMCACHED_DISTRIBUTION_CONSISTENT.
MEMCACHED_DISTRIBUTION_CONSISTENT is an alias for the
value MEMCACHED_DISTRIBUTION_CONSISTENT_KETAMA.

MEMCACHED_BEHAVIOR_CACHE_LOOKUPSCache the lookups made to the DNS service. This can
improve the performance if you are using names instead of IP
addresses for individual hosts.

MEMCACHED_BEHAVIOR_SUPPORT_CAS Support CAS operations. By default, this is disabled because it
imposes a performance penalty.

MEMCACHED_BEHAVIOR_KETAMA Sets the default distribution to
MEMCACHED_DISTRIBUTION_CONSISTENT_KETAMA and the
hash to MEMCACHED_HASH_MD5.

MEMCACHED_BEHAVIOR_POLL_TIMEOUT Modify the timeout value used by poll(). Supply a signed
int pointer for the timeout value.

MEMCACHED_BEHAVIOR_BUFFER_REQUESTSBuffers IO requests instead of them being sent. A get
operation, or closing the connection causes the data to be
flushed.

MEMCACHED_BEHAVIOR_VERIFY_KEY Forces libmemcached to verify that a specified key is valid.

MEMCACHED_BEHAVIOR_SORT_HOSTS If set, hosts added to the list of configured hosts for a
memcached_st structure are placed into the host list in sorted
order. This breaks consistent hashing if that behavior has been
enabled.

MEMCACHED_BEHAVIOR_CONNECT_TIMEOUTIn nonblocking mode this changes the value of the timeout
during socket connection.

libmemcached Command-Line Utilities

In addition to the main C library interface, libmemcached also includes a number of command-line utilities
that can be useful when working with and debugging memcached applications.

All of the command-line tools accept a number of arguments, the most critical of which is servers, which
specifies the list of servers to connect to when returning information.

The main tools are:

• memcat: Display the value for each ID given on the command line:

shell> memcat --servers=localhost hwkey
Hello world

• memcp: Copy the contents of a file into the cache, using the file name as the key:

shell> echo "Hello World" > hwkey
shell> memcp --servers=localhost hwkey
shell> memcat --servers=localhost hwkey
Hello world

• memrm: Remove an item from the cache:

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1519

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> memcat --servers=localhost hwkey
Hello world
shell> memrm --servers=localhost hwkey
shell> memcat --servers=localhost hwkey

• memslap: Test the load on one or more memcached servers, simulating get/set and multiple client
operations. For example, you can simulate the load of 100 clients performing get operations:

shell> memslap --servers=localhost --concurrency=100 --flush --test=get
memslap --servers=localhost --concurrency=100 --flush --test=get Threads connecting to servers 100
 Took 13.571 seconds to read data

• memflush: Flush (empty) the contents of the memcached cache.

shell> memflush --servers=localhost

15.3.3.4 Using MySQL and memcached with Perl

The Cache::Memcached module provides a native interface to the Memcache protocol, and provides
support for the core functions offered by memcached. Install the module using your operating system's
package management system, or using CPAN:

root-shell> perl -MCPAN -e 'install Cache::Memcached'

To use memcached from Perl through the Cache::Memcached module, first create a new
Cache::Memcached object that defines the list of servers and other parameters for the connection. The
only argument is a hash containing the options for the cache interface. For example, to create a new
instance that uses three memcached servers:

use Cache::Memcached;

my $cache = new Cache::Memcached {
 'servers' => [
 '192.168.0.100:11211',
 '192.168.0.101:11211',
 '192.168.0.102:11211',
],
};

Note

When using the Cache::Memcached interface with multiple servers, the API
automatically performs certain operations across all the servers in the group. For
example, getting statistical information through Cache::Memcached returns a hash
that contains data on a host-by-host basis, as well as generalized statistics for all
the servers in the group.

You can set additional properties on the cache object instance when it is created by specifying the option
as part of the option hash. Alternatively, you can use a corresponding method on the instance:

• servers or method set_servers(): Specifies the list of the servers to be used. The servers list
should be a reference to an array of servers, with each element as the address and port number
combination (separated by a colon). You can also specify a local connection through a Unix socket (for
example /tmp/sock/memcached). To specify the server with a weight (indicating how much more
frequently the server should be used during hashing), specify an array reference with the memcached
server instance and a weight number. Higher numbers give higher priority.

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1520

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• compress_threshold or method set_compress_threshold(): Specifies the threshold when
values are compressed. Values larger than the specified number are automatically compressed (using
zlib) during storage and retrieval.

• no_rehash or method set_norehash(): Disables finding a new server if the original choice is
unavailable.

• readonly or method set_readonly(): Disables writes to the memcached servers.

Once the Cache::Memcached object instance has been configured, you can use the set() and get()
methods to store and retrieve information from the memcached servers. Objects stored in the cache are
automatically serialized and deserialized using the Storable module.

The Cache::Memcached interface supports the following methods for storing/retrieving data, and relate to
the generic methods as shown in the table.

Cache::Memcached Function Equivalent Generic Method

get() Generic get().

get_multi(keys) Gets multiple keys from memcache using just one
query. Returns a hash reference of key/value pairs.

set() Generic set().

add() Generic add().

replace() Generic replace().

delete() Generic delete().

incr() Generic incr().

decr() Generic decr().

Below is a complete example for using memcached with Perl and the Cache::Memcached module:

#!/usr/bin/perl

use Cache::Memcached;
use DBI;
use Data::Dumper;

Configure the memcached server

my $cache = new Cache::Memcached {
 'servers' => [
 'localhost:11211',
],
 };

Get the film name from the command line
memcached keys must not contain spaces, so create
a key name by replacing spaces with underscores

my $filmname = shift or die "Must specify the film name\n";
my $filmkey = $filmname;
$filmkey =~ s/ /_/;

Load the data from the cache

my $filmdata = $cache->get($filmkey);

If the data wasn't in the cache, then we load it from the database

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1521

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

if (!defined($filmdata))
{
 $filmdata = load_filmdata($filmname);

 if (defined($filmdata))
 {

Set the data into the cache, using the key

 if ($cache->set($filmkey,$filmdata))
 {
 print STDERR "Film data loaded from database and cached\n";
 }
 else
 {
 print STDERR "Couldn't store to cache\n";
 }
 }
 else
 {
 die "Couldn't find $filmname\n";
 }
}
else
{
 print STDERR "Film data loaded from Memcached\n";
}

sub load_filmdata
{
 my ($filmname) = @_;

 my $dsn = "DBI:mysql:database=sakila;host=localhost;port=3306";

 $dbh = DBI->connect($dsn, 'sakila','password');

 my ($filmbase) = $dbh->selectrow_hashref(sprintf('select * from film where title = %s',
 $dbh->quote($filmname)));

 if (!defined($filmname))
 {
 return (undef);
 }

 $filmbase->{stars} =
 $dbh->selectall_arrayref(sprintf('select concat(first_name," ",last_name) ' .
 'from film_actor left join (actor) ' .
 'on (film_actor.actor_id = actor.actor_id) ' .
 ' where film_id=%s',
 $dbh->quote($filmbase->{film_id})));

 return($filmbase);
}

The example uses the Sakila database, obtaining film data from the database and writing a composite
record of the film and actors to memcached. When calling it for a film does not exist, you get this result:

shell> memcached-sakila.pl "ROCK INSTINCT"
Film data loaded from database and cached

When accessing a film that has already been added to the cache:

shell> memcached-sakila.pl "ROCK INSTINCT"
Film data loaded from Memcached

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1522

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

15.3.3.5 Using MySQL and memcached with Python

The Python memcache module interfaces to memcached servers, and is written in pure Python (that is,
without using one of the C APIs). You can download and install a copy from Python Memcached.

To install, download the package and then run the Python installer:

python setup.py install
running install
running bdist_egg
running egg_info
creating python_memcached.egg-info
...
removing 'build/bdist.linux-x86_64/egg' (and everything under it)
Processing python_memcached-1.43-py2.4.egg
creating /usr/lib64/python2.4/site-packages/python_memcached-1.43-py2.4.egg
Extracting python_memcached-1.43-py2.4.egg to /usr/lib64/python2.4/site-packages
Adding python-memcached 1.43 to easy-install.pth file

Installed /usr/lib64/python2.4/site-packages/python_memcached-1.43-py2.4.egg
Processing dependencies for python-memcached==1.43
Finished processing dependencies for python-memcached==1.43

Once installed, the memcache module provides a class-based interface to your memcached servers. When
you store Python data structures as memcached items, they are automatically serialized (turned into string
values) using the Python cPickle or pickle modules.

To create a new memcache interface, import the memcache module and create a new instance of the
memcache.Client class. For example, if the memcached daemon is running on localhost using the
default port:

import memcache
memc = memcache.Client(['127.0.0.1:11211'])

The first argument is an array of strings containing the server and port number for each memcached
instance to use. To enable debugging, set the optional debug parameter to 1.

By default, the hashing mechanism used to divide the items among multiple servers is crc32. To change
the function used, set the value of memcache.serverHashFunction to the alternate function to use. For
example:

from zlib import adler32
memcache.serverHashFunction = adler32

Once you have defined the servers to use within the memcache instance, the core functions provide the
same functionality as in the generic interface specification. The following table provides a summary of the
supported functions:

Python memcache Function Equivalent Generic Function

get() Generic get().

get_multi(keys) Gets multiple values from the supplied array of
keys. Returns a hash reference of key/value pairs.

set() Generic set().

set_multi(dict [, expiry [,
key_prefix]])

Sets multiple key/value pairs from the supplied
dict.

add() Generic add().

http://www.tummy.com/Community/software/python-memcached/

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1523

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Python memcache Function Equivalent Generic Function

replace() Generic replace().

prepend(key, value [, expiry]) Prepends the supplied value to the value of the
existing key.

append(key, value [, expiry[) Appends the supplied value to the value of the
existing key.

delete() Generic delete().

delete_multi(keys [, expiry [,
key_prefix]])

Deletes all the keys from the hash matching each
string in the array keys.

incr() Generic incr().

decr() Generic decr().

Note

Within the Python memcache module, all the *_multi()functions support an
optional key_prefix parameter. If supplied, then the string is used as a prefix to
all key lookups. For example, if you call:

memc.get_multi(['a','b'], key_prefix='users:')

The function retrieves the keys users:a and users:b from the servers.

Here is an example showing the storage and retrieval of information to a memcache instance, loading the
raw data from MySQL:

import sys
import MySQLdb
import memcache

memc = memcache.Client(['127.0.0.1:11211'], debug=1);

try:
 conn = MySQLdb.connect (host = "localhost",
 user = "sakila",
 passwd = "password",
 db = "sakila")
except MySQLdb.Error, e:
 print "Error %d: %s" % (e.args[0], e.args[1])
 sys.exit (1)

popularfilms = memc.get('top5films')

if not popularfilms:
 cursor = conn.cursor()
 cursor.execute('select film_id,title from film order by rental_rate desc limit 5')
 rows = cursor.fetchall()
 memc.set('top5films',rows,60)
 print "Updated memcached with MySQL data"
else:
 print "Loaded data from memcached"
 for row in popularfilms:
 print "%s, %s" % (row[0], row[1])

When executed for the first time, the data is loaded from the MySQL database and stored to the
memcached server.

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1524

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> python memc_python.py
Updated memcached with MySQL data

Because the data is automatically serialized using cPickle/pickle, when you load the data back from
memcached, you can use the object directly. In the example above, the information stored to memcached
is in the form of rows from a Python DB cursor. When accessing the information (within the 60 second
expiry time), the data is loaded from memcached and dumped:

shell> python memc_python.py
Loaded data from memcached
2, ACE GOLDFINGER
7, AIRPLANE SIERRA
8, AIRPORT POLLOCK
10, ALADDIN CALENDAR
13, ALI FOREVER

The serialization and deserialization happens automatically. Because serialization of Python data may be
incompatible with other interfaces and languages, you can change the serialization module used during
initialization. For example, you might use JSON format when you store complex data structures using a
script written in one language, and access them in a script written in a different language.

15.3.3.6 Using MySQL and memcached with PHP

PHP provides support for the Memcache functions through a PECL extension. To enable the PHP
memcache extensions, build PHP using the --enable-memcache option to configure when building
from source.

If you are installing on a Red Hat-based server, you can install the php-pecl-memcache RPM:

root-shell> yum --install php-pecl-memcache

On Debian-based distributions, use the php-memcache package.

To set global runtime configuration options, specify the configuration option values within your php.ini
file. The following table provides the name, default value, and a description for each global runtime
configuration option.

Configuration option Default Description

memcache.allow_failover 1 Specifies whether another server in the list
should be queried if the first server selected
fails.

memcache.max_failover_attempts20 Specifies the number of servers to try before
returning a failure.

memcache.chunk_size 8192 Defines the size of network chunks used to
exchange data with the memcached server.

memcache.default_port 11211 Defines the default port to use when
communicating with the memcached servers.

memcache.hash_strategy standard Specifies which hash strategy to use. Set to
consistent to enable servers to be added
or removed from the pool without causing the
keys to be remapped to other servers. When
set to standard, an older (modula) strategy is
used that potentially uses different servers for
storage.

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1525

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Configuration option Default Description

memcache.hash_function crc32 Specifies which function to use when mapping
keys to servers. crc32 uses the standard
CRC32 hash. fnv uses the FNV-1a hashing
algorithm.

To create a connection to a memcached server, create a new Memcache object and then specify the
connection options. For example:

<?php

$cache = new Memcache;
$cache->connect('localhost',11211);
?>

This opens an immediate connection to the specified server.

To use multiple memcached servers, you need to add servers to the memcache object using
addServer():

bool Memcache::addServer (string $host [, int $port [, bool $persistent
 [, int $weight [, int $timeout [, int $retry_interval
 [, bool $status [, callback $failure_callback
]]]]]]])

The server management mechanism within the php-memcache module is a critical part of the interface
as it controls the main interface to the memcached instances and how the different instances are selected
through the hashing mechanism.

To create a simple connection to two memcached instances:

<?php

$cache = new Memcache;
$cache->addServer('192.168.0.100',11211);
$cache->addServer('192.168.0.101',11211);
?>

In this scenario, the instance connection is not explicitly opened, but only opened when you try to store
or retrieve a value. To enable persistent connections to memcached instances, set the $persistent
argument to true. This is the default setting, and causes the connections to remain open.

To help control the distribution of keys to different instances, use the global memcache.hash_strategy
setting. This sets the hashing mechanism used to select. You can also add another weight to each server,
which effectively increases the number of times the instance entry appears in the instance list, therefore
increasing the likelihood of the instance being chosen over other instances. To set the weight, set the value
of the $weight argument to more than one.

The functions for setting and retrieving information are identical to the generic functional interface offered
by memcached, as shown in this table:

PECL memcache Function Generic Function

get() Generic get().

set() Generic set().

add() Generic add().

replace() Generic replace().

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1526

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

PECL memcache Function Generic Function

delete() Generic delete().

increment() Generic incr().

decrement() Generic decr().

A full example of the PECL memcache interface is provided below. The code loads film data from the
Sakila database when the user provides a film name. The data stored into the memcached instance is
recorded as a mysqli result row, and the API automatically serializes the information for you.

<?php

$memc = new Memcache;
$memc->addServer('localhost','11211');

if(empty($_POST['film'])) {
?>
 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 <title>Simple Memcache Lookup</title>
 </head>
 <body>
 <form method="post">
 <p>Film: <input type="text" size="20" name="film"></p>
 <input type="submit">
 </form>
 <hr/>
<?php

} else {

 echo "Loading data...\n";

 $film = htmlspecialchars($_POST['film'], ENT_QUOTES, 'UTF-8');
 $mfilms = $memc->get($film);

 if ($mfilms) {

 printf("<p>Film data for %s loaded from memcache</p>", $mfilms['title']);

 foreach (array_keys($mfilms) as $key) {
 printf("<p>%s: %s</p>", $key, $mfilms[$key]);
 }

 } else {

 $mysqli = mysqli('localhost','sakila','password','sakila');

 if (mysqli_connect_error()) {
 sprintf("Database error: (%d) %s", mysqli_connect_errno(), mysqli_connect_error());
 exit;
 }

 $sql = sprintf('SELECT * FROM film WHERE title="%s"', $mysqli->real_escape_string($film));

 $result = $mysqli->query($sql);

 if (!$result) {
 sprintf("Database error: (%d) %s", $mysqli->errno, $mysqli->error);
 exit;
 }

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1527

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 $row = $result->fetch_assoc();

 $memc->set($row['title'], $row);

 printf("<p>Loaded (%s) from MySQL</p>", htmlspecialchars($row['title'], ENT_QUOTES, 'UTF-8');
 }
}
?>
 </body>
</html>

With PHP, the connections to the memcached instances are kept open as long as the PHP and associated
Apache instance remain running. When adding or removing servers from the list in a running instance (for
example, when starting another script that mentions additional servers), the connections are shared, but
the script only selects among the instances explicitly configured within the script.

To ensure that changes to the server list within a script do not cause problems, make sure to use the
consistent hashing mechanism.

15.3.3.7 Using MySQL and memcached with Ruby

There are a number of different modules for interfacing to memcached within Ruby. The Ruby-MemCache
client library provides a native interface to memcached that does not require any external libraries, such as
libmemcached. You can obtain the installer package from http://www.deveiate.org/projects/RMemCache.

To install, extract the package and then run install.rb:

shell> install.rb

If you have RubyGems, you can install the Ruby-MemCache gem:

shell> gem install Ruby-MemCache
Bulk updating Gem source index for: http://gems.rubyforge.org
Install required dependency io-reactor? [Yn] y
Successfully installed Ruby-MemCache-0.0.1
Successfully installed io-reactor-0.05
Installing ri documentation for io-reactor-0.05...
Installing RDoc documentation for io-reactor-0.05...

To use a memcached instance from within Ruby, create a new instance of the MemCache object.

require 'memcache'
memc = MemCache::new '192.168.0.100:11211'

You can add a weight to each server to increase the likelihood of the server being selected during hashing
by appending the weight count to the server host name/port string:

require 'memcache'
memc = MemCache::new '192.168.0.100:11211:3'

To add servers to an existing list, you can append them directly to the MemCache object:

memc += ["192.168.0.101:11211"]

To set data into the cache, you can just assign a value to a key within the new cache object, which works
just like a standard Ruby hash object:

memc["key"] = "value"

http://www.deveiate.org/projects/RMemCache

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1528

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Or to retrieve the value:

print memc["key"]

For more explicit actions, you can use the method interface, which mimics the main memcached API
functions, as summarized in the following table:

Ruby MemCache Method Equivalent memcached API Functions

get() Generic get().

get_hash(keys) Get the values of multiple keys, returning the
information as a hash of the keys and their values.

set() Generic set().

set_many(pairs) Set the values of the keys and values in the hash
pairs.

add() Generic add().

replace() Generic replace().

delete() Generic delete().

incr() Generic incr().

decr() Generic decr().

15.3.3.8 Using MySQL and memcached with Java

The com.danga.MemCached class within Java provides a native interface to memcached instances.
You can obtain the client from https://github.com/gwhalin/Memcached-Java-Client/downloads. The
Java class uses hashes that are compatible with libmemcached, so you can mix and match Java and
libmemcached applications accessing the same memcached instances. The serialization between Java
and other interfaces are not compatible. If this is a problem, use JSON or a similar nonbinary serialization
format.

On most systems, you can download the package and use the jar directly.

To use the com.danga.MemCached interface, you create a MemCachedClient instance and then
configure the list of servers by configuring the SockIOPool. Through the pool specification you set up the
server list, weighting, and the connection parameters to optimized the connections between your client and
the memcached instances that you configure.

Generally, you can configure the memcached interface once within a single class, then use this interface
throughout the rest of your application.

For example, to create a basic interface, first configure the MemCachedClient and base SockIOPool
settings:

public class MyClass {

 protected static MemCachedClient mcc = new MemCachedClient();

 static {

 String[] servers =
 {
 "localhost:11211",
 };

 Integer[] weights = { 1 };

https://github.com/gwhalin/Memcached-Java-Client/downloads

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1529

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 SockIOPool pool = SockIOPool.getInstance();

 pool.setServers(servers);
 pool.setWeights(weights);

In the above sample, the list of servers is configured by creating an array of the memcached instances to
use. You can then configure individual weights for each server.

The remainder of the properties for the connection are optional, but you can set the connection numbers
(initial connections, minimum connections, maximum connections, and the idle timeout) by setting the pool
parameters:

pool.setInitConn(5);
pool.setMinConn(5);
pool.setMaxConn(250);
pool.setMaxIdle(1000 * 60 * 60 * 6

Once the parameters have been configured, initialize the connection pool:

pool.initialize();

The pool, and the connection to your memcached instances should now be ready to use.

To set the hashing algorithm used to select the server used when storing a given key, use
pool.setHashingAlg():

pool.setHashingAlg(SockIOPool.NEW_COMPAT_HASH);

Valid values are NEW_COMPAT_HASH, OLD_COMPAT_HASH and NATIVE_HASH are also basic modula
hashing algorithms. For a consistent hashing algorithm, use CONSISTENT_HASH. These constants are
equivalent to the corresponding hash settings within libmemcached.

The following table outlines the Java com.danga.MemCached methods and the equivalent generic
methods in the memcached interface specification.

Java com.danga.MemCached Method Equivalent Generic Method

get() Generic get().

getMulti(keys) Get the values of multiple keys, returning
the information as Hash map using
java.lang.String for the keys and
java.lang.Object for the corresponding values.

set() Generic set().

add() Generic add().

replace() Generic replace().

delete() Generic delete().

incr() Generic incr().

decr() Generic decr().

15.3.3.9 Using the memcached TCP Text Protocol

Communicating with a memcached server can be achieved through either the TCP or UDP protocols.
When using the TCP protocol, you can use a simple text based interface for the exchange of information.

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1530

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When communicating with memcached, you can connect to the server using the port configured for the
server. You can open a connection with the server without requiring authorization or login. As soon as
you have connected, you can start to send commands to the server. When you have finished, you can
terminate the connection without sending any specific disconnection command. Clients are encouraged to
keep their connections open to decrease latency and improve performance.

Data is sent to the memcached server in two forms:

• Text lines, which are used to send commands to the server, and receive responses from the server.

• Unstructured data, which is used to receive or send the value information for a given key. Data is
returned to the client in exactly the format it was provided.

Both text lines (commands and responses) and unstructured data are always terminated with the string \r
\n. Because the data being stored may contain this sequence, the length of the data (returned by the client
before the unstructured data is transmitted should be used to determine the end of the data.

Commands to the server are structured according to their operation:

• Storage commands: set, add, replace, append, prepend, cas

Storage commands to the server take the form:

command key [flags] [exptime] length [noreply]

Or when using compare and swap (cas):

cas key [flags] [exptime] length [casunique] [noreply]

Where:

• command: The command name.

• set: Store value against key

• add: Store this value against key if the key does not already exist

• replace: Store this value against key if the key already exists

• append: Append the supplied value to the end of the value for the specified key. The flags and
exptime arguments should not be used.

• prepend: Append value currently in the cache to the end of the supplied value for the specified key.
The flags and exptime arguments should not be used.

• cas: Set the specified key to the supplied value, only if the supplied casunique matches. This is
effectively the equivalent of change the information if nobody has updated it since I last fetched it.

• key: The key. All data is stored using a the specific key. The key cannot contain control characters or
whitespace, and can be up to 250 characters in size.

• flags: The flags for the operation (as an integer). Flags in memcached are transparent. The
memcached server ignores the contents of the flags. They can be used by the client to indicate any
type of information. In memcached 1.2.0 and lower the value is a 16-bit integer value. In memcached
1.2.1 and higher the value is a 32-bit integer.

• exptime: The expiry time, or zero for no expiry.

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1531

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• length: The length of the supplied value block in bytes, excluding the terminating \r\n characters.

• casunique: A unique 64-bit value of an existing entry. This is used to compare against the existing
value. Use the value returned by the gets command when issuing cas updates.

• noreply: Tells the server not to reply to the command.

For example, to store the value abcdef into the key xyzkey, you would use:

set xyzkey 0 0 6\r\nabcdef\r\n

The return value from the server is one line, specifying the status or error information. For more
information, see Table 15.3, “memcached Protocol Responses”.

• Retrieval commands: get, gets

Retrieval commands take the form:

get key1 [key2 keyn]
gets key1 [key2 ... keyn]

You can supply multiple keys to the commands, with each requested key separated by whitespace.

The server responds with an information line of the form:

VALUE key flags bytes [casunique]

Where:

• key: The key name.

• flags: The value of the flag integer supplied to the memcached server when the value was stored.

• bytes: The size (excluding the terminating \r\n character sequence) of the stored value.

• casunique: The unique 64-bit integer that identifies the item.

The information line is immediately followed by the value data block. For example:

get xyzkey\r\n
VALUE xyzkey 0 6\r\n
abcdef\r\n

If you have requested multiple keys, an information line and data block is returned for each key found. If
a requested key does not exist in the cache, no information is returned.

• Delete commands: delete

Deletion commands take the form:

delete key [time] [noreply]

Where:

• key: The key name.

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1532

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• time: The time in seconds (or a specific Unix time) for which the client wishes the server to refuse
add or replace commands on this key. All add, replace, get, and gets commands fail during this
period. set operations succeed. After this period, the key is deleted permanently and all commands
are accepted.

If not supplied, the value is assumed to be zero (delete immediately).

• noreply: Tells the server not to reply to the command.

Responses to the command are either DELETED to indicate that the key was successfully removed, or
NOT_FOUND to indicate that the specified key could not be found.

• Increment/Decrement: incr, decr

The increment and decrement commands change the value of a key within the server without performing
a separate get/set sequence. The operations assume that the currently stored value is a 64-bit integer.
If the stored value is not a 64-bit integer, then the value is assumed to be zero before the increment or
decrement operation is applied.

Increment and decrement commands take the form:

incr key value [noreply]
decr key value [noreply]

Where:

• key: The key name.

• value: An integer to be used as the increment or decrement value.

• noreply: Tells the server not to reply to the command.

The response is:

• NOT_FOUND: The specified key could not be located.

• value: The new value associated with the specified key.

Values are assumed to be unsigned. For decr operations, the value is never decremented below 0. For
incr operations, the value wraps around the 64-bit maximum.

• Statistics commands: stats

The stats command provides detailed statistical information about the current status of the memcached
instance and the data it is storing.

Statistics commands take the form:

STAT [name] [value]

Where:

• name: The optional name of the statistics to return. If not specified, the general statistics are returned.

• value: A specific value to be used when performing certain statistics operations.

Developing a memcached Application

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1533

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The return value is a list of statistics data, formatted as follows:

STAT name value

The statistics are terminated with a single line, END.

For more information, see Section 15.3.4, “Getting memcached Statistics”.

For reference, a list of the different commands supported and their formats is provided below.

Table 15.2 memcached Command Reference

Command Command Formats

set set key flags exptime length, set key flags exptime length
noreply

add add key flags exptime length, add key flags exptime length
noreply

replace replace key flags exptime length, replace key flags exptime
length noreply

append append key length, append key length noreply

prepend prepend key length, prepend key length noreply

cas cas key flags exptime length casunique, cas key flags
exptime length casunique noreply

get get key1 [key2 ... keyn]

gets

delete delete key, delete key noreply, delete key expiry, delete key
expiry noreply

incr incr key, incr key noreply, incr key value, incr key value
noreply

decr decr key, decr key noreply, decr key value, decr key value
noreply

stat stat, stat name, stat name value

When sending a command to the server, the response from the server is one of the settings in the
following table. All response values from the server are terminated by \r\n:

Table 15.3 memcached Protocol Responses

String Description

STORED Value has successfully been stored.

NOT_STORED The value was not stored, but not because of an error. For commands where
you are adding a or updating a value if it exists (such as add and replace), or
where the item has already been set to be deleted.

EXISTS When using a cas command, the item you are trying to store already exists
and has been modified since you last checked it.

NOT_FOUND The item you are trying to store, update or delete does not exist or has already
been deleted.

ERROR You submitted a nonexistent command name.

Getting memcached Statistics

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1534

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

String Description

CLIENT_ERROR
errorstring

There was an error in the input line, the detail is contained in errorstring.

SERVER_ERROR
errorstring

There was an error in the server that prevents it from returning the information.
In extreme conditions, the server may disconnect the client after this error
occurs.

VALUE keys flags
length

The requested key has been found, and the stored key, flags and data block
are returned, of the specified length.

DELETED The requested key was deleted from the server.

STAT name value A line of statistics data.

END The end of the statistics data.

15.3.4 Getting memcached Statistics

The memcached system has a built-in statistics system that collects information about the data being
stored into the cache, cache hit ratios, and detailed information on the memory usage and distribution
of information through the slab allocation used to store individual items. Statistics are provided at both a
basic level that provide the core statistics, and more specific statistics for specific areas of the memcached
server.

This information can be useful to ensure that you are getting the correct level of cache and memory usage,
and that your slab allocation and configuration properties are set at an optimal level.

The stats interface is available through the standard memcached protocol, so the reports can be accessed
by using telnet to connect to the memcached. The supplied memcached-tool includes support for
obtaining the Section 15.3.4.2, “memcached Slabs Statistics” and Section 15.3.4.1, “memcached General
Statistics” information. For more information, see Section 15.3.4.6, “Using memcached-tool”.

Alternatively, most of the language API interfaces provide a function for obtaining the statistics from the
server.

For example, to get the basic stats using telnet:

shell> telnet localhost 11211
Trying ::1...
Connected to localhost.
Escape character is '^]'.
stats
STAT pid 23599
STAT uptime 675
STAT time 1211439587
STAT version 1.2.5
STAT pointer_size 32
STAT rusage_user 1.404992
STAT rusage_system 4.694685
STAT curr_items 32
STAT total_items 56361
STAT bytes 2642
STAT curr_connections 53
STAT total_connections 438
STAT connection_structures 55
STAT cmd_get 113482
STAT cmd_set 80519
STAT get_hits 78926
STAT get_misses 34556
STAT evictions 0
STAT bytes_read 6379783

Getting memcached Statistics

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1535

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

STAT bytes_written 4860179
STAT limit_maxbytes 67108864
STAT threads 1
END

When using Perl and the Cache::Memcached module, the stats() function returns information about all
the servers currently configured in the connection object, and total statistics for all the memcached servers
as a whole.

For example, the following Perl script obtains the stats and dumps the hash reference that is returned:

use Cache::Memcached;
use Data::Dumper;

my $memc = new Cache::Memcached;
$memc->set_servers(\@ARGV);

print Dumper($memc->stats());

When executed on the same memcached as used in the Telnet example above we get a hash reference
with the host by host and total statistics:

$VAR1 = {
 'hosts' => {
 'localhost:11211' => {
 'misc' => {
 'bytes' => '2421',
 'curr_connections' => '3',
 'connection_structures' => '56',
 'pointer_size' => '32',
 'time' => '1211440166',
 'total_items' => '410956',
 'cmd_set' => '588167',
 'bytes_written' => '35715151',
 'evictions' => '0',
 'curr_items' => '31',
 'pid' => '23599',
 'limit_maxbytes' => '67108864',
 'uptime' => '1254',
 'rusage_user' => '9.857805',
 'cmd_get' => '838451',
 'rusage_system' => '34.096988',
 'version' => '1.2.5',
 'get_hits' => '581511',
 'bytes_read' => '46665716',
 'threads' => '1',
 'total_connections' => '3104',
 'get_misses' => '256940'
 },
 'sizes' => {
 '128' => '16',
 '64' => '15'
 }
 }
 },
 'self' => {},
 'total' => {
 'cmd_get' => 838451,
 'bytes' => 2421,
 'get_hits' => 581511,
 'connection_structures' => 56,
 'bytes_read' => 46665716,
 'total_items' => 410956,
 'total_connections' => 3104,

Getting memcached Statistics

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1536

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 'cmd_set' => 588167,
 'bytes_written' => 35715151,
 'curr_items' => 31,
 'get_misses' => 256940
 }
 };

The statistics are divided up into a number of distinct sections, and then can be requested by adding the
type to the stats command. Each statistics output is covered in more detail in the following sections.

• General statistics, see Section 15.3.4.1, “memcached General Statistics”.

• Slab statistics (slabs), see Section 15.3.4.2, “memcached Slabs Statistics”.

• Item statistics (items), see Section 15.3.4.3, “memcached Item Statistics”.

• Size statistics (sizes), see Section 15.3.4.4, “memcached Size Statistics”.

• Detailed status (detail), see Section 15.3.4.5, “memcached Detail Statistics”.

15.3.4.1 memcached General Statistics

The output of the general statistics provides an overview of the performance and use of the memcached
instance. The statistics returned by the command and their meaning is shown in the following table.

The following terms are used to define the value type for each statistics value:

• 32u: 32-bit unsigned integer

• 64u: 64-bit unsigned integer

• 32u:32u: Two 32-bit unsigned integers separated by a colon

• String: Character string

Statistic Data type Description Version

pid 32u Process ID of the memcached instance.

uptime 32u Uptime (in seconds) for this memcached instance.

time 32u Current time (as epoch).

version string Version string of this instance.

pointer_size string Size of pointers for this host specified in bits (32 or 64).

rusage_user 32u:32u Total user time for this instance (seconds:microseconds).

rusage_system 32u:32u Total system time for this instance
(seconds:microseconds).

curr_items 32u Current number of items stored by this instance.

total_items 32u Total number of items stored during the life of this
instance.

bytes 64u Current number of bytes used by this server to store
items.

curr_connections32u Current number of open connections.

total_connections32u Total number of connections opened since the server
started running.

connection_structures32u Number of connection structures allocated by the server.

Getting memcached Statistics

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1537

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Statistic Data type Description Version

cmd_get 64u Total number of retrieval requests (get operations).

cmd_set 64u Total number of storage requests (set operations).

get_hits 64u Number of keys that have been requested and found
present.

get_misses 64u Number of items that have been requested and not
found.

delete_hits 64u Number of keys that have been deleted and found
present.

1.3.x

delete_misses 64u Number of items that have been delete and not found. 1.3.x

incr_hits 64u Number of keys that have been incremented and found
present.

1.3.x

incr_misses 64u Number of items that have been incremented and not
found.

1.3.x

decr_hits 64u Number of keys that have been decremented and found
present.

1.3.x

decr_misses 64u Number of items that have been decremented and not
found.

1.3.x

cas_hits 64u Number of keys that have been compared and swapped
and found present.

1.3.x

cas_misses 64u Number of items that have been compared and swapped
and not found.

1.3.x

cas_badvalue 64u Number of keys that have been compared and swapped,
but the comparison (original) value did not match the
supplied value.

1.3.x

evictions 64u Number of valid items removed from cache to free
memory for new items.

bytes_read 64u Total number of bytes read by this server from network.

bytes_written 64u Total number of bytes sent by this server to network.

limit_maxbytes 32u Number of bytes this server is permitted to use for
storage.

threads 32u Number of worker threads requested.

conn_yields 64u Number of yields for connections (related to the -R
option).

1.4.0

The most useful statistics from those given here are the number of cache hits, misses, and evictions.

A large number of get_misses may just be an indication that the cache is still being populated with
information. The number should, over time, decrease in comparison to the number of cache get_hits.
If, however, you have a large number of cache misses compared to cache hits after an extended period of
execution, it may be an indication that the size of the cache is too small and you either need to increase
the total memory size, or increase the number of the memcached instances to improve the hit ratio.

A large number of evictions from the cache, particularly in comparison to the number of items stored
is a sign that your cache is too small to hold the amount of information that you regularly want to keep
cached. Instead of items being retained in the cache, items are being evicted to make way for new items
keeping the turnover of items in the cache high, reducing the efficiency of the cache.

Getting memcached Statistics

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1538

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

15.3.4.2 memcached Slabs Statistics

To get the slabs statistics, use the stats slabs command, or the API equivalent.

The slab statistics provide you with information about the slabs that have created and allocated for storing
information within the cache. You get information both on each individual slab-class and total statistics for
the whole slab.

STAT 1:chunk_size 104
STAT 1:chunks_per_page 10082
STAT 1:total_pages 1
STAT 1:total_chunks 10082
STAT 1:used_chunks 10081
STAT 1:free_chunks 1
STAT 1:free_chunks_end 10079
STAT 9:chunk_size 696
STAT 9:chunks_per_page 1506
STAT 9:total_pages 63
STAT 9:total_chunks 94878
STAT 9:used_chunks 94878
STAT 9:free_chunks 0
STAT 9:free_chunks_end 0
STAT active_slabs 2
STAT total_malloced 67083616
END

Individual stats for each slab class are prefixed with the slab ID. A unique ID is given to each allocated slab
from the smallest size up to the largest. The prefix number indicates the slab class number in relation to
the calculated chunk from the specified growth factor. Hence in the example, 1 is the first chunk size and 9
is the 9th chunk allocated size.

The parameters returned for each chunk size and a description of each parameter are provided in the
following table.

Statistic Description Version

chunk_size Space allocated to each chunk within this slab class.

chunks_per_page Number of chunks within a single page for this slab class.

total_pages Number of pages allocated to this slab class.

total_chunks Number of chunks allocated to the slab class.

used_chunks Number of chunks allocated to an item..

free_chunks Number of chunks not yet allocated to items.

free_chunks_end Number of free chunks at the end of the last allocated page.

get_hits Number of get hits to this chunk 1.3.x

cmd_set Number of set commands on this chunk 1.3.x

delete_hits Number of delete hits to this chunk 1.3.x

incr_hits Number of increment hits to this chunk 1.3.x

decr_hits Number of decrement hits to this chunk 1.3.x

cas_hits Number of CAS hits to this chunk 1.3.x

cas_badval Number of CAS hits on this chunk where the existing value did not
match

1.3.x

mem_requested The true amount of memory of memory requested within this chunk 1.4.1

Getting memcached Statistics

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1539

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The following additional statistics cover the information for the entire server, rather than on a chunk by
chunk basis:

Statistic Description Version

active_slabs Total number of slab classes allocated.

total_malloced Total amount of memory allocated to slab pages.

The key values in the slab statistics are the chunk_size, and the corresponding total_chunks and
used_chunks parameters. These given an indication of the size usage of the chunks within the system.
Remember that one key/value pair is placed into a chunk of a suitable size.

From these stats, you can get an idea of your size and chunk allocation and distribution. If you store many
items with a number of largely different sizes, consider adjusting the chunk size growth factor to increase
in larger steps to prevent chunk and memory wastage. A good indication of a bad growth factor is a high
number of different slab classes, but with relatively few chunks actually in use within each slab. Increasing
the growth factor creates fewer slab classes and therefore makes better use of the allocated pages.

15.3.4.3 memcached Item Statistics

To get the items statistics, use the stats items command, or the API equivalent.

The items statistics give information about the individual items allocated within a given slab class.

STAT items:2:number 1
STAT items:2:age 452
STAT items:2:evicted 0
STAT items:2:evicted_nonzero 0
STAT items:2:evicted_time 2
STAT items:2:outofmemory 0
STAT items:2:tailrepairs 0
...
STAT items:27:number 1
STAT items:27:age 452
STAT items:27:evicted 0
STAT items:27:evicted_nonzero 0
STAT items:27:evicted_time 2
STAT items:27:outofmemory 0
STAT items:27:tailrepairs 0

The prefix number against each statistics relates to the corresponding chunk size, as returned by the
stats slabs statistics. The result is a display of the number of items stored within each chunk within
each slab size, and specific statistics about their age, eviction counts, and out of memory counts. A
summary of the statistics is given in the following table.

Statistic Description

number The number of items currently stored in this slab class.

age The age of the oldest item within the slab class, in seconds.

evicted The number of items evicted to make way for new entries.

evicted_time The time of the last evicted entry

evicted_nonzero The time of the last evicted non-zero entry 1.4.0

outofmemory The number of items for this slab class that have triggered an out
of memory error (only value when the -M command line option is in
effect).

Getting memcached Statistics

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1540

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Statistic Description

tailrepairs Number of times the entries for a particular ID need repairing

Item level statistics can be used to determine how many items are stored within a given slab and their
freshness and recycle rate. You can use this to help identify whether there are certain slab classes that are
triggering a much larger number of evictions that others.

15.3.4.4 memcached Size Statistics

To get size statistics, use the stats sizes command, or the API equivalent.

The size statistics provide information about the sizes and number of items of each size within the cache.
The information is returned as two columns, the first column is the size of the item (rounded up to the
nearest 32 byte boundary), and the second column is the count of the number of items of that size within
the cache:

96 35
128 38
160 807
192 804
224 410
256 222
288 83
320 39
352 53
384 33
416 64
448 51
480 30
512 54
544 39
576 10065

Caution

Running this statistic locks up your cache as each item is read from the cache and
its size calculated. On a large cache, this may take some time and prevent any set
or get operations until the process completes.

The item size statistics are useful only to determine the sizes of the objects you are storing. Since the
actual memory allocation is relevant only in terms of the chunk size and page size, the information is only
useful during a careful debugging or diagnostic session.

15.3.4.5 memcached Detail Statistics

For memcached 1.3.x and higher, you can enable and obtain detailed statistics about the get, set, and del
operations on theindividual keys stored in the cache, and determine whether the attempts hit (found) a
particular key. These operations are only recorded while the detailed stats analysis is turned on.

To enable detailed statistics, you must send the stats detail on command to the memcached server:

$ telnet localhost 11211
Trying 127.0.0.1...
Connected to tiger.
Escape character is '^]'.
stats detail on
OK

Getting memcached Statistics

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1541

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Individual statistics are recorded for every get, set and del operation on a key, including keys that are
not currently stored in the server. For example, if an attempt is made to obtain the value of key abckey
and it does not exist, the get operating on the specified key are recorded while detailed statistics are in
effect, even if the key is not currently stored. The hits, that is, the number of get or del operations for a
key that exists in the server are also counted.

To turn detailed statistics off, send the stats detail off command to the memcached server:

$ telnet localhost 11211
Trying 127.0.0.1...
Connected to tiger.
Escape character is '^]'.
stats detail on
OK

To obtain the detailed statistics recorded during the process, send the stats detail dump command to
the memcached server:

stats detail dump
PREFIX hykkey get 0 hit 0 set 1 del 0
PREFIX xyzkey get 0 hit 0 set 1 del 0
PREFIX yukkey get 1 hit 0 set 0 del 0
PREFIX abckey get 3 hit 3 set 1 del 0
END

You can use the detailed statistics information to determine whether your memcached clients are using
a large number of keys that do not exist in the server by comparing the hit and get or del counts.
Because the information is recorded by key, you can also determine whether the failures or operations are
clustered around specific keys.

15.3.4.6 Using memcached-tool

The memcached-tool, located within the scripts directory within the memcached source directory. The
tool provides convenient access to some reports and statistics from any memcached instance.

The basic format of the command is:

shell> ./memcached-tool hostname:port [command]

The default output produces a list of the slab allocations and usage. For example:

shell> memcached-tool localhost:11211 display
 # Item_Size Max_age Pages Count Full? Evicted Evict_Time OOM
 1 80B 93s 1 20 no 0 0 0
 2 104B 93s 1 16 no 0 0 0
 3 136B 1335s 1 28 no 0 0 0
 4 176B 1335s 1 24 no 0 0 0
 5 224B 1335s 1 32 no 0 0 0
 6 280B 1335s 1 34 no 0 0 0
 7 352B 1335s 1 36 no 0 0 0
 8 440B 1335s 1 46 no 0 0 0
 9 552B 1335s 1 58 no 0 0 0
 10 696B 1335s 1 66 no 0 0 0
 11 872B 1335s 1 89 no 0 0 0
 12 1.1K 1335s 1 112 no 0 0 0
 13 1.3K 1335s 1 145 no 0 0 0
 14 1.7K 1335s 1 123 no 0 0 0
 15 2.1K 1335s 1 198 no 0 0 0
 16 2.6K 1335s 1 199 no 0 0 0

Getting memcached Statistics

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1542

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 17 3.3K 1335s 1 229 no 0 0 0
 18 4.1K 1335s 1 248 yes 36 2 0
 19 5.2K 1335s 2 328 no 0 0 0
 20 6.4K 1335s 2 316 yes 387 1 0
 21 8.1K 1335s 3 381 yes 492 1 0
 22 10.1K 1335s 3 303 yes 598 2 0
 23 12.6K 1335s 5 405 yes 605 1 0
 24 15.8K 1335s 6 384 yes 766 2 0
 25 19.7K 1335s 7 357 yes 908 170 0
 26 24.6K 1336s 7 287 yes 1012 1 0
 27 30.8K 1336s 7 231 yes 1193 169 0
 28 38.5K 1336s 4 104 yes 1323 169 0
 29 48.1K 1336s 1 21 yes 1287 1 0
 30 60.2K 1336s 1 17 yes 1093 169 0
 31 75.2K 1337s 1 13 yes 713 168 0
 32 94.0K 1337s 1 10 yes 278 168 0
 33 117.5K 1336s 1 3 no 0 0 0

This output is the same if you specify the command as display:

shell> memcached-tool localhost:11211 display
 # Item_Size Max_age Pages Count Full? Evicted Evict_Time OOM
 1 80B 93s 1 20 no 0 0 0
 2 104B 93s 1 16 no 0 0 0
...

The output shows a summarized version of the output from the slabs statistics. The columns provided in
the output are shown below:

• #: The slab number

• Item_Size: The size of the slab

• Max_age: The age of the oldest item in the slab

• Pages: The number of pages allocated to the slab

• Count: The number of items in this slab

• Full?: Whether the slab is fully populated

• Evicted: The number of objects evicted from this slab

• Evict_Time: The time (in seconds) since the last eviction

• OOM: The number of items that have triggered an out of memory error

You can also obtain a dump of the general statistics for the server using the stats command:

shell> memcached-tool localhost:11211 stats
#localhost:11211 Field Value
 accepting_conns 1
 bytes 162
 bytes_read 485
 bytes_written 6820
 cas_badval 0
 cas_hits 0
 cas_misses 0
 cmd_flush 0
 cmd_get 4
 cmd_set 2

memcached FAQ

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1543

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 conn_yields 0
 connection_structures 11
 curr_connections 10
 curr_items 2
 decr_hits 0
 decr_misses 1
 delete_hits 0
 delete_misses 0
 evictions 0
 get_hits 4
 get_misses 0
 incr_hits 0
 incr_misses 2
 limit_maxbytes 67108864
 listen_disabled_num 0
 pid 12981
 pointer_size 32
 rusage_system 0.013911
 rusage_user 0.011876
 threads 4
 time 1255518565
 total_connections 20
 total_items 2
 uptime 880
 version 1.4.2

15.3.5 memcached FAQ

15.3.5.1 Can memcached be run on a Windows environment? ... 1543
15.3.5.2 What is the maximum size of an object you can store in memcached? Is that configurable? .. 1543
15.3.5.3 Is it true memcached will be much more effective with db-read-intensive applications than

with db-write-intensive applications? .. 1544
15.3.5.4 Is there any overhead in not using persistent connections? If persistent is always

recommended, what are the downsides (for example, locking up)? .. 1544
15.3.5.5 How is an event such as a crash of one of the memcached servers handled by the

memcached client? ... 1544
15.3.5.6 What is a recommended hardware configuration for a memcached server? 1544
15.3.5.7 Is memcached more effective for video and audio as opposed to textual read/writes? 1544
15.3.5.8 Can memcached work with ASPX? .. 1545
15.3.5.9 How expensive is it to establish a memcache connection? Should those connections be

pooled? .. 1545
15.3.5.10 How is the data handled when the memcached server is down? 1545
15.3.5.11 How are auto-increment columns in the MySQL database coordinated across multiple

instances of memcached? ... 1545
15.3.5.12 Is compression available? .. 1545
15.3.5.13 Can we implement different types of memcached as different nodes in the same server, so

can there be deterministic and non-deterministic in the same server? 1545
15.3.5.14 What are best practices for testing an implementation, to ensure that it improves

performance, and to measure the impact of memcached configuration changes? And would
you recommend keeping the configuration very simple to start? .. 1545

15.3.5.1.Can memcached be run on a Windows environment?

No. Currently memcached is available only on the Unix/Linux platform. There is an unofficial port
available, see http://www.codeplex.com/memcachedproviders.

15.3.5.2.What is the maximum size of an object you can store in memcached? Is that configurable?

The default maximum object size is 1MB. In memcached 1.4.2 and later, you can change the
maximum size of an object using the -I command line option.

http://www.codeplex.com/memcachedproviders

memcached FAQ

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1544

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For versions before this, to increase this size, you have to re-compile memcached. You can modify
the value of the POWER_BLOCK within the slabs.c file within the source.

In memcached 1.4.2 and higher, you can configure the maximum supported object size by using the
-I command-line option. For example, to increase the maximum object size to 5MB:

$ memcached -I 5m

If an object is larger than the maximum object size, you must manually split it. memcached is very
simple: you give it a key and some data, it tries to cache it in RAM. If you try to store more than the
default maximum size, the value is just truncated for speed reasons.

15.3.5.3.Is it true memcached will be much more effective with db-read-intensive applications than with db-
write-intensive applications?

Yes. memcached plays no role in database writes, it is a method of caching data already read from
the database in RAM.

15.3.5.4.Is there any overhead in not using persistent connections? If persistent is always recommended,
what are the downsides (for example, locking up)?

If you don't use persistent connections when communicating with memcached, there will be a
small increase in the latency of opening the connection each time. The effect is comparable to use
nonpersistent connections with MySQL.

In general, the chance of locking or other issues with persistent connections is minimal, because
there is very little locking within memcached. If there is a problem, eventually your request will time
out and return no result, so your application will need to load from MySQL again.

15.3.5.5.How is an event such as a crash of one of the memcached servers handled by the memcached
client?

There is no automatic handling of this. If your client fails to get a response from a server, code a
fallback mechanism to load the data from the MySQL database.

The client APIs all provide the ability to add and remove memcached instances on the fly. If within
your application you notice that memcached server is no longer responding, you can remove the
server from the list of servers, and keys will automatically be redistributed to another memcached
server in the list. If retaining the cache content on all your servers is important, make sure you use
an API that supports a consistent hashing algorithm. For more information, see Section 15.3.2.4,
“memcached Hashing/Distribution Types”.

15.3.5.6.What is a recommended hardware configuration for a memcached server?

memcached has a very low processing overhead. All that is required is spare physical RAM
capacity. A memcached server does not require a dedicated machine. If you have web, application,
or database servers that have spare RAM capacity, then use them with memcached.

To build and deploy a dedicated memcached server, use a relatively low-power CPU, lots of RAM,
and one or more Gigabit Ethernet interfaces.

15.3.5.7.Is memcached more effective for video and audio as opposed to textual read/writes?

memcached works equally well for all kinds of data. To memcached, any value you store is
just a stream of data. Remember, though, that the maximum size of an object you can store in
memcached is 1MB, but can be configured to be larger by using the -I option in memcached 1.4.2

memcached FAQ

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1545

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

and later, or by modifying the source in versions before 1.4.2. If you plan on using memcached
with audio and video content, you will probably want to increase the maximum object size. Also
remember that memcached is a solution for caching information for reading. It shouldn't be used for
writes, except when updating the information in the cache.

15.3.5.8.Can memcached work with ASPX?

There are ports and interfaces for many languages and environments. ASPX relies on an underlying
language such as C# or VisualBasic, and if you are using ASP.NET then there is a C# memcached
library. For more information, see https://sourceforge.net/projects/memcacheddotnet/.

15.3.5.9.How expensive is it to establish a memcache connection? Should those connections be pooled?

Opening the connection is relatively inexpensive, because there is no security, authentication or
other handshake taking place before you can start sending requests and getting results. Most APIs
support a persistent connection to a memcached instance to reduce the latency. Connection pooling
would depend on the API you are using, but if you are communicating directly over TCP/IP, then
connection pooling would provide some small performance benefit.

15.3.5.10.How is the data handled when the memcached server is down?

The behavior is entirely application dependent. Most applications fall back to loading the data
from the database (just as if they were updating the memcached information). If you are using
multiple memcached servers, you might also remove a downed server from the list to prevent it from
affecting performance. Otherwise, the client will still attempt to communicate with the memcached
server that corresponds to the key you are trying to load.

15.3.5.11.How are auto-increment columns in the MySQL database coordinated across multiple instances of
memcached?

They aren't. There is no relationship between MySQL and memcached unless your application (or, if
you are using the MySQL UDFs for memcached, your database definition) creates one.

If you are storing information based on an auto-increment key into multiple instances of
memcached, the information is only stored on one of the memcached instances anyway. The client
uses the key value to determine which memcached instance to store the information. It doesn't store
the same information across all the instances, as that would be a waste of cache memory.

15.3.5.12.Is compression available?

Yes. Most of the client APIs support some sort of compression, and some even allow you to specify
the threshold at which a value is deemed appropriate for compression during storage.

15.3.5.13.Can we implement different types of memcached as different nodes in the same server, so can
there be deterministic and non-deterministic in the same server?

Yes. You can run multiple instances of memcached on a single server, and in your client
configuration you choose the list of servers you want to use.

15.3.5.14.What are best practices for testing an implementation, to ensure that it improves performance, and
to measure the impact of memcached configuration changes? And would you recommend keeping
the configuration very simple to start?

The best way to test the performance is to start up a memcached instance. First, modify your
application so that it stores the data just before the data is about to be used or displayed into
memcached. Since the APIs handle the serialization of the data, it should just be a one-line
modification to your code. Then, modify the start of the process that would normally load that

https://sourceforge.net/projects/memcacheddotnet/

memcached FAQ

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1546

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

information from MySQL with the code that requests the data from memcached. If the data cannot
be loaded from memcached, default to the MySQL process.

All of the changes required will probably amount to just a few lines of code. To get the best benefit,
make sure you cache entire objects (for example, all the components of a web page, blog post,
discussion thread, and so on), rather than using memcached as a simple cache of individual rows of
MySQL tables.

Keeping the configuration simple at the start, or even over the long term, is easy with memcached.
Once you have the basic structure up and running, often the only ongoing change is to add more
servers into the list of servers used by your applications. You don't need to manage the memcached
servers, and there is no complex configuration; just add more servers to the list and let the client API
and the memcached servers make the decisions.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1547

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 16 Replication

Table of Contents
16.1 Replication Configuration ... 1548

16.1.1 How to Set Up Replication .. 1549
16.1.2 Replication and Binary Logging Options and Variables ... 1558
16.1.3 Common Replication Administration Tasks .. 1595

16.2 Replication Implementation .. 1598
16.2.1 Replication Implementation Details .. 1599
16.2.2 Replication Relay and Status Logs .. 1600
16.2.3 How Servers Evaluate Replication Filtering Rules .. 1603

16.3 Replication Solutions ... 1609
16.3.1 Using Replication for Backups .. 1610
16.3.2 Using Replication with Different Master and Slave Storage Engines 1612
16.3.3 Using Replication for Scale-Out .. 1613
16.3.4 Replicating Different Databases to Different Slaves .. 1614
16.3.5 Improving Replication Performance ... 1615
16.3.6 Switching Masters During Failover .. 1616
16.3.7 Setting Up Replication to Use Secure Connections .. 1618

16.4 Replication Notes and Tips .. 1620
16.4.1 Replication Features and Issues ... 1620
16.4.2 Replication Compatibility Between MySQL Versions ... 1632
16.4.3 Upgrading a Replication Setup .. 1633
16.4.4 Troubleshooting Replication .. 1634
16.4.5 How to Report Replication Bugs or Problems .. 1635

Replication enables data from one MySQL database server (the master) to be replicated to one or more
MySQL database servers (the slaves). Replication is asynchronous - slaves need not be connected
permanently to receive updates from the master. This means that updates can occur over long-distance
connections and even over temporary or intermittent connections such as a dial-up service. Depending
on the configuration, you can replicate all databases, selected databases, or even selected tables within a
database.

For answers to some questions often asked by those who are new to MySQL Replication, see
Section A.13, “MySQL 5.0 FAQ: Replication”.

The target uses for replication in MySQL include:

• Scale-out solutions - spreading the load among multiple slaves to improve performance. In this
environment, all writes and updates must take place on the master server. Reads, however, may take
place on one or more slaves. This model can improve the performance of writes (since the master is
dedicated to updates), while dramatically increasing read speed across an increasing number of slaves.

• Data security - because data is replicated to the slave, and the slave can pause the replication process,
it is possible to run backup services on the slave without corrupting the corresponding master data.

• Analytics - live data can be created on the master, while the analysis of the information can take place
on the slave without affecting the performance of the master.

• Long-distance data distribution - if a branch office would like to work with a copy of your main data, you
can use replication to create a local copy of the data for their use without requiring permanent access to
the master.

Replication Configuration

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1548

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Replication in MySQL features support for one-way, asynchronous replication, in which one server acts as
the master, while one or more other servers act as slaves. This is in contrast to the synchronous replication
which is a characteristic of MySQL Cluster (see Chapter 17, MySQL Cluster).

There are a number of solutions available for setting up replication between two servers, but the best
method to use depends on the presence of data and the engine types you are using. For more information
on the available options, see Section 16.1.1, “How to Set Up Replication”.

Replication is controlled through a number of different options and variables. These control the core
operation of the replication, timeouts, and the databases and filters that can be applied on databases and
tables. For more information on the available options, see Section 16.1.2, “Replication and Binary Logging
Options and Variables”.

You can use replication to solve a number of different problems, including problems with performance,
supporting the backup of different databases, and as part of a larger solution to alleviate system failures.
For information on how to address these issues, see Section 16.3, “Replication Solutions”.

For notes and tips on how different data types and statements are treated during replication, including
details of replication features, version compatibility, upgrades, and problems and their resolution, including
an FAQ, see Section 16.4, “Replication Notes and Tips”.

For detailed information on the implementation of replication, how replication works, the process and
contents of the binary log, background threads and the rules used to decide how statements are recorded
and replication, see Section 16.2, “Replication Implementation”.

16.1 Replication Configuration

Replication between servers in MySQL is based on the binary logging mechanism. The MySQL instance
operating as the master (the source of the database changes) writes updates and changes as “events”
to the binary log. The information in the binary log is stored in different logging formats according to the
database changes being recorded. Slaves are configured to read the binary log from the master and to
execute the events in the binary log on the slave's local database.

The master is “dumb” in this scenario. Once binary logging has been enabled, all statements are recorded
in the binary log. Each slave receives a copy of the entire contents of the binary log. It is the responsibility
of the slave to decide which statements in the binary log should be executed; you cannot configure the
master to log only certain events. If you do not specify otherwise, all events in the master binary log
are executed on the slave. If required, you can configure the slave to process only events that apply to
particular databases or tables.

Each slave keeps a record of the binary log coordinates: The file name and position within the file that it
has read and processed from the master. This means that multiple slaves can be connected to the master
and executing different parts of the same binary log. Because the slaves control this process, individual
slaves can be connected and disconnected from the server without affecting the master's operation.
Also, because each slave remembers the position within the binary log, it is possible for slaves to be
disconnected, reconnect and then “catch up” by continuing from the recorded position.

Both the master and each slave must be configured with a unique ID (using the server-id option). In
addition, each slave must be configured with information about the master host name, log file name, and
position within that file. These details can be controlled from within a MySQL session using the CHANGE
MASTER TO statement on the slave. The details are stored within the slave's master.info file.

This section describes the setup and configuration required for a replication environment, including step-
by-step instructions for creating a new replication environment. The major components of this section are:

How to Set Up Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1549

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• For a guide to setting up two or more servers for replication, Section 16.1.1, “How to Set Up Replication”,
deals with the configuration of the systems and provides methods for copying data between the master
and slaves.

• Detailed information on the different configuration options and variables that apply to replication is
provided in Section 16.1.2, “Replication and Binary Logging Options and Variables”.

• Once started, the replication process should require little administration or monitoring. However, for
advice on common tasks that you may want to execute, see Section 16.1.3, “Common Replication
Administration Tasks”.

16.1.1 How to Set Up Replication

This section describes how to set up complete replication of a MySQL server. There are a number of
different methods for setting up replication, and the exact method to use depends on how you are setting
up replication, and whether you already have data within your master database.

There are some generic tasks that are common to all replication setups:

• On the master, you must enable binary logging and configure a unique server ID. This might require a
server restart. See Section 16.1.1.1, “Setting the Replication Master Configuration”.

• On each slave that you want to connect to the master, you must configure a unique server ID. This might
require a server restart. See Section 16.1.1.2, “Setting the Replication Slave Configuration”.

• You may want to create a separate user that will be used by your slaves to authenticate with the master
to read the binary log for replication. The step is optional. See Section 16.1.1.3, “Creating a User for
Replication”.

• Before creating a data snapshot or starting the replication process, you should record the position
of the binary log on the master. You will need this information when configuring the slave so that the
slave knows where within the binary log to start executing events. See Section 16.1.1.4, “Obtaining the
Replication Master Binary Log Coordinates”.

• If you already have data on your master and you want to use it to synchronize your slave, you will
need to create a data snapshot. You can create a snapshot using mysqldump (see Section 16.1.1.5,
“Creating a Data Snapshot Using mysqldump”) or by copying the data files directly (see Section 16.1.1.6,
“Creating a Data Snapshot Using Raw Data Files”).

• You will need to configure the slave with settings for connecting to the master, such as the host name,
login credentials, and binary log file name and position. See Section 16.1.1.10, “Setting the Master
Configuration on the Slave”.

Once you have configured the basic options, you will need to follow the instructions for your replication
setup. A number of alternatives are provided:

• If you are establishing a new MySQL master and one or more slaves, you need only set up the
configuration, as you have no data to exchange. For guidance on setting up replication in this situation,
see Section 16.1.1.7, “Setting Up Replication with New Master and Slaves”.

• If you are already running a MySQL server, and therefore already have data that must be transferred
to your slaves before replication starts, have not previously configured the binary log and are able to
shut down your MySQL server for a short period during the process, see Section 16.1.1.8, “Setting Up
Replication with Existing Data”.

• If you are adding slaves to an existing replication environment, you can set up the slaves without
affecting the master. See Section 16.1.1.9, “Introducing Additional Slaves to an Existing Replication
Environment”.

How to Set Up Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1550

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you will be administering MySQL replication servers, we suggest that you read this entire chapter through
and try all statements mentioned in Section 13.4.1, “SQL Statements for Controlling Master Servers”, and
Section 13.4.2, “SQL Statements for Controlling Slave Servers”. You should also familiarize yourself with
the replication startup options described in Section 16.1.2, “Replication and Binary Logging Options and
Variables”.

Note

Note that certain steps within the setup process require the SUPER privilege. If you
do not have this privilege, it might not be possible to enable replication.

16.1.1.1 Setting the Replication Master Configuration

On a replication master, you must enable binary logging and establish a unique server ID. If this has not
already been done, this part of master setup requires a server restart.

Binary logging must be enabled on the master because the binary log is the basis for sending data
changes from the master to its slaves. If binary logging is not enabled, replication will not be possible.

Each server within a replication group must be configured with a unique server ID. This ID is used to
identify individual servers within the group, and must be a positive integer between 1 and (232)−1. How you
organize and select the numbers is entirely up to you.

To configure the binary log and server ID options, you will need to shut down your MySQL server and edit
the my.cnf or my.ini file. Add the following options to the configuration file within the [mysqld] section.
If these options already exist, but are commented out, uncomment the options and alter them according
to your needs. For example, to enable binary logging using a log file name prefix of mysql-bin, and
configure a server ID of 1, use these lines:

[mysqld]
log-bin=mysql-bin
server-id=1

After making the changes, restart the server.

Note

If you omit server-id (or set it explicitly to its default value of 0), a master refuses
connections from all slaves.

Note

For the greatest possible durability and consistency in a
replication setup using InnoDB with transactions, you should use
innodb_flush_log_at_trx_commit=1 and sync_binlog=1 in the master
my.cnf file.

Note

Ensure that the skip-networking option is not enabled on your replication
master. If networking has been disabled, your slave will not able to communicate
with the master and replication will fail.

16.1.1.2 Setting the Replication Slave Configuration

On a replication slave, you must establish a unique server ID. If this has not already been done, this part of
slave setup requires a server restart.

How to Set Up Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1551

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If the slave server ID is not already set, or the current value conflicts with the value that you have chosen
for the master server, you should shut down your slave server and edit the configuration to specify a
unique server ID. For example:

[mysqld]
server-id=2

After making the changes, restart the server.

If you are setting up multiple slaves, each one must have a unique server-id value that differs from that
of the master and from each of the other slaves. Think of server-id values as something similar to IP
addresses: These IDs uniquely identify each server instance in the community of replication partners.

Note

If you omit server-id (or set it explicitly to its default value of 0), a slave refuses
to connect to a master.

You do not have to enable binary logging on the slave for replication to be enabled. However, if you enable
binary logging on the slave, you can use the binary log for data backups and crash recovery on the slave,
and also use the slave as part of a more complex replication topology (for example, where the slave acts
as a master to other slaves).

16.1.1.3 Creating a User for Replication

Each slave must connect to the master using a MySQL user name and password, so there must be a
user account on the master that the slave can use to connect. Any account can be used for this operation,
providing it has been granted the REPLICATION SLAVE privilege. You may wish to create a different
account for each slave, or connect to the master using the same account for each slave.

You need not create an account specifically for replication. However, you should be aware that the user
name and password will be stored in plain text within the master.info file (see Section 16.2.2.2, “Slave
Status Logs”). Therefore, you may want to create a separate account that has privileges only for the
replication process, to minimize the possibility of compromise to other accounts.

To create a new acccount, use CREATE USER. To grant this account the privileges required for replication,
use the GRANT statement. If you create an account solely for the purposes of replication, that account
needs only the REPLICATION SLAVE privilege. For example, to set up a new user, repl, that can
connect for replication from any host within the mydomain.com domain, issue these statements on the
master:

mysql> CREATE USER 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass';
mysql> GRANT REPLICATION SLAVE ON *.* TO 'repl'@'%.mydomain.com';

See Section 13.7.1, “Account Management Statements”, for more information on statements for
manipulation of user accounts.

16.1.1.4 Obtaining the Replication Master Binary Log Coordinates

To configure replication on the slave you must determine the master's current coordinates within its binary
log. You will need this information so that when the slave starts the replication process, it is able to start
processing events from the binary log at the correct point.

If you have existing data on your master that you want to synchronize on your slaves before starting the
replication process, you must stop processing statements on the master, and then obtain its current binary

How to Set Up Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1552

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

log coordinates and dump its data, before permitting the master to continue executing statements. If you do
not stop the execution of statements, the data dump and the master status information that you use will not
match and you will end up with inconsistent or corrupted databases on the slaves.

To obtain the master binary log coordinates, follow these steps:

1. Start a session on the master by connecting to it with the command-line client, and flush all tables and
block write statements by executing the FLUSH TABLES WITH READ LOCK statement:

mysql> FLUSH TABLES WITH READ LOCK;

For InnoDB tables, note that FLUSH TABLES WITH READ LOCK also blocks COMMIT operations.

Warning

Leave the client from which you issued the FLUSH TABLES statement running
so that the read lock remains in effect. If you exit the client, the lock is released.

2. In a different session on the master, use the SHOW MASTER STATUS statement to determine the
current binary log file name and position:

mysql > SHOW MASTER STATUS;
+------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+--------------+------------------+
| mysql-bin.000003 | 73 | test | manual,mysql |
+------------------+----------+--------------+------------------+

The File column shows the name of the log file and Position shows the position within the file. In
this example, the binary log file is mysql-bin.000003 and the position is 73. Record these values.
You need them later when you are setting up the slave. They represent the replication coordinates at
which the slave should begin processing new updates from the master.

If the master has been running previously without binary logging enabled, the log file name and position
values displayed by SHOW MASTER STATUS or mysqldump --master-data will be empty. In that
case, the values that you need to use later when specifying the slave's log file and position are the
empty string ('') and 4.

You now have the information you need to enable the slave to start reading from the binary log in the
correct place to start replication.

If you have existing data that needs be to synchronized with the slave before you start replication, leave
the client running so that the lock remains in place and then proceed to Section 16.1.1.5, “Creating a Data
Snapshot Using mysqldump”, or Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”. The
idea here is to prevent any further changes so that the data copied to the slaves is in synchrony with the
master.

If you are setting up a brand new master and slave replication group, you can exit the first session to
release the read lock.

16.1.1.5 Creating a Data Snapshot Using mysqldump

One way to create a snapshot of the data in an existing master database is to use the mysqldump tool to
create a dump of all the databases you want to replicate. Once the data dump has been completed, you
then import this data into the slave before starting the replication process.

How to Set Up Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1553

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The example shown here dumps all databases to a file named dbdump.db, and includes the --master-
data option which automatically appends the CHANGE MASTER TO statement required on the slave to
start the replication process:

shell> mysqldump --all-databases --master-data > dbdump.db

If you do not use --master-data, then it is necessary to lock all tables in a separate session manually
(using FLUSH TABLES WITH READ LOCK) prior to running mysqldump, then exiting or running UNLOCK
TABLES from the second session to release the locks. You must also obtain binary log position information
matching the snapshot, using SHOW MASTER STATUS, and use this to issue the appropriate CHANGE
MASTER TO statement when starting the slave.

When choosing databases to include in the dump, remember that you need to filter out databases on each
slave that you do not want to include in the replication process.

To import the data, either copy the dump file to the slave, or access the file from the master when
connecting remotely to the slave.

16.1.1.6 Creating a Data Snapshot Using Raw Data Files

If your database is particularly large, copying the raw data files may be more efficient than using
mysqldump and importing the file on each slave.

However, using this method with tables in storage engines with complex caching or logging algorithms may
not give you a perfect “in time” snapshot as cache information and logging updates may not have been
applied, even if you have acquired a global read lock. How the storage engine responds to this depends on
its crash recovery abilities.

In addition, this method does not work reliably if the master and slave have different values for
ft_stopword_file, ft_min_word_len, or ft_max_word_len and you are copying tables having full-
text indexes.

If you are using InnoDB tables, you can use the MySQL Enterprise Backup tool to obtain a consistent
snapshot. This tool records the log name and offset corresponding to the snapshot to be later used on the
slave. MySQL Enterprise Backup is a nonfree (commercial) tool that is not included in the standard MySQL
distribution. See Section 22.2, “MySQL Enterprise Backup Overview” for detailed information.

Otherwise, you can obtain a reliable binary snapshot of InnoDB tables only after shutting down the MySQL
Server.

To create a raw data snapshot of MyISAM tables you can use standard copy tools such as cp or copy,
a remote copy tool such as scp or rsync, an archiving tool such as zip or tar, or a file system
snapshot tool such as dump, providing that your MySQL data files exist on a single file system. If you are
replicating only certain databases then make sure you copy only those files that related to those tables.
(For InnoDB, all tables in all databases are stored in the shared tablespace files, unless you have the
innodb_file_per_table option enabled.)

You may want to specifically exclude the following files from your archive:

• Files relating to the mysql database.

• The master.info file.

• The master's binary log files.

• Any relay log files.

How to Set Up Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1554

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To get the most consistent results with a raw data snapshot you should shut down the master server during
the process, as follows:

1. Acquire a read lock and get the master's status. See Section 16.1.1.4, “Obtaining the Replication
Master Binary Log Coordinates”.

2. In a separate session, shut down the master server:

shell> mysqladmin shutdown

3. Make a copy of the MySQL data files. The following examples show common ways to do this. You need
to choose only one of them:

shell> tar cf /tmp/db.tar ./data
shell> zip -r /tmp/db.zip ./data
shell> rsync --recursive ./data /tmp/dbdata

4. Restart the master server.

If you are not using InnoDB tables, you can get a snapshot of the system from a master without shutting
down the server as described in the following steps:

1. Acquire a read lock and get the master's status. See Section 16.1.1.4, “Obtaining the Replication
Master Binary Log Coordinates”.

2. Make a copy of the MySQL data files. The following examples show common ways to do this. You need
to choose only one of them:

shell> tar cf /tmp/db.tar ./data
shell> zip -r /tmp/db.zip ./data
shell> rsync --recursive ./data /tmp/dbdata

3. In the client where you acquired the read lock, release the lock:

mysql> UNLOCK TABLES;

Once you have created the archive or copy of the database, you will need to copy the files to each slave
before starting the slave replication process.

16.1.1.7 Setting Up Replication with New Master and Slaves

The easiest and most straightforward method for setting up replication is to use new master and slave
servers.

You can also use this method if you are setting up new servers but have an existing dump of the
databases from a different server that you want to load into your replication configuration. By loading the
data into a new master, the data will be automatically replicated to the slaves.

To set up replication between a new master and slave:

1. Configure the MySQL master with the necessary configuration properties. See Section 16.1.1.1,
“Setting the Replication Master Configuration”.

2. Start up the MySQL master.

3. Set up a user. See Section 16.1.1.3, “Creating a User for Replication”.

How to Set Up Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1555

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

4. Obtain the master status information. See Section 16.1.1.4, “Obtaining the Replication Master Binary
Log Coordinates”.

5. On the master, release the read lock:

mysql> UNLOCK TABLES;

6. On the slave, edit the MySQL configuration. See Section 16.1.1.2, “Setting the Replication Slave
Configuration”.

7. Start up the MySQL slave.

8. Execute a CHANGE MASTER TO statement to set the master replication server configuration. See
Section 16.1.1.10, “Setting the Master Configuration on the Slave”.

Perform the slave setup steps on each slave.

Because there is no data to load or exchange on a new server configuration you do not need to copy or
import any information.

If you are setting up a new replication environment using the data from a different existing database
server, you will now need to run the dump file generated from that server on the new master. The database
updates will automatically be propagated to the slaves:

shell> mysql -h master < fulldb.dump

16.1.1.8 Setting Up Replication with Existing Data

When setting up replication with existing data, you will need to decide how best to get the data from the
master to the slave before starting the replication service.

The basic process for setting up replication with existing data is as follows:

1. With the MySQL master running, create a user to be used by the slave when connecting to the master
during replication. See Section 16.1.1.3, “Creating a User for Replication”.

2. If you have not already configured the server-id and enabled binary logging on the master server,
you will need to shut it down to configure these options. See Section 16.1.1.1, “Setting the Replication
Master Configuration”.

If you have to shut down your master server, this is a good opportunity to take a snapshot of its
databases. You should obtain the master status (see Section 16.1.1.4, “Obtaining the Replication
Master Binary Log Coordinates”) before taking down the master, updating the configuration and taking
a snapshot. For information on how to create a snapshot using raw data files, see Section 16.1.1.6,
“Creating a Data Snapshot Using Raw Data Files”.

3. If your master server is already correctly configured, obtain its status (see Section 16.1.1.4, “Obtaining
the Replication Master Binary Log Coordinates”) and then use mysqldump to take a snapshot (see
Section 16.1.1.5, “Creating a Data Snapshot Using mysqldump”) or take a raw snapshot of the live
server using the guide in Section 16.1.1.6, “Creating a Data Snapshot Using Raw Data Files”.

4. Update the configuration of the slave. See Section 16.1.1.2, “Setting the Replication Slave
Configuration”.

5. The next step depends on how you created the snapshot of data on the master.

If you used mysqldump:

How to Set Up Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1556

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

a. Start the slave, using the --skip-slave-start option so that replication does not start.

b. Import the dump file:

shell> mysql < fulldb.dump

If you created a snapshot using the raw data files:

a. Extract the data files into your slave data directory. For example:

shell> tar xvf dbdump.tar

You may need to set permissions and ownership on the files so that the slave server can access
and modify them.

b. Start the slave, using the --skip-slave-start option so that replication does not start.

6. Configure the slave with the replication coordinates from the master. This tells the slave the binary log
file and position within the file where replication needs to start. Also, configure the slave with the login
credentials and host name of the master. For more information on the CHANGE MASTER TO statement
required, see Section 16.1.1.10, “Setting the Master Configuration on the Slave”.

7. Start the slave threads:

mysql> START SLAVE;

After you have performed this procedure, the slave should connect to the master and catch up on any
updates that have occurred since the snapshot was taken.

If you have forgotten to set the server-id option for the master, slaves cannot connect to it.

If you have forgotten to set the server-id option for the slave, you get the following error in the slave's
error log:

Warning: You should set server-id to a non-0 value if master_host
is set; we will force server id to 2, but this MySQL server will
not act as a slave.

You also find error messages in the slave's error log if it is not able to replicate for any other reason.

Once a slave is replicating, you can find in its data directory one file named master.info and another
named relay-log.info. The slave uses these two files to keep track of how much of the master's binary
log it has processed. Do not remove or edit these files unless you know exactly what you are doing and
fully understand the implications. Even in that case, it is preferred that you use the CHANGE MASTER TO
statement to change replication parameters. The slave will use the values specified in the statement to
update the status files automatically.

Note

The content of master.info overrides some of the server options specified on the
command line or in my.cnf. See Section 16.1.2, “Replication and Binary Logging
Options and Variables”, for more details.

A single snapshot of the master suffices for multiple slaves. To set up additional slaves, use the same
master snapshot and follow the slave portion of the procedure just described.

How to Set Up Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1557

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

16.1.1.9 Introducing Additional Slaves to an Existing Replication Environment

To add another slave to an existing replication configuration, you can do so without stopping the master.
Instead, set up the new slave by making a copy of an existing slave, except that you configure the new
slave with a different server-id value.

To duplicate an existing slave:

1. Shut down the existing slave:

shell> mysqladmin shutdown

2. Copy the data directory from the existing slave to the new slave. You can do this by creating an archive
using tar or WinZip, or by performing a direct copy using a tool such as cp or rsync. Ensure that
you also copy the log files and relay log files.

A common problem that is encountered when adding new replication slaves is that the new slave fails
with a series of warning and error messages like these:

071118 16:44:10 [Warning] Neither --relay-log nor --relay-log-index were used; so
replication may break when this MySQL server acts as a slave and has his hostname
changed!! Please use '--relay-log=new_slave_hostname-relay-bin' to avoid this problem.
071118 16:44:10 [ERROR] Failed to open the relay log './old_slave_hostname-relay-bin.003525'
(relay_log_pos 22940879)
071118 16:44:10 [ERROR] Could not find target log during relay log initialization
071118 16:44:10 [ERROR] Failed to initialize the master info structure

This is due to the fact that, if the --relay-log option is not specified, the relay log files contain the
host name as part of their file names. (This is also true of the relay log index file if the --relay-log-
index option is not used. See Section 16.1.2, “Replication and Binary Logging Options and Variables”,
for more information about these options.)

To avoid this problem, use the same value for --relay-log on the new slave that was
used on the existing slave. (If this option was not set explicitly on the existing slave, use
existing_slave_hostname-relay-bin.) If this is not feasible, copy the existing slave's relay
log index file to the new slave and set the --relay-log-index option on the new slave to match
what was used on the existing slave. (If this option was not set explicitly on the existing slave, use
existing_slave_hostname-relay-bin.index.) Alternatively—if you have already tried to start
the new slave (after following the remaining steps in this section) and have encountered errors like
those described previously—then perform the following steps:

a. If you have not already done so, issue a STOP SLAVE on the new slave.

If you have already started the existing slave again, issue a STOP SLAVE on the existing slave as
well.

b. Copy the contents of the existing slave's relay log index file into the new slave's relay log index file,
making sure to overwrite any content already in the file.

c. Proceed with the remaining steps in this section.

3. Copy the master.info and relay-log.info files from the existing slave to the new slave if they
were not located in the data directory. These files hold the current log coordinates for the master's
binary log and the slave's relay log.

4. Start the existing slave.

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1558

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

5. On the new slave, edit the configuration and give the new slave a unique server-id not used by the
master or any of the existing slaves.

6. Start the new slave. The slave will use the information in its master.info file to start the replication
process.

16.1.1.10 Setting the Master Configuration on the Slave

To set up the slave to communicate with the master for replication, you must tell the slave the necessary
connection information. To do this, execute the following statement on the slave, replacing the option
values with the actual values relevant to your system:

mysql> CHANGE MASTER TO
 -> MASTER_HOST='master_host_name',
 -> MASTER_USER='replication_user_name',
 -> MASTER_PASSWORD='replication_password',
 -> MASTER_LOG_FILE='recorded_log_file_name',
 -> MASTER_LOG_POS=recorded_log_position;

Note

Replication cannot use Unix socket files. You must be able to connect to the master
MySQL server using TCP/IP.

The CHANGE MASTER TO statement has other options as well. For example, it is possible to set up secure
replication using SSL. For a full list of options, and information about the maximum permissible length for
the string-valued options, see Section 13.4.2.1, “CHANGE MASTER TO Syntax”.

16.1.2 Replication and Binary Logging Options and Variables

The next few sections contain information about mysqld options and server variables that are used in
replication and for controlling the binary log. Options and variables for use on replication masters and
replication slaves are covered separately, as are options and variables relating to binary logging. A set of
quick-reference tables providing basic information about these options and variables is also included (in
the next section following this one).

 Of particular importance is the --server-id option.

Command-Line Format --server-id=#

Name server_id

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

4294967295

This option is common to both master and slave replication servers, and is used in replication to enable
master and slave servers to identify themselves uniquely. For additional information, see Section 16.1.2.2,

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1559

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

“Replication Master Options and Variables”, and Section 16.1.2.3, “Replication Slave Options and
Variables”.

On the master and each slave, you must use the --server-id option to establish a unique replication ID
in the range from 1 to 232 − 1. “Unique”, means that each ID must be different from every other ID in use by
any other replication master or slave. Example: server-id=3.

If you omit --server-id, the default ID is 0, in which case the master refuses connections from all
slaves, and slaves refuse to connect to the master. In MySQL 5.0, whether the server ID is set to 0
explicitly or the default is allowed to be used, the server sets the server_id system variable to 1; this is a
known issue that is fixed in MySQL 5.7.

For more information, see Section 16.1.1.2, “Setting the Replication Slave Configuration”.

16.1.2.1 Replication and Binary Logging Option and Variable Reference

The following tables list basic information about the MySQL command-line options and system variables
applicable to replication and the binary log.

Table 16.1 Summary of Replication options and variables in MySQL 5.0

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

abort-slave-event-count

Yes No No

Yes No

DESCRIPTION: Option used by mysql-test for debugging and testing of replication

Com_change_master

No No Yes

No Both No

DESCRIPTION: Count of CHANGE MASTER TO statements

Com_show_master_status

No No Yes

No Both No

DESCRIPTION: Count of SHOW MASTER STATUS statements

Com_show_new_master

No No Yes

No Both No

DESCRIPTION: Count of SHOW NEW MASTER statements

Com_show_slave_hosts

No No Yes

No Both No

DESCRIPTION: Count of SHOW SLAVE HOSTS statements

Com_show_slave_status

No No Yes

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1560

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

No Both No

DESCRIPTION: Count of SHOW SLAVE STATUS statements

Com_slave_start

No No Yes

No Both No

DESCRIPTION: Count of START SLAVE statements

Com_slave_stop

No No Yes

No Both No

DESCRIPTION: Count of STOP SLAVE statements

disconnect-slave-event-count

Yes No No

Yes No

DESCRIPTION: Option used by mysql-test for debugging and testing of replication

init_slave

Yes Yes No

Yes Global Yes

DESCRIPTION: Statements that are executed when a slave connects to a master

log-slave-updates

Yes Yes No

Yes Global No

DESCRIPTION: Tells the slave to log the updates performed by its SQL thread to its own binary log

log_slave_updates

Yes Yes No

Yes Global No

DESCRIPTION: Whether the slave should log the updates performed by its SQL thread to its own binary
log. Read-only; set using the --log-slave-updates server option.

master-connect-retry

Yes No No

Yes No

DESCRIPTION: Number of seconds the slave thread will sleep before retrying to connect to the master
in case the master goes down or the connection is lost

master-host

Yes No No

Yes No

DESCRIPTION: Master host name or IP address for replication

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1561

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

master-info-file

Yes No No

Yes No

DESCRIPTION: The location and name of the file that remembers the master and where the I/O
replication thread is in the master's binary logs

master-password

Yes No No

Yes No

DESCRIPTION: The password the slave thread will authenticate with when connecting to master

master-port

Yes No No

Yes No

DESCRIPTION: The port the master is listening on

master-retry-count

Yes No No

Yes No

DESCRIPTION: Number of tries the slave makes to connect to the master before giving up

master-ssl

Yes No No

Yes No

DESCRIPTION: Enable the slave to connect to the master using SSL

master-ssl-ca

Yes No No

Yes No

DESCRIPTION: Master SSL CA file; applies only if master-ssl is enabled

master-ssl-capath

Yes No No

Yes No

DESCRIPTION: Master SSL CA path; applies only if master-ssl is enabled

master-ssl-cert

Yes No No

Yes No

DESCRIPTION: Master SSL certificate file name; applies only if master-ssl is enabled

master-ssl-cipher

Yes No No

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1562

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Yes No

DESCRIPTION: Master SSL cipher; applies only if master-ssl is enabled

master-ssl-key

Yes No No

Yes No

DESCRIPTION: Master SSL key file name; applies only if master-ssl is enabled

master-user

Yes No No

Yes No

DESCRIPTION: The user name the slave thread will use for authentication when connecting to master.
The user must have FILE privilege. If the master user is not set, user test is assumed. The value in
master.info will take precedence if it can be read

relay-log

Yes Yes No

Yes Global No

DESCRIPTION: The location and base name to use for relay logs

relay-log-index

Yes Yes No

Yes Global No

DESCRIPTION: The location and name to use for the file that keeps a list of the last relay logs

relay-log-info-file

Yes No No

Yes No

DESCRIPTION: The location and name of the file that remembers where the SQL replication thread is in
the relay logs

relay_log_index

Yes Yes No

Yes Global No

DESCRIPTION: The name of the relay log index file

relay_log_info_file

Yes Yes No

Yes Global No

DESCRIPTION: The name of the file in which the slave records information about the relay logs

relay_log_purge

Yes Yes No

Yes Global Yes

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1563

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Determines whether relay logs are purged

relay_log_space_limit

Yes Yes No

Yes Global No

DESCRIPTION: Maximum space to use for all relay logs

replicate-do-db

Yes No No

Yes No

DESCRIPTION: Tells the slave SQL thread to restrict replication to the specified database

replicate-do-table

Yes No No

Yes No

DESCRIPTION: Tells the slave SQL thread to restrict replication to the specified table

replicate-ignore-db

Yes No No

Yes No

DESCRIPTION: Tells the slave SQL thread not to replicate to the specified database

replicate-ignore-table

Yes No No

Yes No

DESCRIPTION: Tells the slave SQL thread not to replicate to the specified table

replicate-rewrite-db

Yes No No

Yes No

DESCRIPTION: Updates to a database with a different name than the original

replicate-same-server-id

Yes No No

Yes No

DESCRIPTION: In replication, if set to 1, do not skip events having our server id

replicate-wild-do-table

Yes No No

Yes No

DESCRIPTION: Tells the slave thread to restrict replication to the tables that match the specified
wildcard pattern

replicate-wild-ignore-table

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1564

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Yes No No

Yes No

DESCRIPTION: Tells the slave thread not to replicate to the tables that match the given wildcard pattern

report-host

Yes Yes No

Yes Global No

DESCRIPTION: Host name or IP of the slave to be reported to the master during slave registration

report-password

Yes Yes No

Yes Global No

DESCRIPTION: An arbitrary password that the slave server should report to the master. Not the same as
the password for the MySQL replication user account.

report-port

Yes Yes No

Yes Global No

DESCRIPTION: Port for connecting to slave reported to the master during slave registration

report-user

Yes Yes No

Yes Global No

DESCRIPTION: An arbitrary user name that a slave server should report to the master. Not the same as
the name used with the MySQL replication user account.

rpl_recovery_rank

No Yes No

No Global Yes

DESCRIPTION: Not used; removed in later versions

Rpl_status

No No Yes

No Global No

DESCRIPTION: The status of fail-safe replication (not implemented)

show-slave-auth-info

Yes No No

Yes No

DESCRIPTION: Show user name and password in SHOW SLAVE HOSTS on this master

skip-slave-start

Yes No No

Yes No

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1565

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: If set, slave is not autostarted

slave-load-tmpdir

Yes Yes No

Yes Global No

DESCRIPTION: The location where the slave should put its temporary files when replicating a LOAD
DATA INFILE statement

slave_net_timeout

Yes Yes No

Yes Global Yes

DESCRIPTION: Number of seconds to wait for more data from a master/slave connection before
aborting the read

slave-skip-errors

Yes Yes No

Yes Global No

DESCRIPTION: Tells the slave thread to continue replication when a query returns an error from the
provided list

slave_compressed_protocol

Yes Yes No

Yes Global Yes

DESCRIPTION: Use compression on master/slave protocol

Slave_open_temp_tables

No No Yes

No Global No

DESCRIPTION: Number of temporary tables that the slave SQL thread currently has open

Slave_retried_transactions

No No Yes

No Global No

DESCRIPTION: The total number of times since startup that the replication slave SQL thread has retried
transactions

Slave_running

No No Yes

No Global No

DESCRIPTION: The state of this server as a replication slave (slave I/O thread status)

slave_transaction_retries

Yes Yes No

Yes Global Yes

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1566

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Number of times the slave SQL thread will retry a transaction in case it failed with a
deadlock or elapsed lock wait timeout, before giving up and stopping

sql_slave_skip_counter

No Yes No

No Global Yes

DESCRIPTION: Number of events from the master that a slave server should skip. Not compatible with
GTID replication.

sync_binlog

Yes Yes No

Yes Global Yes

DESCRIPTION: Synchronously flush binary log to disk after every #th event

Section 16.1.2.2, “Replication Master Options and Variables”, provides more detailed information about
options and variables relating to replication master servers. For more information about options and
variables relating to replication slaves, see Section 16.1.2.3, “Replication Slave Options and Variables”.

Table 16.2 Summary of Binary Logging options and variables in MySQL 5.0

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

binlog-do-db

Yes No No

Yes No

DESCRIPTION: Limits binary logging to specific databases

binlog-ignore-db

Yes No No

Yes No

DESCRIPTION: Tells the master that updates to the given database should not be logged to the binary
log

Binlog_cache_disk_use

No No Yes

No Global No

DESCRIPTION: Number of transactions that used a temporary file instead of the binary log cache

binlog_cache_size

Yes Yes No

Yes Global Yes

DESCRIPTION: Size of the cache to hold the SQL statements for the binary log during a transaction

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1567

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Binlog_cache_use

No No Yes

No Global No

DESCRIPTION: Number of transactions that used the temporary binary log cache

Com_show_binlog_events

No No Yes

No Both No

DESCRIPTION: Count of SHOW BINLOG EVENTS statements

Com_show_binlogs

No No Yes

No Both No

DESCRIPTION: Count of SHOW BINLOGS statements

max-binlog-dump-events

Yes No No

Yes No

DESCRIPTION: Option used by mysql-test for debugging and testing of replication

max_binlog_cache_size

Yes Yes No

Yes Global Yes

DESCRIPTION: Can be used to restrict the total size used to cache a multi-statement transaction

max_binlog_size

Yes Yes No

Yes Global Yes

DESCRIPTION: Binary log will be rotated automatically when size exceeds this value

sporadic-binlog-dump-fail

Yes No No

Yes No

DESCRIPTION: Option used by mysql-test for debugging and testing of replication

Section 16.1.2.4, “Binary Log Options and Variables”, provides more detailed information about options
and variables relating to binary logging. For additional general information about the binary log, see
Section 5.4.3, “The Binary Log”.

For information about the sql_log_bin and sql_log_off variables, see Section 5.1.4, “Server System
Variables”.

For a table showing all command-line options, system and status variables used with mysqld, see
Section 5.1.1, “Server Option and Variable Reference”.

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1568

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

16.1.2.2 Replication Master Options and Variables

This section describes the server options and system variables that you can use on replication master
servers. You can specify the options either on the command line or in an option file. You can specify
system variable values using SET.

On the master and each slave, you must use the server-id option to establish a unique replication ID.
For each server, you should pick a unique positive integer in the range from 1 to 232 − 1, and each ID must
be different from every other ID in use by any other replication master or slave. Example: server-id=3.

For options used on the master for controlling binary logging, see Section 16.1.2.4, “Binary Log Options
and Variables”.

System Variables Used on Replication Masters

The following system variables are used in controlling replication masters:

• auto_increment_increment

Introduced 5.0.2

Name auto_increment_increment

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

1

Permitted Values

Max
Value

65535

auto_increment_increment and auto_increment_offset are intended for use with master-
to-master replication, and can be used to control the operation of AUTO_INCREMENT columns. Both
variables have global and session values, and each can assume an integer value between 1 and
65,535 inclusive. Setting the value of either of these two variables to 0 causes its value to be set
to 1 instead. Attempting to set the value of either of these two variables to an integer greater than
65,535 or less than 0 causes its value to be set to 65,535 instead. Attempting to set the value of
auto_increment_increment or auto_increment_offset to a noninteger value gives rise to an
error, and the actual value of the variable remains unchanged.

These two variables affect AUTO_INCREMENT column behavior as follows:

• auto_increment_increment controls the interval between successive column values. For
example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.00 sec)

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1569

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> CREATE TABLE autoinc1
 -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
 Query OK, 0 rows affected (0.04 sec)

mysql> SET @@auto_increment_increment=10;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.01 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

• auto_increment_offset determines the starting point for the AUTO_INCREMENT column value.
Consider the following, assuming that these statements are executed during the same session as the
example given in the description for auto_increment_increment:

mysql> SET @@auto_increment_offset=5;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc2
 -> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO autoinc2 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc2;
+-----+
| col |
+-----+
| 5 |
| 15 |
| 25 |
| 35 |
+-----+

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1570

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

4 rows in set (0.02 sec)

If the value of auto_increment_offset is greater than that of auto_increment_increment, the
value of auto_increment_offset is ignored.

Should one or both of these variables be changed and then new rows inserted into a table containing
an AUTO_INCREMENT column, the results may seem counterintuitive because the series of
AUTO_INCREMENT values is calculated without regard to any values already present in the column, and
the next value inserted is the least value in the series that is greater than the maximum existing value in
the AUTO_INCREMENT column. In other words, the series is calculated like so:

auto_increment_offset + N × auto_increment_increment

where N is a positive integer value in the series [1, 2, 3, ...]. For example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
| 35 |
| 45 |
| 55 |
| 65 |
+-----+
8 rows in set (0.00 sec)

The values shown for auto_increment_increment and auto_increment_offset generate the
series 5 + N × 10, that is, [5, 15, 25, 35, 45, ...]. The greatest value present in the col column prior to the
INSERT is 31, and the next available value in the AUTO_INCREMENT series is 35, so the inserted values
for col begin at that point and the results are as shown for the SELECT query.

It is not possible to confine the effects of these two variables to a single table, and thus they do not take
the place of the sequences offered by some other database management systems; these variables
control the behavior of all AUTO_INCREMENT columns in all tables on the MySQL server. If the global

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1571

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

value of either variable is set, its effects persist until the global value is changed or overridden by
setting the session value, or until mysqld is restarted. If the local value is set, the new value affects
AUTO_INCREMENT columns for all tables into which new rows are inserted by the current user for the
duration of the session, unless the values are changed during that session.

The auto_increment_increment variable was added in MySQL 5.0.2. Its default value is 1. See
Section 16.4.1.1, “Replication and AUTO_INCREMENT”.

auto_increment_increment is supported for use with NDB tables beginning with MySQL 5.0.46.
Previously, setting it when using MySQL Cluster tables produced unpredictable results.

• auto_increment_offset

Introduced 5.0.2

Name auto_increment_offset

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

1

Permitted Values

Max
Value

65535

This variable was introduced in MySQL 5.0.2. Its default value is 1. For particulars, see the description
for auto_increment_increment.

auto_increment_offset is supported for use with NDB tables beginning with MySQL 5.0.46.
Previously, setting it when using MySQL Cluster tables produced unpredictable results.

16.1.2.3 Replication Slave Options and Variables

Startup Options for Replication Slaves

System Variables Used on Replication Slaves

This section describes the server options and system variables that apply to slave replication servers. You
can specify the options either on the command line or in an option file. Many of the options can be set
while the server is running by using the CHANGE MASTER TO statement. You can specify system variable
values using SET.

Server ID. On the master and each slave, you must use the server-id option to establish a unique
replication ID in the range from 1 to 232 − 1. “Unique” means that each ID must be different from every
other ID in use by any other replication master or slave. Example my.cnf file:

[mysqld]
server-id=3

Some slave server replication options are handled in a special way, in the sense that each is ignored if a
master.info file exists when the slave starts and contains a value for the option. The following options
are handled this way:

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1572

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --master-host

• --master-user

• --master-password

• --master-port

• --master-connect-retry

• --master-ssl

• --master-ssl-ca

• --master-ssl-capath

• --master-ssl-cert

• --master-ssl-cipher

• --master-ssl-key

The master.info file format in MySQL 5.0 includes as its first line the number of lines in the file. (See
Section 16.2.2, “Replication Relay and Status Logs”.) If you upgrade an older server (before MySQL
4.1.1) to a newer version, the new server upgrades the master.info file to the new format automatically
when it starts. However, if you downgrade a newer server to a version older than 4.1.1, you should
manually remove the first line before starting the older server for the first time. Note that, in this case, the
downgraded server can no longer use an SSL connection to communicate with the master.

If no master.info file exists when the slave server starts, it uses the values for those options that are
specified in option files or on the command line. This occurs when you start the server as a replication
slave for the very first time, or when you have run RESET SLAVE and then have shut down and restarted
the slave.

If the master.info file exists when the slave server starts, the server uses its contents and ignores
any startup options that correspond to the values listed in the file. Thus, if you start the slave server with
different values of the startup options that correspond to values in the master.info file, the different
values have no effect because the server continues to use the master.info file. To use different values,
the preferred method is to use the CHANGE MASTER TO statement to reset the values while the slave is
running. Alternatively, you can stop the server, remove the master.info file, and restart the server with
different option values.

Suppose that you specify this option in your my.cnf file:

[mysqld]
master-host=some_host

The first time you start the server as a replication slave, it reads and uses that option from the my.cnf file.
The server then records the value in the master.info file. The next time you start the server, it reads the
master host value from the master.info file only and ignores the value in the option file. If you modify the
my.cnf file to specify a different master host of some_other_host, the change still has no effect. You
should use CHANGE MASTER TO instead.

Because the server gives an existing master.info file precedence over the startup options just
described, you might prefer not to use startup options for these values at all, and instead specify them by
using the CHANGE MASTER TO statement. See Section 13.4.2.1, “CHANGE MASTER TO Syntax”.

This example shows a more extensive use of startup options to configure a slave server:

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1573

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

[mysqld]
server-id=2
master-host=db-master.mycompany.com
master-port=3306
master-user=pertinax
master-password=freitag
master-connect-retry=60
report-host=db-slave.mycompany.com

Startup Options for Replication Slaves

The following list describes startup options for controlling replication slave servers. Many of these options
can be set while the server is running by using the CHANGE MASTER TO statement. Others, such as
the --replicate-* options, can be set only when the slave server starts. Replication-related system
variables are discussed later in this section.

• --abort-slave-event-count

Command-Line Format --abort-slave-event-count=#

Type integer

Default 0

Permitted Values

Min
Value

0

When this option is set to some positive integer value other than 0 (the default) it affects replication
behavior as follows: After the slave SQL thread has started, value log events are permitted to be
executed; after that, the slave SQL thread does not receive any more events, just as if the network
connection from the master were cut. The slave thread continues to run, and the output from SHOW
SLAVE STATUS displays Yes in both the Slave_IO_Running and the Slave_SQL_Running columns,
but no further events are read from the relay log.

This option is used internally by the MySQL test suite for replication testing and debugging. It is not
intended for use in a production setting.

• --disconnect-slave-event-count

Command-Line Format --disconnect-slave-event-count=#

Type integerPermitted Values

Default 0

This option is used internally by the MySQL test suite for replication testing and debugging.

• --log-slave-updates

Command-Line Format --log-slave-updates

Name log_slave_updates

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default OFF

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1574

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Normally, a slave does not log to its own binary log any updates that are received from a master server.
This option tells the slave to log the updates performed by its SQL thread to its own binary log. For this
option to have any effect, the slave must also be started with the --log-bin option to enable binary
logging. --log-slave-updates is used when you want to chain replication servers. For example, you
might want to set up replication servers using this arrangement:

A -> B -> C

Here, A serves as the master for the slave B, and B serves as the master for the slave C. For this to
work, B must be both a master and a slave. You must start both A and B with --log-bin to enable
binary logging, and B with the --log-slave-updates option so that updates received from A are
logged by B to its binary log.

• --log-warnings[=level]

Command-Line Format --log-warnings[=#]

Name log_warnings

Variable
Scope

Global, Session

System Variable

Dynamic
Variable

Yes

Type integer

Default 1

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 1

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

This option causes a server to print more messages to the error log about what it is doing. With
respect to replication, the server generates warnings that it succeeded in reconnecting after a network/
connection failure, and informs you as to how each slave thread started. This option is enabled (1) by
default; to disable it, use --log-warnings=0. Aborted connections are not logged to the error log
unless the value is greater than 1.

Note that the effects of this option are not limited to replication. It produces warnings across a spectrum
of server activities.

• --master-connect-retry=seconds

Command-Line Format --master-connect-retry=#

Type integerPermitted Values

Default 60

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1575

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The number of seconds that the slave thread sleeps before trying to reconnect to the master in case
the master goes down or the connection is lost. The value in the master.info file takes precedence
if it can be read. If not set, the default is 60. Connection retries are not invoked until the slave times
out reading data from the master according to the value of --slave-net-timeout. The number of
reconnection attempts is limited by the --master-retry-count option.

• --master-host=host_name

Command-Line Format --master-host=name

Permitted Values Type string

The host name or IP address of the master replication server. The value in master.info takes
precedence if it can be read. If no master host is specified, the slave thread does not start.

• --master-info-file=file_name

Command-Line Format --master-info-file=file_name

Type file namePermitted Values

Default master.info

The name to use for the file in which the slave records information about the master. The default name
is master.info in the data directory. For information about the format of this file, see Section 16.2.2.2,
“Slave Status Logs”.

• --master-password=password

Command-Line Format --master-password=name

Permitted Values Type string

The password of the account that the slave thread uses for authentication when it connects to the
master. The value in the master.info file takes precedence if it can be read. If not set, an empty
password is assumed.

• --master-port=port_number

Command-Line Format --master-port=#

Type integerPermitted Values

Default 3306

The TCP/IP port number that the master is listening on. The value in the master.info file takes
precedence if it can be read. If not set, the compiled-in setting is assumed (normally 3306).

• --master-retry-count=count

Command-Line Format --master-retry-count=#

Type integer

Default 86400

Permitted Values (32-bit
platforms)

Min
Value

0

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1576

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Max
Value

4294967295

Type integer

Default 86400

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709551615

The number of times that the slave tries to connect to the master before giving up. Reconnects are
attempted at intervals set by the --master-connect-retry option (or the MASTER_CONNECT_RETRY
option of the CHANGE MASTER TO statement) and reconnects are triggered when data reads by the
slave time out according to the --slave-net-timeout option. The default value is 86400. A value of 0
means “infinite”; the slave attempts to connect forever.

• --master-ssl, --master-ssl-ca=file_name, --master-ssl-
capath=directory_name, --master-ssl-cert=file_name, --master-ssl-
cipher=cipher_list, --master-ssl-key=file_name

These options are used for setting up a secure replication connection to the master server using SSL.
Their meanings are the same as the corresponding --ssl, --ssl-ca, --ssl-capath, --ssl-cert,
--ssl-cipher, --ssl-key options that are described in Section 6.3.6.5, “Command Options for
Secure Connections”. The values in the master.info file take precedence if they can be read.

• --master-user=user_name

Command-Line Format --master-user=name

Type stringPermitted Values

Default test

The user name of the account that the slave thread uses for authentication when it connects to the
master. This account must have the REPLICATION SLAVE privilege. The value in the master.info
file takes precedence if it can be read. If the master user name is not set, the name test is assumed.

• --max-relay-log-size=size

Command-Line Format --max_relay_log_size=#

Name max_relay_log_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values

Max
Value

1073741824

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1577

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The size at which the server rotates relay log files automatically. If this value is nonzero, the relay log is
rotated automatically when its size exceeds this value. If this value is zero (the default), the size at which
relay log rotation occurs is determined by the value of max_binlog_size. For more information, see
Section 16.2.2.1, “The Slave Relay Log”.

• --relay-log=file_name

Command-Line Format --relay-log=file_name

Name relay_log

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The base name for the relay log. The default base name is host_name-relay-bin. The server writes
the file in the data directory unless the base name is given with a leading absolute path name to specify
a different directory. The server creates relay log files in sequence by adding a numeric suffix to the base
name.

Due to the manner in which MySQL parses server options, if you specify this option, you must supply a
value; the default base name is used only if the option is not actually specified. If you use the --relay-
log option without specifying a value, unexpected behavior is likely to result; this behavior depends
on the other options used, the order in which they are specified, and whether they are specified on the
command line or in an option file. For more information about how MySQL handles server options, see
Section 4.2.3, “Specifying Program Options”.

If you specify this option, the value specified is also used as the base name for the relay log index file.
You can override this behavior by specifying a different relay log index file base name using the --
relay-log-index option.

You may find the --relay-log option useful in performing the following tasks:

• Creating relay logs whose names are independent of host names.

• If you need to put the relay logs in some area other than the data directory because your relay logs
tend to be very large and you do not want to decrease max_relay_log_size.

• To increase speed by using load-balancing between disks.

• --relay-log-index=file_name

Command-Line Format --relay-log-index=file_name

Name relay_log_index

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1578

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The name to use for the relay log index file. The default name is host_name-relay-bin.index in the
data directory, where host_name is the name of the slave server.

Due to the manner in which MySQL parses server options, if you specify this option, you must supply
a value; the default base name is used only if the option is not actually specified. If you use the --
relay-log-index option without specifying a value, unexpected behavior is likely to result; this
behavior depends on the other options used, the order in which they are specified, and whether they
are specified on the command line or in an option file. For more information about how MySQL handles
server options, see Section 4.2.3, “Specifying Program Options”.

If you specify this option, the value specified is also used as the base name for the relay logs. You can
override this behavior by specifying a different relay log file base name using the --relay-log option.

• --relay-log-info-file=file_name

Command-Line Format --relay-log-info-file=file_name

Type file namePermitted Values

Default relay-log.info

The name to use for the file in which the slave records information about the relay logs. The default
name is relay-log.info in the data directory. For information about the format of this file, see
Section 16.2.2.2, “Slave Status Logs”.

• --relay-log-purge={0|1}

Command-Line Format --relay_log_purge

Name relay_log_purge

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default TRUE

Disable or enable automatic purging of relay logs as soon as they are no longer needed. The default
value is 1 (enabled). This is a global variable that can be changed dynamically with SET GLOBAL
relay_log_purge = N.

• --relay-log-space-limit=size

Command-Line Format --relay_log_space_limit=#

Name relay_log_space_limit

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type integerPermitted Values (32-bit
platforms) Default 0

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1579

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Min
Value

0

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

This option places an upper limit on the total size in bytes of all relay logs on the slave. A value of 0
means “no limit.” This is useful for a slave server host that has limited disk space. When the limit is
reached, the I/O thread stops reading binary log events from the master server until the SQL thread
has caught up and deleted some unused relay logs. Note that this limit is not absolute: There are cases
where the SQL thread needs more events before it can delete relay logs. In that case, the I/O thread
exceeds the limit until it becomes possible for the SQL thread to delete some relay logs because not
doing so would cause a deadlock. You should not set --relay-log-space-limit to less than twice
the value of --max-relay-log-size (or --max-binlog-size if --max-relay-log-size is 0).
In that case, there is a chance that the I/O thread waits for free space because --relay-log-space-
limit is exceeded, but the SQL thread has no relay log to purge and is unable to satisfy the I/O thread.
This forces the I/O thread to ignore --relay-log-space-limit temporarily.

• --replicate-do-db=db_name

Command-Line Format --replicate-do-db=name

Permitted Values Type string

Tell the slave SQL thread to restrict replication to statements where the default database (that is, the
one selected by USE) is db_name. To specify more than one database, use this option multiple times,
once for each database. Note that this does not replicate cross-database statements such as UPDATE
some_db.some_table SET foo='bar' while having selected a different database or no database.

Warning

To specify multiple databases you must use multiple instances of this option.
Because database names can contain commas, if you supply a comma
separated list then the list will be treated as the name of a single database.

An example of what does not work as you might expect: If the slave is started with --replicate-
do-db=sales and you issue the following statements on the master, the UPDATE statement is not
replicated:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “check just the default database” behavior is that it is difficult from the statement
alone to know whether it should be replicated (for example, if you are using multiple-table DELETE or
multiple-table UPDATE statements that go across multiple databases). It is also faster to check only the
default database rather than all databases if there is no need.

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1580

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you need cross-database updates to work, use --replicate-wild-do-table=db_name.%
instead. See Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.

Beginning with MySQL 5.0.84, this option has no effect on BEGIN, COMMIT, or ROLLBACK statements.
(Bug #43263)

• --replicate-ignore-db=db_name

Command-Line Format --replicate-ignore-db=name

Permitted Values Type string

Tells the slave SQL thread not to replicate any statement where the default database (that is, the one
selected by USE) is db_name. To specify more than one database to ignore, use this option multiple
times, once for each database. You should not use this option if you are using cross-database updates
and you do not want these updates to be replicated. See Section 16.2.3, “How Servers Evaluate
Replication Filtering Rules”.

An example of what does not work as you might expect: If the slave is started with --replicate-
ignore-db=sales and you issue the following statements on the master, the UPDATE statement is
replicated:

USE prices;
UPDATE sales.january SET amount=amount+1000;

Note

In the preceding example the statement is replicated because --replicate-
ignore-db only applies to the default database (set through the USE statement).
Because the sales database was specified explicitly in the statement, the
statement has not been filtered.

If you need cross-database updates to work, use --replicate-wild-ignore-table=db_name.%
instead. See Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.

Beginning with MySQL 5.0.84, this option has no effect on BEGIN, COMMIT, or ROLLBACK statements.
(Bug #43263)

• --replicate-do-table=db_name.tbl_name

Command-Line Format --replicate-do-table=name

Permitted Values Type string

Tells the slave SQL thread to restrict replication to the specified table. To specify more than one table,
use this option multiple times, once for each table. This works for both cross-database updates and
default database updates, in contrast to --replicate-do-db. See Section 16.2.3, “How Servers
Evaluate Replication Filtering Rules”.

This option affects only statements that apply to tables. It does not affect statements that apply only to
other database objects, such as stored routines. To filter statements operating on stored routines, use
one or more of the --replicate-*-db options.

• --replicate-ignore-table=db_name.tbl_name

Command-Line Format --replicate-ignore-table=name

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1581

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Permitted Values Type string

Tells the slave SQL thread not to replicate any statement that updates the specified table, even if any
other tables might be updated by the same statement. To specify more than one table to ignore, use
this option multiple times, once for each table. This works for cross-database updates, in contrast to --
replicate-ignore-db. See Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.

This option affects only statements that apply to tables. It does not affect statements that apply only to
other database objects, such as stored routines. To filter statements operating on stored routines, use
one or more of the --replicate-*-db options.

• --replicate-rewrite-db=from_name->to_name

Command-Line Format --replicate-rewrite-db=old_name->new_name

Permitted Values Type string

Tells the slave to translate the default database (that is, the one selected by USE) to to_name if it was
from_name on the master. Only statements involving tables are affected (not statements such as
CREATE DATABASE, DROP DATABASE, and ALTER DATABASE), and only if from_name is the default
database on the master. To specify multiple rewrites, use this option multiple times. The server uses the
first one with a from_name value that matches. The database name translation is done before the --
replicate-* rules are tested.

Statements in which table names are qualified with database names when using this option do not
work with table-level replication filtering options such as --replicate-do-table. Suppose we have
a database named a on the master, one named b on the slave, each containing a table t, and have
started the master with --replicate-rewrite-db='a->b'. At a later point in time, we execute
DELETE FROM a.t. In this case, no relevant filtering rule works, for the reasons shown here:

1. --replicate-do-table=a.t does not work because the slave has table t in database b.

2. --replicate-do-table=b.t does not match the original statement and so is ignored.

3. --replicate-do-table=*.t is handled identically to --replicate-do-table=a.t, and thus
does not work, either.

Similarly, the --replication-rewrite-db option does not work with cross-database updates.

If you use this option on the command line and the “>” character is special to your command interpreter,
quote the option value. For example:

shell> mysqld --replicate-rewrite-db="olddb->newdb"

• --replicate-same-server-id

Introduced 5.0.1

Command-Line Format --replicate-same-server-id

Type booleanPermitted Values

Default FALSE

To be used on slave servers. Usually you should use the default setting of 0, to prevent infinite loops
caused by circular replication. If set to 1, the slave does not skip events having its own server ID.
Normally, this is useful only in rare configurations. Cannot be set to 1 if --log-slave-updates is

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1582

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

used. By default, the slave I/O thread does not write binary log events to the relay log if they have the
slave's server ID (this optimization helps save disk usage). If you want to use --replicate-same-
server-id, be sure to start the slave with this option before you make the slave read its own events
that you want the slave SQL thread to execute.

• --replicate-wild-do-table=db_name.tbl_name

Command-Line Format --replicate-wild-do-table=name

Permitted Values Type string

Tells the slave thread to restrict replication to statements where any of the updated tables match the
specified database and table name patterns. Patterns can contain the “%” and “_” wildcard characters,
which have the same meaning as for the LIKE pattern-matching operator. To specify more than one
table, use this option multiple times, once for each table. This works for cross-database updates. See
Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.

This option applies to tables, views, and triggers. It does not apply to stored procedures and functions.
To filter statements operating on the latter objects, use one or more of the --replicate-*-db options.

Example: --replicate-wild-do-table=foo%.bar% replicates only updates that use a table where
the database name starts with foo and the table name starts with bar.

If the table name pattern is %, it matches any table name and the option also applies to database-level
statements (CREATE DATABASE, DROP DATABASE, and ALTER DATABASE). For example, if you use
--replicate-wild-do-table=foo%.%, database-level statements are replicated if the database
name matches the pattern foo%.

To include literal wildcard characters in the database or table name patterns, escape them with a
backslash. For example, to replicate all tables of a database that is named my_own%db, but not replicate
tables from the my1ownAABCdb database, you should escape the “_” and “%” characters like this: --
replicate-wild-do-table=my_own\%db. If you use the option on the command line, you might
need to double the backslashes or quote the option value, depending on your command interpreter. For
example, with the bash shell, you would need to type --replicate-wild-do-table=my_own\\
%db.

• --replicate-wild-ignore-table=db_name.tbl_name

Command-Line Format --replicate-wild-ignore-table=name

Permitted Values Type string

Tells the slave thread not to replicate a statement where any table matches the given wildcard pattern.
To specify more than one table to ignore, use this option multiple times, once for each table. This works
for cross-database updates. See Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.

Example: --replicate-wild-ignore-table=foo%.bar% does not replicate updates that use a
table where the database name starts with foo and the table name starts with bar.

For information about how matching works, see the description of the --replicate-wild-do-table
option. The rules for including literal wildcard characters in the option value are the same as for --
replicate-wild-ignore-table as well.

• --report-host=host_name

Command-Line Format --report-host=host_name

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1583

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Permitted Values Type string

The host name or IP address of the slave to be reported to the master during slave registration. This
value appears in the output of SHOW SLAVE HOSTS on the master server. Leave the value unset if
you do not want the slave to register itself with the master. Note that it is not sufficient for the master to
simply read the IP address of the slave from the TCP/IP socket after the slave connects. Due to NAT
and other routing issues, that IP may not be valid for connecting to the slave from the master or other
hosts.

• --report-password=password

Command-Line Format --report-password=name

Permitted Values Type string

The account password of the slave to be reported to the master during slave registration. This value
appears in the output of SHOW SLAVE HOSTS on the master server if the --show-slave-auth-info
option is given.

Although the name of this option might imply otherwise, --report-password is not connected to the
MySQL user privilege system and so is not necessarily (or even likely to be) the same as the password
for the MySQL replication user account.

• --report-port=slave_port_num

Command-Line Format --report-port=#

Type integer

Default 3306

Min
Value

0

Permitted Values

Max
Value

65535

The TCP/IP port number for connecting to the slave, to be reported to the master during slave
registration. Set this only if the slave is listening on a nondefault port or if you have a special tunnel from
the master or other clients to the slave. If you are not sure, do not use this option.

• --report-user=user_name

Command-Line Format --report-user=name

Permitted Values Type string

The account user name of the slave to be reported to the master during slave registration. This value
appears in the output of SHOW SLAVE HOSTS on the master server if the --show-slave-auth-info
option is given.

Although the name of this option might imply otherwise, --report-user is not connected to the
MySQL user privilege system and so is not necessarily (or even likely to be) the same as the name of
the MySQL replication user account.

• --show-slave-auth-info

Command-Line Format --show-slave-auth-info

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1584

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type booleanPermitted Values

Default FALSE

Display slave user names and passwords in the output of SHOW SLAVE HOSTS on the master server for
slaves started with the --report-user and --report-password options.

• --skip-slave-start

Command-Line Format --skip-slave-start

Type booleanPermitted Values

Default FALSE

Tells the slave server not to start the slave threads when the server starts. To start the threads later, use
a START SLAVE statement.

• --slave_compressed_protocol={0|1}

Command-Line Format --slave_compressed_protocol

Name slave_compressed_protocol

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

If this option is set to 1, use compression for the slave/master protocol if both the slave and the master
support it. The default is 0 (no compression).

• --slave-load-tmpdir=dir_name

Command-Line Format --slave-load-tmpdir=dir_name

Name slave_load_tmpdir

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type directory namePermitted Values

Default /tmp

The name of the directory where the slave creates temporary files. This option is by default equal to the
value of the tmpdir system variable. When the slave SQL thread replicates a LOAD DATA INFILE
statement, it extracts the file to be loaded from the relay log into temporary files, and then loads these
into the table. If the file loaded on the master is huge, the temporary files on the slave are huge, too.
Therefore, it might be advisable to use this option to tell the slave to put temporary files in a directory
located in some file system that has a lot of available space. In that case, the relay logs are huge as well,
so you might also want to use the --relay-log option to place the relay logs in that file system.

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1585

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The directory specified by this option should be located in a disk-based file system (not a memory-based
file system) because the temporary files used to replicate LOAD DATA INFILE must survive machine
restarts. The directory also should not be one that is cleared by the operating system during the system
startup process.

• --slave-net-timeout=seconds

Command-Line Format --slave-net-timeout=#

Name slave_net_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 3600

Permitted Values

Min
Value

1

The number of seconds to wait for more data from the master before the slave considers the connection
broken, aborts the read, and tries to reconnect. The first retry occurs immediately after the timeout. The
interval between retries is controlled by the CHANGE MASTER TO statement or --master-connect-
retry option and the number of reconnection attempts is limited by the --master-retry-count
option. The default is 3600 seconds (one hour).

• --slave-skip-errors=[err_code1,err_code2,...|all]

Command-Line Format --slave-skip-errors=name

Name slave_skip_errors

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type string

Default OFF

OFF

[list of error codes]

Permitted Values

Valid
Values

all

Normally, replication stops when an error occurs on the slave. This gives you the opportunity to resolve
the inconsistency in the data manually. This option tells the slave SQL thread to continue replication
when a statement returns any of the errors listed in the option value.

Do not use this option unless you fully understand why you are getting errors. If there are no bugs in
your replication setup and client programs, and no bugs in MySQL itself, an error that stops replication
should never occur. Indiscriminate use of this option results in slaves becoming hopelessly out of
synchrony with the master, with you having no idea why this has occurred.

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1586

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For error codes, you should use the numbers provided by the error message in your slave error log and
in the output of SHOW SLAVE STATUS. Appendix B, Errors, Error Codes, and Common Problems, lists
server error codes.

You can also (but should not) use the very nonrecommended value of all to cause the slave to ignore
all error messages and keeps going regardless of what happens. Needless to say, if you use all, there
are no guarantees regarding the integrity of your data. Please do not complain (or file bug reports) in this
case if the slave's data is not anywhere close to what it is on the master. You have been warned.

Examples:

--slave-skip-errors=1062,1053
--slave-skip-errors=all

System Variables Used on Replication Slaves

The following list describes system variables for controlling replication slave servers. They can be set
at server startup and some of them can be changed at runtime using SET. Server options used with
replication slaves are listed earlier in this section.

• init_slave

Command-Line Format --init-slave=name

Name init_slave

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type string

This variable is similar to init_connect, but is a string to be executed by a slave server each time the
SQL thread starts. The format of the string is the same as for the init_connect variable.

Note

The SQL thread sends an acknowledgment to the client before it executes
init_slave. Therefore, it is not guaranteed that init_slave has been
executed when START SLAVE returns. See Section 13.4.2.7, “START SLAVE
Syntax”, for more information.

• relay_log

Command-Line Format --relay-log=file_name

Name relay_log

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

The name of the relay log file.

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1587

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• relay_log_index

Command-Line Format --relay-log-index

Name relay_log_index

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type file namePermitted Values

Default *host_name*-relay-bin.index

The name of the relay log index file. The default name is host_name-relay-bin.index in the data
directory, where host_name is the name of the slave server.

• relay_log_info_file

Command-Line Format --relay-log-info-file=file_name

Name relay_log_info_file

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type file namePermitted Values

Default relay-log.info

The name of the file in which the slave records information about the relay logs. The default name is
relay-log.info in the data directory.

• rpl_recovery_rank

This variable is unused, and is removed in MySQL 5.6.

• slave_compressed_protocol

Command-Line Format --slave_compressed_protocol

Name slave_compressed_protocol

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default OFF

Whether to use compression of the slave/master protocol if both the slave and the master support it.

• slave_load_tmpdir

Command-Line Format --slave-load-tmpdir=dir_name

System Variable Name slave_load_tmpdir

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1588

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Variable
Scope

Global

Dynamic
Variable

No

Type directory namePermitted Values

Default /tmp

The name of the directory where the slave creates temporary files for replicating LOAD DATA INFILE
statements.

• slave_net_timeout

Command-Line Format --slave-net-timeout=#

Name slave_net_timeout

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 3600

Permitted Values

Min
Value

1

The number of seconds to wait for more data from a master/slave connection before aborting the read.
This timeout applies only to TCP/IP connections, not to connections made using Unix socket files,
named pipes, or shared memory.

• slave_skip_errors

Command-Line Format --slave-skip-errors=name

Name slave_skip_errors

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type string

Default OFF

OFF

[list of error codes]

Permitted Values

Valid
Values

all

Normally, replication stops when an error occurs on the slave. This gives you the opportunity to resolve
the inconsistency in the data manually. This variable tells the slave SQL thread to continue replication
when a statement returns any of the errors listed in the variable value.

• slave_transaction_retries

Introduced 5.0.3

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1589

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Command-Line Format --slave_transaction_retries=#

Name slave_transaction_retries

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 10

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 10

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

If a replication slave SQL thread fails to execute a transaction because of an InnoDB deadlock or
because the transaction's execution time exceeded InnoDB's innodb_lock_wait_timeout or
NDBCLUSTER's TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout,
it automatically retries slave_transaction_retries times before stopping with an error. Prior to
MySQL 5.0.3, the default is 0, and you must explicitly set the value greater than 0 to enable the “retry”
behavior. In MySQL 5.0.3 or newer, the default is 10.

• sql_slave_skip_counter

Name sql_slave_skip_counter

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type integer

The number of events from the master that a slave server should skip.

Important

If skipping the number of events specified by setting this variable would cause
the slave to begin in the middle of an event group, the slave continues to skip
until it finds the beginning of the next event group and begins from that point. For
more information, see Section 13.4.2.6, “SET GLOBAL sql_slave_skip_counter
Syntax”.

16.1.2.4 Binary Log Options and Variables

Startup Options Used with Binary Logging

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1590

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

System Variables Used with Binary Logging

You can use the mysqld options and system variables that are described in this section to affect the
operation of the binary log as well as to control which statements are written to the binary log. For
additional information about the binary log, see Section 5.4.3, “The Binary Log”. For additional information
about using MySQL server options and system variables, see Section 5.1.3, “Server Command Options”,
and Section 5.1.4, “Server System Variables”.

Startup Options Used with Binary Logging

The following list describes startup options for enabling and configuring the binary log. System variables
used with binary logging are discussed later in this section.

• --log-bin[=base_name]

Command-Line Format --log-bin

Name log_bin

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Permitted Values Type file name

Enable binary logging. The server logs all statements that change data to the binary log, which is used
for backup and replication. See Section 5.4.3, “The Binary Log”.

The option value, if given, is the base name for the log sequence. The server creates binary log files in
sequence by adding a numeric suffix to the base name. It is recommended that you specify a base name
(see Section B.5.7, “Known Issues in MySQL”, for the reason). Otherwise, MySQL uses host_name-
bin as the base name.

Setting this option causes the log_bin system variable to be set to ON (or 1), and not to the base name.
This is a known issue; see Bug #19614 for more information.

• --log-bin-index[=file_name]

Command-Line Format --log-bin-index=file_name

Permitted Values Type file name

The index file for binary log file names. See Section 5.4.3, “The Binary Log”. If you omit the file name,
and if you did not specify one with --log-bin, MySQL uses host_name-bin.index as the file name.

• --log-bin-trust-function-creators[={0|1}]

Introduced 5.0.16

Command-Line Format --log-bin-trust-function-creators

Name log_bin_trust_function_creators

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Permitted Values Type boolean

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1591

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Default FALSE

This option sets the corresponding log_bin_trust_function_creators system variable. If no
argument is given, the option sets the variable to 1. log_bin_trust_function_creators affects
how MySQL enforces restrictions on stored function and trigger creation. See Section 18.6, “Binary
Logging of Stored Programs”.

This option was added in MySQL 5.0.16.

• --log-bin-trust-routine-creators[={0|1}]

Introduced 5.0.6

Deprecated 5.0.16

Command-Line Format --log-bin-trust-routine-creators

Name log_bin_trust_routine_creators

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type booleanPermitted Values

Default FALSE

This is the old name for --log-bin-trust-function-creators. Before MySQL
5.0.16, it also applies to stored procedures, not just stored functions and sets the
log_bin_trust_routine_creators system variable. As of 5.0.16, this option is deprecated. It is
recognized for backward compatibility but its use results in a warning.

This option was added in MySQL 5.0.6.

Statement selection options. The options in the following list affect which statements are written to
the binary log, and thus sent by a replication master server to its slaves. There are also options for slave
servers that control which statements received from the master should be executed or ignored. For details,
see Section 16.1.2.3, “Replication Slave Options and Variables”.

• --binlog-do-db=db_name

Command-Line Format --binlog-do-db=name

Permitted Values Type string

This option affects binary logging in a manner similar to the way that --replicate-do-db affects
replication.

Tell the server to restrict binary logging to updates for which the default database is db_name (that is,
the database selected by USE). All other databases that are not explicitly mentioned are ignored. If you
use this option, you should ensure that you do updates only in the default database.

There is an exception to this for CREATE DATABASE, ALTER DATABASE, and DROP DATABASE
statements. The server uses the database named in the statement (not the default database) to decide
whether it should log the statement.

An example of what does not work as you might expect: If the server is started with --binlog-do-
db=sales and you issue the following statements, the UPDATE statement is not logged:

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1592

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “just check the default database” behavior is that it is difficult from the statement
alone to know whether it should be replicated (for example, if you are using multiple-table DELETE
statements or multiple-table UPDATE statements that act across multiple databases). It is also faster to
check only the default database rather than all databases if there is no need.

Another case which may not be self-evident occurs when a given database is replicated even though it
was not specified when setting the option. If the server is started with --binlog-do-db=sales, the
following UPDATE statement is logged even though prices was not included when setting --binlog-
do-db:

USE sales;
UPDATE prices.discounts SET percentage = percentage + 10;

Because sales is the default database when the UPDATE statement is issued, the UPDATE is logged.

Important

To log multiple databases, use this option multiple times, specifying the option
once for each database to be logged. Because database names can contain
commas, the list will be treated as the name of a single database if you supply a
comma-separated list.

• --binlog-ignore-db=db_name

Command-Line Format --binlog-ignore-db=name

Permitted Values Type string

This option affects binary logging in a manner similar to the way that --replicate-ignore-db affects
replication.

Tell the server to suppress binary logging of updates for which the default database is db_name (that is,
the database selected by USE). If you use this option, you should ensure that you do updates only in the
default database.

As with the --binlog-do-db option, there is an exception for the CREATE DATABASE, ALTER
DATABASE, and DROP DATABASE statements. The server uses the database named in the statement
(not the default database) to decide whether it should log the statement.

An example of what does not work as you might expect: If the server is started with binlog-ignore-
db=sales, and you run USE prices; UPDATE sales.january SET amount = amount +
1000;, this statement is written into the binary log.

Important

To ignore multiple databases, use this option multiple times, specifying the option
once for each database to be ignored. Because database names can contain
commas, the list will be treated as the name of a single database if you supply a
comma-separated list.

Testing and debugging options. The following binary log options are used in replication testing and
debugging. They are not intended for use in normal operations.

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1593

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --max-binlog-dump-events=N

Command-Line Format --max-binlog-dump-events=#

Type integerPermitted Values

Default 0

This option is used internally by the MySQL test suite for replication testing and debugging.

• --sporadic-binlog-dump-fail

Command-Line Format --sporadic-binlog-dump-fail

Type booleanPermitted Values

Default FALSE

This option is used internally by the MySQL test suite for replication testing and debugging.

System Variables Used with Binary Logging

The following list describes system variables for controlling binary logging. They can be set at server
startup and some of them can be changed at runtime using SET. Server options used to control binary
logging are listed earlier in this section. For information about the sql_log_bin and sql_log_off
variables, see Section 5.1.4, “Server System Variables”.

• log_bin

Name log_bin

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Whether the binary log is enabled. If the --log-bin option is used, then the value of this variable is
ON; otherwise it is OFF. This variable reports only on the status of binary logging (enabled or disabled); it
does not actually report the value to which --log-bin is set.

See Section 5.4.3, “The Binary Log”.

• log_slave_updates

Command-Line Format --log-slave-updates

Name log_slave_updates

Variable
Scope

Global

System Variable

Dynamic
Variable

No

Type booleanPermitted Values

Default FALSE

Whether updates received by a slave server from a master server should be logged to the slave's
own binary log. Binary logging must be enabled on the slave for this variable to have any effect. See
Section 16.1.2.3, “Replication Slave Options and Variables”.

Replication and Binary Logging Options and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1594

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• max_binlog_cache_size

Command-Line Format --max_binlog_cache_size=#

Name max_binlog_cache_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 4294967295

Min
Value

4096

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 18446744073709547520

Min
Value

4096

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

If a multiple-statement transaction requires more than this many bytes of memory, the server generates
a Multi-statement transaction required more than 'max_binlog_cache_size'
bytes of storage error. The minimum value is 4096. The maximum and default values are 4GB on
32-bit platforms and 16EB (exabytes) on 64-bit platforms. The maximum recommended value on 64-
bit platforms is 4GB; this is due to the fact that MySQL currently cannot work with binary log positions
greater than 4GB.

In MySQL 5.0, a change in max_binlog_cache_size takes immediate effect for all active sessions.

• max_binlog_size

Command-Line Format --max_binlog_size=#

Name max_binlog_size

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 1073741824

Min
Value

4096

Permitted Values

Max
Value

1073741824

Common Replication Administration Tasks

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1595

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If a write to the binary log causes the current log file size to exceed the value of this variable, the server
rotates the binary logs (closes the current file and opens the next one). The minimum value is 4096
bytes. The maximum and default value is 1GB.

A transaction is written in one chunk to the binary log, so it is never split between several binary logs.
Therefore, if you have big transactions, you might see binary log files larger than max_binlog_size.

If max_relay_log_size is 0, the value of max_binlog_size applies to relay logs as well.

• sync_binlog

Introduced 5.0.1

Command-Line Format --sync-binlog=#

Name sync_binlog

Variable
Scope

Global

System Variable

Dynamic
Variable

Yes

Type integer

Default 0

Min
Value

0

Permitted Values (32-bit
platforms)

Max
Value

4294967295

Type integer

Default 0

Min
Value

0

Permitted Values (64-bit
platforms)

Max
Value

18446744073709547520

If the value of this variable is greater than 0, the MySQL server synchronizes its binary log to disk (using
fdatasync()) after every sync_binlog writes to the binary log. There is one write to the binary log
per statement if autocommit is enabled, and one write per transaction otherwise. The default value of
sync_binlog is 0, which does no synchronizing to disk. A value of 1 is the safest choice because in the
event of a crash you lose at most one statement or transaction from the binary log. However, it is also
the slowest choice (unless the disk has a battery-backed cache, which makes synchronization very fast).

If the value of sync_binlog is 0 (the default), no extra flushing is done. The server relies on the
operating system to flush the file contents occasionally as for any other file.

16.1.3 Common Replication Administration Tasks

Once replication has been started it should execute without requiring much regular administration.
Depending on your replication environment, you will want to check the replication status of each slave
periodically, daily, or even more frequently.

Common Replication Administration Tasks

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1596

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

16.1.3.1 Checking Replication Status

The most common task when managing a replication process is to ensure that replication is taking place
and that there have been no errors between the slave and the master. The primary statement for this is
SHOW SLAVE STATUS, which you must execute on each slave:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************
 Slave_IO_State: Waiting for master to send event
 Master_Host: master1
 Master_User: root
 Master_Port: 3306
 Connect_Retry: 60
 Master_Log_File: mysql-bin.000004
 Read_Master_Log_Pos: 931
 Relay_Log_File: slave1-relay-bin.000056
 Relay_Log_Pos: 950
 Relay_Master_Log_File: mysql-bin.000004
 Slave_IO_Running: Yes
 Slave_SQL_Running: Yes
 Replicate_Do_DB:
 Replicate_Ignore_DB:
 Replicate_Do_Table:
 Replicate_Ignore_Table:
 Replicate_Wild_Do_Table:
Replicate_Wild_Ignore_Table:
 Last_Errno: 0
 Last_Error:
 Skip_Counter: 0
 Exec_Master_Log_Pos: 931
 Relay_Log_Space: 1365
 Until_Condition: None
 Until_Log_File:
 Until_Log_Pos: 0
 Master_SSL_Allowed: No
 Master_SSL_CA_File:
 Master_SSL_CA_Path:
 Master_SSL_Cert:
 Master_SSL_Cipher:
 Master_SSL_Key:
 Seconds_Behind_Master: 0

The key fields from the status report to examine are:

• Slave_IO_State: The current status of the slave. See Section 8.14.6, “Replication Slave I/O Thread
States”, and Section 8.14.7, “Replication Slave SQL Thread States”, for more information.

• Slave_IO_Running: Whether the I/O thread for reading the master's binary log is running. Normally,
you want this to be Yes unless you have not yet started replication or have explicitly stopped it with STOP
SLAVE.

• Slave_SQL_Running: Whether the SQL thread for executing events in the relay log is running. As with
the I/O thread, this should normally be Yes.

• Last_Error: The last error registered when processing the relay log. Ideally this should be blank,
indicating no error.

• Seconds_Behind_Master: The number of seconds that the slave SQL thread is behind processing the
master binary log. A high number (or an increasing one) can indicate that the slave is unable to handle
events from the master in a timely fashion.

Common Replication Administration Tasks

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1597

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A value of 0 for Seconds_Behind_Master can usually be interpreted as meaning that the slave has
caught up with the master, but there are some cases where this is not strictly true. For example, this can
occur if the network connection between master and slave is broken but the slave I/O thread has not yet
noticed this—that is, slave_net_timeout has not yet elapsed.

It is also possible that transient values for Seconds_Behind_Master may not reflect the situation
accurately. When the slave SQL thread has caught up on I/O, Seconds_Behind_Master displays 0;
but when the slave I/O thread is still queuing up a new event, Seconds_Behind_Master may show
a large value until the SQL thread finishes executing the new event. This is especially likely when the
events have old timestamps; in such cases, if you execute SHOW SLAVE STATUS several times in
a relatively short period, you may see this value change back and forth repeatedly between 0 and a
relatively large value.

Several pairs of fields provide information about the progress of the slave in reading events from the
master binary log and processing them in the relay log:

• (Master_Log_file, Read_Master_Log_Pos): Coordinates in the master binary log indicating how far
the slave I/O thread has read events from that log.

• (Relay_Master_Log_File, Exec_Master_Log_Pos): Coordinates in the master binary log indicating
how far the slave SQL thread has executed events received from that log.

• (Relay_Log_File, Relay_Log_Pos): Coordinates in the slave relay log indicating how far the
slave SQL thread has executed the relay log. These correspond to the preceding coordinates, but are
expressed in slave relay log coordinates rather than master binary log coordinates.

On the master, you can check the status of connected slaves using SHOW PROCESSLIST to examine the
list of running processes. Slave connections have Binlog Dump in the Command field:

mysql> SHOW PROCESSLIST \G;
*************************** 4. row ***************************
 Id: 10
 User: root
 Host: slave1:58371
 db: NULL
Command: Binlog Dump
 Time: 777
 State: Has sent all binlog to slave; waiting for binlog to be updated
 Info: NULL

Because it is the slave that drives the replication process, very little information is available in this report.

For slaves that were started with the --report-host option and are connected to the master, the SHOW
SLAVE HOSTS statement on the master shows basic information about the slaves. The output includes the
ID of the slave server, the value of the --report-host option, the connecting port, and master ID:

mysql> SHOW SLAVE HOSTS;
+-----------+--------+------+-------------------+-----------+
| Server_id | Host | Port | Rpl_recovery_rank | Master_id |
+-----------+--------+------+-------------------+-----------+
| 10 | slave1 | 3306 | 0 | 1 |
+-----------+--------+------+-------------------+-----------+
1 row in set (0.00 sec)

16.1.3.2 Pausing Replication on the Slave

You can stop and start the replication of statements on the slave using the STOP SLAVE and START
SLAVE statements.

Replication Implementation

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1598

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To stop processing of the binary log from the master, use STOP SLAVE:

mysql> STOP SLAVE;

When replication is stopped, the slave I/O thread stops reading events from the master binary log and
writing them to the relay log, and the SQL thread stops reading events from the relay log and executing
them. You can pause the I/O or SQL thread individually by specifying the thread type:

mysql> STOP SLAVE IO_THREAD;
mysql> STOP SLAVE SQL_THREAD;

To start execution again, use the START SLAVE statement:

mysql> START SLAVE;

To start a particular thread, specify the thread type:

mysql> START SLAVE IO_THREAD;
mysql> START SLAVE SQL_THREAD;

For a slave that performs updates only by processing events from the master, stopping only the SQL
thread can be useful if you want to perform a backup or other task. The I/O thread will continue to read
events from the master but they are not executed. This makes it easier for the slave to catch up when you
restart the SQL thread.

Stopping only the I/O thread enables the events in the relay log to be executed by the SQL thread up to
the point where the relay log ends. This can be useful when you want to pause execution to catch up with
events already received from the master, when you want to perform administration on the slave but also
ensure that it has processed all updates to a specific point. This method can also be used to pause event
receipt on the slave while you conduct administration on the master. Stopping the I/O thread but permitting
the SQL thread to run helps ensure that there is not a massive backlog of events to be executed when
replication is started again.

16.2 Replication Implementation

Replication is based on the master server keeping track of all changes to its databases (updates, deletes,
and so on) in its binary log. The binary log serves as a written record of all events that modify database
structure or content (data) from the moment the server was started. Typically, SELECT statements are not
recorded because they modify neither database structure nor content.

Each slave that connects to the master requests a copy of the binary log. That is, it pulls the data from the
master, rather than the master pushing the data to the slave. The slave also executes the events from the
binary log that it receives. This has the effect of repeating the original changes just as they were made
on the master. Tables are created or their structure modified, and data is inserted, deleted, and updated
according to the changes that were originally made on the master.

Because each slave is independent, the replaying of the changes from the master's binary log occurs
independently on each slave that is connected to the master. In addition, because each slave receives a
copy of the binary log only by requesting it from the master, the slave is able to read and update the copy
of the database at its own pace and can start and stop the replication process at will without affecting the
ability to update to the latest database status on either the master or slave side.

For more information on the specifics of the replication implementation, see Section 16.2.1, “Replication
Implementation Details”.

Replication Implementation Details

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1599

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Masters and slaves report their status in respect of the replication process regularly so that you can
monitor them. See Section 8.14, “Examining Thread Information”, for descriptions of all replicated-related
states.

The master binary log is written to a local relay log on the slave before it is processed. The slave also
records information about the current position with the master's binary log and the local relay log. See
Section 16.2.2, “Replication Relay and Status Logs”.

Database changes are filtered on the slave according to a set of rules that are applied according to the
various configuration options and variables that control event evaluation. For details on how these rules are
applied, see Section 16.2.3, “How Servers Evaluate Replication Filtering Rules”.

16.2.1 Replication Implementation Details

MySQL replication capabilities are implemented using three threads, one on the master server and two on
the slave:

• Binlog dump thread. The master creates a thread to send the binary log contents to a slave when
the slave connects. This thread can be identified in the output of SHOW PROCESSLIST on the master as
the Binlog Dump thread.

The binary log dump thread acquires a lock on the master's binary log for reading each event that is to
be sent to the slave. As soon as the event has been read, the lock is released, even before the event is
sent to the slave.

• Slave I/O thread. When a START SLAVE statement is issued on a slave server, the slave creates an
I/O thread, which connects to the master and asks it to send the updates recorded in its binary logs.

The slave I/O thread reads the updates that the master's Binlog Dump thread sends (see previous
item) and copies them to local files that comprise the slave's relay log.

The state of this thread is shown as Slave_IO_running in the output of SHOW SLAVE STATUS or as
Slave_running in the output of SHOW STATUS.

• Slave SQL thread. The slave creates an SQL thread to read the relay log that is written by the slave
I/O thread and execute the events contained therein.

In the preceding description, there are three threads per master/slave connection. A master that has
multiple slaves creates one binary log dump thread for each currently connected slave, and each slave has
its own I/O and SQL threads.

A slave uses two threads to separate reading updates from the master and executing them into
independent tasks. Thus, the task of reading statements is not slowed down if statement execution is slow.
For example, if the slave server has not been running for a while, its I/O thread can quickly fetch all the
binary log contents from the master when the slave starts, even if the SQL thread lags far behind. If the
slave stops before the SQL thread has executed all the fetched statements, the I/O thread has at least
fetched everything so that a safe copy of the statements is stored locally in the slave's relay logs, ready for
execution the next time that the slave starts. This enables the master server to purge its binary logs sooner
because it no longer needs to wait for the slave to fetch their contents.

The SHOW PROCESSLIST statement provides information that tells you what is happening on the master
and on the slave regarding replication. For information on master states, see Section 8.14.5, “Replication
Master Thread States”. For slave states, see Section 8.14.6, “Replication Slave I/O Thread States”, and
Section 8.14.7, “Replication Slave SQL Thread States”.

The following example illustrates how the three threads show up in the output from SHOW PROCESSLIST.

On the master server, the output from SHOW PROCESSLIST looks like this:

Replication Relay and Status Logs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1600

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 2
 User: root
 Host: localhost:32931
 db: NULL
Command: Binlog Dump
 Time: 94
 State: Has sent all binlog to slave; waiting for binlog to
 be updated
 Info: NULL

Here, thread 2 is a Binlog Dump replication thread that services a connected slave. The State
information indicates that all outstanding updates have been sent to the slave and that the master is
waiting for more updates to occur. If you see no Binlog Dump threads on a master server, this means
that replication is not running; that is, no slaves are currently connected.

On a slave server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 10
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11
 State: Waiting for master to send event
 Info: NULL
*************************** 2. row ***************************
 Id: 11
 User: system user
 Host:
 db: NULL
Command: Connect
 Time: 11
 State: Has read all relay log; waiting for the slave I/O
 thread to update it
 Info: NULL

The State information indicates that thread 10 is the I/O thread that is communicating with the master
server, and thread 11 is the SQL thread that is processing the updates stored in the relay logs. At the time
that SHOW PROCESSLIST was run, both threads were idle, waiting for further updates.

The value in the Time column can show how late the slave is compared to the master. See Section A.13,
“MySQL 5.0 FAQ: Replication”. If sufficient time elapses on the master side without activity on the
Binlog Dump thread, the master determines that the slave is no longer connected. As for any other client
connection, the timeouts for this depend on the values of net_write_timeout and net_retry_count;
for more information about these, see Section 5.1.4, “Server System Variables”.

The SHOW SLAVE STATUS statement provides additional information about replication processing on a
slave server. See Section 16.1.3.1, “Checking Replication Status”.

16.2.2 Replication Relay and Status Logs

During replication, a slave server creates several logs that hold the binary log events relayed from the
master to the slave, and to record information about the current status and location within the relay log.
There are three types of logs used in the process, listed here:

• The relay log consists of the events read from the binary log of the master and written by the slave I/O
thread. Events in the relay log are executed on the slave as part of the SQL thread.

Replication Relay and Status Logs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1601

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The master info log contains status and current configuration information for the slave's connection to the
master. This log holds information on the master host name, login credentials, and coordinates indicating
how far the slave has read from the master's binary log.

• The relay log info log holds status information about the execution point within the slave's relay log.

16.2.2.1 The Slave Relay Log

The relay log, like the binary log, consists of a set of numbered files containing events that describe
database changes, and an index file that contains the names of all used relay log files.

The term “relay log file” generally denotes an individual numbered file containing database events. The
term “relay log” collectively denotes the set of numbered relay log files plus the index file.

Relay log files have the same format as binary log files and can be read using mysqlbinlog (see
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”).

By default, relay log file names have the form host_name-relay-bin.nnnnnn in the data directory,
where host_name is the name of the slave server host and nnnnnn is a sequence number. Successive
relay log files are created using successive sequence numbers, beginning with 000001. The slave uses an
index file to track the relay log files currently in use. The default relay log index file name is host_name-
relay-bin.index in the data directory.

The default relay log file and relay log index file names can be overridden with, respectively, the --relay-
log and --relay-log-index server options (see Section 16.1.2, “Replication and Binary Logging
Options and Variables”).

If a slave uses the default host-based relay log file names, changing a slave's host name after replication
has been set up can cause replication to fail with the errors Failed to open the relay log and
Could not find target log during relay log initialization. This is a known issue
(see Bug #2122). If you anticipate that a slave's host name might change in the future (for example, if
networking is set up on the slave such that its host name can be modified using DHCP), you can avoid
this issue entirely by using the --relay-log and --relay-log-index options to specify relay log file
names explicitly when you initially set up the slave. This will make the names independent of server host
name changes.

If you encounter the issue after replication has already begun, one way to work around it is to stop the
slave server, prepend the contents of the old relay log index file to the new one, and then restart the slave.
On a Unix system, this can be done as shown here:

shell> cat new_relay_log_name.index >> old_relay_log_name.index
shell> mv old_relay_log_name.index new_relay_log_name.index

A slave server creates a new relay log file under the following conditions:

• Each time the I/O thread starts.

• When the logs are flushed; for example, with FLUSH LOGS or mysqladmin flush-logs.

• When the size of the current relay log file becomes “too large,” determined as follows:

• If the value of max_relay_log_size is greater than 0, that is the maximum relay log file size.

• If the value of max_relay_log_size is 0, max_binlog_size determines the maximum relay log
file size.

The SQL thread automatically deletes each relay log file as soon as it has executed all events in the file
and no longer needs it. There is no explicit mechanism for deleting relay logs because the SQL thread

Replication Relay and Status Logs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1602

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

takes care of doing so. However, FLUSH LOGS rotates relay logs, which influences when the SQL thread
deletes them.

16.2.2.2 Slave Status Logs

A replication slave server creates two logs. By default, these logs are files named master.info and
relay-log.info and created in the data directory. The names and locations of these files can be
changed by using the --master-info-file and --relay-log-info-file options, respectively. See
Section 16.1.2, “Replication and Binary Logging Options and Variables”.

The two status logs contain information like that shown in the output of the SHOW SLAVE STATUS
statement, which is discussed in Section 13.4.2, “SQL Statements for Controlling Slave Servers”. Because
the status logs are stored on disk, they survive a slave server's shutdown. The next time the slave starts
up, it reads the two logs to determine how far it has proceeded in reading binary logs from the master and
in processing its own relay logs.

The master info log should be protected because it contains the password for connecting to the master.
See Section 6.1.2.3, “Passwords and Logging”.

The slave I/O thread updates the master info log. The following table shows the correspondence between
the lines in the master.info file and the columns displayed by SHOW SLAVE STATUS.

Line in
master.info

SHOW SLAVE STATUS Column Description

1 Number of lines in the file

2 Master_Log_File The name of the master binary log currently
being read from the master

3 Read_Master_Log_Pos The current position within the master binary
log that have been read from the master

4 Master_Host The host name of the master

5 Master_User The user name used to connect to the master

6 Password (not shown by SHOW SLAVE
STATUS)

The password used to connect to the master

7 Master_Port The network port used to connect to the
master

8 Connect_Retry The period (in seconds) that the slave will wait
before trying to reconnect to the master

9 Master_SSL_Allowed Indicates whether the server supports SSL
connections

10 Master_SSL_CA_File The file used for the Certificate Authority (CA)
certificate

11 Master_SSL_CA_Path The path to the Certificate Authority (CA)
certificates

12 Master_SSL_Cert The name of the SSL certificate file

13 Master_SSL_Cipher The list of possible ciphers used in the
handshake for the SSL connection

14 Master_SSL_Key The name of the SSL key file

The slave SQL thread updates the relay log info log. The following table shows the correspondence
between the lines in the relay-log.info file and the columns displayed by SHOW SLAVE STATUS.

How Servers Evaluate Replication Filtering Rules

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1603

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Line in
relay-
log.info

SHOW SLAVE STATUS Column Description

1 Relay_Log_File The name of the current relay log file

2 Relay_Log_Pos The current position within the relay log file; events
up to this position have been executed on the slave
database

3 Relay_Master_Log_File The name of the master binary log file from which
the events in the relay log file were read

4 Exec_Master_Log_Pos The equivalent position within the master's binary
log file of events that have already been executed

The contents of the relay-log.info file and the states shown by the SHOW SLAVE STATUS statement
might not match if the relay-log.info file has not been flushed to disk. Ideally, you should only view
relay-log.info on a slave that is offline (that is, mysqld is not running). For a running system, SHOW
SLAVE STATUS should be used.

When you back up the slave's data, you should back up these two status logs, along with the relay log files.
The status logs are needed to resume replication after you restore the data from the slave. If you lose the
relay logs but still have the relay log info log, you can check it to determine how far the SQL thread has
executed in the master binary logs. Then you can use CHANGE MASTER TO with the MASTER_LOG_FILE
and MASTER_LOG_POS options to tell the slave to re-read the binary logs from that point. Of course, this
requires that the binary logs still exist on the master.

16.2.3 How Servers Evaluate Replication Filtering Rules

If a master server does not write a statement to its binary log, the statement is not replicated. If the server
does log the statement, the statement is sent to all slaves and each slave determines whether to execute it
or ignore it.

On the master, you can control which databases to log changes for by using the --binlog-do-db and
--binlog-ignore-db options to control binary logging. For a description of the rules that servers use
in evaluating these options, see Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary
Logging Options”. You should not use these options to control which databases and tables are replicated.
Instead, use filtering on the slave to control the events that are executed on the slave.

On the slave side, decisions about whether to execute or ignore statements received from the master are
made according to the --replicate-* options that the slave was started with. (See Section 16.1.2,
“Replication and Binary Logging Options and Variables”.)

In the simplest case, when there are no --replicate-* options, the slave executes all statements that it
receives from the master. Otherwise, the result depends on the particular options given.

Database-level options (--replicate-do-db, --replicate-ignore-db) are checked first; see
Section 16.2.3.1, “Evaluation of Database-Level Replication and Binary Logging Options”, for a description
of this process. If no database-level options are used, option checking proceeds to any table-level options
that may be in use (see Section 16.2.3.2, “Evaluation of Table-Level Replication Options”, for a discussion
of these). If one or more database-level options are used but none are matched, the statement is not
replicated.

To make it easier to determine what effect an option set will have, it is recommended that you avoid mixing
“do” and “ignore” options, or wildcard and nonwildcard options. An example of the latter that may have
unintended effects is the use of --replicate-do-db and --replicate-wild-do-table together,

How Servers Evaluate Replication Filtering Rules

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1604

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

where --replicate-wild-do-table uses a pattern for the database name that matches the name
given for --replicate-do-db. Suppose a replication slave is started with --replicate-do-db=dbx
--replicate-wild-do-table=db%.t1. Then, suppose that on the master, you issue the statement
CREATE DATABASE dbx. Although you might expect it, this statement is not replicated because it does
not reference a table named t1.

If any --replicate-rewrite-db options were specified, they are applied before the --replicate-*
filtering rules are tested.

Note

Database-level filtering options are case-sensitive on platforms supporting case
sensitivity in filenames, whereas table-level filtering options are not (regardless of
platform). This is true regardless of the value of the lower_case_table_names
system variable.

16.2.3.1 Evaluation of Database-Level Replication and Binary Logging Options

When evaluating replication options, the slave begins by checking to see whether there are any --
replicate-do-db or --replicate-ignore-db options that apply. When using --binlog-do-db or
--binlog-ignore-db, the process is similar, but the options are checked on the master.

Checking of the database-level options proceeds as shown in the following diagram.

How Servers Evaluate Replication Filtering Rules

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1605

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The steps involved are listed here:

1. Are there any --replicate-do-db options?

• Yes. Do any of them match the database?

• Yes. Execute the statement and exit.

• No. Ignore the statement and exit.

• No. Continue to step 2.

2. Are there any --replicate-ignore-db options?

• Yes. Do any of them match the database?

• Yes. Ignore the statement and exit.

• No. Continue to step 3.

• No. Continue to step 3.

3. Proceed to checking the table-level replication options, if there are any. For a description of how these
options are checked, see Section 16.2.3.2, “Evaluation of Table-Level Replication Options”.

Important

A statement that is still permitted at this stage is not yet actually executed. The
statement is not executed until all table-level options (if any) have also been
checked, and the outcome of that process permits execution of the statement.

For binary logging, the steps involved are listed here:

1. Are there any --binlog-do-db or --binlog-ignore-db options?

• Yes. Continue to step 2.

• No. Log the statement and exit.

2. Is there a default database (has any database been selected by USE)?

• Yes. Continue to step 3.

• No. Ignore the statement and exit.

3. There is a default database. Are there any --binlog-do-db options?

• Yes. Do any of them match the database?

• Yes. Log the statement and exit.

• No. Ignore the statement and exit.

• No. Continue to step 4.

4. Do any of the --binlog-ignore-db options match the database?

• Yes. Ignore the statement and exit.

• No. Log the statement and exit.

How Servers Evaluate Replication Filtering Rules

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1606

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Important

An exception is made in the rules just given for the CREATE DATABASE, ALTER
DATABASE, and DROP DATABASE statements. In those cases, the database being
created, altered, or dropped replaces the default database when determining
whether to log or to ignore updates.

--binlog-do-db can sometimes mean “ignore other databases”. For example, a server running with
only --binlog-do-db=sales does not write to the binary log statements for which the default database
differs from sales.

Relay log files have the same format as binary log files and can be read using mysqlbinlog.

16.2.3.2 Evaluation of Table-Level Replication Options

The slave checks for and evaluates table options only if either of the following two conditions is true:

• No matching database options were found.

• One or more database options were found, and were evaluated to arrive at an “execute” condition
according to the rules described in the previous section (see Section 16.2.3.1, “Evaluation of Database-
Level Replication and Binary Logging Options”).

First, as a preliminary condition, the slave checks whether the statement occurs within a stored function, in
which case the slave executes the statement and exits.

Having reached this point, if there are no table options, the slave simply executes all statements. If there
are any --replicate-do-table or --replicate-wild-do-table options, the statement must
match one of these if it is to be executed; otherwise, it is ignored. If there are any --replicate-ignore-
table or --replicate-wild-ignore-table options, all statements are executed except those that
match any of these options. This process is illustrated in the following diagram.

How Servers Evaluate Replication Filtering Rules

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1607

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

How Servers Evaluate Replication Filtering Rules

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1608

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The master.info file should be protected because it contains the password for connecting to the master.
See Section 6.1.2.3, “Passwords and Logging”.

The following steps describe this evaluation in more detail:

1. Are there any table options?

• Yes. Continue to step 2.

• No. Execute the statement and exit.

2. Are there any --replicate-do-table options?

• Yes. Does the table match any of them?

• Yes. Execute the statement and exit.

• No. Continue to step 3.

• No. Continue to step 3.

3. Are there any --replicate-ignore-table options?

• Yes. Does the table match any of them?

• Yes. Ignore the statement and exit.

• No. Continue to step 4.

• No. Continue to step 4.

4. Are there any --replicate-wild-do-table options?

• Yes. Does the table match any of them?

• Yes. Execute the statement and exit.

• No. Continue to step 5.

• No. Continue to step 5.

5. Are there any --replicate-wild-ignore-table options?

• Yes. Does the table match any of them?

• Yes. Ignore the statement and exit.

• No. Continue to step 6.

• No. Continue to step 6.

6. Are there any --replicate-do-table or --replicate-wild-do-table options?

• Yes. Ignore the statement and exit.

• No. Execute the statement and exit.

Replication Solutions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1609

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

16.2.3.3 Replication Rule Application

This section provides additional explanation and examples of usage for different combinations of
replication filtering options.

Some typical combinations of replication filter rule types are given in the following table:

Condition (Types of Options) Outcome

No --replicate-* options at all: The slave executes all events that it receives from the master.

--replicate-*-db options, but no
table options:

The slave accepts or ignores statements using the database
options. It executes all statements permitted by those options
because there are no table restrictions.

--replicate-*-table options, but no
database options:

All statements are accepted at the database-checking stage
because there are no database conditions. The slave executes
or ignores statements based solely on the table options.

A combination of database and table
options:

The slave accepts or ignores statements using the database
options. Then it evaluates all statements permitted by those
options according to the table options. This can sometimes
lead to results that seem counterintuitive; see the text for an
example.

A more complex example follows.

Suppose that we have two tables mytbl1 in database db1 and mytbl2 in database db2 on the master,
and the slave is running with the following options (and no other replication filtering options):

replicate-ignore-db = db1
replicate-do-table = db2.tbl2

Now we execute the following statements on the master:

USE db1;
INSERT INTO db2.tbl2 VALUES (1);

The outcome may not match initial expectations, because the USE statement causes db1 to be the default
database. Thus the --replicate-ignore-db option matches, which causes the INSERT statement to
be ignored. Because there was a match with a database-level option, the table options are not checked;
processing immediately moves to the next statement executed on the master.

16.3 Replication Solutions
Replication can be used in many different environments for a range of purposes. This section provides
general notes and advice on using replication for specific solution types.

For information on using replication in a backup environment, including notes on the setup, backup
procedure, and files to back up, see Section 16.3.1, “Using Replication for Backups”.

For advice and tips on using different storage engines on the master and slaves, see Section 16.3.2,
“Using Replication with Different Master and Slave Storage Engines”.

Using replication as a scale-out solution requires some changes in the logic and operation of applications
that use the solution. See Section 16.3.3, “Using Replication for Scale-Out”.

For performance or data distribution reasons, you may want to replicate different databases to different
replication slaves. See Section 16.3.4, “Replicating Different Databases to Different Slaves”

Using Replication for Backups

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1610

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

As the number of replication slaves increases, the load on the master can increase and lead to reduced
performance (because of the need to replicate the binary log to each slave). For tips on improving
your replication performance, including using a single secondary server as a replication master, see
Section 16.3.5, “Improving Replication Performance”.

For guidance on switching masters, or converting slaves into masters as part of an emergency failover
solution, see Section 16.3.6, “Switching Masters During Failover”.

To secure your replication communication, you can encrypt the communication channel. For step-by-step
instructions, see Section 16.3.7, “Setting Up Replication to Use Secure Connections”.

16.3.1 Using Replication for Backups

To use replication as a backup solution, replicate data from the master to a slave, and then back up the
data slave. The slave can be paused and shut down without affecting the running operation of the master,
so you can produce an effective snapshot of “live” data that would otherwise require the master to be shut
down.

How you back up a database depends on its size and whether you are backing up only the data, or the
data and the replication slave state so that you can rebuild the slave in the event of failure. There are
therefore two choices:

• If you are using replication as a solution to enable you to back up the data on the master, and the size of
your database is not too large, the mysqldump tool may be suitable. See Section 16.3.1.1, “Backing Up
a Slave Using mysqldump”.

• For larger databases, where mysqldump would be impractical or inefficient, you can back up the raw
data files instead. Using the raw data files option also means that you can back up the binary and relay
logs that will enable you to recreate the slave in the event of a slave failure. For more information, see
Section 16.3.1.2, “Backing Up Raw Data from a Slave”.

16.3.1.1 Backing Up a Slave Using mysqldump

Using mysqldump to create a copy of a database enables you to capture all of the data in the database
in a format that enables the information to be imported into another instance of MySQL Server (see
Section 4.5.4, “mysqldump — A Database Backup Program”). Because the format of the information is
SQL statements, the file can easily be distributed and applied to running servers in the event that you need
access to the data in an emergency. However, if the size of your data set is very large, mysqldump may
be impractical.

When using mysqldump, you should stop replication on the slave before starting the dump process to
ensure that the dump contains a consistent set of data:

1. Stop the slave from processing requests. You can stop replication completely on the slave using
mysqladmin:

shell> mysqladmin stop-slave

Alternatively, you can stop only the slave SQL thread to pause event execution:

shell> mysql -e 'STOP SLAVE SQL_THREAD;'

This enables the slave to continue to receive data change events from the master's binary log and store
them in the relay logs using the I/O thread, but prevents the slave from executing these events and
changing its data. Within busy replication environments, permitting the I/O thread to run during backup
may speed up the catch-up process when you restart the slave SQL thread.

Using Replication for Backups

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1611

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2. Run mysqldump to dump your databases. You may either dump all databases or select databases to
be dumped. For example, to dump all databases:

shell> mysqldump --all-databases > fulldb.dump

3. Once the dump has completed, start slave operations again:

shell> mysqladmin start-slave

In the preceding example, you may want to add login credentials (user name, password) to the commands,
and bundle the process up into a script that you can run automatically each day.

If you use this approach, make sure you monitor the slave replication process to ensure that the time
taken to run the backup does not affect the slave's ability to keep up with events from the master. See
Section 16.1.3.1, “Checking Replication Status”. If the slave is unable to keep up, you may want to add
another slave and distribute the backup process. For an example of how to configure this scenario, see
Section 16.3.4, “Replicating Different Databases to Different Slaves”.

16.3.1.2 Backing Up Raw Data from a Slave

To guarantee the integrity of the files that are copied, backing up the raw data files on your MySQL
replication slave should take place while your slave server is shut down. If the MySQL server is still
running, background tasks may still be updating the database files, particularly those involving storage
engines with background processes such as InnoDB. With InnoDB, these problems should be resolved
during crash recovery, but since the slave server can be shut down during the backup process without
affecting the execution of the master it makes sense to take advantage of this capability.

To shut down the server and back up the files:

1. Shut down the slave MySQL server:

shell> mysqladmin shutdown

2. Copy the data files. You can use any suitable copying or archive utility, including cp, tar or WinZip.
For example, assuming that the data directory is located under the current directory, you can archive
the entire directory as follows:

shell> tar cf /tmp/dbbackup.tar ./data

3. Start the MySQL server again. Under Unix:

shell> mysqld_safe &

Under Windows:

C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld"

Normally you should back up the entire data directory for the slave MySQL server. If you want to be able to
restore the data and operate as a slave (for example, in the event of failure of the slave), then in addition
to the slave's data, you should also back up the slave status files, master.info and relay-log.info,
along with the relay log files. These files are needed to resume replication after you restore the slave's
data.

If you lose the relay logs but still have the relay-log.info file, you can check it to determine how far
the SQL thread has executed in the master binary logs. Then you can use CHANGE MASTER TO with the
MASTER_LOG_FILE and MASTER_LOG_POS options to tell the slave to re-read the binary logs from that
point. This requires that the binary logs still exist on the master server.

If your slave is replicating LOAD DATA INFILE statements, you should also back up any SQL_LOAD-*
files that exist in the directory that the slave uses for this purpose. The slave needs these files to resume

Using Replication with Different Master and Slave Storage Engines

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1612

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

replication of any interrupted LOAD DATA INFILE operations. The location of this directory is the value of
the --slave-load-tmpdir option. If the server was not started with that option, the directory location is
the value of the tmpdir system variable.

16.3.2 Using Replication with Different Master and Slave Storage Engines

It does not matter for the replication process whether the source table on the master and the replicated
table on the slave use different engine types. In fact, the system variables storage_engine and
table_type are not replicated.

This provides a number of benefits in the replication process in that you can take advantage of different
engine types for different replication scenarios. For example, in a typical scale-out scenario (see
Section 16.3.3, “Using Replication for Scale-Out”), you want to use InnoDB tables on the master to take
advantage of the transactional functionality, but use MyISAM on the slaves where transaction support is
not required because the data is only read. When using replication in a data-logging environment you may
want to use the Archive storage engine on the slave.

Configuring different engines on the master and slave depends on how you set up the initial replication
process:

• If you used mysqldump to create the database snapshot on your master, you could edit the dump file
text to change the engine type used on each table.

Another alternative for mysqldump is to disable engine types that you do not want to use on the
slave before using the dump to build the data on the slave. For example, you can add the --skip-
innodb option on your slave to disable the InnoDB engine. If a specific engine does not exist for a
table to be created, MySQL will use the default engine type, usually MyISAM. (This requires that the
NO_ENGINE_SUBSTITUTION SQL mode is not enabled.) If you want to disable additional engines in this
way, you may want to consider building a special binary to be used on the slave that only supports the
engines you want.

• If you are using raw data files (a binary backup) to set up the slave, you will be unable to change the
initial table format. Instead, use ALTER TABLE to change the table types after the slave has been
started.

• For new master/slave replication setups where there are currently no tables on the master, avoid
specifying the engine type when creating new tables.

If you are already running a replication solution and want to convert your existing tables to another engine
type, follow these steps:

1. Stop the slave from running replication updates:

mysql> STOP SLAVE;

This will enable you to change engine types without interruptions.

2. Execute an ALTER TABLE ... ENGINE='engine_type' for each table to be changed.

3. Start the slave replication process again:

mysql> START SLAVE;

Although the storage_engine and table_type variables are not replicated, be aware that CREATE
TABLE and ALTER TABLE statements that include the engine specification will be correctly replicated to
the slave. For example, if you have a CSV table and you execute:

Using Replication for Scale-Out

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1613

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> ALTER TABLE csvtable Engine='MyISAM';

The above statement will be replicated to the slave and the engine type on the slave will be converted
to MyISAM, even if you have previously changed the table type on the slave to an engine other than
CSV. If you want to retain engine differences on the master and slave, you should be careful to use the
storage_engine variable on the master when creating a new table. For example, instead of:

mysql> CREATE TABLE tablea (columna int) Engine=MyISAM;

Use this format:

mysql> SET storage_engine=MyISAM;
mysql> CREATE TABLE tablea (columna int);

When replicated, the storage_engine variable will be ignored, and the CREATE TABLE statement will
execute on the slave using the slave's default engine.

16.3.3 Using Replication for Scale-Out

You can use replication as a scale-out solution; that is, where you want to split up the load of database
queries across multiple database servers, within some reasonable limitations.

Because replication works from the distribution of one master to one or more slaves, using replication for
scale-out works best in an environment where you have a high number of reads and low number of writes/
updates. Most Web sites fit into this category, where users are browsing the Web site, reading articles,
posts, or viewing products. Updates only occur during session management, or when making a purchase
or adding a comment/message to a forum.

Replication in this situation enables you to distribute the reads over the replication slaves, while still
enabling your web servers to communicate with the replication master when a write is required. You can
see a sample replication layout for this scenario in Figure 16.1, “Using Replication to Improve Performance
During Scale-Out”.

Figure 16.1 Using Replication to Improve Performance During Scale-Out

If the part of your code that is responsible for database access has been properly abstracted/modularized,
converting it to run with a replicated setup should be very smooth and easy. Change the implementation of

Replicating Different Databases to Different Slaves

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1614

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

your database access to send all writes to the master, and to send reads to either the master or a slave. If
your code does not have this level of abstraction, setting up a replicated system gives you the opportunity
and motivation to clean it up. Start by creating a wrapper library or module that implements the following
functions:

• safe_writer_connect()

• safe_reader_connect()

• safe_reader_statement()

• safe_writer_statement()

safe_ in each function name means that the function takes care of handling all error conditions. You can
use different names for the functions. The important thing is to have a unified interface for connecting for
reads, connecting for writes, doing a read, and doing a write.

Then convert your client code to use the wrapper library. This may be a painful and scary process at
first, but it pays off in the long run. All applications that use the approach just described are able to take
advantage of a master/slave configuration, even one involving multiple slaves. The code is much easier
to maintain, and adding troubleshooting options is trivial. You need modify only one or two functions; for
example, to log how long each statement took, or which statement among those issued gave you an error.

If you have written a lot of code, you may want to automate the conversion task by using the replace
utility that comes with standard MySQL distributions, or write your own conversion script. Ideally, your code
uses consistent programming style conventions. If not, then you are probably better off rewriting it anyway,
or at least going through and manually regularizing it to use a consistent style.

16.3.4 Replicating Different Databases to Different Slaves

There may be situations where you have a single master and want to replicate different databases to
different slaves. For example, you may want to distribute different sales data to different departments
to help spread the load during data analysis. A sample of this layout is shown in Figure 16.2, “Using
Replication to Replicate Databases to Separate Replication Slaves”.

Figure 16.2 Using Replication to Replicate Databases to Separate Replication Slaves

You can achieve this separation by configuring the master and slaves as normal, and then limiting
the binary log statements that each slave processes by using the --replicate-wild-do-table
configuration option on each slave.

Important

You should not use --replicate-do-db for this purpose, since its affects vary
according to the database that is currently selected.

Improving Replication Performance

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1615

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For example, to support the separation as shown in Figure 16.2, “Using Replication to Replicate Databases
to Separate Replication Slaves”, you should configure each replication slave as follows, before executing
START SLAVE:

• Replication slave 1 should use --replicate-wild-do-table=databaseA.%.

• Replication slave 2 should use --replicate-wild-do-table=databaseB.%.

• Replication slave 3 should use --replicate-wild-do-table=databaseC.%.

Each slave in this configuration receives the entire binary log from the master, but executes only those
events from the binary log that apply to the databases and tables included by the --replicate-wild-
do-table option in effect on that slave.

If you have data that must be synchronized to the slaves before replication starts, you have a number of
choices:

• Synchronize all the data to each slave, and delete the databases, tables, or both that you do not want to
keep.

• Use mysqldump to create a separate dump file for each database and load the appropriate dump file on
each slave.

• Use a raw data file dump and include only the specific files and databases that you need for each slave.

Note

This does not work with InnoDB databases unless you use
innodb_file_per_table.

16.3.5 Improving Replication Performance

As the number of slaves connecting to a master increases, the load, although minimal, also increases,
as each slave uses a client connection to the master. Also, as each slave must receive a full copy of the
master binary log, the network load on the master may also increase and create a bottleneck.

If you are using a large number of slaves connected to one master, and that master is also busy
processing requests (for example, as part of a scale-out solution), then you may want to improve the
performance of the replication process.

One way to improve the performance of the replication process is to create a deeper replication structure
that enables the master to replicate to only one slave, and for the remaining slaves to connect to
this primary slave for their individual replication requirements. A sample of this structure is shown in
Figure 16.3, “Using an Additional Replication Host to Improve Performance”.

Figure 16.3 Using an Additional Replication Host to Improve Performance

Switching Masters During Failover

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1616

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For this to work, you must configure the MySQL instances as follows:

• Master 1 is the primary master where all changes and updates are written to the database. Binary
logging should be enabled on this machine.

• Master 2 is the slave to the Master 1 that provides the replication functionality to the remainder of
the slaves in the replication structure. Master 2 is the only machine permitted to connect to Master 1.
Master 2 also has binary logging enabled, and the --log-slave-updates option so that replication
instructions from Master 1 are also written to Master 2's binary log so that they can then be replicated to
the true slaves.

• Slave 1, Slave 2, and Slave 3 act as slaves to Master 2, and replicate the information from Master 2,
which actually consists of the upgrades logged on Master 1.

The above solution reduces the client load and the network interface load on the primary master, which
should improve the overall performance of the primary master when used as a direct database solution.

If your slaves are having trouble keeping up with the replication process on the master, there are a number
of options available:

• If possible, put the relay logs and the data files on different physical drives. To do this, use the --
relay-log option to specify the location of the relay log.

• If the slaves are significantly slower than the master, you may want to divide up the responsibility for
replicating different databases to different slaves. See Section 16.3.4, “Replicating Different Databases
to Different Slaves”.

• If your master makes use of transactions and you are not concerned about transaction support on your
slaves, use MyISAM or another nontransactional engine on the slaves. See Section 16.3.2, “Using
Replication with Different Master and Slave Storage Engines”.

• If your slaves are not acting as masters, and you have a potential solution in place to ensure that you
can bring up a master in the event of failure, then you can switch off --log-slave-updates. This
prevents “dumb” slaves from also logging events they have executed into their own binary log.

16.3.6 Switching Masters During Failover

There is in MySQL 5.0 no official solution for providing failover between master and slaves in the event of
a failure. Instead, you must set up a master and one or more slaves; then, you need to write an application
or script that monitors the master to check whether it is up, and instructs the slaves and applications to
change master in case of failure. This section discusses some of the issues encountered when setting up
failover in this fashion.

Note

The MySQL Utilities include a mysqlfailover tool that provides failover capability
using GTIDs, support for which requires MySQL 5.6 or later. For more information,
see mysqlfailover — Automatic replication health monitoring and failover, and
Replication with Global Transaction Identifiers.

You can tell a slave to change to a new master using the CHANGE MASTER TO statement. The slave does
not check whether the databases on the master are compatible with those on the slave; it simply begins
reading and executing events from the specified coordinates in the new master's binary log. In a failover
situation, all the servers in the group are typically executing the same events from the same binary log file,
so changing the source of the events should not affect the structure or integrity of the database, provided
that you exercise care in making the change.

http://dev.mysql.com/doc/mysql-utilities/1.5/en/mysqlfailover.html
http://dev.mysql.com/doc/refman/5.6/en/replication-gtids.html

Switching Masters During Failover

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1617

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Slaves should be run with the --log-bin option and without --log-slave-updates. In this way,
the slave is ready to become a master without restarting the slave mysqld. Assume that you have the
structure shown in Figure 16.4, “Redundancy Using Replication, Initial Structure”.

Figure 16.4 Redundancy Using Replication, Initial Structure

In this diagram, the MySQL Master holds the master database, the MySQL Slave hosts are replication
slaves, and the Web Client machines are issuing database reads and writes. Web clients that issue
only reads (and would normally be connected to the slaves) are not shown, as they do not need to switch
to a new server in the event of failure. For a more detailed example of a read/write scale-out replication
structure, see Section 16.3.3, “Using Replication for Scale-Out”.

Each MySQL Slave (Slave 1, Slave 2, and Slave 3) is a slave running with --log-bin and without
--log-slave-updates. Because updates received by a slave from the master are not logged in the
binary log unless --log-slave-updates is specified, the binary log on each slave is empty initially. If
for some reason MySQL Master becomes unavailable, you can pick one of the slaves to become the new
master. For example, if you pick Slave 1, all Web Clients should be redirected to Slave 1, which
writes the updates to its binary log. Slave 2 and Slave 3 should then replicate from Slave 1.

The reason for running the slave without --log-slave-updates is to prevent slaves from receiving
updates twice in case you cause one of the slaves to become the new master. If Slave 1 has --log-
slave-updates enabled, it writes any updates that it receives from Master in its own binary log. This
means that, when Slave 2 changes from Master to Slave 1 as its master, it may receive updates from
Slave 1 that it has already received from Master.

Make sure that all slaves have processed any statements in their relay log. On each slave, issue STOP
SLAVE IO_THREAD, then check the output of SHOW PROCESSLIST until you see Has read all relay
log. When this is true for all slaves, they can be reconfigured to the new setup. On the slave Slave 1
being promoted to become the master, issue STOP SLAVE and RESET MASTER.

On the other slaves Slave 2 and Slave 3, use STOP SLAVE and CHANGE MASTER TO
MASTER_HOST='Slave1' (where 'Slave1' represents the real host name of Slave 1). To use CHANGE
MASTER TO, add all information about how to connect to Slave 1 from Slave 2 or Slave 3 (user,
password, port). When issuing the CHANGE MASTER TO statement in this, there is no need to specify
the name of the Slave 1 binary log file or log position to read from, since the first binary log file and
position 4, are the defaults. Finally, execute START SLAVE on Slave 2 and Slave 3.

Setting Up Replication to Use Secure Connections

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1618

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Once the new replication setup is in place, you need to tell each Web Client to direct its statements to
Slave 1. From that point on, all updates statements sent by Web Client to Slave 1 are written to the
binary log of Slave 1, which then contains every update statement sent to Slave 1 since Master died.

The resulting server structure is shown in Figure 16.5, “Redundancy Using Replication, After Master
Failure”.

Figure 16.5 Redundancy Using Replication, After Master Failure

When Master becomes available again, you should make it a slave of Slave 1. To do this, issue on
Master the same CHANGE MASTER TO statement as that issued on Slave 2 and Slave 3 previously.
Master then becomes a slave of S1ave 1 and picks up the Web Client writes that it missed while it
was offline.

To make Master a master again, use the preceding procedure as if Slave 1 was unavailable and
Master was to be the new master. During this procedure, do not forget to run RESET MASTER on Master
before making Slave 1, Slave 2, and Slave 3 slaves of Master. If you fail to do this, the slaves may
pick up stale writes from the Web Client applications dating from before the point at which Master
became unavailable.

You should be aware that that there is no synchronization between slaves, even when they share the same
master, and thus some slaves might be considerably ahead of others. This means that in some cases the
procedure outlined in the previous example might not work as expected. In practice, however, relay logs on
all slaves should be relatively close together.

One way to keep applications informed about the location of the master is to have a dynamic DNS entry for
the master. With bind you can use nsupdate to update the DNS dynamically.

16.3.7 Setting Up Replication to Use Secure Connections

To use a secure connection for encrypting the transfer of the binary log required during replication, both
the master and the slave servers must support encrypted network connections. If either server does not

Setting Up Replication to Use Secure Connections

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1619

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

support secure connections (because it has not been compiled or configured for them), replication through
an encrypted connection is not possible.

Setting up secure connections for replication is similar to doing so for client/server connections. You must
obtain (or create) a suitable security certificate that you can use on the master, and a similar certificate
(from the same certificate authority) on each slave. You must also obtain suitable key files.

For more information on setting up a server and client for secure connections, see Section 6.3.6.4,
“Configuring MySQL to Use Secure Connections”.

To enable secure connections on the master, you must create or obtain suitable certificate and key files,
and then add the following configuration options to the master's configuration within the [mysqld] section
of the master's my.cnf file, changing the file names as necessary:

[mysqld]
ssl-ca=cacert.pem
ssl-cert=server-cert.pem
ssl-key=server-key.pem

The paths to the files may be relative or absolute; we recommend that you always use complete paths for
this purpose.

The options are as follows:

• ssl-ca identifies the Certificate Authority (CA) certificate.

• ssl-cert identifies the server public key certificate. This can be sent to the client and authenticated
against the CA certificate that it has.

• ssl-key identifies the server private key.

On the slave, there are two ways to specify the information required for connecting securely to the master.
You can either name the slave certificate and key files in the [client] section of the slave's my.cnf file,
or you can explicitly specify that information using the CHANGE MASTER TO statement:

• To name the slave certificate and key files using an option file, add the following lines to the [client]
section of the slave's my.cnf file, changing the file names as necessary:

[client]
ssl-ca=cacert.pem
ssl-cert=client-cert.pem
ssl-key=client-key.pem

Restart the slave server, using the --skip-slave-start option to prevent the slave from connecting
to the master. Use CHANGE MASTER TO to specify the master configuration, using the MASTER_SSL
option to connect securely:

mysql> CHANGE MASTER TO
 -> MASTER_HOST='master_hostname',
 -> MASTER_USER='replicate',
 -> MASTER_PASSWORD='password',
 -> MASTER_SSL=1;

• To specify the certificate and key names using the CHANGE MASTER TO statement, append the
appropriate MASTER_SSL_xxx options:

mysql> CHANGE MASTER TO

Replication Notes and Tips

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1620

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 -> MASTER_HOST='master_hostname',
 -> MASTER_USER='replicate',
 -> MASTER_PASSWORD='password',
 -> MASTER_SSL=1,
 -> MASTER_SSL_CA = 'ca_file_name',
 -> MASTER_SSL_CAPATH = 'ca_directory_name',
 -> MASTER_SSL_CERT = 'cert_file_name',
 -> MASTER_SSL_KEY = 'key_file_name';

After the master information has been updated, start the slave replication process:

mysql> START SLAVE;

You can use the SHOW SLAVE STATUS statement to confirm that a secure connection was established
successfully.

For more information on the CHANGE MASTER TO statement, see Section 13.4.2.1, “CHANGE MASTER
TO Syntax”.

If you want to enforce the use of secure connections during replication, then create a user with the
REPLICATION SLAVE privilege and use the REQUIRE SSL option for that user. For example:

mysql> CREATE USER 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass';
mysql> GRANT REPLICATION SLAVE ON *.*
 -> TO 'repl'@'%.mydomain.com' REQUIRE SSL;

If the account already exists, you can add REQUIRE SSL to it with this statement:

mysql> GRANT USAGE ON *.*
 -> TO 'repl'@'%.mydomain.com' REQUIRE SSL;

16.4 Replication Notes and Tips

16.4.1 Replication Features and Issues

The following sections provide information about what is supported and what is not in MySQL replication,
and about specific issues and situations that may occur when replicating certain statements.

Statement-based replication depends on compatibility at the SQL level between the master and slave.
In others, successful SBR requires that any SQL features used be supported by both the master and the
slave servers. For example, if you use a feature on the master server that is available only in MySQL 5.0
(or later), you cannot replicate to a slave that uses MySQL 4.1 (or earlier).

Such incompatibilities also can occur within a release series when using pre-production releases of
MySQL. For example, the SLEEP() function is available beginning with MySQL 5.0.12. If you use this
function on the master, you cannot replicate to a slave that uses MySQL 5.0.11 or earlier.

For this reason, use Generally Available (GA) releases of MySQL for statement-based replication in a
production setting, since we do not introduce new SQL statements or change their behavior within a given
release series once that series reaches GA release status.

If you are planning to use replication between MySQL 5.0 and a previous MySQL release series, it is also
a good idea to consult the edition of the MySQL Reference Manual corresponding to the earlier release
series for information regarding the replication characteristics of that series.

For additional information specific to replication and InnoDB, see Section 14.2.3.5, “InnoDB and MySQL
Replication”.

Replication Features and Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1621

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

16.4.1.1 Replication and AUTO_INCREMENT

Replication of AUTO_INCREMENT, LAST_INSERT_ID(), and TIMESTAMP values is done correctly, subject
to the following exceptions.

• AUTO_INCREMENT columns in tables on the slave must match the same columns on the master; that is,
AUTO_INCREMENT columns must be replicated to AUTO_INCREMENT columns.

This is a known issue which is fixed in MySQL 5.5. (Bug #12669186)

• INSERT DELAYED ... VALUES(LAST_INSERT_ID()) inserts a different value on the master and
the slave. (Bug #20819) This is fixed in MySQL 5.1 when using row-based or mixed-format binary
logging. For more information, see Replication Formats.

• Before MySQL 5.0.26, a stored procedure that uses LAST_INSERT_ID() does not replicate properly.

• When a statement uses a stored function that inserts into an AUTO_INCREMENT column, the generated
AUTO_INCREMENT value is not written into the binary log, so a different value can in some cases be
inserted on the slave. This is also true of a trigger that causes an INSERT into an AUTO_INCREMENT
column.

• An insert into an AUTO_INCREMENT column caused by a stored routine or trigger running on a master
that uses MySQL 5.0.60 or earlier does not replicate correctly to a slave running MySQL 5.1.12 through
5.1.23 (inclusive). (Bug #33029)

• An INSERT into a table that has a composite primary key that includes an AUTO_INCREMENT column
that is not the first column of this composite key is not logged or replicated correctly.

This issue does not affect tables using the InnoDB storage engine, since InnoDB does not allow the
creation of a composite key that includes an AUTO_INCREMENT column that is not the first column in the
key.

• Adding an AUTO_INCREMENT column to a table with ALTER TABLE might not produce the same
ordering of the rows on the slave and the master. This occurs because the order in which the rows
are numbered depends on the specific storage engine used for the table and the order in which
the rows were inserted. If it is important to have the same order on the master and slave, the rows
must be ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an
AUTO_INCREMENT column to a table t1 that has columns col1 and col2, the following statements
produce a new table t2 identical to t1 but with an AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important

To guarantee the same ordering on both master and slave, the ORDER BY clause
must name all columns of t1.

The instructions just given are subject to the limitations of CREATE TABLE ... LIKE: Foreign key
definitions are ignored, as are the DATA DIRECTORY and INDEX DIRECTORY table options. If a table
definition includes any of those characteristics, create t2 using a CREATE TABLE statement that is
identical to the one used to create t1, but with the addition of the AUTO_INCREMENT column.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column,
the final step is to drop the original table and then rename the copy:

http://dev.mysql.com/doc/refman/5.1/en/replication-formats.html

Replication Features and Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1622

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

DROP t1;
ALTER TABLE t2 RENAME t1;

See also Section B.5.6.1, “Problems with ALTER TABLE”.

16.4.1.2 Replication and Character Sets

The following applies to replication between MySQL servers that use different character sets:

• If the master has databases with a character set different from the global character_set_server
value, you should design your CREATE TABLE statements so that they do not implicitly rely on the
database default character set. A good workaround is to state the character set and collation explicitly in
CREATE TABLE statements.

16.4.1.3 Replication and CHECKSUM TABLE

CHECKSUM TABLE returns a checksum that is calculated row by row, using a method that depends on the
table row storage format, which is not guaranteed to remain the same between MySQL release series.
For example, the storage format for VARCHAR changed between MySQL 4.1 and 5.0, so if a 4.1 table is
upgraded to MySQL 5.0, the checksum value may change.

16.4.1.4 Replication of CREATE TABLE ... SELECT Statements

This section discusses the rules that are applied when a CREATE TABLE ... SELECT statement is
replicated.

Note

CREATE TABLE ... SELECT always performs an implicit commit (Section 13.3.3,
“Statements That Cause an Implicit Commit”).

Statement succeeds. A successful CREATE TABLE ... SELECT is itself replicated.

Statement fails. A failed CREATE TABLE ... SELECT replicates as follows:

• Statement does not use IF NOT EXISTS. The statement has no effect. However, the implicit commit
caused by the statement is logged. This is true regardless of the storage engine used and the reason for
which the statement failed.

• Statement uses IF NOT EXISTS. The CREATE TABLE IF NOT EXISTS ... SELECT is logged
with an error.

16.4.1.5 Replication of DROP ... IF EXISTS Statements

The DROP DATABASE IF EXISTS, DROP TABLE IF EXISTS, and DROP VIEW IF EXISTS
statements are always replicated, even if the database, table, or view to be dropped does not exist on the
master. This is to ensure that the object to be dropped no longer exists on either the master or the slave,
once the slave has caught up with the master.

Beginning with MySQL 5.0.82, DROP ... IF EXISTS statements for stored programs (stored procedures
and functions, triggers, and events) are also replicated, even if the stored program to be dropped does not
exist on the master. (Bug #13684)

16.4.1.6 Replication and DIRECTORY Table Options

Replication Features and Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1623

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If a DATA DIRECTORY or INDEX DIRECTORY table option is used in a CREATE TABLE statement on the
master server, the table option is also used on the slave. This can cause problems if no corresponding
directory exists in the slave host file system or if it exists but is not accessible to the slave server. This can
be overridden by using the NO_DIR_IN_CREATE server SQL mode on the slave, which causes the slave
to ignore the DATA DIRECTORY and INDEX DIRECTORY table options when replicating CREATE TABLE
statements. The result is that MyISAM data and index files are created in the table's database directory.

For more information, see Section 5.1.7, “Server SQL Modes”.

16.4.1.7 Replication and Floating-Point Values

With statement-based replication, values are converted from decimal to binary. Because conversions
between decimal and binary representations of them may be approximate, comparisons involving floating-
point values are inexact. This is true for operations that use floating-point values explicitly, or that use
values that are converted to floating-point implicitly. Comparisons of floating-point values might yield
different results on master and slave servers due to differences in computer architecture, the compiler
used to build MySQL, and so forth. See Section 12.2, “Type Conversion in Expression Evaluation”, and
Section B.5.4.8, “Problems with Floating-Point Values”.

16.4.1.8 Replication and FLUSH

Some forms of the FLUSH statement are not logged because they could cause problems if replicated
to a slave: FLUSH LOGS, FLUSH MASTER, FLUSH SLAVE, and FLUSH TABLES WITH READ LOCK.
For a syntax example, see Section 13.7.6.2, “FLUSH Syntax”. The FLUSH TABLES, ANALYZE TABLE,
OPTIMIZE TABLE, and REPAIR TABLE statements are written to the binary log and thus replicated to
slaves. This is not normally a problem because these statements do not modify table data.

However, this behavior can cause difficulties under certain circumstances. If you replicate the privilege
tables in the mysql database and update those tables directly without using GRANT, you must issue
a FLUSH PRIVILEGES on the slaves to put the new privileges into effect. In addition, if you use
FLUSH TABLES when renaming a MyISAM table that is part of a MERGE table, you must issue FLUSH
TABLES manually on the slaves. These statements are written to the binary log unless you specify
NO_WRITE_TO_BINLOG or its alias LOCAL.

16.4.1.9 Replication and System Functions

Certain functions do not replicate well under some conditions:

• The USER(), CURRENT_USER(), UUID(), VERSION(), and LOAD_FILE() functions are replicated
without change and thus do not work reliably on the slave.

• For NOW(), the binary log includes the timestamp. This means that the value as returned by the call to
this function on the master is replicated to the slave. This can lead to a possibly unexpected result when
replicating between MySQL servers in different time zones. Suppose that the master is located in New
York, the slave is located in Stockholm, and both servers are using local time. Suppose further that, on
the master, you create a table mytable, perform an INSERT statement on this table, and then select
from the table, as shown here:

mysql> CREATE TABLE mytable (mycol TEXT);
Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO mytable VALUES (NOW());
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM mytable;
+---------------------+
| mycol |

Replication Features and Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1624

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)

Local time in Stockholm is 6 hours later than in New York; so, if you issue SELECT NOW() on the slave
at that exact same instant, the value 2009-09-01 18:00:00 is returned. For this reason, if you select
from the slave's copy of mytable after the CREATE TABLE and INSERT statements just shown have
been replicated, you might expect mycol to contain the value 2009-09-01 18:00:00. However, this
is not the case; when you select from the slave's copy of mytable, you obtain exactly the same result
as on the master:

mysql> SELECT * FROM mytable;
+---------------------+
| mycol |
+---------------------+
| 2009-09-01 12:00:00 |
+---------------------+
1 row in set (0.00 sec)

As of MySQL 5.0.13, the SYSDATE() function is no longer equivalent to NOW(). Implications are that
SYSDATE() is not replication-safe because it is not affected by SET TIMESTAMP statements in the
binary log and is nondeterministic. To avoid this, you can start the server with the --sysdate-is-now
option to cause SYSDATE() to be an alias for NOW().

See also Section 16.4.1.25, “Replication and Time Zones”.

• The GET_LOCK(), RELEASE_LOCK(), IS_FREE_LOCK(), and IS_USED_LOCK() functions that
handle user-level locks are replicated without the slave knowing the concurrency context on the master.
Therefore, these functions should not be used to insert into a master table because the content on
the slave would differ. For example, do not issue a statement such as INSERT INTO mytable
VALUES(GET_LOCK(...)).

As a workaround for the preceding limitations, you can use the strategy of saving the problematic function
result in a user variable and referring to the variable in a later statement. For example, the following single-
row INSERT is problematic due to the reference to the UUID() function:

INSERT INTO t VALUES(UUID());

To work around the problem, do this instead:

SET @my_uuid = UUID();
INSERT INTO t VALUES(@my_uuid);

That sequence of statements replicates because the value of @my_uuid is stored in the binary log as a
user-variable event prior to the INSERT statement and is available for use in the INSERT.

The same idea applies to multiple-row inserts, but is more cumbersome to use. For a two-row insert, you
can do this:

SET @my_uuid1 = UUID(); @my_uuid2 = UUID();
INSERT INTO t VALUES(@my_uuid1),(@my_uuid2);

However, if the number of rows is large or unknown, the workaround is difficult or impracticable. For
example, you cannot convert the following statement to one in which a given individual user variable is
associated with each row:

Replication Features and Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1625

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

INSERT INTO t2 SELECT UUID(), * FROM t1;

Non-delayed INSERT statements that refer to RAND() or user-defined variables replicate correctly.
However, changing the statements to use INSERT DELAYED can result in different results on master and
slave.

Within a stored function, RAND() replicates correctly as long as it is invoked only once during the execution
of the function. (You can consider the function execution timestamp and random number seed as implicit
inputs that are identical on the master and slave.)

The FOUND_ROWS() and ROW_COUNT() functions are also not replicated reliably. A workaround is to store
the result of the function call in a user variable, and then use that in the INSERT statement. For example, if
you wish to store the result in a table named mytable, you might normally do so like this:

SELECT SQL_CALC_FOUND_ROWS FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(FOUND_ROWS());

However, if you are replicating mytable, you should use SELECT ... INTO, and then store the variable
in the table, like this:

SELECT SQL_CALC_FOUND_ROWS INTO @found_rows FROM mytable LIMIT 1;
INSERT INTO mytable VALUES(@found_rows);

In this way, the user variable is replicated as part of the context, and applied on the slave correctly.

16.4.1.10 Replication and LIMIT

Replication of LIMIT clauses in DELETE, UPDATE, and INSERT ... SELECT statements is not
guaranteed, since the order of the rows affected is not defined. Such statements can be replicated
correctly only if they also contain an ORDER BY clause.

16.4.1.11 Replication and LOAD Operations

Using LOAD TABLE FROM MASTER where the master is running MySQL 4.1 and the slave is running
MySQL 5.0 may corrupt the table data, and is not supported. (Bug #16261)

The LOAD DATA INFILE statement CONCURRENT option is not replicated; that is, LOAD DATA
CONCURRENT INFILE is replicated as LOAD DATA INFILE, and LOAD DATA CONCURRENT LOCAL
INFILE is replicated as LOAD DATA LOCAL INFILE. (Bug #34628)

The following applies only if either the master or the slave is running MySQL 5.0.3 or older: If on the master
a LOAD DATA INFILE is interrupted (integrity constraint violation, killed connection, and so on), the slave
skips the LOAD DATA INFILE entirely. This means that if this command permanently inserted or updated
table records before being interrupted, these modifications are not replicated to the slave.

16.4.1.12 Replication and the Slow Query Log

Replication slaves do not write replicated queries to the slow query log, even if the same queries were
written to the slow query log on the master. This is a known issue. (Bug #23300)

16.4.1.13 Replication and REPAIR TABLE

When used on a corrupted or otherwise damaged table, it is possible for the REPAIR TABLE statement
to delete rows that cannot be recovered. However, any such modifications of table data performed by this
statement are not replicated, which can cause master and slave to lose synchronization. For this reason,

Replication Features and Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1626

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

in the event that a table on the master becomes damaged and you use REPAIR TABLE to repair it, you
should first stop replication (if it is still running) before using REPAIR TABLE, then afterward compare the
master's and slave's copies of the table and be prepared to correct any discrepancies manually, before
restarting replication.

16.4.1.14 Replication and Master or Slave Shutdowns

It is safe to shut down a master server and restart it later. When a slave loses its connection to the master,
the slave tries to reconnect immediately and retries periodically if that fails. The default is to retry every
60 seconds. This may be changed with the CHANGE MASTER TO statement or --master-connect-
retry option. A slave also is able to deal with network connectivity outages. However, the slave notices
the network outage only after receiving no data from the master for slave_net_timeout seconds. If your
outages are short, you may want to decrease slave_net_timeout. See Section 5.1.4, “Server System
Variables”.

An unclean shutdown (for example, a crash) on the master side can result in the master binary log having
a final position less than the most recent position read by the slave, due to the master binary log file not
being flushed. This can cause the slave not to be able to replicate when the master comes back up. Setting
sync_binlog=1 in the master my.cnf file helps to minimize this problem because it causes the master
to flush its binary log more frequently.

Unclean master shutdowns may cause inconsistencies between the content of tables and the binary log.
This can be avoided by using InnoDB tables and the --innodb-safe-binlog option on the master. See
Section 5.4.3, “The Binary Log”.

Note

--innodb-safe-binlog is unneeded as of MySQL 5.0.3, having been made
obsolete by the introduction of XA transaction support.

Shutting down a slave cleanly is safe because it keeps track of where it left off. However, be careful that
the slave does not have temporary tables open; see Section 16.4.1.16, “Replication and Temporary
Tables”. Unclean shutdowns might produce problems, especially if the disk cache was not flushed to disk
before the problem occurred:

• For transactions, the slave commits and then updates relay-log.info. If a crash occurs between
these two operations, relay log processing will have proceeded further than the information file indicates
and the slave will re-execute the events from the last transaction in the relay log after it has been
restarted.

• A similar problem can occur if the slave updates relay-log.info but the server host crashes before
the write has been flushed to disk. Writes are not forced to disk because the server relies on the
operating system to flush the file from time to time.

The fault tolerance of your system for these types of problems is greatly increased if you have a good
uninterruptible power supply.

16.4.1.15 Replication and MEMORY Tables

When a master server shuts down and restarts, its MEMORY (HEAP) tables become empty. To replicate this
effect to slaves, the first time that the master uses a given MEMORY table after startup, it logs an event that
notifies slaves that the table must to be emptied by writing a DELETE statement for that table to the binary
log.

When a slave server shuts down and restarts, its MEMORY tables become empty. This causes the slave to
be out of synchrony with the master and may lead to other failures or cause the slave to stop. For example,

Replication Features and Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1627

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

INSERT INTO ... SELECT FROM memory_table may insert a different set of rows on the master and
slave.

The safe way to restart a slave that is replicating MEMORY tables is to first drop or delete all rows from the
MEMORY tables on the master and wait until those changes have replicated to the slave. Then it is safe to
restart the slave.

The size of MEMORY tables is limited by the value of the max_heap_table_size system variable, which is
not replicated (see Section 16.4.1.29, “Replication and Variables”). A change in max_heap_table_size
takes effect for MEMORY tables that are created or updated using ALTER TABLE ... ENGINE = MEMORY
or TRUNCATE TABLE following the change, or for all MEMORY tables following a server restart. If you
increase the value of this variable on the master without doing so on the slave, it becomes possible for a
table on the master to grow larger than its counterpart on the slave, leading to inserts that succeed on the
master but fail on the slave with Table is full errors. This is a known issue (Bug #48666). In such
cases, you must set the global value of max_heap_table_size on the slave as well as on the master,
then restart replication. It is also recommended that you restart both the master and slave MySQL servers,
to insure that the new value takes complete (global) effect on each of them.

See Section 14.4, “The MEMORY (HEAP) Storage Engine”, for more information about MEMORY tables.

16.4.1.16 Replication and Temporary Tables

Safe slave shutdown when using temporary tables. Temporary tables are replicated except in the
case where you stop the slave server (not just the slave threads) and you have replicated temporary
tables that are open for use in updates that have not yet been executed on the slave. If you stop the slave
server, the temporary tables needed by those updates are no longer available when the slave is restarted.
To avoid this problem, do not shut down the slave while it has temporary tables open. Instead, use the
following procedure:

1. Issue a STOP SLAVE SQL_THREAD statement.

2. Use SHOW STATUS to check the value of the Slave_open_temp_tables variable.

3. If the value is not 0, restart the slave SQL thread with START SLAVE SQL_THREAD and repeat the
procedure later.

4. When the value is 0, issue a mysqladmin shutdown command to stop the slave.

Temporary tables and replication options. By default, all temporary tables are replicated; this
happens whether or not there are any matching --replicate-do-db, --replicate-do-table, or --
replicate-wild-do-table options in effect. However, the --replicate-ignore-table and --
replicate-wild-ignore-table options are honored for temporary tables.

A recommended practice when using replication is to designate a prefix for exclusive use in naming
temporary tables that you do not want replicated, then employ a matching --replicate-wild-ignore-
table option. For example, you might give all such tables names beginning with norep (such as
norepmytable, norepyourtable, and so on), then use --replicate-wild-ignore-table=norep
% to prevent the replication of these tables.

16.4.1.17 Replication of the mysql System Database

User privileges are replicated only if the mysql database is replicated. That is, the GRANT, REVOKE, SET
PASSWORD, CREATE USER, and DROP USER statements take effect on the slave only if the replication
setup includes the mysql database.

See also Section 16.4.1.18, “Replication and User Privileges”.

Replication Features and Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1628

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

16.4.1.18 Replication and User Privileges

User privileges are replicated only if the mysql database is replicated. That is, the GRANT, REVOKE, SET
PASSWORD, CREATE USER, and DROP USER statements take effect on the slave only if the replication
setup includes the mysql database.

If you are replicating all databases, but do not want statements that affect user privileges to be replicated,
set up the slave not to replicate the mysql database, using the --replicate-wild-ignore-
table=mysql.% option. The slave recognizes that privilege-related SQL statements have no effect, and
thus it does not execute those statements.

See Section 16.4.1.17, “Replication of the mysql System Database”, for more information.

16.4.1.19 Replication and the Query Optimizer

It is possible for the data on the master and slave to become different if a statement is written in such a
way that the data modification is nondeterministic; that is, left up the query optimizer. (In general, this is not
a good practice, even outside of replication.) Examples of nondeterministic statements include DELETE or
UPDATE statements that use LIMIT with no ORDER BY clause; see Section 16.4.1.10, “Replication and
LIMIT”, for a detailed discussion of these.

Also see Section B.5.7, “Known Issues in MySQL”.

16.4.1.20 Replication and Reserved Words

You can encounter problems when you attempt to replicate from an older master to a newer slave and you
make use of identifiers on the master that are reserved words in the newer MySQL version running on the
slave. An example of this is using a table column named condition on a 4.1 master that is replicating
to a 5.0 or higher slave because CONDITION is a reserved word beginning in MySQL 5.0. Replication can
fail in such cases with Error 1064 You have an error in your SQL syntax..., even if a database
or table named using the reserved word or a table having a column named using the reserved word is
excluded from replication. This is due to the fact that each SQL event must be parsed by the slave prior to
execution, so that the slave knows which database object or objects would be affected; only after the event
is parsed can the slave apply any filtering rules defined by --replicate-do-db, --replicate-do-
table, --replicate-ignore-db, and --replicate-ignore-table.

To work around the problem of database, table, or column names on the master which would be regarded
as reserved words by the slave, do one of the following:

• Use one or more ALTER TABLE statements on the master to change the names of any database objects
where these names would be considered reserved words on the slave, and change any SQL statements
that use the old names to use the new names instead.

• In any SQL statements using these database object names, write the names as quoted identifiers using
backtick characters (`).

For listings of reserved words by MySQL version, see Reserved Words, in the MySQL Server Version
Reference. For identifier quoting rules, see Section 9.2, “Schema Object Names”.

16.4.1.21 Slave Errors During Replication

If a statement produces the same error (identical error code) on both the master and the slave, the error is
logged, but replication continues.

If a statement produces different errors on the master and the slave, the slave SQL thread terminates, and
the slave writes a message to its error log and waits for the database administrator to decide what to do

http://dev.mysql.com/doc/mysqld-version-reference/en/mysqld-version-reference-optvar.html

Replication Features and Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1629

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

about the error. This includes the case that a statement produces an error on the master or the slave, but
not both. To address the issue, connect to the slave manually and determine the cause of the problem.
SHOW SLAVE STATUS is useful for this. Then fix the problem and run START SLAVE. For example, you
might need to create a nonexistent table before you can start the slave again.

If this error code validation behavior is not desirable, some or all errors can be masked out (ignored) with
the --slave-skip-errors option.

For nontransactional storage engines such as MyISAM, it is possible to have a statement that only partially
updates a table and returns an error code. This can happen, for example, on a multiple-row insert that has
one row violating a key constraint, or if a long update statement is killed after updating some of the rows. If
that happens on the master, the slave expects execution of the statement to result in the same error code.
If it does not, the slave SQL thread stops as described previously.

If you are replicating between tables that use different storage engines on the master and slave, keep in
mind that the same statement might produce a different error when run against one version of the table,
but not the other, or might cause an error for one version of the table, but not the other. For example, since
MyISAM ignores foreign key constraints, an INSERT or UPDATE statement accessing an InnoDB table on
the master might cause a foreign key violation but the same statement performed on a MyISAM version of
the same table on the slave would produce no such error, causing replication to stop.

16.4.1.22 Replication and Server SQL Mode

Using different server SQL mode settings on the master and the slave may cause the same INSERT
statements to be handled differently on the master and the slave, leading the master and slave to diverge.
For best results, you should always use the same server SQL mode on the master and on the slave.

For more information, see Section 5.1.7, “Server SQL Modes”.

16.4.1.23 Replication Retries and Timeouts

In MySQL 5.0 (starting from 5.0.3), there is a global system variable slave_transaction_retries:
If the slave SQL thread fails to execute a transaction because of an InnoDB deadlock or
because it exceeded the InnoDB innodb_lock_wait_timeout or the NDBCLUSTER
TransactionDeadlockDetectionTimeout or TransactionInactiveTimeout value, the slave
automatically retries the transaction slave_transaction_retries times before stopping with an error.
The default value is 10. Starting from MySQL 5.0.4, the total retry count can be seen in the output of SHOW
STATUS; see Section 5.1.6, “Server Status Variables”.

16.4.1.24 Replication and TIMESTAMP

Older versions of MySQL (prior to 4.1) differed significantly in several ways in their handling of the
TIMESTAMP data type from what is supported in MySQL versions 5.0 and newer; these include syntax
extensions which are deprecated in MySQL 5.1, and that no longer supported in MySQL 5.5. This this
can cause problems (including replication failures) when replicating between MySQL Server versions,
if you are using columns that are defined using the old TIMESTAMP(N) syntax. See Section 2.19.1.1,
“Changes Affecting Upgrades to 5.0”, for more information about the differences, how they can impact
MySQL replication, and what you can do if you encounter such problems.

16.4.1.25 Replication and Time Zones

The same system time zone should be set for both master and slave. Otherwise, statements depending
on the local time on the master are not replicated properly, such as statements that use the NOW() or
FROM_UNIXTIME() functions. You can set the time zone in which MySQL server runs by using the --
timezone=timezone_name option of the mysqld_safe script or by setting the TZ environment variable.
See also Section 16.4.1.9, “Replication and System Functions”.

Replication Features and Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1630

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CONVERT_TZ(...,...,@@session.time_zone) is properly replicated only if both master and slave
are running MySQL 5.0.4 or newer.

16.4.1.26 Replication and Transactions

Mixing transactional and nontransactional statements within the same transaction. In
general, you should avoid transactions that update both transactional and nontransactional tables in a
replication environment. You should also avoid using any statement that accesses both transactional and
nontransactional tables and writes to any of them.

In MySQL 5.0 the server uses this rule for binary logging: If the initial statements in a transaction
are nontransactional, they are written to the binary log immediately. The remaining statements in
the transaction are cached and not written to the binary log until the transaction is committed. (If
the transaction is rolled back, the cached statements are written to the binary log only if they make
nontransactional changes that cannot be rolled back. Otherwise, they are discarded.)

To apply this rule, the server considers a statement nontransactional if the first changes it makes change
nontransactional tables, transactional if the first changes it makes change transactional tables. “First”
applies in the sense that a statement may have several effects if it involves such things as triggers, stored
functions, or multiple-table updates.

In situations where transactions mix updates to transactional and nontransactional tables, the order of
statements in the binary log is correct, and all needed statements are written to the binary log even in
case of a ROLLBACK. However, when a second connection updates the nontransactional table before
the first connection transaction is complete, statements can be logged out of order because the second
connection update is written immediately after it is performed, regardless of the state of the transaction
being performed by the first connection.

Using different storage engines on master and slave. It is possible to replicate transactional tables
on the master using nontransactional tables on the slave. For example, you can replicate an InnoDB
master table as a MyISAM slave table. However, if you do this, there are problems if the slave is stopped in
the middle of a BEGIN ... COMMIT block because the slave restarts at the beginning of the BEGIN block.

When the storage engine type of the slave is nontransactional, transactions on the master that mix updates
of transactional and nontransactional tables should be avoided because they can cause inconsistency
of the data between the master transactional table and the slave nontransactional table. That is, such
transactions can lead to master storage engine-specific behavior with the possible effect of replication
going out of synchrony. MySQL does not issue a warning about this currently, so extra care should be
taken when replicating transactional tables from the master to nontransactional tables on the slaves.

Beginning with MySQL 5.0.56, every transaction (including autocommit transactions) is recorded
in the binary log as though it starts with a BEGIN statement, and ends with either a COMMIT or a
ROLLBACK statement. However, this does not apply to nontransactional changes; any statements
affecting tables using a nontransactional storage engine such as MyISAM are regarded for this purpose as
nontransactional, even when autocommit is enabled. (Bug #26395)

16.4.1.27 Replication and Triggers

Known issue: In MySQL 5.0.17, the syntax for CREATE TRIGGER changed to include a DEFINER clause
for specifying which access privileges to check at trigger invocation time. (See Section 13.1.11, “CREATE
TRIGGER Syntax”, for more information.) However, if you attempt to replicate from a master server older
than MySQL 5.0.17 to a slave running MySQL 5.0.17 through 5.0.19, replication of CREATE TRIGGER
statements fails on the slave with a Definer not fully qualified error. A workaround is to create
triggers on the master using a version-specific comment embedded in each CREATE TRIGGER statement:

Replication Features and Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1631

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CREATE /*!50017 DEFINER = 'root'@'localhost' */ TRIGGER ... ;

CREATE TRIGGER statements written this way will replicate to newer slaves, which pick up the DEFINER
clause from the comment and execute successfully.

This slave problem is fixed as of MySQL 5.0.20.

16.4.1.28 Replication and Views

Views are always replicated to slaves. Views are filtered by their own name, not by the tables they refer to.
This means that a view can be replicated to the slave even if the view contains a table that would normally
be filtered out by replication-ignore-table rules. Care should therefore be taken to ensure that
views do not replicate table data that would normally be filtered for security reasons.

16.4.1.29 Replication and Variables

The foreign_key_checks, unique_checks, and sql_auto_is_null variables are all replicated.

sql_mode is also replicated except for the NO_DIR_IN_CREATE mode. However, when mysqlbinlog
parses a SET @@sql_mode = mode statement, the full mode value, including NO_DIR_IN_CREATE, is
passed to the receiving server.

The storage_engine system variable is not replicated, regardless of the logging mode; this is intended
to facilitate replication between different storage engines.

The read_only system variable is not replicated. In addition, the enabling this variable has different
effects with regard to temporary tables, table locking, and the SET PASSWORD statement in different
MySQL versions.

The max_heap_table_size system variable is not replicated. Increasing the value of this variable on
the master without doing so on the slave can lead eventually to Table is full errors on the slave when
trying to execute INSERT statements on a MEMORY table on the master that is thus permitted to grow larger
than its counterpart on the slave. For more information, see Section 16.4.1.15, “Replication and MEMORY
Tables”.

Starting from MySQL 5.0.3 (master and slave), replication works even if the master and slave have
different global character set variables. Starting from MySQL 5.0.4 (master and slave), replication works
even if the master and slave have different global time zone variables.

Session variables are not replicated properly when used in statements that update tables. For example, the
following sequence of statements will not insert the same data on the master and the slave:

SET max_join_size=1000;
INSERT INTO mytable VALUES(@@max_join_size);

This does not apply to the common sequence, which replicates correctly as of MySQL 5.0.4.

SET time_zone=...;
INSERT INTO mytable VALUES(CONVERT_TZ(..., ..., @@time_zone));

Update statements that refer to user-defined variables (that is, variables of the form @var_name) are
replicated correctly in MySQL 5.0. However, this is not true for versions prior to 4.1. Note that user variable
names are case insensitive starting in MySQL 5.0. You should take this into account when setting up
replication between MySQL 5.0 and older versions.

In MySQL 5.0.46 and later, the following session variables are written to the binary log and honored by the
replication slave when parsing the binary log, regardless of the logging format:

Replication Compatibility Between MySQL Versions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1632

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• sql_mode

• foreign_key_checks

• unique_checks

• character_set_client

• collation_connection

• collation_database

• collation_server

• sql_auto_is_null

Important

Even though session variables relating to character sets and collations are written
to the binary log, replication between different character sets is not supported.

It is strongly recommended that you always use the same setting for the lower_case_table_names
system variable on both master and slave. In particular, when a case-sensitive file system is used, and this
variable set to 1 on the slave, but to a different value on the master, names of databases are not converted
to lowercase, which can cause replication to fail. This is a known issue, which is fixed in MySQL 5.6.

16.4.2 Replication Compatibility Between MySQL Versions

MySQL supports replication from one release series to the next higher release series. For example, you
can replicate from a master running MySQL 4.1 to a slave running MySQL 5.0, from a master running
MySQL 5.0 to a slave running MySQL 5.1, and so on.

However, one may encounter difficulties when replicating from an older master to a newer slave if the
master uses statements or relies on behavior no longer supported in the version of MySQL used on the
slave.

The use of more than two MySQL Server versions is not supported in replication setups involving multiple
masters, regardless of the number of master or slave MySQL servers. This restriction applies not only
to release series, but to version numbers within the same release series as well. For example, if you are
using a chained or circular replication setup, you cannot use MySQL 5.0.21, MySQL 5.0.22, and MySQL
5.0.24 concurrently, although you could use any two of these releases together.

In some cases, it is also possible to replicate between a master and a slave that is more than one major
release newer than the master. However, there are known issues with trying to replicate from a master
running MySQL 4.1 or earlier to a slave running MySQL 5.1 or later. To work around such problems,
you can insert a MySQL server running an intermediate version between the two; for example, rather
than replicating directly from a MySQL 4.1 master to a MySQL 5.1 slave, it is possible to replicate from a
MySQL 4.1 server to a MySQL 5.0 server, and then from the MySQL 5.0 server to a MySQL 5.1 server.

Important

It is strongly recommended to use the most recent release available within a given
MySQL release series because replication (and other) capabilities are continually
being improved. It is also recommended to upgrade masters and slaves that use
early releases of a release series of MySQL to GA (production) releases when the
latter become available for that release series.

Upgrading a Replication Setup

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1633

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Replication from newer masters to older slaves may be possible, but is generally not supported. This is due
to a number of factors:

• Binary log format changes. The binary log format can change between major releases. While we
attempt to maintain backward-compatiblity, this is not always possible. Major changes were made in
MySQL 5.0.3 (for improvements to handling of character sets and LOAD DATA INFILE) and 5.0.4 (for
improvements to handling of time zones). Because of these changes, replication from a MySQL 5.0.3 or
later master to a MySQL 5.0.2 or earlier slave is not supported. This also means that replication from a
MySQL 5.0.3 (or later) master to any MySQL 4.1 (or earlier) slave is generally not supported.

This also has significant implications for upgrading replication servers; see Section 16.4.3, “Upgrading a
Replication Setup”, for more information.

• Use of row-based replication. Row-based replication was implemented in MySQL 5.1.5, so you
cannot replicate using row-based replication from any MySQL 5.0 or later master to a slave older than
MySQL 5.1.5.

Note

Row-based replication is not available in MySQL 5.0. For more information about
row-based replication in MySQL 5.1, see Replication Formats.

• SQL incompatibilities. You cannot replicate from a newer master to an older slave using statement-
based replication if the statements to be replicated use SQL features available on the master but not on
the slave.

For more information on potential replication issues, see Section 16.4.1, “Replication Features and Issues”.

16.4.3 Upgrading a Replication Setup

When you upgrade servers that participate in a replication setup, the procedure for upgrading depends on
the current server versions and the version to which you are upgrading.

This section applies to upgrading replication from older versions of MySQL to MySQL 5.0. A 4.0 server
should be 4.0.3 or newer.

When you upgrade a master to 5.0 from an earlier MySQL release series, you should first ensure that all
the slaves of this master are using the same 5.0.x release. If this is not the case, you should first upgrade
the slaves. To upgrade each slave, shut it down, upgrade it to the appropriate 5.0.x version, restart it,
and restart replication. The 5.0 slave is able to read the old relay logs written prior to the upgrade and to
execute the statements they contain. Relay logs created by the slave after the upgrade are in 5.0 format.

After the slaves have been upgraded, shut down the master, upgrade it to the same 5.0.x release as the
slaves, and restart it. The 5.0 master is able to read the old binary logs written prior to the upgrade and
to send them to the 5.0 slaves. The slaves recognize the old format and handle it properly. Binary logs
created by the master subsequent to the upgrade are in 5.0 format. These too are recognized by the 5.0
slaves.

In other words, when upgrading to MySQL 5.0, the slaves must be MySQL 5.0 before you can upgrade the
master to 5.0. Note that downgrading from 5.0 to older versions does not work so simply: You must ensure
that any 5.0 binary log or relay log has been fully processed, so that you can remove it before proceeding
with the downgrade.

Some upgrades may require that you drop and re-create database objects when you move from one
MySQL series to the next. For example, collation changes might require that table indexes be rebuilt. Such
operations, if necessary, will be detailed at Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”. It is

http://dev.mysql.com/doc/refman/5.1/en/replication-formats.html

Troubleshooting Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1634

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

safest to perform these operations separately on the slaves and the master, and to disable replication of
these operations from the master to the slave. To achieve this, use the following procedure:

1. Stop all the slaves and upgrade them. Restart them with the --skip-slave-start option so that
they do not connect to the master. Perform any table repair or rebuilding operations needed to re-
create database objects, such as use of REPAIR TABLE or ALTER TABLE, or dumping and reloading
tables or triggers.

2. Disable the binary log on the master. To do this without restarting the master, execute a SET
sql_log_bin = 0 statement. Alternatively, stop the master and restart it without the --log-bin
option. If you restart the master, you might also want to disallow client connections. For example, if all
clients connect using TCP/IP, use the --skip-networking option when you restart the master.

3. With the binary log disabled, perform any table repair or rebuilding operations needed to re-create
database objects. The binary log must be disabled during this step to prevent these operations from
being logged and sent to the slaves later.

4. Re-enable the binary log on the master. If you set sql_log_bin to 0 earlier, execute a SET
sql_log_bin = 1 statement. If you restarted the master to disable the binary log, restart it with --
log-bin, and without --skip-networking so that clients and slaves can connect.

5. Restart the slaves, this time without the --skip-slave-start option.

16.4.4 Troubleshooting Replication

If you have followed the instructions but your replication setup is not working, the first thing to do is check
the error log for messages. Many users have lost time by not doing this soon enough after encountering
problems.

If you cannot tell from the error log what the problem was, try the following techniques:

• Verify that the master has binary logging enabled by issuing a SHOW MASTER STATUS statement. If
logging is enabled, Position is nonzero. If binary logging is not enabled, verify that you are running the
master with the --log-bin option.

• Verify that the master and slave both were started with the --server-id option and that the ID value is
unique on each server.

• Verify that the slave is running. Use SHOW SLAVE STATUS to check whether the Slave_IO_Running
and Slave_SQL_Running values are both Yes. If not, verify the options that were used when starting
the slave server. For example, --skip-slave-start prevents the slave threads from starting until you
issue a START SLAVE statement.

• If the slave is running, check whether it established a connection to the master. Use SHOW
PROCESSLIST, find the I/O and SQL threads and check their State column to see what they display.
See Section 16.2.1, “Replication Implementation Details”. If the I/O thread state says Connecting to
master, check the following:

• Verify the privileges for the user being used for replication on the master.

• Check that the host name of the master is correct and that you are using the correct port to connect
to the master. The port used for replication is the same as used for client network communication (the
default is 3306). For the host name, ensure that the name resolves to the correct IP address.

• Check that networking has not been disabled on the master or slave. Look for the skip-networking
option in the configuration file. If present, comment it out or remove it.

How to Report Replication Bugs or Problems

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1635

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• If the master has a firewall or IP filtering configuration, ensure that the network port being used for
MySQL is not being filtered.

• Check that you can reach the master by using ping or traceroute/tracert to reach the host.

• If the slave was running previously but has stopped, the reason usually is that some statement that
succeeded on the master failed on the slave. This should never happen if you have taken a proper
snapshot of the master, and never modified the data on the slave outside of the slave thread. If the
slave stops unexpectedly, it is a bug or you have encountered one of the known replication limitations
described in Section 16.4.1, “Replication Features and Issues”. If it is a bug, see Section 16.4.5, “How to
Report Replication Bugs or Problems”, for instructions on how to report it.

• If a statement that succeeded on the master refuses to run on the slave, try the following procedure if it
is not feasible to do a full database resynchronization by deleting the slave's databases and copying a
new snapshot from the master:

1. Determine whether the affected table on the slave is different from the master table. Try to
understand how this happened. Then make the slave's table identical to the master's and run START
SLAVE.

2. If the preceding step does not work or does not apply, try to understand whether it would be safe to
make the update manually (if needed) and then ignore the next statement from the master.

3. If you decide that the slave can skip the next statement from the master, issue the following
statements:

mysql> SET GLOBAL sql_slave_skip_counter = N;
mysql> START SLAVE;

The value of N should be 1 if the next statement from the master does not use AUTO_INCREMENT
or LAST_INSERT_ID(). Otherwise, the value should be 2. The reason for using a value of 2 for
statements that use AUTO_INCREMENT or LAST_INSERT_ID() is that they take two events in the
binary log of the master.

See also Section 13.4.2.6, “SET GLOBAL sql_slave_skip_counter Syntax”.

4. If you are sure that the slave started out perfectly synchronized with the master, and that no one
has updated the tables involved outside of the slave thread, then presumably the discrepancy is the
result of a bug. If you are running the most recent version of MySQL, please report the problem. If
you are running an older version, try upgrading to the latest production release to determine whether
the problem persists.

16.4.5 How to Report Replication Bugs or Problems

When you have determined that there is no user error involved, and replication still either does not work
at all or is unstable, it is time to send us a bug report. We need to obtain as much information as possible
from you to be able to track down the bug. Please spend some time and effort in preparing a good bug
report.

If you have a repeatable test case that demonstrates the bug, please enter it into our bugs database using
the instructions given in Section 1.7, “How to Report Bugs or Problems”. If you have a “phantom” problem
(one that you cannot duplicate at will), use the following procedure:

1. Verify that no user error is involved. For example, if you update the slave outside of the slave thread,
the data goes out of synchrony, and you can have unique key violations on updates. In this case, the

How to Report Replication Bugs or Problems

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1636

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

slave thread stops and waits for you to clean up the tables manually to bring them into synchrony. This
is not a replication problem. It is a problem of outside interference causing replication to fail.

2. Run the slave with the --log-slave-updates and --log-bin options. These options cause the
slave to log the updates that it receives from the master into its own binary logs.

3. Save all evidence before resetting the replication state. If we have no information or only sketchy
information, it becomes difficult or impossible for us to track down the problem. The evidence you
should collect is:

• All binary log files from the master

• All binary log files from the slave

• The output of SHOW MASTER STATUS from the master at the time you discovered the problem

• The output of SHOW SLAVE STATUS from the slave at the time you discovered the problem

• Error logs from the master and the slave

4. Use mysqlbinlog to examine the binary logs. The following should be helpful to find the problem
statement. log_file and log_pos are the Master_Log_File and Read_Master_Log_Pos values
from SHOW SLAVE STATUS.

shell> mysqlbinlog --start-position=log_pos log_file | head

After you have collected the evidence for the problem, try to isolate it as a separate test case first. Then
enter the problem with as much information as possible into our bugs database using the instructions at
Section 1.7, “How to Report Bugs or Problems”.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1637

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 17 MySQL Cluster

Table of Contents
17.1 MySQL Cluster Overview .. 1638

17.1.1 MySQL Cluster Core Concepts ... 1640
17.1.2 MySQL Cluster Nodes, Node Groups, Replicas, and Partitions 1642
17.1.3 MySQL Cluster Hardware, Software, and Networking Requirements 1644
17.1.4 What is New in MySQL Cluster ... 1646
17.1.5 Known Limitations of MySQL Cluster .. 1647

17.2 MySQL Cluster Installation and Upgrades .. 1655
17.2.1 Installing MySQL Cluster on Linux .. 1658
17.2.2 Initial Configuration of MySQL Cluster ... 1663
17.2.3 Initial Startup of MySQL Cluster .. 1665
17.2.4 MySQL Cluster Example with Tables and Data .. 1666
17.2.5 Safe Shutdown and Restart of MySQL Cluster ... 1669
17.2.6 Upgrading and Downgrading MySQL Cluster ... 1670

17.3 MySQL Cluster Configuration .. 1672
17.3.1 Quick Test Setup of MySQL Cluster .. 1672
17.3.2 Overview of MySQL Cluster Configuration Parameters, Options, and Variables 1675
17.3.3 MySQL Cluster Configuration Files .. 1695
17.3.4 Using High-Speed Interconnects with MySQL Cluster ... 1749

17.4 MySQL Cluster Programs .. 1751
17.4.1 ndbd — The MySQL Cluster Data Node Daemon .. 1751
17.4.2 ndb_mgmd — The MySQL Cluster Management Server Daemon 1756
17.4.3 ndb_mgm — The MySQL Cluster Management Client .. 1759
17.4.4 ndb_config — Extract MySQL Cluster Configuration Information 1760
17.4.5 ndb_cpcd — Automate Testing for NDB Development .. 1765
17.4.6 ndb_delete_all — Delete All Rows from an NDB Table .. 1765
17.4.7 ndb_desc — Describe NDB Tables ... 1766
17.4.8 ndb_drop_index — Drop Index from an NDB Table .. 1767
17.4.9 ndb_drop_table — Drop an NDB Table .. 1769
17.4.10 ndb_error_reporter — NDB Error-Reporting Utility .. 1769
17.4.11 ndb_print_backup_file — Print NDB Backup File Contents 1770
17.4.12 ndb_print_schema_file — Print NDB Schema File Contents 1770
17.4.13 ndb_print_sys_file — Print NDB System File Contents 1771
17.4.14 ndb_restore — Restore a MySQL Cluster Backup .. 1771
17.4.15 ndb_select_all — Print Rows from an NDB Table .. 1777
17.4.16 ndb_select_count — Print Row Counts for NDB Tables .. 1780
17.4.17 ndb_show_tables — Display List of NDB Tables .. 1781
17.4.18 ndb_size.pl — NDBCLUSTER Size Requirement Estimator 1782
17.4.19 ndb_waiter — Wait for MySQL Cluster to Reach a Given Status 1783
17.4.20 Options Common to MySQL Cluster Programs — Options Common to MySQL Cluster
Programs .. 1785

17.5 Management of MySQL Cluster ... 1789
17.5.1 Summary of MySQL Cluster Start Phases ... 1789
17.5.2 Commands in the MySQL Cluster Management Client ... 1791
17.5.3 Online Backup of MySQL Cluster .. 1791
17.5.4 MySQL Server Usage for MySQL Cluster .. 1795
17.5.5 Performing a Rolling Restart of a MySQL Cluster ... 1797
17.5.6 Event Reports Generated in MySQL Cluster .. 1798
17.5.7 MySQL Cluster Log Messages .. 1807

MySQL Cluster Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1638

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

17.5.8 MySQL Cluster Single User Mode ... 1822
17.5.9 Quick Reference: MySQL Cluster SQL Statements .. 1823
17.5.10 MySQL Cluster Security Issues ... 1825

This chapter contains information about MySQL Cluster, a high-availability, high-redundancy version of
MySQL adapted for the distributed computing environment. It uses the NDBCLUSTER storage engine to
enable running several computers with MySQL servers and other software in a cluster. This storage engine
is available in MySQL 5.0 binary releases and in RPMs compatible with most modern Linux distributions.

Beginning with MySQL 5.0.8, MySQL Cluster changes for MySQL 5.0 Server releases can be found in the
MySQL 5.0 Server Release Notes. For release notes for older releases of MySQL Cluster (before 5.0.8),
see MySQL Cluster 5.0 Release Notes.

Supported Platforms. MySQL Cluster is currently available and supported on a number of platforms.
For exact levels of support available for on specific combinations of operating system versions,
operating system distributions, and hardware platforms, please refer to http://www.mysql.com/support/
supportedplatforms/cluster.html.

Compatibility with standard MySQL. While many standard MySQL schemas and applications can
work using MySQL Cluster, it is also true that unmodified applications and database schemas may be
slightly incompatible or have suboptimal performance when run using MySQL Cluster (see Section 17.1.5,
“Known Limitations of MySQL Cluster”). Most of these issues can be overcome, but this also means
that you are very unlikely to be able to switch an existing application datastore—that currently uses,
for example, MyISAM or InnoDB—to use the NDB storage engine without allowing for the possibility of
changes in schemas, queries, and applications.

Beginning with MySQL Cluster NDB 7.1, MySQL Cluster is available for production use on Microsoft
Windows. MySQL Cluster is not available for Microsoft Windows in MySQL 5.0. For more information, see
MySQL Cluster NDB 6.1 - 7.1.

This chapter represents a work in progress, and its contents are subject to revision as MySQL Cluster
continues to evolve. Additional information regarding MySQL Cluster can be found on the MySQL Web site
at http://www.mysql.com/products/cluster/.

Additional Resources. More information about MySQL Cluster can be found in the following places:

• For answers to some commonly asked questions about MySQL Cluster, see Section A.10, “MySQL 5.0
FAQ: MySQL Cluster”.

• The MySQL Cluster mailing list: http://lists.mysql.com/cluster.

• The MySQL Cluster Forum: http://forums.mysql.com/list.php?25.

• Many MySQL Cluster users and developers blog about their experiences with MySQL Cluster, and make
feeds of these available through PlanetMySQL.

17.1 MySQL Cluster Overview

MySQL Cluster is a technology that enables clustering of in-memory databases in a shared-nothing
system. The shared-nothing architecture enables the system to work with very inexpensive hardware, and
with a minimum of specific requirements for hardware or software.

MySQL Cluster is designed not to have any single point of failure. In a shared-nothing system, each
component is expected to have its own memory and disk, and the use of shared storage mechanisms such
as network shares, network file systems, and SANs is not recommended or supported.

http://dev.mysql.com/doc/relnotes/mysql/5.0/en/
http://dev.mysql.com/doc/relnotes/mysql-cluster/5.0/en/
http://www.mysql.com/support/supportedplatforms/cluster.html
http://www.mysql.com/support/supportedplatforms/cluster.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster.html
http://www.mysql.com/products/cluster/
http://lists.mysql.com/cluster
http://forums.mysql.com/list.php?25
http://www.planetmysql.org/

MySQL Cluster Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1639

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL Cluster integrates the standard MySQL server with an in-memory clustered storage engine called
NDB (which stands for “Network DataBase”). In our documentation, the term NDB refers to the part of the
setup that is specific to the storage engine, whereas “MySQL Cluster” refers to the combination of one or
more MySQL servers with the NDB storage engine.

A MySQL Cluster consists of a set of computers, known as hosts, each running one or more processes.
These processes, known as nodes, may include MySQL servers (for access to NDB data), data nodes
(for storage of the data), one or more management servers, and possibly other specialized data access
programs. The relationship of these components in a MySQL Cluster is shown here:

Figure 17.1 MySQL Cluster Components

All these programs work together to form a MySQL Cluster (see Section 17.4, “MySQL Cluster Programs”.
When data is stored by the NDB storage engine, the tables (and table data) are stored in the data nodes.
Such tables are directly accessible from all other MySQL servers (SQL nodes) in the cluster. Thus, in a
payroll application storing data in a cluster, if one application updates the salary of an employee, all other
MySQL servers that query this data can see this change immediately.

However, a MySQL server that is not connected to a MySQL Cluster cannot use the NDB storage engine
and cannot access any MySQL Cluster data.

The data stored in the data nodes for MySQL Cluster can be mirrored; the cluster can handle failures of
individual data nodes with no other impact than that a small number of transactions are aborted due to
losing the transaction state. Because transactional applications are expected to handle transaction failure,
this should not be a source of problems.

Individual nodes can be stopped and restarted, and can then rejoin the system (cluster). Rolling restarts
(in which all nodes are restarted in turn) are used in making configuration changes and software upgrades
(see Section 17.5.5, “Performing a Rolling Restart of a MySQL Cluster”). For more information about data
nodes, how they are organized in a MySQL Cluster, and how they handle and store MySQL Cluster data,
see Section 17.1.2, “MySQL Cluster Nodes, Node Groups, Replicas, and Partitions”.

Backing up and restoring MySQL Cluster databases can be done using the NDB native functionality
found in the MySQL Cluster management client and the ndb_restore program included in the MySQL
Cluster distribution. For more information, see Section 17.5.3, “Online Backup of MySQL Cluster”, and

MySQL Cluster Core Concepts

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1640

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 17.4.14, “ndb_restore — Restore a MySQL Cluster Backup”. You can also use the standard
MySQL functionality provided for this purpose in mysqldump and the MySQL server. See Section 4.5.4,
“mysqldump — A Database Backup Program”, for more information.

MySQL Cluster nodes can use a number of different transport mechanisms for inter-node communications,
including TCP/IP using standard 100 Mbps or faster Ethernet hardware. It is also possible to use the high-
speed Scalable Coherent Interface (SCI) protocol with MySQL Cluster, although this is not required to
use MySQL Cluster. SCI requires special hardware and software; see Section 17.3.4, “Using High-Speed
Interconnects with MySQL Cluster”, for more about SCI and using it with MySQL Cluster.

17.1.1 MySQL Cluster Core Concepts

NDBCLUSTER (also known as NDB) is an in-memory storage engine offering high-availability and data-
persistence features.

The NDBCLUSTER storage engine can be configured with a range of failover and load-balancing options,
but it is easiest to start with the storage engine at the cluster level. MySQL Cluster's NDB storage engine
contains a complete set of data, dependent only on other data within the cluster itself.

The “Cluster” portion of MySQL Cluster is configured independently of the MySQL servers. In a MySQL
Cluster, each part of the cluster is considered to be a node.

Note

In many contexts, the term “node” is used to indicate a computer, but when
discussing MySQL Cluster it means a process. It is possible to run multiple nodes
on a single computer; for a computer on which one or more cluster nodes are being
run we use the term cluster host.

However, MySQL 5.0 does not support the use of multiple data nodes on a single
computer in a production setting. See Section 17.1.5.9, “Limitations Relating to
Multiple MySQL Cluster Nodes”.

There are three types of cluster nodes, and in a minimal MySQL Cluster configuration, there will be at least
three nodes, one of each of these types:

• Management node (MGM node): The role of this type of node is to manage the other nodes within the
MySQL Cluster, performing such functions as providing configuration data, starting and stopping nodes,
running backup, and so forth. Because this node type manages the configuration of the other nodes,
a node of this type should be started first, before any other node. An MGM node is started with the
command ndb_mgmd.

• Data node: This type of node stores cluster data. There are as many data nodes as there are replicas,
times the number of fragments (see Section 17.1.2, “MySQL Cluster Nodes, Node Groups, Replicas,
and Partitions”). For example, with two replicas, each having two fragments, you need four data nodes.
One replica is sufficient for data storage, but provides no redundancy; therefore, it is recommended to
have 2 (or more) replicas to provide redundancy, and thus high availability. A data node is started with
the command ndbd (see Section 17.4.1, “ndbd — The MySQL Cluster Data Node Daemon”).

MySQL Cluster tables in MySQL 5.0 are stored completely in memory rather than on disk (this is why we
refer to MySQL cluster as an in-memory database). In MySQL 5.1, MySQL Cluster NDB 6.X, and later,
some MySQL Cluster data can be stored on disk, but we do not expect to backport this functionality to
MySQL 5.0; see MySQL Cluster Disk Data Tables, for more information.

• SQL node: This is a node that accesses the cluster data. In the case of MySQL Cluster, an SQL node
is a traditional MySQL server that uses the NDBCLUSTER storage engine. An SQL node is a mysqld

http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-disk-data.html

MySQL Cluster Core Concepts

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1641

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

process started with the --ndbcluster and --ndb-connectstring options, which are explained
elsewhere in this chapter, possibly with additional MySQL server options as well.

An SQL node is actually just a specialized type of API node, which designates any application which
accesses Cluster data. Another example of an API node is the ndb_restore utility that is used
to restore a cluster backup. It is possible to write such applications using the NDB API. For basic
information about the NDB API, see Getting Started with the NDB API.

Important

It is not realistic to expect to employ a three-node setup in a production
environment. Such a configuration provides no redundancy; to benefit from MySQL
Cluster's high-availability features, you must use multiple data and SQL nodes. The
use of multiple management nodes is also highly recommended.

For a brief introduction to the relationships between nodes, node groups, replicas, and partitions in MySQL
Cluster, see Section 17.1.2, “MySQL Cluster Nodes, Node Groups, Replicas, and Partitions”.

Configuration of a cluster involves configuring each individual node in the cluster and setting up individual
communication links between nodes. MySQL Cluster is currently designed with the intention that data
nodes are homogeneous in terms of processor power, memory space, and bandwidth. In addition, to
provide a single point of configuration, all configuration data for the cluster as a whole is located in one
configuration file.

The management server (MGM node) manages the cluster configuration file and the cluster log. Each
node in the cluster retrieves the configuration data from the management server, and so requires a way
to determine where the management server resides. When interesting events occur in the data nodes,
the nodes transfer information about these events to the management server, which then writes the
information to the cluster log.

In addition, there can be any number of cluster client processes or applications. These are of two types:

• Standard MySQL clients. MySQL Cluster can be used with existing MySQL applications written in
PHP, Perl, C, C++, Java, Python, Ruby, and so on. Such client applications send SQL statements to and
receive responses from MySQL servers acting as MySQL Cluster SQL nodes in much the same way
that they interact with standalone MySQL servers. However, MySQL clients using a MySQL Cluster as
a data source can be modified to take advantage of the ability to connect with multiple MySQL servers
to achieve load balancing and failover. For example, Java clients using Connector/J 5.0.6 and later can
use jdbc:mysql:loadbalance:// URLs (improved in Connector/J 5.1.7) to achieve load balancing
transparently.

• Management clients. These clients connect to the management server and provide commands
for starting and stopping nodes gracefully, starting and stopping message tracing (debug versions
only), showing node versions and status, starting and stopping backups, and so on. Such clients—
such as the ndb_mgm management client supplied with MySQL Cluster (see Section 17.4.3, “ndb_mgm
— The MySQL Cluster Management Client”)—are written using the MGM API, a C-language API that
communicates directly with one or more MySQL Cluster management servers. For more information, see
The MGM API.

Event logs. MySQL Cluster logs events by category (startup, shutdown, errors, checkpoints, and so
on), priority, and severity. A complete listing of all reportable events may be found in Section 17.5.6, “Event
Reports Generated in MySQL Cluster”. Event logs are of two types:

• Cluster log. Keeps a record of all desired reportable events for the cluster as a whole.

• Node log. A separate log which is also kept for each individual node.

http://dev.mysql.com/doc/ndbapi/en/ndb-getting-started.html
http://dev.mysql.com/doc/ndbapi/en/mgm-api.html

MySQL Cluster Nodes, Node Groups, Replicas, and Partitions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1642

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

Under normal circumstances, it is necessary and sufficient to keep and examine
only the cluster log. The node logs need be consulted only for application
development and debugging purposes.

Checkpoint. Generally speaking, when data is saved to disk, it is said that a checkpoint has been
reached. More specific to Cluster, it is a point in time where all committed transactions are stored on disk.
With regard to the NDB storage engine, there are two types of checkpoints which work together to ensure
that a consistent view of the cluster's data is maintained:

• Local Checkpoint (LCP): This is a checkpoint that is specific to a single node; however, LCPs take place
for all nodes in the cluster more or less concurrently. An LCP involves saving all of a node's data to disk,
and so usually occurs every few minutes. The precise interval varies, and depends upon the amount of
data stored by the node, the level of cluster activity, and other factors.

• Global Checkpoint (GCP): A GCP occurs every few seconds, when transactions for all nodes are
synchronized and the redo-log is flushed to disk.

For more information about the files and directories created by local checkpoints and global checkpoints,
see MySQL Cluster Data Node File System Directory Files.

17.1.2 MySQL Cluster Nodes, Node Groups, Replicas, and Partitions

This section discusses the manner in which MySQL Cluster divides and duplicates data for storage.

Central to an understanding of this topic are the following concepts, listed here with brief definitions:

• (Data) Node. An ndbd process, which stores a replica —that is, a copy of the partition (see below)
assigned to the node group of which the node is a member.

Each data node should be located on a separate computer. While it is also possible to host multiple
ndbd processes on a single computer, such a configuration is not supported.

It is common for the terms “node” and “data node” to be used interchangeably when referring to an
ndbd process; where mentioned, management (MGM) nodes (ndb_mgmd processes) and SQL nodes
(mysqld processes) are specified as such in this discussion.

• Node Group. A node group consists of one or more nodes, and stores partitions, or sets of replicas
(see next item).

The number of node groups in a MySQL Cluster is not directly configurable; it is function of the number
of data nodes and of the number of replicas (NoOfReplicas configuration parameter), as shown here:

[number_of_node_groups] = number_of_data_nodes / NoOfReplicas

Thus, a MySQL Cluster with 4 data nodes has 4 node groups if NoOfReplicas is set to 1 in the
config.ini file, 2 node groups if NoOfReplicas is set to 2, and 1 node group if NoOfReplicas is
set to 4. Replicas are discussed later in this section; for more information about NoOfReplicas, see
Section 17.3.3.5, “Defining MySQL Cluster Data Nodes”.

Note

All node groups in a MySQL Cluster must have the same number of data nodes.

http://dev.mysql.com/doc/ndbapi/en/ndb-internals-ndbd-filesystemdir-files.html

MySQL Cluster Nodes, Node Groups, Replicas, and Partitions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1643

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Partition. This is a portion of the data stored by the cluster. There are as many cluster partitions
as nodes participating in the cluster. Each node is responsible for keeping at least one copy of any
partitions assigned to it (that is, at least one replica) available to the cluster.

A replica belongs entirely to a single node; a node can (and usually does) store several replicas.

• Replica. This is a copy of a cluster partition. Each node in a node group stores a replica. Also
sometimes known as a partition replica. The number of replicas is equal to the number of nodes per
node group.

The following diagram illustrates a MySQL Cluster with four data nodes, arranged in two node groups of
two nodes each; nodes 1 and 2 belong to node group 0, and nodes 3 and 4 belong to node group 1. Note
that only data (ndbd) nodes are shown here; although a working cluster requires an ndb_mgm process for
cluster management and at least one SQL node to access the data stored by the cluster, these have been
omitted in the figure for clarity.

Figure 17.2 MySQL Cluster with Two Node Groups

The data stored by the cluster is divided into four partitions, numbered 0, 1, 2, and 3. Each partition is
stored—in multiple copies—on the same node group. Partitions are stored on alternate node groups:

• Partition 0 is stored on node group 0; a primary replica (primary copy) is stored on node 1, and a backup
replica (backup copy of the partition) is stored on node 2.

• Partition 1 is stored on the other node group (node group 1); this partition's primary replica is on node 3,
and its backup replica is on node 4.

• Partition 2 is stored on node group 0. However, the placing of its two replicas is reversed from that of
Partition 0; for Partition 2, the primary replica is stored on node 2, and the backup on node 1.

MySQL Cluster Hardware, Software, and Networking Requirements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1644

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Partition 3 is stored on node group 1, and the placement of its two replicas are reversed from those of
partition 1. That is, its primary replica is located on node 4, with the backup on node 3.

What this means regarding the continued operation of a MySQL Cluster is this: so long as each node
group participating in the cluster has at least one node operating, the cluster has a complete copy of all
data and remains viable. This is illustrated in the next diagram.

Figure 17.3 Nodes Required for a 2x2 Cluster

In this example, where the cluster consists of two node groups of two nodes each, any combination of
at least one node in node group 0 and at least one node in node group 1 is sufficient to keep the cluster
“alive” (indicated by arrows in the diagram). However, if both nodes from either node group fail, the
remaining two nodes are not sufficient (shown by the arrows marked out with an X); in either case, the
cluster has lost an entire partition and so can no longer provide access to a complete set of all cluster data.

17.1.3 MySQL Cluster Hardware, Software, and Networking Requirements

One of the strengths of MySQL Cluster is that it can be run on commodity hardware and has no unusual
requirements in this regard, other than for large amounts of RAM, due to the fact that all live data storage is
done in memory. (It is possible to reduce this requirement using Disk Data tables, which are implemented
in MySQL 5.1; however, we do not intend to backport this feature to MySQL 5.0.) Naturally, multiple and
faster CPUs will enhance performance. Memory requirements for other MySQL Cluster processes are
relatively small.

The software requirements for MySQL Cluster are also modest. Host operating systems do not require
any unusual modules, services, applications, or configuration to support MySQL Cluster. For supported
operating systems, a standard installation should be sufficient. The MySQL software requirements are
simple: all that is needed is a production release of MySQL 5.0 to have Cluster support. It is not necessary
to compile MySQL yourself merely to be able to use MySQL Cluster. We assume that you are using the
server binary appropriate to your platform, available from the MySQL Cluster software downloads page at
http://dev.mysql.com/downloads/cluster/.

For communication between nodes, MySQL Cluster supports TCP/IP networking in any standard topology,
and the minimum expected for each host is a standard 100 Mbps Ethernet card, plus a switch, hub, or

http://dev.mysql.com/downloads/cluster/

MySQL Cluster Hardware, Software, and Networking Requirements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1645

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

router to provide network connectivity for the cluster as a whole. We strongly recommend that a MySQL
Cluster be run on its own subnet which is not shared with machines not forming part of the cluster for the
following reasons:

• Security. Communications between MySQL Cluster nodes are not encrypted or shielded in any way.
The only means of protecting transmissions within a MySQL Cluster is to run the cluster on a protected
network. If you intend to use MySQL Cluster for Web applications, the cluster should definitely reside
behind your firewall and not in your network's De-Militarized Zone (DMZ) or elsewhere.

See Section 17.5.10.1, “MySQL Cluster Security and Networking Issues”, for more information.

• Efficiency. Setting up a MySQL Cluster on a private or protected network enables the cluster to make
exclusive use of bandwidth between cluster hosts. Using a separate switch for your MySQL Cluster not
only helps protect against unauthorized access to cluster data, it also ensures that MySQL Cluster nodes
are shielded from interference caused by transmissions between other computers on the network. For
enhanced reliability, you can use dual switches and dual cards to remove the network as a single point
of failure; many device drivers support failover for such communication links.

Network communication and latency. MySQL Cluster requires communication between data nodes
and API nodes (including SQL nodes), as well as between data nodes and other data nodes, to execute
queries and updates. Communication latency between these processes can directly affect the observed
performance and latency of user queries. In addition, to maintain consistency and service despite the silent
failure of nodes, MySQL Cluster uses heartbeating and timeout mechanisms which treat an extended
loss of communication from a node as node failure. This can lead to reduced redundancy. Recall that, to
maintain data consistency, a MySQL Cluster shuts down when the last node in a node group fails. Thus, to
avoid increasing the risk of a forced shutdown, breaks in communication between nodes should be avoided
wherever possible.

The failure of a data or API node results in the abort of all uncommitted transactions involving the failed
node. Data node recovery requires synchronization of the failed notde's data from a surviving data node,
and re-establishment of disk-based redo and checkpoint logs, before the data node returns to service. This
recovery can take some time, during which the Cluster operates with reduced redundancy.

Heartbeating relies on timely generation of heartbeat signals by all nodes. This may not be possible if the
node is overloaded, has insufficient machine CPU due to sharing with other programs, or is experiencing
delays due to swapping. If heartbeat generation is sufficiently delayed, other nodes treat the node that is
slow to respond as failed.

This treatment of a slow node as a failed one may or may not be desireable in some circumstances,
depending on the impact of the node's slowed operation on the rest of the cluster. When setting timeout
values such as HeartbeatIntervalDbDb and HeartbeatIntervalDbApi for MySQL Cluster, care
must be taken care to achieve quick detection, failover, and return to service, while avoiding potentially
expensive false positives.

Where communication latencies between data nodes are expected to be higher than would be expected
in a LAN environment (on the order of 100 µs), timeout parameters must be increased to ensure that any
allowed periods of latency periods are well within configured timeouts. Increasing timeouts in this way has
a corresponding effect on the worst-case time to detect failure and therefore time to service recovery.

LAN environments can typically be configured with stable low latency, and such that they can provide
redundancy with fast failover. Individual link failures can be recovered from with minimal and controlled
latency visible at the TCP level (where MySQL Cluster normally operates). WAN environments may offer
a range of latencies, as well as redundancy with slower failover times. Individual link failures may require
route changes to propagate before end-to-end connectivity is restored. At the TCP level this can appear as
large latencies on individual channels. The worst-case observed TCP latency in these scenarios is related
to the worst-case time for the IP layer to reroute around the failures.

http://compnetworking.about.com/cs/networksecurity/g/bldef_dmz.htm

What is New in MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1646

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SCI support. It is also possible to use the high-speed Scalable Coherent Interface (SCI) with MySQL
Cluster, but this is not a requirement. See Section 17.3.4, “Using High-Speed Interconnects with MySQL
Cluster”, for more about this protocol and its use with MySQL Cluster.

17.1.4 What is New in MySQL Cluster

In this section, we discuss changes in the implementation of MySQL Cluster in MySQL 5.0 as compared to
MySQL 4.1.

There are relatively few changes between the NDB storage engine implementations in MySQL 4.1 and in
5.0, so the upgrade path should be relatively quick and painless.

All significantly new features being developed for MySQL Cluster are going into the MySQL Cluster NDB
7.x trees. For information on changes in the Cluster implementations in MySQL versions 5.1 and later, see
MySQL Cluster Development History.

MySQL Cluster in MySQL 5.0 contains a number of features added since MySQL 4.1 that are likely to be of
interest:

• Condition pushdown. Consider the following query:

SELECT * FROM t1 WHERE non_indexed_attribute = 1;

This query uses a full table scan and the condition is evaluated in the cluster's data nodes. Thus, it is
not necessary to send the records across the network for evaluation. (That is, function transport is used,
rather than data transport.) Please note that this feature is currently disabled by default (pending more
thorough testing), but it should work in most cases. This feature can be enabled through the use of the
SET engine_condition_pushdown = On statement. Alternatively, you can run mysqld with the this
feature enabled by starting the MySQL server with the --engine-condition-pushdown option.

A major benefit of this change is that queries can be executed in parallel. This means that queries
against nonindexed columns can run faster than previously by a factor of as much as 5 to 10 times,
times the number of data nodes, because multiple CPUs can work on the query in parallel.

You can use EXPLAIN to determine when condition pushdown is being used. See Section 13.8.2,
“EXPLAIN Syntax”.

• Decreased IndexMemory Usage: In MySQL 5.0, each record consumes approximately 25 bytes of
index memory, and every unique index uses 25 bytes per record of index memory (in addition to some
data memory because these are stored in a separate table). This is because the primary key is not
stored in the index memory anymore.

• Query Cache Enabled for MySQL Cluster: See Section 8.10.3, “The MySQL Query Cache”, for
information on configuring and using the query cache.

• New optimizations. One optimization that merits particular attention is that a batched read interface
is now used in some queries. For example, consider the following query:

SELECT * FROM t1 WHERE primary_key IN (1,2,3,4,5,6,7,8,9,10);

This query will be executed 2 to 3 times more quickly than in previous MySQL Cluster versions due to
the fact that all 10 key lookups are sent in a single batch rather than one at a time.

• Limit On Number of Metadata Objects: Beginning with MySQL 5.0.6, each Cluster database may
contain a maximum of 20320 metadata objects—this includes database tables, system tables, indexes
and BLOB values. (Previously, this number was 1600.)

http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-what-is-new.html

Known Limitations of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1647

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

17.1.5 Known Limitations of MySQL Cluster

In the sections that follow, we discuss known limitations of MySQL Cluster in MySQL 5.0 as compared
with the features available when using the MyISAM and InnoDB storage engines. Currently, there are no
plans to address these in coming releases of MySQL 5.0; however, we will attempt to supply fixes for these
issues in subsequent release series. If you check the “Cluster” category in the MySQL bugs database
at http://bugs.mysql.com, you can find known bugs in the following categories under “MySQL Server:” in
the MySQL bugs database at http://bugs.mysql.com, which we intend to correct in upcoming releases of
MySQL Cluster:

• Cluster

• Cluster Direct API (NDBAPI)

• Cluster Disk Data

• Cluster Replication

This information is intended to be complete with respect to the conditions just set forth. You can report any
discrepancies that you encounter to the MySQL bugs database using the instructions given in Section 1.7,
“How to Report Bugs or Problems”. If we do not plan to fix the problem in MySQL 5.0, we will add it to the
list.

See Section 17.1.5.10, “Previous MySQL Cluster Issues Resolved in MySQL 5.0” for a list of issues in
MySQL Cluster in MySQL 4.1 that have been resolved in the current version.

17.1.5.1 Noncompliance with SQL Syntax in MySQL Cluster

Some SQL statements relating to certain MySQL features produce errors when used with NDB tables, as
described in the following list:

• Temporary tables. Temporary tables are not supported. Trying either to create a temporary table that
uses the NDB storage engine or to alter an existing temporary table to use NDB fails with the error Table
storage engine 'ndbcluster' does not support the create option 'TEMPORARY'.

• Indexes and keys in NDB tables. Keys and indexes on MySQL Cluster tables are subject to the
following limitations:

• Column width. Attempting to create an index on an NDB table column whose width is greater than
3072 bytes succeeds, but only the first 3072 bytes are actually used for the index. In such cases, a
warning Specified key was too long; max key length is 3072 bytes is issued, and a
SHOW CREATE TABLE statement shows the length of the index as 3072.

• TEXT and BLOB columns. You cannot create indexes on NDB table columns that use any of the
TEXT or BLOB data types.

• FULLTEXT indexes. The NDB storage engine does not support FULLTEXT indexes, which are
possible for MyISAM tables only.

However, you can create indexes on VARCHAR columns of NDB tables.

• USING HASH keys and NULL. Using nullable columns in unique keys and primary keys means
that queries using these columns are handled as full table scans. To work around this issue, make the
column NOT NULL, or re-create the index without the USING HASH option.

• Prefixes. There are no prefix indexes; only entire columns can be indexed. (The size of an NDB
column index is always the same as the width of the column in bytes, up to and including 3072 bytes,

http://bugs.mysql.com
http://bugs.mysql.com

Known Limitations of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1648

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

as described earlier in this section. Also see Section 17.1.5.6, “Unsupported or Missing Features in
MySQL Cluster”, for additional information.)

• BIT columns. A BIT column cannot be a primary key, unique key, or index, nor can it be part of a
composite primary key, unique key, or index.

• AUTO_INCREMENT columns. Like other MySQL storage engines, the NDB storage engine can
handle a maximum of one AUTO_INCREMENT column per table, and this column must be indexed.
However, in the case of a MySQL Cluster table with no explicit primary key, an AUTO_INCREMENT
column is automatically defined and used as a “hidden” primary key. For this reason, you cannot
create an NDB table having an AUTO_INCREMENT column and no explicit primary key.

• MySQL Cluster and geometry data types.
Geometry data types (WKT and WKB) are supported in NDB tables in MySQL 5.0. However, spatial
indexes are not supported.

17.1.5.2 Limits and Differences of MySQL Cluster from Standard MySQL Limits

In this section, we list limits found in MySQL Cluster that either differ from limits found in, or that are not
found in, standard MySQL.

Memory usage and recovery. Memory consumed when data is inserted into an NDB table is not
automatically recovered when deleted, as it is with other storage engines. Instead, the following rules hold
true:

• A DELETE statement on an NDB table makes the memory formerly used by the deleted rows available for
re-use by inserts on the same table only. However, this memory can be made available for general re-
use by performing a rolling restart of the cluster. See Section 17.5.5, “Performing a Rolling Restart of a
MySQL Cluster”.

• A DROP TABLE or TRUNCATE TABLE operation on an NDB table frees the memory that was used by this
table for re-use by any NDB table, either by the same table or by another NDB table.

Note

Recall that TRUNCATE TABLE drops and re-creates the table. See
Section 13.1.21, “TRUNCATE TABLE Syntax”.

• Limits imposed by the cluster's configuration.
A number of hard limits exist which are configurable, but available main memory in the cluster sets limits.
See the complete list of configuration parameters in Section 17.3.3, “MySQL Cluster Configuration Files”.
Most configuration parameters can be upgraded online. These hard limits include:

• Database memory size and index memory size (DataMemory and IndexMemory, respectively).

DataMemory is allocated as 32KB pages. As each DataMemory page is used, it is assigned to a
specific table; once allocated, this memory cannot be freed except by dropping the table.

See Section 17.3.3.5, “Defining MySQL Cluster Data Nodes”, for further information about
DataMemory and IndexMemory.

• The maximum number of operations that can be performed per transaction is set using the
configuration parameters MaxNoOfConcurrentOperations and MaxNoOfLocalOperations.

Known Limitations of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1649

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

Bulk loading, TRUNCATE TABLE, and ALTER TABLE are handled as special
cases by running multiple transactions, and so are not subject to this limitation.

• Different limits related to tables and indexes. For example, the maximum number of ordered indexes in
the cluster is determined by MaxNoOfOrderedIndexes, and the maximum number of ordered inexes
per table is 16.

• Memory usage. All Cluster table rows are of fixed length. This means (for example) that if a table
has one or more VARCHAR fields containing only relatively small values, more memory and disk space is
required when using the NDB storage engine than would be the case for the same table and data using
the MyISAM engine. (In other words, in the case of a VARCHAR column, the column requires the same
amount of storage as a CHAR column of the same size.)

• Node and data object maximums. The following limits apply to numbers of cluster nodes and
metadata objects:

• The maximum number of data nodes is 48.

A data node must have a node ID in the range of 1 to 48, inclusive. (Management and API nodes may
use any integer in the range of 1‐63 inclusive as a node ID.)

• The total maximum number of nodes in a MySQL Cluster is 63. This number includes all SQL nodes
(MySQL Servers), API nodes (applications accessing the cluster other than MySQL servers), data
nodes, and management servers.

• The maximum number of metadata objects in MySQL 5.0 Cluster is 20320. This limit is hard-coded.

17.1.5.3 Limits Relating to Transaction Handling in MySQL Cluster

A number of limitations exist in MySQL Cluster with regard to the handling of transactions. These include
the following:

• Transaction isolation level. The NDBCLUSTER storage engine supports only the READ COMMITTED
transaction isolation level. (InnoDB, for example, supports READ COMMITTED, READ UNCOMMITTED,
REPEATABLE READ, and SERIALIZABLE.) See Section 17.5.3.4, “MySQL Cluster Backup
Troubleshooting”, for information on how this can affect backing up and restoring Cluster databases.)

• Transactions and BLOB or TEXT columns. NDBCLUSTER stores only part of a column value that
uses any of MySQL's BLOB or TEXT data types in the table visible to MySQL; the remainder of the BLOB
or TEXT is stored in a separate internal table that is not accessible to MySQL. This gives rise to two
related issues of which you should be aware whenever executing SELECT statements on tables that
contain columns of these types:

1. For any SELECT from a MySQL Cluster table: If the SELECT includes a BLOB or TEXT column, the
READ COMMITTED transaction isolation level is converted to a read with read lock. This is done to
guarantee consistency.

2. For any SELECT which uses a primary key lookup or unique key lookup to retrieve any columns that
use any of the BLOB or TEXT data types and that is executed within a transaction, a shared read
lock is held on the table for the duration of the transaction—that is, until the transaction is either
committed or aborted. This does not occur for queries that use index or table scans.

For example, consider the table t defined by the following CREATE TABLE statement:

Known Limitations of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1650

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CREATE TABLE t (
 a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 b INT NOT NULL,
 c INT NOT NULL,
 d TEXT,
 INDEX i(b),
 UNIQUE KEY u(c)
) ENGINE = NDB,

Either of the following queries on t causes a shared read lock, because the first query uses a
primary key lookup and the second uses a unique key lookup:

SELECT * FROM t WHERE a = 1;

SELECT * FROM t WHERE c = 1;

However, none of the four queries shown here causes a shared read lock:

SELECT * FROM t WHERE b = 1;

SELECT * FROM t WHERE d = '1';

SELECT * FROM t;

SELECT b,c WHERE a = 1;

This is because, of these four queries, the first uses an index scan, the second and third use table
scans, and the fourth, while using a primary key lookup, does not retrieve the value of any BLOB or
TEXT columns.

You can help minimize issues with shared read locks by avoiding queries that use primary key
lookups or unique key lookups to retrieve BLOB or TEXT columns, or, in cases where such queries
are not avoidable, by committing transactions as soon as possible afterward.

This limitation is lifted in MySQL Cluster NDB 7.0 (Bug #49190).

• Rollbacks. There are no partial transactions, and no partial rollbacks of transactions. A duplicate key
or similar error aborts the entire transaction, and subsequent statements raise ERROR 1296 (HY000):
Got error 4350 'Transaction already aborted' from NDBCLUSTER. In such cases, you
must issue an explicit ROLLBACK and retry the entire transaction.

This behavior differs from that of other transactional storage engines such as InnoDB that may roll back
individual statements.

• Transactions and memory usage.
As noted elsewhere in this chapter, MySQL Cluster does not handle large transactions well; it is better
to perform a number of small transactions with a few operations each than to attempt a single large
transaction containing a great many operations. Among other considerations, large transactions require
very large amounts of memory. Because of this, the transactional behavior of a number of MySQL
statements is effected as described in the following list:

• TRUNCATE TABLE is not transactional when used on NDB tables. If a TRUNCATE TABLE fails to empty
the table, then it must be re-run until it is successful.

• DELETE FROM (even with no WHERE clause) is transactional. For tables containing a great many
rows, you may find that performance is improved by using several DELETE FROM ... LIMIT ...

Known Limitations of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1651

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

statements to “chunk” the delete operation. If your objective is to empty the table, then you may wish
to use TRUNCATE TABLE instead.

• LOAD DATA statements. LOAD DATA INFILE is not transactional when used on NDB tables.

Important

When executing a LOAD DATA INFILE statement, the NDB engine performs
commits at irregular intervals that enable better utilization of the communication
network. It is not possible to know ahead of time when such commits take
place.

LOAD DATA FROM MASTER is not supported in MySQL Cluster.

• ALTER TABLE and transactions. When copying an NDB table as part of an ALTER TABLE, the
creation of the copy is nontransactional. (In any case, this operation is rolled back when the copy is
deleted.)

17.1.5.4 MySQL Cluster Error Handling

Starting, stopping, or restarting a node may give rise to temporary errors causing some transactions to fail.
These include the following cases:

• Temporary errors. When first starting a node, it is possible that you may see Error 1204 Temporary
failure, distribution changed and similar temporary errors.

• Errors due to node failure. The stopping or failure of any data node can result in a number of
different node failure errors. (However, there should be no aborted transactions when performing a
planned shutdown of the cluster.)

In either of these cases, any errors that are generated must be handled within the application. This should
be done by retrying the transaction.

See also Section 17.1.5.2, “Limits and Differences of MySQL Cluster from Standard MySQL Limits”.

17.1.5.5 Limits Associated with Database Objects in MySQL Cluster

Some database objects such as tables and indexes have different limitations when using the NDBCLUSTER
storage engine:

• Identifiers. Database names, table names and attribute names cannot be as long in NDB tables as
when using other table handlers. Attribute names are truncated to 31 characters, and if not unique after
truncation give rise to errors. Database names and table names can total a maximum of 122 characters.
In other words, the maximum length for an NDB table name is 122 characters, less the number of
characters in the name of the database of which that table is a part.

• Table names containing special characters. NDB tables whose names contain characters other
than letters, numbers, dashes, and underscores and which are created on one SQL node may not be
discovered correctly by other SQL nodes. (Bug #31470)

• Number of tables and other database objects. The maximum number of tables in a Cluster
database in MySQL 5.0 is limited to 1792. The maximum number of all NDBCLUSTER database objects in
a single MySQL Cluster—including databases, tables, and indexes—is limited to 20320.

• Attributes per table. The maximum number of attributes (that is, columns and indexes) per table is
limited to 128.

Known Limitations of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1652

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Attributes per key. The maximum number of attributes per key is 32.

• Row size. The maximum permitted size of any one row is 8052 bytes. Each BLOB or TEXT column
contributes 256 + 8 = 264 bytes to this total.

• BIT column storage per table. The maximum combined width for all BIT columns used in a given
NDB table is 4096.

• Number of rows per partition. The maximum number of rows that can be stored in a single MySQL
Cluster partition varies with the number of replicas times the number of fragments. Since the number of
partitions is the same as the number of data nodes in the cluster (see Section 17.1.2, “MySQL Cluster
Nodes, Node Groups, Replicas, and Partitions”), you can increase the number of fragments—and thus
the available space—by using more data nodes.

17.1.5.6 Unsupported or Missing Features in MySQL Cluster

A number of features supported by other storage engines are not supported for NDB tables. Trying to use
any of these features in MySQL Cluster does not cause errors in or of itself; however, errors may occur in
applications that expects the features to be supported or enforced. Statements referencing such features,
even if effectively ignored by NDB, must be syntactically and otherwise valid.

• Foreign key constraints. The foreign key construct is ignored, just as it is in MyISAM tables.

• Index prefixes. Prefixes on indexes are not supported for NDB tables. If a prefix is used as part of
an index specification in a statement such as CREATE TABLE, ALTER TABLE, or CREATE INDEX, the
prefix is not created by NDB.

A statement containing an index prefix, and creating or modifying an NDB table, must still be syntactically
valid. For example, the following statement always fails with Error 1089 Incorrect prefix key;
the used key part isn't a string, the used length is longer than the key
part, or the storage engine doesn't support unique prefix keys, regardless of
storage engine:

CREATE TABLE t1 (
 c1 INT NOT NULL,
 c2 VARCHAR(100),
 INDEX i1 (c2(500))
);

This happens on account of the SQL syntax rule that no index may have a prefix larger than itself.

• OPTIMIZE operations. OPTIMIZE operations are not supported.

• LOAD TABLE ... FROM MASTER. LOAD TABLE ... FROM MASTER is not supported.

• Savepoints and rollbacks. Savepoints and rollbacks to savepoints are ignored as in MyISAM.

• Durability of commits. There are no durable commits on disk. Commits are replicated, but there is
no guarantee that logs are flushed to disk on commit.

• Replication. Replication is not supported.

Note

See Section 17.1.5.3, “Limits Relating to Transaction Handling in MySQL Cluster”,
for more information relating to limitations on transaction handling in NDB.

17.1.5.7 Limitations Relating to Performance in MySQL Cluster

Known Limitations of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1653

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The following performance issues are specific to or especially pronounced in MySQL Cluster:

• Range scans. There are query performance issues due to sequential access to the NDB storage
engine; it is also relatively more expensive to do many range scans than it is with either MyISAM or
InnoDB.

• Reliability of Records in range. The Records in range statistic is available but is not completely
tested or officially supported. This may result in nonoptimal query plans in some cases. If necessary, you
can employ USE INDEX or FORCE INDEX to alter the execution plan. See Section 8.9.2, “Index Hints”,
for more information on how to do this.

• Unique hash indexes. Unique hash indexes created with USING HASH cannot be used for
accessing a table if NULL is given as part of the key.

17.1.5.8 Issues Exclusive to MySQL Cluster

The following are limitations specific to the NDBCLUSTER storage engine:

• Machine architecture. The following issues relate to physical architecture of cluster hosts:

• All machines used in the cluster must have the same architecture. That is, all machines hosting nodes
must be either big-endian or little-endian, and you cannot use a mixture of both. For example, you
cannot have a management node running on a PowerPC which directs a data node that is running on
an x86 machine. This restriction does not apply to machines simply running mysql or other clients that
may be accessing the cluster's SQL nodes.

• Adding and dropping of data nodes. Online adding or dropping of data nodes is not currently
possible. In such cases, the entire cluster must be restarted.

• Backup and restore between architectures. It is also not possible to perform a Cluster backup
and restore between different architectures. For example, you cannot back up a cluster running on a
big-endian platform and then restore from that backup to a cluster running on a little-endian system.
(Bug #19255)

• Online schema changes. It is not possible to make online schema changes such as those
accomplished using ALTER TABLE or CREATE INDEX, as the NDB Cluster engine does not support
autodiscovery of such changes. (However, you can import or create a table that uses a different storage
engine, and then convert it to NDB using ALTER TABLE tbl_name ENGINE=NDBCLUSTER. In such a
case, you must issue a FLUSH TABLES statement to force the cluster to pick up the change.)

• Binary logging.
MySQL Cluster has the following limitations or restrictions with regard to binary logging:

• sql_log_bin has no effect on data operations; however, it is supported for schema operations.

• MySQL Cluster cannot produce a binary log for tables having BLOB columns but no primary key.

• Only the following schema operations are logged in a cluster binary log which is not on the mysqld
executing the statement:

• CREATE TABLE

• ALTER TABLE

• DROP TABLE

• CREATE DATABASE / CREATE SCHEMA

Known Limitations of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1654

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• DROP DATABASE / DROP SCHEMA

See also Section 17.1.5.9, “Limitations Relating to Multiple MySQL Cluster Nodes”.

17.1.5.9 Limitations Relating to Multiple MySQL Cluster Nodes

Multiple SQL nodes.
The following are issues relating to the use of multiple MySQL servers as MySQL Cluster SQL nodes, and
are specific to the NDBCLUSTER storage engine:

• No distributed table locks. A LOCK TABLES works only for the SQL node on which the lock is
issued; no other SQL node in the cluster “sees” this lock. This is also true for a lock issued by any
statement that locks tables as part of its operations. (See next item for an example.)

• ALTER TABLE operations. ALTER TABLE is not fully locking when running multiple MySQL servers
(SQL nodes). (As discussed in the previous item, MySQL Cluster does not support distributed table
locks.)

• Replication. MySQL replication will not work correctly if updates are done on multiple MySQL
servers. However, if the database partitioning scheme is done at the application level and no
transactions take place across these partitions, replication can be made to work.

• Database autodiscovery. Autodiscovery of databases is not supported for multiple MySQL servers
accessing the same MySQL Cluster. However, autodiscovery of tables is supported in such cases.
What this means is that after a database named db_name is created or imported using one MySQL
server, you should issue a CREATE DATABASE db_name statement on each additional MySQL server
that accesses the same MySQL Cluster. (As of MySQL 5.0.2, you may also use CREATE SCHEMA
db_name.) Once this has been done for a given MySQL server, that server should be able to detect the
database tables without error.

• DDL operations. DDL operations (such as CREATE TABLE or ALTER TABLE) are not safe from data
node failures. If a data node fails while trying to perform one of these, the data dictionary is locked and
no further DDL statements can be executed without restarting the cluster.

Multiple management nodes.
When using multiple management servers:

• If any of the management servers are running on the same host, you must give nodes explicit IDs in
connection strings because automatic allocation of node IDs does not work across multiple management
servers on the same host. This is not required if every management server resides on a different host.

In addition, all API nodes (including MySQL servers acting as SQL nodes), should list all management
servers using the same order in their connection strings.

• You must take extreme care to have the same configurations for all management servers. No special
checks for this are performed by the cluster.

• Prior to MySQL 5.0.14, all data nodes had to be restarted after bringing up the cluster for the
management nodes to be able to see one another.

(See Bug #12307 and Bug #13070 for more information.)

Multiple data node processes. While it is possible to run multiple cluster processes concurrently on a
single host, it is not always advisable to do so for reasons of performance and high availability, as well as
other considerations. In particular, in MySQL 5.0, we do not support for production use any MySQL Cluster
deployment in which more than one ndbd process is run on a single physical machine.

MySQL Cluster Installation and Upgrades

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1655

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

We may support multiple data nodes per host in a future MySQL release, following
additional testing. However, in MySQL 5.0, such configurations can be considered
experimental only.

Multiple network addresses. Multiple network addresses per data node are not supported. Use of
these is liable to cause problems: In the event of a data node failure, an SQL node waits for confirmation
that the data node went down but never receives it because another route to that data node remains open.
This can effectively make the cluster inoperable.

Note

It is possible to use multiple network hardware interfaces (such as Ethernet cards)
for a single data node, but these must be bound to the same address. This also
means that it not possible to use more than one [tcp] section per connection in
the config.ini file. See Section 17.3.3.8, “MySQL Cluster TCP/IP Connections”,
for more information.

17.1.5.10 Previous MySQL Cluster Issues Resolved in MySQL 5.0

The following Cluster limitations in MySQL 4.1 have been resolved in MySQL 5.0 as shown below:

• Character set support. The NDBCLUSTER storage engine supports all character sets and collations
available in MySQL 5.0.

• Character set directory. Beginning with MySQL 5.0.21, it is possible to install MySQL with Cluster
support to a nondefault location and change the search path for font description files using either the
--basedir or --character-sets-dir options. (Previously, ndbd in MySQL 5.0 searched only the
default path—typically /usr/local/mysql/share/mysql/charsets—for character sets.)

• Metadata objects. Prior to MySQL 5.0.6, the maximum number of metadata objects possible was
1600. Beginning with MySQL 5.0.6, this limit is increased to 20320.

• Query cache. Unlike the case in MySQL 4.1, the Cluster storage engine in MySQL 5.0 supports
MySQL's query cache. See Section 8.10.3, “The MySQL Query Cache”.

• IGNORE and REPLACE functionality.
In MySQL 5.0.19 and earlier, INSERT IGNORE, UPDATE IGNORE, and REPLACE were supported only
for primary keys, but not for unique keys. It was possible to work around this issue by removing the
constraint, then dropping the unique index, performing any inserts, and then adding the unique index
again.

This limitation was removed for INSERT IGNORE and REPLACE in MySQL 5.0.20. (See Bug #17431.)

• auto_increment_increment and auto_increment_offset. The auto_increment_increment and
auto_increment_offset server system variables are supported for NDBCLUSTER tables beginning
with MySQL 5.0.46.

17.2 MySQL Cluster Installation and Upgrades
This section describes the basics for planning, installing, configuring, and running a MySQL Cluster.
Whereas the examples in Section 17.3, “MySQL Cluster Configuration” provide more in-depth information
on a variety of clustering options and configuration, the result of following the guidelines and procedures
outlined here should be a usable MySQL Cluster which meets the minimum requirements for availability
and safeguarding of data.

MySQL Cluster Installation and Upgrades

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1656

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This section covers hardware and software requirements; networking issues; installation of MySQL Cluster;
configuration issues; starting, stopping, and restarting the cluster; loading of a sample database; and
performing queries.

Assumptions. The following sections make a number of assumptions regarding the cluster's physical
and network configuration. These assumptions are discussed in the next few paragraphs.

Cluster nodes and host computers. The cluster consists of four nodes, each on a separate host
computer, and each with a fixed network address on a typical Ethernet network as shown here:

Node IP Address

Management node (mgmd) 192.168.0.10

SQL node (mysqld) 192.168.0.20

Data node "A" (ndbd) 192.168.0.30

Data node "B" (ndbd) 192.168.0.40

This may be made clearer by the following diagram:

Figure 17.4 MySQL Cluster Multi-Computer Setup

Network addressing. In the interest of simplicity (and reliability), this How-To uses only numeric IP
addresses. However, if DNS resolution is available on your network, it is possible to use host names in lieu
of IP addresses in configuring Cluster. Alternatively, you can use the hosts file (typically /etc/hosts for
Linux and other Unix-like operating systems, or your operating system's equivalent) for providing a means
to do host lookup if such is available.

Potential hosts file issues. A common problem when trying to use host names for Cluster nodes
arises because of the way in which some operating systems (including some Linux distributions) set up
the system's own host name in the /etc/hosts during installation. Consider two machines with the host
names ndb1 and ndb2, both in the cluster network domain. Red Hat Linux (including some derivatives
such as CentOS and Fedora) places the following entries in these machines' /etc/hosts files:

ndb1 /etc/hosts:

MySQL Cluster Installation and Upgrades

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1657

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

127.0.0.1 ndb1.cluster ndb1 localhost.localdomain localhost

ndb2 /etc/hosts:
127.0.0.1 ndb2.cluster ndb2 localhost.localdomain localhost

SUSE Linux (including OpenSUSE) places these entries in the machines' /etc/hosts files:

ndb1 /etc/hosts:
127.0.0.1 localhost
127.0.0.2 ndb1.cluster ndb1

ndb2 /etc/hosts:
127.0.0.1 localhost
127.0.0.2 ndb2.cluster ndb2

In both instances, ndb1 routes ndb1.cluster to a loopback IP address, but gets a public IP address
from DNS for ndb2.cluster, while ndb2 routes ndb2.cluster to a loopback address and obtains a
public address for ndb1.cluster. The result is that each data node connects to the management server,
but cannot tell when any other data nodes have connected, and so the data nodes appear to hang while
starting.

Caution

You cannot mix localhost and other host names or IP addresses in
config.ini. For these reasons, the solution in such cases (other than to use IP
addresses for all config.ini HostName entries) is to remove the fully qualified
host names from /etc/hosts and use these in config.ini for all cluster hosts.

Host computer type. Each host computer in our installation scenario is an Intel-based desktop
PC running a supported operating system installed to disk in a standard configuration, and running no
unnecessary services. The core operating system with standard TCP/IP networking capabilities should
be sufficient. Also for the sake of simplicity, we also assume that the file systems on all hosts are set up
identically. In the event that they are not, you should adapt these instructions accordingly.

Network hardware. Standard 100 Mbps or 1 gigabit Ethernet cards are installed on each machine,
along with the proper drivers for the cards, and that all four hosts are connected through a standard-issue
Ethernet networking appliance such as a switch. (All machines should use network cards with the same
throughput. That is, all four machines in the cluster should have 100 Mbps cards or all four machines
should have 1 Gbps cards.) MySQL Cluster works in a 100 Mbps network; however, gigabit Ethernet
provides better performance.

Important

MySQL Cluster is not intended for use in a network for which throughput is less
than 100 Mbps or which experiences a high degree of latency. For this reason
(among others), attempting to run a MySQL Cluster over a wide area network such
as the Internet is not likely to be successful, and is not supported in production.

Sample data. We use the world database which is available for download from the MySQL Web site
(see http://dev.mysql.com/doc/index-other.html). We assume that each machine has sufficient memory
for running the operating system, required MySQL Cluster processes, and (on the data nodes) storing the
database.

For general information about installing MySQL, see Chapter 2, Installing and Upgrading MySQL. For
information about installation of MySQL Cluster on Linux and other Unix-like operating systems, see
Section 17.2.1, “Installing MySQL Cluster on Linux”.

http://dev.mysql.com/doc/index-other.html

Installing MySQL Cluster on Linux

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1658

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For general information about MySQL Cluster hardware, software, and networking requirements, see
Section 17.1.3, “MySQL Cluster Hardware, Software, and Networking Requirements”.

17.2.1 Installing MySQL Cluster on Linux

This section covers installation of MySQL Cluster on Linux and other Unix-like operating systems. While
the next few sections refer to a Linux operating system, the instructions and procedures given there should
be easily adaptable to other supported Unix-like platforms.

Each MySQL Cluster host computer must have the correct executable programs installed. A host running
an SQL node must have installed on it a MySQL Server binary (mysqld). Management nodes require
the management server daemon (ndb_mgmd); data nodes require the data node daemon (ndbd. It is
not necessary to install the MySQL Server binary on management node hosts and data node hosts. It is
recommended that you also install the management client (ndb_mgm) on the management server host.

Installation of MySQL Cluster on Linux can be done using precompiled binaries from Oracle (downloaded
as a .tar.gz archive), with RPM packages (also available from Oracle), or from source code. All three of
these installation methods are described in the section that follow.

Regardless of the method used, it is still necessary following installation of the MySQL Cluster binaries to
create configuration files for all cluster nodes, before you can start the cluster. See Section 17.2.2, “Initial
Configuration of MySQL Cluster”.

17.2.1.1 Installing a MySQL Cluster Binary Release on Linux

This section covers the steps necessary to install the correct executables for each type of Cluster node
from precompiled binaries supplied by Oracle.

For setting up a cluster using precompiled binaries, the first step in the installation process for each cluster
host is to download the latest MySQL 5.0 binary archive from the MySQL downloads page. We assume
that you have placed this file in each machine's /var/tmp directory. (If you do require a custom binary,
see Section 2.17.2, “Installing MySQL Using a Development Source Tree”.)

Note

After completing the installation, do not yet start any of the binaries. We show you
how to do so following the configuration of the nodes (see Section 17.2.2, “Initial
Configuration of MySQL Cluster”).

SQL nodes. On each of the machines designated to host SQL nodes, perform the following steps as
the system root user:

1. Check your /etc/passwd and /etc/group files (or use whatever tools are provided by your
operating system for managing users and groups) to see whether there is already a mysql group
and mysql user on the system. Some OS distributions create these as part of the operating system
installation process. If they are not already present, create a new mysql user group, and then add a
mysql user to this group:

shell> groupadd mysql
shell> useradd -g mysql -s /bin/false mysql

The syntax for useradd and groupadd may differ slightly on different versions of Unix, or they may
have different names such as adduser and addgroup.

2. Change location to the directory containing the downloaded file, unpack the archive, and create a
symbolic link named mysql to the mysql directory. Note that the actual file and directory names vary
according to the MySQL Cluster version number.

Installing MySQL Cluster on Linux

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1659

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> cd /var/tmp
shell> tar -C /usr/local -xzvf mysql-5.0.96-linux-i686-glibc23.tar.gz
shell> ln -s /usr/local/mysql-5.0.96-linux-i686-glibc23 /usr/local/mysql

3. Change location to the mysql directory and run the supplied script for creating the system databases:

shell> cd mysql
shell> scripts/mysql_install_db --user=mysql

4. Set the necessary permissions for the MySQL server and data directories:

shell> chown -R root .
shell> chown -R mysql data
shell> chgrp -R mysql .

5. Copy the MySQL startup script to the appropriate directory, make it executable, and set it to start when
the operating system is booted up:

shell> cp support-files/mysql.server /etc/rc.d/init.d/
shell> chmod +x /etc/rc.d/init.d/mysql.server
shell> chkconfig --add mysql.server

(The startup scripts directory may vary depending on your operating system and version—for example,
in some Linux distributions, it is /etc/init.d.)

Here we use Red Hat's chkconfig for creating links to the startup scripts; use whatever means is
appropriate for this purpose on your platform, such as update-rc.d on Debian.

Remember that the preceding steps must be repeated on each machine where an SQL node is to reside.

Data nodes. Installation of the data nodes does not require the mysqld binary. Only the MySQL Cluster
data node executable ndbd is required. This binary can also be found in the .tar.gz archive. Again, we
assume that you have placed this archive in /var/tmp.

As system root (that is, after using sudo, su root, or your system's equivalent for temporarily assuming
the system administrator account's privileges), perform the following steps to install the data node binaries
on the data node hosts:

1. Change location to the /var/tmp directory, and extract the ndbd binary from the archive into a
suitable directory such as /usr/local/bin:

shell> cd /var/tmp
shell> tar -zxvf mysql-5.0.96-linux-i686-glibc23.tar.gz
shell> cd mysql-5.0.96-linux-i686-glibc23
shell> cp bin/ndbd /usr/local/bin/ndbd

(You can safely delete the directory created by unpacking the downloaded archive, and the files it
contains, from /var/tmp once ndb_mgm has been copied to the executables directory.)

2. Change location to the directory into which you copied the binary, and make it executable:

shell> cd /usr/local/bin
shell> chmod +x ndbd

The preceding steps should be repeated on each data node host.

Installing MySQL Cluster on Linux

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1660

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

The data directory on each machine hosting a data node is /usr/local/mysql/
data. This piece of information is essential when configuring the management
node. (See Section 17.2.2, “Initial Configuration of MySQL Cluster”.)

Management nodes. Installation of the management node does not require the mysqld binary.
Only the MySQL Cluster management server (ndb_mgmd) is required; you most likely want to install the
management client (ndb_mgm) as well. Both of these binaries also be found in the .tar.gz archive.
Again, we assume that you have placed this archive in /var/tmp.

As system root, perform the following steps to install ndb_mgmd and ndb_mgm on the management node
host:

1. Change location to the /var/tmp directory, and extract the ndb_mgm and ndb_mgmd from the archive
into a suitable directory such as /usr/local/bin:

shell> cd /var/tmp
shell> tar -zxvf mysql-5.0.96-linux-i686-glibc23.tar.gz
shell> cd mysql-5.0.96-linux-i686-glibc23
shell> cp bin/ndb_mgm* /usr/local/bin

(You can safely delete the directory created by unpacking the downloaded archive, and the files
it contains, from /var/tmp once ndb_mgm and ndb_mgmd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them
executable:

shell> cd /usr/local/bin
shell> chmod +x ndb_mgm*

In Section 17.2.2, “Initial Configuration of MySQL Cluster”, we create configuration files for all of the nodes
in our example MySQL Cluster.

17.2.1.2 Installing MySQL Cluster from RPM

This section covers the steps necessary to install the correct executables for each type of MySQL Cluster
node using RPM packages supplied by Oracle.

RPMs are available for both 32-bit and 64-bit Linux platforms. For a MySQL Cluster, three RPMs are
required:

• The Server RPM (for example, MySQL-server-5.0.96-0.glibc23.i386.rpm), which supplies the
core files needed to run a MySQL Server.

If you do not have your own client application capable of administering a MySQL server, you should also
obtain and install the Client RPM (such as MySQL-client-5.0.96-0.sles10.i586.rpm).

• The NDB Cluster - Storage engine RPM (for example, MySQL-ndb-
storage-5.0.96-0.glibc23.i386.rpm), which supplies the MySQL Cluster data node binary
(ndbd).

• The NDB Cluster - Storage engine management RPM (for example, MySQL-ndb-
management-5.0.96-0.glibc23.i386.rpm), which provides the MySQL Cluster management
server binary (ndb_mgmd).

Installing MySQL Cluster on Linux

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1661

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In addition, you should also obtain the NDB Cluster - Storage engine basic tools RPM (for example,
MySQL-ndb-tools-5.0.96-0.glibc23.i386.rpm), which supplies several useful applications
for working with a MySQL Cluster. The most important of these is the MySQL Cluster management
client (ndb_mgm). The NDB Cluster - Storage engine extra tools RPM (for example, MySQL-ndb-
extra-5.0.96-0.glibc23.i386.rpm) contains some additional testing and monitoring programs,
but is not required to install a MySQL Cluster. (For more information about these additional programs, see
Section 17.4, “MySQL Cluster Programs”.)

The MySQL version number in the RPM file names (shown here as 5.0.96) can vary according to the
version which you are actually using. It is very important that all of the Cluster RPMs to be installed have
the same MySQL version number. The glibc version number (if present—shown here as glibc23), and
architecture designation (shown here as i386) should be appropriate to the machine on which the RPM is
to be installed.

Data nodes. On a computer that is to host a cluster data node it is necessary to install only the NDB
Cluster - Storage engine RPM. To do so, copy this RPM to the data node host, and run the following
command as the system root user, replacing the name shown for the RPM as necessary to match that of
the RPM downloaded from the MySQL web site:

shell> rpm -Uhv MySQL-ndb-storage-5.0.96-0.glibc23.i386.rpm

The previous command installs the MySQL Cluster data node binary (ndbd) in the /usr/sbin directory.

SQL nodes. On each machine to be used for hosting a cluster SQL node, install the Server RPM by
executing the following command as the system root user, replacing the name shown for the RPM as
necessary to match the name of the RPM downloaded from the MySQL web site:

shell> rpm -Uhv MySQL-server-5.0.96-0.glibc23.i386.rpm

This installs the MySQL server binary (mysqld) in the /usr/sbin directory, as well as all needed MySQL
Server support files. It also installs the mysql.server and mysqld_safe startup scripts in /usr/
share/mysql and /usr/bin, respectively. The RPM installer should take care of general configuration
issues (such as creating the mysql user and group, if needed) automatically.

Note

To administer the SQL node (MySQL server), you should also install the Client
RPM, as shown here:

shell> rpm -Uhv MySQL-client-5.0.96-0.sles10.i586.rpm

This installs the mysql client program.

Management nodes. To install the MySQL Cluster management server, it is necessary only to use the
NDB Cluster - Storage engine management RPM. Copy this RPM to the computer intended to host the
management node, and then install it by running the following command as the system root user (replace
the name shown for the RPM as necessary to match that of the Storage engine management RPM
downloaded from the MySQL web site):

shell> rpm -Uhv MySQL-ndb-management-5.0.96-0.glibc23.i386.rpm

This installs the management server binary (ndb_mgmd) to the /usr/sbin directory.

You should also install the NDB management client, which is supplied by the Storage engine basic tools
RPM. Copy this RPM to the same computer as the management node, and then install it by running the

Installing MySQL Cluster on Linux

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1662

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

following command as the system root user (again, replace the name shown for the RPM as necessary to
match that of the Storage engine basic tools RPM downloaded from the MySQL web site):

shell> rpm -Uhv MySQL-ndb-tools-5.0.96-0.sles10.i586.rpm

The Storage engine basic tools RPM installs the MySQL Cluster management client (ndb_mgm) to the /
usr/bin directory.

Note

You can also install the Cluster storage engine extra tools RPM, if you wish, as
shown here:

shell> rpm -Uhv MySQL-ndb-extra-5.0.96-0.sles10.i586.rpm

You may find the extra tools useful; however the Cluster storage engine extra
tools RPM is not required to install a working MySQL Cluster.

See Section 2.12, “Installing MySQL on Linux Using RPM Packages”, for general information about
installing MySQL using RPMs supplied by Oracle.

After installing from RPM, you still need to configure the cluster as discussed in Section 17.2.2, “Initial
Configuration of MySQL Cluster”.

17.2.1.3 Building MySQL Cluster from Source on Linux

This section provides information about compiling MySQL Cluster on Linux and other Unix-like
platforms.To build MySQL Cluster, you need the MySQL 5.0 source archive available from http://
dev.mysql.com/downloads/. Building MySQL Cluster from source is similar to building the standard MySQL
Server, although it differs in a few key respects discussed here. For general information about building
MySQL from source, see Section 2.17, “Installing MySQL from Source”.

In addition to any other configure options you wish to use, be sure to include --with-ndbcluster.
This option causes the binaries for the management nodes, data nodes, and other MySQL Cluster
programs to be built; it also causes mysqld to be compiled with NDB storage engine support.

After you have run make && make install (or your system's equivalent), the result is similar to what is
obtained by unpacking a precompiled binary to the same location. However, the layout can differ. These
differences are covered in the next few paragraphs.

Management nodes. When building from source and running the default make install, the
management server binary (ndb_mgmd) is placed in /usr/local/mysql/libexec, while the
management client binary (ndb_mgm) can be found in /usr/local/mysql/bin. Only ndb_mgmd is
required to be present on a management node host; however, it is also a good idea to have ndb_mgm
present on the same host machine. Neither of these executables requires a specific location on the host
machine's file system.

Data nodes. The only executable required on a data node host is ndbd (mysqld, for example, does
not have to be present on the host machine). By default when doing a source build, this file is placed
in the directory /usr/local/mysql/libexec. For installing on multiple data node hosts, only ndbd
need be copied to the other host machine or machines. (This assumes that all data node hosts use the
same architecture and operating system; otherwise you may need to compile separately for each different
platform.) ndbd need not be in any particular location on the host's file system, as long as the location is
known.

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/

Initial Configuration of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1663

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SQL nodes. If you compile MySQL with clustering support, and perform the default installation (using
make install as the system root user), mysqld is placed in /usr/local/mysql/bin. Follow the
steps given in Section 2.17, “Installing MySQL from Source” to make mysqld ready for use. If you want to
run multiple SQL nodes, you can use a copy of the same mysqld executable and its associated support
files on several machines. The easiest way to do this is to copy the entire /usr/local/mysql directory
and all directories and files contained within it to the other SQL node host or hosts, then repeat the steps
from Section 2.17, “Installing MySQL from Source” on each machine. If you configure the build with a
nondefault --prefix, you need to adjust the directory accordingly.

In Section 17.2.2, “Initial Configuration of MySQL Cluster”, we create configuration files for all of the nodes
in our example MySQL Cluster.

17.2.2 Initial Configuration of MySQL Cluster

For our four-node, four-host MySQL Cluster, it is necessary to write four configuration files, one per node
host.

• Each data node or SQL node requires a my.cnf file that provides two pieces of information: a
connection string that tells the node where to find the management node, and a line telling the MySQL
server on this host (the machine hosting the data node) to enable the NDBCLUSTER storage engine.

For more information on connection strings, see Section 17.3.3.2, “MySQL Cluster Connection Strings”.

• The management node needs a config.ini file telling it how many replicas to maintain, how much
memory to allocate for data and indexes on each data node, where to find the data nodes, where to save
data to disk on each data node, and where to find any SQL nodes.

Configuring the data nodes and SQL nodes. The my.cnf file needed for the data nodes is fairly
simple. The configuration file should be located in the /etc directory and can be edited using any text
editor. (Create the file if it does not exist.) For example:

shell> vi /etc/my.cnf

Note

We show vi being used here to create the file, but any text editor should work just
as well.

For each data node and SQL node in our example setup, my.cnf should look like this:

[mysqld]
Options for mysqld process:
ndbcluster # run NDB storage engine

[mysql_cluster]
Options for MySQL Cluster processes:
ndb-connectstring=192.168.0.10 # location of management server

After entering the preceding information, save this file and exit the text editor. Do this for the machines
hosting data node “A”, data node “B”, and the SQL node.

Important

Once you have started a mysqld process with the ndbcluster and ndb-
connectstring parameters in the [mysqld] and [mysql_cluster] sections
of the my.cnf file as shown previously, you cannot execute any CREATE TABLE

Initial Configuration of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1664

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

or ALTER TABLE statements without having actually started the cluster. Otherwise,
these statements will fail with an error. This is by design.

Configuring the management node. The first step in configuring the management node is to create
the directory in which the configuration file can be found and then to create the file itself. For example
(running as root):

shell> mkdir /var/lib/mysql-cluster
shell> cd /var/lib/mysql-cluster
shell> vi config.ini

For our representative setup, the config.ini file should read as follows:

[ndbd default]
Options affecting ndbd processes on all data nodes:
NoOfReplicas=2 # Number of replicas
DataMemory=80M # How much memory to allocate for data storage
IndexMemory=18M # How much memory to allocate for index storage
 # For DataMemory and IndexMemory, we have used the
 # default values. Since the "world" database takes up
 # only about 500KB, this should be more than enough for
 # this example Cluster setup.

[tcp default]
TCP/IP options:
portnumber=2202 # This the default; however, you can use any
 # port that is free for all the hosts in the cluster
 # Note: It is recommended that you do not specify the port
 # number at all and simply allow the default value to be used
 # instead

[ndb_mgmd]
Management process options:
hostname=192.168.0.10 # Hostname or IP address of MGM node
datadir=/var/lib/mysql-cluster # Directory for MGM node log files

[ndbd]
Options for data node "A":
 # (one [ndbd] section per data node)
hostname=192.168.0.30 # Hostname or IP address
datadir=/usr/local/mysql/data # Directory for this data node's data files

[ndbd]
Options for data node "B":
hostname=192.168.0.40 # Hostname or IP address
datadir=/usr/local/mysql/data # Directory for this data node's data files

[mysqld]
SQL node options:
hostname=192.168.0.20 # Hostname or IP address
 # (additional mysqld connections can be
 # specified for this node for various
 # purposes such as running ndb_restore)

Note

The world database can be downloaded from http://dev.mysql.com/doc/index-
other.html.

After all the configuration files have been created and these minimal options have been specified, you are
ready to proceed with starting the cluster and verifying that all processes are running. We discuss how this
is done in Section 17.2.3, “Initial Startup of MySQL Cluster”.

http://dev.mysql.com/doc/index-other.html
http://dev.mysql.com/doc/index-other.html

Initial Startup of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1665

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For more detailed information about the available MySQL Cluster configuration parameters and their
uses, see Section 17.3.3, “MySQL Cluster Configuration Files”, and Section 17.3, “MySQL Cluster
Configuration”. For configuration of MySQL Cluster as relates to making backups, see Section 17.5.3.3,
“Configuration for MySQL Cluster Backups”.

Note

The default port for Cluster management nodes is 1186; the default port for data
nodes is 2202. Beginning with MySQL 5.0.3, this restriction is lifted, and the cluster
automatically allocates ports for data nodes from those that are already free.

17.2.3 Initial Startup of MySQL Cluster

Starting the cluster is not very difficult after it has been configured. Each cluster node process must
be started separately, and on the host where it resides. The management node should be started first,
followed by the data nodes, and then finally by any SQL nodes:

1. On the management host, issue the following command from the system shell to start the management
node process:

shell> ndb_mgmd -f /var/lib/mysql-cluster/config.ini

Note

ndb_mgmd must be told where to find its configuration file, using the -f or --
config-file option. (See Section 17.4.2, “ndb_mgmd — The MySQL Cluster
Management Server Daemon”, for details.)

For additional options which can be used with ndb_mgmd, see Section 17.4.20,
“Options Common to MySQL Cluster Programs — Options Common to MySQL
Cluster Programs”.

2. On each of the data node hosts, run this command to start the ndbd process:

shell> ndbd

3. If you used RPM files to install MySQL on the cluster host where the SQL node is to reside, you can
(and should) use the supplied startup script to start the MySQL server process on the SQL node.

If all has gone well, and the cluster has been set up correctly, the cluster should now be operational. You
can test this by invoking the ndb_mgm management node client. The output should look like that shown
here, although you might see some slight differences in the output depending upon the exact version of
MySQL that you are using:

shell> ndb_mgm
-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=2 @192.168.0.30 (Version: 5.0.96, Nodegroup: 0, Master)
id=3 @192.168.0.40 (Version: 5.0.96, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)

MySQL Cluster Example with Tables and Data

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1666

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

id=1 @192.168.0.10 (Version: 5.0.96)

[mysqld(API)] 1 node(s)
id=4 @192.168.0.20 (Version: 5.0.96)

The SQL node is referenced here as [mysqld(API)], which reflects the fact that the mysqld process is
acting as a MySQL Cluster API node.

Note

The IP address shown for a given MySQL Cluster SQL or other API node in the
output of SHOW is the address used by the SQL or API node to connect to the
cluster data nodes, and not to any management node.

You should now be ready to work with databases, tables, and data in MySQL Cluster. See Section 17.2.4,
“MySQL Cluster Example with Tables and Data”, for a brief discussion.

17.2.4 MySQL Cluster Example with Tables and Data

Working with database tables and data in MySQL Cluster is not much different from doing so in standard
MySQL. There are two key points to keep in mind:

• For a table to be replicated in the cluster, it must use the NDBCLUSTER storage engine. To specify this,
use the ENGINE=NDBCLUSTER or ENGINE=NDB option when creating the table:

CREATE TABLE tbl_name (col_name column_definitions) ENGINE=NDBCLUSTER;

Alternatively, for an existing table that uses a different storage engine, use ALTER TABLE to change the
table to use NDBCLUSTER:

ALTER TABLE tbl_name ENGINE=NDBCLUSTER;

• Every NDBCLUSTER table has a primary key. If no primary key is defined by the user when a table is
created, the NDBCLUSTER storage engine automatically generates a hidden one. Such a key takes up
space just as does any other table index. (It is not uncommon to encounter problems due to insufficient
memory for accommodating these automatically created indexes.)

If you are importing tables from an existing database using the output of mysqldump, you can open the
SQL script in a text editor and add the ENGINE option to any table creation statements, or replace any
existing ENGINE (or TYPE) options. Suppose that you have the world sample database on another
MySQL server that does not support MySQL Cluster, and you want to export the City table:

shell> mysqldump --add-drop-table world City > city_table.sql

The resulting city_table.sql file will contain this table creation statement (and the INSERT statements
necessary to import the table data):

DROP TABLE IF EXISTS `City`;
CREATE TABLE `City` (
 `ID` int(11) NOT NULL auto_increment,
 `Name` char(35) NOT NULL default '',
 `CountryCode` char(3) NOT NULL default '',
 `District` char(20) NOT NULL default '',
 `Population` int(11) NOT NULL default '0',
 PRIMARY KEY (`ID`)

MySQL Cluster Example with Tables and Data

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1667

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

INSERT INTO `City` VALUES (1,'Kabul','AFG','Kabol',1780000);
INSERT INTO `City` VALUES (2,'Qandahar','AFG','Qandahar',237500);
INSERT INTO `City` VALUES (3,'Herat','AFG','Herat',186800);
(remaining INSERT statements omitted)

You need to make sure that MySQL uses the NDBCLUSTER storage engine for this table. There are two
ways that this can be accomplished. One of these is to modify the table definition before importing it into
the Cluster database. Using the City table as an example, modify the ENGINE option of the definition as
follows:

DROP TABLE IF EXISTS `City`;
CREATE TABLE `City` (
 `ID` int(11) NOT NULL auto_increment,
 `Name` char(35) NOT NULL default '',
 `CountryCode` char(3) NOT NULL default '',
 `District` char(20) NOT NULL default '',
 `Population` int(11) NOT NULL default '0',
 PRIMARY KEY (`ID`)
) ENGINE=NDBCLUSTER DEFAULT CHARSET=latin1;

INSERT INTO `City` VALUES (1,'Kabul','AFG','Kabol',1780000);
INSERT INTO `City` VALUES (2,'Qandahar','AFG','Qandahar',237500);
INSERT INTO `City` VALUES (3,'Herat','AFG','Herat',186800);
(remaining INSERT statements omitted)

This must be done for the definition of each table that is to be part of the clustered database. The easiest
way to accomplish this is to do a search-and-replace on the file that contains the definitions and replace all
instances of TYPE=engine_name or ENGINE=engine_name with ENGINE=NDBCLUSTER. If you do not
want to modify the file, you can use the unmodified file to create the tables, and then use ALTER TABLE to
change their storage engine. The particulars are given later in this section.

Assuming that you have already created a database named world on the SQL node of the cluster, you
can then use the mysql command-line client to read city_table.sql, and create and populate the
corresponding table in the usual manner:

shell> mysql world < city_table.sql

It is very important to keep in mind that the preceding command must be executed on the host where the
SQL node is running (in this case, on the machine with the IP address 192.168.0.20).

To create a copy of the entire world database on the SQL node, use mysqldump on the noncluster server
to export the database to a file named world.sql; for example, in the /tmp directory. Then modify the
table definitions as just described and import the file into the SQL node of the cluster like this:

shell> mysql world < /tmp/world.sql

If you save the file to a different location, adjust the preceding instructions accordingly.

Note

NDBCLUSTER in MySQL 5.0 does not support autodiscovery of databases. (See
Section 17.1.5, “Known Limitations of MySQL Cluster”.) This means that, once the
world database and its tables have been created on one data node, you need to
issue the CREATE DATABASE world statement (beginning with MySQL 5.0.2, you
may use CREATE SCHEMA world instead), followed by FLUSH TABLES on each

MySQL Cluster Example with Tables and Data

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1668

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SQL node in the cluster. This causes the node to recognize the database and read
its table definitions.

Running SELECT queries on the SQL node is no different from running them on any other instance of a
MySQL server. To run queries from the command line, you first need to log in to the MySQL Monitor in the
usual way (specify the root password at the Enter password: prompt):

shell> mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.0.96

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

We simply use the MySQL server's root account and assume that you have followed the standard
security precautions for installing a MySQL server, including setting a strong root password. For more
information, see Section 2.18.4, “Securing the Initial MySQL Accounts”.

It is worth taking into account that Cluster nodes do not make use of the MySQL privilege system when
accessing one another. Setting or changing MySQL user accounts (including the root account) effects
only applications that access the SQL node, not interaction between nodes. See Section 17.5.10.2,
“MySQL Cluster and MySQL Privileges”, for more information.

If you did not modify the ENGINE clauses in the table definitions prior to importing the SQL script, you
should run the following statements at this point:

mysql> USE world;
mysql> ALTER TABLE City ENGINE=NDBCLUSTER;
mysql> ALTER TABLE Country ENGINE=NDBCLUSTER;
mysql> ALTER TABLE CountryLanguage ENGINE=NDBCLUSTER;

Selecting a database and running a SELECT query against a table in that database is also accomplished in
the usual manner, as is exiting the MySQL Monitor:

mysql> USE world;
mysql> SELECT Name, Population FROM City ORDER BY Population DESC LIMIT 5;
+-----------+------------+
| Name | Population |
+-----------+------------+
Bombay	10500000
Seoul	9981619
São Paulo	9968485
Shanghai	9696300
Jakarta	9604900
+-----------+------------+
5 rows in set (0.34 sec)

mysql> \q
Bye

shell>

Applications that use MySQL can employ standard APIs to access NDB tables. It is important to remember
that your application must access the SQL node, and not the management or data nodes. This brief
example shows how we might execute the SELECT statement just shown by using the PHP 5.X mysqli
extension running on a Web server elsewhere on the network:

Safe Shutdown and Restart of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1669

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
 <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1">
 <title>SIMPLE mysqli SELECT</title>
</head>
<body>
<?php
 # connect to SQL node:
 $link = new mysqli('192.168.0.20', 'root', 'root_password', 'world');
 # parameters for mysqli constructor are:
 # host, user, password, database

 if(mysqli_connect_errno())
 die("Connect failed: " . mysqli_connect_error());

 $query = "SELECT Name, Population
 FROM City
 ORDER BY Population DESC
 LIMIT 5";

 # if no errors...
 if($result = $link->query($query))
 {
?>
<table border="1" width="40%" cellpadding="4" cellspacing ="1">
 <tbody>
 <tr>
 <th width="10%">City</th>
 <th>Population</th>
 </tr>
<?
 # then display the results...
 while($row = $result->fetch_object())
 printf("<tr>\n <td align=\"center\">%s</td><td>%d</td>\n</tr>\n",
 $row->Name, $row->Population);
?>
 </tbody
</table>
<?
 # ...and verify the number of rows that were retrieved
 printf("<p>Affected rows: %d</p>\n", $link->affected_rows);
 }
 else
 # otherwise, tell us what went wrong
 echo mysqli_error();

 # free the result set and the mysqli connection object
 $result->close();
 $link->close();
?>
</body>
</html>

We assume that the process running on the Web server can reach the IP address of the SQL node.

In a similar fashion, you can use the MySQL C API, Perl-DBI, Python-mysql, or MySQL Connectors to
perform the tasks of data definition and manipulation just as you would normally with MySQL.

17.2.5 Safe Shutdown and Restart of MySQL Cluster

To shut down the cluster, enter the following command in a shell on the machine hosting the management
node:

Upgrading and Downgrading MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1670

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> ndb_mgm -e shutdown

The -e option here is used to pass a command to the ndb_mgm client from the shell. (See Section 17.4.20,
“Options Common to MySQL Cluster Programs — Options Common to MySQL Cluster Programs”, for
more information about this option.) The command causes the ndb_mgm, ndb_mgmd, and any ndbd
processes to terminate gracefully. Any SQL nodes can be terminated using mysqladmin shutdown and
other means.

To restart the cluster, run these commands:

• On the management host (192.168.0.10 in our example setup):

shell> ndb_mgmd -f /var/lib/mysql-cluster/config.ini

• On each of the data node hosts (192.168.0.30 and 192.168.0.40):

shell> ndbd

• Use the ndb_mgm client to verify that both data nodes have started successfully.

• On the SQL host (192.168.0.20):

shell> mysqld_safe &

In a production setting, it is usually not desirable to shut down the cluster completely. In many cases, even
when making configuration changes, or performing upgrades to the cluster hardware or software (or both),
which require shutting down individual host machines, it is possible to do so without shutting down the
cluster as a whole by performing a rolling restart of the cluster. For more information about doing this, see
Section 17.5.5, “Performing a Rolling Restart of a MySQL Cluster”.

17.2.6 Upgrading and Downgrading MySQL Cluster

This section provides information about MySQL Cluster software and table file compatibility between
MySQL 5.0 releases with regard to performing upgrades and downgrades as well as a compatibility matrix
and notes. You are expected already to be familiar with installing and configuring a MySQL Cluster prior to
attempting an upgrade or downgrade. See Section 17.3, “MySQL Cluster Configuration”.

For information regarding the rolling restart procedure used to perform an online upgrade, see
Section 17.5.5, “Performing a Rolling Restart of a MySQL Cluster”.

Important

Only compatibility between MySQL versions with regard to NDBCLUSTER is taken
into account in this section, and there are likely other issues to be considered.
As with any other MySQL software upgrade or downgrade, you are strongly
encouraged to review the relevant portions of the MySQL Manual for the MySQL
versions from which and to which you intend to migrate, before attempting an
upgrade or downgrade of the MySQL Cluster software. See Section 2.19.1,
“Upgrading MySQL”.

The following table shows Cluster upgrade and downgrade compatibility between different releases of
MySQL 5.0:

Upgrading and Downgrading MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1671

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Figure 17.5 MySQL Cluster Upgrade and Downgrade Compatibility

MySQL Cluster Configuration

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1672

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Notes

• MySQL 5.0.2 was the first public release in this series.

• Direct upgrades or downgrades between MySQL Cluster 4.1 and 5.0 are not supported; you must dump
all NDBCLUSTER tables using mysqldump, install the new version of the software, and then reload the
tables from the dump.

• Online downgrades from MySQL Cluster 5.0.12 to 5.0.11 (or earlier) are not supported.

• You cannot restore with ndb_restore to a MySQL 5.0 Cluster using a backup made from a Cluster
running MySQL 5.1. You must use mysqldump in such cases.

• There was no public release of MySQL 5.0.23.

17.3 MySQL Cluster Configuration
A MySQL server that is part of a MySQL Cluster differs in one chief respect from a normal (nonclustered)
MySQL server, in that it employs the NDB storage engine. This engine is also referred to sometimes as
NDBCLUSTER, although NDB is preferred.

To avoid unnecessary allocation of resources, the server is configured by default with the NDB storage
engine disabled. To enable NDB, you must modify the server's my.cnf configuration file, or start the server
with the --ndbcluster option.

This MySQL server is a part of the cluster, so it also must know how to access a management node
to obtain the cluster configuration data. The default behavior is to look for the management node on
localhost. However, should you need to specify that its location is elsewhere, this can be done in
my.cnf, or with the mysql client. Before the NDB storage engine can be used, at least one management
node must be operational, as well as any desired data nodes.

For more information about --ndbcluster and other mysqld options specific to MySQL Cluster, see
mysqld Command Options for MySQL Cluster.

For information about installing MySQL Cluster, see Section 17.2, “MySQL Cluster Installation and
Upgrades”.

17.3.1 Quick Test Setup of MySQL Cluster

To familiarize you with the basics, we will describe the simplest possible configuration for a functional
MySQL Cluster. After this, you should be able to design your desired setup from the information provided
in the other relevant sections of this chapter.

First, you need to create a configuration directory such as /var/lib/mysql-cluster, by executing the
following command as the system root user:

shell> mkdir /var/lib/mysql-cluster

In this directory, create a file named config.ini that contains the following information. Substitute
appropriate values for HostName and DataDir as necessary for your system.

file "config.ini" - showing minimal setup consisting of 1 data node,
1 management server, and 3 SQL nodes.
The empty default sections are not required, and are shown only for
the sake of completeness.
Data nodes must provide a hostname but SQL nodes are not required
to do so.

Quick Test Setup of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1673

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you do not know the hostname for your machine, use localhost.
The DataDir parameter also has a default value, but it is recommended to
set it explicitly.
Note: [db], [api], and [mgm] are aliases for [ndbd], [mysqld], and [ndb_mgmd],
respectively. [db] is deprecated and should not be used in new installations.

[ndbd default]
NoOfReplicas= 1

[mysqld default]
[ndb_mgmd default]
[tcp default]

[ndb_mgmd]
HostName= myhost.example.com

[ndbd]
HostName= myhost.example.com
DataDir= /var/lib/mysql-cluster

[mysqld]
[mysqld]
[mysqld]

You can now start the ndb_mgmd management server. By default, it attempts to read the config.ini
file in its current working directory, so change location into the directory where the file is located and then
invoke ndb_mgmd:

shell> cd /var/lib/mysql-cluster
shell> ndb_mgmd

Then start a single data node by running ndbd:

shell> ndbd

For command-line options which can be used when starting ndbd, see Section 17.4.20, “Options Common
to MySQL Cluster Programs — Options Common to MySQL Cluster Programs”.

By default, ndbd looks for the management server at localhost on port 1186.

Note

If you have installed MySQL from a binary tarball, you will need to specify the path
of the ndb_mgmd and ndbd servers explicitly. (Normally, these will be found in /
usr/local/mysql/bin.)

Finally, change location to the MySQL data directory (usually /var/lib/mysql or /usr/local/mysql/
data), and make sure that the my.cnf file contains the option necessary to enable the NDB storage
engine:

[mysqld]
ndbcluster

You can now start the MySQL server as usual:

shell> mysqld_safe --user=mysql &

Wait a moment to make sure the MySQL server is running properly. If you see the notice mysql ended,
check the server's .err file to find out what went wrong.

Quick Test Setup of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1674

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If all has gone well so far, you now can start using the cluster. Connect to the server and verify that the NDB
storage engine is enabled:

shell> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.0.96

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW ENGINES\G
...
*************************** 12. row ***************************
Engine: NDBCLUSTER
Support: YES
Comment: Clustered, fault-tolerant, memory-based tables
*************************** 13. row ***************************
Engine: NDB
Support: YES
Comment: Alias for NDBCLUSTER
...

The row numbers shown in the preceding example output may be different from those shown on your
system, depending upon how your server is configured.

Try to create an NDB table:

shell> mysql
mysql> USE test;
Database changed

mysql> CREATE TABLE ctest (i INT) ENGINE=NDBCLUSTER;
Query OK, 0 rows affected (0.09 sec)

mysql> SHOW CREATE TABLE ctest \G
*************************** 1. row ***************************
 Table: ctest
Create Table: CREATE TABLE `ctest` (
 `i` int(11) default NULL
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

To check that your nodes were set up properly, start the management client:

shell> ndb_mgm

Use the SHOW command from within the management client to obtain a report on the cluster's status:

ndb_mgm> SHOW
Cluster Configuration

[ndbd(NDB)] 1 node(s)
id=2 @127.0.0.1 (Version: 3.5.3, Nodegroup: 0, Master)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @127.0.0.1 (Version: 3.5.3)

[mysqld(API)] 3 node(s)
id=3 @127.0.0.1 (Version: 3.5.3)
id=4 (not connected, accepting connect from any host)
id=5 (not connected, accepting connect from any host)

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1675

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

At this point, you have successfully set up a working MySQL Cluster. You can now store data in the cluster
by using any table created with ENGINE=NDBCLUSTER or its alias ENGINE=NDB.

17.3.2 Overview of MySQL Cluster Configuration Parameters, Options, and
Variables

The next several sections provide summary tables of MySQL Cluster node configuration parameters used
in the config.ini file to govern various aspects of node behavior, as well as of options and variables
read by mysqld from a my.cnf file or from the command line when run as a MySQL Cluster process.
Each of the node parameter tables lists the parameters for a given type (ndbd, ndb_mgmd, mysqld,
computer, tcp, shm, or sci). All tables include the data type for the parameter, option, or variable, as
well as its default, mimimum, and maximum values as applicable.

Considerations when restarting nodes. For node parameters, these tables also indicate what type
of restart is required (node restart or system restart)—and whether the restart must be done with --
initial—to change the value of a given configuration parameter. When performing a node restart or
an initial node restart, all of the cluster's data nodes must be restarted in turn (also referred to as a rolling
restart). It is possible to update cluster configuration parameters marked as node online—that is, without
shutting down the cluster—in this fashion. An initial node restart requires restarting each ndbd process
with the --initial option.

A system restart requires a complete shutdown and restart of the entire cluster. An initial system restart
requires taking a backup of the cluster, wiping the cluster file system after shutdown, and then restoring
from the backup following the restart.

In any cluster restart, all of the cluster's management servers must be restarted for them to read the
updated configuration parameter values.

Important

Values for numeric cluster parameters can generally be increased without any
problems, although it is advisable to do so progressively, making such adjustments
in relatively small increments. Many of these can be increased online, using a
rolling restart.

However, decreasing the values of such parameters—whether this is done using
a node restart, node initial restart, or even a complete system restart of the
cluster—is not to be undertaken lightly; it is recommended that you do so only
after careful planning and testing. This is especially true with regard to those
parameters that relate to memory usage and disk space, such as MaxNoOfTables,
MaxNoOfOrderedIndexes, and MaxNoOfUniqueHashIndexes. In addition, it
is the generally the case that configuration parameters relating to memory and disk
usage can be raised using a simple node restart, but they require an initial node
restart to be lowered.

Because some of these parameters can be used for configuring more than one type of cluster node, they
may appear in more than one of the tables.

Note

4294967039 often appears as a maximum value in these tables. This value
is defined in the NDBCLUSTER sources as MAX_INT_RNIL and is equal to
0xFFFFFEFF, or 232 − 28 − 1.

17.3.2.1 MySQL Cluster Data Node Configuration Parameters

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1676

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The summary table in this section provides information about parameters used in the [ndbd] or [ndbd
default] sections of a config.ini file for configuring MySQL Cluster data nodes. For detailed
descriptions and other additional information about each of these parameters, see Section 17.3.3.5,
“Defining MySQL Cluster Data Nodes”.

Restart types. Changes in MySQL Cluster configuration parameters do not take effect until the cluster
is restarted. The type of restart required to change a given parameter is indicated in the summary table as
follows:

• N—Node restart: The parameter can be updated using a rolling restart (see Section 17.5.5, “Performing
a Rolling Restart of a MySQL Cluster”).

• S—System restart: The cluster must be shut down completely, then restarted, to effect a change in this
parameter.

• I—Initial restart: Data nodes must be restarted using the --initial option.

For more information about restart types, see Section 17.3.2, “Overview of MySQL Cluster Configuration
Parameters, Options, and Variables”.

Table 17.1 Data Node Configuration Parameters

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

milliseconds

7500
ArbitrationTimeout 10 /

4294967039
(0xFFFFFEFF)

N all

bytes

16M
BackupDataBufferSize 512K /

4294967039
(0xFFFFFEFF)

N all

path

FileSystemPathBackupDataDir

...

IN all

bytes

16M
BackupLogBufferSize 2M /

4294967039
(0xFFFFFEFF)

N all

bytes
BackupMaxWriteSize

1M
N all

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1677

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

256K /
4294967039
(0xFFFFFEFF)

bytes

32M
BackupMemory

0 / 4294967039
(0xFFFFFEFF)

N all

bytes

256K
BackupWriteSize 32K /

4294967039
(0xFFFFFEFF)

N all

integer

256BatchSizePerLocalScan

1 / 992

N all

path

.DataDir

...

IN all

bytes

80MDataMemory

1M / 1024G

N all

true|false (1|0)

falseDiskless

true, false

IS all

name

[none]ExecuteOnComputer

...

S all

path

DataDirFileSystemPath

...

IN NDB 5.0.0

milliseconds

1500
HeartbeatIntervalDbApi 100 /

4294967039
(0xFFFFFEFF)

N all

HeartbeatIntervalDbDb milliseconds N all

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1678

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

5000

10 /
4294967039
(0xFFFFFEFF)

name or IP
address

localhost
HostName

...

N all

unsigned

[none]Id

1 / 48

IS all

bytes

18MIndexMemory

1M / 1T

N all

numeric

0LockPagesInMainMemory

0 / 2

N NDB 5.0.36

log level

0LogLevelCheckpoint

0 / 15

N all

levelr

0LogLevelCongestion

0 / 15

N NDB 5.0.0

integer

0LogLevelConnection

0 / 15

N all

integer

0LogLevelError

0 / 15

N all

integer

0LogLevelInfo

0 / 15

N all

integer
LogLevelNodeRestart

0
N all

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1679

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

0 / 15

integer

0LogLevelShutdown

0 / 15

N all

integer

1LogLevelStartup

0 / 15

N all

integer

0LogLevelStatistic

0 / 15

N all

bytes

64M
LongMessageBuffer 512K /

4294967039
(0xFFFFFEFF)

N all

integer

1000
MaxNoOfAttributes 32 /

4294967039
(0xFFFFFEFF)

N all

integer

8K
MaxNoOfConcurrentIndexOperations

0 / 4294967039
(0xFFFFFEFF)

N all

integer

32K
MaxNoOfConcurrentOperations 32 /

4294967039
(0xFFFFFEFF)

N all

integer

256MaxNoOfConcurrentScans

2 / 500

N all

integer
MaxNoOfConcurrentTransactions

4096
N all

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1680

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

32 /
4294967039
(0xFFFFFEFF)

integer

4000
MaxNoOfFiredTriggers

0 / 4294967039
(0xFFFFFEFF)

N all

integer

UNDEFINED
MaxNoOfLocalOperations 32 /

4294967039
(0xFFFFFEFF)

N all

integer

[see text]
MaxNoOfLocalScans 32 /

4294967039
(0xFFFFFEFF)

N all

unsigned

0
MaxNoOfOpenFiles 20 /

4294967039
(0xFFFFFEFF)

N all

integer

128
MaxNoOfOrderedIndexes

0 / 4294967039
(0xFFFFFEFF)

N all

integer

25
MaxNoOfSavedMessages

0 / 4294967039
(0xFFFFFEFF)

N all

integer

128MaxNoOfTables

8 / 20320

N NDB 5.0.0

integer

768
MaxNoOfTriggers

0 / 4294967039
(0xFFFFFEFF)

N all

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1681

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

integer

64
MaxNoOfUniqueHashIndexes

0 / 4294967039
(0xFFFFFEFF)

N all

unsigned

[none]NodeId

1 / 48

IS NDB 5.0.15

8K pages/100
milliseconds

20NoOfDiskPagesToDiskAfterRestartACC

1 / 4294967039
(0xFFFFFEFF)

N all

8K pages/100
milliseconds

40NoOfDiskPagesToDiskAfterRestartTUP

1 / 4294967039
(0xFFFFFEFF)

N all

8K pages/100
milliseconds

20NoOfDiskPagesToDiskDuringRestartACC

1 / 4294967039
(0xFFFFFEFF)

N all

8K pages/100
milliseconds

40NoOfDiskPagesToDiskDuringRestartTUP

1 / 4294967039
(0xFFFFFEFF)

N all

integer

16
NoOfFragmentLogFiles

3 / 4294967039
(0xFFFFFEFF)

IN all

integer

2NoOfReplicas

1 / 4

IS all

bytes
RedoBuffer

32M
N all

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1682

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

1M /
4294967039
(0xFFFFFEFF)

error code

2RestartOnErrorInsert

0 / 4

N all

unsigned

[none]ServerPort

1 / 64K

S all

milliseconds

0
StartFailureTimeout

0 / 4294967039
(0xFFFFFEFF)

N all

milliseconds

30000
StartPartialTimeout

0 / 4294967039
(0xFFFFFEFF)

N all

milliseconds

60000
StartPartitionedTimeout

0 / 4294967039
(0xFFFFFEFF)

N all

boolean

1StopOnError

0, 1

N all

% or bytes

25
StringMemory

0 / 4294967039
(0xFFFFFEFF)

S all

milliseconds

2000TimeBetweenGlobalCheckpoints

20 / 32000

N all

milliseconds

1000
TimeBetweenInactiveTransactionAbortCheck 1000 /

4294967039
(0xFFFFFEFF)

N all

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1683

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

number of 4-
byte words,
as a base-2
logarithm

20

TimeBetweenLocalCheckpoints

0 / 31

N all

milliseconds

6000
TimeBetweenWatchDogCheck 70 /

4294967039
(0xFFFFFEFF)

N all

bytes

1M
TransactionBufferMemory 1K /

4294967039
(0xFFFFFEFF)

N all

milliseconds

1200
TransactionDeadlockDetectionTimeout 50 /

4294967039
(0xFFFFFEFF)

N all

milliseconds

[see text]
TransactionInactiveTimeout

0 / 4294967039
(0xFFFFFEFF)

N all

unsigned

16M
UndoDataBuffer 1M /

4294967039
(0xFFFFFEFF)

N all

unsigned

2M
UndoIndexBuffer 1M /

4294967039
(0xFFFFFEFF)

N all

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1684

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

To add new data nodes to a MySQL Cluster, it is necessary to shut down the
cluster completely, update the config.ini file, and then restart the cluster,
starting all data node processes using the --initial option—that is, you must
perform a system restart.

It is possible to add new data node groups to a running cluster online using MySQL
Cluster NDB 7.0 or later (see Adding MySQL Cluster Data Nodes Online); however,
we do not plan to implement this change in MySQL 5.0.

17.3.2.2 MySQL Cluster Management Node Configuration Parameters

The summary table in this section provides information about parameters used in the [ndb_mgmd] or
[mgm] sections of a config.ini file for configuring MySQL Cluster management nodes. For detailed
descriptions and other additional information about each of these parameters, see Section 17.3.3.4,
“Defining a MySQL Cluster Management Server”.

Restart types. Changes in MySQL Cluster configuration parameters do not take effect until the cluster
is restarted. The type of restart required to change a given parameter is indicated in the summary table as
follows:

• N—Node restart: The parameter can be updated using a rolling restart (see Section 17.5.5, “Performing
a Rolling Restart of a MySQL Cluster”).

• S—System restart: The cluster must be shut down completely, then restarted, to effect a change in this
parameter.

• I—Initial restart: Data nodes must be restarted using the --initial option.

For more information about restart types, see Section 17.3.2, “Overview of MySQL Cluster Configuration
Parameters, Options, and Variables”.

Table 17.2 Management Node Configuration Parameters

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

milliseconds

0
ArbitrationDelay

0 / 4294967039
(0xFFFFFEFF)

N all

0-2

1ArbitrationRank

0 / 2

N all

path

.DataDir

...

N all

http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-online-add-node.html

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1685

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

name

[none]ExecuteOnComputer

...

S all

name or IP
address

[none]
HostName

...

N all

unsigned

[none]Id

1 / 255

IS all

{CONSOLE|
SYSLOG|FILE}

[see text]
LogDestination

...

N all

unsigned

100
MaxNoOfSavedEvents

0 / 4294967039
(0xFFFFFEFF)

N all

unsigned

[none]NodeId

1 / 63

IS NDB 5.0.15

unsigned

1186PortNumber

0 / 64K

S all

unsigned

[none]PortNumberStats

0 / 64K

N all

Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect.
See Section 17.3.3.4, “Defining a MySQL Cluster Management Server”, for more
information.

To add new management servers to a running MySQL Cluster, it is also
necessary perform a rolling restart of all cluster nodes after modifying any existing
config.ini files. For more information about issues arising when using multiple

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1686

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

management nodes, see Section 17.1.5.9, “Limitations Relating to Multiple MySQL
Cluster Nodes”.

17.3.2.3 MySQL Cluster SQL Node and API Node Configuration Parameters

The summary table in this section provides information about parameters used in the [mysqld] and
[api] sections of a config.ini file for configuring MySQL Cluster SQL nodes and API nodes.
For detailed descriptions and other additional information about each of these parameters, see
Section 17.3.3.6, “Defining SQL and Other API Nodes in a MySQL Cluster”.

Note

For a discussion of MySQL server options for MySQL Cluster, see mysqld
Command Options for MySQL Cluster; for information about MySQL server system
variables relating to MySQL Cluster, see MySQL Cluster System Variables.

Restart types. Changes in MySQL Cluster configuration parameters do not take effect until the cluster
is restarted. The type of restart required to change a given parameter is indicated in the summary table as
follows:

• N—Node restart: The parameter can be updated using a rolling restart (see Section 17.5.5, “Performing
a Rolling Restart of a MySQL Cluster”).

• S—System restart: The cluster must be shut down completely, then restarted, to effect a change in this
parameter.

• I—Initial restart: Data nodes must be restarted using the --initial option.

For more information about restart types, see Section 17.3.2, “Overview of MySQL Cluster Configuration
Parameters, Options, and Variables”.

Table 17.3 SQL Node / API Node Configuration Parameters

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

milliseconds

0
ArbitrationDelay

0 / 4294967039
(0xFFFFFEFF)

N all

0-2

0ArbitrationRank

0 / 2

N all

bytes

16KBatchByteSize

1024 / 1M

N all

records
BatchSize

256
N all

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1687

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

1 / 992

name

[none]ExecuteOnComputer

...

S all

name or IP
address

[none]
HostName

...

N all

unsigned

[none]Id

1 / 255

IS all

bytes

256KMaxScanBatchSize

32K / 16M

N all

unsigned

[none]NodeId

1 / 63

IS NDB 5.0.15

Note

To add new SQL or API nodes to the configuration of a running MySQL Cluster,
it is necessary to perform a rolling restart of all cluster nodes after adding new
[mysqld] or [api] sections to the config.ini file (or files, if you are using
more than one management server). This must be done before the new SQL or API
nodes can connect to the cluster.

It is not necessary to perform any restart of the cluster if new SQL or API nodes can
employ previously unused API slots in the cluster configuration to connect to the
cluster.

17.3.2.4 Other MySQL Cluster Configuration Parameters

The summary tables in this section provide information about parameters used in the [computer],
[tcp], [shm], and [sci] sections of a config.ini file for configuring MySQL Cluster management
nodes. For detailed descriptions and other additional information about individual parameters, see
Section 17.3.3.8, “MySQL Cluster TCP/IP Connections”, Section 17.3.3.10, “MySQL Cluster Shared-
Memory Connections”, or Section 17.3.3.11, “SCI Transport Connections in MySQL Cluster”, as
appropriate.

Restart types. Changes in MySQL Cluster configuration parameters do not take effect until the cluster
is restarted. The type of restart required to change a given parameter is indicated in the summary tables as
follows:

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1688

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• N—Node restart: The parameter can be updated using a rolling restart (see Section 17.5.5, “Performing
a Rolling Restart of a MySQL Cluster”).

• S—System restart: The cluster must be shut down completely, then restarted, to effect a change in this
parameter.

• I—Initial restart: Data nodes must be restarted using the --initial option.

For more information about restart types, see Section 17.3.2, “Overview of MySQL Cluster Configuration
Parameters, Options, and Variables”.

Table 17.4 Computer Configuration Parameters

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

name or IP
address

[none]
HostName

...

N all

string

[none]Id

...

IS all

Table 17.5 TCP Configuration Parameters

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

boolean

falseChecksum

true, false

N all

unsigned

55Group

0 / 200

N all

numeric

[none]NodeId1

...

N all

numeric

[none]NodeId2

...

N all

NodeIdServer numeric N all

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1689

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

[none]

...

unsigned

[none]PortNumber

0 / 64K

S all

string

[none]Proxy

...

N all

bytes

2M
ReceiveBufferMemory 16K /

4294967039
(0xFFFFFEFF)

N all

unsigned

2M
SendBufferMemory 256K /

4294967039
(0xFFFFFEFF)

N all

boolean

[see text]SendSignalId

true, false

N all

Table 17.6 Shared Memory Configuration Parameters

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

boolean

trueChecksum

true, false

N all

unsigned

35Group

0 / 200

N all

NodeId1 numeric N all

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1690

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

[none]

...

numeric

[none]NodeId2

...

N all

numeric

[none]NodeIdServer

...

N all

unsigned

[none]PortNumber

0 / 64K

S all

boolean

falseSendSignalId

true, false

N all

unsigned

[none]
ShmKey

0 / 4294967039
(0xFFFFFEFF)

N all

bytes

1M
ShmSize 64K /

4294967039
(0xFFFFFEFF)

N all

unsigned

[none]
Signum

0 / 4294967039
(0xFFFFFEFF)

N all

Table 17.7 SCI Configuration Parameters

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

Checksum boolean N all

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1691

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

false

true, false

unsigned

15Group

0 / 200

N all

unsigned

[none]
Host1SciId0

0 / 4294967039
(0xFFFFFEFF)

N all

unsigned

0
Host1SciId1

0 / 4294967039
(0xFFFFFEFF)

N all

unsigned

[none]
Host2SciId0

0 / 4294967039
(0xFFFFFEFF)

N all

unsigned

0
Host2SciId1

0 / 4294967039
(0xFFFFFEFF)

N all

numeric

[none]NodeId1

...

N all

numeric

[none]NodeId2

...

N all

numeric

[none]NodeIdServer

...

N all

unsigned

[none]PortNumber

0 / 64K

S all

unsigned
SendLimit

8K
N all

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1692

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type or Units

Default Value

Parameter Name Minimum/
Maximum
or Permitted
Values

Restart
Type

In
Version ...
(and later)

128 / 32K

boolean

trueSendSignalId

true, false

N all

unsigned

10M
SharedBufferSize 64K /

4294967039
(0xFFFFFEFF)

N all

17.3.2.5 MySQL Cluster mysqld Option and Variable Reference

The following table provides a list of the command-line options, server and status variables applicable
within mysqld when it is running as an SQL node in a MySQL Cluster. For a table showing all command-
line options, server and status variables available for use with mysqld, see Section 5.1.1, “Server Option
and Variable Reference”.

Table 17.8 MySQL Server Options and Variables for MySQL Cluster: MySQL 5.0

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

Com_show_ndb_status

No No Yes

No Both No

DESCRIPTION: Count of SHOW NDB STATUS statements

Handler_discover

No No Yes

No Both No

DESCRIPTION: Number of times that tables have been discovered

have_ndbcluster

No Yes No

No Global No

DESCRIPTION: Whether mysqld supports NDB Cluster tables (set by --ndbcluster option)

ndb-connectstring

Yes No No

Yes No

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1693

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Point to the management server that distributes the cluster configuration

ndb-mgmd-host

Yes No No

Yes No

DESCRIPTION: Set the host (and port, if desired) for connecting to management server

ndb-nodeid

Yes No Yes

Yes Global No

DESCRIPTION: MySQL Cluster node ID for this MySQL server

ndb_autoincrement_prefetch_sz

Yes Yes No

Yes Both Yes

DESCRIPTION: NDB auto-increment prefetch size

ndb_cache_check_time

Yes Yes No

Yes Global Yes

DESCRIPTION: Number of milliseconds between checks of cluster SQL nodes made by the MySQL
query cache

Ndb_cluster_node_id

No No Yes

No Both No

DESCRIPTION: If the server is acting as a MySQL Cluster node, then the value of this variable its node
ID in the cluster

Ndb_config_from_host

No No Yes

No Both No

DESCRIPTION: The host name or IP address of the Cluster management server. Formerly
Ndb_connected_host

Ndb_config_from_port

No No Yes

No Both No

DESCRIPTION: The port for connecting to Cluster management server. Formerly Ndb_connected_port

ndb_force_send

Yes Yes No

Yes Both Yes

DESCRIPTION: Forces sending of buffers to NDB immediately, without waiting for other threads

Overview of MySQL Cluster Configuration Parameters, Options, and Variables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1694

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

ndb_index_stat_cache_entries

Yes Yes No

Yes Both Yes

DESCRIPTION: Sets the granularity of the statistics by determining the number of starting and ending
keys

ndb_index_stat_enable

Yes Yes No

Yes Both Yes

DESCRIPTION: Use NDB index statistics in query optimization

ndb_index_stat_update_freq

Yes Yes No

Yes Both Yes

DESCRIPTION: How often to query data nodes instead of the statistics cache

ndb_optimized_node_selection

Yes Yes No

Yes Global No

DESCRIPTION: Determines how an SQL node chooses a cluster data node to use as transaction
coordinator

ndb_report_thresh_binlog_epoch_slip

Yes No No

Yes No

DESCRIPTION: This is a threshold on the number of epochs to be behind before reporting binary log
status

ndb_report_thresh_binlog_mem_usage

Yes No No

Yes No

DESCRIPTION: This is a threshold on the percentage of free memory remaining before reporting binary
log status

ndb_use_exact_count

No Yes No

No Both Yes

DESCRIPTION: Use exact row count when planning queries

ndb_use_transactions

Yes Yes No

Yes Both Yes

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1695

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option or Variable Name

Command Line System Variable Status Variable

Option File Scope Dynamic

Notes

DESCRIPTION: Forces NDB to use a count of records during SELECT COUNT(*) query planning to
speed up this type of query

ndbcluster

Yes No No

Yes No

DESCRIPTION: Enable NDB Cluster (if this version of MySQL supports it)

Disabled by --skip-ndbcluster

17.3.3 MySQL Cluster Configuration Files

Configuring MySQL Cluster requires working with two files:

• my.cnf: Specifies options for all MySQL Cluster executables. This file, with which you should be familiar
with from previous work with MySQL, must be accessible by each executable running in the cluster.

• config.ini: This file, sometimes known as the global configuration file, is read only by the MySQL
Cluster management server, which then distributes the information contained therein to all processes
participating in the cluster. config.ini contains a description of each node involved in the cluster. This
includes configuration parameters for data nodes and configuration parameters for connections between
all nodes in the cluster. For a quick reference to the sections that can appear in this file, and what sorts
of configuration parameters may be placed in each section, see Sections of the config.ini File.

We are continuously making improvements in Cluster configuration and attempting to simplify this process.
Although we strive to maintain backward compatibility, there may be times when introduce an incompatible
change. In such cases we will try to let Cluster users know in advance if a change is not backward
compatible. If you find such a change and we have not documented it, please report it in the MySQL bugs
database using the instructions given in Section 1.7, “How to Report Bugs or Problems”.

17.3.3.1 MySQL Cluster Configuration: Basic Example

To support MySQL Cluster, you will need to update my.cnf as shown in the following example. You may
also specify these parameters on the command line when invoking the executables.

Note

The options shown here should not be confused with those that are used in
config.ini global configuration files. Global configuration options are discussed
later in this section.

my.cnf
example additions to my.cnf for MySQL Cluster
(valid in MySQL 5.0)

enable ndbcluster storage engine, and provide connection string for
management server host (default port is 1186)
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1696

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

provide connection string for management server host (default port: 1186)
[ndbd]
connect-string=ndb_mgmd.mysql.com

provide connection string for management server host (default port: 1186)
[ndb_mgm]
connect-string=ndb_mgmd.mysql.com

provide location of cluster configuration file
[ndb_mgmd]
config-file=/etc/config.ini

(For more information on connection strings, see Section 17.3.3.2, “MySQL Cluster Connection Strings”.)

my.cnf
example additions to my.cnf for MySQL Cluster
(will work on all versions)

enable ndbcluster storage engine, and provide connection string for management
server host to the default port 1186
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com:1186

Important

Once you have started a mysqld process with the NDBCLUSTER and ndb-
connectstring parameters in the [mysqld] in the my.cnf file as shown
previously, you cannot execute any CREATE TABLE or ALTER TABLE statements
without having actually started the cluster. Otherwise, these statements will fail with
an error. This is by design.

You may also use a separate [mysql_cluster] section in the cluster my.cnf file for settings to be read
and used by all executables:

cluster-specific settings
[mysql_cluster]
ndb-connectstring=ndb_mgmd.mysql.com:1186

For additional NDB variables that can be set in the my.cnf file, see MySQL Cluster System Variables.

The MySQL Cluster global configuration file is by convention named config.ini (but this is not
required). It is read by ndb_mgmd at startup and can be placed anywhere. Its location and name are
specified by using --config-file=path_name on the ndb_mgmd command line. If the configuration
file is not specified, ndb_mgmd by default tries to read a file named config.ini located in the current
working directory.

The global configuration file for MySQL Cluster uses INI format, which consists of sections preceded by
section headings (surrounded by square brackets), followed by the appropriate parameter names and
values. One deviation from the standard INI format is that the parameter name and value can be separated
by a colon (“:”) as well as the equal sign (“=”); however, the equal sign is preferred. Another deviation is
that sections are not uniquely identified by section name. Instead, unique sections (such as two different
nodes of the same type) are identified by a unique ID specified as a parameter within the section.

Default values are defined for most parameters, and can also be specified in config.ini. (Exception:
The NoOfReplicas configuration parameter has no default value, and must always be specified explicitly
in the [ndbd default] section.) To create a default value section, simply add the word default to the
section name. For example, an [ndbd] section contains parameters that apply to a particular data node,

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1697

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

whereas an [ndbd default] section contains parameters that apply to all data nodes. Suppose that all
data nodes should use the same data memory size. To configure them all, create an [ndbd default]
section that contains a DataMemory line to specify the data memory size.

The global configuration file must define the computers and nodes involved in the cluster and on which
computers these nodes are located. An example of a simple configuration file for a cluster consisting of
one management server, two data nodes and two SQL nodes is shown here:

file "config.ini" - 2 data nodes and 2 SQL nodes
This file is placed in the startup directory of ndb_mgmd (the
management server)
The first SQL node can be started from any host. The second
can be started only on the host mysqld_5.mysql.com

[ndbd default]
NoOfReplicas= 2
DataDir= /var/lib/mysql-cluster

[ndb_mgmd]
Hostname= ndb_mgmd.mysql.com
DataDir= /var/lib/mysql-cluster

[ndbd]
HostName= ndbd_2.mysql.com

[ndbd]
HostName= ndbd_3.mysql.com

[mysqld]
[mysqld]
HostName= mysqld_5.mysql.com

Each node has its own section in the config.ini file. For example, this cluster has two data nodes, so
the preceding configuration file contains two [ndbd] sections defining these nodes.

Note

Do not place comments on the same line as a section heading in the config.ini
file; this causes the management server not to start because it cannot parse the
configuration file in such cases.

Sections of the config.ini File

There are six different sections that you can use in the config.ini configuration file, as described in the
following list:

• [computer]: Defines cluster hosts. This is not required to configure a viable MySQL Cluster, but be
may used as a convenience when setting up a large cluster. See Section 17.3.3.3, “Defining Computers
in a MySQL Cluster”, for more information.

• [ndbd]: Defines a cluster data node (ndbd process). See Section 17.3.3.5, “Defining MySQL Cluster
Data Nodes”, for details.

• [mysqld]: Defines the cluster's MySQL server nodes (also called SQL or API nodes). For a discussion
of SQL node configuration, see Section 17.3.3.6, “Defining SQL and Other API Nodes in a MySQL
Cluster”.

• [mgm] or [ndb_mgmd]: Defines a cluster management server (MGM) node. For information concerning
the configuration of management nodes, see Section 17.3.3.4, “Defining a MySQL Cluster Management
Server”.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1698

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• [tcp]: Defines a TCP/IP connection between cluster nodes, with TCP/IP being the default connection
protocol. Normally, [tcp] or [tcp default] sections are not required to set up a MySQL Cluster,
as the cluster handles this automatically; however, it may be necessary in some situations to override
the defaults provided by the cluster. See Section 17.3.3.8, “MySQL Cluster TCP/IP Connections”, for
information about available TCP/IP configuration parameters and how to use them. (You may also find
Section 17.3.3.9, “MySQL Cluster TCP/IP Connections Using Direct Connections” to be of interest in
some cases.)

• [shm]: Defines shared-memory connections between nodes. In MySQL 5.0, it is enabled by default, but
should still be considered experimental. For a discussion of SHM interconnects, see Section 17.3.3.10,
“MySQL Cluster Shared-Memory Connections”.

• [sci]:Defines Scalable Coherent Interface connections between cluster data nodes. Such connections
require software which, while freely available, is not part of the MySQL Cluster distribution, as well
as specialized hardware. See Section 17.3.3.11, “SCI Transport Connections in MySQL Cluster” for
detailed information about SCI interconnects.

You can define default values for each section. All Cluster parameter names are case-insensitive, which
differs from parameters specified in my.cnf or my.ini files.

17.3.3.2 MySQL Cluster Connection Strings

With the exception of the MySQL Cluster management server (ndb_mgmd), each node that is part of
a MySQL Cluster requires a connection string that points to the management server's location. This
connection string is used in establishing a connection to the management server as well as in performing
other tasks depending on the node's role in the cluster. The syntax for a connection string is as follows:

[nodeid=node_id,]host-definition[, host-definition[, ...]]

host-definition:
 host_name[:port_number]

node_id is an integer greater than or equal to 1 which identifies a node in config.ini. host_name is
a string representing a valid Internet host name or IP address. port_number is an integer referring to a
TCP/IP port number.

example 1 (long): "nodeid=2,myhost1:1100,myhost2:1100,192.168.0.3:1200"
example 2 (short): "myhost1"

localhost:1186 is used as the default connection string value if none is provided. If port_num is
omitted from the connection string, the default port is 1186. This port should always be available on the
network because it has been assigned by IANA for this purpose (see http://www.iana.org/assignments/
port-numbers for details).

By listing multiple host definitions, it is possible to designate several redundant management servers. A
MySQL Cluster data or API node attempts to contact successive management servers on each host in the
order specified, until a successful connection has been established.

There are a number of different ways to specify the connection string:

• Each executable has its own command-line option which enables specifying the management server at
startup. (See the documentation for the respective executable.)

• It is also possible to set the connection string for all nodes in the cluster at once by placing it in a
[mysql_cluster] section in the management server's my.cnf file.

• For backward compatibility, two other options are available, using the same syntax:

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1699

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

1. Set the NDB_CONNECTSTRING environment variable to contain the connection string.

2. Write the connection string for each executable into a text file named Ndb.cfg and place this file in
the executable's startup directory.

However, these are now deprecated and should not be used for new installations.

The recommended method for specifying the connection string is to set it on the command line or in the
my.cnf file for each executable.

The maximum length of a connection string is 1024 characters.

17.3.3.3 Defining Computers in a MySQL Cluster

The [computer] section has no real significance other than serving as a way to avoid the need of
defining host names for each node in the system. All parameters mentioned here are required.

• Id

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 string [none] ... IS

This is a unique identifier, used to refer to the host computer elsewhere in the configuration file.

Important

The computer ID is not the same as the node ID used for a management, API, or
data node. Unlike the case with node IDs, you cannot use NodeId in place of Id
in the [computer] section of the config.ini file.

• HostName

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 name or IP address [none] ... N

This is the computer's hostname or IP address.

17.3.3.4 Defining a MySQL Cluster Management Server

The [ndb_mgmd] section is used to configure the behavior of the management server. [mgm] can be
used as an alias; the two section names are equivalent. All parameters in the following list are optional and
assume their default values if omitted.

Note

If neither the ExecuteOnComputer nor the HostName parameter is present, the
default value localhost will be assumed for both.

• Id

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned [none] 1 - 63 IS

Each node in the cluster has a unique identity, which is represented by an integer value in the range 1 to
63 inclusive. This ID is used by all internal cluster messages for addressing the node.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1700

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In MySQL 5.0.15 and later, NodeId is a synonym for this parameter, and is the preferred form. In
MySQL Cluster NDB 6.2 and later, Id is deprecated in favor of NodeId for identifying management
nodes.

• NodeId

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.15 unsigned [none] 1 - 63 IS

Beginning with MySQL 5.0.15, NodeId is available as a synonym for Id.

In MySQL Cluster NDB 6.2 and later, Id is deprecated in favor of NodeId for identifying management
nodes.

• ExecuteOnComputer

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 name [none] ... S

This refers to the Id set for one of the computers defined in a [computer] section of the config.ini
file.

• PortNumber

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned 1186 0 - 64K S

This is the port number on which the management server listens for configuration requests and
management commands.

• HostName

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 name or IP address [none] ... N

Specifying this parameter defines the hostname of the computer on which the management node is to
reside. To specify a hostname other than localhost, either this parameter or ExecuteOnComputer is
required.

• LogDestination

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 {CONSOLE|
SYSLOG|FILE}

[see text] ... N

This parameter specifies where to send cluster logging information. There are three options in this
regard—CONSOLE, SYSLOG, and FILE—with FILE being the default:

• CONSOLE outputs the log to stdout:

CONSOLE

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1701

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• SYSLOG sends the log to a syslog facility, possible values being one of auth, authpriv, cron,
daemon, ftp, kern, lpr, mail, news, syslog, user, uucp, local0, local1, local2, local3,
local4, local5, local6, or local7.

Note

Not every facility is necessarily supported by every operating system.

SYSLOG:facility=syslog

• FILE pipes the cluster log output to a regular file on the same machine. The following values can be
specified:

• filename: The name of the log file.

• maxsize: The maximum size (in bytes) to which the file can grow before logging rolls over to a new
file. When this occurs, the old log file is renamed by appending .N to the file name, where N is the
next number not yet used with this name.

• maxfiles: The maximum number of log files.

FILE:filename=cluster.log,maxsize=1000000,maxfiles=6

The default value for the FILE parameter is
FILE:filename=ndb_node_id_cluster.log,maxsize=1000000,maxfiles=6, where
node_id is the ID of the node.

It is possible to specify multiple log destinations separated by semicolons as shown here:

CONSOLE;SYSLOG:facility=local0;FILE:filename=/var/log/mgmd

• ArbitrationRank

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 0-2 1 0 - 2 N

This parameter is used to define which nodes can act as arbitrators. Only management nodes and SQL
nodes can be arbitrators. ArbitrationRank can take one of the following values:

• 0: The node will never be used as an arbitrator.

• 1: The node has high priority; that is, it will be preferred as an arbitrator over low-priority nodes.

• 2: Indicates a low-priority node which be used as an arbitrator only if a node with a higher priority is not
available for that purpose.

Normally, the management server should be configured as an arbitrator by setting its
ArbitrationRank to 1 (the default for management nodes) and those for all SQL nodes to 0 (the
default for SQL nodes).

• ArbitrationDelay

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1702

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 milliseconds 0 0 - 4294967039
(0xFFFFFEFF)

N

An integer value which causes the management server's responses to arbitration requests to be delayed
by that number of milliseconds. By default, this value is 0; it is normally not necessary to change it.

• DataDir

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 path N

This specifies the directory where output files from the management server will be placed. These files
include cluster log files, process output files, and the daemon's process ID (PID) file. (For log files,
this location can be overridden by setting the FILE parameter for LogDestination as discussed
previously in this section.)

The default value for this parameter is the directory in which ndb_mgmd is located.

• PortNumberStats

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned [none] 0 - 64K N

This parameter specifies the port number used to obtain statistical information from a MySQL Cluster
management server. It has no default value.

Note

After making changes in a management node's configuration, it is necessary to
perform a rolling restart of the cluster for the new configuration to take effect.

To add new management servers to a running MySQL Cluster, it is also necessary
to perform a rolling restart of all cluster nodes after modifying any existing
config.ini files. For more information about issues arising when using multiple
management nodes, see Section 17.1.5.9, “Limitations Relating to Multiple MySQL
Cluster Nodes”.

17.3.3.5 Defining MySQL Cluster Data Nodes

The [ndbd] and [ndbd default] sections are used to configure the behavior of the cluster's data
nodes.

There are many parameters which control buffer sizes, pool sizes, timeouts, and so forth. The only
mandatory parameters are:

• Either ExecuteOnComputer or HostName, which must be defined in the local [ndbd] section.

• The parameter NoOfReplicas, which must be defined in the[ndbd default]section, as it is common
to all Cluster data nodes.

Most data node parameters are set in the [ndbd default] section. Only those parameters explicitly
stated as being able to set local values are permitted to be changed in the [ndbd] section. Where
present, HostName, Id and ExecuteOnComputer must be defined in the local [ndbd] section, and not

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1703

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

in any other section of config.ini. In other words, settings for these parameters are specific to one data
node.

For those parameters affecting memory usage or buffer sizes, it is possible to use K, M, or G as a suffix
to indicate units of 1024, 1024×1024, or 1024×1024×1024. (For example, 100K means 100 × 1024 =
102400.) Parameter names and values are currently case-sensitive.

Identifying data nodes. The Id value (that is, the data node identifier) can be allocated on the
command line when the node is started or in the configuration file.

• Id

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned [none] 1 - 48 IS

This is the node ID used as the address of the node for all cluster internal messages. For data nodes,
this is an integer in the range 1 to 48 inclusive. Each node in the cluster must have a unique identifier.

In MySQL 5.0.15 and later, NodeId is a synonym for this parameter, and is the preferred form. In
MySQL Cluster NDB 6.2 and later, Id is deprecated in favor of NodeId for identifying data nodes.

• NodeId

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.15 unsigned [none] 1 - 48 IS

Beginning with MySQL 5.0.15, NodeId is available as a synonym for Id.

In MySQL Cluster NDB 6.2 and later, Id is deprecated in favor of NodeId for identifying management
nodes.

• ExecuteOnComputer

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 name [none] ... S

This refers to the Id set for one of the computers defined in a [computer] section.

• HostName

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 name or IP address localhost ... N

Specifying this parameter defines the hostname of the computer on which the data node is to reside. To
specify a hostname other than localhost, either this parameter or ExecuteOnComputer is required.

• ServerPort

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned [none] 1 - 64K S

Each node in the cluster uses a port to connect to other nodes. By default, this port is allocated
dynamically in such a way as to ensure that no two nodes on the same host computer receive the same
port number, so it should normally not be necessary to specify a value for this parameter.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1704

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

However, if you need to be able to open specific ports in a firewall to permit communication between
data nodes and API nodes (including SQL nodes), you can set this parameter to the number of
the desired port in an [ndbd] section or (if you need to do this for multiple data nodes) the [ndbd
default] section of the config.ini file, and then open the port having that number for incoming
connections from SQL nodes, API nodes, or both.

Note

Connections from data nodes to management nodes is done using the
ndb_mgmd management port (the management server's PortNumber; see
Section 17.3.3.4, “Defining a MySQL Cluster Management Server”) so outgoing
connections to that port from any data nodes should always be permitted.

• NoOfReplicas

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer [none] 1 - 4 IS

This global parameter can be set only in the [ndbd default] section, and defines the number of
replicas for each table stored in the cluster. This parameter also specifies the size of node groups. A
node group is a set of nodes all storing the same information.

Node groups are formed implicitly. The first node group is formed by the set of data nodes with the
lowest node IDs, the next node group by the set of the next lowest node identities, and so on. By way of
example, assume that we have 4 data nodes and that NoOfReplicas is set to 2. The four data nodes
have node IDs 2, 3, 4 and 5. Then the first node group is formed from nodes 2 and 3, and the second
node group by nodes 4 and 5. It is important to configure the cluster in such a manner that nodes in the
same node groups are not placed on the same computer because a single hardware failure would cause
the entire cluster to fail.

If no node IDs are provided, the order of the data nodes will be the determining factor for the node group.
Whether or not explicit assignments are made, they can be viewed in the output of the management
client's SHOW command.

There is no default value for NoOfReplicas; the recommended value is 2 for most common usage
scenarios.

The maximum possible value is 4; currently, only the values 1 and 2 are actually supported.

Important

Setting NoOfReplicas to 1 means that there is only a single copy of all Cluster
data; in this case, the loss of a single data node causes the cluster to fail because
there are no additional copies of the data stored by that node.

The value for this parameter must divide evenly into the number of data nodes in the cluster. For
example, if there are two data nodes, then NoOfReplicas must be equal to either 1 or 2, since 2/3 and
2/4 both yield fractional values; if there are four data nodes, then NoOfReplicas must be equal to 1, 2,
or 4.

• DataDir

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 path IN

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1705

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This parameter specifies the directory where trace files, log files, pid files and error logs are placed.

The default is the data node process working directory.

• FileSystemPath

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 path DataDir ... IN

This parameter specifies the directory where all files created for metadata, REDO logs, UNDO logs, and
data files are placed. The default is the directory specified by DataDir.

Note

This directory must exist before the ndbd process is initiated.

The recommended directory hierarchy for MySQL Cluster includes /var/lib/mysql-cluster, under
which a directory for the node's file system is created. The name of this subdirectory contains the node
ID. For example, if the node ID is 2, this subdirectory is named ndb_2_fs.

• BackupDataDir

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 path [see text] ... IN

This parameter specifies the directory in which backups are placed.

Important

The string '/BACKUP' is always appended to this value. For example, if you set
the value of BackupDataDir to /var/lib/cluster-data, then all backups
are stored under /var/lib/cluster-data/BACKUP. This also means that
the effective default backup location is the directory named BACKUP under the
location specified by the FileSystemPath parameter.

Data memory, index memory, and string memory. DataMemory and IndexMemory are [ndbd]
parameters specifying the size of memory segments used to store the actual records and their indexes. In
setting values for these, it is important to understand how DataMemory and IndexMemory are used, as
they usually need to be updated to reflect actual usage by the cluster:

• DataMemory

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 bytes 80M 1M - 1024G N

This parameter defines the amount of space (in bytes) available for storing database records. The entire
amount specified by this value is allocated in memory, so it is extremely important that the machine has
sufficient physical memory to accommodate it.

The memory allocated by DataMemory is used to store both the actual records and indexes. Each
record is currently of fixed size. (Even VARCHAR columns are stored as fixed-width columns.) There is a
16-byte overhead on each record; an additional amount for each record is incurred because it is stored

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1706

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

in a 32KB page with 128 byte page overhead (see below). There is also a small amount wasted per
page due to the fact that each record is stored in only one page.

The maximum record size is currently 8052 bytes.

The memory space defined by DataMemory is also used to store ordered indexes, which use about 10
bytes per record. Each table row is represented in the ordered index. A common error among users is to
assume that all indexes are stored in the memory allocated by IndexMemory, but this is not the case:
Only primary key and unique hash indexes use this memory; ordered indexes use the memory allocated
by DataMemory. However, creating a primary key or unique hash index also creates an ordered index
on the same keys, unless you specify USING HASH in the index creation statement. This can be verified
by running ndb_desc -d db_name table_name in the management client.

MySQL Cluster can use a maximum of 512 MB for hash indexes per partition, which means in some
cases it is possible to get Table is full errors in MySQL client applications even when ndb_mgm -
e "ALL REPORT MEMORYUSAGE" shows significant free DataMemory. This can also pose a problem
with data node restarts on nodes that are heavily loaded with data. You can force NDB to create extra
partitions for MySQL Cluster tables and thus have more memory available for hash indexes by using the
MAX_ROWS option for CREATE TABLE. In general, setting MAX_ROWS to twice the number of rows that
you expect to store in the table should be sufficient.

The memory space allocated by DataMemory consists of 32KB pages, which are allocated to table
fragments. Each table is normally partitioned into the same number of fragments as there are data
nodes in the cluster. Thus, for each node, there are the same number of fragments as are set in
NoOfReplicas.

In addition, due to the way in which new pages are allocated when the capacity of the current page
is exhausted, there is an additional overhead of approximately 18.75%. When more DataMemory is
required, more than one new page is allocated, according to the following formula:

number of new pages = FLOOR(number of current pages × 0.1875) + 1

For example, if 15 pages are currently allocated to a given table and an insert to this table requires
additional storage space, the number of new pages allocated to the table is FLOOR(15 × 0.1875) +
1 = FLOOR(2.8125) + 1 = 2 + 1 = 3. Now 15 + 3 = 18 memory pages are allocated to the table.
When the last of these 18 pages becomes full, FLOOR(18 × 0.1875) + 1 = FLOOR(3.3750) + 1
= 3 + 1 = 4 new pages are allocated, so the total number of pages allocated to the table is now 22.

Once a page has been allocated, it is currently not possible to return it to the pool of free pages, except
by deleting the table. (This also means that DataMemory pages, once allocated to a given table, cannot
be used by other tables.) Performing a node recovery also compresses the partition because all records
are inserted into empty partitions from other live nodes.

The DataMemory memory space also contains UNDO information: For each update, a copy of the
unaltered record is allocated in the DataMemory. There is also a reference to each copy in the ordered
table indexes. Unique hash indexes are updated only when the unique index columns are updated, in
which case a new entry in the index table is inserted and the old entry is deleted upon commit. For this
reason, it is also necessary to allocate enough memory to handle the largest transactions performed by
applications using the cluster. In any case, performing a few large transactions holds no advantage over
using many smaller ones, for the following reasons:

• Large transactions are not any faster than smaller ones

• Large transactions increase the number of operations that are lost and must be repeated in event of
transaction failure

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1707

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Large transactions use more memory

The default value for DataMemory is 80MB; the minimum is 1MB. There is no maximum size, but in
reality the maximum size has to be adapted so that the process does not start swapping when the limit
is reached. This limit is determined by the amount of physical RAM available on the machine and by
the amount of memory that the operating system may commit to any one process. 32-bit operating
systems are generally limited to 2−4GB per process; 64-bit operating systems can use more. For large
databases, it may be preferable to use a 64-bit operating system for this reason.

• IndexMemory

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 bytes 18M 1M - 1T N

This parameter controls the amount of storage used for hash indexes in MySQL Cluster. Hash indexes
are always used for primary key indexes, unique indexes, and unique constraints. Note that when
defining a primary key and a unique index, two indexes will be created, one of which is a hash index
used for all tuple accesses as well as lock handling. It is also used to enforce unique constraints.

The size of the hash index is 25 bytes per record, plus the size of the primary key. For primary keys
larger than 32 bytes another 8 bytes is added.

The default value for IndexMemory is 18MB. The minimum is 1MB.

• StringMemory

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 % or bytes 0 0 - 4294967039
(0xFFFFFEFF)

S

This parameter determines how much memory is allocated for strings such as table names, and is
specified in an [ndbd] or [ndbd default] section of the config.ini file. A value between 0 and
100 inclusive is interpreted as a percent of the maximum default value, which is calculated based on
a number of factors including the number of tables, maximum table name size, maximum size of .FRM
files, MaxNoOfTriggers, maximum column name size, and maximum default column value. In general
it is safe to assume that the maximum default value is approximately 5 MB for a MySQL Cluster having
1000 tables.

A value greater than 100 is interpreted as a number of bytes.

In MySQL 5.0, the default value is 100—that is, 100 percent of the default maximum, or roughly 5 MB.
It is possible to reduce this value safely, but it should never be less than 5 percent. If you encounter
Error 773 Out of string memory, please modify StringMemory config parameter:
Permanent error: Schema error, this means that means that you have set the StringMemory
value too low. 25 (25 percent) is not excessive, and should prevent this error from recurring in all but the
most extreme conditions, as when there are hundreds or thousands of NDB tables with names whose
lengths and columns whose number approach their permitted maximums.

The following example illustrates how memory is used for a table. Consider this table definition:

CREATE TABLE example (
 a INT NOT NULL,
 b INT NOT NULL,
 c INT NOT NULL,

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1708

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 PRIMARY KEY(a),
 UNIQUE(b)
) ENGINE=NDBCLUSTER;

For each record, there are 12 bytes of data plus 12 bytes overhead. Having no nullable columns saves 4
bytes of overhead. In addition, we have two ordered indexes on columns a and b consuming roughly 10
bytes each per record. There is a primary key hash index on the base table using roughly 29 bytes per
record. The unique constraint is implemented by a separate table with b as primary key and a as a column.
This other table consumes an additional 29 bytes of index memory per record in the example table as well
8 bytes of record data plus 12 bytes of overhead.

Thus, for one million records, we need 58MB for index memory to handle the hash indexes for the primary
key and the unique constraint. We also need 64MB for the records of the base table and the unique index
table, plus the two ordered index tables.

You can see that hash indexes takes up a fair amount of memory space; however, they provide very fast
access to the data in return. They are also used in MySQL Cluster to handle uniqueness constraints.

The only partitioning algorithm is hashing and ordered indexes are local to each node. Thus, ordered
indexes cannot be used to handle uniqueness constraints in the general case.

An important point for both IndexMemory and DataMemory is that the total database size is the sum of
all data memory and all index memory for each node group. Each node group is used to store replicated
information, so if there are four nodes with two replicas, there will be two node groups. Thus, the total data
memory available is 2 × DataMemory for each data node.

It is highly recommended that DataMemory and IndexMemory be set to the same values for all nodes.
Data distribution is even over all nodes in the cluster, so the maximum amount of space available for any
node can be no greater than that of the smallest node in the cluster.

DataMemory and IndexMemory can be changed, but decreasing either of these can be risky; doing so
can easily lead to a node or even an entire MySQL Cluster that is unable to restart due to there being
insufficient memory space. Increasing these values should be acceptable, but it is recommended that
such upgrades are performed in the same manner as a software upgrade, beginning with an update of the
configuration file, and then restarting the management server followed by restarting each data node in turn.

Updates do not increase the amount of index memory used. Inserts take effect immediately; however, rows
are not actually deleted until the transaction is committed.

Transaction parameters. The next three [ndbd] parameters that we discuss are important because
they affect the number of parallel transactions and the sizes of transactions that can be handled by the
system. MaxNoOfConcurrentTransactions sets the number of parallel transactions possible in a
node. MaxNoOfConcurrentOperations sets the number of records that can be in update phase or
locked simultaneously.

Both of these parameters (especially MaxNoOfConcurrentOperations) are likely targets for users
setting specific values and not using the default value. The default value is set for systems using small
transactions, to ensure that these do not use excessive memory.

• MaxNoOfConcurrentTransactions

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 4096 32 - 4294967039
(0xFFFFFEFF)

N

Each cluster data node requires a transaction record for each active transaction in the cluster. The task
of coordinating transactions is distributed among all of the data nodes. The total number of transaction

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1709

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

records in the cluster is the number of transactions in any given node times the number of nodes in the
cluster.

Transaction records are allocated to individual SQL nodes. Each such connection requires at least one
transaction record, plus an additional transaction object per table accessed by that connection. This
means that a reasonable minimum for this parameter is

MaxNoOfConcurrentTransactions =
 (maximum number of tables accessed in any single transaction + 1)
 * number of cluster SQL nodes

Suppose that there are 10 SQL nodes using the cluster. A single join involving 10 tables requires 11
transaction records; if there are 10 such joins in a transaction, then 10 * 11 = 110 transaction records
are required for this transaction, per SQL node, or 110 * 10 = 1100 transaction records total. Each
data node can be expected to handle TotalNoOfConcurrentTransactions / number of data nodes. For a
MySQL Cluster having 4 data nodes, this would mean setting MaxNoOfConcurrentTransactions
on each data node to 1100 / 4 = 275. In addition, you should provide for failure recovery by insuring
that a single node group can accommodate all concurrent transactions; in other words, that each data
node's MaxNoOfConcurrentTransactions is sufficient to cover a number of transaction equal to
TotalNoOfConcurrentTransactions / number of node groups. If this cluster has a single node group,
then MaxNoOfConcurrentTransactions should be set to 1100 (the same as the total number of
concurrent transactions for the entire cluster).

In addition, each transaction involves at least one operation; for this reason, the value set
for MaxNoOfConcurrentTransactions should always be no more than the value of
MaxNoOfConcurrentOperations.

This parameter must be set to the same value for all cluster data nodes. This is due to the fact that,
when a data node fails, the oldest surviving node re-creates the transaction state of all transactions that
were ongoing in the failed node.

It is possible to change this value using a rolling restart, but the amount of traffic on the cluster must be
such that no more transactions occur than the lower of the old and new levels while this is taking place.

The default value is 4096.

• MaxNoOfConcurrentOperations

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 32K 32 - 4294967039
(0xFFFFFEFF)

N

It is a good idea to adjust the value of this parameter according to the size and number of transactions.
When performing transactions which involve only a few operations and records, the default value for this
parameter is usually sufficient. Performing large transactions involving many records usually requires
that you increase its value.

Records are kept for each transaction updating cluster data, both in the transaction coordinator and in
the nodes where the actual updates are performed. These records contain state information needed to
find UNDO records for rollback, lock queues, and other purposes.

This parameter should be set to the number of records to be updated simultaneously in transactions,
divided by the number of cluster data nodes. For example, in a cluster which has four data nodes and
which is expected to handle one million concurrent updates using transactions, you should set this
value to 1000000 / 4 = 250000. To help provide resiliency against failures, it is suggested that you set

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1710

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

this parameter to a value that is high enough to permit an individual data node to handle the load for
its node group. In other words, you should set the value equal to total number of concurrent
operations / number of node groups. (In the case where there is a single node group, this is
the same as the total number of concurrent operations for the entire cluster.)

Because each transaction always involves at least one operation, the value of
MaxNoOfConcurrentOperations should always be greater than or equal to the value of
MaxNoOfConcurrentTransactions.

Read queries which set locks also cause operation records to be created. Some extra space is allocated
within individual nodes to accommodate cases where the distribution is not perfect over the nodes.

When queries make use of the unique hash index, there are actually two operation records used per
record in the transaction. The first record represents the read in the index table and the second handles
the operation on the base table.

The default value is 32768.

This parameter actually handles two values that can be configured separately. The first of these
specifies how many operation records are to be placed with the transaction coordinator. The second part
specifies how many operation records are to be local to the database.

A very large transaction performed on an eight-node cluster requires as many operation records in the
transaction coordinator as there are reads, updates, and deletes involved in the transaction. However,
the operation records of the are spread over all eight nodes. Thus, if it is necessary to configure
the system for one very large transaction, it is a good idea to configure the two parts separately.
MaxNoOfConcurrentOperations will always be used to calculate the number of operation records in
the transaction coordinator portion of the node.

It is also important to have an idea of the memory requirements for operation records. These consume
about 1KB per record.

• MaxNoOfLocalOperations

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer UNDEFINED 32 - 4294967039
(0xFFFFFEFF)

N

By default, this parameter is calculated as 1.1 × MaxNoOfConcurrentOperations. This fits systems
with many simultaneous transactions, none of them being very large. If there is a need to handle one
very large transaction at a time and there are many nodes, it is a good idea to override the default value
by explicitly specifying this parameter.

Transaction temporary storage. The next set of [ndbd] parameters is used to determine temporary
storage when executing a statement that is part of a Cluster transaction. All records are released when the
statement is completed and the cluster is waiting for the commit or rollback.

The default values for these parameters are adequate for most situations. However, users with a need to
support transactions involving large numbers of rows or operations may need to increase these values
to enable better parallelism in the system, whereas users whose applications require relatively small
transactions can decrease the values to save memory.

• MaxNoOfConcurrentIndexOperations

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1711

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 8K 0 - 4294967039
(0xFFFFFEFF)

N

For queries using a unique hash index, another temporary set of operation records is used during
a query's execution phase. This parameter sets the size of that pool of records. Thus, this record is
allocated only while executing a part of a query. As soon as this part has been executed, the record is
released. The state needed to handle aborts and commits is handled by the normal operation records,
where the pool size is set by the parameter MaxNoOfConcurrentOperations.

The default value of this parameter is 8192. Only in rare cases of extremely high parallelism using
unique hash indexes should it be necessary to increase this value. Using a smaller value is possible and
can save memory if the DBA is certain that a high degree of parallelism is not required for the cluster.

• MaxNoOfFiredTriggers

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 4000 0 - 4294967039
(0xFFFFFEFF)

N

The default value of MaxNoOfFiredTriggers is 4000, which is sufficient for most situations. In some
cases it can even be decreased if the DBA feels certain the need for parallelism in the cluster is not high.

A record is created when an operation is performed that affects a unique hash index. Inserting or
deleting a record in a table with unique hash indexes or updating a column that is part of a unique hash
index fires an insert or a delete in the index table. The resulting record is used to represent this index
table operation while waiting for the original operation that fired it to complete. This operation is short-
lived but can still require a large number of records in its pool for situations with many parallel write
operations on a base table containing a set of unique hash indexes.

• TransactionBufferMemory

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 bytes 1M 1K - 4294967039
(0xFFFFFEFF)

N

The memory affected by this parameter is used for tracking operations fired when updating index tables
and reading unique indexes. This memory is used to store the key and column information for these
operations. It is only very rarely that the value for this parameter needs to be altered from the default.

The default value for TransactionBufferMemory is 1MB.

Normal read and write operations use a similar buffer, whose usage is even more short-lived. The
compile-time parameter ZATTRBUF_FILESIZE (found in ndb/src/kernel/blocks/Dbtc/
Dbtc.hpp) set to 4000 × 128 bytes (500KB). A similar buffer for key information, ZDATABUF_FILESIZE
(also in Dbtc.hpp) contains 4000 × 16 = 62.5KB of buffer space. Dbtc is the module that handles
transaction coordination.

Scans and buffering. There are additional [ndbd] parameters in the Dblqh module (in
ndb/src/kernel/blocks/Dblqh/Dblqh.hpp) that affect reads and updates. These include
ZATTRINBUF_FILESIZE, set by default to 10000 × 128 bytes (1250KB) and ZDATABUF_FILE_SIZE,
set by default to 10000*16 bytes (roughly 156KB) of buffer space. To date, there have been neither any

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1712

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

reports from users nor any results from our own extensive tests suggesting that either of these compile-
time limits should be increased.

• MaxNoOfConcurrentScans

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 256 2 - 500 N

This parameter is used to control the number of parallel scans that can be performed in the cluster.
Each transaction coordinator can handle the number of parallel scans defined for this parameter. Each
scan query is performed by scanning all partitions in parallel. Each partition scan uses a scan record
in the node where the partition is located, the number of records being the value of this parameter
times the number of nodes. The cluster should be able to sustain MaxNoOfConcurrentScans scans
concurrently from all nodes in the cluster.

Scans are actually performed in two cases. The first of these cases occurs when no hash or ordered
indexes exists to handle the query, in which case the query is executed by performing a full table scan.
The second case is encountered when there is no hash index to support the query but there is an
ordered index. Using the ordered index means executing a parallel range scan. The order is kept on the
local partitions only, so it is necessary to perform the index scan on all partitions.

The default value of MaxNoOfConcurrentScans is 256. The maximum value is 500.

• MaxNoOfLocalScans

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer [see text] 32 - 4294967039
(0xFFFFFEFF)

N

Specifies the number of local scan records if many scans are not fully parallelized. If the number of local
scan records is not provided, it is calculated as the product of MaxNoOfConcurrentScans and the
number of data nodes in the system, plus 2. The minimum value is 32.

• BatchSizePerLocalScan

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 64 1 - 992 N

This parameter is used to calculate the number of lock records used to handle concurrent scan
operations.

BatchSizePerLocalScan has a strong connection to the BatchSize defined in the SQL nodes.

• LongMessageBuffer

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 bytes 1M 512K - 4294967039
(0xFFFFFEFF)

N

This is an internal buffer used for passing messages within individual nodes and between nodes.
Although it is highly unlikely that this would need to be changed, it is configurable. By default, it is set to
1MB.

Logging and checkpointing. The following [ndbd] parameters control log and checkpoint behavior.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1713

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• NoOfFragmentLogFiles

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 8 3 - 4294967039
(0xFFFFFEFF)

IN

This parameter sets the number of REDO log files for the node, and thus the amount of space allocated
to REDO logging. Because the REDO log files are organized in a ring, it is extremely important that the
first and last log files in the set (sometimes referred to as the “head” and “tail” log files, respectively)
do not meet. When these approach one another too closely, the node begins aborting all transactions
encompassing updates due to a lack of room for new log records.

A REDO log record is not removed until three local checkpoints have been completed since that log
record was inserted. Checkpointing frequency is determined by its own set of configuration parameters
discussed elsewhere in this chapter.

How these parameters interact and proposals for how to configure them are discussed in
Section 17.3.3.12, “Configuring MySQL Cluster Parameters for Local Checkpoints”.

The default parameter value is 8, which means 8 sets of 4 16MB files for a total of 512MB. In other
words, REDO log space is always allocated in blocks of 64MB. In scenarios requiring a great many
updates, the value for NoOfFragmentLogFiles may need to be set as high as 300 or even higher to
provide sufficient space for REDO logs.

If the checkpointing is slow and there are so many writes to the database that the log files are full and
the log tail cannot be cut without jeopardizing recovery, all updating transactions are aborted with
internal error code 410 (Out of log file space temporarily). This condition prevails until a
checkpoint has completed and the log tail can be moved forward.

Important

This parameter cannot be changed “on the fly”; you must restart the node using
--initial. If you wish to change this value for all data nodes in a running
cluster, you can do so using a rolling node restart (using --initial when
starting each data node).

• MaxNoOfOpenFiles

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 40 20 - 4294967039
(0xFFFFFEFF)

N

This parameter sets a ceiling on how many internal threads to allocate for open files. Any situation
requiring a change in this parameter should be reported as a bug.

The default value is 40.

• MaxNoOfSavedMessages

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 25 0 - 4294967039
(0xFFFFFEFF)

N

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1714

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This parameter sets the maximum number of trace files that are kept before overwriting old ones. Trace
files are generated when, for whatever reason, the node crashes.

The default is 25 trace files.

Metadata objects. The next set of [ndbd] parameters defines pool sizes for metadata objects, used
to define the maximum number of attributes, tables, indexes, and trigger objects used by indexes, events,
and replication between clusters. Note that these act merely as “suggestions” to the cluster, and any that
are not specified revert to the default values shown.

• MaxNoOfAttributes

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 1000 32 - 4294967039
(0xFFFFFEFF)

N

This parameter sets a suggested maximum number of attributes that can be defined in the cluster; like
MaxNoOfTables, it is not intended to function as a hard upper limit.

A known issue in MySQL Cluster in MySQL 5.0 is that this parameter is occasionally treated as a hard
limit for certain operations. This can lead to confusion when it is sometimes possible (or not possible,
depending on the circumstances) to create more than MaxNoOfAttributes attributes. This is fixed in
MySQL Cluster NDB 6.3 and later. (Bug #61684)

The default value is 1000, with the minimum possible value being 32. The maximum is 4294967039.
Each attribute consumes around 200 bytes of storage per node due to the fact that all metadata is fully
replicated on the servers.

When setting MaxNoOfAttributes, it is important to prepare in advance for any ALTER
TABLE statements that you might want to perform in the future. This is due to the fact, during the
execution of ALTER TABLE on a Cluster table, 3 times the number of attributes as in the original
table are used, and a good practice is to permit double this amount. For example, if the MySQL
Cluster table having the greatest number of attributes (greatest_number_of_attributes)
has 100 attributes, a good starting point for the value of MaxNoOfAttributes would be 6 *
greatest_number_of_attributes = 600.

You should also estimate the average number of attributes per table and multiply this by the total number
of MySQL Cluster tables. If this value is larger than the value obtained in the previous paragraph, you
should use the larger value instead.

Assuming that you can create all desired tables without any problems, you should also verify that this
number is sufficient by trying an actual ALTER TABLE after configuring the parameter. If this is not
successful, increase MaxNoOfAttributes by another multiple of MaxNoOfTables and test it again.

• MaxNoOfTables

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 128 8 - 1600 N

MySQL 5.0.0 integer 128 8 - 20320 N

A table object is allocated for each table and for each unique hash index in the cluster. This
parameter sets a suggested maximum number of table objects for the cluster as a whole; like
MaxNoOfAttributes, it is not intended to function as a hard upper limit.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1715

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A known issue in MySQL Cluster in MySQL 5.0 is that this parameter is occasionally treated as a hard
limit for certain operations. This can lead to confusion when it is sometimes possible (or not possible,
depending on the circumstances) to create more than MaxNoOfTables tables. This is fixed in MySQL
Cluster NDB 6.3 and later. (Bug #61684)

For each attribute that has a BLOB data type an extra table is used to store most of the BLOB data.
These tables also must be taken into account when defining the total number of tables.

The default value of this parameter is 128. The minimum is 8 and the maximum is 20320. (This is a
change from MySQL 4.1.) Each table object consumes approximately 20KB per node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

• MaxNoOfOrderedIndexes

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 128 0 - 4294967039
(0xFFFFFEFF)

N

For each ordered index in the cluster, an object is allocated describing what is being indexed and its
storage segments. By default, each index so defined also defines an ordered index. Each unique index
and primary key has both an ordered index and a hash index. MaxNoOfOrderedIndexes sets the total
number of hash indexes that can be in use in the system at any one time.

The default value of this parameter is 128. Each hash index object consumes approximately 10KB of
data per node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

• MaxNoOfUniqueHashIndexes

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 64 0 - 4294967039
(0xFFFFFEFF)

N

For each unique index that is not a primary key, a special table is allocated that maps the unique key to
the primary key of the indexed table. By default, an ordered index is also defined for each unique index.
To prevent this, you must specify the USING HASH option when defining the unique index.

The default value is 64. Each index consumes approximately 15KB per node.

Note

The sum of MaxNoOfTables, MaxNoOfOrderedIndexes, and
MaxNoOfUniqueHashIndexes must not exceed 232 − 2 (4294967294).

• MaxNoOfTriggers

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1716

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 768 0 - 4294967039
(0xFFFFFEFF)

N

Internal update, insert, and delete triggers are allocated for each unique hash index. (This means that
three triggers are created for each unique hash index.) However, an ordered index requires only a single
trigger object. Backups also use three trigger objects for each normal table in the cluster.

This parameter sets the maximum number of trigger objects in the cluster.

The default value is 768.

• MaxNoOfIndexes

This parameter is deprecated. You should use MaxNoOfOrderedIndexes and
MaxNoOfUniqueHashIndexes instead.

This parameter is used only by unique hash indexes. There needs to be one record in this pool for each
unique hash index defined in the cluster.

The default value of this parameter is 128.

Boolean parameters. The behavior of data nodes is also affected by a set of [ndbd] parameters
taking on boolean values. These parameters can each be specified as TRUE by setting them equal to 1 or
Y, and as FALSE by setting them equal to 0 or N.

• LockPagesInMainMemory

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 true|false (1|0) 0 0 - 1 N

MySQL 5.0.0 true|false (1|0) 0 0 - 1 N

MySQL 5.0.36 numeric 0 0 - 2 N

For a number of operating systems, including Solaris and Linux, it is possible to lock a process into
memory and so avoid any swapping to disk. This can be used to help guarantee the cluster's real-time
characteristics.

Beginning with MySQL 5.0.36, this parameter takes one of the integer values 0, 1, or 2, which act as
follows:

• 0: Disables locking. This is the default value.

• 1: Performs the lock after allocating memory for the process.

• 2: Performs the lock before memory for the process is allocated.

Previously, this parameter was a Boolean. 0 or false was the default setting, and disabled locking. 1 or
true enabled locking of the process after its memory was allocated.

Important

Beginning with MySQL 5.0.36, it is no longer possible to use true or false for
the value of this parameter; when upgrading from a previous version, you must
change the value to 0, 1, or 2.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1717

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

If the operating system is not configured to permit unprivileged users to lock
pages, then the data node process making use of this parameter may have to be
run as system root. (LockPagesInMainMemory uses the mlockall function.
From Linux kernel 2.6.9, unprivileged users can lock memory as limited by max
locked memory. For more information, see ulimit -l and http://linux.die.net/
man/2/mlock).

Important

Beginning with glibc 2.10, glibc uses per-thread arenas to reduce lock
contention on a shared pool, which consumes real memory. In general, a data
node process does not need per-thread arenas, since it does not perform any
memory allocation after startup. (This difference in allocators does not appear to
affect performance significantly.)

The glibc behavior is intended to be configurable via the MALLOC_ARENA_MAX
environment variable, but a bug in this this mechanism prior to glibc 2.16 meant
that this variable could not be set to less than 8, so that the wasted memory
could not be reclaimed. (Bug #15907219; see also http://sourceware.org/bugzilla/
show_bug.cgi?id=13137 for more information concerning this issue.)

One possible workaround for this problem is to use the LD_PRELOAD
environment variable to preload a jemalloc memory allocation library to take
the place of that supplied with glibc.

• StopOnError

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 boolean 1 0, 1 N

This parameter specifies whether a data node process should exit or perform an automatic restart when
an error condition is encountered.

This parameter's default value is 1; this means that, by default, an error causes the data node process to
halt.

• Diskless

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 true|false (1|0) false true, false IS

It is possible to specify MySQL Cluster tables as diskless, meaning that tables are not checkpointed
to disk and that no logging occurs. Such tables exist only in main memory. A consequence of using
diskless tables is that neither the tables nor the records in those tables survive a crash. However, when
operating in diskless mode, it is possible to run ndbd on a diskless computer.

Important

This feature causes the entire cluster to operate in diskless mode.

http://linux.die.net/man/2/mlock
http://linux.die.net/man/2/mlock
http://sourceware.org/bugzilla/show_bug.cgi?id=13137
http://sourceware.org/bugzilla/show_bug.cgi?id=13137

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1718

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When this feature is enabled, Cluster online backup is disabled. In addition, a partial start of the cluster is
not possible.

Diskless is disabled by default.

• RestartOnErrorInsert

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 error code 2 0 - 4 N

This feature is accessible only when building the debug version where it is possible to insert errors in the
execution of individual blocks of code as part of testing.

This feature is disabled by default.

Controlling timeouts, intervals, and disk paging. There are a number of [ndbd] parameters
specifying timeouts and intervals between various actions in Cluster data nodes. Most of the timeout
values are specified in milliseconds. Any exceptions to this are mentioned where applicable.

• TimeBetweenWatchDogCheck

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 milliseconds 6000 70 - 4294967039
(0xFFFFFEFF)

N

To prevent the main thread from getting stuck in an endless loop at some point, a “watchdog” thread
checks the main thread. This parameter specifies the number of milliseconds between checks. If the
process remains in the same state after three checks, the watchdog thread terminates it.

This parameter can easily be changed for purposes of experimentation or to adapt to local conditions. It
can be specified on a per-node basis although there seems to be little reason for doing so.

The default timeout is 4000 milliseconds (4 seconds).

• StartPartialTimeout

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 milliseconds 30000 0 - 4294967039
(0xFFFFFEFF)

N

This parameter specifies how long the Cluster waits for all data nodes to come up before the cluster
initialization routine is invoked. This timeout is used to avoid a partial Cluster startup whenever possible.

This parameter is overridden when performing an initial start or initial restart of the cluster.

The default value is 30000 milliseconds (30 seconds). 0 disables the timeout, in which case the cluster
may start only if all nodes are available.

• StartPartitionedTimeout

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 milliseconds 60000 0 - 4294967039
(0xFFFFFEFF)

N

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1719

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If the cluster is ready to start after waiting for StartPartialTimeout milliseconds but
is still possibly in a partitioned state, the cluster waits until this timeout has also passed. If
StartPartitionedTimeout is set to 0, the cluster waits indefinitely.

This parameter is overridden when performing an initial start or initial restart of the cluster.

The default timeout is 60000 milliseconds (60 seconds).

• StartFailureTimeout

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 milliseconds 0 0 - 4294967039
(0xFFFFFEFF)

N

If a data node has not completed its startup sequence within the time specified by this parameter, the
node startup fails. Setting this parameter to 0 (the default value) means that no data node timeout is
applied.

For nonzero values, this parameter is measured in milliseconds. For data nodes containing extremely
large amounts of data, this parameter should be increased. For example, in the case of a data node
containing several gigabytes of data, a period as long as 10−15 minutes (that is, 600000 to 1000000
milliseconds) might be required to perform a node restart.

• HeartbeatIntervalDbDb

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 milliseconds 1500 10 - 4294967039
(0xFFFFFEFF)

N

One of the primary methods of discovering failed nodes is by the use of heartbeats. This parameter
states how often heartbeat signals are sent and how often to expect to receive them. After missing three
heartbeat intervals in a row, the node is declared dead. Thus, the maximum time for discovering a failure
through the heartbeat mechanism is four times the heartbeat interval.

The default heartbeat interval is 1500 milliseconds (1.5 seconds). This parameter must not be changed
drastically and should not vary widely between nodes. If one node uses 5000 milliseconds and the
node watching it uses 1000 milliseconds, obviously the node will be declared dead very quickly. This
parameter can be changed during an online software upgrade, but only in small increments.

See also Network communication and latency.

• HeartbeatIntervalDbApi

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 milliseconds 1500 100 - 4294967039
(0xFFFFFEFF)

N

Each data node sends heartbeat signals to each MySQL server (SQL node) to ensure that it remains
in contact. If a MySQL server fails to send a heartbeat in time it is declared “dead,” in which case all
ongoing transactions are completed and all resources released. The SQL node cannot reconnect until all
activities initiated by the previous MySQL instance have been completed. The three-heartbeat criteria for
this determination are the same as described for HeartbeatIntervalDbDb.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1720

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The default interval is 1500 milliseconds (1.5 seconds). This interval can vary between individual data
nodes because each data node watches the MySQL servers connected to it, independently of all other
data nodes.

For more information, see Network communication and latency.

• TimeBetweenLocalCheckpoints

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 number of 4-byte
words, as a base-2
logarithm

20 0 - 31 N

This parameter is an exception in that it does not specify a time to wait before starting a new local
checkpoint; rather, it is used to ensure that local checkpoints are not performed in a cluster where
relatively few updates are taking place. In most clusters with high update rates, it is likely that a new local
checkpoint is started immediately after the previous one has been completed.

The size of all write operations executed since the start of the previous local checkpoints is added.
This parameter is also exceptional in that it is specified as the base-2 logarithm of the number of 4-byte
words, so that the default value 20 means 4MB (4 × 220) of write operations, 21 would mean 8MB, and
so on up to a maximum value of 31, which equates to 8GB of write operations.

All the write operations in the cluster are added together. Setting TimeBetweenLocalCheckpoints to
6 or less means that local checkpoints will be executed continuously without pause, independent of the
cluster's workload.

• TimeBetweenGlobalCheckpoints

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 milliseconds 2000 10 - 32000 N

When a transaction is committed, it is committed in main memory in all nodes on which the data is
mirrored. However, transaction log records are not flushed to disk as part of the commit. The reasoning
behind this behavior is that having the transaction safely committed on at least two autonomous host
machines should meet reasonable standards for durability.

It is also important to ensure that even the worst of cases—a complete crash of the cluster—is handled
properly. To guarantee that this happens, all transactions taking place within a given interval are put into
a global checkpoint, which can be thought of as a set of committed transactions that has been flushed to
disk. In other words, as part of the commit process, a transaction is placed in a global checkpoint group.
Later, this group's log records are flushed to disk, and then the entire group of transactions is safely
committed to disk on all computers in the cluster.

This parameter defines the interval between global checkpoints. The default is 2000 milliseconds.

• TimeBetweenInactiveTransactionAbortCheck

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 milliseconds 1000 1000 - 4294967039
(0xFFFFFEFF)

N

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1721

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Timeout handling is performed by checking a timer on each transaction once for every interval specified
by this parameter. Thus, if this parameter is set to 1000 milliseconds, every transaction will be checked
for timing out once per second.

The default value is 1000 milliseconds (1 second).

• TransactionInactiveTimeout

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 milliseconds [see text] 0 - 4294967039
(0xFFFFFEFF)

N

This parameter states the maximum time that is permitted to lapse between operations in the same
transaction before the transaction is aborted.

The default for this parameter is 4G (also the maximum). For a real-time database that needs to ensure
that no transaction keeps locks for too long, this parameter should be set to a relatively small value. The
unit is milliseconds.

• TransactionDeadlockDetectionTimeout

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 milliseconds 1200 50 - 4294967039
(0xFFFFFEFF)

N

When a node executes a query involving a transaction, the node waits for the other nodes in the cluster
to respond before continuing. A failure to respond can occur for any of the following reasons:

• The node is “dead”

• The operation has entered a lock queue

• The node requested to perform the action could be heavily overloaded.

This timeout parameter states how long the transaction coordinator waits for query execution by another
node before aborting the transaction, and is important for both node failure handling and deadlock
detection. In MySQL 5.0.20 and earlier versions, setting it too high could cause undesirable behavior
in situations involving deadlocks and node failure. Beginning with MySQL 5.0.21, active transactions
occurring during node failures are actively aborted by the MySQL Cluster Transaction Coordinator, and
so high settings are no longer an issue with this parameter.

The default timeout value is 1200 milliseconds (1.2 seconds). The effective minimum value is 100
milliseconds; it is possible to set it as low as 50 milliseconds, but any such value is treated as 100 ms.
(Bug #44099)

• NoOfDiskPagesToDiskAfterRestartTUP

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 8K pages/100
milliseconds

40 1 - 4294967039
(0xFFFFFEFF)

N

When executing a local checkpoint, the algorithm flushes all data pages to disk. Merely doing so
as quickly as possible without any moderation is likely to impose excessive loads on processors,
networks, and disks. To control the write speed, this parameter specifies how many pages per

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1722

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

100 milliseconds are to be written. In this context, a “page” is defined as 8KB. This parameter is
specified in units of 80KB per second, so setting NoOfDiskPagesToDiskAfterRestartTUP to a
value of 20 entails writing 1.6MB in data pages to disk each second during a local checkpoint. This
value includes the writing of UNDO log records for data pages. That is, this parameter handles the
limitation of writes from data memory. UNDO log records for index pages are handled by the parameter
NoOfDiskPagesToDiskAfterRestartACC. (See the entry for IndexMemory for information about
index pages.)

In short, this parameter specifies how quickly to execute local checkpoints. It operates in conjunction
with NoOfFragmentLogFiles, DataMemory, and IndexMemory.

For more information about the interaction between these parameters and possible strategies for
choosing appropriate values for them, see Section 17.3.3.12, “Configuring MySQL Cluster Parameters
for Local Checkpoints”.

The default value is 40 (3.2MB of data pages per second).

• NoOfDiskPagesToDiskAfterRestartACC

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 8K pages/100
milliseconds

20 1 - 4294967039
(0xFFFFFEFF)

N

This parameter uses the same units as NoOfDiskPagesToDiskAfterRestartTUP and acts in a
similar fashion, but limits the speed of writing index pages from index memory.

The default value of this parameter is 20 (1.6MB of index memory pages per second).

• NoOfDiskPagesToDiskDuringRestartTUP

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 8K pages/100
milliseconds

40 1 - 4294967039
(0xFFFFFEFF)

N

This parameter is used in a fashion similar to NoOfDiskPagesToDiskAfterRestartTUP and
NoOfDiskPagesToDiskAfterRestartACC, only it does so with regard to local checkpoints executed
in the node when a node is restarting. A local checkpoint is always performed as part of all node restarts.
During a node restart it is possible to write to disk at a higher speed than at other times, because fewer
activities are being performed in the node.

This parameter covers pages written from data memory.

The default value is 40 (3.2MB per second).

• NoOfDiskPagesToDiskDuringRestartACC

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 8K pages/100
milliseconds

20 1 - 4294967039
(0xFFFFFEFF)

N

Controls the number of index memory pages that can be written to disk during the local checkpoint
phase of a node restart.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1723

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

As with NoOfDiskPagesToDiskAfterRestartTUP and
NoOfDiskPagesToDiskAfterRestartACC, values for this parameter are expressed in terms of 8KB
pages written per 100 milliseconds (80KB/second).

The default value is 20 (1.6MB per second).

• ArbitrationTimeout

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 milliseconds 3000 10 - 4294967039
(0xFFFFFEFF)

N

This parameter specifies how long data nodes wait for a response from the arbitrator to an arbitration
message. If this is exceeded, the network is assumed to have split.

The default value is 1000 milliseconds (1 second).

Buffering and logging. Several [ndbd] configuration parameters corresponding to former compile-
time parameters were introduced in MySQL 4.1.5. These enable the advanced user to have more control
over the resources used by node processes and to adjust various buffer sizes at need.

These buffers are used as front ends to the file system when writing log records to disk. If the node is
running in diskless mode, these parameters can be set to their minimum values without penalty due to the
fact that disk writes are “faked” by the NDB storage engine's file system abstraction layer.

• UndoIndexBuffer

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned 2M 1M - 4294967039
(0xFFFFFEFF)

N

The UNDO index buffer, whose size is set by this parameter, is used during local checkpoints. The
NDB storage engine uses a recovery scheme based on checkpoint consistency in conjunction with
an operational REDO log. To produce a consistent checkpoint without blocking the entire system for
writes, UNDO logging is done while performing the local checkpoint. UNDO logging is activated on a
single table fragment at a time. This optimization is possible because tables are stored entirely in main
memory.

The UNDO index buffer is used for the updates on the primary key hash index. Inserts and deletes
rearrange the hash index; the NDB storage engine writes UNDO log records that map all physical
changes to an index page so that they can be undone at system restart. It also logs all active insert
operations for each fragment at the start of a local checkpoint.

Reads and updates set lock bits and update a header in the hash index entry. These changes are
handled by the page-writing algorithm to ensure that these operations need no UNDO logging.

This buffer is 2MB by default. The minimum value is 1MB, which is sufficient for most applications. For
applications doing extremely large or numerous inserts and deletes together with large transactions and
large primary keys, it may be necessary to increase the size of this buffer. If this buffer is too small, the
NDB storage engine issues internal error code 677 (Index UNDO buffers overloaded).

Important

It is not safe to decrease the value of this parameter during a rolling restart.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1724

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• UndoDataBuffer

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned 16M 1M - 4294967039
(0xFFFFFEFF)

N

This parameter sets the size of the UNDO data buffer, which performs a function similar to that of the
UNDO index buffer, except the UNDO data buffer is used with regard to data memory rather than index
memory. This buffer is used during the local checkpoint phase of a fragment for inserts, deletes, and
updates.

Because UNDO log entries tend to grow larger as more operations are logged, this buffer is also larger
than its index memory counterpart, with a default value of 16MB.

This amount of memory may be unnecessarily large for some applications. In such cases, it is possible
to decrease this size to a minimum of 1MB.

It is rarely necessary to increase the size of this buffer. If there is such a need, it is a good idea to check
whether the disks can actually handle the load caused by database update activity. A lack of sufficient
disk space cannot be overcome by increasing the size of this buffer.

If this buffer is too small and gets congested, the NDB storage engine issues internal error code 891
(Data UNDO buffers overloaded).

Important

It is not safe to decrease the value of this parameter during a rolling restart.

• RedoBuffer

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 bytes 8M 1M - 4294967039
(0xFFFFFEFF)

N

All update activities also need to be logged. The REDO log makes it possible to replay these updates
whenever the system is restarted. The NDB recovery algorithm uses a “fuzzy” checkpoint of the
data together with the UNDO log, and then applies the REDO log to play back all changes up to the
restoration point.

RedoBuffer sets the size of the buffer in which the REDO log is written, and is 8MB by default. The
minimum value is 1MB.

If this buffer is too small, the NDB storage engine issues error code 1221 (REDO log buffers
overloaded).

Important

It is not safe to decrease the value of this parameter during a rolling restart.

Controlling log messages. In managing the cluster, it is very important to be able to control the
number of log messages sent for various event types to stdout. For each event category, there are 16
possible event levels (numbered 0 through 15). Setting event reporting for a given event category to level
15 means all event reports in that category are sent to stdout; setting it to 0 means that there will be no
event reports made in that category.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1725

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

By default, only the startup message is sent to stdout, with the remaining event reporting level defaults
being set to 0. The reason for this is that these messages are also sent to the management server's cluster
log.

An analogous set of levels can be set for the management client to determine which event levels to record
in the cluster log.

• LogLevelStartup

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 1 0 - 15 N

The reporting level for events generated during startup of the process.

The default level is 1.

• LogLevelShutdown

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 0 0 - 15 N

The reporting level for events generated as part of graceful shutdown of a node.

The default level is 0.

• LogLevelStatistic

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 0 0 - 15 N

The reporting level for statistical events such as number of primary key reads, number of updates,
number of inserts, information relating to buffer usage, and so on.

The default level is 0.

• LogLevelCheckpoint

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 log level 0 0 - 15 N

The reporting level for events generated by local and global checkpoints.

The default level is 0.

• LogLevelNodeRestart

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 0 0 - 15 N

The reporting level for events generated during node restart.

The default level is 0.

• LogLevelConnection

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1726

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 0 0 - 15 N

The reporting level for events generated by connections between cluster nodes.

The default level is 0.

• LogLevelError

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 0 0 - 15 N

The reporting level for events generated by errors and warnings by the cluster as a whole. These errors
do not cause any node failure but are still considered worth reporting.

The default level is 0.

• LogLevelCongestion

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 levelr 0 0 - 15 N

The reporting level for events generated by congestion. These errors do not cause node failure but are
still considered worth reporting.

The default level is 0.

• LogLevelInfo

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 integer 0 0 - 15 N

The reporting level for events generated for information about the general state of the cluster.

The default level is 0.

Backup parameters. The [ndbd] parameters discussed in this section define memory buffers set
aside for execution of online backups.

• BackupDataBufferSize

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 bytes 2M 0 - 4294967039
(0xFFFFFEFF)

N

NDB 7.5.0 bytes 16M 2M - 4294967039
(0xFFFFFEFF)

N

In creating a backup, there are two buffers used for sending data to the disk. The backup data buffer
is used to fill in data recorded by scanning a node's tables. Once this buffer has been filled to the level
specified as BackupWriteSize (see below), the pages are sent to disk. While flushing data to disk, the
backup process can continue filling this buffer until it runs out of space. When this happens, the backup

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1727

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

process pauses the scan and waits until some disk writes have completed freeing up memory so that
scanning may continue.

The default value is 2MB.

• BackupLogBufferSize

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 bytes 2M 0 - 4294967039
(0xFFFFFEFF)

N

The backup log buffer fulfills a role similar to that played by the backup data buffer, except that it is
used for generating a log of all table writes made during execution of the backup. The same principles
apply for writing these pages as with the backup data buffer, except that when there is no more space
in the backup log buffer, the backup fails. For that reason, the size of the backup log buffer must
be large enough to handle the load caused by write activities while the backup is being made. See
Section 17.5.3.3, “Configuration for MySQL Cluster Backups”.

The default value for this parameter should be sufficient for most applications. In fact, it is more likely
for a backup failure to be caused by insufficient disk write speed than it is for the backup log buffer to
become full. If the disk subsystem is not configured for the write load caused by applications, the cluster
is unlikely to be able to perform the desired operations.

It is preferable to configure cluster nodes in such a manner that the processor becomes the bottleneck
rather than the disks or the network connections.

The default value is 2MB.

• BackupMemory

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 bytes 4M 0 - 4294967039
(0xFFFFFEFF)

N

This parameter is simply the sum of BackupDataBufferSize and BackupLogBufferSize.

The default value is 2MB + 2MB = 4MB.

Important

If BackupDataBufferSize and BackupLogBufferSize taken together
exceed 4MB, then this parameter must be set explicitly in the config.ini file to
their sum.

• BackupWriteSize

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 bytes 32K 2K - 4294967039
(0xFFFFFEFF)

N

This parameter specifies the default size of messages written to disk by the backup log and backup data
buffers.

The default value is 32KB.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1728

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• BackupMaxWriteSize

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 bytes 256K 2K - 4294967039
(0xFFFFFEFF)

N

This parameter specifies the maximum size of messages written to disk by the backup log and backup
data buffers.

The default value is 256KB.

Important

When specifying these parameters, the following relationships must hold true.
Otherwise, the data node will be unable to start.

• BackupDataBufferSize >= BackupWriteSize + 188KB

• BackupLogBufferSize >= BackupWriteSize + 16KB

• BackupMaxWriteSize >= BackupWriteSize

Note

To add new data nodes to a MySQL Cluster, it is necessary to shut down the
cluster completely, update the config.ini file, and then restart the cluster (that is,
you must perform a system restart). All data node processes must be started with
the --initial option.

Beginning with MySQL Cluster NDB 7.0, it is possible to add new data node groups
to a running cluster online; however, we do not plan to implement this change in
MySQL 5.0.

17.3.3.6 Defining SQL and Other API Nodes in a MySQL Cluster

The [mysqld] and [api] sections in the config.ini file define the behavior of the MySQL servers
(SQL nodes) and other applications (API nodes) used to access cluster data. None of the parameters
shown is required. If no computer or host name is provided, any host can use this SQL or API node.

Generally speaking, a [mysqld] section is used to indicate a MySQL server providing an SQL interface
to the cluster, and an [api] section is used for applications other than mysqld processes accessing
cluster data, but the two designations are actually synonomous; you can, for instance, list parameters for a
MySQL server acting as an SQL node in an [api] section.

Note

For a discussion of MySQL server options for MySQL Cluster, see mysqld
Command Options for MySQL Cluster; for information about MySQL server system
variables relating to MySQL Cluster, see MySQL Cluster System Variables.

• Id

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned [none] 1 - 63 IS

The Id is an integer value used to identify the node in all cluster internal messages. It must be an integer
in the range 1 to 63 inclusive, and must be unique among all node IDs within the cluster.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1729

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In MySQL 5.0.15 and later, NodeId is a synonym for this parameter, and is the preferred form. In
MySQL Cluster NDB 6.2 and later, Id is deprecated in favor of NodeId for identifying SQL and other
API nodes.

• NodeId

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.15 unsigned [none] 1 - 63 IS

Beginning with MySQL 5.0.15, NodeId is available as a synonym for Id.

In MySQL Cluster NDB 6.2 and later, Id is deprecated in favor of NodeId for identifying SQL and API
nodes.

• ExecuteOnComputer

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 name [none] ... S

This refers to the Id set for one of the computers (hosts) defined in a [computer] section of the
configuration file.

• HostName

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 name or IP address [none] ... N

Specifying this parameter defines the hostname of the computer on which the SQL node (API node) is to
reside. To specify a hostname, either this parameter or ExecuteOnComputer is required.

If no HostName or ExecuteOnComputer is specified in a given [mysql] or [api] section of the
config.ini file, then an SQL or API node may connect using the corresponding “slot” from any host
which can establish a network connection to the management server host machine. This differs from
the default behavior for data nodes, where localhost is assumed for HostName unless otherwise
specified.

• ArbitrationRank

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 0-2 0 0 - 2 N

This parameter defines which nodes can act as arbitrators. Both management nodes and SQL
nodes can be arbitrators. A value of 0 means that the given node is never used as an arbitrator, a
value of 1 gives the node high priority as an arbitrator, and a value of 2 gives it low priority. A normal
configuration uses the management server as arbitrator, setting its ArbitrationRank to 1 (the default
for management nodes) and those for all SQL nodes to 0 (the default for SQL nodes).

• ArbitrationDelay

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 milliseconds 0 0 - 4294967039
(0xFFFFFEFF)

N

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1730

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Setting this parameter to any other value than 0 (the default) means that responses by the arbitrator to
arbitration requests will be delayed by the stated number of milliseconds. It is usually not necessary to
change this value.

• BatchByteSize

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 bytes 32K 1024 - 1M N

For queries that are translated into full table scans or range scans on indexes, it is important for best
performance to fetch records in properly sized batches. It is possible to set the proper size both in terms
of number of records (BatchSize) and in terms of bytes (BatchByteSize). The actual batch size is
limited by both parameters.

The speed at which queries are performed can vary by more than 40% depending upon how this
parameter is set.

This parameter is measured in bytes. The default value is 32K.

• BatchSize

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 records 64 1 - 992 N

This parameter is measured in number of records and is by default set to 64. The maximum size is 992.

• MaxScanBatchSize

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 bytes 256K 32K - 16M N

The batch size is the size of each batch sent from each data node. Most scans are performed in parallel
to protect the MySQL Server from receiving too much data from many nodes in parallel; this parameter
sets a limit to the total batch size over all nodes.

The default value of this parameter is set to 256KB. Its maximum size is 16MB.

You can obtain some information from a MySQL server running as a Cluster SQL node using SHOW
STATUS in the mysql client, as shown here:

mysql> SHOW STATUS LIKE 'ndb%';
+-----------------------------+---------------+
| Variable_name | Value |
+-----------------------------+---------------+
Ndb_cluster_node_id	5
Ndb_config_from_host	192.168.0.112
Ndb_config_from_port	1186
Ndb_number_of_storage_nodes	4
+-----------------------------+---------------+
4 rows in set (0.02 sec)

For information about these Cluster system status variables, see Section 5.1.6, “Server Status Variables”.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1731

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

To add new SQL or API nodes to the configuration of a running MySQL Cluster,
it is necessary to perform a rolling restart of all cluster nodes after adding new
[mysqld] or [api] sections to the config.ini file (or files, if you are using
more than one management server). This must be done before the new SQL or API
nodes can connect to the cluster.

It is not necessary to perform any restart of the cluster if new SQL or API nodes can
employ previously unused API slots in the cluster configuration to connect to the
cluster.

17.3.3.7 MySQL Server Options and Variables for MySQL Cluster

This section provides information about MySQL server options, server and status variables that are specific
to MySQL Cluster. For general information on using these, and for other options and variables not specific
to MySQL Cluster, see Section 5.1, “The MySQL Server”.

For MySQL Cluster configuration parameters used in the cluster confiuration file (usually named
config.ini), see Section 17.3, “MySQL Cluster Configuration”.

mysqld Command Options for MySQL Cluster

This section provides descriptions of mysqld server options relating to MySQL Cluster. For information
about mysqld options not specific to MySQL Cluster, and for general information about the use of options
with mysqld, see Section 5.1.3, “Server Command Options”.

For information about command-line options used with other MySQL Cluster processes (ndbd, ndb_mgmd,
and ndb_mgm), see Section 17.4.20, “Options Common to MySQL Cluster Programs — Options Common
to MySQL Cluster Programs”. For information about command-line options used with NDB utility programs
(such as ndb_desc, ndb_size.pl, and ndb_show_tables), see Section 17.4, “MySQL Cluster
Programs”.

• --ndbcluster

Table 17.9 Type and value information for ndbcluster

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndbcluster

Yes No No

Yes No

MySQL 5.0 boolean FALSE

DESCRIPTION: Enable NDB Cluster (if this version of MySQL supports it)

Disabled by --skip-ndbcluster

The NDBCLUSTER storage engine is necessary for using MySQL Cluster. If a mysqld binary includes
support for the NDBCLUSTER storage engine, the engine is disabled by default. Use the --ndbcluster
option to enable it. Use --skip-ndbcluster to explicitly disable the engine.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1732

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --ndb-connectstring=connection_string

Table 17.10 Type and value information for ndb-connectstring

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-connectstring

Yes No No

Yes No

MySQL 5.0 string

DESCRIPTION: Point to the management server that distributes the cluster configuration

When using the NDBCLUSTER storage engine, this option specifies the management server that
distributes cluster configuration data. See Section 17.3.3.2, “MySQL Cluster Connection Strings”, for
syntax.

• --ndb-mgmd-host=host[:port]

Table 17.11 Type and value information for ndb-mgmd-host

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-mgmd-host

Yes No No

Yes No

MySQL 5.0 string localhost:1186

DESCRIPTION: Set the host (and port, if desired) for connecting to management server

Can be used to set the host and port number of a single management server for the program to connect
to. If the program requires node IDs or references to multiple management servers (or both) in its
connection information, use the --ndb-connectstring option instead.

• --ndb-nodeid=#

Table 17.12 Type and value information for ndb-nodeid

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb-nodeid

Yes No Yes

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1733

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

Yes Global No

5.0.45 integer / 1 - 63

DESCRIPTION: MySQL Cluster node ID for this MySQL server

Set this MySQL server's node ID in a MySQL Cluster. This can be used instead of specifying the node
ID as part of the connection string or in the config.ini file, or permitting the cluster to determine
an arbitrary node ID. If you use this option, then --ndb-nodeid must be specified before --ndb-
connectstring. If --ndb-nodeid is used and a node ID is specified in the connection string, then the
MySQL server will not be able to connect to the cluster. In addition, if --nodeid is used, then either a
matching node ID must be found in a [mysqld] or [api] section of config.ini, or there must be an
“open” [mysqld] or [api] section in the file (that is, a section without an Id parameter specified).

Regardless of how the node ID is determined, its is shown as the value of the global status variable
Ndb_cluster_node_id in the output of SHOW STATUS, and as cluster_node_id in the
connection row of the output of SHOW ENGINE NDBCLUSTER STATUS.

For more information about node IDs for MySQL Cluster SQL nodes, see Section 17.3.3.6, “Defining
SQL and Other API Nodes in a MySQL Cluster”.

• --skip-ndbcluster

Table 17.13 Type and value information for skip-ndbcluster

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

skip-ndbcluster

Yes No No

Yes No

DESCRIPTION: Disable the NDB Cluster storage engine

Disable the NDBCLUSTER storage engine. This is the default for binaries that were built with
NDBCLUSTER storage engine support; the server allocates memory and other resources for this storage
engine only if the --ndbcluster option is given explicitly. See Section 17.3.1, “Quick Test Setup of
MySQL Cluster”, for an example.

MySQL Cluster System Variables

This section provides detailed information about MySQL server system variables that are specific to
MySQL Cluster and the NDB storage engine. For system variables not specific to MySQL Cluster, see
Section 5.1.4, “Server System Variables”. For general information on using system variables, see
Section 5.1.5, “Using System Variables”.

• have_ndbcluster

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1734

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Table 17.14 Type and value information for have_ndbcluster

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

have_ndbcluster

No Yes No

No Global No

MySQL 5.0 boolean

DESCRIPTION: Whether mysqld supports NDB Cluster tables (set by --ndbcluster option)

YES if mysqld supports NDBCLUSTER tables. DISABLED if --skip-ndbcluster is used.

This variable is deprecated in MySQL 5.1, and is removed in MySQL 5.6. Use SHOW ENGINES instead.

• ndb_autoincrement_prefetch_sz

Table 17.15 Type and value information for ndb_autoincrement_prefetch_sz

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_autoincrement_prefetch_sz

Yes Yes No

Yes Both Yes

MySQL 5.0 integer 32 / 1 - 256

5.0.56 integer 1 / 1 - 256

DESCRIPTION: NDB auto-increment prefetch size

Determines the probability of gaps in an autoincremented column. Set it to 1 to minimize this. Setting
it to a high value for optimization—makes inserts faster, but decreases the likelihood that consecutive
autoincrement numbers will be used in a batch of inserts. Default value: 32. Minimum value: 1.

Beginning with MySQL 5.0.56, this variable affects the number of AUTO_INCREMENT IDs that are
fetched between statements only. Within a statement, at least 32 IDs are now obtained at a time. In
MySQL 5.0.56 and later, the default value is 1. (Bug #31956)

Important

This variable does not affect inserts performed using INSERT ... SELECT.

• ndb_cache_check_time

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1735

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Table 17.16 Type and value information for ndb_cache_check_time

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_cache_check_time

Yes Yes No

Yes Global Yes

MySQL 5.0 integer 0 / -

DESCRIPTION: Number of milliseconds between checks of cluster SQL nodes made by the MySQL
query cache

The number of milliseconds that elapse between checks of MySQL Cluster SQL nodes by the MySQL
query cache. Setting this to 0 (the default and minimum value) means that the query cache checks for
validation on every query.

The recommended maximum value for this variable is 1000, which means that the check is performed
once per second. A larger value means that the check is performed and possibly invalidated due to
updates on different SQL nodes less often. It is generally not desirable to set this to a value greater than
2000.

• ndb_force_send

Table 17.17 Type and value information for ndb_force_send

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_force_send

Yes Yes No

Yes Both Yes

MySQL 5.0 boolean TRUE

DESCRIPTION: Forces sending of buffers to NDB immediately, without waiting for other threads

Forces sending of buffers to NDB immediately, without waiting for other threads. Defaults to ON.

• ndb_index_stat_cache_entries

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1736

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Table 17.18 Type and value information for ndb_index_stat_cache_entries

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_index_stat_cache_entries

Yes Yes No

Yes Both Yes

MySQL 5.0 integer 32 / 0 - 4294967295

DESCRIPTION: Sets the granularity of the statistics by determining the number of starting and ending
keys

Sets the granularity of the statistics by determining the number of starting and ending keys to store in the
statistics memory cache. Zero means no caching takes place; in this case, the data nodes are always
queried directly. Default value: 32.

• ndb_index_stat_enable

Table 17.19 Type and value information for ndb_index_stat_enable

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_index_stat_enable

Yes Yes No

Yes Both Yes

MySQL 5.0 boolean OFF

DESCRIPTION: Use NDB index statistics in query optimization

Use NDB index statistics in query optimization. Defaults to ON.

• ndb_index_stat_update_freq

Table 17.20 Type and value information for ndb_index_stat_update_freq

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_index_stat_update_freq

Yes Yes No

Yes Both Yes

MySQL 5.0 integer 20 / 0 - 4294967295

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1737

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

DESCRIPTION: How often to query data nodes instead of the statistics cache

How often to query data nodes instead of the statistics cache. For example, a value of 20 (the default)
means to direct every 20th query to the data nodes.

• ndb_optimized_node_selection

Table 17.21 Type and value information for ndb_optimized_node_selection

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_optimized_node_selection

Yes Yes No

Yes Global No

MySQL 5.0 boolean ON

DESCRIPTION: Determines how an SQL node chooses a cluster data node to use as transaction
coordinator

Causes an SQL node to use the “closest” data node as transaction coordinator. For this purpose, a
data node having a shared memory connection with the SQL node is considered to be “closest” to the
SQL node; the next closest (in order of decreasing proximity) are: TCP connection to localhost; SCI
connection; TCP connection from a host other than localhost.

This option is enabled by default. Set to 0 or OFF to disable it, in which case the SQL node uses each
data node in the cluster in succession. When this option is disabled each SQL thread attempts to use a
given data node 8 times before proceeding to the next one.

• ndb_report_thresh_binlog_epoch_slip

Table 17.22 Type and value information for ndb_report_thresh_binlog_epoch_slip

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_report_thresh_binlog_epoch_slip

Yes No No

Yes No

MySQL 5.0 integer 3 / 0 - 256

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1738

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

DESCRIPTION: This is a threshold on the number of epochs to be behind before reporting binary log
status

This is a threshold on the number of epochs to be behind before reporting binary log status. For
example, a value of 3 (the default) means that if the difference between which epoch has been received
from the storage nodes and which epoch has been applied to the binary log is 3 or more, a status
message will be sent to the cluster log.

• ndb_report_thresh_binlog_mem_usage

Table 17.23 Type and value information for ndb_report_thresh_binlog_mem_usage

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_report_thresh_binlog_mem_usage

Yes No No

Yes No

MySQL 5.0 integer 10 / 0 - 10

DESCRIPTION: This is a threshold on the percentage of free memory remaining before reporting
binary log status

This is a threshold on the percentage of free memory remaining before reporting binary log status. For
example, a value of 10 (the default) means that if the amount of available memory for receiving binary
log data from the data nodes falls below 10%, a status message will be sent to the cluster log.

• ndb_use_exact_count

Table 17.24 Type and value information for ndb_use_exact_count

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_use_exact_count

No Yes No

No Both Yes

MySQL 5.0 boolean ON

DESCRIPTION: Use exact row count when planning queries

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1739

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Forces NDB to use a count of records during SELECT COUNT(*) query planning to speed up this type
of query. The default value is ON. For faster queries overall, disable this feature by setting the value of
ndb_use_exact_count to OFF.

• ndb_use_transactions

Table 17.25 Type and value information for ndb_use_transactions

Command Line System Variable Status Variable

Option File Scope Dynamic

From Version Type Default, Range

Notes

ndb_use_transactions

Yes Yes No

Yes Both Yes

MySQL 5.0 boolean ON

DESCRIPTION: Forces NDB to use a count of records during SELECT COUNT(*) query planning to
speed up this type of query

You can disable NDB transaction support by setting this variable's values to OFF (not recommended).
The default is ON.

MySQL Cluster Status Variables

This section provides detailed information about MySQL server status variables that relate to MySQL
Cluster and the NDB storage engine. For status variables not specific to MySQL Cluster, and for general
information on using status variables, see Section 5.1.6, “Server Status Variables”.

• Handler_discover

An SQL node can ask the NDB storage engine if it knows about a table with a given name. This is called
discovery. Handler_discover indicates the number of times that tables have been discovered using
this mechanism.

• Ndb_cluster_node_id

If the server is acting as a MySQL Cluster node, then the value of this variable its node ID in the cluster.

If the server is not part of a MySQL Cluster, then the value of this variable is 0.

• Ndb_config_from_host

If the server is part of a MySQL Cluster, the value of this variable is the host name or IP address of the
Cluster management server from which it gets its configuration data.

If the server is not part of a MySQL Cluster, then the value of this variable is an empty string.

Prior to MySQL 5.0.23, this variable was named Ndb_connected_host.

• Ndb_config_from_port

If the server is part of a MySQL Cluster, the value of this variable is the number of the port through which
it is connected to the Cluster management server from which it gets its configuration data.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1740

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If the server is not part of a MySQL Cluster, then the value of this variable is 0.

Prior to MySQL 5.0.23, this variable was named Ndb_connected_port.

• Ndb_number_of_data_nodes

If the server is part of a MySQL Cluster, the value of this variable is the number of data nodes in the
cluster.

If the server is not part of a MySQL Cluster, then the value of this variable is 0.

Prior to MySQL 5.0.29, this variable was named Ndb_number_of_storage_nodes.

17.3.3.8 MySQL Cluster TCP/IP Connections

TCP/IP is the default transport mechanism for all connections between nodes in a MySQL Cluster.
Normally it is not necessary to define TCP/IP connections; MySQL Cluster automatically sets up such
connections for all data nodes, management nodes, and SQL or API nodes.

Note

For an exception to this rule, see Section 17.3.3.9, “MySQL Cluster TCP/IP
Connections Using Direct Connections”.

To override the default connection parameters, it is necessary to define a connection using one or more
[tcp] sections in the config.ini file. Each [tcp] section explicitly defines a TCP/IP connection
between two MySQL Cluster nodes, and must contain at a minimum the parameters NodeId1 and
NodeId2, as well as any connection parameters to override.

It is also possible to change the default values for these parameters by setting them in the [tcp
default] section.

Important

Any [tcp] sections in the config.ini file should be listed last, following all other
sections in the file. However, this is not required for a [tcp default] section.
This requirement is a known issue with the way in which the config.ini file is
read by the MySQL Cluster management server.

Connection parameters which can be set in [tcp] and [tcp default] sections of the config.ini file
are listed here:

• NodeId1

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 numeric [none] ... N

To identify a connection between two nodes it is necessary to provide their node IDs in the [tcp]
section of the configuration file as the values of NodeId1 and NodeId2. These are the same unique Id
values for each of these nodes as described in Section 17.3.3.6, “Defining SQL and Other API Nodes in
a MySQL Cluster”.

• NodeId2

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 numeric [none] ... N

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1741

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To identify a connection between two nodes it is necessary to provide their node IDs in the [tcp]
section of the configuration file as the values of NodeId1 and NodeId2. These are the same unique Id
values for each of these nodes as described in Section 17.3.3.6, “Defining SQL and Other API Nodes in
a MySQL Cluster”.

• HostName1

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 name or IP address [none] ... N

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given TCP connection between two nodes. The values used for these parameters can be host
names or IP addresses.

•
HostName2

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 name or IP address [none] ... N

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given TCP connection between two nodes. The values used for these parameters can be host
names or IP addresses.

• SendBufferMemory

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned 256K 64K - 4294967039
(0xFFFFFEFF)

N

TCP transporters use a buffer to store all messages before performing the send call to the operating
system. When this buffer reaches 64KB its contents are sent; these are also sent when a round of
messages have been executed. To handle temporary overload situations it is also possible to define a
bigger send buffer.

The default size of the send buffer is 256 KB; 2MB is recommended in most situations in which it is
necessary to set this parameter. The minimum size is 64 KB; the theoretical maximum is 4 GB.

• SendSignalId

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 boolean [see text] true, false N

To be able to retrace a distributed message datagram, it is necessary to identify each message. When
this parameter is set to Y, message IDs are transported over the network. This feature is disabled by
default in production builds, and enabled in -debug builds.

• Checksum

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 boolean false true, false N

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1742

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This parameter is a boolean parameter (enabled by setting it to Y or 1, disabled by setting it to N or 0). It
is disabled by default. When it is enabled, checksums for all messages are calculated before they placed
in the send buffer. This feature ensures that messages are not corrupted while waiting in the send buffer,
or by the transport mechanism.

• PortNumber (OBSOLETE)

This formerly specified the port number to be used for listening for connections from other nodes. This
parameter should no longer be used.

• ReceiveBufferMemory

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 bytes 64K 16K - 4294967039
(0xFFFFFEFF)

N

Specifies the size of the buffer used when receiving data from the TCP/IP socket.

The default value of this parameter from its of 64 KB; 1M is recommended in most situations where the
size of the receive buffer needs to be set. The minimum possible value is 16K; theoretical maximum is
4G.

17.3.3.9 MySQL Cluster TCP/IP Connections Using Direct Connections

Setting up a cluster using direct connections between data nodes requires specifying explicitly the
crossover IP addresses of the data nodes so connected in the [tcp] section of the cluster config.ini
file.

In the following example, we envision a cluster with at least four hosts, one each for a management server,
an SQL node, and two data nodes. The cluster as a whole resides on the 172.23.72.* subnet of a LAN.
In addition to the usual network connections, the two data nodes are connected directly using a standard
crossover cable, and communicate with one another directly using IP addresses in the 1.1.0.* address
range as shown:

Management Server
[ndb_mgmd]
Id=1
HostName=172.23.72.20

SQL Node
[mysqld]
Id=2
HostName=172.23.72.21

Data Nodes
[ndbd]
Id=3
HostName=172.23.72.22

[ndbd]
Id=4
HostName=172.23.72.23

TCP/IP Connections
[tcp]
NodeId1=3
NodeId2=4
HostName1=1.1.0.1
HostName2=1.1.0.2

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1743

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The HostName1 and HostName2 parameters are used only when specifying direct TCP connections.

The use of direct TCP connections between data nodes can improve the cluster's overall efficiency by
enabling the data nodes to bypass an Ethernet device such as a switch, hub, or router, thus cutting down
on the cluster's latency. It is important to note that to take the best advantage of direct connections in this
fashion with more than two data nodes, you must have a direct connection between each data node and
every other data node in the same node group.

17.3.3.10 MySQL Cluster Shared-Memory Connections

MySQL Cluster attempts to use the shared memory transporter and configure it automatically where
possible. (In very early versions of MySQL Cluster, shared memory segments functioned only when
the server binary was built using --with-ndb-shm.) [shm] sections in the config.ini file explicitly
define shared-memory connections between nodes in the cluster. When explicitly defining shared memory
as the connection method, it is necessary to define at least NodeId1, NodeId2 and ShmKey. All other
parameters have default values that should work well in most cases.

Important

SHM functionality is considered experimental only. It is not officially supported
in any current MySQL Cluster release, and testing results indicate that SHM
performance is not appreciably greater than when using TCP/IP for the transporter.

For these reasons, you must determine for yourself or by using our free resources
(forums, mailing lists) whether SHM can be made to work correctly in your specific
case.

• NodeId1

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 numeric [none] ... N

To identify a connection between two nodes it is necessary to provide node identifiers for each of them,
as NodeId1 and NodeId2.

• NodeId2

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 numeric [none] ... N

To identify a connection between two nodes it is necessary to provide node identifiers for each of them,
as NodeId1 and NodeId2.

• HostName1

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 name or IP address [none] ... N

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given SHM connection between two nodes. The values used for these parameters can be
host names or IP addresses.

• HostName2

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1744

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 name or IP address [none] ... N

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given SHM connection between two nodes. The values used for these parameters can be
host names or IP addresses.

• ShmKey

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned [none] 0 - 4294967039
(0xFFFFFEFF)

N

When setting up shared memory segments, a node ID, expressed as an integer, is used to identify
uniquely the shared memory segment to use for the communication. There is no default value.

• ShmSize

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 bytes 1M 64K - 4294967039
(0xFFFFFEFF)

N

Each SHM connection has a shared memory segment where messages between nodes are placed by
the sender and read by the reader. The size of this segment is defined by ShmSize. The default value is
1MB.

• SendSignalId

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 boolean false true, false N

To retrace the path of a distributed message, it is necessary to provide each message with a unique
identifier. Setting this parameter to Y causes these message IDs to be transported over the network as
well. This feature is disabled by default in production builds, and enabled in -debug builds.

• Checksum

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 boolean true true, false N

This parameter is a boolean (Y/N) parameter which is disabled by default. When it is enabled,
checksums for all messages are calculated before being placed in the send buffer.

This feature prevents messages from being corrupted while waiting in the send buffer. It also serves as a
check against data being corrupted during transport.

• SigNum

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned [none] 0 - 4294967039
(0xFFFFFEFF)

N

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1745

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When using the shared memory transporter, a process sends an operating system signal to the other
process when there is new data available in the shared memory. Should that signal conflict with with an
existing signal, this parameter can be used to change it. This is a possibility when using SHM due to the
fact that different operating systems use different signal numbers.

The default value of SigNum is 0; therefore, it must be set to avoid errors in the cluster log when using
the shared memory transporter. Typically, this parameter is set to 10 in the [shm default] section of
the config.ini file.

17.3.3.11 SCI Transport Connections in MySQL Cluster

[sci] sections in the config.ini file explicitly define SCI (Scalable Coherent Interface) connections
between cluster nodes. Using SCI transporters in MySQL Cluster is supported only when the MySQL
binaries are built using --with-ndb-sci=/your/path/to/SCI. The path should point to a directory
that contains at a minimum lib and include directories containing SISCI libraries and header files. (See
Section 17.3.4, “Using High-Speed Interconnects with MySQL Cluster” for more information about SCI.)

In addition, SCI requires specialized hardware.

It is strongly recommended to use SCI Transporters only for communication between ndbd processes.
Note also that using SCI Transporters means that the ndbd processes never sleep. For this reason, SCI
Transporters should be used only on machines having at least two CPUs dedicated for use by ndbd
processes. There should be at least one CPU per ndbd process, with at least one CPU left in reserve to
handle operating system activities.

• NodeId1

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 numeric [none] ... N

To identify a connection between two nodes it is necessary to provide node identifiers for each of them,
as NodeId1 and NodeId2.

• NodeId2

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 numeric [none] ... N

To identify a connection between two nodes it is necessary to provide node identifiers for each of them,
as NodeId1 and NodeId2.

• Host1SciId0

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned [none] 0 - 4294967039
(0xFFFFFEFF)

N

This identifies the SCI node ID on the first Cluster node (identified by NodeId1).

• Host1SciId1

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1746

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned 0 0 - 4294967039
(0xFFFFFEFF)

N

It is possible to set up SCI Transporters for failover between two SCI cards which then should use
separate networks between the nodes. This identifies the node ID and the second SCI card to be used
on the first node.

• Host2SciId0

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned [none] 0 - 4294967039
(0xFFFFFEFF)

N

This identifies the SCI node ID on the second Cluster node (identified by NodeId2).

• Host2SciId1

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned 0 0 - 4294967039
(0xFFFFFEFF)

N

When using two SCI cards to provide failover, this parameter identifies the second SCI card to be used
on the second node.

• HostName1

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 name or IP address [none] ... N

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given SCI connection between two nodes. The values used for these parameters can be host
names or IP addresses.

• HostName2

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 name or IP address [none] ... N

The HostName1 and HostName2 parameters can be used to specify specific network interfaces to be
used for a given SCI connection between two nodes. The values used for these parameters can be host
names or IP addresses.

• SharedBufferSize

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned 10M 64K - 4294967039
(0xFFFFFEFF)

N

Each SCI transporter has a shared memory segment used for communication between the two nodes.
Setting the size of this segment to the default value of 1MB should be sufficient for most applications.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1747

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Using a smaller value can lead to problems when performing many parallel inserts; if the shared buffer is
too small, this can also result in a crash of the ndbd process.

• SendLimit

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 unsigned 8K 128 - 32K N

A small buffer in front of the SCI media stores messages before transmitting them over the SCI network.
By default, this is set to 8KB. Our benchmarks show that performance is best at 64KB but 16KB reaches
within a few percent of this, and there was little if any advantage to increasing it beyond 8KB.

• SendSignalId

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 boolean true true, false N

To trace a distributed message it is necessary to identify each message uniquely. When this parameter
is set to Y, message IDs are transported over the network. This feature is disabled by default in
production builds, and enabled in -debug builds.

• Checksum

Effective Version Type/Units Default Range/Values Restart Type

MySQL 5.0.0 boolean false true, false N

This parameter is a boolean value, and is disabled by default. When Checksum is enabled, checksums
are calculated for all messages before they are placed in the send buffer. This feature prevents
messages from being corrupted while waiting in the send buffer. It also serves as a check against data
being corrupted during transport.

17.3.3.12 Configuring MySQL Cluster Parameters for Local Checkpoints

The parameters discussed in Logging and Checkpointing and in Data Memory, Index Memory, and
String Memory that are used to configure local checkpoints for a MySQL Cluster do not exist in
isolation, but rather are very much interdepedent on each other. In this section, we illustrate how these
parameters—including DataMemory, IndexMemory, NoOfDiskPagesToDiskAfterRestartTUP,
NoOfDiskPagesToDiskAfterRestartACC, and NoOfFragmentLogFiles—relate to one another in a
working Cluster.

In this example, we assume that our application performs the following numbers of types of operations per
hour:

• 50000 selects

• 15000 inserts

• 15000 updates

• 15000 deletes

We also make the following assumptions about the data used in the application:

• We are working with a single table having 40 columns.

• Each column can hold up to 32 bytes of data.

MySQL Cluster Configuration Files

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1748

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• A typical UPDATE run by the application affects the values of 5 columns.

• No NULL values are inserted by the application.

A good starting point is to determine the amount of time that should elapse between local checkpoints
(LCPs). It is worth noting that, in the event of a system restart, it takes 40-60 percent of this interval to
execute the REDO log—for example, if the time between LCPs is 5 minutes (300 seconds), then it should
take 2 to 3 minutes (120 to 180 seconds) for the REDO log to be read.

The maximum amount of data per node can be assumed to be the size of the DataMemory parameter. In
this example, we assume that this is 2 GB. The NoOfDiskPagesToDiskAfterRestartTUP parameter
represents the amount of data to be checkpointed per unit time—however, this parameter is actually
expressed as the number of 8K memory pages to be checkpointed per 100 milliseconds. 2 GB per 300
seconds is approximately 6.8 MB per second, or 700 KB per 100 milliseconds, which works out to roughly
85 pages per 100 milliseconds.

Similarly, we can calculate NoOfDiskPagesToDiskAfterRestartACC in terms of the time for local
checkpoints and the amount of memory required for indexes—that is, the IndexMemory. Assuming that
we permit 512 MB for indexes, this works out to approximately 20 8-KB pages per 100 milliseconds for this
parameter.

Next, we need to determine the number of REDO log files required—that is, fragment log files—the
corresponding parameter being NoOfFragmentLogFiles. We need to make sure that there are sufficient
REDO log files for keeping records for at least 3 local checkpoints. In a production setting, there are
always uncertainties—for instance, we cannot be sure that disks always operate at top speed or with
maximum throughput. For this reason, it is best to err on the side of caution, so we double our requirement
and calculate a number of fragment log files which should be enough to keep records covering 6 local
checkpoints.

It is also important to remember that the disk also handles writes to the REDO log and UNDO
log, so if you find that the amount of data being written to disk as determined by the values of
NoOfDiskPagesToDiskAfterRestartACC and NoOfDiskPagesToDiskAfterRestartTUP is
approaching the amount of disk bandwidth available, you may wish to increase the time between local
checkpoints.

Given 5 minutes (300 seconds) per local checkpoint, this means that we need to support writing log
records at maximum speed for 6 * 300 = 1800 seconds. The size of a REDO log record is 72 bytes plus 4
bytes per updated column value plus the maximum size of the updated column, and there is one REDO
log record for each table record updated in a transaction, on each node where the data reside. Using the
numbers of operations set out previously in this section, we derive the following:

• 50000 select operations per hour yields 0 log records (and thus 0 bytes), since SELECT statements are
not recorded in the REDO log.

• 15000 DELETE statements per hour is approximately 5 delete operations per second. (Since we wish
to be conservative in our estimate, we round up here and in the following calculations.) No columns are
updated by deletes, so these statements consume only 5 operations * 72 bytes per operation = 360
bytes per second.

• 15000 UPDATE statements per hour is roughly the same as 5 updates per second. Each update uses 72
bytes, plus 4 bytes per column * 5 columns updated, plus 32 bytes per column * 5 columns—this works
out to 72 + 20 + 160 = 252 bytes per operation, and multiplying this by 5 operation per second yields
1260 bytes per second.

• 15000 INSERT statements per hour is equivalent to 5 insert operations per second. Each insert requires
REDO log space of 72 bytes, plus 4 bytes per record * 40 columns, plus 32 bytes per column * 40

Using High-Speed Interconnects with MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1749

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

columns, which is 72 + 160 + 1280 = 1512 bytes per operation. This times 5 operations per second
yields 7560 bytes per second.

So the total number of REDO log bytes being written per second is approximately 0 + 360 + 1260 +
7560 = 9180 bytes. Multiplied by 1800 seconds, this yields 16524000 bytes required for REDO logging,
or approximately 15.75 MB. The unit used for NoOfFragmentLogFiles represents a set of 4 16-MB
log files—that is, 64 MB. Thus, the minimum value (3) for this parameter is sufficient for the scenario
envisioned in this example, since 3 times 64 = 192 MB, or about 12 times what is required; the default
value of 8 (or 512 MB) is more than ample in this case.

A copy of each altered table record is kept in the UNDO log. In the scenario discussed above, the UNDO
log would not require any more space than what is provided by the default seetings. However, given the
size of disks, it is sensible to allocate at least 1 GB for it.

17.3.4 Using High-Speed Interconnects with MySQL Cluster

Even before design of NDBCLUSTER began in 1996, it was evident that one of the major problems to be
encountered in building parallel databases would be communication between the nodes in the network. For
this reason, NDBCLUSTER was designed from the very beginning to permit the use of a number of different
data transport mechanisms. In this Manual, we use the term transporter for these.

The MySQL Cluster codebase includes support for four different transporters:

• TCP/IP using 100 Mbps or gigabit Ethernet, as discussed in Section 17.3.3.8, “MySQL Cluster TCP/IP
Connections”.

• Direct (machine-to-machine) TCP/IP; although this transporter uses the same TCP/IP protocol as
mentioned in the previous item, it requires setting up the hardware differently and is configured
differently as well. For this reason, it is considered a separate transport mechanism for MySQL Cluster.
See Section 17.3.3.9, “MySQL Cluster TCP/IP Connections Using Direct Connections”, for details.

• Shared memory (SHM). For more information about SHM, see Section 17.3.3.10, “MySQL Cluster
Shared-Memory Connections”.

Note

SHM is considered experimental only, and is not officially supported.

• Scalable Coherent Interface (SCI), as described in the next section of this chapter, Section 17.3.3.11,
“SCI Transport Connections in MySQL Cluster”.

Most users today employ TCP/IP over Ethernet because it is ubiquitous. TCP/IP is also by far the best-
tested transporter for use with MySQL Cluster.

We are working to make sure that communication with the ndbd process is made in “chunks” that are as
large as possible because this benefits all types of data transmission.

For users who desire it, it is also possible to use cluster interconnects to enhance performance even
further. There are two ways to achieve this: Either a custom transporter can be designed to handle this
case, or you can use socket implementations that bypass the TCP/IP stack to one extent or another. We
have experimented with both of these techniques using the SCI (Scalable Coherent Interface) technology
developed by Dolphin Interconnect Solutions.

17.3.4.1 Configuring MySQL Cluster to use SCI Sockets

http://www.dolphinics.com/

Using High-Speed Interconnects with MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1750

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

It is possible employing Scalable Coherent Interface (SCI) technology to achieve a significant increase
in connection speeds and throughput between MySQL Cluster data and SQL nodes. To use SCI, it is
necessary to obtain and install Dolphin SCI network cards and to use the drivers and other software
supplied by Dolphin. You can get information on obtaining these, from Dolphin Interconnect Solutions.
SCI SuperSocket or SCI Transporter support is available for 32-bit and 64-bit Linux, Solaris, and other
platforms. See the Dolphin documentation referenced later in this section for more detailed information
regarding platforms supported for SCI.

Note

Prior to MySQL 5.0.66, there were issues with building MySQL Cluster with SCI
support (see Bug #25470), but these have been resolved due to work contributed
by Dolphin. SCI Sockets are now correctly supported for MySQL Cluster hosts
running recent versions of Linux using the -max builds, and versions of MySQL
Cluster with SCI Transporter support can be built using either of compile-amd64-
max-sci or compile-pentium64-max-sci. Both of these build scripts can
be found in the BUILD directory of the MySQL Cluster source trees; it should not
be difficult to adapt them for other platforms. Generally, all that is necessary is to
compile MySQL Cluster with SCI Transporter support is to configure the MySQL
Cluster build using --with-ndb-sci=/opt/DIS.

Once you have acquired the required Dolphin hardware and software, you can obtain detailed information
on how to adapt a MySQL Cluster configured for normal TCP/IP communication to use SCI from the from
the Dolphin SCI online documentation.

17.3.4.2 MySQL Cluster Interconnects and Performance

The ndbd process has a number of simple constructs which are used to access the data in a MySQL
Cluster. We have created a very simple benchmark to check the performance of each of these and the
effects which various interconnects have on their performance.

There are four access methods:

• Primary key access. This is access of a record through its primary key. In the simplest case, only
one record is accessed at a time, which means that the full cost of setting up a number of TCP/IP
messages and a number of costs for context switching are borne by this single request. In the case
where multiple primary key accesses are sent in one batch, those accesses share the cost of setting
up the necessary TCP/IP messages and context switches. If the TCP/IP messages are for different
destinations, additional TCP/IP messages need to be set up.

• Unique key access. Unique key accesses are similar to primary key accesses, except that a unique
key access is executed as a read on an index table followed by a primary key access on the table.
However, only one request is sent from the MySQL Server, and the read of the index table is handled by
ndbd. Such requests also benefit from batching.

• Full table scan. When no indexes exist for a lookup on a table, a full table scan is performed. This
is sent as a single request to the ndbd process, which then divides the table scan into a set of parallel
scans on all cluster ndbd processes. In future versions of MySQL Cluster, an SQL node will be able to
filter some of these scans.

• Range scan using ordered index

When an ordered index is used, it performs a scan in the same manner as the full table scan, except that
it scans only those records which are in the range used by the query transmitted by the MySQL server

http://www.dolphinics.com/
http://www.dolphinics.com/support/sci-product-documentation-software.html

MySQL Cluster Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1751

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

(SQL node). All partitions are scanned in parallel when all bound index attributes include all attributes in
the partitioning key.

With benchmarks developed internally by MySQL for testing simple and batched primary and unique key
accesses, we have found that using SCI sockets improves performance by approximately 100% over TCP/
IP, except in rare instances when communication performance is not an issue. This can occur when scan
filters make up most of processing time or when very large batches of primary key accesses are achieved.
In that case, the CPU processing in the ndbd processes becomes a fairly large part of the overhead.

Using the SCI transporter instead of SCI Sockets is only of interest in communicating between ndbd
processes. Using the SCI transporter is also only of interest if a CPU can be dedicated to the ndbd
process because the SCI transporter ensures that this process will never go to sleep. It is also important
to ensure that the ndbd process priority is set in such a way that the process does not lose priority due to
running for an extended period of time, as can be done by locking processes to CPUs in Linux 2.6. If such
a configuration is possible, the ndbd process will benefit by 10−70% as compared with using SCI sockets.
(The larger figures will be seen when performing updates and probably on parallel scan operations as
well.)

There are several other optimized socket implementations for computer clusters, including Myrinet, Gigabit
Ethernet, Infiniband and the VIA interface. However, we have tested MySQL Cluster so far only with SCI
sockets. See Section 17.3.4.1, “Configuring MySQL Cluster to use SCI Sockets”, for information on how to
set up SCI sockets using ordinary TCP/IP for MySQL Cluster.

17.4 MySQL Cluster Programs
Using and managing a MySQL Cluster requires several specialized programs, which we describe in this
chapter. We discuss the purposes of these programs in a MySQL Cluster, how to use the programs, and
what startup options are available for each of them.

These programs include the MySQL Cluster data, management, and SQL node processes (ndbd,
ndb_mgmd, and mysqld) and the management client (ndb_mgm).

For information about using mysqld as a MySQL Cluster process, see Section 17.5.4, “MySQL Server
Usage for MySQL Cluster”.

Other NDB utility, diagnostic, and example programs are included with the MySQL Cluster distribution.
These include ndb_restore, ndb_show_tables, and ndb_config. These programs are also covered
in this section.

The final portion of this section contains tables of options that are common to all the various MySQL
Cluster programs.

17.4.1 ndbd — The MySQL Cluster Data Node Daemon

ndbd is the process that is used to handle all the data in tables using the NDB Cluster storage engine. This
is the process that empowers a data node to accomplish distributed transaction handling, node recovery,
checkpointing to disk, online backup, and related tasks.

In a MySQL Cluster, a set of ndbd processes cooperate in handling data. These processes can execute
on the same computer (host) or on different computers. The correspondences between data nodes and
Cluster hosts is completely configurable.

The following table includes command options specific to the MySQL Cluster data node program ndbd.
Additional descriptions follow the table. For options common to most MySQL Cluster programs (including
ndbd), see Section 17.4.20, “Options Common to MySQL Cluster Programs — Options Common to
MySQL Cluster Programs”.

ndbd — The MySQL Cluster Data Node Daemon

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1752

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Table 17.26 This table describes command-line options for the ndbd program

Format Description Added or Removed

--initial Perform initial start of ndbd,
including cleaning the file system.
Consult the documentation before
using this option

All MySQL 5.0 based releases

--nostart,

-n

Don't start ndbd immediately;
ndbd waits for command to start
from ndb_mgmd

All MySQL 5.0 based releases

--daemon,

-d

Start ndbd as daemon (default);
override with --nodaemon

All MySQL 5.0 based releases

--nodaemon Do not start ndbd as daemon;
provided for testing purposes

All MySQL 5.0 based releases

--foreground Run ndbd in foreground, provided
for debugging purposes (implies --
nodaemon)

All MySQL 5.0 based releases

--nowait-nodes=list Do not wait for these data nodes
to start (takes comma-separated
list of node IDs). Also requires --
ndb-nodeid to be used.

ADDED: 5.0.21

--initial-start Perform partial initial start
(requires --nowait-nodes)

ADDED: 5.0.21

--bind-address=name Local bind address ADDED: 5.0.29

• --bind-address

Introduced 5.0.29

Command-Line Format --bind-address=name

Type stringPermitted Values

Default

Causes ndbd to bind to a specific network interface (host name or IP address). This option has no
default value.

This option was added in MySQL 5.0.29.

• --daemon, -d

Command-Line Format --daemon

Type booleanPermitted Values

Default TRUE

Instructs ndbd to execute as a daemon process. This is the default behavior. --nodaemon can be used
to prevent the process from running as a daemon.

• --initial

Command-Line Format --initial

ndbd — The MySQL Cluster Data Node Daemon

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1753

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type booleanPermitted Values

Default FALSE

Instructs ndbd to perform an initial start. An initial start erases any files created for recovery purposes by
earlier instances of ndbd. It also re-creates recovery log files. Note that on some operating systems this
process can take a substantial amount of time.

An --initial start is to be used only when starting the ndbd process under very special
circumstances; this is because this option causes all files to be removed from the Cluster file system and
all redo log files to be re-created. These circumstances are listed here:

• When performing a software upgrade which has changed the contents of any files.

• When restarting the node with a new version of ndbd.

• As a measure of last resort when for some reason the node restart or system restart repeatedly fails.
In this case, be aware that this node can no longer be used to restore data due to the destruction of
the data files.

Use of this option prevents the StartPartialTimeout and StartPartitionedTimeout
configuration parameters from having any effect.

Important

This option does not affect any backup files that have already been created by
the affected node.

This option also has no effect on recovery of data by a data node that is just
starting (or restarting) from data nodes that are already running. This recovery of
data occurs automatically, and requires no user intervention in a MySQL Cluster
that is running normally.

It is permissible to use this option when starting the cluster for the very first time (that is, before any data
node files have been created); however, it is not necessary to do so.

• --initial-start

Introduced 5.0.21

Command-Line Format --initial-start

Type booleanPermitted Values

Default FALSE

This option is used when performing a partial initial start of the cluster. Each node should be started with
this option, as well as --nowait-nodes.

Suppose that you have a 4-node cluster whose data nodes have the IDs 2, 3, 4, and 5, and you wish to
perform a partial initial start using only nodes 2, 4, and 5—that is, omitting node 3:

shell> ndbd --ndb-nodeid=2 --nowait-nodes=3 --initial-start
shell> ndbd --ndb-nodeid=4 --nowait-nodes=3 --initial-start
shell> ndbd --ndb-nodeid=5 --nowait-nodes=3 --initial-start

This option was added in MySQL 5.0.21.

ndbd — The MySQL Cluster Data Node Daemon

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1754

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --nowait-nodes=node_id_1[, node_id_2[, ...]]

Introduced 5.0.21

Command-Line Format --nowait-nodes=list

Type stringPermitted Values

Default

This option takes a list of data nodes which for which the cluster will not wait for before starting.

This can be used to start the cluster in a partitioned state. For example, to start the cluster with only half
of the data nodes (nodes 2, 3, 4, and 5) running in a 4-node cluster, you can start each ndbd process
with --nowait-nodes=3,5. In this case, the cluster starts as soon as nodes 2 and 4 connect, and
does not wait StartPartitionedTimeout milliseconds for nodes 3 and 5 to connect as it would
otherwise.

If you wanted to start up the same cluster as in the previous example without one ndbd—say, for
example, that the host machine for node 3 has suffered a hardware failure—then start nodes 2, 4, and 5
with --nowait-nodes=3. Then the cluster will start as soon as nodes 2, 4, and 5 connect and will not
wait for node 3 to start.

When using this option, you must also specify the node ID for the data node being started with the --
ndb-nodeid option.

This option was added in MySQL 5.0.21.

• --nodaemon

Command-Line Format --nodaemon

Type booleanPermitted Values

Default FALSE

Instructs ndbd not to start as a daemon process. This is useful when ndbd is being debugged and you
want output to be redirected to the screen.

• --foreground

Command-Line Format --foreground

Type booleanPermitted Values

Default FALSE

Causes ndbd to execute as a foreground process, primarily for debugging purposes. This option implies
the --nodaemon option.

• --nostart, -n

Command-Line Format --nostart

Type booleanPermitted Values

Default FALSE

Instructs ndbd not to start automatically. When this option is used, ndbd connects to the management
server, obtains configuration data from it, and initializes communication objects. However, it does not
actually start the execution engine until specifically requested to do so by the management server.

ndbd — The MySQL Cluster Data Node Daemon

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1755

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This can be accomplished by issuing the proper START command in the management client (see
Section 17.5.2, “Commands in the MySQL Cluster Management Client”).

ndbd generates a set of log files which are placed in the directory specified by DataDir in the
config.ini configuration file.

These log files are listed below. node_id is the node's unique identifier. Note that node_id represents
the node's unique identifier. For example, ndb_2_error.log is the error log generated by the data node
whose node ID is 2.

• ndb_node_id_error.log is a file containing records of all crashes which the referenced ndbd
process has encountered. Each record in this file contains a brief error string and a reference to a trace
file for this crash. A typical entry in this file might appear as shown here:

Date/Time: Saturday 30 July 2004 - 00:20:01
Type of error: error
Message: Internal program error (failed ndbrequire)
Fault ID: 2341
Problem data: DbtupFixAlloc.cpp
Object of reference: DBTUP (Line: 173)
ProgramName: NDB Kernel
ProcessID: 14909
TraceFile: ndb_2_trace.log.2
EOM

Listings of possible ndbd exit codes and messages generated when a data node process shuts down
prematurely can be found in ndbd Error Messages.

Important

The last entry in the error log file is not necessarily the newest one (nor is
it likely to be). Entries in the error log are not listed in chronological order;
rather, they correspond to the order of the trace files as determined in the
ndb_node_id_trace.log.next file (see below). Error log entries are thus
overwritten in a cyclical and not sequential fashion.

• ndb_node_id_trace.log.trace_id is a trace file describing exactly what happened just before
the error occurred. This information is useful for analysis by the MySQL Cluster development team.

It is possible to configure the number of these trace files that will be created before old files are
overwritten. trace_id is a number which is incremented for each successive trace file.

• ndb_node_id_trace.log.next is the file that keeps track of the next trace file number to be
assigned.

• ndb_node_id_out.log is a file containing any data output by the ndbd process. This file is created
only if ndbd is started as a daemon, which is the default behavior.

• ndb_node_id.pid is a file containing the process ID of the ndbd process when started as a daemon. It
also functions as a lock file to avoid the starting of nodes with the same identifier.

• ndb_node_id_signal.log is a file used only in debug versions of ndbd, where it is possible to trace
all incoming, outgoing, and internal messages with their data in the ndbd process.

It is recommended not to use a directory mounted through NFS because in some environments this can
cause problems whereby the lock on the .pid file remains in effect even after the process has terminated.

http://dev.mysql.com/doc/ndbapi/en/ndbd-error-messages.html

ndb_mgmd — The MySQL Cluster Management Server Daemon

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1756

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To start ndbd, it may also be necessary to specify the host name of the management server and the port
on which it is listening. Optionally, one may also specify the node ID that the process is to use.

shell> ndbd --connect-string="nodeid=2;host=ndb_mgmd.mysql.com:1186"

See Section 17.3.3.2, “MySQL Cluster Connection Strings”, for additional information about this issue.
Section 17.4.20, “Options Common to MySQL Cluster Programs — Options Common to MySQL Cluster
Programs”, describes other command-line options which can be used with ndbd. For information about
data node configuration parameters, see Section 17.3.3.5, “Defining MySQL Cluster Data Nodes”.

When ndbd starts, it actually initiates two processes. The first of these is called the “angel process”; its
only job is to discover when the execution process has been completed, and then to restart the ndbd
process if it is configured to do so. Thus, if you attempt to kill ndbd using the Unix kill command, it is
necessary to kill both processes, beginning with the angel process. The preferred method of terminating an
ndbd process is to use the management client and stop the process from there.

The execution process uses one thread for reading, writing, and scanning data, as well as all other
activities. This thread is implemented asynchronously so that it can easily handle thousands of concurrent
actions. In addition, a watch-dog thread supervises the execution thread to make sure that it does not
hang in an endless loop. A pool of threads handles file I/O, with each thread able to handle one open file.
Threads can also be used for transporter connections by the transporters in the ndbd process. In a multi-
processor system performing a large number of operations (including updates), the ndbd process can
consume up to 2 CPUs if permitted to do so.

For a machine with many CPUs it is possible to use several ndbd processes which belong to different
node groups; however, such a configuration is still considered experimental and is not supported for
MySQL 5.0 in a production setting. See Section 17.1.5, “Known Limitations of MySQL Cluster”.

17.4.2 ndb_mgmd — The MySQL Cluster Management Server Daemon

The management server is the process that reads the cluster configuration file and distributes this
information to all nodes in the cluster that request it. It also maintains a log of cluster activities.
Management clients can connect to the management server and check the cluster's status.

The following table includes options that are specific to the MySQL Cluster management server program
ndb_mgmd. Additional descriptions follow the table. For options common to most MySQL Cluster programs
(including ndb_mgmd), see Section 17.4.20, “Options Common to MySQL Cluster Programs — Options
Common to MySQL Cluster Programs”.

Table 17.27 This table describes command-line options for the ndb_mgmd program

Format Description Added or Removed

--config-file=file,

-f,

-c

Specify the cluster configuration
file; in NDB-6.4.0 and later, needs
--reload or --initial to override
configuration cache if present

All MySQL 5.0 based releases

--print-full-config,

-P

Print full configuration and exit ADDED: 5.0.10

--daemon,

-d

Run ndb_mgmd in daemon mode
(default)

All MySQL 5.0 based releases

--nodaemon Do not run ndb_mgmd as a
daemon

All MySQL 5.0 based releases

ndb_mgmd — The MySQL Cluster Management Server Daemon

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1757

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Added or Removed

--interactive Run ndb_mgmd in interactive
mode (not officially supported in
production; for testing purposes
only)

All MySQL 5.0 based releases

--no-nodeid-checks Do not provide any node id
checks

All MySQL 5.0 based releases

--mycnf Read cluster configuration data
from the my.cnf file

All MySQL 5.0 based releases

• --no-nodeid-checks

Command-Line Format --no-nodeid-checks

Type booleanPermitted Values

Default FALSE

Do not perform any checks of node IDs.

• --config-file=filename, -f filename

Command-Line Format --config-file=file

Type file namePermitted Values

Default ./config.ini

Instructs the management server as to which file it should use for its configuration file. By default,
the management server looks for a file named config.ini in the same directory as the ndb_mgmd
executable; otherwise the file name and location must be specified explicitly.

This option also can be given as -c file_name, but this shortcut is obsolete and should not be used in
new installations.

• --mycnf

Command-Line Format --mycnf

Type booleanPermitted Values

Default FALSE

Read configuration data from the my.cnf file.

• --daemon, -d

Command-Line Format --daemon

Type booleanPermitted Values

Default TRUE

Instructs ndb_mgmd to start as a daemon process. This is the default behavior.

• --interactive

Command-Line Format --interactive

ndb_mgmd — The MySQL Cluster Management Server Daemon

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1758

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type booleanPermitted Values

Default FALSE

Starts ndb_mgmd in interactive mode; that is, an ndb_mgm client session is started as soon as the
management server is running. This option does not start any other MySQL Cluster nodes.

• --nodaemon

Command-Line Format --nodaemon

Type booleanPermitted Values

Default FALSE

Instructs ndb_mgmd not to start as a daemon process.

• --print-full-config, -P

Introduced 5.0.10

Command-Line Format --print-full-config

Type booleanPermitted Values

Default FALSE

Shows extended information regarding the configuration of the cluster. With this option on the command
line the ndb_mgmd process prints information about the cluster setup including an extensive list of the
cluster configuration sections as well as parameters and their values. Normally used together with the --
config-file (-f) option.

It is not strictly necessary to specify a connection string when starting the management server. However, if
you are using more than one management server, a connection string should be provided and each node
in the cluster should specify its node ID explicitly.

See Section 17.3.3.2, “MySQL Cluster Connection Strings”, for information about using connection strings.
Section 17.4.2, “ndb_mgmd — The MySQL Cluster Management Server Daemon”, describes other options
for ndb_mgmd.

The following files are created or used by ndb_mgmd in its starting directory, and are placed in the
DataDir as specified in the config.ini configuration file. In the list that follows, node_id is the unique
node identifier.

• config.ini is the configuration file for the cluster as a whole. This file is created by the user and
read by the management server. Section 17.3, “MySQL Cluster Configuration”, discusses how to set up
this file.

• ndb_node_id_cluster.log is the cluster events log file. Examples of such events include checkpoint
startup and completion, node startup events, node failures, and levels of memory usage. A complete
listing of cluster events with descriptions may be found in Section 17.5, “Management of MySQL
Cluster”.

By default, when the size of the cluster log reaches one million bytes, the file is renamed to
ndb_node_id_cluster.log.seq_id, where seq_id is the sequence number of the cluster log file.
(For example: If files with the sequence numbers 1, 2, and 3 already exist, the next log file is named
using the number 4.) You can change the size and number of files, and other characteristics of the
cluster log, using the LogDestination configuration parameter.

ndb_mgm — The MySQL Cluster Management Client

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1759

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• ndb_node_id_out.log is the file used for stdout and stderr when running the management server
as a daemon.

• ndb_node_id.pid is the process ID file used when running the management server as a daemon.

17.4.3 ndb_mgm — The MySQL Cluster Management Client

The ndb_mgm management client process is actually not needed to run the cluster. Its value lies in
providing a set of commands for checking the cluster's status, starting backups, and performing other
administrative functions. The management client accesses the management server using a C API.
Advanced users can also employ this API for programming dedicated management processes to perform
tasks similar to those performed by ndb_mgm.

To start the management client, it is necessary to supply the host name and port number of the
management server:

shell> ndb_mgm [host_name [port_num]]

For example:

shell> ndb_mgm ndb_mgmd.mysql.com 1186

The default host name and port number are localhost and 1186, respectively.

The following table includes options that are specific to the MySQL Cluster management client program
ndb_mgm. Additional descriptions follow the table. For options common to most MySQL Cluster programs
(including ndb_mgm), see Section 17.4.20, “Options Common to MySQL Cluster Programs — Options
Common to MySQL Cluster Programs”.

Table 17.28 This table describes command-line options for the ndb_mgm program

Format Description Added or Removed

--try-reconnect=#,

-t

Set the number of times to retry
a connection before giving up;
synonym for --connect-retries

All MySQL 5.0 based releases

--execute=name,

-e

Execute command and exit All MySQL 5.0 based releases

• --execute=command, -e command

Command-Line Format --execute=name

This option can be used to send a command to the MySQL Cluster management client from the system
shell. For example, either of the following is equivalent to executing SHOW in the management client:

shell> ndb_mgm -e "SHOW"

shell> ndb_mgm --execute="SHOW"

This is analogous to how the --execute or -e option works with the mysql command-line client. See
Section 4.2.4, “Using Options on the Command Line”.

ndb_config — Extract MySQL Cluster Configuration Information

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1760

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

If the management client command to be passed using this option contains any
space characters, then the command must be enclosed in quotation marks.
Either single or double quotation marks may be used. If the management client
command contains no space characters, the quotation marks are optional.

• --try-reconnect=number

Command-Line Format --try-reconnect=#

Type integer

Default 3

Min
Value

0

Permitted Values

Max
Value

4294967295

If the connection to the management server is broken, the node tries to reconnect to it every 5 seconds
until it succeeds. By using this option, it is possible to limit the number of attempts to number before
giving up and reporting an error instead.

Additional information about using ndb_mgm can be found in Section 17.5.2, “Commands in the MySQL
Cluster Management Client”.

17.4.4 ndb_config — Extract MySQL Cluster Configuration Information

This tool extracts configuration information for data nodes, SQL nodes, and API nodes from a cluster
management node (and possibly its config.ini file).

The following table includes options that are specific to ndb_config. Additional descriptions follow
the table. For options common to most MySQL Cluster programs (including ndb_config), see
Section 17.4.20, “Options Common to MySQL Cluster Programs — Options Common to MySQL Cluster
Programs”.

Table 17.29 This table describes command-line options for the ndb_config program

Format Description Added or Removed

--nodes Print node information ([ndbd] or
[ndbd default] section of cluster
configuration file) only. Cannot
be used with --system or --
connections.

All MySQL 5.0 based releases

--query=string,

-q

One or more query options
(attributes)

All MySQL 5.0 based releases

--host=name Specify host All MySQL 5.0 based releases

--type=name Specify node type All MySQL 5.0 based releases

--nodeid,

--id

Get configuration of node with this
ID

All MySQL 5.0 based releases

ndb_config — Extract MySQL Cluster Configuration Information

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1761

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Added or Removed

--fields=string,

-f

Field separator All MySQL 5.0 based releases

--rows=string,

-r

Row separator All MySQL 5.0 based releases

--config-file=file_name Set the path to config.ini file All MySQL 5.0 based releases

--mycnf Read configuration data from
my.cnf file

All MySQL 5.0 based releases

-c Short form for --ndb-connectstring ADDED: 5.0.33

Table 17.30 ndb_config Command Line Options

Format Description Introduced

--config-file Set the path to config.ini file

--fields Field separator

--host Specify host

--mycnf Read configuration data from my.cnf file

--id, --nodeid Get configuration of node with this ID

--nodes Print node information ([ndbd] or [ndbd default] section
of cluster configuration file) only. Cannot be used with --
system or --connections.

-c Short form for --ndb-connectstring 5.0.33

--query One or more query options (attributes)

--rows Row separator

--type Specify node type

• --usage, --help, or -?

Command-Line Format --help

 --usage

Causes ndb_config to print a list of available options, and then exit.

• --version, -V

Command-Line Format --version

Causes ndb_config to print a version information string, and then exit.

• --ndb-connectstring=connection_string

Command-Line Format --ndb-connectstring=connectstring

 --connect-string=connectstring

Type stringPermitted Values

Default localhost:1186

ndb_config — Extract MySQL Cluster Configuration Information

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1762

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Specifies the connection string to use in connecting to the management server. The format for the
connection string is the same as described in Section 17.3.3.2, “MySQL Cluster Connection Strings”,
and defaults to localhost:1186.

The use of -c as a short version for this option is supported for ndb_config beginning with MySQL
5.0.29.

• --config-file=path-to-file

Command-Line Format --config-file=file_name

Type file namePermitted Values

Default

Gives the path to the management server's configuration file (config.ini). This may be a relative or
absolute path. If the management node resides on a different host from the one on which ndb_config
is invoked, then an absolute path must be used.

• --mycnf

Command-Line Format --mycnf

Type booleanPermitted Values

Default FALSE

Read configuration data from the my.cnf file.

• --query=query-options, -q query-options

Command-Line Format --query=string

Type stringPermitted Values

Default

This is a comma-delimited list of query options—that is, a list of one or more node attributes to be
returned. These include id (node ID), type (node type—that is, ndbd, mysqld, or ndb_mgmd), and any
configuration parameters whose values are to be obtained.

For example, --query=id,type,indexmemory,datamemory returns the node ID, node type,
DataMemory, and IndexMemory for each node.

Note

If a given parameter is not applicable to a certain type of node, than an empty
string is returned for the corresponding value. See the examples later in this
section for more information.

• --host=hostname

Command-Line Format --host=name

Type stringPermitted Values

Default

Specifies the host name of the node for which configuration information is to be obtained.

ndb_config — Extract MySQL Cluster Configuration Information

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1763

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

While the hostname localhost usually resolves to the IP address 127.0.0.1,
this may not necessarily be true for all operating platforms and configurations.
This means that it is possible, when localhost is used in config.ini, for
ndb_config --host=localhost to fail if ndb_config is run on a different
host where localhost resolves to a different address (for example, on some
versions of SUSE Linux, this is 127.0.0.2). In general, for best results, you
should use numeric IP addresses for all MySQL Clustewr configuration values
relating to hosts, or verify that all MySQL Cluster hosts handle localhost in the
same fashion.

• --id=node_id

 --nodeid=node_id

Command-Line Format --ndb-nodeid=#

Type numericPermitted Values

Default 0

Either of these options can be used to specify the node ID of the node for which configuration
information is to be obtained. --nodeid is the preferred form.

• --nodes

Command-Line Format --nodes

Type booleanPermitted Values

Default FALSE

In MySQL 5.0, this option has no affect.

• --connections

This option (not listed in the table) is present but has no affect in MySQL 5.0. It is reserved for use in a
future version of MySQL Cluster.

• --type=node_type

Command-Line Format --type=name

Type enumeration

Default [none]

ndbd

mysqld

Permitted Values

Valid
Values

ndb_mgmd

Filters results so that only configuration values applying to nodes of the specified node_type (ndbd,
mysqld, or ndb_mgmd) are returned.

• --fields=delimiter, -f delimiter

Command-Line Format --fields=string

ndb_config — Extract MySQL Cluster Configuration Information

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1764

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type stringPermitted Values

Default

Specifies a delimiter string used to separate the fields in the result. The default is “,” (the comma
character).

Note

If the delimiter contains spaces or escapes (such as \n for the linefeed
character), then it must be quoted.

• --rows=separator, -r separator

Command-Line Format --rows=string

Type stringPermitted Values

Default

Specifies a separator string used to separate the rows in the result. The default is a space character.

Note

If the separator contains spaces or escapes (such as \n for the linefeed
character), then it must be quoted.

Examples

1. To obtain the node ID and type of each node in the cluster:

shell> ./ndb_config --query=id,type --fields=':' --rows='\n'
1:ndbd
2:ndbd
3:ndbd
4:ndbd
5:ndb_mgmd
6:mysqld
7:mysqld
8:mysqld
9:mysqld

In this example, we used the --fields options to separate the ID and type of each node with a colon
character (:), and the --rows options to place the values for each node on a new line in the output.

2. To produce a connection string that can be used by data, SQL, and API nodes to connect to the
management server:

shell> ./ndb_config --config-file=usr/local/mysql/cluster-data/config.ini \
--query=hostname,portnumber --fields=: --rows=, --type=ndb_mgmd
192.168.0.179:1186

3. This invocation of ndb_config checks only data nodes (using the --type option), and shows
the values for each node's ID and host name, and its DataMemory, IndexMemory, and DataDir
parameters:

shell> ./ndb_config --type=ndbd --query=id,host,datamemory,indexmemory,datadir -f ' : ' -r '\n'
1 : 192.168.0.193 : 83886080 : 18874368 : /usr/local/mysql/cluster-data
2 : 192.168.0.112 : 83886080 : 18874368 : /usr/local/mysql/cluster-data

ndb_cpcd — Automate Testing for NDB Development

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1765

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

3 : 192.168.0.176 : 83886080 : 18874368 : /usr/local/mysql/cluster-data
4 : 192.168.0.119 : 83886080 : 18874368 : /usr/local/mysql/cluster-data

In this example, we used the short options -f and -r for setting the field delimiter and row separator,
respectively.

4. To exclude results from any host except one in particular, use the --host option:

shell> ./ndb_config --host=192.168.0.176 -f : -r '\n' -q id,type
3:ndbd
5:ndb_mgmd

In this example, we also used the short form -q to determine the attributes to be queried.

Similarly, you can limit results to a node with a specific ID using the --id or --nodeid option.

17.4.5 ndb_cpcd — Automate Testing for NDB Development

This utility is found in the libexec directory. It is part of an internal automated test framework used in
testing and debugging MySQL Cluster. Because it can control processes on remote systems, it is not
advisable to use ndb_cpcd in a production cluster.

The source files for ndb_cpcd may be found in the directory storage/ndb/src/cw/cpcd, in the
MySQL source tree.

17.4.6 ndb_delete_all — Delete All Rows from an NDB Table

ndb_delete_all deletes all rows from the given NDB table. In some cases, this can be much faster than
DELETE or even TRUNCATE TABLE.

Usage

ndb_delete_all -c connection_string tbl_name -d db_name

This deletes all rows from the table named tbl_name in the database named db_name. It is exactly
equivalent to executing TRUNCATE db_name.tbl_name in MySQL.

The following table includes options that are specific to ndb_delete_all. Additional descriptions follow
the table. For options common to most MySQL Cluster programs (including ndb_delete_all), see
Section 17.4.20, “Options Common to MySQL Cluster Programs — Options Common to MySQL Cluster
Programs”.

Table 17.31 This table describes command-line options for the ndb_delete_all program

Format Description Added or Removed

--database=dbname,

-d

Name of the database in which
the table is found

All MySQL 5.0 based releases

--transactional,

-t

Perform the delete in a single
transaction (may run out of
operations)

All MySQL 5.0 based releases

--tupscan Run tup scan All MySQL 5.0 based releases

ndb_desc — Describe NDB Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1766

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Added or Removed

--diskscan Run disk scan All MySQL 5.0 based releases

• --transactional, -t

Use of this option causes the delete operation to be performed as a single transaction.

Warning

With very large tables, using this option may cause the number of operations
available to the cluster to be exceeded.

17.4.7 ndb_desc — Describe NDB Tables

ndb_desc provides a detailed description of one or more NDB tables.

Usage

ndb_desc -c connection_string tbl_name -d db_name [options]

Additional options that can be used with ndb_desc are listed later in this section.

Sample Output

MySQL table creation and population statements:

USE test;

CREATE TABLE fish (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(20),

 PRIMARY KEY pk (id),
 UNIQUE KEY uk (name)
) ENGINE=NDBCLUSTER;

INSERT INTO fish VALUES
 ('','guppy'), ('','tuna'), ('','shark'),
 ('','manta ray'), ('','grouper'), ('','puffer');

Output from ndb_desc:

shell> ./ndb_desc -c localhost fish -d test -p
-- fish --
Version: 16777221
Fragment type: 5
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 2
Number of primary keys: 1
Length of frm data: 268
Row Checksum: 1
Row GCI: 1
TableStatus: Retrieved
-- Attributes --
id Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
name Varchar(20;latin1_swedish_ci) NULL AT=SHORT_VAR ST=MEMORY

ndb_drop_index — Drop Index from an NDB Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1767

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
uk(name) - OrderedIndex
PRIMARY(id) - OrderedIndex
uk$unique(name) - UniqueHashIndex

-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory
2 2 2 65536 327680
1 2 2 65536 327680
3 2 2 65536 327680

NDBT_ProgramExit: 0 - OK

Information about multiple tables can be obtained in a single invocation of ndb_desc by using their names,
separated by spaces. All of the tables must be in the same database.

The Version column in the output contains the table's schema object version. For information about
interpreting this value, see NDB Schema Object Versions.

The following table includes options that are specific to ndb_desc. Additional descriptions follow the
table. For options common to most MySQL Cluster programs (including ndb_desc), see Section 17.4.20,
“Options Common to MySQL Cluster Programs — Options Common to MySQL Cluster Programs”.

Table 17.32 This table describes command-line options for the ndb_desc program

Format Description Added or Removed

--database=dbname,

-d

Name of database containing
table

All MySQL 5.0 based releases

--extra-partition-info,

-p

Display information about
partitions

All MySQL 5.0 based releases

--retries=#,

-r

Number of times to retry the
connection (once per second)

All MySQL 5.0 based releases

--unqualified,

-u

Use unqualified table names All MySQL 5.0 based releases

• --database=db_name, -d

Specify the database in which the table should be found.

• --extra-partition-info, -p

Print additional information about the table's partitions.

• --retries=#, -r

Try to connect this many times before giving up. One connect attempt is made per second.

• --unqualified, -u

Use unqualified table names.

17.4.8 ndb_drop_index — Drop Index from an NDB Table

http://dev.mysql.com/doc/ndbapi/en/ndb-internals-schema-object-versions.html

ndb_drop_index — Drop Index from an NDB Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1768

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ndb_drop_index drops the specified index from an NDB table. It is recommended that you use this utility
only as an example for writing NDB API applications—see the Warning later in this section for details.

Usage

ndb_drop_index -c connection_string table_name index -d db_name

The statement shown above drops the index named index from the table in the database.

The following table includes options that are specific to ndb_drop_index. Additional descriptions follow
the table. For options common to most MySQL Cluster programs (including ndb_drop_index), see
Section 17.4.20, “Options Common to MySQL Cluster Programs — Options Common to MySQL Cluster
Programs”.

Table 17.33 This table describes command-line options for the ndb_drop_index program

Format Description Added or Removed

--database=dbname,

-d

Name of the database in which
the table is found

All MySQL 5.0 based releases

Warning

Operations performed on Cluster table indexes using the NDB API are not visible to
MySQL and make the table unusable by a MySQL server. If you use this program
to drop an index, then try to access the table from an SQL node, an error results, as
shown here:

shell> ./ndb_drop_index -c localhost dogs ix -d ctest1
Dropping index dogs/idx...OK

NDBT_ProgramExit: 0 - OK

shell> ./mysql -u jon -p ctest1
Enter password: *******
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7 to server version: 5.0.96

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW TABLES;
+------------------+
| Tables_in_ctest1 |
+------------------+
| a |
| bt1 |
| bt2 |
| dogs |
| employees |
| fish |
+------------------+
6 rows in set (0.00 sec)

mysql> SELECT * FROM dogs;
ERROR 1296 (HY000): Got error 4243 'Index not found' from NDBCLUSTER

ndb_drop_table — Drop an NDB Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1769

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In such a case, your only option for making the table available to MySQL again is to drop the table and
re-create it. You can use either the SQL statementDROP TABLE or the ndb_drop_table utility (see
Section 17.4.9, “ndb_drop_table — Drop an NDB Table”) to drop the table.

17.4.9 ndb_drop_table — Drop an NDB Table

ndb_drop_table drops the specified NDB table. (If you try to use this on a table created with a storage
engine other than NDB, the attempt fails with the error 723: No such table exists.) This operation
is extremely fast; in some cases, it can be an order of magnitude faster than using a MySQL DROP TABLE
statement on an NDB table.

Usage

ndb_drop_table -c connection_string tbl_name -d db_name

The following table includes options that are specific to ndb_drop_table. Additional descriptions follow
the table. For options common to most MySQL Cluster programs (including ndb_drop_table), see
Section 17.4.20, “Options Common to MySQL Cluster Programs — Options Common to MySQL Cluster
Programs”.

Table 17.34 This table describes command-line options for the ndb_drop_table program

Format Description Added or Removed

--database=dbname,

-d

Name of the database in which
the table is found

All MySQL 5.0 based releases

17.4.10 ndb_error_reporter — NDB Error-Reporting Utility

ndb_error_reporter creates an archive from data node and management node log files that can be
used to help diagnose bugs or other problems with a cluster. It is highly recommended that you make use
of this utility when filing reports of bugs in MySQL Cluster.

The following table includes command options specific to the MySQL Cluster program
ndb_error_reporter. Additional descriptions follow the table. For options common to most MySQL
Cluster programs (including ndb_error_reporter), see Section 17.4.20, “Options Common to MySQL
Cluster Programs — Options Common to MySQL Cluster Programs”.

Table 17.35 This table describes command-line options for the ndb_error_reporter program

Format Description Added or Removed

--fs Include file system data in error
report; can use a large amount of
disk space

All MySQL 5.0 based releases

Usage

ndb_error_reporter path/to/config-file [username] [--fs]

This utility is intended for use on a management node host, and requires the path to the management
host configuration file (config.ini). Optionally, you can supply the name of a user that is able to access
the cluster's data nodes using SSH, to copy the data node log files. ndb_error_reporter then includes

ndb_print_backup_file — Print NDB Backup File Contents

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1770

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

all of these files in archive that is created in the same directory in which it is run. The archive is named
ndb_error_report_YYYYMMDDHHMMSS.tar.bz2, where YYYYMMDDHHMMSS is a datetime string.

If the --fs is used, then the data node file systems are also copied to the management host and included
in the archive that is produced by this script. As data node file systems can be extremely large even after
being compressed, we ask that you please do not send archives created using this option to Oracle unless
you are specifically requested to do so.

Command-Line Format --fs

Type booleanPermitted Values

Default FALSE

17.4.11 ndb_print_backup_file — Print NDB Backup File Contents

ndb_print_backup_file obtains diagnostic information from a cluster backup file.

Usage

ndb_print_backup_file file_name

file_name is the name of a cluster backup file. This can be any of the files (.Data, .ctl, or .log file)
found in a cluster backup directory. These files are found in the data node's backup directory under the
subdirectory BACKUP-#, where # is the sequence number for the backup. For more information about
cluster backup files and their contents, see Section 17.5.3.1, “MySQL Cluster Backup Concepts”.

Like ndb_print_schema_file and ndb_print_sys_file (and unlike most of the other NDB utilities
that are intended to be run on a management server host or to connect to a management server)
ndb_print_backup_file must be run on a cluster data node, since it accesses the data node file
system directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

Additional Options

None.

17.4.12 ndb_print_schema_file — Print NDB Schema File Contents

ndb_print_schema_file obtains diagnostic information from a cluster schema file.

Usage

ndb_print_schema_file file_name

file_name is the name of a cluster schema file. For more information about cluster schema files, see
MySQL Cluster Data Node File System Directory Files.

Like ndb_print_backup_file and ndb_print_sys_file (and unlike most of the other NDB utilities
that are intended to be run on a management server host or to connect to a management server)
ndb_schema_backup_file must be run on a cluster data node, since it accesses the data node file
system directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

http://dev.mysql.com/doc/ndbapi/en/ndb-internals-ndbd-filesystemdir-files.html

ndb_print_sys_file — Print NDB System File Contents

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1771

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Additional Options

None.

17.4.13 ndb_print_sys_file — Print NDB System File Contents

ndb_print_sys_file obtains diagnostic information from a MySQL Cluster system file.

Usage

ndb_print_sys_file file_name

file_name is the name of a cluster system file (sysfile). Cluster system files are located in a data node's
data directory (DataDir); the path under this directory to system files matches the pattern ndb_#_fs/D#/
DBDIH/P#.sysfile. In each case, the # represents a number (not necessarily the same number). For
more information, see MySQL Cluster Data Node File System Directory Files.

Like ndb_print_backup_file and ndb_print_schema_file (and unlike most of the other NDB
utilities that are intended to be run on a management server host or to connect to a management server)
ndb_print_backup_file must be run on a cluster data node, since it accesses the data node file
system directly. Because it does not make use of the management server, this utility can be used when the
management server is not running, and even when the cluster has been completely shut down.

Additional Options

None.

17.4.14 ndb_restore — Restore a MySQL Cluster Backup

The cluster restoration program is implemented as a separate command-line utility ndb_restore, which
can normally be found in the MySQL bin directory. This program reads the files created as a result of the
backup and inserts the stored information into the database.

ndb_restore must be executed once for each of the backup files that were created by the START
BACKUP command used to create the backup (see Section 17.5.3.2, “Using The MySQL Cluster
Management Client to Create a Backup”). This is equal to the number of data nodes in the cluster at the
time that the backup was created.

Note

Before using ndb_restore, it is recommended that the cluster be running in
single user mode, unless you are restoring multiple data nodes in parallel. See
Section 17.5.8, “MySQL Cluster Single User Mode”, for more information.

The following table includes options that are specific to the MySQL Cluster native backup restoration
program ndb_restore. Additional descriptions follow the table. For options common to most MySQL
Cluster programs (including ndb_restore), see Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster Programs”.

Table 17.36 This table describes command-line options for the ndb_restore program

Format Description Added or Removed

--connect, Alias for --connectstring. All MySQL 5.0 based releases

http://dev.mysql.com/doc/ndbapi/en/ndb-internals-ndbd-filesystemdir-files.html

ndb_restore — Restore a MySQL Cluster Backup

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1772

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Added or Removed
-c

--nodeid=#,

-n

Restore backup files to node with
this ID

All MySQL 5.0 based releases

--backupid=#,

-b

Restore from the backup with the
given ID

All MySQL 5.0 based releases

--restore_data,

-r

Restore table data and logs into
NDB Cluster using the NDB API

All MySQL 5.0 based releases

--restore_meta,

-m

Restore metadata to NDB Cluster
using the NDB API

All MySQL 5.0 based releases

--parallelism=#,

-p

Number of parallel transactions to
use while restoring data

All MySQL 5.0 based releases

--print Print metadata, data and log to
stdout (equivalent to --print_meta
--print_data --print_log)

All MySQL 5.0 based releases

--print_meta Print metadata to stdout All MySQL 5.0 based releases

--print_data Print data to stdout All MySQL 5.0 based releases

--print_log Print to stdout All MySQL 5.0 based releases

--backup_path=dir_name Path to backup files directory ADDED: 5.0.38

--dont_ignore_systab_0,

-f

Do not ignore system table during
restore. Experimental only; not for
production use

All MySQL 5.0 based releases

--fields-enclosed-by=char Fields are enclosed with the
indicated character

ADDED: 5.0.40

--fields-terminated-
by=char

Fields are terminated by the
indicated character

ADDED: 5.0.40

--fields-optionally-
enclosed-by

Fields are optionally enclosed
with the indicated character

ADDED: 5.0.40

--lines-terminated-
by=char

Lines are terminated by the
indicated character

ADDED: 5.0.40

--hex Print binary types in hexadecimal
format

ADDED: 5.0.40

--tab=dir_name,

-T dir_name

Creates a tab-separated .txt file
for each table in the given path

ADDED: 5.0.40

--append Append data to a tab-delimited file ADDED: 5.0.40

--verbose=# Level of verbosity in output All MySQL 5.0 based releases

Typical options for this utility are shown here:

ndb_restore [-c connection_string] -n node_id -b backup_id \
 [-m] -r --backup_path=/path/to/backup/files

ndb_restore — Restore a MySQL Cluster Backup

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1773

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Normally, when restoring from a MySQL Cluster backup, ndb_restore requires at a minimum the --
nodeid (short form: -n), --backupid (short form: -b), and --backup_path options.

 The -c option is used to specify a connection string which tells ndb_restore where to locate the cluster
management server. (See Section 17.3.3.2, “MySQL Cluster Connection Strings”, for information on
connection strings.) If this option is not used, then ndb_restore attempts to connect to a management
server on localhost:1186. This utility acts as a cluster API node, and so requires a free connection
“slot” to connect to the cluster management server. This means that there must be at least one [api]
or [mysqld] section that can be used by it in the cluster config.ini file. It is a good idea to keep at
least one empty [api] or [mysqld] section in config.ini that is not being used for a MySQL server
or other application for this reason (see Section 17.3.3.6, “Defining SQL and Other API Nodes in a MySQL
Cluster”).

You can verify that ndb_restore is connected to the cluster by using the SHOW command in the ndb_mgm
management client. You can also accomplish this from a system shell, as shown here:

shell> ndb_mgm -e "SHOW"

 The --nodeid or -n is used to specify the node ID of the data node on which the backup should be
restored.

The first time you run the ndb_restore restoration program, you also need to restore the metadata.
In other words, you must re-create the database tables—this can be done by running it with the --
restore_meta (-m) option. Restoring the metdata need be done only on a single data node; this is
sufficient to restore it to the entire cluster. Note that the cluster should have an empty database when
starting to restore a backup. (In other words, you should start ndbd with --initial prior to performing
the restore.)

The -b option is used to specify the ID or sequence number of the backup, and is the same number shown
by the management client in the Backup backup_id completed message displayed upon completion
of a backup. (See Section 17.5.3.2, “Using The MySQL Cluster Management Client to Create a Backup”.)

Important

When restoring cluster backups, you must be sure to restore all data nodes from
backups having the same backup ID. Using files from different backups will at best
result in restoring the cluster to an inconsistent state, and may fail altogether.

 The path to the backup directory is required; this is supplied to ndb_restore using the --backup_path
option, and must include the subdirectory corresponding to the ID backup of the backup to be restored. For
example, if the data node's DataDir is /var/lib/mysql-cluster, then the backup directory is /var/
lib/mysql-cluster/BACKUP, and the backup files for the backup with the ID 3 can be found in /var/
lib/mysql-cluster/BACKUP/BACKUP-3. The path may be absolute or relative to the directory in which
the ndb_restore executable is located, and may be optionally prefixed with backup_path=.

Note

Previous to MySQL 5.0.38, the path to the backup directory was specified as shown
here, with backup_path= being optional:

[backup_path=]/path/to/backup/files

Beginning with MySQL 5.0.38, this syntax changed to --backup_path=/path/
to/backup/files, to conform more closely with options used by other MySQL
programs; --backup_id is required, and there is no short form for this option.

ndb_restore — Restore a MySQL Cluster Backup

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1774

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

It is possible to restore a backup to a database with a different configuration than it was created from. For
example, suppose that a backup with backup ID 12, created in a cluster with two database nodes having
the node IDs 2 and 3, is to be restored to a cluster with four nodes. Then ndb_restore must be run
twice—once for each database node in the cluster where the backup was taken. However, ndb_restore
cannot always restore backups made from a cluster running one version of MySQL to a cluster running
a different MySQL version. See Section 17.2.6, “Upgrading and Downgrading MySQL Cluster”, for more
information.

Important

It is not possible to restore a backup made from a newer version of MySQL
Cluster using an older version of ndb_restore. You can restore a backup made
from a newer version of MySQL to an older cluster, but you must use a copy of
ndb_restore from the newer MySQL Cluster version to do so.

For example, to restore a cluster backup taken from a cluster running MySQL
5.0.45 to a cluster running MySQL Cluster 5.0.41, you must use a copy of
ndb_restore from the 5.0.45 distribution.

For more rapid restoration, the data may be restored in parallel, provided that there is a sufficient number
of cluster connections available. That is, when restoring to multiple nodes in parallel, you must have an
[api] or [mysqld] section in the cluster config.ini file available for each concurrent ndb_restore
process. However, the data files must always be applied before the logs.

 --dont_ignore_systab_0

Normally, when restoring table data and metadata, ndb_restore ignores the copy of the NDB system
table that is present in the backup. --dont_ignore_systab_0 causes the system table to be restored.
This option is intended for experimental and development use only, and is not recommended in a
production environment.

 --parallelism=#, -p

Determines the maximum number of parallel transactions that ndb_restore tries to use. By default, this
is 128; the minimum is 1, and the maximum is 1024.

 --restore_data

This option causes ndb_restore to output NDB table data and logs.

 --restore_meta

This option causes ndb_restore to print NDB table metadata. Generally, you need only use this option
when restoring the first data node of a cluster; additional data nodes can obtain the metadata from the first
one.

 --print_meta

This option causes ndb_restore to print all metadata to stdout.

 --print_log

The --print_log option causes ndb_restore to output its log to stdout.

 --print

ndb_restore — Restore a MySQL Cluster Backup

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1775

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Causes ndb_restore to print all data, metadata, and logs to stdout. Equivalent to using the --
print_data, --print_meta, and --print_log options together.

Note

Use of --print or any of the --print_* options is in effect performing a dry
run. Including one or more of these options causes any output to be redirected
to stdout; in such cases, ndb_restore makes no attempt to restore data or
metadata to a MySQL Cluster.

 --print_data

This option causes ndb_restore to direct its output to stdout.

TEXT and BLOB column values are always truncated to the first 256 bytes in the output; this cannot
currrently be overridden when using --print_data.

Beginning with MySQL 5.0.40, several additional options are available for use with the --print_data
option in generating data dumps, either to stdout, or to a file. These are similar to some of the options
used with mysqldump, and are shown in the following list:

• --tab, -T

Introduced 5.0.40

Command-Line Format --tab=dir_name

Permitted Values Type directory name

This option causes --print_data to create dump files, one per table, each named tbl_name.txt. It
requires as its argument the path to the directory where the files should be saved; use . for the current
directory.

• --fields-enclosed-by=string

Introduced 5.0.40

Command-Line Format --fields-enclosed-by=char

Type stringPermitted Values

Default

Each column values are enclosed by the string passed to this option (regardless of data type; see next
item).

• --fields-optionally-enclosed-by=string

Introduced 5.0.40

Command-Line Format --fields-optionally-enclosed-by

Type stringPermitted Values

Default

The string passed to this option is used to enclose column values containing character data (such as
CHAR, VARCHAR, BINARY, TEXT, or ENUM).

• --fields-terminated-by=string

ndb_restore — Restore a MySQL Cluster Backup

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1776

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Introduced 5.0.40

Command-Line Format --fields-terminated-by=char

Type stringPermitted Values

Default \t (tab)

The string passed to this option is used to separate column values. The default value is a tab character
(\t).

• --hex

Introduced 5.0.40

Command-Line Format --hex

If this option is used, all binary values are output in hexadecimal format.

• --fields-terminated-by=string

Introduced 5.0.40

Command-Line Format --fields-terminated-by=char

Type stringPermitted Values

Default \t (tab)

This option specifies the string used to end each line of output. The default is a linefeed character (\n).

• --append

Introduced 5.0.40

Command-Line Format --append

When used with the --tab and --print_data options, this causes the data to be appended to any
existing files having the same names.

Note

If a table has no explicit primary key, then the output generated when using the --
print_data option includes the table's hidden primary key.

 --verbose=#

Sets the level for the verbosity of the output. The minimum is 0; the maximum is 255. The default value is
1.

Beginning with MySQL 5.0.40, it is possible to restore selected databases, or to restore selected tables
from a given database using the syntax shown here:

ndb_restore other_options db_name,[db_name[,...] | tbl_name[,tbl_name][,...]]

In other words, you can specify either of the following to be restored:

• All tables from one or more databases

• One or more tables from a single database

ndb_select_all — Print Rows from an NDB Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1777

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Error reporting.
ndb_restore reports both temporary and permanent errors. In the case of temporary errors, it may
able to recover from them. Beginning with MySQL 5.0.29, it reports Restore successful, but
encountered temporary error, please look at configuration in such cases.

17.4.15 ndb_select_all — Print Rows from an NDB Table

ndb_select_all prints all rows from an NDB table to stdout.

Usage

ndb_select_all -c connection_string tbl_name -d db_name [> file_name]

The following table includes options that are specific to the MySQL Cluster native backup restoration
program ndb_select_all. Additional descriptions follow the table. For options common to most MySQL
Cluster programs (including ndb_select_all), see Section 17.4.20, “Options Common to MySQL
Cluster Programs — Options Common to MySQL Cluster Programs”.

Table 17.37 This table describes command-line options for the ndb_select_all program

Format Description Added or Removed

--database=dbname,

-d

Name of the database in which
the table is found

All MySQL 5.0 based releases

--parallelism=#,

-p

Degree of parallelism All MySQL 5.0 based releases

--lock=#,

-l

Lock type All MySQL 5.0 based releases

--order=index,

-o

Sort resultset according to index
whose name is supplied

All MySQL 5.0 based releases

--descending,

-z

Sort resultset in descending order
(requires order flag)

All MySQL 5.0 based releases

--header,

-h

Print header (set to 0|FALSE to
disable headers in output)

All MySQL 5.0 based releases

--useHexFormat,

-x

Output numbers in hexadecimal
format

All MySQL 5.0 based releases

--delimiter=char,

-D

Set a column delimiter All MySQL 5.0 based releases

--disk Print disk references (useful
only for Disk Data tables having
nonindexed columns)

All MySQL 5.0 based releases

--rowid Print rowid All MySQL 5.0 based releases

--gci Include GCI in output All MySQL 5.0 based releases

http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-programs-ndb-select-all.html#option_ndb_select_all_disk

ndb_select_all — Print Rows from an NDB Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1778

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Added or Removed

--gci64 Include GCI and row epoch in
output

All MySQL 5.0 based releases

--tup,

-t

Scan in tup order All MySQL 5.0 based releases

--nodata Do not print table column data All MySQL 5.0 based releases

• --database=dbname, -d dbname

Name of the database in which the table is found. The default value is TEST_DB.

• parallelism=#, -p #

Specifies the degree of parallelism.

• --lock=lock_type, -l lock_type

Employs a lock when reading the table. Possible values for lock_type are:

• 0: Read lock

• 1: Read lock with hold

• 2: Exclusive read lock

There is no default value for this option.

• --order=index_name, -o index_name

Orders the output according to the index named index_name. Note that this is the name of an index,
not of a column, and that the index must have been explicitly named when created.

• --descending, -z

Sorts the output in descending order. This option can be used only in conjunction with the -o (--order)
option.

• --header=FALSE

Excludes column headers from the output.

• --useHexFormat -x

Causes all numeric values to be displayed in hexadecimal format. This does not affect the output of
numerals contained in strings or datetime values.

• --delimiter=character, -D character

Causes the character to be used as a column delimiter. Only table data columns are separated by this
delimiter.

The default delimiter is the tab character.

• --rowid

Adds a ROWID column providing information about the fragments in which rows are stored.

ndb_select_all — Print Rows from an NDB Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1779

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• --gci

Adds a GCI column to the output showing the global checkpoint at which each row was last updated.
See Section 17.1, “MySQL Cluster Overview”, and Section 17.5.6.2, “MySQL Cluster Log Events”, for
more information about checkpoints.

• --gci64

Adds a ROW$GCI64 column to the output showing the global checkpoint at which each row was last
updated, as well as the number of the epoch in which this update occurred.

• --tupscan, -t

Scan the table in the order of the tuples.

• --nodata

Causes any table data to be omitted.

Sample Output

Output from a MySQL SELECT statement:

mysql> SELECT * FROM ctest1.fish;
+----+-----------+
| id | name |
+----+-----------+
3	shark
6	puffer
2	tuna
4	manta ray
5	grouper
1	guppy
+----+-----------+
6 rows in set (0.04 sec)

Output from the equivalent invocation of ndb_select_all:

shell> ./ndb_select_all -c localhost fish -d ctest1
id name
3 [shark]
6 [puffer]
2 [tuna]
4 [manta ray]
5 [grouper]
1 [guppy]
6 rows returned

NDBT_ProgramExit: 0 - OK

Note that all string values are enclosed by square brackets (“[...]”) in the output of ndb_select_all. For
a further example, consider the table created and populated as shown here:

CREATE TABLE dogs (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(25) NOT NULL,
 breed VARCHAR(50) NOT NULL,
 PRIMARY KEY pk (id),
 KEY ix (name)
)

ndb_select_count — Print Row Counts for NDB Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1780

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ENGINE=NDBCLUSTER;

INSERT INTO dogs VALUES
 ('', 'Lassie', 'collie'),
 ('', 'Scooby-Doo', 'Great Dane'),
 ('', 'Rin-Tin-Tin', 'Alsatian'),
 ('', 'Rosscoe', 'Mutt');

This demonstrates the use of several additional ndb_select_all options:

shell> ./ndb_select_all -d ctest1 dogs -o ix -z --gci
GCI id name breed
834461 2 [Scooby-Doo] [Great Dane]
834878 4 [Rosscoe] [Mutt]
834463 3 [Rin-Tin-Tin] [Alsatian]
835657 1 [Lassie] [Collie]
4 rows returned

NDBT_ProgramExit: 0 - OK

17.4.16 ndb_select_count — Print Row Counts for NDB Tables

ndb_select_count prints the number of rows in one or more NDB tables. With a single table, the result is
equivalent to that obtained by using the MySQL statement SELECT COUNT(*) FROM tbl_name.

Usage

ndb_select_count [-c connection_string] -ddb_name tbl_name[, tbl_name2[, ...]]

The following table includes options that are specific to the MySQL Cluster native backup restoration
program ndb_select_count. Additional descriptions follow the table. For options common to most
MySQL Cluster programs (including ndb_select_count), see Section 17.4.20, “Options Common to
MySQL Cluster Programs — Options Common to MySQL Cluster Programs”.

Table 17.38 This table describes command-line options for the ndb_select_count program

Format Description Added or Removed

--database=dbname,

-d

Name of the database in which
the table is found

All MySQL 5.0 based releases

--parallelism=#,

-p

Degree of parallelism All MySQL 5.0 based releases

--lock=#,

-l

Lock type All MySQL 5.0 based releases

You can obtain row counts from multiple tables in the same database by listing the table names separated
by spaces when invoking this command, as shown under Sample Output.

Sample Output

shell> ./ndb_select_count -c localhost -d ctest1 fish dogs
6 records in table fish
4 records in table dogs

ndb_show_tables — Display List of NDB Tables

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1781

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

NDBT_ProgramExit: 0 - OK

17.4.17 ndb_show_tables — Display List of NDB Tables

ndb_show_tables displays a list of all NDB database objects in the cluster. By default, this includes not
only both user-created tables and NDB system tables, but NDB-specific indexes, and internal triggers, as
well.

The following table includes options that are specific to the MySQL Cluster native backup restoration
program ndb_show_tables. Additional descriptions follow the table. For options common to most MySQL
Cluster programs (including ndb_show_tables), see Section 17.4.20, “Options Common to MySQL
Cluster Programs — Options Common to MySQL Cluster Programs”.

Table 17.39 This table describes command-line options for the ndb_show_tables program

Format Description Added or Removed

--database=string,

-d

Specifies the database in which
the table is found

All MySQL 5.0 based releases

--loops=#,

-l

Number of times to repeat output All MySQL 5.0 based releases

--type=#,

-t

Limit output to objects of this type All MySQL 5.0 based releases

--unqualified,

-u

Do not qualify table names All MySQL 5.0 based releases

--parsable,

-p

Return output suitable for MySQL
LOAD DATA INFILE statement

All MySQL 5.0 based releases

--show-temp-status Show table temporary flag All MySQL 5.0 based releases

Usage

ndb_show_tables [-c connection_string]

• --database, -d

Specifies the name of the database in which the tables are found.

• --loops, -l

Specifies the number of times the utility should execute. This is 1 when this option is not specified, but if
you do use the option, you must supply an integer argument for it.

• --parsable, -p

Using this option causes the output to be in a format suitable for use with LOAD DATA INFILE.

• --show-temp-status

If specified, this causes temporary tables to be displayed.

• --type, -t

ndb_size.pl — NDBCLUSTER Size Requirement Estimator

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1782

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Can be used to restrict the output to one type of object, specified by an integer type code as shown here:

• 1: System table

• 2: User-created table

• 3: Unique hash index

Any other value causes all NDB database objects to be listed (the default).

• --unqualified, -u

If specified, this causes unqualified object names to be displayed.

Note

Only user-created MySQL Cluster tables may be accessed from MySQL;
system tables such as SYSTAB_0 are not visible to mysqld. However, you
can examine the contents of system tables using NDB API applications such as
ndb_select_all (see Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”).

17.4.18 ndb_size.pl — NDBCLUSTER Size Requirement Estimator

This is a Perl script that can be used to estimate the amount of space that would be required by a MySQL
database if it were converted to use the NDBCLUSTER storage engine. Unlike the other utilities discussed
in this section, it does not require access to a MySQL Cluster (in fact, there is no reason for it to do so).
However, it does need to access the MySQL server on which the database to be tested resides.

Requirements

• A running MySQL server. The server instance does not have to provide support for MySQL Cluster.

• A working installation of Perl.

• The DBI and HTML::Template modules, both of which can be obtained from CPAN if they are not
already part of your Perl installation. (Many Linux and other operating system distributions provide their
own packages for one or both of these libraries.)

• The ndb_size.tmpl template file, which you should be able to find in the share/mysql
directory of your MySQL installation. This file should be copied or moved into the same directory as
ndb_size.pl—if it is not there already—before running the script.

• A MySQL user account having the necessary privileges. If you do not wish to use an existing account,
then creating one using GRANT USAGE ON db_name.*—where db_name is the name of the database
to be examined—is sufficient for this purpose.

ndb_size.pl and ndb_size.tmpl can also be found in the MySQL sources in storage/ndb/tools.

Usage

perl ndb_size.pl db_name hostname username password > file_name.html

The command shown connects to the MySQL server at hostname using the account of the user
username having the password password, analyzes all of the tables in database db_name, and

ndb_waiter — Wait for MySQL Cluster to Reach a Given Status

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1783

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

generates a report in HTML format which is directed to the file file_name.html. (Without the redirection,
the output is sent to stdout.)

The output from this script includes the following information:

• Minimum values for the DataMemory, IndexMemory, MaxNoOfTables, MaxNoOfAttributes,
MaxNoOfOrderedIndexes, MaxNoOfUniqueHashIndexes, and MaxNoOfTriggers configuration
parameters required to accommodate the tables analyzed.

• Memory requirements for all of the tables, attributes, ordered indexes, and unique hash indexes defined
in the database.

• The IndexMemory and DataMemory required per table and table row.

17.4.19 ndb_waiter — Wait for MySQL Cluster to Reach a Given Status

ndb_waiter repeatedly (each 100 milliseconds) prints out the status of all cluster data nodes until either
the cluster reaches a given status or the --timeout limit is exceeded, then exits. By default, it waits for
the cluster to achieve STARTED status, in which all nodes have started and connected to the cluster. This
can be overridden using the --no-contact and --not-started options (see Additional Options).

The node states reported by this utility are as follows:

• NO_CONTACT: The node cannot be contacted.

• UNKNOWN: The node can be contacted, but its status is not yet known. Usually, this means that the node
has received a START or RESTART command from the management server, but has not yet acted on it.

• NOT_STARTED: The node has stopped, but remains in contact with the cluster. This is seen when
restarting the node using the management client's RESTART command.

• STARTING: The node's ndbd process has started, but the node has not yet joined the cluster.

• STARTED: The node is operational, and has joined the cluster.

• SHUTTING_DOWN: The node is shutting down.

• SINGLE USER MODE: This is shown for all cluster data nodes when the cluster is in single user mode.

The following table includes options that are specific to the MySQL Cluster native backup restoration
program ndb_waiter. Additional descriptions follow the table. For options common to most MySQL
Cluster programs (including ndb_waiter), see Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster Programs”.

Table 17.40 This table describes command-line options for the ndb_waiter program

Format Description Added or Removed

--no-contact,

-n

Wait for cluster to reach NO
CONTACT state

All MySQL 5.0 based releases

--not-started Wait for cluster to reach NOT
STARTED state

All MySQL 5.0 based releases

--single-user Wait for cluster to enter single
user mode

All MySQL 5.0 based releases

--timeout=#, Wait this many seconds, then
exit whether or not cluster has

All MySQL 5.0 based releases

ndb_waiter — Wait for MySQL Cluster to Reach a Given Status

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1784

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Added or Removed
-t reached desired state; default is 2

minutes (120 seconds)

Usage

ndb_waiter [-c connection_string]

Additional Options

• --no-contact, -n

Instead of waiting for the STARTED state, ndb_waiter continues running until the cluster reaches
NO_CONTACT status before exiting.

• --not-started

Instead of waiting for the STARTED state, ndb_waiter continues running until the cluster reaches
NOT_STARTED status before exiting.

• --timeout=seconds, -t seconds

Time to wait. The program exits if the desired state is not achieved within this number of seconds. The
default is 120 seconds (1200 reporting cycles).

• --single-user

The program waits for the cluster to enter single user mode.

Sample Output. Shown here is the output from ndb_waiter when run against a 4-node cluster in
which two nodes have been shut down and then started again manually. Duplicate reports (indicated by
“...”) are omitted.

shell> ./ndb_waiter -c localhost

Connecting to mgmsrv at (localhost)
State node 1 STARTED
State node 2 NO_CONTACT
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 UNKNOWN
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

Options Common to MySQL Cluster Programs — Options Common to MySQL Cluster Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1785

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 UNKNOWN
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 STARTING
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTED
State node 3 STARTED
State node 4 STARTING
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTED
State node 3 STARTED
State node 4 STARTED
Waiting for cluster enter state STARTED

NDBT_ProgramExit: 0 - OK

Note

If no connection string is specified, then ndb_waiter tries to connect to a
management on localhost, and reports Connecting to mgmsrv at (null).

17.4.20 Options Common to MySQL Cluster Programs — Options Common to
MySQL Cluster Programs

All MySQL Cluster programs accept the options described in this section, with the following exceptions:

• mysqld

• ndb_print_backup_file

• ndb_print_schema_file

• ndb_print_sys_file

Users of earlier MySQL Cluster versions should note that some of these options have been changed to
make them consistent with one another as well as with mysqld. You can use the --help option with any
MySQL Cluster program—with the exception of ndb_print_backup_file, ndb_print_schema_file,
and ndb_print_sys_file—to view a list of the options which the program supports.

The options in the following table are common to all MySQL Cluster executables (except those noted
previously in this section).

Table 17.41 This table describes command-line options common to all MySQL Cluster programs

Format Description Added or Removed

--help, Display help message and exit All MySQL 5.0 based releases

Options Common to MySQL Cluster Programs — Options Common to MySQL Cluster Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1786

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Format Description Added or Removed
--usage,

-?

--character-sets-
dir=dir_name

Directory where character sets
are installed

All MySQL 5.0 based releases

--core-file Write core on errors (defaults to
TRUE in debug builds)

All MySQL 5.0 based releases

--debug=options Enable output from debug calls.
Can be used only for versions
compiled with debugging enabled

All MySQL 5.0 based releases

--ndb-
connectstring=connectstring,

--connect-
string=connectstring,

-c

Set connection string for
connecting to ndb_mgmd.
Syntax: [nodeid=<id>;]
[host=]<hostname>[:<port>].
Overrides entries specified in
NDB_CONNECTSTRING or
my.cnf.

All MySQL 5.0 based releases

--ndb-mgmd-
host=host[:port]

Set the host (and port, if desired)
for connecting to management
server

All MySQL 5.0 based releases

--ndb-nodeid=# Set node id for this node All MySQL 5.0 based releases

--ndb-optimized-node-
selection

Select nodes for transactions in a
more optimal way

All MySQL 5.0 based releases

--ndb-shm Allow for optimization using
shared memory connections
where available (was
EXPERIMENTAL, later
REMOVED)

All MySQL 5.0 based releases

--version,

-V

Output version information and
exit

All MySQL 5.0 based releases

For options specific to individual MySQL Cluster programs, see Section 17.4, “MySQL Cluster Programs”.

See mysqld Command Options for MySQL Cluster, for mysqld options relating to MySQL Cluster.

• --help --usage, -?

Command-Line Format --help

 --usage

Prints a short list with descriptions of the available command options.

• --ndb-connectstring=connection_string, --connect-string=connection_string, -c
connection_string

Command-Line Format --ndb-connectstring=connectstring

 --connect-string=connectstring

Permitted Values Type string

Options Common to MySQL Cluster Programs — Options Common to MySQL Cluster Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1787

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Default localhost:1186

This option takes a MySQL Cluster connection string that specifies the management server for the
application to connect to, as shown here:

shell> ndbd --ndb-connectstring="nodeid=2;host=ndb_mgmd.mysql.com:1186"

For more information, see Section 17.3.3.2, “MySQL Cluster Connection Strings”.

• --ndb-mgmd-host=host[:port]

Command-Line Format --ndb-mgmd-host=host[:port]

Type stringPermitted Values

Default localhost:1186

Can be used to set the host and port number of a single management server for the program to connect
to. If the program requires node IDs or references to multiple management servers (or both) in its
connection information, use the --ndb-connectstring option instead.

• --character-sets-dir=name

Command-Line Format --character-sets-dir=dir_name

Type directory namePermitted Values

Default

Tells the program where to find character set information.

• --connect-string=connection_string, -c connection_string

Command-Line Format --ndb-connectstring=connectstring

 --connect-string=connectstring

Type stringPermitted Values

Default localhost:1186

connection_string sets the connection string to the management server as a command option.

shell> ndbd --connect-string="nodeid=2;host=ndb_mgmd.mysql.com:1186"

For more information, see Section 17.3.3.2, “MySQL Cluster Connection Strings”.

• --core-file

Command-Line Format --core-file

Type booleanPermitted Values

Default FALSE

Write a core file if the program dies. The name and location of the core file are system-dependent.
(For MySQL Cluster programs nodes running on Linux, the default location is the program's working
directory—for a data node, this is the node's DataDir.) For some systems, there may be restrictions or
limitations; for example, it might be necessary to execute ulimit -c unlimited before starting the
server. Consult your system documentation for detailed information.

Options Common to MySQL Cluster Programs — Options Common to MySQL Cluster Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1788

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If MySQL Cluster was built using the --debug option for configure, then --core-file is enabled by
default. For regular builds, --core-file is disabled by default.

• --debug[=options]

Command-Line Format --debug=options

Type stringPermitted Values

Default d:t:O,/tmp/ndb_restore.trace

This option can be used only for versions compiled with debugging enabled. It is used to enable output
from debug calls in the same manner as for the mysqld process.

• --ndb-nodeid=#

Command-Line Format --ndb-nodeid=#

Type numericPermitted Values

Default 0

Sets this node's MySQL Cluster node ID. The range of permitted values depends on the type of the node
(data, management, or API) and the version of the MySQL Cluster software which is running on it. See
Section 17.1.5.2, “Limits and Differences of MySQL Cluster from Standard MySQL Limits”, for more
information.

• --ndb-optimized-node-selection

Command-Line Format --ndb-optimized-node-selection

Type booleanPermitted Values

Default TRUE

Optimize selection of nodes for transactions. Enabled by default.

• --version, -V

Command-Line Format --version

Prints the MySQL Cluster version number of the executable. The version number is relevant because
not all versions can be used together, and the MySQL Cluster startup process verifies that the versions
of the binaries being used can co-exist in the same cluster. This is also important when performing an
online (rolling) software upgrade or downgrade of MySQL Cluster.

See Section 17.5.5, “Performing a Rolling Restart of a MySQL Cluster”), for more information.

• --ndb-shm

Command-Line Format --ndb-shm

Type booleanPermitted Values

Default FALSE

In MySQL 5.0, this experimental option allows an application to use shared memory for optimization
when this is available. It is not intended for production use. --ndb-shm is deprecated in MySQL 5.1,
and is removed from all MySQL Cluster programs in MySQL Cluster NDB 7.0 and later.

Management of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1789

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

17.5 Management of MySQL Cluster

Managing a MySQL Cluster involves a number of tasks, the first of which is to configure and start MySQL
Cluster. This is covered in Section 17.3, “MySQL Cluster Configuration”, and Section 17.4, “MySQL Cluster
Programs”.

The next few sections cover the management of a running MySQL Cluster.

For information about security issues relating to management and deployment of a MySQL Cluster, see
Section 17.5.10, “MySQL Cluster Security Issues”.

There are essentially two methods of actively managing a running MySQL Cluster. The first of these is
through the use of commands entered into the management client whereby cluster status can be checked,
log levels changed, backups started and stopped, and nodes stopped and started. The second method
involves studying the contents of the cluster log ndb_node_id_cluster.log; this is usually found in the
management server's DataDir directory, but this location can be overridden using the LogDestination
option—see Section 17.3.3.4, “Defining a MySQL Cluster Management Server”, for details. (Recall that
node_id represents the unique identifier of the node whose activity is being logged.) The cluster log
contains event reports generated by ndbd. It is also possible to send cluster log entries to a Unix system
log.

In addition, some aspects of the cluster's operation can be monitored from an SQL node using the SHOW
ENGINE NDB STATUS statement. See Section 13.7.5.12, “SHOW ENGINE Syntax”, for more information.

17.5.1 Summary of MySQL Cluster Start Phases

This section provides a simplified outline of the steps involved when MySQL Cluster data nodes are
started. More complete information can be found in MySQL Cluster Start Phases.

These phases are the same as those reported in the output from the node_id STATUS command in the
management client. (See Section 17.5.2, “Commands in the MySQL Cluster Management Client”, for more
information about this command.)

Start types. There are several different startup types and modes, as shown here:

• Initial Start. The cluster starts with a clean file system on all data nodes. This occurs either when the
cluster started for the very first time, or when all data nodes are restarted using the --initial option.

Note

Disk Data files are not removed when restarting a node using --initial.

• System Restart. The cluster starts and reads data stored in the data nodes. This occurs when
the cluster has been shut down after having been in use, when it is desired for the cluster to resume
operations from the point where it left off.

• Node Restart. This is the online restart of a cluster node while the cluster itself is running.

• Initial Node Restart. This is the same as a node restart, except that the node is reinitialized and
started with a clean file system.

Setup and initialization (Phase -1). Prior to startup, each data node (ndbd process) must be
initialized. Initialization consists of the following steps:

1. Obtain a node ID

http://dev.mysql.com/doc/ndbapi/en/ndb-internals-start-phases.html

Summary of MySQL Cluster Start Phases

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1790

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2. Fetch configuration data

3. Allocate ports to be used for inter-node communications

4. Allocate memory according to settings obtained from the configuration file

When a data node or SQL node first connects to the management node, it reserves a cluster node ID. To
make sure that no other node allocates the same node ID, this ID is retained until the node has managed
to connect to the cluster and at least one ndbd reports that this node is connected. This retention of the
node ID is guarded by the connection between the node in question and ndb_mgmd.

Normally, in the event of a problem with the node, the node disconnects from the management server,
the socket used for the connection is closed, and the reserved node ID is freed. However, if a node is
disconnected abruptly—for example, due to a hardware failure in one of the cluster hosts, or because of
network issues—the normal closing of the socket by the operating system may not take place. In this case,
the node ID continues to be reserved and not released until a TCP timeout occurs 10 or so minutes later.

To take care of this problem, you can use PURGE STALE SESSIONS. Running this statement forces all
reserved node IDs to be checked; any that are not being used by nodes actually connected to the cluster
are then freed.

Beginning with MySQL 5.1.11, timeout handling of node ID assignments is implemented. This performs the
ID usage checks automatically after approximately 20 seconds, so that PURGE STALE SESSIONS should
no longer be necessary in a normal Cluster start.

After each data node has been initialized, the cluster startup process can proceed. The stages which the
cluster goes through during this process are listed here:

• Phase 0. The NDBFS and NDBCNTR blocks start (see NDB Kernel Blocks). The cluster file system is
cleared, if the cluster was started with the --initial option.

• Phase 1. In this stage, all remaining NDB kernel blocks are started. Cluster connections are set up,
inter-block communications are established, and Cluster heartbeats are started. In the case of a node
restart, API node connections are also checked.

Note

When one or more nodes hang in Phase 1 while the remaining node or nodes
hang in Phase 2, this often indicates network problems. One possible cause
of such issues is one or more cluster hosts having multiple network interfaces.
Another common source of problems causing this condition is the blocking of
TCP/IP ports needed for communications between cluster nodes. In the latter
case, this is often due to a misconfigured firewall.

• Phase 2. The NDBCNTR kernel block checks the states of all existing nodes. The master node is
chosen, and the cluster schema file is initialized.

• Phase 3. The DBLQH and DBTC kernel blocks set up communications between them. The startup type
is determined; if this is a restart, the DBDIH block obtains permission to perform the restart.

• Phase 4. For an initial start or initial node restart, the redo log files are created. The number of these
files is equal to NoOfFragmentLogFiles.

For a system restart:

• Read schema or schemas.

• Read data from the local checkpoint.

http://dev.mysql.com/doc/ndbapi/en/ndb-internals-kernel-blocks.html

Commands in the MySQL Cluster Management Client

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1791

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Apply all redo information until the latest restorable global checkpoint has been reached.

For a node restart, find the tail of the redo log.

• Phase 5. Most of the database-related portion of a data node start is performed during this phase. For
an initial start or system restart, a local checkpoint is executed, followed by a global checkpoint. Periodic
checks of memory usage begin during this phase, and any required node takeovers are performed.

• Phase 6. In this phase, node groups are defined and set up.

• Phase 7. The arbitrator node is selected and begins to function. The next backup ID is set, as is the
backup disk write speed. Nodes reaching this start phase are marked as Started. It is now possible for
API nodes (including SQL nodes) to connect to the cluster. connect.

• Phase 8. If this is a system restart, all indexes are rebuilt (by DBDIH).

• Phase 9. The node internal startup variables are reset.

• Phase 100 (OBSOLETE). Formerly, it was at this point during a node restart or initial node restart
that API nodes could connect to the node and begin to receive events. Currently, this phase is empty.

• Phase 101. At this point in a node restart or initial node restart, event delivery is handed over to the
node joining the cluster. The newly joined node takes over responsibility for delivering its primary data to
subscribers. This phase is also referred to as SUMA handover phase.

After this process is completed for an initial start or system restart, transaction handling is enabled. For a
node restart or initial node restart, completion of the startup process means that the node may now act as
a transaction coordinator.

17.5.2 Commands in the MySQL Cluster Management Client

In addition to the central configuration file, a cluster may also be controlled through a command-line
interface available through the management client ndb_mgm. This is the primary administrative interface to
a running cluster.

Commands for the event logs are given in Section 17.5.6, “Event Reports Generated in MySQL Cluster”;
commands for creating backups and restoring from them are provided in Section 17.5.3, “Online Backup of
MySQL Cluster”.

The management client has the following basic commands. In the listing that follows, node_id denotes
either a database node ID or the keyword ALL, which indicates that the command should be applied to all
of the cluster's data nodes.

•

•

•

•

•

•

•

•

•

•

17.5.3 Online Backup of MySQL Cluster

The next few sections describe how to prepare for and then to create a MySQL Cluster backup using the
functionality for this purpose found in the ndb_mgm management client. To distinguish this type of backup
from a backup made using mysqldump, we sometimes refer to it as a “native” MySQL Cluster backup.

Online Backup of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1792

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

(For information about the creation of backups with mysqldump, see Section 4.5.4, “mysqldump — A
Database Backup Program”.) Restoration of MySQL Cluster backups is done using the ndb_restore
utility provided with the MySQL Cluster distribution; for information about ndb_restore and its use in
restoring MySQL Cluster backups, see Section 17.4.14, “ndb_restore — Restore a MySQL Cluster
Backup”.

17.5.3.1 MySQL Cluster Backup Concepts

A backup is a snapshot of the database at a given time. The backup consists of three main parts:

• Metadata. The names and definitions of all database tables

• Table records. The data actually stored in the database tables at the time that the backup was made

• Transaction log. A sequential record telling how and when data was stored in the database

Each of these parts is saved on all nodes participating in the backup. During backup, each node saves
these three parts into three files on disk:

• BACKUP-backup_id.node_id.ctl

A control file containing control information and metadata. Each node saves the same table definitions
(for all tables in the cluster) to its own version of this file.

• BACKUP-backup_id-0.node_id.data

A data file containing the table records, which are saved on a per-fragment basis. That is, different
nodes save different fragments during the backup. The file saved by each node starts with a header that
states the tables to which the records belong. Following the list of records there is a footer containing a
checksum for all records.

• BACKUP-backup_id.node_id.log

A log file containing records of committed transactions. Only transactions on tables stored in the backup
are stored in the log. Nodes involved in the backup save different records because different nodes host
different database fragments.

In the listing above, backup_id stands for the backup identifier and node_id is the unique identifier for
the node creating the file.

17.5.3.2 Using The MySQL Cluster Management Client to Create a Backup

Before starting a backup, make sure that the cluster is properly configured for performing one. (See
Section 17.5.3.3, “Configuration for MySQL Cluster Backups”.)

The START BACKUP command is used to create a backup:

START BACKUP [backup_id] [wait_option]

wait_option:
WAIT {STARTED | COMPLETED} | NOWAIT

Successive backups are automatically identified sequentially, so the backup_id, an integer greater
than or equal to 1, is optional; if it is omitted, the next available value is used. If an existing backup_id
value is used, the backup fails with the error Backup failed: file already exists. If used, the
backup_id must follow START BACKUP immediately, before any other options are used.

The maximum supported value for backup_id in MySQL 5.0 is 2147483648 (231). (Bug #43042)

Online Backup of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1793

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

If you start a backup using ndb_mgm -e "START BACKUP", the backup_id is
required.

The wait_option can be used to determine when control is returned to the management client after a
START BACKUP command is issued, as shown in the following list:

•

•

•

WAIT COMPLETED is the default.

The procedure for creating a backup consists of the following steps:

1. Start the management client (ndb_mgm), if it not running already.

2. Execute the START BACKUP command. This produces several lines of output indicating the progress of
the backup, as shown here:

ndb_mgm> START BACKUP
Waiting for completed, this may take several minutes
Node 2: Backup 1 started from node 1
Node 2: Backup 1 started from node 1 completed
 StartGCP: 177 StopGCP: 180
 #Records: 7362 #LogRecords: 0
 Data: 453648 bytes Log: 0 bytes
ndb_mgm>

3.

4. The management client indicates with a message like this one that the backup has started:

Backup backup_id started from node node_id completed

As is the case for the notification that the backup has started, backup_id is the unique identifier for
this particular backup, and node_id is the node ID of the management server that is coordinating the
backup with the data nodes. This output is accompanied by additional information including relevant
global checkpoints, the number of records backed up, and the size of the data, as shown here:

Node 2: Backup 1 started from node 1 completed
 StartGCP: 177 StopGCP: 180
 #Records: 7362 #LogRecords: 0
 Data: 453648 bytes Log: 0 bytes

It is also possible to perform a backup from the system shell by invoking ndb_mgm with the -e or --
execute option, as shown in this example:

shell> ndb_mgm -e "START BACKUP 6 WAIT COMPLETED"

When using START BACKUP in this way, you must specify the backup ID.

Cluster backups are created by default in the BACKUP subdirectory of the DataDir on each data node.
This can be overridden for one or more data nodes individually, or for all cluster data nodes in the
config.ini file using the BackupDataDir configuration parameter as discussed in Identifying Data
Nodes. The backup files created for a backup with a given backup_id are stored in a subdirectory named
BACKUP-backup_id in the backup directory.

Online Backup of MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1794

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To abort a backup that is already in progress:

1. Start the management client.

2. Execute this command:

ndb_mgm> ABORT BACKUP backup_id

The number backup_id is the identifier of the backup that was included in the response of the
management client when the backup was started (in the message Backup backup_id started
from node management_node_id).

3. The management client will acknowledge the abort request with Abort of backup backup_id
ordered.

Note

At this point, the management client has not yet received a response from the
cluster data nodes to this request, and the backup has not yet actually been
aborted.

4. After the backup has been aborted, the management client will report this fact in a manner similar to
what is shown here:

Node 1: Backup 3 started from 5 has been aborted.
 Error: 1321 - Backup aborted by user request: Permanent error: User defined error
Node 3: Backup 3 started from 5 has been aborted.
 Error: 1323 - 1323: Permanent error: Internal error
Node 2: Backup 3 started from 5 has been aborted.
 Error: 1323 - 1323: Permanent error: Internal error
Node 4: Backup 3 started from 5 has been aborted.
 Error: 1323 - 1323: Permanent error: Internal error

In this example, we have shown sample output for a cluster with 4 data nodes, where the sequence
number of the backup to be aborted is 3, and the management node to which the cluster management
client is connected has the node ID 5. The first node to complete its part in aborting the backup reports
that the reason for the abort was due to a request by the user. (The remaining nodes report that the
backup was aborted due to an unspecified internal error.)

Note

There is no guarantee that the cluster nodes respond to an ABORT BACKUP
command in any particular order.

The Backup backup_id started from node management_node_id has been aborted
messages mean that the backup has been terminated and that all files relating to this backup have
been removed from the cluster file system.

It is also possible to abort a backup in progress from a system shell using this command:

shell> ndb_mgm -e "ABORT BACKUP backup_id"

Note

If there is no backup having the ID backup_id running when an ABORT BACKUP is
issued, the management client makes no response, nor is it indicated in the cluster
log that an invalid abort command was sent.

MySQL Server Usage for MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1795

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

17.5.3.3 Configuration for MySQL Cluster Backups

Five configuration parameters are essential for backup:

•
BackupDataBufferSize

The amount of memory used to buffer data before it is written to disk.

•
BackupLogBufferSize

The amount of memory used to buffer log records before these are written to disk.

•
BackupMemory

The total memory allocated in a database node for backups. This should be the sum of the memory
allocated for the backup data buffer and the backup log buffer.

•
BackupWriteSize

The default size of blocks written to disk. This applies for both the backup data buffer and the backup log
buffer.

•
BackupMaxWriteSize

The maximum size of blocks written to disk. This applies for both the backup data buffer and the backup
log buffer.

More detailed information about these parameters can be found in Backup Parameters.

17.5.3.4 MySQL Cluster Backup Troubleshooting

If an error code is returned when issuing a backup request, the most likely cause is insufficient memory or
disk space. You should check that there is enough memory allocated for the backup.

Important

If you have set BackupDataBufferSize and BackupLogBufferSize and their
sum is greater than 4MB, then you must also set BackupMemory as well. See
BackupMemory.

You should also make sure that there is sufficient space on the hard drive partition of the backup target.

NDB does not support repeatable reads, which can cause problems with the restoration process. Although
the backup process is “hot”, restoring a MySQL Cluster from backup is not a 100% “hot” process. This is
due to the fact that, for the duration of the restore process, running transactions get nonrepeatable reads
from the restored data. This means that the state of the data is inconsistent while the restore is in progress.

17.5.4 MySQL Server Usage for MySQL Cluster

mysqld is the traditional MySQL server process. To be used with MySQL Cluster, mysqld needs to be
built with support for the NDBCLUSTER storage engine, as it is in the precompiled binaries available from
http://dev.mysql.com/downloads/. If you build MySQL from source, you must invoke configure with the
--with-ndbcluster option to enable NDB Cluster storage engine support.

http://dev.mysql.com/downloads/

MySQL Server Usage for MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1796

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For information about other MySQL server options and variables relevant to MySQL Cluster in addition to
those discussed in this section, see Section 17.3.3.7, “MySQL Server Options and Variables for MySQL
Cluster”.

If the mysqld binary has been built with Cluster support, the NDBCLUSTER storage engine is still disabled
by default. You can use either of two possible options to enable this engine:

• Use --ndbcluster as a startup option on the command line when starting mysqld.

• Insert a line containing NDBCLUSTER in the [mysqld] section of your my.cnf file.

An easy way to verify that your server is running with the NDBCLUSTER storage engine enabled is to issue
the SHOW ENGINES statement in the MySQL Monitor (mysql). You should see the value YES as the
Support value in the row for NDBCLUSTER. If you see NO in this row or if there is no such row displayed in
the output, you are not running an NDB-enabled version of MySQL. If you see DISABLED in this row, you
need to enable it in either one of the two ways just described.

To read cluster configuration data, the MySQL server requires at a minimum three pieces of information:

• The MySQL server's own cluster node ID

• The host name or IP address for the management server (MGM node)

• The number of the TCP/IP port on which it can connect to the management server

Node IDs can be allocated dynamically, so it is not strictly necessary to specify them explicitly.

The mysqld parameter ndb-connectstring is used to specify the connection string either on the
command line when starting mysqld or in my.cnf. The connection string contains the host name or IP
address where the management server can be found, as well as the TCP/IP port it uses.

In the following example, ndb_mgmd.mysql.com is the host where the management server resides, and
the management server listens for cluster messages on port 1186:

shell> mysqld --ndbcluster --ndb-connectstring=ndb_mgmd.mysql.com:1186

See Section 17.3.3.2, “MySQL Cluster Connection Strings”, for more information on connection strings.

Given this information, the MySQL server will be a full participant in the cluster. (We often refer to a
mysqld process running in this manner as an SQL node.) It will be fully aware of all cluster data nodes as
well as their status, and will establish connections to all data nodes. In this case, it is able to use any data
node as a transaction coordinator and to read and update node data.

You can see in the mysql client whether a MySQL server is connected to the cluster using SHOW
PROCESSLIST. If the MySQL server is connected to the cluster, and you have the PROCESS privilege, then
the first row of the output is as shown here:

mysql> SHOW PROCESSLIST \G
*************************** 1. row ***************************
 Id: 1
 User: system user
 Host:
 db:
Command: Daemon
 Time: 1
 State: Waiting for event from ndbcluster
 Info: NULL

Performing a Rolling Restart of a MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1797

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Important

To participate in a MySQL Cluster, the mysqld process must be started with both
the options --ndbcluster and --ndb-connectstring (or their equivalents in
my.cnf). If mysqld is started with only the --ndbcluster option, or if it is unable
to contact the cluster, it is not possible to work with NDB tables, nor is it possible to
create any new tables regardless of storage engine. The latter restriction is a safety
measure intended to prevent the creation of tables having the same names as NDB
tables while the SQL node is not connected to the cluster. If you wish to create
tables using a different storage engine while the mysqld process is not participating
in a MySQL Cluster, you must restart the server without the --ndbcluster option.

17.5.5 Performing a Rolling Restart of a MySQL Cluster

This section discusses how to perform a rolling restart of a MySQL Cluster installation, so called because
it involves stopping and starting (or restarting) each node in turn, so that the cluster itself remains
operational. This is often done as part of a rolling upgrade or rolling downgrade, where high availability
of the cluster is mandatory and no downtime of the cluster as a whole is permissible. Where we refer to
upgrades, the information provided here also generally applies to downgrades as well.

There are a number of reasons why a rolling restart might be desirable. These are described in the next
few paragraphs.

Configuration change.
To make a change in the cluster's configuration, such as adding an SQL node to the cluster, or setting a
configuration parameter to a new value.

MySQL Cluster software upgrade or downgrade. To upgrade the cluster to a newer version of the
MySQL Cluster software (or to downgrade it to an older version). This is usually referred to as a “rolling
upgrade” (or “rolling downgrade”, when reverting to an older version of MySQL Cluster).

Change on node host. To make changes in the hardware or operating system on which one or more
MySQL Cluster node processes are running.

System reset (cluster reset).
To reset the cluster because it has reached an undesirable state. In such cases it is often desirable to
reload the data and metadata of one or more data nodes. This can be done any of three ways:

• Start each data node process (ndbd) with the --initial option, which forces the data node to clear its
file system and to reload all MySQL Cluster data and metadata from the other data nodes.

• Create a backup using the ndb_mgm client BACKUP command prior to performing the restart. Following
the upgrade, restore the node or nodes using ndb_restore.

See Section 17.5.3, “Online Backup of MySQL Cluster”, and Section 17.4.14, “ndb_restore — Restore
a MySQL Cluster Backup”, for more information.

• Use mysqldump to create a backup prior to the upgrade; afterward, restore the dump using LOAD DATA
INFILE.

Resource Recovery.
To free memory previously allocated to a table by successive INSERT and DELETE operations, for re-use
by other MySQL Cluster tables.

The process for performing a rolling restart may be generalized as follows:

1. Stop all cluster management nodes (ndb_mgmd processes), reconfigure them, then restart them.

Event Reports Generated in MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1798

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2. Stop, reconfigure, then restart each cluster data node (ndbd process) in turn.

3. Stop, reconfigure, then restart each cluster SQL node (mysqld process) in turn.

The specifics for implementing a given rolling upgrade depend upon the changes being made. A more
detailed view of the process is presented here:

Figure 17.6 MySQL Cluster Rolling Restarts By Type

In the previous diagram, the Stop and Start steps indicate that the process must be stopped completely
using a shell command (such as kill on most Unix systems) or the management client STOP command,
then started again from a system shell by invoking the ndbd or ndb_mgmd executable as appropriate.

Restart indicates that the process may be restarted using the ndb_mgm management client RESTART
command (see Section 17.5.2, “Commands in the MySQL Cluster Management Client”).

Important

When performing an upgrade or downgrade of the MySQL Cluster software, you
must upgrade or downgrade the management nodes first, then the data nodes,
and finally the SQL nodes. Doing so in any other order may leave the cluster in an
unusable state.

17.5.6 Event Reports Generated in MySQL Cluster

In this section, we discuss the types of event logs provided by MySQL Cluster, and the types of events that
are logged.

MySQL Cluster provides two types of event log:

Event Reports Generated in MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1799

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The cluster log, which includes events generated by all cluster nodes. The cluster log is the log
recommended for most uses because it provides logging information for an entire cluster in a single
location.

By default, the cluster log is saved to a file named ndb_node_id_cluster.log, (where node_id is
the node ID of the management server) in the management server's DataDir.

Cluster logging information can also be sent to stdout or a syslog facility in addition to or instead
of being saved to a file, as determined by the values set for the DataDir and LogDestination
configuration parameters. See Section 17.3.3.4, “Defining a MySQL Cluster Management Server”, for
more information about these parameters.

• Node logs are local to each node.

Output generated by node event logging is written to the file ndb_node_id_out.log (where node_id
is the node's node ID) in the node's DataDir. Node event logs are generated for both management
nodes and data nodes.

Node logs are intended to be used only during application development, or for debugging application
code.

Both types of event logs can be set to log different subsets of events.

Each reportable event can be distinguished according to three different criteria:

• Category: This can be any one of the following values: STARTUP, SHUTDOWN, STATISTICS,
CHECKPOINT, NODERESTART, CONNECTION, ERROR, or INFO.

• Priority: This is represented by one of the numbers from 0 to 15 inclusive, where 0 indicates “most
important” and 15 “least important.”

• Severity Level: This can be any one of the following values: ALERT, CRITICAL, ERROR, WARNING,
INFO, or DEBUG.

Both the cluster log and the node log can be filtered on these properties.

The format used in the cluster log is as shown here:

2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 1: Data usage is 2%(60 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 1: Index usage is 1%(24 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 1: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 2: Data usage is 2%(76 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 2: Index usage is 1%(24 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 2: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 3: Data usage is 2%(58 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 3: Index usage is 1%(25 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 3: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 4: Data usage is 2%(74 32K pages of total 2560)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 4: Index usage is 1%(25 8K pages of total 2336)
2007-01-26 19:35:55 [MgmSrvr] INFO -- Node 4: Resource 0 min: 0 max: 639 curr: 0
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 4: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 1: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 1: Node 9: API version 5.1.15
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 2: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 2: Node 9: API version 5.1.15
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 3: Node 9 Connected
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 3: Node 9: API version 5.1.15
2007-01-26 19:39:42 [MgmSrvr] INFO -- Node 4: Node 9: API version 5.1.15
2007-01-26 19:59:22 [MgmSrvr] ALERT -- Node 2: Node 7 Disconnected
2007-01-26 19:59:22 [MgmSrvr] ALERT -- Node 2: Node 7 Disconnected

Event Reports Generated in MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1800

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Each line in the cluster log contains the following information:

• A timestamp in YYYY-MM-DD HH:MM:SS format.

• The type of node which is performing the logging. In the cluster log, this is always [MgmSrvr].

• The severity of the event.

• The ID of the node reporting the event.

• A description of the event. The most common types of events to appear in the log are connections and
disconnections between different nodes in the cluster, and when checkpoints occur. In some cases, the
description may contain status information.

17.5.6.1 MySQL Cluster Logging Management Commands

ndb_mgm supports a number of management commands related to the cluster log. In the listing that
follows, node_id denotes either a database node ID or the keyword ALL, which indicates that the
command should be applied to all of the cluster's data nodes.

• CLUSTERLOG ON

Turns the cluster log on.

• CLUSTERLOG OFF

Turns the cluster log off.

• CLUSTERLOG INFO

Provides information about cluster log settings.

• node_id CLUSTERLOG category=threshold

Logs category events with priority less than or equal to threshold in the cluster log.

• CLUSTERLOG FILTER severity_level

Toggles cluster logging of events of the specified severity_level.

The following table describes the default setting (for all data nodes) of the cluster log category threshold. If
an event has a priority with a value lower than or equal to the priority threshold, it is reported in the cluster
log.

Note that events are reported per data node, and that the threshold can be set to different values on
different nodes.

Category Default threshold (All data nodes)

STARTUP 7

SHUTDOWN 7

STATISTICS 7

CHECKPOINT 7

NODERESTART 7

CONNECTION 7

ERROR 15

INFO 7

Event Reports Generated in MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1801

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The STATISTICS category can provide a great deal of useful data. See Section 17.5.6.3, “Using
CLUSTERLOG STATISTICS in the MySQL Cluster Management Client”, for more information.

Thresholds are used to filter events within each category. For example, a STARTUP event with a priority of
3 is not logged unless the threshold for STARTUP is set to 3 or higher. Only events with priority 3 or lower
are sent if the threshold is 3.

The following table shows the event severity levels.

Note

These correspond to Unix syslog levels, except for LOG_EMERG and
LOG_NOTICE, which are not used or mapped.

Severity Level
Value

Severity Description

1 ALERT A condition that should be corrected immediately, such as a
corrupted system database

2 CRITICAL Critical conditions, such as device errors or insufficient
resources

3 ERROR Conditions that should be corrected, such as configuration
errors

4 WARNING Conditions that are not errors, but that might require special
handling

5 INFO Informational messages

6 DEBUG Debugging messages used for NDBCLUSTER development

Event severity levels can be turned on or off (using CLUSTERLOG FILTER—see above). If a severity level
is turned on, then all events with a priority less than or equal to the category thresholds are logged. If the
severity level is turned off then no events belonging to that severity level are logged.

Important

Cluster log levels are set on a per ndb_mgmd, per subscriber basis. This means
that, in a MySQL Cluster with multiple management servers, using a CLUSTERLOG
command in an instance of ndb_mgm connected to one management server affects
only logs generated by that management server but not by any of the others. This
also means that, should one of the management servers be restarted, only logs
generated by that management server are affected by the resetting of log levels
caused by the restart.

17.5.6.2 MySQL Cluster Log Events

An event report reported in the event logs has the following format:

datetime [string] severity -- message

For example:

09:19:30 2005-07-24 [NDB] INFO -- Node 4 Start phase 4 completed

This section discusses all reportable events, ordered by category and severity level within each category.

In the event descriptions, GCP and LCP mean “Global Checkpoint” and “Local Checkpoint”, respectively.

Event Reports Generated in MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1802

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CONNECTION Events

These events are associated with connections between Cluster nodes.

Event Priority Severity
Level

Description

data nodes connected 8 INFO Data nodes connected

data nodes disconnected 8 INFO Data nodes disconnected

Communication closed 8 INFO SQL node or data node connection closed

Communication opened 8 INFO SQL node or data node connection opened

CHECKPOINT Events

The logging messages shown here are associated with checkpoints.

Event Priority Severity
Level

Description

LCP stopped in calc keep GCI 0 ALERT LCP stopped

Local checkpoint fragment
completed

11 INFO LCP on a fragment has been completed

Global checkpoint completed 10 INFO GCP finished

Global checkpoint started 9 INFO Start of GCP: REDO log is written to disk

Local checkpoint completed 8 INFO LCP completed normally

Local checkpoint started 7 INFO Start of LCP: data written to disk

Report undo log blocked 7 INFO UNDO logging blocked; buffer near overflow

STARTUP Events

The following events are generated in response to the startup of a node or of the cluster and of its
success or failure. They also provide information relating to the progress of the startup process, including
information concerning logging activities.

Event Priority Severity
Level

Description

Internal start signal received
STTORRY

15 INFO Blocks received after completion of restart

Undo records executed 15 INFO

New REDO log started 10 INFO GCI keep X, newest restorable GCI Y

New log started 10 INFO Log part X, start MB Y, stop MB Z

Node has been refused for inclusion
in the cluster

8 INFO Node cannot be included in cluster due
to misconfiguration, inability to establish
communication, or other problem

data node neighbors 8 INFO Shows neighboring data nodes

data node start phase X completed 4 INFO A data node start phase has been completed

Node has been successfully
included into the cluster

3 INFO Displays the node, managing node, and
dynamic ID

data node start phases initiated 1 INFO NDB Cluster nodes starting

Event Reports Generated in MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1803

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Event Priority Severity
Level

Description

data node all start phases
completed

1 INFO NDB Cluster nodes started

data node shutdown initiated 1 INFO Shutdown of data node has commenced

data node shutdown aborted 1 INFO Unable to shut down data node normally

NODERESTART Events

The following events are generated when restarting a node and relate to the success or failure of the node
restart process.

Event Priority Severity
Level

Description

Node failure phase completed 8 ALERT Reports completion of node failure phases

Node has failed, node state was X 8 ALERT Reports that a node has failed

Report arbitrator results 2 ALERT There are eight different possible results for
arbitration attempts:

• Arbitration check failed—less than 1/2 nodes
left

• Arbitration check succeeded—node group
majority

• Arbitration check failed—missing node group

• Network partitioning—arbitration required

• Arbitration succeeded—affirmative response
from node X

• Arbitration failed - negative response from
node X

• Network partitioning - no arbitrator available

• Network partitioning - no arbitrator
configured

Completed copying a fragment 10 INFO

Completed copying of dictionary
information

8 INFO

Completed copying distribution
information

8 INFO

Starting to copy fragments 8 INFO

Completed copying all fragments 8 INFO

GCP takeover started 7 INFO

GCP takeover completed 7 INFO

LCP takeover started 7 INFO

LCP takeover completed (state = X) 7 INFO

Event Reports Generated in MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1804

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Event Priority Severity
Level

Description

Report whether an arbitrator is
found or not

6 INFO There are seven different possible outcomes
when seeking an arbitrator:

• Management server restarts arbitration
thread [state=X]

• Prepare arbitrator node X [ticket=Y]

• Receive arbitrator node X [ticket=Y]

• Started arbitrator node X [ticket=Y]

• Lost arbitrator node X - process failure
[state=Y]

• Lost arbitrator node X - process exit
[state=Y]

• Lost arbitrator node X <error msg> [state=Y]

STATISTICS Events

The following events are of a statistical nature. They provide information such as numbers of transactions
and other operations, amount of data sent or received by individual nodes, and memory usage.

Event Priority Severity
Level

Description

Report job scheduling statistics 9 INFO Mean internal job scheduling statistics

Sent number of bytes 9 INFO Mean number of bytes sent to node X

Received # of bytes 9 INFO Mean number of bytes received from node X

Report transaction statistics 8 INFO Numbers of: transactions, commits, reads,
simple reads, writes, concurrent operations,
attribute information, and aborts

Report operations 8 INFO Number of operations

Report table create 7 INFO

Memory usage 5 INFO Data and index memory usage (80%, 90%,
and 100%)

ERROR Events

These events relate to Cluster errors and warnings. The presence of one or more of these generally
indicates that a major malfunction or failure has occurred.

Event Priority Severity Description

Dead due to missed heartbeat 8 ALERT Node X declared “dead” due to missed
heartbeat

Transporter errors 2 ERROR

Transporter warnings 8 WARNING

Missed heartbeats 8 WARNING Node X missed heartbeat #Y

Event Reports Generated in MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1805

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Event Priority Severity Description

General warning events 2 WARNING

INFO Events

These events provide general information about the state of the cluster and activities associated with
Cluster maintenance, such as logging and heartbeat transmission.

Event Priority Severity Description

Sent heartbeat 12 INFO Heartbeat sent to node X

Create log bytes 11 INFO Log part, log file, MB

General information events 2 INFO

Note

Sent heartbeat events are available only if MySQL Cluster was compiled with
VM_TRACE enabled.

17.5.6.3 Using CLUSTERLOG STATISTICS in the MySQL Cluster Management Client

The NDB management client's CLUSTERLOG STATISTICS command can provide a number of useful
statistics in its output. Counters providing information about the state of the cluster are updated at 5-
second reporting intervals by the transaction coordinator (TC) and the local query handler (LQH), and
written to the cluster log.

Transaction coordinator statistics. Each transaction has one transaction coordinator, which is chosen
by one of the following methods:

• In a round-robin fashion

• By communication proximity

Note

You can determine which TC selection method is used for transactions started from
a given SQL node using the ndb_optimized_node_selection system variable.
For more information, see MySQL Cluster System Variables.

All operations within the same transaction use the same transaction coordinator, which reports the
following statistics:

• Trans count. This is the number transactions started in the last interval using this TC as the
transaction coordinator. Any of these transactions may have committed, have been aborted, or remain
uncommitted at the end of the reporting interval.

Note

Transactions do not migrate between TCs.

• Commit count. This is the number of transactions using this TC as the transaction coordinator that
were committed in the last reporting interval. Because some transactions committed in this reporting
interval may have started in a previous reporting interval, it is possible for Commit count to be greater
than Trans count.

• Read count. This is the number of primary key read operations using this TC as the transaction
coordinator that were started in the last reporting interval, including simple reads. This count also

Event Reports Generated in MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1806

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

includes reads performed as part of unique index operations. A unique index read operation generates 2
primary key read operations—1 for the hidden unique index table, and 1 for the table on which the read
takes place.

• Simple read count. This is the number of simple read operations using this TC as the transaction
coordinator that were started in the last reporting interval. This is a subset of Read count. Because
the value of Simple read count is incremented at a different point in time from Read count, it can
lag behind Read count slightly, so it is conceivable that Simple read count is not equal to Read
count for a given reporting interval, even if all reads made during that time were in fact simple reads.

• Write count. This is the number of primary key write operations using this TC as the transaction
coordinator that were started in the last reporting interval. This includes all inserts, updates, writes and
deletes, as well as writes performed as part of unique index operations.

Note

A unique index update operation can generate multiple PK read and write
operations on the index table and on the base table.

• AttrInfoCount. This is the number of 32-bit data words received in the last reporting interval for
primary key operations using this TC as the transaction coordinator. For reads, this is proportional to the
number of columns requested. For inserts and updates, this is proportional to the number of columns
written, and the size of their data. For delete operations, this is usually zero. Unique index operations
generate multiple PK operations and so increase this count. However, data words sent to describe the
PK operation itself, and the key information sent, are not counted here. Attribute information sent to
describe columns to read for scans, or to describe ScanFilters, is also not counted in AttrInfoCount.

• Concurrent Operations. This is the number of primary key or scan operations using this TC as the
transaction coordinator that were started during the last reporting interval but that were not completed.
Operations increment this counter when they are started and decrement it when they are completed; this
occurs after the transaction commits. Dirty reads and writes—as well as failed operations—decrement
this counter. The maximum value that Concurrent Operations can have is the maximum number
of operations that a TC block can support; currently, this is (2 * MaxNoOfConcurrentOperations)
+ 16 + MaxNoOfConcurrentTransactions. (For more information about these configuration
parameters, see the Transaction Parameters section of Section 17.3.3.5, “Defining MySQL Cluster Data
Nodes”.)

• Abort count. This is the number of transactions using this TC as the transaction coordinator that
were aborted during the last reporting interval. Because some transactions that were aborted in the last
reporting interval may have started in a previous reporting interval, Abort count can sometimes be
greater than Trans count.

• Scans. This is the number of table scans using this TC as the transaction coordinator that were
started during the last reporting interval. This does not include range scans (that is, ordered index
scans).

• Range scans. This is the number of ordered index scans using this TC as the transaction coordinator
that were started in the last reporting interval.

Local query handler statistics (Operations). There is 1 cluster event per local query handler block
(that is, 1 per data node process). Operations are recorded in the LQH where the data they are operating
on resides.

Note

A single transaction may operate on data stored in multiple LQH blocks.

MySQL Cluster Log Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1807

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The Operations statistic provides the number of local operations performed by this LQH block in the
last reporting interval, and includes all types of read and write operations (insert, update, write, and delete
operations). This also includes operations used to replicate writes—for example, in a 2-replica cluster, the
write to the primary replica is recorded in the primary LQH, and the write to the backup will be recorded
in the backup LQH. Unique key operations may result in multiple local operations; however, this does
not include local operations generated as a result of a table scan or ordered index scan, which are not
counted.

Process scheduler statistics. In addition to the statistics reported by the transaction coordinator and
local query handler, each ndbd process has a scheduler which also provides useful metrics relating to the
performance of a MySQL Cluster. This scheduler runs in an infinite loop; during each loop the scheduler
performs the following tasks:

1. Read any incoming messages from sockets into a job buffer.

2. Check whether there are any timed messages to be executed; if so, put these into the job buffer as
well.

3. Execute (in a loop) any messages in the job buffer.

4. Send any distributed messages that were generated by executing the messages in the job buffer.

5. Wait for any new incoming messages.

Process scheduler statistics include the following:

• Mean Loop Counter. This is the number of loops executed in the third step from the preceding
list. This statistic increases in size as the utilization of the TCP/IP buffer improves. You can use this to
monitor changes in performance as you add new data node processes.

• Mean send size and Mean receive size. These statistics enable you to gauge the efficiency of,
respectively writes and reads between nodes. The values are given in bytes. Higher values mean a
lower cost per byte sent or received; the maximum value is 64K.

To cause all cluster log statistics to be logged, you can use the following command in the NDB
management client:

ndb_mgm> ALL CLUSTERLOG STATISTICS=15

Note

Setting the threshold for STATISTICS to 15 causes the cluster log to become very
verbose, and to grow quite rapidly in size, in direct proportion to the number of
cluster nodes and the amount of activity in the MySQL Cluster.

For more information about MySQL Cluster management client commands relating to logging and
reporting, see Section 17.5.6.1, “MySQL Cluster Logging Management Commands”.

17.5.7 MySQL Cluster Log Messages

This section contains information about the messages written to the cluster log in response to different
cluster log events. It provides additional, more specific information on NDB transporter errors.

17.5.7.1 MySQL Cluster: Messages in the Cluster Log

The following table lists the most common NDB cluster log messages. For information about the cluster
log, log events, and event types, see Section 17.5.6, “Event Reports Generated in MySQL Cluster”. These

MySQL Cluster Log Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1808

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

log messages also correspond to log event types in the MGM API; see The Ndb_logevent_type Type, for
related information of interest to Cluster API developers.

Log Message Description Event Name Event Type Priority Severity

Node
mgm_node_id:
Node
data_node_id
Connected

The data node
having node ID
node_id has
connected to the
management
server (node
mgm_node_id).

Connected Connection 8 INFO

Node
mgm_node_id:
Node
data_node_id
Disconnected

The data node
having node ID
data_node_id
has disconnected
from the
management
server (node
mgm_node_id).

Disconnected Connection 8 ALERT

Node
data_node_id:
Communication
to Node
api_node_id
closed

The API node
or SQL node
having node ID
api_node_id
is no longer
communicating
with data node
data_node_id.

CommunicationClosed Connection 8 INFO

Node
data_node_id:
Communication
to Node
api_node_id
opened

The API node
or SQL node
having node ID
api_node_id is
now communicating
with data node
data_node_id.

CommunicationOpened Connection 8 INFO

Node
mgm_node_id:
Node
api_node_id:
API version

The API node
having node ID
api_node_id
has connected to
management node
mgm_node_id
using NDB API
version version
(generally the same
as the MySQL
version number).

ConnectedApiVersion Connection 8 INFO

Node node_id:
Global
checkpoint gci
started

A global checkpoint
with the ID gci has
been started; node
node_id is the
master responsible

GlobalCheckpointStartedCheckpoint 9 INFO

http://dev.mysql.com/doc/ndbapi/en/mgm-ndb-logevent-type.html

MySQL Cluster Log Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1809

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Log Message Description Event Name Event Type Priority Severity
for this global
checkpoint.

Node node_id:
Global
checkpoint gci
completed

The global
checkpoint having
the ID gci has
been completed;
node node_id
was the master
responsible for this
global checkpoint.

GlobalCheckpointCompletedCheckpoint 10 INFO

Node node_id:
Local
checkpoint
lcp started.
Keep GCI =
current_gci
oldest
restorable GCI
= old_gci

The local
checkpoint having
sequence ID lcp
has been started
on node node_id.
The most recent
GCI that can be
used has the index
current_gci, and
the oldest GCI from
which the cluster
can be restored has
the index old_gci.

LocalCheckpointStartedCheckpoint 7 INFO

Node node_id:
Local
checkpoint lcp
completed

The local
checkpoint having
sequence ID
lcp on node
node_id has been
completed.

LocalCheckpointCompletedCheckpoint 8 INFO

Node node_id:
Local
Checkpoint
stopped in
CALCULATED_KEEP_GCI

The node was
unable to determine
the most recent
usable GCI.

LCPStoppedInCalcKeepGciCheckpoint 0 ALERT

Node node_id:
Table ID =
table_id,
fragment ID =
fragment_id has
completed LCP
on Node node_id
maxGciStarted:
started_gci
maxGciCompleted:
completed_gci

A table fragment
has been
checkpointed
to disk on node
node_id. The
GCI in progress
has the index
started_gci,
and the most
recent GCI to have
been completed
has the index
completed_gci.

LCPFragmentCompletedCheckpoint 11 INFO

Node node_id:
ACC Blocked
num_1 and TUP

Undo logging
is blocked
because the log

UndoLogBlocked Checkpoint 7 INFO

MySQL Cluster Log Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1810

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Log Message Description Event Name Event Type Priority Severity
Blocked num_2
times last
second

buffer is close to
overflowing.

Node node_id:
Start initiated
version

Data node
node_id, running
NDB version
version, is
beginning its startup
process.

NDBStartStarted StartUp 1 INFO

Node node_id:
Started version

Data node
node_id, running
NDB version
version, has
started successfully.

NDBStartCompleted StartUp 1 INFO

Node node_id:
STTORRY
received
after restart
finished

The node has
received a signal
indicating that a
cluster restart has
completed.

STTORRYRecieved StartUp 15 INFO

Node node_id:
Start phase
phase completed
(type)

The node has
completed start
phase phase
of a type start.
For a listing of
start phases, see
Section 17.5.1,
“Summary of
MySQL Cluster
Start Phases”.
(type is one
of initial,
system, node,
initial node, or
<Unknown>.)

StartPhaseCompleted StartUp 4 INFO

Node node_id:
CM_REGCONF
president =
president_id,
own Node =
own_id, our
dynamic id =
dynamic_id

Node
president_id
has been selected
as “president”.
own_id and
dynamic_id
should always be
the same as the ID
(node_id) of the
reporting node.

CM_REGCONF StartUp 3 INFO

Node node_id:
CM_REGREF
from Node
president_id
to our Node

The reporting node
(ID node_id)
was unable to
accept node
president_id
as president. The

CM_REGREF StartUp 8 INFO

MySQL Cluster Log Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1811

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Log Message Description Event Name Event Type Priority Severity
node_id. Cause
= cause

cause of the
problem is given
as one of Busy,
Election with
wait = false,
Not president,
Election
without
selecting new
candidate, or No
such cause.

Node node_id:
We are Node
own_id with
dynamic ID
dynamic_id, our
left neighbor
is Node id_1,
our right is
Node id_2

The node has
discovered its
neighboring nodes
in the cluster (node
id_1 and node
id_2). node_id,
own_id, and
dynamic_id
should always
be the same; if
they are not, this
indicates a serious
misconfiguration of
the cluster nodes.

FIND_NEIGHBOURS StartUp 8 INFO

Node node_id:
type shutdown
initiated

The node has
received a
shutdown signal.
The type of
shutdown is either
Cluster or Node.

NDBStopStarted StartUp 1 INFO

Node node_id:
Node shutdown
completed
[, action]
[Initiated by
signal signal.]

The node has been
shut down. This
report may include
an action, which
if present is one
of restarting,
no start, or
initial. The
report may also
include a reference
to an NDB Protocol
signal; for
possible signals,
refer to Operations
and Signals.

NDBStopCompleted StartUp 1 INFO

Node node_id:
Forced node
shutdown
completed
[, action].

The node has been
forcibly shut down.
The action (one
of restarting,
no start,

NDBStopForced StartUp 1 ALERT

http://dev.mysql.com/doc/ndbapi/en/ndb-internals-ndb-protocol-operations-signals.html
http://dev.mysql.com/doc/ndbapi/en/ndb-internals-ndb-protocol-operations-signals.html

MySQL Cluster Log Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1812

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Log Message Description Event Name Event Type Priority Severity
[Occured during
startphase
start_phase.]
[Initiated by
signal.] [Caused
by error
error_code:
'error_message(error_classification).
error_status'.
[(extra info
extra_code)]]

or initial)
subsequently being
taken, if any, is
also reported. If the
shutdown occurred
while the node
was starting, the
report includes the
start_phase
during which the
node failed. If this
was a result of
a signal sent
to the node, this
information is also
provided (see
Operations and
Signals, for more
information). If the
error causing the
failure is known, this
is also included; for
more information
about NDB error
messages and
classifications, see
MySQL Cluster API
Errors.

Node node_id:
Node shutdown
aborted

The node shutdown
process was
aborted by the user.

NDBStopAborted StartUp 1 INFO

Node node_id:
StartLog: [GCI
Keep: keep_pos
LastCompleted:
last_pos
NewestRestorable:
restore_pos]

This reports global
checkpoints
referenced during
a node start. The
redo log prior
to keep_pos is
dropped. last_pos
is the last global
checkpoint in
which data node
the participated;
restore_pos
is the global
checkpoint which
is actually used
to restore all data
nodes.

StartREDOLog StartUp 4 INFO

startup_message
[Listed separately;
see below.]

There are a number
of possible startup
messages that

StartReport StartUp 4 INFO

http://dev.mysql.com/doc/ndbapi/en/ndb-internals-ndb-protocol-operations-signals.html
http://dev.mysql.com/doc/ndbapi/en/ndb-internals-ndb-protocol-operations-signals.html
http://dev.mysql.com/doc/ndbapi/en/ndb-errors.html
http://dev.mysql.com/doc/ndbapi/en/ndb-errors.html

MySQL Cluster Log Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1813

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Log Message Description Event Name Event Type Priority Severity
can be logged
under different
circumstances.
These are listed
separately; see
Section 17.5.7.2,
“MySQL Cluster
Log Startup
Messages”.

Node node_id:
Node restart
completed copy
of dictionary
information

Copying of
data dictionary
information to the
restarted node has
been completed.

NR_CopyDict NodeRestart 8 INFO

Node node_id:
Node restart
completed copy
of distribution
information

Copying of data
distribution
information to the
restarted node has
been completed.

NR_CopyDistr NodeRestart 8 INFO

Node node_id:
Node restart
starting to
copy the
fragments to
Node node_id

Copy of fragments
to starting data
node node_id has
begun

NR_CopyFragsStarted NodeRestart 8 INFO

Node node_id:
Table ID =
table_id,
fragment ID
= fragment_id
have been
copied to Node
node_id

Fragment
fragment_id from
table table_id
has been copied to
data node node_id

NR_CopyFragDone NodeRestart 10 INFO

Node node_id:
Node restart
completed
copying the
fragments to
Node node_id

Copying of all
table fragments to
restarting data node
node_id has been
completed

NR_CopyFragsCompletedNodeRestart 8 INFO

Node node_id:
Node node1_id
completed
failure of Node
node2_id

Data node
node1_id has
detected the failure
of data node
node2_id

NodeFailCompleted NodeRestart 8 ALERT

All nodes
completed
failure of Node
node_id

All (remaining)
data nodes have
detected the failure
of data node
node_id

NodeFailCompleted NodeRestart 8 ALERT

MySQL Cluster Log Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1814

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Log Message Description Event Name Event Type Priority Severity

Node failure
of node_idblock
completed

The failure of data
node node_id
has been detected
in the blockNDB
kernel block, where
block is 1 of DBTC,
DBDICT, DBDIH,
or DBLQH; for more
information, see
NDB Kernel Blocks

NodeFailCompleted NodeRestart 8 ALERT

Node
mgm_node_id:
Node
data_node_id
has failed.
The Node state
at failure was
state_code

A data node has
failed. Its state at
the time of failure
is described by an
arbitration state
code state_code:
possible state
code values can
be found in the file
include/kernel/
signaldata/
ArbitSignalData.hpp.

NODE_FAILREP NodeRestart 8 ALERT

President
restarts
arbitration
thread
[state=state_code]
or Prepare
arbitrator
node node_id
[ticket=ticket_id]
or Receive
arbitrator
node node_id
[ticket=ticket_id]
or Started
arbitrator
node node_id
[ticket=ticket_id]
or Lost
arbitrator
node node_id -
process failure
[state=state_code]
or Lost
arbitrator
node node_id
- process exit
[state=state_code]
or Lost
arbitrator

This is a report on
the current state
and progress of
arbitration in the
cluster. node_id
is the node ID of
the management
node or SQL
node selected
as the arbitrator.
state_code is
an arbitration state
code, as found in
include/kernel/
signaldata/
ArbitSignalData.hpp.
When an error
has occurred, an
error_message,
also defined in
ArbitSignalData.hpp,
is provided.
ticket_id is a
unique identifier
handed out by the
arbitrator when
it is selected to
all the nodes
that participated

ArbitState NodeRestart 6 INFO

http://dev.mysql.com/doc/ndbapi/en/ndb-internals-kernel-blocks.html

MySQL Cluster Log Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1815

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Log Message Description Event Name Event Type Priority Severity
node node_id -
error_message
[state=state_code]

in its selection;
this is used to
ensure that each
node requesting
arbitration was one
of the nodes that
took part in the
selection process.

Arbitration
check lost -
less than 1/2
nodes left or
Arbitration
check won - all
node groups
and more than
1/2 nodes left
or Arbitration
check won -
node group
majority or
Arbitration
check lost -
missing node
group or Network
partitioning
- arbitration
required or
Arbitration
won - positive
reply from
node node_id
or Arbitration
lost - negative
reply from
node node_id
or Network
partitioning -
no arbitrator
available
or Network
partitioning -
no arbitrator
configured or
Arbitration
failure -
error_message
[state=state_code]

This message
reports on the result
of arbitration. In the
event of arbitration
failure, an
error_message
and an arbitration
state_code are
provided; definitions
for both of these
are found in
include/kernel/
signaldata/
ArbitSignalData.hpp.

ArbitResult NodeRestart 2 ALERT

Node node_id:
GCP Take over
started

This node is
attempting
to assume

GCP_TakeoverStarted NodeRestart 7 INFO

MySQL Cluster Log Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1816

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Log Message Description Event Name Event Type Priority Severity
responsibility for
the next global
checkpoint (that is,
it is becoming the
master node)

Node node_id:
GCP Take over
completed

This node has
become the master,
and has assumed
responsibility for
the next global
checkpoint

GCP_TakeoverCompletedNodeRestart 7 INFO

Node node_id:
LCP Take over
started

This node is
attempting
to assume
responsibility for
the next set of local
checkpoints (that is,
it is becoming the
master node)

LCP_TakeoverStarted NodeRestart 7 INFO

Node node_id:
LCP Take over
completed

This node has
become the master,
and has assumed
responsibility for
the next set of local
checkpoints

LCP_TakeoverCompletedNodeRestart 7 INFO

Node node_id:
Trans. Count =
transactions,
Commit Count
= commits,
Read Count =
reads, Simple
Read Count =
simple_reads,
Write Count
= writes,
AttrInfo
Count =
AttrInfo_objects,
Concurrent
Operations =
concurrent_operations,
Abort Count
= aborts,
Scans = scans,
Range scans =
range_scans

This report of
transaction
activity is given
approximately once
every 10 seconds

TransReportCounters Statistic 8 INFO

Node node_id:
Operations=operations

Number of
operations
performed by this

OperationReportCountersStatistic 8 INFO

MySQL Cluster Log Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1817

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Log Message Description Event Name Event Type Priority Severity
node, provided
approximately once
every 10 seconds

Node node_id:
Table with
ID = table_id
created

A table having the
table ID shown has
been created

TableCreated Statistic 7 INFO

Node node_id:
Mean loop
Counter in
doJob last 8192
times = count

 JobStatistic Statistic 9 INFO

Mean send size
to Node =
node_id last
4096 sends =
bytes bytes

This node is
sending an average
of bytes bytes
per send to node
node_id

SendBytesStatistic Statistic 9 INFO

Mean receive
size to Node
= node_id last
4096 sends =
bytes bytes

This node is
receiving an
average of bytes
of data each time it
receives data from
node node_id

ReceiveBytesStatisticStatistic 9 INFO

Node node_id:
Data usage is
data_memory_percentage%
(data_pages_used
32K pages
of total
data_pages_total)
/ Node node_id:
Index usage is
index_memory_percentage%
(index_pages_used
8K pages
of total
index_pages_total)

This report is
generated when
a DUMP 1000
command is issued
in the cluster
management
client; for more
information, see
DUMP 1000, in
MySQL Cluster
Internals

MemoryUsage Statistic 5 INFO

Node node1_id:
Transporter to
node node2_id
reported error
error_code:
error_message

A transporter error
occurred while
communicating with
node node2_id;
for a listing of
transporter
error codes and
messages, see
NDB Transporter
Errors, in MySQL
Cluster Internals

TransporterError Error 2 ERROR

http://dev.mysql.com/doc/ndbapi/en/ndb-internals-dump-command-1000.html
http://dev.mysql.com/doc/ndbapi/en/ndb-internals.html
http://dev.mysql.com/doc/ndbapi/en/ndb-internals.html
http://dev.mysql.com/doc/ndbapi/en/ndb-transporter-errors.html
http://dev.mysql.com/doc/ndbapi/en/ndb-transporter-errors.html
http://dev.mysql.com/doc/ndbapi/en/ndb-internals.html
http://dev.mysql.com/doc/ndbapi/en/ndb-internals.html

MySQL Cluster Log Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1818

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Log Message Description Event Name Event Type Priority Severity

Node node1_id:
Transporter to
node node2_id
reported error
error_code:
error_message

A warning of a
potential transporter
problem while
communicating with
node node2_id;
for a listing
of transporter
error codes and
messages, see
NDB Transporter
Errors, for more
information

TransporterWarning Error 8 WARNING

Node node1_id:
Node node2_id
missed
heartbeat
heartbeat_id

This node missed a
heartbeat from node
node2_id

MissedHeartbeat Error 8 WARNING

Node node1_id:
Node node2_id
declared dead
due to missed
heartbeat

This node has
missed at least 3
heartbeats from
node node2_id,
and so has declared
that node “dead”

DeadDueToHeartbeat Error 8 ALERT

Node node1_id:
Node Sent
Heartbeat to
node = node2_id

This node has sent
a heartbeat to node
node2_id

SentHeartbeat Info 12 INFO

Node node_id:
Event buffer
status:
used=bytes_used
(percent_used%)
alloc=bytes_allocated
(percent_available%)
max=bytes_available
apply_gci=latest_restorable_GCI
latest_gci=latest_GCI

This report is seen
during heavy event
buffer usage, for
example, when
many updates are
being applied in
a relatively short
period of time; the
report shows the
number of bytes
and the percentage
of event buffer
memory used, the
bytes allocated and
percentage still
available, and the
latest and latest
restorable global
checkpoints

EventBufferStatus Info 7 INFO

Node node_id:
Entering single
user mode,
Node node_id:

These reports
are written to the
cluster log when
entering and exiting

SingleUser Info 7 INFO

http://dev.mysql.com/doc/ndbapi/en/ndb-transporter-errors.html
http://dev.mysql.com/doc/ndbapi/en/ndb-transporter-errors.html

MySQL Cluster Log Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1819

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Log Message Description Event Name Event Type Priority Severity
Entered single
user mode Node
API_node_id
has exclusive
access, Node
node_id:
Entering single
user mode

single user mode;
API_node_id is
the node ID of the
API or SQL having
exclusive access
to the cluster (for
more information,
see Section 17.5.8,
“MySQL Cluster
Single User Mode”);
the message
Unknown single
user report
API_node_id
indicates an error
has taken place
and should never
be seen in normal
operation

Node node_id:
Backup
backup_id
started
from node
mgm_node_id

A backup has
been started using
the management
node having
mgm_node_id;
this message is
also displayed
in the cluster
management client
when the START
BACKUP command
is issued; for more
information, see
Section 17.5.3.2,
“Using The
MySQL Cluster
Management Client
to Create a Backup”

BackupStarted Backup 7 INFO

Node node_id:
Backup
backup_id
started
from node
mgm_node_id
completed.
StartGCP:
start_gcp
StopGCP:
stop_gcp
#Records:
records
#LogRecords:

The backup having
the ID backup_id
has been
completed; for more
information, see
Section 17.5.3.2,
“Using The
MySQL Cluster
Management Client
to Create a Backup”

BackupCompleted Backup 7 INFO

MySQL Cluster Log Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1820

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Log Message Description Event Name Event Type Priority Severity
log_records
Data:
data_bytes
bytes Log:
log_bytes bytes

Node node_id:
Backup
request from
mgm_node_id
failed to
start. Error:
error_code

The backup failed
to start; for error
codes, see MGM
API Errors

BackupFailedToStart Backup 7 ALERT

Node node_id:
Backup
backup_id
started from
mgm_node_id
has been
aborted. Error:
error_code

The backup
was terminated
after starting,
possibly due to user
intervention

BackupAborted Backup 7 ALERT

17.5.7.2 MySQL Cluster Log Startup Messages

Possible startup messages with descriptions are provided in the following list:

• Initial start, waiting for %s to connect, nodes [all: %s connected: %s no-
wait: %s]

• Waiting until nodes: %s connects, nodes [all: %s connected: %s no-wait: %s]

• Waiting %u sec for nodes %s to connect, nodes [all: %s connected: %s no-
wait: %s]

• Waiting for non partitioned start, nodes [all: %s connected: %s missing: %s
no-wait: %s]

• Waiting %u sec for non partitioned start, nodes [all: %s connected: %s
missing: %s no-wait: %s]

• Initial start with nodes %s [missing: %s no-wait: %s]

• Start with all nodes %s

• Start with nodes %s [missing: %s no-wait: %s]

• Start potentially partitioned with nodes %s [missing: %s no-wait: %s]

• Unknown startreport: 0x%x [%s %s %s %s]

17.5.7.3 MySQL Cluster: NDB Transporter Errors

This section lists error codes, names, and messages that are written to the cluster log in the event of
transporter errors.

http://dev.mysql.com/doc/ndbapi/en/mgm-errors.html
http://dev.mysql.com/doc/ndbapi/en/mgm-errors.html

MySQL Cluster Log Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1821

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Error
Code

Error Name Error Text

0x00 TE_NO_ERROR No error

0x01 TE_ERROR_CLOSING_SOCKET Error found during
closing of socket

0x02 TE_ERROR_IN_SELECT_BEFORE_ACCEPT Error found
before accept. The
transporter will retry

0x03 TE_INVALID_MESSAGE_LENGTH Error found in message
(invalid message
length)

0x04 TE_INVALID_CHECKSUM Error found in message
(checksum)

0x05 TE_COULD_NOT_CREATE_SOCKET Error found while
creating socket(can't
create socket)

0x06 TE_COULD_NOT_BIND_SOCKET Error found while
binding server socket

0x07 TE_LISTEN_FAILED Error found while
listening to server
socket

0x08 TE_ACCEPT_RETURN_ERROR Error found during
accept(accept return
error)

0x0b TE_SHM_DISCONNECT The remote node has
disconnected

0x0c TE_SHM_IPC_STAT Unable to check shm
segment

0x0d TE_SHM_UNABLE_TO_CREATE_SEGMENT Unable to create shm
segment

0x0e TE_SHM_UNABLE_TO_ATTACH_SEGMENT Unable to attach shm
segment

0x0f TE_SHM_UNABLE_TO_REMOVE_SEGMENT Unable to remove shm
segment

0x10 TE_TOO_SMALL_SIGID Sig ID too small

0x11 TE_TOO_LARGE_SIGID Sig ID too large

0x12 TE_WAIT_STACK_FULL Wait stack was full

0x13 TE_RECEIVE_BUFFER_FULL Receive buffer was
full

0x14 TE_SIGNAL_LOST_SEND_BUFFER_FULL Send buffer was
full,and trying to
force send fails

0x15 TE_SIGNAL_LOST Send failed for
unknown reason(signal
lost)

MySQL Cluster Single User Mode

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1822

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Error
Code

Error Name Error Text

0x16 TE_SEND_BUFFER_FULL The send buffer was
full, but sleeping for
a while solved

0x0017 TE_SCI_LINK_ERROR There is no link
from this node to the
switch

0x18 TE_SCI_UNABLE_TO_START_SEQUENCE Could not start a
sequence, because
system resources are
exumed or no sequence
has been created

0x19 TE_SCI_UNABLE_TO_REMOVE_SEQUENCE Could not remove a
sequence

0x1a TE_SCI_UNABLE_TO_CREATE_SEQUENCE Could not create a
sequence, because
system resources are
exempted. Must reboot

0x1b TE_SCI_UNRECOVERABLE_DATA_TFX_ERROR Tried to send data
on redundant link but
failed

0x1c TE_SCI_CANNOT_INIT_LOCALSEGMENT Cannot initialize
local segment

0x1d TE_SCI_CANNOT_MAP_REMOTESEGMENT Cannot map remote
segment

0x1e TE_SCI_UNABLE_TO_UNMAP_SEGMENT Cannot free the
resources used by this
segment (step 1)

0x1f TE_SCI_UNABLE_TO_REMOVE_SEGMENT Cannot free the
resources used by this
segment (step 2)

0x20 TE_SCI_UNABLE_TO_DISCONNECT_SEGMENT Cannot disconnect from
a remote segment

0x21 TE_SHM_IPC_PERMANENT Shm ipc Permanent
error

0x22 TE_SCI_UNABLE_TO_CLOSE_CHANNEL Unable to close the
sci channel and the
resources allocated

17.5.8 MySQL Cluster Single User Mode

Single user mode enables the database administrator to restrict access to the database system to a single
API node, such as a MySQL server (SQL node) or an instance of ndb_restore. When entering single
user mode, connections to all other API nodes are closed gracefully and all running transactions are
aborted. No new transactions are permitted to start.

Once the cluster has entered single user mode, only the designated API node is granted access to the
database.

Quick Reference: MySQL Cluster SQL Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1823

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

You can use the ALL STATUS command to see when the cluster has entered single user mode.

Example:

ndb_mgm> ENTER SINGLE USER MODE 5

After this command has executed and the cluster has entered single user mode, the API node whose node
ID is 5 becomes the cluster's only permitted user.

The node specified in the preceding command must be an API node; attempting to specify any other type
of node will be rejected.

Note

When the preceding command is invoked, all transactions running on the
designated node are aborted, the connection is closed, and the server must be
restarted.

The command EXIT SINGLE USER MODE changes the state of the cluster's data nodes from single user
mode to normal mode. API nodes—such as MySQL Servers—waiting for a connection (that is, waiting for
the cluster to become ready and available), are again permitted to connect. The API node denoted as the
single-user node continues to run (if still connected) during and after the state change.

Example:

ndb_mgm> EXIT SINGLE USER MODE

There are two recommended ways to handle a node failure when running in single user mode:

• Method 1:

1. Finish all single user mode transactions

2. Issue the EXIT SINGLE USER MODE command

3. Restart the cluster's data nodes

• Method 2:

Restart database nodes prior to entering single user mode.

17.5.9 Quick Reference: MySQL Cluster SQL Statements

This section discusses several SQL statements that can prove useful in managing and monitoring a
MySQL server that is connected to a MySQL Cluster, and in some cases provide information about the
cluster itself.

• SHOW ENGINE NDB STATUS, SHOW ENGINE NDBCLUSTER STATUS

The output of this statement contains information about the server's connection to the cluster, creation
and usage of MySQL Cluster objects, and binary logging for MySQL Cluster replication.

See Section 13.7.5.12, “SHOW ENGINE Syntax”, for a usage example and more detailed information.

•
SHOW ENGINES [LIKE 'NDB%']

Quick Reference: MySQL Cluster SQL Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1824

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This statement can be used to determine whether or not clustering support is enabled in the MySQL
server, and if so, whether it is active.

See Section 13.7.5.13, “SHOW ENGINES Syntax”, for more detailed information.

•
SHOW VARIABLES LIKE 'NDB%'

This statement provides a list of most server system variables relating to the NDB storage engine, and
their values, as shown here:

mysql> SHOW VARIABLES LIKE 'NDB%';
+-------------------------------------+-------+
| Variable_name | Value |
+-------------------------------------+-------+
ndb_autoincrement_prefetch_sz	32
ndb_cache_check_time	0
ndb_extra_logging	0
ndb_force_send	ON
ndb_index_stat_cache_entries	32
ndb_index_stat_enable	OFF
ndb_index_stat_update_freq	20
ndb_report_thresh_binlog_epoch_slip	3
ndb_report_thresh_binlog_mem_usage	10
ndb_use_copying_alter_table	OFF
ndb_use_exact_count	ON
ndb_use_transactions	ON
+-------------------------------------+-------+

See Section 5.1.4, “Server System Variables”, for more information.

•
SHOW STATUS LIKE 'NDB%'

This statement shows at a glance whether or not the MySQL server is acting as a cluster SQL node, and
if so, it provides the MySQL server's cluster node ID, the host name and port for the cluster management
server to which it is connected, and the number of data nodes in the cluster, as shown here:

mysql> SHOW STATUS LIKE 'NDB%';
+--------------------------+---------------+
| Variable_name | Value |
+--------------------------+---------------+
Ndb_cluster_node_id	10
Ndb_config_from_host	192.168.0.103
Ndb_config_from_port	1186
Ndb_number_of_data_nodes	4
+--------------------------+---------------+

If the MySQL server was built with clustering support, but it is not connected to a cluster, all rows in the
output of this statement contain a zero or an empty string:

mysql> SHOW STATUS LIKE 'NDB%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
Ndb_cluster_node_id	0
Ndb_config_from_host	
Ndb_config_from_port	0
Ndb_number_of_data_nodes	0
+--------------------------+-------+

MySQL Cluster Security Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1825

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

See also Section 13.7.5.32, “SHOW STATUS Syntax”.

17.5.10 MySQL Cluster Security Issues

This section discusses security considerations to take into account when setting up and running MySQL
Cluster.

Topics covered in this chapter include the following:

• MySQL Cluster and network security issues

• Configuration issues relating to running MySQL Cluster securely

• MySQL Cluster and the MySQL privilege system

• MySQL standard security procedures as applicable to MySQL Cluster

17.5.10.1 MySQL Cluster Security and Networking Issues

In this section, we discuss basic network security issues as they relate to MySQL Cluster. It is extremely
important to remember that MySQL Cluster “out of the box” is not secure; you or your network
administrator must take the proper steps to ensure that your cluster cannot be compromised over the
network.

Cluster communication protocols are inherently insecure, and no encryption or similar security measures
are used in communications between nodes in the cluster. Because network speed and latency have
a direct impact on the cluster's efficiency, it is also not advisable to employ SSL or other encryption to
network connections between nodes, as such schemes will effectively slow communications.

It is also true that no authentication is used for controlling API node access to a MySQL Cluster. As with
encryption, the overhead of imposing authentication requirements would have an adverse impact on
Cluster performance.

In addition, there is no checking of the source IP address for either of the following when accessing the
cluster:

• SQL or API nodes using “free slots” created by empty [mysqld] or [api] sections in the config.ini
file

This means that, if there are any empty [mysqld] or [api] sections in the config.ini file, then any
API nodes (including SQL nodes) that know the management server's host name (or IP address) and
port can connect to the cluster and access its data without restriction. (See Section 17.5.10.2, “MySQL
Cluster and MySQL Privileges”, for more information about this and related issues.)

Note

 You can exercise some control over SQL and API node access to the cluster by
specifying a HostName parameter for all [mysqld] and [api] sections in the
config.ini file. However, this also means that, should you wish to connect an
API node to the cluster from a previously unused host, you need to add an [api]
section containing its host name to the config.ini file.

More information is available elsewhere in this chapter about the HostName
parameter. Also see Section 17.3.1, “Quick Test Setup of MySQL Cluster”, for
configuration examples using HostName with API nodes.

MySQL Cluster Security Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1826

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Any ndb_mgm client

This means that any cluster management client that is given the management server's host name (or
IP address) and port (if not the standard port) can connect to the cluster and execute any management
client command. This includes commands such as ALL STOP and SHUTDOWN.

 For these reasons, it is necessary to protect the cluster on the network level. The safest network
configuration for Cluster is one which isolates connections between Cluster nodes from any other network
communications. This can be accomplished by any of the following methods:

1. Keeping Cluster nodes on a network that is physically separate from any public networks. This option is
the most dependable; however, it is the most expensive to implement.

We show an example of a MySQL Cluster setup using such a physically segregated network here:

Figure 17.7 MySQL Cluster with Hardware Firewall

This setup has two networks, one private (solid box) for the Cluster management servers and data
nodes, and one public (dotted box) where the SQL nodes reside. (We show the management and data
nodes connected using a gigabit switch since this provides the best performance.) Both networks are
protected from the outside by a hardware firewall, sometimes also known as a network-based firewall.

This network setup is safest because no packets can reach the cluster's management or data nodes
from outside the network—and none of the cluster's internal communications can reach the outside
—without going through the SQL nodes, as long as the SQL nodes do not permit any packets to be
forwarded. This means, of course, that all SQL nodes must be secured against hacking attempts.

Important

With regard to potential security vulnerabilities, an SQL node is no different from
any other MySQL server. See Section 6.1.3, “Making MySQL Secure Against
Attackers”, for a description of techniques you can use to secure MySQL
servers.

2. Using one or more software firewalls (also known as host-based firewalls) to control which packets
pass through to the cluster from portions of the network that do not require access to it. In this type
of setup, a software firewall must be installed on every host in the cluster which might otherwise be
accessible from outside the local network.

MySQL Cluster Security Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1827

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The host-based option is the least expensive to implement, but relies purely on software to provide
protection and so is the most difficult to keep secure.

This type of network setup for MySQL Cluster is illustrated here:

Figure 17.8 MySQL Cluster with Software Firewalls

Using this type of network setup means that there are two zones of MySQL Cluster hosts. Each cluster
host must be able to communicate with all of the other machines in the cluster, but only those hosting
SQL nodes (dotted box) can be permitted to have any contact with the outside, while those in the zone
containing the data nodes and management nodes (solid box) must be isolated from any machines that
are not part of the cluster. Applications using the cluster and user of those applications must not be
permitted to have direct access to the management and data node hosts.

To accomplish this, you must set up software firewalls that limit the traffic to the type or types shown in
the following table, according to the type of node that is running on each cluster host computer:

Type of Node to be
Accessed

Traffic to Permit

SQL or API node • It originates from the IP address of a management or data node (using
any TCP or UDP port).

• It originates from within the network in which the cluster resides and is on
the port that your application is using.

Data node or
Management node

• It originates from the IP address of a management or data node (using
any TCP or UDP port).

• It originates from the IP address of an SQL or API node.

MySQL Cluster Security Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1828

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Any traffic other than that shown in the table for a given node type should be denied.

The specifics of configuring a firewall vary from firewall application to firewall application, and are
beyond the scope of this Manual. iptables is a very common and reliable firewall application, which
is often used with APF as a front end to make configuration easier. You can (and should) consult the
documentation for the software firewall that you employ, should you choose to implement a MySQL
Cluster network setup of this type, or of a “mixed” type as discussed under the next item.

3. It is also possible to employ a combination of the first two methods, using both hardware and software
to secure the cluster—that is, using both network-based and host-based firewalls. This is between the
first two schemes in terms of both security level and cost. This type of network setup keeps the cluster
behind the hardware firewall, but permits incoming packets to travel beyond the router connecting all
cluster hosts to reach the SQL nodes.

One possible network deployment of a MySQL Cluster using hardware and software firewalls in
combination is shown here:

Figure 17.9 MySQL Cluster with a Combination of Hardware and Software Firewalls

In this case, you can set the rules in the hardware firewall to deny any external traffic except to SQL
nodes and API nodes, and then permit traffic to them only on the ports required by your application.

Whatever network configuration you use, remember that your objective from the viewpoint of keeping
the cluster secure remains the same—to prevent any unessential traffic from reaching the cluster while
ensuring the most efficient communication between the nodes in the cluster.

 Because MySQL Cluster requires large numbers of ports to be open for communications between nodes,
the recommended option is to use a segregated network. This represents the simplest way to prevent
unwanted traffic from reaching the cluster.

Note

 If you wish to administer a MySQL Cluster remotely (that is, from outside the
local network), the recommended way to do this is to use ssh or another secure

MySQL Cluster Security Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1829

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

login shell to access an SQL node host. From this host, you can then run the
management client to access the management server safely, from within the
Cluster's own local network.

Even though it is possible to do so in theory, it is not recommended to use ndb_mgm
to manage a Cluster directly from outside the local network on which the Cluster
is running. Since neither authentication nor encryption takes place between the
management client and the management server, this represents an extremely
insecure means of managing the cluster, and is almost certain to be compromised
sooner or later.

17.5.10.2 MySQL Cluster and MySQL Privileges

In this section, we discuss how the MySQL privilege system works in relation to MySQL Cluster and the
implications of this for keeping a MySQL Cluster secure.

 Standard MySQL privileges apply to MySQL Cluster tables. This includes all MySQL privilege types
(SELECT privilege, UPDATE privilege, DELETE privilege, and so on) granted on the database, table, and
column level. As with any other MySQL Server, user and privilege information is stored in the mysql
system database. The SQL statements used to grant and revoke privileges on NDB tables, databases
containing such tables, and columns within such tables are identical in all respects with the GRANT and
REVOKE statements used in connection with database objects involving any (other) MySQL storage engine.
The same thing is true with respect to the CREATE USER and DROP USER statements.

 It is important to keep in mind that the MySQL grant tables use the MyISAM storage engine. Because of
this, those tables are not duplicated or shared among MySQL servers acting as SQL nodes in a MySQL
Cluster. By way of example, suppose that two SQL nodes A and B are connected to the same MySQL
Cluster, which has an NDB table named mytable in a database named mydb, and that you execute an
SQL statement on server A that creates a new user jon@localhost and grants this user the SELECT
privilege on that table:

mysql> GRANT SELECT ON mydb.mytable
 -> TO jon@localhost IDENTIFIED BY 'mypass';

This user is not created on server B. For this to take place, the statement must also be run on server B.
Similarly, statements run on server A and affecting the privileges of existing users on server A do not affect
users on server B unless those statements are actually run on server B as well.

In other words, changes in users and their privileges do not automatically propagate between SQL
nodes. Synchronization of privileges between SQL nodes must be done either manually or by scripting an
application that periodically synchronizes the privilege tables on all SQL nodes in the cluster.

 Conversely, because there is no way in MySQL to deny privileges (privileges can either be revoked or
not granted in the first place, but not denied as such), there is no special protection for NDB tables on one
SQL node from users that have privileges on another SQL node. The most far-reaching example of this
is the MySQL root account, which can perform any action on any database object. In combination with
empty [mysqld] or [api] sections of the config.ini file, this account can be especially dangerous. To
understand why, consider the following scenario:

• The config.ini file contains at least one empty [mysqld] or [api] section. This means that the
Cluster management server performs no checking of the host from which a MySQL Server (or other API
node) accesses the MySQL Cluster.

• There is no firewall, or the firewall fails to protect against access to the Cluster from hosts external to the
network.

MySQL Cluster Security Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1830

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The host name or IP address of the Cluster's management server is known or can be determined from
outside the network.

If these conditions are true, then anyone, anywhere can start a MySQL Server with --ndbcluster --
ndb-connectstring=management_host and access the Cluster. Using the MySQL root account, this
person can then perform the following actions:

• Execute a SHOW DATABASES statement to obtain a list of all databases that exist in the cluster

• Execute a SHOW TABLES FROM some_database statement to obtain a list of all NDB tables in a given
database

• Run any legal MySQL statements on any of those tables, such as:

• SELECT * FROM some_table to read all the data from any table

• DELETE FROM some_table to delete all the data from a table

• DESCRIBE some_table or SHOW CREATE TABLE some_table to determine the table schema

• UPDATE some_table SET column1 = any_value1 to fill a table column with “garbage” data; this
could actually cause much greater damage than simply deleting all the data

Even more insidious variations might include statements like these:

UPDATE some_table SET an_int_column = an_int_column + 1

or

UPDATE some_table SET a_varchar_column = REVERSE(a_varchar_column)

Such malicious statements are limited only by the imagination of the attacker.

The only tables that would be safe from this sort of mayhem would be those tables that were created
using storage engines other than NDB, and so not visible to a “rogue” SQL node.

Note

 A user who can log in as root can also access the INFORMATION_SCHEMA
database and its tables, and so obtain information about databases, tables,
stored routines, scheduled events, and any other database objects for which
metadata is stored in INFORMATION_SCHEMA.

It is also a very good idea to use different passwords for the root accounts on different cluster SQL
nodes.

In sum, you cannot have a safe MySQL Cluster if it is directly accessible from outside your local network.

Important

Never leave the MySQL root account password empty. This is just as true when
running MySQL as a MySQL Cluster SQL node as it is when running it as a
standalone (non-Cluster) MySQL Server, and should be done as part of the MySQL
installation process before configuring the MySQL Server as an SQL node in a
MySQL Cluster.

MySQL Cluster Security Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1831

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

You should never convert the system tables in the mysql database to use the NDB storage engine. There
are a number of reasons why you should not do this, but the most important reason is this: Many of
the SQL statements that affect mysql tables storing information about user privileges, stored routines,
scheduled events, and other database objects cease to function if these tables are changed to use any
storage engine other than MyISAM. This is a consequence of various MySQL Server internals which are
not expected to change in the foreseeable future.

If you need to synchronize mysql system tables between SQL nodes, you can use standard MySQL
replication to do so, or employ a script to copy table entries between the MySQL servers.

Summary. The two most important points to remember regarding the MySQL privilege system with
regard to MySQL Cluster are:

1. Users and privileges established on one SQL node do not automatically exist or take effect on other
SQL nodes in the cluster.

Conversely, removing a user or privilege on one SQL node in the cluster does not remove the user or
privilege from any other SQL nodes.

2. Once a MySQL user is granted privileges on an NDB table from one SQL node in a MySQL Cluster, that
user can “see” any data in that table regardless of the SQL node from which the data originated.

17.5.10.3 MySQL Cluster and MySQL Security Procedures

In this section, we discuss MySQL standard security procedures as they apply to running MySQL Cluster.

In general, any standard procedure for running MySQL securely also applies to running a MySQL Server
as part of a MySQL Cluster. First and foremost, you should always run a MySQL Server as the mysql
system user; this is no different from running MySQL in a standard (non-Cluster) environment. The mysql
system account should be uniquely and clearly defined. Fortunately, this is the default behavior for a new
MySQL installation. You can verify that the mysqld process is running as the system user mysql by using
the system command such as the one shown here:

shell> ps aux | grep mysql
root 10467 0.0 0.1 3616 1380 pts/3 S 11:53 0:00 \
 /bin/sh ./mysqld_safe --ndbcluster --ndb-connectstring=localhost:1186
mysql 10512 0.2 2.5 58528 26636 pts/3 Sl 11:53 0:00 \
 /usr/local/mysql/libexec/mysqld --basedir=/usr/local/mysql \
 --datadir=/usr/local/mysql/var --user=mysql --ndbcluster \
 --ndb-connectstring=localhost:1186 --pid-file=/usr/local/mysql/var/mothra.pid \
 --log-error=/usr/local/mysql/var/mothra.err
jon 10579 0.0 0.0 2736 688 pts/0 S+ 11:54 0:00 grep mysql

If the mysqld process is running as any other user than mysql, you should immediately shut it down and
restart it as the mysql user. If this user does not exist on the system, the mysql user account should
be created, and this user should be part of the mysql user group; in this case, you should also make
sure that the MySQL DataDir on this system is owned by the mysql user, and that the SQL node's
my.cnf file includes user=mysql in the [mysqld] section. Alternatively, you can start the server with
--user=mysql on the command line, but it is preferable to use the my.cnf option, since you might
forget to use the command-line option and so have mysqld running as another user unintentionally. The
mysqld_safe startup script forces MySQL to run as the mysql user.

Important

Never run mysqld as the system root user. Doing so means that potentially any file
on the system can be read by MySQL, and thus—should MySQL be compromised
—by an attacker.

MySQL Cluster Security Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1832

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 As mentioned in the previous section (see Section 17.5.10.2, “MySQL Cluster and MySQL Privileges”),
you should always set a root password for the MySQL Server as soon as you have it running. You should
also delete the anonymous user account that is installed by default. You can accomplish these tasks using
the following statements:

shell> mysql -u root

mysql> UPDATE mysql.user
 -> SET Password=PASSWORD('secure_password')
 -> WHERE User='root';

mysql> DELETE FROM mysql.user
 -> WHERE User='';

mysql> FLUSH PRIVILEGES;

Be very careful when executing the DELETE statement not to omit the WHERE clause, or you risk deleting
all MySQL users. Be sure to run the FLUSH PRIVILEGES statement as soon as you have modified the
mysql.user table, so that the changes take immediate effect. Without FLUSH PRIVILEGES, the changes
do not take effect until the next time that the server is restarted.

Note

 Many of the MySQL Cluster utilities such as ndb_show_tables, ndb_desc, and
ndb_select_all also work without authentication and can reveal table names,
schemas, and data. By default these are installed on Unix-style systems with the
permissions wxr-xr-x (755), which means they can be executed by any user that
can access the mysql/bin directory.

See Section 17.4, “MySQL Cluster Programs”, for more information about these
utilities.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1833

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 18 Stored Programs and Views

Table of Contents
18.1 Defining Stored Programs ... 1833
18.2 Using Stored Routines (Procedures and Functions) .. 1835

18.2.1 Stored Routine Syntax .. 1835
18.2.2 Stored Routines and MySQL Privileges ... 1836
18.2.3 Stored Routine Metadata .. 1837
18.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID() 1837

18.3 Using Triggers .. 1837
18.3.1 Trigger Syntax and Examples ... 1838
18.3.2 Trigger Metadata .. 1842

18.4 Using Views .. 1842
18.4.1 View Syntax ... 1842
18.4.2 View Processing Algorithms .. 1843
18.4.3 Updatable and Insertable Views .. 1844
18.4.4 The View WITH CHECK OPTION Clause .. 1846
18.4.5 View Metadata ... 1846

18.5 Access Control for Stored Programs and Views .. 1847
18.6 Binary Logging of Stored Programs ... 1848

This chapter discusses stored programs and views, which are database objects defined in terms of SQL
code that is stored on the server for later execution.

Stored programs include these objects:

• Stored routines, that is, stored procedures and functions. A stored procedure is invoked using the CALL
statement. A procedure does not have a return value but can modify its parameters for later inspection
by the caller. It can also generate result sets to be returned to the client program. A stored function is
used much like a built-in function. you invoke it in an expression and it returns a value during expression
evaluation.

• Triggers. A trigger is a named database object that is associated with a table and that is activated when
a particular event occurs for the table, such as an insert or update.

Views are stored queries that when referenced produce a result set. A view acts as a virtual table.

This chapter describes how to use stored programs and views. The following sections provide additional
information about SQL syntax for statements related to these objects:

• For each object type, there are CREATE, ALTER, and DROP statements that control which objects exist
and how they are defined. See Section 13.1, “Data Definition Statements”.

• The CALL statement is used to invoke stored procedures. See Section 13.2.1, “CALL Syntax”.

• Stored program definitions include a body that may use compound statements, loops, conditionals, and
declared variables. See Section 13.6, “MySQL Compound-Statement Syntax”.

18.1 Defining Stored Programs
Each stored program contains a body that consists of an SQL statement. This statement may be a
compound statement made up of several statements separated by semicolon (;) characters. For example,

Defining Stored Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1834

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

the following stored procedure has a body made up of a BEGIN ... END block that contains a SET
statement and a REPEAT loop that itself contains another SET statement:

CREATE PROCEDURE dorepeat(p1 INT)
BEGIN
 SET @x = 0;
 REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
END;

If you use the mysql client program to define a stored program containing semicolon characters, a
problem arises. By default, mysql itself recognizes the semicolon as a statement delimiter, so you must
redefine the delimiter temporarily to cause mysql to pass the entire stored program definition to the server.

To redefine the mysql delimiter, use the delimiter command. The following example shows how to
do this for the dorepeat() procedure just shown. The delimiter is changed to // to enable the entire
definition to be passed to the server as a single statement, and then restored to ; before invoking the
procedure. This enables the ; delimiter used in the procedure body to be passed through to the server
rather than being interpreted by mysql itself.

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
 -> BEGIN
 -> SET @x = 0;
 -> REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
 -> END
 -> //
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL dorepeat(1000);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x;
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)

You can redefine the delimiter to a string other than //, and the delimiter can consist of a single character
or multiple characters. You should avoid the use of the backslash (“\”) character because that is the
escape character for MySQL.

The following is an example of a function that takes a parameter, performs an operation using an SQL
function, and returns the result. In this case, it is unnecessary to use delimiter because the function
definition contains no internal ; statement delimiters:

mysql> CREATE FUNCTION hello (s CHAR(20))
mysql> RETURNS CHAR(50) DETERMINISTIC
 -> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+

Using Stored Routines (Procedures and Functions)

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1835

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

1 row in set (0.00 sec)

18.2 Using Stored Routines (Procedures and Functions)
Stored routines (procedures and functions) are supported in MySQL 5.0. A stored routine is a set of SQL
statements that can be stored in the server. Once this has been done, clients don't need to keep reissuing
the individual statements but can refer to the stored routine instead.

Stored routines require the proc table in the mysql database. This table is created during the MySQL
5.0 installation procedure. If you are upgrading to MySQL 5.0 from an earlier version, be sure to update
your grant tables to make sure that the proc table exists. See Section 4.4.9, “mysql_upgrade — Check
Tables for MySQL Upgrade”.

Stored routines can be particularly useful in certain situations:

• When multiple client applications are written in different languages or work on different platforms, but
need to perform the same database operations.

• When security is paramount. Banks, for example, use stored procedures and functions for all common
operations. This provides a consistent and secure environment, and routines can ensure that each
operation is properly logged. In such a setup, applications and users would have no access to the
database tables directly, but can only execute specific stored routines.

Stored routines can provide improved performance because less information needs to be sent between
the server and the client. The tradeoff is that this does increase the load on the database server because
more of the work is done on the server side and less is done on the client (application) side. Consider this if
many client machines (such as Web servers) are serviced by only one or a few database servers.

Stored routines also enable you to have libraries of functions in the database server. This is a feature
shared by modern application languages that enable such design internally (for example, by using
classes). Using these client application language features is beneficial for the programmer even outside
the scope of database use.

MySQL follows the SQL:2003 syntax for stored routines, which is also used by IBM's DB2. All syntax
described here is supported and any limitations and extensions are documented where appropriate.

Additional Resources

• You may find the Stored Procedures User Forum of use when working with stored procedures and
functions.

• For answers to some commonly asked questions regarding stored routines in MySQL, see Section A.4,
“MySQL 5.0 FAQ: Stored Procedures and Functions”.

• There are some restrictions on the use of stored routines. See Section C.1, “Restrictions on Stored
Programs”.

• Binary logging for stored routines takes place as described in Section 18.6, “Binary Logging of Stored
Programs”.

18.2.1 Stored Routine Syntax

A stored routine is either a procedure or a function. Stored routines are created with the CREATE
PROCEDURE and CREATE FUNCTION statements (see Section 13.1.9, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”). A procedure is invoked using a CALL statement (see Section 13.2.1, “CALL
Syntax”), and can only pass back values using output variables. A function can be called from inside a
statement just like any other function (that is, by invoking the function's name), and can return a scalar

http://forums.mysql.com/list.php?98

Stored Routines and MySQL Privileges

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1836

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

value. The body of a stored routine can use compound statements (see Section 13.6, “MySQL Compound-
Statement Syntax”).

Stored routines can be dropped with the DROP PROCEDURE and DROP FUNCTION statements (see
Section 13.1.16, “DROP PROCEDURE and DROP FUNCTION Syntax”), and altered with the ALTER
PROCEDURE and ALTER FUNCTION statements (see Section 13.1.3, “ALTER PROCEDURE Syntax”).

As of MySQL 5.0.1, a stored procedure or function is associated with a particular database. This has
several implications:

• When the routine is invoked, an implicit USE db_name is performed (and undone when the routine
terminates). USE statements within stored routines are not permitted.

• You can qualify routine names with the database name. This can be used to refer to a routine that is not
in the current database. For example, to invoke a stored procedure p or function f that is associated with
the test database, you can say CALL test.p() or test.f().

• When a database is dropped, all stored routines associated with it are dropped as well.

(In MySQL 5.0.0, stored routines are global and not associated with a database. They inherit the default
database from the caller. If a USE db_name is executed within the routine, the original default database is
restored upon routine exit.)

Stored functions cannot be recursive.

Recursion in stored procedures is permitted but disabled by default. To enable recursion, set
the max_sp_recursion_depth server system variable to a value greater than zero. Stored
procedure recursion increases the demand on thread stack space. If you increase the value of
max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the value of
thread_stack at server startup. See Section 5.1.4, “Server System Variables”, for more information.

MySQL supports a very useful extension that enables the use of regular SELECT statements (that
is, without using cursors or local variables) inside a stored procedure. The result set of such a query
is simply sent directly to the client. Multiple SELECT statements generate multiple result sets, so the
client must use a MySQL client library that supports multiple result sets. This means the client must
use a client library from a version of MySQL at least as recent as 4.1. The client should also specify
the CLIENT_MULTI_RESULTS option when it connects. For C programs, this can be done with the
mysql_real_connect() C API function. See Section 20.6.7.52, “mysql_real_connect()”, and
Section 20.6.16, “C API Support for Multiple Statement Execution”.

18.2.2 Stored Routines and MySQL Privileges

Beginning with MySQL 5.0.3, the grant system takes stored routines into account as follows:

• The CREATE ROUTINE privilege is needed to create stored routines.

• The ALTER ROUTINE privilege is needed to alter or drop stored routines. This privilege is granted
automatically to the creator of a routine if necessary, and dropped from the creator when the routine is
dropped.

• The EXECUTE privilege is required to execute stored routines. However, this privilege is granted
automatically to the creator of a routine if necessary (and dropped from the creator when the routine is
dropped). Also, the default SQL SECURITY characteristic for a routine is DEFINER, which enables users
who have access to the database with which the routine is associated to execute the routine.

• If the automatic_sp_privileges system variable is 0, the EXECUTE and ALTER ROUTINE privileges
are not automatically granted to and dropped from the routine creator.

Stored Routine Metadata

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1837

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The creator of a routine is the account used to execute the CREATE statement for it. This might not be
the same as the account named as the DEFINER in the routine definition.

The server manipulates the mysql.proc table in response to statements that create, alter, or drop stored
routines. It is not supported that the server will notice manual manipulation of this table.

18.2.3 Stored Routine Metadata

Metadata about stored routines can be obtained as follows:

• Query the ROUTINES table of the INFORMATION_SCHEMA database. See Section 19.8, “The
INFORMATION_SCHEMA ROUTINES Table”.

• Use the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION statements to see routine
definitions. See Section 13.7.5.8, “SHOW CREATE PROCEDURE Syntax”.

• Use the SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS statements to see routine
characteristics. See Section 13.7.5.26, “SHOW PROCEDURE STATUS Syntax”.

• INFORMATION_SCHEMA does not have a PARAMETERS table until MySQL 5.5, so applications that need
to acquire routine parameter information at runtime must use workarounds such as parsing the output
of SHOW CREATE statements or the param_list column of the mysql.proc table. param_list
contents can be processed from within a stored routine, unlike the output from SHOW.

18.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()

Within the body of a stored routine (procedure or function) or a trigger, the value of LAST_INSERT_ID()
changes the same way as for statements executed outside the body of these kinds of objects (see
Section 12.13, “Information Functions”). The effect of a stored routine or trigger upon the value of
LAST_INSERT_ID() that is seen by following statements depends on the kind of routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the changed
value is seen by statements that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or trigger
ends, so following statements do not see a changed value. (Before MySQL 5.0.12, the value is not
restored and following statements do see a changed value.)

18.3 Using Triggers
Support for triggers is included beginning with MySQL 5.0.2. A trigger is a named database object that
is associated with a table, and that activates when a particular event occurs for the table. Some uses for
triggers are to perform checks of values to be inserted into a table or to perform calculations on values
involved in an update.

A trigger is defined to activate when a statement inserts, updates, or deletes rows in the associated table.
These row operations are trigger events. For example, rows can be inserted by INSERT or LOAD DATA
statements, and an insert trigger activates for each inserted row. A trigger can be set to activate either
before or after the trigger event. For example, you can have a trigger activate before each row that is
inserted into a table or after each row that is updated.

Important

MySQL triggers activate only for changes made to tables by SQL statements.
They do not activate for changes in tables made by APIs that do not transmit SQL
statements to the MySQL Server; in particular, they are not activated by updates
made using the NDB API.

Additional Resources

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1838

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To use triggers if you have upgraded to MySQL 5.0 from an older release that did not support triggers,
you should upgrade your grant tables so that they contain the trigger-related privileges. See Section 4.4.9,
“mysql_upgrade — Check Tables for MySQL Upgrade”.

The following sections describe the syntax for creating and dropping triggers, show some examples of how
to use them, and indicate how to obtain trigger metadata.

Additional Resources

• You may find the Triggers User Forum of use when working with triggers.

• For answers to commonly asked questions regarding triggers in MySQL, see Section A.5, “MySQL 5.0
FAQ: Triggers”.

• There are some restrictions on the use of triggers; see Section C.1, “Restrictions on Stored Programs”.

• Binary logging for triggers takes place as described in Section 18.6, “Binary Logging of Stored
Programs”.

18.3.1 Trigger Syntax and Examples

To create a trigger or drop a trigger, use the CREATE TRIGGER or DROP TRIGGER statement, described in
Section 13.1.11, “CREATE TRIGGER Syntax”, and Section 13.1.18, “DROP TRIGGER Syntax”.

Here is a simple example that associates a trigger with a table, to activate for INSERT operations. The
trigger acts as an accumulator, summing the values inserted into one of the columns of the table.

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account
 -> FOR EACH ROW SET @sum = @sum + NEW.amount;
Query OK, 0 rows affected (0.06 sec)

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the account
table. It also includes clauses that specify the trigger action time, the triggering event, and what to do when
the trigger activates:

• The keyword BEFORE indicates the trigger action time. In this case, the trigger activates before each row
inserted into the table. The other permitted keyword here is AFTER.

• The keyword INSERT indicates the trigger event; that is, the type of operation that activates the trigger.
In the example, INSERT operations cause trigger activation. You can also create triggers for DELETE
and UPDATE operations.

• The statement following FOR EACH ROW defines the trigger body; that is, the statement to execute
each time the trigger activates, which occurs once for each row affected by the triggering event. In the
example, the trigger body is a simple SET that accumulates into a user variable the values inserted into
the amount column. The statement refers to the column as NEW.amount which means “the value of the
amount column to be inserted into the new row.”

To use the trigger, set the accumulator variable to zero, execute an INSERT statement, and then see what
value the variable has afterward:

mysql> SET @sum = 0;
mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);
mysql> SELECT @sum AS 'Total amount inserted';
+-----------------------+

http://forums.mysql.com/list.php?100

Trigger Syntax and Examples

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1839

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

| Total amount inserted |
+-----------------------+
| 1852.48 |
+-----------------------+

In this case, the value of @sum after the INSERT statement has executed is 14.98 + 1937.50 - 100,
or 1852.48.

To destroy the trigger, use a DROP TRIGGER statement. You must specify the schema name if the trigger
is not in the default schema:

mysql> DROP TRIGGER test.ins_sum;

If you drop a table, any triggers for the table are also dropped.

Trigger names exist in the schema namespace, meaning that all triggers must have unique names within a
schema. Triggers in different schemas can have the same name.

In addition to the requirement that trigger names be unique for a schema, there are other limitations on
the types of triggers you can create. In particular, there cannot be multiple triggers for a given table that
have the same trigger event and action time. For example, you cannot have two BEFORE UPDATE triggers
for a table. To work around this, you can define a trigger that executes multiple statements by using the
BEGIN ... END compound statement construct after FOR EACH ROW. (An example appears later in this
section.)

Within the trigger body, the OLD and NEW keywords enable you to access columns in the rows affected by a
trigger. OLD and NEW are MySQL extensions to triggers; they are not case sensitive.

In an INSERT trigger, only NEW.col_name can be used; there is no old row. In a DELETE trigger, only
OLD.col_name can be used; there is no new row. In an UPDATE trigger, you can use OLD.col_name to
refer to the columns of a row before it is updated and NEW.col_name to refer to the columns of the row
after it is updated.

A column named with OLD is read only. You can refer to it (if you have the SELECT privilege), but not
modify it. You can refer to a column named with NEW if you have the SELECT privilege for it. In a BEFORE
trigger, you can also change its value with SET NEW.col_name = value if you have the UPDATE
privilege for it. This means you can use a trigger to modify the values to be inserted into a new row or used
to update a row. (Such a SET statement has no effect in an AFTER trigger because the row change will
have already occurred.)

In a BEFORE trigger, the NEW value for an AUTO_INCREMENT column is 0, not the sequence number that is
generated automatically when the new row actually is inserted.

By using the BEGIN ... END construct, you can define a trigger that executes multiple statements.
Within the BEGIN block, you also can use other syntax that is permitted within stored routines such as
conditionals and loops. However, just as for stored routines, if you use the mysql program to define a
trigger that executes multiple statements, it is necessary to redefine the mysql statement delimiter so
that you can use the ; statement delimiter within the trigger definition. The following example illustrates
these points. It defines an UPDATE trigger that checks the new value to be used for updating each row, and
modifies the value to be within the range from 0 to 100. This must be a BEFORE trigger because the value
must be checked before it is used to update the row:

mysql> delimiter //
mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account
 -> FOR EACH ROW
 -> BEGIN
 -> IF NEW.amount < 0 THEN
 -> SET NEW.amount = 0;

Trigger Syntax and Examples

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1840

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 -> ELSEIF NEW.amount > 100 THEN
 -> SET NEW.amount = 100;
 -> END IF;
 -> END;//
mysql> delimiter ;

It can be easier to define a stored procedure separately and then invoke it from the trigger using a simple
CALL statement. This is also advantageous if you want to execute the same code from within several
triggers.

There are limitations on what can appear in statements that a trigger executes when activated:

• The trigger cannot use the CALL statement to invoke stored procedures that return data to the client or
that use dynamic SQL. (Stored procedures are permitted to return data to the trigger through OUT or
INOUT parameters.)

• The trigger cannot use statements that explicitly or implicitly begin or end a transaction, such as START
TRANSACTION, COMMIT, or ROLLBACK. (ROLLBACK to SAVEPOINT is permitted because it does not
end a transaction.).

• Prior to MySQL 5.0.10, triggers cannot contain direct references to tables by name.

See also Section C.1, “Restrictions on Stored Programs”.

MySQL handles errors during trigger execution as follows:

• If a BEFORE trigger fails, the operation on the corresponding row is not performed.

• A BEFORE trigger is activated by the attempt to insert or modify the row, regardless of whether the
attempt subsequently succeeds.

• An AFTER trigger is executed only if any BEFORE triggers and the row operation execute successfully.

• An error during either a BEFORE or AFTER trigger results in failure of the entire statement that caused
trigger invocation.

• For transactional tables, failure of a statement should cause rollback of all changes performed by the
statement. Failure of a trigger causes the statement to fail, so trigger failure also causes rollback. For
nontransactional tables, such rollback cannot be done, so although the statement fails, any changes
performed prior to the point of the error remain in effect.

Before MySQL 5.0.10, triggers cannot contain direct references to tables by name. Beginning with MySQL
5.0.10, you can write triggers such as the one named testref shown in this example:

CREATE TABLE test1(a1 INT);
CREATE TABLE test2(a2 INT);
CREATE TABLE test3(a3 INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
CREATE TABLE test4(
 a4 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 b4 INT DEFAULT 0
);

delimiter |

CREATE TRIGGER testref BEFORE INSERT ON test1
 FOR EACH ROW
 BEGIN
 INSERT INTO test2 SET a2 = NEW.a1;
 DELETE FROM test3 WHERE a3 = NEW.a1;
 UPDATE test4 SET b4 = b4 + 1 WHERE a4 = NEW.a1;
 END;

Trigger Syntax and Examples

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1841

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

|

delimiter ;

INSERT INTO test3 (a3) VALUES
 (NULL), (NULL), (NULL), (NULL), (NULL),
 (NULL), (NULL), (NULL), (NULL), (NULL);

INSERT INTO test4 (a4) VALUES
 (0), (0), (0), (0), (0), (0), (0), (0), (0), (0);

Suppose that you insert the following values into table test1 as shown here:

mysql> INSERT INTO test1 VALUES
 -> (1), (3), (1), (7), (1), (8), (4), (4);
Query OK, 8 rows affected (0.01 sec)
Records: 8 Duplicates: 0 Warnings: 0

As a result, the four tables contain the following data:

mysql> SELECT * FROM test1;
+------+
| a1 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test2;
+------+
| a2 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test3;
+----+
| a3 |
+----+
| 2 |
| 5 |
| 6 |
| 9 |
| 10 |
+----+
5 rows in set (0.00 sec)

mysql> SELECT * FROM test4;
+----+------+
| a4 | b4 |

Trigger Metadata

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1842

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+----+------+
1	3
2	0
3	1
4	2
5	0
6	0
7	1
8	1
9	0
10	0
+----+------+
10 rows in set (0.00 sec)

18.3.2 Trigger Metadata

Metadata about triggers can be obtained as follows:

• Query the TRIGGERS table of the INFORMATION_SCHEMA database. See Section 19.15, “The
INFORMATION_SCHEMA TRIGGERS Table”.

• Use the SHOW TRIGGERS statement. See Section 13.7.5.35, “SHOW TRIGGERS Syntax”.

18.4 Using Views
MySQL supports views, including updatable views. Views are stored queries that when invoked produce a
result set. A view acts as a virtual table.

To use views if you have upgraded to MySQL 5.0.1 from an older release, you should upgrade your grant
tables so that they contain the view-related privileges. See Section 4.4.9, “mysql_upgrade — Check
Tables for MySQL Upgrade”.

The following discussion describes the syntax for creating and dropping views, and shows some examples
of how to use them.

Additional Resources

• You may find the Views User Forum of use when working with views.

• For answers to some commonly asked questions regarding views in MySQL, see Section A.6, “MySQL
5.0 FAQ: Views”.

• There are some restrictions on the use of views; see Section C.4, “Restrictions on Views”.

18.4.1 View Syntax

The CREATE VIEW statement creates a new view (see Section 13.1.12, “CREATE VIEW Syntax”). To alter
the definition of a view or drop a view, use ALTER VIEW (see Section 13.1.5, “ALTER VIEW Syntax”), or
DROP VIEW (see Section 13.1.19, “DROP VIEW Syntax”).

A view can be created from many kinds of SELECT statements. It can refer to base tables or other views.
It can use joins, UNION, and subqueries. The SELECT need not even refer to any tables. The following
example defines a view that selects two columns from another table, as well as an expression calculated
from those columns:

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50), (5, 60);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;

http://forums.mysql.com/list.php?100

View Processing Algorithms

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1843

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
| 5 | 60 | 300 |
+------+-------+-------+
mysql> SELECT * FROM v WHERE qty = 5;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 5 | 60 | 300 |
+------+-------+-------+

18.4.2 View Processing Algorithms

The optional ALGORITHM clause for CREATE VIEW or ALTER VIEW is a MySQL extension to standard
SQL. It affects how MySQL processes the view. ALGORITHM takes three values: MERGE, TEMPTABLE, or
UNDEFINED.

• For MERGE, the text of a statement that refers to the view and the view definition are merged such that
parts of the view definition replace corresponding parts of the statement.

• For TEMPTABLE, the results from the view are retrieved into a temporary table, which then is used to
execute the statement.

• For UNDEFINED, MySQL chooses which algorithm to use. It prefers MERGE over TEMPTABLE if possible,
because MERGE is usually more efficient and because a view cannot be updatable if a temporary table is
used.

• If no ALGORITHM clause is present, UNDEFINED is the default algorithm.

A reason to specify TEMPTABLE explicitly is that locks can be released on underlying tables after the
temporary table has been created and before it is used to finish processing the statement. This might result
in quicker lock release than the MERGE algorithm so that other clients that use the view are not blocked as
long.

A view algorithm can be UNDEFINED for three reasons:

• No ALGORITHM clause is present in the CREATE VIEW statement.

• The CREATE VIEW statement has an explicit ALGORITHM = UNDEFINED clause.

• ALGORITHM = MERGE is specified for a view that can be processed only with a temporary table. In this
case, MySQL generates a warning and sets the algorithm to UNDEFINED.

As mentioned earlier, MERGE is handled by merging corresponding parts of a view definition into the
statement that refers to the view. The following examples briefly illustrate how the MERGE algorithm works.
The examples assume that there is a view v_merge that has this definition:

CREATE ALGORITHM = MERGE VIEW v_merge (vc1, vc2) AS
SELECT c1, c2 FROM t WHERE c3 > 100;

Example 1: Suppose that we issue this statement:

SELECT * FROM v_merge;

MySQL handles the statement as follows:

• v_merge becomes t

Updatable and Insertable Views

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1844

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• * becomes vc1, vc2, which corresponds to c1, c2

• The view WHERE clause is added

The resulting statement to be executed becomes:

SELECT c1, c2 FROM t WHERE c3 > 100;

Example 2: Suppose that we issue this statement:

SELECT * FROM v_merge WHERE vc1 < 100;

This statement is handled similarly to the previous one, except that vc1 < 100 becomes c1 < 100 and
the view WHERE clause is added to the statement WHERE clause using an AND connective (and parentheses
are added to make sure the parts of the clause are executed with correct precedence). The resulting
statement to be executed becomes:

SELECT c1, c2 FROM t WHERE (c3 > 100) AND (c1 < 100);

Effectively, the statement to be executed has a WHERE clause of this form:

WHERE (select WHERE) AND (view WHERE)

If the MERGE algorithm cannot be used, a temporary table must be used instead. MERGE cannot be used if
the view contains any of the following constructs:

• Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

• DISTINCT

• GROUP BY

• HAVING

• LIMIT

• UNION or UNION ALL

• Subquery in the select list

• Assignment to user variables

• Refers only to literal values (in this case, there is no underlying table)

18.4.3 Updatable and Insertable Views

Some views are updatable and references to them can be used to specify tables to be updated in data
change statements. That is, you can use them in statements such as UPDATE, DELETE, or INSERT to
update the contents of the underlying table.

For a view to be updatable, there must be a one-to-one relationship between the rows in the view and the
rows in the underlying table. There are also certain other constructs that make a view nonupdatable. To be
more specific, a view is not updatable if it contains any of the following:

• Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

• DISTINCT

Updatable and Insertable Views

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1845

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• GROUP BY

• HAVING

• UNION or UNION ALL

• Subquery in the select list

• Certain joins (see additional join discussion later in this section)

• Reference to nonupdatable view in the FROM clause

• Subquery in the WHERE clause that refers to a table in the FROM clause

• Refers only to literal values (in this case, there is no underlying table to update)

• ALGORITHM = TEMPTABLE (use of a temporary table always makes a view nonupdatable)

• Multiple references to any column of a base table

It is sometimes possible for a multiple-table view to be updatable, assuming that it can be processed with
the MERGE algorithm. For this to work, the view must use an inner join (not an outer join or a UNION). Also,
only a single table in the view definition can be updated, so the SET clause must name only columns from
one of the tables in the view. Views that use UNION ALL are not permitted even though they might be
theoretically updatable.

With respect to insertability (being updatable with INSERT statements), an updatable view is insertable if it
also satisfies these additional requirements for the view columns:

• There must be no duplicate view column names.

• The view must contain all columns in the base table that do not have a default value.

• The view columns must be simple column references. They must not be expressions or composite
expressions, such as these:

3.14159
col1 + 3
UPPER(col2)
col3 / col4
(subquery)

MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES (true) if
UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is set to NO (false).
The IS_UPDATABLE column in the INFORMATION_SCHEMA.VIEWS table displays the status of this flag. It
means that the server always knows whether a view is updatable.

If a view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and are rejected.
(Note that even if a view is updatable, it might not be possible to insert into it, as described elsewhere in
this section.)

The updatability of views may be affected by the value of the updatable_views_with_limit system
variable. See Section 5.1.4, “Server System Variables”.

Earlier discussion in this section pointed out that a view is not insertable if not all columns are simple
column references (for example, if it contains columns that are expressions or composite expressions).
Although such a view is not insertable, it can be updatable if you update only columns that are not
expressions. Consider this view:

The View WITH CHECK OPTION Clause

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1846

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CREATE VIEW v AS SELECT col1, 1 AS col2 FROM t;

This view is not insertable because col2 is an expression. But it is updatable if the update does not try to
update col2. This update is permissible:

UPDATE v SET col1 = 0;

This update is not permissible because it attempts to update an expression column:

UPDATE v SET col2 = 0;

For a multiple-table updatable view, INSERT can work if it inserts into a single table. DELETE is not
supported.

INSERT DELAYED is not supported for views.

If a table contains an AUTO_INCREMENT column, inserting into an insertable view on the table that does
not include the AUTO_INCREMENT column does not change the value of LAST_INSERT_ID(), because
the side effects of inserting default values into columns not part of the view should not be visible.

18.4.4 The View WITH CHECK OPTION Clause

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts to rows for which
the WHERE clause in the select_statement is not true. It aslo prevents updates to rows for which the
WHERE clause is true but the update would cause it to be not true (in other words, it prevents visible rows
from being updated to nonvisible rows).

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords determine
the scope of check testing when the view is defined in terms of another view. When neither keyword is
given, the default is CASCADED. The LOCAL keyword restricts the CHECK OPTION only to the view being
defined. CASCADED causes the checks for underlying views to be evaluated as well.

Consider the definitions for the following table and set of views:

CREATE TABLE t1 (a INT);
CREATE VIEW v1 AS SELECT * FROM t1 WHERE a < 2
WITH CHECK OPTION;
CREATE VIEW v2 AS SELECT * FROM v1 WHERE a > 0
WITH LOCAL CHECK OPTION;
CREATE VIEW v3 AS SELECT * FROM v1 WHERE a > 0
WITH CASCADED CHECK OPTION;

Here the v2 and v3 views are defined in terms of another view, v1. v2 has a LOCAL check option, so
inserts are tested only against the v2 check. v3 has a CASCADED check option, so inserts are tested not
only against its own check, but against those of underlying views. The following statements illustrate these
differences:

mysql> INSERT INTO v2 VALUES (2);
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO v3 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v3'

18.4.5 View Metadata

Metadata about views can be obtained as follows:

Access Control for Stored Programs and Views

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1847

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Query the VIEWS table of the INFORMATION_SCHEMA database. See Section 19.17, “The
INFORMATION_SCHEMA VIEWS Table”.

• Use the SHOW CREATE VIEW statement. See Section 13.7.5.10, “SHOW CREATE VIEW Syntax”.

18.5 Access Control for Stored Programs and Views
Stored programs and views are defined prior to use and, when referenced, execute within a security
context that determines their privileges. These privileges are controlled by their DEFINER attribute, and, if
there is one, their SQL SECURITY characteristic.

All stored programs (procedures, functions, and triggers) and views can have a DEFINER attribute that
names a MySQL account. If the DEFINER attribute is omitted from a stored program or view definition, the
default account is the user who creates the object.

In addition, stored routines (procedures and functions) and views can have a SQL SECURITY
characteristic with a value of DEFINER or INVOKER to specify whether the object executes in definer or
invoker context. If the SQL SECURITY characteristic is omitted, the default is definer context.

Triggers have no SQL SECURITY characteristic and always execute in definer context. The server invokes
these objects automatically as necessary, so there is no invoking user.

Definer and invoker security contexts differ as follows:

• A stored program or view that executes in definer security context executes with the privileges of the
account named by its DEFINER attribute. These privileges may be entirely different from those of the
invoking user. The invoker must have appropriate privileges to reference the object (for example,
EXECUTE to call a stored procedure or SELECT to select from a view), but when the object executes, the
invoker's privileges are ignored and only the DEFINER account privileges matter. If this account has few
privileges, the object is correspondingly limited in the operations it can perform. If the DEFINER account
is highly privileged (such as a root account), the object can perform powerful operations no matter who
invokes it.

• A stored routine or view that executes in invoker security context can perform only operations for which
the invoker has privileges. The DEFINER attribute can be specified but has no effect for objects that
execute in invoker context.

Consider the following stored procedure:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE p1()
SQL SECURITY DEFINER
BEGIN
 UPDATE t1 SET counter = counter + 1;
END;

Any user who has the EXECUTE privilege for p1 can invoke it with a CALL statement. However,
when p1 executes, it does so in DEFINER security context and thus executes with the privileges of
'admin'@'localhost', the account named in the DEFINER attribute. This account must have the
EXECUTE privilege for p1 as well as the UPDATE privilege for the table t1. Otherwise, the procedure fails.

Now consider this stored procedure, which is identical to p1 except that its SQL SECURITY characteristic
is INVOKER:

CREATE DEFINER = 'admin'@'localhost' PROCEDURE p2()
SQL SECURITY INVOKER
BEGIN
 UPDATE t1 SET counter = counter + 1;

Binary Logging of Stored Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1848

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

END;

p2, unlike p1, executes in INVOKER security context. The DEFINER attribute is irrelevant and p2 executes
with the privileges of the invoking user. p2 fails if the invoker lacks the EXECUTE privilege for p2 or the
UPDATE privilege for the table t1.

MySQL uses the following rules to control which accounts a user can specify in an object DEFINER
attribute:

• You can specify a DEFINER value other than your own account only if you have the SUPER privilege.

• If you do not have the SUPER privilege, the only legal user value is your own account, either specified
literally or by using CURRENT_USER. You cannot set the definer to some other account.

To minimize the risk potential for stored program and view creation and use, follow these guidelines:

• For a stored routine or view, use SQL SECURITY INVOKER in the object definition when possible so
that it can be used only by users with permissions appropriate for the operations performed by the
object.

• If you create definer-context stored programs or views while using an account that has the SUPER
privilege, specify an explicit DEFINER attribute that names an account possessing only the privileges
required for the operations performed by the object. Specify a highly privileged DEFINER account only
when absolutely necessary.

• Administrators can prevent users from specifying highly privileged DEFINER accounts by not granting
them the SUPER privilege.

• Definer-context objects should be written keeping in mind that they may be able to access data for which
the invoking user has no privileges. In some cases, you can prevent reference to these objects by not
granting unauthorized users particular privileges:

• A stored procedure or function cannot be referenced by a user who does not have the EXECUTE
privilege for it.

• A view cannot be referenced by a user who does not have the appropriate privilege for it (SELECT to
select from it, INSERT to insert into it, and so forth).

However, no such control exists for triggers because users do not reference them directly. A trigger
always executes in DEFINER context and is activated by access to the table with which it is associated,
even ordinary table accesses by users with no special privileges. If the DEFINER account is highly
privileged, the trigger can perform sensitive or dangerous operations. This remains true if the
SUPER privilege needed to create the trigger is revoked from the account of the user who created it.
Administrators should be especially careful about granting users that privilege.

18.6 Binary Logging of Stored Programs
The binary log contains information about SQL statements that modify database contents. This information
is stored in the form of “events” that describe the modifications. The binary log has two important purposes:

• For replication, the binary log is used on master replication servers as a record of the statements to be
sent to slave servers. The master server sends the events contained in its binary log to its slaves, which
execute those events to make the same data changes that were made on the master. See Section 16.2,
“Replication Implementation”.

• Certain data recovery operations require use of the binary log. After a backup file has been restored,
the events in the binary log that were recorded after the backup was made are re-executed. These

Binary Logging of Stored Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1849

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

events bring databases up to date from the point of the backup. See Section 7.3.2, “Using Backups for
Recovery”.

However, there are certain binary logging issues that apply with respect to stored programs (stored
procedures and functions, and triggers):

• Logging occurs at the statement level. In some cases, it is possible that a statement will affect different
sets of rows on a master and a slave.

• Replicated statements executed on a slave are processed by the slave SQL thread, which has full
privileges. It is possible for a procedure to follow different execution paths on master and slave servers,
so a user can write a routine containing a dangerous statement that will execute only on the slave where
it is processed by a thread that has full privileges.

• If a stored program that modifies data is nondeterministic, it is not repeatable. This can result in different
data on a master and slave, or cause restored data to differ from the original data.

This section describes how MySQL 5.0 handles binary logging for stored programs. The discussion first
states the current conditions that the implementation places on the use of stored programs, and what
you can do to avoid problems. Then it summarizes the changes that have taken place in the logging
implementation. Finally, implementation details are given that provide information about when and why
various changes were made. These details show how several aspects of the current logging behavior were
implemented in response to shortcomings identified in earlier versions of MySQL.

In general, the issues described here occur due to the fact that binary logging occurs at the SQL statement
level. MySQL 5.1 implements row-level binary logging, which solves or alleviates these issues because the
log contains changes made to individual rows as a result of executing SQL statements.

Unless noted otherwise, the remarks here assume that you have enabled binary logging by starting the
server with the --log-bin option. (See Section 5.4.3, “The Binary Log”.) If the binary log is not enabled,
replication is not possible, nor is the binary log available for data recovery.

The current conditions on the use of stored functions in MySQL 5.0 can be summarized as follows. These
conditions do not apply to stored procedures and they do not apply unless binary logging is enabled.

• To create or alter a stored function, you must have the SUPER privilege, in addition to the CREATE
ROUTINE or ALTER ROUTINE privilege that is normally required. (Depending on the DEFINER value in
the function definition, SUPER might be required regardless of whether binary logging is enabled. See
Section 13.1.9, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.)

• When you create a stored function, you must declare either that it is deterministic or that it does not
modify data. Otherwise, it may be unsafe for data recovery or replication.

By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO
SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)

This function is deterministic (and does not modify data), so it is safe:

CREATE FUNCTION f1(i INT)
RETURNS INT
DETERMINISTIC
READS SQL DATA

Binary Logging of Stored Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1850

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

BEGIN
 RETURN i;
END;

This function uses UUID(), which is not deterministic, so the function also is not deterministic and is not
safe:

CREATE FUNCTION f2()
RETURNS CHAR(36) CHARACTER SET utf8
BEGIN
 RETURN UUID();
END;

This function modifies data, so it may not be safe:

CREATE FUNCTION f3(p_id INT)
RETURNS INT
BEGIN
 UPDATE t SET modtime = NOW() WHERE id = p_id;
 RETURN ROW_COUNT();
END;

Assessment of the nature of a function is based on the “honesty” of the creator: MySQL does not check
that a function declared DETERMINISTIC is free of statements that produce nondeterministic results.

• To relax the preceding conditions on function creation (that you must have the SUPER privilege
and that a function must be declared deterministic or to not modify data), set the global
log_bin_trust_function_creators system variable to 1. By default, this variable has a value of 0,
but you can change it like this:

mysql> SET GLOBAL log_bin_trust_function_creators = 1;

You can also set this variable by using the --log-bin-trust-function-creators=1 option when
starting the server.

If binary logging is not enabled, log_bin_trust_function_creators does not apply. SUPER is
not required for function creation unless, as described previously, the DEFINER value in the function
definition requires it.

• For information about built-in functions that may be unsafe for replication (and thus cause stored
functions that use them to be unsafe as well), see Section 16.4.1, “Replication Features and Issues”.

Triggers are similar to stored functions, so the preceding remarks regarding functions also apply to triggers
with the following exception: CREATE TRIGGER does not have an optional DETERMINISTIC characteristic,
so triggers are assumed to be always deterministic. However, this assumption might in some cases be
invalid. For example, the UUID() function is nondeterministic (and does not replicate). You should be
careful about using such functions in triggers.

Triggers can update tables, so error messages similar to those for stored functions occur with CREATE
TRIGGER if you do not have the required privileges. On the slave side, the slave uses the trigger DEFINER
attribute to determine which user is considered to be the creator of the trigger.

The rest of this section provides details on the development of stored routine logging. You need not read
it unless you are interested in the background on the rationale for the current logging-related conditions on
stored routine use.

The development of stored routine logging in MySQL 5.0 can be summarized as follows:

Binary Logging of Stored Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1851

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Before MySQL 5.0.6: In the initial implementation of stored routine logging, statements that create stored
routines and CALL statements are not logged. These omissions can cause problems for replication and
data recovery.

• MySQL 5.0.6: Statements that create stored routines and CALL statements are logged. Stored function
invocations are logged when they occur in statements that update data (because those statements
are logged). However, function invocations are not logged when they occur in statements such as
SELECT that do not change data, even if a data change occurs within a function itself; this can cause
problems. Under some circumstances, functions and procedures can have different effects if executed
at different times or on different (master and slave) machines, and thus can be unsafe for data recovery
or replication. To handle this, measures are implemented to enable identification of safe routines and to
prevent creation of unsafe routines except by users with sufficient privileges.

• MySQL 5.0.12: For stored functions, when a function invocation that changes data occurs within a
nonlogged statement such as SELECT, the server logs a DO func_name() statement that invokes
the function so that the function gets executed during data recovery or replication to slave servers. For
stored procedures, the server does not log CALL statements. Instead, it logs individual statements within
a procedure that are executed as a result of a CALL. This eliminates problems that may occur when a
procedure would follow a different execution path on a slave than on the master.

• MySQL 5.0.16: The procedure logging changes made in 5.0.12 enable the conditions on unsafe routines
to be relaxed for stored procedures. Consequently, the user interface for controlling these conditions is
revised to apply only to functions. Procedure creators are no longer bound by them.

• MySQL 5.0.17: Logging of stored functions as DO func_name() statements (per the changes made in
5.0.12) are logged as SELECT func_name() statements instead for better control over error checking.

Routine logging before MySQL 5.0.6: Statements that create and use stored routines are not written
to the binary log, but statements invoked within stored routines are logged. Suppose that you issue the
following statements:

CREATE PROCEDURE mysp INSERT INTO t VALUES(1);
CALL mysp();

For this example, only the INSERT statement appears in the binary log. The CREATE PROCEDURE and
CALL statements do not appear. The absence of routine-related statements in the binary log means that
stored routines are not replicated correctly. It also means that for a data recovery operation, re-executing
events in the binary log does not recover stored routines.

Routine logging changes in MySQL 5.0.6: To address the absence of logging for stored routine creation
and CALL statements (and the consequent replication and data recovery concerns), the characteristics of
binary logging for stored routines were changed as described here. (Some of the items in the following list
point out issues that are dealt with in later versions.)

• The server writes CREATE PROCEDURE, CREATE FUNCTION, ALTER PROCEDURE, ALTER FUNCTION,
DROP PROCEDURE, and DROP FUNCTION statements to the binary log. Also, the server logs CALL
statements, not the statements executed within procedures. Suppose that you issue the following
statements:

CREATE PROCEDURE mysp INSERT INTO t VALUES(1);
CALL mysp();

For this example, the CREATE PROCEDURE and CALL statements appear in the binary log, but the
INSERT statement does not appear. This corrects the problem that occurred before MySQL 5.0.6 such
that only the INSERT was logged.

Binary Logging of Stored Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1852

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Logging CALL statements has a security implication for replication, which arises from two factors:

• Statements executed on a slave are processed by the slave SQL thread which has full privileges.

• It is possible for a procedure to follow different execution paths on master and slave servers.

The implication is that although a user must have the CREATE ROUTINE privilege to create a routine,
the user can write a routine containing a dangerous statement that will execute only on the slave where
it is processed by a thread that has full privileges. For example, if the master and slave servers have
server ID values of 1 and 2, respectively, a user on the master server could create and invoke an unsafe
procedure unsafe_sp() as follows:

mysql> delimiter //
mysql> CREATE PROCEDURE unsafe_sp ()
 -> BEGIN
 -> IF @@server_id=2 THEN DROP DATABASE accounting; END IF;
 -> END;
 -> //
mysql> delimiter ;
mysql> CALL unsafe_sp();

The CREATE PROCEDURE and CALL statements are written to the binary log, so the slave will execute
them. Because the slave SQL thread has full privileges, it will execute the DROP DATABASE statement
that drops the accounting database. Thus, the CALL statement has different effects on the master and
slave and is not replication-safe.

The preceding example uses a stored procedure, but similar problems can occur for stored functions that
are invoked within statements that are written to the binary log: Function invocation has different effects
on the master and slave.

To guard against this danger for servers that have binary logging enabled, MySQL 5.0.6 introduces the
requirement that stored procedure and function creators must have the SUPER privilege, in addition to
the usual CREATE ROUTINE privilege that is required. Similarly, to use ALTER PROCEDURE or ALTER
FUNCTION, you must have the SUPER privilege in addition to the ALTER ROUTINE privilege. Without the
SUPER privilege, an error will occur:

ERROR 1419 (HY000): You do not have the SUPER privilege and
binary logging is enabled (you *might* want to use the less safe
log_bin_trust_routine_creators variable)

If you do not want to require routine creators to have the SUPER privilege (for example, if all users with
the CREATE ROUTINE privilege on your system are experienced application developers), set the global
log_bin_trust_routine_creators system variable to 1. You can also set this variable by using
the --log-bin-trust-routine-creators=1 option when starting the server. If binary logging is
not enabled, log_bin_trust_routine_creators does not apply. SUPER is not required for routine
creation unless, as described previously, the DEFINER value in the routine definition requires it.

• If a routine that performs updates is nondeterministic, it is not repeatable. This can have two undesirable
effects:

• It will make a slave different from the master.

• Restored data will be different from the original data.

Binary Logging of Stored Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1853

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To deal with these problems, MySQL enforces the following requirement: On a master server, creation
and alteration of a routine is refused unless you declare the routine to be deterministic or to not modify
data. Two sets of routine characteristics apply here:

• The DETERMINISTIC and NOT DETERMINISTIC characteristics indicate whether a routine
always produces the same result for given inputs. The default is NOT DETERMINISTIC if neither
characteristic is given. To declare that a routine is deterministic, you must specify DETERMINISTIC
explicitly.

• The CONTAINS SQL, NO SQL, READS SQL DATA, and MODIFIES SQL DATA characteristics provide
information about whether the routine reads or writes data. Either NO SQL or READS SQL DATA
indicates that a routine does not change data, but you must specify one of these explicitly because the
default is CONTAINS SQL if no characteristic is given.

By default, for a CREATE PROCEDURE or CREATE FUNCTION statement to be accepted, at least one
of DETERMINISTIC, NO SQL, or READS SQL DATA must be specified explicitly. Otherwise an error
occurs:

ERROR 1418 (HY000): This routine has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_routine_creators
variable)

If you set log_bin_trust_routine_creators to 1, the requirement that routines be deterministic or
not modify data is dropped.

• A CALL statement is written to the binary log if the routine returns no error, but not otherwise. When a
routine that modifies data fails, you get this warning:

ERROR 1417 (HY000): A routine failed and has neither NO SQL nor
READS SQL DATA in its declaration and binary logging is enabled; if
non-transactional tables were updated, the binary log will miss their
changes

This logging behavior has the potential to cause problems. If a routine partly modifies a nontransactional
table (such as a MyISAM table) and returns an error, the binary log will not reflect these changes. To
protect against this, you should use transactional tables in the routine and modify the tables within
transactions.

If you use the IGNORE keyword with INSERT, DELETE, or UPDATE to ignore errors within a routine,
a partial update might occur but no error will result. Such statements are logged and they replicate
normally.

• Although statements normally are not written to the binary log if they are rolled back, CALL statements
are logged even when they occur within a rolled-back transaction. This can result in a CALL being rolled
back on the master but executed on slaves.

• If a stored function is invoked within a statement such as SELECT that does not modify data, execution of
the function is not written to the binary log, even if the function itself modifies data. This logging behavior
has the potential to cause problems. Suppose that a function myfunc() is defined as follows:

CREATE FUNCTION myfunc () RETURNS INT DETERMINISTIC
BEGIN
 INSERT INTO t (i) VALUES(1);
 RETURN 0;

Binary Logging of Stored Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1854

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

END;

Given that definition, the following statement is not written to the binary log because it is a SELECT.
Nevertheless, it modifies the table t because myfunc() modifies t:

SELECT myfunc();

A workaround for this problem is to invoke functions that do updates only within statements that do
updates (and which therefore are written to the binary log). Note that although the DO statement
sometimes is executed for the side effect of evaluating an expression, DO is not a workaround here
because it is not written to the binary log.

• On slave servers, --replicate-*-table rules do not apply to CALL statements or to statements
within stored routines. These statements are always replicated. If such statements contain references to
tables that do not exist on the slave, they could have undesirable effects when executed on the slave.

Routine logging changes in MySQL 5.0.12: The changes in 5.0.12 address several problems that were
present in earlier versions:

• Stored function invocations in nonlogged statements such as SELECT were not being logged, even when
a function itself changed data.

• Stored procedure logging at the CALL level could cause different effects on a master and slave if a
procedure took different execution paths on the two machines.

• CALL statements were logged even when they occurred within a rolled-back transaction.

To deal with these issues, MySQL 5.0.12 implements the following changes to procedure and function
logging:

• A stored function invocation is logged as a DO statement if the function changes data and occurs
within a statement that would not otherwise be logged. This corrects the problem of nonreplication of
data changes that result from use of stored functions in nonlogged statements. For example, SELECT
statements are not written to the binary log, but a SELECT might invoke a stored function that makes
changes. To handle this, a DO func_name() statement is written to the binary log when the given
function makes a change. Suppose that the following statements are executed on the master:

CREATE FUNCTION f1(a INT) RETURNS INT
BEGIN
 IF (a < 3) THEN
 INSERT INTO t2 VALUES (a);
 END IF;
 RETURN 0;
END;

CREATE TABLE t1 (a INT);
INSERT INTO t1 VALUES (1),(2),(3);

SELECT f1(a) FROM t1;

When the SELECT statement executes, the function f1() is invoked three times. Two of those
invocations insert a row, and MySQL logs a DO statement for each of them. That is, MySQL writes the
following statements to the binary log:

DO f1(1);
DO f1(2);

Binary Logging of Stored Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1855

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The server also logs a DO statement for a stored function invocation when the function invokes a stored
procedure that causes an error. In this case, the server writes the DO statement to the log along with the
expected error code. On the slave, if the same error occurs, that is the expected result and replication
continues. Otherwise, replication stops.

Note: See later in this section for changes made in MySQL 5.0.19: These logged DO func_name()
statements are logged as SELECT func_name() statements instead.

• Stored procedure calls are logged at the statement level rather than at the CALL level. That is, the server
does not log the CALL statement, it logs those statements within the procedure that actually execute. As
a result, the same changes that occur on the master will be observed on slave servers. This eliminates
the problems that could result from a procedure having different execution paths on different machines.
For example, the DROP DATABASE problem shown earlier for the unsafe_sp() procedure does not
occur and the routine is no longer replication-unsafe because it has the same effect on master and slave
servers.

In general, statements executed within a stored procedure are written to the binary log using the same
rules that would apply were the statements to be executed in standalone fashion. Some special care is
taken when logging procedure statements because statement execution within procedures is not quite
the same as in nonprocedure context:

• A statement to be logged might contain references to local procedure variables. These variables do
not exist outside of stored procedure context, so a statement that refers to such a variable cannot be
logged literally. Instead, each reference to a local variable is replaced by this construct for logging
purposes:

NAME_CONST(var_name, var_value)

var_name is the local variable name, and var_value is a constant indicating the value that the
variable has at the time the statement is logged. NAME_CONST() has a value of var_value, and a
“name” of var_name. Thus, if you invoke this function directly, you get a result like this:

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+

NAME_CONST() enables a logged standalone statement to be executed on a slave with the same
effect as the original statement that was executed on the master within a stored procedure.

The use of NAME_CONST() can result in a problem for CREATE TABLE ... SELECT statements
when the source column expressions refer to local variables. Converting these references to
NAME_CONST() expressions can result in column names that are different on the master and slave
servers, or names that are too long to be legal column identifiers. A workaround is to supply aliases for
columns that refer to local variables. Consider this statement when myvar has a value of 1:

CREATE TABLE t1 SELECT myvar;

That will be rewritten as follows:

CREATE TABLE t1 SELECT NAME_CONST(myvar, 1);

Binary Logging of Stored Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1856

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To ensure that the master and slave tables have the same column names, write the statement like
this:

CREATE TABLE t1 SELECT myvar AS myvar;

The rewritten statement becomes:

CREATE TABLE t1 SELECT NAME_CONST(myvar, 1) AS myvar;

• A statement to be logged might contain references to user-defined variables. To handle this, MySQL
writes a SET statement to the binary log to make sure that the variable exists on the slave with
the same value as on the master. For example, if a statement refers to a variable @my_var, that
statement will be preceded in the binary log by the following statement, where value is the value of
@my_var on the master:

SET @my_var = value;

• Procedure calls can occur within a committed or rolled-back transaction. Previously, CALL statements
were logged even if they occurred within a rolled-back transaction. As of MySQL 5.0.12, transactional
context is accounted for so that the transactional aspects of procedure execution are replicated
correctly. That is, the server logs those statements within the procedure that actually execute and
modify data, and also logs BEGIN, COMMIT, and ROLLBACK statements as necessary. For example, if
a procedure updates only transactional tables and is executed within a transaction that is rolled back,
those updates are not logged. If the procedure occurs within a committed transaction, BEGIN and
COMMIT statements are logged with the updates. For a procedure that executes within a rolled-back
transaction, its statements are logged using the same rules that would apply if the statements were
executed in standalone fashion:

• Updates to transactional tables are not logged.

• Updates to nontransactional tables are logged because rollback does not cancel them.

• Updates to a mix of transactional and nontransactional tables are logged surrounded by BEGIN and
ROLLBACK so that slaves will make the same changes and rollbacks as on the master.

• A stored procedure call is not written to the binary log at the statement level if the procedure is invoked
from within a stored function. In that case, the only thing logged is the statement that invokes the
function (if it occurs within a statement that is logged) or a DO statement (if it occurs within a statement
that is not logged). For this reason, care still should be exercised in the use of stored functions that
invoke a procedure, even if the procedure is otherwise safe in itself.

• Because procedure logging occurs at the statement level rather than at the CALL level, interpretation of
the --replicate-*-table options is revised to apply only to stored functions. They no longer apply
to stored procedures, except those procedures that are invoked from within functions.

Routine logging changes in MySQL 5.0.16: In 5.0.12, a change was introduced to log stored procedure
calls at the statement level rather than at the CALL level. This change eliminates the requirement that
procedures be identified as safe. The requirement now exists only for stored functions, because they still
appear in the binary log as function invocations rather than as the statements executed within the function.
To reflect the lifting of the restriction on stored procedures, the log_bin_trust_routine_creators
system variable is renamed to log_bin_trust_function_creators and the --log-bin-trust-
routine-creators server option is renamed to --log-bin-trust-function-creators. (For

Binary Logging of Stored Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1857

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

backward compatibility, the old names are recognized but result in a warning.) Error messages that now
apply only to functions and not to routines in general are re-worded.

Routine logging changes in MySQL 5.0.19: In 5.0.12, a change was introduced to log a stored function
invocation as DO func_name() if the invocation changes data and occurs within a nonlogged statement,
or if the function invokes a stored procedure that produces an error. In 5.0.19, these invocations are logged
as SELECT func_name() instead. The change to SELECT was made because use of DO was found to
yield insufficient control over error code checking.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1858

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1859

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 19 INFORMATION_SCHEMA Tables

Table of Contents
19.1 The INFORMATION_SCHEMA CHARACTER_SETS Table .. 1861
19.2 The INFORMATION_SCHEMA COLLATIONS Table .. 1862
19.3 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table 1862
19.4 The INFORMATION_SCHEMA COLUMNS Table ... 1862
19.5 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table .. 1863
19.6 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table ... 1864
19.7 The INFORMATION_SCHEMA PROFILING Table .. 1865
19.8 The INFORMATION_SCHEMA ROUTINES Table .. 1866
19.9 The INFORMATION_SCHEMA SCHEMATA Table ... 1867
19.10 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table .. 1868
19.11 The INFORMATION_SCHEMA STATISTICS Table .. 1868
19.12 The INFORMATION_SCHEMA TABLES Table ... 1869
19.13 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table .. 1870
19.14 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table .. 1870
19.15 The INFORMATION_SCHEMA TRIGGERS Table .. 1871
19.16 The INFORMATION_SCHEMA USER_PRIVILEGES Table ... 1873
19.17 The INFORMATION_SCHEMA VIEWS Table ... 1873
19.18 Extensions to SHOW Statements ... 1874

INFORMATION_SCHEMA provides access to database metadata.

Metadata is data about the data, such as the name of a database or table, the data type of a column, or
access privileges. Other terms that sometimes are used for this information are data dictionary and system
catalog.

INFORMATION_SCHEMA is the information database, the place that stores information about all the other
databases that the MySQL server maintains. Inside INFORMATION_SCHEMA there are several read-only
tables. They are actually views, not base tables, so there are no files associated with them, and you cannot
set triggers on them. Also, there is no database directory with that name.

Although you can select INFORMATION_SCHEMA as the default database with a USE statement, you can
only read the contents of tables, not perform INSERT, UPDATE, or DELETE operations on them.

Here is an example of a statement that retrieves information from INFORMATION_SCHEMA:

mysql> SELECT table_name, table_type, engine
 -> FROM information_schema.tables
 -> WHERE table_schema = 'db5'
 -> ORDER BY table_name DESC;
+------------+------------+--------+
| table_name | table_type | engine |
+------------+------------+--------+
v56	VIEW	NULL
v3	VIEW	NULL
v2	VIEW	NULL
v	VIEW	NULL
tables	BASE TABLE	MyISAM
t7	BASE TABLE	MyISAM
t3	BASE TABLE	MyISAM
t2	BASE TABLE	MyISAM
t	BASE TABLE	MyISAM

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1860

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

pk	BASE TABLE	InnoDB
loop	BASE TABLE	MyISAM
kurs	BASE TABLE	MyISAM
k	BASE TABLE	MyISAM
into	BASE TABLE	MyISAM
goto	BASE TABLE	MyISAM
fk2	BASE TABLE	InnoDB
fk	BASE TABLE	InnoDB
+------------+------------+--------+
17 rows in set (0.01 sec)

Explanation: The statement requests a list of all the tables in database db5, in reverse alphabetic order,
showing just three pieces of information: the name of the table, its type, and its storage engine.

The definition for character columns (for example, TABLES.TABLE_NAME) is generally VARCHAR(N)
CHARACTER SET utf8 where N is at least 64. MySQL uses the default collation for this character set
(utf8_general_ci) for all searches, sorts, comparisons, and other string operations on such columns.
Values such as table names in INFORMATION_SCHEMA columns are treated as strings, not identifiers, and
are not compared using the identifier rules described in Section 9.2.2, “Identifier Case Sensitivity”. If the
result of a string operation on an INFORMATION_SCHEMA column differs from expectations, a workaround
is to use an explicit COLLATE clause to force a suitable collation (Section 10.1.7.2, “Using COLLATE in
SQL Statements”). You can also use the UPPER() or LOWER() function. For example, in a WHERE clause,
you might use:

WHERE TABLE_NAME COLLATE utf8_bin = 'City'
WHERE TABLE_NAME COLLATE utf8_general_ci = 'city'
WHERE UPPER(TABLE_NAME) = 'CITY'
WHERE LOWER(TABLE_NAME) = 'city'

Each MySQL user has the right to access these tables, but can see only the rows in the tables that
correspond to objects for which the user has the proper access privileges. In some cases (for example,
the ROUTINE_DEFINITION column in the INFORMATION_SCHEMA.ROUTINES table), users who have
insufficient privileges will see NULL.

The SELECT ... FROM INFORMATION_SCHEMA statement is intended as a more consistent way to
provide access to the information provided by the various SHOW statements that MySQL supports (SHOW
DATABASES, SHOW TABLES, and so forth). Using SELECT has these advantages, compared to SHOW:

• It conforms to Codd's rules. That is, all access is done on tables.

• Nobody needs to learn a new statement syntax. Because they already know how SELECT works, they
only need to learn the object names.

• The implementor need not worry about adding keywords.

• There are millions of possible output variations, instead of just one. This provides more flexibility for
applications that have varying requirements about what metadata they need.

• Migration is easier because every other DBMS does it this way.

However, because SHOW is popular and because it might be confusing were it to disappear, the
advantages of conventional syntax are not a sufficient reason to eliminate SHOW. In fact, along with the
implementation of INFORMATION_SCHEMA, there are enhancements to SHOW as well. These are described
in Section 19.18, “Extensions to SHOW Statements”.

There is no difference between the privileges required for SHOW statements and those required to select
information from INFORMATION_SCHEMA. In either case, you have to have some privilege on an object in
order to see information about it.

The INFORMATION_SCHEMA CHARACTER_SETS Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1861

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The implementation for the INFORMATION_SCHEMA table structures in MySQL follows the ANSI/ISO
SQL:2003 standard Part 11 Schemata. Our intent is approximate compliance with SQL:2003 core feature
F021 Basic information schema.

Users of SQL Server 2000 (which also follows the standard) may notice a strong similarity. However,
MySQL has omitted many columns that are not relevant for our implementation, and added columns that
are MySQL-specific. One such column is the ENGINE column in the INFORMATION_SCHEMA.TABLES
table.

Although other DBMSs use a variety of names, like syscat or system, the standard name is
INFORMATION_SCHEMA.

The following sections describe each of the tables and columns that are in INFORMATION_SCHEMA. For
each column, there are three pieces of information:

• “INFORMATION_SCHEMA Name” indicates the name for the column in the INFORMATION_SCHEMA table.
This corresponds to the standard SQL name unless the “Remarks” field says “MySQL extension.”

• “SHOW Name” indicates the equivalent field name in the closest SHOW statement, if there is one.

• “Remarks” provides additional information where applicable. If this field is NULL, it means that the value
of the column is always NULL. If this field says “MySQL extension,” the column is a MySQL extension to
standard SQL.

To avoid using any name that is reserved in the standard or in DB2, SQL Server, or Oracle, we changed
the names of some columns marked “MySQL extension”. (For example, we changed COLLATION to
TABLE_COLLATION in the TABLES table.) See the list of reserved words near the end of this article: http://
web.archive.org/web/20070409075643rn_1/www.dbazine.com/db2/db2-disarticles/gulutzan5.

Many sections indicate what SHOW statement is equivalent to a SELECT that retrieves information from
INFORMATION_SCHEMA. For SHOW statements that display information for the default database if you omit
a FROM db_name clause, you can often select information for the default database by adding an AND
TABLE_SCHEMA = DATABASE() condition to the WHERE clause of a query that retrieves information from
an INFORMATION_SCHEMA table.

For answers to questions that are often asked concerning the INFORMATION_SCHEMA database, see
Section A.7, “MySQL 5.0 FAQ: INFORMATION_SCHEMA”.

19.1 The INFORMATION_SCHEMA CHARACTER_SETS Table
The CHARACTER_SETS table provides information about available character sets.

INFORMATION_SCHEMA Name SHOW Name Remarks

CHARACTER_SET_NAME Charset

DEFAULT_COLLATE_NAME Default collation

DESCRIPTION Description MySQL extension

MAXLEN Maxlen MySQL extension

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
 [WHERE CHARACTER_SET_NAME LIKE 'wild']

SHOW CHARACTER SET
 [LIKE 'wild']

http://web.archive.org/web/20070409075643rn_1/www.dbazine.com/db2/db2-disarticles/gulutzan5
http://web.archive.org/web/20070409075643rn_1/www.dbazine.com/db2/db2-disarticles/gulutzan5

The INFORMATION_SCHEMA COLLATIONS Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1862

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

19.2 The INFORMATION_SCHEMA COLLATIONS Table
The COLLATIONS table provides information about collations for each character set.

INFORMATION_SCHEMA Name SHOW Name Remarks

COLLATION_NAME Collation

CHARACTER_SET_NAME Charset MySQL extension

ID Id MySQL extension

IS_DEFAULT Default MySQL extension

IS_COMPILED Compiled MySQL extension

SORTLEN Sortlen MySQL extension

• COLLATION_NAME is the collation name.

• CHARACTER_SET_NAME is the name of the character set with which the collation is associated.

• ID is the collation ID.

• IS_DEFAULT indicates whether the collation is the default for its character set.

• IS_COMPILED indicates whether the character set is compiled into the server.

• SORTLEN is related to the amount of memory required to sort strings expressed in the character set.

Collation information is also available from the SHOW COLLATION statement. The following statements are
equivalent:

SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
 [WHERE COLLATION_NAME LIKE 'wild']

SHOW COLLATION
 [LIKE 'wild']

19.3 The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY Table

The COLLATION_CHARACTER_SET_APPLICABILITY table indicates what character set is applicable
for what collation. The columns are equivalent to the first two display fields that we get from SHOW
COLLATION.

INFORMATION_SCHEMA Name SHOW Name Remarks

COLLATION_NAME Collation

CHARACTER_SET_NAME Charset

19.4 The INFORMATION_SCHEMA COLUMNS Table
The COLUMNS table provides information about columns in tables.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA

The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1863

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_NAME

COLUMN_NAME Field

ORDINAL_POSITION see notes

COLUMN_DEFAULT Default

IS_NULLABLE Null

DATA_TYPE Type

CHARACTER_MAXIMUM_LENGTH Type

CHARACTER_OCTET_LENGTH

NUMERIC_PRECISION Type

NUMERIC_SCALE Type

CHARACTER_SET_NAME

COLLATION_NAME Collation

COLUMN_TYPE Type MySQL extension

COLUMN_KEY Key MySQL extension

EXTRA Extra MySQL extension

PRIVILEGES Privileges MySQL extension

COLUMN_COMMENT Comment MySQL extension

Notes:

• In SHOW, the Type display includes values from several different COLUMNS columns.

• ORDINAL_POSITION is necessary because you might want to say ORDER BY ORDINAL_POSITION.
Unlike SHOW, SELECT does not have automatic ordering.

• CHARACTER_OCTET_LENGTH should be the same as CHARACTER_MAXIMUM_LENGTH, except for
multibyte character sets.

• CHARACTER_SET_NAME can be derived from Collation. For example, if you say SHOW FULL
COLUMNS FROM t, and you see in the Collation column a value of latin1_swedish_ci, the
character set is what is before the first underscore: latin1.

The following statements are nearly equivalent:

SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE table_name = 'tbl_name'
 [AND table_schema = 'db_name']
 [AND column_name LIKE 'wild']

SHOW COLUMNS
 FROM tbl_name
 [FROM db_name]
 [LIKE 'wild']

19.5 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
The COLUMN_PRIVILEGES table provides information about column privileges. This information comes
from the mysql.columns_priv grant table.

The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1864

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

PRIVILEGE_TYPE

IS_GRANTABLE

Notes:

• In the output from SHOW FULL COLUMNS, the privileges are all in one field and in lowercase, for
example, select,insert,update,references. In COLUMN_PRIVILEGES, there is one privilege per
row, in uppercase.

• PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE,
REFERENCES.

• If the user has GRANT OPTION privilege, IS_GRANTABLE should be YES. Otherwise, IS_GRANTABLE
should be NO. The output does not list GRANT OPTION as a separate privilege.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.COLUMN_PRIVILEGES

SHOW GRANTS ...

19.6 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table

The KEY_COLUMN_USAGE table describes which key columns have constraints.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG NULL

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

ORDINAL_POSITION

POSITION_IN_UNIQUE_CONSTRAINT

REFERENCED_TABLE_SCHEMA

REFERENCED_TABLE_NAME

REFERENCED_COLUMN_NAME

Notes:

The INFORMATION_SCHEMA PROFILING Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1865

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• If the constraint is a foreign key, then this is the column of the foreign key, not the column that the foreign
key references.

• The value of ORDINAL_POSITION is the column's position within the constraint, not the column's
position within the table. Column positions are numbered beginning with 1.

• The value of POSITION_IN_UNIQUE_CONSTRAINT is NULL for unique and primary-key constraints. For
foreign-key constraints, it is the ordinal position in key of the table that is being referenced.

Suppose that there are two tables name t1 and t3 that have the following definitions:

CREATE TABLE t1
(
 s1 INT,
 s2 INT,
 s3 INT,
 PRIMARY KEY(s3)
) ENGINE=InnoDB;

CREATE TABLE t3
(
 s1 INT,
 s2 INT,
 s3 INT,
 KEY(s1),
 CONSTRAINT CO FOREIGN KEY (s2) REFERENCES t1(s3)
) ENGINE=InnoDB;

For those two tables, the KEY_COLUMN_USAGE table has two rows:

• One row with CONSTRAINT_NAME = 'PRIMARY', TABLE_NAME = 't1', COLUMN_NAME = 's3',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = NULL.

• One row with CONSTRAINT_NAME = 'CO', TABLE_NAME = 't3', COLUMN_NAME = 's2',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = 1.

• REFERENCED_TABLE_SCHEMA, REFERENCED_TABLE_NAME, and REFERENCED_COLUMN_NAME were
added in MySQL 5.0.6.

19.7 The INFORMATION_SCHEMA PROFILING Table

The PROFILING table provides statement profiling information. Its contents correspond to the information
produced by the SHOW PROFILES and SHOW PROFILE statements (see Section 13.7.5.29, “SHOW
PROFILES Syntax”). The table is empty unless the profiling session variable is set to 1.

INFORMATION_SCHEMA Name SHOW Name Remarks

QUERY_ID Query_ID

SEQ

STATE Status

DURATION Duration

CPU_USER CPU_user

CPU_SYSTEM CPU_system

CONTEXT_VOLUNTARY Context_voluntary

CONTEXT_INVOLUNTARY Context_involuntary

The INFORMATION_SCHEMA ROUTINES Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1866

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

INFORMATION_SCHEMA Name SHOW Name Remarks

BLOCK_OPS_IN Block_ops_in

BLOCK_OPS_OUT Block_ops_out

MESSAGES_SENT Messages_sent

MESSAGES_RECEIVED Messages_received

PAGE_FAULTS_MAJOR Page_faults_major

PAGE_FAULTS_MINOR Page_faults_minor

SWAPS Swaps

SOURCE_FUNCTION Source_function

SOURCE_FILE Source_file

SOURCE_LINE Source_line

Notes:

• The PROFILING table was added in MySQL 5.0.37.

• QUERY_ID is a numeric statement identifier.

• SEQ is a sequence number indicating the display order for rows with the same QUERY_ID value.

• STATE is the profiling state to which the row measurements apply.

• DURATION indicates how long statement execution remained in the given state, in seconds.

• CPU_USER and CPU_SYSTEM indicate user and system CPU use, in seconds.

• CONTEXT_VOLUNTARY and CONTEXT_INVOLUNTARY indicate how many voluntary and involuntary
context switches occurred.

• BLOCK_OPS_IN and BLOCK_OPS_OUT indicate the number of block input and output operations.

• MESSAGES_SENT and MESSAGES_RECEIVED indicate the number of communication messages sent and
received.

• PAGE_FAULTS_MAJOR and PAGE_FAULTS_MINOR indicate the number of major and minor page faults.

• SWAPS indicates how many swaps occurred.

• SOURCE_FUNCTION, SOURCE_FILE, and SOURCE_LINE provide information indicating where in the
source code the profiled state executes.

19.8 The INFORMATION_SCHEMA ROUTINES Table

The ROUTINES table provides information about stored routines (both procedures and functions). The
ROUTINES table does not include user-defined functions (UDFs).

The column named “mysql.proc name” indicates the mysql.proc table column that corresponds to the
INFORMATION_SCHEMA.ROUTINES table column, if any.

INFORMATION_SCHEMA Name mysql.proc Name Remarks

SPECIFIC_NAME specific_name

The INFORMATION_SCHEMA SCHEMATA Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1867

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

INFORMATION_SCHEMA Name mysql.proc Name Remarks

ROUTINE_CATALOG NULL

ROUTINE_SCHEMA db

ROUTINE_NAME name

ROUTINE_TYPE type {PROCEDURE|FUNCTION}

DTD_IDENTIFIER data type descriptor

ROUTINE_BODY SQL

ROUTINE_DEFINITION body

EXTERNAL_NAME NULL

EXTERNAL_LANGUAGE language NULL

PARAMETER_STYLE SQL

IS_DETERMINISTIC is_deterministic

SQL_DATA_ACCESS sql_data_access

SQL_PATH NULL

SECURITY_TYPE security_type

CREATED created

LAST_ALTERED modified

SQL_MODE sql_mode MySQL extension

ROUTINE_COMMENT comment MySQL extension

DEFINER definer MySQL extension

Notes:

• MySQL calculates EXTERNAL_LANGUAGE thus:

• If mysql.proc.language='SQL', EXTERNAL_LANGUAGE is NULL

• Otherwise, EXTERNAL_LANGUAGE is what is in mysql.proc.language. However, we do not have
external languages yet, so it is always NULL.

19.9 The INFORMATION_SCHEMA SCHEMATA Table
A schema is a database, so the SCHEMATA table provides information about databases.

INFORMATION_SCHEMA Name SHOW Name Remarks

CATALOG_NAME NULL

SCHEMA_NAME Database

DEFAULT_CHARACTER_SET_NAME

DEFAULT_COLLATION_NAME

SQL_PATH NULL

Notes:

• DEFAULT_COLLATION_NAME was added in MySQL 5.0.6.

The following statements are equivalent:

The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1868

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT SCHEMA_NAME AS `Database`
 FROM INFORMATION_SCHEMA.SCHEMATA
 [WHERE SCHEMA_NAME LIKE 'wild']

SHOW DATABASES
 [LIKE 'wild']

19.10 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table

The SCHEMA_PRIVILEGES table provides information about schema (database) privileges. This
information comes from the mysql.db grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value, MySQL extension

TABLE_CATALOG NULL, MySQL extension

TABLE_SCHEMA MySQL extension

PRIVILEGE_TYPE MySQL extension

IS_GRANTABLE MySQL extension

Notes:

• This is a nonstandard table. It takes its values from the mysql.db table.

19.11 The INFORMATION_SCHEMA STATISTICS Table

The STATISTICS table provides information about table indexes.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA = Database

TABLE_NAME Table

NON_UNIQUE Non_unique

INDEX_SCHEMA = Database

INDEX_NAME Key_name

SEQ_IN_INDEX Seq_in_index

COLUMN_NAME Column_name

COLLATION Collation

CARDINALITY Cardinality

SUB_PART Sub_part MySQL extension

PACKED Packed MySQL extension

NULLABLE Null MySQL extension

INDEX_TYPE Index_type MySQL extension

COMMENT Comment MySQL extension

Notes:

The INFORMATION_SCHEMA TABLES Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1869

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• There is no standard table for indexes. The preceding list is similar to what SQL Server 2000 returns for
sp_statistics, except that we replaced the name QUALIFIER with CATALOG and we replaced the
name OWNER with SCHEMA.

Clearly, the preceding table and the output from SHOW INDEX are derived from the same parent. So the
correlation is already close.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.STATISTICS
 WHERE table_name = 'tbl_name'
 AND table_schema = 'db_name'

SHOW INDEX
 FROM tbl_name
 FROM db_name

19.12 The INFORMATION_SCHEMA TABLES Table

The TABLES table provides information about tables in databases.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA Table_...

TABLE_NAME Table_...

TABLE_TYPE

ENGINE Engine MySQL extension

VERSION Version The version number of the
table's .frm file, MySQL
extension

ROW_FORMAT Row_format MySQL extension

TABLE_ROWS Rows MySQL extension

AVG_ROW_LENGTH Avg_row_length MySQL extension

DATA_LENGTH Data_length MySQL extension

MAX_DATA_LENGTH Max_data_length MySQL extension

INDEX_LENGTH Index_length MySQL extension

DATA_FREE Data_free MySQL extension

AUTO_INCREMENT Auto_increment MySQL extension

CREATE_TIME Create_time MySQL extension

UPDATE_TIME Update_time MySQL extension

CHECK_TIME Check_time MySQL extension

TABLE_COLLATION Collation MySQL extension

CHECKSUM Checksum MySQL extension

CREATE_OPTIONS Create_options MySQL extension

TABLE_COMMENT Comment MySQL extension

Notes:

The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1870

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• TABLE_SCHEMA and TABLE_NAME are a single field in a SHOW display, for example Table_in_db1.

• TABLE_TYPE should be BASE TABLE or VIEW. The TABLES table does not list TEMPORARY tables.

• The TABLE_ROWS column is NULL if the table is in the INFORMATION_SCHEMA database.

For InnoDB tables, the row count is only a rough estimate used in SQL optimization.

• We have nothing for the table's default character set. TABLE_COLLATION is close, because collation
names begin with a character set name.

The following statements are equivalent:

SELECT table_name FROM INFORMATION_SCHEMA.TABLES
 WHERE table_schema = 'db_name'
 [AND table_name LIKE 'wild']

SHOW TABLES
 FROM db_name
 [LIKE 'wild']

19.13 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table

The TABLE_CONSTRAINTS table describes which tables have constraints.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG NULL

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_SCHEMA

TABLE_NAME

CONSTRAINT_TYPE

Notes:

• The CONSTRAINT_TYPE value can be UNIQUE, PRIMARY KEY, or FOREIGN KEY.

• The UNIQUE and PRIMARY KEY information is about the same as what you get from the Key_name field
in the output from SHOW INDEX when the Non_unique field is 0.

• The CONSTRAINT_TYPE column can contain one of these values: UNIQUE, PRIMARY KEY, FOREIGN
KEY, CHECK. This is a CHAR (not ENUM) column. The CHECK value is not available until we support
CHECK.

19.14 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table

The TABLE_PRIVILEGES table provides information about table privileges. This information comes from
the mysql.tables_priv grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value

The INFORMATION_SCHEMA TRIGGERS Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1871

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

PRIVILEGE_TYPE

IS_GRANTABLE

Notes:

• PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE,
REFERENCES, ALTER, INDEX, DROP, CREATE VIEW.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES

SHOW GRANTS ...

19.15 The INFORMATION_SCHEMA TRIGGERS Table
The TRIGGERS table provides information about triggers. You must have the SUPER privilege to access
this table. You can see information only if you have the SUPER privilege).

INFORMATION_SCHEMA Name SHOW Name Remarks

TRIGGER_CATALOG NULL

TRIGGER_SCHEMA

TRIGGER_NAME Trigger

EVENT_MANIPULATION Event

EVENT_OBJECT_CATALOG NULL

EVENT_OBJECT_SCHEMA

EVENT_OBJECT_TABLE Table

ACTION_ORDER 0

ACTION_CONDITION NULL

ACTION_STATEMENT Statement

ACTION_ORIENTATION ROW

ACTION_TIMING Timing

ACTION_REFERENCE_OLD_TABLE NULL

ACTION_REFERENCE_NEW_TABLE NULL

ACTION_REFERENCE_OLD_ROW OLD

ACTION_REFERENCE_NEW_ROW NEW

CREATED NULL (0)

SQL_MODE MySQL extension

DEFINER MySQL extension

Notes:

The INFORMATION_SCHEMA TRIGGERS Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1872

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The TRIGGERS table was added in MySQL 5.0.10.

• The names in the “SHOW Name” column refer to the SHOW TRIGGERS statement. See Section 13.7.5.35,
“SHOW TRIGGERS Syntax”.

• TRIGGER_SCHEMA and TRIGGER_NAME: The name of the database in which the trigger occurs and the
trigger name, respectively.

• EVENT_MANIPULATION: The trigger event. This is the type of operation on the associated table for
which the trigger activates. The value is 'INSERT' (a row was inserted), 'DELETE' (a row was
deleted), or 'UPDATE' (a row was modified).

• EVENT_OBJECT_SCHEMA and EVENT_OBJECT_TABLE: As noted in Section 18.3, “Using Triggers”,
every trigger is associated with exactly one table. These columns indicate the database in which this
table occurs, and the table name, respectively.

• ACTION_ORDER: The ordinal position of the trigger's action within the list of all similar triggers on the
same table. This value is always 0, because it is not possible to have more than one trigger with the
same EVENT_MANIPULATION and ACTION_TIMING on the same table.

• ACTION_STATEMENT: The trigger body; that is, the statement executed when the trigger activates. This
text uses UTF-8 encoding.

• ACTION_ORIENTATION: Always contains the value 'ROW'.

• ACTION_TIMING: Whether the trigger activates before or after the triggering event. The value is
'BEFORE' or 'AFTER'.

• ACTION_REFERENCE_OLD_ROW and ACTION_REFERENCE_NEW_ROW: The old and new column
identifiers, respectively. This means that ACTION_REFERENCE_OLD_ROW always contains the value
'OLD' and ACTION_REFERENCE_NEW_ROW always contains the value 'NEW'.

• SQL_MODE: The SQL mode in effect when the trigger was created, and under which the trigger executes.
For the permitted values, see Section 5.1.7, “Server SQL Modes”.

• DEFINER: The account of the user who created the trigger, in 'user_name'@'host_name' format.
This column was added in MySQL 5.0.17.

• The following columns currently always contain NULL: TRIGGER_CATALOG, EVENT_OBJECT_CATALOG,
ACTION_CONDITION, ACTION_REFERENCE_OLD_TABLE, ACTION_REFERENCE_NEW_TABLE, and
CREATED.

Example, using the ins_sum trigger defined in Section 18.3, “Using Triggers”:

mysql> SELECT * FROM INFORMATION_SCHEMA.TRIGGERS
 -> WHERE TRIGGER_SCHEMA='test' AND TRIGGER_NAME='ins_sum'\G
*************************** 1. row ***************************
 TRIGGER_CATALOG: NULL
 TRIGGER_SCHEMA: test
 TRIGGER_NAME: ins_sum
 EVENT_MANIPULATION: INSERT
 EVENT_OBJECT_CATALOG: NULL
 EVENT_OBJECT_SCHEMA: test
 EVENT_OBJECT_TABLE: account
 ACTION_ORDER: 0
 ACTION_CONDITION: NULL
 ACTION_STATEMENT: SET @sum = @sum + NEW.amount
 ACTION_ORIENTATION: ROW
 ACTION_TIMING: BEFORE

The INFORMATION_SCHEMA USER_PRIVILEGES Table

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1873

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ACTION_REFERENCE_OLD_TABLE: NULL
ACTION_REFERENCE_NEW_TABLE: NULL
 ACTION_REFERENCE_OLD_ROW: OLD
 ACTION_REFERENCE_NEW_ROW: NEW
 CREATED: NULL
 SQL_MODE:
 DEFINER: me@localhost

19.16 The INFORMATION_SCHEMA USER_PRIVILEGES Table

The USER_PRIVILEGES table provides information about global privileges. This information comes from
the mysql.user grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE 'user_name'@'host_name'
value, MySQL extension

TABLE_CATALOG NULL, MySQL extension

PRIVILEGE_TYPE MySQL extension

IS_GRANTABLE MySQL extension

Notes:

• This is a nonstandard table. It takes its values from the mysql.user table.

19.17 The INFORMATION_SCHEMA VIEWS Table

The VIEWS table provides information about views in databases. You must have the SHOW VIEW privilege
to access this table.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

VIEW_DEFINITION

CHECK_OPTION

IS_UPDATABLE

DEFINER

SECURITY_TYPE

Notes:

• The VIEW_DEFINITION column has most of what you see in the Create Table field that SHOW
CREATE VIEW produces. Skip the words before SELECT and skip the words WITH CHECK OPTION.
Suppose that the original statement was:

CREATE VIEW v AS
 SELECT s2,s1 FROM t
 WHERE s1 > 5
 ORDER BY s1
 WITH CHECK OPTION;

Extensions to SHOW Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1874

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Then the view definition looks like this:

SELECT s2,s1 FROM t WHERE s1 > 5 ORDER BY s1

• The CHECK_OPTION column has a value of NONE, CASCADE, or LOCAL.

• MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES (true)
if UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is set to NO
(false). The IS_UPDATABLE column in the VIEWS table displays the status of this flag. It means that the
server always knows whether a view is updatable.

If a view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and will be
rejected. (Note that even if a view is updatable, it might not be possible to insert into it; for details, refer
to Section 18.4.3, “Updatable and Insertable Views”.)

• DEFINER: The account of the user who created the view, in 'user_name'@'host_name' format.
SECURITY_TYPE has a value of DEFINER or INVOKER. The DEFINER and SECURITY_TYPE columns
were added in MySQL 5.0.14.

MySQL lets you use different sql_mode settings to tell the server the type of SQL syntax to support. For
example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard SQL
concatenation operator, the double bar (||), in your queries. If you then create a view that concatenates
items, you might worry that changing the sql_mode setting to a value different from ANSI could cause
the view to become invalid. But this is not the case. No matter how you write out a view definition, MySQL
always stores it the same way, in a canonical form. Here is an example that shows how the server changes
a double bar concatenation operator to a CONCAT() function:

mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT VIEW_DEFINITION FROM INFORMATION_SCHEMA.VIEWS
 -> WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v';
+----------------------------------+
| VIEW_DEFINITION |
+----------------------------------+
| select concat('a','b') AS `col1` |
+----------------------------------+
1 row in set (0.00 sec)

The advantage of storing a view definition in canonical form is that changes made later to the value of
sql_mode will not affect the results from the view. However an additional consequence is that comments
prior to SELECT are stripped from the definition by the server.

19.18 Extensions to SHOW Statements
Some extensions to SHOW statements accompany the implementation of INFORMATION_SCHEMA:

• SHOW can be used to get information about the structure of INFORMATION_SCHEMA itself.

• SQL_MODE: The SQL mode in effect when the routine was created or altered, and under which the
routine executes. For the permitted values, see Section 5.1.7, “Server SQL Modes”.

• Several SHOW statements accept a WHERE clause that provides more flexibility in specifying which rows
to display.

Extensions to SHOW Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1875

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

These extensions are available beginning with MySQL 5.0.3.

INFORMATION_SCHEMA is an information database, so its name is included in the output from SHOW
DATABASES. Similarly, SHOW TABLES can be used with INFORMATION_SCHEMA to obtain a list of its
tables:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA;
+---------------------------------------+
| Tables_in_information_schema |
+---------------------------------------+
| CHARACTER_SETS |
| COLLATIONS |
| COLLATION_CHARACTER_SET_APPLICABILITY |
| COLUMNS |
| COLUMN_PRIVILEGES |
| KEY_COLUMN_USAGE |
| ROUTINES |
| SCHEMATA |
| SCHEMA_PRIVILEGES |
| STATISTICS |
| TABLES |
| TABLE_CONSTRAINTS |
| TABLE_PRIVILEGES |
| TRIGGERS |
| USER_PRIVILEGES |
| VIEWS |
+---------------------------------------+
16 rows in set (0.00 sec)

SHOW COLUMNS and DESCRIBE can display information about the columns in individual
INFORMATION_SCHEMA tables.

SHOW statements that accept a LIKE clause to limit the rows displayed also have been extended to permit
a WHERE clause that specifies more general conditions that selected rows must satisfy:

SHOW CHARACTER SET
SHOW COLLATION
SHOW COLUMNS
SHOW DATABASES
SHOW FUNCTION STATUS
SHOW INDEX
SHOW OPEN TABLES
SHOW PROCEDURE STATUS
SHOW STATUS
SHOW TABLE STATUS
SHOW TABLES
SHOW VARIABLES

The WHERE clause, if present, is evaluated against the column names displayed by the SHOW statement.
For example, the SHOW CHARACTER SET statement produces these output columns:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1

Extensions to SHOW Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1876

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

...

To use a WHERE clause with SHOW CHARACTER SET, you would refer to those column names. As an
example, the following statement displays information about character sets for which the default collation
contains the string 'japanese':

mysql> SHOW CHARACTER SET WHERE `Default collation` LIKE '%japanese%';
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

This statement displays the multibyte character sets:

mysql> SHOW CHARACTER SET WHERE Maxlen > 1;
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
euckr	EUC-KR Korean	euckr_korean_ci	2
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
utf8	UTF-8 Unicode	utf8_general_ci	3
ucs2	UCS-2 Unicode	ucs2_general_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1877

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 20 Connectors and APIs

Table of Contents
20.1 MySQL Connector/ODBC .. 1880
20.2 MySQL Connector/Net .. 1881
20.3 MySQL Connector/J .. 1881
20.4 MySQL Connector/C ... 1881
20.5 libmysqld, the Embedded MySQL Server Library .. 1881
20.6 MySQL C API ... 1882

20.6.1 MySQL C API Implementations ... 1883
20.6.2 Simultaneous MySQL Server and Connector/C Installations ... 1884
20.6.3 Example C API Client Programs ... 1885
20.6.4 Building and Running C API Client Programs .. 1885
20.6.5 C API Data Structures .. 1889
20.6.6 C API Function Overview ... 1894
20.6.7 C API Function Descriptions ... 1898
20.6.8 C API Prepared Statements .. 1950
20.6.9 C API Prepared Statement Data Structures ... 1950
20.6.10 C API Prepared Statement Function Overview ... 1957
20.6.11 C API Prepared Statement Function Descriptions ... 1959
20.6.12 C API Threaded Function Descriptions .. 1983
20.6.13 C API Embedded Server Function Descriptions ... 1984
20.6.14 Common Questions and Problems When Using the C API .. 1985
20.6.15 Controlling Automatic Reconnection Behavior .. 1986
20.6.16 C API Support for Multiple Statement Execution ... 1987
20.6.17 C API Prepared Statement Problems .. 1990
20.6.18 C API Prepared Statement Handling of Date and Time Values 1990
20.6.19 C API Support for Prepared CALL Statements ... 1991

20.7 MySQL PHP API .. 1991
20.8 MySQL Perl API ... 1991
20.9 MySQL Python API ... 1992
20.10 MySQL Ruby APIs .. 1993

20.10.1 The MySQL/Ruby API .. 1993
20.10.2 The Ruby/MySQL API .. 1993

20.11 MySQL Tcl API ... 1993
20.12 MySQL Eiffel Wrapper ... 1993

MySQL Connectors provide connectivity to the MySQL server for client programs. APIs provide low-
level access to the MySQL protocol and MySQL resources. Both Connectors and the APIs enable you to
connect and execute MySQL statements from another language or environment, including ODBC, Java
(JDBC), Perl, Python, PHP, Ruby, and native C and embedded MySQL instances.

Note

Connector version numbers do not correlate with MySQL Server version numbers.
See Table 20.2, “MySQL Connector Versions and MySQL Server Versions”.

MySQL Connectors

Oracle develops a number of connectors:

The MySQL C API

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1878

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Connector/ODBC provides driver support for connecting to MySQL using the Open Database
Connectivity (ODBC) API. Support is available for ODBC connectivity from Windows, Unix, and OS X
platforms.

• Connector/Net enables developers to create .NET applications that connect to MySQL. Connector/Net
implements a fully functional ADO.NET interface and provides support for use with ADO.NET aware
tools. Applications that use Connector/Net can be written in any supported .NET language.

The MySQL Visual Studio Plugin works with Connector/Net and Visual Studio 2005. The plugin is
a MySQL DDEX Provider, which means that you can use the schema and data manipulation tools
available in Visual Studio to create and edit objects within a MySQL database.

• Connector/J provides driver support for connecting to MySQL from Java applications using the standard
Java Database Connectivity (JDBC) API.

• Connector/C++ enables C++ applications to connect to MySQL.

• Connector/C is a standalone replacement for the MySQL Client Library (libmysqlclient), to be used
for C applications.

The MySQL C API

For direct access to using MySQL natively within a C application, there are two methods:

• The C API provides low-level access to the MySQL client/server protocol through the libmysqlclient
client library. This is the primary method used to connect to an instance of the MySQL server, and is
used both by MySQL command-line clients and many of the MySQL Connectors and third-party APIs
detailed here.

libmysqlclient is included in MySQL distributions and in Connector/C distributions.

• libmysqld is an embedded MySQL server library that enables you to embed an instance of the MySQL
server into your C applications.

libmysqld is included in MySQL distributions, but not in Connector/C distributions.

See also Section 20.6.1, “MySQL C API Implementations”.

To access MySQL from a C application, or to build an interface to MySQL for a language not supported by
the Connectors or APIs in this chapter, the C API is where to start. A number of programmer's utilities are
available to help with the process; see Section 4.7, “MySQL Program Development Utilities”.

Third-Party MySQL APIs

The remaining APIs described in this chapter provide an interface to MySQL from specific application
languages. These third-party solutions are not developed or supported by Oracle. Basic information on
their usage and abilities is provided here for reference purposes only.

All the third-party language APIs are developed using one of two methods, using libmysqlclient or by
implementing a native driver. The two solutions offer different benefits:

• Using libmysqlclient offers complete compatibility with MySQL because it uses the same libraries
as the MySQL client applications. However, the feature set is limited to the implementation and
interfaces exposed through libmysqlclient and the performance may be lower as data is copied
between the native language, and the MySQL API components.

• Native drivers are an implementation of the MySQL network protocol entirely within the host language
or environment. Native drivers are fast, as there is less copying of data between components, and they

http://dev.mysql.com/doc/connector-odbc/en/
http://dev.mysql.com/doc/connector-net/en/
http://dev.mysql.com/doc/visual-studio/en/
http://dev.mysql.com/doc/connector-j/5.1/en/
http://dev.mysql.com/doc/connector-c/en/

Third-Party MySQL APIs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1879

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

can offer advanced functionality not available through the standard MySQL API. Native drivers are also
easier for end users to build and deploy because no copy of the MySQL client libraries is needed to build
the native driver components.

Table 20.1, “MySQL APIs and Interfaces” lists many of the libraries and interfaces available for MySQL.
Table 20.2, “MySQL Connector Versions and MySQL Server Versions” shows which MySQL Server
versions each connector supports.

Table 20.1 MySQL APIs and Interfaces

EnvironmentAPI Type Notes

Ada GNU Ada MySQL Bindings libmysqlclientSee MySQL Bindings for GNU Ada

C C API libmysqlclientSee Section 20.6, “MySQL C API”.

C Connector/C Replacement
for
libmysqlclient

See MySQL Connector/C Developer
Guide.

C++ Connector/C++ libmysqlclientSee MySQL Connector/C++ Developer
Guide.

 MySQL++ libmysqlclientSee MySQL++ Web site.

 MySQL wrapped libmysqlclientSee MySQL wrapped.

Cocoa MySQL-Cocoa libmysqlclientCompatible with the Objective-C
Cocoa environment. See http://mysql-
cocoa.sourceforge.net/

D MySQL for D libmysqlclientSee MySQL for D.

Eiffel Eiffel MySQL libmysqlclientSee Section 20.12, “MySQL Eiffel
Wrapper”.

Erlang erlang-mysql-driver libmysqlclientSee erlang-mysql-driver.

Haskell Haskell MySQL Bindings Native Driver See Brian O'Sullivan's pure Haskell
MySQL bindings.

 hsql-mysql libmysqlclientSee MySQL driver for Haskell .

Java/
JDBC

Connector/J Native Driver See MySQL Connector/J 5.1 Developer
Guide.

Kaya MyDB libmysqlclientSee MyDB.

Lua LuaSQL libmysqlclientSee LuaSQL.

.NET/
Mono

Connector/Net Native Driver See MySQL Connector/Net Developer
Guide.

Objective
Caml

OBjective Caml MySQL Bindings libmysqlclientSee MySQL Bindings for Objective Caml.

Octave Database bindings for GNU Octave libmysqlclientSee Database bindings for GNU Octave.

ODBC Connector/ODBC libmysqlclientSee MySQL Connector/ODBC Developer
Guide.

Perl DBI/DBD::mysql libmysqlclientSee Section 20.8, “MySQL Perl API”.

 Net::MySQL Native Driver See Net::MySQL at CPAN

PHP mysql, ext/mysql interface
(deprecated)

libmysqlclientSee Original MySQL API.

 mysqli, ext/mysqli interface libmysqlclientSee MySQL Improved Extension.

http://gnade.sourceforge.net/
http://dev.mysql.com/doc/connector-c/en/
http://dev.mysql.com/doc/connector-c/en/
http://dev.mysql.com/doc/connector-cpp/en/
http://dev.mysql.com/doc/connector-cpp/en/
http://tangentsoft.net/mysql++/doc/
http://www.alhem.net/project/mysql/
http://mysql-cocoa.sourceforge.net/
http://mysql-cocoa.sourceforge.net/
http://www.steinmole.de/d/
http://code.google.com/p/erlang-mysql-driver/
http://www.serpentine.com/blog/software/mysql/
http://www.serpentine.com/blog/software/mysql/
http://hackage.haskell.org/cgi-bin/hackage-scripts/package/hsql-mysql-1.7
http://dev.mysql.com/doc/connector-j/5.1/en/
http://dev.mysql.com/doc/connector-j/5.1/en/
http://kayalang.org/library/latest/MyDB
http://keplerproject.github.io/luasql/doc/us/
http://dev.mysql.com/doc/connector-net/en/
http://dev.mysql.com/doc/connector-net/en/
http://raevnos.pennmush.org/code/ocaml-mysql/
http://octave.sourceforge.net/database/index.html
http://dev.mysql.com/doc/connector-odbc/en/
http://dev.mysql.com/doc/connector-odbc/en/
http://search.cpan.org/dist/Net-MySQL/MySQL.pm
http://dev.mysql.com/doc/apis-php/en/apis-php-mysql.html
http://dev.mysql.com/doc/apis-php/en/apis-php-mysqli.html

MySQL Connector/ODBC

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1880

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

EnvironmentAPI Type Notes

 PDO_MYSQL libmysqlclientSee MySQL Functions (PDO_MYSQL).

 PDO mysqlnd Native Driver

Python Connector/Python Native Driver See MySQL Connector/Python Developer
Guide.

Python Connector/Python C Extension libmysqlclientSee MySQL Connector/Python Developer
Guide.

 MySQLdb libmysqlclientSee Section 20.9, “MySQL Python API”.

Ruby MySQL/Ruby libmysqlclientUses libmysqlclient. See
Section 20.10.1, “The MySQL/Ruby API”.

 Ruby/MySQL Native Driver See Section 20.10.2, “The Ruby/MySQL
API”.

Scheme Myscsh libmysqlclientSee Myscsh.

SPL sql_mysql libmysqlclientSee sql_mysql for SPL.

Tcl MySQLtcl libmysqlclientSee Section 20.11, “MySQL Tcl API”.

Table 20.2 MySQL Connector Versions and MySQL Server Versions

Connector Connector version MySQL Server version

Connector/C 6.1.0 GA 5.6, 5.5, 5.1, 5.0, 4.1

Connector/C++ 1.0.5 GA 5.6, 5.5, 5.1

Connector/J 5.1.8 5.6, 5.5, 5.1, 5.0, 4.1

Connector/Net 6.5 5.6, 5.5, 5.1, 5.0

Connector/Net 6.4 5.6, 5.5, 5.1, 5.0

Connector/Net 6.3 5.6, 5.5, 5.1, 5.0

Connector/Net 6.2 (No longer supported) 5.6, 5.5, 5.1, 5.0

Connector/Net 6.1 (No longer supported) 5.6, 5.5, 5.1, 5.0

Connector/Net 6.0 (No longer supported) 5.6, 5.5, 5.1, 5.0

Connector/Net 5.2 (No longer supported) 5.6, 5.5, 5.1, 5.0

Connector/Net 1.0 (No longer supported) 5.0, 4.0

Connector/ODBC 5.1 5.6, 5.5, 5.1, 5.0, 4.1.1+

Connector/ODBC 3.51 (Unicode not
supported)

5.6, 5.5, 5.1, 5.0, 4.1

Connector/Python 2.0 5.7, 5.6, 5.5

Connector/Python 1.2 5.7, 5.6, 5.5

20.1 MySQL Connector/ODBC

The MySQL Connector/ODBC manual is now published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/ODBC Developer Guide

• Release notes: MySQL Connector/ODBC Release Notes

http://dev.mysql.com/doc/apis-php/en/apis-php-pdo-mysql.html
http://dev.mysql.com/doc/connector-python/en/
http://dev.mysql.com/doc/connector-python/en/
http://dev.mysql.com/doc/connector-python/en/
http://dev.mysql.com/doc/connector-python/en/
https://github.com/aehrisch/myscsh
http://www.clifford.at/spl/spldoc/sql_mysql.html
http://dev.mysql.com/doc/connector-odbc/en/
http://dev.mysql.com/doc/relnotes/connector-odbc/en/

MySQL Connector/Net

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1881

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

20.2 MySQL Connector/Net

The MySQL Connector/Net manual is now published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/Net Developer Guide

• Release notes: MySQL Connector/Net Release Notes

20.3 MySQL Connector/J

The MySQL Connector/J manual is now published in standalone form, not as part of the MySQL Reference
Manual. For information, see these documents:

• Main manual: MySQL Connector/J 5.1 Developer Guide

• Release notes: MySQL Connector/J Release Notes

20.4 MySQL Connector/C

The MySQL Connector/C manual is now published in standalone form, not as part of the MySQL
Reference Manual. For information, see these documents:

• Main manual: MySQL Connector/C Developer Guide

• Release notes: MySQL Connector/C Release Notes

20.5 libmysqld, the Embedded MySQL Server Library

The embedded MySQL server library is NOT part of MySQL 5.0. It is part of previous editions
and will be included in future versions, starting with MySQL 5.1. You can find appropriate
documentation in the corresponding manuals for these versions. In this manual, only an overview
of the embedded library is provided.

The embedded MySQL server library makes it possible to run a full-featured MySQL server inside a
client application. The main benefits are increased speed and more simple management for embedded
applications.

The embedded server library is based on the client/server version of MySQL, which is written in C/C++.
Consequently, the embedded server also is written in C/C++. There is no embedded server available in
other languages.

The API is identical for the embedded MySQL version and the client/server version. To change an old
threaded application to use the embedded library, you normally only have to add calls to the following
functions.

Table 20.3 MySQL Embedded Server Library Functions

Function When to Call

mysql_library_init() Call it before any other MySQL function is called, preferably early in the
main() function.

mysql_library_end() Call it before your program exits.

mysql_thread_init() Call it in each thread you create that accesses MySQL.

http://dev.mysql.com/doc/connector-net/en/
http://dev.mysql.com/doc/relnotes/connector-net/en/
http://dev.mysql.com/doc/connector-j/5.1/en/
http://dev.mysql.com/doc/relnotes/connector-j/en/
http://dev.mysql.com/doc/connector-c/en/
http://dev.mysql.com/doc/relnotes/connector-c/en/

MySQL C API

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1882

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Function When to Call

mysql_thread_end() Call it before calling pthread_exit().

Then, link your code with libmysqld.a instead of libmysqlclient.a. To ensure binary compatibility
between your application and the server library, be sure to compile your application against headers for
the same series of MySQL that was used to compile the server library. For example, if libmysqld was
compiled against MySQL 4.1 headers, do not compile your application against MySQL 5.0 headers,

The mysql_library_xxx() functions are also included in libmysqlclient.a to enable you to
change between the embedded and the client/server version by just linking your application with the right
library. See Section 20.6.7.40, “mysql_library_init()”.

One difference between the embedded server and the standalone server is that for the embedded server,
authentication for connections is disabled by default. To use authentication for the embedded server,
specify the --with-embedded-privilege-control option when you invoke configure to configure
your MySQL distribution.

20.6 MySQL C API
The C API provides low-level access to the MySQL client/server protocol and enables C programs
to access database contents. The C API code is distributed with MySQL and implemented in the
libmysqlclient library. See Section 20.6.1, “MySQL C API Implementations”.

Most other client APIs use the libmysqlclient library to communicate with the MySQL server.
(Exceptions are except Connector/J and Connector/Net.) This means that, for example, you can take
advantage of many of the same environment variables that are used by other client programs because
they are referenced from the library. For a list of these variables, see Section 4.1, “Overview of MySQL
Programs”.

For instructions on building client programs using the C API, see Section 20.6.4.1, “Building C API
Client Programs”. For programming with threads, see Section 20.6.4.2, “Writing C API Threaded Client
Programs”. To create a standalone application which includes the "server" and "client" in the same
program (and does not communicate with an external MySQL server), see Section 20.5, “libmysqld, the
Embedded MySQL Server Library”.

Note

If, after an upgrade, you experience problems with compiled client programs,
such as Commands out of sync or unexpected core dumps, the programs
were probably compiled using old header or library files. In this case, check the
date of the mysql.h file and libmysqlclient.a library used for compilation
to verify that they are from the new MySQL distribution. If not, recompile the
programs with the new headers and libraries. Recompilation might also be
necessary for programs compiled against the shared client library if the library
major version number has changed (for example, from libmysqlclient.so.17
to libmysqlclient.so.18). For additional compatibility information, see
Section 20.6.4.3, “Running C API Client Programs”.

Clients have a maximum communication buffer size. The size of the buffer that is allocated initially (16KB)
is automatically increased up to the maximum size (16MB by default). Because buffer sizes are increased
only as demand warrants, simply increasing the maximum limit does not in itself cause more resources to
be used. This size check is mostly a precaution against erroneous statements and communication packets.

The communication buffer must be large enough to contain a single SQL statement (for client-to-server
traffic) and one row of returned data (for server-to-client traffic). Each session's communication buffer is

MySQL C API Implementations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1883

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

dynamically enlarged to handle any query or row up to the maximum limit. For example, if you have BLOB
values that contain up to 16MB of data, you must have a communication buffer limit of at least 16MB (in
both server and client). The default maximum built into the client library is 1GB, but the default maximum in
the server is 1MB. You can increase this by changing the value of the max_allowed_packet parameter
at server startup. See Section 8.12.2, “Tuning Server Parameters”.

The MySQL server shrinks each communication buffer to net_buffer_length bytes after each query.
For clients, the size of the buffer associated with a connection is not decreased until the connection is
closed, at which time client memory is reclaimed.

20.6.1 MySQL C API Implementations

The MySQL C API is a C-based API that client applications written in C can use to communicate with
MySQL Server. Client programs refer to C API header files at compile time and link to a C API library file at
link time. The library comes in two versions, depending on how the application is intended to communicate
with the server:

• libmysqlclient: The client version of the library, used for applications that communicate over a
network connection as a client of a standalone server process.

• libmysqld: The embedded server version of the library, used for applications intended to include an
embedded MySQL server within the application itself. The application communicates with its own private
server instance.

Both libraries have the same interface. In terms of C API calls, an application communicates with a
standalone server the same way it communicates with an embedded server. A given client can be
built to communicate with a standalone or embedded server, depending on whether it is linked against
libmysqlclient or libmysqld at build time.

There are two ways to obtain the C API header and library files required to build C API client programs:

• Install a MySQL Server distribution. Server distributions include both libmysqlclient and
libmysqld.

• Install a Connector/C distribution. Connector/C distributions include only libmysqlclient. They do not
include libmysqld.

For both MySQL Server and Connector/C, you can install a binary distribution that contains the C API files
pre-built, or you can use a source distribution and build the C API files yourself.

Normally, you install either a MySQL Server distribution or a Connector/C distribution, but not both. For
information about issues involved with simultaneous MySQL Server and Connector/C installations, see
Section 20.6.2, “Simultaneous MySQL Server and Connector/C Installations”.

The names of the library files to use when linking C API client applications depend on the library type and
platform for which a distribution is built:

• On Unix (and Unix-like) sytems, the static library is libmysqlclient.a. The dynamic library is
libmysqlclient.so on most Unix systems and libmysqlclient.dylib on OS X.

For distributions that include embedded server libraries, the corresponding library names begin with
libmysqld rather than libmysqlclient.

• On Windows, the static library is mysqlclient.lib and the dynamic library is libmysql.dll.
Windows distributions also include libmysql.lib, a static import library needed for using the dynamic
library.

Simultaneous MySQL Server and Connector/C Installations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1884

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For distributions that include embedded server libraries, the corresponding library names are
mysqlserver.lib, libmysqld.dll, and libmysqld.lib.

Windows distributions also include a set of debug libraries. These have the same names as the
nondebug libraries, but are located in the lib/debug library. You must use the debug libraries when
compiling clients built using the debug C runtime.

20.6.2 Simultaneous MySQL Server and Connector/C Installations

MySQL Server and Connector/C installation packages both provide the files needed to build and run
MySQL C API client programs. This section discusses when it is possible to install both products on the
same system. For some packaging formats, this is possible without conflict. For others, both products
cannot be installed at the same time.

This discussion assumes the use of similar package types for both products (for example, RPM packages
for both products). It does not try to describe coexistence between packaging types (for example, use of
RPM packages for one product and a tar file package for the other). Nor does it describe coexistence of
packages provided by Oracle and those provided by third-party vendors.

If you install both products, it may be necessary to adjust your development tools or runtime environment
to choose one set of header files and libraries over the other. See Section 20.6.4.1, “Building C API Client
Programs”, and Section 20.6.4.3, “Running C API Client Programs”.

tar and Zip file packages install under the directory into which you unpack them. For example, you can
unpack MySQL Server and Connector/C tar packages under /usr/local and they will unpack into
distinct directory names without conflict.

Windows MSI installers use their own installation directory, so MySQL Server and Connector/C installers
do not conflict.

OS X DMG packages install under the same parent directory but in a different subdirectory, so there is no
conflict. For example:

/usr/local/mysql-5.6.11-osx10.7-x86_64/
/usr/local/mysql-connector-c-6.1.0-osx10.7-x86/

Solaris PKG packages install under the same parent directory but in a different subdirectory, so there is no
conflict. For example:

/opt/mysql/mysql
/opt/mysql/connector-c

The Solaris Connector/C installer does not create any symlinks from system directories such as /usr/bin
or /usr/lib into the installation directory. That must be done manually if desired after installation.

For RPM installations, there are several types of RPM packages. MySQL Server shared and devel RPM
packages are similar to the corresponding Connector/C RPM packages. These RPM package types cannot
coexist because the MySQL Server and Connector/C RPM packages use the same installation locations
for the client library-related files. This means the following conditions hold:

• If MySQL Server shared and devel RPM packages are installed, they provide the C API headers and
libraries, and there is no need to install the Connector/C RPM packages. To install the Connector/C
packages anyway, you must first remove the corresponding MySQL Server packages.

Example C API Client Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1885

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• To install MySQL Server RPM packages if you already have Connector/C RPM packages installed, you
must first remove the Connector/C RPM packages.

MySQL Server RPM packages other than shared and devel do not conflict with Connector/C packages
and can be installed if Connector/C is installed. This includes the main server RPM that includes the
mysqld server itself.

20.6.3 Example C API Client Programs

Many of the clients in MySQL source distributions are written in C, such as mysql, mysqladmin, and
mysqlshow. If you are looking for examples that demonstrate how to use the C API, take a look at
these clients: Obtain a source distribution and look in its client directory. See Section 2.5, “How to Get
MySQL”.

20.6.4 Building and Running C API Client Programs

The following sections provide information on building client programs that use the C API. Topics include
compiling and linking clients, writing threaded clients, and troubleshooting runtime problems.

20.6.4.1 Building C API Client Programs

This section provides guidelines for compiling C programs that use the MySQL C API.

Compiling MySQL Clients on Unix

You may need to specify an -I option when you compile client programs that use MySQL header files,
so that the compiler can find them. For example, if the header files are installed in /usr/local/mysql/
include, use this option in the compile command:

-I/usr/local/mysql/include

MySQL clients must be linked using the -lmysqlclient -lz options in the link command. You may also
need to specify a -L option to tell the linker where to find the library. For example, if the library is installed
in /usr/local/mysql/lib, use these options in the link command:

-L/usr/local/mysql/lib -lmysqlclient -lz

The path names may differ on your system. Adjust the -I and -L options as necessary.

To make it simpler to compile MySQL programs on Unix, use the mysql_config script. See
Section 4.7.2, “mysql_config — Display Options for Compiling Clients”.

mysql_config displays the options needed for compiling or linking:

shell> mysql_config --cflags
shell> mysql_config --libs

You can run those commands to get the proper options and add them manually to compilation or link
commands. Alternatively, include the output from mysql_config directly within command lines using
backticks:

shell> gcc -c `mysql_config --cflags` progname.c
shell> gcc -o progname progname.o `mysql_config --libs`

Compiling MySQL Clients on Microsoft Windows

Building and Running C API Client Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1886

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

To specify header and library file locations, use the facilities provided by your development environment.

On Windows, you can link your code with either the dynamic or static C client library. The static library
is named mysqlclient.lib and the dynamic library is named libmysql.dll. In addition, the
libmysql.lib static import library is needed for using the dynamic library.

If you link with the static library, failure can occur unless these conditions are satisfied:

• The client application must be compiled with the same version of Visual Studio used to compile the
library.

• The client application should link the C runtime statically by using the /MT compiler option.

If the client application is built in in debug mode and uses the static debug C runtime (/MTd compiler
option), it can link to the mysqlclient.lib static library if that library was built using the same option.
If the client application uses the dynamic C runtime (/MD option, or /MDd option in debug mode), it must
must be linked to the libmysql.dll dynamic library. It cannot link to the static client library.

The MSDN page describing the link options can be found here: http://msdn.microsoft.com/en-us/
library/2kzt1wy3.aspx

Troubleshooting Problems Linking to the MySQL Client Library

Linking with the single-threaded library (libmysqlclient) may lead to linker errors related
to pthread symbols. When using the single-threaded library, please compile your client with
MYSQL_CLIENT_NO_THREADS defined. This can be done on the command line by using the -D option to
the compiler, or in your source code before including the MySQL header files. This define should not be
used when building for use with the thread-safe client library (libmysqlclient_r).

If the linker cannot find the MySQL client library, you might get undefined-reference errors for symbols that
start with mysql_, such as those shown here:

/tmp/ccFKsdPa.o: In function `main':
/tmp/ccFKsdPa.o(.text+0xb): undefined reference to `mysql_init'
/tmp/ccFKsdPa.o(.text+0x31): undefined reference to `mysql_real_connect'
/tmp/ccFKsdPa.o(.text+0x69): undefined reference to `mysql_error'
/tmp/ccFKsdPa.o(.text+0x9a): undefined reference to `mysql_close'

You should be able to solve this problem by adding -Ldir_path -lmysqlclient at the end of your link
command, where dir_path represents the path name of the directory where the client library is located.
To determine the correct directory, try this command:

shell> mysql_config --libs

The output from mysql_config might indicate other libraries that should be specified on the link
command as well. You can include mysql_config output directly in your compile or link command using
backticks. For example:

shell> gcc -o progname progname.o `mysql_config --libs`

If an error occurs at link time that the floor symbol is undefined, link to the math library by adding -lm to
the end of the compile/link line.

If you get undefined reference errors for the uncompress or compress function, add -lz to the end
of your link command and try again.

http://msdn.microsoft.com/en-us/library/2kzt1wy3.aspx
http://msdn.microsoft.com/en-us/library/2kzt1wy3.aspx

Building and Running C API Client Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1887

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Similarly, if you get undefined-reference errors for other functions that should exist on your system, such
as connect(), check the manual page for the function in question to determine which libraries you should
add to the link command.

If you get undefined-reference errors such as the following for functions that do not exist on your system, it
usually means that your MySQL client library was compiled on a system that is not 100% compatible with
yours:

mf_format.o(.text+0x201): undefined reference to `__lxstat'

In this case, you should download the latest MySQL or Connector/C source distribution and compile the
MySQL client library yourself. See Section 2.17, “Installing MySQL from Source”, and MySQL Connector/C
Developer Guide.

20.6.4.2 Writing C API Threaded Client Programs

The client library is almost thread-safe. The biggest problem is that the subroutines in sql/net_serv.cc
that read from sockets are not interrupt-safe. This was done with the thought that you might want to have
your own alarm that can break a long read to a server. If you install interrupt handlers for the SIGPIPE
interrupt, socket handling should be thread-safe.

To avoid aborting the program when a connection terminates, MySQL blocks SIGPIPE on the first call to
mysql_library_init(), mysql_init(), or mysql_connect(). To use your own SIGPIPE handler,
first call mysql_library_init(), then install your handler.

Current binary distributions should have both a normal client library, libmysqlclient, and a thread-
safe library, libmysqlclient_r. For threaded clients, link against the latter library. If “undefined symbol”
errors occur, in most cases this is because you have not included the thread libraries on the link/compile
command.

The thread-safe client library, libmysqlclient_r, is thread-safe per connection. You can let two threads
share the same connection with the following caveats:

• Multiple threads cannot send a query to the MySQL server at the same time on the same connection.
In particular, you must ensure that between calls to mysql_query() and mysql_store_result()
in one thread, no other thread uses the same connection. You must have a mutex lock around your pair
of mysql_query() and mysql_store_result() calls. After mysql_store_result() returns, the
lock can be released and other threads may query the same connection.

If you use POSIX threads, you can use pthread_mutex_lock() and pthread_mutex_unlock() to
establish and release a mutex lock.

• Many threads can access different result sets that are retrieved with mysql_store_result().

• To use mysql_use_result(), you must ensure that no other thread is using the same connection until
the result set is closed. However, it really is best for threaded clients that share the same connection to
use mysql_store_result().

You need to know the following if you have a thread that did not create the connection to the MySQL
database but is calling MySQL functions:

When you call mysql_init(), MySQL creates a thread-specific variable for the thread that is used
by the debug library (among other things). If you call a MySQL function before the thread has called
mysql_init(), the thread does not have the necessary thread-specific variables in place and you are
likely to end up with a core dump sooner or later. To avoid problems, you must do the following:

1. Call mysql_library_init() before any other MySQL functions. It is not thread-safe, so call it
before threads are created, or protect the call with a mutex.

http://dev.mysql.com/doc/connector-c/en/
http://dev.mysql.com/doc/connector-c/en/

Building and Running C API Client Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1888

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2. Arrange for mysql_thread_init() to be called early in the thread handler before calling any MySQL
function. If you call mysql_init(), it will call mysql_thread_init() for you.

3. In the thread, call mysql_thread_end() before calling pthread_exit(). This frees the memory
used by MySQL thread-specific variables.

The preceding notes regarding mysql_init() also apply to mysql_connect(), which calls
mysql_init().

20.6.4.3 Running C API Client Programs

If, after an upgrade, you experience problems with compiled client programs, such as Commands out of
sync or unexpected core dumps, the programs were probably compiled using old header or library files.
In this case, check the date of the mysql.h file and libmysqlclient.a library used for compilation to
verify that they are from the new MySQL distribution. If not, recompile the programs with the new headers
and libraries. Recompilation might also be necessary for programs compiled against the shared client
library if the library major version number has changed (for example, from libmysqlclient.so.17 to
libmysqlclient.so.18).

The major client library version determines compatibility. (For example, for
libmysqlclient.so.18.1.0, the major version is 18.) For this reason, the libraries shipped with newer
versions of MySQL are drop-in replacements for older versions that have the same major number. As long
as the major library version is the same, you can upgrade the library and old applications should continue
to work with it.

Undefined-reference errors might occur at runtime when you try to execute a MySQL program. If these
errors specify symbols that start with mysql_ or indicate that the libmysqlclient library cannot be
found, it means that your system cannot find the shared libmysqlclient.so library. The solution to this
problem is to tell your system to search for shared libraries in the directory where that library is located.
Use whichever of the following methods is appropriate for your system:

• Add the path of the directory where libmysqlclient.so is located to the LD_LIBRARY_PATH or
LD_LIBRARY environment variable.

• On OS X, add the path of the directory where libmysqlclient.dylib is located to the
DYLD_LIBRARY_PATH environment variable.

• Copy the shared-library files (such as libmysqlclient.so) to some directory that is searched by your
system, such as /lib, and update the shared library information by executing ldconfig. Be sure to
copy all related files. A shared library might exist under several names, using symlinks to provide the
alternate names.

Another way to solve this problem is by linking your program statically with the -static option, or by
removing the dynamic MySQL libraries before linking your code. Before trying the second method, you
should be sure that no other programs are using the dynamic libraries.

20.6.4.4 C API Server and Client Library Versions

The string and numeric forms of the MySQL server version are available at compile time as the values
of the MYSQL_SERVER_VERSION and MYSQL_VERSION_ID macros, and at runtime as the values of the
mysql_get_server_info() and mysql_get_server_version() functions.

The client library version is the MySQL version. For Connector/C, this is the MySQL version on which the
Connector/C distribution is based. The string and numeric forms of this version are available at compile
time as the values of the MYSQL_SERVER_VERSION and MYSQL_VERSION_ID macros, and at runtime as
the values of the mysql_get_client_info() and mysql_get_client_version() functions.

C API Data Structures

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1889

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

20.6.5 C API Data Structures

This section describes C API data structures other than those used for prepared statements. For
information about the latter, see Section 20.6.9, “C API Prepared Statement Data Structures”.

• MYSQL

This structure represents a handle to one database connection. It is used for almost all MySQL
functions. Do not try to make a copy of a MYSQL structure. There is no guarantee that such a copy is
usable.

• MYSQL_RES

This structure represents the result of a query that returns rows (SELECT, SHOW, DESCRIBE, EXPLAIN).
The information returned from a query is called the result set in the remainder of this section.

• MYSQL_ROW

This is a type-safe representation of one row of data. It is currently implemented as an array of
counted byte strings. (You cannot treat these as null-terminated strings if field values may contain
binary data, because such values may contain null bytes internally.) Rows are obtained by calling
mysql_fetch_row().

• MYSQL_FIELD

This structure contains metadata: information about a field, such as the field's name, type, and size. Its
members are described in more detail later in this section. You may obtain the MYSQL_FIELD structures
for each field by calling mysql_fetch_field() repeatedly. Field values are not part of this structure;
they are contained in a MYSQL_ROW structure.

• MYSQL_FIELD_OFFSET

This is a type-safe representation of an offset into a MySQL field list. (Used by mysql_field_seek().)
Offsets are field numbers within a row, beginning at zero.

• my_ulonglong

The type used for the number of rows and for mysql_affected_rows(), mysql_num_rows(), and
mysql_insert_id(). This type provides a range of 0 to 1.84e19.

Some functions that return a row count using this type return -1 as an unsigned value to indicate an error
or exceptional condition. You can check for -1 by comparing the return value to (my_ulonglong)-1 (or
to (my_ulonglong)~0, which is equivalent).

On some systems, attempting to print a value of type my_ulonglong does not work. To print such a
value, convert it to unsigned long and use a %lu print format. Example:

printf ("Number of rows: %lu\n",
 (unsigned long) mysql_num_rows(result));

• my_bool

A boolean type, for values that are true (nonzero) or false (zero).

The MYSQL_FIELD structure contains the members described in the following list:

• char * name

C API Data Structures

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1890

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The name of the field, as a null-terminated string. If the field was given an alias with an AS clause, the
value of name is the alias.

• char * org_name

The name of the field, as a null-terminated string. Aliases are ignored. For expressions, the value is an
empty string.

• char * table

The name of the table containing this field, if it is not a calculated field. For calculated fields, the table
value is an empty string. If the column is selected from a view, table names the view. If the table or
view was given an alias with an AS clause, the value of table is the alias. For a UNION, the value is the
empty string.

• char * org_table

The name of the table, as a null-terminated string. Aliases are ignored. If the column is selected from a
view, org_table names the view. For a UNION, the value is the empty string.

• char * db

The name of the database that the field comes from, as a null-terminated string. If the field is a
calculated field, db is an empty string. For a UNION, the value is the empty string.

• char * catalog

The catalog name. This value is always "def".

• char * def

The default value of this field, as a null-terminated string. This is set only if you use
mysql_list_fields().

• unsigned long length

The width of the field. This corresponds to the display length, in bytes.

The server determines the length value before it generates the result set, so this is the minimum length
required for a data type capable of holding the largest possible value from the result column, without
knowing in advance the actual values that will be produced by the query for the result set.

• unsigned long max_length

The maximum width of the field for the result set (the length in bytes of the longest field value for the
rows actually in the result set). If you use mysql_store_result() or mysql_list_fields(), this
contains the maximum length for the field. If you use mysql_use_result(), the value of this variable
is zero.

The value of max_length is the length of the string representation of the values in the result set. For
example, if you retrieve a FLOAT column and the “widest” value is -12.345, max_length is 7 (the
length of '-12.345').

If you are using prepared statements, max_length is not set by default because for the binary protocol
the lengths of the values depend on the types of the values in the result set. (See Section 20.6.9, “C
API Prepared Statement Data Structures”.) If you want the max_length values anyway, enable the
STMT_ATTR_UPDATE_MAX_LENGTH option with mysql_stmt_attr_set() and the lengths will be set

C API Data Structures

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1891

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

when you call mysql_stmt_store_result(). (See Section 20.6.11.3, “mysql_stmt_attr_set()”, and
Section 20.6.11.27, “mysql_stmt_store_result()”.)

• unsigned int name_length

The length of name.

• unsigned int org_name_length

The length of org_name.

• unsigned int table_length

The length of table.

• unsigned int org_table_length

The length of org_table.

• unsigned int db_length

The length of db.

• unsigned int catalog_length

The length of catalog.

• unsigned int def_length

The length of def.

• unsigned int flags

Bit-flags that describe the field. The flags value may have zero or more of the bits set that are shown in
the following table.

Flag Value Flag Description

NOT_NULL_FLAG Field cannot be NULL

PRI_KEY_FLAG Field is part of a primary key

UNIQUE_KEY_FLAG Field is part of a unique key

MULTIPLE_KEY_FLAG Field is part of a nonunique key

UNSIGNED_FLAG Field has the UNSIGNED attribute

ZEROFILL_FLAG Field has the ZEROFILL attribute

BINARY_FLAG Field has the BINARY attribute

AUTO_INCREMENT_FLAG Field has the AUTO_INCREMENT attribute

ENUM_FLAG Field is an ENUM

SET_FLAG Field is a SET

BLOB_FLAG Field is a BLOB or TEXT (deprecated)

TIMESTAMP_FLAG Field is a TIMESTAMP (deprecated)

NUM_FLAG Field is numeric; see additional notes following table

NO_DEFAULT_VALUE_FLAG Field has no default value; see additional notes following
table

C API Data Structures

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1892

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Some of these flags indicate data type information and are superseded by or used in conjunction with
the MYSQL_TYPE_xxx value in the field->type member described later:

• To check for BLOB or TIMESTAMP values, check whether type is MYSQL_TYPE_BLOB or
MYSQL_TYPE_TIMESTAMP. (The BLOB_FLAG and TIMESTAMP_FLAG flags are unneeded.)

• ENUM and SET values are returned as strings. For these, check that the type value is
MYSQL_TYPE_STRING and that the ENUM_FLAG or SET_FLAG flag is set in the flags value.

NUM_FLAG indicates that a column is numeric. This includes columns with a type of
MYSQL_TYPE_DECIMAL, MYSQL_TYPE_TINY, MYSQL_TYPE_SHORT, MYSQL_TYPE_LONG,
MYSQL_TYPE_FLOAT, MYSQL_TYPE_DOUBLE, MYSQL_TYPE_NULL, MYSQL_TYPE_LONGLONG,
MYSQL_TYPE_INT24, and MYSQL_TYPE_YEAR.

NO_DEFAULT_VALUE_FLAG indicates that a column has no DEFAULT clause in its definition. This does
not apply to NULL columns (because such columns have a default of NULL), or to AUTO_INCREMENT
columns (which have an implied default value). NO_DEFAULT_VALUE_FLAG was added in MySQL 5.0.2.

The following example illustrates a typical use of the flags value:

if (field->flags & NOT_NULL_FLAG)
 printf("Field cannot be null\n");

You may use the convenience macros shown in the following table to determine the boolean status of
the flags value.

Flag Status Description

IS_NOT_NULL(flags) True if this field is defined as NOT NULL

IS_PRI_KEY(flags) True if this field is a primary key

IS_BLOB(flags) True if this field is a BLOB or TEXT (deprecated; test field-
>type instead)

• unsigned int decimals

The number of decimals for numeric fields.

• unsigned int charsetnr

An ID number that indicates the character set/collation pair for the field.

Normally, character values in result sets are converted to the character set indicated by the
character_set_results system variable. In this case, charsetnr corresponds to the
character set indicated by that variable. Character set conversion can be suppressed by setting
character_set_results to NULL. In this case, charsetnr corresponds to the character set of
the original table column or expression. See also Section 10.1.4, “Connection Character Sets and
Collations”.

To distinguish between binary and nonbinary data for string data types, check whether the charsetnr
value is 63. If so, the character set is binary, which indicates binary rather than nonbinary data. This
enables you to distinguish BINARY from CHAR, VARBINARY from VARCHAR, and the BLOB types from the
TEXT types.

C API Data Structures

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1893

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

charsetnr values are the same as those displayed in the Id column of the SHOW COLLATION
statement or the ID column of the INFORMATION_SCHEMA COLLATIONS table. You can use those
information sources to see which character set and collation specific charsetnr values indicate:

mysql> SHOW COLLATION WHERE Id = 63;
+-----------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-----------+---------+----+---------+----------+---------+
| binary | binary | 63 | Yes | Yes | 1 |
+-----------+---------+----+---------+----------+---------+

mysql> SELECT COLLATION_NAME, CHARACTER_SET_NAME
 -> FROM INFORMATION_SCHEMA.COLLATIONS WHERE ID = 33;
+-----------------+--------------------+
| COLLATION_NAME | CHARACTER_SET_NAME |
+-----------------+--------------------+
| utf8_general_ci | utf8 |
+-----------------+--------------------+

• enum enum_field_types type

The type of the field. The type value may be one of the MYSQL_TYPE_ symbols shown in the following
table.

Type Value Type Description

MYSQL_TYPE_TINY TINYINT field

MYSQL_TYPE_SHORT SMALLINT field

MYSQL_TYPE_LONG INTEGER field

MYSQL_TYPE_INT24 MEDIUMINT field

MYSQL_TYPE_LONGLONG BIGINT field

MYSQL_TYPE_DECIMAL DECIMAL or NUMERIC field

MYSQL_TYPE_NEWDECIMAL Precision math DECIMAL or NUMERIC field (MySQL 5.0.3 and up)

MYSQL_TYPE_FLOAT FLOAT field

MYSQL_TYPE_DOUBLE DOUBLE or REAL field

MYSQL_TYPE_BIT BIT field (MySQL 5.0.3 and up)

MYSQL_TYPE_TIMESTAMP TIMESTAMP field

MYSQL_TYPE_DATE DATE field

MYSQL_TYPE_TIME TIME field

MYSQL_TYPE_DATETIME DATETIME field

MYSQL_TYPE_YEAR YEAR field

MYSQL_TYPE_STRING CHAR or BINARY field

MYSQL_TYPE_VAR_STRING VARCHAR or VARBINARY field

MYSQL_TYPE_BLOB BLOB or TEXT field (use max_length to determine the maximum
length)

MYSQL_TYPE_SET SET field

MYSQL_TYPE_ENUM ENUM field

MYSQL_TYPE_GEOMETRY Spatial field

C API Function Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1894

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Type Value Type Description

MYSQL_TYPE_NULL NULL-type field

You can use the IS_NUM() macro to test whether a field has a numeric type. Pass the type value to
IS_NUM() and it evaluates to TRUE if the field is numeric:

if (IS_NUM(field->type))
 printf("Field is numeric\n");

ENUM and SET values are returned as strings. For these, check that the type value is
MYSQL_TYPE_STRING and that the ENUM_FLAG or SET_FLAG flag is set in the flags value.

20.6.6 C API Function Overview

The functions available in the C API are summarized here and described in greater detail in a later section.
See Section 20.6.7, “C API Function Descriptions”.

Table 20.4 C API Function Names and Descriptions

Function Description

my_init() Initialize global variables, and thread handler in thread-safe programs

mysql_affected_rows() Returns the number of rows changed/deleted/inserted by the last
UPDATE, DELETE, or INSERT query

mysql_autocommit() Toggles autocommit mode on/off

mysql_change_user() Changes user and database on an open connection

mysql_character_set_name()Return default character set name for current connection

mysql_close() Closes a server connection

mysql_commit() Commits the transaction

mysql_connect() Connects to a MySQL server (this function is deprecated; use
mysql_real_connect() instead)

mysql_create_db() Creates a database (this function is deprecated; use the SQL statement
CREATE DATABASE instead)

mysql_data_seek() Seeks to an arbitrary row number in a query result set

mysql_debug() Does a DBUG_PUSH with the given string

mysql_drop_db() Drops a database (this function is deprecated; use the SQL statement
DROP DATABASE instead)

mysql_dump_debug_info() Makes the server write debug information to the log

mysql_eof() Determines whether the last row of a result set has been read (this
function is deprecated; mysql_errno() or mysql_error() may be
used instead)

mysql_errno() Returns the error number for the most recently invoked MySQL function

mysql_error() Returns the error message for the most recently invoked MySQL
function

mysql_escape_string() Escapes special characters in a string for use in an SQL statement

mysql_fetch_field() Returns the type of the next table field

mysql_fetch_field_direct()Returns the type of a table field, given a field number

C API Function Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1895

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Function Description

mysql_fetch_fields() Returns an array of all field structures

mysql_fetch_lengths() Returns the lengths of all columns in the current row

mysql_fetch_row() Fetches the next row from the result set

mysql_field_count() Returns the number of result columns for the most recent statement

mysql_field_seek() Puts the column cursor on a specified column

mysql_field_tell() Returns the position of the field cursor used for the last
mysql_fetch_field()

mysql_free_result() Frees memory used by a result set

mysql_get_character_set_info()Return information about default character set

mysql_get_client_info() Returns client version information as a string

mysql_get_client_version()Returns client version information as an integer

mysql_get_host_info() Returns a string describing the connection

mysql_get_proto_info() Returns the protocol version used by the connection

mysql_get_server_info() Returns the server version number

mysql_get_server_version()Returns version number of server as an integer

mysql_get_ssl_cipher() Return current SSL cipher

mysql_hex_string() Encode string in hexadecimal format

mysql_info() Returns information about the most recently executed query

mysql_init() Gets or initializes a MYSQL structure

mysql_insert_id() Returns the ID generated for an AUTO_INCREMENT column by the
previous query

mysql_kill() Kills a given thread

mysql_library_end() Finalize the MySQL C API library

mysql_library_init() Initialize the MySQL C API library

mysql_list_dbs() Returns database names matching a simple regular expression

mysql_list_fields() Returns field names matching a simple regular expression

mysql_list_processes() Returns a list of the current server threads

mysql_list_tables() Returns table names matching a simple regular expression

mysql_more_results() Checks whether any more results exist

mysql_next_result() Returns/initiates the next result in multiple-result executions

mysql_num_fields() Returns the number of columns in a result set

mysql_num_rows() Returns the number of rows in a result set

mysql_options() Sets connect options for mysql_real_connect()

mysql_ping() Checks whether the connection to the server is working, reconnecting
as necessary

mysql_query() Executes an SQL query specified as a null-terminated string

mysql_real_connect() Connects to a MySQL server

mysql_real_escape_string()Escapes special characters in a string for use in an SQL statement,
taking into account the current character set of the connection

C API Function Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1896

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Function Description

mysql_real_query() Executes an SQL query specified as a counted string

mysql_refresh() Flush or reset tables and caches

mysql_reload() Tells the server to reload the grant tables

mysql_rollback() Rolls back the transaction

mysql_row_seek() Seeks to a row offset in a result set, using value returned from
mysql_row_tell()

mysql_row_tell() Returns the row cursor position

mysql_select_db() Selects a database

mysql_server_end() Finalize the MySQL C API library

mysql_server_init() Initialize the MySQL C API library

mysql_set_character_set()Set default character set for current connection

mysql_set_local_infile_default()Set the LOAD DATA LOCAL INFILE handler callbacks to their default
values

mysql_set_local_infile_handler()Install application-specific LOAD DATA LOCAL INFILE handler
callbacks

mysql_set_server_option()Sets an option for the connection (like multi-statements)

mysql_sqlstate() Returns the SQLSTATE error code for the last error

mysql_shutdown() Shuts down the database server

mysql_ssl_set() Prepare to establish SSL connection to server

mysql_stat() Returns the server status as a string

mysql_store_result() Retrieves a complete result set to the client

mysql_thread_end() Finalize thread handler

mysql_thread_id() Returns the current thread ID

mysql_thread_init() Initialize thread handler

mysql_thread_safe() Returns 1 if the clients are compiled as thread-safe

mysql_use_result() Initiates a row-by-row result set retrieval

mysql_warning_count() Returns the warning count for the previous SQL statement

Application programs should use this general outline for interacting with MySQL:

1. Initialize the MySQL library by calling mysql_library_init(). This function exists in both the
libmysqlclient C client library and the libmysqld embedded server library, so it is used whether
you build a regular client program by linking with the -libmysqlclient flag, or an embedded server
application by linking with the -libmysqld flag.

2. Initialize a connection handler by calling mysql_init() and connect to the server by calling
mysql_real_connect().

3. Issue SQL statements and process their results. (The following discussion provides more information
about how to do this.)

4. Close the connection to the MySQL server by calling mysql_close().

5. End use of the MySQL library by calling mysql_library_end().

C API Function Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1897

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The purpose of calling mysql_library_init() and mysql_library_end() is to provide proper
initialization and finalization of the MySQL library. For applications that are linked with the client library,
they provide improved memory management. If you do not call mysql_library_end(), a block of
memory remains allocated. (This does not increase the amount of memory used by the application, but
some memory leak detectors will complain about it.) For applications that are linked with the embedded
server, these calls start and stop the server.

mysql_library_init() and mysql_library_end() are available as of MySQL 5.0.3. For older
versions of MySQL, you can call mysql_server_init() and mysql_server_end() instead.

In a nonmulti-threaded environment, the call to mysql_library_init() may be omitted, because
mysql_init() will invoke it automatically as necessary. However, mysql_library_init() is
not thread-safe in a multi-threaded environment, and thus neither is mysql_init(), which calls
mysql_library_init(). You must either call mysql_library_init() prior to spawning any threads,
or else use a mutex to protect the call, whether you invoke mysql_library_init() or indirectly through
mysql_init(). This should be done prior to any other client library call.

To connect to the server, call mysql_init() to initialize a connection handler, then call
mysql_real_connect() with that handler (along with other information such as the host name,
user name, and password). Upon connection, mysql_real_connect() sets the reconnect flag
(part of the MYSQL structure) to a value of 1 in versions of the API older than 5.0.3, or 0 in newer
versions. A value of 1 for this flag indicates that if a statement cannot be performed because of a lost
connection, to try reconnecting to the server before giving up. As of MySQL 5.0.13, you can use the
MYSQL_OPT_RECONNECT option to mysql_options() to control reconnection behavior. When you are
done with the connection, call mysql_close() to terminate it.

While a connection is active, the client may send SQL statements to the server using mysql_query() or
mysql_real_query(). The difference between the two is that mysql_query() expects the query to
be specified as a null-terminated string whereas mysql_real_query() expects a counted string. If the
string contains binary data (which may include null bytes), you must use mysql_real_query().

For each non-SELECT query (for example, INSERT, UPDATE, DELETE), you can find out how many rows
were changed (affected) by calling mysql_affected_rows().

For SELECT queries, you retrieve the selected rows as a result set. (Note that some statements are
SELECT-like in that they return rows. These include SHOW, DESCRIBE, and EXPLAIN. Treat these
statements the same way as SELECT statements.)

There are two ways for a client to process result sets. One way is to retrieve the entire result set all at
once by calling mysql_store_result(). This function acquires from the server all the rows returned by
the query and stores them in the client. The second way is for the client to initiate a row-by-row result set
retrieval by calling mysql_use_result(). This function initializes the retrieval, but does not actually get
any rows from the server.

In both cases, you access rows by calling mysql_fetch_row(). With mysql_store_result(),
mysql_fetch_row() accesses rows that have previously been fetched from the server. With
mysql_use_result(), mysql_fetch_row() actually retrieves the row from the server. Information
about the size of the data in each row is available by calling mysql_fetch_lengths().

After you are done with a result set, call mysql_free_result() to free the memory used for it.

The two retrieval mechanisms are complementary. Choose the approach that is most appropriate for each
client application. In practice, clients tend to use mysql_store_result() more commonly.

An advantage of mysql_store_result() is that because the rows have all been fetched to the
client, you not only can access rows sequentially, you can move back and forth in the result set using

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1898

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql_data_seek() or mysql_row_seek() to change the current row position within the result set.
You can also find out how many rows there are by calling mysql_num_rows(). On the other hand, the
memory requirements for mysql_store_result() may be very high for large result sets and you are
more likely to encounter out-of-memory conditions.

An advantage of mysql_use_result() is that the client requires less memory for the result set because
it maintains only one row at a time (and because there is less allocation overhead, mysql_use_result()
can be faster). Disadvantages are that you must process each row quickly to avoid tying up the server,
you do not have random access to rows within the result set (you can only access rows sequentially),
and the number of rows in the result set is unknown until you have retrieved them all. Furthermore, you
must retrieve all the rows even if you determine in mid-retrieval that you've found the information you were
looking for.

The API makes it possible for clients to respond appropriately to statements (retrieving rows only
as necessary) without knowing whether the statement is a SELECT. You can do this by calling
mysql_store_result() after each mysql_query() (or mysql_real_query()). If the result
set call succeeds, the statement was a SELECT and you can read the rows. If the result set call
fails, call mysql_field_count() to determine whether a result was actually to be expected. If
mysql_field_count() returns zero, the statement returned no data (indicating that it was an INSERT,
UPDATE, DELETE, and so forth), and was not expected to return rows. If mysql_field_count() is
nonzero, the statement should have returned rows, but did not. This indicates that the statement was a
SELECT that failed. See the description for mysql_field_count() for an example of how this can be
done.

Both mysql_store_result() and mysql_use_result() enable you to obtain information about
the fields that make up the result set (the number of fields, their names and types, and so forth). You
can access field information sequentially within the row by calling mysql_fetch_field() repeatedly,
or by field number within the row by calling mysql_fetch_field_direct(). The current field
cursor position may be changed by calling mysql_field_seek(). Setting the field cursor affects
subsequent calls to mysql_fetch_field(). You can also get information for fields all at once by calling
mysql_fetch_fields().

For detecting and reporting errors, MySQL provides access to error information by means of the
mysql_errno() and mysql_error() functions. These return the error code or error message for the
most recently invoked function that can succeed or fail, enabling you to determine when an error occurred
and what it was.

20.6.7 C API Function Descriptions

In the descriptions here, a parameter or return value of NULL means NULL in the sense of the C
programming language, not a MySQL NULL value.

Functions that return a value generally return a pointer or an integer. Unless specified otherwise, functions
returning a pointer return a non-NULL value to indicate success or a NULL value to indicate an error, and
functions returning an integer return zero to indicate success or nonzero to indicate an error. Note that
“nonzero” means just that. Unless the function description says otherwise, do not test against a value other
than zero:

if (result) /* correct */
 ... error ...

if (result < 0) /* incorrect */
 ... error ...

if (result == -1) /* incorrect */
 ... error ...

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1899

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When a function returns an error, the Errors subsection of the function description lists the possible types
of errors. You can find out which of these occurred by calling mysql_errno(). A string representation of
the error may be obtained by calling mysql_error().

20.6.7.1 mysql_affected_rows()

my_ulonglong mysql_affected_rows(MYSQL *mysql)

Description

mysql_affected_rows() may be called immediately after executing a statement with mysql_query()
or mysql_real_query(). It returns the number of rows changed, deleted, or inserted by the last
statement if it was an UPDATE, DELETE, or INSERT. For SELECT statements, mysql_affected_rows()
works like mysql_num_rows().

For UPDATE statements, the affected-rows value by default is the number of rows actually changed. If you
specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to mysqld, the
affected-rows value is the number of rows “found”; that is, matched by the WHERE clause.

For REPLACE statements, the affected-rows value is 2 if the new row replaced an old row, because in this
case, one row was inserted after the duplicate was deleted.

For INSERT ... ON DUPLICATE KEY UPDATE statements, the affected-rows value is 1 if the row is
inserted as a new row and 2 if an existing row is updated.

Following a CALL statement for a stored procedure, mysql_affected_rows() returns the value that it
would return for the last statement executed within the procedure, or 0 if that statement would return -1.
Within the procedure, you can use ROW_COUNT() at the SQL level to obtain the affected-rows value for
individual statements.

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no
records were updated for an UPDATE statement, no rows matched the WHERE clause in the query or that
no query has yet been executed. -1 indicates that the query returned an error or that, for a SELECT query,
mysql_affected_rows() was called prior to calling mysql_store_result().

Because mysql_affected_rows() returns an unsigned value, you can check for -1 by comparing the
return value to (my_ulonglong)-1 (or to (my_ulonglong)~0, which is equivalent).

Errors

None.

Example

char *stmt = "UPDATE products SET cost=cost*1.25
 WHERE group=10";
mysql_query(&mysql,stmt);
printf("%ld products updated",
 (long) mysql_affected_rows(&mysql));

20.6.7.2 mysql_autocommit()

my_bool mysql_autocommit(MYSQL *mysql, my_bool mode)

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1900

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Description

Sets autocommit mode on if mode is 1, off if mode is 0.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

20.6.7.3 mysql_change_user()

my_bool mysql_change_user(MYSQL *mysql, const char *user, const char *password,
const char *db)

Description

Changes the user and causes the database specified by db to become the default (current) database on
the connection specified by mysql. In subsequent queries, this database is the default for table references
that include no explicit database specifier.

mysql_change_user() fails if the connected user cannot be authenticated or does not have permission
to use the database. In this case, the user and database are not changed.

Pass a db parameter of NULL if you do not want to have a default database.

This function resets the session state as if one had done a new connect and reauthenticated. (See
Section 20.6.15, “Controlling Automatic Reconnection Behavior”.) It always performs a ROLLBACK of any
active transactions, closes and drops all temporary tables, and unlocks all locked tables. Session system
variables are reset to the values of the corresponding global system variables. Prepared statements are
released and HANDLER variables are closed. Locks acquired with GET_LOCK() are released. These
effects occur even if the user did not change.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

The same that you can get from mysql_real_connect(), plus:

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1901

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

An unknown error occurred.

• ER_UNKNOWN_COM_ERROR

The MySQL server does not implement this command (probably an old server).

• ER_ACCESS_DENIED_ERROR

The user or password was wrong.

• ER_BAD_DB_ERROR

The database did not exist.

• ER_DBACCESS_DENIED_ERROR

The user did not have access rights to the database.

• ER_WRONG_DB_NAME

The database name was too long.

Example

if (mysql_change_user(&mysql, "user", "password", "new_database"))
{
 fprintf(stderr, "Failed to change user. Error: %s\n",
 mysql_error(&mysql));
}

20.6.7.4 mysql_character_set_name()

const char *mysql_character_set_name(MYSQL *mysql)

Description

Returns the default character set name for the current connection.

Return Values

The default character set name

Errors

None.

20.6.7.5 mysql_close()

void mysql_close(MYSQL *mysql)

Description

Closes a previously opened connection. mysql_close() also deallocates the connection handle pointed
to by mysql if the handle was allocated automatically by mysql_init() or mysql_connect().

Return Values

None.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1902

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Errors

None.

20.6.7.6 mysql_commit()

my_bool mysql_commit(MYSQL *mysql)

Description

Commits the current transaction.

As of MySQL 5.0.3, the action of this function is subject to the value of the completion_type system
variable. In particular, if the value of completion_type is 2, the server performs a release after
terminating a transaction and closes the client connection. The client program should call mysql_close()
to close the connection from the client side.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

20.6.7.7 mysql_connect()

MYSQL *mysql_connect(MYSQL *mysql, const char *host, const char *user, const
char *passwd)

Description

This function is deprecated. Use mysql_real_connect() instead.

mysql_connect() attempts to establish a connection to a MySQL database engine running on host.
mysql_connect() must complete successfully before you can execute any of the other API functions,
with the exception of mysql_get_client_info().

The meanings of the parameters are the same as for the corresponding parameters for
mysql_real_connect() with the difference that the connection parameter may be NULL. In this
case, the C API allocates memory for the connection structure automatically and frees it when you call
mysql_close(). The disadvantage of this approach is that you cannot retrieve an error message if the
connection fails. (To get error information from mysql_errno() or mysql_error(), you must provide a
valid MYSQL pointer.)

Return Values

Same as for mysql_real_connect().

Errors

Same as for mysql_real_connect().

20.6.7.8 mysql_create_db()

int mysql_create_db(MYSQL *mysql, const char *db)

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1903

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Description

Creates the database named by the db parameter.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL CREATE DATABASE
statement instead.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

if(mysql_create_db(&mysql, "my_database"))
{
 fprintf(stderr, "Failed to create new database. Error: %s\n",
 mysql_error(&mysql));
}

20.6.7.9 mysql_data_seek()

void mysql_data_seek(MYSQL_RES *result, my_ulonglong offset)

Description

Seeks to an arbitrary row in a query result set. The offset value is a row number. Specify a value in the
range from 0 to mysql_num_rows(result)-1.

This function requires that the result set structure contains the entire result of the query, so
mysql_data_seek() may be used only in conjunction with mysql_store_result(), not with
mysql_use_result().

Return Values

None.

Errors

None.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1904

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

20.6.7.10 mysql_debug()

void mysql_debug(const char *debug)

Description

Does a DBUG_PUSH with the given string. mysql_debug() uses the Fred Fish debug library. To use
this function, you must compile the client library to support debugging. See Section 21.3.3, “The DBUG
Package”.

Return Values

None.

Errors

None.

Example

The call shown here causes the client library to generate a trace file in /tmp/client.trace on the client
machine:

mysql_debug("d:t:O,/tmp/client.trace");

20.6.7.11 mysql_drop_db()

int mysql_drop_db(MYSQL *mysql, const char *db)

Description

Drops the database named by the db parameter.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL DROP DATABASE
statement instead.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1905

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Example

if(mysql_drop_db(&mysql, "my_database"))
 fprintf(stderr, "Failed to drop the database: Error: %s\n",
 mysql_error(&mysql));

20.6.7.12 mysql_dump_debug_info()

int mysql_dump_debug_info(MYSQL *mysql)

Description

Instructs the server to write debugging information to the error log. The connected user must have the
SUPER privilege.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

20.6.7.13 mysql_eof()

my_bool mysql_eof(MYSQL_RES *result)

Description

This function is deprecated. mysql_errno() or mysql_error() may be used instead.

mysql_eof() determines whether the last row of a result set has been read.

If you acquire a result set from a successful call to mysql_store_result(), the client receives the
entire set in one operation. In this case, a NULL return from mysql_fetch_row() always means the
end of the result set has been reached and it is unnecessary to call mysql_eof(). When used with
mysql_store_result(), mysql_eof() always returns true.

On the other hand, if you use mysql_use_result() to initiate a result set retrieval, the rows of the
set are obtained from the server one by one as you call mysql_fetch_row() repeatedly. Because an
error may occur on the connection during this process, a NULL return value from mysql_fetch_row()
does not necessarily mean the end of the result set was reached normally. In this case, you can use
mysql_eof() to determine what happened. mysql_eof() returns a nonzero value if the end of the result
set was reached and zero if an error occurred.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1906

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Historically, mysql_eof() predates the standard MySQL error functions mysql_errno() and
mysql_error(). Because those error functions provide the same information, their use is preferred over
mysql_eof(), which is deprecated. (In fact, they provide more information, because mysql_eof()
returns only a boolean value whereas the error functions indicate a reason for the error when one occurs.)

Return Values

Zero for success. Nonzero if the end of the result set has been reached.

Errors

None.

Example

The following example shows how you might use mysql_eof():

mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{
 // do something with data
}
if(!mysql_eof(result)) // mysql_fetch_row() failed due to an error
{
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

However, you can achieve the same effect with the standard MySQL error functions:

mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{
 // do something with data
}
if(mysql_errno(&mysql)) // mysql_fetch_row() failed due to an error
{
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

20.6.7.14 mysql_errno()

unsigned int mysql_errno(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_errno() returns the error code for the most recently
invoked API function that can succeed or fail. A return value of zero means that no error occurred. Client
error message numbers are listed in the MySQL errmsg.h header file. Server error message numbers
are listed in mysqld_error.h. Errors also are listed at Appendix B, Errors, Error Codes, and Common
Problems.

Note

Some functions such as mysql_fetch_row() do not set mysql_errno() if
they succeed. A rule of thumb is that all functions that have to ask the server for
information reset mysql_errno() if they succeed.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1907

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL-specific error numbers returned by mysql_errno() differ from SQLSTATE values returned by
mysql_sqlstate(). For example, the mysql client program displays errors using the following format,
where 1146 is the mysql_errno() value and '42S02' is the corresponding mysql_sqlstate() value:

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Return Values

An error code value for the last mysql_xxx() call, if it failed. zero means no error occurred.

Errors

None.

20.6.7.15 mysql_error()

const char *mysql_error(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_error() returns a null-terminated string containing the
error message for the most recently invoked API function that failed. If a function did not fail, the return
value of mysql_error() may be the previous error or an empty string to indicate no error.

A rule of thumb is that all functions that have to ask the server for information reset mysql_error() if
they succeed.

For functions that reset mysql_error(), either of these two tests can be used to check for an error:

if(*mysql_error(&mysql))
{
 // an error occurred
}

if(mysql_error(&mysql)[0])
{
 // an error occurred
}

The language of the client error messages may be changed by recompiling the MySQL client library. You
can choose error messages in several different languages. See Section 10.2, “Setting the Error Message
Language”.

Return Values

A null-terminated character string that describes the error. An empty string if no error occurred.

Errors

None.

20.6.7.16 mysql_escape_string()

Note

This function should not be used. Use mysql_real_escape_string() instead.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1908

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql_escape_string() is identical to mysql_real_escape_string() except that
mysql_real_escape_string() takes a connection handler as its first argument and escapes the string
according to the current character set. mysql_escape_string() does not take a connection argument
and does not respect the current character set.

20.6.7.17 mysql_fetch_field()

MYSQL_FIELD *mysql_fetch_field(MYSQL_RES *result)

Description

Returns the definition of one column of a result set as a MYSQL_FIELD structure. Call this function
repeatedly to retrieve information about all columns in the result set. mysql_fetch_field() returns
NULL when no more fields are left.

mysql_fetch_field() is reset to return information about the first field each time you execute
a new SELECT query. The field returned by mysql_fetch_field() is also affected by calls to
mysql_field_seek().

If you've called mysql_query() to perform a SELECT on a table but have not called
mysql_store_result(), MySQL returns the default blob length (8KB) if you call
mysql_fetch_field() to ask for the length of a BLOB field. (The 8KB size is chosen because MySQL
does not know the maximum length for the BLOB. This should be made configurable sometime.) Once
you've retrieved the result set, field->max_length contains the length of the largest value for this
column in the specific query.

Return Values

The MYSQL_FIELD structure for the current column. NULL if no columns are left.

Errors

None.

Example

MYSQL_FIELD *field;

while((field = mysql_fetch_field(result)))
{
 printf("field name %s\n", field->name);
}

20.6.7.18 mysql_fetch_field_direct()

MYSQL_FIELD *mysql_fetch_field_direct(MYSQL_RES *result, unsigned int fieldnr)

Description

Given a field number fieldnr for a column within a result set, returns that column's field definition as a
MYSQL_FIELD structure. Use this function to retrieve the definition for an arbitrary column. Specify a value
for fieldnr in the range from 0 to mysql_num_fields(result)-1.

Return Values

The MYSQL_FIELD structure for the specified column.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1909

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Errors

None.

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *field;

num_fields = mysql_num_fields(result);
for(i = 0; i < num_fields; i++)
{
 field = mysql_fetch_field_direct(result, i);
 printf("Field %u is %s\n", i, field->name);
}

20.6.7.19 mysql_fetch_fields()

MYSQL_FIELD *mysql_fetch_fields(MYSQL_RES *result)

Description

Returns an array of all MYSQL_FIELD structures for a result set. Each structure provides the field definition
for one column of the result set.

Return Values

An array of MYSQL_FIELD structures for all columns of a result set.

Errors

None.

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *fields;

num_fields = mysql_num_fields(result);
fields = mysql_fetch_fields(result);
for(i = 0; i < num_fields; i++)
{
 printf("Field %u is %s\n", i, fields[i].name);
}

20.6.7.20 mysql_fetch_lengths()

unsigned long *mysql_fetch_lengths(MYSQL_RES *result)

Description

Returns the lengths of the columns of the current row within a result set. If you plan to copy field values,
this length information is also useful for optimization, because you can avoid calling strlen(). In addition,
if the result set contains binary data, you must use this function to determine the size of the data, because
strlen() returns incorrect results for any field containing null characters.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1910

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The length for empty columns and for columns containing NULL values is zero. To see how to distinguish
these two cases, see the description for mysql_fetch_row().

Return Values

An array of unsigned long integers representing the size of each column (not including any terminating null
bytes). NULL if an error occurred.

Errors

mysql_fetch_lengths() is valid only for the current row of the result set. It returns NULL if you call it
before calling mysql_fetch_row() or after retrieving all rows in the result.

Example

MYSQL_ROW row;
unsigned long *lengths;
unsigned int num_fields;
unsigned int i;

row = mysql_fetch_row(result);
if (row)
{
 num_fields = mysql_num_fields(result);
 lengths = mysql_fetch_lengths(result);
 for(i = 0; i < num_fields; i++)
 {
 printf("Column %u is %lu bytes in length.\n",
 i, lengths[i]);
 }
}

20.6.7.21 mysql_fetch_row()

MYSQL_ROW mysql_fetch_row(MYSQL_RES *result)

Description

Retrieves the next row of a result set. When used after mysql_store_result(), mysql_fetch_row()
returns NULL when there are no more rows to retrieve. When used after mysql_use_result(),
mysql_fetch_row() returns NULL when there are no more rows to retrieve or if an error occurred.

The number of values in the row is given by mysql_num_fields(result). If row holds the
return value from a call to mysql_fetch_row(), pointers to the values are accessed as row[0] to
row[mysql_num_fields(result)-1]. NULL values in the row are indicated by NULL pointers.

The lengths of the field values in the row may be obtained by calling mysql_fetch_lengths(). Empty
fields and fields containing NULL both have length 0; you can distinguish these by checking the pointer for
the field value. If the pointer is NULL, the field is NULL; otherwise, the field is empty.

Return Values

A MYSQL_ROW structure for the next row. NULL if there are no more rows to retrieve or if an error occurred.

Errors

Errors are not reset between calls to mysql_fetch_row()

• CR_SERVER_LOST

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1911

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

MYSQL_ROW row;
unsigned int num_fields;
unsigned int i;

num_fields = mysql_num_fields(result);
while ((row = mysql_fetch_row(result)))
{
 unsigned long *lengths;
 lengths = mysql_fetch_lengths(result);
 for(i = 0; i < num_fields; i++)
 {
 printf("[%.*s] ", (int) lengths[i],
 row[i] ? row[i] : "NULL");
 }
 printf("\n");
}

20.6.7.22 mysql_field_count()

unsigned int mysql_field_count(MYSQL *mysql)

Description

Returns the number of columns for the most recent query on the connection.

The normal use of this function is when mysql_store_result() returned NULL (and thus you
have no result set pointer). In this case, you can call mysql_field_count() to determine whether
mysql_store_result() should have produced a nonempty result. This enables the client program to
take proper action without knowing whether the query was a SELECT (or SELECT-like) statement. The
example shown here illustrates how this may be done.

See Section 20.6.14.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns
Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;

if (mysql_query(&mysql,query_string))
{

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1912

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 // error
}
else // query succeeded, process any data returned by it
{
 result = mysql_store_result(&mysql);
 if (result) // there are rows
 {
 num_fields = mysql_num_fields(result);
 // retrieve rows, then call mysql_free_result(result)
 }
 else // mysql_store_result() returned nothing; should it have?
 {
 if(mysql_field_count(&mysql) == 0)
 {
 // query does not return data
 // (it was not a SELECT)
 num_rows = mysql_affected_rows(&mysql);
 }
 else // mysql_store_result() should have returned data
 {
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
 }
 }
}

An alternative is to replace the mysql_field_count(&mysql) call with mysql_errno(&mysql). In
this case, you are checking directly for an error from mysql_store_result() rather than inferring from
the value of mysql_field_count() whether the statement was a SELECT.

20.6.7.23 mysql_field_seek()

MYSQL_FIELD_OFFSET mysql_field_seek(MYSQL_RES *result, MYSQL_FIELD_OFFSET
offset)

Description

Sets the field cursor to the given offset. The next call to mysql_fetch_field() retrieves the field
definition of the column associated with that offset.

To seek to the beginning of a row, pass an offset value of zero.

Return Values

The previous value of the field cursor.

Errors

None.

20.6.7.24 mysql_field_tell()

MYSQL_FIELD_OFFSET mysql_field_tell(MYSQL_RES *result)

Description

Returns the position of the field cursor used for the last mysql_fetch_field(). This value can be used
as an argument to mysql_field_seek().

Return Values

The current offset of the field cursor.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1913

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Errors

None.

20.6.7.25 mysql_free_result()

void mysql_free_result(MYSQL_RES *result)

Description

Frees the memory allocated for a result set by mysql_store_result(), mysql_use_result(),
mysql_list_dbs(), and so forth. When you are done with a result set, you must free the memory it uses
by calling mysql_free_result().

Do not attempt to access a result set after freeing it.

Return Values

None.

Errors

None.

20.6.7.26 mysql_get_character_set_info()

void mysql_get_character_set_info(MYSQL *mysql, MY_CHARSET_INFO *cs)

Description

This function provides information about the default client character set. The default character set may be
changed with the mysql_set_character_set() function.

This function was added in MySQL 5.0.10.

Example

This example shows the fields that are available in the MY_CHARSET_INFO structure:

if (!mysql_set_character_set(&mysql, "utf8"))
{
 MY_CHARSET_INFO cs;
 mysql_get_character_set_info(&mysql, &cs);
 printf("character set information:\n");
 printf("character set+collation number: %d\n", cs.number);
 printf("character set name: %s\n", cs.name);
 printf("collation name: %s\n", cs.csname);
 printf("comment: %s\n", cs.comment);
 printf("directory: %s\n", cs.dir);
 printf("multi byte character min. length: %d\n", cs.mbminlen);
 printf("multi byte character max. length: %d\n", cs.mbmaxlen);
}

20.6.7.27 mysql_get_client_info()

const char *mysql_get_client_info(void)

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1914

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Description

Returns a string that represents the MySQL client library version; for example, "5.0.96".

The function value is the MySQL version. For Connector/C, this is the MySQL version on which the
Connector/C distribution is based. For more information, see Section 20.6.4.4, “C API Server and Client
Library Versions”.

Return Values

A character string that represents the MySQL client library version.

Errors

None.

20.6.7.28 mysql_get_client_version()

unsigned long mysql_get_client_version(void)

Description

Returns an integer that represents the MySQL client library version. The value has the format XYYZZ
where X is the major version, YY is the release level (or minor version), and ZZ is the sub-version within the
release level:

major_version*10000 + release_level*100 + sub_version

For example, "5.0.96" is returned as 50096.

The function value is the MySQL version. For Connector/C, this is the MySQL version on which the
Connector/C distribution is based. For more information, see Section 20.6.4.4, “C API Server and Client
Library Versions”.

Return Values

An integer that represents the MySQL client library version.

Errors

None.

20.6.7.29 mysql_get_host_info()

const char *mysql_get_host_info(MYSQL *mysql)

Description

Returns a string describing the type of connection in use, including the server host name.

Return Values

A character string representing the server host name and the connection type.

Errors

None.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1915

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

20.6.7.30 mysql_get_proto_info()

unsigned int mysql_get_proto_info(MYSQL *mysql)

Description

Returns the protocol version used by current connection.

Return Values

An unsigned integer representing the protocol version used by the current connection.

Errors

None.

20.6.7.31 mysql_get_server_info()

const char *mysql_get_server_info(MYSQL *mysql)

Description

Returns a string that represents the MySQL server version; for example, "5.0.96".

Return Values

A character string that represents the MySQL server version.

Errors

None.

20.6.7.32 mysql_get_server_version()

unsigned long mysql_get_server_version(MYSQL *mysql)

Description

Returns an integer that represents the MySQL server version. The value has the format XYYZZ where X is
the major version, YY is the release level (or minor version), and ZZ is the sub-version within the release
level:

major_version*10000 + release_level*100 + sub_version

For example, "5.0.96" is returned as 50096.

This function is useful in client programs for determining whether some version-specific server capability
exists.

Return Values

An integer that represents the MySQL server version.

Errors

None.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1916

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

20.6.7.33 mysql_get_ssl_cipher()

const char *mysql_get_ssl_cipher(MYSQL *mysql)

Description

mysql_get_ssl_cipher() returns the encryption cipher used for the given connection to the server.
mysql is the connection handler returned from mysql_init().

This function was added in MySQL 5.0.23.

Return Values

A string naming the encryption cipher used for the connection, or NULL if no cipher is being used.

20.6.7.34 mysql_hex_string()

unsigned long mysql_hex_string(char *to, const char *from, unsigned long
length)

Description

This function creates a legal SQL string for use in an SQL statement. See Section 9.1.1, “String Literals”.

The string in the from argument is encoded in hexadecimal format, with each character encoded as two
hexadecimal digits. The result is placed in the to argument, followed by a terminating null byte.

The string pointed to by from must be length bytes long. You must allocate the to buffer to be at least
length*2+1 bytes long. When mysql_hex_string() returns, the contents of to is a null-terminated
string. The return value is the length of the encoded string, not including the terminating null byte.

The return value can be placed into an SQL statement using either X'value' or 0xvalue format.
However, the return value does not include the X'...' or 0x. The caller must supply whichever of those is
desired.

Example

char query[1000],*end;

end = strmov(query,"INSERT INTO test_table values(");
end = strmov(end,"X'");
end += mysql_hex_string(end,"What is this",12);
end = strmov(end,"',X'");
end += mysql_hex_string(end,"binary data: \0\r\n",16);
end = strmov(end,"')");

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{
 fprintf(stderr, "Failed to insert row, Error: %s\n",
 mysql_error(&mysql));
}

The strmov() function used in the example is included in the libmysqlclient library and works like
strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the encoded string that is placed into to, not including the terminating null character.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1917

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Errors

None.

20.6.7.35 mysql_info()

const char *mysql_info(MYSQL *mysql)

Description

Retrieves a string providing information about the most recently executed statement, but only for the
statements listed here. For other statements, mysql_info() returns NULL. The format of the string
varies depending on the type of statement, as described here. The numbers are illustrative only; the string
contains values appropriate for the statement.

• INSERT INTO ... SELECT ...

String format: Records: 100 Duplicates: 0 Warnings: 0

• INSERT INTO ... VALUES (...),(...),(...)...

String format: Records: 3 Duplicates: 0 Warnings: 0

• LOAD DATA INFILE ...

String format: Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

• ALTER TABLE

String format: Records: 3 Duplicates: 0 Warnings: 0

• UPDATE

String format: Rows matched: 40 Changed: 40 Warnings: 0

mysql_info() returns a non-NULL value for INSERT ... VALUES only for the multiple-row form of the
statement (that is, only if multiple value lists are specified).

Return Values

A character string representing additional information about the most recently executed statement. NULL if
no information is available for the statement.

Errors

None.

20.6.7.36 mysql_init()

MYSQL *mysql_init(MYSQL *mysql)

Description

Allocates or initializes a MYSQL object suitable for mysql_real_connect(). If mysql is a NULL
pointer, the function allocates, initializes, and returns a new object. Otherwise, the object is initialized
and the address of the object is returned. If mysql_init() allocates a new object, it is freed when
mysql_close() is called to close the connection.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1918

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In a nonmulti-threaded environment, mysql_init() invokes mysql_library_init() automatically
as necessary. However, mysql_library_init() is not thread-safe in a multi-threaded environment,
and thus neither is mysql_init(). Before calling mysql_init(), either call mysql_library_init()
prior to spawning any threads, or use a mutex to protect the mysql_library_init() call. This should
be done prior to any other client library call.

Return Values

An initialized MYSQL* handle. NULL if there was insufficient memory to allocate a new object.

Errors

In case of insufficient memory, NULL is returned.

20.6.7.37 mysql_insert_id()

my_ulonglong mysql_insert_id(MYSQL *mysql)

Description

Returns the value generated for an AUTO_INCREMENT column by the previous INSERT or UPDATE
statement. Use this function after you have performed an INSERT statement into a table that
contains an AUTO_INCREMENT field, or have used INSERT or UPDATE to set a column value with
LAST_INSERT_ID(expr).

More precisely, mysql_insert_id() is updated under these conditions:

• INSERT statements that store a value into an AUTO_INCREMENT column. This is true whether the value
is automatically generated by storing the special values NULL or 0 into the column, or is an explicit
nonspecial value.

• In the case of a multiple-row INSERT statement, mysql_insert_id() returns the first automatically
generated AUTO_INCREMENT value; if no such value is generated, it returns the last explicit value
inserted into the AUTO_INCREMENT column.

If no rows are successfully inserted, mysql_insert_id() returns 0.

• Starting in MySQL 5.0.54, if an INSERT ... SELECT statement is executed, and no automatically
generated value is successfully inserted, mysql_insert_id() returns the ID of the last inserted row.

• INSERT statements that generate an AUTO_INCREMENT value by inserting LAST_INSERT_ID(expr)
into any column or by updating any column to LAST_INSERT_ID(expr).

• If the previous statement returned an error, the value of mysql_insert_id() is undefined.

mysql_insert_id() returns 0 if the previous statement does not use an AUTO_INCREMENT value. If you
need to save the value for later, be sure to call mysql_insert_id() immediately after the statement that
generates the value.

The value of mysql_insert_id() is not affected by statements such as SELECT that return a result set.

The value of mysql_insert_id() is affected only by statements issued within the current client
connection. It is not affected by statements issued by other clients.

The LAST_INSERT_ID() SQL function returns the most recently generated AUTO_INCREMENT value,
and is not reset between statements because the value of that function is maintained in the server.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1919

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Another difference from mysql_insert_id() is that LAST_INSERT_ID() is not updated if you set an
AUTO_INCREMENT column to a specific nonspecial value. See Section 12.13, “Information Functions”.

mysql_insert_id() returns 0 following a CALL statement for a stored procedure that generates
an AUTO_INCREMENT value because in this case mysql_insert_id() applies to CALL and not the
statement within the procedure. Within the procedure, you can use LAST_INSERT_ID() at the SQL level
to obtain the AUTO_INCREMENT value.

The reason for the differences between LAST_INSERT_ID() and mysql_insert_id() is that
LAST_INSERT_ID() is made easy to use in scripts while mysql_insert_id() tries to provide more
exact information about what happens to the AUTO_INCREMENT column.

Return Values

Described in the preceding discussion.

Errors

None.

20.6.7.38 mysql_kill()

int mysql_kill(MYSQL *mysql, unsigned long pid)

Description

Asks the server to kill the thread specified by pid.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL KILL statement
instead.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

20.6.7.39 mysql_library_end()

void mysql_library_end(void)

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1920

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Description

This function finalizes the MySQL library. Call it when you are done using the library (for example, after
disconnecting from the server). The action taken by the call depends on whether your application is linked
to the MySQL client library or the MySQL embedded server library. For a client program linked against the
libmysqlclient library by using the -lmysqlclient flag, mysql_library_end() performs some
memory management to clean up. For an embedded server application linked against the libmysqld
library by using the -lmysqld flag, mysql_library_end() shuts down the embedded server and then
cleans up.

For usage information, see Section 20.6.6, “C API Function Overview”, and Section 20.6.7.40,
“mysql_library_init()”.

mysql_library_end() was added in MySQL 5.0.3. For older versions of MySQL, call
mysql_server_end() instead.

20.6.7.40 mysql_library_init()

int mysql_library_init(int argc, char **argv, char **groups)

Description

Call this function to initialize the MySQL library before you call any other MySQL function, whether your
application is a regular client program or uses the embedded server. If the application uses the embedded
server, this call starts the server and initializes any subsystems (mysys, InnoDB, and so forth) that the
server uses.

After your application is done using the MySQL library, call mysql_library_end() to clean up. See
Section 20.6.7.39, “mysql_library_end()”.

The choice of whether the application operates as a regular client or uses the embedded server depends
on whether you use the libmysqlclient or libmysqld library at link time to produce the final
executable. For additional information, see Section 20.6.6, “C API Function Overview”.

In a nonmulti-threaded environment, the call to mysql_library_init() may be omitted, because
mysql_init() will invoke it automatically as necessary. However, mysql_library_init() is
not thread-safe in a multi-threaded environment, and thus neither is mysql_init(), which calls
mysql_library_init(). You must either call mysql_library_init() prior to spawning any threads,
or else use a mutex to protect the call, whether you invoke mysql_library_init() or indirectly through
mysql_init(). Do this prior to any other client library call.

The argc and argv arguments are analogous to the arguments to main(), and enable passing of options
to the embedded server. For convenience, argc may be 0 (zero) if there are no command-line arguments
for the server. This is the usual case for applications intended for use only as regular (nonembedded)
clients, and the call typically is written as mysql_library_init(0, NULL, NULL).

#include <mysql.h>
#include <stdlib.h>

int main(void) {
 if (mysql_library_init(0, NULL, NULL)) {
 fprintf(stderr, "could not initialize MySQL library\n");
 exit(1);
 }

 /* Use any MySQL API functions here */

 mysql_library_end();

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1921

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 return EXIT_SUCCESS;
}

When arguments are to be passed (argc is greater than 0), the first element of argv is ignored (it typically
contains the program name). mysql_library_init() makes a copy of the arguments so it is safe to
destroy argv or groups after the call.

For embedded applications, if you want to connect to an external server without starting the embedded
server, you have to specify a negative value for argc.

The groups argument is an array of strings that indicate the groups in option files from which to read
options. See Section 4.2.6, “Using Option Files”. Make the final entry in the array NULL. For convenience, if
the groups argument itself is NULL, the [server] and [embedded] groups are used by default.

#include <mysql.h>
#include <stdlib.h>

static char *server_args[] = {
 "this_program", /* this string is not used */
 "--datadir=.",
 "--key_buffer_size=32M"
};
static char *server_groups[] = {
 "embedded",
 "server",
 "this_program_SERVER",
 (char *)NULL
};

int main(void) {
 if (mysql_library_init(sizeof(server_args) / sizeof(char *),
 server_args, server_groups)) {
 fprintf(stderr, "could not initialize MySQL library\n");
 exit(1);
 }

 /* Use any MySQL API functions here */

 mysql_library_end();

 return EXIT_SUCCESS;
}

mysql_library_init() was added in MySQL 5.0.3. For older versions of MySQL, call
mysql_server_init() instead.

Return Values

Zero for success. Nonzero if an error occurred.

20.6.7.41 mysql_list_dbs()

MYSQL_RES *mysql_list_dbs(MYSQL *mysql, const char *wild)

Description

Returns a result set consisting of database names on the server that match the simple regular expression
specified by the wild parameter. wild may contain the wildcard characters “%” or “_”, or may be a NULL
pointer to match all databases. Calling mysql_list_dbs() is similar to executing the query SHOW
DATABASES [LIKE wild].

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1922

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

20.6.7.42 mysql_list_fields()

MYSQL_RES *mysql_list_fields(MYSQL *mysql, const char *table, const char *wild)

Description

Returns an empty result set for which the metadata provides information about the columns in the
given table that match the simple regular expression specified by the wild parameter. wild may
contain the wildcard characters “%” or “_”, or may be a NULL pointer to match all fields. Calling
mysql_list_fields() is similar to executing the query SHOW COLUMNS FROM tbl_name [LIKE
wild].

It is preferable to use SHOW COLUMNS FROM tbl_name instead of mysql_list_fields().

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1923

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

int i;
MYSQL_RES *tbl_cols = mysql_list_fields(mysql, "mytbl", "f%");

unsigned int field_cnt = mysql_num_fields(tbl_cols);
printf("Number of columns: %d\n", field_cnt);

for (i=0; i < field_cnt; ++i)
{
 /* col describes i-th column of the table */
 MYSQL_FIELD *col = mysql_fetch_field_direct(tbl_cols, i);
 printf ("Column %d: %s\n", i, col->name);
}
mysql_free_result(tbl_cols);

20.6.7.43 mysql_list_processes()

MYSQL_RES *mysql_list_processes(MYSQL *mysql)

Description

Returns a result set describing the current server threads. This is the same kind of information as that
reported by mysqladmin processlist or a SHOW PROCESSLIST query.

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

20.6.7.44 mysql_list_tables()

MYSQL_RES *mysql_list_tables(MYSQL *mysql, const char *wild)

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1924

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Description

Returns a result set consisting of table names in the current database that match the simple regular
expression specified by the wild parameter. wild may contain the wildcard characters “%” or “_”, or may
be a NULL pointer to match all tables. Calling mysql_list_tables() is similar to executing the query
SHOW TABLES [LIKE wild].

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

20.6.7.45 mysql_more_results()

my_bool mysql_more_results(MYSQL *mysql)

Description

This function is used when you execute multiple statements specified as a single statement string, or when
you execute CALL statements, which can return multiple result sets.

mysql_more_results() true if more results exist from the currently executed statement, in which case
the application must call mysql_next_result() to fetch the results.

Return Values

TRUE (1) if more results exist. FALSE (0) if no more results exist.

In most cases, you can call mysql_next_result() instead to test whether more results exist and initiate
retrieval if so.

See Section 20.6.16, “C API Support for Multiple Statement Execution”, and Section 20.6.7.46,
“mysql_next_result()”.

Errors

None.

20.6.7.46 mysql_next_result()

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1925

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

int mysql_next_result(MYSQL *mysql)

Description

This function is used when you execute multiple statements specified as a single statement string, or when
you use CALL statements to execute stored procedures, which can return multiple result sets.

mysql_next_result() reads the next statement result and returns a status to indicate whether more
results exist. If mysql_next_result() returns an error, there are no more results.

Before each call to mysql_next_result(), you must call mysql_free_result() for the current
statement if it is a statement that returned a result set (rather than just a result status).

After calling mysql_next_result() the state of the connection is as if you had called
mysql_real_query() or mysql_query() for the next statement. This means that you can call
mysql_store_result(), mysql_warning_count(), mysql_affected_rows(), and so forth.

If your program uses CALL statements to execute stored procedures, the CLIENT_MULTI_RESULTS flag
must be enabled. This is because each CALL returns a result to indicate the call status, in addition to any
result sets that might be returned by statements executed within the procedure. Because CALL can return
multiple results, process them using a loop that calls mysql_next_result() to determine whether there
are more results.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(), either explicitly by
passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing CLIENT_MULTI_STATEMENTS
(which also enables CLIENT_MULTI_RESULTS).

It is also possible to test whether there are more results by calling mysql_more_results().
However, this function does not change the connection state, so if it returns true, you must still call
mysql_next_result() to advance to the next result.

For an example that shows how to use mysql_next_result(), see Section 20.6.16, “C API Support for
Multiple Statement Execution”.

Return Values

Return Value Description

0 Successful and there are more results

-1 Successful and there are no more results

>0 An error occurred

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order. For example, if you did not call mysql_use_result()
for a previous result set.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1926

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• CR_UNKNOWN_ERROR

An unknown error occurred.

20.6.7.47 mysql_num_fields()

unsigned int mysql_num_fields(MYSQL_RES *result)

To pass a MYSQL* argument instead, use unsigned int mysql_field_count(MYSQL *mysql).

Description

Returns the number of columns in a result set.

You can get the number of columns either from a pointer to a result set or to a connection handle. You
would use the connection handle if mysql_store_result() or mysql_use_result() returned
NULL (and thus you have no result set pointer). In this case, you can call mysql_field_count() to
determine whether mysql_store_result() should have produced a nonempty result. This enables the
client program to take proper action without knowing whether the query was a SELECT (or SELECT-like)
statement. The example shown here illustrates how this may be done.

See Section 20.6.14.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns
Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;

if (mysql_query(&mysql,query_string))
{
 // error
}
else // query succeeded, process any data returned by it
{
 result = mysql_store_result(&mysql);
 if (result) // there are rows
 {
 num_fields = mysql_num_fields(result);
 // retrieve rows, then call mysql_free_result(result)
 }
 else // mysql_store_result() returned nothing; should it have?
 {
 if (mysql_errno(&mysql))
 {
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
 }
 else if (mysql_field_count(&mysql) == 0)
 {
 // query does not return data
 // (it was not a SELECT)

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1927

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 num_rows = mysql_affected_rows(&mysql);
 }
 }
}

An alternative (if you know that your query should have returned a result set) is to replace the
mysql_errno(&mysql) call with a check whether mysql_field_count(&mysql) returns 0. This
happens only if something went wrong.

20.6.7.48 mysql_num_rows()

my_ulonglong mysql_num_rows(MYSQL_RES *result)

Description

Returns the number of rows in the result set.

The use of mysql_num_rows() depends on whether you use mysql_store_result()
or mysql_use_result() to return the result set. If you use mysql_store_result(),
mysql_num_rows() may be called immediately. If you use mysql_use_result(),
mysql_num_rows() does not return the correct value until all the rows in the result set have been
retrieved.

mysql_num_rows() is intended for use with statements that return a result set, such as SELECT. For
statements such as INSERT, UPDATE, or DELETE, the number of affected rows can be obtained with
mysql_affected_rows().

Return Values

The number of rows in the result set.

Errors

None.

20.6.7.49 mysql_options()

int mysql_options(MYSQL *mysql, enum mysql_option option, const char *arg)

Description

Can be used to set extra connect options and affect behavior for a connection. This function may be called
multiple times to set several options.

Call mysql_options() after mysql_init() and before mysql_connect() or
mysql_real_connect().

The option argument is the option that you want to set; the arg argument is the value for the option. If
the option is an integer, specify a pointer to the value of the integer as the arg argument.

The following list describes the possible options, their effect, and how arg is used for each option. Several
of the options apply only when the application is linked against the libmysqld embedded server library
and are unused for applications linked against the libmysqlclient client library. For option descriptions
that indicate arg is unused, its value is irrelevant; it is conventional to pass 0.

• MYSQL_INIT_COMMAND (argument type: char *)

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1928

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SQL statement to execute when connecting to the MySQL server. Automatically re-executed if
reconnection occurs.

• MYSQL_OPT_COMPRESS (argument: not used)

Use the compressed client/server protocol.

• MYSQL_OPT_CONNECT_TIMEOUT (argument type: unsigned int *)

The connect timeout in seconds.

• MYSQL_OPT_GUESS_CONNECTION (argument: not used)

For an application linked against the libmysqld embedded server library, this enables the
library to guess whether to use the embedded server or a remote server. “Guess” means that if
the host name is set and is not localhost, it uses a remote server. This behavior is the default.
MYSQL_OPT_USE_EMBEDDED_CONNECTION and MYSQL_OPT_USE_REMOTE_CONNECTION can be used
to override it. This option is ignored for applications linked against the libmysqlclient client library.

• MYSQL_OPT_LOCAL_INFILE (argument type: optional pointer to unsigned int)

If no pointer is given or if pointer points to an unsigned int that has a nonzero value, the LOAD DATA
LOCAL INFILE statement is enabled.

• MYSQL_OPT_NAMED_PIPE (argument: not used)

Use a named pipe to connect to the MySQL server on Windows, if the server permits named-pipe
connections.

• MYSQL_OPT_PROTOCOL (argument type: unsigned int *)

Type of protocol to use. Specify one of the enum values of mysql_protocol_type defined in
mysql.h.

• MYSQL_OPT_READ_TIMEOUT (argument type: unsigned int *)

The timeout in seconds for each attempt to read from the server. There are retries if necessary, so
the total effective timeout value is three times the option value. You can set the value so that a lost
connection can be detected earlier than the TCP/IP Close_Wait_Timeout value of 10 minutes. This
option works only for TCP/IP connections and, prior to MySQL 5.0.25, only for Windows.

• MYSQL_OPT_RECONNECT (argument type: my_bool *)

Enable or disable automatic reconnection to the server if the connection is found to have been lost.
Reconnect has been off by default since MySQL 5.0.3; this option is new in 5.0.13 and provides a way to
set reconnection behavior explicitly.

Note: mysql_real_connect() incorrectly reset the MYSQL_OPT_RECONNECT option to its default
value before MySQL 5.0.19. Therefore, prior to that version, if you want reconnect to be enabled for
each connection, you must call mysql_options() with the MYSQL_OPT_RECONNECT option after each
call to mysql_real_connect(). This is not necessary as of 5.0.19: Call mysql_options() only
before mysql_real_connect() as usual.

• MYSQL_OPT_SSL_VERIFY_SERVER_CERT (argument type: my_bool *)

Enable or disable verification of the server's Common Name value in its certificate against the host name
used when connecting to the server. The connection is rejected if there is a mismatch. For encrypted

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1929

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

connections, this feature can be used to prevent man-in-the-middle attacks. Verification is disabled by
default. Added in MySQL 5.0.23.

• MYSQL_OPT_USE_EMBEDDED_CONNECTION (argument: not used)

For an application linked against the libmysqld embedded server library, this forces the use of
the embedded server for the connection. This option is ignored for applications linked against the
libmysqlclient client library.

• MYSQL_OPT_USE_REMOTE_CONNECTION (argument: not used)

For an application linked against the libmysqld embedded server library, this forces the use
of a remote server for the connection. This option is ignored for applications linked against the
libmysqlclient client library.

• MYSQL_OPT_USE_RESULT (argument: not used)

This option is unused.

• MYSQL_OPT_WRITE_TIMEOUT (argument type: unsigned int *)

The timeout in seconds for each attempt to write to the server. There is a retry if necessary, so the total
effective timeout value is two times the option value. This option works only for TCP/IP connections and,
prior to MySQL 5.0.25, only for Windows.

• MYSQL_READ_DEFAULT_FILE (argument type: char *)

Read options from the named option file instead of from my.cnf.

• MYSQL_READ_DEFAULT_GROUP (argument type: char *)

Read options from the named group from my.cnf or the file specified with
MYSQL_READ_DEFAULT_FILE.

• MYSQL_REPORT_DATA_TRUNCATION (argument type: my_bool *)

Enable or disable reporting of data truncation errors for prepared statements using the error member
of MYSQL_BIND structures. (Default: enabled.) Added in 5.0.3.

• MYSQL_SECURE_AUTH (argument type: my_bool *)

Whether to connect to a server that does not support the password hashing used in MySQL 4.1.1 and
later.

• MYSQL_SET_CHARSET_DIR (argument type: char *)

The path name to the directory that contains character set definition files.

• MYSQL_SET_CHARSET_NAME (argument type: char *)

The name of the character set to use as the default character set.

• MYSQL_SET_CLIENT_IP (argument type: char *)

For an application linked against the libmysqld embedded server library (when libmysqld is
compiled with authentication support), this means that the user is considered to have connected from
the specified IP address (specified as a string) for authentication purposes. This option is ignored for
applications linked against the libmysqlclient client library.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1930

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• MYSQL_SHARED_MEMORY_BASE_NAME (argument type: char *)

The name of the shared-memory object for communication to the server on Windows, if the server
supports shared-memory connections. Specify the same value as the --shared-memory-base-name
option used for the mysqld server you want to connect to.

The client group is always read if you use MYSQL_READ_DEFAULT_FILE or
MYSQL_READ_DEFAULT_GROUP.

The specified group in the option file may contain the following options.

Option Description

character-sets-
dir=dir_name

The directory where character sets are installed.

compress Use the compressed client/server protocol.

connect-timeout=seconds The connect timeout in seconds. On Linux this timeout is also used
for waiting for the first answer from the server.

database=db_name Connect to this database if no database was specified in the
connect command.

debug Debug options.

default-character-
set=charset_name

The default character set to use.

disable-local-infile Disable use of LOAD DATA LOCAL INFILE.

host=host_name Default host name.

init-command=stmt Statement to execute when connecting to MySQL server.
Automatically re-executed if reconnection occurs.

interactive-
timeout=seconds

Same as specifying CLIENT_INTERACTIVE to
mysql_real_connect(). See Section 20.6.7.52,
“mysql_real_connect()”.

local-infile[={0|1}] If no argument or nonzero argument, enable use of LOAD DATA
LOCAL; otherwise disable.

max_allowed_packet=bytes Maximum size of packet that client can read from server.

multi-queries, multi-
results

Enable multiple result sets from multiple-statement executions or
stored procedures.

multi-statements Enable the client to send multiple statements in a single string
(separated by ; characters).

password=password Default password.

pipe Use named pipes to connect to a MySQL server on Windows.

port=port_num Default port number.

protocol={TCP|SOCKET|PIPE|
MEMORY}

The protocol to use when connecting to the server.

return-found-rows Tell mysql_info() to return found rows instead of updated rows
when using UPDATE.

shared-memory-base-
name=name

Shared-memory name to use to connect to server.

socket={file_name|pipe_name}Default socket file.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1931

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option Description

ssl-ca=file_name Certificate Authority file.

ssl-capath=dir_name Certificate Authority directory.

ssl-cert=file_name Certificate file.

ssl-cipher=cipher_list Permissible SSL ciphers.

ssl-key=file_name Key file.

timeout=seconds Like connect-timeout.

user Default user.

timeout has been replaced by connect-timeout, but timeout is still supported for backward
compatibility.

For more information about option files used by MySQL programs, see Section 4.2.6, “Using Option Files”.

Return Values

Zero for success. Nonzero if you specify an unknown option.

Example

The following mysql_options() calls request the use of compression in the client/server protocol, cause
options to be read from the [odbc] group of option files, and disable transaction autocommit mode:

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_OPT_COMPRESS,0);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"odbc");
mysql_options(&mysql,MYSQL_INIT_COMMAND,"SET autocommit=0");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
 fprintf(stderr, "Failed to connect to database: Error: %s\n",
 mysql_error(&mysql));
}

This code requests that the client use the compressed client/server protocol and read the additional
options from the odbc section in the my.cnf file.

20.6.7.50 mysql_ping()

int mysql_ping(MYSQL *mysql)

Description

Checks whether the connection to the server is working. If the connection has gone down and auto-
reconnect is enabled an attempt to reconnect is made. If the connection is down and auto-reconnect is
disabled, mysql_ping() returns an error.

Auto-reconnect is enabled by default before MySQL 5.0.3 and enabled from 5.0.3 on. To enable
auto-connect, call mysql_options() with the MYSQL_OPT_RECONNECT option. For details, see
Section 20.6.7.49, “mysql_options()”.

mysql_ping() can be used by clients that remain idle for a long while, to check whether the server has
closed the connection and reconnect if necessary.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1932

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If mysql_ping()) does cause a reconnect, there is no explicit indication of it. To determine whether
a reconnect occurs, call mysql_thread_id() to get the original connection identifier before calling
mysql_ping(), then call mysql_thread_id() again to see whether the identifier has changed.

If reconnect occurs, some characteristics of the connection will have been reset. For details about these
characteristics, see Section 20.6.15, “Controlling Automatic Reconnection Behavior”.

Return Values

Zero if the connection to the server is active. Nonzero if an error occurred. A nonzero return does not
indicate whether the MySQL server itself is down; the connection might be broken for other reasons such
as network problems.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_UNKNOWN_ERROR

An unknown error occurred.

20.6.7.51 mysql_query()

int mysql_query(MYSQL *mysql, const char *stmt_str)

Description

Executes the SQL statement pointed to by the null-terminated string stmt_str. Normally, the string
must consist of a single SQL statement without a terminating semicolon (“;”) or \g. If multiple-statement
execution has been enabled, the string can contain several statements separated by semicolons. See
Section 20.6.16, “C API Support for Multiple Statement Execution”.

mysql_query() cannot be used for statements that contain binary data; you must use
mysql_real_query() instead. (Binary data may contain the “\0” character, which mysql_query()
interprets as the end of the statement string.)

If you want to know whether the statement should return a result set, you can use
mysql_field_count() to check for this. See Section 20.6.7.22, “mysql_field_count()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1933

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

20.6.7.52 mysql_real_connect()

MYSQL *mysql_real_connect(MYSQL *mysql, const char *host, const char *user,
const char *passwd, const char *db, unsigned int port, const char *unix_socket,
unsigned long client_flag)

Description

mysql_real_connect() attempts to establish a connection to a MySQL database engine running on
host. mysql_real_connect() must complete successfully before you can execute any other API
functions that require a valid MYSQL connection handle structure.

The parameters are specified as follows:

• For the first parameter, specify the address of an existing MYSQL structure. Before calling
mysql_real_connect(), call mysql_init() to initialize the MYSQL structure. You can change a lot
of connect options with the mysql_options() call. See Section 20.6.7.49, “mysql_options()”.

• The value of host may be either a host name or an IP address. If host is NULL or the string
"localhost", a connection to the local host is assumed. For Windows, the client connects using a
shared-memory connection, if the server has shared-memory connections enabled. Otherwise, TCP/IP is
used. For Unix, the client connects using a Unix socket file. For local connections, you can also influence
the type of connection to use with the MYSQL_OPT_PROTOCOL or MYSQL_OPT_NAMED_PIPE options to
mysql_options(). The type of connection must be supported by the server. For a host value of "."
on Windows, the client connects using a named pipe, if the server has named-pipe connections enabled.
If named-pipe connections are not enabled, an error occurs.

• The user parameter contains the user's MySQL login ID. If user is NULL or the empty string "", the
current user is assumed. Under Unix, this is the current login name. Under Windows ODBC, the current
user name must be specified explicitly. See the Connector/ODBC section of Chapter 20, Connectors and
APIs.

• The passwd parameter contains the password for user. If passwd is NULL, only entries in the user
table for the user that have a blank (empty) password field are checked for a match. This enables the
database administrator to set up the MySQL privilege system in such a way that users get different
privileges depending on whether they have specified a password.

Note

Do not attempt to encrypt the password before calling
mysql_real_connect(); password encryption is handled automatically by the
client API.

• The user and passwd parameters use whatever character set has been configured for the MYSQL
object. By default, this is latin1, but can be changed by calling mysql_options(mysql,
MYSQL_SET_CHARSET_NAME, "charset_name") prior to connecting.

• db is the database name. If db is not NULL, the connection sets the default database to this value.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1934

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• If port is not 0, the value is used as the port number for the TCP/IP connection. Note that the host
parameter determines the type of the connection.

• If unix_socket is not NULL, the string specifies the socket or named pipe to use. Note that the host
parameter determines the type of the connection.

• The value of client_flag is usually 0, but can be set to a combination of the following flags to enable
certain features.

Flag Name Flag Description

CLIENT_COMPRESS Use compression in the client/server protocol.

CLIENT_FOUND_ROWS Return the number of found (matched) rows, not the number of
changed rows.

CLIENT_IGNORE_SIGPIPE Prevents the client library from installing a SIGPIPE signal
handler. This can be used to avoid conflicts with a handler that the
application has already installed.

CLIENT_IGNORE_SPACE Permit spaces after function names. Makes all functions names
reserved words.

CLIENT_INTERACTIVE Permit interactive_timeout seconds of inactivity (rather than
wait_timeout seconds) before closing the connection. The
client's session wait_timeout variable is set to the value of the
session interactive_timeout variable.

CLIENT_LOCAL_FILES Enable LOAD DATA LOCAL handling.

CLIENT_MULTI_RESULTS Tell the server that the client can handle multiple result sets from
multiple-statement executions or stored procedures. This flag is
automatically enabled if CLIENT_MULTI_STATEMENTS is enabled.
See the note following this table for more information about this
flag.

CLIENT_MULTI_STATEMENTS Tell the server that the client may send multiple statements in a
single string (separated by ; characters). If this flag is not set,
multiple-statement execution is disabled. See the note following
this table for more information about this flag.

CLIENT_NO_SCHEMA Do not permit db_name.tbl_name.col_name syntax. This is
for ODBC. It causes the parser to generate an error if you use that
syntax, which is useful for trapping bugs in some ODBC programs.

CLIENT_ODBC Unused.

CLIENT_SSL Use SSL (encrypted protocol). Do not set this option within an
application program; it is set internally in the client library. Instead,
use mysql_ssl_set() before calling mysql_real_connect().

CLIENT_REMEMBER_OPTIONS Remember options specified by calls to mysql_options().
Without this option, if mysql_real_connect() fails, you must
repeat the mysql_options() calls before trying to connect
again. With this option, the mysql_options() calls need not be
repeated.

If your program uses CALL statements to execute stored procedures, the CLIENT_MULTI_RESULTS flag
must be enabled. This is because each CALL returns a result to indicate the call status, in addition to any
result sets that might be returned by statements executed within the procedure. Because CALL can return
multiple results, process them using a loop that calls mysql_next_result() to determine whether there
are more results.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1935

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(), either explicitly by
passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing CLIENT_MULTI_STATEMENTS
(which also enables CLIENT_MULTI_RESULTS).

If you enable CLIENT_MULTI_STATEMENTS or CLIENT_MULTI_RESULTS, you should process
the result for every call to mysql_query() or mysql_real_query() by using a loop that calls
mysql_next_result() to determine whether there are more results. For an example, see
Section 20.6.16, “C API Support for Multiple Statement Execution”.

For some parameters, it is possible to have the value taken from an option file rather than from
an explicit value in the mysql_real_connect() call. To do this, call mysql_options() with
the MYSQL_READ_DEFAULT_FILE or MYSQL_READ_DEFAULT_GROUP option before calling
mysql_real_connect(). Then, in the mysql_real_connect() call, specify the “no-value” value for
each parameter to be read from an option file:

• For host, specify a value of NULL or the empty string ("").

• For user, specify a value of NULL or the empty string.

• For passwd, specify a value of NULL. (For the password, a value of the empty string in the
mysql_real_connect() call cannot be overridden in an option file, because the empty string
indicates explicitly that the MySQL account must have an empty password.)

• For db, specify a value of NULL or the empty string.

• For port, specify a value of 0.

• For unix_socket, specify a value of NULL.

If no value is found in an option file for a parameter, its default value is used as indicated in the
descriptions given earlier in this section.

Return Values

A MYSQL* connection handle if the connection was successful, NULL if the connection was unsuccessful.
For a successful connection, the return value is the same as the value of the first parameter.

Errors

• CR_CONN_HOST_ERROR

Failed to connect to the MySQL server.

• CR_CONNECTION_ERROR

Failed to connect to the local MySQL server.

• CR_IPSOCK_ERROR

Failed to create an IP socket.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SOCKET_CREATE_ERROR

Failed to create a Unix socket.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1936

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• CR_UNKNOWN_HOST

Failed to find the IP address for the host name.

• CR_VERSION_ERROR

A protocol mismatch resulted from attempting to connect to a server with a client library that uses a
different protocol version.

• CR_NAMEDPIPEOPEN_ERROR

Failed to create a named pipe on Windows.

• CR_NAMEDPIPEWAIT_ERROR

Failed to wait for a named pipe on Windows.

• CR_NAMEDPIPESETSTATE_ERROR

Failed to get a pipe handler on Windows.

• CR_SERVER_LOST

If connect_timeout > 0 and it took longer than connect_timeout seconds to connect to the server
or if the server died while executing the init-command.

Example

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"your_prog_name");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
 fprintf(stderr, "Failed to connect to database: Error: %s\n",
 mysql_error(&mysql));
}

By using mysql_options() the MySQL library reads the [client] and [your_prog_name] sections
in the my.cnf file which ensures that your program works, even if someone has set up MySQL in some
nonstandard way.

Upon connection, mysql_real_connect() sets the reconnect flag (part of the MYSQL structure)
to a value of 1 in versions of the API older than 5.0.3, or 0 in newer versions. A value of 1 for this flag
indicates that if a statement cannot be performed because of a lost connection, to try reconnecting to
the server before giving up. As of MySQL 5.0.13, you can use the MYSQL_OPT_RECONNECT option to
mysql_options() to control reconnection behavior.

20.6.7.53 mysql_real_escape_string()

unsigned long mysql_real_escape_string(MYSQL *mysql, char *to, const char
*from, unsigned long length)

Description

This function creates a legal SQL string for use in an SQL statement. See Section 9.1.1, “String Literals”.

The mysql argument must be a valid, open connection because character escaping depends on the
character set in use by the server.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1937

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The string in the from argument is encoded to produce an escaped SQL string, taking into account the
current character set of the connection. The result is placed in the to argument, followed by a terminating
null byte.

Characters encoded are “\”, “'”, “"”, NUL (ASCII 0), “\n”, “\r”, and Control+Z. Strictly speaking, MySQL
requires only that backslash and the quote character used to quote the string in the query be escaped.
mysql_real_escape_string() quotes the other characters to make them easier to read in log files.
For comparison, see the quoting rules for literal strings and the QUOTE() SQL function in Section 9.1.1,
“String Literals”, and Section 12.5, “String Functions”.

The string pointed to by from must be length bytes long. You must allocate the to buffer to be at least
length*2+1 bytes long. (In the worst case, each character may need to be encoded as using two bytes,
and there must be room for the terminating null byte.) When mysql_real_escape_string() returns,
the contents of to is a null-terminated string. The return value is the length of the encoded string, not
including the terminating null byte.

If you must change the character set of the connection, use the mysql_set_character_set()
function rather than executing a SET NAMES (or SET CHARACTER SET) statement.
mysql_set_character_set() works like SET NAMES but also affects the character set used by
mysql_real_escape_string(), which SET NAMES does not.

Example

The following example inserts two escaped strings into an INSERT statement, each within single quote
characters:

char query[1000],*end;

end = strmov(query,"INSERT INTO test_table VALUES(");
*end++ = '\'';
end += mysql_real_escape_string(&mysql,end,"What is this",12);
*end++ = '\'';
*end++ = ',';
*end++ = '\'';
end += mysql_real_escape_string(&mysql,end,"binary data: \0\r\n",16);
*end++ = '\'';
*end++ = ')';

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{
 fprintf(stderr, "Failed to insert row, Error: %s\n",
 mysql_error(&mysql));
}

The strmov() function used in the example is included in the libmysqlclient library and works like
strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the encoded string that is placed into the to argument, not including the terminating null
character.

Errors

None.

20.6.7.54 mysql_real_query()

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1938

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

int mysql_real_query(MYSQL *mysql, const char *stmt_str, unsigned long length)

Description

Executes the SQL statement pointed to by stmt_str, a string length bytes long. Normally, the string
must consist of a single SQL statement without a terminating semicolon (“;”) or \g. If multiple-statement
execution has been enabled, the string can contain several statements separated by semicolons. See
Section 20.6.16, “C API Support for Multiple Statement Execution”.

mysql_query() cannot be used for statements that contain binary data; you must use
mysql_real_query() instead. (Binary data may contain the “\0” character, which mysql_query()
interprets as the end of the statement string.) In addition, mysql_real_query() is faster than
mysql_query() because it does not call strlen() on the statement string.

If you want to know whether the statement should return a result set, you can use
mysql_field_count() to check for this. See Section 20.6.7.22, “mysql_field_count()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

20.6.7.55 mysql_refresh()

int mysql_refresh(MYSQL *mysql, unsigned int options)

Description

This function flushes tables or caches, or resets replication server information. The connected user must
have the RELOAD privilege.

The options argument is a bit mask composed from any combination of the following values. Multiple
values can be OR'ed together to perform multiple operations with a single call.

• REFRESH_GRANT

Refresh the grant tables, like FLUSH PRIVILEGES.

• REFRESH_LOG

Flush the logs, like FLUSH LOGS.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1939

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• REFRESH_TABLES

Flush the table cache, like FLUSH TABLES.

• REFRESH_HOSTS

Flush the host cache, like FLUSH HOSTS.

• REFRESH_STATUS

Reset status variables, like FLUSH STATUS.

• REFRESH_THREADS

Flush the thread cache.

• REFRESH_SLAVE

On a slave replication server, reset the master server information and restart the slave, like RESET
SLAVE.

• REFRESH_MASTER

On a master replication server, remove the binary log files listed in the binary log index and truncate the
index file, like RESET MASTER.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

20.6.7.56 mysql_reload()

int mysql_reload(MYSQL *mysql)

Description

Asks the MySQL server to reload the grant tables. The connected user must have the RELOAD privilege.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL FLUSH PRIVILEGES
statement instead.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1940

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

20.6.7.57 mysql_rollback()

my_bool mysql_rollback(MYSQL *mysql)

Description

Rolls back the current transaction.

As of MySQL 5.0.3, the action of this function is subject to the value of the completion_type system
variable. In particular, if the value of completion_type is 2, the server performs a release after
terminating a transaction and closes the client connection. The client program should call mysql_close()
to close the connection from the client side.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

20.6.7.58 mysql_row_seek()

MYSQL_ROW_OFFSET mysql_row_seek(MYSQL_RES *result, MYSQL_ROW_OFFSET offset)

Description

Sets the row cursor to an arbitrary row in a query result set. The offset value is a row offset, typically a
value returned from mysql_row_tell() or from mysql_row_seek(). This value is not a row number;
to seek to a row within a result set by number, use mysql_data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so
mysql_row_seek() may be used only in conjunction with mysql_store_result(), not with
mysql_use_result().

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1941

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql_row_seek().

Errors

None.

20.6.7.59 mysql_row_tell()

MYSQL_ROW_OFFSET mysql_row_tell(MYSQL_RES *result)

Description

Returns the current position of the row cursor for the last mysql_fetch_row(). This value can be used
as an argument to mysql_row_seek().

Use mysql_row_tell() only after mysql_store_result(), not after mysql_use_result().

Return Values

The current offset of the row cursor.

Errors

None.

20.6.7.60 mysql_select_db()

int mysql_select_db(MYSQL *mysql, const char *db)

Description

Causes the database specified by db to become the default (current) database on the connection specified
by mysql. In subsequent queries, this database is the default for table references that include no explicit
database specifier.

mysql_select_db() fails unless the connected user can be authenticated as having permission to use
the database.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1942

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• CR_UNKNOWN_ERROR

An unknown error occurred.

20.6.7.61 mysql_set_character_set()

int mysql_set_character_set(MYSQL *mysql, const char *csname)

Description

This function is used to set the default character set for the current connection. The string csname
specifies a valid character set name. The connection collation becomes the default collation of the
character set. This function works like the SET NAMES statement, but also sets the value of mysql-
>charset, and thus affects the character set used by mysql_real_escape_string()

This function was added in MySQL 5.0.7.

Return Values

Zero for success. Nonzero if an error occurred.

Example

MYSQL mysql;

mysql_init(&mysql);
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
 fprintf(stderr, "Failed to connect to database: Error: %s\n",
 mysql_error(&mysql));
}

if (!mysql_set_character_set(&mysql, "utf8"))
{
 printf("New client character set: %s\n",
 mysql_character_set_name(&mysql));
}

20.6.7.62 mysql_set_local_infile_default()

void mysql_set_local_infile_default(MYSQL *mysql);

Description

Sets the LOAD DATA LOCAL INFILE callback functions to the defaults used internally by the C client
library. The library calls this function automatically if mysql_set_local_infile_handler() has not
been called or does not supply valid functions for each of its callbacks.

Return Values

None.

Errors

None.

20.6.7.63 mysql_set_local_infile_handler()

void mysql_set_local_infile_handler(MYSQL *mysql, int (*local_infile_init)(void
**, const char *, void *), int (*local_infile_read)(void *, char *, unsigned

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1943

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

int), void (*local_infile_end)(void *), int (*local_infile_error)(void *,
char*, unsigned int), void *userdata);

Description

This function installs callbacks to be used during the execution of LOAD DATA LOCAL INFILE
statements. It enables application programs to exert control over local (client-side) data file reading. The
arguments are the connection handler, a set of pointers to callback functions, and a pointer to a data area
that the callbacks can use to share information.

To use mysql_set_local_infile_handler(), you must write the following callback functions:

int
local_infile_init(void **ptr, const char *filename, void *userdata);

The initialization function. This is called once to do any setup necessary, open the data file, allocate data
structures, and so forth. The first void** argument is a pointer to a pointer. You can set the pointer (that
is, *ptr) to a value that will be passed to each of the other callbacks (as a void*). The callbacks can
use this pointed-to value to maintain state information. The userdata argument is the same value that is
passed to mysql_set_local_infile_handler().

The initialization function should return zero for success, nonzero for an error.

int
local_infile_read(void *ptr, char *buf, unsigned int buf_len);

The data-reading function. This is called repeatedly to read the data file. buf points to the buffer where the
read data is stored, and buf_len is the maximum number of bytes that the callback can read and store in
the buffer. (It can read fewer bytes, but should not read more.)

The return value is the number of bytes read, or zero when no more data could be read (this indicates
EOF). Return a value less than zero if an error occurs.

void
local_infile_end(void *ptr)

The termination function. This is called once after local_infile_read() has returned zero (EOF) or an
error. Within this function, deallocate any memory allocated by local_infile_init() and perform any
other cleanup necessary. It is invoked even if the initialization function returns an error.

int
local_infile_error(void *ptr,
 char *error_msg,
 unsigned int error_msg_len);

The error-handling function. This is called to get a textual error message to return to the user in case any
of your other functions returns an error. error_msg points to the buffer into which the message is written,
and error_msg_len is the length of the buffer. Write the message as a null-terminated string, at most
error_msg_len−1 bytes long.

The return value is the error number.

Typically, the other callbacks store the error message in the data structure pointed to by ptr, so that
local_infile_error() can copy the message from there into error_msg.

After calling mysql_set_local_infile_handler() in your C code and passing pointers to your
callback functions, you can then issue a LOAD DATA LOCAL INFILE statement (for example, by using

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1944

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql_query()). The client library automatically invokes your callbacks. The file name specified in LOAD
DATA LOCAL INFILE will be passed as the second parameter to the local_infile_init() callback.

Return Values

None.

Errors

None.

20.6.7.64 mysql_set_server_option()

int mysql_set_server_option(MYSQL *mysql, enum enum_mysql_set_option option)

Description

Enables or disables an option for the connection. option can have one of the following values.

Option Description

MYSQL_OPTION_MULTI_STATEMENTS_ON Enable multiple-statement support

MYSQL_OPTION_MULTI_STATEMENTS_OFF Disable multiple-statement support

If you enable multiple-statement support, you should retrieve results from calls to mysql_query() or
mysql_real_query() by using a loop that calls mysql_next_result() to determine whether there
are more results. For an example, see Section 20.6.16, “C API Support for Multiple Statement Execution”.

Enabling multiple-statement support with MYSQL_OPTION_MULTI_STATEMENTS_ON does not
have quite the same effect as enabling it by passing the CLIENT_MULTI_STATEMENTS flag to
mysql_real_connect(): CLIENT_MULTI_STATEMENTS also enables CLIENT_MULTI_RESULTS. If
you are using the CALL SQL statement in your programs, multiple-result support must be enabled; this
means that MYSQL_OPTION_MULTI_STATEMENTS_ON by itself is insufficient to permit the use of CALL.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• ER_UNKNOWN_COM_ERROR

The server did not support mysql_set_server_option() (which is the case that the server is older
than 4.1.1) or the server did not support the option one tried to set.

20.6.7.65 mysql_shutdown()

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1945

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

int mysql_shutdown(MYSQL *mysql, enum mysql_enum_shutdown_level shutdown_level)

Description

Asks the database server to shut down. The connected user must have the SHUTDOWN privilege.
The shutdown_level argument was added in MySQL 5.0.1. MySQL servers support only one
type of shutdown; shutdown_level must be equal to SHUTDOWN_DEFAULT. Dynamically linked
executables which have been compiled with older versions of the libmysqlclient headers and call
mysql_shutdown() need to be used with the old libmysqlclient dynamic library.

The shutdown process is described in Section 5.1.10, “The Server Shutdown Process”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

20.6.7.66 mysql_sqlstate()

const char *mysql_sqlstate(MYSQL *mysql)

Description

Returns a null-terminated string containing the SQLSTATE error code for the most recently executed SQL
statement. The error code consists of five characters. '00000' means “no error.” The values are specified
by ANSI SQL and ODBC. For a list of possible values, see Appendix B, Errors, Error Codes, and Common
Problems.

SQLSTATE values returned by mysql_sqlstate() differ from MySQL-specific error numbers returned
by mysql_errno(). For example, the mysql client program displays errors using the following format,
where 1146 is the mysql_errno() value and '42S02' is the corresponding mysql_sqlstate() value:

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Not all MySQL error numbers are mapped to SQLSTATE error codes. The value 'HY000' (general error)
is used for unmapped error numbers.

If you call mysql_sqlstate() after mysql_real_connect() fails, mysql_sqlstate() might not
return a useful value. For example, this happens if a host is blocked by the server and the connection is
closed without any SQLSTATE value being sent to the client.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1946

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Return Values

A null-terminated character string containing the SQLSTATE error code.

See Also

See Section 20.6.7.14, “mysql_errno()”, Section 20.6.7.15, “mysql_error()”, and Section 20.6.11.26,
“mysql_stmt_sqlstate()”.

20.6.7.67 mysql_ssl_set()

my_bool mysql_ssl_set(MYSQL *mysql, const char *key, const char *cert, const
char *ca, const char *capath, const char *cipher)

Description

mysql_ssl_set() is used for establishing secure connections using SSL. It must be called before
mysql_real_connect().

mysql_ssl_set() does nothing unless SSL support is enabled in the client library.

mysql is the connection handler returned from mysql_init(). The other parameters are specified as
follows:

• key is the path name to the key file.

• cert is the path name to the certificate file.

• ca is the path name to the certificate authority file.

• capath is the path name to a directory that contains trusted SSL CA certificates in PEM format.

• cipher is a list of permissible ciphers to use for SSL encryption.

Any unused SSL parameters may be given as NULL.

Return Values

This function always returns 0. If SSL setup is incorrect, mysql_real_connect() returns an error when
you attempt to connect.

20.6.7.68 mysql_stat()

const char *mysql_stat(MYSQL *mysql)

Description

Returns a character string containing information similar to that provided by the mysqladmin status
command. This includes uptime in seconds and the number of running threads, questions, reloads, and
open tables.

Return Values

A character string describing the server status. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1947

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

20.6.7.69 mysql_store_result()

MYSQL_RES *mysql_store_result(MYSQL *mysql)

Description

After invoking mysql_query() or mysql_real_query(), you must call mysql_store_result()
or mysql_use_result() for every statement that successfully produces a result set (SELECT, SHOW,
DESCRIBE, EXPLAIN, CHECK TABLE, and so forth). You must also call mysql_free_result() after you
are done with the result set.

You need not call mysql_store_result() or mysql_use_result() for other statements, but it does
not do any harm or cause any notable performance degradation if you call mysql_store_result()
in all cases. You can detect whether the statement has a result set by checking whether
mysql_store_result() returns a nonzero value (more about this later).

If you enable multiple-statement support, you should retrieve results from calls to mysql_query() or
mysql_real_query() by using a loop that calls mysql_next_result() to determine whether there
are more results. For an example, see Section 20.6.16, “C API Support for Multiple Statement Execution”.

If you want to know whether a statement should return a result set, you can use mysql_field_count()
to check for this. See Section 20.6.7.22, “mysql_field_count()”.

mysql_store_result() reads the entire result of a query to the client, allocates a MYSQL_RES
structure, and places the result into this structure.

mysql_store_result() returns a null pointer if the statement did not return a result set (for example, if
it was an INSERT statement).

mysql_store_result() also returns a null pointer if reading of the result set failed. You can
check whether an error occurred by checking whether mysql_error() returns a nonempty string,
mysql_errno() returns nonzero, or mysql_field_count() returns zero.

An empty result set is returned if there are no rows returned. (An empty result set differs from a null pointer
as a return value.)

After you have called mysql_store_result() and gotten back a result that is not a null pointer, you can
call mysql_num_rows() to find out how many rows are in the result set.

You can call mysql_fetch_row() to fetch rows from the result set, or mysql_row_seek() and
mysql_row_tell() to obtain or set the current row position within the result set.

See Section 20.6.14.1, “Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns
Success”.

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1948

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Return Values

A MYSQL_RES result structure with the results. NULL (0) if an error occurred.

Errors

mysql_store_result() resets mysql_error() and mysql_errno() if it succeeds.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

20.6.7.70 mysql_thread_id()

unsigned long mysql_thread_id(MYSQL *mysql)

Description

Returns the thread ID of the current connection. This value can be used as an argument to
mysql_kill() to kill the thread.

If the connection is lost and you reconnect with mysql_ping(), the thread ID changes. This means you
should not get the thread ID and store it for later. You should get it when you need it.

Note

This function does not work correctly if thread IDs become larger than 32 bits, which
can occur on some systems. To avoid problems with mysql_thread_id(), do not
use it. To get the connection ID, execute a SELECT CONNECTION_ID() query and
retrieve the result.

Return Values

The thread ID of the current connection.

Errors

None.

20.6.7.71 mysql_use_result()

MYSQL_RES *mysql_use_result(MYSQL *mysql)

C API Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1949

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Description

After invoking mysql_query() or mysql_real_query(), you must call mysql_store_result()
or mysql_use_result() for every statement that successfully produces a result set (SELECT, SHOW,
DESCRIBE, EXPLAIN, CHECK TABLE, and so forth). You must also call mysql_free_result() after you
are done with the result set.

mysql_use_result() initiates a result set retrieval but does not actually read the result set into the
client like mysql_store_result() does. Instead, each row must be retrieved individually by making
calls to mysql_fetch_row(). This reads the result of a query directly from the server without storing
it in a temporary table or local buffer, which is somewhat faster and uses much less memory than
mysql_store_result(). The client allocates memory only for the current row and a communication
buffer that may grow up to max_allowed_packet bytes.

On the other hand, you should not use mysql_use_result() for locking reads if you are doing a lot of
processing for each row on the client side, or if the output is sent to a screen on which the user may type a
^S (stop scroll). This ties up the server and prevent other threads from updating any tables from which the
data is being fetched.

When using mysql_use_result(), you must execute mysql_fetch_row() until a NULL value is
returned, otherwise, the unfetched rows are returned as part of the result set for your next query. The C
API gives the error Commands out of sync; you can't run this command now if you forget to
do this!

You may not use mysql_data_seek(), mysql_row_seek(), mysql_row_tell(),
mysql_num_rows(), or mysql_affected_rows() with a result returned from mysql_use_result(),
nor may you issue other queries until mysql_use_result() has finished. (However, after you have
fetched all the rows, mysql_num_rows() accurately returns the number of rows fetched.)

You must call mysql_free_result() once you are done with the result set.

When using the libmysqld embedded server, the memory benefits are essentially lost because memory
usage incrementally increases with each row retrieved until mysql_free_result() is called.

Return Values

A MYSQL_RES result structure. NULL if an error occurred.

Errors

mysql_use_result() resets mysql_error() and mysql_errno() if it succeeds.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

C API Prepared Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1950

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• CR_UNKNOWN_ERROR

An unknown error occurred.

20.6.7.72 mysql_warning_count()

unsigned int mysql_warning_count(MYSQL *mysql)

Description

Returns the number of errors, warnings, and notes generated during execution of the previous SQL
statement.

Return Values

The warning count.

Errors

None.

20.6.8 C API Prepared Statements

The MySQL client/server protocol provides for the use of prepared statements. This capability uses
the MYSQL_STMT statement handler data structure returned by the mysql_stmt_init() initialization
function. Prepared execution is an efficient way to execute a statement more than once. The statement
is first parsed to prepare it for execution. Then it is executed one or more times at a later time, using the
statement handle returned by the initialization function.

Prepared execution is faster than direct execution for statements executed more than once, primarily
because the query is parsed only once. In the case of direct execution, the query is parsed every time it is
executed. Prepared execution also can provide a reduction of network traffic because for each execution of
the prepared statement, it is necessary only to send the data for the parameters.

Prepared statements might not provide a performance increase in some situations. For best results,
test your application both with prepared and nonprepared statements and choose whichever yields best
performance.

Another advantage of prepared statements is that it uses a binary protocol that makes data transfer
between client and server more efficient.

For a list of SQL statements that can be used as prepared statements, see Section 13.5, “SQL Syntax for
Prepared Statements”.

20.6.9 C API Prepared Statement Data Structures

Prepared statements use several data structures:

• To obtain a statement handle, pass a MYSQL connection handler to mysql_stmt_init(), which
returns a pointer to a MYSQL_STMT data structure. This structure is used for further operations with the
statement. To specify the statement to prepare, pass the MYSQL_STMT pointer and the statement string
to mysql_stmt_prepare().

• To provide input parameters for a prepared statement, set up MYSQL_BIND structures and pass them to
mysql_stmt_bind_param(). To receive output column values, set up MYSQL_BIND structures and
pass them to mysql_stmt_bind_result().

C API Prepared Statement Data Structures

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1951

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The MYSQL_TIME structure is used to transfer temporal data in both directions.

The following discussion describes the prepared statement data types in detail. For examples that
show how to use them, see Section 20.6.11.10, “mysql_stmt_execute()”, and Section 20.6.11.11,
“mysql_stmt_fetch()”.

• MYSQL_STMT

This structure is a handle for a prepared statement. A handle is created by calling
mysql_stmt_init(), which returns a pointer to a MYSQL_STMT. The handle is used for all subsequent
operations with the statement until you close it with mysql_stmt_close(), at which point the handle
becomes invalid.

The MYSQL_STMT structure has no members intended for application use. Applications should not try to
copy a MYSQL_STMT structure. There is no guarantee that such a copy will be usable.

Multiple statement handles can be associated with a single connection. The limit on the number of
handles depends on the available system resources.

• MYSQL_BIND

This structure is used both for statement input (data values sent to the server) and output (result values
returned from the server):

• For input, use MYSQL_BIND structures with mysql_stmt_bind_param() to bind parameter data
values to buffers for use by mysql_stmt_execute().

• For output, use MYSQL_BIND structures with mysql_stmt_bind_result() to bind buffers to result
set columns, for use in fetching rows with mysql_stmt_fetch().

To use a MYSQL_BIND structure, zero its contents to initialize it, then set its members appropriately. For
example, to declare and initialize an array of three MYSQL_BIND structures, use this code:

MYSQL_BIND bind[3];
memset(bind, 0, sizeof(bind));

The MYSQL_BIND structure contains the following members for use by application programs. For several
of the members, the manner of use depends on whether the structure is used for input or output.

• enum enum_field_types buffer_type

The type of the buffer. This member indicates the data type of the C language variable bound to a
statement parameter or result set column. For input, buffer_type indicates the type of the variable
containing the value to be sent to the server. For output, it indicates the type of the variable into
which a value received from the server should be stored. For permissible buffer_type values, see
Section 20.6.9.1, “C API Prepared Statement Type Codes”.

• void *buffer

A pointer to the buffer to be used for data transfer. This is the address of a C language variable.

For input, buffer is a pointer to the variable in which you store the data value for a statement
parameter. When you call mysql_stmt_execute(), MySQL use the value stored in the variable
in place of the corresponding parameter marker in the statement (specified with ? in the statement
string).

C API Prepared Statement Data Structures

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1952

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For output, buffer is a pointer to the variable in which to return a result set column value. When you
call mysql_stmt_fetch(), MySQL stores a column value from the current row of the result set in
this variable. You can access the value when the call returns.

To minimize the need for MySQL to perform type conversions between C language values on the
client side and SQL values on the server side, use C variables that have types similar to those of the
corresponding SQL values:

• For numeric data types, buffer should point to a variable of the proper numeric C type. For integer
variables (which can be char for single-byte values or an integer type for larger values), you
should also indicate whether the variable has the unsigned attribute by setting the is_unsigned
member, described later.

• For character (nonbinary) and binary string data types, buffer should point to a character buffer.

• For date and time data types, buffer should point to a MYSQL_TIME structure.

For guidelines about mapping between C types and SQL types and notes about type conversions, see
Section 20.6.9.1, “C API Prepared Statement Type Codes”, and Section 20.6.9.2, “C API Prepared
Statement Type Conversions”.

• unsigned long buffer_length

The actual size of *buffer in bytes. This indicates the maximum amount of data that can be
stored in the buffer. For character and binary C data, the buffer_length value specifies the
length of *buffer when used with mysql_stmt_bind_param() to specify input values, or
the maximum number of output data bytes that can be fetched into the buffer when used with
mysql_stmt_bind_result().

• unsigned long *length

A pointer to an unsigned long variable that indicates the actual number of bytes of data stored in
*buffer. length is used for character or binary C data.

For input parameter data binding, set *length to indicate the actual length of the parameter value
stored in *buffer. This is used by mysql_stmt_execute().

For output value binding, MySQL sets *length when you call mysql_stmt_fetch(). The
mysql_stmt_fetch() return value determines how to interpret the length:

• If the return value is 0, *length indicates the actual length of the parameter value.

• If the return value is MYSQL_DATA_TRUNCATED, *length indicates the nontruncated length of the
parameter value. In this case, the minimum of *length and buffer_length indicates the actual
length of the value.

length is ignored for numeric and temporal data types because the buffer_type value determines
the length of the data value.

If you must determine the length of a returned value before fetching it, see Section 20.6.11.11,
“mysql_stmt_fetch()”, for some strategies.

• my_bool *is_null

This member points to a my_bool variable that is true if a value is NULL, false if it is not NULL. For
input, set *is_null to true to indicate that you are passing a NULL value as a statement parameter.

C API Prepared Statement Data Structures

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1953

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

is_null is a pointer to a boolean scalar, not a boolean scalar, to provide flexibility in how you specify
NULL values:

• If your data values are always NULL, use MYSQL_TYPE_NULL as the buffer_type value when
you bind the column. The other MYSQL_BIND members, including is_null, do not matter.

• If your data values are always NOT NULL, set is_null = (my_bool*) 0, and set the other
members appropriately for the variable you are binding.

• In all other cases, set the other members appropriately and set is_null to the address of a
my_bool variable. Set that variable's value to true or false appropriately between executions to
indicate whether the corresponding data value is NULL or NOT NULL, respectively.

For output, when you fetch a row, MySQL sets the value pointed to by is_null to true or false
according to whether the result set column value returned from the statement is or is not NULL.

• my_bool is_unsigned

This member applies for C variables with data types that can be unsigned (char, short int, int,
long long int). Set is_unsigned to true if the variable pointed to by buffer is unsigned and
false otherwise. For example, if you bind a signed char variable to buffer, specify a type code of
MYSQL_TYPE_TINY and set is_unsigned to false. If you bind an unsigned char instead, the type
code is the same but is_unsigned should be true. (For char, it is not defined whether it is signed or
unsigned, so it is best to be explicit about signedness by using signed char or unsigned char.)

is_unsigned applies only to the C language variable on the client side. It indicates nothing about
the signedness of the corresponding SQL value on the server side. For example, if you use an int
variable to supply a value for a BIGINT UNSIGNED column, is_unsigned should be false because
int is a signed type. If you use an unsigned int variable to supply a value for a BIGINT column,
is_unsigned should be true because unsigned int is an unsigned type. MySQL performs the
proper conversion between signed and unsigned values in both directions, although a warning occurs
if truncation results.

• my_bool *error

For output, set this member to point to a my_bool variable to have truncation information for
the parameter stored there after a row fetching operation. When truncation reporting is enabled,
mysql_stmt_fetch() returns MYSQL_DATA_TRUNCATED and *error is true in the MYSQL_BIND
structures for parameters in which truncation occurred. Truncation indicates loss of sign or significant
digits, or that a string was too long to fit in a column. Truncation reporting is enabled by default, but
can be controlled by calling mysql_options() with the MYSQL_REPORT_DATA_TRUNCATION
option. The error member was added in MySQL 5.0.3.

• MYSQL_TIME

This structure is used to send and receive DATE, TIME, DATETIME, and TIMESTAMP data directly
to and from the server. Set the buffer member to point to a MYSQL_TIME structure, and set the
buffer_type member of a MYSQL_BIND structure to one of the temporal types (MYSQL_TYPE_TIME,
MYSQL_TYPE_DATE, MYSQL_TYPE_DATETIME, MYSQL_TYPE_TIMESTAMP).

The MYSQL_TIME structure contains the members listed in the following table.

Member Description

unsigned int year The year

C API Prepared Statement Data Structures

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1954

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Member Description

unsigned int month The month of the year

unsigned int day The day of the month

unsigned int hour The hour of the day

unsigned int minute The minute of the hour

unsigned int second The second of the minute

my_bool neg A boolean flag indicating whether the time is negative

unsigned long second_part The fractional part of the second in microseconds; currently
unused

Only those parts of a MYSQL_TIME structure that apply to a given type of temporal value are used.
The year, month, and day elements are used for DATE, DATETIME, and TIMESTAMP values. The
hour, minute, and second elements are used for TIME, DATETIME, and TIMESTAMP values. See
Section 20.6.18, “C API Prepared Statement Handling of Date and Time Values”.

20.6.9.1 C API Prepared Statement Type Codes

The buffer_type member of MYSQL_BIND structures indicates the data type of the C language variable
bound to a statement parameter or result set column. For input, buffer_type indicates the type of the
variable containing the value to be sent to the server. For output, it indicates the type of the variable into
which a value received from the server should be stored.

The following table shows the permissible values for the buffer_type member of MYSQL_BIND
structures for input values sent to the server. The table shows the C variable types that you can use, the
corresponding type codes, and the SQL data types for which the supplied value can be used without
conversion. Choose the buffer_type value according to the data type of the C language variable that
you are binding. For the integer types, you should also set the is_unsigned member to indicate whether
the variable is signed or unsigned.

Input Variable C Type buffer_type Value SQL Type of Destination Value

signed char MYSQL_TYPE_TINY TINYINT

short int MYSQL_TYPE_SHORT SMALLINT

int MYSQL_TYPE_LONG INT

long long int MYSQL_TYPE_LONGLONG BIGINT

float MYSQL_TYPE_FLOAT FLOAT

double MYSQL_TYPE_DOUBLE DOUBLE

MYSQL_TIME MYSQL_TYPE_TIME TIME

MYSQL_TIME MYSQL_TYPE_DATE DATE

MYSQL_TIME MYSQL_TYPE_DATETIME DATETIME

MYSQL_TIME MYSQL_TYPE_TIMESTAMP TIMESTAMP

char[] MYSQL_TYPE_STRING TEXT, CHAR, VARCHAR

char[] MYSQL_TYPE_BLOB BLOB, BINARY, VARBINARY

 MYSQL_TYPE_NULL NULL

Use MYSQL_TYPE_NULL as indicated in the description for the is_null member in Section 20.6.9, “C API
Prepared Statement Data Structures”.

C API Prepared Statement Data Structures

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1955

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For input string data, use MYSQL_TYPE_STRING or MYSQL_TYPE_BLOB depending on whether the value
is a character (nonbinary) or binary string:

• MYSQL_TYPE_STRING indicates character input string data. The value is assumed to be in the character
set indicated by the character_set_client system variable. If the server stores the value into a
column with a different character set, it converts the value to that character set.

• MYSQL_TYPE_BLOB indicates binary input string data. The value is treated as having the binary
character set. That is, it is treated as a byte string and no conversion occurs.

The following table shows the permissible values for the buffer_type member of MYSQL_BIND
structures for output values received from the server. The table shows the SQL types of received values,
the corresponding type codes that such values have in result set metadata, and the recommended C
language data types to bind to the MYSQL_BIND structure to receive the SQL values without conversion.
Choose the buffer_type value according to the data type of the C language variable that you are
binding. For the integer types, you should also set the is_unsigned member to indicate whether the
variable is signed or unsigned.

SQL Type of Received Value buffer_type Value Output Variable C Type

TINYINT MYSQL_TYPE_TINY signed char

SMALLINT MYSQL_TYPE_SHORT short int

MEDIUMINT MYSQL_TYPE_INT24 int

INT MYSQL_TYPE_LONG int

BIGINT MYSQL_TYPE_LONGLONG long long int

FLOAT MYSQL_TYPE_FLOAT float

DOUBLE MYSQL_TYPE_DOUBLE double

DECIMAL MYSQL_TYPE_NEWDECIMAL char[]

YEAR MYSQL_TYPE_SHORT short int

TIME MYSQL_TYPE_TIME MYSQL_TIME

DATE MYSQL_TYPE_DATE MYSQL_TIME

DATETIME MYSQL_TYPE_DATETIME MYSQL_TIME

TIMESTAMP MYSQL_TYPE_TIMESTAMP MYSQL_TIME

CHAR, BINARY MYSQL_TYPE_STRING char[]

VARCHAR, VARBINARY MYSQL_TYPE_VAR_STRING char[]

TINYBLOB, TINYTEXT MYSQL_TYPE_TINY_BLOB char[]

BLOB, TEXT MYSQL_TYPE_BLOB char[]

MEDIUMBLOB, MEDIUMTEXT MYSQL_TYPE_MEDIUM_BLOB char[]

LONGBLOB, LONGTEXT MYSQL_TYPE_LONG_BLOB char[]

BIT MYSQL_TYPE_BIT char[]

20.6.9.2 C API Prepared Statement Type Conversions

Prepared statements transmit data between the client and server using C language variables on the client
side that correspond to SQL values on the server side. If there is a mismatch between the C variable type
on the client side and the corresponding SQL value type on the server side, MySQL performs implicit type
conversions in both directions.

C API Prepared Statement Data Structures

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1956

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL knows the type code for the SQL value on the server side. The buffer_type value in the
MYSQL_BIND structure indicates the type code of the C variable that holds the value on the client side. The
two codes together tell MySQL what conversion must be performed, if any. Here are some examples:

• If you use MYSQL_TYPE_LONG with an int variable to pass an integer value to the server that is to be
stored into a FLOAT column, MySQL converts the value to floating-point format before storing it.

• If you fetch an SQL MEDIUMINT column value, but specify a buffer_type value of
MYSQL_TYPE_LONGLONG and use a C variable of type long long int as the destination buffer,
MySQL converts the MEDIUMINT value (which requires less than 8 bytes) for storage into the long
long int (an 8-byte variable).

• If you fetch a numeric column with a value of 255 into a char[4] character array and specify a
buffer_type value of MYSQL_TYPE_STRING, the resulting value in the array is a 4-byte string
'255\0'.

• MySQL returns DECIMAL values as the string representation of the original server-side value, which is
why the corresponding C type is char[]. For example, 12.345 is returned to the client as '12.345'.
If you specify MYSQL_TYPE_NEWDECIMAL and bind a string buffer to the MYSQL_BIND structure,
mysql_stmt_fetch() stores the value in the buffer as a string without conversion. If instead you
specify a numeric variable and type code, mysql_stmt_fetch() converts the string-format DECIMAL
value to numeric form.

• For the MYSQL_TYPE_BIT type code, BIT values are returned into a string buffer, which is why the
corresponding C type is char[]. The value represents a bit string that requires interpretation on the
client side. To return the value as a type that is easier to deal with, you can cause the value to be cast to
integer using either of the following types of expressions:

SELECT bit_col + 0 FROM t
SELECT CAST(bit_col AS UNSIGNED) FROM t

To retrieve the value, bind an integer variable large enough to hold the value and specify the appropriate
corresponding integer type code.

Before binding variables to the MYSQL_BIND structures that are to be used for fetching column
values, you can check the type codes for each column of the result set. This might be desirable if you
want to determine which variable types would be best to use to avoid type conversions. To get the
type codes, call mysql_stmt_result_metadata() after executing the prepared statement with
mysql_stmt_execute(). The metadata provides access to the type codes for the result set as
described in Section 20.6.11.22, “mysql_stmt_result_metadata()”, and Section 20.6.5, “C API Data
Structures”.

To determine whether output string values in a result set returned from the server contain binary or
nonbinary data, check whether the charsetnr value of the result set metadata is 63 (see Section 20.6.5,
“C API Data Structures”). If so, the character set is binary, which indicates binary rather than nonbinary
data. This enables you to distinguish BINARY from CHAR, VARBINARY from VARCHAR, and the BLOB types
from the TEXT types.

If you cause the max_length member of the MYSQL_FIELD column metadata structures to be set
(by calling mysql_stmt_attr_set()), be aware that the max_length values for the result set
indicate the lengths of the longest string representation of the result values, not the lengths of the binary
representation. That is, max_length does not necessarily correspond to the size of the buffers needed
to fetch the values with the binary protocol used for prepared statements. Choose the size of the buffers
according to the types of the variables into which you fetch the values. For example, a TINYINT column
containing the value -128 might have a max_length value of 4. But the binary representation of any

C API Prepared Statement Function Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1957

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

TINYINT value requires only 1 byte for storage, so you can supply a signed char variable in which to
store the value and set is_unsigned to indicate that values are signed.

20.6.10 C API Prepared Statement Function Overview

The functions available for prepared statement processing are summarized here and described in greater
detail in a later section. See Section 20.6.11, “C API Prepared Statement Function Descriptions”.

Function Description

mysql_stmt_affected_rows()Returns the number of rows changed, deleted, or inserted by prepared
UPDATE, DELETE, or INSERT statement

mysql_stmt_attr_get() Gets value of an attribute for a prepared statement

mysql_stmt_attr_set() Sets an attribute for a prepared statement

mysql_stmt_bind_param() Associates application data buffers with the parameter markers in a
prepared SQL statement

mysql_stmt_bind_result() Associates application data buffers with columns in a result set

mysql_stmt_close() Frees memory used by a prepared statement

mysql_stmt_data_seek() Seeks to an arbitrary row number in a statement result set

mysql_stmt_errno() Returns the error number for the last statement execution

mysql_stmt_error() Returns the error message for the last statement execution

mysql_stmt_execute() Executes a prepared statement

mysql_stmt_fetch() Fetches the next row of data from a result set and returns data for all
bound columns

mysql_stmt_fetch_column()Fetch data for one column of the current row of a result set

mysql_stmt_field_count() Returns the number of result columns for the most recent statement

mysql_stmt_free_result() Free the resources allocated to a statement handle

mysql_stmt_init() Allocates memory for a MYSQL_STMT structure and initializes it

mysql_stmt_insert_id() Returns the ID generated for an AUTO_INCREMENT column by a
prepared statement

mysql_stmt_num_rows() Returns the row count from a buffered statement result set

mysql_stmt_param_count() Returns the number of parameters in a prepared statement

mysql_stmt_param_metadata()(Return parameter metadata in the form of a result set) This function
does nothing

mysql_stmt_prepare() Prepares an SQL statement string for execution

mysql_stmt_reset() Resets the statement buffers in the server

mysql_stmt_result_metadata()Returns prepared statement metadata in the form of a result set

mysql_stmt_row_seek() Seeks to a row offset in a statement result set, using value returned
from mysql_stmt_row_tell()

mysql_stmt_row_tell() Returns the statement row cursor position

mysql_stmt_send_long_data()Sends long data in chunks to server

mysql_stmt_sqlstate() Returns the SQLSTATE error code for the last statement execution

mysql_stmt_store_result()Retrieves a complete result set to the client

C API Prepared Statement Function Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1958

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Call mysql_stmt_init() to create a statement handle, then mysql_stmt_prepare() to
prepare the statement string, mysql_stmt_bind_param() to supply the parameter data, and
mysql_stmt_execute() to execute the statement. You can repeat the mysql_stmt_execute() by
changing parameter values in the respective buffers supplied through mysql_stmt_bind_param().

You can send text or binary data in chunks to server using mysql_stmt_send_long_data(). See
Section 20.6.11.25, “mysql_stmt_send_long_data()”.

If the statement is a SELECT or any other statement that produces a result set, mysql_stmt_prepare()
also returns the result set metadata information in the form of a MYSQL_RES result set through
mysql_stmt_result_metadata().

You can supply the result buffers using mysql_stmt_bind_result(), so that the
mysql_stmt_fetch() automatically returns data to these buffers. This is row-by-row fetching.

When statement execution has been completed, close the statement handle using mysql_stmt_close()
so that all resources associated with it can be freed.

If you obtained a SELECT statement's result set metadata by calling mysql_stmt_result_metadata(),
you should also free the metadata using mysql_free_result().

Execution Steps

To prepare and execute a statement, an application follows these steps:

1. Create a prepared statement handle with mysql_stmt_init(). To prepare the statement on the
server, call mysql_stmt_prepare() and pass it a string containing the SQL statement.

2. If the statement will produce a result set, call mysql_stmt_result_metadata() to obtain the result
set metadata. This metadata is itself in the form of result set, albeit a separate one from the one that
contains the rows returned by the query. The metadata result set indicates how many columns are in
the result and contains information about each column.

3. Set the values of any parameters using mysql_stmt_bind_param(). All parameters must be set.
Otherwise, statement execution returns an error or produces unexpected results.

4. Call mysql_stmt_execute() to execute the statement.

5. If the statement produces a result set, bind the data buffers to use for retrieving the row values by
calling mysql_stmt_bind_result().

6. Fetch the data into the buffers row by row by calling mysql_stmt_fetch() repeatedly until no more
rows are found.

7. Repeat steps 3 through 6 as necessary, by changing the parameter values and re-executing the
statement.

When mysql_stmt_prepare() is called, the MySQL client/server protocol performs these actions:

• The server parses the statement and sends the okay status back to the client by assigning a statement
ID. It also sends total number of parameters, a column count, and its metadata if it is a result set oriented
statement. All syntax and semantics of the statement are checked by the server during this call.

• The client uses this statement ID for the further operations, so that the server can identify the statement
from among its pool of statements.

When mysql_stmt_execute() is called, the MySQL client/server protocol performs these actions:

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1959

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The client uses the statement handle and sends the parameter data to the server.

• The server identifies the statement using the ID provided by the client, replaces the parameter markers
with the newly supplied data, and executes the statement. If the statement produces a result set, the
server sends the data back to the client. Otherwise, it sends an okay status and the number of rows
changed, deleted, or inserted.

When mysql_stmt_fetch() is called, the MySQL client/server protocol performs these actions:

• The client reads the data from the current row of the result set and places it into the application data
buffers by doing the necessary conversions. If the application buffer type is same as that of the field type
returned from the server, the conversions are straightforward.

If an error occurs, you can get the statement error number, error message, and SQLSTATE code using
mysql_stmt_errno(), mysql_stmt_error(), and mysql_stmt_sqlstate(), respectively.

Prepared Statement Logging

For prepared statements that are executed with the mysql_stmt_prepare() and
mysql_stmt_execute() C API functions, the server writes Prepare and Execute lines to the general
query log so that you can tell when statements are prepared and executed.

Suppose that you prepare and execute a statement as follows:

1. Call mysql_stmt_prepare() to prepare the statement string "SELECT ?".

2. Call mysql_stmt_bind_param() to bind the value 3 to the parameter in the prepared statement.

3. Call mysql_stmt_execute() to execute the prepared statement.

As a result of the preceding calls, the server writes the following lines to the general query log:

Prepare [1] SELECT ?
Execute [1] SELECT 3

Each Prepare and Execute line in the log is tagged with a [N] statement identifier so that you can keep
track of which prepared statement is being logged. N is a positive integer. If there are multiple prepared
statements active simultaneously for the client, N may be greater than 1. Each Execute lines shows a
prepared statement after substitution of data values for ? parameters.

20.6.11 C API Prepared Statement Function Descriptions

To prepare and execute queries, use the functions described in detail in the following sections.

All functions that operate with a MYSQL_STMT structure begin with the prefix mysql_stmt_.

To create a MYSQL_STMT handle, use the mysql_stmt_init() function.

20.6.11.1 mysql_stmt_affected_rows()

my_ulonglong mysql_stmt_affected_rows(MYSQL_STMT *stmt)

Description

mysql_stmt_affected_rows() may be called immediately after executing a statement with
mysql_stmt_execute(). It is like mysql_affected_rows() but for prepared statements. For
a description of what the affected-rows value returned by this function means, See Section 20.6.7.1,
“mysql_affected_rows()”.

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1960

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Errors

None.

Example

See the Example in Section 20.6.11.10, “mysql_stmt_execute()”.

20.6.11.2 mysql_stmt_attr_get()

my_bool mysql_stmt_attr_get(MYSQL_STMT *stmt, enum enum_stmt_attr_type option,
void *arg)

Description

Can be used to get the current value for a statement attribute.

The option argument is the option that you want to get; the arg should point to a variable that should
contain the option value. If the option is an integer, arg should point to the value of the integer.

See Section 20.6.11.3, “mysql_stmt_attr_set()”, for a list of options and option types.

Note

In MySQL 5.0, mysql_stmt_attr_get() uses unsigned long *, not
my_bool *, for STMT_ATTR_UPDATE_MAX_LENGTH. This was corrected in
MySQL 5.1.7.

Return Values

Zero for success. Nonzero if option is unknown.

Errors

None.

20.6.11.3 mysql_stmt_attr_set()

my_bool mysql_stmt_attr_set(MYSQL_STMT *stmt, enum enum_stmt_attr_type option,
const void *arg)

Description

Can be used to affect behavior for a prepared statement. This function may be called multiple times to set
several options.

The option argument is the option that you want to set. The arg argument is the value for the option. arg
should point to a variable that is set to the desired attribute value. The variable type is as indicated in the
following table.

The following table shows the possible option values.

Option Argument Type Function

STMT_ATTR_UPDATE_MAX_LENGTH my_bool * If set to 1, causes
mysql_stmt_store_result() to
update the metadata MYSQL_FIELD-
>max_length value.

STMT_ATTR_CURSOR_TYPE unsigned long * Type of cursor to open for statement
when mysql_stmt_execute()

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1961

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option Argument Type Function
is invoked. *arg can be
CURSOR_TYPE_NO_CURSOR
(the default) or
CURSOR_TYPE_READ_ONLY.

STMT_ATTR_PREFETCH_ROWS unsigned long * Number of rows to fetch from server at
a time when using a cursor. *arg can
be in the range from 1 to the maximum
value of unsigned long. The default
is 1.

Note

In MySQL 5.0, mysql_stmt_attr_get() uses unsigned int *, not my_bool
*, for STMT_ATTR_UPDATE_MAX_LENGTH. This is corrected in MySQL 5.1.7.

If you use the STMT_ATTR_CURSOR_TYPE option with CURSOR_TYPE_READ_ONLY, a cursor is
opened for the statement when you invoke mysql_stmt_execute(). If there is already an open
cursor from a previous mysql_stmt_execute() call, it closes the cursor before opening a new one.
mysql_stmt_reset() also closes any open cursor before preparing the statement for re-execution.
mysql_stmt_free_result() closes any open cursor.

If you open a cursor for a prepared statement, mysql_stmt_store_result() is unnecessary, because
that function causes the result set to be buffered on the client side.

The STMT_ATTR_CURSOR_TYPE option was added in MySQL 5.0.2. The STMT_ATTR_PREFETCH_ROWS
option was added in MySQL 5.0.6.

Return Values

Zero for success. Nonzero if option is unknown.

Errors

None.

Example

The following example opens a cursor for a prepared statement and sets the number of rows to fetch at a
time to 5:

MYSQL_STMT *stmt;
int rc;
unsigned long type;
unsigned long prefetch_rows = 5;

stmt = mysql_stmt_init(mysql);
type = (unsigned long) CURSOR_TYPE_READ_ONLY;
rc = mysql_stmt_attr_set(stmt, STMT_ATTR_CURSOR_TYPE, (void*) &type);
/* ... check return value ... */
rc = mysql_stmt_attr_set(stmt, STMT_ATTR_PREFETCH_ROWS,
 (void*) &prefetch_rows);
/* ... check return value ... */

20.6.11.4 mysql_stmt_bind_param()

my_bool mysql_stmt_bind_param(MYSQL_STMT *stmt, MYSQL_BIND *bind)

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1962

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Description

mysql_stmt_bind_param() is used to bind input data for the parameter markers in the SQL statement
that was passed to mysql_stmt_prepare(). It uses MYSQL_BIND structures to supply the data. bind
is the address of an array of MYSQL_BIND structures. The client library expects the array to contain one
element for each ? parameter marker that is present in the query.

Suppose that you prepare the following statement:

INSERT INTO mytbl VALUES(?,?,?)

When you bind the parameters, the array of MYSQL_BIND structures must contain three elements, and can
be declared like this:

MYSQL_BIND bind[3];

Section 20.6.9, “C API Prepared Statement Data Structures”, describes the members of each
MYSQL_BIND element and how they should be set to provide input values.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_UNSUPPORTED_PARAM_TYPE

The conversion is not supported. Possibly the buffer_type value is illegal or is not one of the
supported types.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 20.6.11.10, “mysql_stmt_execute()”.

20.6.11.5 mysql_stmt_bind_result()

my_bool mysql_stmt_bind_result(MYSQL_STMT *stmt, MYSQL_BIND *bind)

Description

mysql_stmt_bind_result() is used to associate (that is, bind) output columns in the result set to data
buffers and length buffers. When mysql_stmt_fetch() is called to fetch data, the MySQL client/server
protocol places the data for the bound columns into the specified buffers.

All columns must be bound to buffers prior to calling mysql_stmt_fetch(). bind is the address of
an array of MYSQL_BIND structures. The client library expects the array to contain one element for each
column of the result set. If you do not bind columns to MYSQL_BIND structures, mysql_stmt_fetch()
simply ignores the data fetch. The buffers should be large enough to hold the data values, because the
protocol does not return data values in chunks.

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1963

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A column can be bound or rebound at any time, even after a result set has been partially retrieved. The
new binding takes effect the next time mysql_stmt_fetch() is called. Suppose that an application binds
the columns in a result set and calls mysql_stmt_fetch(). The client/server protocol returns data in
the bound buffers. Then suppose that the application binds the columns to a different set of buffers. The
protocol places data into the newly bound buffers when the next call to mysql_stmt_fetch() occurs.

To bind a column, an application calls mysql_stmt_bind_result() and passes the type, address,
and length of the output buffer into which the value should be stored. Section 20.6.9, “C API Prepared
Statement Data Structures”, describes the members of each MYSQL_BIND element and how they should
be set to receive output values.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_UNSUPPORTED_PARAM_TYPE

The conversion is not supported. Possibly the buffer_type value is illegal or is not one of the
supported types.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 20.6.11.11, “mysql_stmt_fetch()”.

20.6.11.6 mysql_stmt_close()

my_bool mysql_stmt_close(MYSQL_STMT *)

Description

Closes the prepared statement. mysql_stmt_close() also deallocates the statement handle pointed to
by stmt.

If the current statement has pending or unread results, this function cancels them so that the next query
can be executed.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_UNKNOWN_ERROR

An unknown error occurred.

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1964

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Example

See the Example in Section 20.6.11.10, “mysql_stmt_execute()”.

20.6.11.7 mysql_stmt_data_seek()

void mysql_stmt_data_seek(MYSQL_STMT *stmt, my_ulonglong offset)

Description

Seeks to an arbitrary row in a statement result set. The offset value is a row number and should be in
the range from 0 to mysql_stmt_num_rows(stmt)-1.

This function requires that the statement result set structure contains the entire result of the
last executed query, so mysql_stmt_data_seek() may be used only in conjunction with
mysql_stmt_store_result().

Return Values

None.

Errors

None.

20.6.11.8 mysql_stmt_errno()

unsigned int mysql_stmt_errno(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_errno() returns the error code for the most recently
invoked statement API function that can succeed or fail. A return value of zero means that no error
occurred. Client error message numbers are listed in the MySQL errmsg.h header file. Server error
message numbers are listed in mysqld_error.h. Errors also are listed at Appendix B, Errors, Error
Codes, and Common Problems.

Return Values

An error code value. Zero if no error occurred.

Errors

None.

20.6.11.9 mysql_stmt_error()

const char *mysql_stmt_error(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_error() returns a null-terminated string containing
the error message for the most recently invoked statement API function that can succeed or fail. An empty
string ("") is returned if no error occurred. Either of these two tests can be used to check for an error:

if(*mysql_stmt_errno(stmt))
{
 // an error occurred
}

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1965

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

if (mysql_stmt_error(stmt)[0])
{
 // an error occurred
}

The language of the client error messages may be changed by recompiling the MySQL client library. You
can choose error messages in several different languages.

Return Values

A character string that describes the error. An empty string if no error occurred.

Errors

None.

20.6.11.10 mysql_stmt_execute()

int mysql_stmt_execute(MYSQL_STMT *stmt)

Description

mysql_stmt_execute() executes the prepared query associated with the statement handle. The
currently bound parameter marker values are sent to server during this call, and the server replaces the
markers with this newly supplied data.

Statement processing following mysql_stmt_execute() depends on the type of statement:

• For an UPDATE, DELETE, or INSERT, the number of changed, deleted, or inserted rows can be found by
calling mysql_stmt_affected_rows().

• For a statement such as SELECT that generates a result set, you must call mysql_stmt_fetch() to
fetch the data prior to calling any other functions that result in query processing. For more information on
how to fetch the results, refer to Section 20.6.11.11, “mysql_stmt_fetch()”.

Do not following invocation of mysql_stmt_execute() with a call to mysql_store_result()
or mysql_use_result(). Those functions are not intended for processing results from prepared
statements.

For statements that generate a result set, you can request that mysql_stmt_execute() open a cursor
for the statement by calling mysql_stmt_attr_set() before executing the statement. If you execute a
statement multiple times, mysql_stmt_execute() closes any open cursor before opening a new one.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1966

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

The following example demonstrates how to create and populate a table using mysql_stmt_init(),
mysql_stmt_prepare(), mysql_stmt_param_count(), mysql_stmt_bind_param(),
mysql_stmt_execute(), and mysql_stmt_affected_rows(). The mysql variable is assumed to
be a valid connection handle. For an example that shows how to retrieve data, see Section 20.6.11.11,
“mysql_stmt_fetch()”.

#define STRING_SIZE 50

#define DROP_SAMPLE_TABLE "DROP TABLE IF EXISTS test_table"
#define CREATE_SAMPLE_TABLE "CREATE TABLE test_table(col1 INT,\
 col2 VARCHAR(40),\
 col3 SMALLINT,\
 col4 TIMESTAMP)"
#define INSERT_SAMPLE "INSERT INTO \
 test_table(col1,col2,col3) \
 VALUES(?,?,?)"

MYSQL_STMT *stmt;
MYSQL_BIND bind[3];
my_ulonglong affected_rows;
int param_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];
unsigned long str_length;
my_bool is_null;

if (mysql_query(mysql, DROP_SAMPLE_TABLE))
{
 fprintf(stderr, " DROP TABLE failed\n");
 fprintf(stderr, " %s\n", mysql_error(mysql));
 exit(0);
}

if (mysql_query(mysql, CREATE_SAMPLE_TABLE))
{
 fprintf(stderr, " CREATE TABLE failed\n");
 fprintf(stderr, " %s\n", mysql_error(mysql));
 exit(0);
}

/* Prepare an INSERT query with 3 parameters */
/* (the TIMESTAMP column is not named; the server */
/* sets it to the current date and time) */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
 fprintf(stderr, " mysql_stmt_init(), out of memory\n");
 exit(0);
}
if (mysql_stmt_prepare(stmt, INSERT_SAMPLE, strlen(INSERT_SAMPLE)))
{
 fprintf(stderr, " mysql_stmt_prepare(), INSERT failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1967

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 exit(0);
}
fprintf(stdout, " prepare, INSERT successful\n");

/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in INSERT: %d\n", param_count);

if (param_count != 3) /* validate parameter count */
{
 fprintf(stderr, " invalid parameter count returned by MySQL\n");
 exit(0);
}

/* Bind the data for all 3 parameters */

memset(bind, 0, sizeof(bind));

/* INTEGER PARAM */
/* This is a number type, so there is no need
 to specify buffer_length */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= 0;
bind[0].length= 0;

/* STRING PARAM */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= 0;
bind[1].length= &str_length;

/* SMALLINT PARAM */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null;
bind[2].length= 0;

/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{
 fprintf(stderr, " mysql_stmt_bind_param() failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Specify the data values for the first row */
int_data= 10; /* integer */
strncpy(str_data, "MySQL", STRING_SIZE); /* string */
str_length= strlen(str_data);

/* INSERT SMALLINT data as NULL */
is_null= 1;

/* Execute the INSERT statement - 1*/
if (mysql_stmt_execute(stmt))
{
 fprintf(stderr, " mysql_stmt_execute(), 1 failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Get the number of affected rows */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 1): %lu\n",
 (unsigned long) affected_rows);

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1968

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

if (affected_rows != 1) /* validate affected rows */
{
 fprintf(stderr, " invalid affected rows by MySQL\n");
 exit(0);
}

/* Specify data values for second row,
 then re-execute the statement */
int_data= 1000;
strncpy(str_data, "
 The most popular Open Source database",
 STRING_SIZE);
str_length= strlen(str_data);
small_data= 1000; /* smallint */
is_null= 0; /* reset */

/* Execute the INSERT statement - 2*/
if (mysql_stmt_execute(stmt))
{
 fprintf(stderr, " mysql_stmt_execute, 2 failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Get the total rows affected */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 2): %lu\n",
 (unsigned long) affected_rows);

if (affected_rows != 1) /* validate affected rows */
{
 fprintf(stderr, " invalid affected rows by MySQL\n");
 exit(0);
}

/* Close the statement */
if (mysql_stmt_close(stmt))
{
 fprintf(stderr, " failed while closing the statement\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

Note

For complete examples on the use of prepared statement functions, refer to the file
tests/mysql_client_test.c. This file can be obtained from a MySQL source
distribution or from the source repository (see Section 2.17, “Installing MySQL from
Source”).

20.6.11.11 mysql_stmt_fetch()

int mysql_stmt_fetch(MYSQL_STMT *stmt)

Description

mysql_stmt_fetch() returns the next row in the result set. It can be called only while the result set
exists; that is, after a call to mysql_stmt_execute() for a statement such as SELECT that produces a
result set.

mysql_stmt_fetch() returns row data using the buffers bound by mysql_stmt_bind_result(). It
returns the data in those buffers for all the columns in the current row set and the lengths are returned to
the length pointer. All columns must be bound by the application before it calls mysql_stmt_fetch().

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1969

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

By default, result sets are fetched unbuffered a row at a time from the server. To buffer the entire result
set on the client, call mysql_stmt_store_result() after binding the data buffers and before calling
mysql_stmt_fetch().

If a fetched data value is a NULL value, the *is_null value of the corresponding MYSQL_BIND structure
contains TRUE (1). Otherwise, the data and its length are returned in the *buffer and *length elements
based on the buffer type specified by the application. Each numeric and temporal type has a fixed length,
as listed in the following table. The length of the string types depends on the length of the actual data
value, as indicated by data_length.

Type Length

MYSQL_TYPE_TINY 1

MYSQL_TYPE_SHORT 2

MYSQL_TYPE_LONG 4

MYSQL_TYPE_LONGLONG 8

MYSQL_TYPE_FLOAT 4

MYSQL_TYPE_DOUBLE 8

MYSQL_TYPE_TIME sizeof(MYSQL_TIME)

MYSQL_TYPE_DATE sizeof(MYSQL_TIME)

MYSQL_TYPE_DATETIME sizeof(MYSQL_TIME)

MYSQL_TYPE_STRING data length

MYSQL_TYPE_BLOB data_length

In some cases you might want to determine the length of a column value before fetching it with
mysql_stmt_fetch(). For example, the value might be a long string or BLOB value for which you want
to know how much space must be allocated. To accomplish this, you can use these strategies:

• Before invoking mysql_stmt_fetch() to retrieve individual rows, pass
STMT_ATTR_UPDATE_MAX_LENGTH to mysql_stmt_attr_set(), then invoke
mysql_stmt_store_result() to buffer the entire result on the client side. Setting
the STMT_ATTR_UPDATE_MAX_LENGTH attribute causes the maximal length of column
values to be indicated by the max_length member of the result set metadata returned by
mysql_stmt_result_metadata().

• Invoke mysql_stmt_fetch() with a zero-length buffer for the column in question and a pointer in
which the real length can be stored. Then use the real length with mysql_stmt_fetch_column().

real_length= 0;

bind[0].buffer= 0;
bind[0].buffer_length= 0;
bind[0].length= &real_length
mysql_stmt_bind_result(stmt, bind);

mysql_stmt_fetch(stmt);
if (real_length > 0)
{
 data= malloc(real_length);
 bind[0].buffer= data;
 bind[0].buffer_length= real_length;
 mysql_stmt_fetch_column(stmt, bind, 0, 0);
}

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1970

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Return Values

Return Value Description

0 Successful, the data has been fetched to application data buffers.

1 Error occurred. Error code and message can be obtained by calling
mysql_stmt_errno() and mysql_stmt_error().

MYSQL_NO_DATA No more rows/data exists

MYSQL_DATA_TRUNCATED Data truncation occurred

MYSQL_DATA_TRUNCATED is returned when truncation reporting is enabled. To determine which column
values were truncated when this value is returned, check the error members of the MYSQL_BIND
structures used for fetching values. Truncation reporting is enabled by default, but can be controlled by
calling mysql_options() with the MYSQL_REPORT_DATA_TRUNCATION option.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• CR_UNSUPPORTED_PARAM_TYPE

The buffer type is MYSQL_TYPE_DATE, MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME, or
MYSQL_TYPE_TIMESTAMP, but the data type is not DATE, TIME, DATETIME, or TIMESTAMP.

• All other unsupported conversion errors are returned from mysql_stmt_bind_result().

Example

The following example demonstrates how to fetch data from a table using
mysql_stmt_result_metadata(), mysql_stmt_bind_result(), and mysql_stmt_fetch().
(This example expects to retrieve the two rows inserted by the example shown in Section 20.6.11.10,
“mysql_stmt_execute()”.) The mysql variable is assumed to be a valid connection handle.

#define STRING_SIZE 50

#define SELECT_SAMPLE "SELECT col1, col2, col3, col4 \
 FROM test_table"

MYSQL_STMT *stmt;
MYSQL_BIND bind[4];
MYSQL_RES *prepare_meta_result;

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1971

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MYSQL_TIME ts;
unsigned long length[4];
int param_count, column_count, row_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];
my_bool is_null[4];
my_bool error[4];

/* Prepare a SELECT query to fetch data from test_table */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
 fprintf(stderr, " mysql_stmt_init(), out of memory\n");
 exit(0);
}
if (mysql_stmt_prepare(stmt, SELECT_SAMPLE, strlen(SELECT_SAMPLE)))
{
 fprintf(stderr, " mysql_stmt_prepare(), SELECT failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}
fprintf(stdout, " prepare, SELECT successful\n");

/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in SELECT: %d\n", param_count);

if (param_count != 0) /* validate parameter count */
{
 fprintf(stderr, " invalid parameter count returned by MySQL\n");
 exit(0);
}

/* Fetch result set meta information */
prepare_meta_result = mysql_stmt_result_metadata(stmt);
if (!prepare_meta_result)
{
 fprintf(stderr,
 " mysql_stmt_result_metadata(), \
 returned no meta information\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Get total columns in the query */
column_count= mysql_num_fields(prepare_meta_result);
fprintf(stdout,
 " total columns in SELECT statement: %d\n",
 column_count);

if (column_count != 4) /* validate column count */
{
 fprintf(stderr, " invalid column count returned by MySQL\n");
 exit(0);
}

/* Execute the SELECT query */
if (mysql_stmt_execute(stmt))
{
 fprintf(stderr, " mysql_stmt_execute(), failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Bind the result buffers for all 4 columns before fetching them */

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1972

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

memset(bind, 0, sizeof(bind));

/* INTEGER COLUMN */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= &is_null[0];
bind[0].length= &length[0];
bind[0].error= &error[0];

/* STRING COLUMN */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= &is_null[1];
bind[1].length= &length[1];
bind[1].error= &error[1];

/* SMALLINT COLUMN */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null[2];
bind[2].length= &length[2];
bind[2].error= &error[2];

/* TIMESTAMP COLUMN */
bind[3].buffer_type= MYSQL_TYPE_TIMESTAMP;
bind[3].buffer= (char *)&ts;
bind[3].is_null= &is_null[3];
bind[3].length= &length[3];
bind[3].error= &error[3];

/* Bind the result buffers */
if (mysql_stmt_bind_result(stmt, bind))
{
 fprintf(stderr, " mysql_stmt_bind_result() failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Now buffer all results to client (optional step) */
if (mysql_stmt_store_result(stmt))
{
 fprintf(stderr, " mysql_stmt_store_result() failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Fetch all rows */
row_count= 0;
fprintf(stdout, "Fetching results ...\n");
while (!mysql_stmt_fetch(stmt))
{
 row_count++;
 fprintf(stdout, " row %d\n", row_count);

 /* column 1 */
 fprintf(stdout, " column1 (integer) : ");
 if (is_null[0])
 fprintf(stdout, " NULL\n");
 else
 fprintf(stdout, " %d(%ld)\n", int_data, length[0]);

 /* column 2 */
 fprintf(stdout, " column2 (string) : ");
 if (is_null[1])
 fprintf(stdout, " NULL\n");
 else

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1973

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 fprintf(stdout, " %s(%ld)\n", str_data, length[1]);

 /* column 3 */
 fprintf(stdout, " column3 (smallint) : ");
 if (is_null[2])
 fprintf(stdout, " NULL\n");
 else
 fprintf(stdout, " %d(%ld)\n", small_data, length[2]);

 /* column 4 */
 fprintf(stdout, " column4 (timestamp): ");
 if (is_null[3])
 fprintf(stdout, " NULL\n");
 else
 fprintf(stdout, " %04d-%02d-%02d %02d:%02d:%02d (%ld)\n",
 ts.year, ts.month, ts.day,
 ts.hour, ts.minute, ts.second,
 length[3]);
 fprintf(stdout, "\n");
}

/* Validate rows fetched */
fprintf(stdout, " total rows fetched: %d\n", row_count);
if (row_count != 2)
{
 fprintf(stderr, " MySQL failed to return all rows\n");
 exit(0);
}

/* Free the prepared result metadata */
mysql_free_result(prepare_meta_result);

/* Close the statement */
if (mysql_stmt_close(stmt))
{
 fprintf(stderr, " failed while closing the statement\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

20.6.11.12 mysql_stmt_fetch_column()

int mysql_stmt_fetch_column(MYSQL_STMT *stmt, MYSQL_BIND *bind, unsigned int
column, unsigned long offset)

Description

Fetch one column from the current result set row. bind provides the buffer where data should be placed.
It should be set up the same way as for mysql_stmt_bind_result(). column indicates which column
to fetch. The first column is numbered 0. offset is the offset within the data value at which to begin
retrieving data. This can be used for fetching the data value in pieces. The beginning of the value is offset
0.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_INVALID_PARAMETER_NO

Invalid column number.

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1974

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• CR_NO_DATA

The end of the result set has already been reached.

20.6.11.13 mysql_stmt_field_count()

unsigned int mysql_stmt_field_count(MYSQL_STMT *stmt)

Description

Returns the number of columns for the most recent statement for the statement handler. This value is zero
for statements such as INSERT or DELETE that do not produce result sets.

mysql_stmt_field_count() can be called after you have prepared a statement by invoking
mysql_stmt_prepare().

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

20.6.11.14 mysql_stmt_free_result()

my_bool mysql_stmt_free_result(MYSQL_STMT *stmt)

Description

Releases memory associated with the result set produced by execution of the prepared statement. If there
is a cursor open for the statement, mysql_stmt_free_result() closes it.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

20.6.11.15 mysql_stmt_init()

MYSQL_STMT *mysql_stmt_init(MYSQL *mysql)

Description

Create a MYSQL_STMT handle. The handle should be freed with mysql_stmt_close(MYSQL_STMT *).

See also Section 20.6.9, “C API Prepared Statement Data Structures”, for more information.

Return Values

A pointer to a MYSQL_STMT structure in case of success. NULL if out of memory.

Errors

• CR_OUT_OF_MEMORY

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1975

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Out of memory.

20.6.11.16 mysql_stmt_insert_id()

my_ulonglong mysql_stmt_insert_id(MYSQL_STMT *stmt)

Description

Returns the value generated for an AUTO_INCREMENT column by the prepared INSERT or UPDATE
statement. Use this function after you have executed a prepared INSERT statement on a table which
contains an AUTO_INCREMENT field.

See Section 20.6.7.37, “mysql_insert_id()”, for more information.

Return Values

Value for AUTO_INCREMENT column which was automatically generated or explicitly set during execution
of prepared statement, or value generated by LAST_INSERT_ID(expr) function. Return value is
undefined if statement does not set AUTO_INCREMENT value.

Errors

None.

20.6.11.17 mysql_stmt_num_rows()

my_ulonglong mysql_stmt_num_rows(MYSQL_STMT *stmt)

Description

Returns the number of rows in the result set.

The use of mysql_stmt_num_rows() depends on whether you used mysql_stmt_store_result()
to buffer the entire result set in the statement handle. If you use mysql_stmt_store_result(),
mysql_stmt_num_rows() may be called immediately. Otherwise, the row count is unavailable unless
you count the rows as you fetch them.

mysql_stmt_num_rows() is intended for use with statements that return a result set, such as SELECT.
For statements such as INSERT, UPDATE, or DELETE, the number of affected rows can be obtained with
mysql_stmt_affected_rows().

Return Values

The number of rows in the result set.

Errors

None.

20.6.11.18 mysql_stmt_param_count()

unsigned long mysql_stmt_param_count(MYSQL_STMT *stmt)

Description

Returns the number of parameter markers present in the prepared statement.

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1976

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Return Values

An unsigned long integer representing the number of parameters in a statement.

Errors

None.

Example

See the Example in Section 20.6.11.10, “mysql_stmt_execute()”.

20.6.11.19 mysql_stmt_param_metadata()

MYSQL_RES *mysql_stmt_param_metadata(MYSQL_STMT *stmt)

This function currently does nothing.

Description

Return Values

Errors

20.6.11.20 mysql_stmt_prepare()

int mysql_stmt_prepare(MYSQL_STMT *stmt, const char *stmt_str, unsigned long
length)

Description

Given the statement handle returned by mysql_stmt_init(), prepares the SQL statement pointed
to by the string stmt_str and returns a status value. The string length should be given by the length
argument. The string must consist of a single SQL statement. You should not add a terminating semicolon
(“;”) or \g to the statement.

The application can include one or more parameter markers in the SQL statement by embedding question
mark (?) characters into the SQL string at the appropriate positions.

The markers are legal only in certain places in SQL statements. For example, they are permitted in the
VALUES() list of an INSERT statement (to specify column values for a row), or in a comparison with a
column in a WHERE clause to specify a comparison value. However, they are not permitted for identifiers
(such as table or column names), or to specify both operands of a binary operator such as the = equal
sign. The latter restriction is necessary because it would be impossible to determine the parameter type.
In general, parameters are legal only in Data Manipulation Language (DML) statements, and not in Data
Definition Language (DDL) statements.

The parameter markers must be bound to application variables using mysql_stmt_bind_param()
before executing the statement.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1977

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query

• CR_UNKNOWN_ERROR

An unknown error occurred.

If the prepare operation was unsuccessful (that is, mysql_stmt_prepare() returns nonzero), the error
message can be obtained by calling mysql_stmt_error().

Example

See the Example in Section 20.6.11.10, “mysql_stmt_execute()”.

20.6.11.21 mysql_stmt_reset()

my_bool mysql_stmt_reset(MYSQL_STMT *stmt)

Description

Resets a prepared statement on client and server to state after prepare. It resets the statement on the
server, data sent using mysql_stmt_send_long_data(), unbuffered result sets and current errors.
It does not clear bindings or stored result sets. Stored result sets will be cleared when executing the
prepared statement (or closing it).

To re-prepare the statement with another query, use mysql_stmt_prepare().

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query

• CR_UNKNOWN_ERROR

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1978

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

An unknown error occurred.

20.6.11.22 mysql_stmt_result_metadata()

MYSQL_RES *mysql_stmt_result_metadata(MYSQL_STMT *stmt)

Description

If a statement passed to mysql_stmt_prepare() is one that produces a result set,
mysql_stmt_result_metadata() returns the result set metadata in the form of a pointer to a
MYSQL_RES structure that can be used to process the meta information such as number of fields and
individual field information. This result set pointer can be passed as an argument to any of the field-based
API functions that process result set metadata, such as:

• mysql_num_fields()

• mysql_fetch_field()

• mysql_fetch_field_direct()

• mysql_fetch_fields()

• mysql_field_count()

• mysql_field_seek()

• mysql_field_tell()

• mysql_free_result()

The result set structure should be freed when you are done with it, which you can do by passing it
to mysql_free_result(). This is similar to the way you free a result set obtained from a call to
mysql_store_result().

The result set returned by mysql_stmt_result_metadata() contains only metadata. It
does not contain any row results. The rows are obtained by using the statement handle with
mysql_stmt_fetch().

Return Values

A MYSQL_RES result structure. NULL if no meta information exists for the prepared query.

Errors

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 20.6.11.11, “mysql_stmt_fetch()”.

20.6.11.23 mysql_stmt_row_seek()

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1979

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MYSQL_ROW_OFFSET mysql_stmt_row_seek(MYSQL_STMT *stmt, MYSQL_ROW_OFFSET offset)

Description

Sets the row cursor to an arbitrary row in a statement result set. The offset value is a row offset that
should be a value returned from mysql_stmt_row_tell() or from mysql_stmt_row_seek().
This value is not a row number; if you want to seek to a row within a result set by number, use
mysql_stmt_data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so
mysql_stmt_row_seek() may be used only in conjunction with mysql_stmt_store_result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql_stmt_row_seek().

Errors

None.

20.6.11.24 mysql_stmt_row_tell()

MYSQL_ROW_OFFSET mysql_stmt_row_tell(MYSQL_STMT *stmt)

Description

Returns the current position of the row cursor for the last mysql_stmt_fetch(). This value can be used
as an argument to mysql_stmt_row_seek().

You should use mysql_stmt_row_tell() only after mysql_stmt_store_result().

Return Values

The current offset of the row cursor.

Errors

None.

20.6.11.25 mysql_stmt_send_long_data()

my_bool mysql_stmt_send_long_data(MYSQL_STMT *stmt, unsigned int
parameter_number, const char *data, unsigned long length)

Description

Enables an application to send parameter data to the server in pieces (or “chunks”). Call this function after
mysql_stmt_bind_param() and before mysql_stmt_execute(). It can be called multiple times to
send the parts of a character or binary data value for a column, which must be one of the TEXT or BLOB
data types.

parameter_number indicates which parameter to associate the data with. Parameters are numbered
beginning with 0. data is a pointer to a buffer containing data to be sent, and length indicates the
number of bytes in the buffer.

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1980

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Note

The next mysql_stmt_execute() call ignores the bind buffer for all parameters
that have been used with mysql_stmt_send_long_data() since last
mysql_stmt_execute() or mysql_stmt_reset().

If you want to reset/forget the sent data, you can do it with mysql_stmt_reset(). See
Section 20.6.11.21, “mysql_stmt_reset()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_INVALID_BUFFER_USE

The parameter does not have a string or binary type.

• CR_INVALID_PARAMETER_NO

Invalid parameter number.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

The following example demonstrates how to send the data for a TEXT column in chunks. It inserts the data
value 'MySQL - The most popular Open Source database' into the text_column column. The
mysql variable is assumed to be a valid connection handle.

#define INSERT_QUERY "INSERT INTO \
 test_long_data(text_column) VALUES(?)"

MYSQL_BIND bind[1];
long length;

stmt = mysql_stmt_init(mysql);
if (!stmt)
{
 fprintf(stderr, " mysql_stmt_init(), out of memory\n");
 exit(0);
}
if (mysql_stmt_prepare(stmt, INSERT_QUERY, strlen(INSERT_QUERY)))
{
 fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1981

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}
 memset(bind, 0, sizeof(bind));
 bind[0].buffer_type= MYSQL_TYPE_STRING;
 bind[0].length= &length;
 bind[0].is_null= 0;

/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{
 fprintf(stderr, "\n param bind failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}

 /* Supply data in chunks to server */
 if (mysql_stmt_send_long_data(stmt,0,"MySQL",5))
{
 fprintf(stderr, "\n send_long_data failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}

 /* Supply the next piece of data */
 if (mysql_stmt_send_long_data(stmt,0,
 " - The most popular Open Source database",40))
{
 fprintf(stderr, "\n send_long_data failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}

 /* Now, execute the query */
 if (mysql_stmt_execute(stmt))
{
 fprintf(stderr, "\n mysql_stmt_execute failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}

20.6.11.26 mysql_stmt_sqlstate()

const char *mysql_stmt_sqlstate(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_sqlstate() returns a null-terminated string
containing the SQLSTATE error code for the most recently invoked prepared statement API function that
can succeed or fail. The error code consists of five characters. "00000" means “no error.” The values are
specified by ANSI SQL and ODBC. For a list of possible values, see Appendix B, Errors, Error Codes, and
Common Problems.

Not all MySQL errors are mapped to SQLSTATE codes. The value "HY000" (general error) is used for
unmapped errors.

Return Values

A null-terminated character string containing the SQLSTATE error code.

20.6.11.27 mysql_stmt_store_result()

int mysql_stmt_store_result(MYSQL_STMT *stmt)

C API Prepared Statement Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1982

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Description

Result sets are produced by calling mysql_stmt_execute() to executed prepared statements for SQL
statements such as SELECT, SHOW, DESCRIBE, and EXPLAIN. By default, result sets for successfully
executed prepared statements are not buffered on the client and mysql_stmt_fetch() fetches
them one at a time from the server. To cause the complete result set to be buffered on the client, call
mysql_stmt_store_result() after binding data buffers with mysql_stmt_bind_result()
and before calling mysql_stmt_fetch() to fetch rows. (For an example, see Section 20.6.11.11,
“mysql_stmt_fetch()”.)

mysql_stmt_store_result() is optional for result set processing, unless you will call
mysql_stmt_data_seek(), mysql_stmt_row_seek(), or mysql_stmt_row_tell(). Those
functions require a seekable result set.

It is unnecessary to call mysql_stmt_store_result() after executing an SQL statement that does not
produce a result set, but if you do, it does not harm or cause any notable performance problem. You can
detect whether the statement produced a result set by checking if mysql_stmt_result_metadata()
returns NULL. For more information, refer to Section 20.6.11.22, “mysql_stmt_result_metadata()”.

Note

MySQL does not by default calculate MYSQL_FIELD->max_length for all
columns in mysql_stmt_store_result() because calculating this would slow
down mysql_stmt_store_result() considerably and most applications do
not need max_length. If you want max_length to be updated, you can call
mysql_stmt_attr_set(MYSQL_STMT, STMT_ATTR_UPDATE_MAX_LENGTH,
&flag) to enable this. See Section 20.6.11.3, “mysql_stmt_attr_set()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

If the application is linked to the embedded server library, runtime error messages will indicate the
libmysqld rather than libmysqlclient library, but the solution to the problem is the same as just
described.

C API Threaded Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1983

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

20.6.12 C API Threaded Function Descriptions

To create a threaded client, use the functions described in the following sections. See also
Section 20.6.4.2, “Writing C API Threaded Client Programs”.

20.6.12.1 my_init()

void my_init(void)

Description

my_init() initializes some global variables that MySQL needs. If you are using a thread-safe client
library, it also calls mysql_thread_init() for this thread.

It is necessary for my_init() to be called early in the initialization phase of a program's
use of the MySQL library. However, my_init() is automatically called by mysql_init(),
mysql_library_init(), mysql_server_init(), and mysql_connect(). If you ensure that
your program invokes one of those functions before any other MySQL calls, there is no need to invoke
my_init() explicitly.

To access the prototype for my_init(), your program should include these header files:

#include <my_global.h>
#include <my_sys.h>

Return Values

None.

20.6.12.2 mysql_thread_end()

void mysql_thread_end(void)

Description

This function needs to be called before calling pthread_exit() to free memory allocated by
mysql_thread_init().

mysql_thread_end() is not invoked automatically by the client library. It must be called explicitly to
avoid a memory leak.

Return Values

None.

20.6.12.3 mysql_thread_init()

my_bool mysql_thread_init(void)

Description

This function must be called early within each created thread to initialize thread-specific variables.
However, you may not necessarily need to invoke it explicitly: mysql_thread_init() is automatically
called by my_init(), which itself is automatically called by mysql_init(), mysql_library_init(),
mysql_server_init(), and mysql_connect(). If you invoke any of those functions,
mysql_thread_init() will be called for you.

C API Embedded Server Function Descriptions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1984

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Return Values

Zero for success. Nonzero if an error occurred.

20.6.12.4 mysql_thread_safe()

unsigned int mysql_thread_safe(void)

Description

This function indicates whether the client library is compiled as thread-safe.

Return Values

1 if the client library is thread-safe, 0 otherwise.

20.6.13 C API Embedded Server Function Descriptions

MySQL applications can be written to use an embedded server. See Section 20.5, “libmysqld,
the Embedded MySQL Server Library”. To write such an application, you must link it against the
libmysqld library by using the -lmysqld flag rather than linking it against the libmysqlclient
client library by using the -lmysqlclient flag. However, the calls to initialize and finalize the library
are the same whether you write a client application or one that uses the embedded server: Call
mysql_library_init() to initialize the library and mysql_library_end() when you are done with it.
See Section 20.6.6, “C API Function Overview”.

mysql_library_init() and mysql_library_end() are available as of MySQL 5.0.3. For earlier
versions, call mysql_server_init() and mysql_server_end() instead, which are equivalent.
mysql_library_init() and mysql_library_end() actually are #define symbols that make them
equivalent to mysql_server_init() and mysql_server_end(), but the names more clearly indicate
that they should be called when beginning and ending use of a MySQL C API library no matter whether the
application uses libmysqlclient or libmysqld.

20.6.13.1 mysql_server_init()

int mysql_server_init(int argc, char **argv, char **groups)

Description

This function initializes the MySQL library, which must be done before you call any other MySQL function.

As of MySQL 5.0.3, mysql_server_init() is deprecated and you should call
mysql_library_init() instead. See Section 20.6.7.40, “mysql_library_init()”.

Return Values

Zero for success. Nonzero if an error occurred.

20.6.13.2 mysql_server_end()

void mysql_server_end(void)

Description

This function finalizes the MySQL library. You should call it when you are done using the library.

Common Questions and Problems When Using the C API

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1985

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

As of MySQL 5.0.3, mysql_server_end() is deprecated and you should call mysql_library_end()
instead. See Section 20.6.7.39, “mysql_library_end()”.

Return Values

None.

20.6.14 Common Questions and Problems When Using the C API

20.6.14.1 Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns
Success

It is possible for mysql_store_result() to return NULL following a successful call to mysql_query().
When this happens, it means one of the following conditions occurred:

• There was a malloc() failure (for example, if the result set was too large).

• The data could not be read (an error occurred on the connection).

• The query returned no data (for example, it was an INSERT, UPDATE, or DELETE).

You can always check whether the statement should have produced a nonempty result by calling
mysql_field_count(). If mysql_field_count() returns zero, the result is empty and the
last query was a statement that does not return values (for example, an INSERT or a DELETE). If
mysql_field_count() returns a nonzero value, the statement should have produced a nonempty
result. See the description of the mysql_field_count() function for an example.

You can test for an error by calling mysql_error() or mysql_errno().

20.6.14.2 What Results You Can Get from a Query

In addition to the result set returned by a query, you can also get the following information:

• mysql_affected_rows() returns the number of rows affected by the last query when doing an
INSERT, UPDATE, or DELETE.

For a fast re-create, use TRUNCATE TABLE.

• mysql_num_rows() returns the number of rows in a result set. With mysql_store_result(),
mysql_num_rows() may be called as soon as mysql_store_result() returns. With
mysql_use_result(), mysql_num_rows() may be called only after you have fetched all the rows
with mysql_fetch_row().

• mysql_insert_id() returns the ID generated by the last query that inserted a row into a table with an
AUTO_INCREMENT index. See Section 20.6.7.37, “mysql_insert_id()”.

• Some queries (LOAD DATA INFILE ..., INSERT INTO ... SELECT ..., UPDATE) return
additional information. The result is returned by mysql_info(). See the description for mysql_info()
for the format of the string that it returns. mysql_info() returns a NULL pointer if there is no additional
information.

20.6.14.3 How to Get the Unique ID for the Last Inserted Row

If you insert a record into a table that contains an AUTO_INCREMENT column, you can obtain the value
stored into that column by calling the mysql_insert_id() function.

Controlling Automatic Reconnection Behavior

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1986

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

You can check from your C applications whether a value was stored in an AUTO_INCREMENT column
by executing the following code (which assumes that you've checked that the statement succeeded). It
determines whether the query was an INSERT with an AUTO_INCREMENT index:

if ((result = mysql_store_result(&mysql)) == 0 &&
 mysql_field_count(&mysql) == 0 &&
 mysql_insert_id(&mysql) != 0)
{
 used_id = mysql_insert_id(&mysql);
}

When a new AUTO_INCREMENT value has been generated, you can also obtain it by executing a SELECT
LAST_INSERT_ID() statement with mysql_query() and retrieving the value from the result set returned
by the statement.

For LAST_INSERT_ID(), the most recently generated ID is maintained in the server on a per-connection
basis. It is not changed by another client. It is not even changed if you update another AUTO_INCREMENT
column with a nonmagic value (that is, a value that is not NULL and not 0). Using LAST_INSERT_ID()
and AUTO_INCREMENT columns simultaneously from multiple clients is perfectly valid. Each client will
receive the last inserted ID for the last statement that client executed.

If you want to use the ID that was generated for one table and insert it into a second table, you can use
SQL statements like this:

INSERT INTO foo (auto,text)
 VALUES(NULL,'text'); # generate ID by inserting NULL
INSERT INTO foo2 (id,text)
 VALUES(LAST_INSERT_ID(),'text'); # use ID in second table

mysql_insert_id() returns the value stored into an AUTO_INCREMENT column, whether that value is
automatically generated by storing NULL or 0 or was specified as an explicit value. LAST_INSERT_ID()
returns only automatically generated AUTO_INCREMENT values. If you store an explicit value other than
NULL or 0, it does not affect the value returned by LAST_INSERT_ID().

For more information on obtaining the last ID in an AUTO_INCREMENT column:

• For information on LAST_INSERT_ID(), which can be used within an SQL statement, see
Section 12.13, “Information Functions”.

• For information on mysql_insert_id(), the function you use from within the C API, see
Section 20.6.7.37, “mysql_insert_id()”.

• For information on obtaining the auto-incremented value when using Connector/J, see Retrieving
AUTO_INCREMENT Column Values through JDBC.

• For information on obtaining the auto-incremented value when using Connector/ODBC, see Obtaining
Auto-Increment Values.

20.6.15 Controlling Automatic Reconnection Behavior

The MySQL client library can perform an automatic reconnection to the server if it finds that the connection
is down when you attempt to send a statement to the server to be executed. If auto-reconnect is enabled,
the library tries once to reconnect to the server and send the statement again.

If it is important for your application to know that the connection has been dropped (so that it can exit or
take action to adjust for the loss of state information), be sure that auto-reconnect is disabled. To ensure
this, call mysql_options() with the MYSQL_OPT_RECONNECT option:

http://dev.mysql.com/doc/connector-j/5.1/en/connector-j-usagenotes-last-insert-id.html
http://dev.mysql.com/doc/connector-j/5.1/en/connector-j-usagenotes-last-insert-id.html
http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html
http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html

C API Support for Multiple Statement Execution

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1987

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

my_bool reconnect = 0;
mysql_options(&mysql, MYSQL_OPT_RECONNECT, &reconnect);

Auto-reconnect was enabled by default until MySQL 5.0.3, and disabled by default thereafter. The
MYSQL_OPT_RECONNECT option is available as of MySQL 5.0.13.

If the connection has gone down, the effect of mysql_ping() depends on the auto-reconnect state. If
auto-reconnect is enabled, mysql_ping() performs a reconnect. Otherwise, it returns an error.

Some client programs might provide the capability of controlling automatic reconnection. For example,
mysql reconnects by default, but the --skip-reconnect option can be used to suppress this behavior.

If an automatic reconnection does occur (for example, as a result of calling mysql_ping()), there is no
explicit indication of it. To check for reconnection, call mysql_thread_id() to get the original connection
identifier before calling mysql_ping(), then call mysql_thread_id() again to see whether the
identifier changed.

Automatic reconnection can be convenient because you need not implement your own reconnect code, but
if a reconnection does occur, several aspects of the connection state are reset on the server side and your
application will not be notified.

The connection-related state is affected as follows:

• Any active transactions are rolled back and autocommit mode is reset.

• All table locks are released.

• All TEMPORARY tables are closed (and dropped).

• Session system variables are reinitialized to the values of the corresponding global system variables,
including system variables that are set implicitly by statements such as SET NAMES.

• User variable settings are lost.

• Prepared statements are released.

• HANDLER variables are closed.

• The value of LAST_INSERT_ID() is reset to 0.

• Locks acquired with GET_LOCK() are released.

If the connection drops, it is possible that the session associated with the connection on the server side
will still be running if the server has not yet detected that the client is no longer connected. In this case,
any locks held by the original connection still belong to that session, so you may want to kill it by calling
mysql_kill().

20.6.16 C API Support for Multiple Statement Execution

By default, mysql_query() and mysql_real_query() interpret their statement string argument as a
single statement to be executed, and you process the result according to whether the statement produces
a result set (a set of rows, as for SELECT) or an affected-rows count (as for INSERT, UPDATE, and so
forth).

MySQL also supports the execution of a string containing multiple statements separated by semicolon (;)
characters. This capability is enabled by special options that are specified either when you connect to the
server with mysql_real_connect() or after connecting by calling` mysql_set_server_option().

C API Support for Multiple Statement Execution

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1988

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Executing a multiple-statement string can produce multiple result sets or row-count indicators. Processing
these results involves a different approach than for the single-statement case: After handling the result
from the first statement, it is necessary to check whether more results exist and process them in turn
if so. To support multiple-result processing, the C API includes the mysql_more_results() and
mysql_next_result() functions. These functions are used at the end of a loop that iterates as long as
more results are available. Failure to process the result this way may result in a dropped connection to the
server.

Multiple-result processing also is required if you execute CALL statements for stored procedures. Results
from a stored procedure have these characteristics:

• Statements within the procedure may produce result sets (for example, if it executes SELECT
statements). These result sets are returned in the order that they are produced as the procedure
executes.

In general, the caller cannot know how many result sets a procedure will return. Procedure execution
may depend on loops or conditional statements that cause the execution path to differ from one call to
the next. Therefore, you must be prepared to retrieve multiple results.

• The final result from the procedure is a status result that includes no result set. The status indicates
whether the procedure succeeded or an error occurred.

The multiple statement and result capabilities can be used only with mysql_query() or
mysql_real_query(). They cannot be used with the prepared statement interface. Prepared statement
handles are defined to work only with strings that contain a single statement. See Section 20.6.8, “C API
Prepared Statements”.

To enable multiple-statement execution and result processing, the following options may be used:

• The mysql_real_connect() function has a flags argument for which two option values are
relevant:

• CLIENT_MULTI_RESULTS enables the client program to process multiple results. This option must
be enabled if you execute CALL statements for stored procedures that produce result sets. Otherwise,
such procedures result in an error Error 1312 (0A000): PROCEDURE proc_name can't
return a result set in the given context.

• CLIENT_MULTI_STATEMENTS enables mysql_query() and mysql_real_query() to execute
statement strings containing multiple statements separated by semicolons. This option also enables
CLIENT_MULTI_RESULTS implicitly, so a flags argument of CLIENT_MULTI_STATEMENTS
to mysql_real_connect() is equivalent to an argument of CLIENT_MULTI_STATEMENTS |
CLIENT_MULTI_RESULTS. That is, CLIENT_MULTI_STATEMENTS is sufficient to enable multiple-
statement execution and all multiple-result processing.

• After the connection to the server has been established, you can use the
mysql_set_server_option() function to enable or disable multiple-statement
execution by passing it an argument of MYSQL_OPTION_MULTI_STATEMENTS_ON or
MYSQL_OPTION_MULTI_STATEMENTS_OFF. Enabling multiple-statement execution with this function
also enables processing of “simple” results for a multiple-statement string where each statement
produces a single result, but is not sufficient to permit processing of stored procedures that produce
result sets.

The following procedure outlines a suggested strategy for handling multiple statements:

1. Pass CLIENT_MULTI_STATEMENTS to mysql_real_connect(), to fully enable multiple-statement
execution and multiple-result processing.

C API Support for Multiple Statement Execution

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1989

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2. After calling mysql_query() or mysql_real_query() and verifying that it succeeds, enter a loop
within which you process statement results.

3. For each iteration of the loop, handle the current statement result, retrieving either a result set or an
affected-rows count. If an error occurs, exit the loop.

4. At the end of the loop, call mysql_next_result() to check whether another result exists and initiate
retrieval for it if so. If no more results are available, exit the loop.

One possible implementation of the preceding strategy is shown following. The final part of the loop can
be reduced to a simple test of whether mysql_next_result() returns nonzero. The code as written
distinguishes between no more results and an error, which enables a message to be printed for the latter
occurrence.

/* connect to server with the CLIENT_MULTI_STATEMENTS option */
if (mysql_real_connect (mysql, host_name, user_name, password,
 db_name, port_num, socket_name, CLIENT_MULTI_STATEMENTS) == NULL)
{
 printf("mysql_real_connect() failed\n");
 mysql_close(mysql);
 exit(1);
}

/* execute multiple statements */
status = mysql_query(mysql,
 "DROP TABLE IF EXISTS test_table;\
 CREATE TABLE test_table(id INT);\
 INSERT INTO test_table VALUES(10);\
 UPDATE test_table SET id=20 WHERE id=10;\
 SELECT * FROM test_table;\
 DROP TABLE test_table");
if (status)
{
 printf("Could not execute statement(s)");
 mysql_close(mysql);
 exit(0);
}

/* process each statement result */
do {
 /* did current statement return data? */
 result = mysql_store_result(mysql);
 if (result)
 {
 /* yes; process rows and free the result set */
 process_result_set(mysql, result);
 mysql_free_result(result);
 }
 else /* no result set or error */
 {
 if (mysql_field_count(mysql) == 0)
 {
 printf("%lld rows affected\n",
 mysql_affected_rows(mysql));
 }
 else /* some error occurred */
 {
 printf("Could not retrieve result set\n");
 break;
 }
 }
 /* more results? -1 = no, >0 = error, 0 = yes (keep looping) */
 if ((status = mysql_next_result(mysql)) > 0)
 printf("Could not execute statement\n");

C API Prepared Statement Problems

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1990

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

} while (status == 0);

mysql_close(mysql);

20.6.17 C API Prepared Statement Problems

Here follows a list of the currently known problems with prepared statements:

• TIME, TIMESTAMP, and DATETIME do not support parts of seconds (for example, from
DATE_FORMAT()).

• When converting an integer to string, ZEROFILL is honored with prepared statements in some cases
where the MySQL server does not print the leading zeros. (For example, with MIN(number-with-
zerofill)).

• When converting a floating-point number to a string in the client, the rightmost digits of the converted
value may differ slightly from those of the original value.

• Prepared statements do not use the query cache, even in cases where a query does not contain any
placeholders. See Section 8.10.3.1, “How the Query Cache Operates”.

• Prepared statements do not support multi-statements (that is, multiple statements within a single string
separated by ; characters).

• In MySQL 5.0, prepared CALL statements cannot invoke stored procedures that return result sets
because prepared statements do not support multiple result sets. Nor can the calling application access
a stored procedure's OUT or INOUT parameters when the procedure returns. These capabilities are
supported beginning with MySQL 5.5.

20.6.18 C API Prepared Statement Handling of Date and Time Values

The binary (prepared statement) protocol enables you to send and receive date and time values (DATE,
TIME, DATETIME, and TIMESTAMP), using the MYSQL_TIME structure. The members of this structure are
described in Section 20.6.9, “C API Prepared Statement Data Structures”.

To send temporal data values, create a prepared statement using mysql_stmt_prepare(). Then,
before calling mysql_stmt_execute() to execute the statement, use the following procedure to set up
each temporal parameter:

1. In the MYSQL_BIND structure associated with the data value, set the buffer_type member to
the type that indicates what kind of temporal value you're sending. For DATE, TIME, DATETIME,
or TIMESTAMP values, set buffer_type to MYSQL_TYPE_DATE, MYSQL_TYPE_TIME,
MYSQL_TYPE_DATETIME, or MYSQL_TYPE_TIMESTAMP, respectively.

2. Set the buffer member of the MYSQL_BIND structure to the address of the MYSQL_TIME structure in
which you pass the temporal value.

3. Fill in the members of the MYSQL_TIME structure that are appropriate for the type of temporal value to
pass.

Use mysql_stmt_bind_param() to bind the parameter data to the statement. Then you can call
mysql_stmt_execute().

To retrieve temporal values, the procedure is similar, except that you set the buffer_type member to the
type of value you expect to receive, and the buffer member to the address of a MYSQL_TIME structure
into which the returned value should be placed. Use mysql_stmt_bind_result() to bind the buffers to
the statement after calling mysql_stmt_execute() and before fetching the results.

C API Support for Prepared CALL Statements

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1991

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Here is a simple example that inserts DATE, TIME, and TIMESTAMP data. The mysql variable is assumed
to be a valid connection handle.

 MYSQL_TIME ts;
 MYSQL_BIND bind[3];
 MYSQL_STMT *stmt;

 strmov(query, "INSERT INTO test_table(date_field, time_field, \
 timestamp_field) VALUES(?,?,?");

 stmt = mysql_stmt_init(mysql);
 if (!stmt)
 {
 fprintf(stderr, " mysql_stmt_init(), out of memory\n");
 exit(0);
 }
 if (mysql_stmt_prepare(mysql, query, strlen(query)))
 {
 fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
 }

 /* set up input buffers for all 3 parameters */
 bind[0].buffer_type= MYSQL_TYPE_DATE;
 bind[0].buffer= (char *)&ts;
 bind[0].is_null= 0;
 bind[0].length= 0;
 ...
 bind[1]= bind[2]= bind[0];
 ...

 mysql_stmt_bind_param(stmt, bind);

 /* supply the data to be sent in the ts structure */
 ts.year= 2002;
 ts.month= 02;
 ts.day= 03;

 ts.hour= 10;
 ts.minute= 45;
 ts.second= 20;

 mysql_stmt_execute(stmt);
 ..

20.6.19 C API Support for Prepared CALL Statements

In MySQL 5.0, prepared CALL statements can be used only for stored procedures that produce at most
one result set. Nor can the calling application use placeholders for OUT or INOUT parameters.

MySQL 5.5 expands prepared CALL statement support for stored procedures that produce multiple result
sets and to provide placeholder access to OUT and INOUT parameters.

20.7 MySQL PHP API
The MySQL PHP API manual is now published in standalone form, not as part of the MySQL Reference
Manual. See MySQL and PHP.

20.8 MySQL Perl API

http://dev.mysql.com/doc/apis-php/en/

MySQL Python API

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1992

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The Perl DBI module provides a generic interface for database access. You can write a DBI script that
works with many different database engines without change. To use DBI with MySQL, install the following:

1. The DBI module.

2. The DBD::mysql module. This is the DataBase Driver (DBD) module for Perl.

3. Optionally, the DBD module for any other type of database server you want to access.

Perl DBI is the recommended Perl interface. It replaces an older interface called mysqlperl, which should
be considered obsolete.

These sections contain information about using Perl with MySQL and writing MySQL applications in Perl:

• For installation instructions for Perl DBI support, see Section 2.22, “Perl Installation Notes”.

• For an example of reading options from option files, see Section 5.5.4, “Using Client Programs in a
Multiple-Server Environment”.

• For secure coding tips, see Section 6.1.1, “Security Guidelines”.

• For debugging tips, see Section 21.3.1.4, “Debugging mysqld under gdb”.

• For some Perl-specific environment variables, see Section 2.21, “Environment Variables”.

• For considerations for running on OS X, see Section 2.11, “Installing MySQL on OS X”.

• For ways to quote string literals, see Section 9.1.1, “String Literals”.

DBI information is available at the command line, online, or in printed form:

• Once you have the DBI and DBD::mysql modules installed, you can get information about them at the
command line with the perldoc command:

shell> perldoc DBI
shell> perldoc DBI::FAQ
shell> perldoc DBD::mysql

You can also use pod2man, pod2html, and so on to translate this information into other formats.

• For online information about Perl DBI, visit the DBI Web site, http://dbi.perl.org/. That site hosts a general
DBI mailing list. Oracle Corporation hosts a list specifically about DBD::mysql; see Section 1.6.1,
“MySQL Mailing Lists”.

• For printed information, the official DBI book is Programming the Perl DBI (Alligator Descartes and Tim
Bunce, O'Reilly & Associates, 2000). Information about the book is available at the DBI Web site, http://
dbi.perl.org/.

For information that focuses specifically on using DBI with MySQL, see MySQL and Perl for the Web
(Paul DuBois, New Riders, 2001). This book's Web site is http://www.kitebird.com/mysql-perl/.

20.9 MySQL Python API
MySQLdb is a third-party driver that provides MySQL support for Python, compliant with the Python DB API
version 2.0. It can be found at http://sourceforge.net/projects/mysql-python/.

The new MySQL Connector/Python component provides an interface to the same Python API, and is built
into the MySQL Server and supported by Oracle. See MySQL Connector/Python Developer Guide for
details on the Connector, as well as coding guidelines for Python applications and sample Python code.

http://dbi.perl.org/
http://dbi.perl.org/
http://dbi.perl.org/
http://www.kitebird.com/mysql-perl/
http://sourceforge.net/projects/mysql-python/
http://dev.mysql.com/doc/connector-python/en/

MySQL Ruby APIs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1993

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

20.10 MySQL Ruby APIs

Two APIs are available for Ruby programmers developing MySQL applications:

• The MySQL/Ruby API is based on the libmysqlclient API library. For information on installing and
using the MySQL/Ruby API, see Section 20.10.1, “The MySQL/Ruby API”.

• The Ruby/MySQL API is written to use the native MySQL network protocol (a native driver). For
information on installing and using the Ruby/MySQL API, see Section 20.10.2, “The Ruby/MySQL API”.

For background and syntax information about the Ruby language, see Ruby Programming Language.

20.10.1 The MySQL/Ruby API

The MySQL/Ruby module provides access to MySQL databases using Ruby through libmysqlclient.

For information on installing the module, and the functions exposed, see MySQL/Ruby.

20.10.2 The Ruby/MySQL API

The Ruby/MySQL module provides access to MySQL databases using Ruby through a native driver
interface using the MySQL network protocol.

For information on installing the module, and the functions exposed, see Ruby/MySQL.

20.11 MySQL Tcl API

MySQLtcl is a simple API for accessing a MySQL database server from the Tcl programming language. It
can be found at http://www.xdobry.de/mysqltcl/.

20.12 MySQL Eiffel Wrapper

Eiffel MySQL is an interface to the MySQL database server using the Eiffel programming language, written
by Michael Ravits. It can be found at http://efsa.sourceforge.net/archive/ravits/mysql.htm.

http://www.ruby-lang.org
http://tmtm.org/en/mysql/ruby/
http://tmtm.org/en/ruby/mysql/README_en.html
http://en.wikipedia.org/wiki/Tcl
http://www.xdobry.de/mysqltcl/
http://en.wikipedia.org/wiki/Eiffel_(programming_language)
http://efsa.sourceforge.net/archive/ravits/mysql.htm

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1994

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1995

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 21 Extending MySQL

Table of Contents
21.1 MySQL Internals ... 1995

21.1.1 MySQL Threads ... 1995
21.1.2 The MySQL Test Suite ... 1996

21.2 Adding New Functions to MySQL .. 1997
21.2.1 Features of the User-Defined Function Interface .. 1997
21.2.2 Adding a New User-Defined Function .. 1998
21.2.3 Adding a New Native Function .. 2008

21.3 Debugging and Porting MySQL ... 2010
21.3.1 Debugging a MySQL Server ... 2010
21.3.2 Debugging a MySQL Client .. 2017
21.3.3 The DBUG Package ... 2017

21.1 MySQL Internals
This chapter describes a lot of things that you need to know when working on the MySQL code. To track
or contribute to MySQL development, follow the instructions in Section 2.17.2, “Installing MySQL Using
a Development Source Tree”. If you are interested in MySQL internals, you should also subscribe to
our internals mailing list. This list has relatively low traffic. For details on how to subscribe, please
see Section 1.6.1, “MySQL Mailing Lists”. Many MySQL developers at Oracle Corporation are on the
internals list and we help other people who are working on the MySQL code. Feel free to use this list
both to ask questions about the code and to send patches that you would like to contribute to the MySQL
project!

21.1.1 MySQL Threads

The MySQL server creates the following threads:

• Connection manager threads handle client connection requests on the network interfaces that the
server listens to. On all platforms, one manager thread handles TCP/IP connection requests. On Unix,
this manager thread also handles Unix socket file connection requests. On Windows, a manager
thread handles shared-memory connection requests, and another handles named-pipe connection
requests. The server does not create threads to handle interfaces that it does not listen to. For example,
a Windows server that does not have support for named-pipe connections enabled does not create a
thread to handle them.

• Connection manager threads associate each client connection with a thread dedicated to it that handles
authentication and request processing for that connection. Manager threads create a new thread when
necessary but try to avoid doing so by consulting the thread cache first to see whether it contains a
thread that can be used for the connection. When a connection ends, its thread is returned to the thread
cache if the cache is not full.

For information about tuning the parameters that control thread resources, see Section 8.12.6.1, “How
MySQL Uses Threads for Client Connections”.

• On a master replication server, connections from slave servers are handled like client connections:
There is one thread per connected slave.

• On a slave replication server, an I/O thread is started to connect to the master server and read updates
from it. An SQL thread is started to apply updates read from the master. These two threads run
independently and can be started and stopped independently.

The MySQL Test Suite

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1996

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• A signal thread handles all signals. This thread also normally handles alarms and calls
process_alarm() to force timeouts on connections that have been idle too long.

• If InnoDB is used, there will be 4 additional threads by default. Those are file I/O threads, controlled by
the innodb_file_io_threads parameter. See Section 14.2.2, “InnoDB Startup Options and System
Variables”.

• If mysqld is compiled with -DUSE_ALARM_THREAD, a dedicated thread that handles alarms is created.
This is only used on some systems where there are problems with sigwait() or if you want to use the
thr_alarm() code in your application without a dedicated signal handling thread.

• If the server is started with the --flush_time=val option, a dedicated thread is created to flush all
tables every val seconds.

• Each table for which INSERT DELAYED statements are issued gets its own thread. See
Section 13.2.5.2, “INSERT DELAYED Syntax”.

mysqladmin processlist only shows the connection, INSERT DELAYED, and replication threads.

21.1.2 The MySQL Test Suite

The test system that is included in Unix source and binary distributions makes it possible for users and
developers to perform regression tests on the MySQL code. These tests can be run on Unix.

You can also write your own test cases. For information about the MySQL Test Framework, including
system requirements, see the manual available at http://dev.mysql.com/doc/mysqltest/2.0/en/.

The current set of test cases doesn't test everything in MySQL, but it should catch most obvious bugs in
the SQL processing code, operating system or library issues, and is quite thorough in testing replication.
Our goal is to have the tests cover 100% of the code. We welcome contributions to our test suite. You
may especially want to contribute tests that examine the functionality critical to your system because this
ensures that all future MySQL releases work well with your applications.

The test system consists of a test language interpreter (mysqltest), a Perl script to run all tests (mysql-
test-run.pl), the actual test cases written in a special test language, and their expected results. To
run the test suite on your system after a build, type make test from the source root directory, or change
location to the mysql-test directory and type ./mysql-test-run.pl. If you have installed a binary
distribution, change location to the mysql-test directory under the installation root directory (for example,
/usr/local/mysql/mysql-test), and run ./mysql-test-run.pl. All tests should succeed. If
any do not, feel free to try to find out why and report the problem if it indicates a bug in MySQL. See
Section 1.7, “How to Report Bugs or Problems”.

If one test fails, you should run mysql-test-run.pl with the --force option to check whether any
other tests fail.

If you have a copy of mysqld running on the machine where you want to run the test suite, you do not
have to stop it, as long as it is not using ports 9306 or 9307. If either of those ports is taken, you should
set the MTR_BUILD_THREAD environment variable to an appropriate value, and the test suite will use a
different set of ports for master, slave, NDB, and Instance Manager). For example:

shell> export MTR_BUILD_THREAD=31
shell> ./mysql-test-run.pl [options] [test_name]

In the mysql-test directory, you can run an individual test case with ./mysql-test-run.pl
test_name.

http://dev.mysql.com/doc/mysqltest/2.0/en/

Adding New Functions to MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1997

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you have a question about the test suite, or have a test case to contribute, send an email message to the
MySQL internals mailing list. See Section 1.6.1, “MySQL Mailing Lists”.

21.2 Adding New Functions to MySQL
There are three ways to add new functions to MySQL:

• You can add functions through the user-defined function (UDF) interface. User-defined functions are
compiled as object files and then added to and removed from the server dynamically using the CREATE
FUNCTION and DROP FUNCTION statements. See Section 13.7.3.1, “CREATE FUNCTION Syntax for
User-defined Functions”.

• You can add functions as native (built-in) MySQL functions. Native functions are compiled into the
mysqld server and become available on a permanent basis.

• Another way to add functions is by creating stored functions. These are written using SQL statements
rather than by compiling object code. The syntax for writing stored functions is not covered here. See
Section 18.2, “Using Stored Routines (Procedures and Functions)”.

Each method of creating compiled functions has advantages and disadvantages:

• If you write user-defined functions, you must install object files in addition to the server itself. If you
compile your function into the server, you don't need to do that.

• Native functions require you to modify a source distribution. UDFs do not. You can add UDFs to a binary
MySQL distribution. No access to MySQL source is necessary.

• If you upgrade your MySQL distribution, you can continue to use your previously installed UDFs, unless
you upgrade to a newer version for which the UDF interface changes. For native functions, you must
repeat your modifications each time you upgrade.

Whichever method you use to add new functions, they can be invoked in SQL statements just like native
functions such as ABS() or SOUNDEX().

See Section 9.2.3, “Function Name Parsing and Resolution”, for the rules describing how the server
interprets references to different kinds of functions.

The following sections describe features of the UDF interface, provide instructions for writing UDFs,
discuss security precautions that MySQL takes to prevent UDF misuse, and describe how to add native
MySQL functions.

For example source code that illustrates how to write UDFs, take a look at the sql/udf_example.c file
that is provided in MySQL source distributions.

21.2.1 Features of the User-Defined Function Interface

The MySQL interface for user-defined functions provides the following features and capabilities:

• Functions can return string, integer, or real values and can accept arguments of those same types.

• You can define simple functions that operate on a single row at a time, or aggregate functions that
operate on groups of rows.

• Information is provided to functions that enables them to check the number, types, and names of the
arguments passed to them.

• You can tell MySQL to coerce arguments to a given type before passing them to a function.

Adding a New User-Defined Function

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1998

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• You can indicate that a function returns NULL or that an error occurred.

21.2.2 Adding a New User-Defined Function

For the UDF mechanism to work, functions must be written in C or C++ and your operating system must
support dynamic loading. MySQL source distributions include a file sql/udf_example.c that defines five
UDF functions. Consult this file to see how UDF calling conventions work. The include/mysql_com.h
header file defines UDF-related symbols and data structures, although you need not include this header file
directly; it is included by mysql.h.

A UDF contains code that becomes part of the running server, so when you write a UDF, you are bound
by any and all constraints that apply to writing server code. For example, you may have problems if you
attempt to use functions from the libstdc++ library. Note that these constraints may change in future
versions of the server, so it is possible that server upgrades will require revisions to UDFs that were
originally written for older servers. For information about these constraints, see Section 2.17.3, “MySQL
Source-Configuration Options”, and Section 2.17.4, “Dealing with Problems Compiling MySQL”.

To be able to use UDFs, you must link mysqld dynamically. Don't configure MySQL using --with-
mysqld-ldflags=-all-static. If you want to use a UDF that needs to access symbols from mysqld
(for example, the metaphone function in sql/udf_example.c uses default_charset_info), you
must link the program with -rdynamic (see man dlopen). If you plan to use UDFs, the rule of thumb is to
configure MySQL with --with-mysqld-ldflags=-rdynamic unless you have a very good reason not
to.

For each function that you want to use in SQL statements, you should define corresponding C (or C
++) functions. In the following discussion, the name “xxx” is used for an example function name. To
distinguish between SQL and C/C++ usage, XXX() (uppercase) indicates an SQL function call, and xxx()
(lowercase) indicates a C/C++ function call.

Note

When using C++ you can encapsulate your C functions within:

extern "C" { ... }

This ensures that your C++ function names remain readable in the completed UDF.

The following list describes the C/C++ functions that you write to implement the interface for a function
named XXX(). The main function, xxx(), is required. In addition, a UDF requires at least one of the other
functions described here, for reasons discussed in Section 21.2.2.6, “UDF Security Precautions”.

• xxx()

The main function. This is where the function result is computed. The correspondence between the SQL
function data type and the return type of your C/C++ function is shown here.

SQL Type C/C++ Type

STRING char *

INTEGER long long

REAL double

It is also possible to declare a DECIMAL function, but currently the value is returned as a string, so you
should write the UDF as though it were a STRING function. ROW functions are not implemented.

• xxx_init()

Adding a New User-Defined Function

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 1999

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The initialization function for xxx(). If present, it can be used for the following purposes:

• To check the number of arguments to XXX().

• To verify that the arguments are of a required type or, alternatively, to tell MySQL to coerce arguments
to the required types when the main function is called.

• To allocate any memory required by the main function.

• To specify the maximum length of the result.

• To specify (for REAL functions) the maximum number of decimal places in the result.

• To specify whether the result can be NULL.

• xxx_deinit()

The deinitialization function for xxx(). If present, it should deallocate any memory allocated by the
initialization function.

When an SQL statement invokes XXX(), MySQL calls the initialization function xxx_init() to let
it perform any required setup, such as argument checking or memory allocation. If xxx_init()
returns an error, MySQL aborts the SQL statement with an error message and does not call the main or
deinitialization functions. Otherwise, MySQL calls the main function xxx() once for each row. After all
rows have been processed, MySQL calls the deinitialization function xxx_deinit() so that it can perform
any required cleanup.

For aggregate functions that work like SUM(), you must also provide the following functions:

• xxx_clear()

Reset the current aggregate value but do not insert the argument as the initial aggregate value for a new
group.

• xxx_add()

Add the argument to the current aggregate value.

MySQL handles aggregate UDFs as follows:

1. Call xxx_init() to let the aggregate function allocate any memory it needs for storing results.

2. Sort the table according to the GROUP BY expression.

3. Call xxx_clear() for the first row in each new group.

4. Call xxx_add() for each row that belongs in the same group.

5. Call xxx() to get the result for the aggregate when the group changes or after the last row has been
processed.

6. Repeat steps 3 to 5 until all rows has been processed

7. Call xxx_deinit() to let the UDF free any memory it has allocated.

All functions must be thread-safe. This includes not just the main function, but the initialization and
deinitialization functions as well, and also the additional functions required by aggregate functions. A

Adding a New User-Defined Function

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2000

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

consequence of this requirement is that you are not permitted to allocate any global or static variables that
change! If you need memory, you should allocate it in xxx_init() and free it in xxx_deinit().

21.2.2.1 UDF Calling Sequences for Simple Functions

This section describes the different functions that you need to define when you create a simple UDF.
Section 21.2.2, “Adding a New User-Defined Function”, describes the order in which MySQL calls these
functions.

The main xxx() function should be declared as shown in this section. Note that the return type and
parameters differ, depending on whether you declare the SQL function XXX() to return STRING, INTEGER,
or REAL in the CREATE FUNCTION statement:

For STRING functions:

char *xxx(UDF_INIT *initid, UDF_ARGS *args,
 char *result, unsigned long *length,
 char *is_null, char *error);

For INTEGER functions:

long long xxx(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error);

For REAL functions:

double xxx(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error);

DECIMAL functions return string values and should be declared the same way as STRING functions. ROW
functions are not implemented.

The initialization and deinitialization functions are declared like this:

my_bool xxx_init(UDF_INIT *initid, UDF_ARGS *args, char *message);

void xxx_deinit(UDF_INIT *initid);

The initid parameter is passed to all three functions. It points to a UDF_INIT structure that is used to
communicate information between functions. The UDF_INIT structure members follow. The initialization
function should fill in any members that it wishes to change. (To use the default for a member, leave it
unchanged.)

• my_bool maybe_null

xxx_init() should set maybe_null to 1 if xxx() can return NULL. The default value is 1 if any of the
arguments are declared maybe_null.

• unsigned int decimals

The number of decimal digits to the right of the decimal point. The default value is the maximum number
of decimal digits in the arguments passed to the main function. For example, if the function is passed
1.34, 1.345, and 1.3, the default would be 3, because 1.345 has 3 decimal digits.

For arguments that have no fixed number of decimals, the decimals value is set to 31, which is 1 more
than the maximum number of decimals permitted for the DECIMAL, FLOAT, and DOUBLE data types.

Adding a New User-Defined Function

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2001

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A decimals value of 31 is used for arguments in cases such as a FLOAT or DOUBLE column declared
without an explicit number of decimals (for example, FLOAT rather than FLOAT(10,3)) and for floating-
point constants such as 1345E-3. It is also used for string and other nonnumber arguments that might
be converted within the function to numeric form.

The value to which the decimals member is initialized is only a default. It can be changed within the
function to reflect the actual calculation performed. The default is determined such that the largest
number of decimals of the arguments is used. If the number of decimals is 31 for even one of the
arguments, that is the value used for decimals.

• unsigned int max_length

The maximum length of the result. The default max_length value differs depending on the result type of
the function. For string functions, the default is the length of the longest argument. For integer functions,
the default is 21 digits. For real functions, the default is 13 plus the number of decimal digits indicated by
initid->decimals. (For numeric functions, the length includes any sign or decimal point characters.)

If you want to return a blob value, you can set max_length to 65KB or 16MB. This memory is not
allocated, but the value is used to decide which data type to use if there is a need to temporarily store
the data.

• char *ptr

A pointer that the function can use for its own purposes. For example, functions can use initid->ptr
to communicate allocated memory among themselves. xxx_init() should allocate the memory and
assign it to this pointer:

initid->ptr = allocated_memory;

In xxx() and xxx_deinit(), refer to initid->ptr to use or deallocate the memory.

• my_bool const_item

xxx_init() should set const_item to 1 if xxx() always returns the same value and to 0 otherwise.

21.2.2.2 UDF Calling Sequences for Aggregate Functions

This section describes the different functions that you need to define when you create an aggregate UDF.
Section 21.2.2, “Adding a New User-Defined Function”, describes the order in which MySQL calls these
functions.

• xxx_reset()

This function is called when MySQL finds the first row in a new group. It should reset any internal
summary variables and then use the given UDF_ARGS argument as the first value in your internal
summary value for the group. Declare xxx_reset() as follows:

void xxx_reset(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error);

xxx_reset() is not needed or used in MySQL 5.0, in which the UDF interface uses xxx_clear()
instead. However, you can define both xxx_reset() and xxx_clear() if you want to have your UDF
work with older versions of the server. (If you do include both functions, the xxx_reset() function in
many cases can be implemented internally by calling xxx_clear() to reset all variables, and then
calling xxx_add() to add the UDF_ARGS argument as the first value in the group.)

Adding a New User-Defined Function

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2002

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• xxx_clear()

This function is called when MySQL needs to reset the summary results. It is called at the beginning for
each new group but can also be called to reset the values for a query where there were no matching
rows. Declare xxx_clear() as follows:

void xxx_clear(UDF_INIT *initid, char *is_null, char *error);

is_null is set to point to CHAR(0) before calling xxx_clear().

If something went wrong, you can store a value in the variable to which the error argument points.
error points to a single-byte variable, not to a string buffer.

xxx_clear() is required by MySQL 5.0.

• xxx_add()

This function is called for all rows that belong to the same group. You should use it to add the value in
the UDF_ARGS argument to your internal summary variable.

void xxx_add(UDF_INIT *initid, UDF_ARGS *args,
 char *is_null, char *error);

The xxx() function for an aggregate UDF should be declared the same way as for a nonaggregate UDF.
See Section 21.2.2.1, “UDF Calling Sequences for Simple Functions”.

For an aggregate UDF, MySQL calls the xxx() function after all rows in the group have been processed.
You should normally never access its UDF_ARGS argument here but instead return a value based on your
internal summary variables.

Return value handling in xxx() should be done the same way as for a nonaggregate UDF. See
Section 21.2.2.4, “UDF Return Values and Error Handling”.

The xxx_reset() and xxx_add() functions handle their UDF_ARGS argument the same way as
functions for nonaggregate UDFs. See Section 21.2.2.3, “UDF Argument Processing”.

The pointer arguments to is_null and error are the same for all calls to xxx_reset(),
xxx_clear(), xxx_add() and xxx(). You can use this to remember that you got an error or whether
the xxx() function should return NULL. You should not store a string into *error! error points to a
single-byte variable, not to a string buffer.

*is_null is reset for each group (before calling xxx_clear()). *error is never reset.

If *is_null or *error are set when xxx() returns, MySQL returns NULL as the result for the group
function.

21.2.2.3 UDF Argument Processing

The args parameter points to a UDF_ARGS structure that has the members listed here:

• unsigned int arg_count

The number of arguments. Check this value in the initialization function if you require your function to be
called with a particular number of arguments. For example:

if (args->arg_count != 2)
{

Adding a New User-Defined Function

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2003

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 strcpy(message,"XXX() requires two arguments");
 return 1;
}

For other UDF_ARGS member values that are arrays, array references are zero-based. That is, refer to
array members using index values from 0 to args->arg_count − 1.

• enum Item_result *arg_type

A pointer to an array containing the types for each argument. The possible type values are
STRING_RESULT, INT_RESULT, REAL_RESULT, and DECIMAL_RESULT.

To make sure that arguments are of a given type and return an error if they are not, check the
arg_type array in the initialization function. For example:

if (args->arg_type[0] != STRING_RESULT ||
 args->arg_type[1] != INT_RESULT)
{
 strcpy(message,"XXX() requires a string and an integer");
 return 1;
}

Arguments of type DECIMAL_RESULT are passed as strings, so you should handle them the same way
as STRING_RESULT values.

As an alternative to requiring your function's arguments to be of particular types, you can use the
initialization function to set the arg_type elements to the types you want. This causes MySQL to coerce
arguments to those types for each call to xxx(). For example, to specify that the first two arguments
should be coerced to string and integer, respectively, do this in xxx_init():

args->arg_type[0] = STRING_RESULT;
args->arg_type[1] = INT_RESULT;

Exact-value decimal arguments such as 1.3 or DECIMAL column values are passed with a type of
DECIMAL_RESULT. However, the values are passed as strings. If you want to receive a number, use the
initialization function to specify that the argument should be coerced to a REAL_RESULT value:

args->arg_type[2] = REAL_RESULT;

Note

Prior to MySQL 5.0.3, decimal arguments were passed as REAL_RESULT values.
If you upgrade to a newer version and find that your UDF now receives string
values, use the initialization function to coerce the arguments to numbers as just
described.

• char **args

args->args communicates information to the initialization function about the general nature of the
arguments passed to your function. For a constant argument i, args->args[i] points to the argument
value. (See below for instructions on how to access the value properly.) For a nonconstant argument,
args->args[i] is 0. A constant argument is an expression that uses only constants, such as 3 or
4*7-2 or SIN(3.14). A nonconstant argument is an expression that refers to values that may change
from row to row, such as column names or functions that are called with nonconstant arguments.

Adding a New User-Defined Function

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2004

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For each invocation of the main function, args->args contains the actual arguments that are passed
for the row currently being processed.

If argument i represents NULL, args->args[i] is a null pointer (0). If the argument is not NULL,
functions can refer to it as follows:

• An argument of type STRING_RESULT is given as a string pointer plus a length, to enable handling of
binary data or data of arbitrary length. The string contents are available as args->args[i] and the
string length is args->lengths[i]. Do not assume that the string is null-terminated.

• For an argument of type INT_RESULT, you must cast args->args[i] to a long long value:

long long int_val;
int_val = *((long long*) args->args[i]);

• For an argument of type REAL_RESULT, you must cast args->args[i] to a double value:

double real_val;
real_val = *((double*) args->args[i]);

• For an argument of type DECIMAL_RESULT, the value is passed as a string and should be handled
like a STRING_RESULT value.

• ROW_RESULT arguments are not implemented.

• unsigned long *lengths

For the initialization function, the lengths array indicates the maximum string length for each argument.
You should not change these. For each invocation of the main function, lengths contains the actual
lengths of any string arguments that are passed for the row currently being processed. For arguments of
types INT_RESULT or REAL_RESULT, lengths still contains the maximum length of the argument (as
for the initialization function).

• char *maybe_null

For the initialization function, the maybe_null array indicates for each argument whether the argument
value might be null (0 if no, 1 if yes).

• char **attributes

args->attributes communicates information about the names of the UDF arguments. For argument
i, the attribute name is available as a string in args->attributes[i] and the attribute length is
args->attribute_lengths[i]. Do not assume that the string is null-terminated.

By default, the name of a UDF argument is the text of the expression used to specify the argument. For
UDFs, an argument may also have an optional [AS] alias_name clause, in which case the argument
name is alias_name. The attributes value for each argument thus depends on whether an alias
was given.

Suppose that a UDF my_udf() is invoked as follows:

SELECT my_udf(expr1, expr2 AS alias1, expr3 alias2);

In this case, the attributes and attribute_lengths arrays will have these values:

Adding a New User-Defined Function

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2005

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

args->attributes[0] = "expr1"
args->attribute_lengths[0] = 5

args->attributes[1] = "alias1"
args->attribute_lengths[1] = 6

args->attributes[2] = "alias2"
args->attribute_lengths[2] = 6

• unsigned long *attribute_lengths

The attribute_lengths array indicates the length of each argument name.

21.2.2.4 UDF Return Values and Error Handling

The initialization function should return 0 if no error occurred and 1 otherwise. If an error occurs,
xxx_init() should store a null-terminated error message in the message parameter. The message is
returned to the client. The message buffer is MYSQL_ERRMSG_SIZE characters long, but you should try to
keep the message to less than 80 characters so that it fits the width of a standard terminal screen.

The return value of the main function xxx() is the function value, for long long and double functions.
A string function should return a pointer to the result and set *length to the length (in bytes) of the return
value. For example:

memcpy(result, "result string", 13);
*length = 13;

MySQL passes a buffer to the xxx() function using the result parameter. This buffer is sufficiently long
to hold 255 characters, which can be multibyte characters. The xxx() function can store the result in this
buffer if it fits, in which case the return value should be a pointer to the buffer. If the function stores the
result in a different buffer, it should return a pointer to that buffer.

If your string function does not use the supplied buffer (for example, if it needs to return a string longer than
255 characters), you must allocate the space for your own buffer with malloc() in your xxx_init()
function or your xxx() function and free it in your xxx_deinit() function. You can store the allocated
memory in the ptr slot in the UDF_INIT structure for reuse by future xxx() calls. See Section 21.2.2.1,
“UDF Calling Sequences for Simple Functions”.

To indicate a return value of NULL in the main function, set *is_null to 1:

*is_null = 1;

To indicate an error return in the main function, set *error to 1:

*error = 1;

If xxx() sets *error to 1 for any row, the function value is NULL for the current row and for any
subsequent rows processed by the statement in which XXX() was invoked. (xxx() is not even called for
subsequent rows.)

21.2.2.5 UDF Compiling and Installing

Files implementing UDFs must be compiled and installed on the host where the server runs. This process
is described below for the example UDF file sql/udf_example.c that is included in the MySQL source
distribution.

Adding a New User-Defined Function

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2006

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If a UDF will be referred to in statements that will be replicated to slave servers, you must ensure that
every slave also has the function available. Otherwise, replication will fail on the slaves when they attempt
to invoke the function.

The immediately following instructions are for Unix. Instructions for Windows are given later in this section.

The udf_example.c file contains the following functions:

• metaphon() returns a metaphon string of the string argument. This is something like a soundex string,
but it is more tuned for English.

• myfunc_double() returns the sum of the ASCII values of the characters in its arguments, divided by
the sum of the length of its arguments.

• myfunc_int() returns the sum of the length of its arguments.

• sequence([const int]) returns a sequence starting from the given number or 1 if no number has
been given.

• lookup() returns the IP address for a host name.

• reverse_lookup() returns the host name for an IP address. The function may be called either with a
single string argument of the form 'xxx.xxx.xxx.xxx' or with four numbers.

• avgcost() returns an average cost. This is an aggregate function.

A dynamically loadable file should be compiled as a sharable object file, using a command something like
this:

shell> gcc -shared -o udf_example.so udf_example.c

If you are using gcc with configure and libtool (which is how MySQL is configured), you should be
able to create udf_example.so with a simpler command:

shell> make udf_example.la

After you compile a shared object containing UDFs, you must install it and tell MySQL about it. Compiling
a shared object from udf_example.c using gcc directly produces a file named udf_example.so.
Compiling the shared object using make produces a file named something like udf_example.so.0.0.0
in the .libs directory (the exact name may vary from platform to platform).

As of MySQL 5.0.67, copy the shared object to server's plugin directory and name it udf_example.so.
This directory is given by the value of the plugin_dir system variable.

Prior to MySQL 5.0.67, or if the value of plugin_dir is empty, the shared object should be placed in
a directory such as /usr/lib that is searched by your system's dynamic (runtime) linker, or you can
add the directory in which you place the shared object to the linker configuration file (for example, /etc/
ld.so.conf).

On many systems, you can also set the LD_LIBRARY or LD_LIBRARY_PATH environment variable to point
at the directory where you have the files for your UDF. You should set the variable in mysql.server or
mysqld_safe startup scripts and restart mysqld. You might do this if you want to place the object file in
a directory accessible only to the server and not in a public directory. The dlopen manual page tells you
which variable to use on your system.

The dynamic linker name is system-specific (for example, ld-elf.so.1 on FreeBSD, ld.so on Linux,
or dyld on OS X). Consult your system documentation for information about the linker name and how to
configure it.

Adding a New User-Defined Function

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2007

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

On some systems, the ldconfig program that configures the dynamic linker does not recognize a shared
object unless its name begins with lib. In this case you should rename a file such as udf_example.so
to libudf_example.so.

On Windows, you can compile user-defined functions by using the following procedure:

1. Obtain the development source for MySQL 5.0. See Section 2.5, “How to Get MySQL”.

2. Obtain the CMake build utility, if necessary, from http://www.cmake.org. (Version 2.6 or later is
required).

3. In the source tree, look in the sql directory. There are files named udf_example.def
udf_example.c there. Copy both files from this directory to your working directory.

4. Create a CMake makefile (CMakeLists.txt) with these contents:

PROJECT(udf_example)

Path for MySQL include directory
INCLUDE_DIRECTORIES("c:/mysql/include")

ADD_DEFINITIONS("-DHAVE_DLOPEN")
ADD_LIBRARY(udf_example MODULE udf_example.c udf_example.def)
TARGET_LINK_LIBRARIES(udf_example wsock32)

5. Create the VC project and solution files:

cmake -G "<Generator>"

Invoking cmake --help shows you a list of valid Generators.

6. Create udf_example.dll:

devenv udf_example.sln /build Release

After the shared object file has been installed, notify mysqld about the new functions with the following
statements. If object files have a suffix different from .so on your system, substitute the correct suffix
throughout (for example, .dll on Windows).

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE FUNCTION myfunc_double RETURNS REAL SONAME 'udf_example.so';
mysql> CREATE FUNCTION myfunc_int RETURNS INTEGER SONAME 'udf_example.so';
mysql> CREATE FUNCTION sequence RETURNS INTEGER SONAME 'udf_example.so';
mysql> CREATE FUNCTION lookup RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE FUNCTION reverse_lookup
 -> RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE AGGREGATE FUNCTION avgcost
 -> RETURNS REAL SONAME 'udf_example.so';

Once installed, a function remains installed until it is uninstalled.

To delete functions, use DROP FUNCTION:

mysql> DROP FUNCTION metaphon;
mysql> DROP FUNCTION myfunc_double;
mysql> DROP FUNCTION myfunc_int;
mysql> DROP FUNCTION sequence;
mysql> DROP FUNCTION lookup;

http://www.cmake.org

Adding a New Native Function

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2008

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> DROP FUNCTION reverse_lookup;
mysql> DROP FUNCTION avgcost;

The CREATE FUNCTION and DROP FUNCTION statements update the func system table in the mysql
database. The function's name, type and shared library name are saved in the table. You must have the
INSERT or DELETE privilege for the mysql database to create or drop functions, respectively.

You should not use CREATE FUNCTION to add a function that has previously been created. If you need
to reinstall a function, you should remove it with DROP FUNCTION and then reinstall it with CREATE
FUNCTION. You would need to do this, for example, if you recompile a new version of your function, so that
mysqld gets the new version. Otherwise, the server continues to use the old version.

An active function is one that has been loaded with CREATE FUNCTION and not removed with DROP
FUNCTION. All active functions are reloaded each time the server starts, unless you start mysqld with the
--skip-grant-tables option. In this case, UDF initialization is skipped and UDFs are unavailable.

21.2.2.6 UDF Security Precautions

MySQL takes several measures to prevent misuse of user-defined functions.

UDF object files cannot be placed in arbitrary directories. They must be located in some system directory
that the dynamic linker is configured to search. To enforce this restriction and prevent attempts at
specifying path names outside of directories searched by the dynamic linker, MySQL checks the shared
object file name specified in CREATE FUNCTION statements for path name delimiter characters. As of
MySQL 5.0.3, MySQL also checks for path name delimiters in file names stored in the mysql.func
table when it loads functions. This prevents attempts at specifying illegitimate path names through
direct manipulation of the mysql.func table. For information about UDFs and the runtime linker, see
Section 21.2.2.5, “UDF Compiling and Installing”.

To use CREATE FUNCTION or DROP FUNCTION, you must have the INSERT or DELETE privilege,
respectively, for the mysql database. This is necessary because those statements add and delete rows
from the mysql.func table.

UDFs should have at least one symbol defined in addition to the xxx symbol that corresponds to the
main xxx() function. These auxiliary symbols correspond to the xxx_init(), xxx_deinit(),
xxx_reset(), xxx_clear(), and xxx_add() functions. As of MySQL 5.0.3, mysqld supports an --
allow-suspicious-udfs option that controls whether UDFs that have only an xxx symbol can be
loaded. By default, the option is off, to prevent attempts at loading functions from shared object files other
than those containing legitimate UDFs. If you have older UDFs that contain only the xxx symbol and
that cannot be recompiled to include an auxiliary symbol, it may be necessary to specify the --allow-
suspicious-udfs option. Otherwise, you should avoid enabling this capability.

21.2.3 Adding a New Native Function

To add a new native MySQL function, use the procedure described here, which requires that you use
a source distribution. You cannot add native functions to a binary distribution because it is necessary
to modify MySQL source code and compile MySQL from the modified source. If you migrate to another
version of MySQL (for example, when a new version is released), you must repeat the procedure with the
new version.

If the new native function will be referred to in statements that will be replicated to slave servers, you must
ensure that every slave server also has the function available. Otherwise, replication will fail on the slaves
when they attempt to invoke the function.

To add a new native function, follow these steps to modify source files in the sql directory:

1. Add one line to lex.h that defines the function name in the sql_functions[] array.

Adding a New Native Function

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2009

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

2. If the function prototype is simple (just takes zero, one, two, or three arguments), add a line to the
sql_functions[] array in lex.h that specifies SYM(FUNC_ARGN) as the second argument (where
N is the number of arguments the function takes). Also, add a function in item_create.cc that
creates a function object. Look at "ABS" and create_funcs_abs() for an example of this.

If the function prototype is not simple (for example, if it takes a variable number of arguments), you
should make two changes to sql_yacc.yy. One is a line that indicates the preprocessor symbol that
yacc should define; this should be added at the beginning of the file. The other is an “item” to be added
to the simple_expr parsing rule that defines the function parameters. You will need an item for each
syntax with which the function can be called. For an example that shows how this is done, check all
occurrences of ATAN in sql_yacc.yy.

3. In item_func.h, declare a class inheriting from Item_num_func or Item_str_func, depending on
whether your function returns a number or a string.

4. In item_func.cc, add one of the following declarations, depending on whether you are defining a
numeric or string function:

double Item_func_newname::val()
longlong Item_func_newname::val_int()
String *Item_func_newname::Str(String *str)

If you inherit your object from any of the standard items (like Item_num_func), you probably only have
to define one of these functions and let the parent object take care of the other functions. For example,
the Item_str_func class defines a val() function that executes atof() on the value returned by
::str().

5. If the function is nondeterministic, include the following statement in the item constructor to indicate that
function results should not be cached:

current_thd->lex->safe_to_cache_query=0;

A function is nondeterministic if, given fixed values for its arguments, it can return different results for
different invocations.

6. You should probably also define the following object function:

void Item_func_newname::fix_length_and_dec()

This function should at least calculate max_length based on the given arguments. max_length is
the maximum number of characters the function may return. This function should also set maybe_null
= 0 if the main function can't return a NULL value. The function can check whether any of the
function arguments can return NULL by checking the arguments' maybe_null variable. Look at
Item_func_mod::fix_length_and_dec for a typical example of how to do this.

All functions must be thread-safe. In other words, do not use any global or static variables in the functions
without protecting them with mutexes.

If you want to return NULL from ::val(), ::val_int(), or ::str(), you should set null_value to 1
and return 0.

For ::str() object functions, there are additional considerations to be aware of:

• The String *str argument provides a string buffer that may be used to hold the result. (For more
information about the String type, take a look at the sql_string.h file.)

Debugging and Porting MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2010

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The ::str() function should return the string that holds the result, or (char*) 0 if the result is NULL.

• All current string functions try to avoid allocating any memory unless absolutely necessary!

21.3 Debugging and Porting MySQL
This section helps you port MySQL to other operating systems. Do check the list of currently supported
operating systems first. See http://www.mysql.com/support/supportedplatforms/database.html. If you have
created a new port of MySQL, please let us know so that we can list it here and on our Web site (http://
www.mysql.com/), recommending it to other users.

Note

If you create a new port of MySQL, you are free to copy and distribute it under the
GPL license, but it does not make you a copyright holder of MySQL.

A working POSIX thread library is needed for the server.

Both the server and the client need a working C++ compiler. We use gcc on many platforms. Other
compilers that are known to work are Sun Studio, HP-UX aCC, IBM AIX xlC_r), Intel ecc/icc. With
previous versions on the respective platforms, we also used Irix cc and Compaq cxx.

Important

If you are trying to build MySQL 5.0 with icc on the IA64 platform, and need
support for MySQL Cluster, you should first ensure that you are using icc version
9.1.043 or later. (For details, see Bug #21875.)

To compile only the client, use ./configure --without-server.

If you want or need to change any Makefile or the configure script, you also need GNU Automake and
Autoconf. See Section 2.17.2, “Installing MySQL Using a Development Source Tree”.

All steps needed to remake everything from the most basic files.

/bin/rm */.deps/*.P
/bin/rm -f config.cache
aclocal
autoheader
aclocal
automake
autoconf
./configure --with-debug=full --prefix='your installation directory'

The makefiles generated above need GNU make 3.75 or newer.
(called gmake below)
gmake clean all install init-db

If you run into problems with a new port, you may have to do some debugging of MySQL! See
Section 21.3.1, “Debugging a MySQL Server”.

Note

Before you start debugging mysqld, first get the test programs mysys/thr_alarm
and mysys/thr_lock to work. This ensures that your thread installation has even
a remote chance to work!

21.3.1 Debugging a MySQL Server

http://www.mysql.com/support/supportedplatforms/database.html

Debugging a MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2011

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you are using some functionality that is very new in MySQL, you can try to run mysqld with the --skip-
new (which disables all new, potentially unsafe functionality). See Section B.5.3.3, “What to Do If MySQL
Keeps Crashing”.

If mysqld doesn't want to start, you should verify that you don't have any my.cnf files that interfere with
your setup! You can check your my.cnf arguments with mysqld --print-defaults and avoid using
them by starting with mysqld --no-defaults

If mysqld starts to eat up CPU or memory or if it “hangs,” you can use mysqladmin processlist
status to find out if someone is executing a query that takes a long time. It may be a good idea to run
mysqladmin -i10 processlist status in some window if you are experiencing performance
problems or problems when new clients can't connect.

The command mysqladmin debug dumps some information about locks in use, used memory and query
usage to the MySQL log file. This may help solve some problems. This command also provides some
useful information even if you haven't compiled MySQL for debugging!

If the problem is that some tables are getting slower and slower you should try to optimize the table with
OPTIMIZE TABLE or myisamchk. See Chapter 5, MySQL Server Administration. You should also check
the slow queries with EXPLAIN.

You should also read the OS-specific section in this manual for problems that may be unique to your
environment. See Section 2.20, “Operating System-Specific Notes”.

21.3.1.1 Compiling MySQL for Debugging

If you have some very specific problem, you can always try to debug MySQL. To do this you must
configure MySQL with the --with-debug or the --with-debug=full option. You can check whether
MySQL was compiled with debugging by doing: mysqld --help. If the --debug flag is listed with
the options then you have debugging enabled. mysqladmin ver also lists the mysqld version as
mysql ... --debug in this case.

If you are using gcc, the recommended configure line is:

CC=gcc CFLAGS="-O2" CXX=gcc CXXFLAGS="-O2 -felide-constructors \
 -fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql \
 --with-debug --with-extra-charsets=complex

This avoids problems with the libstdc++ library and with C++ exceptions (many compilers have
problems with C++ exceptions in threaded code) and compile a MySQL version with support for all
character sets.

If you suspect a memory overrun error, you can configure MySQL with --with-debug=full, which
installs a memory allocation (SAFEMALLOC) checker. However, running with SAFEMALLOC is quite slow,
so if you get performance problems you should start mysqld with the --skip-safemalloc option. This
disables the memory overrun checks for each call to malloc() and free().

If mysqld stops crashing when you compile it with --with-debug, you probably have found a compiler
bug or a timing bug within MySQL. In this case, you can try to add -g to the CFLAGS and CXXFLAGS
variables above and not use --with-debug. If mysqld dies, you can at least attach to it with gdb or use
gdb on the core file to find out what happened.

When you configure MySQL for debugging you automatically enable a lot of extra safety check functions
that monitor the health of mysqld. If they find something “unexpected,” an entry is written to stderr,
which mysqld_safe directs to the error log! This also means that if you are having some unexpected
problems with MySQL and are using a source distribution, the first thing you should do is to configure

Debugging a MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2012

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL for debugging! (The second thing is to send mail to a MySQL mailing list and ask for help. See
Section 1.6.1, “MySQL Mailing Lists”. If you believe that you have found a bug, please use the instructions
at Section 1.7, “How to Report Bugs or Problems”.

In the Windows MySQL distribution, mysqld.exe is by default compiled with support for trace files. See
also Section 21.3.1.2, “Creating Trace Files”.

21.3.1.2 Creating Trace Files

If the mysqld server doesn't start or if you can cause it to crash quickly, you can try to create a trace file to
find the problem.

To do this, you must have a mysqld that has been compiled with debugging support. You can check this
by executing mysqld -V. If the version number ends with -debug, it is compiled with support for trace
files. (On Windows, the debugging server is named mysqld-debug rather than mysqld.)

Start the mysqld server with a trace log in /tmp/mysqld.trace on Unix or \mysqld.trace on
Windows:

shell> mysqld --debug

On Windows, you should also use the --standalone flag to not start mysqld as a service. In a console
window, use this command:

C:\> mysqld-debug --debug --standalone

After this, you can use the mysql.exe command-line tool in a second console window to reproduce the
problem. You can stop the mysqld server with mysqladmin shutdown.

The trace file can become very large! To generate a smaller trace file, you can use debugging options
something like this:

mysqld --debug=d,info,error,query,general,where:O,/tmp/mysqld.trace

This only prints information with the most interesting tags to the trace file.

If you make a bug report about this, please only send the lines from the trace file to the appropriate mailing
list where something seems to go wrong! If you can't locate the wrong place, you can open a bug report
and upload the trace file to the report, so that a MySQL developer can take a look at it. For instructions,
see Section 1.7, “How to Report Bugs or Problems”.

The trace file is made with the DBUG package by Fred Fish. See Section 21.3.3, “The DBUG Package”.

21.3.1.3 Using pdb to create a Windows crashdump

Starting with MySQL 5.0.24 the Program Database files (extension pdb) are included in the Noinstall
distribution of MySQL. These files provide information for debugging your MySQL installation in the event
of a problem.

The PDB file contains more detailed information about mysqld and other tools that enables more detailed
trace and dump files to be created. You can use these with Dr Watson, WinDbg and Visual Studio to
debug mysqld.

For more information on PDB files, see Microsoft Knowledge Base Article 121366. For more information on
the debugging options available, see Debugging Tools for Windows.

http://support.microsoft.com/kb/121366/
http://www.microsoft.com/whdc/devtools/debugging/default.mspx

Debugging a MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2013

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Dr Watson is installed with all Windows distributions, but if you have installed Windows development
tools, Dr Watson may have been replaced with WinDbg, the debugger included with Visual Studio, or the
debugging tools provided with Borland or Delphi.

To generate a crash file using Dr Watson, follow these steps:

1. Start Dr Watson by running drwtsn32.exe interactively using the -i option:

C:\> drwtsn32 -i

2. Set the Log File Path to the directory where you want to store trace files.

3. Make sure Dump All Thread Contexts and Append To Existing Log File.

4. Uncheck Dump Symbol Table, Visual Notification, Sound Notification and Create Crash Dump
File.

5. Set the Number of Instructions to a suitable value to capture enough calls in the stacktrace. A value
of at 25 should be enough.

Note that the file generated can become very large.

21.3.1.4 Debugging mysqld under gdb

On most systems you can also start mysqld from gdb to get more information if mysqld crashes.

With some older gdb versions on Linux you must use run --one-thread if you want to be able to debug
mysqld threads. In this case, you can only have one thread active at a time. It is best to upgrade to gdb
5.1 because thread debugging works much better with this version!

NPTL threads (the new thread library on Linux) may cause problems while running mysqld under gdb.
Some symptoms are:

• mysqld hangs during startup (before it writes ready for connections).

• mysqld crashes during a pthread_mutex_lock() or pthread_mutex_unlock() call.

In this case, you should set the following environment variable in the shell before starting gdb:

LD_ASSUME_KERNEL=2.4.1
export LD_ASSUME_KERNEL

When running mysqld under gdb, you should disable the stack trace with --skip-stack-trace to be
able to catch segfaults within gdb.

Use the --gdb option to mysqld to install an interrupt handler for SIGINT (needed to stop mysqld with
^C to set breakpoints) and disable stack tracing and core file handling.

It is very hard to debug MySQL under gdb if you do a lot of new connections the whole time as
gdb doesn't free the memory for old threads. You can avoid this problem by starting mysqld with
thread_cache_size set to a value equal to max_connections + 1. In most cases just using --
thread_cache_size=5' helps a lot!

If you want to get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld with
the --core-file option. This core file can be used to make a backtrace that may help you find out why
mysqld died:

Debugging a MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2014

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> gdb mysqld core
gdb> backtrace full
gdb> quit

See Section B.5.3.3, “What to Do If MySQL Keeps Crashing”.

If you are using gdb 4.17.x or above on Linux, you should install a .gdb file, with the following information,
in your current directory:

set print sevenbit off
handle SIGUSR1 nostop noprint
handle SIGUSR2 nostop noprint
handle SIGWAITING nostop noprint
handle SIGLWP nostop noprint
handle SIGPIPE nostop
handle SIGALRM nostop
handle SIGHUP nostop
handle SIGTERM nostop noprint

If you have problems debugging threads with gdb, you should download gdb 5.x and try this instead. The
new gdb version has very improved thread handling!

Here is an example how to debug mysqld:

shell> gdb /usr/local/libexec/mysqld
gdb> run
...
backtrace full # Do this when mysqld crashes

Include the above output in a bug report, which you can file using the instructions in Section 1.7, “How to
Report Bugs or Problems”.

If mysqld hangs you can try to use some system tools like strace or /usr/proc/bin/pstack to
examine where mysqld has hung.

strace /tmp/log libexec/mysqld

If you are using the Perl DBI interface, you can turn on debugging information by using the trace method
or by setting the DBI_TRACE environment variable.

21.3.1.5 Using a Stack Trace

On some operating systems, the error log contains a stack trace if mysqld dies unexpectedly. You can
use this to find out where (and maybe why) mysqld died. See Section 5.4.1, “The Error Log”. To get
a stack trace, you must not compile mysqld with the -fomit-frame-pointer option to gcc. See
Section 21.3.1.1, “Compiling MySQL for Debugging”.

A stack trace in the error log looks something like this:

mysqld got signal 11;
Attempting backtrace. You can use the following information
to find out where mysqld died. If you see no messages after
this, something went terribly wrong...

stack range sanity check, ok, backtrace follows
0x40077552
0x81281a0

Debugging a MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2015

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

0x8128f47
0x8127be0
0x8127995
0x8104947
0x80ff28f
0x810131b
0x80ee4bc
0x80c3c91
0x80c6b43
0x80c1fd9
0x80c1686

You can use the resolve_stack_dump utility to determine where mysqld died by using the following
procedure:

1. Copy the preceding numbers to a file, for example mysqld.stack:

0x9da402
0x6648e9
0x7f1a5af000f0
0x7f1a5a10f0f2
0x7412cb
0x688354
0x688494
0x67a170
0x67f0ad
0x67fdf8
0x6811b6
0x66e05e

2. Make a symbol file for the mysqld server:

shell> nm -n libexec/mysqld > /tmp/mysqld.sym

If mysqld is not linked statically, use the following command instead:

shell> nm -D -n libexec/mysqld > /tmp/mysqld.sym

If you want to decode C++ symbols, use the --demangle, if available, to nm. If your version of nm
does not have this option, you will need to use the c++filt command after the stack dump has been
produced to demangle the C++ names.

3. Execute the following command:

shell> resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack

If you were not able to include demangled C++ names in your symbol file, process the
resolve_stack_dump output using c++filt:

shell> resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack | c++filt

This prints out where mysqld died. If that does not help you find out why mysqld died, you should
create a bug report and include the output from the preceding command with the bug report.

However, in most cases it does not help us to have just a stack trace to find the reason for the problem.
To be able to locate the bug or provide a workaround, in most cases we need to know the statement
that killed mysqld and preferably a test case so that we can repeat the problem! See Section 1.7, “How
to Report Bugs or Problems”.

Debugging a MySQL Server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2016

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

21.3.1.6 Using Server Logs to Find Causes of Errors in mysqld

Note that before starting mysqld with the general query log enabled, you should check all your tables with
myisamchk. See Chapter 5, MySQL Server Administration.

If mysqld dies or hangs, you should start mysqld with the general query log enabled. See Section 5.4.2,
“The General Query Log”. When mysqld dies again, you can examine the end of the log file for the query
that killed mysqld.

If you use the default general query log file, the log is stored in the database directory as host_name.log
In most cases it is the last query in the log file that killed mysqld, but if possible you should verify this by
restarting mysqld and executing the found query from the mysql command-line tools. If this works, you
should also test all complicated queries that didn't complete.

You can also try the command EXPLAIN on all SELECT statements that takes a long time to ensure that
mysqld is using indexes properly. See Section 13.8.2, “EXPLAIN Syntax”.

You can find the queries that take a long time to execute by starting mysqld with the slow query log
enabled. See Section 5.4.4, “The Slow Query Log”.

If you find the text mysqld restarted in the error log file (normally named hostname.err) you
probably have found a query that causes mysqld to fail. If this happens, you should check all your tables
with myisamchk (see Chapter 5, MySQL Server Administration), and test the queries in the MySQL log
files to see whether one fails. If you find such a query, try first upgrading to the newest MySQL version.
If this doesn't help and you can't find anything in the mysql mail archive, you should report the bug to a
MySQL mailing list. The mailing lists are described at http://lists.mysql.com/, which also has links to online
list archives.

If you have started mysqld with --myisam-recover, MySQL automatically checks and tries to repair
MyISAM tables if they are marked as 'not closed properly' or 'crashed'. If this happens, MySQL writes an
entry in the hostname.err file 'Warning: Checking table ...' which is followed by Warning:
Repairing table if the table needs to be repaired. If you get a lot of these errors, without mysqld
having died unexpectedly just before, then something is wrong and needs to be investigated further. See
Section 5.1.3, “Server Command Options”.

It is not a good sign if mysqld did die unexpectedly, but in this case, you should not investigate the
Checking table... messages, but instead try to find out why mysqld died.

21.3.1.7 Making a Test Case If You Experience Table Corruption

The following procedure applies to MyISAM tables. For information about steps to take when encountering
InnoDB table corruption, see Section 1.7, “How to Report Bugs or Problems”.

If you encounter corrupted MyISAM tables or if mysqld always fails after some update statements, you can
test whether the issue is reproducible by doing the following:

1. Stop the MySQL daemon with mysqladmin shutdown.

2. Make a backup of the tables to guard against the very unlikely case that the repair does something
bad.

3. Check all tables with myisamchk -s database/*.MYI. Repair any corrupted tables with
myisamchk -r database/table.MYI.

4. Make a second backup of the tables.

5. Remove (or move away) any old log files from the MySQL data directory if you need more space.

http://lists.mysql.com/

Debugging a MySQL Client

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2017

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

6. Start mysqld with the binary log enabled. If you want to find a statement that crashes mysqld, you
should start the server with the general query log enabled as well. See Section 5.4.2, “The General
Query Log”, and Section 5.4.3, “The Binary Log”.

7. When you have gotten a crashed table, stop the mysqld server.

8. Restore the backup.

9. Restart the mysqld server without the binary log enabled.

10. Re-execute the statements with mysqlbinlog binary-log-file | mysql. The binary log is
saved in the MySQL database directory with the name hostname-bin.NNNNNN.

11. If the tables are corrupted again or you can get mysqld to die with the above command, you have
found a reproducible bug. FTP the tables and the binary log to our bugs database using the instructions
given in Section 1.7, “How to Report Bugs or Problems”. If you are a support customer, you can use the
MySQL Customer Support Center (http://www.mysql.com/support/) to alert the MySQL team about the
problem and have it fixed as soon as possible.

You can also use the script mysql_find_rows to just execute some of the update statements if you want
to narrow down the problem.

The preceding discussion applies only to RHEL4. The patch is unnecessary for RHEL5.

21.3.2 Debugging a MySQL Client

To be able to debug a MySQL client with the integrated debug package, you should configure MySQL with
--with-debug or --with-debug=full. See Section 2.17.3, “MySQL Source-Configuration Options”.

Before running a client, you should set the MYSQL_DEBUG environment variable:

shell> MYSQL_DEBUG=d:t:O,/tmp/client.trace
shell> export MYSQL_DEBUG

This causes clients to generate a trace file in /tmp/client.trace.

If you have problems with your own client code, you should attempt to connect to the server and run your
query using a client that is known to work. Do this by running mysql in debugging mode (assuming that
you have compiled MySQL with debugging on):

shell> mysql --debug=d:t:O,/tmp/client.trace

This provides useful information in case you mail a bug report. See Section 1.7, “How to Report Bugs or
Problems”.

If your client crashes at some 'legal' looking code, you should check that your mysql.h include file
matches your MySQL library file. A very common mistake is to use an old mysql.h file from an old MySQL
installation with new MySQL library.

21.3.3 The DBUG Package

The MySQL server and most MySQL clients are compiled with the DBUG package originally created by
Fred Fish. When you have configured MySQL for debugging, this package makes it possible to get a trace
file of what the program is doing. See Section 21.3.1.2, “Creating Trace Files”.

This section summarizes the argument values that you can specify in debug options on the command
line for MySQL programs that have been built with debugging support. For more information about

http://www.mysql.com/support/

The DBUG Package

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2018

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

programming with the DBUG package, see the DBUG manual in the dbug directory of MySQL source
distributions. It's best to use a recent distribution to get the most updated DBUG manual.

The DBUG package can be used by invoking a program with the --debug[=debug_options] or -#
[debug_options] option. If you specify the --debug or -# option without a debug_options value,
most MySQL programs use a default value. The server default is d:t:i:o,/tmp/mysqld.trace on
Unix and d:t:i:O,\mysqld.trace on Windows. The effect of this default is:

• d: Enable output for all debug macros

• t: Trace function calls and exits

• i: Add PID to output lines

• o,/tmp/mysqld.trace, O,\mysqld.trace: Set the debug output file.

Most client programs use a default debug_options value of d:t:o,/tmp/program_name.trace,
regardless of platform.

Here are some example debug control strings as they might be specified on a shell command line:

--debug=d:t
--debug=d:f,main,subr1:F:L:t,20
--debug=d,input,output,files:n
--debug=d:t:i:O,\\mysqld.trace

The debug_options value is a sequence of colon-separated fields:

field_1:field_2:...:field_N

Each field within the value consists of a mandatory flag character, optionally preceded by a + or -
character, and optionally followed by a comma-delimited list of modifiers:

[+|-]flag[,modifier,modifier,...,modifier]

The following table describes the permitted flag characters. Unrecognized flag characters are silently
ignored.

Flag Description

d Enable output from DBUG_XXX macros for the current state. May be followed by a list of
keywords, which enables output only for the DBUG macros with that keyword. An empty list of
keywords enables output for all macros.

In MySQL, common debug macro keywords to enable are enter, exit, error, warning,
info, and loop.

D Delay after each debugger output line. The argument is the delay, in tenths of seconds, subject to
machine capabilities. For example, D,20 specifies a delay of two seconds.

f Limit debugging, tracing, and profiling to the list of named functions. An empty list enables all
functions. The appropriate d or t flags must still be given; this flag only limits their actions if they
are enabled.

F Identify the source file name for each line of debug or trace output.

i Identify the process with the PID or thread ID for each line of debug or trace output.

L Identify the source file line number for each line of debug or trace output.

The DBUG Package

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2019

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

n Print the current function nesting depth for each line of debug or trace output.

N Number each line of debug output.

o Redirect the debugger output stream to the specified file. The default output is stderr.

O Like o, but the file is really flushed between each write. When needed, the file is closed and
reopened between each write.

p Limit debugger actions to specified processes. A process must be identified with the
DBUG_PROCESS macro and match one in the list for debugger actions to occur.

P Print the current process name for each line of debug or trace output.

r When pushing a new state, do not inherit the previous state's function nesting level. Useful when
the output is to start at the left margin.

S Do function _sanity(_file_,_line_) at each debugged function until _sanity() returns
something that differs from 0. (Mostly used with safemalloc to find memory leaks.)

t Enable function call/exit trace lines. May be followed by a list (containing only one modifier) giving
a numeric maximum trace level, beyond which no output occurs for either debugging or tracing
macros. The default is a compile time option.

The leading + or - character and trailing list of modifiers are used for flag characters such as d or f that
can enable a debug operation for all applicable modifiers or just some of them:

• With no leading + or -, the flag value is set to exactly the modifier list as given.

• With a leading + or -, the modifiers in the list are added to or subtracted from the current modifier list.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2020

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2021

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 22 MySQL Enterprise Edition

Table of Contents
22.1 MySQL Enterprise Monitor Overview .. 2021
22.2 MySQL Enterprise Backup Overview .. 2022
22.3 MySQL Enterprise Security Overview ... 2023
22.4 MySQL Enterprise Encryption Overview ... 2023
22.5 MySQL Enterprise Audit Overview ... 2023
22.6 MySQL Enterprise Firewall Overview ... 2024
22.7 MySQL Enterprise Thread Pool Overview .. 2024

MySQL Enterprise Edition is a commercial product. Like MySQL Community Edition, MySQL Enterprise
Edition includes MySQL Server, a fully integrated transaction-safe, ACID-compliant database with full
commit, rollback, crash-recovery, and row-level locking capabilities. In addition, MySQL Enterprise Edition
includes the following components designed to provide monitoring and online backup, as well as improved
security and scalability:

The following sections briefly discuss each of these components and indicate where to find more detailed
information. To learn more about commercial products, see http://www.mysql.com/products/.

• MySQL Enterprise Monitor

• MySQL Enterprise Backup

• MySQL Enterprise Security

• MySQL Enterprise Encryption

• MySQL Enterprise Audit

• MySQL Enterprise Firewall

• MySQL Enterprise Thread Pool

22.1 MySQL Enterprise Monitor Overview

MySQL Enterprise Monitor is an enterprise monitoring system for MySQL that keeps an eye on your
MySQL servers, notifies you of potential issues and problems, and advises you how to fix the issues.
MySQL Enterprise Monitor can monitor all kinds of configurations, from a single MySQL server that is
important to your business, all the way up to a huge farm of MySQL servers powering a busy web site.

The following discussion briefly summarizes the basic components that make up the MySQL Enterprise
Monitor product. For more information, see the MySQL Enterprise Monitor manual, available at http://
dev.mysql.com/doc/mysql-monitor/en/.

MySQL Enterprise Monitor components can be installed in various configurations depending on your
database and network topology, to give you the best combination of reliable and responsive monitoring
data, with minimal overhead on the database server machines. A typical MySQL Enterprise Monitor
installation consists of:

• One or more MySQL servers to monitor. MySQL Enterprise Monitor can monitor both Community and
Enterprise MySQL server releases.

http://www.mysql.com/products/
http://dev.mysql.com/doc/mysql-monitor/en/
http://dev.mysql.com/doc/mysql-monitor/en/

MySQL Enterprise Backup Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2022

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• A MySQL Enterprise Monitor Agent for each monitored host.

• A single MySQL Enterprise Service Manager, which collates information from the agents and provides
the user interface to the collected data.

MySQL Enterprise Monitor is designed to monitor one or more MySQL servers. The monitoring information
is collected by using an agent, MySQL Enterprise Monitor Agent. The agent communicates with the hosts
and MySQL servers that it monitors, collecting variables, status and health information, and sending this
information to the MySQL Enterprise Service Manager.

The information collected by the agent about each MySQL server and host you are monitoring is sent to
the MySQL Enterprise Service Manager. This server collates all of the information from the agents. As it
collates the information sent by the agents, the MySQL Enterprise Service Manager continually tests the
collected data, comparing the status of the server to reasonable values. When thresholds are reached,
the server can trigger an event (including an alarm and notification) to highlight a potential issue, such
as low memory, high CPU usage, or more complex conditions such insufficient buffer sizes and status
information. We call each test, with its associated threshold value, a rule.

These rules, and the alarms and notifications, are each known as a MySQL Enterprise Advisors. Advisors
form a critical part of the MySQL Enterprise Service Manager, as they provide warning information and
troubleshooting advice about potential problems.

The MySQL Enterprise Service Manager includes a web server, and you interact with it through any web
browser. This interface, the MySQL Enterprise Monitor User Interface, displays all of the information
collected by the agents, and lets you view all of your servers and their current status as a group or
individually. You control and configure all aspects of the service using the MySQL Enterprise Monitor User
Interface.

The information supplied by the MySQL Enterprise Monitor Agent processes also includes statistical and
query information, which you can view in the form of graphs. For example, you can view aspects such as
server load, query numbers, or index usage information as a graph over time. The graph lets you pinpoint
problems or potential issues on your server, and can help diagnose the impact from database or external
problems (such as external system or network failure) by examining the data from a specific time interval.

The MySQL Enterprise Monitor Agent can also be configured to collect detailed information about the
queries executed on your server, including the row counts and performance times for executing each
query. You can correlate the detailed query data with the graphical information to identify which queries
were executing when you experienced a particularly high load, index or other issue. The query data is
supported by a system called Query Analyzer, and the data can be presented in different ways depending
on your needs.

22.2 MySQL Enterprise Backup Overview
MySQL Enterprise Backup performs hot backup operations for MySQL databases. The product is
architected for efficient and reliable backups of tables created by the InnoDB storage engine. For
completeness, it can also back up tables from MyISAM and other storage engines.

The following discussion briefly summarizes MySQL Enterprise Backup. For more information, see the
MySQL Enterprise Backup manual, available at http://dev.mysql.com/doc/mysql-enterprise-backup/en/.

Hot backups are performed while the database is running and applications are reading and writing to
it. This type of backup does not block normal database operations, and it captures even changes that
occur while the backup is happening. For these reasons, hot backups are desirable when your database
“grows up” -- when the data is large enough that the backup takes significant time, and when your data
is important enough to your business that you must capture every last change, without taking your
application, web site, or web service offline.

http://dev.mysql.com/doc/mysql-enterprise-backup/en/

MySQL Enterprise Security Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2023

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL Enterprise Backup does a hot backup of all tables that use the InnoDB storage engine. For tables
using MyISAM or other non-InnoDB storage engines, it does a “warm” backup, where the database
continues to run, but those tables cannot be modified while being backed up. For efficient backup
operations, you can designate InnoDB as the default storage engine for new tables, or convert existing
tables to use the InnoDB storage engine.

22.3 MySQL Enterprise Security Overview

MySQL Enterprise Edition provides plugins that implement authentication using external services:

• MySQL Enterprise Edition includes an authentication plugin that enables MySQL Server to use PAM
(Pluggable Authentication Modules) to authenticate MySQL users. PAM enables a system to use a
standard interface to access various kinds of authentication methods, such as Unix passwords or an
LDAP directory. For more information, see The PAM Authentication Plugin.

• MySQL Enterprise Edition includes an authentication plugin that performs external authentication on
Windows, enabling MySQL Server to use native Windows services to authenticate client connections.
Users who have logged in to Windows can connect from MySQL client programs to the server based on
the information in their environment without specifying an additional password. For more information, see
The Windows Native Authentication Plugin.

• MySQL Enterprise Edition includes a keyring plugin that uses Oracle Key Vault for keyring backend
storage. For more information, see The MySQL Keyring.

For other related Enterprise security features, see Section 22.4, “MySQL Enterprise Encryption Overview”.

22.4 MySQL Enterprise Encryption Overview

MySQL Enterprise Edition includes a set of encryption functions based on the OpenSSL library that expose
OpenSSL capabilities at the SQL level. These functions enable Enterprise applications to perform the
following operations:

• Implement added data protection using public-key asymmetric cryptography

• Create public and private keys and digital signatures

• Perform asymmetric encryption and decryption

• Use cryptographic hashing for digital signing and data verification and validation

For more information, see MySQL Enterprise Encryption Functions.

For other related Enterprise security features, see Section 22.3, “MySQL Enterprise Security Overview”.

22.5 MySQL Enterprise Audit Overview

MySQL Enterprise Edition includes MySQL Enterprise Audit, implemented using a server plugin. MySQL
Enterprise Audit uses the open MySQL Audit API to enable standard, policy-based monitoring and logging
of connection and query activity executed on specific MySQL servers. Designed to meet the Oracle audit
specification, MySQL Enterprise Audit provides an out of box, easy to use auditing and compliance solution
for applications that are governed by both internal and external regulatory guidelines.

When installed, the audit plugin enables MySQL Server to produce a log file containing an audit record
of server activity. The log contents include when clients connect and disconnect, and what actions they
perform while connected, such as which databases and tables they access.

http://dev.mysql.com/doc/refman/5.5/en/pam-authentication-plugin.html
http://dev.mysql.com/doc/refman/5.5/en/windows-authentication-plugin.html
http://dev.mysql.com/doc/refman/5.7/en/keyring.html
http://dev.mysql.com/doc/refman/5.6/en/enterprise-encryption.html

MySQL Enterprise Firewall Overview

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2024

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For more information, see MySQL Enterprise Audit Log Plugin.

22.6 MySQL Enterprise Firewall Overview

MySQL Enterprise Edition includes MySQL Enterprise Firewall, an application-level firewall that enables
database administrators to permit or deny SQL statement execution based on matching against whitelists
of accepted statement patterns. This helps harden MySQL Server against attacks such as SQL injection or
attempts to exploit applications by using them outside of their legitimate query workload characteristics.

Each MySQL account registered with the firewall has its own statement whitelist, enabling protection to
be tailored per account. For a given account, the firewall can operate in recording or protecting mode, for
training in the accepted statement patterns or protection against unacceptable statements.

For more information, see MySQL Enterprise Firewall.

22.7 MySQL Enterprise Thread Pool Overview

MySQL Enterprise Edition includes the MySQL Thread Pool, implemented using a server plugin. The
default thread-handling model in MySQL Server executes statements using one thread per client
connection. As more clients connect to the server and execute statements, overall performance degrades.
In MySQL Enterprise Edition, a thread pool plugin provides an alternative thread-handling model designed
to reduce overhead and improve performance. The plugin implements a thread pool that increases server
performance by efficiently managing statement execution threads for large numbers of client connections.

For more information, see The Thread Pool Plugin.

http://dev.mysql.com/doc/refman/5.5/en/audit-log-plugin.html
http://dev.mysql.com/doc/refman/5.6/en/firewall.html
http://dev.mysql.com/doc/refman/5.5/en/thread-pool-plugin.html

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2025

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Appendix A MySQL 5.0 Frequently Asked Questions

Table of Contents
A.1 MySQL 5.0 FAQ: General ... 2025
A.2 MySQL 5.0 FAQ: Storage Engines .. 2027
A.3 MySQL 5.0 FAQ: Server SQL Mode .. 2027
A.4 MySQL 5.0 FAQ: Stored Procedures and Functions ... 2028
A.5 MySQL 5.0 FAQ: Triggers .. 2032
A.6 MySQL 5.0 FAQ: Views .. 2034
A.7 MySQL 5.0 FAQ: INFORMATION_SCHEMA ... 2035
A.8 MySQL 5.0 FAQ: Migration ... 2035
A.9 MySQL 5.0 FAQ: Security ... 2036
A.10 MySQL 5.0 FAQ: MySQL Cluster .. 2037
A.11 MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets 2049
A.12 MySQL 5.0 FAQ: Connectors & APIs .. 2062
A.13 MySQL 5.0 FAQ: Replication .. 2062

A.1 MySQL 5.0 FAQ: General

A.1.1 Which version of MySQL is production-ready (GA)? .. 2025
A.1.2 What is the state of development (non-GA) versions? ... 2025
A.1.3 Can MySQL 5.0 do subqueries? .. 2026
A.1.4 Can MySQL 5.0 perform multiple-table inserts, updates, and deletes? 2026
A.1.5 Does MySQL 5.0 have a Query Cache? Does it work on Server, Instance or Database? 2026
A.1.6 Does MySQL 5.0 have Sequences? ... 2026
A.1.7 Does MySQL 5.0 have a NOW() function with fractions of seconds? 2026
A.1.8 Does MySQL 5.0 work with multi-core processors? ... 2026
A.1.9 Why do I see multiple processes for mysqld? .. 2026
A.1.10 Can MySQL 5.0 perform ACID transactions? .. 2026

A.1.1. Which version of MySQL is production-ready (GA)?

MySQL 5.7 and MySQL 5.6 are supported for production use.

MySQL 5.7 achieved General Availability (GA) status with MySQL 5.7.9, which was released for
production use on 21 October 2015.

MySQL 5.6 achieved General Availability (GA) status with MySQL 5.6.10, which was released for
production use on 5 February 2013.

MySQL 5.5 achieved General Availability (GA) status with MySQL 5.5.8, which was released for
production use on 3 December 2010. The MySQL 5.5 series is no longer current, but still supported
in production.

MySQL 5.1 achieved General Availability (GA) status with MySQL 5.1.30, which was released for
production use on 14 November 2008. Active development for MySQL 5.1 has ended.

MySQL 5.0 achieved General Availability (GA) status with MySQL 5.0.15, which was released for
production use on 19 October 2005. Active development for MySQL 5.0 has ended.

A.1.2. What is the state of development (non-GA) versions?

MySQL 5.0 FAQ: General

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2026

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL follows a milestone release model that introduces pre-production-quality features and
stabilizes them to release quality (see http://dev.mysql.com/doc/mysql-development-cycle/en/
index.html). This process then repeats, so releases cycle between pre-production and release
quality status. Please check the change logs to identify the status of a given release.

MySQL 5.4 was a development series. Work on this series has ceased.

A successor to MySQL 5.7 is being actively developed using the milestone release methodology
described above.

A.1.3. Can MySQL 5.0 do subqueries?

Yes. See Section 13.2.9, “Subquery Syntax”.

A.1.4. Can MySQL 5.0 perform multiple-table inserts, updates, and deletes?

Yes. For the syntax required to perform multiple-table updates, see Section 13.2.10, “UPDATE
Syntax”; for that required to perform multiple-table deletes, see Section 13.2.2, “DELETE Syntax”.

A multiple-table insert can be accomplished using a trigger whose FOR EACH ROW clause contains
multiple INSERT statements within a BEGIN ... END block. See Section 18.3, “Using Triggers”.

A.1.5. Does MySQL 5.0 have a Query Cache? Does it work on Server, Instance or Database?

Yes. The query cache operates on the server level, caching complete result sets matched with
the original query string. If an exactly identical query is made (which often happens, particularly in
web applications), no parsing or execution is necessary; the result is sent directly from the cache.
Various tuning options are available. See Section 8.10.3, “The MySQL Query Cache”.

A.1.6. Does MySQL 5.0 have Sequences?

No. However, MySQL has an AUTO_INCREMENT system, which in MySQL 5.0 can also handle
inserts in a multi-master replication setup. With the auto_increment_increment and
auto_increment_offset system variables, you can set each server to generate auto-increment
values that don't conflict with other servers. The auto_increment_increment value should be
greater than the number of servers, and each server should have a unique offset.

A.1.7. Does MySQL 5.0 have a NOW() function with fractions of seconds?

No, but support was added in 5.6.4.

Also, MySQL does parse time strings with a fractional component. See Section 11.3.2, “The TIME
Type”.

A.1.8. Does MySQL 5.0 work with multi-core processors?

Yes. MySQL is fully multi-threaded, and will make use of multiple CPUs, provided that the operating
system supports them.

A.1.9. Why do I see multiple processes for mysqld?

When using LinuxThreads, you should see a minimum of three mysqld processes running. These
are in fact threads. There is one thread for the LinuxThreads manager, one thread to handle
connections, and one thread to handle alarms and signals.

A.1.10.Can MySQL 5.0 perform ACID transactions?

Yes. All current MySQL versions support transactions. The InnoDB storage engine offers full ACID
transactions with row-level locking, multi-versioning, nonlocking repeatable reads, and all four SQL
standard isolation levels.

http://dev.mysql.com/doc/mysql-development-cycle/en/index.html
http://dev.mysql.com/doc/mysql-development-cycle/en/index.html

MySQL 5.0 FAQ: Storage Engines

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2027

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The NDB storage engine supports the READ COMMITTED transaction isolation level only.

A.2 MySQL 5.0 FAQ: Storage Engines
A.2.1 Where can I obtain complete documentation for MySQL storage engines? 2027
A.2.2 Are there any new storage engines in MySQL 5.0? ... 2027
A.2.3 Have any storage engines been removed in MySQL 5.0? .. 2027
A.2.4 What are the unique benefits of the ARCHIVE storage engine? .. 2027
A.2.5 Do the new features in MySQL 5.0 apply to all storage engines? ... 2027

A.2.1. Where can I obtain complete documentation for MySQL storage engines?

See Chapter 14, Storage Engines. That chapter contains information about all MySQL storage
engines except for the NDB storage engine used for MySQL Cluster; NDB is covered in Chapter 17,
MySQL Cluster.

A.2.2. Are there any new storage engines in MySQL 5.0?

Yes. The FEDERATED storage engine, new in MySQL 5.0, allows the server to access tables on
other (remote) servers. See Section 14.7, “The FEDERATED Storage Engine”.

A.2.3. Have any storage engines been removed in MySQL 5.0?

Yes. MySQL 5.0 no longer supports the ISAM storage engine. If you have any existing ISAM tables
from previous versions of MySQL, you should convert these to MyISAM before upgrading to MySQL
5.0.

A.2.4. What are the unique benefits of the ARCHIVE storage engine?

The ARCHIVE storage engine is ideally suited for storing large amounts of data without indexes;
it has a very small footprint, and performs selects using table scans. See Section 14.8, “The
ARCHIVE Storage Engine”, for details.

A.2.5. Do the new features in MySQL 5.0 apply to all storage engines?

The general new features such as views, stored procedures, triggers, INFORMATION_SCHEMA,
precision math (DECIMAL column type), and the BIT column type, apply to all storage engines.
There are also additions and changes for specific storage engines.

A.3 MySQL 5.0 FAQ: Server SQL Mode
A.3.1 What are server SQL modes? .. 2027
A.3.2 How many server SQL modes are there? ... 2028
A.3.3 How do you determine the server SQL mode? .. 2028
A.3.4 Is the mode dependent on the database or connection? .. 2028
A.3.5 Can the rules for strict mode be extended? .. 2028
A.3.6 Does strict mode impact performance? ... 2028
A.3.7 What is the default server SQL mode when MySQL 5.0 is installed? 2028

A.3.1. What are server SQL modes?

Server SQL modes define what SQL syntax MySQL should support and what kind of data validation
checks it should perform. This makes it easier to use MySQL in different environments and to use
MySQL together with other database servers. The MySQL Server apply these modes individually to
different clients. For more information, see Section 5.1.7, “Server SQL Modes”.

MySQL 5.0 FAQ: Stored Procedures and Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2028

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A.3.2. How many server SQL modes are there?

Each mode can be independently switched on and off. See Section 5.1.7, “Server SQL Modes”, for
a complete list of available modes.

A.3.3. How do you determine the server SQL mode?

You can set the default SQL mode (for mysqld startup) with the --sql-mode option. Using the
statement SET [GLOBAL|SESSION] sql_mode='modes', you can change the settings from
within a connection, either locally to the connection, or to take effect globally. You can retrieve the
current mode by issuing a SELECT @@sql_mode statement.

A.3.4. Is the mode dependent on the database or connection?

A mode is not linked to a particular database. Modes can be set locally to the session (connection),
or globally for the server. you can change these settings using SET [GLOBAL|SESSION]
sql_mode='modes'.

A.3.5. Can the rules for strict mode be extended?

When we refer to strict mode, we mean a mode where at least one of the modes TRADITIONAL,
STRICT_TRANS_TABLES, or STRICT_ALL_TABLES is enabled. Options can be combined, so you
can add restrictions to a mode. See Section 5.1.7, “Server SQL Modes”, for more information.

A.3.6. Does strict mode impact performance?

The intensive validation of input data that some settings requires more time than if the validation
is not done. While the performance impact is not that great, if you do not require such validation
(perhaps your application already handles all of this), then MySQL gives you the option of leaving
strict mode disabled. However—if you do require it—strict mode can provide such validation.

A.3.7. What is the default server SQL mode when MySQL 5.0 is installed?

By default, no special modes are enabled. For information about all available modes and MySQL's
default behavior, see Section 5.1.7, “Server SQL Modes”.

A.4 MySQL 5.0 FAQ: Stored Procedures and Functions
A.4.1 Does MySQL 5.0 support stored procedures and functions? .. 2029
A.4.2 Where can I find documentation for MySQL stored procedures and stored functions? 2029
A.4.3 Is there a discussion forum for MySQL stored procedures? .. 2029
A.4.4 Where can I find the ANSI SQL 2003 specification for stored procedures? 2029
A.4.5 How do you manage stored routines? .. 2029
A.4.6 Is there a way to view all stored procedures and stored functions in a given database? 2029
A.4.7 Where are stored procedures stored? ... 2029
A.4.8 Is it possible to group stored procedures or stored functions into packages? 2030
A.4.9 Can a stored procedure call another stored procedure? ... 2030
A.4.10 Can a stored procedure call a trigger? .. 2030
A.4.11 Can a stored procedure access tables? .. 2030
A.4.12 Do stored procedures have a statement for raising application errors? 2030
A.4.13 Do stored procedures provide exception handling? .. 2030
A.4.14 Can MySQL 5.0 stored routines return result sets? .. 2030
A.4.15 Is WITH RECOMPILE supported for stored procedures? .. 2030
A.4.16 Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk directly to

a stored procedure in the database? ... 2030
A.4.17 Can I pass an array as input to a stored procedure? ... 2030

MySQL 5.0 FAQ: Stored Procedures and Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2029

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A.4.18 Can I pass a cursor as an IN parameter to a stored procedure? .. 2030
A.4.19 Can I return a cursor as an OUT parameter from a stored procedure? 2031
A.4.20 Can I print out a variable's value within a stored routine for debugging purposes? 2031
A.4.21 Can I commit or roll back transactions inside a stored procedure? .. 2031
A.4.22 Do MySQL 5.0 stored procedures and functions work with replication? 2031
A.4.23 Are stored procedures and functions created on a master server replicated to a slave? 2031
A.4.24 How are actions that take place inside stored procedures and functions replicated? 2031
A.4.25 Are there special security requirements for using stored procedures and functions together

with replication? .. 2031
A.4.26 What limitations exist for replicating stored procedure and function actions? 2031
A.4.27 Do the preceding limitations affect MySQL's ability to do point-in-time recovery? 2032
A.4.28 What is being done to correct the aforementioned limitations? .. 2032

A.4.1. Does MySQL 5.0 support stored procedures and functions?

Yes. MySQL 5.0 supports two types of stored routines—stored procedures and stored functions.

A.4.2. Where can I find documentation for MySQL stored procedures and stored functions?

See Section 18.2, “Using Stored Routines (Procedures and Functions)”.

A.4.3. Is there a discussion forum for MySQL stored procedures?

Yes. See http://forums.mysql.com/list.php?98.

A.4.4. Where can I find the ANSI SQL 2003 specification for stored procedures?

Unfortunately, the official specifications are not freely available (ANSI makes them available for
purchase). However, there are books—such as SQL-99 Complete, Really by Peter Gulutzan and
Trudy Pelzer—which give a comprehensive overview of the standard, including coverage of stored
procedures.

A.4.5. How do you manage stored routines?

It is always good practice to use a clear naming scheme for your stored routines. You can
manage stored procedures with CREATE [FUNCTION|PROCEDURE], ALTER [FUNCTION|
PROCEDURE], DROP [FUNCTION|PROCEDURE], and SHOW CREATE [FUNCTION|PROCEDURE].
You can obtain information about existing stored procedures using the ROUTINES table in the
INFORMATION_SCHEMA database (see Section 19.8, “The INFORMATION_SCHEMA ROUTINES
Table”).

A.4.6. Is there a way to view all stored procedures and stored functions in a given database?

Yes. For a database named dbname, use this query on the INFORMATION_SCHEMA.ROUTINES
table:

SELECT ROUTINE_TYPE, ROUTINE_NAME
 FROM INFORMATION_SCHEMA.ROUTINES
 WHERE ROUTINE_SCHEMA='dbname';

For more information, see Section 19.8, “The INFORMATION_SCHEMA ROUTINES Table”.

The body of a stored routine can be viewed using SHOW CREATE FUNCTION (for a stored function)
or SHOW CREATE PROCEDURE (for a stored procedure). See Section 13.7.5.8, “SHOW CREATE
PROCEDURE Syntax”, for more information.

A.4.7. Where are stored procedures stored?

http://forums.mysql.com/list.php?98

MySQL 5.0 FAQ: Stored Procedures and Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2030

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In the proc table of the mysql system database. However, you should not access the tables in
the system database directly. Instead, use SHOW CREATE FUNCTION to obtain information about
stored functions, and SHOW CREATE PROCEDURE to obtain information about stored procedures.
See Section 13.7.5.8, “SHOW CREATE PROCEDURE Syntax”, for more information about these
statements.

You can also query the ROUTINES table in the INFORMATION_SCHEMA database—see
Section 19.8, “The INFORMATION_SCHEMA ROUTINES Table”, for information about this table.

A.4.8. Is it possible to group stored procedures or stored functions into packages?

No. This is not supported in MySQL 5.0.

A.4.9. Can a stored procedure call another stored procedure?

Yes.

A.4.10.Can a stored procedure call a trigger?

A stored procedure can execute an SQL statement, such as an UPDATE, that causes a trigger to
activate.

A.4.11.Can a stored procedure access tables?

Yes. A stored procedure can access one or more tables as required.

A.4.12.Do stored procedures have a statement for raising application errors?

Not in MySQL 5.0. The SQL standard SIGNAL and RESIGNAL statements are implemented in
MySQL 5.5.

A.4.13.Do stored procedures provide exception handling?

MySQL implements HANDLER definitions according to the SQL standard. See Section 13.6.7.2,
“DECLARE ... HANDLER Syntax”, for details.

A.4.14.Can MySQL 5.0 stored routines return result sets?

Stored procedures can, but stored functions cannot. If you perform an ordinary SELECT inside a
stored procedure, the result set is returned directly to the client. You need to use the MySQL 4.1 (or
above) client/server protocol for this to work. This means that—for instance—in PHP, you need to
use the mysqli extension rather than the old mysql extension.

A.4.15.Is WITH RECOMPILE supported for stored procedures?

Not in MySQL 5.0.

A.4.16.Is there a MySQL equivalent to using mod_plsql as a gateway on Apache to talk directly to a
stored procedure in the database?

There is no equivalent in MySQL 5.0.

A.4.17.Can I pass an array as input to a stored procedure?

Not in MySQL 5.0.

A.4.18.Can I pass a cursor as an IN parameter to a stored procedure?

In MySQL 5.0, cursors are available inside stored procedures only.

MySQL 5.0 FAQ: Stored Procedures and Functions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2031

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A.4.19.Can I return a cursor as an OUT parameter from a stored procedure?

In MySQL 5.0, cursors are available inside stored procedures only. However, if you do not open
a cursor on a SELECT, the result will be sent directly to the client. You can also SELECT INTO
variables. See Section 13.2.8, “SELECT Syntax”.

A.4.20.Can I print out a variable's value within a stored routine for debugging purposes?

Yes, you can do this in a stored procedure, but not in a stored function. If you perform an ordinary
SELECT inside a stored procedure, the result set is returned directly to the client. You will need to
use the MySQL 4.1 (or above) client/server protocol for this to work. This means that—for instance
—in PHP, you need to use the mysqli extension rather than the old mysql extension.

A.4.21.Can I commit or roll back transactions inside a stored procedure?

Yes. However, you cannot perform transactional operations within a stored function.

A.4.22.Do MySQL 5.0 stored procedures and functions work with replication?

Yes, standard actions carried out in stored procedures and functions are replicated from a
master MySQL server to a slave server. There are a few limitations that are described in detail in
Section 18.6, “Binary Logging of Stored Programs”.

A.4.23.Are stored procedures and functions created on a master server replicated to a slave?

Yes, creation of stored procedures and functions carried out through normal DDL statements on a
master server are replicated to a slave, so the objects will exist on both servers. ALTER and DROP
statements for stored procedures and functions are also replicated.

A.4.24.How are actions that take place inside stored procedures and functions replicated?

MySQL records each DML event that occurs in a stored procedure and replicates those individual
actions to a slave server. The actual calls made to execute stored procedures are not replicated.

Stored functions that change data are logged as function invocations, not as the DML events that
occur inside each function.

A.4.25.Are there special security requirements for using stored procedures and functions together with
replication?

Yes. Because a slave server has authority to execute any statement read from a master's binary
log, special security constraints exist for using stored functions with replication. If replication or
binary logging in general (for the purpose of point-in-time recovery) is active, then MySQL DBAs
have two security options open to them:

1. Any user wishing to create stored functions must be granted the SUPER privilege.

2. Alternatively, a DBA can set the log_bin_trust_function_creators system variable to 1,
which enables anyone with the standard CREATE ROUTINE privilege to create stored functions.

A.4.26.What limitations exist for replicating stored procedure and function actions?

Nondeterministic (random) or time-based actions embedded in stored procedures may not
replicate properly. By their very nature, randomly produced results are not predictable and
cannot be exactly reproduced, and therefore, random actions replicated to a slave will not mirror
those performed on a master. Declaring stored functions to be DETERMINISTIC or setting the
log_bin_trust_function_creators system variable to 0 will not allow random-valued
operations to be invoked.

MySQL 5.0 FAQ: Triggers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2032

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

In addition, time-based actions cannot be reproduced on a slave because the timing of such actions
in a stored procedure is not reproducible through the binary log used for replication. It records only
DML events and does not factor in timing constraints.

Finally, nontransactional tables for which errors occur during large DML actions (such as bulk
inserts) may experience replication issues in that a master may be partially updated from DML
activity, but no updates are done to the slave because of the errors that occurred. A workaround
is for a function's DML actions to be carried out with the IGNORE keyword so that updates on the
master that cause errors are ignored and updates that do not cause errors are replicated to the
slave.

A.4.27.Do the preceding limitations affect MySQL's ability to do point-in-time recovery?

The same limitations that affect replication do affect point-in-time recovery.

A.4.28.What is being done to correct the aforementioned limitations?

MySQL 5.1 implements row-based replication, which resolves the limitations mentioned earlier.

We do not plan to backport row-based replication to MySQL 5.0. For additional information, see
Replication Formats, in the MySQL 5.1 Manual.

A.5 MySQL 5.0 FAQ: Triggers
A.5.1 Where can I find the documentation for MySQL 5.0 triggers? ... 2032
A.5.2 Is there a discussion forum for MySQL Triggers? .. 2032
A.5.3 Does MySQL 5.0 have statement-level or row-level triggers? ... 2032
A.5.4 Are there any default triggers? ... 2032
A.5.5 How are triggers managed in MySQL? ... 2033
A.5.6 Is there a way to view all triggers in a given database? ... 2033
A.5.7 Where are triggers stored? .. 2033
A.5.8 Can a trigger call a stored procedure? .. 2033
A.5.9 Can triggers access tables? ... 2033
A.5.10 Can a table have multiple triggers with the same trigger event and action time? 2033
A.5.11 Can triggers call an external application through a UDF? ... 2033
A.5.12 Is it possible for a trigger to update tables on a remote server? .. 2033
A.5.13 Do triggers work with replication? ... 2033
A.5.14 How are actions carried out through triggers on a master replicated to a slave? 2034

A.5.1. Where can I find the documentation for MySQL 5.0 triggers?

See Section 18.3, “Using Triggers”.

A.5.2. Is there a discussion forum for MySQL Triggers?

Yes. It is available at http://forums.mysql.com/list.php?99.

A.5.3. Does MySQL 5.0 have statement-level or row-level triggers?

In MySQL 5.0, all triggers are FOR EACH ROW—that is, the trigger is activated for each row that is
inserted, updated, or deleted. MySQL 5.0 does not support triggers using FOR EACH STATEMENT.

A.5.4. Are there any default triggers?

Not explicitly. MySQL does have specific special behavior for some TIMESTAMP columns, as well as
for columns which are defined using AUTO_INCREMENT.

http://dev.mysql.com/doc/refman/5.1/en/replication-formats.html
http://forums.mysql.com/list.php?99

MySQL 5.0 FAQ: Triggers

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2033

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A.5.5. How are triggers managed in MySQL?

In MySQL 5.0, triggers can be created using the CREATE TRIGGER statement, and dropped using
DROP TRIGGER. See Section 13.1.11, “CREATE TRIGGER Syntax”, and Section 13.1.18, “DROP
TRIGGER Syntax”, for more about these statements.

Information about triggers can be obtained by querying the INFORMATION_SCHEMA.TRIGGERS
table. See Section 19.15, “The INFORMATION_SCHEMA TRIGGERS Table”.

A.5.6. Is there a way to view all triggers in a given database?

Yes. You can obtain a listing of all triggers defined on database dbname using a query on the
INFORMATION_SCHEMA.TRIGGERS table such as the one shown here:

SELECT TRIGGER_NAME, EVENT_MANIPULATION, EVENT_OBJECT_TABLE, ACTION_STATEMENT
 FROM INFORMATION_SCHEMA.TRIGGERS
 WHERE TRIGGER_SCHEMA='dbname';

For more information about this table, see Section 19.15, “The INFORMATION_SCHEMA
TRIGGERS Table”.

You can also use the SHOW TRIGGERS statement, which is specific to MySQL. See
Section 13.7.5.35, “SHOW TRIGGERS Syntax”.

A.5.7. Where are triggers stored?

Triggers for a table are currently stored in .TRG files, with one such file one per table.

A.5.8. Can a trigger call a stored procedure?

Yes.

A.5.9. Can triggers access tables?

A trigger can access both old and new data in its own table. A trigger can also affect other tables,
but it is not permitted to modify a table that is already being used (for reading or writing) by the
statement that invoked the function or trigger. (Before MySQL 5.0.10, a trigger cannot modify other
tables.)

A.5.10.Can a table have multiple triggers with the same trigger event and action time?

In MySQL 5.0, there cannot be multiple triggers for a given table that have the same trigger event
and action time. For example, you cannot have two BEFORE UPDATE triggers for a table. This
limitation is lifted in MySQL 5.7.

A.5.11.Can triggers call an external application through a UDF?

Yes. For example, a trigger could invoke the sys_exec() UDF.

A.5.12.Is it possible for a trigger to update tables on a remote server?

Yes. A table on a remote server could be updated using the FEDERATED storage engine. (See
Section 14.7, “The FEDERATED Storage Engine”).

A.5.13.Do triggers work with replication?

Triggers and replication in MySQL 5.0 work in the same way as in most other database systems:
Actions carried out through triggers on a master are not replicated to a slave server. Instead,

MySQL 5.0 FAQ: Views

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2034

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

triggers that exist on tables that reside on a MySQL master server need to be created on the
corresponding tables on any MySQL slave servers so that the triggers activate on the slaves as well
as the master.

For more information, see Section 16.4.1.27, “Replication and Triggers”.

A.5.14.How are actions carried out through triggers on a master replicated to a slave?

First, the triggers that exist on a master must be re-created on the slave server. Once this is done,
the replication flow works as any other standard DML statement that participates in replication.
For example, consider a table EMP that has an AFTER insert trigger, which exists on a master
MySQL server. The same EMP table and AFTER insert trigger exist on the slave server as well. The
replication flow would be:

1. An INSERT statement is made to EMP.

2. The AFTER trigger on EMP activates.

3. The INSERT statement is written to the binary log.

4. The replication slave picks up the INSERT statement to EMP and executes it.

5. The AFTER trigger on EMP that exists on the slave activates.

For more information, see Section 16.4.1.27, “Replication and Triggers”.

A.6 MySQL 5.0 FAQ: Views
A.6.1 Where can I find documentation covering MySQL Views? .. 2034
A.6.2 Is there a discussion forum for MySQL Views? ... 2034
A.6.3 What happens to a view if an underlying table is dropped or renamed? 2034
A.6.4 Does MySQL 5.0 have table snapshots? .. 2034
A.6.5 Does MySQL 5.0 have materialized views? .. 2034
A.6.6 Can you insert into views that are based on joins? .. 2034

A.6.1. Where can I find documentation covering MySQL Views?

See Section 18.4, “Using Views”.

A.6.2. Is there a discussion forum for MySQL Views?

Yes. See http://forums.mysql.com/list.php?100

A.6.3. What happens to a view if an underlying table is dropped or renamed?

After a view has been created, it is possible to drop or alter a table or view to which the definition
refers. To check a view definition for problems of this kind, use the CHECK TABLE statement. (See
Section 13.7.2.3, “CHECK TABLE Syntax”.)

A.6.4. Does MySQL 5.0 have table snapshots?

No.

A.6.5. Does MySQL 5.0 have materialized views?

No.

A.6.6. Can you insert into views that are based on joins?

http://forums.mysql.com/list.php?100

MySQL 5.0 FAQ: INFORMATION_SCHEMA

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2035

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

It is possible, provided that your INSERT statement has a column list that makes it clear there is only
one table involved.

You cannot insert into multiple tables with a single insert on a view.

A.7 MySQL 5.0 FAQ: INFORMATION_SCHEMA
A.7.1 Where can I find documentation for the MySQL INFORMATION_SCHEMA database? 2035
A.7.2 Is there a discussion forum for INFORMATION_SCHEMA? ... 2035
A.7.3 Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA? 2035
A.7.4 What is the difference between the Oracle Data Dictionary and MySQL's

INFORMATION_SCHEMA? .. 2035
A.7.5 Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database? 2035

A.7.1. Where can I find documentation for the MySQL INFORMATION_SCHEMA database?

See Chapter 19, INFORMATION_SCHEMA Tables

A.7.2. Is there a discussion forum for INFORMATION_SCHEMA?

See http://forums.mysql.com/list.php?101.

A.7.3. Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA?

Unfortunately, the official specifications are not freely available. (ANSI makes them available
for purchase.) However, there are books available—such as SQL-99 Complete, Really by Peter
Gulutzan and Trudy Pelzer—which give a comprehensive overview of the standard, including
INFORMATION_SCHEMA.

A.7.4. What is the difference between the Oracle Data Dictionary and MySQL's INFORMATION_SCHEMA?

Both Oracle and MySQL provide metadata in tables. However, Oracle and MySQL use different
table names and column names. MySQL's implementation is more similar to those found in DB2 and
SQL Server, which also support INFORMATION_SCHEMA as defined in the SQL standard.

A.7.5. Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database?

No. Since applications may rely on a certain standard structure, this should not be modified.
For this reason, we cannot support bugs or other issues which result from modifying
INFORMATION_SCHEMA tables or data.

A.8 MySQL 5.0 FAQ: Migration
A.8.1 Where can I find information on how to migrate from MySQL 4.1 to MySQL 5.0? 2035
A.8.2 How has storage engine (table type) support changed in MySQL 5.0 from previous versions? ... 2035

A.8.1. Where can I find information on how to migrate from MySQL 4.1 to MySQL 5.0?

For detailed upgrade information, see Section 2.19.1, “Upgrading MySQL”. Do not skip a major
version when upgrading, but rather complete the process in steps, upgrading from one major
version to the next in each step. This may seem more complicated, but it will you save time and
trouble—if you encounter problems during the upgrade, their origin will be easier to identify, either
by you or—if you have a MySQL Enterprise subscription—by MySQL support.

A.8.2. How has storage engine (table type) support changed in MySQL 5.0 from previous versions?

Storage engine support has changed as follows:

http://forums.mysql.com/list.php?101

MySQL 5.0 FAQ: Security

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2036

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Support for ISAM tables was removed in MySQL 5.0 and you should now use the MyISAM storage
engine in place of ISAM. To convert a table tblname from ISAM to MyISAM, simply issue a
statement such as this one:

ALTER TABLE tblname ENGINE=MYISAM;

• Internal RAID for MyISAM tables was also removed in MySQL 5.0. This was formerly used to
allow large tables in file systems that did not support file sizes greater than 2GB. All modern file
systems allow for larger tables; in addition, there are now other solutions such as MERGE tables
and views.

• The VARCHAR column type now retains trailing spaces in all storage engines.

• MEMORY tables (formerly known as HEAP tables) can also contain VARCHAR columns.

A.9 MySQL 5.0 FAQ: Security

A.9.1 Where can I find documentation that addresses security issues for MySQL? 2036
A.9.2 Does MySQL 5.0 have native support for SSL? .. 2036
A.9.3 Is SSL support built into MySQL binaries, or must I recompile the binary myself to enable it? 2037
A.9.4 Does MySQL 5.0 have built-in authentication against LDAP directories? 2037
A.9.5 Does MySQL 5.0 include support for Roles Based Access Control (RBAC)? 2037

A.9.1. Where can I find documentation that addresses security issues for MySQL?

The best place to start is Chapter 6, Security.

Other portions of the MySQL Documentation which you may find useful with regard to specific
security concerns include the following:

• Section 6.1.1, “Security Guidelines”.

• Section 6.1.3, “Making MySQL Secure Against Attackers”.

• Section B.5.3.2, “How to Reset the Root Password”.

• Section 6.1.5, “How to Run MySQL as a Normal User”.

• Section 21.2.2.6, “UDF Security Precautions”.

• Section 6.1.4, “Security-Related mysqld Options and Variables”.

• Section 6.1.6, “Security Issues with LOAD DATA LOCAL”.

• Section 2.18, “Postinstallation Setup and Testing”.

• Section 6.3.6, “Using Secure Connections”.

A.9.2. Does MySQL 5.0 have native support for SSL?

Most 5.0 binaries have support for SSL connections between the client and server. See
Section 6.3.6, “Using Secure Connections”.

You can also tunnel a connection using SSH, if (for example) the client application does not support
SSL connections. For an example, see Section 6.3.8, “Connecting to MySQL Remotely from
Windows with SSH”.

MySQL 5.0 FAQ: MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2037

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A.9.3. Is SSL support built into MySQL binaries, or must I recompile the binary myself to enable it?

Most 5.0 binaries have SSL enabled for client/server connections that are secured, authenticated, or
both. See Section 6.3.6, “Using Secure Connections”.

A.9.4. Does MySQL 5.0 have built-in authentication against LDAP directories?

No.

As of MySQL 5.5.16, the Enterprise edition includes a PAM Authentication Plugin that supports
authentication against an LDAP directory.

A.9.5. Does MySQL 5.0 include support for Roles Based Access Control (RBAC)?

Not at this time.

A.10 MySQL 5.0 FAQ: MySQL Cluster

In the following section, we answer questions that are frequently asked about MySQL Cluster and the
NDBCLUSTER storage engine.

A.10.1 Which versions of the MySQL software support Cluster? Do I have to compile from source? ... 2038
A.10.2 What do “NDB” and “NDBCLUSTER” mean? .. 2038
A.10.3 What is the difference between using MySQL Cluster versus using MySQL Replication? 2038
A.10.4 Do I need any special networking to run MySQL Cluster? How do computers in a cluster

communicate? .. 2039
A.10.5 How many computers do I need to run a MySQL Cluster, and why? 2039
A.10.6 What do the different computers do in a MySQL Cluster? .. 2039
A.10.7 With which operating systems can I use MySQL Cluster? .. 2040
A.10.8 What are the hardware requirements for running MySQL Cluster? .. 2040
A.10.9 How much RAM do I need to use MySQL Cluster? Is it possible to use disk memory at all? 2040
A.10.10 What file systems can I use with MySQL Cluster? What about network file systems or

network shares? ... 2041
A.10.11 Can I run MySQL Cluster nodes inside virtual machines (such as those created by VMWare,

Parallels, or Xen)? .. 2042
A.10.12 I am trying to populate a MySQL Cluster database. The loading process terminates

prematurely and I get an error message like this one: .. 2042
A.10.13 MySQL Cluster uses TCP/IP. Does this mean that I can run it over the Internet, with one or

more nodes in remote locations? ... 2042
A.10.14 Do I have to learn a new programming or query language to use MySQL Cluster? 2043
A.10.15 What programming languages and APIs are supported by MySQL Cluster? 2043
A.10.16 Does MySQL Cluster include any management tools? ... 2043
A.10.17 How do I find out what an error or warning message means when using MySQL Cluster? 2043
A.10.18 Is MySQL Cluster transaction-safe? What isolation levels are supported? 2043
A.10.19 What storage engines are supported by MySQL Cluster? ... 2043
A.10.20 In the event of a catastrophic failure—say, for instance, the whole city loses power and my

UPS fails—would I lose all my data? ... 2044
A.10.21 Is it possible to use FULLTEXT indexes with MySQL Cluster? .. 2044
A.10.22 Can I run multiple nodes on a single computer? .. 2044
A.10.23 Can I add data nodes to a MySQL Cluster without restarting it? ... 2044
A.10.24 Are there any limitations that I should be aware of when using MySQL Cluster? 2045
A.10.25 Does MySQL Cluster support foreign keys? .. 2045
A.10.26 How do I import an existing MySQL database into a MySQL Cluster? 2045
A.10.27 How do MySQL Cluster nodes communicate with one another? ... 2045
A.10.28 What is an arbitrator? .. 2046

http://dev.mysql.com/doc/refman/5.5/en/pam-authentication-plugin.html

MySQL 5.0 FAQ: MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2038

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A.10.29 What data types are supported by MySQL Cluster? ... 2046
A.10.30 How do I start and stop MySQL Cluster? .. 2046
A.10.31 What happens to MySQL Cluster data when the MySQL Cluster is shut down? 2047
A.10.32 Is it a good idea to have more than one management node for a MySQL Cluster? 2047
A.10.33 Can I mix different kinds of hardware and operating systems in one MySQL Cluster? 2047
A.10.34 Can I run two data nodes on a single host? Two SQL nodes? .. 2048
A.10.35 Can I use host names with MySQL Cluster? ... 2048
A.10.36 How do I handle MySQL users in a MySQL Cluster having multiple MySQL servers? 2048
A.10.37 How do I continue to send queries in the event that one of the SQL nodes fails? 2048
A.10.38 How do I back up and restore a MySQL Cluster? .. 2048
A.10.39 What is an “angel process”? ... 2048

A.10.1.Which versions of the MySQL software support Cluster? Do I have to compile from source?

MySQL Cluster is supported in all server binaries in the 5.0 release series for operating systems on
which MySQL Cluster is available. See Section 4.3.1, “mysqld — The MySQL Server”. You can
determine whether your server has NDB support using either of the statements SHOW VARIABLES
LIKE 'have_%' or SHOW ENGINES.

Note

Linux users: NDB is not included in the standard MySQL server RPMs.
Beginning with MySQL 5.0.4, there are separate RPM packages for the
NDB storage engine and accompanying management and other tools; see
the NDB RPM Downloads section of the MySQL 5.0 Downloads page for
these. (Prior to 5.0.4, you had to use the -max binaries supplied as .tar.gz
archives. This is still possible, but is not required, so you can use your Linux
distribution's RPM manager if you prefer.)

You can also obtain NDB support by compiling MySQL from source, but it is not necessary to do
so simply to use MySQL Cluster. To download the latest binary, RPM, or source distribution in the
MySQL 5.0 series, visit http://dev.mysql.com/downloads/mysql/5.0.html.

You should use MySQL Cluster NDB 7.3 or MySQL Cluster NDB 7.4 for new deployments; if you
are currently using an older version of MySQL Cluster, you should upgrade to one of these versions
as soon as possible. For an overview of improvements made in MySQL Cluster NDB 7.3 and
7.4, see What is New in MySQL Cluster NDB 7.3, and What is New in MySQL Cluster NDB 7.4,
respectively.

A.10.2.What do “NDB” and “NDBCLUSTER” mean?

“NDB” stands for “Network Database”. NDB and NDBCLUSTER are both names for the storage
engine that enables clustering support with MySQL. NDB is preferred, but either name is correct.

A.10.3.What is the difference between using MySQL Cluster versus using MySQL Replication?

In traditional MySQL replication, a master MySQL server updates one or more slaves. Transactions
are committed sequentially, and a slow transaction can cause the slave to lag behind the master.
This means that if the master fails, it is possible that the slave might not have recorded the last few
transactions. If a transaction-safe engine such as InnoDB is being used, a transaction will either be
complete on the slave or not applied at all, but replication does not guarantee that all data on the
master and the slave will be consistent at all times. In MySQL Cluster, all data nodes are kept in
synchrony, and a transaction committed by any one data node is committed for all data nodes. In
the event of a data node failure, all remaining data nodes remain in a consistent state.

In short, whereas standard MySQL replication is asynchronous, MySQL Cluster is synchronous.

http://dev.mysql.com/downloads/mysql/5.0.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-3.html
http://dev.mysql.com/doc/refman/5.6/en/mysql-cluster-what-is-new-7-4.html

MySQL 5.0 FAQ: MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2039

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

We have implemented (asynchronous) replication for Cluster in MySQL 5.1 and later. MySQL
Cluster Replication (also sometimes known as “geo-replication”) includes the capability to
replicate both between two MySQL Clusters, and from a MySQL Cluster to a non-Cluster MySQL
server. However, we do not plan to backport this functionality to MySQL 5.0. See MySQL Cluster
Replication.

A.10.4.Do I need any special networking to run MySQL Cluster? How do computers in a cluster
communicate?

MySQL Cluster is intended to be used in a high-bandwidth environment, with computers connecting
using TCP/IP. Its performance depends directly upon the connection speed between the cluster's
computers. The minimum connectivity requirements for MySQL Cluster include a typical 100-
megabit Ethernet network or the equivalent. We recommend you use gigabit Ethernet whenever
available.

A.10.5.How many computers do I need to run a MySQL Cluster, and why?

A minimum of three computers is required to run a viable cluster. However, the minimum
recommended number of computers in a MySQL Cluster is four: one each to run the management
and SQL nodes, and two computers to serve as data nodes. The purpose of the two data nodes
is to provide redundancy; the management node must run on a separate machine to guarantee
continued arbitration services in the event that one of the data nodes fails.

To provide increased throughput and high availability, you should use multiple SQL nodes (MySQL
Servers connected to the cluster). It is also possible (although not strictly necessary) to run multiple
management servers.

A.10.6.What do the different computers do in a MySQL Cluster?

A MySQL Cluster has both a physical and logical organization, with computers being the physical
elements. The logical or functional elements of a cluster are referred to as nodes, and a computer
housing a cluster node is sometimes referred to as a cluster host. There are three types of nodes,
each corresponding to a specific role within the cluster. These are:

• Management node. This node provides management services for the cluster as a whole,
including startup, shutdown, backups, and configuration data for the other nodes. The
management node server is implemented as the application ndb_mgmd; the management client
used to control MySQL Cluster is ndb_mgm. See Section 17.4.2, “ndb_mgmd — The MySQL
Cluster Management Server Daemon”, and Section 17.4.3, “ndb_mgm — The MySQL Cluster
Management Client”, for information about these programs.

• Data node. This type of node stores and replicates data. Data node functionality is handled by
instances of the NDB data node process ndbd. For more information, see Section 17.4.1, “ndbd
— The MySQL Cluster Data Node Daemon”.

• SQL node. This is simply an instance of MySQL Server (mysqld) that is built with support
for the NDBCLUSTER storage engine and started with the --ndb-cluster option to enable
the engine and the --ndb-connectstring option to enable it to connect to a MySQL Cluster
management server. For more about these options, see mysqld Command Options for MySQL
Cluster.

Note

An API node is any application that makes direct use of Cluster data nodes
for data storage and retrieval. An SQL node can thus be considered a
type of API node that uses a MySQL Server to provide an SQL interface

http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-replication.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-replication.html

MySQL 5.0 FAQ: MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2040

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

to the Cluster. You can write such applications (that do not depend on
a MySQL Server) using the NDB API, which supplies a direct, object-
oriented transaction and scanning interface to MySQL Cluster data; see
MySQL Cluster API Overview: The NDB API, for more information.

A.10.7.With which operating systems can I use MySQL Cluster?

MySQL Cluster is supported on most Unix-like operating systems. Beginning with MySQL Cluster
NDB 7.1.3, MySQL Cluster is also supported in production on Microsoft Windows operating
systems.

Important

We do not intend to provide any level of support on Windows for MySQL
Cluster in MySQL 5.0; you must use MySQL Cluster NDB 7.1.3 or later to
obtain GA-level support for MySQL Cluster in a Windows environment. See
What is New in MySQL Cluster NDB 7.1, for more information.

For more detailed information concerning the level of support which is offered for MySQL Cluster on
various operating system versions, operating system distributions, and hardware platforms, please
refer to http://www.mysql.com/support/supportedplatforms/cluster.html.

A.10.8.What are the hardware requirements for running MySQL Cluster?

MySQL Cluster should run on any platform for which NDB-enabled binaries are available. For data
nodes and API nodes, faster CPUs and more memory are likely to improve performance, and 64-
bit CPUs are likely to be more effective than 32-bit processors. There must be sufficient memory on
machines used for data nodes to hold each node's share of the database (see How much RAM do
I Need? for more information). For a computer which is used only for running the MySQL Cluster
management server, the requirements are minimal; a common desktop PC (or the equivalent) is
generally sufficient for this task. Nodes can communicate through the standard TCP/IP network and
hardware. They can also use the high-speed SCI protocol; however, special networking hardware
and software are required to use SCI (see Section 17.3.4, “Using High-Speed Interconnects with
MySQL Cluster”).

A.10.9.How much RAM do I need to use MySQL Cluster? Is it possible to use disk memory at all?

In MySQL 5.0, Cluster is in-memory only. This means that all table data (including indexes) is stored
in RAM. Therefore, if your data takes up 1 GB of space and you want to replicate it once in the
cluster, you need 2 GB of memory to do so (1 GB per replica). This is in addition to the memory
required by the operating system and any applications running on the cluster computers.

If a data node's memory usage exceeds what is available in RAM, then the system will attempt to
use swap space up to the limit set for DataMemory. However, this will at best result in severely
degraded performance, and may cause the node to be dropped due to slow response time (missed
heartbeats). We do not recommend on relying on disk swapping in a production environment for
this reason. In any case, once the DataMemory limit is reached, any operations requiring additional
memory (such as inserts) will fail.

We have implemented disk data storage for MySQL Cluster in MySQL 5.1 and later but we have
no plans to add this capability in MySQL 5.0. See MySQL Cluster Disk Data Tables, for more
information.

You can use the following formula for obtaining a rough estimate of how much RAM is needed for
each data node in the cluster:

http://dev.mysql.com/doc/ndbapi/en/overview-ndb-api.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-what-is-new-7-1.html
http://www.mysql.com/support/supportedplatforms/cluster.html
http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-disk-data.html

MySQL 5.0 FAQ: MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2041

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

(SizeofDatabase × NumberOfReplicas × 1.1) / NumberOfDataNodes

To calculate the memory requirements more exactly requires determining, for each table in the
cluster database, the storage space required per row (see Section 11.7, “Data Type Storage
Requirements”, for details), and multiplying this by the number of rows. You must also remember to
account for any column indexes as follows:

• Each primary key or hash index created for an NDBCLUSTER table requires 21−25 bytes per
record. These indexes use IndexMemory.

• Each ordered index requires 10 bytes storage per record, using DataMemory.

• Creating a primary key or unique index also creates an ordered index, unless this index is created
with USING HASH. In other words:

• A primary key or unique index on a Cluster table normally takes up 31 to 35 bytes per record.

• However, if the primary key or unique index is created with USING HASH, then it requires only
21 to 25 bytes per record.

Creating MySQL Cluster tables with USING HASH for all primary keys and unique indexes will
generally cause table updates to run more quickly—in some cases by a much as 20 to 30 percent
faster than updates on tables where USING HASH was not used in creating primary and unique
keys. This is due to the fact that less memory is required (because no ordered indexes are created),
and that less CPU must be utilized (because fewer indexes must be read and possibly updated).
However, it also means that queries that could otherwise use range scans must be satisfied by other
means, which can result in slower selects.

When calculating Cluster memory requirements, you may find useful the ndb_size.pl utility
which is available in recent MySQL 5.0 releases. This Perl script connects to a current (non-Cluster)
MySQL database and creates a report on how much space that database would require if it used
the NDBCLUSTER storage engine. For more information, see Section 17.4.18, “ndb_size.pl —
NDBCLUSTER Size Requirement Estimator”.

It is especially important to keep in mind that every MySQL Cluster table must have a primary key.
The NDB storage engine creates a primary key automatically if none is defined; this primary key is
created without USING HASH.

There is no easy way to determine exactly how much memory is being used for storage of MySQL
Cluster indexes at any given time; however, warnings are written to the cluster log when 80% of
available DataMemory or IndexMemory is in use, and again when usage reaches 85%, 90%, and
so on.

A.10.10.What file systems can I use with MySQL Cluster? What about network file systems or network
shares?

Generally, any file system that is native to the host operating system should work well with MySQL
Cluster. If you find that a given file system works particularly well (or not so especially well) with
MySQL Cluster, we invite you to discuss your findings in the MySQL Cluster Forums.

We do not test MySQL Cluster with FAT or VFAT file systems on Linux. Because of this, and due
to the fact that these are not very useful for any purpose other than sharing disk partitions between
Linux and Windows operating systems on multi-boot computers, we do not recommend their use
with MySQL Cluster.

http://forums.mysql.com/list.php?25

MySQL 5.0 FAQ: MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2042

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL Cluster is implemented as a shared-nothing solution; the idea behind this is that the failure
of a single piece of hardware should not cause the failure of multiple cluster nodes, or possibly
even the failure of the cluster as a whole. For this reason, the use of network shares or network file
systems is not supported for MySQL Cluster. This also applies to shared storage devices such as
SANs.

A.10.11.Can I run MySQL Cluster nodes inside virtual machines (such as those created by VMWare,
Parallels, or Xen)?

This is possible but not recommended for a production environment with MySQL Cluster versions
prior to MySQL Cluster NDB 7.2.

For deployment in virtualized environments, you should use MySQL Cluster NDB 7.2 or later.

A.10.12.I am trying to populate a MySQL Cluster database. The loading process terminates prematurely and
I get an error message like this one:

ERROR 1114: The table 'my_cluster_table' is full

Why is this happening?

The cause is very likely to be that your setup does not provide sufficient RAM for all table data and
all indexes, including the primary key required by the NDB storage engine and automatically created
in the event that the table definition does not include the definition of a primary key.

It is also worth noting that all data nodes should have the same amount of RAM, since no data node
in a cluster can use more memory than the least amount available to any individual data node. For
example, if there are four computers hosting Cluster data nodes, and three of these have 3GB of
RAM available to store Cluster data while the remaining data node has only 1GB RAM, then each
data node can devote at most 1GB to MySQL Cluster data and indexes.

In some cases it is possible to get Table is full errors in MySQL client applications even when
ndb_mgm -e "ALL REPORT MEMORYUSAGE" shows significant free DataMemory. You can force
NDB to create extra partitions for MySQL Cluster tables and thus have more memory available for
hash indexes by using the MAX_ROWS option for CREATE TABLE. In general, setting MAX_ROWS to
twice the number of rows that you expect to store in the table should be sufficient.

For similar reasons, you can also sometimes encounter problems with data node restarts on
nodes that are heavily loaded with data. In MySQL Cluster NDB 7.1 and later, the addition of the
MinFreePct parameter helps with this issue by reserving a portion (5% by default) of DataMemory
and IndexMemory for use in restarts. This reserved memory is not available for storing NDB tables
or data.

A.10.13.MySQL Cluster uses TCP/IP. Does this mean that I can run it over the Internet, with one or more
nodes in remote locations?

It is very unlikely that a cluster would perform reliably under such conditions, as MySQL Cluster was
designed and implemented with the assumption that it would be run under conditions guaranteeing
dedicated high-speed connectivity such as that found in a LAN setting using 100 Mbps or gigabit
Ethernet—preferably the latter. We neither test nor warrant its performance using anything slower
than this.

Also, it is extremely important to keep in mind that communications between the nodes in a
MySQL Cluster are not secure; they are neither encrypted nor safeguarded by any other protective
mechanism. The most secure configuration for a cluster is in a private network behind a firewall,
with no direct access to any Cluster data or management nodes from outside. (For SQL nodes, you

http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-minfreepct

MySQL 5.0 FAQ: MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2043

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

should take the same precautions as you would with any other instance of the MySQL server.) For
more information, see Section 17.5.10, “MySQL Cluster Security Issues”.

A.10.14.Do I have to learn a new programming or query language to use MySQL Cluster?

No. Although some specialized commands are used to manage and configure the cluster itself, only
standard (My)SQL statements are required for the following operations:

• Creating, altering, and dropping tables

• Inserting, updating, and deleting table data

• Creating, changing, and dropping primary and unique indexes

Some specialized configuration parameters and files are required to set up a MySQL Cluster—see
Section 17.3.3, “MySQL Cluster Configuration Files”, for information about these.

A few simple commands are used in the MySQL Cluster management client (ndb_mgm) for tasks
such as starting and stopping cluster nodes. See Section 17.5.2, “Commands in the MySQL Cluster
Management Client”.

A.10.15.What programming languages and APIs are supported by MySQL Cluster?

MySQL Cluster 5.0 supports the same programming APIs and languages as the standard MySQL
Server, including ODBC, .Net, the MySQL C API, and numerous drivers for popular scripting
languages such as PHP, Perl, and Python. MySQL Cluster applications written using these APIs
behave similarly to other MySQL applications; they transmit SQL statements to a MySQL Server
(in the case of MySQL Cluster, an SQL node), and receive responses containing rows of data. For
more information about these APIs, see Chapter 20, Connectors and APIs.

A.10.16.Does MySQL Cluster include any management tools?

MySQL Cluster includes a command line client for performing basic management functions.
See Section 17.4.3, “ndb_mgm — The MySQL Cluster Management Client”, and Section 17.5.2,
“Commands in the MySQL Cluster Management Client”.

A.10.17.How do I find out what an error or warning message means when using MySQL Cluster?

There are two ways in which this can be done:

• From within the mysql client, use SHOW ERRORS or SHOW WARNINGS immediately upon being
notified of the error or warning condition.

• From a system shell prompt, use perror --ndb error_code.

A.10.18.Is MySQL Cluster transaction-safe? What isolation levels are supported?

Yes. For tables created with the NDB storage engine, transactions are supported. Currently, MySQL
Cluster supports only the READ COMMITTED transaction isolation level.

A.10.19.What storage engines are supported by MySQL Cluster?

Clustering with MySQL is supported only by the NDB storage engine. That is, in order for a table to
be shared between nodes in a MySQL Cluster, the table must be created using ENGINE=NDB (or
the equivalent option ENGINE=NDBCLUSTER).

It is possible to create tables using other storage engines (such as InnoDB or MyISAM) on a
MySQL server being used with a MySQL Cluster, but since these tables do not use NDB, they do not

MySQL 5.0 FAQ: MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2044

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

participate in clustering; each such table is strictly local to the individual MySQL server instance on
which it is created.

A.10.20.In the event of a catastrophic failure—say, for instance, the whole city loses power and my UPS fails
—would I lose all my data?

All committed transactions are logged. Therefore, although it is possible that some data could be
lost in the event of a catastrophe, this should be quite limited. Data loss can be further reduced by
minimizing the number of operations per transaction. (It is not a good idea to perform large numbers
of operations per transaction in any case.)

A.10.21.Is it possible to use FULLTEXT indexes with MySQL Cluster?

FULLTEXT indexing is currently supported only by the MyISAM storage engine. See Section 12.9,
“Full-Text Search Functions”, for more information.

A.10.22.Can I run multiple nodes on a single computer?

It is possible but not advisable. One of the chief reasons to run a cluster is to provide redundancy.
To obtain the full benefits of this redundancy, each node should reside on a separate machine.
If you place multiple nodes on a single machine and that machine fails, you lose all of those
nodes. Given that MySQL Cluster can be run on commodity hardware loaded with a low-cost
(or even no-cost) operating system, the expense of an extra machine or two is well worth it to
safeguard mission-critical data. It also worth noting that the requirements for a cluster host running
a management node are minimal. This task can be accomplished with a 300 MHz Pentium or
equivalent CPU and sufficient RAM for the operating system, plus a small amount of overhead for
the ndb_mgmd and ndb_mgm processes.

It is acceptable to run multiple cluster data nodes on a single host for learning about MySQL Cluster,
or for testing purposes; however, this is not generally supported for production use.

A.10.23.Can I add data nodes to a MySQL Cluster without restarting it?

Not in MySQL 5.0. While a rolling restart is all that is required for adding new management or API
nodes to a MySQL Cluster (see Section 17.5.5, “Performing a Rolling Restart of a MySQL Cluster”),
adding data nodes is more complex, and requires the following steps:

1. Make a complete backup of all Cluster data.

2. Completely shut down the cluster and all cluster node processes.

3. Restart the cluster, using the --initial startup option for all instances of ndbd.

Warning

Never use the --initial when starting ndbd except when necessary
to clear the data node file system. See Section 17.4.1, “ndbd — The
MySQL Cluster Data Node Daemon”, for information about when this is
required.

4. Restore all cluster data from the backup.

Note

Beginning with MySQL Cluster NDB 6.4, it is possible to add new data nodes
to a running MySQL Cluster without taking it offline. For more information,
see Adding MySQL Cluster Data Nodes Online. However, we do not plan to
add this capability in MySQL 5.0.

http://dev.mysql.com/doc/refman/5.1/en/mysql-cluster-online-add-node.html

MySQL 5.0 FAQ: MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2045

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A.10.24.Are there any limitations that I should be aware of when using MySQL Cluster?

Limitations on NDB tables in MySQL 5.0 include the following:

• Temporary tables are not supported; a CREATE TEMPORARY TABLE statement using
ENGINE=NDB or ENGINE=NDBCLUSTER fails with an error.

• FULLTEXT indexes are not supported.

• Index prefixes are not supported. Only complete columns may be indexed.

• As of MySQL 5.0.16, MySQL Cluster supports spatial data types. However, spatial indexes are
not supported. See Section 11.5, “Extensions for Spatial Data”.

• Only complete rollbacks for transactions are supported. Partial rollbacks and rollbacks to
savepoints are not supported. A failed insert due to a duplicate key or similar error causes
a transaction to abort; when this occurs, you must issue an explicit ROLLBACK and retry the
transaction.

• The maximum number of attributes allowed per table is 128, and attribute names cannot be
any longer than 31 characters. For each table, the maximum combined length of the table and
database names is 122 characters.

• The maximum size for a table row is 8 kilobytes, not counting BLOB values.

There is no set limit for the number of rows per NDB table. Limits on table size depend on a
number of factors, in particular on the amount of RAM available to each data node.

• The NDB engine does not support foreign key constraints. As with MyISAM tables, if these are
specified in a CREATE TABLE or ALTER TABLE statement, they are ignored.

For a complete listing of limitations in MySQL Cluster, see Section 17.1.5, “Known Limitations of
MySQL Cluster”. See also Section 17.1.5.10, “Previous MySQL Cluster Issues Resolved in MySQL
5.0”.

A.10.25.Does MySQL Cluster support foreign keys?

MySQL Cluster 5.0 does not support foreign key constraints, and ignores foreign keys in CREATE
TABLE statements (similarly to how MyISAM treats foreign key syntax).

Foreign key support comparable to that found in the InnoDB storage engine is provided by NDB
beginning with MySQL Cluster NDB 7.3. Applications requiring foreign support should use MySQL
Cluster NDB 7.3 or later.

A.10.26.How do I import an existing MySQL database into a MySQL Cluster?

You can import databases into MySQL Cluster much as you would with any other version of
MySQL. Other than the limitations mentioned elsewhere in this FAQ, the only other special
requirement is that any tables to be included in the cluster must use the NDB storage engine. This
means that the tables must be created with ENGINE=NDB or ENGINE=NDBCLUSTER.

It is also possible to convert existing tables that use other storage engines to NDBCLUSTER using
one or more ALTER TABLE statement. However, the definition of the table must be compatible
with the NDBCLUSTER storage engine prior to making the conversion. In MySQL 5.0, an additional
workaround is also required; see Section 17.1.5, “Known Limitations of MySQL Cluster”, for details.

A.10.27.How do MySQL Cluster nodes communicate with one another?

MySQL 5.0 FAQ: MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2046

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Cluster nodes can communicate through any of three different transport mechanisms: TCP/IP, SHM
(shared memory), and SCI (Scalable Coherent Interface). Where available, SHM is used by default
between nodes residing on the same cluster host; however, this is considered experimental. SCI is
a high-speed (1 gigabit per second and higher), high-availability protocol used in building scalable
multi-processor systems; it requires special hardware and drivers. See Section 17.3.4, “Using High-
Speed Interconnects with MySQL Cluster”, for more about using SCI as a transport mechanism for
MySQL Cluster.

A.10.28.What is an arbitrator?

If one or more data nodes in a cluster fail, it is possible that not all cluster data nodes will be able
to “see” one another. In fact, it is possible that two sets of data nodes might become isolated from
one another in a network partitioning, also known as a “split-brain” scenario. This type of situation
is undesirable because each set of data nodes tries to behave as though it is the entire cluster. An
arbitrator is required to decide between the competing sets of data nodes.

When all data nodes in at least one node group are alive, network partitioning is not an issue,
because no single subset of the cluster can form a functional cluster on its own. The real problem
arises when no single node group has all its nodes alive, in which case network partitioning (the
“split-brain” scenario) becomes possible. Then an arbitrator is required. All cluster nodes recognize
the same node as the arbitrator, which is normally the management server; however, it is possible
to configure any of the MySQL Servers in the cluster to act as the arbitrator instead. The arbitrator
accepts the first set of cluster nodes to contact it, and tells the remaining set to shut down. Arbitrator
selection is controlled by the ArbitrationRank configuration parameter for MySQL Server and
management server nodes. For more information about this parameter, see Section 17.3.3.4,
“Defining a MySQL Cluster Management Server”.

The role of arbitrator does not in and of itself impose any heavy demands upon the host so
designated, and thus the arbitrator host does not need to be particularly fast or to have extra
memory especially for this purpose.

A.10.29.What data types are supported by MySQL Cluster?

In MySQL 5.0;, MySQL Cluster supports all of the usual MySQL data types, including (beginning
with MySQL 5.0.16) those associated with MySQL's spatial extensions; however, the NDB storage
engine does not support spatial indexes. (Spatial indexes are supported only by MyISAM; see
Section 11.5, “Extensions for Spatial Data”, for more information.) In addition, there are some
differences with regard to indexes when used with NDB tables.

Note

In MySQL 5.0, MySQL Cluster tables (that is, tables created with
ENGINE=NDB or ENGINE=NDBCLUSTER) have only fixed-width rows. This
means that (for example) each record containing a VARCHAR(255) column
will require space for 255 characters (as required for the character set
and collation being used for the table), regardless of the actual number
of characters stored therein. This issue is fixed in MySQL 5.1 and later;
however, we do not plan to backport this functionality to MySQL 5.0.

See Section 17.1.5, “Known Limitations of MySQL Cluster”, for more information about these issues.

A.10.30.How do I start and stop MySQL Cluster?

It is necessary to start each node in the cluster separately, in the following order:

1. Start the management node, using the ndb_mgmd command.

MySQL 5.0 FAQ: MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2047

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

You must include the -f or --config-file option to tell the management node where its
configuration file can be found.

2. Start each data node with the ndbd command.

Each data node must be started with the -c or --ndb-connectstring option so that the data
node knows how to connect to the management server.

3. Start each MySQL Server (SQL node) using your preferred startup script, such as
mysqld_safe.

Each MySQL Server must be started with the --ndbcluster and --ndb-connectstring
options. These options cause mysqld to enable NDBCLUSTER storage engine support and how to
connect to the management server.

Each of these commands must be run from a system shell on the machine housing the affected
node. (You do not have to be physically present at the machine—a remote login shell can be used
for this purpose.) You can verify that the cluster is running by starting the NDB management client
ndb_mgm on the machine housing the management node and issuing the SHOW or ALL STATUS
command.

To shut down a running cluster, issue the command SHUTDOWN in the management client.
Alternatively, you may enter the following command in a system shell:

shell> ndb_mgm -e "SHUTDOWN"

(The quotation marks in this example are optional, since there are no spaces in the command
string following the -e option; in addition, the SHUTDOWN command, like other management client
commands, is not case-sensitive.)

Either of these commands causes the ndb_mgm, ndb_mgm, and any ndbd processes to terminate
gracefully. MySQL servers running as SQL nodes can be stopped using mysqladmin shutdown.

For more information, see Section 17.5.2, “Commands in the MySQL Cluster Management Client”,
and Section 17.2.5, “Safe Shutdown and Restart of MySQL Cluster”.

A.10.31.What happens to MySQL Cluster data when the MySQL Cluster is shut down?

The data that was held in memory by the cluster's data nodes is written to disk, and is reloaded into
memory the next time that the cluster is started.

A.10.32.Is it a good idea to have more than one management node for a MySQL Cluster?

It can be helpful as a fail-safe. Only one management node controls the cluster at any given time,
but it is possible to configure one management node as primary, and one or more additional
management nodes to take over in the event that the primary management node fails.

See Section 17.3.3, “MySQL Cluster Configuration Files”, for information on how to configure
MySQL Cluster management nodes.

A.10.33.Can I mix different kinds of hardware and operating systems in one MySQL Cluster?

Yes, as long as all machines and operating systems have the same “endianness” (all big-endian or
all little-endian).

MySQL 5.0 FAQ: MySQL Cluster

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2048

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

It is also possible to use software from different MySQL Cluster releases on different nodes.
However, we support this only as part of a rolling upgrade procedure (see Section 17.5.5,
“Performing a Rolling Restart of a MySQL Cluster”).

A.10.34.Can I run two data nodes on a single host? Two SQL nodes?

Yes, it is possible to do this. In the case of multiple data nodes, it is advisable (but not required) for
each node to use a different data directory. If you want to run multiple SQL nodes on one machine,
each instance of mysqld must use a different TCP/IP port. However, in MySQL 5.0, running more
than one cluster node of a given type per machine is generally not encouraged or supported for
production use.

We also advise against running data nodes and SQL nodes together on the same host, since the
ndbd and mysqld processes may compete for memory.

A.10.35.Can I use host names with MySQL Cluster?

Yes, it is possible to use DNS and DHCP for cluster hosts. However, if your application requires
“five nines” availability, you should use fixed (numeric) IP addresses, since making communication
between Cluster hosts dependent on services such as DNS and DHCP introduces additional
potential points of failure.

A.10.36.How do I handle MySQL users in a MySQL Cluster having multiple MySQL servers?

MySQL user accounts and privileges are not automatically propagated between different MySQL
servers accessing the same MySQL Cluster. Therefore, you must make sure that these are copied
between the SQL nodes yourself. You can do this manually, or automate the task with scripts.

Warning

Do not attempt to work around this issue by converting the MySQL system
tables to use the NDBCLUSTER storage engine. Only the MyISAM storage
engine is supported for these tables.

A.10.37.How do I continue to send queries in the event that one of the SQL nodes fails?

MySQL Cluster does not provide any sort of automatic failover between SQL nodes. Your
application must be prepared to handle the loss of SQL nodes and to fail over between them.

A.10.38.How do I back up and restore a MySQL Cluster?

You can use the NDB native backup and restore functionality in the MySQL Cluster management
client and the ndb_restore program. See Section 17.5.3, “Online Backup of MySQL Cluster”, and
Section 17.4.14, “ndb_restore — Restore a MySQL Cluster Backup”.

You can also use the traditional functionality provided for this purpose in mysqldump and the
MySQL server. See Section 4.5.4, “mysqldump — A Database Backup Program”, for more
information.

A.10.39.What is an “angel process”?

This process monitors and, if necessary, attempts to restart the data node process. If you check the
list of active processes on your system after starting ndbd, you can see that there are actually 2
processes running by that name, as shown here (we omit the output from ndb_mgmd and ndbd for
brevity):

shell> ./ndb_mgmd

MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2049

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> ps aux | grep ndb
me 23002 0.0 0.0 122948 3104 ? Ssl 14:14 0:00 ./ndb_mgmd
me 23025 0.0 0.0 5284 820 pts/2 S+ 14:14 0:00 grep ndb

shell> ./ndbd -c 127.0.0.1 --initial

shell> ps aux | grep ndb
me 23002 0.0 0.0 123080 3356 ? Ssl 14:14 0:00 ./ndb_mgmd
me 23096 0.0 0.0 35876 2036 ? Ss 14:14 0:00 ./ndbd -c 127.0.0.1 --initial
me 23097 1.0 2.4 524116 91096 ? Sl 14:14 0:00 ./ndbd -c 127.0.0.1 --initial
me 23168 0.0 0.0 5284 812 pts/2 R+ 14:15 0:00 grep ndb

The ndbd process showing 0 memory and CPU usage is the angel process. It actually does use a
very small amount of each, of course. It simply checks to see if the main ndbd process (the primary
data node process that actually handles the data) is running. If permitted to do so (for example, if
the StopOnError configuration parameter is set to false—see Section 17.3.2.1, “MySQL Cluster
Data Node Configuration Parameters”), the angel process tries to restart the primary data node
process.

A.11 MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean
Character Sets

This set of Frequently Asked Questions derives from the experience of MySQL's Support and Development
groups in handling many inquiries about CJK (Chinese-Japanese-Korean) issues.

A.11.1 What CJK character sets are available in MySQL? .. 2049
A.11.2 I have inserted CJK characters into my table. Why does SELECT display them as “?”

characters? ... 2050
A.11.3 What problems should I be aware of when working with the Big5 Chinese character set? 2052
A.11.4 Why do Japanese character set conversions fail? ... 2053
A.11.5 What should I do if I want to convert SJIS 81CA to cp932? ... 2054
A.11.6 How does MySQL represent the Yen (¥) sign? ... 2054
A.11.7 Does MySQL plan to make a separate character set where 5C is the Yen sign, as at least one

other major DBMS does? .. 2054
A.11.8 Of what issues should I be aware when working with Korean character sets in MySQL? 2054
A.11.9 Why do I get Incorrect string value error messages? .. 2054
A.11.10 Why does my GUI front end or browser not display CJK characters correctly in my

application using Access, PHP, or another API? .. 2055
A.11.11 I've upgraded to MySQL 5.0. How can I revert to behavior like that in MySQL 4.0 with regard

to character sets? ... 2056
A.11.12 Why do some LIKE and FULLTEXT searches with CJK characters fail? 2057
A.11.13 How do I know whether character X is available in all character sets? 2058
A.11.14 Why do CJK strings sort incorrectly in Unicode? (I) ... 2059
A.11.15 Why do CJK strings sort incorrectly in Unicode? (II) ... 2060
A.11.16 Why are my supplementary characters rejected by MySQL? .. 2061
A.11.17 Shouldn't it be “CJKV”? .. 2061
A.11.18 Does MySQL allow CJK characters to be used in database and table names? 2061
A.11.19 Where can I get help with CJK and related issues in MySQL? .. 2061

A.11.1.What CJK character sets are available in MySQL?

The list of CJK character sets may vary depending on your MySQL version. For example,
the gb18030 character set was not supported prior to MySQL 5.7.4. However, since the
name of the applicable language appears in the DESCRIPTION column for every entry in the
INFORMATION_SCHEMA.CHARACTER_SETS table, you can obtain a current list of all the non-
Unicode CJK character sets using this query:

MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2050

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT CHARACTER_SET_NAME, DESCRIPTION
 -> FROM INFORMATION_SCHEMA.CHARACTER_SETS
 -> WHERE DESCRIPTION LIKE '%Chin%'
 -> OR DESCRIPTION LIKE '%Japanese%'
 -> OR DESCRIPTION LIKE '%Korean%'
 -> ORDER BY CHARACTER_SET_NAME;
+--------------------+---------------------------------+
| CHARACTER_SET_NAME | DESCRIPTION |
+--------------------+---------------------------------+
big5	Big5 Traditional Chinese
cp932	SJIS for Windows Japanese
eucjpms	UJIS for Windows Japanese
euckr	EUC-KR Korean
gb18030	China National Standard GB18030
gb2312	GB2312 Simplified Chinese
gbk	GBK Simplified Chinese
sjis	Shift-JIS Japanese
ujis	EUC-JP Japanese
+--------------------+---------------------------------+
9 rows in set (0.01 sec)

(See Section 19.1, “The INFORMATION_SCHEMA CHARACTER_SETS Table”, for more
information.)

MySQL supports three variants of the GB (Guojia Biaozhun, or National Standard, or Simplified
Chinese) character sets which are official in the People's Republic of China: gb2312, gbk, and
gb18030 (added in MySQL 5.7.4).

Sometimes people try to insert gbk characters into gb2312, and it works most of the time because
gbk is a superset of gb2312—but eventually they try to insert a rarer Chinese character and it
doesn't work. (See Bug #16072 for an example).

Here, we try to clarify exactly what characters are legitimate in gb2312 or gbk, with reference to the
official documents. Please check these references before reporting gb2312 or gbk bugs.

• For a complete listing of the gb2312 characters, ordered according to the gb2312_chinese_ci
collation: gb2312

• MySQL's gbk is in reality “Microsoft code page 936”. This differs from the official gbk for
characters A1A4 (middle dot), A1AA (em dash), A6E0-A6F5, and A8BB-A8C0.

• For a listing of gbk/Unicode mappings, see http://www.unicode.org/Public/MAPPINGS/
VENDORS/MICSFT/WINDOWS/CP936.TXT.

• For MySQL's listing of gbk characters, see gbk.

A.11.2.I have inserted CJK characters into my table. Why does SELECT display them as “?” characters?

This problem is usually due to a setting in MySQL that doesn't match the settings for the application
program or the operating system. Here are some common steps for correcting these types of
issues:

• Be certain of what MySQL version you are using.

Use the statement SELECT VERSION(); to determine this.

• Make sure that the database is actually using the desired character set.

http://www.collation-charts.org/mysql60/by-charset.html#gb2312
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT
http://www.collation-charts.org/mysql60/by-charset.html#gbk

MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2051

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

People often think that the client character set is always the same as either the server character
set or the character set used for display purposes. However, both of these are false assumptions.
You can make sure by checking the result of SHOW CREATE TABLE tablename or—better yet
—by using this statement:

SELECT character_set_name, collation_name
 FROM information_schema.columns
 WHERE table_schema = your_database_name
 AND table_name = your_table_name
 AND column_name = your_column_name;

• Determine the hexadecimal value of the character or characters that are not being displayed
correctly.

You can obtain this information for a column column_name in the table table_name using the
following query:

SELECT HEX(column_name)
FROM table_name;

3F is the encoding for the ? character; this means that ? is the character actually stored in the
column. This most often happens because of a problem converting a particular character from
your client character set to the target character set.

• Make sure that a round trip possible—that is, when you select literal (or _introducer
hexadecimal-value), you obtain literal as a result.

For example, the Japanese Katakana character Pe (ペ') exists in all CJK character sets, and has
the code point value (hexadecimal coding) 0x30da. To test a round trip for this character, use this
query:

SELECT 'ペ' AS `ペ`; /* or SELECT _ucs2 0x30da; */

If the result is not also ペ, then the round trip has failed.

For bug reports regarding such failures, we might ask you to follow up with SELECT
HEX('ペ');. Then we can determine whether the client encoding is correct.

• Make sure that the problem is not with the browser or other application, rather than with MySQL.

Use the mysql client program (on Windows: mysql.exe) to accomplish this task. If mysql
displays correctly but your application doesn't, then your problem is probably due to system
settings.

To find out what your settings are, use the SHOW VARIABLES statement, whose output should
resemble what is shown here:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	utf8
character_set_connection	utf8
character_set_database	latin1
character_set_filesystem	binary

MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2052

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+
8 rows in set (0.03 sec)

These are typical character-set settings for an international-oriented client (notice the use of utf8
Unicode) connected to a server in the West (latin1 is a West Europe character set and a default
for MySQL).

Although Unicode (usually the utf8 variant on Unix, and the ucs2 variant on Windows) is
preferable to Latin, it is often not what your operating system utilities support best. Many Windows
users find that a Microsoft character set, such as cp932 for Japanese Windows, is suitable.

If you cannot control the server settings, and you have no idea what your underlying computer
is, then try changing to a common character set for the country that you're in (euckr = Korea;
gb18030, gb2312 or gbk = People's Republic of China; big5 = Taiwan; sjis, ujis, cp932, or
eucjpms = Japan; ucs2 or utf8 = anywhere). Usually it is necessary to change only the client
and connection and results settings. There is a simple statement which changes all three at once:
SET NAMES. For example:

SET NAMES 'big5';

Once the setting is correct, you can make it permanent by editing my.cnf or my.ini. For
example you might add lines looking like these:

[mysqld]
character-set-server=big5
[client]
default-character-set=big5

It is also possible that there are issues with the API configuration setting being used in your
application; see Why does my GUI front end or browser not display CJK characters correctly...?
for more information.

A.11.3.What problems should I be aware of when working with the Big5 Chinese character set?

MySQL supports the Big5 character set which is common in Hong Kong and Taiwan (Republic of
China). MySQL's big5 is in reality Microsoft code page 950, which is very similar to the original
big5 character set. We changed to this character set starting with MySQL version 4.1.16 / 5.0.16
(as a result of Bug #12476). For example, the following statements work in current versions of
MySQL, but not in old versions:

mysql> CREATE TABLE big5 (BIG5 CHAR(1) CHARACTER SET BIG5);
Query OK, 0 rows affected (0.13 sec)

mysql> INSERT INTO big5 VALUES (0xf9dc);
Query OK, 1 row affected (0.00 sec)

mysql> SELECT * FROM big5;
+------+
| big5 |
+------+
| 嫺 |
+------+
1 row in set (0.02 sec)

MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2053

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

A feature request for adding HKSCS extensions has been filed. People who need this extension may
find the suggested patch for Bug #13577 to be of interest.

A.11.4.Why do Japanese character set conversions fail?

MySQL supports the sjis, ujis, cp932, and eucjpms character sets, as well as Unicode. A
common need is to convert between character sets. For example, there might be a Unix server
(typically with sjis or ujis) and a Windows client (typically with cp932).

In the following conversion table, the ucs2 column represents the source, and the sjis, cp932,
ujis, and eucjpms columns represent the destinations—that is, the last 4 columns provide the
hexadecimal result when we use CONVERT(ucs2) or we assign a ucs2 column containing the
value to an sjis, cp932, ujis, or eucjpms column.

Character Name ucs2 sjis cp932 ujis eucjpms

BROKEN BAR 00A6 3F 3F 8FA2C3 3F

FULLWIDTH BROKEN BAR FFE4 3F FA55 3F 8FA2

YEN SIGN 00A5 3F 3F 20 3F

FULLWIDTH YEN SIGN FFE5 818F 818F A1EF 3F

TILDE 007E 7E 7E 7E 7E

OVERLINE 203E 3F 3F 20 3F

HORIZONTAL BAR 2015 815C 815C A1BD A1BD

EM DASH 2014 3F 3F 3F 3F

REVERSE SOLIDUS 005C 815F 5C 5C 5C

FULLWIDTH "" FF3C 3F 815F 3F A1C0

WAVE DASH 301C 8160 3F A1C1 3F

FULLWIDTH TILDE FF5E 3F 8160 3F A1C1

DOUBLE VERTICAL LINE 2016 8161 3F A1C2 3F

PARALLEL TO 2225 3F 8161 3F A1C2

MINUS SIGN 2212 817C 3F A1DD 3F

FULLWIDTH HYPHEN-MINUS FF0D 3F 817C 3F A1DD

CENT SIGN 00A2 8191 3F A1F1 3F

FULLWIDTH CENT SIGN FFE0 3F 8191 3F A1F1

POUND SIGN 00A3 8192 3F A1F2 3F

FULLWIDTH POUND SIGN FFE1 3F 8192 3F A1F2

NOT SIGN 00AC 81CA 3F A2CC 3F

FULLWIDTH NOT SIGN FFE2 3F 81CA 3F A2CC

Now consider the following portion of the table.

 ucs2 sjis cp932

NOT SIGN 00AC 81CA 3F

FULLWIDTH NOT SIGN FFE2 3F 81CA

MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2054

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This means that MySQL converts the NOT SIGN (Unicode U+00AC) to sjis code point 0x81CA
and to cp932 code point 3F. (3F is the question mark (“?”)—this is what is always used when the
conversion cannot be performed.

A.11.5.What should I do if I want to convert SJIS 81CA to cp932?

Our answer is: “?”. There are serious complaints about this: many people would prefer a “loose”
conversion, so that 81CA (NOT SIGN) in sjis becomes 81CA (FULLWIDTH NOT SIGN) in
cp932. We are considering a change to this behavior.

A.11.6.How does MySQL represent the Yen (¥) sign?

A problem arises because some versions of Japanese character sets (both sjis and euc) treat 5C
as a reverse solidus (\—also known as a backslash), and others treat it as a yen sign (¥).

MySQL follows only one version of the JIS (Japanese Industrial Standards) standard description. In
MySQL, 5C is always the reverse solidus (\).

A.11.7.Does MySQL plan to make a separate character set where 5C is the Yen sign, as at least one other
major DBMS does?

This is one possible solution to the Yen sign issue; however, this will not happen in MySQL 5.1 or
6.0.

A.11.8.Of what issues should I be aware when working with Korean character sets in MySQL?

In theory, while there have been several versions of the euckr (Extended Unix Code Korea)
character set, only one problem has been noted.

We use the “ASCII” variant of EUC-KR, in which the code point 0x5c is REVERSE SOLIDUS, that
is \, instead of the “KS-Roman” variant of EUC-KR, in which the code point 0x5c is WON SIGN(₩).
This means that you cannot convert Unicode U+20A9 to euckr:

mysql> SELECT
 -> CONVERT('₩' USING euckr) AS euckr,

 -> HEX(CONVERT('₩' USING euckr)) AS hexeuckr;
+-------+----------+
| euckr | hexeuckr |
+-------+----------+
| ? | 3F |
+-------+----------+
1 row in set (0.00 sec)

MySQL's graphic Korean chart is here: euckr.

A.11.9.Why do I get Incorrect string value error messages?

For illustration, we'll create a table with one Unicode (ucs2) column and one Chinese (gb2312)
column.

mysql> CREATE TABLE ch
 -> (ucs2 CHAR(3) CHARACTER SET ucs2,
 -> gb2312 CHAR(3) CHARACTER SET gb2312);
Query OK, 0 rows affected (0.05 sec)

We'll try to place the rare character 汌 in both columns.

http://www.collation-charts.org/mysql60/by-charset.html#euckr

MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2055

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> INSERT INTO ch VALUES ('A汌B','A汌B');
Query OK, 1 row affected, 1 warning (0.00 sec)

Ah, there is a warning. Use the following statement to see what it is:

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************
 Level: Warning
 Code: 1366
Message: Incorrect string value: '\xE6\xB1\x8CB' for column 'gb2312' at row 1
1 row in set (0.00 sec)

So it is a warning about the gb2312 column only.

mysql> SELECT ucs2,HEX(ucs2),gb2312,HEX(gb2312) FROM ch;
+-------+--------------+--------+-------------+
| ucs2 | HEX(ucs2) | gb2312 | HEX(gb2312) |
+-------+--------------+--------+-------------+
| A汌B | 00416C4C0042 | A?B | 413F42 |
+-------+--------------+--------+-------------+
1 row in set (0.00 sec)

Several things need explanation here:

1. The fact that it is a “warning” rather than an “error” is characteristic of MySQL. We like to try to
do what we can, to get the best fit, rather than give up.

2. The 汌 character is not in the gb2312 character set. We described that problem earlier.

3. If you are using an old version of MySQL, you will probably see a different message.

4. With sql_mode=TRADITIONAL, there would be an error message, rather than a warning.

A.11.10.Why does my GUI front end or browser not display CJK characters correctly in my application using
Access, PHP, or another API?

Obtain a direct connection to the server using the mysql client (Windows: mysql.exe), and try
the same query there. If mysql responds correctly, then the trouble may be that your application
interface requires initialization. Use mysql to tell you what character set or sets it uses with the
statement SHOW VARIABLES LIKE 'char%';. If you are using Access, then you are most likely
connecting with Connector/ODBC. In this case, you should check Configuring Connector/ODBC.
If, for instance, you use big5, you would enter SET NAMES 'big5'. (Note that no ; is required
in this case). If you are using ASP, you might need to add SET NAMES in the code. Here is an
example that has worked in the past:

<%
Session.CodePage=0
Dim strConnection
Dim Conn
strConnection="driver={MySQL ODBC 3.51 Driver};server=server;uid=username;" \
 & "pwd=password;database=database;stmt=SET NAMES 'big5';"
Set Conn = Server.CreateObject("ADODB.Connection")
Conn.Open strConnection
%>

In much the same way, if you are using any character set other than latin1 with Connector/Net,
then you must specify the character set in the connection string. See Connecting to MySQL Using
Connector/Net, for more information.

http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-configuration.html
http://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting.html
http://dev.mysql.com/doc/connector-net/en/connector-net-programming-connecting.html

MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2056

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you are using PHP, try this:

<?php
 $link = new mysqli($host, $usr, $pwd, $db);

 if(mysqli_connect_errno())
 {
 printf("Connect failed: %s\n", mysqli_connect_error());
 exit();
 }

 $link->query("SET NAMES 'utf8'");
?>

In this case, we used SET NAMES to change character_set_client and
character_set_connection and character_set_results.

Another issue often encountered in PHP applications has to do with assumptions made by the
browser. Sometimes adding or changing a <meta> tag suffices to correct the problem: for example,
to insure that the user agent interprets page content as UTF-8, you should include <meta http-
equiv="Content-Type" content="text/html; charset=utf-8"> in the <head> of the
HTML page.

If you are using Connector/J, see Using Character Sets and Unicode.

A.11.11.I've upgraded to MySQL 5.0. How can I revert to behavior like that in MySQL 4.0 with regard to
character sets?

In MySQL Version 4.0, there was a single “global” character set for both server and client, and the
decision as to which character to use was made by the server administrator. This changed starting
with MySQL Version 4.1. What happens now is a “handshake”, as described in Section 10.1.4,
“Connection Character Sets and Collations”:

When a client connects, it sends to the server the name of the character set that
it wants to use. The server uses the name to set the character_set_client,
character_set_results, and character_set_connection system
variables. In effect, the server performs a SET NAMES operation using the character
set name.

The effect of this is that you cannot control the client character set by starting mysqld with --
character-set-server=utf8. However, some of our Asian customers have said that they
prefer the MySQL 4.0 behavior. To make it possible to retain this behavior, we added a mysqld
switch, --character-set-client-handshake, which can be turned off with --skip-
character-set-client-handshake. If you start mysqld with --skip-character-set-
client-handshake, then, when a client connects, it sends to the server the name of the character
set that it wants to use—however, the server ignores this request from the client.

By way of example, suppose that your favorite server character set is latin1 (unlikely in a CJK
area, but this is the default value). Suppose further that the client uses utf8 because this is what
the client's operating system supports. Now, start the server with latin1 as its default character
set:

mysqld --character-set-server=latin1

And then start the client with the default character set utf8:

http://dev.mysql.com/doc/connector-j/5.1/en/connector-j-reference-charsets.html

MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2057

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql --default-character-set=utf8

The current settings can be seen by viewing the output of SHOW VARIABLES:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	utf8
character_set_connection	utf8
character_set_database	latin1
character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+
8 rows in set (0.01 sec)

Now stop the client, and then stop the server using mysqladmin. Then start the server again, but
this time tell it to skip the handshake like so:

mysqld --character-set-server=utf8 --skip-character-set-client-handshake

Start the client with utf8 once again as the default character set, then display the current settings:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	latin1
character_set_connection	latin1
character_set_database	latin1
character_set_filesystem	binary
character_set_results	latin1
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+
8 rows in set (0.01 sec)

As you can see by comparing the differing results from SHOW VARIABLES, the server ignores the
client's initial settings if the --skip-character-set-client-handshake is used.

A.11.12.Why do some LIKE and FULLTEXT searches with CJK characters fail?

There is a very simple problem with LIKE searches on BINARY and BLOB columns: we need to
know the end of a character. With multibyte character sets, different characters might have different
octet lengths. For example, in utf8, A requires one byte but ペ requires three bytes, as shown here:

+-------------------------+---------------------------+
| OCTET_LENGTH(_utf8 'A') | OCTET_LENGTH(_utf8 'ペ') |
+-------------------------+---------------------------+
| 1 | 3 |
+-------------------------+---------------------------+
1 row in set (0.00 sec)

MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2058

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If we don't know where the first character ends, then we don't know where the second character
begins, in which case even very simple searches such as LIKE '_A%' fail. The solution is to use a
regular CJK character set in the first place, or to convert to a CJK character set before comparing.

This is one reason why MySQL cannot allow encodings of nonexistent characters. If it is not strict
about rejecting bad input, then it has no way of knowing where characters end.

For FULLTEXT searches, we need to know where words begin and end. With Western languages,
this is rarely a problem because most (if not all) of these use an easy-to-identify word boundary—
the space character. However, this is not usually the case with Asian writing. We could use arbitrary
halfway measures, like assuming that all Han characters represent words, or (for Japanese)
depending on changes from Katakana to Hiragana due to grammatical endings. However, the only
sure solution requires a comprehensive word list, which means that we would have to include a
dictionary in the server for each Asian language supported. This is simply not feasible.

A.11.13.How do I know whether character X is available in all character sets?

The majority of simplified Chinese and basic nonhalfwidth Japanese Kana characters appear in all
CJK character sets. This stored procedure accepts a UCS-2 Unicode character, converts it to all
other character sets, and displays the results in hexadecimal.

DELIMITER //

CREATE PROCEDURE p_convert(ucs2_char CHAR(1) CHARACTER SET ucs2)
BEGIN

CREATE TABLE tj
 (ucs2 CHAR(1) character set ucs2,
 utf8 CHAR(1) character set utf8,
 big5 CHAR(1) character set big5,
 cp932 CHAR(1) character set cp932,
 eucjpms CHAR(1) character set eucjpms,
 euckr CHAR(1) character set euckr,
 gb2312 CHAR(1) character set gb2312,
 gbk CHAR(1) character set gbk,
 sjis CHAR(1) character set sjis,
 ujis CHAR(1) character set ujis);

INSERT INTO tj (ucs2) VALUES (ucs2_char);

UPDATE tj SET utf8=ucs2,
 big5=ucs2,
 cp932=ucs2,
 eucjpms=ucs2,
 euckr=ucs2,
 gb2312=ucs2,
 gbk=ucs2,
 sjis=ucs2,
 ujis=ucs2;

/* If there is a conversion problem, UPDATE will produce a warning. */

SELECT hex(ucs2) AS ucs2,
 hex(utf8) AS utf8,
 hex(big5) AS big5,
 hex(cp932) AS cp932,
 hex(eucjpms) AS eucjpms,
 hex(euckr) AS euckr,
 hex(gb2312) AS gb2312,
 hex(gbk) AS gbk,
 hex(sjis) AS sjis,

MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2059

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 hex(ujis) AS ujis
FROM tj;

DROP TABLE tj;

END//

The input can be any single ucs2 character, or it can be the code point value (hexadecimal
representation) of that character. For example, from Unicode's list of ucs2 encodings and names
(http://www.unicode.org/Public/UNIDATA/UnicodeData.txt), we know that the Katakana character
Pe appears in all CJK character sets, and that its code point value is 0x30da. If we use this value
as the argument to p_convert(), the result is as shown here:

mysql> CALL p_convert(0x30da)//
+------+--------+------+-------+---------+-------+--------+------+------+------+
| ucs2 | utf8 | big5 | cp932 | eucjpms | euckr | gb2312 | gbk | sjis | ujis |
+------+--------+------+-------+---------+-------+--------+------+------+------+
| 30DA | E3839A | C772 | 8379 | A5DA | ABDA | A5DA | A5DA | 8379 | A5DA |
+------+--------+------+-------+---------+-------+--------+------+------+------+
1 row in set (0.04 sec)

Since none of the column values is 3F—that is, the question mark character (?)—we know that
every conversion worked.

A.11.14.Why do CJK strings sort incorrectly in Unicode? (I)

Sometimes people observe that the result of a utf8_unicode_ci or ucs2_unicode_ci search,
or of an ORDER BY sort is not what they think a native would expect. Although we never rule out
the possibility that there is a bug, we have found in the past that many people do not read correctly
the standard table of weights for the Unicode Collation Algorithm. MySQL uses the table found at
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. This is not the first table you will find by
navigating from the unicode.org home page, because MySQL uses the older 4.0.0 “allkeys” table,
rather than the more recent 4.1.0 table. (The newer '520' collations in MySQL 5.6 use the 5.2
“allkeys” table.) This is because we are very wary about changing ordering which affects indexes,
lest we bring about situations such as that reported in Bug #16526, illustrated as follows:

mysql< CREATE TABLE tj (s1 CHAR(1) CHARACTER SET utf8 COLLATE utf8_unicode_ci);
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO tj VALUES ('が'),('か');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM tj WHERE s1 = 'か';
+------+
| s1 |
+------+
| が |

| か |
+------+
2 rows in set (0.00 sec)

The character in the first result row is not the one that we searched for. Why did MySQL retrieve
it? First we look for the Unicode code point value, which is possible by reading the hexadecimal
number for the ucs2 version of the characters:

mysql> SELECT s1, HEX(CONVERT(s1 USING ucs2)) FROM tj;
+------+-----------------------------+
| s1 | HEX(CONVERT(s1 USING ucs2)) |

http://www.unicode.org/Public/UNIDATA/UnicodeData.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2060

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+------+-----------------------------+
| が | 304C |

| か | 304B |
+------+-----------------------------+
2 rows in set (0.03 sec)

Now we search for 304B and 304C in the 4.0.0 allkeys table, and find these lines:

304B ; [.1E57.0020.000E.304B] # HIRAGANA LETTER KA
304C ; [.1E57.0020.000E.304B][.0000.0140.0002.3099] # HIRAGANA LETTER GA; QQCM

The official Unicode names (following the “#” mark) tell us the Japanese syllabary (Hiragana),
the informal classification (letter, digit, or punctuation mark), and the Western identifier (KA or GA,
which happen to be voiced and unvoiced components of the same letter pair). More importantly,
the primary weight (the first hexadecimal number inside the square brackets) is 1E57 on both lines.
For comparisons in both searching and sorting, MySQL pays attention to the primary weight only,
ignoring all the other numbers. This means that we are sorting が and か correctly according to the
Unicode specification. If we wanted to distinguish them, we'd have to use a non-UCA (Unicode
Collation Algorithm) collation (utf8_bin or utf8_general_ci), or to compare the HEX() values,
or use ORDER BY CONVERT(s1 USING sjis). Being correct “according to Unicode” isn't enough,
of course: the person who submitted the bug was equally correct. We plan to add another collation
for Japanese according to the JIS X 4061 standard, in which voiced/unvoiced letter pairs like KA/GA
are distinguishable for ordering purposes.

A.11.15.Why do CJK strings sort incorrectly in Unicode? (II)

If you are using Unicode (ucs2 or utf8), and you know what the Unicode sort order is (see
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets”), but
MySQL still seems to sort your table incorrectly, then you should first verify the table character set:

mysql> SHOW CREATE TABLE t\G
******************** 1. row ******************
Table: t
Create Table: CREATE TABLE `t` (
`s1` char(1) CHARACTER SET ucs2 DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Since the character set appears to be correct, let's see what information the
INFORMATION_SCHEMA.COLUMNS table can provide about this column:

mysql> SELECT COLUMN_NAME, CHARACTER_SET_NAME, COLLATION_NAME
 -> FROM INFORMATION_SCHEMA.COLUMNS
 -> WHERE COLUMN_NAME = 's1'
 -> AND TABLE_NAME = 't';
+-------------+--------------------+-----------------+
| COLUMN_NAME | CHARACTER_SET_NAME | COLLATION_NAME |
+-------------+--------------------+-----------------+
| s1 | ucs2 | ucs2_general_ci |
+-------------+--------------------+-----------------+
1 row in set (0.01 sec)

(See Section 19.4, “The INFORMATION_SCHEMA COLUMNS Table”, for more information.)

You can see that the collation is ucs2_general_ci instead of ucs2_unicode_ci. The reason
why this is so can be found using SHOW CHARSET, as shown here:

MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2061

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SHOW CHARSET LIKE 'ucs2%';
+---------+---------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------+-------------------+--------+
| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |
+---------+---------------+-------------------+--------+
1 row in set (0.00 sec)

For ucs2 and utf8, the default collation is “general”. To specify a Unicode collation, use COLLATE
ucs2_unicode_ci.

A.11.16.Why are my supplementary characters rejected by MySQL?

Before MySQL 5.5.3, MySQL does not support supplementary characters—that is, characters which
need more than 3 bytes—for UTF-8. We support only what Unicode calls the Basic Multilingual
Plane / Plane 0. Only a few very rare Han characters are supplementary; support for them is
uncommon. This has led to reports such as that found in Bug #12600, which we rejected as
“not a bug”. With utf8, we must truncate an input string when we encounter bytes that we don't
understand. Otherwise, we wouldn't know how long the bad multibyte character is.

One possible workaround is to use ucs2 instead of utf8, in which case the “bad” characters are
changed to question marks; however, no truncation takes place. You can also change the data type
to BLOB or BINARY, which perform no validity checking.

As of MySQL 5.5.3, Unicode support is extended to include supplementary characters by means
of additional Unicode character sets: utf16, utf32, and 4-byte utf8mb4. These character sets
support supplementary Unicode characters outside the Basic Multilingual Plane (BMP).

A.11.17.Shouldn't it be “CJKV”?

No. The term “CJKV” (Chinese Japanese Korean Vietnamese) refers to Vietnamese character
sets which contain Han (originally Chinese) characters. MySQL has no plan to support the old
Vietnamese script using Han characters. MySQL does of course support the modern Vietnamese
script with Western characters.

As of MySQL 5.6, there are Vietnamese collations for Unicode character sets, as described in
Section 10.1.13.1, “Unicode Character Sets”.

A.11.18.Does MySQL allow CJK characters to be used in database and table names?

This issue is fixed in MySQL 5.1, by automatically rewriting the names of the corresponding
directories and files.

For example, if you create a database named 楮 on a server whose operating system does not
support CJK in directory names, MySQL creates a directory named @0w@00a5@00ae, which is
just a fancy way of encoding E6A5AE—that is, the Unicode hexadecimal representation for the 楮
character. However, if you run a SHOW DATABASES statement, you can see that the database is
listed as 楮.

A.11.19.Where can I get help with CJK and related issues in MySQL?

The following resources are available:

• A listing of MySQL user groups can be found at https://wikis.oracle.com/display/mysql/List+of
+MySQL+User+Groups.

• View feature requests relating to character set issues at http://tinyurl.com/y6xcuf.

https://wikis.oracle.com/display/mysql/List+of+MySQL+User+Groups
https://wikis.oracle.com/display/mysql/List+of+MySQL+User+Groups
http://tinyurl.com/y6xcuf

MySQL 5.0 FAQ: Connectors & APIs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2062

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Visit the MySQL Character Sets, Collation, Unicode Forum. http://forums.mysql.com/ also
provides foreign-language forums.

A.12 MySQL 5.0 FAQ: Connectors & APIs

For common questions, issues, and answers relating to the MySQL Connectors and other APIs, see the
following areas of the Manual:

• Section 20.6.14, “Common Questions and Problems When Using the C API”

• Common Problems with MySQL and PHP

• Connector/ODBC Notes and Tips

• Connector/Net Programming

• MySQL Connector/J 5.1 Developer Guide

A.13 MySQL 5.0 FAQ: Replication

In the following section, we provide answers to questions that are most frequently asked about MySQL
Replication.

A.13.1 Must the slave be connected to the master all the time? .. 2062
A.13.2 Must I enable networking on my master and slave to enable replication? 2063
A.13.3 How do I know how late a slave is compared to the master? In other words, how do I know the

date of the last statement replicated by the slave? ... 2063
A.13.4 How do I force the master to block updates until the slave catches up? 2063
A.13.5 What issues should I be aware of when setting up two-way replication? 2063
A.13.6 How can I use replication to improve performance of my system? .. 2064
A.13.7 What should I do to prepare client code in my own applications to use performance-enhancing

replication? ... 2064
A.13.8 When and how much can MySQL replication improve the performance of my system? 2064
A.13.9 How can I use replication to provide redundancy or high availability? 2065
A.13.10 How do I tell whether a master server is using statement-based or row-based binary logging

format? ... 2065
A.13.11 How do I tell a slave to use row-based replication? ... 2065
A.13.12 How do I prevent GRANT and REVOKE statements from replicating to slave machines? 2065
A.13.13 Does replication work on mixed operating systems (for example, the master runs on Linux

while slaves run on OS X and Windows)? ... 2066
A.13.14 Does replication work on mixed hardware architectures (for example, the master runs on a

64-bit machine while slaves run on 32-bit machines)? .. 2066

A.13.1.Must the slave be connected to the master all the time?

No, it does not. The slave can go down or stay disconnected for hours or even days, and then
reconnect and catch up on updates. For example, you can set up a master/slave relationship over a
dial-up link where the link is up only sporadically and for short periods of time. The implication of this
is that, at any given time, the slave is not guaranteed to be in synchrony with the master unless you
take some special measures.

To ensure that catchup can occur for a slave that has been disconnected, you must not remove
binary log files from the master that contain information that has not yet been replicated to the

http://forums.mysql.com/list.php?103
http://forums.mysql.com/
http://dev.mysql.com/doc/apis-php/en/apis-php-problems.html
http://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes.html
http://dev.mysql.com/doc/connector-net/en/connector-net-programming.html
http://dev.mysql.com/doc/connector-j/5.1/en/

MySQL 5.0 FAQ: Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2063

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

slaves. Asynchronous replication can work only if the slave is able to continue reading the binary log
from the point where it last read events.

A.13.2.Must I enable networking on my master and slave to enable replication?

Yes, networking must be enabled on the master and slave. If networking is not enabled, the slave
cannot connect to the master and transfer the binary log. Check that the skip-networking option
has not been enabled in the configuration file for either server.

A.13.3.How do I know how late a slave is compared to the master? In other words, how do I know the date
of the last statement replicated by the slave?

Check the Seconds_Behind_Master column in the output from SHOW SLAVE STATUS. See
Section 16.1.3.1, “Checking Replication Status”.

When the slave SQL thread executes an event read from the master, it modifies its own time
to the event timestamp. (This is why TIMESTAMP is well replicated.) In the Time column in the
output of SHOW PROCESSLIST, the number of seconds displayed for the slave SQL thread is the
number of seconds between the timestamp of the last replicated event and the real time of the slave
machine. You can use this to determine the date of the last replicated event. Note that if your slave
has been disconnected from the master for one hour, and then reconnects, you may immediately
see large Time values such as 3600 for the slave SQL thread in SHOW PROCESSLIST. This is
because the slave is executing statements that are one hour old. See Section 16.2.1, “Replication
Implementation Details”.

A.13.4.How do I force the master to block updates until the slave catches up?

Use the following procedure:

1. On the master, execute these statements:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SHOW MASTER STATUS;

Record the replication coordinates (the current binary log file name and position) from the output
of the SHOW statement.

2. On the slave, issue the following statement, where the arguments to the MASTER_POS_WAIT()
function are the replication coordinate values obtained in the previous step:

mysql> SELECT MASTER_POS_WAIT('log_name', log_pos);

The SELECT statement blocks until the slave reaches the specified log file and position. At that
point, the slave is in synchrony with the master and the statement returns.

3. On the master, issue the following statement to enable the master to begin processing updates
again:

mysql> UNLOCK TABLES;

A.13.5.What issues should I be aware of when setting up two-way replication?

MySQL replication currently does not support any locking protocol between master and slave to
guarantee the atomicity of a distributed (cross-server) update. In other words, it is possible for client
A to make an update to co-master 1, and in the meantime, before it propagates to co-master 2,
client B could make an update to co-master 2 that makes the update of client A work differently than

MySQL 5.0 FAQ: Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2064

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

it did on co-master 1. Thus, when the update of client A makes it to co-master 2, it produces tables
that are different from what you have on co-master 1, even after all the updates from co-master
2 have also propagated. This means that you should not chain two servers together in a two-way
replication relationship unless you are sure that your updates can safely happen in any order, or
unless you take care of mis-ordered updates somehow in the client code.

You should also realize that two-way replication actually does not improve performance very much
(if at all) as far as updates are concerned. Each server must do the same number of updates, just
as you would have a single server do. The only difference is that there is a little less lock contention
because the updates originating on another server are serialized in one slave thread. Even this
benefit might be offset by network delays.

A.13.6.How can I use replication to improve performance of my system?

Set up one server as the master and direct all writes to it. Then configure as many slaves as you
have the budget and rackspace for, and distribute the reads among the master and the slaves. You
can also start the slaves with the --skip-innodb, --low-priority-updates, and --delay-
key-write=ALL options to get speed improvements on the slave end. In this case, the slave
uses nontransactional MyISAM tables instead of InnoDB tables to get more speed by eliminating
transactional overhead.

A.13.7.What should I do to prepare client code in my own applications to use performance-enhancing
replication?

See the guide to using replication as a scale-out solution, Section 16.3.3, “Using Replication for
Scale-Out”.

A.13.8.When and how much can MySQL replication improve the performance of my system?

MySQL replication is most beneficial for a system that processes frequent reads and infrequent
writes. In theory, by using a single-master/multiple-slave setup, you can scale the system by adding
more slaves until you either run out of network bandwidth, or your update load grows to the point
that the master cannot handle it.

To determine how many slaves you can use before the added benefits begin to level out, and how
much you can improve performance of your site, you must know your query patterns, and determine
empirically by benchmarking the relationship between the throughput for reads and writes on a
typical master and a typical slave. The example here shows a rather simplified calculation of what
you can get with replication for a hypothetical system. Let reads and writes denote the number of
reads and writes per second, respectively.

Let's say that system load consists of 10% writes and 90% reads, and we have determined by
benchmarking that reads is 1200 - 2 * writes. In other words, the system can do 1,200 reads per
second with no writes, the average write is twice as slow as the average read, and the relationship
is linear. Suppose that the master and each slave have the same capacity, and that we have one
master and N slaves. Then we have for each server (master or slave):

reads = 1200 - 2 * writes

reads = 9 * writes / (N + 1) (reads are split, but writes replicated to all slaves)

9 * writes / (N + 1) + 2 * writes = 1200

writes = 1200 / (2 + 9/(N + 1))

The last equation indicates the maximum number of writes for N slaves, given a maximum possible
read rate of 1,200 per second and a ratio of nine reads per write.

MySQL 5.0 FAQ: Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2065

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This analysis yields the following conclusions:

• If N = 0 (which means we have no replication), our system can handle about 1200/11 = 109 writes
per second.

• If N = 1, we get up to 184 writes per second.

• If N = 8, we get up to 400 writes per second.

• If N = 17, we get up to 480 writes per second.

• Eventually, as N approaches infinity (and our budget negative infinity), we can get very close to
600 writes per second, increasing system throughput about 5.5 times. However, with only eight
servers, we increase it nearly four times.

These computations assume infinite network bandwidth and neglect several other factors that
could be significant on your system. In many cases, you may not be able to perform a computation
similar to the one just shown that accurately predicts what will happen on your system if you add N
replication slaves. However, answering the following questions should help you decide whether and
by how much replication will improve the performance of your system:

• What is the read/write ratio on your system?

• How much more write load can one server handle if you reduce the reads?

• For how many slaves do you have bandwidth available on your network?

A.13.9.How can I use replication to provide redundancy or high availability?

How you implement redundancy is entirely dependent on your application and circumstances. High-
availability solutions (with automatic failover) require active monitoring and either custom scripts or
third party tools to provide the failover support from the original MySQL server to the slave.

To handle the process manually, you should be able to switch from a failed master to a pre-
configured slave by altering your application to talk to the new server or by adjusting the DNS for the
MySQL server from the failed server to the new server.

For more information and some example solutions, see Section 16.3.6, “Switching Masters During
Failover”.

A.13.10.How do I tell whether a master server is using statement-based or row-based binary logging format?

Check the value of the binlog_format system variable:

mysql> SHOW VARIABLES LIKE 'binlog_format';

The value shown will be one of STATEMENT, ROW, or MIXED. For MIXED mode, statement-based
logging is used by default but replication switches automatically to row-based logging under certain
conditions, such as unsafe statements. For information about when this may occur, see Mixed
Binary Logging Format.

A.13.11.How do I tell a slave to use row-based replication?

Slaves automatically know which format to use.

A.13.12.How do I prevent GRANT and REVOKE statements from replicating to slave machines?

http://dev.mysql.com/doc/refman/5.1/en/replication-options-binary-log.html#sysvar_binlog_format
http://dev.mysql.com/doc/refman/5.1/en/binary-log-mixed.html
http://dev.mysql.com/doc/refman/5.1/en/binary-log-mixed.html

MySQL 5.0 FAQ: Replication

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2066

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Start the server with the --replicate-wild-ignore-table=mysql.% option to ignore
replication for tables in the mysql database.

A.13.13.Does replication work on mixed operating systems (for example, the master runs on Linux while
slaves run on OS X and Windows)?

Yes.

A.13.14.Does replication work on mixed hardware architectures (for example, the master runs on a 64-bit
machine while slaves run on 32-bit machines)?

Yes.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2067

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Appendix B Errors, Error Codes, and Common Problems

Table of Contents
B.1 Sources of Error Information ... 2067
B.2 Types of Error Values ... 2067
B.3 Server Error Codes and Messages ... 2068
B.4 Client Error Codes and Messages ... 2106
B.5 Problems and Common Errors .. 2110

B.5.1 How to Determine What Is Causing a Problem .. 2110
B.5.2 Common Errors When Using MySQL Programs .. 2112
B.5.3 Administration-Related Issues ... 2125
B.5.4 Query-Related Issues .. 2133
B.5.5 Optimizer-Related Issues ... 2142
B.5.6 Table Definition-Related Issues .. 2142
B.5.7 Known Issues in MySQL .. 2143

This appendix lists common problems and errors that may occur and potential resolutions, in addition
to listing the errors that may appear when you call MySQL from any host language. The first section
covers problems and resolutions. Detailed information on errors is provided: One list displays server error
messages. Another list displays client program messages.

B.1 Sources of Error Information
There are several sources of error information in MySQL:

• Each SQL statement executed results in an error code, an SQLSTATE value, and an error message, as
described in Section B.2, “Types of Error Values”. These errors are returned from the server side; see
Section B.3, “Server Error Codes and Messages”.

• Errors can occur on the client side, usually involving problems communicating with the server; see
Section B.4, “Client Error Codes and Messages”.

• SQL statement warning and error information is available through the SHOW WARNINGS and SHOW
ERRORS statements. The warning_count system variable indicates the number of errors, warnings,
and notes. The error_count system variable indicates the number of errors. Its value excludes
warnings and notes.

• SHOW SLAVE STATUS statement output includes information about replication errors occurring on the
slave side.

• SHOW ENGINE INNODB STATUS statement output includes information about the most recent foreign
key error if a CREATE TABLE statement for an InnoDB table fails.

• The perror program provides information from the command line about error numbers. See
Section 4.8.1, “perror — Explain Error Codes”.

Descriptions of server and client errors are provided later in this Appendix. For information about errors
related to InnoDB, see Section 14.2.12, “InnoDB Error Handling”.

B.2 Types of Error Values
When an error occurs in MySQL, the server returns two types of error values:

• A MySQL-specific error code. This value is numeric. It is not portable to other database systems.

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2068

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• An SQLSTATE value. The value is a five-character string (for example, '42S02'). The values are taken
from ANSI SQL and ODBC and are more standardized.

A message string that provides a textual description of the error is also available.

When an error occurs, the MySQL error code, SQLSTATE value, and message string are available using C
API functions:

• MySQL error code: Call mysql_errno()

• SQLSTATE value: Call mysql_sqlstate()

• Error message: Call mysql_error()

For prepared statements, the corresponding error functions are mysql_stmt_errno(),
mysql_stmt_sqlstate(), and mysql_stmt_error(). All error functions are described in
Section 20.6, “MySQL C API”.

The number of errors, warnings, and notes for the previous statement can be obtained by calling
mysql_warning_count(). See Section 20.6.7.72, “mysql_warning_count()”.

The first two characters of an SQLSTATE value indicate the error class:

• Class = '00' indicates success.

• Class = '01' indicates a warning.

• Class = '02' indicates “not found.” This is relevant within the context of cursors and is used to control
what happens when a cursor reaches the end of a data set. This condition also occurs for SELECT ...
INTO var_list statements that retrieve no rows.

• Class > '02' indicates an exception.

B.3 Server Error Codes and Messages
MySQL programs have access to several types of error information when the server returns an error. For
example, the mysql client program displays errors using the following format:

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

The message displayed contains three types of information:

• A numeric error code (1146). This number is MySQL-specific and is not portable to other database
systems.

• A five-character SQLSTATE value ('42S02'). The values are taken from ANSI SQL and ODBC and
are more standardized. Not all MySQL error numbers have corresponding SQLSTATE values. In these
cases, 'HY000' (general error) is used.

• A message string that provides a textual description of the error.

For error checking, use error codes, not error messages. Error messages do not change often, but it is
possible. Also if the database administrator changes the language setting, that affects the language of
error messages.

Error codes are stable across GA releases of a given MySQL series. Before a series reaches GA status,
new codes may still be under development and subject to change.

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2069

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Server error information comes from the following source files. For details about the way that error
information is defined, see the MySQL Internals Manual.

• Error message information is listed in the share/errmsg.txt file. %d and %s represent numbers and
strings, respectively, that are substituted into the Message values when they are displayed.

• The Error values listed in share/errmsg.txt are used to generate the definitions in the include/
mysqld_error.h and include/mysqld_ername.h MySQL source files.

• The SQLSTATE values listed in share/errmsg.txt are used to generate the definitions in the
include/sql_state.h MySQL source file.

Because updates are frequent, it is possible that those files will contain additional error information not
listed here.

• Error: 1000 SQLSTATE: HY000 (ER_HASHCHK)

Message: hashchk

Unused.

• Error: 1001 SQLSTATE: HY000 (ER_NISAMCHK)

Message: isamchk

Unused.

• Error: 1002 SQLSTATE: HY000 (ER_NO)

Message: NO

Used in the construction of other messages.

• Error: 1003 SQLSTATE: HY000 (ER_YES)

Message: YES

Used in the construction of other messages.

Extended EXPLAIN format generates Note messages. ER_YES is used in the Code column for these
messages in subsequent SHOW WARNINGS output.

• Error: 1004 SQLSTATE: HY000 (ER_CANT_CREATE_FILE)

Message: Can't create file '%s' (errno: %d)

Occurs for failure to copy an .frm file to a new location, during execution of a CREATE TABLE dst
LIKE src statement when the server tries to copy the source table .frm file to the destination table
.frm file.

Possible causes: Permissions problem for source .frm file; destination .frm file already exists but is
not writeable.

• Error: 1005 SQLSTATE: HY000 (ER_CANT_CREATE_TABLE)

Message: Can't create table '%s' (errno: %d)

InnoDB reports this error when a table cannot be created. If the error message refers to error 150, table
creation failed because a foreign key constraint was not correctly formed. If the error message refers

http://dev.mysql.com/doc/internals/en
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key_constraint

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2070

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

to error −1, table creation probably failed because the table includes a column name that matched the
name of an internal InnoDB table.

• Error: 1006 SQLSTATE: HY000 (ER_CANT_CREATE_DB)

Message: Can't create database '%s' (errno: %d)

• Error: 1007 SQLSTATE: HY000 (ER_DB_CREATE_EXISTS)

Message: Can't create database '%s'; database exists

An attempt to create a database failed because the database already exists.

Drop the database first if you really want to replace an existing database, or add an IF NOT EXISTS
clause to the CREATE DATABASE statement if to retain an existing database without having the
statement produce an error.

• Error: 1008 SQLSTATE: HY000 (ER_DB_DROP_EXISTS)

Message: Can't drop database '%s'; database doesn't exist

• Error: 1009 SQLSTATE: HY000 (ER_DB_DROP_DELETE)

Message: Error dropping database (can't delete '%s', errno: %d)

• Error: 1010 SQLSTATE: HY000 (ER_DB_DROP_RMDIR)

Message: Error dropping database (can't rmdir '%s', errno: %d)

• Error: 1011 SQLSTATE: HY000 (ER_CANT_DELETE_FILE)

Message: Error on delete of '%s' (errno: %d)

• Error: 1012 SQLSTATE: HY000 (ER_CANT_FIND_SYSTEM_REC)

Message: Can't read record in system table

Returned by InnoDB for attempts to access InnoDB INFORMATION_SCHEMA tables when InnoDB is
unavailable.

• Error: 1013 SQLSTATE: HY000 (ER_CANT_GET_STAT)

Message: Can't get status of '%s' (errno: %d)

• Error: 1014 SQLSTATE: HY000 (ER_CANT_GET_WD)

Message: Can't get working directory (errno: %d)

• Error: 1015 SQLSTATE: HY000 (ER_CANT_LOCK)

Message: Can't lock file (errno: %d)

• Error: 1016 SQLSTATE: HY000 (ER_CANT_OPEN_FILE)

Message: Can't open file: '%s' (errno: %d)

InnoDB reports this error when the table from the InnoDB data files cannot be found, even though
the .frm file for the table exists. See Section 14.2.13.3, “Troubleshooting InnoDB Data Dictionary
Operations”.

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_data_files

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2071

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1017 SQLSTATE: HY000 (ER_FILE_NOT_FOUND)

Message: Can't find file: '%s' (errno: %d)

• Error: 1018 SQLSTATE: HY000 (ER_CANT_READ_DIR)

Message: Can't read dir of '%s' (errno: %d)

• Error: 1019 SQLSTATE: HY000 (ER_CANT_SET_WD)

Message: Can't change dir to '%s' (errno: %d)

• Error: 1020 SQLSTATE: HY000 (ER_CHECKREAD)

Message: Record has changed since last read in table '%s'

• Error: 1021 SQLSTATE: HY000 (ER_DISK_FULL)

Message: Disk full (%s); waiting for someone to free some space...

• Error: 1022 SQLSTATE: 23000 (ER_DUP_KEY)

Message: Can't write; duplicate key in table '%s'

• Error: 1023 SQLSTATE: HY000 (ER_ERROR_ON_CLOSE)

Message: Error on close of '%s' (errno: %d)

• Error: 1024 SQLSTATE: HY000 (ER_ERROR_ON_READ)

Message: Error reading file '%s' (errno: %d)

• Error: 1025 SQLSTATE: HY000 (ER_ERROR_ON_RENAME)

Message: Error on rename of '%s' to '%s' (errno: %d)

InnoDB reports this error if you attempt to drop the last index that can enforce a particular referential
constraint. As of MySQL 5.5, this error message is replaced by ERROR 1553.

• Error: 1026 SQLSTATE: HY000 (ER_ERROR_ON_WRITE)

Message: Error writing file '%s' (errno: %d)

• Error: 1027 SQLSTATE: HY000 (ER_FILE_USED)

Message: '%s' is locked against change

• Error: 1028 SQLSTATE: HY000 (ER_FILSORT_ABORT)

Message: Sort aborted

• Error: 1029 SQLSTATE: HY000 (ER_FORM_NOT_FOUND)

Message: View '%s' doesn't exist for '%s'

• Error: 1030 SQLSTATE: HY000 (ER_GET_ERRNO)

Message: Got error %d from storage engine

Check the %d value to see what the OS error means. For example, 28 indicates that you have run out of
disk space.

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2072

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1031 SQLSTATE: HY000 (ER_ILLEGAL_HA)

Message: Table storage engine for '%s' doesn't have this option

• Error: 1032 SQLSTATE: HY000 (ER_KEY_NOT_FOUND)

Message: Can't find record in '%s'

• Error: 1033 SQLSTATE: HY000 (ER_NOT_FORM_FILE)

Message: Incorrect information in file: '%s'

• Error: 1034 SQLSTATE: HY000 (ER_NOT_KEYFILE)

Message: Incorrect key file for table '%s'; try to repair it

• Error: 1035 SQLSTATE: HY000 (ER_OLD_KEYFILE)

Message: Old key file for table '%s'; repair it!

• Error: 1036 SQLSTATE: HY000 (ER_OPEN_AS_READONLY)

Message: Table '%s' is read only

• Error: 1037 SQLSTATE: HY001 (ER_OUTOFMEMORY)

Message: Out of memory; restart server and try again (needed %d bytes)

• Error: 1038 SQLSTATE: HY001 (ER_OUT_OF_SORTMEMORY)

Message: Out of sort memory; increase server sort buffer size

• Error: 1039 SQLSTATE: HY000 (ER_UNEXPECTED_EOF)

Message: Unexpected EOF found when reading file '%s' (errno: %d)

• Error: 1040 SQLSTATE: 08004 (ER_CON_COUNT_ERROR)

Message: Too many connections

• Error: 1041 SQLSTATE: HY000 (ER_OUT_OF_RESOURCES)

Message: Out of memory; check if mysqld or some other process uses all available memory; if not, you
may have to use 'ulimit' to allow mysqld to use more memory or you can add more swap space

• Error: 1042 SQLSTATE: 08S01 (ER_BAD_HOST_ERROR)

Message: Can't get hostname for your address

• Error: 1043 SQLSTATE: 08S01 (ER_HANDSHAKE_ERROR)

Message: Bad handshake

• Error: 1044 SQLSTATE: 42000 (ER_DBACCESS_DENIED_ERROR)

Message: Access denied for user '%s'@'%s' to database '%s'

• Error: 1045 SQLSTATE: 28000 (ER_ACCESS_DENIED_ERROR)

Message: Access denied for user '%s'@'%s' (using password: %s)

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2073

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1046 SQLSTATE: 3D000 (ER_NO_DB_ERROR)

Message: No database selected

• Error: 1047 SQLSTATE: 08S01 (ER_UNKNOWN_COM_ERROR)

Message: Unknown command

• Error: 1048 SQLSTATE: 23000 (ER_BAD_NULL_ERROR)

Message: Column '%s' cannot be null

• Error: 1049 SQLSTATE: 42000 (ER_BAD_DB_ERROR)

Message: Unknown database '%s'

• Error: 1050 SQLSTATE: 42S01 (ER_TABLE_EXISTS_ERROR)

Message: Table '%s' already exists

• Error: 1051 SQLSTATE: 42S02 (ER_BAD_TABLE_ERROR)

Message: Unknown table '%s'

• Error: 1052 SQLSTATE: 23000 (ER_NON_UNIQ_ERROR)

Message: Column '%s' in %s is ambiguous

%s = column name
%s = location of column (for example, "field list")

Likely cause: A column appears in a query without appropriate qualification, such as in a select list or ON
clause.

Examples:

mysql> SELECT i FROM t INNER JOIN t AS t2;
ERROR 1052 (23000): Column 'i' in field list is ambiguous

mysql> SELECT * FROM t LEFT JOIN t AS t2 ON i = i;
ERROR 1052 (23000): Column 'i' in on clause is ambiguous

Resolution:

• Qualify the column with the appropriate table name:

mysql> SELECT t2.i FROM t INNER JOIN t AS t2;

• Modify the query to avoid the need for qualification:

mysql> SELECT * FROM t LEFT JOIN t AS t2 USING (i);

• Error: 1053 SQLSTATE: 08S01 (ER_SERVER_SHUTDOWN)

Message: Server shutdown in progress

• Error: 1054 SQLSTATE: 42S22 (ER_BAD_FIELD_ERROR)

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2074

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: Unknown column '%s' in '%s'

• Error: 1055 SQLSTATE: 42000 (ER_WRONG_FIELD_WITH_GROUP)

Message: '%s' isn't in GROUP BY

• Error: 1056 SQLSTATE: 42000 (ER_WRONG_GROUP_FIELD)

Message: Can't group on '%s'

• Error: 1057 SQLSTATE: 42000 (ER_WRONG_SUM_SELECT)

Message: Statement has sum functions and columns in same statement

• Error: 1058 SQLSTATE: 21S01 (ER_WRONG_VALUE_COUNT)

Message: Column count doesn't match value count

• Error: 1059 SQLSTATE: 42000 (ER_TOO_LONG_IDENT)

Message: Identifier name '%s' is too long

• Error: 1060 SQLSTATE: 42S21 (ER_DUP_FIELDNAME)

Message: Duplicate column name '%s'

• Error: 1061 SQLSTATE: 42000 (ER_DUP_KEYNAME)

Message: Duplicate key name '%s'

• Error: 1062 SQLSTATE: 23000 (ER_DUP_ENTRY)

Message: Duplicate entry '%s' for key %d

• Error: 1063 SQLSTATE: 42000 (ER_WRONG_FIELD_SPEC)

Message: Incorrect column specifier for column '%s'

• Error: 1064 SQLSTATE: 42000 (ER_PARSE_ERROR)

Message: %s near '%s' at line %d

• Error: 1065 SQLSTATE: 42000 (ER_EMPTY_QUERY)

Message: Query was empty

• Error: 1066 SQLSTATE: 42000 (ER_NONUNIQ_TABLE)

Message: Not unique table/alias: '%s'

• Error: 1067 SQLSTATE: 42000 (ER_INVALID_DEFAULT)

Message: Invalid default value for '%s'

• Error: 1068 SQLSTATE: 42000 (ER_MULTIPLE_PRI_KEY)

Message: Multiple primary key defined

• Error: 1069 SQLSTATE: 42000 (ER_TOO_MANY_KEYS)

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2075

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: Too many keys specified; max %d keys allowed

• Error: 1070 SQLSTATE: 42000 (ER_TOO_MANY_KEY_PARTS)

Message: Too many key parts specified; max %d parts allowed

• Error: 1071 SQLSTATE: 42000 (ER_TOO_LONG_KEY)

Message: Specified key was too long; max key length is %d bytes

• Error: 1072 SQLSTATE: 42000 (ER_KEY_COLUMN_DOES_NOT_EXITS)

Message: Key column '%s' doesn't exist in table

• Error: 1073 SQLSTATE: 42000 (ER_BLOB_USED_AS_KEY)

Message: BLOB column '%s' can't be used in key specification with the used table type

• Error: 1074 SQLSTATE: 42000 (ER_TOO_BIG_FIELDLENGTH)

Message: Column length too big for column '%s' (max = %lu); use BLOB or TEXT instead

• Error: 1075 SQLSTATE: 42000 (ER_WRONG_AUTO_KEY)

Message: Incorrect table definition; there can be only one auto column and it must be defined as a key

• Error: 1076 SQLSTATE: HY000 (ER_READY)

Message: %s: ready for connections. Version: '%s' socket: '%s' port: %d

• Error: 1077 SQLSTATE: HY000 (ER_NORMAL_SHUTDOWN)

Message: %s: Normal shutdown

• Error: 1078 SQLSTATE: HY000 (ER_GOT_SIGNAL)

Message: %s: Got signal %d. Aborting!

• Error: 1079 SQLSTATE: HY000 (ER_SHUTDOWN_COMPLETE)

Message: %s: Shutdown complete

• Error: 1080 SQLSTATE: 08S01 (ER_FORCING_CLOSE)

Message: %s: Forcing close of thread %ld user: '%s'

• Error: 1081 SQLSTATE: 08S01 (ER_IPSOCK_ERROR)

Message: Can't create IP socket

• Error: 1082 SQLSTATE: 42S12 (ER_NO_SUCH_INDEX)

Message: Table '%s' has no index like the one used in CREATE INDEX; recreate the table

• Error: 1083 SQLSTATE: 42000 (ER_WRONG_FIELD_TERMINATORS)

Message: Field separator argument is not what is expected; check the manual

• Error: 1084 SQLSTATE: 42000 (ER_BLOBS_AND_NO_TERMINATED)

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2076

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: You can't use fixed rowlength with BLOBs; please use 'fields terminated by'

• Error: 1085 SQLSTATE: HY000 (ER_TEXTFILE_NOT_READABLE)

Message: The file '%s' must be in the database directory or be readable by all

• Error: 1086 SQLSTATE: HY000 (ER_FILE_EXISTS_ERROR)

Message: File '%s' already exists

• Error: 1087 SQLSTATE: HY000 (ER_LOAD_INFO)

Message: Records: %ld Deleted: %ld Skipped: %ld Warnings: %ld

• Error: 1088 SQLSTATE: HY000 (ER_ALTER_INFO)

Message: Records: %ld Duplicates: %ld

• Error: 1089 SQLSTATE: HY000 (ER_WRONG_SUB_KEY)

Message: Incorrect sub part key; the used key part isn't a string, the used length is longer than the key
part, or the storage engine doesn't support unique sub keys

• Error: 1090 SQLSTATE: 42000 (ER_CANT_REMOVE_ALL_FIELDS)

Message: You can't delete all columns with ALTER TABLE; use DROP TABLE instead

• Error: 1091 SQLSTATE: 42000 (ER_CANT_DROP_FIELD_OR_KEY)

Message: Can't DROP '%s'; check that column/key exists

• Error: 1092 SQLSTATE: HY000 (ER_INSERT_INFO)

Message: Records: %ld Duplicates: %ld Warnings: %ld

• Error: 1093 SQLSTATE: HY000 (ER_UPDATE_TABLE_USED)

Message: You can't specify target table '%s' for update in FROM clause

• Error: 1094 SQLSTATE: HY000 (ER_NO_SUCH_THREAD)

Message: Unknown thread id: %lu

• Error: 1095 SQLSTATE: HY000 (ER_KILL_DENIED_ERROR)

Message: You are not owner of thread %lu

• Error: 1096 SQLSTATE: HY000 (ER_NO_TABLES_USED)

Message: No tables used

• Error: 1097 SQLSTATE: HY000 (ER_TOO_BIG_SET)

Message: Too many strings for column %s and SET

• Error: 1098 SQLSTATE: HY000 (ER_NO_UNIQUE_LOGFILE)

Message: Can't generate a unique log-filename %s.(1-999)

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2077

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1099 SQLSTATE: HY000 (ER_TABLE_NOT_LOCKED_FOR_WRITE)

Message: Table '%s' was locked with a READ lock and can't be updated

• Error: 1100 SQLSTATE: HY000 (ER_TABLE_NOT_LOCKED)

Message: Table '%s' was not locked with LOCK TABLES

• Error: 1101 SQLSTATE: 42000 (ER_BLOB_CANT_HAVE_DEFAULT)

Message: BLOB/TEXT column '%s' can't have a default value

• Error: 1102 SQLSTATE: 42000 (ER_WRONG_DB_NAME)

Message: Incorrect database name '%s'

• Error: 1103 SQLSTATE: 42000 (ER_WRONG_TABLE_NAME)

Message: Incorrect table name '%s'

• Error: 1104 SQLSTATE: 42000 (ER_TOO_BIG_SELECT)

Message: The SELECT would examine more than MAX_JOIN_SIZE rows; check your WHERE and use
SET SQL_BIG_SELECTS=1 or SET SQL_MAX_JOIN_SIZE=# if the SELECT is okay

• Error: 1105 SQLSTATE: HY000 (ER_UNKNOWN_ERROR)

Message: Unknown error

• Error: 1106 SQLSTATE: 42000 (ER_UNKNOWN_PROCEDURE)

Message: Unknown procedure '%s'

• Error: 1107 SQLSTATE: 42000 (ER_WRONG_PARAMCOUNT_TO_PROCEDURE)

Message: Incorrect parameter count to procedure '%s'

• Error: 1108 SQLSTATE: HY000 (ER_WRONG_PARAMETERS_TO_PROCEDURE)

Message: Incorrect parameters to procedure '%s'

• Error: 1109 SQLSTATE: 42S02 (ER_UNKNOWN_TABLE)

Message: Unknown table '%s' in %s

• Error: 1110 SQLSTATE: 42000 (ER_FIELD_SPECIFIED_TWICE)

Message: Column '%s' specified twice

• Error: 1111 SQLSTATE: HY000 (ER_INVALID_GROUP_FUNC_USE)

Message: Invalid use of group function

• Error: 1112 SQLSTATE: 42000 (ER_UNSUPPORTED_EXTENSION)

Message: Table '%s' uses an extension that doesn't exist in this MySQL version

• Error: 1113 SQLSTATE: 42000 (ER_TABLE_MUST_HAVE_COLUMNS)

Message: A table must have at least 1 column

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2078

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1114 SQLSTATE: HY000 (ER_RECORD_FILE_FULL)

Message: The table '%s' is full

InnoDB reports this error when the system tablespace runs out of free space. Reconfigure the system
tablespace to add a new data file.

• Error: 1115 SQLSTATE: 42000 (ER_UNKNOWN_CHARACTER_SET)

Message: Unknown character set: '%s'

• Error: 1116 SQLSTATE: HY000 (ER_TOO_MANY_TABLES)

Message: Too many tables; MySQL can only use %d tables in a join

• Error: 1117 SQLSTATE: HY000 (ER_TOO_MANY_FIELDS)

Message: Too many columns

• Error: 1118 SQLSTATE: 42000 (ER_TOO_BIG_ROWSIZE)

Message: Row size too large. The maximum row size for the used table type, not counting BLOBs, is
%ld. You have to change some columns to TEXT or BLOBs

• Error: 1119 SQLSTATE: HY000 (ER_STACK_OVERRUN)

Message: Thread stack overrun: Used: %ld of a %ld stack. Use 'mysqld -O thread_stack=#' to specify a
bigger stack if needed

• Error: 1120 SQLSTATE: 42000 (ER_WRONG_OUTER_JOIN)

Message: Cross dependency found in OUTER JOIN; examine your ON conditions

• Error: 1121 SQLSTATE: 42000 (ER_NULL_COLUMN_IN_INDEX)

Message: Column '%s' is used with UNIQUE or INDEX but is not defined as NOT NULL

• Error: 1122 SQLSTATE: HY000 (ER_CANT_FIND_UDF)

Message: Can't load function '%s'

• Error: 1123 SQLSTATE: HY000 (ER_CANT_INITIALIZE_UDF)

Message: Can't initialize function '%s'; %s

• Error: 1124 SQLSTATE: HY000 (ER_UDF_NO_PATHS)

Message: No paths allowed for shared library

• Error: 1125 SQLSTATE: HY000 (ER_UDF_EXISTS)

Message: Function '%s' already exists

• Error: 1126 SQLSTATE: HY000 (ER_CANT_OPEN_LIBRARY)

Message: Can't open shared library '%s' (errno: %d %s)

• Error: 1127 SQLSTATE: HY000 (ER_CANT_FIND_DL_ENTRY)

Message: Can't find function '%s' in library

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2079

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1128 SQLSTATE: HY000 (ER_FUNCTION_NOT_DEFINED)

Message: Function '%s' is not defined

• Error: 1129 SQLSTATE: HY000 (ER_HOST_IS_BLOCKED)

Message: Host '%s' is blocked because of many connection errors; unblock with 'mysqladmin flush-
hosts'

• Error: 1130 SQLSTATE: HY000 (ER_HOST_NOT_PRIVILEGED)

Message: Host '%s' is not allowed to connect to this MySQL server

• Error: 1131 SQLSTATE: 42000 (ER_PASSWORD_ANONYMOUS_USER)

Message: You are using MySQL as an anonymous user and anonymous users are not allowed to
change passwords

• Error: 1132 SQLSTATE: 42000 (ER_PASSWORD_NOT_ALLOWED)

Message: You must have privileges to update tables in the mysql database to be able to change
passwords for others

• Error: 1133 SQLSTATE: 42000 (ER_PASSWORD_NO_MATCH)

Message: Can't find any matching row in the user table

• Error: 1134 SQLSTATE: HY000 (ER_UPDATE_INFO)

Message: Rows matched: %ld Changed: %ld Warnings: %ld

• Error: 1135 SQLSTATE: HY000 (ER_CANT_CREATE_THREAD)

Message: Can't create a new thread (errno %d); if you are not out of available memory, you can consult
the manual for a possible OS-dependent bug

• Error: 1136 SQLSTATE: 21S01 (ER_WRONG_VALUE_COUNT_ON_ROW)

Message: Column count doesn't match value count at row %ld

• Error: 1137 SQLSTATE: HY000 (ER_CANT_REOPEN_TABLE)

Message: Can't reopen table: '%s'

• Error: 1138 SQLSTATE: 22004 (ER_INVALID_USE_OF_NULL)

Message: Invalid use of NULL value

• Error: 1139 SQLSTATE: 42000 (ER_REGEXP_ERROR)

Message: Got error '%s' from regexp

• Error: 1140 SQLSTATE: 42000 (ER_MIX_OF_GROUP_FUNC_AND_FIELDS)

Message: Mixing of GROUP columns (MIN(),MAX(),COUNT(),...) with no GROUP columns is illegal if
there is no GROUP BY clause

• Error: 1141 SQLSTATE: 42000 (ER_NONEXISTING_GRANT)

Message: There is no such grant defined for user '%s' on host '%s'

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2080

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1142 SQLSTATE: 42000 (ER_TABLEACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for table '%s'

• Error: 1143 SQLSTATE: 42000 (ER_COLUMNACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for column '%s' in table '%s'

• Error: 1144 SQLSTATE: 42000 (ER_ILLEGAL_GRANT_FOR_TABLE)

Message: Illegal GRANT/REVOKE command; please consult the manual to see which privileges can be
used

• Error: 1145 SQLSTATE: 42000 (ER_GRANT_WRONG_HOST_OR_USER)

Message: The host or user argument to GRANT is too long

• Error: 1146 SQLSTATE: 42S02 (ER_NO_SUCH_TABLE)

Message: Table '%s.%s' doesn't exist

• Error: 1147 SQLSTATE: 42000 (ER_NONEXISTING_TABLE_GRANT)

Message: There is no such grant defined for user '%s' on host '%s' on table '%s'

• Error: 1148 SQLSTATE: 42000 (ER_NOT_ALLOWED_COMMAND)

Message: The used command is not allowed with this MySQL version

• Error: 1149 SQLSTATE: 42000 (ER_SYNTAX_ERROR)

Message: You have an error in your SQL syntax; check the manual that corresponds to your MySQL
server version for the right syntax to use

• Error: 1150 SQLSTATE: HY000 (ER_DELAYED_CANT_CHANGE_LOCK)

Message: Delayed insert thread couldn't get requested lock for table %s

• Error: 1151 SQLSTATE: HY000 (ER_TOO_MANY_DELAYED_THREADS)

Message: Too many delayed threads in use

• Error: 1152 SQLSTATE: 08S01 (ER_ABORTING_CONNECTION)

Message: Aborted connection %ld to db: '%s' user: '%s' (%s)

• Error: 1153 SQLSTATE: 08S01 (ER_NET_PACKET_TOO_LARGE)

Message: Got a packet bigger than 'max_allowed_packet' bytes

• Error: 1154 SQLSTATE: 08S01 (ER_NET_READ_ERROR_FROM_PIPE)

Message: Got a read error from the connection pipe

• Error: 1155 SQLSTATE: 08S01 (ER_NET_FCNTL_ERROR)

Message: Got an error from fcntl()

• Error: 1156 SQLSTATE: 08S01 (ER_NET_PACKETS_OUT_OF_ORDER)

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2081

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: Got packets out of order

• Error: 1157 SQLSTATE: 08S01 (ER_NET_UNCOMPRESS_ERROR)

Message: Couldn't uncompress communication packet

• Error: 1158 SQLSTATE: 08S01 (ER_NET_READ_ERROR)

Message: Got an error reading communication packets

• Error: 1159 SQLSTATE: 08S01 (ER_NET_READ_INTERRUPTED)

Message: Got timeout reading communication packets

• Error: 1160 SQLSTATE: 08S01 (ER_NET_ERROR_ON_WRITE)

Message: Got an error writing communication packets

• Error: 1161 SQLSTATE: 08S01 (ER_NET_WRITE_INTERRUPTED)

Message: Got timeout writing communication packets

• Error: 1162 SQLSTATE: 42000 (ER_TOO_LONG_STRING)

Message: Result string is longer than 'max_allowed_packet' bytes

• Error: 1163 SQLSTATE: 42000 (ER_TABLE_CANT_HANDLE_BLOB)

Message: The used table type doesn't support BLOB/TEXT columns

• Error: 1164 SQLSTATE: 42000 (ER_TABLE_CANT_HANDLE_AUTO_INCREMENT)

Message: The used table type doesn't support AUTO_INCREMENT columns

• Error: 1165 SQLSTATE: HY000 (ER_DELAYED_INSERT_TABLE_LOCKED)

Message: INSERT DELAYED can't be used with table '%s' because it is locked with LOCK TABLES

• Error: 1166 SQLSTATE: 42000 (ER_WRONG_COLUMN_NAME)

Message: Incorrect column name '%s'

• Error: 1167 SQLSTATE: 42000 (ER_WRONG_KEY_COLUMN)

Message: The used storage engine can't index column '%s'

• Error: 1168 SQLSTATE: HY000 (ER_WRONG_MRG_TABLE)

Message: Unable to open underlying table which is differently defined or of non-MyISAM type or doesn't
exist

• Error: 1169 SQLSTATE: 23000 (ER_DUP_UNIQUE)

Message: Can't write, because of unique constraint, to table '%s'

• Error: 1170 SQLSTATE: 42000 (ER_BLOB_KEY_WITHOUT_LENGTH)

Message: BLOB/TEXT column '%s' used in key specification without a key length

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2082

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1171 SQLSTATE: 42000 (ER_PRIMARY_CANT_HAVE_NULL)

Message: All parts of a PRIMARY KEY must be NOT NULL; if you need NULL in a key, use UNIQUE
instead

• Error: 1172 SQLSTATE: 42000 (ER_TOO_MANY_ROWS)

Message: Result consisted of more than one row

• Error: 1173 SQLSTATE: 42000 (ER_REQUIRES_PRIMARY_KEY)

Message: This table type requires a primary key

InnoDB reports this error when you attempt to drop an implicit clustered index (the first UNIQUE NOT
NULL index) if the table did not contain a PRIMARY KEY.

InnoDB should no longer report this error as of MySQL 5.5. For tables without an explicit PRIMARY
KEY, InnoDB creates an implicit clustered index using the first columns of the table that are declared
UNIQUE and NOT NULL. When you drop such an index, InnoDB now automatically copies the table
and rebuilds the index using a different UNIQUE NOT NULL group of columns or a system-generated
key. Since this operation changes the primary key, it uses the slow method of copying the table and re-
creating the index, rather than the Fast Index Creation technique from Implementation Details of Fast
Index Creation.

• Error: 1174 SQLSTATE: HY000 (ER_NO_RAID_COMPILED)

Message: This version of MySQL is not compiled with RAID support

• Error: 1175 SQLSTATE: HY000 (ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE)

Message: You are using safe update mode and you tried to update a table without a WHERE that uses a
KEY column

• Error: 1176 SQLSTATE: HY000 (ER_KEY_DOES_NOT_EXITS)

Message: Key '%s' doesn't exist in table '%s'

• Error: 1177 SQLSTATE: 42000 (ER_CHECK_NO_SUCH_TABLE)

Message: Can't open table

• Error: 1178 SQLSTATE: 42000 (ER_CHECK_NOT_IMPLEMENTED)

Message: The storage engine for the table doesn't support %s

• Error: 1179 SQLSTATE: 25000 (ER_CANT_DO_THIS_DURING_AN_TRANSACTION)

Message: You are not allowed to execute this command in a transaction

• Error: 1180 SQLSTATE: HY000 (ER_ERROR_DURING_COMMIT)

Message: Got error %d during COMMIT

• Error: 1181 SQLSTATE: HY000 (ER_ERROR_DURING_ROLLBACK)

Message: Got error %d during ROLLBACK

• Error: 1182 SQLSTATE: HY000 (ER_ERROR_DURING_FLUSH_LOGS)

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_clustered_index
http://dev.mysql.com/doc/refman/5.5/en/innodb-create-index-implementation.html
http://dev.mysql.com/doc/refman/5.5/en/innodb-create-index-implementation.html

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2083

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: Got error %d during FLUSH_LOGS

• Error: 1183 SQLSTATE: HY000 (ER_ERROR_DURING_CHECKPOINT)

Message: Got error %d during CHECKPOINT

• Error: 1184 SQLSTATE: 08S01 (ER_NEW_ABORTING_CONNECTION)

Message: Aborted connection %ld to db: '%s' user: '%s' host: '%s' (%s)

• Error: 1185 SQLSTATE: HY000 (ER_DUMP_NOT_IMPLEMENTED)

Message: The storage engine for the table does not support binary table dump

• Error: 1186 SQLSTATE: HY000 (ER_FLUSH_MASTER_BINLOG_CLOSED)

Message: Binlog closed, cannot RESET MASTER

• Error: 1187 SQLSTATE: HY000 (ER_INDEX_REBUILD)

Message: Failed rebuilding the index of dumped table '%s'

• Error: 1188 SQLSTATE: HY000 (ER_MASTER)

Message: Error from master: '%s'

• Error: 1189 SQLSTATE: 08S01 (ER_MASTER_NET_READ)

Message: Net error reading from master

• Error: 1190 SQLSTATE: 08S01 (ER_MASTER_NET_WRITE)

Message: Net error writing to master

• Error: 1191 SQLSTATE: HY000 (ER_FT_MATCHING_KEY_NOT_FOUND)

Message: Can't find FULLTEXT index matching the column list

• Error: 1192 SQLSTATE: HY000 (ER_LOCK_OR_ACTIVE_TRANSACTION)

Message: Can't execute the given command because you have active locked tables or an active
transaction

• Error: 1193 SQLSTATE: HY000 (ER_UNKNOWN_SYSTEM_VARIABLE)

Message: Unknown system variable '%s'

• Error: 1194 SQLSTATE: HY000 (ER_CRASHED_ON_USAGE)

Message: Table '%s' is marked as crashed and should be repaired

• Error: 1195 SQLSTATE: HY000 (ER_CRASHED_ON_REPAIR)

Message: Table '%s' is marked as crashed and last (automatic?) repair failed

• Error: 1196 SQLSTATE: HY000 (ER_WARNING_NOT_COMPLETE_ROLLBACK)

Message: Some non-transactional changed tables couldn't be rolled back

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2084

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1197 SQLSTATE: HY000 (ER_TRANS_CACHE_FULL)

Message: Multi-statement transaction required more than 'max_binlog_cache_size' bytes of storage;
increase this mysqld variable and try again

• Error: 1198 SQLSTATE: HY000 (ER_SLAVE_MUST_STOP)

Message: This operation cannot be performed with a running slave; run STOP SLAVE first

• Error: 1199 SQLSTATE: HY000 (ER_SLAVE_NOT_RUNNING)

Message: This operation requires a running slave; configure slave and do START SLAVE

• Error: 1200 SQLSTATE: HY000 (ER_BAD_SLAVE)

Message: The server is not configured as slave; fix in config file or with CHANGE MASTER TO

• Error: 1201 SQLSTATE: HY000 (ER_MASTER_INFO)

Message: Could not initialize master info structure; more error messages can be found in the MySQL
error log

• Error: 1202 SQLSTATE: HY000 (ER_SLAVE_THREAD)

Message: Could not create slave thread; check system resources

• Error: 1203 SQLSTATE: 42000 (ER_TOO_MANY_USER_CONNECTIONS)

Message: User %s already has more than 'max_user_connections' active connections

• Error: 1204 SQLSTATE: HY000 (ER_SET_CONSTANTS_ONLY)

Message: You may only use constant expressions with SET

• Error: 1205 SQLSTATE: HY000 (ER_LOCK_WAIT_TIMEOUT)

Message: Lock wait timeout exceeded; try restarting transaction

InnoDB reports this error when lock wait timeout expires. The statement that waited too long was rolled
back (not the entire transaction). You can increase the value of the innodb_lock_wait_timeout
configuration option if SQL statements should wait longer for other transactions to complete, or decrease
it if too many long-running transactions are causing locking problems and reducing concurrency on a
busy system.

• Error: 1206 SQLSTATE: HY000 (ER_LOCK_TABLE_FULL)

Message: The total number of locks exceeds the lock table size

InnoDB reports this error when the total number of locks exceeds the amount of memory devoted to
managing locks. To avoid this error, increase the value of innodb_buffer_pool_size. Within an
individual application, a workaround may be to break a large operation into smaller pieces. For example,
if the error occurs for a large INSERT, perform several smaller INSERT operations.

• Error: 1207 SQLSTATE: 25000 (ER_READ_ONLY_TRANSACTION)

Message: Update locks cannot be acquired during a READ UNCOMMITTED transaction

• Error: 1208 SQLSTATE: HY000 (ER_DROP_DB_WITH_READ_LOCK)

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_rollback
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_rollback
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_transaction
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_locking
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_concurrency

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2085

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: DROP DATABASE not allowed while thread is holding global read lock

• Error: 1209 SQLSTATE: HY000 (ER_CREATE_DB_WITH_READ_LOCK)

Message: CREATE DATABASE not allowed while thread is holding global read lock

• Error: 1210 SQLSTATE: HY000 (ER_WRONG_ARGUMENTS)

Message: Incorrect arguments to %s

• Error: 1211 SQLSTATE: 42000 (ER_NO_PERMISSION_TO_CREATE_USER)

Message: '%s'@'%s' is not allowed to create new users

• Error: 1212 SQLSTATE: HY000 (ER_UNION_TABLES_IN_DIFFERENT_DIR)

Message: Incorrect table definition; all MERGE tables must be in the same database

• Error: 1213 SQLSTATE: 40001 (ER_LOCK_DEADLOCK)

Message: Deadlock found when trying to get lock; try restarting transaction

InnoDB reports this error when a transaction encounters a deadlock and is automatically rolled back
so that your application can take corrective action. To recover from this error, run all the operations in
this transaction again. A deadlock occurs when requests for locks arrive in inconsistent order between
transactions. The transaction that was rolled back released all its locks, and the other transaction
can now get all the locks it requested. Thus, when you re-run the transaction that was rolled back, it
might have to wait for other transactions to complete, but typically the deadlock does not recur. If you
encounter frequent deadlocks, make the sequence of locking operations (LOCK TABLES, SELECT ...
FOR UPDATE, and so on) consistent between the different transactions or applications that experience
the issue. See Section 14.2.8.9, “How to Cope with Deadlocks” for details.

• Error: 1214 SQLSTATE: HY000 (ER_TABLE_CANT_HANDLE_FT)

Message: The used table type doesn't support FULLTEXT indexes

• Error: 1215 SQLSTATE: HY000 (ER_CANNOT_ADD_FOREIGN)

Message: Cannot add foreign key constraint

• Error: 1216 SQLSTATE: 23000 (ER_NO_REFERENCED_ROW)

Message: Cannot add or update a child row: a foreign key constraint fails

InnoDB reports this error when you try to add a row but there is no parent row, and a foreign key
constraint fails. Add the parent row first.

• Error: 1217 SQLSTATE: 23000 (ER_ROW_IS_REFERENCED)

Message: Cannot delete or update a parent row: a foreign key constraint fails

InnoDB reports this error when you try to delete a parent row that has children, and a foreign key
constraint fails. Delete the children first.

• Error: 1218 SQLSTATE: 08S01 (ER_CONNECT_TO_MASTER)

Message: Error connecting to master: %s

http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_transaction
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_deadlock
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_rollback
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key_constraint
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key_constraint
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key_constraint
http://dev.mysql.com/doc/refman/5.5/en/glossary.html#glos_foreign_key_constraint

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2086

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1219 SQLSTATE: HY000 (ER_QUERY_ON_MASTER)

Message: Error running query on master: %s

• Error: 1220 SQLSTATE: HY000 (ER_ERROR_WHEN_EXECUTING_COMMAND)

Message: Error when executing command %s: %s

• Error: 1221 SQLSTATE: HY000 (ER_WRONG_USAGE)

Message: Incorrect usage of %s and %s

• Error: 1222 SQLSTATE: 21000 (ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT)

Message: The used SELECT statements have a different number of columns

• Error: 1223 SQLSTATE: HY000 (ER_CANT_UPDATE_WITH_READLOCK)

Message: Can't execute the query because you have a conflicting read lock

• Error: 1224 SQLSTATE: HY000 (ER_MIXING_NOT_ALLOWED)

Message: Mixing of transactional and non-transactional tables is disabled

• Error: 1225 SQLSTATE: HY000 (ER_DUP_ARGUMENT)

Message: Option '%s' used twice in statement

• Error: 1226 SQLSTATE: 42000 (ER_USER_LIMIT_REACHED)

Message: User '%s' has exceeded the '%s' resource (current value: %ld)

• Error: 1227 SQLSTATE: 42000 (ER_SPECIFIC_ACCESS_DENIED_ERROR)

Message: Access denied; you need the %s privilege for this operation

• Error: 1228 SQLSTATE: HY000 (ER_LOCAL_VARIABLE)

Message: Variable '%s' is a SESSION variable and can't be used with SET GLOBAL

• Error: 1229 SQLSTATE: HY000 (ER_GLOBAL_VARIABLE)

Message: Variable '%s' is a GLOBAL variable and should be set with SET GLOBAL

• Error: 1230 SQLSTATE: 42000 (ER_NO_DEFAULT)

Message: Variable '%s' doesn't have a default value

• Error: 1231 SQLSTATE: 42000 (ER_WRONG_VALUE_FOR_VAR)

Message: Variable '%s' can't be set to the value of '%s'

• Error: 1232 SQLSTATE: 42000 (ER_WRONG_TYPE_FOR_VAR)

Message: Incorrect argument type to variable '%s'

• Error: 1233 SQLSTATE: HY000 (ER_VAR_CANT_BE_READ)

Message: Variable '%s' can only be set, not read

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2087

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1234 SQLSTATE: 42000 (ER_CANT_USE_OPTION_HERE)

Message: Incorrect usage/placement of '%s'

• Error: 1235 SQLSTATE: 42000 (ER_NOT_SUPPORTED_YET)

Message: This version of MySQL doesn't yet support '%s'

• Error: 1236 SQLSTATE: HY000 (ER_MASTER_FATAL_ERROR_READING_BINLOG)

Message: Got fatal error %d: '%s' from master when reading data from binary log

• Error: 1237 SQLSTATE: HY000 (ER_SLAVE_IGNORED_TABLE)

Message: Slave SQL thread ignored the query because of replicate-*-table rules

• Error: 1238 SQLSTATE: HY000 (ER_INCORRECT_GLOBAL_LOCAL_VAR)

Message: Variable '%s' is a %s variable

• Error: 1239 SQLSTATE: 42000 (ER_WRONG_FK_DEF)

Message: Incorrect foreign key definition for '%s': %s

• Error: 1240 SQLSTATE: HY000 (ER_KEY_REF_DO_NOT_MATCH_TABLE_REF)

Message: Key reference and table reference don't match

• Error: 1241 SQLSTATE: 21000 (ER_OPERAND_COLUMNS)

Message: Operand should contain %d column(s)

• Error: 1242 SQLSTATE: 21000 (ER_SUBQUERY_NO_1_ROW)

Message: Subquery returns more than 1 row

• Error: 1243 SQLSTATE: HY000 (ER_UNKNOWN_STMT_HANDLER)

Message: Unknown prepared statement handler (%.*s) given to %s

• Error: 1244 SQLSTATE: HY000 (ER_CORRUPT_HELP_DB)

Message: Help database is corrupt or does not exist

• Error: 1245 SQLSTATE: HY000 (ER_CYCLIC_REFERENCE)

Message: Cyclic reference on subqueries

• Error: 1246 SQLSTATE: HY000 (ER_AUTO_CONVERT)

Message: Converting column '%s' from %s to %s

• Error: 1247 SQLSTATE: 42S22 (ER_ILLEGAL_REFERENCE)

Message: Reference '%s' not supported (%s)

• Error: 1248 SQLSTATE: 42000 (ER_DERIVED_MUST_HAVE_ALIAS)

Message: Every derived table must have its own alias

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2088

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1249 SQLSTATE: 01000 (ER_SELECT_REDUCED)

Message: Select %u was reduced during optimization

• Error: 1250 SQLSTATE: 42000 (ER_TABLENAME_NOT_ALLOWED_HERE)

Message: Table '%s' from one of the SELECTs cannot be used in %s

• Error: 1251 SQLSTATE: 08004 (ER_NOT_SUPPORTED_AUTH_MODE)

Message: Client does not support authentication protocol requested by server; consider upgrading
MySQL client

• Error: 1252 SQLSTATE: 42000 (ER_SPATIAL_CANT_HAVE_NULL)

Message: All parts of a SPATIAL index must be NOT NULL

• Error: 1253 SQLSTATE: 42000 (ER_COLLATION_CHARSET_MISMATCH)

Message: COLLATION '%s' is not valid for CHARACTER SET '%s'

• Error: 1254 SQLSTATE: HY000 (ER_SLAVE_WAS_RUNNING)

Message: Slave is already running

• Error: 1255 SQLSTATE: HY000 (ER_SLAVE_WAS_NOT_RUNNING)

Message: Slave already has been stopped

• Error: 1256 SQLSTATE: HY000 (ER_TOO_BIG_FOR_UNCOMPRESS)

Message: Uncompressed data size too large; the maximum size is %d (probably, length of
uncompressed data was corrupted)

• Error: 1257 SQLSTATE: HY000 (ER_ZLIB_Z_MEM_ERROR)

Message: ZLIB: Not enough memory

• Error: 1258 SQLSTATE: HY000 (ER_ZLIB_Z_BUF_ERROR)

Message: ZLIB: Not enough room in the output buffer (probably, length of uncompressed data was
corrupted)

• Error: 1259 SQLSTATE: HY000 (ER_ZLIB_Z_DATA_ERROR)

Message: ZLIB: Input data corrupted

• Error: 1260 SQLSTATE: HY000 (ER_CUT_VALUE_GROUP_CONCAT)

Message: %d line(s) were cut by GROUP_CONCAT()

• Error: 1261 SQLSTATE: 01000 (ER_WARN_TOO_FEW_RECORDS)

Message: Row %ld doesn't contain data for all columns

• Error: 1262 SQLSTATE: 01000 (ER_WARN_TOO_MANY_RECORDS)

Message: Row %ld was truncated; it contained more data than there were input columns

• Error: 1263 SQLSTATE: 22004 (ER_WARN_NULL_TO_NOTNULL)

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2089

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: Column was set to data type implicit default; NULL supplied for NOT NULL column '%s' at row
%ld

• Error: 1264 SQLSTATE: 22003 (ER_WARN_DATA_OUT_OF_RANGE)

Message: Out of range value adjusted for column '%s' at row %ld

• Error: 1265 SQLSTATE: 01000 (WARN_DATA_TRUNCATED)

Message: Data truncated for column '%s' at row %ld

• Error: 1266 SQLSTATE: HY000 (ER_WARN_USING_OTHER_HANDLER)

Message: Using storage engine %s for table '%s'

• Error: 1267 SQLSTATE: HY000 (ER_CANT_AGGREGATE_2COLLATIONS)

Message: Illegal mix of collations (%s,%s) and (%s,%s) for operation '%s'

• Error: 1268 SQLSTATE: HY000 (ER_DROP_USER)

Message: Cannot drop one or more of the requested users

• Error: 1269 SQLSTATE: HY000 (ER_REVOKE_GRANTS)

Message: Can't revoke all privileges for one or more of the requested users

• Error: 1270 SQLSTATE: HY000 (ER_CANT_AGGREGATE_3COLLATIONS)

Message: Illegal mix of collations (%s,%s), (%s,%s), (%s,%s) for operation '%s'

• Error: 1271 SQLSTATE: HY000 (ER_CANT_AGGREGATE_NCOLLATIONS)

Message: Illegal mix of collations for operation '%s'

• Error: 1272 SQLSTATE: HY000 (ER_VARIABLE_IS_NOT_STRUCT)

Message: Variable '%s' is not a variable component (can't be used as XXXX.variable_name)

• Error: 1273 SQLSTATE: HY000 (ER_UNKNOWN_COLLATION)

Message: Unknown collation: '%s'

• Error: 1274 SQLSTATE: HY000 (ER_SLAVE_IGNORED_SSL_PARAMS)

Message: SSL parameters in CHANGE MASTER are ignored because this MySQL slave was compiled
without SSL support; they can be used later if MySQL slave with SSL is started

• Error: 1275 SQLSTATE: HY000 (ER_SERVER_IS_IN_SECURE_AUTH_MODE)

Message: Server is running in --secure-auth mode, but '%s'@'%s' has a password in the old format;
please change the password to the new format

• Error: 1276 SQLSTATE: HY000 (ER_WARN_FIELD_RESOLVED)

Message: Field or reference '%s%s%s%s%s' of SELECT #%d was resolved in SELECT #%d

• Error: 1277 SQLSTATE: HY000 (ER_BAD_SLAVE_UNTIL_COND)

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2090

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: Incorrect parameter or combination of parameters for START SLAVE UNTIL

• Error: 1278 SQLSTATE: HY000 (ER_MISSING_SKIP_SLAVE)

Message: It is recommended to use --skip-slave-start when doing step-by-step replication with START
SLAVE UNTIL; otherwise, you will get problems if you get an unexpected slave's mysqld restart

• Error: 1279 SQLSTATE: HY000 (ER_UNTIL_COND_IGNORED)

Message: SQL thread is not to be started so UNTIL options are ignored

• Error: 1280 SQLSTATE: 42000 (ER_WRONG_NAME_FOR_INDEX)

Message: Incorrect index name '%s'

• Error: 1281 SQLSTATE: 42000 (ER_WRONG_NAME_FOR_CATALOG)

Message: Incorrect catalog name '%s'

• Error: 1282 SQLSTATE: HY000 (ER_WARN_QC_RESIZE)

Message: Query cache failed to set size %lu; new query cache size is %lu

• Error: 1283 SQLSTATE: HY000 (ER_BAD_FT_COLUMN)

Message: Column '%s' cannot be part of FULLTEXT index

• Error: 1284 SQLSTATE: HY000 (ER_UNKNOWN_KEY_CACHE)

Message: Unknown key cache '%s'

• Error: 1285 SQLSTATE: HY000 (ER_WARN_HOSTNAME_WONT_WORK)

Message: MySQL is started in --skip-name-resolve mode; you must restart it without this switch for this
grant to work

• Error: 1286 SQLSTATE: 42000 (ER_UNKNOWN_STORAGE_ENGINE)

Message: Unknown table engine '%s'

• Error: 1287 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX)

Message: '%s' is deprecated; use '%s' instead

• Error: 1288 SQLSTATE: HY000 (ER_NON_UPDATABLE_TABLE)

Message: The target table %s of the %s is not updatable

• Error: 1289 SQLSTATE: HY000 (ER_FEATURE_DISABLED)

Message: The '%s' feature is disabled; you need MySQL built with '%s' to have it working

• Error: 1290 SQLSTATE: HY000 (ER_OPTION_PREVENTS_STATEMENT)

Message: The MySQL server is running with the %s option so it cannot execute this statement

• Error: 1291 SQLSTATE: HY000 (ER_DUPLICATED_VALUE_IN_TYPE)

Message: Column '%s' has duplicated value '%s' in %s

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2091

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1292 SQLSTATE: 22007 (ER_TRUNCATED_WRONG_VALUE)

Message: Truncated incorrect %s value: '%s'

• Error: 1293 SQLSTATE: HY000 (ER_TOO_MUCH_AUTO_TIMESTAMP_COLS)

Message: Incorrect table definition; there can be only one TIMESTAMP column with
CURRENT_TIMESTAMP in DEFAULT or ON UPDATE clause

• Error: 1294 SQLSTATE: HY000 (ER_INVALID_ON_UPDATE)

Message: Invalid ON UPDATE clause for '%s' column

• Error: 1295 SQLSTATE: HY000 (ER_UNSUPPORTED_PS)

Message: This command is not supported in the prepared statement protocol yet

• Error: 1296 SQLSTATE: HY000 (ER_GET_ERRMSG)

Message: Got error %d '%s' from %s

• Error: 1297 SQLSTATE: HY000 (ER_GET_TEMPORARY_ERRMSG)

Message: Got temporary error %d '%s' from %s

• Error: 1298 SQLSTATE: HY000 (ER_UNKNOWN_TIME_ZONE)

Message: Unknown or incorrect time zone: '%s'

• Error: 1299 SQLSTATE: HY000 (ER_WARN_INVALID_TIMESTAMP)

Message: Invalid TIMESTAMP value in column '%s' at row %ld

• Error: 1300 SQLSTATE: HY000 (ER_INVALID_CHARACTER_STRING)

Message: Invalid %s character string: '%s'

• Error: 1301 SQLSTATE: HY000 (ER_WARN_ALLOWED_PACKET_OVERFLOWED)

Message: Result of %s() was larger than max_allowed_packet (%ld) - truncated

• Error: 1302 SQLSTATE: HY000 (ER_CONFLICTING_DECLARATIONS)

Message: Conflicting declarations: '%s%s' and '%s%s'

• Error: 1303 SQLSTATE: 2F003 (ER_SP_NO_RECURSIVE_CREATE)

Message: Can't create a %s from within another stored routine

• Error: 1304 SQLSTATE: 42000 (ER_SP_ALREADY_EXISTS)

Message: %s %s already exists

• Error: 1305 SQLSTATE: 42000 (ER_SP_DOES_NOT_EXIST)

Message: %s %s does not exist

• Error: 1306 SQLSTATE: HY000 (ER_SP_DROP_FAILED)

Message: Failed to DROP %s %s

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2092

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1307 SQLSTATE: HY000 (ER_SP_STORE_FAILED)

Message: Failed to CREATE %s %s

• Error: 1308 SQLSTATE: 42000 (ER_SP_LILABEL_MISMATCH)

Message: %s with no matching label: %s

• Error: 1309 SQLSTATE: 42000 (ER_SP_LABEL_REDEFINE)

Message: Redefining label %s

• Error: 1310 SQLSTATE: 42000 (ER_SP_LABEL_MISMATCH)

Message: End-label %s without match

• Error: 1311 SQLSTATE: 01000 (ER_SP_UNINIT_VAR)

Message: Referring to uninitialized variable %s

• Error: 1312 SQLSTATE: 0A000 (ER_SP_BADSELECT)

Message: PROCEDURE %s can't return a result set in the given context

• Error: 1313 SQLSTATE: 42000 (ER_SP_BADRETURN)

Message: RETURN is only allowed in a FUNCTION

• Error: 1314 SQLSTATE: 0A000 (ER_SP_BADSTATEMENT)

Message: %s is not allowed in stored procedures

• Error: 1315 SQLSTATE: 42000 (ER_UPDATE_LOG_DEPRECATED_IGNORED)

Message: The update log is deprecated and replaced by the binary log; SET SQL_LOG_UPDATE has
been ignored

• Error: 1316 SQLSTATE: 42000 (ER_UPDATE_LOG_DEPRECATED_TRANSLATED)

Message: The update log is deprecated and replaced by the binary log; SET SQL_LOG_UPDATE has
been translated to SET SQL_LOG_BIN

• Error: 1317 SQLSTATE: 70100 (ER_QUERY_INTERRUPTED)

Message: Query execution was interrupted

• Error: 1318 SQLSTATE: 42000 (ER_SP_WRONG_NO_OF_ARGS)

Message: Incorrect number of arguments for %s %s; expected %u, got %u

• Error: 1319 SQLSTATE: 42000 (ER_SP_COND_MISMATCH)

Message: Undefined CONDITION: %s

• Error: 1320 SQLSTATE: 42000 (ER_SP_NORETURN)

Message: No RETURN found in FUNCTION %s

• Error: 1321 SQLSTATE: 2F005 (ER_SP_NORETURNEND)

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2093

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: FUNCTION %s ended without RETURN

• Error: 1322 SQLSTATE: 42000 (ER_SP_BAD_CURSOR_QUERY)

Message: Cursor statement must be a SELECT

• Error: 1323 SQLSTATE: 42000 (ER_SP_BAD_CURSOR_SELECT)

Message: Cursor SELECT must not have INTO

• Error: 1324 SQLSTATE: 42000 (ER_SP_CURSOR_MISMATCH)

Message: Undefined CURSOR: %s

• Error: 1325 SQLSTATE: 24000 (ER_SP_CURSOR_ALREADY_OPEN)

Message: Cursor is already open

• Error: 1326 SQLSTATE: 24000 (ER_SP_CURSOR_NOT_OPEN)

Message: Cursor is not open

• Error: 1327 SQLSTATE: 42000 (ER_SP_UNDECLARED_VAR)

Message: Undeclared variable: %s

• Error: 1328 SQLSTATE: HY000 (ER_SP_WRONG_NO_OF_FETCH_ARGS)

Message: Incorrect number of FETCH variables

• Error: 1329 SQLSTATE: 02000 (ER_SP_FETCH_NO_DATA)

Message: No data - zero rows fetched, selected, or processed

• Error: 1330 SQLSTATE: 42000 (ER_SP_DUP_PARAM)

Message: Duplicate parameter: %s

• Error: 1331 SQLSTATE: 42000 (ER_SP_DUP_VAR)

Message: Duplicate variable: %s

• Error: 1332 SQLSTATE: 42000 (ER_SP_DUP_COND)

Message: Duplicate condition: %s

• Error: 1333 SQLSTATE: 42000 (ER_SP_DUP_CURS)

Message: Duplicate cursor: %s

• Error: 1334 SQLSTATE: HY000 (ER_SP_CANT_ALTER)

Message: Failed to ALTER %s %s

• Error: 1335 SQLSTATE: 0A000 (ER_SP_SUBSELECT_NYI)

Message: Subselect value not supported

• Error: 1336 SQLSTATE: 42000 (ER_SP_NO_USE)

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2094

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: USE is not allowed in a stored procedure

In 5.0.12: ER_SP_NO_USE was renamed to ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG.

ER_SP_NO_USE was removed after 5.0.11.

• Error: 1336 SQLSTATE: 0A000 (ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG)

Message: %s is not allowed in stored function or trigger

In 5.0.12: ER_SP_NO_USE was renamed to ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG.

ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG was added in 5.0.12.

• Error: 1337 SQLSTATE: 42000 (ER_SP_VARCOND_AFTER_CURSHNDLR)

Message: Variable or condition declaration after cursor or handler declaration

• Error: 1338 SQLSTATE: 42000 (ER_SP_CURSOR_AFTER_HANDLER)

Message: Cursor declaration after handler declaration

• Error: 1339 SQLSTATE: 20000 (ER_SP_CASE_NOT_FOUND)

Message: Case not found for CASE statement

• Error: 1340 SQLSTATE: HY000 (ER_FPARSER_TOO_BIG_FILE)

Message: Configuration file '%s' is too big

• Error: 1341 SQLSTATE: HY000 (ER_FPARSER_BAD_HEADER)

Message: Malformed file type header in file '%s'

• Error: 1342 SQLSTATE: HY000 (ER_FPARSER_EOF_IN_COMMENT)

Message: Unexpected end of file while parsing comment '%s'

• Error: 1343 SQLSTATE: HY000 (ER_FPARSER_ERROR_IN_PARAMETER)

Message: Error while parsing parameter '%s' (line: '%s')

• Error: 1344 SQLSTATE: HY000 (ER_FPARSER_EOF_IN_UNKNOWN_PARAMETER)

Message: Unexpected end of file while skipping unknown parameter '%s'

• Error: 1345 SQLSTATE: HY000 (ER_VIEW_NO_EXPLAIN)

Message: EXPLAIN/SHOW can not be issued; lacking privileges for underlying table

• Error: 1346 SQLSTATE: HY000 (ER_FRM_UNKNOWN_TYPE)

Message: File '%s' has unknown type '%s' in its header

• Error: 1347 SQLSTATE: HY000 (ER_WRONG_OBJECT)

Message: '%s.%s' is not %s

• Error: 1348 SQLSTATE: HY000 (ER_NONUPDATEABLE_COLUMN)

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2095

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: Column '%s' is not updatable

• Error: 1349 SQLSTATE: HY000 (ER_VIEW_SELECT_DERIVED)

Message: View's SELECT contains a subquery in the FROM clause

• Error: 1350 SQLSTATE: HY000 (ER_VIEW_SELECT_CLAUSE)

Message: View's SELECT contains a '%s' clause

• Error: 1351 SQLSTATE: HY000 (ER_VIEW_SELECT_VARIABLE)

Message: View's SELECT contains a variable or parameter

• Error: 1352 SQLSTATE: HY000 (ER_VIEW_SELECT_TMPTABLE)

Message: View's SELECT refers to a temporary table '%s'

• Error: 1353 SQLSTATE: HY000 (ER_VIEW_WRONG_LIST)

Message: View's SELECT and view's field list have different column counts

• Error: 1354 SQLSTATE: HY000 (ER_WARN_VIEW_MERGE)

Message: View merge algorithm can't be used here for now (assumed undefined algorithm)

• Error: 1355 SQLSTATE: HY000 (ER_WARN_VIEW_WITHOUT_KEY)

Message: View being updated does not have complete key of underlying table in it

• Error: 1356 SQLSTATE: HY000 (ER_VIEW_INVALID)

Message: View '%s.%s' references invalid table(s) or column(s) or function(s) or definer/invoker of view
lack rights to use them

• Error: 1357 SQLSTATE: HY000 (ER_SP_NO_DROP_SP)

Message: Can't drop or alter a %s from within another stored routine

• Error: 1358 SQLSTATE: HY000 (ER_SP_GOTO_IN_HNDLR)

Message: GOTO is not allowed in a stored procedure handler

• Error: 1359 SQLSTATE: HY000 (ER_TRG_ALREADY_EXISTS)

Message: Trigger already exists

• Error: 1360 SQLSTATE: HY000 (ER_TRG_DOES_NOT_EXIST)

Message: Trigger does not exist

• Error: 1361 SQLSTATE: HY000 (ER_TRG_ON_VIEW_OR_TEMP_TABLE)

Message: Trigger's '%s' is view or temporary table

• Error: 1362 SQLSTATE: HY000 (ER_TRG_CANT_CHANGE_ROW)

Message: Updating of %s row is not allowed in %strigger

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2096

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1363 SQLSTATE: HY000 (ER_TRG_NO_SUCH_ROW_IN_TRG)

Message: There is no %s row in %s trigger

• Error: 1364 SQLSTATE: HY000 (ER_NO_DEFAULT_FOR_FIELD)

Message: Field '%s' doesn't have a default value

• Error: 1365 SQLSTATE: 22012 (ER_DIVISION_BY_ZERO)

Message: Division by 0

• Error: 1366 SQLSTATE: HY000 (ER_TRUNCATED_WRONG_VALUE_FOR_FIELD)

Message: Incorrect %s value: '%s' for column '%s' at row %ld

• Error: 1367 SQLSTATE: 22007 (ER_ILLEGAL_VALUE_FOR_TYPE)

Message: Illegal %s '%s' value found during parsing

• Error: 1368 SQLSTATE: HY000 (ER_VIEW_NONUPD_CHECK)

Message: CHECK OPTION on non-updatable view '%s.%s'

• Error: 1369 SQLSTATE: HY000 (ER_VIEW_CHECK_FAILED)

Message: CHECK OPTION failed '%s.%s'

• Error: 1370 SQLSTATE: 42000 (ER_PROCACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for routine '%s'

• Error: 1371 SQLSTATE: HY000 (ER_RELAY_LOG_FAIL)

Message: Failed purging old relay logs: %s

• Error: 1372 SQLSTATE: HY000 (ER_PASSWD_LENGTH)

Message: Password hash should be a %d-digit hexadecimal number

• Error: 1373 SQLSTATE: HY000 (ER_UNKNOWN_TARGET_BINLOG)

Message: Target log not found in binlog index

• Error: 1374 SQLSTATE: HY000 (ER_IO_ERR_LOG_INDEX_READ)

Message: I/O error reading log index file

• Error: 1375 SQLSTATE: HY000 (ER_BINLOG_PURGE_PROHIBITED)

Message: Server configuration does not permit binlog purge

• Error: 1376 SQLSTATE: HY000 (ER_FSEEK_FAIL)

Message: Failed on fseek()

• Error: 1377 SQLSTATE: HY000 (ER_BINLOG_PURGE_FATAL_ERR)

Message: Fatal error during log purge

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2097

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1378 SQLSTATE: HY000 (ER_LOG_IN_USE)

Message: A purgeable log is in use, will not purge

• Error: 1379 SQLSTATE: HY000 (ER_LOG_PURGE_UNKNOWN_ERR)

Message: Unknown error during log purge

• Error: 1380 SQLSTATE: HY000 (ER_RELAY_LOG_INIT)

Message: Failed initializing relay log position: %s

• Error: 1381 SQLSTATE: HY000 (ER_NO_BINARY_LOGGING)

Message: You are not using binary logging

• Error: 1382 SQLSTATE: HY000 (ER_RESERVED_SYNTAX)

Message: The '%s' syntax is reserved for purposes internal to the MySQL server

• Error: 1383 SQLSTATE: HY000 (ER_WSAS_FAILED)

Message: WSAStartup Failed

• Error: 1384 SQLSTATE: HY000 (ER_DIFF_GROUPS_PROC)

Message: Can't handle procedures with different groups yet

• Error: 1385 SQLSTATE: HY000 (ER_NO_GROUP_FOR_PROC)

Message: Select must have a group with this procedure

• Error: 1386 SQLSTATE: HY000 (ER_ORDER_WITH_PROC)

Message: Can't use ORDER clause with this procedure

• Error: 1387 SQLSTATE: HY000 (ER_LOGGING_PROHIBIT_CHANGING_OF)

Message: Binary logging and replication forbid changing the global server %s

• Error: 1388 SQLSTATE: HY000 (ER_NO_FILE_MAPPING)

Message: Can't map file: %s, errno: %d

• Error: 1389 SQLSTATE: HY000 (ER_WRONG_MAGIC)

Message: Wrong magic in %s

• Error: 1390 SQLSTATE: HY000 (ER_PS_MANY_PARAM)

Message: Prepared statement contains too many placeholders

• Error: 1391 SQLSTATE: HY000 (ER_KEY_PART_0)

Message: Key part '%s' length cannot be 0

• Error: 1392 SQLSTATE: HY000 (ER_VIEW_CHECKSUM)

Message: View text checksum failed

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2098

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1393 SQLSTATE: HY000 (ER_VIEW_MULTIUPDATE)

Message: Can not modify more than one base table through a join view '%s.%s'

• Error: 1394 SQLSTATE: HY000 (ER_VIEW_NO_INSERT_FIELD_LIST)

Message: Can not insert into join view '%s.%s' without fields list

• Error: 1395 SQLSTATE: HY000 (ER_VIEW_DELETE_MERGE_VIEW)

Message: Can not delete from join view '%s.%s'

• Error: 1396 SQLSTATE: HY000 (ER_CANNOT_USER)

Message: Operation %s failed for %s

• Error: 1397 SQLSTATE: XAE04 (ER_XAER_NOTA)

Message: XAER_NOTA: Unknown XID

• Error: 1398 SQLSTATE: XAE05 (ER_XAER_INVAL)

Message: XAER_INVAL: Invalid arguments (or unsupported command)

• Error: 1399 SQLSTATE: XAE07 (ER_XAER_RMFAIL)

Message: XAER_RMFAIL: The command cannot be executed when global transaction is in the %s state

• Error: 1400 SQLSTATE: XAE09 (ER_XAER_OUTSIDE)

Message: XAER_OUTSIDE: Some work is done outside global transaction

• Error: 1401 SQLSTATE: XAE03 (ER_XAER_RMERR)

Message: XAER_RMERR: Fatal error occurred in the transaction branch - check your data for
consistency

• Error: 1402 SQLSTATE: XA100 (ER_XA_RBROLLBACK)

Message: XA_RBROLLBACK: Transaction branch was rolled back

• Error: 1403 SQLSTATE: 42000 (ER_NONEXISTING_PROC_GRANT)

Message: There is no such grant defined for user '%s' on host '%s' on routine '%s'

• Error: 1404 SQLSTATE: HY000 (ER_PROC_AUTO_GRANT_FAIL)

Message: Failed to grant EXECUTE and ALTER ROUTINE privileges

• Error: 1405 SQLSTATE: HY000 (ER_PROC_AUTO_REVOKE_FAIL)

Message: Failed to revoke all privileges to dropped routine

• Error: 1406 SQLSTATE: 22001 (ER_DATA_TOO_LONG)

Message: Data too long for column '%s' at row %ld

• Error: 1407 SQLSTATE: 42000 (ER_SP_BAD_SQLSTATE)

Message: Bad SQLSTATE: '%s'

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2099

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1408 SQLSTATE: HY000 (ER_STARTUP)

Message: %s: ready for connections. Version: '%s' socket: '%s' port: %d %s

• Error: 1409 SQLSTATE: HY000 (ER_LOAD_FROM_FIXED_SIZE_ROWS_TO_VAR)

Message: Can't load value from file with fixed size rows to variable

• Error: 1410 SQLSTATE: 42000 (ER_CANT_CREATE_USER_WITH_GRANT)

Message: You are not allowed to create a user with GRANT

• Error: 1411 SQLSTATE: HY000 (ER_WRONG_VALUE_FOR_TYPE)

Message: Incorrect %s value: '%s' for function %s

• Error: 1412 SQLSTATE: HY000 (ER_TABLE_DEF_CHANGED)

Message: Table definition has changed, please retry transaction

• Error: 1413 SQLSTATE: 42000 (ER_SP_DUP_HANDLER)

Message: Duplicate handler declared in the same block

• Error: 1414 SQLSTATE: 42000 (ER_SP_NOT_VAR_ARG)

Message: OUT or INOUT argument %d for routine %s is not a variable or NEW pseudo-variable in
BEFORE trigger

• Error: 1415 SQLSTATE: 0A000 (ER_SP_NO_RETSET_IN_FUNC)

Message: Not allowed to return a result set from a function

In 5.0.12: ER_SP_NO_RETSET_IN_FUNC was renamed to ER_SP_NO_RETSET.

ER_SP_NO_RETSET_IN_FUNC was removed after 5.0.11.

• Error: 1415 SQLSTATE: 0A000 (ER_SP_NO_RETSET)

Message: Not allowed to return a result set from a %s

In 5.0.12: ER_SP_NO_RETSET_IN_FUNC was renamed to ER_SP_NO_RETSET.

ER_SP_NO_RETSET was added in 5.0.12.

• Error: 1416 SQLSTATE: 22003 (ER_CANT_CREATE_GEOMETRY_OBJECT)

Message: Cannot get geometry object from data you send to the GEOMETRY field

• Error: 1417 SQLSTATE: HY000 (ER_FAILED_ROUTINE_BREAK_BINLOG)

Message: A routine failed and has neither NO SQL nor READS SQL DATA in its declaration and binary
logging is enabled; if non-transactional tables were updated, the binary log will miss their changes

• Error: 1418 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_ROUTINE)

Message: This function has none of DETERMINISTIC, NO SQL, or READS SQL DATA in its declaration
and binary logging is enabled (you *might* want to use the less safe log_bin_trust_function_creators
variable)

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2100

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1419 SQLSTATE: HY000 (ER_BINLOG_CREATE_ROUTINE_NEED_SUPER)

Message: You do not have the SUPER privilege and binary logging is enabled (you *might* want to use
the less safe log_bin_trust_function_creators variable)

• Error: 1420 SQLSTATE: HY000 (ER_EXEC_STMT_WITH_OPEN_CURSOR)

Message: You can't execute a prepared statement which has an open cursor associated with it. Reset
the statement to re-execute it.

• Error: 1421 SQLSTATE: HY000 (ER_STMT_HAS_NO_OPEN_CURSOR)

Message: The statement (%lu) has no open cursor.

• Error: 1422 SQLSTATE: HY000 (ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG)

Message: Explicit or implicit commit is not allowed in stored function or trigger.

• Error: 1423 SQLSTATE: HY000 (ER_NO_DEFAULT_FOR_VIEW_FIELD)

Message: Field of view '%s.%s' underlying table doesn't have a default value

ER_NO_DEFAULT_FOR_VIEW_FIELD was added in 5.0.9.

• Error: 1424 SQLSTATE: HY000 (ER_SP_NO_RECURSION)

Message: Recursive stored functions and triggers are not allowed.

ER_SP_NO_RECURSION was added in 5.0.9.

• Error: 1425 SQLSTATE: 42000 (ER_TOO_BIG_SCALE)

Message: Too big scale %lu specified for column '%s'. Maximum is %d.

ER_TOO_BIG_SCALE was added in 5.0.10.

• Error: 1426 SQLSTATE: 42000 (ER_TOO_BIG_PRECISION)

Message: Too big precision %lu specified for column '%s'. Maximum is %lu.

ER_TOO_BIG_PRECISION was added in 5.0.10.

• Error: 1427 SQLSTATE: 42000 (ER_SCALE_BIGGER_THAN_PRECISION)

Message: Scale may not be larger than the precision (column '%s').

In 5.0.14: ER_SCALE_BIGGER_THAN_PRECISION was renamed to ER_M_BIGGER_THAN_D.

ER_SCALE_BIGGER_THAN_PRECISION was added in 5.0.10, removed after 5.0.13.

• Error: 1427 SQLSTATE: 42000 (ER_M_BIGGER_THAN_D)

Message: For float(M,D), double(M,D) or decimal(M,D), M must be >= D (column '%s').

In 5.0.14: ER_SCALE_BIGGER_THAN_PRECISION was renamed to ER_M_BIGGER_THAN_D.

ER_M_BIGGER_THAN_D was added in 5.0.14.

• Error: 1428 SQLSTATE: HY000 (ER_WRONG_LOCK_OF_SYSTEM_TABLE)

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2101

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: You can't combine write-locking of system '%s.%s' table with other tables

ER_WRONG_LOCK_OF_SYSTEM_TABLE was added in 5.0.10.

• Error: 1429 SQLSTATE: HY000 (ER_CONNECT_TO_FOREIGN_DATA_SOURCE)

Message: Unable to connect to foreign data source: %s

ER_CONNECT_TO_FOREIGN_DATA_SOURCE was added in 5.0.10.

• Error: 1430 SQLSTATE: HY000 (ER_QUERY_ON_FOREIGN_DATA_SOURCE)

Message: There was a problem processing the query on the foreign data source. Data source error: %s

ER_QUERY_ON_FOREIGN_DATA_SOURCE was added in 5.0.10.

• Error: 1431 SQLSTATE: HY000 (ER_FOREIGN_DATA_SOURCE_DOESNT_EXIST)

Message: The foreign data source you are trying to reference does not exist. Data source error: %s

ER_FOREIGN_DATA_SOURCE_DOESNT_EXIST was added in 5.0.10.

• Error: 1432 SQLSTATE: HY000 (ER_FOREIGN_DATA_STRING_INVALID_CANT_CREATE)

Message: Can't create federated table. The data source connection string '%s' is not in the correct
format

ER_FOREIGN_DATA_STRING_INVALID_CANT_CREATE was added in 5.0.10.

• Error: 1433 SQLSTATE: HY000 (ER_FOREIGN_DATA_STRING_INVALID)

Message: The data source connection string '%s' is not in the correct format

ER_FOREIGN_DATA_STRING_INVALID was added in 5.0.10.

• Error: 1434 SQLSTATE: HY000 (ER_CANT_CREATE_FEDERATED_TABLE)

Message: Can't create federated table. Foreign data src error: %s

ER_CANT_CREATE_FEDERATED_TABLE was added in 5.0.10.

• Error: 1435 SQLSTATE: HY000 (ER_TRG_IN_WRONG_SCHEMA)

Message: Trigger in wrong schema

ER_TRG_IN_WRONG_SCHEMA was added in 5.0.10.

• Error: 1436 SQLSTATE: HY000 (ER_STACK_OVERRUN_NEED_MORE)

Message: Thread stack overrun: %ld bytes used of a %ld byte stack, and %ld bytes needed. Use
'mysqld -O thread_stack=#' to specify a bigger stack.

ER_STACK_OVERRUN_NEED_MORE was added in 5.0.11.

• Error: 1437 SQLSTATE: 42000 (ER_TOO_LONG_BODY)

Message: Routine body for '%s' is too long

ER_TOO_LONG_BODY was added in 5.0.11.

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2102

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Error: 1438 SQLSTATE: HY000 (ER_WARN_CANT_DROP_DEFAULT_KEYCACHE)

Message: Cannot drop default keycache

ER_WARN_CANT_DROP_DEFAULT_KEYCACHE was added in 5.0.12.

• Error: 1439 SQLSTATE: 42000 (ER_TOO_BIG_DISPLAYWIDTH)

Message: Display width out of range for column '%s' (max = %lu)

ER_TOO_BIG_DISPLAYWIDTH was added in 5.0.12.

• Error: 1440 SQLSTATE: XAE08 (ER_XAER_DUPID)

Message: XAER_DUPID: The XID already exists

ER_XAER_DUPID was added in 5.0.12.

• Error: 1441 SQLSTATE: 22008 (ER_DATETIME_FUNCTION_OVERFLOW)

Message: Datetime function: %s field overflow

ER_DATETIME_FUNCTION_OVERFLOW was added in 5.0.12.

• Error: 1442 SQLSTATE: HY000 (ER_CANT_UPDATE_USED_TABLE_IN_SF_OR_TRG)

Message: Can't update table '%s' in stored function/trigger because it is already used by statement
which invoked this stored function/trigger.

ER_CANT_UPDATE_USED_TABLE_IN_SF_OR_TRG was added in 5.0.12.

• Error: 1443 SQLSTATE: HY000 (ER_VIEW_PREVENT_UPDATE)

Message: The definition of table '%s' prevents operation %s on table '%s'.

ER_VIEW_PREVENT_UPDATE was added in 5.0.13.

• Error: 1444 SQLSTATE: HY000 (ER_PS_NO_RECURSION)

Message: The prepared statement contains a stored routine call that refers to that same statement. It's
not allowed to execute a prepared statement in such a recursive manner

ER_PS_NO_RECURSION was added in 5.0.13.

• Error: 1445 SQLSTATE: HY000 (ER_SP_CANT_SET_AUTOCOMMIT)

Message: Not allowed to set autocommit from a stored function or trigger

ER_SP_CANT_SET_AUTOCOMMIT was added in 5.0.13.

• Error: 1446 SQLSTATE: HY000 (ER_NO_VIEW_USER)

Message: View definer is not fully qualified

In 5.0.17: ER_NO_VIEW_USER was renamed to ER_MALFORMED_DEFINER.

ER_NO_VIEW_USER was added in 5.0.13, removed after 5.0.16.

• Error: 1446 SQLSTATE: HY000 (ER_MALFORMED_DEFINER)

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2103

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: Definer is not fully qualified

In 5.0.17: ER_NO_VIEW_USER was renamed to ER_MALFORMED_DEFINER.

ER_MALFORMED_DEFINER was added in 5.0.17.

• Error: 1447 SQLSTATE: HY000 (ER_VIEW_FRM_NO_USER)

Message: View '%s'.'%s' has no definer information (old table format). Current user is used as definer.
Please recreate the view!

ER_VIEW_FRM_NO_USER was added in 5.0.13.

• Error: 1448 SQLSTATE: HY000 (ER_VIEW_OTHER_USER)

Message: You need the SUPER privilege for creation view with '%s'@'%s' definer

ER_VIEW_OTHER_USER was added in 5.0.13.

• Error: 1449 SQLSTATE: HY000 (ER_NO_SUCH_USER)

Message: There is no '%s'@'%s' registered

ER_NO_SUCH_USER was added in 5.0.13.

• Error: 1450 SQLSTATE: HY000 (ER_FORBID_SCHEMA_CHANGE)

Message: Changing schema from '%s' to '%s' is not allowed.

ER_FORBID_SCHEMA_CHANGE was added in 5.0.14.

• Error: 1451 SQLSTATE: 23000 (ER_ROW_IS_REFERENCED_2)

Message: Cannot delete or update a parent row: a foreign key constraint fails (%s)

ER_ROW_IS_REFERENCED_2 was added in 5.0.14.

• Error: 1452 SQLSTATE: 23000 (ER_NO_REFERENCED_ROW_2)

Message: Cannot add or update a child row: a foreign key constraint fails (%s)

ER_NO_REFERENCED_ROW_2 was added in 5.0.14.

• Error: 1453 SQLSTATE: 42000 (ER_SP_BAD_VAR_SHADOW)

Message: Variable '%s' must be quoted with `...`, or renamed

ER_SP_BAD_VAR_SHADOW was added in 5.0.15.

• Error: 1454 SQLSTATE: HY000 (ER_TRG_NO_DEFINER)

Message: No definer attribute for trigger '%s'.'%s'. The trigger will be activated under the authorization of
the invoker, which may have insufficient privileges. Please recreate the trigger.

ER_TRG_NO_DEFINER was added in 5.0.17.

• Error: 1455 SQLSTATE: HY000 (ER_OLD_FILE_FORMAT)

Message: '%s' has an old format, you should re-create the '%s' object(s)

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2104

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ER_OLD_FILE_FORMAT was added in 5.0.17.

• Error: 1456 SQLSTATE: HY000 (ER_SP_RECURSION_LIMIT)

Message: Recursive limit %d (as set by the max_sp_recursion_depth variable) was exceeded for routine
%s

ER_SP_RECURSION_LIMIT was added in 5.0.17.

• Error: 1457 SQLSTATE: HY000 (ER_SP_PROC_TABLE_CORRUPT)

Message: Failed to load routine %s. The table mysql.proc is missing, corrupt, or contains bad data
(internal code %d)

ER_SP_PROC_TABLE_CORRUPT was added in 5.0.17.

• Error: 1458 SQLSTATE: 42000 (ER_SP_WRONG_NAME)

Message: Incorrect routine name '%s'

ER_SP_WRONG_NAME was added in 5.0.19.

• Error: 1459 SQLSTATE: HY000 (ER_TABLE_NEEDS_UPGRADE)

Message: Table upgrade required. Please do "REPAIR TABLE `%s`" to fix it!

ER_TABLE_NEEDS_UPGRADE was added in 5.0.19.

• Error: 1460 SQLSTATE: 42000 (ER_SP_NO_AGGREGATE)

Message: AGGREGATE is not supported for stored functions

ER_SP_NO_AGGREGATE was added in 5.0.19.

• Error: 1461 SQLSTATE: 42000 (ER_MAX_PREPARED_STMT_COUNT_REACHED)

Message: Can't create more than max_prepared_stmt_count statements (current value: %lu)

ER_MAX_PREPARED_STMT_COUNT_REACHED was added in 5.0.21.

• Error: 1462 SQLSTATE: HY000 (ER_VIEW_RECURSIVE)

Message: `%s`.`%s` contains view recursion

ER_VIEW_RECURSIVE was added in 5.0.21.

• Error: 1463 SQLSTATE: 42000 (ER_NON_GROUPING_FIELD_USED)

Message: non-grouping field '%s' is used in %s clause

ER_NON_GROUPING_FIELD_USED was added in 5.0.23.

• Error: 1464 SQLSTATE: HY000 (ER_TABLE_CANT_HANDLE_SPKEYS)

Message: The used table type doesn't support SPATIAL indexes

ER_TABLE_CANT_HANDLE_SPKEYS was added in 5.0.23.

• Error: 1465 SQLSTATE: HY000 (ER_NO_TRIGGERS_ON_SYSTEM_SCHEMA)

Server Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2105

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: Triggers can not be created on system tables

ER_NO_TRIGGERS_ON_SYSTEM_SCHEMA was added in 5.0.23.

• Error: 1466 SQLSTATE: HY000 (ER_REMOVED_SPACES)

Message: Leading spaces are removed from name '%s'

ER_REMOVED_SPACES was added in 5.0.25.

• Error: 1467 SQLSTATE: HY000 (ER_AUTOINC_READ_FAILED)

Message: Failed to read auto-increment value from storage engine

ER_AUTOINC_READ_FAILED was added in 5.0.26.

• Error: 1468 SQLSTATE: HY000 (ER_USERNAME)

Message: user name

ER_USERNAME was added in 5.0.24.

• Error: 1469 SQLSTATE: HY000 (ER_HOSTNAME)

Message: host name

ER_HOSTNAME was added in 5.0.24.

• Error: 1470 SQLSTATE: HY000 (ER_WRONG_STRING_LENGTH)

Message: String '%s' is too long for %s (should be no longer than %d)

ER_WRONG_STRING_LENGTH was added in 5.0.24.

• Error: 1471 SQLSTATE: HY000 (ER_NON_INSERTABLE_TABLE)

Message: The target table %s of the %s is not insertable-into

ER_NON_INSERTABLE_TABLE was added in 5.0.26.

• Error: 1472 SQLSTATE: HY000 (ER_ADMIN_WRONG_MRG_TABLE)

Message: Table '%s' is differently defined or of non-MyISAM type or doesn't exist

ER_ADMIN_WRONG_MRG_TABLE was added in 5.0.46.

• Error: 1473 SQLSTATE: HY000 (ER_TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT)

Message: Too high level of nesting for select

ER_TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT was added in 5.0.48.

• Error: 1474 SQLSTATE: HY000 (ER_NAME_BECOMES_EMPTY)

Message: Name '%s' has become ''

ER_NAME_BECOMES_EMPTY was added in 5.0.50.

• Error: 1475 SQLSTATE: HY000 (ER_AMBIGUOUS_FIELD_TERM)

Client Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2106

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: First character of the FIELDS TERMINATED string is ambiguous; please use non-optional and
non-empty FIELDS ENCLOSED BY

ER_AMBIGUOUS_FIELD_TERM was added in 5.0.52.

• Error: 1476 SQLSTATE: HY000 (ER_LOAD_DATA_INVALID_COLUMN)

Message: Invalid column reference (%s) in LOAD DATA

ER_LOAD_DATA_INVALID_COLUMN was added in 5.0.60.

• Error: 1477 SQLSTATE: HY000 (ER_LOG_PURGE_NO_FILE)

Message: Being purged log %s was not found

ER_LOG_PURGE_NO_FILE was added in 5.0.60.

• Error: 1478 SQLSTATE: XA106 (ER_XA_RBTIMEOUT)

Message: XA_RBTIMEOUT: Transaction branch was rolled back: took too long

ER_XA_RBTIMEOUT was added in 5.0.72.

• Error: 1479 SQLSTATE: XA102 (ER_XA_RBDEADLOCK)

Message: XA_RBDEADLOCK: Transaction branch was rolled back: deadlock was detected

ER_XA_RBDEADLOCK was added in 5.0.72.

• Error: 1480 SQLSTATE: HY000 (ER_TOO_MANY_CONCURRENT_TRXS)

Message: Too many active concurrent transactions

ER_TOO_MANY_CONCURRENT_TRXS was added in 5.0.85.

B.4 Client Error Codes and Messages
Client error information comes from the following source files:

• The Error values and the symbols in parentheses correspond to definitions in the include/errmsg.h
MySQL source file.

• The Message values correspond to the error messages that are listed in the libmysql/errmsg.c file.
%d and %s represent numbers and strings, respectively, that are substituted into the messages when
they are displayed.

Because updates are frequent, it is possible that those files will contain additional error information not
listed here.

• Error: 2000 (CR_UNKNOWN_ERROR)

Message: Unknown MySQL error

• Error: 2001 (CR_SOCKET_CREATE_ERROR)

Message: Can't create UNIX socket (%d)

• Error: 2002 (CR_CONNECTION_ERROR)

Client Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2107

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: Can't connect to local MySQL server through socket '%s' (%d)

• Error: 2003 (CR_CONN_HOST_ERROR)

Message: Can't connect to MySQL server on '%s' (%d)

• Error: 2004 (CR_IPSOCK_ERROR)

Message: Can't create TCP/IP socket (%d)

• Error: 2005 (CR_UNKNOWN_HOST)

Message: Unknown MySQL server host '%s' (%d)

• Error: 2006 (CR_SERVER_GONE_ERROR)

Message: MySQL server has gone away

• Error: 2007 (CR_VERSION_ERROR)

Message: Protocol mismatch; server version = %d, client version = %d

• Error: 2008 (CR_OUT_OF_MEMORY)

Message: MySQL client ran out of memory

• Error: 2009 (CR_WRONG_HOST_INFO)

Message: Wrong host info

• Error: 2010 (CR_LOCALHOST_CONNECTION)

Message: Localhost via UNIX socket

• Error: 2011 (CR_TCP_CONNECTION)

Message: %s via TCP/IP

• Error: 2012 (CR_SERVER_HANDSHAKE_ERR)

Message: Error in server handshake

• Error: 2013 (CR_SERVER_LOST)

Message: Lost connection to MySQL server during query

• Error: 2014 (CR_COMMANDS_OUT_OF_SYNC)

Message: Commands out of sync; you can't run this command now

• Error: 2015 (CR_NAMEDPIPE_CONNECTION)

Message: Named pipe: %s

• Error: 2016 (CR_NAMEDPIPEWAIT_ERROR)

Message: Can't wait for named pipe to host: %s pipe: %s (%lu)

• Error: 2017 (CR_NAMEDPIPEOPEN_ERROR)

Client Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2108

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: Can't open named pipe to host: %s pipe: %s (%lu)

• Error: 2018 (CR_NAMEDPIPESETSTATE_ERROR)

Message: Can't set state of named pipe to host: %s pipe: %s (%lu)

• Error: 2019 (CR_CANT_READ_CHARSET)

Message: Can't initialize character set %s (path: %s)

• Error: 2020 (CR_NET_PACKET_TOO_LARGE)

Message: Got packet bigger than 'max_allowed_packet' bytes

• Error: 2021 (CR_EMBEDDED_CONNECTION)

Message: Embedded server

• Error: 2022 (CR_PROBE_SLAVE_STATUS)

Message: Error on SHOW SLAVE STATUS:

• Error: 2023 (CR_PROBE_SLAVE_HOSTS)

Message: Error on SHOW SLAVE HOSTS:

• Error: 2024 (CR_PROBE_SLAVE_CONNECT)

Message: Error connecting to slave:

• Error: 2025 (CR_PROBE_MASTER_CONNECT)

Message: Error connecting to master:

• Error: 2026 (CR_SSL_CONNECTION_ERROR)

Message: SSL connection error

• Error: 2027 (CR_MALFORMED_PACKET)

Message: Malformed packet

• Error: 2028 (CR_WRONG_LICENSE)

Message: This client library is licensed only for use with MySQL servers having '%s' license

• Error: 2029 (CR_NULL_POINTER)

Message: Invalid use of null pointer

• Error: 2030 (CR_NO_PREPARE_STMT)

Message: Statement not prepared

• Error: 2031 (CR_PARAMS_NOT_BOUND)

Message: No data supplied for parameters in prepared statement

• Error: 2032 (CR_DATA_TRUNCATED)

Client Error Codes and Messages

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2109

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: Data truncated

• Error: 2033 (CR_NO_PARAMETERS_EXISTS)

Message: No parameters exist in the statement

• Error: 2034 (CR_INVALID_PARAMETER_NO)

Message: Invalid parameter number

The column number for mysql_stmt_fetch_column() was invalid.

The parameter number for mysql_stmt_send_long_data() was invalid.

• Error: 2035 (CR_INVALID_BUFFER_USE)

Message: Can't send long data for non-string/non-binary data types (parameter: %d)

• Error: 2036 (CR_UNSUPPORTED_PARAM_TYPE)

Message: Using unsupported buffer type: %d (parameter: %d)

• Error: 2037 (CR_SHARED_MEMORY_CONNECTION)

Message: Shared memory: %s

• Error: 2038 (CR_SHARED_MEMORY_CONNECT_REQUEST_ERROR)

Message: Can't open shared memory; client could not create request event (%lu)

• Error: 2039 (CR_SHARED_MEMORY_CONNECT_ANSWER_ERROR)

Message: Can't open shared memory; no answer event received from server (%lu)

• Error: 2040 (CR_SHARED_MEMORY_CONNECT_FILE_MAP_ERROR)

Message: Can't open shared memory; server could not allocate file mapping (%lu)

• Error: 2041 (CR_SHARED_MEMORY_CONNECT_MAP_ERROR)

Message: Can't open shared memory; server could not get pointer to file mapping (%lu)

• Error: 2042 (CR_SHARED_MEMORY_FILE_MAP_ERROR)

Message: Can't open shared memory; client could not allocate file mapping (%lu)

• Error: 2043 (CR_SHARED_MEMORY_MAP_ERROR)

Message: Can't open shared memory; client could not get pointer to file mapping (%lu)

• Error: 2044 (CR_SHARED_MEMORY_EVENT_ERROR)

Message: Can't open shared memory; client could not create %s event (%lu)

• Error: 2045 (CR_SHARED_MEMORY_CONNECT_ABANDONED_ERROR)

Message: Can't open shared memory; no answer from server (%lu)

• Error: 2046 (CR_SHARED_MEMORY_CONNECT_SET_ERROR)

Problems and Common Errors

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2110

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Message: Can't open shared memory; cannot send request event to server (%lu)

• Error: 2047 (CR_CONN_UNKNOW_PROTOCOL)

Message: Wrong or unknown protocol

• Error: 2048 (CR_INVALID_CONN_HANDLE)

Message: Invalid connection handle

• Error: 2049 (CR_SECURE_AUTH)

Message: Connection using old (pre-4.1.1) authentication protocol refused (client option 'secure_auth'
enabled)

• Error: 2050 (CR_FETCH_CANCELED)

Message: Row retrieval was canceled by mysql_stmt_close() call

• Error: 2051 (CR_NO_DATA)

Message: Attempt to read column without prior row fetch

• Error: 2052 (CR_NO_STMT_METADATA)

Message: Prepared statement contains no metadata

• Error: 2053 (CR_NO_RESULT_SET)

Message: Attempt to read a row while there is no result set associated with the statement

• Error: 2054 (CR_NOT_IMPLEMENTED)

Message: This feature is not implemented yet

• Error: 2055 (CR_SERVER_LOST_EXTENDED)

Message: Lost connection to MySQL server at '%s', system error: %d

CR_SERVER_LOST_EXTENDED was added in 5.0.32.

B.5 Problems and Common Errors
This section lists some common problems and error messages that you may encounter. It describes how to
determine the causes of the problems and what to do to solve them.

B.5.1 How to Determine What Is Causing a Problem

When you run into a problem, the first thing you should do is to find out which program or piece of
equipment is causing it:

• If you have one of the following symptoms, then it is probably a hardware problems (such as memory,
motherboard, CPU, or hard disk) or kernel problem:

• The keyboard does not work. This can normally be checked by pressing the Caps Lock key. If the
Caps Lock light does not change, you have to replace your keyboard. (Before doing this, you should
try to restart your computer and check all cables to the keyboard.)

How to Determine What Is Causing a Problem

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2111

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• The mouse pointer does not move.

• The machine does not answer to a remote machine's pings.

• Other programs that are not related to MySQL do not behave correctly.

• Your system restarted unexpectedly. (A faulty user-level program should never be able to take down
your system.)

In this case, you should start by checking all your cables and run some diagnostic tool to check your
hardware! You should also check whether there are any patches, updates, or service packs for your
operating system that could likely solve your problem. Check also that all your libraries (such as glibc)
are up to date.

It is always good to use a machine with ECC memory to discover memory problems early.

• If your keyboard is locked up, you may be able to recover by logging in to your machine from another
machine and executing kbd_mode -a.

• Please examine your system log file (/var/log/messages or similar) for reasons for your problem.
If you think the problem is in MySQL, you should also examine MySQL's log files. See Section 5.4,
“MySQL Server Logs”.

• If you do not think you have hardware problems, you should try to find out which program is causing
problems. Try using top, ps, Task Manager, or some similar program, to check which program is taking
all CPU or is locking the machine.

• Use top, df, or a similar program to check whether you are out of memory, disk space, file descriptors,
or some other critical resource.

• If the problem is some runaway process, you can always try to kill it. If it does not want to die, there is
probably a bug in the operating system.

If after you have examined all other possibilities and you have concluded that the MySQL server or a
MySQL client is causing the problem, it is time to create a bug report for our mailing list or our support
team. In the bug report, try to give a very detailed description of how the system is behaving and what
you think is happening. You should also state why you think that MySQL is causing the problem. Take
into consideration all the situations in this chapter. State any problems exactly how they appear when you
examine your system. Use the “copy and paste” method for any output and error messages from programs
and log files.

Try to describe in detail which program is not working and all symptoms you see. We have in the past
received many bug reports that state only “the system does not work.” This provides us with no information
about what could be the problem.

If a program fails, it is always useful to know the following information:

• Has the program in question made a segmentation fault (did it dump core)?

• Is the program taking up all available CPU time? Check with top. Let the program run for a while, it may
simply be evaluating something computationally intensive.

• If the mysqld server is causing problems, can you get any response from it with mysqladmin -u
root ping or mysqladmin -u root processlist?

• What does a client program say when you try to connect to the MySQL server? (Try with mysql, for
example.) Does the client jam? Do you get any output from the program?

Common Errors When Using MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2112

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

When sending a bug report, you should follow the outline described in Section 1.7, “How to Report Bugs or
Problems”.

B.5.2 Common Errors When Using MySQL Programs

This section lists some errors that users frequently encounter when running MySQL programs. Although
the problems show up when you try to run client programs, the solutions to many of the problems involves
changing the configuration of the MySQL server.

B.5.2.1 Access denied

An Access denied error can have many causes. Often the problem is related to the MySQL accounts
that the server permits client programs to use when connecting. See Section 6.2, “The MySQL Access
Privilege System”, and Section 6.2.7, “Troubleshooting Problems Connecting to MySQL”.

B.5.2.2 Can't connect to [local] MySQL server

A MySQL client on Unix can connect to the mysqld server in two different ways: By using a Unix socket
file to connect through a file in the file system (default /tmp/mysql.sock), or by using TCP/IP, which
connects through a port number. A Unix socket file connection is faster than TCP/IP, but can be used only
when connecting to a server on the same computer. A Unix socket file is used if you do not specify a host
name or if you specify the special host name localhost.

If the MySQL server is running on Windows, you can connect using TCP/IP. If the server is started with the
--enable-named-pipe option, you can also connect with named pipes if you run the client on the host
where the server is running. The name of the named pipe is MySQL by default. If you do not give a host
name when connecting to mysqld, a MySQL client first tries to connect to the named pipe. If that does not
work, it connects to the TCP/IP port. You can force the use of named pipes on Windows by using . as the
host name.

The error (2002) Can't connect to ... normally means that there is no MySQL server running on
the system or that you are using an incorrect Unix socket file name or TCP/IP port number when trying to
connect to the server. You should also check that the TCP/IP port you are using has not been blocked by a
firewall or port blocking service.

The error (2003) Can't connect to MySQL server on 'server' (10061) indicates that the
network connection has been refused. You should check that there is a MySQL server running, that it has
network connections enabled, and that the network port you specified is the one configured on the server.

Start by checking whether there is a process named mysqld running on your server host. (Use ps xa |
grep mysqld on Unix or the Task Manager on Windows.) If there is no such process, you should start the
server. See Section 2.18.2, “Starting the Server”.

If a mysqld process is running, you can check it by trying the following commands. The port number or
Unix socket file name might be different in your setup. host_ip represents the IP address of the machine
where the server is running.

shell> mysqladmin version
shell> mysqladmin variables
shell> mysqladmin -h `hostname` version variables
shell> mysqladmin -h `hostname` --port=3306 version
shell> mysqladmin -h host_ip version
shell> mysqladmin --protocol=SOCKET --socket=/tmp/mysql.sock version

Note the use of backticks rather than forward quotation marks with the hostname command; these cause
the output of hostname (that is, the current host name) to be substituted into the mysqladmin command.
If you have no hostname command or are running on Windows, you can manually type the host name of

Common Errors When Using MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2113

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

your machine (without backticks) following the -h option. You can also try -h 127.0.0.1 to connect with
TCP/IP to the local host.

Make sure that the server has not been configured to ignore network connections or (if you are attempting
to connect remotely) that it has not been configured to listen only locally on its network interfaces. If the
server was started with --skip-networking, it will not accept TCP/IP connections at all. If the server
was started with --bind-address=127.0.0.1, it will listen for TCP/IP connections only locally on the
loopback interface and will not accept remote connections.

Check to make sure that there is no firewall blocking access to MySQL. Your firewall may be configured on
the basis of the application being executed, or the port number used by MySQL for communication (3306
by default). Under Linux or Unix, check your IP tables (or similar) configuration to ensure that the port has
not been blocked. Under Windows, applications such as ZoneAlarm or the Windows XP personal firewall
may need to be configured not to block the MySQL port.

Here are some reasons the Can't connect to local MySQL server error might occur:

• mysqld is not running on the local host. Check your operating system's process list to ensure the
mysqld process is present.

• You're running a MySQL server on Windows with many TCP/IP connections to it. If you're experiencing
that quite often your clients get that error, you can find a workaround here: Connection to MySQL Server
Failing on Windows.

• Someone has removed the Unix socket file that mysqld uses (/tmp/mysql.sock by default). For
example, you might have a cron job that removes old files from the /tmp directory. You can always run
mysqladmin version to check whether the Unix socket file that mysqladmin is trying to use really
exists. The fix in this case is to change the cron job to not remove mysql.sock or to place the socket
file somewhere else. See Section B.5.3.6, “How to Protect or Change the MySQL Unix Socket File”.

• You have started the mysqld server with the --socket=/path/to/socket option, but forgotten
to tell client programs the new name of the socket file. If you change the socket path name for the
server, you must also notify the MySQL clients. You can do this by providing the same --socket option
when you run client programs. You also need to ensure that clients have permission to access the
mysql.sock file. To find out where the socket file is, you can do:

shell> netstat -ln | grep mysql

See Section B.5.3.6, “How to Protect or Change the MySQL Unix Socket File”.

• You are using Linux and one server thread has died (dumped core). In this case, you must kill the other
mysqld threads (for example, with kill or with the mysql_zap script) before you can restart the
MySQL server. See Section B.5.3.3, “What to Do If MySQL Keeps Crashing”.

• The server or client program might not have the proper access privileges for the directory that holds the
Unix socket file or the socket file itself. In this case, you must either change the access privileges for
the directory or socket file so that the server and clients can access them, or restart mysqld with a --
socket option that specifies a socket file name in a directory where the server can create it and where
client programs can access it.

If you get the error message Can't connect to MySQL server on some_host, you can try the
following things to find out what the problem is:

• Check whether the server is running on that host by executing telnet some_host 3306 and pressing
the Enter key a couple of times. (3306 is the default MySQL port number. Change the value if your
server is listening to a different port.) If there is a MySQL server running and listening to the port, you
should get a response that includes the server's version number. If you get an error such as telnet:

Common Errors When Using MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2114

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Unable to connect to remote host: Connection refused, then there is no server running
on the given port.

• If the server is running on the local host, try using mysqladmin -h localhost variables to
connect using the Unix socket file. Verify the TCP/IP port number that the server is configured to listen to
(it is the value of the port variable.)

• If you are running under Linux and Security-Enhanced Linux (SELinux) is enabled, make sure you have
disabled SELinux protection for the mysqld process.

Connection to MySQL Server Failing on Windows

When you're running a MySQL server on Windows with many TCP/IP connections to it, and you're
experiencing that quite often your clients get a Can't connect to MySQL server error, the reason
might be that Windows does not allow for enough ephemeral (short-lived) ports to serve those connections.

The purpose of TIME_WAIT is to keep a connection accepting packets even after the connection has been
closed. This is because Internet routing can cause a packet to take a slow route to its destination and it
may arrive after both sides have agreed to close. If the port is in use for a new connection, that packet
from the old connection could break the protocol or compromise personal information from the original
connection. The TIME_WAIT delay prevents this by ensuring that the port cannot be reused until after
some time has been permitted for those delayed packets to arrive.

It is safe to reduce TIME_WAIT greatly on LAN connections because there is little chance of packets
arriving at very long delays, as they could through the Internet with its comparatively large distances and
latencies.

Windows permits ephemeral (short-lived) TCP ports to the user. After any port is closed it will remain in a
TIME_WAIT status for 120 seconds. The port will not be available again until this time expires. The default
range of port numbers depends on the version of Windows, with a more limited number of ports in older
versions:

• Windows through Server 2003: Ports in range 1025–5000

• Windows Vista, Server 2008, and newer: Ports in range 49152–65535

With a small stack of available TCP ports (5000) and a high number of TCP ports being open and closed
over a short period of time along with the TIME_WAIT status you have a good chance for running out of
ports. There are two ways to address this problem:

• Reduce the number of TCP ports consumed quickly by investigating connection pooling or persistent
connections where possible

• Tune some settings in the Windows registry (see below)

Important

The following procedure involves modifying the Windows registry. Before you
modify the registry, make sure to back it up and make sure that you understand
how to restore it if a problem occurs. For information about how to back up, restore,
and edit the registry, view the following article in the Microsoft Knowledge Base:
http://support.microsoft.com/kb/256986/EN-US/.

1. Start Registry Editor (Regedt32.exe).

2. Locate the following key in the registry:

http://support.microsoft.com/kb/256986/EN-US/

Common Errors When Using MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2115

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

3. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: MaxUserPort
Data Type: REG_DWORD
Value: 65534

This sets the number of ephemeral ports available to any user. The valid range is between 5000 and
65534 (decimal). The default value is 0x1388 (5000 decimal).

4. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: TcpTimedWaitDelay
Data Type: REG_DWORD
Value: 30

This sets the number of seconds to hold a TCP port connection in TIME_WAIT state before closing.
The valid range is between 30 and 300 decimal, although you may wish to check with Microsoft for the
latest permitted values. The default value is 0x78 (120 decimal).

5. Quit Registry Editor.

6. Reboot the machine.

Note: Undoing the above should be as simple as deleting the registry entries you've created.

B.5.2.3 Lost connection to MySQL server

There are three likely causes for this error message.

Usually it indicates network connectivity trouble and you should check the condition of your network if this
error occurs frequently. If the error message includes “during query,” this is probably the case you are
experiencing.

Sometimes the “during query” form happens when millions of rows are being sent as part of one or more
queries. If you know that this is happening, you should try increasing net_read_timeout from its default
of 30 seconds to 60 seconds or longer, sufficient for the data transfer to complete.

More rarely, it can happen when the client is attempting the initial connection to the server. In this case, if
your connect_timeout value is set to only a few seconds, you may be able to resolve the problem by
increasing it to ten seconds, perhaps more if you have a very long distance or slow connection. You can
determine whether you are experiencing this more uncommon cause by using SHOW GLOBAL STATUS
LIKE 'Aborted_connects'. It will increase by one for each initial connection attempt that the server
aborts. You may see “reading authorization packet” as part of the error message; if so, that also suggests
that this is the solution that you need.

If the cause is none of those just described, you may be experiencing a problem with BLOB values
that are larger than max_allowed_packet, which can cause this error with some clients. Sometime
you may see an ER_NET_PACKET_TOO_LARGE error, and that confirms that you need to increase
max_allowed_packet.

B.5.2.4 Client does not support authentication protocol

The current implementation of the authentication protocol uses a password hashing algorithm that is
incompatible with that used by older (pre-4.1) clients. Attempts to connect to a 4.1 or newer server with an
older client may fail with the following message:

Common Errors When Using MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2116

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

To deal with this problem, the preferred solution is to upgrade all client programs to use a 4.1.1 or newer
client library. If that is not possible, use one of the following approaches:

• To connect to the server with a pre-4.1 client program, use an account that still has a pre-4.1-style
password.

• Reset the password to pre-4.1 style for each user that needs to use a pre-4.1 client program. This can
be done using the SET PASSWORD statement and the OLD_PASSWORD() function:

mysql> SET PASSWORD FOR
 -> 'some_user'@'some_host' = OLD_PASSWORD('new_password');

Substitute the password you want to use for “new_password” in the preceding example. MySQL cannot
tell you what the original password was, so you'll need to pick a new one.

• Tell the server to use the older password hashing algorithm by default:

1. Start mysqld with the old_passwords system variable set to 1.

2. Assign an old-format password to each account that has had its password updated to the longer 4.1
format. You can identify these accounts with the following query:

mysql> SELECT Host, User, Password FROM mysql.user
 -> WHERE LENGTH(Password) > 16;

For each account record displayed by the query, use the Host and User values and assign a
password using one of the methods described previously.

The Client does not support authentication protocol error also can occur if multiple
versions of MySQL are installed but client programs are dynamically linked and link to an older library.
Make sure that clients use the most recent library version with which they are compatible. The procedure to
do this will depend on your system.

Note

The PHP mysql extension does not support the authentication protocol in MySQL
4.1.1 and higher. This is true regardless of the PHP version being used. If you wish
to use the mysql extension with MySQL 4.1 or newer, you may need to follow one
of the options discussed above for configuring MySQL to work with old clients. The
mysqli extension (stands for "MySQL, Improved"; added in PHP 5) is compatible
with the improved password hashing employed in MySQL 4.1 and higher, and no
special configuration of MySQL need be done to use this MySQL client library. For
more information about the mysqli extension, see http://php.net/mysqli.

For additional background on password hashing and authentication, see Section 6.1.2.4, “Password
Hashing in MySQL”.

B.5.2.5 Password Fails When Entered Interactively

MySQL client programs prompt for a password when invoked with a --password or -p option that has no
following password value:

http://php.net/mysqli

Common Errors When Using MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2117

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

shell> mysql -u user_name -p
Enter password:

On some systems, you may find that your password works when specified in an option file or on the
command line, but not when you enter it interactively at the Enter password: prompt. This occurs
when the library provided by the system to read passwords limits password values to a small number of
characters (typically eight). That is a problem with the system library, not with MySQL. To work around it,
change your MySQL password to a value that is eight or fewer characters long, or put your password in an
option file.

B.5.2.6 Host 'host_name' is blocked

If the following error occurs, it means that mysqld has received many connection requests from the given
host that were interrupted in the middle:

Host 'host_name' is blocked because of many connection errors.
Unblock with 'mysqladmin flush-hosts'

The value of the max_connect_errors system variable determines how many successive
interrupted connection requests are permitted. (See Section 5.1.4, “Server System Variables”.) After
max_connect_errors failed requests without a successful connection, mysqld assumes that something
is wrong (for example, that someone is trying to break in), and blocks the host from further connections
until you issue a FLUSH HOSTS statement or execute a mysqladmin flush-hosts command.

By default, mysqld blocks a host after 10 connection errors. You can adjust the value by setting
max_connect_errors at server startup:

shell> mysqld_safe --max_connect_errors=10000 &

The value can also be set at runtime:

mysql> SET GLOBAL max_connect_errors=10000;

If you get the Host 'host_name' is blocked error message for a given host, you should first verify
that there is nothing wrong with TCP/IP connections from that host. If you are having network problems, it
does you no good to increase the value of the max_connect_errors variable.

B.5.2.7 Too many connections

If you get a Too many connections error when you try to connect to the mysqld server, this means
that all available connections are in use by other clients.

The number of connections permitted is controlled by the max_connections system variable. Its default
value is 100. If you need to support more connections, you should set a larger value for this variable.

mysqld actually permits max_connections+1 clients to connect. The extra connection is reserved for
use by accounts that have the SUPER privilege. By granting the SUPER privilege to administrators and
not to normal users (who should not need it), an administrator can connect to the server and use SHOW
PROCESSLIST to diagnose problems even if the maximum number of unprivileged clients are connected.
See Section 13.7.5.27, “SHOW PROCESSLIST Syntax”.

The maximum number of connections MySQL can support depends on the quality of the thread library on
a given platform, the amount of RAM available, how much RAM is used for each connection, the workload
from each connection, and the desired response time. Linux or Solaris should be able to support at 500 to

Common Errors When Using MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2118

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

1000 simultaneous connections routinely and as many as 10,000 connections if you have many gigabytes
of RAM available and the workload from each is low or the response time target undemanding. Windows
is limited to (open tables × 2 + open connections) < 2048 due to the Posix compatibility layer used on that
platform.

Increasing open-files-limit may be necessary. Also see Section 2.20.1.4, “Linux Postinstallation
Notes”, for how to raise the operating system limit on how many handles can be used by MySQL.

B.5.2.8 Out of memory

If you issue a query using the mysql client program and receive an error like the following one, it means
that mysql does not have enough memory to store the entire query result:

mysql: Out of memory at line 42, 'malloc.c'
mysql: needed 8136 byte (8k), memory in use: 12481367 bytes (12189k)
ERROR 2008: MySQL client ran out of memory

To remedy the problem, first check whether your query is correct. Is it reasonable that it should return so
many rows? If not, correct the query and try again. Otherwise, you can invoke mysql with the --quick
option. This causes it to use the mysql_use_result() C API function to retrieve the result set, which
places less of a load on the client (but more on the server).

B.5.2.9 MySQL server has gone away

This section also covers the related Lost connection to server during query error.

The most common reason for the MySQL server has gone away error is that the server timed out and
closed the connection. In this case, you normally get one of the following error codes (which one you get is
operating system-dependent).

Error Code Description

CR_SERVER_GONE_ERROR The client couldn't send a question to the server.

CR_SERVER_LOST The client didn't get an error when writing to the server, but it didn't
get a full answer (or any answer) to the question.

By default, the server closes the connection after eight hours if nothing has happened. You can change
the time limit by setting the wait_timeout variable when you start mysqld. See Section 5.1.4, “Server
System Variables”.

If you have a script, you just have to issue the query again for the client to do an automatic reconnection.
This assumes that you have automatic reconnection in the client enabled (which is the default for the
mysql command-line client).

Some other common reasons for the MySQL server has gone away error are:

• You (or the db administrator) has killed the running thread with a KILL statement or a mysqladmin
kill command.

• You tried to run a query after closing the connection to the server. This indicates a logic error in the
application that should be corrected.

• A client application running on a different host does not have the necessary privileges to connect to the
MySQL server from that host.

• You got a timeout from the TCP/IP connection on the client side. This may happen if you have
been using the commands: mysql_options(..., MYSQL_OPT_READ_TIMEOUT,...) or

Common Errors When Using MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2119

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql_options(..., MYSQL_OPT_WRITE_TIMEOUT,...). In this case increasing the timeout may
help solve the problem.

• You have encountered a timeout on the server side and the automatic reconnection in the client is
disabled (the reconnect flag in the MYSQL structure is equal to 0).

• You are using a Windows client and the server had dropped the connection (probably because
wait_timeout expired) before the command was issued.

The problem on Windows is that in some cases MySQL does not get an error from the OS when writing
to the TCP/IP connection to the server, but instead gets the error when trying to read the answer from
the connection.

Prior to MySQL 5.0.19, even if the reconnect flag in the MYSQL structure is equal to 1, MySQL does
not automatically reconnect and re-issue the query as it doesn't know if the server did get the original
query or not.

The solution to this is to either do a mysql_ping() on the connection if there has been a long time
since the last query (this is what Connector/ODBC does) or set wait_timeout on the mysqld server
so high that it in practice never times out.

• You can also get these errors if you send a query to the server that is incorrect or too large. If mysqld
receives a packet that is too large or out of order, it assumes that something has gone wrong with the
client and closes the connection. If you need big queries (for example, if you are working with big BLOB
columns), you can increase the query limit by setting the server's max_allowed_packet variable,
which has a default value of 1MB. You may also need to increase the maximum packet size on the client
end. More information on setting the packet size is given in Section B.5.2.10, “Packet Too Large”.

An INSERT or REPLACE statement that inserts a great many rows can also cause these sorts of errors.
Either one of these statements sends a single request to the server irrespective of the number of rows
to be inserted; thus, you can often avoid the error by reducing the number of rows sent per INSERT or
REPLACE.

• You also get a lost connection if you are sending a packet 16MB or larger if your client is older than 4.0.8
and your server is 4.0.8 and above, or the other way around.

• It is also possible to see this error if host name lookups fail (for example, if the DNS server on which your
server or network relies goes down). This is because MySQL is dependent on the host system for name
resolution, but has no way of knowing whether it is working—from MySQL's point of view the problem is
indistinguishable from any other network timeout.

You may also see the MySQL server has gone away error if MySQL is started with the --skip-
networking option.

Another networking issue that can cause this error occurs if the MySQL port (default 3306) is blocked by
your firewall, thus preventing any connections at all to the MySQL server.

• You can also encounter this error with applications that fork child processes, all of which try to use the
same connection to the MySQL server. This can be avoided by using a separate connection for each
child process.

• You have encountered a bug where the server died while executing the query.

You can check whether the MySQL server died and restarted by executing mysqladmin version and
examining the server's uptime. If the client connection was broken because mysqld crashed and restarted,
you should concentrate on finding the reason for the crash. Start by checking whether issuing the query
again kills the server again. See Section B.5.3.3, “What to Do If MySQL Keeps Crashing”.

Common Errors When Using MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2120

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

You can get more information about the lost connections by starting mysqld with the --log-warnings=2
option. This logs some of the disconnected errors in the hostname.err file. See Section 5.4.1, “The Error
Log”.

If you want to create a bug report regarding this problem, be sure that you include the following
information:

• Indicate whether the MySQL server died. You can find information about this in the server error log. See
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”.

• If a specific query kills mysqld and the tables involved were checked with CHECK TABLE before you
ran the query, can you provide a reproducible test case? See Section 21.3, “Debugging and Porting
MySQL”.

• What is the value of the wait_timeout system variable in the MySQL server? (mysqladmin
variables gives you the value of this variable.)

• Have you tried to run mysqld with the general query log enabled to determine whether the problem
query appears in the log? (See Section 5.4.2, “The General Query Log”.)

See also Section B.5.2.11, “Communication Errors and Aborted Connections”, and Section 1.7, “How to
Report Bugs or Problems”.

B.5.2.10 Packet Too Large

A communication packet is a single SQL statement sent to the MySQL server, a single row that is sent to
the client, or a binary log event sent from a master replication server to a slave.

The largest possible packet that can be transmitted to or from a MySQL 5.0 server or client is 1GB.

When a MySQL client or the mysqld server receives a packet bigger than max_allowed_packet bytes,
it issues an ER_NET_PACKET_TOO_LARGE error and closes the connection. With some clients, you may
also get a Lost connection to MySQL server during query error if the communication packet is
too large.

Both the client and the server have their own max_allowed_packet variable, so if you want to handle big
packets, you must increase this variable both in the client and in the server.

If you are using the mysql client program, its default max_allowed_packet variable is 16MB. To set a
larger value, start mysql like this:

shell> mysql --max_allowed_packet=32M

That sets the packet size to 32MB.

The server's default max_allowed_packet value is 1MB. You can increase this if the server needs
to handle big queries (for example, if you are working with big BLOB columns). For example, to set the
variable to 16MB, start the server like this:

shell> mysqld --max_allowed_packet=16M

You can also use an option file to set max_allowed_packet. For example, to set the size for the server
to 16MB, add the following lines in an option file:

[mysqld]

Common Errors When Using MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2121

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

max_allowed_packet=16M

It is safe to increase the value of this variable because the extra memory is allocated only when needed.
For example, mysqld allocates more memory only when you issue a long query or when mysqld must
return a large result row. The small default value of the variable is a precaution to catch incorrect packets
between the client and server and also to ensure that you do not run out of memory by using large packets
accidentally.

You can also get strange problems with large packets if you are using large BLOB values but have not
given mysqld access to enough memory to handle the query. If you suspect this is the case, try adding
ulimit -d 256000 to the beginning of the mysqld_safe script and restarting mysqld.

B.5.2.11 Communication Errors and Aborted Connections

If connection problems occur such as communication errors or aborted connections, use these sources of
information to diagnose problems:

• The error log. See Section 5.4.1, “The Error Log”.

• The general query log. See Section 5.4.2, “The General Query Log”.

• The Aborted_xxx status variables. See Section 5.1.6, “Server Status Variables”.

If you start the server with the --log-warnings option, you might find messages like this in your error
log:

Aborted connection 854 to db: 'employees' user: 'josh'

If a client is unable even to connect, the server increments the Aborted_connects status variable.
Unsuccessful connection attempts can occur for the following reasons:

• A client attempts to access a database but has no privileges for it.

• A client uses an incorrect password.

• A connection packet does not contain the right information.

• It takes more than connect_timeout seconds to obtain a connect packet. See Section 5.1.4, “Server
System Variables”.

If these kinds of things happen, it might indicate that someone is trying to break into your server! If the
general query log is enabled, messages for these types of problems are logged to it.

If a client successfully connects but later disconnects improperly or is terminated, the server increments the
Aborted_clients status variable, and logs an Aborted connection message to the error log. The
cause can be any of the following:

• The client program did not call mysql_close() before exiting.

• The client had been sleeping more than wait_timeout or interactive_timeout seconds without
issuing any requests to the server. See Section 5.1.4, “Server System Variables”.

• The client program ended abruptly in the middle of a data transfer.

Other reasons for problems with aborted connections or aborted clients:

• The max_allowed_packet variable value is too small or queries require more memory than you have
allocated for mysqld. See Section B.5.2.10, “Packet Too Large”.

Common Errors When Using MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2122

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Use of Ethernet protocol with Linux, both half and full duplex. Some Linux Ethernet drivers have this
bug. You should test for this bug by transferring a huge file using FTP between the client and server
machines. If a transfer goes in burst-pause-burst-pause mode, you are experiencing a Linux duplex
syndrome. Switch the duplex mode for both your network card and hub/switch to either full duplex or to
half duplex and test the results to determine the best setting.

• A problem with the thread library that causes interrupts on reads.

• Badly configured TCP/IP.

• Faulty Ethernets, hubs, switches, cables, and so forth. This can be diagnosed properly only by replacing
hardware.

See also Section B.5.2.9, “MySQL server has gone away”.

B.5.2.12 The table is full

If a table-full error occurs, it may be that the disk is full or that the table has reached its maximum size. The
effective maximum table size for MySQL databases is usually determined by operating system constraints
on file sizes, not by MySQL internal limits. See Section C.7.3, “Limits on Table Size”.

This error can occur sometimes for MySQL Cluster tables even when there appears to be more than
sufficient data memory available. See the documentation for the DataMemory MySQL Cluster data node
configuration parameter, as well as Section 17.1.2, “MySQL Cluster Nodes, Node Groups, Replicas, and
Partitions”, for more information.

B.5.2.13 Can't create/write to file

If you get an error of the following type for some queries, it means that MySQL cannot create a temporary
file for the result set in the temporary directory:

Can't create/write to file '\\sqla3fe_0.ism'.

The preceding error is a typical message for Windows; the Unix message is similar.

One fix is to start mysqld with the --tmpdir option or to add the option to the [mysqld] section of your
option file. For example, to specify a directory of C:\temp, use these lines:

[mysqld]
tmpdir=C:/temp

The C:\temp directory must exist and have sufficient space for the MySQL server to write to. See
Section 4.2.6, “Using Option Files”.

Another cause of this error can be permissions issues. Make sure that the MySQL server can write to the
tmpdir directory.

Check also the error code that you get with perror. One reason the server cannot write to a table is that
the file system is full:

shell> perror 28
OS error code 28: No space left on device

If you get an error of the following type during startup, it indicates that the file system or directory used for
storing data files is write protected. Provided that the write error is to a test file, the error is not serious and
can be safely ignored.

Common Errors When Using MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2123

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Can't create test file /usr/local/mysql/data/master.lower-test

B.5.2.14 Commands out of sync

If you get Commands out of sync; you can't run this command now in your client code, you
are calling client functions in the wrong order.

This can happen, for example, if you are using mysql_use_result() and try to execute a new query
before you have called mysql_free_result(). It can also happen if you try to execute two queries that
return data without calling mysql_use_result() or mysql_store_result() in between.

B.5.2.15 Ignoring user

If you get the following error, it means that when mysqld was started or when it reloaded the grant tables,
it found an account in the user table that had an invalid password.

Found wrong password for user 'some_user'@'some_host'; ignoring user

As a result, the account is simply ignored by the permission system.

The following list indicates possible causes of and fixes for this problem:

• You may be running a new version of mysqld with an old user table. You can check this by executing
mysqlshow mysql user to see whether the Password column is shorter than 16 characters. If so,
you can correct this condition by running the scripts/add_long_password script.

• The account has an old password (eight characters long). Update the account in the user table to have
a new password.

• You have specified a password in the user table without using the PASSWORD() function. Use mysql
to update the account in the user table with a new password, making sure to use the PASSWORD()
function:

mysql> UPDATE user SET Password=PASSWORD('new_password')
 -> WHERE User='some_user' AND Host='some_host';

B.5.2.16 Table 'tbl_name' doesn't exist

If you get either of the following errors, it usually means that no table exists in the default database with the
given name:

Table 'tbl_name' doesn't exist
Can't find file: 'tbl_name' (errno: 2)

In some cases, it may be that the table does exist but that you are referring to it incorrectly:

• Because MySQL uses directories and files to store databases and tables, database and table names are
case sensitive if they are located on a file system that has case-sensitive file names.

• Even for file systems that are not case sensitive, such as on Windows, all references to a given table
within a query must use the same lettercase.

You can check which tables are in the default database with SHOW TABLES. See Section 13.7.5, “SHOW
Syntax”.

B.5.2.17 Can't initialize character set

Common Errors When Using MySQL Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2124

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

You might see an error like this if you have character set problems:

MySQL Connection Failed: Can't initialize character set charset_name

This error can have any of the following causes:

• The character set is a multibyte character set and you have no support for the character set in
the client. In this case, you need to recompile the client by running configure with the --with-
charset=charset_name or --with-extra-charsets=charset_name option. See Section 2.17.3,
“MySQL Source-Configuration Options”.

All standard MySQL binaries are compiled with --with-extra-charsets=complex or (for Windows)
--with-extra-charsets=complex, which enables support for all multibyte character sets. See
Section 2.17.3, “MySQL Source-Configuration Options”.

• The character set is a simple character set that is not compiled into mysqld, and the character set
definition files are not in the place where the client expects to find them.

In this case, you need to use one of the following methods to solve the problem:

• Recompile the client with support for the character set. See Section 2.17.3, “MySQL Source-
Configuration Options”.

• Specify to the client the directory where the character set definition files are located. For many clients,
you can do this with the --character-sets-dir option.

• Copy the character definition files to the path where the client expects them to be.

B.5.2.18 File Not Found and Similar Errors

If you get ERROR 'file_name' not found (errno: 23), Can't open file: file_name
(errno: 24), or any other error with errno 23 or errno 24 from MySQL, it means that you have not
allocated enough file descriptors for the MySQL server. You can use the perror utility to get a description
of what the error number means:

shell> perror 23
OS error code 23: File table overflow
shell> perror 24
OS error code 24: Too many open files
shell> perror 11
OS error code 11: Resource temporarily unavailable

The problem here is that mysqld is trying to keep open too many files simultaneously. You can either tell
mysqld not to open so many files at once or increase the number of file descriptors available to mysqld.

To tell mysqld to keep open fewer files at a time, you can make the table cache smaller by reducing the
value of the table_cache system variable (the default value is 64). This may not entirely prevent running
out of file descriptors because in some circumstances the server may attempt to extend the cache size
temporarily, as described in Section 8.4.3.1, “How MySQL Opens and Closes Tables”. Reducing the value
of max_connections also reduces the number of open files (the default value is 100).

To change the number of file descriptors available to mysqld, you can use the --open-files-limit
option to mysqld_safe or set the open_files_limit system variable. See Section 5.1.4, “Server
System Variables”. The easiest way to set these values is to add an option to your option file. See
Section 4.2.6, “Using Option Files”. If you have an old version of mysqld that does not support setting the
open files limit, you can edit the mysqld_safe script. There is a commented-out line ulimit -n 256 in

Administration-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2125

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

the script. You can remove the “#” character to uncomment this line, and change the number 256 to set
the number of file descriptors to be made available to mysqld.

--open-files-limit and ulimit can increase the number of file descriptors, but only up to the
limit imposed by the operating system. There is also a “hard” limit that can be overridden only if you
start mysqld_safe or mysqld as root (just remember that you also need to start the server with the
--user option in this case so that it does not continue to run as root after it starts up). If you need to
increase the operating system limit on the number of file descriptors available to each process, consult the
documentation for your system.

Note

If you run the tcsh shell, ulimit does not work! tcsh also reports incorrect
values when you ask for the current limits. In this case, you should start
mysqld_safe using sh.

B.5.2.19 Table-Corruption Issues

If you have started mysqld with --myisam-recover, MySQL automatically checks and tries to repair
MyISAM tables if they are marked as 'not closed properly' or 'crashed'. If this happens, MySQL writes an
entry in the hostname.err file 'Warning: Checking table ...' which is followed by Warning:
Repairing table if the table needs to be repaired. If you get a lot of these errors, without mysqld
having died unexpectedly just before, then something is wrong and needs to be investigated further.

See also Section 5.1.3, “Server Command Options”, and Section 21.3.1.7, “Making a Test Case If You
Experience Table Corruption”.

B.5.3 Administration-Related Issues

B.5.3.1 Problems with File Permissions

If you have problems with file permissions, the UMASK or UMASK_DIR environment variable might be set
incorrectly when mysqld starts. For example, MySQL might issue the following error message when you
create a table:

ERROR: Can't find file: 'path/with/filename.frm' (Errcode: 13)

The default UMASK and UMASK_DIR values are 0660 and 0700, respectively. MySQL assumes that the
value for UMASK or UMASK_DIR is in octal if it starts with a zero. For example, setting UMASK=0600 is
equivalent to UMASK=384 because 0600 octal is 384 decimal.

To change the default UMASK value, start mysqld_safe as follows:

shell> UMASK=384 # = 600 in octal
shell> export UMASK
shell> mysqld_safe &

By default, MySQL creates database and RAID directories with an access permission value of 0700. To
modify this behavior, set the UMASK_DIR variable. If you set its value, new directories are created with the
combined UMASK and UMASK_DIR values. For example, to give group access to all new directories, start
mysqld_safe as follows:

shell> UMASK_DIR=504 # = 770 in octal
shell> export UMASK_DIR
shell> mysqld_safe &

Administration-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2126

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

For additional details, see Section 2.21, “Environment Variables”.

B.5.3.2 How to Reset the Root Password

If you have never assigned a root password for MySQL, the server does not require a password at
all for connecting as root. However, this is insecure. For instructions on assigning passwords, see
Section 2.18.4, “Securing the Initial MySQL Accounts”.

If you know the root password and want to change it, see Section 13.7.1.6, “SET PASSWORD Syntax”.

If you assigned a root password previously but have forgotten it, you can assign a new password. The
following sections provide instructions for Windows and Unix and Unix-like systems, as well as generic
instructions that apply to any system.

Resetting the Root Password: Windows Systems

On Windows, use the following procedure to reset the password for the MySQL 'root'@'localhost'
account. To change the password for a root account with a different host name part, modify the
instructions to use that host name.

1. Log on to your system as Administrator.

2. Stop the MySQL server if it is running. For a server that is running as a Windows service, go to the
Services manager: From the Start menu, select Control Panel, then Administrative Tools, then
Services. Find the MySQL service in the list and stop it.

If your server is not running as a service, you may need to use the Task Manager to force it to stop.

3. Create a text file containing the following statement on a single line. Replace the password with the
password that you want to use.

SET PASSWORD FOR 'root'@'localhost' = PASSWORD('MyNewPass');

4. Save the file. This example assumes that you name the file C:\mysql-init.txt.

5. Open a console window to get to the command prompt: From the Start menu, select Run, then enter
cmd as the command to be run.

6. Start the MySQL server with the special --init-file option (notice that the backslash in the option
value is doubled):

C:\> cd "C:\Program Files\MySQL\MySQL Server 5.0\bin"
C:\> mysqld-nt --init-file=C:\\mysql-init.txt

If you installed MySQL to a different location, adjust the cd command accordingly.

The server executes the contents of the file named by the --init-file option at startup, changing
the 'root'@'localhost' account password.

To have server output to appear in the console window rather than in a log file, add the --console
option to the mysqld command.

If you installed MySQL using the MySQL Installation Wizard, you may need to specify a --defaults-
file option. For example:

C:\> mysqld-nt

Administration-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2127

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 --defaults-file="C:\\Program Files\\MySQL\\MySQL Server 5.0\\my.ini"
 --init-file=C:\\mysql-init.txt

The appropriate --defaults-file setting can be found using the Services Manager: From the Start
menu, select Control Panel, then Administrative Tools, then Services. Find the MySQL service in
the list, right-click it, and choose the Properties option. The Path to executable field contains
the --defaults-file setting.

7. After the server has started successfully, delete C:\mysql-init.txt.

You should now be able to connect to the MySQL server as root using the new password. Stop the
MySQL server and restart it normally. If you run the server as a service, start it from the Windows Services
window. If you start the server manually, use whatever command you normally use.

Resetting the Root Password: Unix and Unix-Like Systems

On Unix, use the following procedure to reset the password for the MySQL 'root'@'localhost'
account. To change the password for a root account with a different host name part, modify the
instructions to use that host name.

The instructions assume that you will start the MySQL server from the Unix login account that you normally
use for running it. For example, if you run the server using the mysql login account, you should log in as
mysql before using the instructions. Alternatively, you can log in as root, but in this case you must start
mysqld with the --user=mysql option. If you start the server as root without using --user=mysql,
the server may create root-owned files in the data directory, such as log files, and these may cause
permission-related problems for future server startups. If that happens, you will need to either change the
ownership of the files to mysql or remove them.

1. Log on to your system as the Unix user that the MySQL server runs as (for example, mysql).

2. Stop the MySQL server if it is running. Locate the .pid file that contains the server's process ID.
The exact location and name of this file depend on your distribution, host name, and configuration.
Common locations are /var/lib/mysql/, /var/run/mysqld/, and /usr/local/mysql/data/.
Generally, the file name has an extension of .pid and begins with either mysqld or your system's host
name.

Stop the MySQL server by sending a normal kill (not kill -9) to the mysqld process. Use the
actual path name of the .pid file in the following command:

shell> kill `cat /mysql-data-directory/host_name.pid`

Use backticks (not forward quotation marks) with the cat command. These cause the output of cat to
be substituted into the kill command.

3. Create a text file containing the following statement on a single line. Replace the password with the
password that you want to use.

SET PASSWORD FOR 'root'@'localhost' = PASSWORD('MyNewPass');

4. Save the file. This example assumes that you name the file /home/me/mysql-init. The file contains
the password, so do not save it where it can be read by other users. If you are not logged in as mysql
(the user the server runs as), make sure that the file has permissions that permit mysql to read it.

5. Start the MySQL server with the special --init-file option:

shell> mysqld_safe --init-file=/home/me/mysql-init &

Administration-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2128

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

The server executes the contents of the file named by the --init-file option at startup, changing
the 'root'@'localhost' account password.

6. After the server has started successfully, delete /home/me/mysql-init.

You should now be able to connect to the MySQL server as root using the new password. Stop the server
and restart it normally.

Resetting the Root Password: Generic Instructions

The preceding sections provide password-resetting instructions specifically for Windows and Unix and
Unix-like systems. Alternatively, on any platform, you can reset the password using the mysql client (but
this approach is less secure):

1. Stop the MySQL server if necessary, then restart it with the --skip-grant-tables option.
This enables anyone to connect without a password and with all privileges, and disables account-
management statements such as SET PASSWORD. Because this is insecure, you might want to use
--skip-grant-tables in conjunction with --skip-networking to prevent remote clients from
connecting.

2. Connect to the MySQL server using the mysql client; no password is necessary because the server
was started with --skip-grant-tables:

shell> mysql

3. In the mysql client, tell the server to reload the grant tables so that account-management statements
work:

mysql> FLUSH PRIVILEGES;

Then change the 'root'@'localhost' account password. Replace the password with the password
that you want to use. To change the password for a root account with a different host name part,
modify the instructions to use that host name.

mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('MyNewPass');

You should now be able to connect to the MySQL server as root using the new password. Stop the server
and restart it normally (without the --skip-grant-tables and --skip-networking options).

B.5.3.3 What to Do If MySQL Keeps Crashing

Each MySQL version is tested on many platforms before it is released. This does not mean that there are
no bugs in MySQL, but if there are bugs, they should be very few and can be hard to find. If you have a
problem, it always helps if you try to find out exactly what crashes your system, because you have a much
better chance of getting the problem fixed quickly.

First, you should try to find out whether the problem is that the mysqld server dies or whether your
problem has to do with your client. You can check how long your mysqld server has been up by executing
mysqladmin version. If mysqld has died and restarted, you may find the reason by looking in the
server's error log. See Section 5.4.1, “The Error Log”.

On some systems, you can find in the error log a stack trace of where mysqld died that you can resolve
with the resolve_stack_dump program. See Section 21.3, “Debugging and Porting MySQL”. Note that
the variable values written in the error log may not always be 100% correct.

Administration-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2129

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Many server crashes are caused by corrupted data files or index files. MySQL updates the files on disk
with the write() system call after every SQL statement and before the client is notified about the result.
(This is not true if you are running with --delay-key-write, in which case data files are written but not
index files.) This means that data file contents are safe even if mysqld crashes, because the operating
system ensures that the unflushed data is written to disk. You can force MySQL to flush everything to disk
after every SQL statement by starting mysqld with the --flush option.

The preceding means that normally you should not get corrupted tables unless one of the following
happens:

• The MySQL server or the server host was killed in the middle of an update.

• You have found a bug in mysqld that caused it to die in the middle of an update.

• Some external program is manipulating data files or index files at the same time as mysqld without
locking the table properly.

• You are running many mysqld servers using the same data directory on a system that does not support
good file system locks (normally handled by the lockd lock manager), or you are running multiple
servers with external locking disabled.

• You have a crashed data file or index file that contains very corrupt data that confused mysqld.

• You have found a bug in the data storage code. This isn't likely, but it is at least possible. In this case,
you can try to change the storage engine to another engine by using ALTER TABLE on a repaired copy
of the table.

Because it is very difficult to know why something is crashing, first try to check whether things that work for
others crash for you. Please try the following things:

• Stop the mysqld server with mysqladmin shutdown, run myisamchk --silent --force */
*.MYI from the data directory to check all MyISAM tables, and restart mysqld. This ensures that you
are running from a clean state. See Chapter 5, MySQL Server Administration.

• Start mysqld with the general query log enabled (see Section 5.4.2, “The General Query Log”). Then try
to determine from the information written to the log whether some specific query kills the server. About
95% of all bugs are related to a particular query. Normally, this is one of the last queries in the log file
just before the server restarts. See Section 5.4.2, “The General Query Log”. If you can repeatedly kill
MySQL with a specific query, even when you have checked all tables just before issuing it, then you
have been able to locate the bug and should submit a bug report for it. See Section 1.7, “How to Report
Bugs or Problems”.

• Try to make a test case that we can use to repeat the problem. See Section 21.3, “Debugging and
Porting MySQL”.

• Try running the tests in the mysql-test directory and the MySQL benchmarks. See Section 21.1.2,
“The MySQL Test Suite”. They should test MySQL rather well. You can also add code to the
benchmarks that simulates your application. The benchmarks can be found in the sql-bench directory
in a source distribution or, for a binary distribution, in the sql-bench directory under your MySQL
installation directory.

• Try the fork_big.pl script. (It is located in the tests directory of source distributions.)

• If you configure MySQL for debugging, it is much easier to gather information about possible errors
if something goes wrong. Configuring MySQL for debugging causes a safe memory allocator to be
included that can find some errors. It also provides a lot of output about what is happening. Reconfigure
MySQL with the --with-debug or --with-debug=full option to configure and then recompile.
See Section 21.3, “Debugging and Porting MySQL”.

Administration-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2130

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Make sure that you have applied the latest patches for your operating system.

• Use the --skip-external-locking option to mysqld. On some systems, the lockd lock manager
does not work properly; the --skip-external-locking option tells mysqld not to use external
locking. (This means that you cannot run two mysqld servers on the same data directory and that you
must be careful if you use myisamchk. Nevertheless, it may be instructive to try the option as a test.)

• Have you tried mysqladmin -u root processlist when mysqld appears to be running but
not responding? Sometimes mysqld is not comatose even though you might think so. The problem
may be that all connections are in use, or there may be some internal lock problem. mysqladmin -u
root processlist usually is able to make a connection even in these cases, and can provide useful
information about the current number of connections and their status.

• Run the command mysqladmin -i 5 status or mysqladmin -i 5 -r status in a separate
window to produce statistics while you run your other queries.

• Try the following:

1. Start mysqld from gdb (or another debugger). See Section 21.3, “Debugging and Porting MySQL”.

2. Run your test scripts.

3. Print the backtrace and the local variables at the three lowest levels. In gdb, you can do this with the
following commands when mysqld has crashed inside gdb:

backtrace
info local
up
info local
up
info local

With gdb, you can also examine which threads exist with info threads and switch to a specific
thread with thread N, where N is the thread ID.

• Try to simulate your application with a Perl script to force MySQL to crash or misbehave.

• Send a normal bug report. See Section 1.7, “How to Report Bugs or Problems”. Be even more detailed
than usual. Because MySQL works for many people, it may be that the crash results from something that
exists only on your computer (for example, an error that is related to your particular system libraries).

• If you have a problem with tables containing dynamic-length rows and you are using only VARCHAR
columns (not BLOB or TEXT columns), you can try to change all VARCHAR to CHAR with ALTER TABLE.
This forces MySQL to use fixed-size rows. Fixed-size rows take a little extra space, but are much more
tolerant to corruption.

The current dynamic row code has been in use for several years with very few problems, but dynamic-
length rows are by nature more prone to errors, so it may be a good idea to try this strategy to see
whether it helps.

• Do not rule out your server hardware when diagnosing problems. Defective hardware can be the cause
of data corruption. Particular attention should be paid to your memory and disk subsystems when
troubleshooting hardware.

B.5.3.4 How MySQL Handles a Full Disk

This section describes how MySQL responds to disk-full errors (such as “no space left on device”), and to
quota-exceeded errors (such as “write failed” or “user block limit reached”).

Administration-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2131

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This section is relevant for writes to MyISAM tables. It also applies for writes to binary log files and binary
log index file, except that references to “row” and “record” should be understood to mean “event.”

When a disk-full condition occurs, MySQL does the following:

• It checks once every minute to see whether there is enough space to write the current row. If there is
enough space, it continues as if nothing had happened.

• Every 10 minutes it writes an entry to the log file, warning about the disk-full condition.

To alleviate the problem, you can take the following actions:

• To continue, you only have to free enough disk space to insert all records.

• To abort the thread, you must use mysqladmin kill. The thread is aborted the next time it checks the
disk (in one minute).

• Other threads might be waiting for the table that caused the disk-full condition. If you have several
“locked” threads, killing the one thread that is waiting on the disk-full condition enables the other threads
to continue.

Exceptions to the preceding behavior are when you use REPAIR TABLE or OPTIMIZE TABLE or when
the indexes are created in a batch after LOAD DATA INFILE or after an ALTER TABLE statement. All of
these statements may create large temporary files that, if left to themselves, would cause big problems for
the rest of the system. If the disk becomes full while MySQL is doing any of these operations, it removes
the big temporary files and mark the table as crashed. The exception is that for ALTER TABLE, the old
table is left unchanged.

B.5.3.5 Where MySQL Stores Temporary Files

On Unix, MySQL uses the value of the TMPDIR environment variable as the path name of the directory
in which to store temporary files. If TMPDIR is not set, MySQL uses the system default, which is usually /
tmp, /var/tmp, or /usr/tmp.

On Windows, Netware and OS2, MySQL checks in order the values of the TMPDIR, TEMP, and TMP
environment variables. For the first one found to be set, MySQL uses it and does not check those
remaining. If none of TMPDIR, TEMP, or TMP are set, MySQL uses the Windows system default, which is
usually C:\windows\temp\.

If the file system containing your temporary file directory is too small, you can use the mysqld --tmpdir
option to specify a directory in a file system where you have enough space. On replication slaves, you can
use --slave-load-tmpdir to specify a separate directory for holding temporary files when replicating
LOAD DATA INFILE statements.

The --tmpdir option can be set to a list of several paths that are used in round-robin fashion. Paths
should be separated by colon characters (“:”) on Unix and semicolon characters (“;”) on Windows,
NetWare, and OS/2.

Note

To spread the load effectively, these paths should be located on different physical
disks, not different partitions of the same disk.

If the MySQL server is acting as a replication slave, you should be sure to set --slave-load-tmpdir
not to point to a directory that is on a memory-based file system or to a directory that is cleared when the
server host restarts. A replication slave needs some of its temporary files to survive a machine restart so

Administration-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2132

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

that it can replicate temporary tables or LOAD DATA INFILE operations. If files in the slave temporary file
directory are lost when the server restarts, replication fails.

MySQL arranges that temporary files are removed if mysqld is terminated. On platforms that support it
(such as Unix), this is done by unlinking the file after opening it. The disadvantage of this is that the name
does not appear in directory listings and you do not see a big temporary file that fills up the file system in
which the temporary file directory is located. (In such cases, lsof +L1 may be helpful in identifying large
files associated with mysqld.)

When sorting (ORDER BY or GROUP BY), MySQL normally uses one or two temporary files. The maximum
disk space required is determined by the following expression:

(length of what is sorted + sizeof(row pointer))
* number of matched rows
* 2

The row pointer size is usually four bytes, but may grow in the future for really big tables.

For some SELECT queries, MySQL also creates temporary SQL tables. These are not hidden and have
names of the form SQL_*.

ALTER TABLE creates a temporary copy of the original table in the same directory as the original table.

B.5.3.6 How to Protect or Change the MySQL Unix Socket File

The default location for the Unix socket file that the server uses for communication with local clients is /
tmp/mysql.sock. (For some distribution formats, the directory might be different, such as /var/lib/
mysql for RPMs.)

On some versions of Unix, anyone can delete files in the /tmp directory or other similar directories
used for temporary files. If the socket file is located in such a directory on your system, this might cause
problems.

On most versions of Unix, you can protect your /tmp directory so that files can be deleted only by their
owners or the superuser (root). To do this, set the sticky bit on the /tmp directory by logging in as
root and using the following command:

shell> chmod +t /tmp

You can check whether the sticky bit is set by executing ls -ld /tmp. If the last permission character
is t, the bit is set.

Another approach is to change the place where the server creates the Unix socket file. If you do this, you
should also let client programs know the new location of the file. You can specify the file location in several
ways:

• Specify the path in a global or local option file. For example, put the following lines in /etc/my.cnf:

[mysqld]
socket=/path/to/socket

[client]
socket=/path/to/socket

See Section 4.2.6, “Using Option Files”.

• Specify a --socket option on the command line to mysqld_safe and when you run client programs.

Query-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2133

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Set the MYSQL_UNIX_PORT environment variable to the path of the Unix socket file.

• Recompile MySQL from source to use a different default Unix socket file location. Define the path to
the file with the --with-unix-socket-path option when you run configure. See Section 2.17.3,
“MySQL Source-Configuration Options”.

You can test whether the new socket location works by attempting to connect to the server with this
command:

shell> mysqladmin --socket=/path/to/socket version

B.5.3.7 Time Zone Problems

If you have a problem with SELECT NOW() returning values in UTC and not your local time, you have
to tell the server your current time zone. The same applies if UNIX_TIMESTAMP() returns the wrong
value. This should be done for the environment in which the server runs; for example, in mysqld_safe or
mysql.server. See Section 2.21, “Environment Variables”.

You can set the time zone for the server with the --timezone=timezone_name option to
mysqld_safe. You can also set it by setting the TZ environment variable before you start mysqld.

The permissible values for --timezone or TZ are system dependent. Consult your operating system
documentation to see what values are acceptable.

B.5.4 Query-Related Issues

B.5.4.1 Case Sensitivity in String Searches

For nonbinary strings (CHAR, VARCHAR, TEXT), string searches use the collation of the comparison
operands. For binary strings (BINARY, VARBINARY, BLOB), comparisons use the numeric values of the
bytes in the operands; this means that for alphabetic characters, comparisons will be case sensitive.

A comparison between a nonbinary string and binary string is treated as a comparison of binary strings.

Simple comparison operations (>=, >, =, <, <=, sorting, and grouping) are based on each character's
“sort value.” Characters with the same sort value are treated as the same character. For example, if “e”
and “é” have the same sort value in a given collation, they compare as equal.

The default character set and collation are latin1 and latin1_swedish_ci, so nonbinary string
comparisons are case insensitive by default. This means that if you search with col_name LIKE 'a
%', you get all column values that start with A or a. To make this search case sensitive, make sure that
one of the operands has a case sensitive or binary collation. For example, if you are comparing a column
and a string that both have the latin1 character set, you can use the COLLATE operator to cause either
operand to have the latin1_general_cs or latin1_bin collation:

col_name COLLATE latin1_general_cs LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_general_cs
col_name COLLATE latin1_bin LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_bin

If you want a column always to be treated in case-sensitive fashion, declare it with a case sensitive or
binary collation. See Section 13.1.10, “CREATE TABLE Syntax”.

To cause a case-sensitive comparison of nonbinary strings to be case insensitive, use COLLATE to name
a case-insensitive collation. The strings in the following example normally are case sensitive, but COLLATE
changes the comparison to be case insensitive:

Query-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2134

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SET @s1 = 'MySQL' COLLATE latin1_bin,
 -> @s2 = 'mysql' COLLATE latin1_bin;
mysql> SELECT @s1 = @s2;
+-----------+
| @s1 = @s2 |
+-----------+
| 0 |
+-----------+
mysql> SELECT @s1 COLLATE latin1_swedish_ci = @s2;
+-------------------------------------+
| @s1 COLLATE latin1_swedish_ci = @s2 |
+-------------------------------------+
| 1 |
+-------------------------------------+

A binary string is case sensitive in comparisons. To compare the string as case insensitive, convert it to a
nonbinary string and use COLLATE to name a case-insensitive collation:

mysql> SET @s = BINARY 'MySQL';
mysql> SELECT @s = 'mysql';
+--------------+
| @s = 'mysql' |
+--------------+
| 0 |
+--------------+
mysql> SELECT CONVERT(@s USING latin1) COLLATE latin1_swedish_ci = 'mysql';
+--+
| CONVERT(@s USING latin1) COLLATE latin1_swedish_ci = 'mysql' |
+--+
| 1 |
+--+

To determine whether a value will compare as a nonbinary or binary string, use the COLLATION()
function. This example shows that VERSION() returns a string that has a case-insensitive collation, so
comparisons are case insensitive:

mysql> SELECT COLLATION(VERSION());
+----------------------+
| COLLATION(VERSION()) |
+----------------------+
| utf8_general_ci |
+----------------------+

For binary strings, the collation value is binary, so comparisons will be case sensitive. One context in
which you will see binary is for compression and encryption functions, which return binary strings as a
general rule: string:

mysql> SELECT COLLATION(ENCRYPT('x')), COLLATION(SHA1('x'));
+-------------------------+----------------------+
| COLLATION(ENCRYPT('x')) | COLLATION(SHA1('x')) |
+-------------------------+----------------------+
| binary | binary |
+-------------------------+----------------------+

B.5.4.2 Problems Using DATE Columns

The format of a DATE value is 'YYYY-MM-DD'. According to standard SQL, no other format is permitted.
You should use this format in UPDATE expressions and in the WHERE clause of SELECT statements. For
example:

Query-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2135

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT * FROM t1 WHERE date >= '2003-05-05';

As a convenience, MySQL automatically converts a date to a number if the date is used in a numeric
context and vice versa. MySQL also permits a “relaxed” string format when updating and in a WHERE
clause that compares a date to a DATE, DATETIME, or TIMESTAMP column. “Relaxed” format means that
any punctuation character may be used as the separator between parts. For example, '2004-08-15'
and '2004#08#15' are equivalent. MySQL can also convert a string containing no separators (such as
'20040815'), provided it makes sense as a date.

When you compare a DATE, TIME, DATETIME, or TIMESTAMP to a constant string with the <, <=, =,
>=, >, or BETWEEN operators, MySQL normally converts the string to an internal long integer for faster
comparison (and also for a bit more “relaxed” string checking). However, this conversion is subject to the
following exceptions:

• When you compare two columns

• When you compare a DATE, TIME, DATETIME, or TIMESTAMP column to an expression

• When you use any comparison method other than those just listed, such as IN or STRCMP().

For those exceptions, the comparison is done by converting the objects to strings and performing a string
comparison.

To be on the safe side, assume that strings are compared as strings and use the appropriate string
functions if you want to compare a temporal value to a string.

The special “zero” date '0000-00-00' can be stored and retrieved as '0000-00-00'. When a
'0000-00-00' date is used through Connector/ODBC, it is automatically converted to NULL because
ODBC cannot handle that kind of date.

Because MySQL performs the conversions just described, the following statements work (assume that
idate is a DATE column):

INSERT INTO t1 (idate) VALUES (19970505);
INSERT INTO t1 (idate) VALUES ('19970505');
INSERT INTO t1 (idate) VALUES ('97-05-05');
INSERT INTO t1 (idate) VALUES ('1997.05.05');
INSERT INTO t1 (idate) VALUES ('1997 05 05');
INSERT INTO t1 (idate) VALUES ('0000-00-00');

SELECT idate FROM t1 WHERE idate >= '1997-05-05';
SELECT idate FROM t1 WHERE idate >= 19970505;
SELECT MOD(idate,100) FROM t1 WHERE idate >= 19970505;
SELECT idate FROM t1 WHERE idate >= '19970505';

However, the following statement does not work:

SELECT idate FROM t1 WHERE STRCMP(idate,'20030505')=0;

STRCMP() is a string function, so it converts idate to a string in 'YYYY-MM-DD' format and performs
a string comparison. It does not convert '20030505' to the date '2003-05-05' and perform a date
comparison.

If you enable the ALLOW_INVALID_DATES SQL mode, MySQL permits you to store dates that are given
only limited checking: MySQL requires only that the day is in the range from 1 to 31 and the month is in
the range from 1 to 12. This makes MySQL very convenient for Web applications where you obtain year,

Query-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2136

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

month, and day in three different fields and you want to store exactly what the user inserted (without date
validation).

MySQL permits you to store dates where the day or month and day are zero. This is convenient if you want
to store a birthdate in a DATE column and you know only part of the date. To disallow zero month or day
parts in dates, enable the NO_ZERO_IN_DATE SQL mode.

MySQL permits you to store a “zero” value of '0000-00-00' as a “dummy date.” This is in some cases
more convenient than using NULL values. If a date to be stored in a DATE column cannot be converted
to any reasonable value, MySQL stores '0000-00-00'. To disallow '0000-00-00', enable the
NO_ZERO_DATE SQL mode.

To have MySQL check all dates and accept only legal dates (unless overridden by IGNORE), set the
sql_mode system variable to "NO_ZERO_IN_DATE,NO_ZERO_DATE".

Date handling in MySQL 5.0.1 and earlier works like MySQL 5.0.2 with the ALLOW_INVALID_DATES SQL
mode enabled.

B.5.4.3 Problems with NULL Values

The concept of the NULL value is a common source of confusion for newcomers to SQL, who often
think that NULL is the same thing as an empty string ''. This is not the case. For example, the following
statements are completely different:

mysql> INSERT INTO my_table (phone) VALUES (NULL);
mysql> INSERT INTO my_table (phone) VALUES ('');

Both statements insert a value into the phone column, but the first inserts a NULL value and the second
inserts an empty string. The meaning of the first can be regarded as “phone number is not known” and the
meaning of the second can be regarded as “the person is known to have no phone, and thus no phone
number.”

To help with NULL handling, you can use the IS NULL and IS NOT NULL operators and the IFNULL()
function.

In SQL, the NULL value is never true in comparison to any other value, even NULL. An expression that
contains NULL always produces a NULL value unless otherwise indicated in the documentation for the
operators and functions involved in the expression. All columns in the following example return NULL:

mysql> SELECT NULL, 1+NULL, CONCAT('Invisible',NULL);

To search for column values that are NULL, you cannot use an expr = NULL test. The following
statement returns no rows, because expr = NULL is never true for any expression:

mysql> SELECT * FROM my_table WHERE phone = NULL;

To look for NULL values, you must use the IS NULL test. The following statements show how to find the
NULL phone number and the empty phone number:

mysql> SELECT * FROM my_table WHERE phone IS NULL;
mysql> SELECT * FROM my_table WHERE phone = '';

See Section 3.3.4.6, “Working with NULL Values”, for additional information and examples.

Query-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2137

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

You can add an index on a column that can have NULL values if you are using the MyISAM, InnoDB, or
BDB, or MEMORY storage engine. Otherwise, you must declare an indexed column NOT NULL, and you
cannot insert NULL into the column.

When reading data with LOAD DATA INFILE, empty or missing columns are updated with ''. To load a
NULL value into a column, use \N in the data file. The literal word “NULL” may also be used under some
circumstances. See Section 13.2.6, “LOAD DATA INFILE Syntax”.

When using DISTINCT, GROUP BY, or ORDER BY, all NULL values are regarded as equal.

When using ORDER BY, NULL values are presented first, or last if you specify DESC to sort in descending
order.

Aggregate (summary) functions such as COUNT(), MIN(), and SUM() ignore NULL values. The exception
to this is COUNT(*), which counts rows and not individual column values. For example, the following
statement produces two counts. The first is a count of the number of rows in the table, and the second is a
count of the number of non-NULL values in the age column:

mysql> SELECT COUNT(*), COUNT(age) FROM person;

For some data types, MySQL handles NULL values specially. If you insert NULL into a TIMESTAMP column,
the current date and time is inserted. If you insert NULL into an integer or floating-point column that has the
AUTO_INCREMENT attribute, the next number in the sequence is inserted.

B.5.4.4 Problems with Column Aliases

An alias can be used in a query select list to give a column a different name. You can use the alias in
GROUP BY, ORDER BY, or HAVING clauses to refer to the column:

SELECT SQRT(a*b) AS root FROM tbl_name
 GROUP BY root HAVING root > 0;
SELECT id, COUNT(*) AS cnt FROM tbl_name
 GROUP BY id HAVING cnt > 0;
SELECT id AS 'Customer identity' FROM tbl_name;

Standard SQL disallows references to column aliases in a WHERE clause. This restriction is imposed
because when the WHERE clause is evaluated, the column value may not yet have been determined. For
example, the following query is illegal:

SELECT id, COUNT(*) AS cnt FROM tbl_name
 WHERE cnt > 0 GROUP BY id;

The WHERE clause determines which rows should be included in the GROUP BY clause, but it refers to
the alias of a column value that is not known until after the rows have been selected, and grouped by the
GROUP BY.

In the select list of a query, a quoted column alias can be specified using identifier or string quoting
characters:

SELECT 1 AS `one`, 2 AS 'two';

Elsewhere in the statement, quoted references to the alias must use identifier quoting or the reference is
treated as a string literal. For example, this statement groups by the values in column id, referenced using
the alias `a`:

Query-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2138

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
 GROUP BY `a`;

But this statement groups by the literal string 'a' and will not work as expected:

SELECT id AS 'a', COUNT(*) AS cnt FROM tbl_name
 GROUP BY 'a';

B.5.4.5 Rollback Failure for Nontransactional Tables

If you receive the following message when trying to perform a ROLLBACK, it means that one or more of the
tables you used in the transaction do not support transactions:

Warning: Some non-transactional changed tables couldn't be rolled back

These nontransactional tables are not affected by the ROLLBACK statement.

If you were not deliberately mixing transactional and nontransactional tables within the transaction, the
most likely cause for this message is that a table you thought was transactional actually is not. This can
happen if you try to create a table using a transactional storage engine that is not supported by your
mysqld server (or that was disabled with a startup option). If mysqld does not support a storage engine, it
instead creates the table as a MyISAM table, which is nontransactional.

You can check the storage engine for a table by using either of these statements:

SHOW TABLE STATUS LIKE 'tbl_name';
SHOW CREATE TABLE tbl_name;

See Section 13.7.5.33, “SHOW TABLE STATUS Syntax”, and Section 13.7.5.9, “SHOW CREATE TABLE
Syntax”.

You can check which storage engines your mysqld server supports by using this statement:

SHOW ENGINES;

You can also use the following statement, and check the value of the variable that is associated with the
storage engine in which you are interested:

SHOW VARIABLES LIKE 'have_%';

For example, to determine whether the InnoDB storage engine is available, check the value of the
have_innodb variable.

See Section 13.7.5.13, “SHOW ENGINES Syntax”, and Section 13.7.5.36, “SHOW VARIABLES Syntax”.

B.5.4.6 Deleting Rows from Related Tables

If the total length of the DELETE statement for related_table is more than 1MB (the default value
of the max_allowed_packet system variable), you should split it into smaller parts and execute
multiple DELETE statements. You probably get the fastest DELETE by specifying only 100 to 1,000
related_column values per statement if the related_column is indexed. If the related_column isn't
indexed, the speed is independent of the number of arguments in the IN clause.

Query-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2139

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

B.5.4.7 Solving Problems with No Matching Rows

If you have a complicated query that uses many tables but that returns no rows, you should use the
following procedure to find out what is wrong:

1. Test the query with EXPLAIN to check whether you can find something that is obviously wrong. See
Section 13.8.2, “EXPLAIN Syntax”.

2. Select only those columns that are used in the WHERE clause.

3. Remove one table at a time from the query until it returns some rows. If the tables are large, it is a good
idea to use LIMIT 10 with the query.

4. Issue a SELECT for the column that should have matched a row against the table that was last removed
from the query.

5. If you are comparing FLOAT or DOUBLE columns with numbers that have decimals, you cannot use
equality (=) comparisons. This problem is common in most computer languages because not all
floating-point values can be stored with exact precision. In some cases, changing the FLOAT to a
DOUBLE fixes this. See Section B.5.4.8, “Problems with Floating-Point Values”.

Similar problems may be encountered when comparing DECIMAL values prior to MySQL 5.0.3.

6. If you still cannot figure out what is wrong, create a minimal test that can be run with mysql test
< query.sql that shows your problems. You can create a test file by dumping the tables with
mysqldump --quick db_name tbl_name_1 ... tbl_name_n > query.sql. Open the file in
an editor, remove some insert lines (if there are more than needed to demonstrate the problem), and
add your SELECT statement at the end of the file.

Verify that the test file demonstrates the problem by executing these commands:

shell> mysqladmin create test2
shell> mysql test2 < query.sql

Attach the test file to a bug report, which you can file using the instructions in Section 1.7, “How to
Report Bugs or Problems”.

B.5.4.8 Problems with Floating-Point Values

Floating-point numbers sometimes cause confusion because they are approximate and not stored as
exact values. A floating-point value as written in an SQL statement may not be the same as the value
represented internally. Attempts to treat floating-point values as exact in comparisons may lead to
problems. They are also subject to platform or implementation dependencies. The FLOAT and DOUBLE
data types are subject to these issues. Before MySQL 5.0.3, DECIMAL comparison operations are
approximate as well.

Prior to MySQL 5.0.3, DECIMAL columns store values with exact precision because they are represented
as strings, but calculations on DECIMAL values are done using floating-point operations. As of 5.0.6,
MySQL performs DECIMAL operations with a precision of 65 decimal digits (64 digits from 5.0.3 to 5.0.5),
which should solve most common inaccuracy problems when it comes to DECIMAL columns. (If your server
is from MySQL 5.0.3 or higher, but you have DECIMAL columns in tables that were created before 5.0.3,
the old behavior still applies to those columns. To convert the tables to the newer DECIMAL format, dump
them with mysqldump and reload them.)

The following example (for versions of MySQL older than 5.0.3) demonstrates the problem. It shows that
even for older DECIMAL columns, calculations that are done using floating-point operations are subject to

Query-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2140

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

floating-point error. (Were you to replace the DECIMAL columns with FLOAT, similar problems would occur
for all versions of MySQL.)

mysql> CREATE TABLE t1 (i INT, d1 DECIMAL(9,2), d2 DECIMAL(9,2));
mysql> INSERT INTO t1 VALUES (1, 101.40, 21.40), (1, -80.00, 0.00),
 -> (2, 0.00, 0.00), (2, -13.20, 0.00), (2, 59.60, 46.40),
 -> (2, 30.40, 30.40), (3, 37.00, 7.40), (3, -29.60, 0.00),
 -> (4, 60.00, 15.40), (4, -10.60, 0.00), (4, -34.00, 0.00),
 -> (5, 33.00, 0.00), (5, -25.80, 0.00), (5, 0.00, 7.20),
 -> (6, 0.00, 0.00), (6, -51.40, 0.00);

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b
 -> FROM t1 GROUP BY i HAVING a <> b;
+------+--------+-------+
| i | a | b |
+------+--------+-------+
1	21.40	21.40
2	76.80	76.80
3	7.40	7.40
4	15.40	15.40
5	7.20	7.20
6	-51.40	0.00
+------+--------+-------+

The result is correct. Although the first five records look like they should not satisfy the comparison (the
values of a and b do not appear to be different), they may do so because the difference between the
numbers shows up around the tenth decimal or so, depending on factors such as computer architecture
or the compiler version or optimization level. For example, different CPUs may evaluate floating-point
numbers differently.

As of MySQL 5.0.3, you will get only the last row in the above result.

The problem cannot be solved by using ROUND() or similar functions, because the result is still a floating-
point number:

mysql> SELECT i, ROUND(SUM(d1), 2) AS a, ROUND(SUM(d2), 2) AS b
 -> FROM t1 GROUP BY i HAVING a <> b;
+------+--------+-------+
| i | a | b |
+------+--------+-------+
1	21.40	21.40
2	76.80	76.80
3	7.40	7.40
4	15.40	15.40
5	7.20	7.20
6	-51.40	0.00
+------+--------+-------+

This is what the numbers in column a look like when displayed with more decimal places:

mysql> SELECT i, ROUND(SUM(d1), 2)*1.0000000000000000 AS a,
 -> ROUND(SUM(d2), 2) AS b FROM t1 GROUP BY i HAVING a <> b;
+------+----------------------+-------+
| i | a | b |
+------+----------------------+-------+
1	21.3999999999999986	21.40
2	76.7999999999999972	76.80
3	7.4000000000000004	7.40
4	15.4000000000000004	15.40
5	7.2000000000000002	7.20
6	-51.3999999999999986	0.00

Query-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2141

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

+------+----------------------+-------+

Depending on your computer architecture, you may or may not see similar results. For example, on some
machines you may get the “correct” results by multiplying both arguments by 1, as the following example
shows.

Warning

Never use this method in your applications. It is not an example of a trustworthy
method!

mysql> SELECT i, ROUND(SUM(d1), 2)*1 AS a, ROUND(SUM(d2), 2)*1 AS b
 -> FROM t1 GROUP BY i HAVING a <> b;
+------+--------+------+
| i | a | b |
+------+--------+------+
| 6 | -51.40 | 0.00 |
+------+--------+------+

The reason that the preceding example seems to work is that on the particular machine where the test was
done, CPU floating-point arithmetic happens to round the numbers to the same value. However, there is no
rule that any CPU should do so, so this method cannot be trusted.

The correct way to do floating-point number comparison is to first decide on an acceptable tolerance for
differences between the numbers and then do the comparison against the tolerance value. For example,
if we agree that floating-point numbers should be regarded the same if they are same within a precision of
one in ten thousand (0.0001), the comparison should be written to find differences larger than the tolerance
value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
 -> GROUP BY i HAVING ABS(a - b) > 0.0001;
+------+--------+------+
| i | a | b |
+------+--------+------+
| 6 | -51.40 | 0.00 |
+------+--------+------+
1 row in set (0.00 sec)

Conversely, to get rows where the numbers are the same, the test should find differences within the
tolerance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
 -> GROUP BY i HAVING ABS(a - b) <= 0.0001;
+------+-------+-------+
| i | a | b |
+------+-------+-------+
1	21.40	21.40
2	76.80	76.80
3	7.40	7.40
4	15.40	15.40
5	7.20	7.20
+------+-------+-------+

Floating-point values are subject to platform or implementation dependencies. Suppose that you execute
the following statements:

CREATE TABLE t1(c1 FLOAT(53,0), c2 FLOAT(53,0));
INSERT INTO t1 VALUES('1e+52','-1e+52');

Optimizer-Related Issues

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2142

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SELECT * FROM t1;

On some platforms, the SELECT statement returns inf and -inf. On others, it returns 0 and -0.

An implication of the preceding issues is that if you attempt to create a replication slave by dumping table
contents with mysqldump on the master and reloading the dump file into the slave, tables containing
floating-point columns might differ between the two hosts.

B.5.5 Optimizer-Related Issues

MySQL uses a cost-based optimizer to determine the best way to resolve a query. In many cases, MySQL
can calculate the best possible query plan, but sometimes MySQL does not have enough information
about the data at hand and has to make “educated” guesses about the data.

For the cases when MySQL does not do the "right" thing, tools that you have available to help MySQL are:

• Use the EXPLAIN statement to get information about how MySQL processes a query. To use it, just add
the keyword EXPLAIN to the front of your SELECT statement:

mysql> EXPLAIN SELECT * FROM t1, t2 WHERE t1.i = t2.i;

EXPLAIN is discussed in more detail in Section 13.8.2, “EXPLAIN Syntax”.

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See
Section 13.7.2.1, “ANALYZE TABLE Syntax”.

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive compared
to using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
WHERE t1.col_name=t2.col_name;

USE INDEX and IGNORE INDEX may also be useful. See Section 8.9.2, “Index Hints”.

• Global and table-level STRAIGHT_JOIN. See Section 13.2.8, “SELECT Syntax”.

• You can tune global or thread-specific system variables. For example, start mysqld with the --max-
seeks-for-key=1000 option or use SET max_seeks_for_key=1000 to tell the optimizer to assume
that no key scan causes more than 1,000 key seeks. See Section 5.1.4, “Server System Variables”.

B.5.6 Table Definition-Related Issues

B.5.6.1 Problems with ALTER TABLE

If you get a duplicate-key error when using ALTER TABLE to change the character set or collation of a
character column, the cause is either that the new column collation maps two keys to the same value or
that the table is corrupted. In the latter case, you should run REPAIR TABLE on the table.

If ALTER TABLE dies with the following error, the problem may be that MySQL crashed during an earlier
ALTER TABLE operation and there is an old table named A-xxx or B-xxx lying around:

Error on rename of './database/name.frm'
to './database/B-xxx.frm' (Errcode: 17)

In this case, go to the MySQL data directory and delete all files that have names starting with A- or B-.
(You may want to move them elsewhere instead of deleting them.)

Known Issues in MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2143

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ALTER TABLE works in the following way:

• Create a new table named A-xxx with the requested structural changes.

• Copy all rows from the original table to A-xxx.

• Rename the original table to B-xxx.

• Rename A-xxx to your original table name.

• Delete B-xxx.

If something goes wrong with the renaming operation, MySQL tries to undo the changes. If something
goes seriously wrong (although this shouldn't happen), MySQL may leave the old table as B-xxx. A simple
rename of the table files at the system level should get your data back.

If you use ALTER TABLE on a transactional table or if you are using Windows or OS/2, ALTER TABLE
unlocks the table if you had done a LOCK TABLE on it. This is done because InnoDB and these operating
systems cannot drop a table that is in use.

B.5.6.2 TEMPORARY Table Problems

The following list indicates limitations on the use of TEMPORARY tables:

• A TEMPORARY table can only be of type MEMORY, MyISAM, MERGE, or InnoDB.

Temporary tables are not supported for MySQL Cluster.

• You cannot refer to a TEMPORARY table more than once in the same query. For example, the following
does not work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

This error also occurs if you refer to a temporary table multiple times in a stored function under different
aliases, even if the references occur in different statements within the function.

• The SHOW TABLES statement does not list TEMPORARY tables.

• You cannot use RENAME to rename a TEMPORARY table. However, you can use ALTER TABLE instead:

mysql> ALTER TABLE orig_name RENAME new_name;

• There are known issues in using temporary tables with replication. See Section 16.4.1, “Replication
Features and Issues”, for more information.

B.5.7 Known Issues in MySQL

This section lists known issues in recent versions of MySQL.

For information about platform-specific issues, see the installation and porting instructions in Section 2.20,
“Operating System-Specific Notes”, and Section 21.3, “Debugging and Porting MySQL”.

The following problems are known:

• Subquery optimization for IN is not as effective as for =.

Known Issues in MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2144

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• Even if you use lower_case_table_names=2 (which enables MySQL to remember the case used
for databases and table names), MySQL does not remember the case used for database names for the
function DATABASE() or within the various logs (on case-insensitive systems).

• Dropping a FOREIGN KEY constraint does not work in replication because the constraint may have
another name on the slave.

• REPLACE (and LOAD DATA with the REPLACE option) does not trigger ON DELETE CASCADE.

• DISTINCT with ORDER BY does not work inside GROUP_CONCAT() if you do not use all and only those
columns that are in the DISTINCT list.

• If one user has a long-running transaction and another user drops a table that is updated in the
transaction, there is small chance that the binary log may contain the DROP TABLE statement before the
table is used in the transaction itself.

• When inserting a big integer value (between 263 and 264−1) into a decimal or string column, it is inserted
as a negative value because the number is evaluated in a signed integer context.

• FLUSH TABLES WITH READ LOCK does not block COMMIT if the server is running without binary
logging, which may cause a problem (of consistency between tables) when doing a full backup.

• ANALYZE TABLE on a BDB table may in some cases make the table unusable until you restart mysqld.
If this happens, look for errors of the following form in the MySQL error file:

001207 22:07:56 bdb: log_flush: LSN past current end-of-log

• Do not execute ALTER TABLE on a BDB table on which you are running multiple-statement transactions
until all those transactions complete. (The transaction might be ignored.)

• ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE may cause problems on tables for which
you are using INSERT DELAYED.

• Performing LOCK TABLE ... and FLUSH TABLES ... does not guarantee that there isn't a half-
finished transaction in progress on the table.

• BDB tables are relatively slow to open. If you have many BDB tables in a database, it takes a long time to
use the mysql client on the database if you are not using the -A option or if you are using rehash. This
is especially noticeable when you have a large table cache.

• Replication uses query-level logging: The master writes the executed queries to the binary log. This is a
very fast, compact, and efficient logging method that works perfectly in most cases.

It is possible for the data on the master and slave to become different if a query is designed in such a
way that the data modification is nondeterministic (generally not a recommended practice, even outside
of replication).

For example:

• CREATE TABLE ... SELECT or INSERT ... SELECT statements that insert zero or NULL values
into an AUTO_INCREMENT column.

• DELETE if you are deleting rows from a table that has foreign keys with ON DELETE CASCADE
properties.

• REPLACE ... SELECT, INSERT IGNORE ... SELECT if you have duplicate key values in the
inserted data.

Known Issues in MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2145

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If and only if the preceding queries have no ORDER BY clause guaranteeing a deterministic order.

For example, for INSERT ... SELECT with no ORDER BY, the SELECT may return rows in a
different order (which results in a row having different ranks, hence getting a different number in the
AUTO_INCREMENT column), depending on the choices made by the optimizers on the master and slave.

A query is optimized differently on the master and slave only if:

• The table is stored using a different storage engine on the master than on the slave. (It is possible
to use different storage engines on the master and slave. For example, you can use InnoDB on the
master, but MyISAM on the slave if the slave has less available disk space.)

• MySQL buffer sizes (key_buffer_size, and so on) are different on the master and slave.

• The master and slave run different MySQL versions, and the optimizer code differs between these
versions.

This problem may also affect database restoration using mysqlbinlog|mysql.

The easiest way to avoid this problem is to add an ORDER BY clause to the aforementioned
nondeterministic queries to ensure that the rows are always stored or modified in the same order.

• Log file names are based on the server host name if you do not specify a file name with the startup
option. To retain the same log file names if you change your host name to something else, you
must explicitly use options such as --log-bin=old_host_name-bin. See Section 5.1.3, “Server
Command Options”. Alternatively, rename the old files to reflect your host name change. If these are
binary logs, you must edit the binary log index file and fix the binary log file names there as well. (The
same is true for the relay logs on a slave server.)

• mysqlbinlog does not delete temporary files left after a LOAD DATA INFILE statement. See
Section 4.6.7, “mysqlbinlog — Utility for Processing Binary Log Files”.

• RENAME does not work with TEMPORARY tables or tables used in a MERGE table.

• Due to the way table format (.frm) files are stored, you cannot use character 255 (CHAR(255)) in table
names, column names, or enumerations.

• When using SET CHARACTER SET, you cannot use translated characters in database, table, and
column names.

• You cannot use “_” or “%” with ESCAPE in LIKE ... ESCAPE.

• The server uses only the first max_sort_length bytes when comparing data values. This means
that values cannot reliably be used in GROUP BY, ORDER BY, or DISTINCT if they differ only after the
first max_sort_length bytes. To work around this, increase the variable value. The default value of
max_sort_length is 1024 and can be changed at server startup time or at runtime.

• Numeric calculations are done with BIGINT or DOUBLE (both are normally 64 bits long). Which precision
you get depends on the function. The general rule is that bit functions are performed with BIGINT
precision, IF() and ELT() with BIGINT or DOUBLE precision, and the rest with DOUBLE precision.
You should try to avoid using unsigned long long values if they resolve to be larger than 63 bits
(9223372036854775807) for anything other than bit fields.

• You can have up to 255 ENUM and SET columns in one table.

• In MIN(), MAX(), and other aggregate functions, MySQL currently compares ENUM and SET columns by
their string value rather than by the string's relative position in the set.

Known Issues in MySQL

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2146

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• mysqld_safe redirects all messages from mysqld to the mysqld log. One problem with this is that
if you execute mysqladmin refresh to close and reopen the log, stdout and stderr are still
redirected to the old log. If you use the general query log extensively, you should edit mysqld_safe to
log to host_name.err instead of host_name.log so that you can easily reclaim the space for the old
log by deleting it and executing mysqladmin refresh.

• In an UPDATE statement, columns are updated from left to right. If you refer to an updated column, you
get the updated value instead of the original value. For example, the following statement increments KEY
by 2, not 1:

mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;

• You can refer to multiple temporary tables in the same query, but you cannot refer to any given
temporary table more than once. For example, the following does not work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

• The optimizer may handle DISTINCT differently when you are using “hidden” columns in a join than
when you are not. In a join, hidden columns are counted as part of the result (even if they are not
shown), whereas in normal queries, hidden columns do not participate in the DISTINCT comparison.

An example of this is:

SELECT DISTINCT mp3id FROM band_downloads
 WHERE userid = 9 ORDER BY id DESC;

and

SELECT DISTINCT band_downloads.mp3id
 FROM band_downloads,band_mp3
 WHERE band_downloads.userid = 9
 AND band_mp3.id = band_downloads.mp3id
 ORDER BY band_downloads.id DESC;

In the second case, using MySQL Server 3.23.x, you may get two identical rows in the result set
(because the values in the hidden id column may differ).

Note that this happens only for queries that do not have the ORDER BY columns in the result.

• If you execute a PROCEDURE on a query that returns an empty set, in some cases the PROCEDURE does
not transform the columns.

• Creation of a table of type MERGE does not check whether the underlying tables are compatible types.

• If you use ALTER TABLE to add a UNIQUE index to a table used in a MERGE table and then add a normal
index on the MERGE table, the key order is different for the tables if there was an old, non-UNIQUE key
in the table. This is because ALTER TABLE puts UNIQUE indexes before normal indexes to be able to
detect duplicate keys as early as possible.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2147

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Appendix C Restrictions and Limits

Table of Contents
C.1 Restrictions on Stored Programs ... 2147
C.2 Restrictions on Server-Side Cursors .. 2149
C.3 Restrictions on Subqueries ... 2150
C.4 Restrictions on Views ... 2152
C.5 Restrictions on XA Transactions ... 2154
C.6 Restrictions on Character Sets .. 2155
C.7 Limits in MySQL ... 2155

C.7.1 Limits on Joins .. 2155
C.7.2 Limits on Number of Databases and Tables .. 2155
C.7.3 Limits on Table Size .. 2155
C.7.4 Limits on Table Column Count and Row Size ... 2157
C.7.5 Limits Imposed by .frm File Structure .. 2158
C.7.6 Windows Platform Limitations ... 2159

The discussion here describes restrictions that apply to the use of MySQL features such as subqueries or
views.

C.1 Restrictions on Stored Programs

Some of the restrictions noted here apply to all stored routines; that is, both to stored procedures and
stored functions. Some of these restrictions apply to stored functions but not to stored procedures.

The restrictions for stored functions also apply to triggers.

Stored routines cannot contain arbitrary SQL statements. The following statements are not permitted:

• The table-maintenance statements CHECK TABLE and OPTIMIZE TABLE. This restriction is lifted
beginning with MySQL 5.0.17.

• The locking statements LOCK TABLES and UNLOCK TABLES.

• ALTER VIEW. (Before MySQL 5.0.46, this restriction is enforced only for stored functions.)

• LOAD DATA and LOAD TABLE.

• SQL prepared statements (PREPARE, EXECUTE, DEALLOCATE PREPARE). Implication: You cannot use
dynamic SQL within stored routines (where you construct dynamically statements as strings and then
execute them). This restriction is lifted as of MySQL 5.0.13 for stored procedures; it still applies to stored
functions and triggers.

Generally, statements not permitted in SQL prepared statements are also not permitted in stored
programs. For a list of statements supported as prepared statements, see Section 13.5, “SQL Syntax for
Prepared Statements”.

• Because local variables are in scope only during stored program execution, references to them are not
permitted in prepared statements created within a stored program. Prepared statement scope is the
current session, not the stored program, so the statement could be executed after the program ends, at
which point the variables would no longer be in scope. For example, SELECT ... INTO local_var

Restrictions on Stored Programs

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2148

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

cannot be used as a prepared statement. This restriction also applies to stored procedure and function
parameters. See Section 13.5.1, “PREPARE Syntax”.

• Inserts cannot be delayed. INSERT DELAYED syntax is accepted but the statement is handled as a
normal INSERT.

• Within stored programs (stored procedures and functions, and triggers), the parser treats BEGIN
[WORK] as the beginning of a BEGIN ... END block. Begin a transaction in this context with START
TRANSACTION instead.

For stored functions (but not stored procedures), the following additional statements or operations are not
permitted:

• Statements that perform explicit or implicit commit or rollback. Support for these statements is not
required by the SQL standard, which states that each DBMS vendor may decide whether to permit them.

• Statements that return a result set. This includes SELECT statements that do not have an INTO
var_list clause and other statements such as SHOW, EXPLAIN, and CHECK TABLE. A function
can process a result set either with SELECT ... INTO var_list or by using a cursor and FETCH
statements. See Section 13.2.8.1, “SELECT ... INTO Syntax”, and Section 13.6.6, “Cursors”.

• FLUSH statements.

• Before MySQL 5.0.10, stored functions created with CREATE FUNCTION must not contain references to
tables, with limited exceptions. They may include some SET statements that contain table references, for
example SET a:= (SELECT MAX(id) FROM t), and SELECT statements that fetch values directly
into variables, for example SELECT i INTO var1 FROM t.

• Stored functions cannot be used recursively.

• Within a stored function or trigger, it is not permitted to modify a table that is already being used (for
reading or writing) by the statement that invoked the function or trigger.

• If you refer to a temporary table multiple times in a stored function under different aliases, a Can't
reopen table: 'tbl_name' error occurs, even if the references occur in different statements within
the function.

• A stored function acquires table locks before executing, to avoid inconsistency in the binary log due to
mismatch of the order in which statements execute and when they appear in the log. Statements that
invoke a function are recorded rather than the statements executed within the function. Consequently,
stored functions that update the same underlying tables do not execute in parallel. In contrast, stored
procedures do not acquire table-level locks. All statements executed within stored procedures are written
to the binary log. See Section 18.6, “Binary Logging of Stored Programs”.

Although some restrictions normally apply to stored functions and triggers but not to stored procedures,
those restrictions do apply to stored procedures if they are invoked from within a stored function or trigger.
For example, if you use FLUSH in a stored procedure, that stored procedure cannot be called from a stored
function or trigger.

It is possible for the same identifier to be used for a routine parameter, a local variable, and a table column.
Also, the same local variable name can be used in nested blocks. For example:

CREATE PROCEDURE p (i INT)
BEGIN
 DECLARE i INT DEFAULT 0;
 SELECT i FROM t;
 BEGIN

Restrictions on Server-Side Cursors

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2149

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

 DECLARE i INT DEFAULT 1;
 SELECT i FROM t;
 END;
END;

In such cases the identifier is ambiguous and the following precedence rules apply:

• A local variable takes precedence over a routine parameter or table column

• A routine parameter takes precedence over a table column

• A local variable in an inner block takes precedence over a local variable in an outer block

The behavior that variables take precedence over table columns is nonstandard.

Use of stored routines can cause replication problems. This issue is discussed further in Section 18.6,
“Binary Logging of Stored Programs”.

INFORMATION_SCHEMA does not have a PARAMETERS table until MySQL 5.5, so applications that need
to acquire routine parameter information at runtime must use workarounds such as parsing the output of
SHOW CREATE statements or the param_list column of the mysql.proc table. param_list contents
can be processed from within a stored routine, unlike the output from SHOW.

The --replicate-wild-do-table=db_name.tbl_name option applies to tables, views, and triggers.
It does not apply to stored procedures and functions, or events. To filter statements operating on the latter
objects, use one or more of the --replicate-*-db options.

There are no stored routine debugging facilities.

Before MySQL 5.0.17, CALL statements cannot be prepared. This true both for server-side prepared
statements and for SQL prepared statements.

MySQL does not support UNDO handlers.

MySQL does not support FOR loops.

To prevent problems of interaction between server threads, when a client issues a statement, the server
uses a snapshot of routines and triggers available for execution of the statement. That is, the server
calculates a list of procedures, functions, and triggers that may be used during execution of the statement,
loads them, and then proceeds to execute the statement. This means that while the statement executes, it
will not see changes to routines performed by other threads.

For triggers, the following additional restrictions apply:

• Triggers are not activated by foreign key actions.

• The RETURN statement is not permitted in triggers, which cannot return a value. To exit a trigger
immediately, use the LEAVE statement.

• Triggers are not permitted on tables in the mysql database.

• The trigger cache does not detect when metadata of the underlying objects has changed. If a trigger
uses a table and the table has changed since the trigger was loaded into the cache, the trigger operates
using the outdated metadata.

C.2 Restrictions on Server-Side Cursors

Restrictions on Subqueries

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2150

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Server-side cursors are implemented beginning with the C API in MySQL 5.0.2 using the
mysql_stmt_attr_set() function. A server-side cursor enables a result set to be generated on the
server side, but not transferred to the client except for those rows that the client requests. For example, if a
client executes a query but is only interested in the first row, the remaining rows are not transferred.

In MySQL, a server-side cursor is materialized into an internal temporary table. Initially, this is a
MEMORY table, but is converted to a MyISAM table when its size exceeds the minimum value of the
max_heap_table_size and tmp_table_size system variables. The same restrictions apply to
internal temporary tables created to hold the result set for a cursor as for other uses of internal temporary
tables. See Section 8.4.4, “Internal Temporary Table Use in MySQL”. (Beginning with MySQL 5.0.14, the
same temporary-table implementation also is used for cursors in stored routines.) One limitation of the
implementation is that for a large result set, retrieving its rows through a cursor might be slow.

Cursors are read only; you cannot use a cursor to update rows.

UPDATE WHERE CURRENT OF and DELETE WHERE CURRENT OF are not implemented, because
updatable cursors are not supported.

Cursors are nonholdable (not held open after a commit).

Cursors are asensitive.

Cursors are nonscrollable.

Cursors are not named. The statement handler acts as the cursor ID.

You can have open only a single cursor per prepared statement. If you need several cursors, you must
prepare several statements.

You cannot use a cursor for a statement that generates a result set if the statement is not supported in
prepared mode. This includes statements such as CHECK TABLE, HANDLER READ, and SHOW BINLOG
EVENTS.

C.3 Restrictions on Subqueries
• In MySQL 5.0 before 5.0.36, if you compare a NULL value to a subquery using ALL, ANY, or SOME, and

the subquery returns an empty result, the comparison might evaluate to the nonstandard result of NULL
rather than to TRUE or FALSE.

• Subquery optimization for IN is not as effective as for the = operator or for the IN(value_list)
operator.

A typical case for poor IN subquery performance is when the subquery returns a small number of rows
but the outer query returns a large number of rows to be compared to the subquery result.

The problem is that, for a statement that uses an IN subquery, the optimizer rewrites it as a correlated
subquery. Consider the following statement that uses an uncorrelated subquery:

SELECT ... FROM t1 WHERE t1.a IN (SELECT b FROM t2);

The optimizer rewrites the statement to a correlated subquery:

SELECT ... FROM t1 WHERE EXISTS (SELECT 1 FROM t2 WHERE t2.b = t1.a);

If the inner and outer queries return M and N rows, respectively, the execution time becomes on the order
of O(M×N), rather than O(M+N) as it would be for an uncorrelated subquery.

Restrictions on Subqueries

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2151

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

An implication is that an IN subquery can be much slower than a query written using an
IN(value_list) operator that lists the same values that the subquery would return.

• In general, you cannot modify a table and select from the same table in a subquery. For example, this
limitation applies to statements of the following forms:

DELETE FROM t WHERE ... (SELECT ... FROM t ...);
UPDATE t ... WHERE col = (SELECT ... FROM t ...);
{INSERT|REPLACE} INTO t (SELECT ... FROM t ...);

Exception: The preceding prohibition does not apply if you are using a subquery for the modified table in
the FROM clause. Example:

UPDATE t ... WHERE col = (SELECT * FROM (SELECT ... FROM t...) AS _t ...);

Here the result from the subquery in the FROM clause is stored as a temporary table, so the relevant
rows in t have already been selected by the time the update to t takes place.

• Row comparison operations are only partially supported:

• For expr [NOT] IN subquery, expr can be an n-tuple (specified using row constructor syntax)
and the subquery can return rows of n-tuples. The permitted syntax is therefore more specifically
expressed as row_constructor [NOT] IN table_subquery

• For expr op {ALL|ANY|SOME} subquery, expr must be a scalar value and the subquery must
be a column subquery; it cannot return multiple-column rows.

In other words, for a subquery that returns rows of n-tuples, this is supported:

(expr_1, ..., expr_n) [NOT] IN table_subquery

But this is not supported:

(expr_1, ..., expr_n) op {ALL|ANY|SOME} subquery

The reason for supporting row comparisons for IN but not for the others is that IN is implemented by
rewriting it as a sequence of = comparisons and AND operations. This approach cannot be used for ALL,
ANY, or SOME.

• Prior to MySQL 5.0.26, row constructors were not well optimized; of the following two equivalent
expressions, only the second could be optimized:

(col1, col2, ...) = (val1, val2, ...)
col1 = val1 AND col2 = val2 AND ...

In MySQL 5.0.26 and later, all row equalities are converted into conjunctions of equalities between row
elements, and handled by the optimizer in the same way. (Bug #16081)

• Subqueries in the FROM clause cannot be correlated subqueries. They are materialized in whole
(evaluated to produce a result set) before evaluating the outer query, so they cannot be evaluated per
row of the outer query.

• MySQL does not support LIMIT in subqueries for certain subquery operators:

Restrictions on Views

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2152

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql> SELECT * FROM t1
 -> WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1);
ERROR 1235 (42000): This version of MySQL doesn't yet support
 'LIMIT & IN/ALL/ANY/SOME subquery'

• The optimizer is more mature for joins than for subqueries, so in many cases a statement that uses a
subquery can be executed more efficiently if you rewrite it as a join.

An exception occurs for the case where an IN subquery can be rewritten as a SELECT DISTINCT join.
Example:

SELECT col FROM t1 WHERE id_col IN (SELECT id_col2 FROM t2 WHERE condition);

That statement can be rewritten as follows:

SELECT DISTINCT col FROM t1, t2 WHERE t1.id_col = t2.id_col AND condition;

But in this case, the join requires an extra DISTINCT operation and is not more efficient than the
subquery.

• MySQL permits a subquery to refer to a stored function that has data-modifying side effects such as
inserting rows into a table. For example, if f() inserts rows, the following query can modify data:

SELECT ... WHERE x IN (SELECT f() ...);

This behavior is an extension to the SQL standard. In MySQL, it can produce indeterminate results
because f() might be executed a different number of times for different executions of a given query
depending on how the optimizer chooses to handle it.

For replication, one implication of this indeterminism is that such a query can produce different results on
the master and its slaves.

C.4 Restrictions on Views
View processing is not optimized:

• It is not possible to create an index on a view.

• Indexes can be used for views processed using the merge algorithm. However, a view that is processed
with the temptable algorithm is unable to take advantage of indexes on its underlying tables (although
indexes can be used during generation of the temporary tables).

Subqueries cannot be used in the FROM clause of a view.

There is a general principle that you cannot modify a table and select from the same table in a subquery.
See Section C.3, “Restrictions on Subqueries”.

The same principle also applies if you select from a view that selects from the table, if the view selects from
the table in a subquery and the view is evaluated using the merge algorithm. Example:

CREATE VIEW v1 AS
SELECT * FROM t2 WHERE EXISTS (SELECT 1 FROM t1 WHERE t1.a = t2.a);

UPDATE t1, v2 SET t1.a = 1 WHERE t1.b = v2.b;

If the view is evaluated using a temporary table, you can select from the table in the view subquery and
still modify that table in the outer query. In this case the view will be stored in a temporary table and thus

Restrictions on Views

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2153

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

you are not really selecting from the table in a subquery and modifying it “at the same time.” (This is
another reason you might wish to force MySQL to use the temptable algorithm by specifying ALGORITHM
= TEMPTABLE in the view definition.)

You can use DROP TABLE or ALTER TABLE to drop or alter a table that is used in a view definition. No
warning results from the DROP or ALTER operation, even though this invalidates the view. Instead, an
error occurs later, when the view is used. CHECK TABLE can be used to check for views that have been
invalidated by DROP or ALTER operations.

A view definition is “frozen” by certain statements:

• If a statement prepared by PREPARE refers to a view, the view definition seen each time the statement
is executed later will be the definition of the view at the time it was prepared. This is true even if the view
definition is changed after the statement is prepared and before it is executed. Example:

CREATE VIEW v AS SELECT RAND();
PREPARE s FROM 'SELECT * FROM v';
ALTER VIEW v AS SELECT NOW();
EXECUTE s;

The result returned by the EXECUTE statement is a random number, not the current date and time.

• If a statement in a stored routine refers to a view, the view definition seen by the statement are its
definition the first time that statement is executed. For example, this means that if the statement is
executed in a loop, further iterations of the statement see the same view definition, even if the definition
is changed later in the loop. Example:

CREATE VIEW v AS SELECT 1;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 0;
 WHILE i < 5 DO
 SELECT * FROM v;
 SET i = i + 1;
 ALTER VIEW v AS SELECT 2;
 END WHILE;
END;
//
delimiter ;
CALL p();

When the procedure p() is called, the SELECT returns 1 each time through the loop, even though the
view definition is changed within the loop.

As of MySQL 5.0.46, ALTER VIEW is prohibited within stored routines, so this restriction does not apply.

With regard to view updatability, the overall goal for views is that if any view is theoretically updatable, it
should be updatable in practice. This includes views that have UNION in their definition. Not all views that
are theoretically updatable can be updated. The initial view implementation was deliberately written this
way to get usable, updatable views into MySQL as quickly as possible. Many theoretically updatable views
can be updated now, but limitations still exist:

• Updatable views with subqueries anywhere other than in the WHERE clause. Some views that have
subqueries in the SELECT list may be updatable.

• You cannot use UPDATE to update more than one underlying table of a view that is defined as a join.

• You cannot use DELETE to update a view that is defined as a join.

Restrictions on XA Transactions

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2154

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

There exists a shortcoming with the current implementation of views. If a user is granted the basic
privileges necessary to create a view (the CREATE VIEW and SELECT privileges), that user will be unable
to call SHOW CREATE VIEW on that object unless the user is also granted the SHOW VIEW privilege.

That shortcoming can lead to problems backing up a database with mysqldump, which may fail due to
insufficient privileges. This problem is described in Bug #22062.

The workaround to the problem is for the administrator to manually grant the SHOW VIEW privilege to users
who are granted CREATE VIEW, since MySQL doesn't grant it implicitly when views are created.

Views do not have indexes, so index hints do not apply. Use of index hints when selecting from a view is
not permitted.

SHOW CREATE VIEW displays view definitions using an AS alias_name clause for each column. If a
column is created from an expression, the default alias is the expression text, which can be quite long.
As of MySQL 5.0.52, aliases for column names in CREATE VIEW statements are checked against the
maximum column length of 64 characters (not the maximum alias length of 256 characters). As a result,
views created from the output of SHOW CREATE VIEW fail if any column alias exceeds 64 characters. This
can cause problems in the following circumstances for views with too-long aliases:

• View definitions fail to replicate to newer slaves that enforce the column-length restriction.

• Dump files created with mysqldump cannot be loaded into servers that enforce the column-length
restriction.

A workaround for either problem is to modify each problematic view definition to use aliases that provide
shorter column names. Then the view will replicate properly, and can be dumped and reloaded without
causing an error. To modify the definition, drop and create the view again with DROP VIEW and CREATE
VIEW, or replace the definition with CREATE OR REPLACE VIEW.

For problems that occur when reloading view definitions in dump files, another workaround is to edit
the dump file to modify its CREATE VIEW statements. However, this does not change the original view
definitions, which may cause problems for subsequent dump operations.

C.5 Restrictions on XA Transactions
XA transaction support is limited to the InnoDB storage engine.

For “external XA,” a MySQL server acts as a Resource Manager and client programs act as Transaction
Managers. For “Internal XA”, storage engines within a MySQL server act as RMs, and the server itself
acts as a TM. Internal XA support is limited by the capabilities of individual storage engines. Internal XA
is required for handling XA transactions that involve more than one storage engine. The implementation
of internal XA requires that a storage engine support two-phase commit at the table handler level, and
currently this is true only for InnoDB.

For XA START, the JOIN and RESUME clauses are not supported.

For XA END, the SUSPEND [FOR MIGRATE] clause is not supported.

The requirement that the bqual part of the xid value be different for each XA transaction within a global
transaction is a limitation of the current MySQL XA implementation. It is not part of the XA specification.

If an XA transaction has reached the PREPARED state and the MySQL server is killed (for example, with
kill -9 on Unix) or shuts down abnormally, the transaction can be continued after the server restarts.
However, if the client reconnects and commits the transaction, the transaction will be absent from the
binary log even though it has been committed. This means the data and the binary log have gone out of
synchrony. An implication is that XA cannot be used safely together with replication.

Restrictions on Character Sets

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2155

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

It is possible that the server will roll back a pending XA transaction, even one that has reached the
PREPARED state. This happens if a client connection terminates and the server continues to run, or if
clients are connected and the server shuts down gracefully. (In the latter case, the server marks each
connection to be terminated, and then rolls back the PREPARED XA transaction associated with it.) It should
be possible to commit or roll back a PREPARED XA transaction, but this cannot be done without changes to
the binary logging mechanism.

C.6 Restrictions on Character Sets
• Identifiers are stored in mysql database tables (user, db, and so forth) using utf8, but identifiers

can contain only characters in the Basic Multilingual Plane (BMP). Supplementary characters are not
permitted in identifiers.

• The ucs2 character sets has the following restrictions:

• It cannot be used as a client character set, which means that it does not work for SET NAMES or SET
CHARACTER SET. (See Section 10.1.4, “Connection Character Sets and Collations”.)

• It is currently not possible to use LOAD DATA INFILE to load data files that use this character set.

• FULLTEXT indexes cannot be created on a column that this character set. However, you can perform
IN BOOLEAN MODE searches on the column without an index.

• The REGEXP and RLIKE operators work in byte-wise fashion, so they are not multibyte safe and
may produce unexpected results with multibyte character sets. In addition, these operators compare
characters by their byte values and accented characters may not compare as equal even if a given
collation treats them as equal.

C.7 Limits in MySQL
This section lists current limits in MySQL 5.0.

C.7.1 Limits on Joins

The maximum number of tables that can be referenced in a single join is 61. This also applies to the
number of tables that can be referenced in the definition of a view.

C.7.2 Limits on Number of Databases and Tables

MySQL has no limit on the number of databases. The underlying file system may have a limit on the
number of directories.

MySQL has no limit on the number of databases. The underlying file system may have a limit on the
number of tables. Individual storage engines may impose engine-specific constraints. InnoDB permits up
to 4 billion tables.

C.7.3 Limits on Table Size

The effective maximum table size for MySQL databases is usually determined by operating system
constraints on file sizes, not by MySQL internal limits. The following table lists some examples of operating
system file-size limits. This is only a rough guide and is not intended to be definitive. For the most up-to-
date information, be sure to check the documentation specific to your operating system.

Operating System File-size Limit

Win32 w/ FAT/FAT32 2GB/4GB

Limits on Table Size

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2156

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Operating System File-size Limit

Win32 w/ NTFS 2TB (possibly larger)

Linux 2.2-Intel 32-bit 2GB (LFS: 4GB)

Linux 2.4+ (using ext3 file system) 4TB

Solaris 9/10 16TB

MacOS X w/ HFS+ 2TB

NetWare w/NSS file system 8TB

Windows users, please note that FAT and VFAT (FAT32) are not considered suitable for production use
with MySQL. Use NTFS instead.

On Linux 2.2, you can get MyISAM tables larger than 2GB in size by using the Large File Support (LFS)
patch for the ext2 file system. Most current Linux distributions are based on kernel 2.4 or higher and
include all the required LFS patches. On Linux 2.4, patches also exist for ReiserFS to get support for big
files (up to 2TB). With JFS and XFS, petabyte and larger files are possible on Linux.

For a detailed overview about LFS in Linux, have a look at Andreas Jaeger's Large File Support in Linux
page at http://www.suse.de/~aj/linux_lfs.html.

If you do encounter a full-table error, there are several reasons why it might have occurred:

• The disk might be full.

• The InnoDB storage engine maintains InnoDB tables within a tablespace that can be created from
several files. This enables a table to exceed the maximum individual file size. The tablespace can
include raw disk partitions, which permits extremely large tables. The maximum tablespace size is 64TB.

If you are using InnoDB tables and run out of room in the InnoDB tablespace. In this case, the solution
is to extend the InnoDB tablespace. See Section 14.2.4, “Changing the Number or Size of InnoDB Redo
Log Files”.

• You are using MyISAM tables on an operating system that supports files only up to 2GB in size and you
have hit this limit for the data file or index file.

• You are using a MyISAM table and the space required for the table exceeds what is permitted by the
internal pointer size. MyISAM creates data and index table files to permit up to 4GB by default (256TB as
of MySQL 5.0.6), but this limit can be changed up to the maximum permissible size of 65,536TB (2567 −
1 bytes).

If you need a MyISAM table that is larger than the default limit and your operating system supports
large files, the CREATE TABLE statement supports AVG_ROW_LENGTH and MAX_ROWS options. See
Section 13.1.10, “CREATE TABLE Syntax”. The server uses these options to determine how large a
table to permit.

If the pointer size is too small for an existing table, you can change the options with ALTER TABLE to
increase a table's maximum permissible size. See Section 13.1.4, “ALTER TABLE Syntax”.

ALTER TABLE tbl_name MAX_ROWS=1000000000 AVG_ROW_LENGTH=nnn;

You have to specify AVG_ROW_LENGTH only for tables with BLOB or TEXT columns; in this case, MySQL
can't optimize the space required based only on the number of rows.

To change the default size limit for MyISAM tables, set the myisam_data_pointer_size, which sets
the number of bytes used for internal row pointers. The value is used to set the pointer size for new

http://www.suse.de/~aj/linux_lfs.html

Limits on Table Column Count and Row Size

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2157

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

tables if you do not specify the MAX_ROWS option. The value of myisam_data_pointer_size can be
from 2 to 7. A value of 4 permits tables up to 4GB; a value of 6 permits tables up to 256TB.

You can check the maximum data and index sizes by using this statement:

SHOW TABLE STATUS FROM db_name LIKE 'tbl_name';

You also can use myisamchk -dv /path/to/table-index-file. See Section 13.7.5, “SHOW
Syntax”, or Section 4.6.3, “myisamchk — MyISAM Table-Maintenance Utility”.

Other ways to work around file-size limits for MyISAM tables are as follows:

• If your large table is read only, you can use myisampack to compress it. myisampack usually
compresses a table by at least 50%, so you can have, in effect, much bigger tables. myisampack
also can merge multiple tables into a single table. See Section 4.6.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”.

• MySQL includes a MERGE library that enables you to handle a collection of MyISAM tables that have
identical structure as a single MERGE table. See Section 14.3, “The MERGE Storage Engine”.

• You are using the NDB storage engine, in which case you need to increase the values for the
DataMemory and IndexMemory configuration parameters in your config.ini file. See
Section 17.3.2.1, “MySQL Cluster Data Node Configuration Parameters”.

• You are using the MEMORY (HEAP) storage engine; in this case you need to increase the value of the
max_heap_table_size system variable. See Section 5.1.4, “Server System Variables”.

C.7.4 Limits on Table Column Count and Row Size

There is a hard limit of 4096 columns per table, but the effective maximum may be less for a given table.
The exact limit depends on several interacting factors.

• Every table (regardless of storage engine) has a maximum row size of 65,535 bytes. Storage engines
may place additional constraints on this limit, reducing the effective maximum row size.

The maximum row size constrains the number (and possibly size) of columns because the total length
of all columns cannot exceed this size. For example, utf8 characters require up to three bytes per
character, so for a CHAR(255) CHARACTER SET utf8 column, the server must allocate 255 × 3 = 765
bytes per value. Consequently, a table cannot contain more than 65,535 / 765 = 85 such columns.

Storage for variable-length columns includes length bytes, which are assessed against the row size. For
example, a VARCHAR(255) CHARACTER SET utf8 column takes two bytes to store the length of the
value, so each value can take up to 767 bytes.

BLOB and TEXT columns count from one to four plus eight bytes each toward the row-size limit because
their contents are stored separately from the rest of the row.

Declaring columns NULL can reduce the maximum number of columns permitted. For MyISAM tables,
NULL columns require additional space in the row to record whether their values are NULL. Each NULL
column takes one bit extra, rounded up to the nearest byte. The maximum row length in bytes can be
calculated as follows:

row length = 1
 + (sum of column lengths)
 + (number of NULL columns + delete_flag + 7)/8
 + (number of variable-length columns)

Limits Imposed by .frm File Structure

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2158

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

delete_flag is 1 for tables with static row format. Static tables use a bit in the row record for a flag
that indicates whether the row has been deleted. delete_flag is 0 for dynamic tables because the flag
is stored in the dynamic row header. For information about MyISAM table formats, see Section 14.1.3,
“MyISAM Table Storage Formats”.

For InnoDB tables, storage size is the same for NULL and NOT NULL columns, so the preceding
calculations do not apply.

The following statement to create table t1 succeeds because the columns require 32,765 + 2 bytes and
32,766 + 2 bytes, which falls within the maximum row size of 65,535 bytes:

mysql> CREATE TABLE t1
 -> (c1 VARCHAR(32765) NOT NULL, c2 VARCHAR(32766) NOT NULL)
 -> ENGINE = MyISAM CHARACTER SET latin1;
Query OK, 0 rows affected (0.02 sec)

The following statement to create table t2 fails because the columns are NULL and MyISAM requires
additional space that causes the row size to exceed 65,535 bytes:

mysql> CREATE TABLE t2
 -> (c1 VARCHAR(32765) NULL, c2 VARCHAR(32766) NULL)
 -> ENGINE = MyISAM CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs

The following statement to create table t3 fails because, although the column length is within the
maximum length of 65,535 bytes, two additional bytes are required to record the length, which causes
the row size to exceed 65,535 bytes:

mysql> CREATE TABLE t3
 -> (c1 VARCHAR(65535) NOT NULL)
 -> ENGINE = MyISAM CHARACTER SET latin1;
ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs

Reducing the column length to 65,533 or less permits the statement to succeed.

• Individual storage engines might impose additional restrictions that limit table column count. Examples:

• InnoDB permits up to 1000 columns.

• InnoDB restricts row size to something less than half a database page (approximately 8000 bytes),
not including VARBINARY, VARCHAR, BLOB, or TEXT columns.

• Different InnoDB storage formats (COMPRESSED, REDUNDANT) use different amounts of page header
and trailer data, which affects the amount of storage available for rows.

• Each table has an .frm file that contains the table definition. The definition affects the content of this
file in ways that may affect the number of columns permitted in the table. For more information, see
Section C.7.5, “Limits Imposed by .frm File Structure”.

C.7.5 Limits Imposed by .frm File Structure

Windows Platform Limitations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2159

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Each table has an .frm file that contains the table definition. The server uses the following expression to
check some of the table information stored in the file against an upper limit of 64KB:

if (info_length+(ulong) create_fields.elements*FCOMP+288+
 n_length+int_length+com_length > 65535L || int_count > 255)

The portion of the information stored in the .frm file that is checked against the expression cannot grow
beyond the 64KB limit, so if the table definition reaches this size, no more columns can be added.

The relevant factors in the expression are:

• info_length is space needed for “screens.” This is related to MySQL's Unireg heritage.

• create_fields.elements is the number of columns.

• FCOMP is 17.

• n_length is the total length of all column names, including one byte per name as a separator.

• int_length is related to the list of values for ENUM and SET columns. In this context, “int” does not
mean “integer.” It means “interval,” a term that refers collectively to ENUM and SET columns.

• int_count is the number of unique ENUM and SET definitions.

• com_length is the total length of column comments.

The expression just described has several implications for permitted table definitions:

• Using long column names can reduce the maximum number of columns, as can the inclusion of ENUM or
SET columns, or use of column comments.

• A table can have no more than 255 unique ENUM and SET definitions. Columns with identical element
lists are considered the same against this limt. For example, if a table contains these two columns, they
count as one (not two) toward this limit because the definitions are identical:

e1 ENUM('a','b','c')
e2 ENUM('a','b','c')

• The sum of the length of element names in the unique ENUM and SET definitions counts toward the 64KB
limit, so although the theoretical limit on number of elements in a given ENUM column is 65,535, the
practical limit is less than 3000.

C.7.6 Windows Platform Limitations

The following limitations apply to use of MySQL on the Windows platform:

• Number of file descriptors

The number of open file descriptors on Windows is limited to a maximum of 2048, which may limit the
ability to open a large number of tables simultaneously. This limit is due not to Windows but to C runtime
library compatibility functions used to open files on Windows that use the POSIX compatibility layer.

This limitation will also cause problems if you try to set open_files_limit to a value greater than the
2048 file limit.

• Process memory

On Windows 32-bit platforms it is not possible by default to use more than 2GB of RAM within a single
process, including MySQL. This is because the physical address limit on Windows 32-bit is 4GB and

Windows Platform Limitations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2160

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

the default setting within Windows is to split the virtual address space between kernel (2GB) and user/
applications (2GB).

Some versions of Windows have a boot time setting to enable larger applications by reducing the kernel
application. Alternatively, to use more than 2GB, use a 64-bit version of Windows.

• File system aliases

When using MyISAM tables, you cannot use aliases within Windows link to the data files on another
volume and then link back to the main MySQL datadir location.

This facility is often used to move the data and index files to a RAID or other fast solution, while retaining
the main .frm files in the default data directory configured with the datadir option.

• Limited number of ports

Windows systems have about 4,000 ports available for client connections, and after a connection on
a port closes, it takes two to four minutes before the port can be reused. In situations where clients
connect to and disconnect from the server at a high rate, it is possible for all available ports to be used
up before closed ports become available again. If this happens, the MySQL server appears to be
unresponsive even though it is running. Ports may be used by other applications running on the machine
as well, in which case the number of ports available to MySQL is lower.

For more information about this problem, see http://support.microsoft.com/default.aspx?scid=kb;en-
us;196271.

• Concurrent reads

MySQL depends on the pread() and pwrite() system calls to be able to mix INSERT and SELECT.
We use mutexes to emulate pread() and pwrite(). We intend to replace the file level interface with
a virtual interface in the future so that we can use the readfile()/writefile() interface to get more
speed. The current implementation limits the number of open files that MySQL 5.0 can use to 2,048,
which means that you cannot run as many concurrent threads on Windows as on Unix.

This problem is fixed in MySQL 5.5.

• Blocking read

MySQL uses a blocking read for each connection. That has the following implications if named-pipe
connections are enabled:

• A connection is not disconnected automatically after eight hours, as happens with the Unix version of
MySQL.

• If a connection hangs, it is not possible to break it without killing MySQL.

• mysqladmin kill does not work on a sleeping connection.

• mysqladmin shutdown cannot abort as long as there are sleeping connections.

These problems are fixed in MySQL 5.1. (Bug #31621)

• ALTER TABLE

While you are executing an ALTER TABLE statement, the table is locked from being used by other
threads. This has to do with the fact that on Windows, you can't delete a file that is in use by another
thread. In the future, we may find some way to work around this problem.

http://support.microsoft.com/default.aspx?scid=kb;en-us;196271
http://support.microsoft.com/default.aspx?scid=kb;en-us;196271

Windows Platform Limitations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2161

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

• DROP TABLE

DROP TABLE on a table that is in use by a MERGE table does not work on Windows because the MERGE
handler does the table mapping hidden from the upper layer of MySQL. Because Windows does not
permit dropping files that are open, you first must flush all MERGE tables (with FLUSH TABLES) or drop
the MERGE table before dropping the table.

• DATA DIRECTORY and INDEX DIRECTORY

The DATA DIRECTORY and INDEX DIRECTORY options for CREATE TABLE are ignored on Windows,
because MySQL does not support Windows symbolic links. These options also are ignored on systems
that have a nonfunctional realpath() call.

• DROP DATABASE

You cannot drop a database that is in use by another session.

• Case-insensitive names

File names are not case sensitive on Windows, so MySQL database and table names are also not case
sensitive on Windows. The only restriction is that database and table names must be specified using the
same case throughout a given statement. See Section 9.2.2, “Identifier Case Sensitivity”.

• Directory and file names

On Windows, MySQL Server supports only directory and file names that are compatible with the current
ANSI code pages. For example, the following Japanese directory name will not work in the Western
locale (code page 1252):

datadir="C:/私たちのプロジェクトのデータ"

The same limitation applies to directory and file names referred to in SQL statements, such as the data
file path name in LOAD DATA INFILE.

• The “\” path name separator character

Path name components in Windows are separated by the “\” character, which is also the escape
character in MySQL. If you are using LOAD DATA INFILE or SELECT ... INTO OUTFILE, use Unix-
style file names with “/” characters:

mysql> LOAD DATA INFILE 'C:/tmp/skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:/tmp/skr.txt' FROM skr;

Alternatively, you must double the “\” character:

mysql> LOAD DATA INFILE 'C:\\tmp\\skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:\\tmp\\skr.txt' FROM skr;

• Problems with pipes

Pipes do not work reliably from the Windows command-line prompt. If the pipe includes the character ^Z
/ CHAR(24), Windows thinks that it has encountered end-of-file and aborts the program.

This is mainly a problem when you try to apply a binary log as follows:

shell> mysqlbinlog binary_log_file | mysql --user=root

Windows Platform Limitations

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2162

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

If you have a problem applying the log and suspect that it is because of a ^Z / CHAR(24) character, you
can use the following workaround:

shell> mysqlbinlog binary_log_file --result-file=/tmp/bin.sql
shell> mysql --user=root --execute "source /tmp/bin.sql"

The latter command also can be used to reliably read in any SQL file that may contain binary data.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2163

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

General Index

Symbols
! (logical NOT), 1000
!= (not equal), 995
", 836
%, 1030
% (modulo), 1035
% (wildcard character), 830
& (bitwise AND), 1080
&& (logical AND), 1001
() (parentheses), 993
(Control+Z) \Z, 830, 1206
* (multiplication), 1029
+ (addition), 1029
- (subtraction), 1029
- (unary minus), 1029
--disable option prefix, 256
--enable option prefix, 256
--loose option prefix, 256
--maximum option prefix, 256
--password option, 618
--skip option prefix, 256
-? option

MySQL Cluster programs, 1786
-c option (MySQL Cluster programs), 1786
-c option (MySQL Cluster), 1787
-c option (ndb_mgmd) (OBSOLETE), 1757
-d option (ndb_mgmd), 1757
-e option (ndb_mgm), 1759
-f option (ndb_mgmd), 1757
-n option (ndbd), 1754
-p option, 618
-P option (ndb_mgmd), 1758
-V option (MySQL Cluster), 1788
.my.cnf file, 253, 257, 257, 613, 618, 650
.mysql_history file, 306, 619
.pid (process ID) file, 702
/ (division), 1030
/etc/passwd, 626, 1218
:= (assignment operator), 1002
:= (assignment), 849
< (less than), 995
<<, 240
<< (left shift), 1080
<= (less than or equal), 995
<=> (equal to), 995
<> (not equal), 995
= (assignment operator), 1002
= (assignment), 849
= (equal), 994
> (greater than), 996
>= (greater than or equal), 996

>> (right shift), 1080
[api] (MySQL Cluster), 1686
[computer] (MySQL Cluster), 1687
[mgm] (MySQL Cluster), 1684
[mysqld] (MySQL Cluster), 1686
[ndbd default] (MySQL Cluster), 1676
[ndbd] (MySQL Cluster), 1676
[ndb_mgmd] (MySQL Cluster), 1684
[sci] (MySQL Cluster), 1687
[shm] (MySQL Cluster), 1687
[tcp] (MySQL Cluster), 1687
\" (double quote), 830
\' (single quote), 830
\. (mysql client command), 234, 308
\0 (ASCII NUL), 830, 1206
\b (backspace), 830, 1206
\n (linefeed), 830, 1206
\n (newline), 830, 1206
\N (NULL), 1206
\r (carriage return), 830, 1206
\t (tab), 830, 1206
\Z (Control+Z) ASCII 26, 830, 1206
\\ (escape), 830
^ (bitwise XOR), 1080
_ (wildcard character), 831
_rowid, 1158
`, 836
| (bitwise OR), 1080
|| (logical OR), 1001
~ (invert bits), 1080

A
abort-slave-event-count option

mysqld, 1573
aborted clients, 2121
aborted connection, 2121
ABS(), 1031
access control, 643
access denied errors, 2112
access privileges, 631
account names, 641
account privileges

adding, 656
accounts

anonymous user, 144
root, 144

ACID, 25, 1370
ACLs, 631
ACOS(), 1031
ActiveState Perl, 206
adaptive hash index, 1432
add-drop-database option

mysqldump, 329

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2164

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

add-drop-table option
mysqldump, 329

add-locks option
mysqldump, 329

ADDDATE(), 1042
adding

character sets, 900
native functions, 2008
new account privileges, 656
new functions, 1997
new user privileges, 656
new users, 119, 139
user-defined functions, 1998

addition (+), 1029
ADDTIME(), 1042
addtodest option

mysqlhotcopy, 390
administration

server, 311
administration of MySQL Cluster, 1759
administrative programs, 246
AES_DECRYPT(), 1082
AES_ENCRYPT(), 1082
After create

thread state, 816
age

calculating, 223
alias names

case sensitivity, 838
aliases

for expressions, 1122
for tables, 1213
in GROUP BY clauses, 1122
names, 836
on expressions, 1212

ALL, 1216, 1231
ALL join type

optimizer, 773
all-databases option

mysqlcheck, 321
mysqldump, 329

all-in-1 option
mysqlcheck, 321

allocating local table
thread state, 822

allow-keywords option
mysqldump, 329

allow-suspicious-udfs option
mysqld, 440

allowold option
mysqlhotcopy, 390

ALLOW_INVALID_DATES SQL mode, 588
ALTER COLUMN, 1139
ALTER DATABASE, 1134

ALTER FUNCTION, 1134
ALTER PROCEDURE, 1135
ALTER SCHEMA, 1134
ALTER TABLE, 1135, 1140, 2142
ALTER VIEW, 1143
altering

database, 1134
schema, 1134

ANALYSE()
PROCEDURE, 755

analyze option
myisamchk, 360
mysqlcheck, 321

ANALYZE TABLE, 1301
Analyzing

thread state, 816
AND

bitwise, 1080
logical, 1001

angel-pid-file option
mysqlmanager, 393

anonymous user, 144, 145, 643, 646
ANSI mode

running, 21
ansi option

mysqld, 441
ANSI SQL mode, 587, 592
ANSI_QUOTES SQL mode, 588
answering questions

etiquette, 14
ANY, 1230
Apache, 242
API node (MySQL Cluster)

defined, 1640
API nodes (see SQL nodes)
APIs, 1877

list of, 39
Perl, 1991

append option (ndb_restore), 1776
approximate-value literals, 832, 1122
ArbitrationDelay, 1701, 1729
ArbitrationRank, 1701, 1729
ArbitrationTimeout, 1723
arbitrator, 2037
ARCHIVE storage engine, 1359, 1470
Area(), 1104
argument processing, 2002
arithmetic expressions, 1029
arithmetic functions, 1079
arithmetic operators, 1079
AS, 1213, 1219
AS/400, 107
AsBinary(), 1100
ASCII(), 1007

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2165

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ASIN(), 1031
assignment operator

:=, 1002
=, 1002

assignment operators, 1001
AsText(), 1100
ATAN(), 1032
ATAN2(), 1032
attackers

security against, 625
auto-rehash option

mysql, 293
auto-repair option

mysqlcheck, 321
autoclose option

mysqld_safe, 269
autocommit system variable, 476
automatic_sp_privileges system variable, 477
AUTO_INCREMENT, 240, 931

and NULL values, 2137
and replication, 1621

auto_increment_increment system variable, 1568
auto_increment_offset system variable, 1571
AVG(), 1114
AVG(DISTINCT), 1114

B
B-tree indexes, 751, 1432
backslash

escape character, 829
backspace (\b), 830, 1206
backup identifiers

native backup and restore,
backup option

myisamchk, 358
myisampack, 370

BACKUP TABLE, 1302
BackupDataBufferSize, 1795
BackupDataBufferSize (MySQL Cluster configuration
parameter), 1726
BackupDataDir, 1705
BackupLogBufferSize, 1727, 1795
BackupMaxWriteSize, 1728, 1795
BackupMemory, 1727, 1795
backups, 679, 2022

database, 1302
databases and tables, 324, 389
in MySQL Cluster, 1771, 1791, 1792, 1792, 1795
InnoDB, 1412
with mysqldump, 688

backups, troubleshooting
in MySQL Cluster, 1795

BackupWriteSize, 1727, 1795

backup_path option (ndb_restore), 1773
back_log system variable, 477
basedir option

mysql.server, 274
mysqld, 441
mysqld_safe, 269
mysql_install_db, 284
mysql_upgrade, 288

basedir system variable, 478
batch mode, 233
batch option

mysql, 293
batch SQL files, 290
BatchByteSize, 1730
BatchSize, 1730
BatchSizePerLocalScan, 1712
Bazaar tree, 119
BDB storage engine, 1359, 1460
BDB tables, 25
bdb-home option

mysqld, 1462
bdb-lock-detect option

mysqld, 1462
bdb-logdir option

mysqld, 1462
bdb-no-recover option

mysqld, 1462
bdb-no-sync option

mysqld, 1462
bdb-shared-data option

mysqld, 1463
bdb-tmpdir option

mysqld, 1463
bdb_cache_size system variable, 478
bdb_home system variable, 479
bdb_logdir system variable, 479
bdb_log_buffer_size system variable, 479
bdb_max_lock system variable, 479
bdb_shared_data system variable, 480
bdb_tmpdir system variable, 480
BEGIN, 1243, 1271

labels, 1272
XA transactions, 1256

BENCHMARK(), 1087
benchmarks, 812, 813
BerkeleyDB storage engine, 1359, 1460
BETWEEN ... AND, 997
big-tables option

mysqld, 441
big5, 2049
BIGINT data type, 923
big_tables system variable, 480
BIN(), 1007
BINARY, 1076

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2166

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

BINARY data type, 929, 948
binary distributions, 49

installing, 112
on Linux, 171

binary log, 600
event groups, 1265

binary logging
and MySQL Cluster, 1653

bind-address option
mysqld, 441
mysqlmanager, 393

Binlog Dump
thread command, 814

binlog-do-db option
mysqld, 1591

binlog-ignore-db option
mysqld, 1592

binlog_cache_size system variable, 481
BIT data type, 922
bit functions, 1079
bit operators, 1079
BIT_AND(), 1115
BIT_COUNT, 240
BIT_COUNT(), 1081
bit_functions

example, 240
BIT_LENGTH(), 1007
BIT_OR, 240
BIT_OR(), 1115
BIT_XOR(), 1115
BLACKHOLE storage engine, 1359, 1471
BLOB

inserting binary data, 831
size, 975

BLOB columns
default values, 950
indexing, 747, 1158

BLOB data type, 930, 949
Block Nested-Loop join algorithm, 719
block-search option

myisamchk, 360
BOOL data type, 922
BOOLEAN data type, 922
boolean options, 256
bootstrap option

mysqld, 442
brackets

square, 922
brief option

mysqlaccess, 376
Buffer pool

InnoDB, 787
buffer sizes

client, 1877

mysqld server, 800
bugs

known, 2143
MySQL Cluster

reporting, 1769
reporting, 2, 15

bugs database, 15
bugs.mysql.com, 15
builddir option

mysql_install_db, 284
building

client programs, 1885
bulk loading

for InnoDB tables, 764
for MyISAM tables, 760

bulk_insert_buffer_size system variable, 481

C
C API, 1877

data types, 1882
example programs, 1885
functions, 1894
linking problems, 1886

C prepared statement API
functions, 1955, 1957
type codes, 1954

C++ compiler
gcc, 128

C++ compiler cannot create executables, 131
C:\my.cnf file, 613
CACHE INDEX, 1349
caches

clearing, 1350
calculating

dates, 223
calendar, 1060
CALL, 1185
calling sequences for aggregate functions

UDF, 2001
calling sequences for simple functions

UDF, 2000
can't create/write to file, 2122
cardinality, 742
carriage return (\r), 830, 1206
CASE, 1003, 1275
case sensitivity

in access checking, 640
in identifiers, 838
in names, 838
in searches, 2133
in string comparisons, 1018
of replication filtering options, 1604

case-sensitivity

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2167

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

of database names, 22
of table names, 22

CAST, 1076
cast functions, 1075
cast operators, 1075
casts, 989, 994, 1075
CC environment variable, 128, 128, 131, 203
cc1plus problems, 131
CEIL(), 1032
CEILING(), 1032
Centroid(), 1105
CFLAGS environment variable, 128, 131, 203
cflags option

mysql_config, 410
CHANGE MASTER TO, 1260
Change user

thread command, 814
changes to privileges, 648
changing

column, 1139
field, 1139
socket location, 273
table, 1135, 1140, 2142

Changing master
thread state, 826

changing socket location, 127, 2132
CHAR data type, 928, 946
CHAR VARYING data type, 929
CHAR(), 1007
CHARACTER data type, 928
character set repertoire, 880
character sets, 129

adding, 900
and replication, 1622
restrictions, 2155

Character sets, 857
CHARACTER VARYING data type, 929
character-set-client-handshake option

mysqld, 442
character-set-filesystem option

mysqld, 443
character-set-server option

mysqld, 443
character-sets-dir option

myisamchk, 358
myisampack, 370
mysql, 293
MySQL Cluster programs, 1787, 1787
mysqladmin, 315
mysqlbinlog, 380
mysqlcheck, 321
mysqld, 442
mysqldump, 329
mysqlimport, 342

mysqlshow, 347
mysql_upgrade, 288

characters
multibyte, 904

CHARACTER_LENGTH(), 1008
CHARACTER_SETS

INFORMATION_SCHEMA table, 1861
character_sets_dir system variable, 484
character_set_client system variable, 482
character_set_connection system variable, 482
character_set_database system variable, 483
character_set_filesystem system variable, 483
character_set_results system variable, 483
character_set_server system variable, 484
character_set_system system variable, 484
charset command

mysql, 301
charset option

comp_err, 279
CHARSET(), 1088
CHAR_LENGTH(), 1008
check option

myisamchk, 357
mysqlcheck, 321

check options
myisamchk, 357

CHECK TABLE, 1302
check-only-changed option

myisamchk, 357
mysqlcheck, 321

check-upgrade option
mysqlcheck, 321

checking
tables for errors, 698

Checking master version
thread state, 824

checking permissions
thread state, 816

checking privileges on cached query
thread state, 823

checking query cache for query
thread state, 823

Checking table
thread state, 816

CHECKPOINT Events (MySQL Cluster), 1802
checkpoint option

mysqlhotcopy, 390
Checksum, 1741
Checksum (MySQL Cluster), 1744, 1747
checksum errors, 178
CHECKSUM TABLE, 1305

and replication, 1622
Chinese, Japanese, Korean character sets

frequently asked questions, 2049

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2168

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

choosing
a MySQL version, 45

choosing types, 976
chroot option

mysqld, 443
mysqlhotcopy, 390

CJK
FAQ, 2049

CJK (Chinese, Japanese, Korean)
Access, PHP, etc., 2049
availability of specific characters, 2049
available character sets, 2049
big5, 2049
character sets available, 2049
characters displayed as question marks, 2049
CJKV, 2049
collations, 2049, 2049
conversion problems with Japanese character sets,
2049
data truncation, 2049
Database and table names, 2049
documentation in Chinese, 2049
documentation in Japanese, 2049
documentation in Korean, 2049
gb2312, gbk, 2049
Japanese character sets, 2049
Korean character set, 2049
LIKE and FULLTEXT, 2049
MySQL 4.0 behavior, 2049
ORDER BY treatment, 2049, 2049
problems with Access, PHP, etc., 2049
problems with Big5 character sets (Chinese), 2049
problems with data truncation, 2049
problems with euckr character set (Korean), 2049
problems with GB character sets (Chinese), 2049
problems with LIKE and FULLTEXT, 2049
problems with Yen sign (Japanese), 2049
rejected characters, 2049
sort order problems, 2049, 2049
sorting problems, 2049, 2049
testing availability of characters, 2049
Unicode collations, 2049
Vietnamese, 2049
Yen sign, 2049

clean shutdown, 595
cleaning up

thread state, 817
clear command

mysql, 301
clear option

mysql_tableinfo, 407
clear-only option

mysql_tableinfo, 407
clearing

caches, 1350
client connection threads, 809
client programs, 246

building, 1885
client tools, 1877
clients

debugging, 2017
threaded, 1887

cloning tables, 1164
CLOSE, 1280
Close stmt

thread command, 814
closing

tables, 756
closing tables

thread state, 817
cluster logs, 1798, 1800
clustered index

InnoDB, 1431
Clustering (see MySQL Cluster)
CLUSTERLOG commands (MySQL Cluster), 1800
CLUSTERLOG STATISTICS command (MySQL
Cluster), 1805
CMake, 95
COALESCE(), 998
COERCIBILITY(), 1088
col option

mysql_tableinfo, 407
collating

strings, 903
collation

adding, 904
modifying, 904

COLLATION(), 1089
collation-server option

mysqld, 443
collations

naming conventions, 873
COLLATIONS

INFORMATION_SCHEMA table, 1862
COLLATION_CHARACTER_SET_APPLICABILITY

INFORMATION_SCHEMA table, 1862
collation_connection system variable, 484
collation_database system variable, 484
collation_server system variable, 485
column

changing, 1139
types, 921

column alias
problems, 2137
quoting, 837, 2137

column comments, 1157
column names

case sensitivity, 838

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2169

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

column-names option
mysql, 293

columns
displaying, 345
indexes, 746
names, 836
other types, 976
selecting, 220
storage requirements, 972

COLUMNS
INFORMATION_SCHEMA table, 1862

columns option
mysqlimport, 342

columns per table
maximum, 2157

columns_priv table
system table, 597, 636

COLUMN_PRIVILEGES
INFORMATION_SCHEMA table, 1863

comma-separated values data, reading, 1204, 1219
command options

mysql, 290
mysqladmin, 314
mysqld, 439

command options (MySQL Cluster)
mysqld, 1731
ndbd, 1751
ndb_mgm, 1759
ndb_mgmd, 1756

command syntax, 4
command-line history

mysql, 306
command-line options (MySQL Cluster), 1785
command-line tool, 290
commands

for binary distribution, 113
commands out of sync, 2123
comment syntax, 854
comments

adding, 854
starting, 28

comments option
mysql, 293
mysqldump, 329

COMMIT, 25, 1243
XA transactions, 1256

commit option
mysqlaccess, 376

Committing events to binlog
thread state, 826

compact option
mysqldump, 329

comparison operators, 993
compatibility

between MySQL versions, 153
with mSQL, 1022
with ODBC, 540, 838, 925, 990, 996, 1156, 1221
with Oracle, 23, 1117, 1138, 1355
with PostgreSQL, 24
with standard SQL, 20

compatible option
mysqldump, 330

compiler
C++ gcc, 128

compiling
optimizing, 799
problems, 130
speed, 133
statically, 128
user-defined functions, 2005

compiling clients
on Unix, 1885
on Windows, 1885

complete-insert option
mysqldump, 330

completion_type system variable, 485
compound statements, 1271
compress option

mysql, 293
mysqladmin, 316
mysqlcheck, 321
mysqldump, 330
mysqlimport, 342
mysqlshow, 347
mysql_upgrade, 288

COMPRESS(), 1083
compressed tables, 369, 1368
comp_err, 245, 279

charset option, 279
debug option, 279
debug-info option, 279
header_file option, 279
help option, 279
in_file option, 279
name_file option, 279
out_dir option, 280
out_file option, 280
statefile option, 280
version option, 280

CONCAT(), 1008
concatenation

string, 829, 1008
CONCAT_WS(), 1009
concurrency, 1370

of commits, 1387
tickets, 1387

concurrent inserts, 795, 798
concurrent_insert system variable, 486

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2170

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Conditions, 1281
conditions, 1324, 1347
config-file option

mysqld_multi, 276
my_print_defaults, 411
ndb_config, 1762

config-file option (ndb_mgmd), 1757
config.cache, 130
config.cache file, 130
config.ini (MySQL Cluster), 1663, 1695, 1695, 1758
configuration

MySQL Cluster, 1675
configuration files, 650
configuration options, 122
configure

disable-grant-options option, 130
enable-community-features option, 130
enable-profiling option, 130
enable-thread-safe-client option, 129
localstatedir option, 127
prefix option, 127
running after prior invocation, 130
with-big-tables option, 130
with-charset option, 129
with-client-ldflags option, 128
with-collation option, 129
with-debug option, 129
with-embedded-server option, 127
with-extra-charsets option, 129, 129
with-tcp-port option, 127
with-unix-socket-path option, 127
with-zlib-dir option, 129
without-server option, 127

configure option
--with-low-memory, 131

configure script, 122
configuring backups

in MySQL Cluster, 1795
configuring MySQL Cluster, 1655, 1672, 1758, 1796
Configuring MySQL Cluster (concepts), 1640
Connect

thread command, 814
connect command

mysql, 301
Connect Out

thread command, 814
connect-string option (MySQL Cluster programs), 1786
connect-string option (MySQL Cluster), 1787
connecting

remotely with SSH, 676
to the server, 209, 250
verification, 643

Connecting to master
thread state, 824

connection
aborted, 2121

CONNECTION Events (MySQL Cluster), 1801
connection string (see MySQL Cluster)
connections option

ndb_config, 1763
CONNECTION_ID(), 1089
Connector/C, 1877, 1881
Connector/C++, 1877
Connector/J, 1881
Connector/JDBC, 1877
Connector/Net, 1877, 1881
Connector/ODBC, 1877, 1880
Connectors

MySQL, 1877
connect_timeout system variable, 486
connect_timeout variable, 300, 318
consistent reads, 1422
console option

mysqld, 444
const table

optimizer, 771, 1216
constant table, 708
constraints, 29

foreign keys, 1166
CONSTRAINTS

INFORMATION_SCHEMA table, 1870
Contains(), 1107
contributing companies

list of, 40
contributors

list of, 33
control flow functions, 1003
CONV(), 1032
conventions

syntax, 3
typographical, 3

CONVERT, 1076
CONVERT TO, 1141
converting HEAP to MyISAM

thread state, 817
CONVERT_TZ(), 1042
copy option

mysqlaccess, 377
copy to tmp table

thread state, 817
copying databases, 170
copying tables, 1164
Copying to group table

thread state, 817
Copying to tmp table

thread state, 817
Copying to tmp table on disk

thread state, 817

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2171

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

core-file option
mysqld, 444

core-file option (MySQL Cluster), 1787
core-file-size option

mysqld_safe, 269
correct-checksum option

myisamchk, 358
correlated subqueries, 1234
COS(), 1033
COT(), 1033
count option

myisam_ftdump, 351
mysqladmin, 316
mysqlshow, 347

COUNT(), 1115
COUNT(DISTINCT), 1115
counting

table rows, 228
crash, 2010

recovery, 697
repeated, 2128
replication, 1626

crash-me, 813
crash-me program, 705, 812
CRC32(), 1033
CREATE DATABASE, 1144
Create DB

thread command, 814
CREATE FUNCTION, 1147, 1309
CREATE INDEX, 1144
CREATE PROCEDURE, 1147
CREATE SCHEMA, 1144
CREATE TABLE, 1153

DIRECTORY options
and replication, 1622

CREATE TABLE ... SELECT
and replication, 1622

CREATE TRIGGER, 1173
CREATE USER, 1286
CREATE USER statement, 661
CREATE VIEW, 1175
create-options option

mysqldump, 330
creating

bug reports, 15
database, 1144
databases, 214
default startup options, 257
function, 1309
schema, 1144
tables, 216

Creating delayed handler
thread state, 822

Creating index

thread state, 817
Creating sort index

thread state, 817
creating table

thread state, 817
Creating table from master dump

thread state, 826
Creating tmp table

thread state, 817
creating user accounts, 1286
CROSS JOIN, 1219
cross-bootstrap option

mysql_install_db, 284
Crosses(), 1107
CR_CANT_READ_CHARSET error code, 2108
CR_COMMANDS_OUT_OF_SYNC error code, 2107
CR_CONNECTION_ERROR error code, 2106
CR_CONN_HOST_ERROR error code, 2107
CR_CONN_UNKNOW_PROTOCOL error code, 2110
CR_DATA_TRUNCATED error code, 2108
CR_EMBEDDED_CONNECTION error code, 2108
CR_FETCH_CANCELED error code, 2110
CR_INVALID_BUFFER_USE error code, 2109
CR_INVALID_CONN_HANDLE error code, 2110
CR_INVALID_PARAMETER_NO error code, 2109
CR_IPSOCK_ERROR error code, 2107
CR_LOCALHOST_CONNECTION error code, 2107
CR_MALFORMED_PACKET error code, 2108
CR_NAMEDPIPEOPEN_ERROR error code, 2107
CR_NAMEDPIPESETSTATE_ERROR error code, 2108
CR_NAMEDPIPEWAIT_ERROR error code, 2107
CR_NAMEDPIPE_CONNECTION error code, 2107
CR_NET_PACKET_TOO_LARGE error code, 2108
CR_NOT_IMPLEMENTED error code, 2110
CR_NO_DATA error code, 2110
CR_NO_PARAMETERS_EXISTS error code, 2109
CR_NO_PREPARE_STMT error code, 2108
CR_NO_RESULT_SET error code, 2110
CR_NO_STMT_METADATA error code, 2110
CR_NULL_POINTER error code, 2108
CR_OUT_OF_MEMORY error code, 2107
CR_PARAMS_NOT_BOUND error code, 2108
CR_PROBE_MASTER_CONNECT error code, 2108
CR_PROBE_SLAVE_CONNECT error code, 2108
CR_PROBE_SLAVE_HOSTS error code, 2108
CR_PROBE_SLAVE_STATUS error code, 2108
CR_SECURE_AUTH error code, 2110
CR_SERVER_GONE_ERROR, 2118
CR_SERVER_GONE_ERROR error code, 2107
CR_SERVER_HANDSHAKE_ERR error code, 2107
CR_SERVER_LOST error code, 2107
CR_SERVER_LOST_ERROR, 2118
CR_SERVER_LOST_EXTENDED error code, 2110

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2172

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CR_SHARED_MEMORY_CONNECTION error code,
2109
CR_SHARED_MEMORY_CONNECT_ABANDONED_ERROR
error code, 2109
CR_SHARED_MEMORY_CONNECT_ANSWER_ERROR
error code, 2109
CR_SHARED_MEMORY_CONNECT_FILE_MAP_ERROR
error code, 2109
CR_SHARED_MEMORY_CONNECT_MAP_ERROR
error code, 2109
CR_SHARED_MEMORY_CONNECT_REQUEST_ERROR
error code, 2109
CR_SHARED_MEMORY_CONNECT_SET_ERROR
error code, 2109
CR_SHARED_MEMORY_EVENT_ERROR error code,
2109
CR_SHARED_MEMORY_FILE_MAP_ERROR error
code, 2109
CR_SHARED_MEMORY_MAP_ERROR error code,
2109
CR_SOCKET_CREATE_ERROR error code, 2106
CR_SSL_CONNECTION_ERROR error code, 2108
CR_TCP_CONNECTION error code, 2107
CR_UNKNOWN_ERROR error code, 2106
CR_UNKNOWN_HOST error code, 2107
CR_UNSUPPORTED_PARAM_TYPE error code, 2109
CR_VERSION_ERROR error code, 2107
CR_WRONG_HOST_INFO error code, 2107
CR_WRONG_LICENSE error code, 2108
CSV data, reading, 1204, 1219
CSV storage engine, 1359, 1471
CURDATE(), 1043
CURRENT_DATE, 1043
CURRENT_TIME, 1043
CURRENT_TIMESTAMP, 1043
CURRENT_USER(), 1089
Cursors, 1279
CURTIME(), 1043
CXX environment variable, 128, 128, 131, 131, 131, 203
CXXFLAGS environment variable, 128, 131, 203

D
Daemon

thread command, 814
daemon option (ndb_mgmd), 1757
data

importing, 308, 341
loading into tables, 217
retrieving, 218
size, 752

DATA DIRECTORY
and replication, 1622

data node (MySQL Cluster)

defined, 1640
data nodes (MySQL Cluster), 1751
Data truncation with CJK characters, 2049
data type

BIGINT, 923
BINARY, 929, 948
BIT, 922
BLOB, 930, 949
BOOL, 922, 976
BOOLEAN, 922, 976
CHAR, 928, 946
CHAR VARYING, 929
CHARACTER, 928
CHARACTER VARYING, 929
DATE, 926, 937
DATETIME, 926, 937
DEC, 925
DECIMAL, 924, 1122
DOUBLE, 925
DOUBLE PRECISION, 925
ENUM, 930, 951
FIXED, 925
FLOAT, 925, 925, 925
GEOMETRY, 957
GEOMETRYCOLLECTION, 957
INT, 923
INTEGER, 923
LINESTRING, 957
LONG, 949
LONGBLOB, 930
LONGTEXT, 930
MEDIUMBLOB, 930
MEDIUMINT, 923
MEDIUMTEXT, 930
MULTILINESTRING, 957
MULTIPOINT, 957
MULTIPOLYGON, 957
NATIONAL CHAR, 928
NATIONAL VARCHAR, 929
NCHAR, 928
NUMERIC, 925
NVARCHAR, 929
POINT, 957
POLYGON, 957
REAL, 925
SET, 931, 953
SMALLINT, 923
TEXT, 930, 949
TIME, 926, 938
TIMESTAMP, 926, 937
TINYBLOB, 929
TINYINT, 922
TINYTEXT, 930
VARBINARY, 929, 948

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2173

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

VARCHAR, 929, 946
VARCHARACTER, 929
YEAR, 926, 939

data types, 921
C API, 1882
overview, 922

data-file-length option
myisamchk, 359

database
altering, 1134
creating, 1144
deleting, 1180

Database information
obtaining, 1313

database metadata, 1859
database names

case sensitivity, 838
case-sensitivity, 22

database option
mysql, 293
mysqlbinlog, 380
ndb_desc, 1767
ndb_show_tables, 1781

DATABASE(), 1090
databases

backups, 679
copying, 170
creating, 213
defined, 5
displaying, 345
dumping, 324, 389
information about, 232
names, 836
replicating, 1547
selecting, 215
symbolic links, 803
using, 214

databases option
mysqlcheck, 321
mysqldump, 330

DataDir, 1702, 1704
datadir option

mysql.server, 274
mysqld, 444
mysqld_safe, 269
mysql_install_db, 284
mysql_upgrade, 288

datadir system variable, 487
DataMemory, 1705, 1747
DATE, 2134
date and time functions, 1039
Date and Time types, 935
date calculations, 222
DATE columns

problems, 2134
DATE data type, 926, 937
date literals, 832
date option

mysql_explain_log, 404
date types, 974
date values

problems, 937
DATE(), 1043
DATEDIFF(), 1043
DATETIME data type, 926, 937
datetime_format system variable, 487
DATE_ADD(), 1043
date_format system variable, 487
DATE_FORMAT(), 1046
DATE_SUB(), 1043, 1048
DAY(), 1048
DAYNAME(), 1048
DAYOFMONTH(), 1048
DAYOFWEEK(), 1048
DAYOFYEAR(), 1048
db option

mysqlaccess, 377
db table

sorting, 646
system table, 144, 597, 636

DB2 SQL mode, 592
DBI interface, 1991
DBI->quote, 831
DBI->trace, 2014
DBI/DBD interface, 1991
DBI_TRACE environment variable, 203, 2014
DBI_USER environment variable, 203
DBUG package, 2017
DEALLOCATE PREPARE, 1267, 1271
Debug

thread command, 815
debug option

comp_err, 279
make_win_bin_dist, 280
make_win_src_distribution, 281
myisamchk, 355
myisampack, 370
mysql, 294
mysqlaccess, 377
mysqladmin, 316
mysqlbinlog, 381
mysqlcheck, 321
mysqld, 444
mysqldump, 330
mysqldumpslow, 388
mysqlhotcopy, 390
mysqlimport, 342
mysqlshow, 347

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2174

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql_upgrade, 288
my_print_defaults, 412

debug option (MySQL Cluster), 1788
debug-info option

comp_err, 279
mysql, 294
mysqldump, 330
mysql_upgrade, 288

debugging
client, 2017
server, 2010

debugging support, 122
DEC data type, 925
decimal arithmetic, 1122
DECIMAL data type, 924, 1122
decimal point, 922
DECLARE, 1273
DECODE(), 1083
decode_bits myisamchk variable, 356
DEFAULT

constraint, 31
default

privileges, 144
default host name, 250
default installation location, 59
default options, 257
DEFAULT value clause, 971, 1157
default values, 971, 1157, 1193

BLOB and TEXT columns, 950
explicit, 971
implicit, 971
suppression, 31

DEFAULT(), 1109
default-character-set option

mysql, 294
mysqladmin, 316
mysqlcheck, 321
mysqld, 445
mysqldump, 330
mysqlimport, 343
mysqlshow, 347
mysql_upgrade, 288

default-collation option
mysqld, 445

default-mysqld-path option
mysqlmanager, 393

default-storage-engine option
mysqld, 445

default-table-type option
mysqld, 446

default-time-zone option
mysqld, 446

defaults-extra-file option, 261, 284
myisamchk, 355

mysql, 294
mysqladmin, 316
mysqlbinlog, 381
mysqlcheck, 322
mysqld, 446
mysqldump, 331
mysqld_multi, 275
mysqld_safe, 270
mysqlimport, 343
mysqlshow, 347
mysql_upgrade, 288
my_print_defaults, 412

defaults-file option, 261, 284
myisamchk, 355
mysql, 294
mysqladmin, 316
mysqlbinlog, 381
mysqlcheck, 322
mysqld, 446
mysqldump, 331
mysqld_multi, 275
mysqld_safe, 270
mysqlimport, 343
mysqlmanager, 393
mysqlshow, 347
mysql_upgrade, 288
my_print_defaults, 411

defaults-group-suffix option, 261
myisamchk, 355
mysql, 294
mysqladmin, 316
mysqlbinlog, 381
mysqlcheck, 322
mysqld, 446
mysqldump, 331
mysqlimport, 343
mysqlshow, 348
mysql_upgrade, 288
my_print_defaults, 412

default_week_format system variable, 487
DEGREES(), 1033
delay-key-write option

mysqld, 446, 1365
DELAYED, 1197

when ignored, 1195
Delayed insert

thread command, 815
delayed inserts

thread states, 822
delayed-insert option

mysqldump, 331
delayed_insert_limit, 1199
delayed_insert_limit system variable, 489
delayed_insert_timeout system variable, 489

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2175

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

delayed_queue_size system variable, 489
delay_key_write system variable, 488
DELETE, 1187

and MySQL Cluster, 1648
delete option

mysqlimport, 343
delete-master-logs option

mysqldump, 331
deleting

database, 1180
foreign key, 1140, 1169
function, 1310
index, 1139, 1181
primary key, 1139
rows, 2138
schema, 1180
table, 1182
user, 659, 1287
users, 659, 1287

deleting from main table
thread state, 817

deleting from reference tables
thread state, 817

deletion
mysql.sock, 2132

delimiter command
mysql, 301

delimiter option
mysql, 294
ndb_select_all, 1778

derived tables, 1234
des-key-file option

mysqld, 447
DESC, 1354
descending option

ndb_select_all, 1778
DESCRIBE, 232, 1355
description option

myisamchk, 360
design

issues, 2143
DES_DECRYPT(), 1083
DES_ENCRYPT(), 1084
development of MySQL Cluster, 1646
development source tree, 119
digits, 922
Dimension(), 1101
directory structure

default, 59
dirname option

make_win_src_distribution, 281
disable named command

mysql, 294
disable-grant-options option

configure, 130
disable-keys option

mysqldump, 331
disable-log-bin option

mysqlbinlog, 381
DISCARD TABLESPACE, 1140, 1381
discard_or_import_tablespace

thread state, 818
disconnect-slave-event-count option

mysqld, 1573
disconnecting

from the server, 209
Disjoint(), 1107
disk full, 2130
disk performance, 802
Diskless, 1717
disks

splitting data across, 805
display size, 921
display triggers, 1344
display width, 921
displaying

database information, 345
information

Cardinality, 1326
Collation, 1326
SHOW, 1313, 1316, 1325, 1328, 1344

table status, 1342
DISTINCT, 221, 735, 1216

AVG(), 1114
COUNT(), 1115
MAX(), 1116
MIN(), 1117
SUM(), 1117

DISTINCTROW, 1216
DIV, 1030
division (/), 1030
div_precision_increment system variable, 490
DNS, 810
DO, 1191
DocBook XML

documentation source format, 2
Documentation

in Chinese, 2049
in Japanese, 2049
in Korean, 2049

Documenters
list of, 37

dont_ignore_systab_0 option (ndb_restore), 1774
DOUBLE data type, 925
DOUBLE PRECISION data type, 925
double quote (\"), 830
downgrades

MySQL Cluster, 1670, 1797

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2176

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

downgrading, 149, 163
downloading, 49
DROP ... IF EXISTS

and replication, 1622
DROP DATABASE, 1180
Drop DB

thread command, 815
DROP FOREIGN KEY, 1140, 1169
DROP FUNCTION, 1181, 1310
DROP INDEX, 1139, 1181
DROP PREPARE, 1271
DROP PRIMARY KEY, 1139
DROP PROCEDURE, 1181
DROP SCHEMA, 1180
DROP TABLE, 1182

and MySQL Cluster, 1648
DROP TRIGGER, 1182
DROP USER, 1287
DROP VIEW, 1183
dropping

user, 659, 1287
dryrun option

mysqlhotcopy, 390
DTrace

and memcached, 1497
DUAL, 1212
dump option

myisam_ftdump, 351
dump-date option

mysqldump, 331
DUMPFILE, 1219
dumping

databases and tables, 324, 389
DYLD_LIBRARY_PATH environment variable, 1888
dynamic table characteristics, 1367

E
edit command

mysql, 302
ego command

mysql, 302
Eiffel Wrapper, 1993
ELT(), 1009
email lists, 12
embedded MySQL server library, 1881
embedded option

make_win_bin_dist, 280
mysql_config, 410

enable-community-features option
configure, 130

enable-named-pipe option
mysqld, 447

enable-profiling option

configure, 130
enable-pstack option

mysqld, 447
enable-thread-safe-client option

configure, 129
ENCODE(), 1085
ENCRYPT(), 1085
encrypted connections, 662
encryption, 662
encryption functions, 1081
end

thread state, 818
END, 1271
EndPoint(), 1102
engine_condition_pushdown system variable, 491
ENTER SINGLE USER MODE command (MySQL
Cluster),
entering

queries, 210
enterprise components

MySQL Enterprise Audit, 2023
MySQL Enterprise Backup, 2022
MySQL Enterprise Encryption, 2023
MySQL Enterprise Firewall, 2024
MySQL Enterprise Monitor, 2021
MySQL Enterprise Security, 2023
MySQL Thread Pool, 2024

ENUM
size, 976

ENUM data type, 930, 951
Envelope(), 1101
environment variable

CC, 128, 128, 131, 203
CFLAGS, 128, 131, 203
CXX, 128, 128, 131, 131, 203
CXXFLAGS, 128, 131, 203
DBI_TRACE, 203, 2014
DBI_USER, 203
DYLD_LIBRARY_PATH, 1888
HOME, 203, 306
LD_LIBRARY_PATH, 206, 1888
LD_RUN_PATH, 174, 180, 203, 206
MYSQL_DEBUG, 203, 249, 2017
MYSQL_GROUP_SUFFIX, 203
MYSQL_HISTFILE, 203, 306
MYSQL_HOME, 203
MYSQL_HOST, 203, 253
MYSQL_PS1, 203
MYSQL_PWD, 203, 249, 253
MYSQL_TCP_PORT, 203, 249, 612, 613
MYSQL_UNIX_PORT, 138, 203, 249, 612, 613
PATH, 86, 92, 142, 203, 250
TMPDIR, 138, 203, 249, 2131
TZ, 203, 2133

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2177

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

UMASK, 203, 2125
UMASK_DIR, 203, 2125
USER, 203, 253

environment variables, 249, 266, 650
CXX, 131
list of, 203

equal (=), 994
Equals(), 1107
eq_ref join type

optimizer, 771
Errcode, 413
errno, 413
Error

thread command, 815
error code

CR_CANT_READ_CHARSET, 2108
CR_COMMANDS_OUT_OF_SYNC, 2107
CR_CONNECTION_ERROR, 2106
CR_CONN_HOST_ERROR, 2107
CR_CONN_UNKNOW_PROTOCOL, 2110
CR_DATA_TRUNCATED, 2108
CR_EMBEDDED_CONNECTION, 2108
CR_FETCH_CANCELED, 2110
CR_INVALID_BUFFER_USE, 2109
CR_INVALID_CONN_HANDLE, 2110
CR_INVALID_PARAMETER_NO, 2109
CR_IPSOCK_ERROR, 2107
CR_LOCALHOST_CONNECTION, 2107
CR_MALFORMED_PACKET, 2108
CR_NAMEDPIPEOPEN_ERROR, 2107
CR_NAMEDPIPESETSTATE_ERROR, 2108
CR_NAMEDPIPEWAIT_ERROR, 2107
CR_NAMEDPIPE_CONNECTION, 2107
CR_NET_PACKET_TOO_LARGE, 2108
CR_NOT_IMPLEMENTED, 2110
CR_NO_DATA, 2110
CR_NO_PARAMETERS_EXISTS, 2109
CR_NO_PREPARE_STMT, 2108
CR_NO_RESULT_SET, 2110
CR_NO_STMT_METADATA, 2110
CR_NULL_POINTER, 2108
CR_OUT_OF_MEMORY, 2107
CR_PARAMS_NOT_BOUND, 2108
CR_PROBE_MASTER_CONNECT, 2108
CR_PROBE_SLAVE_CONNECT, 2108
CR_PROBE_SLAVE_HOSTS, 2108
CR_PROBE_SLAVE_STATUS, 2108
CR_SECURE_AUTH, 2110
CR_SERVER_GONE_ERROR, 2107
CR_SERVER_HANDSHAKE_ERR, 2107
CR_SERVER_LOST, 2107
CR_SERVER_LOST_EXTENDED, 2110
CR_SHARED_MEMORY_CONNECTION, 2109

CR_SHARED_MEMORY_CONNECT_ABANDONED_ERROR,
2109
CR_SHARED_MEMORY_CONNECT_ANSWER_ERROR,
2109
CR_SHARED_MEMORY_CONNECT_FILE_MAP_ERROR,
2109
CR_SHARED_MEMORY_CONNECT_MAP_ERROR,
2109
CR_SHARED_MEMORY_CONNECT_REQUEST_ERROR,
2109
CR_SHARED_MEMORY_CONNECT_SET_ERROR,
2109
CR_SHARED_MEMORY_EVENT_ERROR, 2109
CR_SHARED_MEMORY_FILE_MAP_ERROR, 2109
CR_SHARED_MEMORY_MAP_ERROR, 2109
CR_SOCKET_CREATE_ERROR, 2106
CR_SSL_CONNECTION_ERROR, 2108
CR_TCP_CONNECTION, 2107
CR_UNKNOWN_ERROR, 2106
CR_UNKNOWN_HOST, 2107
CR_UNSUPPORTED_PARAM_TYPE, 2109
CR_VERSION_ERROR, 2107
CR_WRONG_HOST_INFO, 2107
CR_WRONG_LICENSE, 2108
ER_ABORTING_CONNECTION, 2080
ER_ACCESS_DENIED_ERROR, 2072
ER_ADMIN_WRONG_MRG_TABLE, 2105
ER_ALTER_INFO, 2076
ER_AMBIGUOUS_FIELD_TERM, 2105
ER_AUTOINC_READ_FAILED, 2105
ER_AUTO_CONVERT, 2087
ER_BAD_DB_ERROR, 2073
ER_BAD_FIELD_ERROR, 2073
ER_BAD_FT_COLUMN, 2090
ER_BAD_HOST_ERROR, 2072
ER_BAD_NULL_ERROR, 2073
ER_BAD_SLAVE, 2084
ER_BAD_SLAVE_UNTIL_COND, 2089
ER_BAD_TABLE_ERROR, 2073
ER_BINLOG_CREATE_ROUTINE_NEED_SUPER,
2100
ER_BINLOG_PURGE_FATAL_ERR, 2096
ER_BINLOG_PURGE_PROHIBITED, 2096
ER_BINLOG_UNSAFE_ROUTINE, 2099
ER_BLOBS_AND_NO_TERMINATED, 2075
ER_BLOB_CANT_HAVE_DEFAULT, 2077
ER_BLOB_KEY_WITHOUT_LENGTH, 2081
ER_BLOB_USED_AS_KEY, 2075
ER_CANNOT_ADD_FOREIGN, 2085
ER_CANNOT_USER, 2098
ER_CANT_AGGREGATE_2COLLATIONS, 2089
ER_CANT_AGGREGATE_3COLLATIONS, 2089
ER_CANT_AGGREGATE_NCOLLATIONS, 2089
ER_CANT_CREATE_DB, 2070

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2178

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ER_CANT_CREATE_FEDERATED_TABLE, 2101
ER_CANT_CREATE_FILE, 2069
ER_CANT_CREATE_GEOMETRY_OBJECT, 2099
ER_CANT_CREATE_TABLE, 2069
ER_CANT_CREATE_THREAD, 2079
ER_CANT_CREATE_USER_WITH_GRANT, 2099
ER_CANT_DELETE_FILE, 2070
ER_CANT_DO_THIS_DURING_AN_TRANSACTION,
2082
ER_CANT_DROP_FIELD_OR_KEY, 2076
ER_CANT_FIND_DL_ENTRY, 2078
ER_CANT_FIND_SYSTEM_REC, 2070
ER_CANT_FIND_UDF, 2078
ER_CANT_GET_STAT, 2070
ER_CANT_GET_WD, 2070
ER_CANT_INITIALIZE_UDF, 2078
ER_CANT_LOCK, 2070
ER_CANT_OPEN_FILE, 2070
ER_CANT_OPEN_LIBRARY, 2078
ER_CANT_READ_DIR, 2071
ER_CANT_REMOVE_ALL_FIELDS, 2076
ER_CANT_REOPEN_TABLE, 2079
ER_CANT_SET_WD, 2071
ER_CANT_UPDATE_USED_TABLE_IN_SF_OR_TRG,
2102
ER_CANT_UPDATE_WITH_READLOCK, 2086
ER_CANT_USE_OPTION_HERE, 2087
ER_CHECKREAD, 2071
ER_CHECK_NOT_IMPLEMENTED, 2082
ER_CHECK_NO_SUCH_TABLE, 2082
ER_COLLATION_CHARSET_MISMATCH, 2088
ER_COLUMNACCESS_DENIED_ERROR, 2080
ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG,
2100
ER_CONFLICTING_DECLARATIONS, 2091
ER_CONNECT_TO_FOREIGN_DATA_SOURCE,
2101
ER_CONNECT_TO_MASTER, 2085
ER_CON_COUNT_ERROR, 2072
ER_CORRUPT_HELP_DB, 2087
ER_CRASHED_ON_REPAIR, 2083
ER_CRASHED_ON_USAGE, 2083
ER_CREATE_DB_WITH_READ_LOCK, 2085
ER_CUT_VALUE_GROUP_CONCAT, 2088
ER_CYCLIC_REFERENCE, 2087
ER_DATA_TOO_LONG, 2098
ER_DATETIME_FUNCTION_OVERFLOW, 2102
ER_DBACCESS_DENIED_ERROR, 2072
ER_DB_CREATE_EXISTS, 2070
ER_DB_DROP_DELETE, 2070
ER_DB_DROP_EXISTS, 2070
ER_DB_DROP_RMDIR, 2070
ER_DELAYED_CANT_CHANGE_LOCK, 2080
ER_DELAYED_INSERT_TABLE_LOCKED, 2081

ER_DERIVED_MUST_HAVE_ALIAS, 2087
ER_DIFF_GROUPS_PROC, 2097
ER_DISK_FULL, 2071
ER_DIVISION_BY_ZERO, 2096
ER_DROP_DB_WITH_READ_LOCK, 2084
ER_DROP_USER, 2089
ER_DUMP_NOT_IMPLEMENTED, 2083
ER_DUPLICATED_VALUE_IN_TYPE, 2090
ER_DUP_ARGUMENT, 2086
ER_DUP_ENTRY, 2074
ER_DUP_FIELDNAME, 2074
ER_DUP_KEY, 2071
ER_DUP_KEYNAME, 2074
ER_DUP_UNIQUE, 2081
ER_EMPTY_QUERY, 2074
ER_ERROR_DURING_CHECKPOINT, 2083
ER_ERROR_DURING_COMMIT, 2082
ER_ERROR_DURING_FLUSH_LOGS, 2082
ER_ERROR_DURING_ROLLBACK, 2082
ER_ERROR_ON_CLOSE, 2071
ER_ERROR_ON_READ, 2071
ER_ERROR_ON_RENAME, 2071
ER_ERROR_ON_WRITE, 2071
ER_ERROR_WHEN_EXECUTING_COMMAND, 2086
ER_EXEC_STMT_WITH_OPEN_CURSOR, 2100
ER_FAILED_ROUTINE_BREAK_BINLOG, 2099
ER_FEATURE_DISABLED, 2090
ER_FIELD_SPECIFIED_TWICE, 2077
ER_FILE_EXISTS_ERROR, 2076
ER_FILE_NOT_FOUND, 2071
ER_FILE_USED, 2071
ER_FILSORT_ABORT, 2071
ER_FLUSH_MASTER_BINLOG_CLOSED, 2083
ER_FORBID_SCHEMA_CHANGE, 2103
ER_FORCING_CLOSE, 2075
ER_FOREIGN_DATA_SOURCE_DOESNT_EXIST,
2101
ER_FOREIGN_DATA_STRING_INVALID, 2101
ER_FOREIGN_DATA_STRING_INVALID_CANT_CREATE,
2101
ER_FORM_NOT_FOUND, 2071
ER_FPARSER_BAD_HEADER, 2094
ER_FPARSER_EOF_IN_COMMENT, 2094
ER_FPARSER_EOF_IN_UNKNOWN_PARAMETER,
2094
ER_FPARSER_ERROR_IN_PARAMETER, 2094
ER_FPARSER_TOO_BIG_FILE, 2094
ER_FRM_UNKNOWN_TYPE, 2094
ER_FSEEK_FAIL, 2096
ER_FT_MATCHING_KEY_NOT_FOUND, 2083
ER_FUNCTION_NOT_DEFINED, 2079
ER_GET_ERRMSG, 2091
ER_GET_ERRNO, 2071
ER_GET_TEMPORARY_ERRMSG, 2091

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2179

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ER_GLOBAL_VARIABLE, 2086
ER_GOT_SIGNAL, 2075
ER_GRANT_WRONG_HOST_OR_USER, 2080
ER_HANDSHAKE_ERROR, 2072
ER_HASHCHK, 2069
ER_HOSTNAME, 2105
ER_HOST_IS_BLOCKED, 2079
ER_HOST_NOT_PRIVILEGED, 2079
ER_ILLEGAL_GRANT_FOR_TABLE, 2080
ER_ILLEGAL_HA, 2072
ER_ILLEGAL_REFERENCE, 2087
ER_ILLEGAL_VALUE_FOR_TYPE, 2096
ER_INCORRECT_GLOBAL_LOCAL_VAR, 2087
ER_INDEX_REBUILD, 2083
ER_INSERT_INFO, 2076
ER_INVALID_CHARACTER_STRING, 2091
ER_INVALID_DEFAULT, 2074
ER_INVALID_GROUP_FUNC_USE, 2077
ER_INVALID_ON_UPDATE, 2091
ER_INVALID_USE_OF_NULL, 2079
ER_IO_ERR_LOG_INDEX_READ, 2096
ER_IPSOCK_ERROR, 2075
ER_KEY_COLUMN_DOES_NOT_EXITS, 2075
ER_KEY_DOES_NOT_EXITS, 2082
ER_KEY_NOT_FOUND, 2072
ER_KEY_PART_0, 2097
ER_KEY_REF_DO_NOT_MATCH_TABLE_REF,
2087
ER_KILL_DENIED_ERROR, 2076
ER_LOAD_DATA_INVALID_COLUMN, 2106
ER_LOAD_FROM_FIXED_SIZE_ROWS_TO_VAR,
2099
ER_LOAD_INFO, 2076
ER_LOCAL_VARIABLE, 2086
ER_LOCK_DEADLOCK, 2085
ER_LOCK_OR_ACTIVE_TRANSACTION, 2083
ER_LOCK_TABLE_FULL, 2084
ER_LOCK_WAIT_TIMEOUT, 2084
ER_LOGGING_PROHIBIT_CHANGING_OF, 2097
ER_LOG_IN_USE, 2097
ER_LOG_PURGE_NO_FILE, 2106
ER_LOG_PURGE_UNKNOWN_ERR, 2097
ER_MALFORMED_DEFINER, 2102
ER_MASTER, 2083
ER_MASTER_FATAL_ERROR_READING_BINLOG,
2087
ER_MASTER_INFO, 2084
ER_MASTER_NET_READ, 2083
ER_MASTER_NET_WRITE, 2083
ER_MAX_PREPARED_STMT_COUNT_REACHED,
2104
ER_MISSING_SKIP_SLAVE, 2090
ER_MIXING_NOT_ALLOWED, 2086
ER_MIX_OF_GROUP_FUNC_AND_FIELDS, 2079

ER_MULTIPLE_PRI_KEY, 2074
ER_M_BIGGER_THAN_D, 2100
ER_NAME_BECOMES_EMPTY, 2105
ER_NET_ERROR_ON_WRITE, 2081
ER_NET_FCNTL_ERROR, 2080
ER_NET_PACKETS_OUT_OF_ORDER, 2080
ER_NET_PACKET_TOO_LARGE, 2080
ER_NET_READ_ERROR, 2081
ER_NET_READ_ERROR_FROM_PIPE, 2080
ER_NET_READ_INTERRUPTED, 2081
ER_NET_UNCOMPRESS_ERROR, 2081
ER_NET_WRITE_INTERRUPTED, 2081
ER_NEW_ABORTING_CONNECTION, 2083
ER_NISAMCHK, 2069
ER_NO, 2069
ER_NONEXISTING_GRANT, 2079
ER_NONEXISTING_PROC_GRANT, 2098
ER_NONEXISTING_TABLE_GRANT, 2080
ER_NONUNIQ_TABLE, 2074
ER_NONUPDATEABLE_COLUMN, 2094
ER_NON_GROUPING_FIELD_USED, 2104
ER_NON_INSERTABLE_TABLE, 2105
ER_NON_UNIQ_ERROR, 2073
ER_NON_UPDATABLE_TABLE, 2090
ER_NORMAL_SHUTDOWN, 2075
ER_NOT_ALLOWED_COMMAND, 2080
ER_NOT_FORM_FILE, 2072
ER_NOT_KEYFILE, 2072
ER_NOT_SUPPORTED_AUTH_MODE, 2088
ER_NOT_SUPPORTED_YET, 2087
ER_NO_BINARY_LOGGING, 2097
ER_NO_DB_ERROR, 2073
ER_NO_DEFAULT, 2086
ER_NO_DEFAULT_FOR_FIELD, 2096
ER_NO_DEFAULT_FOR_VIEW_FIELD, 2100
ER_NO_FILE_MAPPING, 2097
ER_NO_GROUP_FOR_PROC, 2097
ER_NO_PERMISSION_TO_CREATE_USER, 2085
ER_NO_RAID_COMPILED, 2082
ER_NO_REFERENCED_ROW, 2085
ER_NO_REFERENCED_ROW_2, 2103
ER_NO_SUCH_INDEX, 2075
ER_NO_SUCH_TABLE, 2080
ER_NO_SUCH_THREAD, 2076
ER_NO_SUCH_USER, 2103
ER_NO_TABLES_USED, 2076
ER_NO_TRIGGERS_ON_SYSTEM_SCHEMA, 2104
ER_NO_UNIQUE_LOGFILE, 2076
ER_NO_VIEW_USER, 2102
ER_NULL_COLUMN_IN_INDEX, 2078
ER_OLD_FILE_FORMAT, 2103
ER_OLD_KEYFILE, 2072
ER_OPEN_AS_READONLY, 2072
ER_OPERAND_COLUMNS, 2087

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2180

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ER_OPTION_PREVENTS_STATEMENT, 2090
ER_ORDER_WITH_PROC, 2097
ER_OUTOFMEMORY, 2072
ER_OUT_OF_RESOURCES, 2072
ER_OUT_OF_SORTMEMORY, 2072
ER_PARSE_ERROR, 2074
ER_PASSWD_LENGTH, 2096
ER_PASSWORD_ANONYMOUS_USER, 2079
ER_PASSWORD_NOT_ALLOWED, 2079
ER_PASSWORD_NO_MATCH, 2079
ER_PRIMARY_CANT_HAVE_NULL, 2082
ER_PROCACCESS_DENIED_ERROR, 2096
ER_PROC_AUTO_GRANT_FAIL, 2098
ER_PROC_AUTO_REVOKE_FAIL, 2098
ER_PS_MANY_PARAM, 2097
ER_PS_NO_RECURSION, 2102
ER_QUERY_INTERRUPTED, 2092
ER_QUERY_ON_FOREIGN_DATA_SOURCE, 2101
ER_QUERY_ON_MASTER, 2086
ER_READY, 2075
ER_READ_ONLY_TRANSACTION, 2084
ER_RECORD_FILE_FULL, 2078
ER_REGEXP_ERROR, 2079
ER_RELAY_LOG_FAIL, 2096
ER_RELAY_LOG_INIT, 2097
ER_REMOVED_SPACES, 2105
ER_REQUIRES_PRIMARY_KEY, 2082
ER_RESERVED_SYNTAX, 2097
ER_REVOKE_GRANTS, 2089
ER_ROW_IS_REFERENCED, 2085
ER_ROW_IS_REFERENCED_2, 2103
ER_SCALE_BIGGER_THAN_PRECISION, 2100
ER_SELECT_REDUCED, 2088
ER_SERVER_IS_IN_SECURE_AUTH_MODE, 2089
ER_SERVER_SHUTDOWN, 2073
ER_SET_CONSTANTS_ONLY, 2084
ER_SHUTDOWN_COMPLETE, 2075
ER_SLAVE_IGNORED_SSL_PARAMS, 2089
ER_SLAVE_IGNORED_TABLE, 2087
ER_SLAVE_MUST_STOP, 2084
ER_SLAVE_NOT_RUNNING, 2084
ER_SLAVE_THREAD, 2084
ER_SLAVE_WAS_NOT_RUNNING, 2088
ER_SLAVE_WAS_RUNNING, 2088
ER_SPATIAL_CANT_HAVE_NULL, 2088
ER_SPECIFIC_ACCESS_DENIED_ERROR, 2086
ER_SP_ALREADY_EXISTS, 2091
ER_SP_BADRETURN, 2092
ER_SP_BADSELECT, 2092
ER_SP_BADSTATEMENT, 2092
ER_SP_BAD_CURSOR_QUERY, 2093
ER_SP_BAD_CURSOR_SELECT, 2093
ER_SP_BAD_SQLSTATE, 2098
ER_SP_BAD_VAR_SHADOW, 2103

ER_SP_CANT_ALTER, 2093
ER_SP_CANT_SET_AUTOCOMMIT, 2102
ER_SP_CASE_NOT_FOUND, 2094
ER_SP_COND_MISMATCH, 2092
ER_SP_CURSOR_AFTER_HANDLER, 2094
ER_SP_CURSOR_ALREADY_OPEN, 2093
ER_SP_CURSOR_MISMATCH, 2093
ER_SP_CURSOR_NOT_OPEN, 2093
ER_SP_DOES_NOT_EXIST, 2091
ER_SP_DROP_FAILED, 2091
ER_SP_DUP_COND, 2093
ER_SP_DUP_CURS, 2093
ER_SP_DUP_HANDLER, 2099
ER_SP_DUP_PARAM, 2093
ER_SP_DUP_VAR, 2093
ER_SP_FETCH_NO_DATA, 2093
ER_SP_GOTO_IN_HNDLR, 2095
ER_SP_LABEL_MISMATCH, 2092
ER_SP_LABEL_REDEFINE, 2092
ER_SP_LILABEL_MISMATCH, 2092
ER_SP_NORETURN, 2092
ER_SP_NORETURNEND, 2092
ER_SP_NOT_VAR_ARG, 2099
ER_SP_NO_AGGREGATE, 2104
ER_SP_NO_DROP_SP, 2095
ER_SP_NO_RECURSION, 2100
ER_SP_NO_RECURSIVE_CREATE, 2091
ER_SP_NO_RETSET, 2099
ER_SP_NO_RETSET_IN_FUNC, 2099
ER_SP_NO_USE, 2093
ER_SP_PROC_TABLE_CORRUPT, 2104
ER_SP_RECURSION_LIMIT, 2104
ER_SP_STORE_FAILED, 2092
ER_SP_SUBSELECT_NYI, 2093
ER_SP_UNDECLARED_VAR, 2093
ER_SP_UNINIT_VAR, 2092
ER_SP_VARCOND_AFTER_CURSHNDLR, 2094
ER_SP_WRONG_NAME, 2104
ER_SP_WRONG_NO_OF_ARGS, 2092
ER_SP_WRONG_NO_OF_FETCH_ARGS, 2093
ER_STACK_OVERRUN, 2078
ER_STACK_OVERRUN_NEED_MORE, 2101
ER_STARTUP, 2099
ER_STMT_HAS_NO_OPEN_CURSOR, 2100
ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG, 2094
ER_SUBQUERY_NO_1_ROW, 2087
ER_SYNTAX_ERROR, 2080
ER_TABLEACCESS_DENIED_ERROR, 2080
ER_TABLENAME_NOT_ALLOWED_HERE, 2088
ER_TABLE_CANT_HANDLE_AUTO_INCREMENT,
2081
ER_TABLE_CANT_HANDLE_BLOB, 2081
ER_TABLE_CANT_HANDLE_FT, 2085
ER_TABLE_CANT_HANDLE_SPKEYS, 2104

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2181

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ER_TABLE_DEF_CHANGED, 2099
ER_TABLE_EXISTS_ERROR, 2073
ER_TABLE_MUST_HAVE_COLUMNS, 2077
ER_TABLE_NEEDS_UPGRADE, 2104
ER_TABLE_NOT_LOCKED, 2077
ER_TABLE_NOT_LOCKED_FOR_WRITE, 2077
ER_TEXTFILE_NOT_READABLE, 2076
ER_TOO_BIG_DISPLAYWIDTH, 2102
ER_TOO_BIG_FIELDLENGTH, 2075
ER_TOO_BIG_FOR_UNCOMPRESS, 2088
ER_TOO_BIG_PRECISION, 2100
ER_TOO_BIG_ROWSIZE, 2078
ER_TOO_BIG_SCALE, 2100
ER_TOO_BIG_SELECT, 2077
ER_TOO_BIG_SET, 2076
ER_TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT,
2105
ER_TOO_LONG_BODY, 2101
ER_TOO_LONG_IDENT, 2074
ER_TOO_LONG_KEY, 2075
ER_TOO_LONG_STRING, 2081
ER_TOO_MANY_CONCURRENT_TRXS, 2106
ER_TOO_MANY_DELAYED_THREADS, 2080
ER_TOO_MANY_FIELDS, 2078
ER_TOO_MANY_KEYS, 2074
ER_TOO_MANY_KEY_PARTS, 2075
ER_TOO_MANY_ROWS, 2082
ER_TOO_MANY_TABLES, 2078
ER_TOO_MANY_USER_CONNECTIONS, 2084
ER_TOO_MUCH_AUTO_TIMESTAMP_COLS, 2091
ER_TRANS_CACHE_FULL, 2084
ER_TRG_ALREADY_EXISTS, 2095
ER_TRG_CANT_CHANGE_ROW, 2095
ER_TRG_DOES_NOT_EXIST, 2095
ER_TRG_IN_WRONG_SCHEMA, 2101
ER_TRG_NO_DEFINER, 2103
ER_TRG_NO_SUCH_ROW_IN_TRG, 2096
ER_TRG_ON_VIEW_OR_TEMP_TABLE, 2095
ER_TRUNCATED_WRONG_VALUE, 2091
ER_TRUNCATED_WRONG_VALUE_FOR_FIELD,
2096
ER_UDF_EXISTS, 2078
ER_UDF_NO_PATHS, 2078
ER_UNEXPECTED_EOF, 2072
ER_UNION_TABLES_IN_DIFFERENT_DIR, 2085
ER_UNKNOWN_CHARACTER_SET, 2078
ER_UNKNOWN_COLLATION, 2089
ER_UNKNOWN_COM_ERROR, 2073
ER_UNKNOWN_ERROR, 2077
ER_UNKNOWN_KEY_CACHE, 2090
ER_UNKNOWN_PROCEDURE, 2077
ER_UNKNOWN_STMT_HANDLER, 2087
ER_UNKNOWN_STORAGE_ENGINE, 2090
ER_UNKNOWN_SYSTEM_VARIABLE, 2083

ER_UNKNOWN_TABLE, 2077
ER_UNKNOWN_TARGET_BINLOG, 2096
ER_UNKNOWN_TIME_ZONE, 2091
ER_UNSUPPORTED_EXTENSION, 2077
ER_UNSUPPORTED_PS, 2091
ER_UNTIL_COND_IGNORED, 2090
ER_UPDATE_INFO, 2079
ER_UPDATE_LOG_DEPRECATED_IGNORED, 2092
ER_UPDATE_LOG_DEPRECATED_TRANSLATED,
2092
ER_UPDATE_TABLE_USED, 2076
ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE,
2082
ER_USERNAME, 2105
ER_USER_LIMIT_REACHED, 2086
ER_VARIABLE_IS_NOT_STRUCT, 2089
ER_VAR_CANT_BE_READ, 2086
ER_VIEW_CHECKSUM, 2097
ER_VIEW_CHECK_FAILED, 2096
ER_VIEW_DELETE_MERGE_VIEW, 2098
ER_VIEW_FRM_NO_USER, 2103
ER_VIEW_INVALID, 2095
ER_VIEW_MULTIUPDATE, 2098
ER_VIEW_NONUPD_CHECK, 2096
ER_VIEW_NO_EXPLAIN, 2094
ER_VIEW_NO_INSERT_FIELD_LIST, 2098
ER_VIEW_OTHER_USER, 2103
ER_VIEW_PREVENT_UPDATE, 2102
ER_VIEW_RECURSIVE, 2104
ER_VIEW_SELECT_CLAUSE, 2095
ER_VIEW_SELECT_DERIVED, 2095
ER_VIEW_SELECT_TMPTABLE, 2095
ER_VIEW_SELECT_VARIABLE, 2095
ER_VIEW_WRONG_LIST, 2095
ER_WARNING_NOT_COMPLETE_ROLLBACK, 2083
ER_WARN_ALLOWED_PACKET_OVERFLOWED,
2091
ER_WARN_CANT_DROP_DEFAULT_KEYCACHE,
2102
ER_WARN_DATA_OUT_OF_RANGE, 2089
ER_WARN_DEPRECATED_SYNTAX, 2090
ER_WARN_FIELD_RESOLVED, 2089
ER_WARN_HOSTNAME_WONT_WORK, 2090
ER_WARN_INVALID_TIMESTAMP, 2091
ER_WARN_NULL_TO_NOTNULL, 2088
ER_WARN_QC_RESIZE, 2090
ER_WARN_TOO_FEW_RECORDS, 2088
ER_WARN_TOO_MANY_RECORDS, 2088
ER_WARN_USING_OTHER_HANDLER, 2089
ER_WARN_VIEW_MERGE, 2095
ER_WARN_VIEW_WITHOUT_KEY, 2095
ER_WRONG_ARGUMENTS, 2085
ER_WRONG_AUTO_KEY, 2075
ER_WRONG_COLUMN_NAME, 2081

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2182

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ER_WRONG_DB_NAME, 2077
ER_WRONG_FIELD_SPEC, 2074
ER_WRONG_FIELD_TERMINATORS, 2075
ER_WRONG_FIELD_WITH_GROUP, 2074
ER_WRONG_FK_DEF, 2087
ER_WRONG_GROUP_FIELD, 2074
ER_WRONG_KEY_COLUMN, 2081
ER_WRONG_LOCK_OF_SYSTEM_TABLE, 2100
ER_WRONG_MAGIC, 2097
ER_WRONG_MRG_TABLE, 2081
ER_WRONG_NAME_FOR_CATALOG, 2090
ER_WRONG_NAME_FOR_INDEX, 2090
ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT,
2086
ER_WRONG_OBJECT, 2094
ER_WRONG_OUTER_JOIN, 2078
ER_WRONG_PARAMCOUNT_TO_PROCEDURE,
2077
ER_WRONG_PARAMETERS_TO_PROCEDURE,
2077
ER_WRONG_STRING_LENGTH, 2105
ER_WRONG_SUB_KEY, 2076
ER_WRONG_SUM_SELECT, 2074
ER_WRONG_TABLE_NAME, 2077
ER_WRONG_TYPE_FOR_VAR, 2086
ER_WRONG_USAGE, 2086
ER_WRONG_VALUE_COUNT, 2074
ER_WRONG_VALUE_COUNT_ON_ROW, 2079
ER_WRONG_VALUE_FOR_TYPE, 2099
ER_WRONG_VALUE_FOR_VAR, 2086
ER_WSAS_FAILED, 2097
ER_XAER_DUPID, 2102
ER_XAER_INVAL, 2098
ER_XAER_NOTA, 2098
ER_XAER_OUTSIDE, 2098
ER_XAER_RMERR, 2098
ER_XAER_RMFAIL, 2098
ER_XA_RBDEADLOCK, 2106
ER_XA_RBROLLBACK, 2098
ER_XA_RBTIMEOUT, 2106
ER_YES, 2069
ER_ZLIB_Z_BUF_ERROR, 2088
ER_ZLIB_Z_DATA_ERROR, 2088
ER_ZLIB_Z_MEM_ERROR, 2088
WARN_DATA_TRUNCATED, 2089

ERROR Events (MySQL Cluster), 1804
error logs (MySQL Cluster), 1755
error messages

can't find file, 2125
displaying, 413
languages, 899, 899

errors
access denied, 2112
and replication, 1628

checking tables for, 698
common, 2110
directory checksum, 178
handling for UDFs, 2005
in subqueries, 1237
known, 2143
linking, 1886
list of, 2112
lost connection, 2115
reporting, 15, 15
sources of information, 2067

error_count system variable, 491
ERROR_FOR_DIVISION_BY_ZERO SQL mode, 588
ER_ABORTING_CONNECTION error code, 2080
ER_ACCESS_DENIED_ERROR error code, 2072
ER_ADMIN_WRONG_MRG_TABLE error code, 2105
ER_ALTER_INFO error code, 2076
ER_AMBIGUOUS_FIELD_TERM error code, 2105
ER_AUTOINC_READ_FAILED error code, 2105
ER_AUTO_CONVERT error code, 2087
ER_BAD_DB_ERROR error code, 2073
ER_BAD_FIELD_ERROR error code, 2073
ER_BAD_FT_COLUMN error code, 2090
ER_BAD_HOST_ERROR error code, 2072
ER_BAD_NULL_ERROR error code, 2073
ER_BAD_SLAVE error code, 2084
ER_BAD_SLAVE_UNTIL_COND error code, 2089
ER_BAD_TABLE_ERROR error code, 2073
ER_BINLOG_CREATE_ROUTINE_NEED_SUPER error
code, 2100
ER_BINLOG_PURGE_FATAL_ERR error code, 2096
ER_BINLOG_PURGE_PROHIBITED error code, 2096
ER_BINLOG_UNSAFE_ROUTINE error code, 2099
ER_BLOBS_AND_NO_TERMINATED error code, 2075
ER_BLOB_CANT_HAVE_DEFAULT error code, 2077
ER_BLOB_KEY_WITHOUT_LENGTH error code, 2081
ER_BLOB_USED_AS_KEY error code, 2075
ER_CANNOT_ADD_FOREIGN error code, 2085
ER_CANNOT_USER error code, 2098
ER_CANT_AGGREGATE_2COLLATIONS error code,
2089
ER_CANT_AGGREGATE_3COLLATIONS error code,
2089
ER_CANT_AGGREGATE_NCOLLATIONS error code,
2089
ER_CANT_CREATE_DB error code, 2070
ER_CANT_CREATE_FEDERATED_TABLE error code,
2101
ER_CANT_CREATE_FILE error code, 2069
ER_CANT_CREATE_GEOMETRY_OBJECT error code,
2099
ER_CANT_CREATE_TABLE error code, 2069
ER_CANT_CREATE_THREAD error code, 2079

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2183

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ER_CANT_CREATE_USER_WITH_GRANT error code,
2099
ER_CANT_DELETE_FILE error code, 2070
ER_CANT_DO_THIS_DURING_AN_TRANSACTION
error code, 2082
ER_CANT_DROP_FIELD_OR_KEY error code, 2076
ER_CANT_FIND_DL_ENTRY error code, 2078
ER_CANT_FIND_SYSTEM_REC error code, 2070
ER_CANT_FIND_UDF error code, 2078
ER_CANT_GET_STAT error code, 2070
ER_CANT_GET_WD error code, 2070
ER_CANT_INITIALIZE_UDF error code, 2078
ER_CANT_LOCK error code, 2070
ER_CANT_OPEN_FILE error code, 2070
ER_CANT_OPEN_LIBRARY error code, 2078
ER_CANT_READ_DIR error code, 2071
ER_CANT_REMOVE_ALL_FIELDS error code, 2076
ER_CANT_REOPEN_TABLE error code, 2079
ER_CANT_SET_WD error code, 2071
ER_CANT_UPDATE_USED_TABLE_IN_SF_OR_TRG
error code, 2102
ER_CANT_UPDATE_WITH_READLOCK error code,
2086
ER_CANT_USE_OPTION_HERE error code, 2087
ER_CHECKREAD error code, 2071
ER_CHECK_NOT_IMPLEMENTED error code, 2082
ER_CHECK_NO_SUCH_TABLE error code, 2082
ER_COLLATION_CHARSET_MISMATCH error code,
2088
ER_COLUMNACCESS_DENIED_ERROR error code,
2080
ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG error
code, 2100
ER_CONFLICTING_DECLARATIONS error code, 2091
ER_CONNECT_TO_FOREIGN_DATA_SOURCE error
code, 2101
ER_CONNECT_TO_MASTER error code, 2085
ER_CON_COUNT_ERROR error code, 2072
ER_CORRUPT_HELP_DB error code, 2087
ER_CRASHED_ON_REPAIR error code, 2083
ER_CRASHED_ON_USAGE error code, 2083
ER_CREATE_DB_WITH_READ_LOCK error code, 2085
ER_CUT_VALUE_GROUP_CONCAT error code, 2088
ER_CYCLIC_REFERENCE error code, 2087
ER_DATA_TOO_LONG error code, 2098
ER_DATETIME_FUNCTION_OVERFLOW error code,
2102
ER_DBACCESS_DENIED_ERROR error code, 2072
ER_DB_CREATE_EXISTS error code, 2070
ER_DB_DROP_DELETE error code, 2070
ER_DB_DROP_EXISTS error code, 2070
ER_DB_DROP_RMDIR error code, 2070
ER_DELAYED_CANT_CHANGE_LOCK error code,
2080

ER_DELAYED_INSERT_TABLE_LOCKED error code,
2081
ER_DERIVED_MUST_HAVE_ALIAS error code, 2087
ER_DIFF_GROUPS_PROC error code, 2097
ER_DISK_FULL error code, 2071
ER_DIVISION_BY_ZERO error code, 2096
ER_DROP_DB_WITH_READ_LOCK error code, 2084
ER_DROP_USER error code, 2089
ER_DUMP_NOT_IMPLEMENTED error code, 2083
ER_DUPLICATED_VALUE_IN_TYPE error code, 2090
ER_DUP_ARGUMENT error code, 2086
ER_DUP_ENTRY error code, 2074
ER_DUP_FIELDNAME error code, 2074
ER_DUP_KEY error code, 2071
ER_DUP_KEYNAME error code, 2074
ER_DUP_UNIQUE error code, 2081
ER_EMPTY_QUERY error code, 2074
ER_ERROR_DURING_CHECKPOINT error code, 2083
ER_ERROR_DURING_COMMIT error code, 2082
ER_ERROR_DURING_FLUSH_LOGS error code, 2082
ER_ERROR_DURING_ROLLBACK error code, 2082
ER_ERROR_ON_CLOSE error code, 2071
ER_ERROR_ON_READ error code, 2071
ER_ERROR_ON_RENAME error code, 2071
ER_ERROR_ON_WRITE error code, 2071
ER_ERROR_WHEN_EXECUTING_COMMAND error
code, 2086
ER_EXEC_STMT_WITH_OPEN_CURSOR error code,
2100
ER_FAILED_ROUTINE_BREAK_BINLOG error code,
2099
ER_FEATURE_DISABLED error code, 2090
ER_FIELD_SPECIFIED_TWICE error code, 2077
ER_FILE_EXISTS_ERROR error code, 2076
ER_FILE_NOT_FOUND error code, 2071
ER_FILE_USED error code, 2071
ER_FILSORT_ABORT error code, 2071
ER_FLUSH_MASTER_BINLOG_CLOSED error code,
2083
ER_FORBID_SCHEMA_CHANGE error code, 2103
ER_FORCING_CLOSE error code, 2075
ER_FOREIGN_DATA_SOURCE_DOESNT_EXIST error
code, 2101
ER_FOREIGN_DATA_STRING_INVALID error code,
2101
ER_FOREIGN_DATA_STRING_INVALID_CANT_CREATE
error code, 2101
ER_FORM_NOT_FOUND error code, 2071
ER_FPARSER_BAD_HEADER error code, 2094
ER_FPARSER_EOF_IN_COMMENT error code, 2094
ER_FPARSER_EOF_IN_UNKNOWN_PARAMETER
error code, 2094
ER_FPARSER_ERROR_IN_PARAMETER error code,
2094

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2184

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ER_FPARSER_TOO_BIG_FILE error code, 2094
ER_FRM_UNKNOWN_TYPE error code, 2094
ER_FSEEK_FAIL error code, 2096
ER_FT_MATCHING_KEY_NOT_FOUND error code,
2083
ER_FUNCTION_NOT_DEFINED error code, 2079
ER_GET_ERRMSG error code, 2091
ER_GET_ERRNO error code, 2071
ER_GET_TEMPORARY_ERRMSG error code, 2091
ER_GLOBAL_VARIABLE error code, 2086
ER_GOT_SIGNAL error code, 2075
ER_GRANT_WRONG_HOST_OR_USER error code,
2080
ER_HANDSHAKE_ERROR error code, 2072
ER_HASHCHK error code, 2069
ER_HOSTNAME error code, 2105
ER_HOST_IS_BLOCKED error code, 2079
ER_HOST_NOT_PRIVILEGED error code, 2079
ER_ILLEGAL_GRANT_FOR_TABLE error code, 2080
ER_ILLEGAL_HA error code, 2072
ER_ILLEGAL_REFERENCE error code, 2087
ER_ILLEGAL_VALUE_FOR_TYPE error code, 2096
ER_INCORRECT_GLOBAL_LOCAL_VAR error code,
2087
ER_INDEX_REBUILD error code, 2083
ER_INSERT_INFO error code, 2076
ER_INVALID_CHARACTER_STRING error code, 2091
ER_INVALID_DEFAULT error code, 2074
ER_INVALID_GROUP_FUNC_USE error code, 2077
ER_INVALID_ON_UPDATE error code, 2091
ER_INVALID_USE_OF_NULL error code, 2079
ER_IO_ERR_LOG_INDEX_READ error code, 2096
ER_IPSOCK_ERROR error code, 2075
ER_KEY_COLUMN_DOES_NOT_EXITS error code,
2075
ER_KEY_DOES_NOT_EXITS error code, 2082
ER_KEY_NOT_FOUND error code, 2072
ER_KEY_PART_0 error code, 2097
ER_KEY_REF_DO_NOT_MATCH_TABLE_REF error
code, 2087
ER_KILL_DENIED_ERROR error code, 2076
ER_LOAD_DATA_INVALID_COLUMN error code, 2106
ER_LOAD_FROM_FIXED_SIZE_ROWS_TO_VAR error
code, 2099
ER_LOAD_INFO error code, 2076
ER_LOCAL_VARIABLE error code, 2086
ER_LOCK_DEADLOCK error code, 2085
ER_LOCK_OR_ACTIVE_TRANSACTION error code,
2083
ER_LOCK_TABLE_FULL error code, 2084
ER_LOCK_WAIT_TIMEOUT error code, 2084
ER_LOGGING_PROHIBIT_CHANGING_OF error code,
2097
ER_LOG_IN_USE error code, 2097

ER_LOG_PURGE_NO_FILE error code, 2106
ER_LOG_PURGE_UNKNOWN_ERR error code, 2097
ER_MALFORMED_DEFINER error code, 2102
ER_MASTER error code, 2083
ER_MASTER_FATAL_ERROR_READING_BINLOG
error code, 2087
ER_MASTER_INFO error code, 2084
ER_MASTER_NET_READ error code, 2083
ER_MASTER_NET_WRITE error code, 2083
ER_MAX_PREPARED_STMT_COUNT_REACHED error
code, 2104
ER_MISSING_SKIP_SLAVE error code, 2090
ER_MIXING_NOT_ALLOWED error code, 2086
ER_MIX_OF_GROUP_FUNC_AND_FIELDS error code,
2079
ER_MULTIPLE_PRI_KEY error code, 2074
ER_M_BIGGER_THAN_D error code, 2100
ER_NAME_BECOMES_EMPTY error code, 2105
ER_NET_ERROR_ON_WRITE error code, 2081
ER_NET_FCNTL_ERROR error code, 2080
ER_NET_PACKETS_OUT_OF_ORDER error code,
2080
ER_NET_PACKET_TOO_LARGE error code, 2080
ER_NET_READ_ERROR error code, 2081
ER_NET_READ_ERROR_FROM_PIPE error code, 2080
ER_NET_READ_INTERRUPTED error code, 2081
ER_NET_UNCOMPRESS_ERROR error code, 2081
ER_NET_WRITE_INTERRUPTED error code, 2081
ER_NEW_ABORTING_CONNECTION error code, 2083
ER_NISAMCHK error code, 2069
ER_NO error code, 2069
ER_NONEXISTING_GRANT error code, 2079
ER_NONEXISTING_PROC_GRANT error code, 2098
ER_NONEXISTING_TABLE_GRANT error code, 2080
ER_NONUNIQ_TABLE error code, 2074
ER_NONUPDATEABLE_COLUMN error code, 2094
ER_NON_GROUPING_FIELD_USED error code, 2104
ER_NON_INSERTABLE_TABLE error code, 2105
ER_NON_UNIQ_ERROR error code, 2073
ER_NON_UPDATABLE_TABLE error code, 2090
ER_NORMAL_SHUTDOWN error code, 2075
ER_NOT_ALLOWED_COMMAND error code, 2080
ER_NOT_FORM_FILE error code, 2072
ER_NOT_KEYFILE error code, 2072
ER_NOT_SUPPORTED_AUTH_MODE error code, 2088
ER_NOT_SUPPORTED_YET error code, 2087
ER_NO_BINARY_LOGGING error code, 2097
ER_NO_DB_ERROR error code, 2073
ER_NO_DEFAULT error code, 2086
ER_NO_DEFAULT_FOR_FIELD error code, 2096
ER_NO_DEFAULT_FOR_VIEW_FIELD error code, 2100
ER_NO_FILE_MAPPING error code, 2097
ER_NO_GROUP_FOR_PROC error code, 2097

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2185

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ER_NO_PERMISSION_TO_CREATE_USER error code,
2085
ER_NO_RAID_COMPILED error code, 2082
ER_NO_REFERENCED_ROW error code, 2085
ER_NO_REFERENCED_ROW_2 error code, 2103
ER_NO_SUCH_INDEX error code, 2075
ER_NO_SUCH_TABLE error code, 2080
ER_NO_SUCH_THREAD error code, 2076
ER_NO_SUCH_USER error code, 2103
ER_NO_TABLES_USED error code, 2076
ER_NO_TRIGGERS_ON_SYSTEM_SCHEMA error
code, 2104
ER_NO_UNIQUE_LOGFILE error code, 2076
ER_NO_VIEW_USER error code, 2102
ER_NULL_COLUMN_IN_INDEX error code, 2078
ER_OLD_FILE_FORMAT error code, 2103
ER_OLD_KEYFILE error code, 2072
ER_OPEN_AS_READONLY error code, 2072
ER_OPERAND_COLUMNS error code, 2087
ER_OPTION_PREVENTS_STATEMENT error code,
2090
ER_ORDER_WITH_PROC error code, 2097
ER_OUTOFMEMORY error code, 2072
ER_OUT_OF_RESOURCES error code, 2072
ER_OUT_OF_SORTMEMORY error code, 2072
ER_PARSE_ERROR error code, 2074
ER_PASSWD_LENGTH error code, 2096
ER_PASSWORD_ANONYMOUS_USER error code,
2079
ER_PASSWORD_NOT_ALLOWED error code, 2079
ER_PASSWORD_NO_MATCH error code, 2079
ER_PRIMARY_CANT_HAVE_NULL error code, 2082
ER_PROCACCESS_DENIED_ERROR error code, 2096
ER_PROC_AUTO_GRANT_FAIL error code, 2098
ER_PROC_AUTO_REVOKE_FAIL error code, 2098
ER_PS_MANY_PARAM error code, 2097
ER_PS_NO_RECURSION error code, 2102
ER_QUERY_INTERRUPTED error code, 2092
ER_QUERY_ON_FOREIGN_DATA_SOURCE error
code, 2101
ER_QUERY_ON_MASTER error code, 2086
ER_READY error code, 2075
ER_READ_ONLY_TRANSACTION error code, 2084
ER_RECORD_FILE_FULL error code, 2078
ER_REGEXP_ERROR error code, 2079
ER_RELAY_LOG_FAIL error code, 2096
ER_RELAY_LOG_INIT error code, 2097
ER_REMOVED_SPACES error code, 2105
ER_REQUIRES_PRIMARY_KEY error code, 2082
ER_RESERVED_SYNTAX error code, 2097
ER_REVOKE_GRANTS error code, 2089
ER_ROW_IS_REFERENCED error code, 2085
ER_ROW_IS_REFERENCED_2 error code, 2103

ER_SCALE_BIGGER_THAN_PRECISION error code,
2100
ER_SELECT_REDUCED error code, 2088
ER_SERVER_IS_IN_SECURE_AUTH_MODE error
code, 2089
ER_SERVER_SHUTDOWN error code, 2073
ER_SET_CONSTANTS_ONLY error code, 2084
ER_SHUTDOWN_COMPLETE error code, 2075
ER_SLAVE_IGNORED_SSL_PARAMS error code, 2089
ER_SLAVE_IGNORED_TABLE error code, 2087
ER_SLAVE_MUST_STOP error code, 2084
ER_SLAVE_NOT_RUNNING error code, 2084
ER_SLAVE_THREAD error code, 2084
ER_SLAVE_WAS_NOT_RUNNING error code, 2088
ER_SLAVE_WAS_RUNNING error code, 2088
ER_SPATIAL_CANT_HAVE_NULL error code, 2088
ER_SPECIFIC_ACCESS_DENIED_ERROR error code,
2086
ER_SP_ALREADY_EXISTS error code, 2091
ER_SP_BADRETURN error code, 2092
ER_SP_BADSELECT error code, 2092
ER_SP_BADSTATEMENT error code, 2092
ER_SP_BAD_CURSOR_QUERY error code, 2093
ER_SP_BAD_CURSOR_SELECT error code, 2093
ER_SP_BAD_SQLSTATE error code, 2098
ER_SP_BAD_VAR_SHADOW error code, 2103
ER_SP_CANT_ALTER error code, 2093
ER_SP_CANT_SET_AUTOCOMMIT error code, 2102
ER_SP_CASE_NOT_FOUND error code, 2094
ER_SP_COND_MISMATCH error code, 2092
ER_SP_CURSOR_AFTER_HANDLER error code, 2094
ER_SP_CURSOR_ALREADY_OPEN error code, 2093
ER_SP_CURSOR_MISMATCH error code, 2093
ER_SP_CURSOR_NOT_OPEN error code, 2093
ER_SP_DOES_NOT_EXIST error code, 2091
ER_SP_DROP_FAILED error code, 2091
ER_SP_DUP_COND error code, 2093
ER_SP_DUP_CURS error code, 2093
ER_SP_DUP_HANDLER error code, 2099
ER_SP_DUP_PARAM error code, 2093
ER_SP_DUP_VAR error code, 2093
ER_SP_FETCH_NO_DATA error code, 2093
ER_SP_GOTO_IN_HNDLR error code, 2095
ER_SP_LABEL_MISMATCH error code, 2092
ER_SP_LABEL_REDEFINE error code, 2092
ER_SP_LILABEL_MISMATCH error code, 2092
ER_SP_NORETURN error code, 2092
ER_SP_NORETURNEND error code, 2092
ER_SP_NOT_VAR_ARG error code, 2099
ER_SP_NO_AGGREGATE error code, 2104
ER_SP_NO_DROP_SP error code, 2095
ER_SP_NO_RECURSION error code, 2100
ER_SP_NO_RECURSIVE_CREATE error code, 2091
ER_SP_NO_RETSET error code, 2099

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2186

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ER_SP_NO_RETSET_IN_FUNC error code, 2099
ER_SP_NO_USE error code, 2093
ER_SP_PROC_TABLE_CORRUPT error code, 2104
ER_SP_RECURSION_LIMIT error code, 2104
ER_SP_STORE_FAILED error code, 2092
ER_SP_SUBSELECT_NYI error code, 2093
ER_SP_UNDECLARED_VAR error code, 2093
ER_SP_UNINIT_VAR error code, 2092
ER_SP_VARCOND_AFTER_CURSHNDLR error code,
2094
ER_SP_WRONG_NAME error code, 2104
ER_SP_WRONG_NO_OF_ARGS error code, 2092
ER_SP_WRONG_NO_OF_FETCH_ARGS error code,
2093
ER_STACK_OVERRUN error code, 2078
ER_STACK_OVERRUN_NEED_MORE error code, 2101
ER_STARTUP error code, 2099
ER_STMT_HAS_NO_OPEN_CURSOR error code, 2100
ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG error
code, 2094
ER_SUBQUERY_NO_1_ROW error code, 2087
ER_SYNTAX_ERROR error code, 2080
ER_TABLEACCESS_DENIED_ERROR error code, 2080
ER_TABLENAME_NOT_ALLOWED_HERE error code,
2088
ER_TABLE_CANT_HANDLE_AUTO_INCREMENT error
code, 2081
ER_TABLE_CANT_HANDLE_BLOB error code, 2081
ER_TABLE_CANT_HANDLE_FT error code, 2085
ER_TABLE_CANT_HANDLE_SPKEYS error code, 2104
ER_TABLE_DEF_CHANGED error code, 2099
ER_TABLE_EXISTS_ERROR error code, 2073
ER_TABLE_MUST_HAVE_COLUMNS error code, 2077
ER_TABLE_NEEDS_UPGRADE error code, 2104
ER_TABLE_NOT_LOCKED error code, 2077
ER_TABLE_NOT_LOCKED_FOR_WRITE error code,
2077
ER_TEXTFILE_NOT_READABLE error code, 2076
ER_TOO_BIG_DISPLAYWIDTH error code, 2102
ER_TOO_BIG_FIELDLENGTH error code, 2075
ER_TOO_BIG_FOR_UNCOMPRESS error code, 2088
ER_TOO_BIG_PRECISION error code, 2100
ER_TOO_BIG_ROWSIZE error code, 2078
ER_TOO_BIG_SCALE error code, 2100
ER_TOO_BIG_SELECT error code, 2077
ER_TOO_BIG_SET error code, 2076
ER_TOO_HIGH_LEVEL_OF_NESTING_FOR_SELECT
error code, 2105
ER_TOO_LONG_BODY error code, 2101
ER_TOO_LONG_IDENT error code, 2074
ER_TOO_LONG_KEY error code, 2075
ER_TOO_LONG_STRING error code, 2081
ER_TOO_MANY_CONCURRENT_TRXS error code,
2106

ER_TOO_MANY_DELAYED_THREADS error code,
2080
ER_TOO_MANY_FIELDS error code, 2078
ER_TOO_MANY_KEYS error code, 2074
ER_TOO_MANY_KEY_PARTS error code, 2075
ER_TOO_MANY_ROWS error code, 2082
ER_TOO_MANY_TABLES error code, 2078
ER_TOO_MANY_USER_CONNECTIONS error code,
2084
ER_TOO_MUCH_AUTO_TIMESTAMP_COLS error
code, 2091
ER_TRANS_CACHE_FULL error code, 2084
ER_TRG_ALREADY_EXISTS error code, 2095
ER_TRG_CANT_CHANGE_ROW error code, 2095
ER_TRG_DOES_NOT_EXIST error code, 2095
ER_TRG_IN_WRONG_SCHEMA error code, 2101
ER_TRG_NO_DEFINER error code, 2103
ER_TRG_NO_SUCH_ROW_IN_TRG error code, 2096
ER_TRG_ON_VIEW_OR_TEMP_TABLE error code,
2095
ER_TRUNCATED_WRONG_VALUE error code, 2091
ER_TRUNCATED_WRONG_VALUE_FOR_FIELD error
code, 2096
ER_UDF_EXISTS error code, 2078
ER_UDF_NO_PATHS error code, 2078
ER_UNEXPECTED_EOF error code, 2072
ER_UNION_TABLES_IN_DIFFERENT_DIR error code,
2085
ER_UNKNOWN_CHARACTER_SET error code, 2078
ER_UNKNOWN_COLLATION error code, 2089
ER_UNKNOWN_COM_ERROR error code, 2073
ER_UNKNOWN_ERROR error code, 2077
ER_UNKNOWN_KEY_CACHE error code, 2090
ER_UNKNOWN_PROCEDURE error code, 2077
ER_UNKNOWN_STMT_HANDLER error code, 2087
ER_UNKNOWN_STORAGE_ENGINE error code, 2090
ER_UNKNOWN_SYSTEM_VARIABLE error code, 2083
ER_UNKNOWN_TABLE error code, 2077
ER_UNKNOWN_TARGET_BINLOG error code, 2096
ER_UNKNOWN_TIME_ZONE error code, 2091
ER_UNSUPPORTED_EXTENSION error code, 2077
ER_UNSUPPORTED_PS error code, 2091
ER_UNTIL_COND_IGNORED error code, 2090
ER_UPDATE_INFO error code, 2079
ER_UPDATE_LOG_DEPRECATED_IGNORED error
code, 2092
ER_UPDATE_LOG_DEPRECATED_TRANSLATED
error code, 2092
ER_UPDATE_TABLE_USED error code, 2076
ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE error
code, 2082
ER_USERNAME error code, 2105
ER_USER_LIMIT_REACHED error code, 2086
ER_VARIABLE_IS_NOT_STRUCT error code, 2089

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2187

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ER_VAR_CANT_BE_READ error code, 2086
ER_VIEW_CHECKSUM error code, 2097
ER_VIEW_CHECK_FAILED error code, 2096
ER_VIEW_DELETE_MERGE_VIEW error code, 2098
ER_VIEW_FRM_NO_USER error code, 2103
ER_VIEW_INVALID error code, 2095
ER_VIEW_MULTIUPDATE error code, 2098
ER_VIEW_NONUPD_CHECK error code, 2096
ER_VIEW_NO_EXPLAIN error code, 2094
ER_VIEW_NO_INSERT_FIELD_LIST error code, 2098
ER_VIEW_OTHER_USER error code, 2103
ER_VIEW_PREVENT_UPDATE error code, 2102
ER_VIEW_RECURSIVE error code, 2104
ER_VIEW_SELECT_CLAUSE error code, 2095
ER_VIEW_SELECT_DERIVED error code, 2095
ER_VIEW_SELECT_TMPTABLE error code, 2095
ER_VIEW_SELECT_VARIABLE error code, 2095
ER_VIEW_WRONG_LIST error code, 2095
ER_WARNING_NOT_COMPLETE_ROLLBACK error
code, 2083
ER_WARN_ALLOWED_PACKET_OVERFLOWED error
code, 2091
ER_WARN_CANT_DROP_DEFAULT_KEYCACHE error
code, 2102
ER_WARN_DATA_OUT_OF_RANGE error code, 2089
ER_WARN_DEPRECATED_SYNTAX error code, 2090
ER_WARN_FIELD_RESOLVED error code, 2089
ER_WARN_HOSTNAME_WONT_WORK error code,
2090
ER_WARN_INVALID_TIMESTAMP error code, 2091
ER_WARN_NULL_TO_NOTNULL error code, 2088
ER_WARN_QC_RESIZE error code, 2090
ER_WARN_TOO_FEW_RECORDS error code, 2088
ER_WARN_TOO_MANY_RECORDS error code, 2088
ER_WARN_USING_OTHER_HANDLER error code,
2089
ER_WARN_VIEW_MERGE error code, 2095
ER_WARN_VIEW_WITHOUT_KEY error code, 2095
ER_WRONG_ARGUMENTS error code, 2085
ER_WRONG_AUTO_KEY error code, 2075
ER_WRONG_COLUMN_NAME error code, 2081
ER_WRONG_DB_NAME error code, 2077
ER_WRONG_FIELD_SPEC error code, 2074
ER_WRONG_FIELD_TERMINATORS error code, 2075
ER_WRONG_FIELD_WITH_GROUP error code, 2074
ER_WRONG_FK_DEF error code, 2087
ER_WRONG_GROUP_FIELD error code, 2074
ER_WRONG_KEY_COLUMN error code, 2081
ER_WRONG_LOCK_OF_SYSTEM_TABLE error code,
2100
ER_WRONG_MAGIC error code, 2097
ER_WRONG_MRG_TABLE error code, 2081
ER_WRONG_NAME_FOR_CATALOG error code, 2090
ER_WRONG_NAME_FOR_INDEX error code, 2090

ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT
error code, 2086
ER_WRONG_OBJECT error code, 2094
ER_WRONG_OUTER_JOIN error code, 2078
ER_WRONG_PARAMCOUNT_TO_PROCEDURE error
code, 2077
ER_WRONG_PARAMETERS_TO_PROCEDURE error
code, 2077
ER_WRONG_STRING_LENGTH error code, 2105
ER_WRONG_SUB_KEY error code, 2076
ER_WRONG_SUM_SELECT error code, 2074
ER_WRONG_TABLE_NAME error code, 2077
ER_WRONG_TYPE_FOR_VAR error code, 2086
ER_WRONG_USAGE error code, 2086
ER_WRONG_VALUE_COUNT error code, 2074
ER_WRONG_VALUE_COUNT_ON_ROW error code,
2079
ER_WRONG_VALUE_FOR_TYPE error code, 2099
ER_WRONG_VALUE_FOR_VAR error code, 2086
ER_WSAS_FAILED error code, 2097
ER_XAER_DUPID error code, 2102
ER_XAER_INVAL error code, 2098
ER_XAER_NOTA error code, 2098
ER_XAER_OUTSIDE error code, 2098
ER_XAER_RMERR error code, 2098
ER_XAER_RMFAIL error code, 2098
ER_XA_RBDEADLOCK error code, 2106
ER_XA_RBROLLBACK error code, 2098
ER_XA_RBTIMEOUT error code, 2106
ER_YES error code, 2069
ER_ZLIB_Z_BUF_ERROR error code, 2088
ER_ZLIB_Z_DATA_ERROR error code, 2088
ER_ZLIB_Z_MEM_ERROR error code, 2088
escape (\\), 830
escape sequences

option files, 259
strings, 829

establishing secure connections, 666
estimating

query performance, 780
event groups, 1265
event log format (MySQL Cluster), 1801
event logs (MySQL Cluster), 1798, 1800, 1800
event severity levels (MySQL Cluster), 1801
event types (MySQL Cluster), 1799, 1801
exact-value literals, 832, 1122
example option

mysqld_multi, 276
example programs

C API, 1885
EXAMPLE storage engine, 1359, 1466
examples

compressed tables, 371
myisamchk output, 361

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2188

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

queries, 235
exe-suffix option

make_win_bin_dist, 280
Execute

thread command, 815
EXECUTE, 1267, 1271
execute option

mysql, 294
execute option (ndb_mgm), 1759
ExecuteOnComputer, 1700, 1703, 1729
executing

thread state, 818
executing SQL statements from text files, 233, 308
Execution of init_command

thread state, 818
execution plan, 767
EXISTS

with subqueries, 1233
exit command

mysql, 302
EXIT command (MySQL Cluster),
EXIT SINGLE USER MODE command (MySQL Cluster),

exit-info option
mysqld, 448

EXP(), 1033
expire_logs_days system variable, 491
EXPLAIN, 767, 1355
explicit default values, 971
EXPORT_SET(), 1009
expression aliases, 1122, 1212
expression syntax, 852
expressions

extended, 226
extend-check option

myisamchk, 357, 359
extended option

mysqlcheck, 322
extended-insert option

mysqldump, 331
extensions

to standard SQL, 20
ExteriorRing(), 1105
external locking, 448, 538, 697, 798, 821
external-locking option

mysqld, 448
extra-file option

my_print_defaults, 412
extra-partition-info option

ndb_desc, 1767
EXTRACT(), 1048
extracting

dates, 223

F
FALSE, 832, 835

testing for, 996, 996
fast option

myisamchk, 358
mysqlcheck, 322

fatal signal 11, 131
features of MySQL, 6
FEDERATED storage engine, 1359, 1466
Fetch

thread command, 815
FETCH, 1281
field

changing, 1139
Field List

thread command, 815
FIELD(), 1009
fields option

ndb_config, 1763
fields-enclosed-by option

mysqldump, 332, 343
fields-enclosed-by option (ndb_restore), 1775
fields-escaped-by option

mysqldump, 332, 343
fields-optionally-enclosed-by option

mysqldump, 332, 343
fields-optionally-enclosed-by option (ndb_restore), 1775
fields-terminated-by option

mysqldump, 332, 343
fields-terminated-by option (ndb_restore), 1775, 1776
FILE, 1011
files

binary log, 600
config.cache, 130
error messages, 899
general query log, 600
log, 122, 605
my.cnf, 1620
not found message, 2125
permissions, 2125
repairing, 358
script, 233
size limits, 2155
slow query log, 604
text, 308, 341
tmp, 138
update log (obsolete), 600

filesort optimization, 731
FileSystemPath, 1705
FIND_IN_SET(), 1010
Finished reading one binlog; switching to next binlog

thread state, 824
firewalls (software)

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2189

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

and MySQL Cluster, 1826, 1828
first-slave option

mysqldump, 332
FIXED data type, 925
fixed-point arithmetic, 1122
FLOAT data type, 925, 925, 925
floating-point number, 925
floating-point values

and replication, 1623
floats, 832
FLOOR(), 1034
FLUSH, 1350

and replication, 1623
flush option

mysqld, 448
flush system variable, 492
flush tables, 314
flush-logs option

mysqldump, 332
flush-privileges option

mysqldump, 332
Flushing tables

thread state, 818
flushlog option

mysqlhotcopy, 391
flush_time system variable, 492
FOR UPDATE, 1216
FORCE INDEX, 781, 2142
FORCE KEY, 781
force option

myisamchk, 358, 359
myisampack, 370
mysql, 295
mysqladmin, 316
mysqlcheck, 322
mysqldump, 332
mysqlimport, 343
mysql_convert_table_format, 403
mysql_install_db, 284
mysql_upgrade, 288

force-read option
mysqlbinlog, 382

foreign key
constraint, 29, 30
deleting, 1140, 1169

foreign key constraints, 1166
InnoDB, 1408
restrictions, 1408

foreign keys, 27, 237, 1140
foreign_key_checks system variable, 492
FORMAT(), 1010
Forums, 14
FOUND_ROWS(), 1090
FreeBSD troubleshooting, 132

freeing items
thread state, 818

frequently-asked questions about MySQL Cluster, 2037
FROM, 1213
FROM_DAYS(), 1048
FROM_UNIXTIME(), 1049
ft_boolean_syntax system variable, 493
ft_max_word_len myisamchk variable, 356
ft_max_word_len system variable, 493
ft_min_word_len myisamchk variable, 356
ft_min_word_len system variable, 494
ft_query_expansion_limit system variable, 494
ft_stopword_file myisamchk variable, 356
ft_stopword_file system variable, 495
full disk, 2130
full table scans

avoiding, 742
full-text search, 1061
FULLTEXT, 1061
fulltext

stopword list, 1072
FULLTEXT initialization

thread state, 818
fulltext join type

optimizer, 772
func table

system table, 597
function

creating, 1309
deleting, 1310

function names
parsing, 840
resolving ambiguity, 840

functions, 980
and replication, 1623
arithmetic, 1079
bit, 1079
C API, 1894
C prepared statement API, 1955, 1957
cast, 1075
control flow, 1003
date and time, 1039
encryption, 1081
GROUP BY, 1113
grouping, 993
information, 1087
mathematical, 1031
miscellaneous, 1109
native

adding, 2008
new, 1997
stored, 1835
string, 1005
string comparison, 1018

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2190

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

user-defined, 1997
adding, 1998

Functions
user-defined, 1309, 1310

functions for SELECT and WHERE clauses, 980

G
gap lock

InnoDB, 1394, 1417, 1420, 1422
gb2312, gbk, 2049
gcc, 128
gci option

ndb_select_all, 1779
gci64 option

ndb_select_all, 1779
gdb

using, 2013
gdb option

mysqld, 448
general information, 1
General Public License, 5
general query log, 600
geographic feature, 956
GeomCollFromText(), 1098
GeomCollFromWKB(), 1099
geometry, 956
GEOMETRY data type, 957
GEOMETRYCOLLECTION data type, 957
GeometryCollection(), 1099
GeometryCollectionFromText(), 1098
GeometryCollectionFromWKB(), 1099
GeometryFromText(), 1098
GeometryFromWKB(), 1099
GeometryN(), 1106
GeometryType(), 1101
GeomFromText(), 1098
GeomFromWKB(), 1099
geospatial feature, 956
getting MySQL, 49
GET_FORMAT(), 1049
GET_LOCK(), 1109
GIS, 955
GLength(), 1103
global privileges, 1288, 1299
globalization, 857
go command

mysql, 302
got handler lock

thread state, 822
got old table

thread state, 822
GRANT, 1288
GRANT statement, 656

grant tables
columns_priv table, 597, 636
db table, 144, 597, 636
host table, 597, 636
procs_priv table, 597, 637
re-creating, 138
sorting, 645, 646
structure, 636
tables_priv table, 597, 636
upgrading, 282
user table, 144, 597, 636

granting
privileges, 1288

GRANTS, 1324
greater than (>), 996
greater than or equal (>=), 996
GREATEST(), 998
GROUP BY

aliases in, 1122
extensions to standard SQL, 1121, 1214

GROUP BY functions, 1113
GROUP BY optimizing, 733
grouping

expressions, 993
GROUP_CONCAT(), 1115
group_concat_max_len system variable, 495

H
HANDLER, 1191
Handlers, 1282
handling

errors, 2005
Has read all relay log; waiting for the slave I/O thread to
update it

thread state, 825
Has sent all binlog to slave; waiting for binlog to be
updated

thread state, 824
hash indexes, 751
have_archive system variable, 495
have_bdb system variable, 495
have_blackhole_engine system variable, 496
have_community_features system variable, 496
have_compress system variable, 496
have_crypt system variable, 496
have_csv system variable, 496
have_example_engine system variable, 496
have_federated_engine system variable, 496
have_geometry system variable, 496
have_innodb system variable, 496
have_isam system variable, 496
have_merge_engine system variable, 496
have_openssl system variable, 496

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2191

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

have_profiling system variable, 497
have_query_cache system variable, 497
have_raid system variable, 497
have_rtree_keys system variable, 497
have_ssl system variable, 497
have_symlink system variable, 497
HAVING, 1214
header option

ndb_select_all, 1778
header_file option

comp_err, 279
HEAP storage engine, 1359, 1458
HeartbeatIntervalDbApi, 1719
HeartbeatIntervalDbDb, 1719
help command

mysql, 301
HELP command (MySQL Cluster),
help option

comp_err, 279
make_win_src_distribution, 281
myisamchk, 355
myisampack, 370
myisam_ftdump, 351
mysql, 293
MySQL Cluster programs, 1786
mysqlaccess, 376
mysqladmin, 315
mysqlbinlog, 380
mysqlcheck, 321
mysqld, 440
mysqldump, 329
mysqldumpslow, 388
mysqld_multi, 276
mysqld_safe, 269
mysqlhotcopy, 390
mysqlimport, 342
mysqlmanager, 393
mysqlshow, 347
mysql_convert_table_format, 403
mysql_explain_log, 404
mysql_find_rows, 405
mysql_install_db, 284
mysql_setpermission, 406
mysql_tableinfo, 407
mysql_upgrade, 287
mysql_waitpid, 408
my_print_defaults, 411
perror, 413
resolveip, 415
resolve_stack_dump, 412

HELP option
myisamchk, 355

HELP statement, 1356
help tables

system tables, 597
help_category table

system table, 597
help_keyword table

system table, 597
help_relation table

system table, 597
help_topic table

system table, 597
hex option (ndb_restore), 1776
HEX(), 1010, 1034
hex-blob option

mysqldump, 332
hexadecimal literals, 834
hexdump option

mysqlbinlog, 382
HIGH_NOT_PRECEDENCE SQL mode, 588
HIGH_PRIORITY, 1216
hints, 21

index, 781, 1213
history of MySQL, 9
HOME environment variable, 203, 306
host name

default, 250
host name caching, 810
host name resolution, 810
host option, 252

mysql, 295
mysqlaccess, 377
mysqladmin, 316
mysqlbinlog, 382
mysqlcheck, 322
mysqldump, 332
mysqlhotcopy, 391
mysqlimport, 343
mysqlshow, 348
mysql_convert_table_format, 403
mysql_explain_log, 404
mysql_setpermission, 406
mysql_tableinfo, 407
mysql_upgrade, 289
ndb_config, 1762

host table, 648
sorting, 646
system table, 597, 636

Host*SciId* parameters, 1745
HostName, 1700, 1703, 1729
HostName (MySQL Cluster), 1825
hostname system variable, 497
HostName1, 1741, 1743, 1746
HostName2, 1741, 1743, 1746
HOUR(), 1050
howto option

mysqlaccess, 377

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2192

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

html option
mysql, 295

I
i-am-a-dummy option

mysql, 297
i5/OS, 107
IBM i5/OS, 106
icc

and MySQL Cluster support>, 2010
MySQL builds, 61

Id, 1699, 1703, 1728
ID

unique, 1985
id option

ndb_config, 1763
identifiers, 836

case sensitivity, 838
quoting, 836

identity system variable, 497
idx option

mysql_tableinfo, 408
IF, 1276
IF(), 1004
IFNULL(), 1004
IGNORE INDEX, 781
IGNORE KEY, 781
ignore option

mysqlimport, 343
ignore-lines option

mysqlimport, 343
ignore-spaces option

mysql, 295
ignore-table option

mysqldump, 332
IGNORE_SPACE SQL mode, 589
implicit default values, 971
IMPORT TABLESPACE, 1140, 1381
importing

data, 308, 341
IN, 998, 1230
include option

mysql_config, 410
increasing with replication

speed, 1547
incremental recovery, 694
index

deleting, 1139, 1181
rebuilding, 168

INDEX DIRECTORY
and replication, 1622

index hints, 781, 1213
index join type

optimizer, 773
index-record lock

InnoDB, 1394, 1417, 1420, 1422
indexes, 1144

and BLOB columns, 747, 1158
and IS NULL, 751
and LIKE, 751
and NULL values, 1158
and TEXT columns, 747, 1158
assigning to key cache, 1349
block size, 500
columns, 746
leftmost prefix of, 745, 749
multi-column, 747
multiple-part, 1144
names, 836
use of, 745

IndexMemory, 1707, 1747
index_merge join type

optimizer, 772
index_subquery join type

optimizer, 772
INET_ATON(), 1110
INET_NTOA(), 1110
INFO Events (MySQL Cluster), 1805
information functions, 1087
information option

myisamchk, 358
INFORMATION_SCHEMA, 1859

and security issues, 1830
init

thread state, 818
Init DB

thread command, 815
init-file option

mysqld, 448
initial option (ndbd), 1752
initial-start option (ndbd), 1753
initial-start option (ndbmtd), 1753
init_connect system variable, 497
init_file system variable, 498
init_slave system variable, 1586
INNER JOIN, 1219
innochecksum, 246, 349
InnoDB, 1370

adaptive hash index, 1432
autocommit mode, 1428
backups, 1412
clustered index, 1431
configuration parameters, 1381
configuring data files and memory allocation, 1371
consistent reads, 1422
data files, 1411
deadlock detection, 1428

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2193

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

foreign key constraints, 1408
gap lock, 1394, 1417, 1420, 1422
index-record lock, 1394, 1417, 1420, 1422
indexes, 1431
insert buffering, 1432
limits and restrictions, 1449
lock modes, 1418
locking, 1417
locking reads, 1424
log files, 1411
Monitors, 1414, 1435, 1437, 1447
multi-versioning, 1430
next-key lock, 1394, 1417, 1420, 1422
NFS, 1372, 1449
page size, 1432, 1450
raw partitions, 1377
record-level locks, 1394, 1417, 1420, 1422
row structure, 1433
secondary index, 1431
Solaris 10 x86_64 issues, 178
storage requirements, 972
system variables, 1381
tables, 1431
transaction isolation levels, 1417
transaction model, 1417
troubleshooting, 1437

CREATE TABLE failure, 1448
data dictionary problems, 1448
deadlocks, 1428
open file error, 1448
orphan temporary tables, 1449
performance problems, 763
SQL errors, 1436
tablespace does not exist, 1449

InnoDB buffer pool, 787
innodb option

mysqld, 1384
InnoDB storage engine, 1359, 1370
InnoDB tables, 25
innodb-safe-binlog option

mysqld, 449
innodb-status-file option

mysqld, 1384
innodb_additional_mem_pool_size system variable, 1385
innodb_autoextend_increment system variable, 1385
innodb_checksums system variable, 1387
innodb_commit_concurrency system variable, 1387
innodb_concurrency_tickets system variable, 1387
innodb_data_file_path system variable, 1388
innodb_data_home_dir system variable, 1389
innodb_doublewrite system variable, 1389
innodb_fast_shutdown system variable, 1389
innodb_file_per_table system variable, 1390
innodb_flush_log_at_trx_commit system variable, 1390

innodb_flush_method system variable, 1391
innodb_force_recovery system variable, 1393
innodb_locks_unsafe_for_binlog system variable, 1394
innodb_log_buffer_size system variable, 1396
innodb_log_files_in_group system variable, 1397
innodb_log_file_size system variable, 1397
innodb_log_group_home_dir system variable, 1398
innodb_max_dirty_pages_pct system variable, 1398
innodb_max_purge_lag system variable, 1398
innodb_mirrored_log_groups system variable, 1399
INSERT, 743, 1193
insert

thread state, 823
INSERT ... SELECT, 1196
insert buffering, 1432
INSERT DELAYED, 1197, 1197
INSERT statement

grant privileges, 657
INSERT(), 1010
insert-ignore option

mysqldump, 332
insertable views

insertable, 1844
inserting

speed of, 743
inserts

concurrent, 795, 798
insert_id system variable, 498
install option

mysqld, 449
mysqlmanager, 393

install-manual option
mysqld, 449

installation layouts, 59
installation overview, 115
installing

binary distribution, 112
Linux RPM packages, 102
MySQL Community Server, 44
MySQL Enterprise, 43
OS X DMG packages, 99
overview, 42, 42
Perl, 204
Perl on Windows, 206
Solaris PKG packages, 106
source distribution, 115
user-defined functions, 2005

installing MySQL Cluster, 1655
Linux, 1658
Linux binary release, 1658
Linux RPM, 1660
Linux source release, 1662

INSTR(), 1011
INT data type, 923

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2194

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

integer arithmetic, 1122
INTEGER data type, 923
integers, 832
interactive option (ndb_mgmd), 1757
interactive_timeout system variable, 499
InteriorRingN(), 1105
internal compiler errors, 131
internal locking, 794
internals, 1995
internationalization, 857
Internet Relay Chat, 15
Intersects(), 1107
INTERVAL(), 999
INTO

SELECT, 1217
introducer

string literal, 830, 864
invalid data

constraint, 31
invalidating query cache entries

thread state, 823
in_file option

comp_err, 279
IPv6 connections, 466
IRC, 15
IS boolean_value, 996
IS NOT boolean_value, 996
IS NOT DISTINCT FROM operator, 995
IS NOT NULL, 997
IS NULL, 717, 996

and indexes, 751
IsClosed(), 1103
IsEmpty(), 1101
ISNULL(), 999
ISOLATION LEVEL, 1252
isolation level, 1417
IsSimple(), 1101
IS_FREE_LOCK(), 1111
IS_USED_LOCK(), 1111
ITERATE, 1277

J
Japanese character sets

conversion, 2049
Japanese, Korean, Chinese character sets

frequently asked questions, 2049
Java, 1881
join

nested-loop algorithm, 723
JOIN, 1219
join algorithm

Block Nested-Loop, 719
Nested-Loop, 719

join option
myisampack, 370

join type
ALL, 773
const, 771
eq_ref, 771
fulltext, 772
index, 773
index_merge, 772
index_subquery, 772
range, 772
ref, 771
ref_or_null, 772
system, 771
unique_subquery, 772

join_buffer_size system variable, 499

K
keepold option

mysqlhotcopy, 391
keep_files_on_create system variable, 500
Key cache

MyISAM, 782
key cache

assigning indexes to, 1349
key space

MyISAM, 1366
key-value store, 752
keys, 746

foreign, 27, 237
multi-column, 747
searching on two, 239

keys option
mysqlshow, 348

keys-used option
myisamchk, 359

keywords, 843
key_buffer_size myisamchk variable, 356
key_buffer_size system variable, 500
key_cache_age_threshold system variable, 501
key_cache_block_size system variable, 502
key_cache_division_limit system variable, 502
KEY_COLUMN_USAGE

INFORMATION_SCHEMA table, 1864
Kill

thread command, 815
KILL, 1352
Killed

thread state, 818
Killing slave

thread state, 826
known errors, 2143
Korean, 2049

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2195

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Korean, Chinese, Japanese character sets
frequently asked questions, 2049

L
labels

stored program block, 1272
language option

mysqld, 450
language support

error messages, 899
language system variable, 503
large page support, 808
large-pages option

mysqld, 450
large_files_support system variable, 503
large_pages system variable, 503
large_page_size system variable, 503
last row

unique ID, 1985
LAST_DAY(), 1050
last_insert_id system variable, 504
LAST_INSERT_ID(), 27, 1195

and replication, 1621
LAST_INSERT_ID() and stored routines, 1837
LAST_INSERT_ID() and triggers, 1837
LAST_INSERT_ID([<replaceable>expr</replaceable>]),
1091
layout of installation, 59
LCASE(), 1011
lc_time_names system variable, 504
ldata option

mysql_install_db, 284
LDML syntax, 911
LD_LIBRARY_PATH environment variable, 206, 1888
LD_RUN_PATH environment variable, 174, 180, 203,
206
LEAST(), 999
LEAVE, 1277
ledir option

mysqld_safe, 270
LEFT JOIN, 718, 1219
LEFT OUTER JOIN, 1219
LEFT(), 1011
leftmost prefix of indexes, 745, 749
legal names, 836
length option

myisam_ftdump, 351
LENGTH(), 1011
less than (<), 995
less than or equal (<=), 995
libmysqlclient library, 1877
libmysqld, 1881
libmysqld library, 1877

libmysqld-libs option
mysql_config, 410

library
libmysqlclient, 1877
libmysqld, 1877

libs option
mysql_config, 410

libs_r option
mysql_config, 410

license system variable, 504
LIKE, 1018

and indexes, 751
and wildcards, 751

LIMIT, 1090, 1215
and replication, 1625
optimizations, 740

limitations
MySQL Limitations, 2155
replication, 1620

limitations of MySQL Cluster, 1647
limits

file-size, 2155
InnoDB, 1449
MySQL Limits, limits in MySQL, 2155

line-numbers option
mysql, 295

linefeed (\n), 830, 1206
LineFromText(), 1098
LineFromWKB(), 1099
lines-terminated-by option

mysqldump, 332, 343
LINESTRING data type, 957
LineString(), 1100
LineStringFromText(), 1098
LineStringFromWKB(), 1099
linking, 1885

errors, 1886
problems, 1886
speed, 133

links
symbolic, 803

Linux
binary distribution, 171
source distribution, 172

literals, 829
LN(), 1034
LOAD DATA

and replication, 1625
LOAD DATA FROM MASTER, 1263
LOAD DATA INFILE, 1200, 2137
LOAD TABLE FROM MASTER, 1264

and replication, 1625
loading

tables, 217

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2196

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

LOAD_FILE(), 1011
local checkpoints (MySQL Cluster), 1747
local option

mysqlimport, 343
local-infile option

mysql, 295
local-load option

mysqlbinlog, 382
local-service option

mysqld, 450
localhost

special treatment of, 251
localization, 857
localstatedir option

configure, 127
LOCALTIME, 1050
LOCALTIMESTAMP, 1050
local_infile system variable, 504
LOCATE(), 1012
LOCK IN SHARE MODE, 1216
Lock Monitor

InnoDB, 1437
lock option

ndb_select_all, 1778
LOCK TABLES, 1247
lock-all-tables option

mysqldump, 333
lock-tables option

mysqldump, 333
mysqlimport, 344

Locked
thread state, 818

locked_in_memory system variable, 505
locking, 800

external, 448, 538, 697, 798, 821
internal, 794
page-level, 794
row-level, 27, 794
table-level, 794

locking methods, 794
LockPagesInMainMemory, 1716
log files, 122

maintaining, 605
log files (MySQL Cluster), 1755
log option

mysqld, 451
mysqld_multi, 276
mysqlmanager, 394

log system variable, 505
LOG(), 1034
log-bin option

mysqld, 1590
log-bin-index option

mysqld, 1590

log-bin-trust-function-creators option
mysqld, 1590

log-bin-trust-routine-creators option
mysqld, 1591

log-error option
mysqld, 451
mysqldump, 333
mysqld_safe, 270

log-isam option
mysqld, 451

log-long-format option
mysqld, 451

log-queries-not-using-indexes option
mysqld, 452

log-short-format option
mysqld, 452

log-slave-updates option
mysqld, 1573

log-slow-admin-statements option
mysqld, 452

log-slow-queries option
mysqld, 452

log-tc option
mysqld, 452

log-tc-size option
mysqld, 453

log-warnings option
mysqld, 453, 1574

LOG10(), 1035
LOG2(), 1035
LogDestination, 1700
logging

passwords, 619
logging commands (MySQL Cluster), 1800
logging slow query

thread state, 819
logical operators, 1000
login

thread state, 819
LogLevelCheckpoint, 1725
LogLevelCongestion, 1726
LogLevelConnection, 1725
LogLevelError, 1726
LogLevelInfo, 1726
LogLevelNodeRestart, 1725
LogLevelShutdown, 1725
LogLevelStartup, 1725
LogLevelStatistic, 1725
logs

and TIMESTAMP, 157
flushing, 598
server, 598

log_bin system variable, 1593
log_bin_trust_function_creators system variable, 505

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2197

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

log_bin_trust_routine_creators system variable, 506
log_error system variable, 506
log_queries_not_using_indexes system variable, 506
log_slow_queries system variable, 506
log_warnings system variable, 507
Long Data

thread command, 815
LONG data type, 949
LONGBLOB data type, 930
LongMessageBuffer, 1712
LONGTEXT data type, 930
long_query_time system variable, 507
LOOP, 1278

labels, 1272
loops option

ndb_show_tables, 1781
Loose Index Scan

GROUP BY optimizing, 733
lost connection errors, 2115
low-priority option

mysqlimport, 344
low-priority-updates option

mysqld, 454
LOWER(), 1012
lower_case_file_system system variable, 508
lower_case_table_names system variable, 508
low_priority_updates system variable, 508
LPAD(), 1012
LTRIM(), 1012

M
mailing lists, 12

archive location, 12
guidelines, 14

main features of MySQL, 6
maintaining

log files, 605
tables, 702

maintenance
tables, 318

MAKEDATE(), 1050
MAKETIME(), 1051
make_binary_distribution, 245
MAKE_SET(), 1013
make_win_bin_dist, 245, 280

debug option, 280
embedded option, 280
exe-suffix option, 280
no-debug option, 281
no-embedded option, 281
only-debug option, 281

make_win_src_distribution, 99, 246, 281
debug option, 281

dirname option, 281
help option, 281
silent option, 281
suffix option, 281
tar option, 281
tmp option, 281

Making temp file
thread state, 825

malicious SQL statements
and MySQL Cluster, 1830

management client (MySQL Cluster), 1759
(see also mgm)

management node (MySQL Cluster)
defined, 1640

management nodes (MySQL Cluster), 1756
(see also mgmd)

managing MySQL Cluster, 1789
managing MySQL Cluster processes, 1751
manual

available formats, 2
online location, 2
syntax conventions, 3
typographical conventions, 3

master-connect-retry option
mysqld, 1574

master-data option
mysqldump, 333

master-host option
mysqld, 1575

master-info-file option
mysqld, 1575

master-password option
mysqld, 1575

master-port option
mysqld, 1575

master-retry-count option
mysqld, 1575

master-ssl option
mysqld, 1576

master-ssl-ca option
mysqld, 1576

master-ssl-capath option
mysqld, 1576

master-ssl-cert option
mysqld, 1576

master-ssl-cipher option
mysqld, 1576

master-ssl-key option
mysqld, 1576

master-user option
mysqld, 1576

MASTER_POS_WAIT(), 1111, 1264
MATCH ... AGAINST(), 1061
matching

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2198

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

patterns, 226
math, 1122
mathematical functions, 1031
MAX(), 1116
MAX(DISTINCT), 1116
max-binlog-dump-events option

mysqld, 1593
max-record-length option

myisamchk, 359
max-relay-log-size option

mysqld, 1576
MAXDB SQL mode, 592
maximum memory used, 314
maximums

maximum columns per table, 2157
maximum number of databases, 2155
maximum number of tables, 2155
maximum row size, 2157
maximum tables per join, 2155
table size, 2155

MaxNoOfAttributes, 1714
MaxNoOfConcurrentIndexOperations, 1710
MaxNoOfConcurrentOperations, 1709
MaxNoOfConcurrentScans, 1712
MaxNoOfConcurrentTransactions, 1708
MaxNoOfFiredTriggers, 1711
MaxNoOfIndexes, 1716
MaxNoOfLocalOperations, 1710
MaxNoOfLocalScans, 1712
MaxNoOfOpenFiles, 1713
MaxNoOfOrderedIndexes, 1715
MaxNoOfSavedMessages, 1713
MaxNoOfTables, 1714
MaxNoOfTriggers, 1715
MaxNoOfUniqueHashIndexes, 1715
MaxScanBatchSize, 1730
max_allowed_packet system variable, 509
max_allowed_packet variable, 300
max_binlog_cache_size system variable, 1594
max_binlog_size system variable, 1594
max_connections system variable, 510
MAX_CONNECTIONS_PER_HOUR, 659
max_connect_errors system variable, 510
max_delayed_threads system variable, 511
max_error_count system variable, 511
max_heap_table_size system variable, 512
max_insert_delayed_threads system variable, 512
max_join_size system variable, 513
max_join_size variable, 300
max_length_for_sort_data system variable, 513
max_prepared_stmt_count system variable, 514
MAX_QUERIES_PER_HOUR, 659
max_relay_log_size system variable, 514
MAX_ROWS

and DataMemory (MySQL Cluster), 1706
and MySQL Cluster, 1162

max_seeks_for_key system variable, 515
max_sort_length system variable, 515
max_sp_recursion_depth system variable, 516
max_tmp_tables system variable, 516
MAX_UPDATES_PER_HOUR, 659
MAX_USER_CONNECTIONS, 659
max_user_connections system variable, 516
max_write_lock_count system variable, 517
MBR, 1107, 1108
MBRContains(), 1108
MBRDisjoint(), 1108
MBREqual(), 1108
MBRIntersects(), 1108
MBROverlaps(), 1108
MBRTouches(), 1108
MBRWithin(), 1108
MD5(), 1085
medium-check option

myisamchk, 358
mysqlcheck, 322

MEDIUMBLOB data type, 930
MEDIUMINT data type, 923
MEDIUMTEXT data type, 930
memlock option

mysqld, 454
MEMORY storage engine, 1359, 1458

and replication, 1626
memory usage

myisamchk, 367
memory use, 314, 806

in MySQL Cluster, 1648
MERGE storage engine, 1359, 1452
MERGE tables

defined, 1452
metadata

database, 1859
stored routines, 1837
triggers, 1842
views, 1846

method option
mysqlhotcopy, 391

methods
locking, 794

mgmd (MySQL Cluster)
defined, 1640

(see also management node (MySQL Cluster))
MICROSECOND(), 1051
MID(), 1013
MIN(), 1117
MIN(DISTINCT), 1117
MinFreePct, 1706
minimum bounding rectangle, 1107, 1108

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2199

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

minus
unary (-), 1029

MINUTE(), 1051
mirror sites, 49
miscellaneous functions, 1109
MLineFromText(), 1098
MLineFromWKB(), 1099
MOD (modulo), 1035
MOD(), 1035
modes

batch, 233
modulo (%), 1035
modulo (MOD), 1035
monitor

terminal, 209
monitoring, 2021

threads, 813
monitoring-interval option

mysqlmanager, 394
Monitors

InnoDB, 1414, 1435, 1437, 1447
MONTH(), 1051
MONTHNAME(), 1051
MPointFromText(), 1098
MPointFromWKB(), 1099
MPolyFromText(), 1098
MPolyFromWKB(), 1099
mSQL compatibility, 1022
msql2mysql, 410
MSSQL SQL mode, 592
multi mysqld, 274
multi-column indexes, 747
multibyte character sets, 2123
multibyte characters, 904
MULTILINESTRING data type, 957
MultiLineString(), 1100
MultiLineStringFromText(), 1098
MultiLineStringFromWKB(), 1099
multiple servers, 606
multiple-part index, 1144
multiplication (*), 1029
MULTIPOINT data type, 957
MultiPoint(), 1100
MultiPointFromText(), 1098
MultiPointFromWKB(), 1099
MULTIPOLYGON data type, 957
MultiPolygon(), 1100
MultiPolygonFromText(), 1098
MultiPolygonFromWKB(), 1099
My

derivation, 9
my.cnf

and MySQL Cluster, 1663, 1695, 1695
in MySQL Cluster, 1796

my.cnf file, 1620
mycnf option

ndb_config, 1762
ndb_mgmd, 1757

MyISAM
compressed tables, 369, 1368

MyISAM key cache, 782
MyISAM storage engine, 1359, 1362
myisam-block-size option

mysqld, 455
myisam-recover option

mysqld, 455, 1365
myisamchk, 246, 351

analyze option, 360
backup option, 358
block-search option, 360
character-sets-dir option, 358
check option, 357
check-only-changed option, 357
correct-checksum option, 358
data-file-length option, 359
debug option, 355
defaults-extra-file option, 355
defaults-file option, 355
defaults-group-suffix option, 355
description option, 360
example output, 361
extend-check option, 357, 359
fast option, 358
force option, 358, 359
help option, 355
HELP option, 355
information option, 358
keys-used option, 359
max-record-length option, 359
medium-check option, 358
no-defaults option, 355
no-symlinks option, 359
options, 355
parallel-recover option, 359
print-defaults option, 355
quick option, 359
read-only option, 358
recover option, 359
safe-recover option, 359
set-auto-increment[option, 360
set-character-set option, 360
set-collation option, 360
silent option, 355
sort-index option, 360
sort-records option, 361
sort-recover option, 360
tmpdir option, 360
unpack option, 360

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2200

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

update-state option, 358
verbose option, 356
version option, 356
wait option, 356

myisamlog, 247, 368
myisampack, 247, 369, 1173, 1368

backup option, 370
character-sets-dir option, 370
debug option, 370
force option, 370
help option, 370
join option, 370
silent option, 370
test option, 371
tmpdir option, 371
verbose option, 371
version option, 371
wait option, 371

myisam_block_size myisamchk variable, 356
myisam_data_pointer_size system variable, 518
myisam_ftdump, 246, 350

count option, 351
dump option, 351
help option, 351
length option, 351
stats option, 351
verbose option, 351

myisam_max_extra_sort_file_size system variable, 518
myisam_max_sort_file_size system variable, 518
myisam_mmap_size system variable, 519
myisam_recover_options system variable, 519
myisam_repair_threads system variable, 520
myisam_sort_buffer_size system variable, 520
myisam_stats_method system variable, 521
MySQL

defined, 4
introduction, 5
pronunciation, 6
upgrading, 286

mysql, 246, 290
auto-rehash option, 293
batch option, 293
character-sets-dir option, 293
charset command, 301
clear command, 301
column-names option, 293
comments option, 293
compress option, 293
connect command, 301
database option, 293
debug option, 294
debug-info option, 294
default-character-set option, 294
defaults-extra-file option, 294

defaults-file option, 294
defaults-group-suffix option, 294
delimiter command, 301
delimiter option, 294
disable named commands, 294
edit command, 302
ego command, 302
execute option, 294
exit command, 302
force option, 295
go command, 302
help command, 301
help option, 293
host option, 295
html option, 295
i-am-a-dummy option, 297
ignore-spaces option, 295
line-numbers option, 295
local-infile option, 295
named-commands option, 295
no-auto-rehash option, 295
no-beep option, 295
no-defaults option, 295
no-named-commands option, 295
no-pager option, 295
no-tee option, 295
nopager command, 302
notee command, 302
nowarning command, 302
one-database option, 295
pager command, 302
pager option, 296
password option, 296
pipe option, 296
port option, 296
print command, 303
print-defaults option, 296
prompt command, 303
prompt option, 297
protocol option, 297
quick option, 297
quit command, 303
raw option, 297
reconnect option, 297
rehash command, 303
safe-updates option, 297
secure-auth option, 297
shared-memory-base-name option, 298
show-warnings option, 298
sigint-ignore option, 298
silent option, 298
skip-column-names option, 298
skip-line-numbers option, 298
socket option, 298

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2201

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

source command, 303
SSL options, 298
status command, 303
system command, 303
table option, 298
tee command, 303
tee option, 298
unbuffered option, 298
use command, 303
user option, 299
verbose option, 299
version option, 299
vertical option, 299
wait option, 299
warnings command, 303
xml option, 299

MySQL binary distribution, 45
MYSQL C type, 1889
MySQL Cluster, 1638

"quick" configuration, 1672
administration, 1731, 1751, 1756, 1759, 1759, 1785,
1791, 1805
and DNS, 1656
and INFORMATION_SCHEMA, 1830
and IP addressing, 1656
and MySQL privileges, 1829
and MySQL root user, 1829, 1832
and networking, 1644
and transactions, 2037
and virtual machines, 2037
API node, 1640, 1728
arbitrator, 2037
available platforms, 1638
backups, 1771, 1791, 1792, 1792, 1795, 1795
benchmarks, 1750
CHECKPOINT Events, 1802
cluster logs, 1798, 1800
CLUSTERLOG commands, 1800
CLUSTERLOG STATISTICS command, 1805
commands, 1731, 1751, 1756, 1759, 1791
compiling with icc, 2010
concepts, 1640
configuration, 1655, 1672, 1672, 1699, 1699, 1702,
1728, 1747, 1758, 1796
configuration (example), 1695
configuration changes, 1797
configuration files, 1663, 1695
configuration parameters, 1675, 1675, 1684, 1686,
1687
configuring, 1795
CONNECTION Events, 1801
connection string, 1698
data node, 1640, 1702
data nodes, 1751

data types supported, 2037
defining node hosts, 1699
direct connections between nodes, 1742
ENTER SINGLE USER MODE command,
ERROR Events, 1804
error logs, 1755
error messages, 2037
event log format, 1801
event logging thresholds, 1800
event logs, 1798, 1800
event severity levels, 1801
event types, 1799, 1801
EXIT command, 1791
EXIT SINGLE USER MODE command, 1791
FAQ, 2037
general description, 1638
hardware requirements, 2037
HELP command, 1791
HostName parameter

and security, 1825
how to obtain, 2037
importing existing tables, 2037
INFO Events, 1805
information sources, 1638
insecurity of communication protocols, 1825
installation, 1655
installation (Linux), 1658
installing binary release (Linux), 1658
installing from source (Linux), 1662
installing RPM (Linux), 1660
interconnects, 1749
log files, 1755
logging commands, 1800
management client (ndb_mgm), 1759
management commands, 1805
management node, 1640, 1699
management nodes, 1756
managing, 1789
master node, 2037
MAX_ROWS, 1162
memory requirements, 2037
memory usage and recovery, 1648, 1797
mgm, 1785
mgm client, 1791
mgm management client, 1805
mgm process, 1759
mgmd, 1785
mgmd process, 1756
mysqld process, 1731, 1795
ndbd, 1751, 1785
ndbd process, 1751, 1807
ndb_mgm, 1665, 1759
ndb_mgmd process, 1756
ndb_size.pl (utility), 2037

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2202

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

network configuration
and security, 1826

network transporters, 1749, 1749
networking, 1742, 1743, 1745
networking requirements, 2037, 2037
node failure (single user mode), 1823
node identifiers, 1743, 1743, 1745, 1745
node logs, 1798
node types, 2037
NODERESTART Events, 1803
nodes and node groups, 1642
nodes and types, 1640
number of computers required, 2037
partitions, 1642
performance, 1750
performing queries, 1666
platforms supported, 2037
process management, 1751
QUIT command,
replicas, 1642
requirements, 1644
resetting, 1797
RESTART command, 1791
restarting, 1669
restoring backups, 1771
roles of computers, 2037
runtime statistics, 1805
SCI (Scalable Coherent Interface), 1745, 1750
security, 1825, 2037

and firewalls, 1826, 1828
and HostName parameter, 1825
and network configuration, 1826
and network ports, 1828
and remote administration, 1828
networking, 1825

security procedures, 1831
shared memory transport, 1743
SHOW command, 1791
SHUTDOWN command, 1791
shutting down, 1669
single user mode, 1791, 1822
SQL node, 1640, 1728
SQL nodes, 1795
SQL statements, 2037
SQL statements for monitoring, 1823
START command, 1791
start phases (summary), 1789
starting, 1672
starting and stopping, 2037
starting nodes, 1665
starting or restarting, 1789
STARTUP Events, 1802
STATISTICS Events, 1804
STATUS command, 1791

STOP command, 1791
storage requirements, 972
Table is full errors, 2037
thread states, 826
trace files, 1755
transaction handling, 1650
transactions, 1706
transporters

Scalable Coherent Interface (SCI), 1745
shared memory (SHM), 1743
TCP/IP, 1742

troubleshooting backups, 1795
upgrades and downgrades, 1670, 1797
USING HASH, 1147
using tables and data, 1666
vs replication, 2037

MySQL Cluster How-To, 1655
MySQL Cluster limitations, 1647

and differences from standard MySQL limits, 1648
binary logging, 1653
database objects, 1651
error handling and reporting, 1651
geometry data types, 1648
implementation, 1653
imposed by configuration, 1648
INSERT IGNORE, UPDATE IGNORE, and REPLACE
statements, 1655
memory usage and transaction handling, 1650
multiple management servers, 1654
multiple MySQL servers, 1654
performance, 1652
resolved in current version from previous versions,
1655
syntax, 1647
transactions, 1649
unsupported features, 1652

MySQL Cluster processes, 1751
MySQL Cluster programs, 1751
mysql command options, 290
mysql commands

list of, 300
MySQL Dolphin name, 9
MySQL Enterprise Audit, 2023
MySQL Enterprise Backup, 2022
MySQL Enterprise Encryption, 2023
MySQL Enterprise Firewall, 2024
MySQL Enterprise Monitor, 2021
MySQL Enterprise Security, 2023
MySQL Enterprise Thread Pool, 2024
MySQL history, 9
mysql history file, 306
MySQL Instance Manager, 392
MySQL mailing lists, 12
MySQL name, 9

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2203

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MySQL privileges
and MySQL Cluster, 1829

mysql prompt command, 304
MySQL server

mysqld, 267, 417
mysql source (command for reading from text files), 234,
308
MySQL source distribution, 45
MySQL storage engines, 1359
MySQL system tables

and MySQL Cluster, 1829
and replication, 1627

MySQL version, 49
mysql \. (command for reading from text files), 234, 308
mysql.server, 244, 272

basedir option, 274
datadir option, 274
pid-file option, 274
service-startup-timeout option, 274
use-manager option, 274
use-mysqld_safe option, 274
user option, 274

mysql.sock
changing location of, 127
protection, 2132

MYSQL323 SQL mode, 592
MYSQL40 SQL mode, 593
mysqlaccess, 247, 375

brief option, 376
commit option, 376
copy option, 377
db option, 377
debug option, 377
help option, 376
host option, 377
howto option, 377
old_server option, 377
password option, 377
plan option, 377
preview option, 377
relnotes option, 377
rhost option, 377
rollback option, 377
spassword option, 377
superuser option, 378
table option, 378
user option, 378
version option, 378

mysqladmin, 246, 311, 1144, 1181, 1340, 1345, 1350,
1352

character-sets-dir option, 315
compress option, 316
count option, 316
debug option, 316

default-character-set option, 316
defaults-extra-file option, 316
defaults-file option, 316
defaults-group-suffix option, 316
force option, 316
help option, 315
host option, 316
no-defaults option, 316
password option, 316
pipe option, 317
port option, 317
print-defaults option, 317
protocol option, 317
relative option, 317
shared-memory-base-name option, 317
silent option, 317
sleep option, 317
socket option, 317
SSL options, 317
user option, 317
verbose option, 318
version option, 318
vertical option, 318
wait option, 318

mysqladmin command options, 314
mysqladmin option

mysqld_multi, 276
mysqlbinlog, 247, 378

character-sets-dir option, 380
database option, 380
debug option, 381
defaults-extra-file option, 381
defaults-file option, 381
defaults-group-suffix option, 381
disable-log-bin option, 381
force-read option, 382
help option, 380
hexdump option, 382
host option, 382
local-load option, 382
no-defaults option, 382
offset option, 382
password option, 382
port option, 382
position option, 382
print-defaults option, 382
protocol option, 382
read-from-remote-server option, 383
result-file option, 383
set-charset option, 383
short-form option, 383
socket option, 383
start-datetime option, 383
start-position option, 383

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2204

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

stop-datetime option, 383
stop-position option, 384
to-last-log option, 384
user option, 384
version option, 384

mysqlbug, 282
mysqlcheck, 246, 318

all-databases option, 321
all-in-1 option, 321
analyze option, 321
auto-repair option, 321
character-sets-dir option, 321
check option, 321
check-only-changed option, 321
check-upgrade option, 321
compress option, 321
databases option, 321
debug option, 321
default-character-set option, 321
defaults-extra-file option, 322
defaults-file option, 322
defaults-group-suffix option, 322
extended option, 322
fast option, 322
force option, 322
help option, 321
host option, 322
medium-check option, 322
no-defaults option, 322
optimize option, 322
password option, 322
pipe option, 323
port option, 323
print-defaults option, 323
protocol option, 323
quick option, 323
repair option, 323
shared-memory-base-name option, 323
silent option, 323
socket option, 323
SSL options, 323
tables option, 324
use-frm option, 324
user option, 324
verbose option, 324
version option, 324

mysqld, 244
abort-slave-event-count option, 1573
allow-suspicious-udfs option, 440
ansi option, 441
as MySQL Cluster process, 1731, 1795
basedir option, 441
bdb-home option, 1462
bdb-lock-detect option, 1462

bdb-logdir option, 1462
bdb-no-recover option, 1462
bdb-no-sync option, 1462
bdb-shared-data option, 1463
bdb-tmpdir option, 1463
big-tables option, 441
bind-address option, 441
binlog-do-db option, 1591
binlog-ignore-db option, 1592
bootstrap option, 442
character-set-client-handshake option, 442
character-set-filesystem option, 443
character-set-server option, 443
character-sets-dir option, 442
chroot option, 443
collation-server option, 443
command options, 439
console option, 444
core-file option, 444
datadir option, 444
debug option, 444
default-character-set option, 445
default-collation option, 445
default-storage-engine option, 445
default-table-type option, 446
default-time-zone option, 446
defaults-extra-file option, 446
defaults-file option, 446
defaults-group-suffix option, 446
delay-key-write option, 446, 1365
des-key-file option, 447
disconnect-slave-event-count option, 1573
enable-named-pipe option, 447
enable-pstack option, 447
exit-info option, 448
external-locking option, 448
flush option, 448
gdb option, 448
help option, 440
init-file option, 448
innodb option, 1384
innodb-safe-binlog option, 449
innodb-status-file option, 1384
install option, 449
install-manual option, 449
language option, 450
large-pages option, 450
local-service option, 450
log option, 451
log-bin option, 1590
log-bin-index option, 1590
log-bin-trust-function-creators option, 1590
log-bin-trust-routine-creators option, 1591
log-error option, 451

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2205

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

log-isam option, 451
log-long-format option, 451
log-queries-not-using-indexes option, 452
log-short-format option, 452
log-slave-updates option, 1573
log-slow-admin-statements option, 452
log-slow-queries option, 452
log-tc option, 452
log-tc-size option, 453
log-warnings option, 453, 1574
low-priority-updates option, 454
master-connect-retry option, 1574
master-host option, 1575
master-info-file option, 1575
master-password option, 1575
master-port option, 1575
master-retry-count option, 1575
master-ssl option, 1576
master-ssl-ca option, 1576
master-ssl-capath option, 1576
master-ssl-cert option, 1576
master-ssl-cipher option, 1576
master-ssl-key option, 1576
master-user option, 1576
max-binlog-dump-events option, 1593
max-relay-log-size option, 1576
memlock option, 454
myisam-block-size option, 455
myisam-recover option, 455, 1365
MySQL server, 267, 417
ndb-connectstring option, 1732
ndb-nodeid, 1732
ndbcluster option, 1731
no-defaults option, 456
old-style-user-limits option, 456
one-thread option, 456
open-files-limit option, 456
pid-file option, 457
port option, 457
port-open-timeout option, 457
print-defaults option, 458
relay-log option, 1577
relay-log-index option, 1577
relay-log-info-file option, 1578
relay-log-purge option, 1578
relay-log-space-limit option, 1578
remove option, 458
replicate-do-db option, 1579
replicate-do-table option, 1580
replicate-ignore-db option, 1580
replicate-ignore-table option, 1580
replicate-rewrite-db option, 1581
replicate-same-server-id option, 1581
replicate-wild-do-table option, 1582

replicate-wild-ignore-table option, 1582
report-host option, 1582
report-password option, 1583
report-port option, 1583
report-user option, 1583
role in MySQL Cluster (see SQL Node (MySQL
Cluster))
safe-mode option, 458
safe-show-database option, 458
safe-user-create option, 458
secure-auth option, 458
secure-file-priv option, 459
server-id option, 1558
shared-memory option, 459
shared-memory-base-name option, 460
show-slave-auth-info option, 1583
skip-bdb option, 460, 1463
skip-concurrent-insert option, 460
skip-grant-tables option, 460
skip-host-cache option, 460
skip-innodb option, 460, 1384
skip-merge option, 461
skip-name-resolve option, 461
skip-ndbcluster option, 1733
skip-networking option, 461
skip-safemalloc option, 461
skip-show-database option, 462
skip-slave-start option, 1584
skip-stack-trace option, 462
skip-symbolic-links option, 461
skip-thread-priority option, 462
slave-load-tmpdir option, 1584
slave-net-timeout option, 1585
slave-skip-errors option, 1585
slave_compressed_protocol option, 1584
socket option, 462
sporadic-binlog-dump-fail option, 1593
sql-mode option, 463
SSL options, 461
standalone option, 461
starting, 628
symbolic-links option, 461
sync-bdb-logs option, 1463
sysdate-is-now option, 464
tc-heuristic-recover option, 464
temp-pool option, 464
tmpdir option, 465
transaction-isolation option, 464
user option, 465
verbose option, 465
version option, 465

mysqld (MySQL Cluster), 1751
mysqld option

mysqld_multi, 276

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2206

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysqld_safe, 270
mysqld options, 800
mysqld server

buffer sizes, 800
mysqld-version option

mysqld_safe, 270
mysqldump, 170, 246, 324

add-drop-database option, 329
add-drop-table option, 329
add-locks option, 329
all-databases option, 329
allow-keywords option, 329
character-sets-dir option, 329
comments option, 329
compact option, 329
compatible option, 330
complete-insert option, 330
compress option, 330
create-options option, 330
databases option, 330
debug option, 330
debug-info option, 330
default-character-set option, 330
defaults-extra-file option, 331
defaults-file option, 331
defaults-group-suffix option, 331
delayed-insert option, 331
delete-master-logs option, 331
disable-keys option, 331
dump-date option, 331
extended-insert option, 331
fields-enclosed-by option, 332, 343
fields-escaped-by option, 332, 343
fields-optionally-enclosed-by option, 332, 343
fields-terminated-by option, 332, 343
first-slave option, 332
flush-logs option, 332
flush-privileges option, 332
force option, 332
help option, 329
hex-blob option, 332
host option, 332
ignore-table option, 332
insert-ignore option, 332
lines-terminated-by option, 332, 343
lock-all-tables option, 333
lock-tables option, 333
log-error option, 333
master-data option, 333
no-autocommit option, 334
no-create-db option, 334
no-create-info option, 334
no-data option, 334
no-defaults option, 334

no-set-names option, 334
opt option, 335
order-by-primary option, 335
password option, 335
pipe option, 335
port option, 335
print-defaults option, 335
problems, 340, 2154
protocol option, 335
quick option, 335
quote-names option, 335
result-file option, 336
routines option, 336
set-charset option, 336
shared-memory-base-name option, 336
single-transaction option, 336
skip-comments option, 337
skip-opt option, 337
socket option, 337
SSL options, 337
tab option, 337
tables option, 337
triggers option, 337
tz-utc option, 338
user option, 338
using for backups, 688
verbose option, 338
version option, 338
views, 340, 2154
where option, 338
workarounds, 340, 2154
xml option, 338

mysqldumpslow, 247, 387
debug option, 388
help option, 388
verbose option, 389

mysqld_multi, 245, 274
config-file option, 276
defaults-extra-file option, 275
defaults-file option, 275
example option, 276
help option, 276
log option, 276
mysqladmin option, 276
mysqld option, 276
no-defaults option, 275
no-log option, 276
password option, 276
silent option, 276
tcp-ip option, 276
user option, 277
verbose option, 277
version option, 277

mysqld_safe, 244, 268

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2207

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

autoclose option, 269
basedir option, 269
core-file-size option, 269
datadir option, 269
defaults-extra-file option, 270
defaults-file option, 270
help option, 269
ledir option, 270
log-error option, 270
mysqld option, 270
mysqld-version option, 270
nice option, 270
no-defaults option, 270
open-files-limit option, 270
pid-file option, 270
port option, 270
skip-kill-mysqld option, 271
socket option, 271
timezone option, 271
user option, 271

mysqlhotcopy, 247, 389
addtodest option, 390
allowold option, 390
checkpoint option, 390
chroot option, 390
debug option, 390
dryrun option, 390
flushlog option, 391
help option, 390
host option, 391
keepold option, 391
method option, 391
noindices option, 391
password option, 391
port option, 391
quiet option, 391
record_log_pos option, 391
regexp option, 391
resetmaster option, 391
resetslave option, 391
socket option, 391
suffix option, 392
tmpdir option, 392
user option, 392

mysqlimport, 170, 246, 341, 1200
character-sets-dir option, 342
columns option, 342
compress option, 342
debug option, 342
default-character-set option, 343
defaults-extra-file option, 343
defaults-file option, 343
defaults-group-suffix option, 343
delete option, 343

force option, 343
help option, 342
host option, 343
ignore option, 343
ignore-lines option, 343
local option, 343
lock-tables option, 344
low-priority option, 344
no-defaults option, 344
password option, 344
pipe option, 344
port option, 344
print-defaults option, 344
protocol option, 344
replace option, 344
shared-memory-base-name option, 344
silent option, 345
socket option, 345
SSL options, 345
user option, 345
verbose option, 345
version option, 345

mysqlmanager, 247, 392
angel-pid-file option, 393
bind-address option, 393
default-mysqld-path option, 393
defaults-file option, 393
help option, 393
install option, 393
log option, 394
monitoring-interval option, 394
passwd option, 394
password-file option, 394
pid-file option, 394
port option, 395
print-defaults option, 395
remove option, 395
run-as-service option, 395
socket option, 395
standalone option, 395
user option, 395
version option, 395
wait-timeout option, 395

mysqlshow, 246, 345
character-sets-dir option, 347
compress option, 347
count option, 347
debug option, 347
default-character-set option, 347
defaults-extra-file option, 347
defaults-file option, 347
defaults-group-suffix option, 348
help option, 347
host option, 348

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2208

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

keys option, 348
no-defaults option, 348
password option, 348
pipe option, 348
port option, 348
print-defaults option, 348
protocol option, 348
shared-memory-base-name option, 348
show-table-type option, 349
socket option, 349
SSL options, 349
status option, 349
user option, 349
verbose option, 349
version option, 349

mysqltest
MySQL Test Suite, 1996

mysql_affected_rows(), 1899
mysql_autocommit(), 1899
MYSQL_BIND C type, 1951
mysql_change_user(), 1900
mysql_character_set_name(), 1901
mysql_close(), 1901
mysql_commit(), 1902
mysql_config, 410

cflags option, 410
embedded option, 410
include option, 410
libmysqld-libs option, 410
libs option, 410
libs_r option, 410
port option, 411
socket option, 411
version option, 411

mysql_connect(), 1902
mysql_convert_table_format, 247, 403

force option, 403
help option, 403
host option, 403
password option, 403
port option, 403
socket option, 403
type option, 403
user option, 403
verbose option, 403
version option, 403

mysql_create_db(), 1902
mysql_data_seek(), 1903
MYSQL_DEBUG environment variable, 203, 249, 2017
mysql_debug(), 1904
mysql_drop_db(), 1904
mysql_dump_debug_info(), 1905
mysql_eof(), 1905
mysql_errno(), 1906

mysql_error(), 1907
mysql_escape_string(), 1907
mysql_explain_log, 247, 404

date option, 404
help option, 404
host option, 404
password option, 404
printerror option, 404
socket option, 404
user option, 404

mysql_fetch_field(), 1908
mysql_fetch_fields(), 1909
mysql_fetch_field_direct(), 1908
mysql_fetch_lengths(), 1909
mysql_fetch_row(), 1910
MYSQL_FIELD C type, 1889
mysql_field_count(), 1911, 1926
MYSQL_FIELD_OFFSET C type, 1889
mysql_field_seek(), 1912
mysql_field_tell(), 1912
mysql_find_rows, 247, 404

help option, 405
regexp option, 405
rows option, 405
skip-use-db option, 405
start_row option, 405

mysql_fix_extensions, 248, 405
mysql_fix_privilege_tables, 245, 282
mysql_free_result(), 1913
mysql_get_character_set_info(), 1913
mysql_get_client_info(), 1913
mysql_get_client_version(), 1914
mysql_get_host_info(), 1914
mysql_get_proto_info(), 1915
mysql_get_server_info(), 1915
mysql_get_server_version(), 1915
mysql_get_ssl_cipher(), 1916
MYSQL_GROUP_SUFFIX environment variable, 203
mysql_hex_string(), 1916
MYSQL_HISTFILE environment variable, 203, 306
MYSQL_HOME environment variable, 203
MYSQL_HOST environment variable, 203, 253
mysql_info(), 1142, 1195, 1210, 1242, 1917
mysql_init(), 1917
mysql_insert_id(), 27, 1195, 1918
mysql_install_db, 137, 245, 283

basedir option, 284
builddir option, 284
cross-bootstrap option, 284
datadir option, 284
force option, 284
help option, 284
ldata option, 284
rpm option, 284

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2209

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

skip-name-resolve option, 285
srcdir option, 285
user option, 285
verbose option, 285
windows option, 285

mysql_kill(), 1919
mysql_library_end(), 1919
mysql_library_init(), 1920
mysql_list_dbs(), 1921
mysql_list_fields(), 1922
mysql_list_processes(), 1923
mysql_list_tables(), 1923
mysql_more_results(), 1924
mysql_next_result(), 1924
mysql_num_fields(), 1926
mysql_num_rows(), 1927
mysql_options(), 1927
mysql_ping(), 1931
MYSQL_PS1 environment variable, 203
MYSQL_PWD environment variable, 203, 249, 253
mysql_query(), 1932, 1985
mysql_real_connect(), 1933
mysql_real_escape_string(), 831, 1014, 1936
mysql_real_query(), 1937
mysql_refresh(), 1938
mysql_reload(), 1939
MYSQL_RES C type, 1889
mysql_rollback(), 1940
MYSQL_ROW C type, 1889
mysql_row_seek(), 1940
mysql_row_tell(), 1941
mysql_secure_installation, 245, 285
mysql_select_db(), 1941
mysql_server_end(), 1984
mysql_server_init(), 1984
mysql_setpermission, 248, 405

help option, 406
host option, 406
password option, 406
port option, 406
socket option, 406
user option, 406

mysql_set_character_set(), 1942
mysql_set_local_infile_default(), 1942, 1942
mysql_set_server_option(), 1944
mysql_shutdown(), 1944
mysql_sqlstate(), 1945
mysql_ssl_set(), 1946
mysql_stat(), 1946
MYSQL_STMT C type, 1951
mysql_stmt_affected_rows(), 1959
mysql_stmt_attr_get(), 1960
mysql_stmt_attr_set(), 1960
mysql_stmt_bind_param(), 1961

mysql_stmt_bind_result(), 1962
mysql_stmt_close(), 1963
mysql_stmt_data_seek(), 1964
mysql_stmt_errno(), 1964
mysql_stmt_error(), 1964
mysql_stmt_execute(), 1965
mysql_stmt_fetch(), 1968
mysql_stmt_fetch_column(), 1973
mysql_stmt_field_count(), 1974
mysql_stmt_free_result(), 1974
mysql_stmt_init(), 1974
mysql_stmt_insert_id(), 1975
mysql_stmt_num_rows(), 1975
mysql_stmt_param_count(), 1975
mysql_stmt_param_metadata(), 1976
mysql_stmt_prepare(), 1976
mysql_stmt_reset(), 1977
mysql_stmt_result_metadata, 1978
mysql_stmt_row_seek(), 1978
mysql_stmt_row_tell(), 1979
mysql_stmt_send_long_data(), 1979
mysql_stmt_sqlstate(), 1981
mysql_stmt_store_result(), 1981
mysql_store_result(), 1947, 1985
mysql_tableinfo, 248, 406

clear option, 407
clear-only option, 407
col option, 407
help option, 407
host option, 407
idx option, 408
password option, 408
port option, 408
prefix option, 408
quiet option, 408
socket option, 408
tbl-status option, 408
user option, 408

MYSQL_TCP_PORT environment variable, 203, 249,
612, 613
mysql_thread_end(), 1983
mysql_thread_id(), 1948
mysql_thread_init(), 1983
mysql_thread_safe(), 1984
MYSQL_TIME C type, 1953
mysql_tzinfo_to_sql, 245, 285
MYSQL_UNIX_PORT environment variable, 138, 203,
249, 612, 613
mysql_upgrade, 245, 286, 650

basedir option, 288
character-sets-dir option, 288
compress option, 288
datadir option, 288
debug option, 288

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2210

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

debug-info option, 288
default-character-set option, 288
defaults-extra-file option, 288
defaults-file option, 288
defaults-group-suffix option, 288
force option, 288
help option, 287
host option, 289
mysql_upgrade_info file, 287
no-defaults option, 289
password option, 289
pipe option, 289
port option, 289
print-defaults option, 289
protocol option, 289
shared-memory-base-name option, 289
socket option, 289
SSL options, 289
tmpdir option, 289
user option, 290
verbose option, 290

mysql_upgrade_info file
mysql_upgrade, 287

mysql_use_result(), 1948
mysql_waitpid, 248, 408

help option, 408
verbose option, 409
version option, 409

mysql_warning_count(), 1950
mysql_zap, 248, 409
my_bool C type, 1889
my_bool values

printing, 1889
my_init(), 1983
my_print_defaults, 248, 411

config-file option, 411
debug option, 412
defaults-extra-file option, 412
defaults-file option, 411
defaults-group-suffix option, 412
extra-file option, 412
help option, 411
no-defaults option, 412
verbose option, 412
version option, 412

my_ulonglong C type, 1889
my_ulonglong values

printing, 1889

N
named pipes, 83, 89
named-commands option

mysql, 295

named_pipe system variable, 522
names, 836

case sensitivity, 838
variables, 849

NAME_CONST(), 1111, 1855
name_file option

comp_err, 279
naming

releases of MySQL, 46
NATIONAL CHAR data type, 928
NATIONAL VARCHAR data type, 929
native backup and restore

backup identifiers, 1793
native functions

adding, 2008
NATURAL JOIN, 1219
NATURAL LEFT JOIN, 1219
NATURAL LEFT OUTER JOIN, 1219
NATURAL RIGHT JOIN, 1219
NATURAL RIGHT OUTER JOIN, 1219
NCHAR data type, 928
NDB, 2037
ndb option

perror, 413
NDB storage engine (see MySQL Cluster)

FAQ, 2037
NDB tables

and MySQL root user, 1829
NDB utilities

security issues, 1832
ndb-connectstring option

mysqld, 1732
ndb_config, 1761

ndb-connectstring option (MySQL Cluster programs),
1786
ndb-mgmd-host option (MySQL Cluster programs), 1787
ndb-mgmd-host option (MySQL Cluster), 1732
ndb-nodeid option

mysqld, 1732
ndb-nodeid option (MySQL Cluster), 1788
ndb-optimized-node-selection option (MySQL Cluster),
1788
ndb-shm option (MySQL Cluster programs; OBSOLETE),
1788
ndbcluster option

mysqld, 1731
ndbd, 1751, 1751
ndbd (MySQL Cluster)

defined, 1640
(see also data node (MySQL Cluster))

ndb_config, 1751, 1760
config-file option, 1762
connections option, 1763
fields option, 1763

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2211

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

host option, 1762
id option, 1763
mycnf option, 1762
ndb-connectstring option, 1761
nodeid option, 1763
nodes option, 1763
query option, 1762, 1762
rows option, 1764
type option, 1763
usage option, 1761
version option, 1761

ndb_cpcd, 1751, 1765
ndb_delete_all, 1751, 1765

transactional option, 1766
ndb_desc, 1751, 1766

database option, 1767
extra-partition-info option, 1767
retries option, 1767
unqualified option, 1767

ndb_drop_index, 1751, 1767
ndb_drop_table, 1751, 1769
ndb_error_reporter, 1751, 1769
ndb_mgm, 1751, 1759 (see mgm)
ndb_mgm (MySQL Cluster management node client),
1665
ndb_mgmd, 1751 (see mgmd)

mycnf option, 1757
ndb_mgmd (MySQL Cluster process), 1756
ndb_mgmd (MySQL Cluster)

defined, 1640
(see also management node (MySQL Cluster))

ndb_print_backup_file, 1751, 1770
ndb_print_schema_file, 1751, 1770
ndb_print_sys_file, 1751, 1771
ndb_restore, 1771

append option, 1776
dont_ignore_systab_0 option, 1774
errors, 1777
fields-enclosed-by option, 1775
fields-optionally-enclosed-by option, 1775
fields-terminated-by option, 1775, 1776
hex option, 1776
parallelism option, 1774
print option, 1774
print_data option, 1775
print_log option, 1774
print_meta option, 1774
tab option, 1775
typical and required options, 1772
verbose option, 1776

ndb_select_all, 1751, 1777
database option, 1778
delimiter option, 1778
descending option, 1778

gci option, 1779
gci64 option, 1779
header option, 1778
lock option, 1778
nodata option, 1779
order option, 1778
parallelism option, 1778
rowid option, 1778
tupscan option, 1779
useHexFormat option, 1778

ndb_select_count, 1751, 1780
ndb_show_tables, 1751, 1781

database option, 1781
loops option, 1781
parsable option, 1781
show-temp-status option, 1781
type option, 1781
unqualified option, 1782

ndb_size.pl, 1751, 1782
ndb_size.pl (utility), 2037
ndb_waiter, 1751, 1783

no-contact option, 1784
not-started option, 1784
single-user option, 1784
timeout option, 1784

negative values, 832
nested queries, 1228
Nested-Loop join algorithm, 719
nested-loop join algorithm, 723
net etiquette, 14
netmask notation

in account names, 642
NetWare, 110
network ports

and MySQL Cluster, 1828
net_buffer_length system variable, 522
net_buffer_length variable, 300
net_read_timeout system variable, 522
net_retry_count system variable, 523
net_write_timeout system variable, 523
new features in MySQL 5.0, 9
new features in MySQL Cluster, 1646
new system variable, 524
new users

adding, 119, 139
newline (\n), 830, 1206
next-key lock

InnoDB, 1394, 1417, 1420, 1422
NFS

InnoDB, 1372, 1449
nice option

mysqld_safe, 270
no matching rows, 2139
no-auto-rehash option

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2212

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql, 295
no-autocommit option

mysqldump, 334
no-beep option

mysql, 295
no-contact option

ndb_waiter, 1784
no-create-db option

mysqldump, 334
no-create-info option

mysqldump, 334
no-data option

mysqldump, 334
no-debug option

make_win_bin_dist, 281
no-defaults option, 262, 284

myisamchk, 355
mysql, 295
mysqladmin, 316
mysqlbinlog, 382
mysqlcheck, 322
mysqld, 456
mysqldump, 334
mysqld_multi, 275
mysqld_safe, 270
mysqlimport, 344
mysqlshow, 348
mysql_upgrade, 289
my_print_defaults, 412

no-embedded option
make_win_bin_dist, 281

no-log option
mysqld_multi, 276

no-named-commands option
mysql, 295

no-nodeid-checks option (ndb_mgmd), 1757
no-pager option

mysql, 295
no-set-names option

mysqldump, 334
no-symlinks option

myisamchk, 359
no-tee option

mysql, 295
nodaemon option (ndbd), 1754
nodaemon option (ndb_mgmd), 1758
nodata option

ndb_select_all, 1779
node groups (MySQL Cluster), 1642
node identifiers (MySQL Cluster), 1743, 1743, 1745,
1745
node logs (MySQL Cluster), 1798
NodeId, 1700, 1703, 1729
nodeid option

ndb_config, 1763
nodeid option (ndb_restore), 1773
NodeId1, 1740, 1743, 1745
NodeId2, 1740, 1743, 1745
NODERESTART Events (MySQL Cluster), 1803
nodes option

ndb_config, 1763
noindices option

mysqlhotcopy, 391
nondelimited strings, 834
Nontransactional tables, 2138
NoOfDiskPagesToDiskAfterRestartACC, 1722

calculating, 1747
NoOfDiskPagesToDiskAfterRestartTUP, 1721

calculating, 1747
NoOfDiskPagesToDiskDuringRestartACC, 1722
NoOfDiskPagesToDiskDuringRestartTUP, 1722
NoOfFragmentLogFiles, 1713

calculating, 1747
NoOfReplicas, 1704
nopager command

mysql, 302
nostart option (ndbd), 1754
NOT

logical, 1000
NOT BETWEEN, 997
not equal (!=), 995
not equal (<>), 995
NOT EXISTS

with subqueries, 1233
NOT IN, 999
NOT LIKE, 1020
NOT NULL

constraint, 30
NOT REGEXP, 1022
not-started option

ndb_waiter, 1784
notee command

mysql, 302
Novell NetWare, 110
NOW(), 1051
NOWAIT (START BACKUP command),
nowait-nodes option (ndbd), 1754
nowait-nodes option (ndbmtd), 1754
nowarning command

mysql, 302
NO_AUTO_CREATE_USER SQL mode, 589
NO_AUTO_VALUE_ON_ZERO SQL mode, 589
NO_BACKSLASH_ESCAPES SQL mode, 589
NO_DIR_IN_CREATE SQL mode, 589
NO_ENGINE_SUBSTITUTION SQL mode, 589
NO_FIELD_OPTIONS SQL mode, 590
NO_KEY_OPTIONS SQL mode, 590
NO_TABLE_OPTIONS SQL mode, 590

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2213

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

NO_UNSIGNED_SUBTRACTION SQL mode, 590
NO_ZERO_DATE SQL mode, 591
NO_ZERO_IN_DATE SQL mode, 591
NUL, 830, 1206
NULL, 225, 2136

ORDER BY, 731, 1214
testing for null, 995, 996, 997, 998, 1004
thread state, 819

NULL value, 225, 836
NULL values

and AUTO_INCREMENT columns, 2137
and indexes, 1158
and TIMESTAMP columns, 2137
vs. empty values, 2136

NULLIF(), 1005
numbers, 832
NUMERIC data type, 925
numeric precision, 921
numeric scale, 922
numeric types, 973
numeric-dump-file option

resolve_stack_dump, 412
NumGeometries(), 1106
NumInteriorRings(), 1105
NumPoints(), 1104
NVARCHAR data type, 929

O
OCT(), 1013
OCTET_LENGTH(), 1013
ODBC compatibility, 540, 838, 925, 990, 996, 1156, 1221
offset option

mysqlbinlog, 382
OGC (see Open Geospatial Consortium)
OLAP, 1118
old-style-user-limits option

mysqld, 456
OLD_PASSWORD(), 1085
old_passwords system variable, 524
old_server option

mysqlaccess, 377
ON DUPLICATE KEY UPDATE, 1193
one-database option

mysql, 295
one-thread option

mysqld, 456
one_shot system variable, 525
online location of manual, 2
online upgrades and downgrades (MySQL Cluster), 1797

order of node updates, 1798
only-debug option

make_win_bin_dist, 281
ONLY_FULL_GROUP_BY

SQL mode, 1121
ONLY_FULL_GROUP_BY SQL mode, 591
OPEN, 1281
Open Geospatial Consortium, 955
Open Source

defined, 5
open tables, 314, 756
open-files-limit option

mysqld, 456
mysqld_safe, 270

OpenGIS, 955
opening

tables, 756
Opening master dump table

thread state, 826
Opening mysql.ndb_apply_status

thread state, 826
Opening table

thread state, 819
Opening tables

thread state, 819
opens, 314
OpenSSL, 662, 663

compared to yaSSL, 663
open_files_limit system variable, 525
open_files_limit variable, 384
operating systems

file-size limits, 2155
supported, 45

operations
arithmetic, 1029

operators, 980
arithmetic, 1079
assignment, 849, 1001
bit, 1079
cast, 1028, 1075
logical, 1000
precedence, 992

opt option
mysqldump, 335

optimization, 704
benchmarking, 811
BLOB types, 755
character and string types, 754
DELETE statements, 744
disk I/O, 802
DML statements, 742
foreign keys, 746
full table scans, 742
indexes, 745
InnoDB tables, 763
INSERT statements, 743
locking, 794
many tables, 756

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2214

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MEMORY tables, 767
memory usage, 806
MyISAM tables, 758
network usage, 809
numeric types, 754
primary keys, 746
privileges, 744
REPAIR TABLE statements, 761
SELECT statements, 707
SQL statements, 706
subquery, 736
tips, 744
UPDATE statements, 743
WHERE clauses, 708

optimizations, 713
LIMIT clause, 740
row constructors, 741

optimize option
mysqlcheck, 322

OPTIMIZE TABLE, 1305
optimizer

and replication, 1628
controlling, 780
query plan evaluation, 780

optimizer_prune_level system variable, 525
optimizer_search_depth system variable, 526
optimizing

DISTINCT, 735
filesort, 731
GROUP BY, 733
LEFT JOIN, 718
ORDER BY, 729
tables, 701
thread state, 819

option files, 257, 650
escape sequences, 259

option prefix
--disable, 256
--enable, 256
--loose, 256
--maximum, 256
--skip, 256

options
boolean, 256
command-line

mysql, 290
mysqladmin, 314

configure, 122
myisamchk, 355
provided by MySQL, 209
replication, 1620

OR, 239, 713
bitwise, 1080
logical, 1001

OR Index Merge optimization, 713
Oracle compatibility, 23, 1117, 1138, 1355
ORACLE SQL mode, 593
ORD(), 1013
ORDER BY, 221, 1139, 1213

NULL, 731, 1214
ORDER BY optimization, 729
order option

ndb_select_all, 1778
order-by-primary option

mysqldump, 335
OS X

installation, 99
out-of-range handling, 934
OUTFILE, 1218
out_dir option

comp_err, 280
out_file option

comp_err, 280
overflow handling, 934
Overlaps(), 1107
overview, 1

P
packages

list of, 39
page size

InnoDB, 1432, 1450
page-level locking, 794
pager command

mysql, 302
pager option

mysql, 296
parallel-recover option

myisamchk, 359
parallelism option (ndb_restore), 1774
parameters

server, 800
parentheses (and), 993
parsable option

ndb_show_tables, 1781
partial updates

and replication, 1628
partitions (MySQL Cluster), 1642
passwd option

mysqlmanager, 394
password

root user, 144
password encryption

reversibility of, 1086
password option, 252

mysql, 296
mysqlaccess, 377

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2215

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysqladmin, 316
mysqlbinlog, 382
mysqlcheck, 322
mysqldump, 335
mysqld_multi, 276
mysqlhotcopy, 391
mysqlimport, 344
mysqlshow, 348
mysql_convert_table_format, 403
mysql_explain_log, 404
mysql_setpermission, 406
mysql_tableinfo, 408
mysql_upgrade, 289

PASSWORD(), 643, 661, 1085, 2123
password-file option

mysqlmanager, 394
passwords

administrator guidelines, 619
for users, 654
forgotten, 2126
hashing, 619
logging, 619
lost, 2126
resetting, 2126
security, 617, 631
setting, 661, 1294, 1299
user guidelines, 617

PATH environment variable, 86, 92, 142, 203, 250
path name separators

Windows, 259
pattern matching, 226, 1021
performance, 704

benchmarks, 813
disk I/O, 802
estimating, 780
improving, 752

PERIOD_ADD(), 1052
PERIOD_DIFF(), 1052
Perl

installing, 204
installing on Windows, 206

Perl API, 1991
Perl DBI/DBD

installation problems, 206
permission checks

effect on speed, 744
perror, 248, 413

--ndb option, 2037
help option, 413
ndb option, 413
silent option, 413
verbose option, 413
version option, 413

phantom rows, 1421

PI(), 1035
pid-file option

mysql.server, 274
mysqld, 457
mysqld_safe, 270
mysqlmanager, 394

pid_file system variable, 526
Ping

thread command, 815
pipe option, 252

mysql, 296, 323
mysqladmin, 317
mysqldump, 335
mysqlimport, 344
mysqlshow, 348
mysql_upgrade, 289

PIPES_AS_CONCAT SQL mode, 591
plan option

mysqlaccess, 377
plugin_dir system variable, 526
POINT data type, 957
Point(), 1100
point-in-time recovery, 694
PointFromText(), 1098
PointFromWKB(), 1099
PointN(), 1104
PolyFromText(), 1098
PolyFromWKB(), 1099
POLYGON data type, 957
Polygon(), 1100
PolygonFromText(), 1098
PolygonFromWKB(), 1099
port option, 252

mysql, 296
mysqladmin, 317
mysqlbinlog, 382
mysqlcheck, 323
mysqld, 457
mysqldump, 335
mysqld_safe, 270
mysqlhotcopy, 391
mysqlimport, 344
mysqlmanager, 395
mysqlshow, 348
mysql_config, 411
mysql_convert_table_format, 403
mysql_setpermission, 406
mysql_tableinfo, 408
mysql_upgrade, 289

port system variable, 527
port-open-timeout option

mysqld, 457
portability, 705

types, 976

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2216

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

porting
to other systems, 2010

PortNumber, 1700, 1742
PortNumberStats, 1702
ports, 616
position option

mysqlbinlog, 382
POSITION(), 1013
PostgreSQL compatibility, 24
POSTGRESQL SQL mode, 593
postinstall

multiple servers, 606
postinstallation

setup and testing, 134
POW(), 1035
POWER(), 1036
precedence

operator, 992
precision

arithmetic, 1122
numeric, 921

precision math, 1122
prefix option

configure, 127
mysql_tableinfo, 408

preload_buffer_size system variable, 527
Prepare

thread command, 815
PREPARE, 1267, 1270

XA transactions, 1256
prepared statements, 1267, 1270, 1271, 1271, 1950
prepared_stmt_count system variable, 527
preparing

thread state, 819
preview option

mysqlaccess, 377
primary key

constraint, 29
deleting, 1139

PRIMARY KEY, 1139, 1157
print command

mysql, 303
print option (ndb_restore), 1774
print-defaults option, 262

myisamchk, 355
mysql, 296
mysqladmin, 317
mysqlbinlog, 382
mysqlcheck, 323
mysqld, 458
mysqldump, 335
mysqlimport, 344
mysqlmanager, 395
mysqlshow, 348

mysql_upgrade, 289
print-full-config option (ndb_mgmd), 1758
printerror option

mysql_explain_log, 404
print_data option (ndb_restore), 1775
print_log option (ndb_restore), 1774
print_meta option (ndb_restore), 1774
privilege

changes, 648
privilege checks

effect on speed, 744
privilege information

location, 636
privilege system, 631
privileges

access, 631
adding, 656
and replication, 1628
default, 144
deleting, 659, 1287
display, 1324
dropping, 659, 1287
granting, 1288
revoking, 1299

problems
access denied errors, 2112
common errors, 2110
compiling, 130
DATE columns, 2134
date values, 937
installing on IBM-AIX, 187
installing on Solaris, 178
installing Perl, 206
linking, 1886
lost connection errors, 2115
reporting, 2, 15
starting the server, 139
table locking, 796
time zone, 2133

PROCEDURE, 1216
PROCEDURE ANALYSE(), 755
procedures

stored, 1835
process management (MySQL Cluster), 1751
processes

display, 1331
processing

arguments, 2002
Processing events

thread state, 826
Processing events from schema table

thread state, 826
Processlist

thread command, 815

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2217

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

PROCESSLIST, 1331
procs_priv table

system table, 597, 637
PROFILING

INFORMATION_SCHEMA table, 1865
profiling system variable, 528
profiling_history_size system variable, 528
program options (MySQL Cluster), 1785
program variables

setting, 262
program-development utilities, 248
programs

administrative, 246
client, 246, 1885
crash-me, 705
stored, 1271, 1833
utility, 246

prompt command
mysql, 303

prompt option
mysql, 297

prompts
meanings, 212

pronunciation
MySQL, 6

protocol option, 252
mysql, 297
mysqladmin, 317
mysqlbinlog, 382
mysqlcheck, 323
mysqldump, 335
mysqlimport, 344
mysqlshow, 348
mysql_upgrade, 289

protocol_version system variable, 528
pseudo_thread_id system variable, 528
PURGE BINARY LOGS, 1258
PURGE MASTER LOGS, 1258
PURGE STALE SESSIONS, 1790
Purging old relay logs

thread state, 819
Python

third-party driver, 1992

Q
QUARTER(), 1052
queries

entering, 210
estimating performance, 780
examples, 235
speed of, 707

Query
thread command, 815

Query Cache, 787
query cache

thread states, 823
query end

thread state, 819
query execution plan, 767
query option

ndb_config, 1762, 1762
query_alloc_block_size system variable, 528
query_cache_limit system variable, 529
query_cache_min_res_unit system variable, 530
query_cache_size system variable, 530
query_cache_type system variable, 531
query_cache_wlock_invalidate system variable, 531
query_prealloc_size system variable, 532
questions, 314

answering, 14
Queueing master event to the relay log

thread state, 824
quick option

myisamchk, 359
mysql, 297
mysqlcheck, 323
mysqldump, 335

quiet option
mysqlhotcopy, 391
mysql_tableinfo, 408

Quit
thread command, 815

quit command
mysql, 303

QUIT command (MySQL Cluster),
quotation marks

in strings, 831
QUOTE(), 831, 1013, 1937
quote-names option

mysqldump, 335
quoting, 831

column alias, 837, 2137
quoting binary data, 831
quoting of identifiers, 836

R
RADIANS(), 1036
RAND(), 1036
rand_seed1 system variable, 532
rand_seed2 system variable, 533
range join type

optimizer, 772
range_alloc_block_size system variable, 533
raw option

mysql, 297
raw partitions, 1377

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2218

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

re-creating
grant tables, 138

READ COMMITTED
transaction isolation level, 1254

READ UNCOMMITTED
transaction isolation level, 1254

read-from-remote-server option
mysqlbinlog, 383

read-only option
myisamchk, 358

Reading event from the relay log
thread state, 825

Reading from net
thread state, 819

Reading master dump table data
thread state, 826

read_buffer_size myisamchk variable, 356
read_buffer_size system variable, 533
read_only system variable, 534
read_rnd_buffer_size system variable, 534
REAL data type, 925
REAL_AS_FLOAT SQL mode, 591
Rebuilding the index on master dump table

thread state, 826
ReceiveBufferMemory, 1742
reconfiguring, 130, 130
reconnect option

mysql, 297
Reconnecting after a failed binlog dump request

thread state, 824
Reconnecting after a failed master event read

thread state, 825
reconnection

automatic, 1986
record-level locks

InnoDB, 1394, 1417, 1420, 1422
record_log_pos option

mysqlhotcopy, 391
RECOVER

XA transactions, 1256
recover option

myisamchk, 359
recovery

from crash, 697
incremental, 694
point in time, 694

redo log, 1411
RedoBuffer, 1724
reducing

data size, 752
ref join type

optimizer, 771
references, 1140
referential integrity, 1370

Refresh
thread command, 815

ref_or_null, 717
ref_or_null join type

optimizer, 772
REGEXP, 1022
REGEXP operator, 1021
regexp option

mysqlhotcopy, 391
mysql_find_rows, 405

Register Slave
thread command, 816

Registering slave on master
thread state, 824

regular expression syntax, 1021
rehash command

mysql, 303
relational databases

defined, 5
relative option

mysqladmin, 317
relay-log option

mysqld, 1577
relay-log-index option

mysqld, 1577
relay-log-info-file option

mysqld, 1578
relay-log-purge option

mysqld, 1578
relay-log-space-limit option

mysqld, 1578
relay_log system variable, 1586
relay_log_index system variable, 1587
relay_log_info_file system variable, 1587
relay_log_purge system variable, 535
relay_log_space_limit system variable, 535
release numbers, 45
RELEASE SAVEPOINT, 1246
releases

naming scheme, 46
testing, 47
updating, 48

RELEASE_LOCK(), 1112
relnotes option

mysqlaccess, 377
remote administration (MySQL Cluster)

and security issues, 1828
remove option

mysqld, 458
mysqlmanager, 395

Removing duplicates
thread state, 819

removing tmp table
thread state, 819

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2219

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

rename
thread state, 819

rename result table
thread state, 819

RENAME TABLE, 1183
RENAME USER, 1298
renaming user accounts, 1298
Reopen tables

thread state, 819
repair

tables, 318
Repair by sorting

thread state, 820
Repair done

thread state, 820
repair option

mysqlcheck, 323
repair options

myisamchk, 358
REPAIR TABLE, 1306

and replication, 1308, 1625
Repair with keycache

thread state, 820
repairing

tables, 699
REPEAT, 1278

labels, 1272
REPEAT(), 1014
REPEATABLE READ

transaction isolation level, 1253
repertoire

character set, 880
replace, 249
REPLACE, 1210
replace option

mysqlimport, 344
replace utility, 414
REPLACE(), 1014
replicas (MySQL Cluster), 1642
replicate-do-db option

mysqld, 1579
replicate-do-table option

mysqld, 1580
replicate-ignore-db option

mysqld, 1580
replicate-ignore-table option

mysqld, 1580
replicate-rewrite-db option

mysqld, 1581
replicate-same-server-id option

mysqld, 1581
replicate-wild-do-table option

mysqld, 1582
replicate-wild-ignore-table option

mysqld, 1582
replication, 1547

and AUTO_INCREMENT, 1621
and character sets, 1622
and CHECKSUM TABLE statement, 1622
and CREATE TABLE ... SELECT, 1622
and DATA DIRECTORY, 1622
and DROP ... IF EXISTS, 1622
and errors on slave, 1628
and floating-point values, 1623
and FLUSH, 1623
and functions, 1623
and INDEX DIRECTORY, 1622
and LAST_INSERT_ID(), 1621
and LIMIT, 1625
and LOAD DATA, 1625
and LOAD TABLE FROM MASTER, 1625
and MEMORY tables, 1626
and mysql (system) database, 1627
and partial updates, 1628
and privileges, 1628
and query optimizer, 1628
and REPAIR TABLE statement, 1308, 1625
and reserved words, 1628
and slow query log, 1625
and SQL mode, 1629
and temporary tables, 1627
and time zones, 1629
and TIMESTAMP, 157, 1621, 1629
and transactions, 1629, 1630
and triggers, 1630
and variables, 1631
and views, 1631
between MySQL server versions, 157, 1629
crashes, 1626
shutdown and restart, 1626, 1627
timeouts, 1629
with ZFS, 1482

replication filtering options
and case sensitivity, 1604

replication implementation, 1598
replication limitations, 1620
replication master

thread states, 823
replication masters

statements, 1258
replication options, 1620
replication slave

thread states, 824, 825, 825
replication slaves

statements, 1260
report-host option

mysqld, 1582
report-password option

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2220

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysqld, 1583
report-port option

mysqld, 1583
report-user option

mysqld, 1583
reporting

bugs, 2, 15
errors, 15
problems, 2

Requesting binlog dump
thread state, 824

REQUIRE option
GRANT, 1295

reschedule
thread state, 823

reserved words, 843
and replication, 1628

RESET MASTER, 1259
RESET SLAVE, 1265
Reset stmt

thread command, 816
resetmaster option

mysqlhotcopy, 391
resetslave option

mysqlhotcopy, 391
resolveip, 249, 414

help option, 415
silent option, 415
version option, 415

resolve_stack_dump, 248, 412
help option, 412
numeric-dump-file option, 412
symbols-file option, 412
version option, 412

resource limits
user accounts, 516, 659, 1297

RESTART command (MySQL Cluster),
restarting

the server, 143
RestartOnErrorInsert, 1718
RESTORE TABLE, 1308
restore_connect option (ndb_restore), 1773
restore_data option (ndb_restore), 1774
restore_meta option (ndb_restore), 1774
restoring backups

in MySQL Cluster, 1771
restrictions

character sets, 2155
InnoDB, 1449
server-side cursors, 2149
stored routines, 2147
subqueries, 2150
triggers, 2147
views, 2152

XA transactions, 2154
result-file option

mysqlbinlog, 383
mysqldump, 336

retries option
ndb_desc, 1767

retrieving
data from tables, 218

RETURN, 1279
return (\r), 830, 1206
return values

UDFs, 2005
REVERSE(), 1014
REVOKE, 1299
revoking

privileges, 1299
rhost option

mysqlaccess, 377
RIGHT JOIN, 1219
RIGHT OUTER JOIN, 1219
RIGHT(), 1014
RLIKE, 1022
ROLLBACK, 25, 1243

XA transactions, 1256
rollback option

mysqlaccess, 377
ROLLBACK TO SAVEPOINT, 1246
Rolling back

thread state, 820
rolling restart (MySQL Cluster), 1797
ROLLUP, 1118
root password, 144
root user, 616

password resetting, 2126
ROUND(), 1037
rounding, 1122
rounding errors, 924
ROUTINES

INFORMATION_SCHEMA table, 1866
routines option

mysqldump, 336
ROW, 1232
row constructors, 1232

optimizations, 741
row size

maximum, 2157
row subqueries, 1232
row-level locking, 794
rowid option

ndb_select_all, 1778
rows

counting, 228
deleting, 2138
locking, 27

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2221

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

matching problems, 2139
selecting, 219
sorting, 221

rows option
mysql_find_rows, 405
ndb_config, 1764

ROW_COUNT(), 1094
RPAD(), 1014
RPM file, 102
rpm option

mysql_install_db, 284
RPM Package Manager, 102
RTRIM(), 1015
Ruby API, 1993
run-as-service option

mysqlmanager, 395
running

ANSI mode, 21
batch mode, 233
multiple servers, 606
queries, 210

running configure after prior invocation, 130

S
safe-mode option

mysqld, 458
safe-recover option

myisamchk, 359
safe-show-database option

mysqld, 458
safe-updates option, 310

mysql, 297
safe-user-create option

mysqld, 458
safe_mysqld, 268
Sakila, 9
SAVEPOINT, 1246
Saving state

thread state, 820
scale

arithmetic, 1122
numeric, 922

schema
altering, 1134
creating, 1144
deleting, 1180

SCHEMA(), 1094
SCHEMATA

INFORMATION_SCHEMA table, 1867
SCHEMA_PRIVILEGES

INFORMATION_SCHEMA table, 1868
SCI (Scalable Coherent Interface) (see MySQL Cluster)
script files, 233

scripts, 268, 274
mysql_install_db, 137
SQL, 290

searching
and case sensitivity, 2133
full-text, 1061
MySQL Web pages, 15
two keys, 239

Searching rows for update
thread state, 820

SECOND(), 1052
secondary index

InnoDB, 1431
secure connections, 662

command options, 668
secure-auth option

mysql, 297
mysqld, 458

secure-file-priv option
mysqld, 459

secure_auth system variable, 536
secure_file_priv system variable, 536
securing a MySQL Cluster, 1831
security

against attackers, 625
and malicious SQL statements, 1830
and NDB utilities, 1832

security system, 631
SEC_TO_TIME(), 1052
SELECT

INTO, 1217
LIMIT, 1211
optimizing, 767, 1355
Query Cache, 787

SELECT INTO TABLE, 25
SELECT speed, 707
selecting

databases, 215
select_limit variable, 300
SendBufferMemory, 1741
Sending binlog event to slave

thread state, 823
sending cached result to client

thread state, 823
SendLimit, 1747
SendSignalId, 1741, 1744, 1747
SEQUENCE, 240
sequence emulation, 1093
sequences, 240
SERIAL, 922, 923
SERIAL DEFAULT VALUE, 972
SERIALIZABLE

transaction isolation level, 1254
server

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2222

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

connecting, 209, 250
debugging, 2010
disconnecting, 209
logs, 598
restart, 143
shutdown, 143
signal handling, 594
starting, 135
starting and stopping, 148
starting problems, 139

server administration, 311
server variables, 1345 (see system variables)
server-id option

mysqld, 1558
server-side cursor

restrictions, 2149
ServerPort, 1703
servers

multiple, 606
server_id system variable, 537
service-startup-timeout option

mysql.server, 274
session variables

and replication, 1631
SESSION_USER(), 1094
SET, 1310

CHARACTER SET, 868, 1312
NAMES, 868, 870, 1312
ONE_SHOT, 1313
size, 976

SET data type, 931, 953
SET GLOBAL sql_slave_skip_counter, 1265
Set option

thread command, 816
SET OPTION, 1310
SET PASSWORD, 1299
SET PASSWORD statement, 661
SET sql_log_bin, 1260
SET statement

assignment operator, 1002
SET TRANSACTION, 1252
set-auto-increment[option

myisamchk, 360
set-character-set option

myisamchk, 360
set-charset option

mysqlbinlog, 383
mysqldump, 336

set-collation option
myisamchk, 360

setting
passwords, 661

setting passwords, 1299
setting program variables, 262

setup
postinstallation, 134
thread state, 820

SHA(), 1086
SHA1(), 1086
shared memory transporter (see MySQL Cluster)
shared-memory option

mysqld, 459
shared-memory-base-name option, 253

mysql, 298
mysqladmin, 317
mysqlcheck, 323
mysqld, 460
mysqldump, 336
mysqlimport, 344
mysqlshow, 348
mysql_upgrade, 289

SharedBufferSize, 1746
shared_memory system variable, 537
shared_memory_base_name system variable, 537
shell syntax, 4
ShmKey, 1744
ShmSize, 1744
short-form option

mysqlbinlog, 383
SHOW

in MySQL Cluster management client, 1674
SHOW BINARY LOGS, 1313, 1314
SHOW BINLOG EVENTS, 1313, 1315
SHOW CHARACTER SET, 1313, 1315
SHOW COLLATION, 1313, 1315
SHOW COLUMNS, 1313, 1316
SHOW command (MySQL Cluster),
SHOW CREATE DATABASE, 1313, 1318
SHOW CREATE FUNCTION, 1313, 1318
SHOW CREATE PROCEDURE, 1313, 1318
SHOW CREATE SCHEMA, 1313, 1318
SHOW CREATE TABLE, 1313, 1319
SHOW CREATE VIEW, 1313, 1319
SHOW DATABASES, 1313, 1320
SHOW ENGINE, 1313, 1320

used with MySQL Cluster, 1823
SHOW ENGINE BDB LOGS, 1320
SHOW ENGINE INNODB STATUS, 1320
SHOW ENGINE NDB STATUS, 1320, 1823
SHOW ENGINE NDBCLUSTER STATUS, 1823
SHOW ENGINES, 1313, 1322

used with MySQL Cluster, 1823
SHOW ERRORS, 1313, 1324

and MySQL Cluster, 2037
SHOW extensions, 1874
SHOW FIELDS, 1313, 1318
SHOW FUNCTION CODE, 1313, 1324
SHOW FUNCTION STATUS, 1313, 1324

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2223

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SHOW GRANTS, 1313, 1324
SHOW INDEX, 1313, 1325
SHOW INNODB STATUS, 1313
SHOW KEYS, 1313, 1325
SHOW LOGS, 1313
SHOW MASTER LOGS, 1313, 1314
SHOW MASTER STATUS, 1313, 1327
SHOW MUTEX STATUS, 1313
SHOW OPEN TABLES, 1313, 1328
SHOW PRIVILEGES, 1313, 1329
SHOW PROCEDURE CODE, 1313, 1329
SHOW PROCEDURE STATUS, 1313, 1330
SHOW PROCESSLIST, 1313, 1331
SHOW PROFILE, 1313, 1333
SHOW PROFILES, 1313, 1333, 1335
SHOW SCHEMAS, 1313, 1320
SHOW SLAVE HOSTS, 1313, 1335
SHOW SLAVE STATUS, 1313, 1336
SHOW STATUS, 1313

used with MySQL Cluster, 1824
SHOW STORAGE ENGINES, 1322
SHOW TABLE STATUS, 1313
SHOW TABLE TYPES, 1322
SHOW TABLES, 1313, 1344
SHOW TRIGGERS, 1313, 1344
SHOW VARIABLES, 1313

used with MySQL Cluster, 1824
SHOW WARNINGS, 1313, 1346

and MySQL Cluster, 2037
SHOW with WHERE, 1859, 1874
show-slave-auth-info option

mysqld, 1583
show-table-type option

mysqlshow, 349
show-temp-status option

ndb_show_tables, 1781
show-warnings option

mysql, 298
showing

database information, 345
shutdown

server, 595
Shutdown

thread command, 816
SHUTDOWN command (MySQL Cluster),
shutdown_timeout variable, 318
shutting down

the server, 143
Shutting down

thread state, 826
sigint-ignore option

mysql, 298
SIGN(), 1038
signals

server response, 594
SigNum, 1744
silent column changes, 1171
silent option

make_win_src_distribution, 281
myisamchk, 355
myisampack, 370
mysql, 298
mysqladmin, 317
mysqlcheck, 323
mysqld_multi, 276
mysqlimport, 345
perror, 413
resolveip, 415

SIN(), 1038
single quote (\'), 830
single user mode (MySQL Cluster), , 1822

and ndb_restore, 1771
single-transaction option

mysqldump, 336
single-user option

ndb_waiter, 1784
size of tables, 2155
sizes

display, 921
skip-bdb option

mysqld, 460, 1463
skip-column-names option

mysql, 298
skip-comments option

mysqldump, 337
skip-concurrent-insert option

mysqld, 460
skip-grant-tables option

mysqld, 460
skip-host-cache option

mysqld, 460
skip-innodb option

mysqld, 460, 1384
skip-kill-mysqld option

mysqld_safe, 271
skip-line-numbers option

mysql, 298
skip-merge option

mysqld, 461
skip-name-resolve option

mysqld, 461
mysql_install_db, 285

skip-ndbcluster option
mysqld, 1733

skip-networking option
mysqld, 461

skip-opt option
mysqldump, 337

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2224

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

skip-safemalloc option
mysqld, 461

skip-show-database option
mysqld, 462

skip-slave-start option
mysqld, 1584

skip-ssl option, 668
skip-stack-trace option

mysqld, 462
skip-symbolic-links option

mysqld, 461
skip-thread-priority option

mysqld, 462
skip-use-db option

mysql_find_rows, 405
skip_external_locking system variable, 538
skip_networking system variable, 538
skip_show_database system variable, 538
slave-load-tmpdir option

mysqld, 1584
slave-net-timeout option

mysqld, 1585
slave-skip-errors option

mysqld, 1585
slave_compressed_protocol option

mysqld, 1584
slave_compressed_protocol system variable, 1587
slave_load_tmpdir system variable, 1587
slave_net_timeout system variable, 1588
slave_skip_errors system variable, 1588
slave_transaction_retries system variable, 1588
Sleep

thread command, 816
sleep option

mysqladmin, 317
SLEEP(), 1112
slow queries, 314
slow query log, 604

and replication, 1625
slow_launch_time system variable, 539
SMALLINT data type, 923
socket location

changing, 127
socket option, 253

mysql, 298
mysqladmin, 317
mysqlbinlog, 383
mysqlcheck, 323
mysqld, 462
mysqldump, 337
mysqld_safe, 271
mysqlhotcopy, 391
mysqlimport, 345
mysqlmanager, 395

mysqlshow, 349
mysql_config, 411
mysql_convert_table_format, 403
mysql_explain_log, 404
mysql_setpermission, 406
mysql_tableinfo, 408
mysql_upgrade, 289

socket system variable, 539
Solaris

installation, 106
Solaris installation problems, 178
Solaris troubleshooting, 132
Solaris x86_64 issues, 766
SOME, 1230
sort-index option

myisamchk, 360
sort-records option

myisamchk, 361
sort-recover option

myisamchk, 360
sorting

data, 221
grant tables, 645, 646
table rows, 221

Sorting for group
thread state, 820

Sorting for order
thread state, 820

Sorting index
thread state, 820

Sorting result
thread state, 820

sort_buffer_size myisamchk variable, 356
sort_buffer_size system variable, 539
sort_key_blocks myisamchk variable, 356
SOUNDEX(), 1015
SOUNDS LIKE, 1015
source (mysql client command), 234, 308
source command

mysql, 303
source distribution

installing, 115
source distributions

on Linux, 172
SPACE(), 1015
spassword option

mysqlaccess, 377
Spatial Extensions in MySQL, 955
spatial functions, 1095
speed

compiling, 133
increasing with replication, 1547
inserting, 743
linking, 133

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2225

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

of queries, 707, 707
sporadic-binlog-dump-fail option

mysqld, 1593
SQL

defined, 5
SQL mode, 586

ALLOW_INVALID_DATES, 588
and replication, 1629
ANSI, 587, 592
ANSI_QUOTES, 588
DB2, 592
ERROR_FOR_DIVISION_BY_ZERO, 588
HIGH_NOT_PRECEDENCE, 588
IGNORE_SPACE, 589
MAXDB, 592
MSSQL, 592
MYSQL323, 592
MYSQL40, 593
NO_AUTO_CREATE_USER, 589
NO_AUTO_VALUE_ON_ZERO, 589
NO_BACKSLASH_ESCAPES, 589
NO_DIR_IN_CREATE, 589
NO_ENGINE_SUBSTITUTION, 589
NO_FIELD_OPTIONS, 590
NO_KEY_OPTIONS, 590
NO_TABLE_OPTIONS, 590
NO_UNSIGNED_SUBTRACTION, 590
NO_ZERO_DATE, 591
NO_ZERO_IN_DATE, 591
ONLY_FULL_GROUP_BY, 591, 1121
ORACLE, 593
PIPES_AS_CONCAT, 591
POSTGRESQL, 593
REAL_AS_FLOAT, 591
strict, 587
STRICT_ALL_TABLES, 591
STRICT_TRANS_TABLES, 587, 592
TRADITIONAL, 587, 593

SQL node (MySQL Cluster)
defined, 1640

SQL nodes (MySQL Cluster), 1795
SQL scripts, 290
SQL statements

replication masters, 1258
replication slaves, 1260

SQL statements relating to MySQL Cluster, 1823
SQL-92

extensions to, 20
sql-mode option

mysqld, 463
sql_auto_is_null system variable, 540
SQL_BIG_RESULT, 1217
sql_big_selects system variable, 540
SQL_BUFFER_RESULT, 1217

sql_buffer_result system variable, 541
SQL_CACHE, 790, 1217
SQL_CALC_FOUND_ROWS, 741, 1217
sql_log_bin system variable, 541
sql_log_off system variable, 541
sql_log_update system variable, 542
sql_mode system variable, 542
sql_notes system variable, 543
SQL_NO_CACHE, 790, 1217
sql_quote_show_create system variable, 543
sql_safe_updates system variable, 543
sql_select_limit system variable, 543
sql_slave_skip_counter, 1265
sql_slave_skip_counter system variable, 1589
SQL_SMALL_RESULT, 1217
sql_warnings system variable, 543
sql_yacc.cc problems, 131
SQRT(), 1038
square brackets, 922
srcdir option

mysql_install_db, 285
SRID values

handling by spatial functions, 1097
SRID(), 1102
SSH, 676
SSL, 662

command options, 668
configuring, 663
establishing connections, 666
OpenSSL compared to yaSSL, 663
X509 Basics, 662

ssl option, 668
SSL options, 253

mysql, 298
mysqladmin, 317
mysqlcheck, 323
mysqld, 461
mysqldump, 337
mysqlimport, 345
mysqlshow, 349
mysql_upgrade, 289

SSL related options
GRANT, 1295

ssl-ca option, 669
ssl-capath option, 669
ssl-cert option, 669
ssl-cipher option, 669
ssl-key option, 670
ssl-verify-server-cert option, 670
ssl_ca system variable, 544
ssl_capath system variable, 544
ssl_cert system variable, 544
ssl_cipher system variable, 544
ssl_key system variable, 545

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2226

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

standalone option
mysqld, 461
mysqlmanager, 395

Standard Monitor
InnoDB, 1437

Standard SQL
differences from, 24, 1298
extensions to, 20, 21

standards compatibility, 20
START

XA transactions, 1256
START BACKUP

NOWAIT, 1793
syntax, 1792
WAIT COMPLETED, 1793
WAIT STARTED, 1793

START command (MySQL Cluster),
START SLAVE, 1266
START TRANSACTION, 1243
start-datetime option

mysqlbinlog, 383
start-position option

mysqlbinlog, 383
StartFailureTimeout, 1719
starting

comments, 28
mysqld, 628
the server, 135
the server automatically, 148

Starting many servers, 606
starting slave

thread state, 826
StartPartialTimeout, 1718
StartPartitionedTimeout, 1718
StartPoint(), 1104
STARTUP Events (MySQL Cluster), 1802
startup options

default, 257
startup parameters, 800

mysql, 290
mysqladmin, 314
tuning, 800

start_row option
mysql_find_rows, 405

statefile option
comp_err, 280

statements
compound, 1271
GRANT, 656
INSERT, 657
replication masters, 1258
replication slaves, 1260

statically
compiling, 128

Statistics
thread command, 816

statistics
thread state, 820

STATISTICS
INFORMATION_SCHEMA table, 1868

STATISTICS Events (MySQL Cluster), 1804
stats option

myisam_ftdump, 351
stats_method myisamchk variable, 356
status

tables, 1342
status command

mysql, 303
results, 313

STATUS command (MySQL Cluster),
status option

mysqlshow, 349
status variables, 566, 1340
STD(), 1117
STDDEV(), 1117
STDDEV_POP(), 1117
STDDEV_SAMP(), 1117
STOP command (MySQL Cluster),
STOP SLAVE, 1267
stop-datetime option

mysqlbinlog, 383
stop-position option

mysqlbinlog, 384
StopOnError, 1717
stopping

the server, 148
stopword list

user-defined, 1072
storage engine

ARCHIVE, 1470
InnoDB, 1370

storage engines
choosing, 1359

storage nodes - see data nodes, ndbd (see data nodes,
ndbd)
storage requirements

data type, 972
storage space

minimizing, 752
storage_engine system variable, 545
stored functions, 1835

and INSERT DELAYED, 1196
stored procedures, 1835
stored programs, 1271, 1833
stored routine

restrictions, 2147
stored routines

LAST_INSERT_ID(), 1837

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2227

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

metadata, 1837
storing result in query cache

thread state, 823
storing row into queue

thread state, 822
STRAIGHT_JOIN, 719, 719, 768, 778, 1216, 1219, 1356
STRCMP(), 1021
strict SQL mode, 587
STRICT_ALL_TABLES SQL mode, 591
STRICT_TRANS_TABLES SQL mode, 587, 592
string collating, 903
string comparison functions, 1018
string comparisons

case sensitivity, 1018
string concatenation, 829, 1008
string functions, 1005
string literal introducer, 830, 864
string replacement

replace utility, 414
string types, 946, 974
StringMemory, 1707
strings

defined, 829
escape sequences, 829
nondelimited, 834

striping
defined, 802

STR_TO_DATE(), 1053
SUBDATE(), 1054
subqueries, 1228

correlated, 1234
errors, 1237
optimization, 736
rewriting as joins, 1240
with ALL, 1231
with ANY, IN, SOME, 1230
with EXISTS, 1233
with NOT EXISTS, 1233
with row constructors, 1232

subquery, 1228
restrictions, 2150

subselects, 1228
SUBSTR(), 1016
SUBSTRING(), 1016
SUBSTRING_INDEX(), 1016
SUBTIME(), 1054
subtraction (-), 1029
suffix option

make_win_src_distribution, 281
mysqlhotcopy, 392

SUM(), 1117
SUM(DISTINCT), 1117
superuser, 144
superuser option

mysqlaccess, 378
support

for operating systems, 45
suppression

default values, 31
symbolic links, 803, 805
symbolic-links option

mysqld, 461
symbols-file option

resolve_stack_dump, 412
sync-bdb-logs option

mysqld, 1463
Syncing ndb table schema operation and binlog

thread state, 826
sync_binlog system variable, 1595
sync_frm system variable, 545
syntax

regular expression, 1021
syntax conventions, 3
SYSDATE(), 1054
sysdate-is-now option

mysqld, 464
system

privilege, 631
security, 616

system command
mysql, 303

System lock
thread state, 821

system optimization, 800
system table

optimizer, 771, 1216
system tables

columns_priv table, 597, 636
db table, 144, 597, 636
func table, 597
help tables, 597
help_category table, 597
help_keyword table, 597
help_relation table, 597
help_topic table, 597
host table, 597, 636
procs_priv table, 597, 637
tables_priv table, 597, 636
time zone tables, 598
time_zone table, 598
time_zone_leap_second table, 598
time_zone_name table, 598
time_zone_transition table, 598
time_zone_transition_type table, 598
user table, 144, 597, 636

system variable
autocommit, 476
automatic_sp_privileges, 477

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2228

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

auto_increment_increment, 1568
auto_increment_offset, 1571
back_log, 477
basedir, 478
bdb_cache_size, 478
bdb_home, 479
bdb_logdir, 479
bdb_log_buffer_size, 479
bdb_max_lock, 479
bdb_shared_data, 480
bdb_tmpdir, 480
big_tables, 480
binlog_cache_size, 481
bulk_insert_buffer_size, 481
character_sets_dir, 484
character_set_client, 482
character_set_connection, 482
character_set_database, 483
character_set_filesystem, 483
character_set_results, 483
character_set_server, 484
character_set_system, 484
collation_connection, 484
collation_database, 484
collation_server, 485
completion_type, 485
concurrent_insert, 486
connect_timeout, 486
datadir, 487
datetime_format, 487
date_format, 487
default_week_format, 487
delayed_insert_limit, 489
delayed_insert_timeout, 489
delayed_queue_size, 489
delay_key_write, 488
div_precision_increment, 490
engine_condition_pushdown, 491
error_count, 491
expire_logs_days, 491
flush, 492
flush_time, 492
foreign_key_checks, 492
ft_boolean_syntax, 493
ft_max_word_len, 493
ft_min_word_len, 494
ft_query_expansion_limit, 494
ft_stopword_file, 495
group_concat_max_len, 495
have_archive, 495
have_bdb, 495
have_blackhole_engine, 496
have_community_features, 496
have_compress, 496

have_crypt, 496
have_csv, 496
have_example_engine, 496
have_federated_engine, 496
have_geometry, 496
have_innodb, 496
have_isam, 496
have_merge_engine, 496
have_openssl, 496
have_profiling, 497
have_query_cache, 497
have_raid, 497
have_rtree_keys, 497
have_ssl, 497
have_symlink, 497
hostname, 497
identity, 497
init_connect, 497
init_file, 498
init_slave, 1586
innodb_additional_mem_pool_size, 1385
innodb_autoextend_increment, 1385
innodb_checksums, 1387
innodb_commit_concurrency, 1387
innodb_concurrency_tickets, 1387
innodb_data_file_path, 1388
innodb_data_home_dir, 1389
innodb_doublewrite, 1389
innodb_fast_shutdown, 1389
innodb_file_per_table, 1390
innodb_flush_log_at_trx_commit, 1390
innodb_flush_method, 1391
innodb_force_recovery, 1393
innodb_locks_unsafe_for_binlog, 1394
innodb_log_buffer_size, 1396
innodb_log_files_in_group, 1397
innodb_log_file_size, 1397
innodb_log_group_home_dir, 1398
innodb_max_dirty_pages_pct, 1398
innodb_max_purge_lag, 1398
innodb_mirrored_log_groups, 1399
insert_id, 498
interactive_timeout, 499
join_buffer_size, 499
keep_files_on_create, 500
key_buffer_size, 500
key_cache_age_threshold, 501
key_cache_block_size, 502
key_cache_division_limit, 502
language, 503
large_files_support, 503
large_pages, 503
large_page_size, 503
last_insert_id, 504

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2229

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

lc_time_names, 504
license, 504
local_infile, 504
locked_in_memory, 505
log, 505
log_bin, 1593
log_bin_trust_function_creators, 505
log_bin_trust_routine_creators, 506
log_error, 506
log_queries_not_using_indexes, 506
log_slow_queries, 506
log_warnings, 507
long_query_time, 507
lower_case_file_system, 508
lower_case_table_names, 508
low_priority_updates, 508
max_allowed_packet, 509
max_binlog_cache_size, 1594
max_binlog_size, 1594
max_connections, 510
max_connect_errors, 510
max_delayed_threads, 511
max_error_count, 511
max_heap_table_size, 512
max_insert_delayed_threads, 512
max_join_size, 513
max_length_for_sort_data, 513
max_prepared_stmt_count, 514
max_relay_log_size, 514
max_seeks_for_key, 515
max_sort_length, 515
max_sp_recursion_depth, 516
max_tmp_tables, 516
max_user_connections, 516
max_write_lock_count, 517
myisam_data_pointer_size, 518
myisam_max_extra_sort_file_size, 518
myisam_max_sort_file_size, 518
myisam_mmap_size, 519
myisam_recover_options, 519
myisam_repair_threads, 520
myisam_sort_buffer_size, 520
myisam_stats_method, 521
named_pipe, 522
net_buffer_length, 522
net_read_timeout, 522
net_retry_count, 523
net_write_timeout, 523
new, 524
old_passwords, 524
one_shot, 525
open_files_limit, 525
optimizer_prune_level, 525
optimizer_search_depth, 526

pid_file, 526
plugin_dir, 526
port, 527
preload_buffer_size, 527
prepared_stmt_count, 527
profiling, 528
profiling_history_size, 528
protocol_version, 528
pseudo_thread_id, 528
query_alloc_block_size, 528
query_cache_limit, 529
query_cache_min_res_unit, 530
query_cache_size, 530
query_cache_type, 531
query_cache_wlock_invalidate, 531
query_prealloc_size, 532
rand_seed1, 532
rand_seed2, 533
range_alloc_block_size, 533
read_buffer_size, 533
read_only, 534
read_rnd_buffer_size, 534
relay_log, 1586
relay_log_index, 1587
relay_log_info_file, 1587
relay_log_purge, 535
relay_log_space_limit, 535
secure_auth, 536
secure_file_priv, 536
server_id, 537
shared_memory, 537
shared_memory_base_name, 537
skip_external_locking, 538
skip_networking, 538
skip_show_database, 538
slave_compressed_protocol, 1587
slave_load_tmpdir, 1587
slave_net_timeout, 1588
slave_skip_errors, 1588
slave_transaction_retries, 1588
slow_launch_time, 539
socket, 539
sort_buffer_size, 539
sql_auto_is_null, 540
sql_big_selects, 540
sql_buffer_result, 541
sql_log_bin, 541
sql_log_off, 541
sql_log_update, 542
sql_mode, 542
sql_notes, 543
sql_quote_show_create, 543
sql_safe_updates, 543
sql_select_limit, 543

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2230

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

sql_slave_skip_counter, 1589
sql_warnings, 543
ssl_ca, 544
ssl_capath, 544
ssl_cert, 544
ssl_cipher, 544
ssl_key, 545
storage_engine, 545
sync_binlog, 1595
sync_frm, 545
system_time_zone, 546
table_cache, 546
table_lock_wait_timeout, 546
table_type, 547
thread_cache_size, 547
thread_concurrency, 548
thread_stack, 548
timed_mutexes, 549
timestamp, 549
time_format, 549
time_zone, 549
tmpdir, 550
tmp_table_size, 550
transaction_alloc_block_size, 551
transaction_prealloc_size, 552
tx_isolation, 552
unique_checks, 553
updatable_views_with_limit, 553
version, 554
version_bdb, 554
version_comment, 554
version_compile_machine, 555
version_compile_os, 555
wait_timeout, 555
warning_count, 556

system variables, 466, 556, 1345
and replication, 1631

system_time_zone system variable, 546
SYSTEM_USER(), 1094

T
tab (\t), 830, 1206
tab option

mysqldump, 337
tab option (ndb_restore), 1775
table

changing, 1135, 1140, 2142
deleting, 1182
rebuilding, 168
repair, 168
row size, 972

table aliases, 1213
table cache, 756

table description
myisamchk, 361

Table Dump
thread command, 816

table is full, 480, 2122
Table is full errors

MySQL Cluster, 2037
Table is full errors (MySQL Cluster), 1706
Table lock

thread state, 821
Table Monitor

InnoDB, 1437
table names

case sensitivity, 838
case-sensitivity, 22

table option
mysql, 298
mysqlaccess, 378

table types
choosing, 1359

table-level locking, 794
tables

BDB, 1460
Berkeley DB, 1460
BLACKHOLE, 1472
checking, 357
cloning, 1164
closing, 756
compressed, 369
compressed format, 1368
const, 771
constant, 708
copying, 1164
counting rows, 228
creating, 215
CSV, 1471
defragment, 1367
defragmenting, 702, 1305
deleting rows, 2138
displaying, 345
displaying status, 1342
dumping, 324, 389
dynamic, 1367
error checking, 698
EXAMPLE, 1466
FEDERATED, 1466
flush, 314
fragmentation, 1305
HEAP, 1458
host, 648
improving performance, 752
information, 361
information about, 232
InnoDB, 1370

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2231

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

loading data, 217
maintenance, 318
maintenance schedule, 702
maximum size, 2155
MEMORY, 1458
MERGE, 1452
merging, 1452
multiple, 230
MyISAM, 1362
names, 836
open, 756
opening, 756
optimizing, 701
partitioning, 1452
repair, 318
repairing, 699
retrieving data, 218
selecting columns, 220
selecting rows, 219
sorting rows, 221
symbolic links, 803
system, 771
too many, 757
unique ID for last row, 1985
updating, 25

TABLES
INFORMATION_SCHEMA table, 1869

tables option
mysqlcheck, 324
mysqldump, 337

Tablespace Monitor
InnoDB, 1414, 1435, 1437

tables_priv table
system table, 597, 636

table_cache, 756
table_cache system variable, 546
table_lock_wait_timeout system variable, 546
TABLE_PRIVILEGES

INFORMATION_SCHEMA table, 1870
table_type system variable, 547
TAN(), 1039
tar

problems on Solaris, 106, 178
tar option

make_win_src_distribution, 281
tbl-status option

mysql_tableinfo, 408
tc-heuristic-recover option

mysqld, 464
Tcl API, 1993
tcp-ip option

mysqld_multi, 276
TCP/IP, 83, 89
tee command

mysql, 303
tee option

mysql, 298
temp-pool option

mysqld, 464
temporary file

write access, 138
temporary files, 2131
temporary tables

and replication, 1627
internal, 757
problems, 2143

terminal monitor
defined, 209

test option
myisampack, 371

testing
connection to the server, 643
installation, 135
of MySQL releases, 47
postinstallation, 134

testing mysqld
mysqltest, 1996

TEXT
size, 975

TEXT columns
default values, 950
indexing, 747, 1158

TEXT data type, 930, 949
text files

importing, 308, 341
thread cache, 809
thread command

Binlog Dump, 814
Change user, 814
Close stmt, 814
Connect, 814
Connect Out, 814
Create DB, 814
Daemon, 814
Debug, 815
Delayed insert, 815
Drop DB, 815
Error, 815
Execute, 815
Fetch, 815
Field List, 815
Init DB, 815
Kill, 815
Long Data, 815
Ping, 815
Prepare, 815
Processlist, 815
Query, 815

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2232

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Quit, 815
Refresh, 815
Register Slave, 816
Reset stmt, 816
Set option, 816
Shutdown, 816
Sleep, 816
Statistics, 816
Table Dump, 816
Time, 816

thread commands, 814
thread state

After create, 816
allocating local table, 822
Analyzing, 816
Changing master, 826
Checking master version, 824
checking permissions, 816
checking privileges on cached query, 823
checking query cache for query, 823
Checking table, 816
cleaning up, 817
closing tables, 817
Committing events to binlog, 826
Connecting to master, 824
converting HEAP to MyISAM, 817
copy to tmp table, 817
Copying to group table, 817
Copying to tmp table, 817
Copying to tmp table on disk, 817
Creating delayed handler, 822
Creating index, 817
Creating sort index, 817
creating table, 817
Creating table from master dump, 826
Creating tmp table, 817
deleting from main table, 817
deleting from reference tables, 817
discard_or_import_tablespace, 818
end, 818
executing, 818
Execution of init_command, 818
Finished reading one binlog; switching to next binlog,
824
Flushing tables, 818
freeing items, 818
FULLTEXT initialization, 818
got handler lock, 822
got old table, 822
Has read all relay log; waiting for the slave I/O thread
to update it, 825
Has sent all binlog to slave; waiting for binlog to be
updated, 824
init, 818

insert, 823
invalidating query cache entries, 823
Killed, 818
Killing slave, 826
Locked, 818
logging slow query, 819
login, 819
Making temp file, 825
NULL, 819
Opening master dump table, 826
Opening mysql.ndb_apply_status, 826
Opening table, 819
Opening tables, 819
optimizing, 819
preparing, 819
Processing events, 826
Processing events from schema table, 826
Purging old relay logs, 819
query end, 819
Queueing master event to the relay log, 824
Reading event from the relay log, 825
Reading from net, 819
Reading master dump table data, 826
Rebuilding the index on master dump table, 826
Reconnecting after a failed binlog dump request, 824
Reconnecting after a failed master event read, 825
Registering slave on master, 824
Removing duplicates, 819
removing tmp table, 819
rename, 819
rename result table, 819
Reopen tables, 819
Repair by sorting, 820
Repair done, 820
Repair with keycache, 820
Requesting binlog dump, 824
reschedule, 823
Rolling back, 820
Saving state, 820
Searching rows for update, 820
Sending binlog event to slave, 823
sending cached result to client, 823
setup, 820
Shutting down, 826
Sorting for group, 820
Sorting for order, 820
Sorting index, 820
Sorting result, 820
starting slave, 826
statistics, 820
storing result in query cache, 823
storing row into queue, 822
Syncing ndb table schema operation and binlog, 826
System lock, 821

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2233

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Table lock, 821
update, 821
Updating, 821
updating main table, 821
updating reference tables, 821
upgrading lock, 823
User lock, 821
waiting for delay_list, 822
Waiting for event from ndbcluster, 826
Waiting for first event from ndbcluster, 826
waiting for handler insert, 822
waiting for handler lock, 822
waiting for handler open, 823
Waiting for INSERT, 823
Waiting for master to send event, 824
Waiting for master update, 824
Waiting for ndbcluster binlog update to reach current
position, 826
Waiting for ndbcluster to start, 827
Waiting for release of readlock, 821
Waiting for schema epoch, 827
Waiting for slave mutex on exit, 825, 825
Waiting for table, 821
Waiting for tables, 821
Waiting for the next event in relay log, 825
Waiting for the slave SQL thread to free enough relay
log space, 825
Waiting on cond, 822
Waiting to finalize termination, 824
Waiting to get readlock, 822
Waiting to reconnect after a failed binlog dump
request, 824
Waiting to reconnect after a failed master event read,
825
Writing to net, 822

thread states, 813
delayed inserts, 822
general, 816
MySQL Cluster, 826
query cache, 823
replication master, 823
replication slave, 824, 825, 825

threaded clients, 1887
threads, 314, 1331, 1995

display, 1331
monitoring, 813, 1331, 1331, 1876

thread_cache_size system variable, 547
thread_concurrency system variable, 548
thread_stack system variable, 548
Time

thread command, 816
TIME data type, 926, 938
time literals, 832
time types, 974

time zone problems, 2133
time zone tables, 285

system tables, 598
time zones

and replication, 1629
leap seconds, 917
support, 913
upgrading, 915

TIME(), 1055
TimeBetweenGlobalCheckpoints, 1720
TimeBetweenInactiveTransactionAbortCheck, 1720
TimeBetweenLocalCheckpoints, 1720
TimeBetweenWatchDogCheck, 1718
TIMEDIFF(), 1055
timed_mutexes system variable, 549
timeout, 486, 1109, 1199

connect_timeout variable, 300, 318
shutdown_timeout variable, 318

timeout option
ndb_waiter, 1784

timeouts (replication), 1629
TIMESTAMP

and logs, 157
and NULL values, 2137
and replication, 157, 1621, 1629
initialization and updating, 941

TIMESTAMP data type, 926, 937
timestamp system variable, 549
TIMESTAMP(), 1055
TIMESTAMPADD(), 1055
TIMESTAMPDIFF(), 1056
timezone option

mysqld_safe, 271
time_format system variable, 549
TIME_FORMAT(), 1056
TIME_TO_SEC(), 1056
time_zone system variable, 549
time_zone table

system table, 598
time_zone_leap_second table

system table, 598
time_zone_name table

system table, 598
time_zone_transition table

system table, 598
time_zone_transition_type table

system table, 598
TINYBLOB data type, 929
TINYINT data type, 922
TINYTEXT data type, 930
tips

optimization, 744
TLS, 662

command options, 668

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2234

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

establishing connections, 666
tmp option

make_win_src_distribution, 281
TMPDIR environment variable, 138, 203, 249, 2131
tmpdir option

myisamchk, 360
myisampack, 371
mysqld, 465
mysqlhotcopy, 392
mysql_upgrade, 289

tmpdir system variable, 550
tmp_table_size system variable, 550
to-last-log option

mysqlbinlog, 384
tools

command-line, 290
list of, 39
mysqld_multi, 274
mysqld_safe, 268
safe_mysqld, 268

Touches(), 1107
TO_DAYS(), 1056
trace DBI method, 2014
trace files (MySQL Cluster), 1755
TRADITIONAL SQL mode, 587, 593
transaction isolation level, 1252

READ COMMITTED, 1254
READ UNCOMMITTED, 1254
REPEATABLE READ, 1253
SERIALIZABLE, 1254

transaction-isolation option
mysqld, 464

transaction-safe tables, 25, 1370
transactional option

ndb_delete_all, 1766
TransactionBufferMemory, 1711
TransactionDeadlockDetectionTimeout, 1721
TransactionInactiveTimeout, 1721
transactions, 1417

and replication, 1629, 1630
isolation levels, 1417
support, 25, 1370

transaction_alloc_block_size system variable, 551
transaction_prealloc_size system variable, 552
Translators

list of, 37
trigger

restrictions, 2147
triggers, 1173, 1182, 1344, 1833, 1837

and INSERT DELAYED, 1196
and replication, 1630
LAST_INSERT_ID(), 1837
metadata, 1842

TRIGGERS

INFORMATION_SCHEMA table, 1871
triggers option

mysqldump, 337
TRIM(), 1016
troubleshooting

FreeBSD, 132
Solaris, 132
with MySQL Enterprise Monitor, 2021

TRUE, 832, 835
testing for, 996, 996

TRUNCATE TABLE, 1184
and MySQL Cluster, 1648

TRUNCATE(), 1039
tuning, 704
tupscan option

ndb_select_all, 1779
tutorial, 209
tx_isolation system variable, 552
type codes

C prepared statement API, 1954
type conversions, 989, 994
type option

mysql_convert_table_format, 403
ndb_config, 1763
ndb_show_tables, 1781

types
columns, 921, 976
data, 921
date, 974
Date and Time, 935
numeric, 973
of tables, 1359
portability, 976
string, 974
strings, 946
time, 974

typographical conventions, 3
TZ environment variable, 203, 2133
tz-utc option

mysqldump, 338

U
UCASE(), 1017
UCS-2, 857
ucs2 character set, 885
UDFs, 1309, 1310

compiling, 2005
defined, 1997
return values, 2005

ulimit, 2124
UMASK environment variable, 203, 2125
UMASK_DIR environment variable, 203, 2125
unary minus (-), 1029

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2235

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

unbuffered option
mysql, 298

UNCOMPRESS(), 1087
UNCOMPRESSED_LENGTH(), 1087
UndoDataBuffer, 1724
UndoIndexBuffer, 1723
UNHEX(), 1017
Unicode, 857
Unicode Collation Algorithm, 890
UNION, 239, 1226
UNIQUE, 1139
unique ID, 1985
unique key

constraint, 29
unique_checks system variable, 553
unique_subquery join type

optimizer, 772
Unix

compiling clients on, 1885
UNIX_TIMESTAMP(), 1057
UNKNOWN

testing for, 996, 996
unloading

tables, 218
UNLOCK TABLES, 1247
unnamed views, 1234
unpack option

myisamchk, 360
unqualified option

ndb_desc, 1767
ndb_show_tables, 1782

UNSIGNED, 922, 931
UNTIL, 1278
updatable views, 1844
updatable_views_with_limit system variable, 553
UPDATE, 25, 1240
update

thread state, 821
update-state option

myisamchk, 358
updating

releases of MySQL, 48
tables, 25

Updating
thread state, 821

updating main table
thread state, 821

updating reference tables
thread state, 821

upgrades
MySQL Cluster, 1670, 1797

upgrades and downgrades (MySQL Cluster)
compatibility between versions, 1670

upgrading, 149, 149

different architecture, 170
grant tables, 282
to ¤t-series;, 153

upgrading lock
thread state, 823

upgrading MySQL, 286
upgrading tables

ISAM, 158
RAID, 158

UPPER(), 1017
uptime, 313
URLs for downloading MySQL, 49
usage option

MySQL Cluster programs, 1786
ndb_config, 1761

USE, 1358
use command

mysql, 303
USE INDEX, 781
USE KEY, 781
use-frm option

mysqlcheck, 324
use-manager option

mysql.server, 274
use-mysqld_safe option

mysql.server, 274
useHexFormat option

ndb_select_all, 1778
user accounts

creating, 1286
renaming, 1298
resource limits, 516, 659, 1297

USER environment variable, 203, 253
User lock

thread state, 821
user names

and passwords, 654
user option, 253

mysql, 299
mysql.server, 274
mysqlaccess, 378
mysqladmin, 317
mysqlbinlog, 384
mysqlcheck, 324
mysqld, 465
mysqldump, 338
mysqld_multi, 277
mysqld_safe, 271
mysqlhotcopy, 392
mysqlimport, 345
mysqlmanager, 395
mysqlshow, 349
mysql_convert_table_format, 403
mysql_explain_log, 404

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2236

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql_install_db, 285
mysql_setpermission, 406
mysql_tableinfo, 408
mysql_upgrade, 290

user privileges
adding, 656
deleting, 659, 1287
dropping, 659, 1287

user table
sorting, 645
system table, 144, 597, 636

user variables, 849
and replication, 1631

USER(), 1094
User-defined functions, 1309, 1310
user-defined functions

adding, 1997, 1998
users

adding, 119, 139
deleting, 659, 1287
root, 144

USER_PRIVILEGES
INFORMATION_SCHEMA table, 1873

USING HASH
with NDB tables, 1147

using multiple disks to start data, 805
using MySQL Cluster programs, 1751
UTC_DATE(), 1058
UTC_TIME(), 1058
UTC_TIMESTAMP(), 1058
UTF-8, 857
utf8 character set, 886
utilities

program-development, 248
utility programs, 246
UUID(), 1112

V
valid numbers

examples, 832
VALUES(), 1113
VARBINARY data type, 929, 948
VARCHAR

size, 975
VARCHAR data type, 929, 946
VARCHARACTER data type, 929
variables

and replication, 1631
environment, 249
mysqld, 800
server, 1345
status, 566, 1340
system, 466, 556, 1345

user, 849
VARIANCE(), 1118
VAR_POP(), 1118
VAR_SAMP(), 1118
verbose option

myisamchk, 356
myisampack, 371
myisam_ftdump, 351
mysql, 299
mysqladmin, 318
mysqlcheck, 324
mysqld, 465
mysqldump, 338
mysqldumpslow, 389
mysqld_multi, 277
mysqlimport, 345
mysqlshow, 349
mysql_convert_table_format, 403
mysql_install_db, 285
mysql_upgrade, 290
mysql_waitpid, 409
my_print_defaults, 412
perror, 413

verbose option (ndb_restore), 1776
version

choosing, 45
latest, 49

version option
comp_err, 280
myisamchk, 356
myisampack, 371
mysql, 299
mysqlaccess, 378
mysqladmin, 318
mysqlbinlog, 384
mysqlcheck, 324
mysqld, 465
mysqldump, 338
mysqld_multi, 277
mysqlimport, 345
mysqlmanager, 395
mysqlshow, 349
mysql_config, 411
mysql_convert_table_format, 403
mysql_waitpid, 409
my_print_defaults, 412
ndb_config, 1761
perror, 413
resolveip, 415
resolve_stack_dump, 412

version option (MySQL Cluster), 1788
version system variable, 554
VERSION(), 1095
version_bdb system variable, 554

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2237

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

version_comment system variable, 554
version_compile_machine system variable, 555
version_compile_os system variable, 555
vertical option

mysql, 299
mysqladmin, 318

Vietnamese, 2049
view

restrictions, 2152
views, 1175, 1833, 1842

algorithms, 1843
and replication, 1631
metadata, 1846
updatable, 1175, 1844

VIEWS
INFORMATION_SCHEMA table, 1873

Views
limitations, 2154
privileges, 2154
problems, 2154

virtual memory
problems while compiling, 131

Visual Studio, 95

W
WAIT COMPLETED (START BACKUP command),
wait option

myisamchk, 356
myisampack, 371
mysql, 299
mysqladmin, 318

WAIT STARTED (START BACKUP command),
wait-timeout option

mysqlmanager, 395
waiting for delay_list

thread state, 822
Waiting for event from ndbcluster

thread state, 826
Waiting for first event from ndbcluster

thread state, 826
waiting for handler insert

thread state, 822
waiting for handler lock

thread state, 822
waiting for handler open

thread state, 823
Waiting for INSERT

thread state, 823
Waiting for master to send event

thread state, 824
Waiting for master update

thread state, 824

Waiting for ndbcluster binlog update to reach current
position

thread state, 826
Waiting for ndbcluster to start

thread state, 827
Waiting for release of readlock

thread state, 821
Waiting for schema epoch

thread state, 827
Waiting for slave mutex on exit

thread state, 825, 825
Waiting for table

thread state, 821
Waiting for tables

thread state, 821
Waiting for the next event in relay log

thread state, 825
Waiting for the slave SQL thread to free enough relay log
space

thread state, 825
Waiting on cond

thread state, 822
Waiting to finalize termination

thread state, 824
Waiting to get readlock

thread state, 822
Waiting to reconnect after a failed binlog dump request

thread state, 824
Waiting to reconnect after a failed master event read

thread state, 825
wait_timeout system variable, 555
warnings command

mysql, 303
warning_count system variable, 556
WARN_DATA_TRUNCATED error code, 2089
WEEK(), 1059
WEEKDAY(), 1060
WEEKOFYEAR(), 1060
Well-Known Binary format, 965
Well-Known Text format, 964
WHERE, 708

with SHOW, 1859, 1874
where option

mysqldump, 338
WHILE, 1279

labels, 1272
widths

display, 921
Wildcard character (%), 830
Wildcard character (_), 831
wildcards

and LIKE, 751
in account names, 642
in mysql.columns_priv table, 646

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2238

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

in mysql.db table, 646
in mysql.host table, 646
in mysql.procs_priv table, 646
in mysql.tables_priv table, 646

Windows
compiling clients on, 1886
MySQL limitations, 2158, 2159
path name separators, 259
upgrading, 93

windows option
mysql_install_db, 285

with-big-tables option, 122
configure, 130

with-client-ldflags option
configure, 128

with-debug option
configure, 129

with-embedded-server option
configure, 127

with-extra-charsets option
configure, 129

with-tcp-port option
configure, 127

with-unix-socket-path option
configure, 127

with-zlib-dir option
configure, 129

Within(), 1107
without-server option, 122

configure, 127
WKB format, 965
WKT format, 964
wrappers

Eiffel, 1993
write access

tmp, 138
write_buffer_size myisamchk variable, 356
Writing to net

thread state, 822

X
X(), 1102
X509/Certificate, 662
XA BEGIN, 1256
XA COMMIT, 1256
XA PREPARE, 1256
XA RECOVER, 1256
XA ROLLBACK, 1256
XA START, 1256
XA transactions, 1254

restrictions, 2154
transaction identifiers, 1256

xid

XA transaction identifier, 1256
xml option

mysql, 299
mysqldump, 338

XOR
bitwise, 1080
logical, 1001

Y
Y(), 1102
yaSSL, 662, 663

compared to OpenSSL, 663
YEAR data type, 926, 939
YEAR(), 1060
YEARWEEK(), 1060
Yen sign (Japanese), 2049

Z
ZEROFILL, 922, 931, 1990
ZFS, 1482

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2239

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

C Function Index

my_init()
Section 20.6.6, “C API Function Overview”
Section 20.6.12.1, “my_init()”
Section 20.6.12.3, “mysql_thread_init()”

mysql_affected_rows()
Section 20.6.5, “C API Data Structures”
Section 20.6.6, “C API Function Overview”
Section 13.2.1, “CALL Syntax”
Section 12.13, “Information Functions”
Section 13.2.5, “INSERT Syntax”
Section 20.6.7.1, “mysql_affected_rows()”
Section 20.6.7.46, “mysql_next_result()”
Section 20.6.7.48, “mysql_num_rows()”
Section 20.6.11.1, “mysql_stmt_affected_rows()”
Section 20.6.7.71, “mysql_use_result()”
Section 13.2.7, “REPLACE Syntax”
Section 20.6.14.2, “What Results You Can Get from a
Query”

mysql_autocommit()
Section 20.6.6, “C API Function Overview”

mysql_change_user()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.3, “mysql_change_user()”

mysql_character_set_name()
Section 20.6.6, “C API Function Overview”

mysql_close()
Section 20.6.6, “C API Function Overview”
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section 20.6.7.5, “mysql_close()”
Section 20.6.7.6, “mysql_commit()”
Section 20.6.7.7, “mysql_connect()”
Section 20.6.7.36, “mysql_init()”
Section 20.6.7.57, “mysql_rollback()”

mysql_commit()
Section 20.6.6, “C API Function Overview”

mysql_connect()
Section 20.6.6, “C API Function Overview”
Section 20.6.12.1, “my_init()”
Section 20.6.7.5, “mysql_close()”
Section 20.6.7.7, “mysql_connect()”
Section 20.6.7.49, “mysql_options()”

Section 20.6.12.3, “mysql_thread_init()”
Section 20.6.4.2, “Writing C API Threaded Client
Programs”

mysql_create_db()
Section 20.6.6, “C API Function Overview”

mysql_data_seek()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.9, “mysql_data_seek()”
Section 20.6.7.58, “mysql_row_seek()”
Section 20.6.7.71, “mysql_use_result()”

mysql_debug()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.10, “mysql_debug()”

mysql_drop_db()
Section 20.6.6, “C API Function Overview”

mysql_dump_debug_info()
Section 20.6.6, “C API Function Overview”

mysql_eof()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.13, “mysql_eof()”

mysql_errno()
Section 20.6.7, “C API Function Descriptions”
Section 20.6.6, “C API Function Overview”
Section 20.6.7.7, “mysql_connect()”
Section 20.6.7.13, “mysql_eof()”
Section 20.6.7.14, “mysql_errno()”
Section 20.6.7.22, “mysql_field_count()”
Section 20.6.7.47, “mysql_num_fields()”
Section 20.6.7.66, “mysql_sqlstate()”
Section 20.6.7.69, “mysql_store_result()”
Section 20.6.7.71, “mysql_use_result()”
Section B.2, “Types of Error Values”
Section 20.6.14.1, “Why mysql_store_result() Sometimes
Returns NULL After mysql_query() Returns Success”

mysql_error()
Section 20.6.7, “C API Function Descriptions”
Section 20.6.6, “C API Function Overview”
Section 20.6.7.7, “mysql_connect()”
Section 20.6.7.13, “mysql_eof()”
Section 20.6.7.15, “mysql_error()”
Section 20.6.7.69, “mysql_store_result()”
Section 20.6.7.71, “mysql_use_result()”
Section B.2, “Types of Error Values”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2240

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 20.6.14.1, “Why mysql_store_result() Sometimes
Returns NULL After mysql_query() Returns Success”

mysql_escape_string()
Section 20.6.6, “C API Function Overview”
Section 6.1.7, “Client Programming Security Guidelines”
Section 20.6.7.16, “mysql_escape_string()”

mysql_fetch_field()
Section 20.6.5, “C API Data Structures”
Section 20.6.6, “C API Function Overview”
Section 20.6.7.17, “mysql_fetch_field()”
Section 20.6.7.23, “mysql_field_seek()”
Section 20.6.7.24, “mysql_field_tell()”
Section 20.6.11.22, “mysql_stmt_result_metadata()”

mysql_fetch_field_direct()
Section 20.6.6, “C API Function Overview”
Section 20.6.11.22, “mysql_stmt_result_metadata()”

mysql_fetch_fields()
Section 20.6.6, “C API Function Overview”
Section 20.6.11.22, “mysql_stmt_result_metadata()”

mysql_fetch_lengths()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.20, “mysql_fetch_lengths()”
Section 20.6.7.21, “mysql_fetch_row()”

mysql_fetch_row()
Section 20.6.5, “C API Data Structures”
Section 20.6.6, “C API Function Overview”
Section 14.7.1, “Description of the FEDERATED Storage
Engine”
Section 20.6.7.13, “mysql_eof()”
Section 20.6.7.14, “mysql_errno()”
Section 20.6.7.20, “mysql_fetch_lengths()”
Section 20.6.7.21, “mysql_fetch_row()”
Section 20.6.7.59, “mysql_row_tell()”
Section 20.6.7.69, “mysql_store_result()”
Section 20.6.7.71, “mysql_use_result()”
Section 20.6.14.2, “What Results You Can Get from a
Query”

mysql_field_count()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.22, “mysql_field_count()”
Section 20.6.7.47, “mysql_num_fields()”
Section 20.6.7.51, “mysql_query()”
Section 20.6.7.54, “mysql_real_query()”
Section 20.6.11.22, “mysql_stmt_result_metadata()”
Section 20.6.7.69, “mysql_store_result()”

Section 20.6.14.1, “Why mysql_store_result() Sometimes
Returns NULL After mysql_query() Returns Success”

mysql_field_seek()
Section 20.6.5, “C API Data Structures”
Section 20.6.6, “C API Function Overview”
Section 20.6.7.17, “mysql_fetch_field()”
Section 20.6.7.24, “mysql_field_tell()”
Section 20.6.11.22, “mysql_stmt_result_metadata()”

mysql_field_tell()
Section 20.6.6, “C API Function Overview”
Section 20.6.11.22, “mysql_stmt_result_metadata()”

mysql_free_result()
Section 20.6.6, “C API Function Overview”
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section B.5.2.14, “Commands out of sync”
Section 20.6.7.25, “mysql_free_result()”
Section 20.6.7.41, “mysql_list_dbs()”
Section 20.6.7.42, “mysql_list_fields()”
Section 20.6.7.43, “mysql_list_processes()”
Section 20.6.7.44, “mysql_list_tables()”
Section 20.6.7.46, “mysql_next_result()”
Section 20.6.11.22, “mysql_stmt_result_metadata()”
Section 20.6.7.69, “mysql_store_result()”
Section 20.6.7.71, “mysql_use_result()”

mysql_get_character_set_info()
Section 20.6.6, “C API Function Overview”
Section 10.4.2, “Choosing a Collation ID”

mysql_get_client_info()
Section 20.6.6, “C API Function Overview”
Section 20.6.4.4, “C API Server and Client Library
Versions”
Section 20.6.7.7, “mysql_connect()”

mysql_get_client_version()
Section 20.6.6, “C API Function Overview”
Section 20.6.4.4, “C API Server and Client Library
Versions”

mysql_get_host_info()
Section 20.6.6, “C API Function Overview”

mysql_get_proto_info()
Section 20.6.6, “C API Function Overview”

mysql_get_server_info()
Section 20.6.6, “C API Function Overview”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2241

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 20.6.4.4, “C API Server and Client Library
Versions”

mysql_get_server_version()
Section 20.6.6, “C API Function Overview”
Section 20.6.4.4, “C API Server and Client Library
Versions”

mysql_get_ssl_cipher()
Section 20.6.6, “C API Function Overview”
Section 6.3.6.4, “Configuring MySQL to Use Secure
Connections”
Section 20.6.7.33, “mysql_get_ssl_cipher()”

mysql_hex_string()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.34, “mysql_hex_string()”

mysql_info()
Section 13.1.4, “ALTER TABLE Syntax”
Section 20.6.6, “C API Function Overview”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 20.6.7.35, “mysql_info()”
Section 20.6.7.49, “mysql_options()”
Section 1.8.3.1, “PRIMARY KEY and UNIQUE Index
Constraints”
Section 13.2.10, “UPDATE Syntax”
Section 20.6.14.2, “What Results You Can Get from a
Query”

mysql_init()
Section 20.6.6, “C API Function Overview”
Section 20.6.12.1, “my_init()”
Section 20.6.7.5, “mysql_close()”
Section 20.6.7.33, “mysql_get_ssl_cipher()”
Section 20.6.7.36, “mysql_init()”
Section 20.6.7.40, “mysql_library_init()”
Section 20.6.7.49, “mysql_options()”
Section 20.6.7.52, “mysql_real_connect()”
Section 20.6.7.67, “mysql_ssl_set()”
Section 20.6.12.3, “mysql_thread_init()”
Section 20.6.4.2, “Writing C API Threaded Client
Programs”

mysql_insert_id()
Section 20.6.5, “C API Data Structures”
Section 20.6.6, “C API Function Overview”
Section 13.1.10, “CREATE TABLE Syntax”
Section 20.6.14.3, “How to Get the Unique ID for the Last
Inserted Row”
Section 12.13, “Information Functions”

Section 13.2.5, “INSERT Syntax”
Section 20.6.7.37, “mysql_insert_id()”
Section 5.1.4, “Server System Variables”
Section 1.8.2.3, “Transactions and Atomic Operations”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 20.6.14.2, “What Results You Can Get from a
Query”

mysql_kill()
Section 20.6.6, “C API Function Overview”
Section 20.6.15, “Controlling Automatic Reconnection
Behavior”
Section 20.6.7.70, “mysql_thread_id()”

mysql_library_end()
Section 20.6.13, “C API Embedded Server Function
Descriptions”
Section 20.6.6, “C API Function Overview”
Section 20.5, “libmysqld, the Embedded MySQL Server
Library”
Section 20.6.7.39, “mysql_library_end()”
Section 20.6.7.40, “mysql_library_init()”
Section 20.6.13.2, “mysql_server_end()”

mysql_library_init()
Section 20.6.13, “C API Embedded Server Function
Descriptions”
Section 20.6.6, “C API Function Overview”
Section 20.5, “libmysqld, the Embedded MySQL Server
Library”
Section 20.6.12.1, “my_init()”
Section 20.6.7.36, “mysql_init()”
Section 20.6.7.40, “mysql_library_init()”
Section 20.6.13.1, “mysql_server_init()”
Section 20.6.12.3, “mysql_thread_init()”
Section 20.6.4.2, “Writing C API Threaded Client
Programs”

mysql_list_dbs()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.25, “mysql_free_result()”
Section 20.6.7.41, “mysql_list_dbs()”

mysql_list_fields()
Section 20.6.5, “C API Data Structures”
Section 20.6.6, “C API Function Overview”
Section 20.6.7.42, “mysql_list_fields()”

mysql_list_processes()
Section 20.6.6, “C API Function Overview”

mysql_list_tables()
Section 20.6.6, “C API Function Overview”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2242

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 20.6.7.44, “mysql_list_tables()”

mysql_more_results()
Section 20.6.6, “C API Function Overview”
Section 20.6.16, “C API Support for Multiple Statement
Execution”
Section 20.6.7.45, “mysql_more_results()”
Section 20.6.7.46, “mysql_next_result()”

mysql_next_result()
Section 20.6.6, “C API Function Overview”
Section 20.6.16, “C API Support for Multiple Statement
Execution”
Section 13.2.1, “CALL Syntax”
Section 20.6.7.45, “mysql_more_results()”
Section 20.6.7.46, “mysql_next_result()”
Section 20.6.7.52, “mysql_real_connect()”
Section 20.6.7.64, “mysql_set_server_option()”
Section 20.6.7.69, “mysql_store_result()”

mysql_num_fields()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.18, “mysql_fetch_field_direct()”
Section 20.6.7.21, “mysql_fetch_row()”
Section 20.6.11.22, “mysql_stmt_result_metadata()”

mysql_num_rows()
Section 20.6.5, “C API Data Structures”
Section 20.6.6, “C API Function Overview”
Section 20.6.7.1, “mysql_affected_rows()”
Section 20.6.7.9, “mysql_data_seek()”
Section 20.6.7.48, “mysql_num_rows()”
Section 20.6.7.69, “mysql_store_result()”
Section 20.6.7.71, “mysql_use_result()”
Section 20.6.14.2, “What Results You Can Get from a
Query”

mysql_options()
Section 20.6.6, “C API Function Overview”
Section 20.6.9, “C API Prepared Statement Data
Structures”
Section 20.6.15, “Controlling Automatic Reconnection
Behavior”
Section B.5.2.9, “MySQL server has gone away”
Section 20.6.7.49, “mysql_options()”
Section 20.6.7.50, “mysql_ping()”
Section 20.6.7.52, “mysql_real_connect()”
Section 20.6.11.11, “mysql_stmt_fetch()”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 6.3.1, “User Names and Passwords”
Section 5.5.4, “Using Client Programs in a Multiple-
Server Environment”
Section 6.3.6, “Using Secure Connections”

mysql_ping()
Section 20.6.6, “C API Function Overview”
Section 20.6.15, “Controlling Automatic Reconnection
Behavior”
Section B.5.2.9, “MySQL server has gone away”
Section 20.6.7.50, “mysql_ping()”
Section 20.6.7.70, “mysql_thread_id()”

mysql_query()
Section 20.6.6, “C API Function Overview”
Section 20.6.16, “C API Support for Multiple Statement
Execution”
Section 13.2.1, “CALL Syntax”
Section 20.6.14.3, “How to Get the Unique ID for the Last
Inserted Row”
Section 20.6.7.1, “mysql_affected_rows()”
Section 20.6.7.8, “mysql_create_db()”
Section 20.6.7.11, “mysql_drop_db()”
Section 20.6.7.17, “mysql_fetch_field()”
Section 20.6.7.38, “mysql_kill()”
Section 20.6.7.46, “mysql_next_result()”
Section 20.6.7.51, “mysql_query()”
Section 20.6.7.52, “mysql_real_connect()”
Section 20.6.7.54, “mysql_real_query()”
Section 20.6.7.56, “mysql_reload()”
Section 20.6.7.63, “mysql_set_local_infile_handler()”
Section 20.6.7.64, “mysql_set_server_option()”
Section 20.6.7.69, “mysql_store_result()”
Section 20.6.7.71, “mysql_use_result()”
Section 20.6.14.1, “Why mysql_store_result() Sometimes
Returns NULL After mysql_query() Returns Success”
Section 20.6.4.2, “Writing C API Threaded Client
Programs”

mysql_real_connect()
Section 20.6.6, “C API Function Overview”
Section 20.6.16, “C API Support for Multiple Statement
Execution”
Section 13.2.1, “CALL Syntax”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 6.3.6.4, “Configuring MySQL to Use Secure
Connections”
Chapter 12, Functions and Operators
Section 12.13, “Information Functions”
Section 20.6.7.1, “mysql_affected_rows()”
Section 20.6.7.3, “mysql_change_user()”
Section 20.6.7.7, “mysql_connect()”
Section 20.6.7.36, “mysql_init()”
Section 20.6.7.46, “mysql_next_result()”
Section 20.6.7.49, “mysql_options()”
Section 20.6.7.52, “mysql_real_connect()”
Section 20.6.7.64, “mysql_set_server_option()”
Section 20.6.7.66, “mysql_sqlstate()”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2243

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 20.6.7.67, “mysql_ssl_set()”
Section 5.1.4, “Server System Variables”
Section 13.5, “SQL Syntax for Prepared Statements”
Section 18.2.1, “Stored Routine Syntax”
Section 5.5.4, “Using Client Programs in a Multiple-
Server Environment”

mysql_real_escape_string()
Section 20.6.6, “C API Function Overview”
Section 6.1.7, “Client Programming Security Guidelines”
Section 20.6.7.16, “mysql_escape_string()”
Section 20.6.7.53, “mysql_real_escape_string()”
Section 20.6.7.61, “mysql_set_character_set()”
Section 11.5.3.3, “Populating Spatial Columns”
Section 9.1.1, “String Literals”

mysql_real_query()
Section 20.6.6, “C API Function Overview”
Section 20.6.16, “C API Support for Multiple Statement
Execution”
Section 13.2.1, “CALL Syntax”
Section 14.7.1, “Description of the FEDERATED Storage
Engine”
Section 20.6.7.1, “mysql_affected_rows()”
Section 20.6.7.46, “mysql_next_result()”
Section 20.6.7.51, “mysql_query()”
Section 20.6.7.52, “mysql_real_connect()”
Section 20.6.7.54, “mysql_real_query()”
Section 20.6.7.64, “mysql_set_server_option()”
Section 20.6.7.69, “mysql_store_result()”
Section 20.6.7.71, “mysql_use_result()”

mysql_refresh()
Section 20.6.6, “C API Function Overview”

mysql_reload()
Section 20.6.6, “C API Function Overview”

mysql_rollback()
Section 20.6.6, “C API Function Overview”

mysql_row_seek()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.58, “mysql_row_seek()”
Section 20.6.7.59, “mysql_row_tell()”
Section 20.6.7.69, “mysql_store_result()”
Section 20.6.7.71, “mysql_use_result()”

mysql_row_tell()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.58, “mysql_row_seek()”
Section 20.6.7.59, “mysql_row_tell()”

Section 20.6.7.69, “mysql_store_result()”
Section 20.6.7.71, “mysql_use_result()”

mysql_select_db()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.60, “mysql_select_db()”

mysql_server_end()
Section 20.6.13, “C API Embedded Server Function
Descriptions”
Section 20.6.6, “C API Function Overview”
Section 20.6.7.39, “mysql_library_end()”
Section 20.6.13.2, “mysql_server_end()”

mysql_server_init()
Section 20.6.13, “C API Embedded Server Function
Descriptions”
Section 20.6.6, “C API Function Overview”
Section 20.6.12.1, “my_init()”
Section 20.6.7.40, “mysql_library_init()”
Section 20.6.13.1, “mysql_server_init()”
Section 20.6.12.3, “mysql_thread_init()”

mysql_set_character_set()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.26, “mysql_get_character_set_info()”
Section 20.6.7.53, “mysql_real_escape_string()”

mysql_set_local_infile_default()
Section 20.6.6, “C API Function Overview”

mysql_set_local_infile_handler()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.62, “mysql_set_local_infile_default()”
Section 20.6.7.63, “mysql_set_local_infile_handler()”

mysql_set_server_option()
Section 20.6.6, “C API Function Overview”
Section 20.6.16, “C API Support for Multiple Statement
Execution”
Section 20.6.7.64, “mysql_set_server_option()”

mysql_shutdown()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.65, “mysql_shutdown()”
Section 6.2.1, “Privileges Provided by MySQL”

mysql_sqlstate()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.14, “mysql_errno()”
Section 20.6.7.66, “mysql_sqlstate()”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2244

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section B.2, “Types of Error Values”

mysql_ssl_set()
Section 20.6.6, “C API Function Overview”
Section 6.3.6.4, “Configuring MySQL to Use Secure
Connections”
Section 20.6.7.52, “mysql_real_connect()”
Section 20.6.7.67, “mysql_ssl_set()”
Section 6.3.6, “Using Secure Connections”

mysql_stat()
Section 20.6.6, “C API Function Overview”

mysql_stmt_affected_rows()
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.11.1, “mysql_stmt_affected_rows()”
Section 20.6.11.10, “mysql_stmt_execute()”
Section 20.6.11.17, “mysql_stmt_num_rows()”

mysql_stmt_attr_get()
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.11.2, “mysql_stmt_attr_get()”
Section 20.6.11.3, “mysql_stmt_attr_set()”

mysql_stmt_attr_set()
Section 20.6.5, “C API Data Structures”
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.9.2, “C API Prepared Statement Type
Conversions”
Section 20.6.11.3, “mysql_stmt_attr_set()”
Section 20.6.11.10, “mysql_stmt_execute()”
Section 20.6.11.11, “mysql_stmt_fetch()”
Section 20.6.11.27, “mysql_stmt_store_result()”
Section C.2, “Restrictions on Server-Side Cursors”

mysql_stmt_bind_param()
Section 20.6.9, “C API Prepared Statement Data
Structures”
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.18, “C API Prepared Statement Handling of
Date and Time Values”
Section 20.6.11.4, “mysql_stmt_bind_param()”
Section 20.6.11.10, “mysql_stmt_execute()”
Section 20.6.11.20, “mysql_stmt_prepare()”
Section 20.6.11.25, “mysql_stmt_send_long_data()”

mysql_stmt_bind_result()
Section 20.6.9, “C API Prepared Statement Data
Structures”

Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.18, “C API Prepared Statement Handling of
Date and Time Values”
Section 20.6.11.5, “mysql_stmt_bind_result()”
Section 20.6.11.11, “mysql_stmt_fetch()”
Section 20.6.11.12, “mysql_stmt_fetch_column()”
Section 20.6.11.27, “mysql_stmt_store_result()”

mysql_stmt_close()
Section 20.6.9, “C API Prepared Statement Data
Structures”
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.11.6, “mysql_stmt_close()”
Section 20.6.11.15, “mysql_stmt_init()”

mysql_stmt_data_seek()
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.11.7, “mysql_stmt_data_seek()”
Section 20.6.11.23, “mysql_stmt_row_seek()”
Section 20.6.11.27, “mysql_stmt_store_result()”

mysql_stmt_errno()
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.11.8, “mysql_stmt_errno()”
Section 20.6.11.11, “mysql_stmt_fetch()”
Section B.2, “Types of Error Values”

mysql_stmt_error()
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.11.9, “mysql_stmt_error()”
Section 20.6.11.11, “mysql_stmt_fetch()”
Section 20.6.11.20, “mysql_stmt_prepare()”
Section B.2, “Types of Error Values”

mysql_stmt_execute()
Section 20.6.9, “C API Prepared Statement Data
Structures”
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.18, “C API Prepared Statement Handling of
Date and Time Values”
Section 20.6.9.2, “C API Prepared Statement Type
Conversions”
Section 20.6.11.1, “mysql_stmt_affected_rows()”
Section 20.6.11.3, “mysql_stmt_attr_set()”
Section 20.6.11.10, “mysql_stmt_execute()”
Section 20.6.11.11, “mysql_stmt_fetch()”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2245

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 20.6.11.25, “mysql_stmt_send_long_data()”
Section 20.6.11.27, “mysql_stmt_store_result()”

mysql_stmt_fetch()
Section 20.6.9, “C API Prepared Statement Data
Structures”
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.9.2, “C API Prepared Statement Type
Conversions”
Section 20.6.11.5, “mysql_stmt_bind_result()”
Section 20.6.11.10, “mysql_stmt_execute()”
Section 20.6.11.11, “mysql_stmt_fetch()”
Section 20.6.11.22, “mysql_stmt_result_metadata()”
Section 20.6.11.24, “mysql_stmt_row_tell()”
Section 20.6.11.27, “mysql_stmt_store_result()”

mysql_stmt_fetch_column()
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section B.4, “Client Error Codes and Messages”
Section 20.6.11.11, “mysql_stmt_fetch()”

mysql_stmt_field_count()
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.11.13, “mysql_stmt_field_count()”

mysql_stmt_free_result()
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.11.3, “mysql_stmt_attr_set()”
Section 20.6.11.14, “mysql_stmt_free_result()”

mysql_stmt_init()
Section 20.6.9, “C API Prepared Statement Data
Structures”
Section 20.6.11, “C API Prepared Statement Function
Descriptions”
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.8, “C API Prepared Statements”
Section 20.6.11.10, “mysql_stmt_execute()”
Section 20.6.11.20, “mysql_stmt_prepare()”

mysql_stmt_insert_id()
Section 20.6.10, “C API Prepared Statement Function
Overview”

mysql_stmt_num_rows()
Section 20.6.10, “C API Prepared Statement Function
Overview”

Section 20.6.11.7, “mysql_stmt_data_seek()”
Section 20.6.11.17, “mysql_stmt_num_rows()”

mysql_stmt_param_count()
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.11.10, “mysql_stmt_execute()”

mysql_stmt_param_metadata()
Section 20.6.10, “C API Prepared Statement Function
Overview”

mysql_stmt_prepare()
Section 20.6.9, “C API Prepared Statement Data
Structures”
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.18, “C API Prepared Statement Handling of
Date and Time Values”
Section 20.6.11.4, “mysql_stmt_bind_param()”
Section 20.6.11.10, “mysql_stmt_execute()”
Section 20.6.11.13, “mysql_stmt_field_count()”
Section 20.6.11.20, “mysql_stmt_prepare()”
Section 20.6.11.21, “mysql_stmt_reset()”
Section 20.6.11.22, “mysql_stmt_result_metadata()”
Section 13.5, “SQL Syntax for Prepared Statements”

mysql_stmt_reset()
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.11.3, “mysql_stmt_attr_set()”
Section 20.6.11.25, “mysql_stmt_send_long_data()”

mysql_stmt_result_metadata()
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.9.2, “C API Prepared Statement Type
Conversions”
Section 20.6.11.11, “mysql_stmt_fetch()”
Section 20.6.11.22, “mysql_stmt_result_metadata()”
Section 20.6.11.27, “mysql_stmt_store_result()”

mysql_stmt_row_seek()
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.11.23, “mysql_stmt_row_seek()”
Section 20.6.11.24, “mysql_stmt_row_tell()”
Section 20.6.11.27, “mysql_stmt_store_result()”

mysql_stmt_row_tell()
Section 20.6.10, “C API Prepared Statement Function
Overview”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2246

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 20.6.11.23, “mysql_stmt_row_seek()”
Section 20.6.11.24, “mysql_stmt_row_tell()”
Section 20.6.11.27, “mysql_stmt_store_result()”

mysql_stmt_send_long_data()
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section B.4, “Client Error Codes and Messages”
Section 20.6.11.21, “mysql_stmt_reset()”
Section 20.6.11.25, “mysql_stmt_send_long_data()”

mysql_stmt_sqlstate()
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.11.26, “mysql_stmt_sqlstate()”
Section B.2, “Types of Error Values”

mysql_stmt_store_result()
Section 20.6.5, “C API Data Structures”
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.11.3, “mysql_stmt_attr_set()”
Section 20.6.11.7, “mysql_stmt_data_seek()”
Section 20.6.11.11, “mysql_stmt_fetch()”
Section 20.6.11.17, “mysql_stmt_num_rows()”
Section 20.6.11.23, “mysql_stmt_row_seek()”
Section 20.6.11.24, “mysql_stmt_row_tell()”
Section 20.6.11.27, “mysql_stmt_store_result()”

mysql_store_result()
Section 20.6.5, “C API Data Structures”
Section 20.6.6, “C API Function Overview”
Section B.5.2.14, “Commands out of sync”
Section 14.7.1, “Description of the FEDERATED Storage
Engine”
Section 4.5.1, “mysql — The MySQL Command-Line
Tool”
Section 20.6.7.1, “mysql_affected_rows()”
Section 20.6.7.9, “mysql_data_seek()”
Section 20.6.7.13, “mysql_eof()”
Section 20.6.7.17, “mysql_fetch_field()”
Section 20.6.7.21, “mysql_fetch_row()”
Section 20.6.7.22, “mysql_field_count()”
Section 20.6.7.25, “mysql_free_result()”
Section 20.6.7.46, “mysql_next_result()”
Section 20.6.7.47, “mysql_num_fields()”
Section 20.6.7.48, “mysql_num_rows()”
Section 20.6.7.58, “mysql_row_seek()”
Section 20.6.7.59, “mysql_row_tell()”
Section 20.6.11.10, “mysql_stmt_execute()”
Section 20.6.11.22, “mysql_stmt_result_metadata()”
Section 20.6.7.69, “mysql_store_result()”
Section 20.6.7.71, “mysql_use_result()”

Section 20.6.14.2, “What Results You Can Get from a
Query”
Section 20.6.14.1, “Why mysql_store_result() Sometimes
Returns NULL After mysql_query() Returns Success”
Section 20.6.4.2, “Writing C API Threaded Client
Programs”

mysql_thread_end()
Section 20.6.6, “C API Function Overview”
Section 20.5, “libmysqld, the Embedded MySQL Server
Library”
Section 20.6.12.2, “mysql_thread_end()”
Section 20.6.4.2, “Writing C API Threaded Client
Programs”

mysql_thread_id()
Section 20.6.6, “C API Function Overview”
Section 20.6.15, “Controlling Automatic Reconnection
Behavior”
Section 20.6.7.50, “mysql_ping()”
Section 20.6.7.70, “mysql_thread_id()”

mysql_thread_init()
Section 20.6.6, “C API Function Overview”
Section 20.5, “libmysqld, the Embedded MySQL Server
Library”
Section 20.6.12.1, “my_init()”
Section 20.6.12.2, “mysql_thread_end()”
Section 20.6.12.3, “mysql_thread_init()”
Section 20.6.4.2, “Writing C API Threaded Client
Programs”

mysql_thread_safe()
Section 20.6.6, “C API Function Overview”

mysql_use_result()
Section 20.6.5, “C API Data Structures”
Section 20.6.6, “C API Function Overview”
Section B.5.2.14, “Commands out of sync”
Section 4.5.1, “mysql — The MySQL Command-Line
Tool”
Section 20.6.7.9, “mysql_data_seek()”
Section 20.6.7.13, “mysql_eof()”
Section 20.6.7.21, “mysql_fetch_row()”
Section 20.6.7.25, “mysql_free_result()”
Section 20.6.7.46, “mysql_next_result()”
Section 20.6.7.47, “mysql_num_fields()”
Section 20.6.7.48, “mysql_num_rows()”
Section 20.6.7.58, “mysql_row_seek()”
Section 20.6.7.59, “mysql_row_tell()”
Section 20.6.11.10, “mysql_stmt_execute()”
Section 20.6.7.69, “mysql_store_result()”
Section 20.6.7.71, “mysql_use_result()”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2247

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section B.5.2.8, “Out of memory”
Section 20.6.14.2, “What Results You Can Get from a
Query”
Section 20.6.4.2, “Writing C API Threaded Client
Programs”

mysql_warning_count()
Section 20.6.6, “C API Function Overview”
Section 20.6.7.46, “mysql_next_result()”
Section 13.7.5.37, “SHOW WARNINGS Syntax”
Section B.2, “Types of Error Values”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2248

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2249

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Command Index
Symbols | A | B | C | D | E | F | G | H | I | K | L | M | N | O |
P | R | S | T | U | V | W | X | Y | Z

Symbols

[index top]

4OS2.EXE
Section 2.20.6, “OS/2 Notes”

A

[index top]

aCC
Section 21.3, “Debugging and Porting MySQL”

Access
Section 13.2.2, “DELETE Syntax”

addgroup
Section 17.2.1.1, “Installing a MySQL Cluster Binary
Release on Linux”
Section 2.16, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”

adduser
Section 17.2.1.1, “Installing a MySQL Cluster Binary
Release on Linux”
Section 2.16, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”

ALL STATUS
Section 17.5.8, “MySQL Cluster Single User Mode”

APF
Section 17.5.10.1, “MySQL Cluster Security and
Networking Issues”

apt-get
Section 15.3.1, “Installing memcached”
Section 15.3.3.3, “Using libmemcached with C and C+
+”

autoconf
Section 2.17.2, “Installing MySQL Using a Development
Source Tree”

automake
Section 2.17.2, “Installing MySQL Using a Development
Source Tree”

autoreconf
Section 2.17.2, “Installing MySQL Using a Development
Source Tree”

autorun.sh
Section 2.17.2, “Installing MySQL Using a Development
Source Tree”

B

[index top]

bash
Section 2.20.4.4, “BSD/OS Version 2.x Notes”
Section 2.20.4.5, “BSD/OS Version 3.x Notes”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 2.11, “Installing MySQL on OS X”
Section 4.2.1, “Invoking MySQL Programs”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 4.2.10, “Setting Environment Variables”
Section 2.10.8.4, “Testing a Windows Source Build”
Section 1.2, “Typographical and Syntax Conventions”

bison
Section 1.9.1, “Contributors to MySQL”
Section 2.17.4, “Dealing with Problems Compiling
MySQL”
Section 2.10.8, “Installing MySQL from Source on
Windows”
Section 2.17.2, “Installing MySQL Using a Development
Source Tree”

bzr
Section 2.17.2, “Installing MySQL Using a Development
Source Tree”

C

[index top]

c++
Section 2.17.4, “Dealing with Problems Compiling
MySQL”

c++filt
Section 21.3.1.5, “Using a Stack Trace”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2250

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

cat
Section 4.5.1.1, “mysql Options”

CC
Section 2.20.5.6, “Alpha-DEC-OSF/1 Notes”

cc
Section 2.20.5.5, “Alpha-DEC-UNIX Notes (Tru64)”
Section 2.20.5.2, “HP-UX Version 11.x Notes”
Section 2.22.3, “Problems Using the Perl DBI/DBD
Interface”

cd
Resetting the Root Password: Windows Systems

chkconfig
Section 17.2.1.1, “Installing a MySQL Cluster Binary
Release on Linux”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”

chroot
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

CMake
Section 2.10.8.1, “Building MySQL from the Standard
Source Distribution”
Section 2.10.8, “Installing MySQL from Source on
Windows”
Section 1.3.2, “The Main Features of MySQL”
Section 21.2.2.5, “UDF Compiling and Installing”

cmake
Section 2.10.8.1, “Building MySQL from the Standard
Source Distribution”
Section 21.2.2.5, “UDF Compiling and Installing”

cmd
Resetting the Root Password: Windows Systems

CMD.EXE
Section 2.20.6, “OS/2 Notes”

cmd.exe
Section 4.2.1, “Invoking MySQL Programs”
Section 1.2, “Typographical and Syntax Conventions”

command.com
Section 4.2.1, “Invoking MySQL Programs”
Section 1.2, “Typographical and Syntax Conventions”

comp_err
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.1, “Overview of MySQL Programs”

compile-amd64-max-sci
Section 17.3.4.1, “Configuring MySQL Cluster to use SCI
Sockets”

compile-pentium64-max-sci
Section 17.3.4.1, “Configuring MySQL Cluster to use SCI
Sockets”

configure
Section 10.3, “Adding a Character Set”
Section 2.20.5.6, “Alpha-DEC-OSF/1 Notes”
Section 2.20.5.5, “Alpha-DEC-UNIX Notes (Tru64)”
Section 2.20.4.4, “BSD/OS Version 2.x Notes”
Section 2.20.4.6, “BSD/OS Version 4.x Notes”
Section 17.2.1.3, “Building MySQL Cluster from Source
on Linux”
Section 6.3.6.2, “Building MySQL with Support for Secure
Connections”
Section B.5.2.17, “Can't initialize character set”
Section 2.17.5, “Compiling and Linking an Optimized
mysqld Server”
Section 21.3.1.1, “Compiling MySQL for Debugging”
Section 2.17.4, “Dealing with Problems Compiling
MySQL”
Section 21.3, “Debugging and Porting MySQL”
Section 2.21, “Environment Variables”
Section B.5.3.6, “How to Protect or Change the MySQL
Unix Socket File”
Section 1.7, “How to Report Bugs or Problems”
Section 2.20.5.1, “HP-UX Version 10.20 Notes”
Section 2.20.5.2, “HP-UX Version 11.x Notes”
Section 2.20.5.3, “IBM-AIX notes”
Section 14.5.2, “Installing BDB”
Section 15.3.1, “Installing memcached”
Section 2.17, “Installing MySQL from Source”
Section 2.17.2, “Installing MySQL Using a Development
Source Tree”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”
Section 20.5, “libmysqld, the Embedded MySQL Server
Library”
Section 2.20.1.7, “Linux Alpha Notes”
Section 2.20.1.10, “Linux IA-64 Notes”
Section 2.20.1.3, “Linux Source Distribution Notes”
Section 2.20.1.5, “Linux x86 Notes”
Section 17.5.4, “MySQL Server Usage for MySQL
Cluster”
Section 2.17.3, “MySQL Source-Configuration Options”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2251

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”
Section 2.20.2.1, “OS X 10.x (Darwin)”
Section 5.5.3, “Running Multiple MySQL Instances on
Unix”
Section 2.20.5.9, “SCO OpenServer 6.0.x Notes”
Section 2.20.5.8, “SCO UNIX and OpenServer 5.0.x
Notes”
Section 2.20.5.10, “SCO UnixWare 7.1.x and OpenUNIX
8.0.0 Notes”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.4, “Server System Variables”
Section 2.20.5.7, “SGI Irix Notes”
Section 2.20.3.1, “Solaris 2.7/2.8 Notes”
Section 2.20.3, “Solaris Notes”
Section 2.20.3.2, “Solaris x86 Notes”
Section 2.20.5.4, “SunOS 4 Notes”
Section 14.8, “The ARCHIVE Storage Engine”
Section 14.10, “The BLACKHOLE Storage Engine”
Section 14.9, “The CSV Storage Engine”
Section 14.6, “The EXAMPLE Storage Engine”
Section 14.7, “The FEDERATED Storage Engine”
Section 14.1, “The MyISAM Storage Engine”
Section 8.10.3, “The MySQL Query Cache”
Section 1.2, “Typographical and Syntax Conventions”
Section 21.2.2.5, “UDF Compiling and Installing”
Section 15.3.3.3, “Using libmemcached with C and C+
+”
Section 15.3.3.6, “Using MySQL and memcached with
PHP”
Section 4.2.6, “Using Option Files”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

configure.js
Section 2.17.3, “MySQL Source-Configuration Options”

configure; make; make install
Section 2.20.1.3, “Linux Source Distribution Notes”

copy
Section 16.1.1.6, “Creating a Data Snapshot Using Raw
Data Files”

coreadm
Section 5.1.3, “Server Command Options”
Section 2.20.3, “Solaris Notes”

cp
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.1, “Backup and Recovery Types”

Section 16.1.1.6, “Creating a Data Snapshot Using Raw
Data Files”
Section 16.1.1.9, “Introducing Additional Slaves to an
Existing Replication Environment”

crash-me
Section 8.1, “Optimization Overview”
Section 8.13.2, “The MySQL Benchmark Suite”

cron
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 13.7.2.3, “CHECK TABLE Syntax”
Section 14.1.1, “MyISAM Startup Options”
Section 5.4.5, “Server Log Maintenance”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance
Schedule”
Section 3.5, “Using mysql in Batch Mode”

csh
Section 2.20.4.4, “BSD/OS Version 2.x Notes”
Section 2.20.4.5, “BSD/OS Version 3.x Notes”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.10, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”

cxx
Section 2.20.5.5, “Alpha-DEC-UNIX Notes (Tru64)”

D

[index top]

dd
Section 15.1.1, “Setting Up MySQL on an EC2 AMI”

df
Section B.5.1, “How to Determine What Is Causing a
Problem”

drwtsn32.exe
Section 21.3.1.3, “Using pdb to create a Windows
crashdump”

DSPLIB
Section 2.14, “Installing MySQL on i5/OS”

dump
Section 16.1.1.6, “Creating a Data Snapshot Using Raw
Data Files”

dyld
Section 21.2.2.5, “UDF Compiling and Installing”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2252

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

E

[index top]

egcs
Section 2.20.5.5, “Alpha-DEC-UNIX Notes (Tru64)”

emerge
Section 15.3.1, “Installing memcached”

EXIT SINGLE USER MODE
Section 17.5.8, “MySQL Cluster Single User Mode”

F

[index top]

FCC
Section 2.20.1.3, “Linux Source Distribution Notes”

fsadm
Section 2.20.5.10, “SCO UnixWare 7.1.x and OpenUNIX
8.0.0 Notes”

G

[index top]

g++
Section 2.17.4, “Dealing with Problems Compiling
MySQL”

gcc
Section 2.20.5.6, “Alpha-DEC-OSF/1 Notes”
Section 2.20.5.5, “Alpha-DEC-UNIX Notes (Tru64)”
Section 2.20.4.4, “BSD/OS Version 2.x Notes”
Section 2.17.5, “Compiling and Linking an Optimized
mysqld Server”
Section 21.3.1.1, “Compiling MySQL for Debugging”
Section 2.17.4, “Dealing with Problems Compiling
MySQL”
Section 21.3, “Debugging and Porting MySQL”
Section 2.20.4.1, “FreeBSD Notes”
Section 2.20.5.1, “HP-UX Version 10.20 Notes”
Section 2.20.5.2, “HP-UX Version 11.x Notes”
Section 2.20.5.3, “IBM-AIX notes”
Section 2.17, “Installing MySQL from Source”
Section 2.20.1.7, “Linux Alpha Notes”
Section 2.20.1.10, “Linux IA-64 Notes”
Section 2.20.1.9, “Linux MIPS Notes”
Section 2.20.1.3, “Linux Source Distribution Notes”
Section 2.20.1.5, “Linux x86 Notes”
Section 2.17.3, “MySQL Source-Configuration Options”

Section 2.22.3, “Problems Using the Perl DBI/DBD
Interface”
Section 2.20.5.9, “SCO OpenServer 6.0.x Notes”
Section 2.20.5.8, “SCO UNIX and OpenServer 5.0.x
Notes”
Section 2.20.5.10, “SCO UnixWare 7.1.x and OpenUNIX
8.0.0 Notes”
Section 2.20.5.7, “SGI Irix Notes”
Section 2.20.3.1, “Solaris 2.7/2.8 Notes”
Section 2.20.3, “Solaris Notes”
Section 2.20.3.2, “Solaris x86 Notes”
Section 1.9.4, “Tools that were used to create MySQL”
Section 21.2.2.5, “UDF Compiling and Installing”

gcc-c++
Section 2.17.4, “Dealing with Problems Compiling
MySQL”

gdb
Section 21.3.1.1, “Compiling MySQL for Debugging”
Section 21.3.1.4, “Debugging mysqld under gdb”
Section 2.20.1.7, “Linux Alpha Notes”
Section 2.20.3.2, “Solaris x86 Notes”
Section 1.9.4, “Tools that were used to create MySQL”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

gmake
Section 2.20.4.1, “FreeBSD Notes”
Section 2.20.5.3, “IBM-AIX notes”
Section 2.17, “Installing MySQL from Source”
Section 2.17.2, “Installing MySQL Using a Development
Source Tree”
Section 2.20.5.9, “SCO OpenServer 6.0.x Notes”
Section 2.20.5.10, “SCO UnixWare 7.1.x and OpenUNIX
8.0.0 Notes”

GnuPG
Section 2.6.2, “Signature Checking Using GnuPG”

gnutar
Section 2.17, “Installing MySQL from Source”
Section 2.16, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.20.2, “OS X Notes”

gpg
Section 2.6.2, “Signature Checking Using GnuPG”

grep
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 3.3.4.7, “Pattern Matching”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2253

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

groupadd
Section 17.2.1.1, “Installing a MySQL Cluster Binary
Release on Linux”
Section 2.12, “Installing MySQL on Linux Using RPM
Packages”
Section 2.16, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”

gtar
Section 2.20.5.1, “HP-UX Version 10.20 Notes”
Section 2.20.5.2, “HP-UX Version 11.x Notes”
Section 2.17, “Installing MySQL from Source”
Section 2.13, “Installing MySQL on Solaris”
Section 2.16, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.20.3, “Solaris Notes”

gunzip
Section 2.16, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”

gzip
Section 1.7, “How to Report Bugs or Problems”

H

[index top]

hdparm
Section 14.2.2, “InnoDB Startup Options and System
Variables”

help contents
Section 4.5.1.4, “mysql Server-Side Help”

hostname
Section B.5.2.2, “Can't connect to [local] MySQL server”

I

[index top]

ibbackup
Section 7.1, “Backup and Recovery Types”

icc
Section 2.8, “Compiler-Specific Build Characteristics”

Section 21.3, “Debugging and Porting MySQL”
Section 2.22.3, “Problems Using the Perl DBI/DBD
Interface”

idtune
Section 2.20.5.9, “SCO OpenServer 6.0.x Notes”
Section 2.20.5.8, “SCO UNIX and OpenServer 5.0.x
Notes”
Section 2.20.5.10, “SCO UnixWare 7.1.x and OpenUNIX
8.0.0 Notes”

idtune name parameter
Section 2.20.5.9, “SCO OpenServer 6.0.x Notes”
Section 2.20.5.8, “SCO UNIX and OpenServer 5.0.x
Notes”
Section 2.20.5.10, “SCO UnixWare 7.1.x and OpenUNIX
8.0.0 Notes”

innochecksum
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.1, “Overview of MySQL Programs”

InnoDB Hot Backup
Section 14.2.1.4, “InnoDB File-Per-Table Tablespaces”

INSTALL.CMD
Section 2.20.6, “OS/2 Notes”

install.rb
Section 15.3.3.7, “Using MySQL and memcached with
Ruby”

iptables
Section 17.5.10.1, “MySQL Cluster Security and
Networking Issues”

K

[index top]

kill
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 17.4.1, “ndbd — The MySQL Cluster Data Node
Daemon”
Section 17.5.5, “Performing a Rolling Restart of a MySQL
Cluster”
Section C.5, “Restrictions on XA Transactions”

L

[index top]

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2254

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ld
Section 2.20.5.6, “Alpha-DEC-OSF/1 Notes”

ld-elf.so.1
Section 21.2.2.5, “UDF Compiling and Installing”

ld.so
Section 21.2.2.5, “UDF Compiling and Installing”

ldconfig
Section 21.2.2.5, “UDF Compiling and Installing”

less
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

libmemcached
libmemcached Command-Line Utilities

libtool
Section 2.20.5.5, “Alpha-DEC-UNIX Notes (Tru64)”
Section 2.17, “Installing MySQL from Source”
Section 2.17.2, “Installing MySQL Using a Development
Source Tree”
Section 2.20.5.4, “SunOS 4 Notes”
Section 21.2.2.5, “UDF Compiling and Installing”

ln
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”

lsof +L1
Section B.5.3.5, “Where MySQL Stores Temporary Files”

M

[index top]

m4
Section 2.17.2, “Installing MySQL Using a Development
Source Tree”

make
Section 2.20.5.6, “Alpha-DEC-OSF/1 Notes”
Section 2.20.4.4, “BSD/OS Version 2.x Notes”
Section 2.20.4.5, “BSD/OS Version 3.x Notes”
Section 2.20.4.6, “BSD/OS Version 4.x Notes”
Section 2.17.4, “Dealing with Problems Compiling
MySQL”
Section 2.20.4.1, “FreeBSD Notes”
Section 2.20.5.3, “IBM-AIX notes”
Section 15.3.1, “Installing memcached”

Section 2.17, “Installing MySQL from Source”
Section 2.17.2, “Installing MySQL Using a Development
Source Tree”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 2.20.4.2, “NetBSD Notes”
Section 2.22.3, “Problems Using the Perl DBI/DBD
Interface”
Section 2.20.5.8, “SCO UNIX and OpenServer 5.0.x
Notes”
Section 2.20.3.1, “Solaris 2.7/2.8 Notes”
Section 2.20.5.4, “SunOS 4 Notes”
Section 21.2.2.5, “UDF Compiling and Installing”

make && make install
Section 17.2.1.3, “Building MySQL Cluster from Source
on Linux”

make distclean
Section 2.17.4, “Dealing with Problems Compiling
MySQL”

make install
Section 17.2.1.3, “Building MySQL Cluster from Source
on Linux”
Section 15.3.1, “Installing memcached”
Section 2.17.2, “Installing MySQL Using a Development
Source Tree”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”
Section 2.20.1.5, “Linux x86 Notes”
Section 2.20.5.8, “SCO UNIX and OpenServer 5.0.x
Notes”

make perl
Section 2.22.3, “Problems Using the Perl DBI/DBD
Interface”

make realclean
Section 2.22.3, “Problems Using the Perl DBI/DBD
Interface”

make test
Section 2.17.2, “Installing MySQL Using a Development
Source Tree”
Section 2.22.1, “Installing Perl on Unix”
Section 21.1.2, “The MySQL Test Suite”

make_binary_distribution
Section 4.1, “Overview of MySQL Programs”

make_win_bin_dist
Section 2.10.8.3, “Installing MySQL from a Source Build
on Windows”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2255

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.4.2, “make_win_bin_dist — Package
MySQL Distribution as Zip Archive”
Section 4.1, “Overview of MySQL Programs”

make_win_src_distribution
Section 2.10.8.5, “Creating a Windows Source Package
from the Bazaar Repository”
Section 4.4.3, “make_win_src_distribution —
Create Source Distribution for Windows”
Section 4.1, “Overview of MySQL Programs”

md5
Section 2.6.1, “Verifying the MD5 Checksum”

md5.exe
Section 2.6.1, “Verifying the MD5 Checksum”

md5sum
Section 2.6.1, “Verifying the MD5 Checksum”

memcache
Section 15.3.2.4, “memcached Hashing/Distribution
Types”
Section 15.3.3.5, “Using MySQL and memcached with
Python”

memcached
Section 15.3.3.1, “Basic memcached Operations”
Section 15.3.2.3, “Data Expiry”
Section 15.1.3, “Deploying a MySQL Database Using
EC2”
Section 15.3.3, “Developing a memcached Application”
Section 15.3.4, “Getting memcached Statistics”
Section 15.3.1, “Installing memcached”
libmemcached Command-Line Utilities
libmemcached Set Functions
Section 15.3.2.1, “memcached Deployment”
Section 15.3.4.5, “memcached Detail Statistics”
Section 15.3.5, “memcached FAQ”
Section 15.3.4.1, “memcached General Statistics”
Section 15.3.2.4, “memcached Hashing/Distribution
Types”
Section 15.3.4.3, “memcached Item Statistics”
Section 15.3.2.8, “memcached Logs”
Section 15.3.4.4, “memcached Size Statistics”
Section 15.3.4.2, “memcached Slabs Statistics”
Section 15.3.2.7, “memcached Thread Support”
Section 15.3.2.6, “Memory Allocation within memcached”
Section 15.1.1, “Setting Up MySQL on an EC2 AMI”
Section 15.3.3.3, “Using libmemcached with C and C+
+”
Section 15.3.2, “Using memcached”

Section 15.3.2.5, “Using memcached and DTrace”
Section 15.3.3.2, “Using memcached as a MySQL
Caching Layer”
Section 15.3.4.6, “Using memcached-tool”
Section 15.3.3.8, “Using MySQL and memcached with
Java”
Section 15.3.3.4, “Using MySQL and memcached with
Perl”
Section 15.3.3.6, “Using MySQL and memcached with
PHP”
Section 15.3.3.5, “Using MySQL and memcached with
Python”
Section 15.3.3.7, “Using MySQL and memcached with
Ruby”
Section 15.3, “Using MySQL with memcached”
Section 15.3.2.2, “Using Namespaces”
Section 15.3.3.9, “Using the memcached TCP Text
Protocol”

memcached-1.2.5 directory:
Section 15.3.1, “Installing memcached”

memcached-tool
Section 15.3.4, “Getting memcached Statistics”
Section 15.3.4.6, “Using memcached-tool”

memcat
libmemcached Command-Line Utilities

memcp
libmemcached Command-Line Utilities

memflush
libmemcached Command-Line Utilities

memrm
libmemcached Command-Line Utilities

memslap
libmemcached Command-Line Utilities

mgmd
Section 17.2, “MySQL Cluster Installation and Upgrades”

mkdev aio
Section 2.20.5.8, “SCO UNIX and OpenServer 5.0.x
Notes”

mkdev mysql
Section 2.20.5.9, “SCO OpenServer 6.0.x Notes”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2256

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mkdir
Section 13.1.6, “CREATE DATABASE Syntax”

more
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

msql2mysql
Section 4.7.1, “msql2mysql — Convert mSQL
Programs for Use with MySQL”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.2, “replace — A String-Replacement Utility”

mv
Section 5.4.5, “Server Log Maintenance”

my_print_defaults
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.7, “MySQL Program Development Utilities”
Section 4.1, “Overview of MySQL Programs”

myisam_ftdump
Section 12.9, “Full-Text Search Functions”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.1, “Overview of MySQL Programs”

myisamchk
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 8.5.2, “Bulk Data Loading for MyISAM Tables”
Section 10.5, “Character Set Configuration”
Section 13.7.2.3, “CHECK TABLE Syntax”
Choosing an Installation Type
Section 14.1.3.3, “Compressed Table Characteristics”
Section 14.1.4.1, “Corrupted MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 21.3.1, “Debugging a MySQL Server”
Section 13.2.2, “DELETE Syntax”
Section 14.1.3.2, “Dynamic Table Characteristics”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.11.4, “External Locking”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 2.15, “Installing MySQL on NetWare”
Section C.7.3, “Limits on Table Size”
Section 13.7.6.4, “LOAD INDEX INTO CACHE Syntax”
Section 21.3.1.7, “Making a Test Case If You Experience
Table Corruption”
Section 8.3.7, “MyISAM Index Statistics Collection”

Section 14.1.1, “MyISAM Startup Options”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section 7.6.4, “MyISAM Table Optimization”
Section 14.1.3, “MyISAM Table Storage Formats”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.6.3.5, “Obtaining Table Information with
myisamchk”
Section 8.5.1, “Optimizing MyISAM Queries”
Section 4.6.3.4, “Other myisamchk Options”
Section 4.1, “Overview of MySQL Programs”
Section 14.1.4.2, “Problems from Tables Not Being
Closed Properly”
Section 13.7.2.6, “REPAIR TABLE Syntax”
Section 5.1.3, “Server Command Options”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance
Schedule”
Section 13.7.5.18, “SHOW INDEX Syntax”
Section 13.7.5.33, “SHOW TABLE STATUS Syntax”
Section 8.5.3, “Speed of REPAIR TABLE Statements”
Section 14.1.3.1, “Static (Fixed-Length) Table
Characteristics”
Section 8.12.1, “System Factors and Startup Parameter
Tuning”
Section 1.3.2, “The Main Features of MySQL”
Section 14.1, “The MyISAM Storage Engine”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 21.3.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

myisamchk *.MYI
Section 7.6.3, “How to Repair MyISAM Tables”

myisamchk tbl_name
Section 7.6.2, “How to Check MyISAM Tables for Errors”

myisamlog
Section 4.6.4, “myisamlog — Display MyISAM Log File
Contents”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2257

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.1, “Overview of MySQL Programs”

myisampack
Section 8.5.2, “Bulk Data Loading for MyISAM Tables”
Section 14.1.3.3, “Compressed Table Characteristics”
Section 13.1.10, “CREATE TABLE Syntax”
Section 8.11.4, “External Locking”
Section C.7.3, “Limits on Table Size”
Section 14.3.1, “MERGE Table Advantages and
Disadvantages”
Section 14.1.3, “MyISAM Table Storage Formats”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.6.3.5, “Obtaining Table Information with
myisamchk”
Section 4.1, “Overview of MySQL Programs”
Section 13.1.10.4, “Silent Column Specification Changes”
Section 14.3, “The MERGE Storage Engine”
Section 14.1, “The MyISAM Storage Engine”

mysql
Section 1.8.2.5, “'--' as the Start of a Comment”
Section 6.3.2, “Adding User Accounts”
Section 2.20.5.5, “Alpha-DEC-UNIX Notes (Tru64)”
Section 14.2.6, “Backing Up and Recovering an InnoDB
Database”
Section 7.1, “Backup and Recovery Types”
Section 13.6.1, “BEGIN ... END Compound-Statement
Syntax”
Changes Made by MySQL Installation Wizard
Choosing an Installation Type
Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”
Section 9.6, “Comment Syntax”
Section 6.3.6.4, “Configuring MySQL to Use Secure
Connections”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 3.1, “Connecting to and Disconnecting from the
Server”
Section 4.6.10.6, “Connecting to MySQL Instance
Manager”
Section 4.2.2, “Connecting to the MySQL Server”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 1.9.1, “Contributors to MySQL”
Section 20.6.15, “Controlling Automatic Reconnection
Behavior”
Section 2.19.5, “Copying MySQL Databases to Another
Machine”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”

Section 3.3.1, “Creating and Selecting a Database”
Section 2.10.4.6, “Customizing the PATH for MySQL
Tools”
Section 21.3.2, “Debugging a MySQL Client”
Section 18.1, “Defining Stored Programs”
Section 2.2, “Determining Your Current MySQL Version”
Disabling mysql Auto-Reconnect
Section 2.19.2, “Downgrading MySQL”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 3.2, “Entering Queries”
Section 2.21, “Environment Variables”
Section 7.3, “Example Backup and Recovery Strategy”
Section 20.6.3, “Example C API Client Programs”
Section 3.6, “Examples of Common Queries”
Section 4.5.1.5, “Executing SQL Statements from a Text
File”
Chapter 12, Functions and Operators
Section 13.7.1.3, “GRANT Syntax”
Section 13.8.3, “HELP Syntax”
Section 14.2.8.9, “How to Cope with Deadlocks”
Section B.5.1, “How to Determine What Is Causing a
Problem”
Section 1.7, “How to Report Bugs or Problems”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section B.5.2.15, “Ignoring user”
Section 12.13, “Information Functions”
Section 14.2.1.1, “Initializing InnoDB”
Input-Line Editing
Section 17.2.1.2, “Installing MySQL Cluster from RPM”
Section 2.11, “Installing MySQL on OS X”
Section 4.2.1, “Invoking MySQL Programs”
Section 17.1.5.8, “Issues Exclusive to MySQL Cluster”
Section B.5.7, “Known Issues in MySQL”
Section 8.2.1.15, “LIMIT Query Optimization”
Section 13.4.2.2, “LOAD DATA FROM MASTER Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.4.2.3, “LOAD TABLE tbl_name FROM
MASTER Syntax”
Section 4.4.2, “make_win_bin_dist — Package
MySQL Distribution as Zip Archive”
Section 7.4.5.1, “Making a Copy of a Database”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 8.13.1, “Measuring the Speed of Expressions
and Functions”
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 17.3, “MySQL Cluster Configuration”
Section 17.2.4, “MySQL Cluster Example with Tables
and Data”
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2258

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 10.6, “MySQL Server Time Zone Support”
Section 17.5.4, “MySQL Server Usage for MySQL
Cluster”
Section 4.5.1.4, “mysql Server-Side Help”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 4.5.1.6, “mysql Tips”
Section 4.5.1, “mysql — The MySQL Command-Line
Tool”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 20.6.7.14, “mysql_errno()”
Section 4.4.5, “mysql_fix_privilege_tables —
Upgrade MySQL System Tables”
Section 20.6.7.66, “mysql_sqlstate()”
Section 4.4.8, “mysql_tzinfo_to_sql — Load the
Time Zone Tables”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 17.4.3, “ndb_mgm — The MySQL Cluster
Management Client”
Section 4.2.9, “Option Defaults, Options Expecting
Values, and the = Sign”
Section B.5.2.8, “Out of memory”
Section 4.1, “Overview of MySQL Programs”
Section B.5.2.10, “Packet Too Large”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 7.5, “Point-in-Time (Incremental) Recovery Using
the Binary Log”
Section 4.2.5, “Program Option Modifiers”
Section 2.19.4, “Rebuilding or Repairing Tables or
Indexes”
Section 7.4.4, “Reloading Delimited-Text Format
Backups”
Section 7.4.2, “Reloading SQL-Format Backups”
Resetting the Root Password: Generic Instructions
Section 13.7.1.5, “REVOKE Syntax”
Section 2.18.4, “Securing the Initial MySQL Accounts”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 13.2.8.1, “SELECT ... INTO Syntax”
Section 5.1.3, “Server Command Options”
Section B.3, “Server Error Codes and Messages”
Section 5.1.4, “Server System Variables”
Section 5.1.8, “Server-Side Help”
Section 14.2.13.1, “SHOW ENGINE INNODB STATUS
and the InnoDB Monitors”
Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”
Section 13.7.5.37, “SHOW WARNINGS Syntax”
Section 4.2.3, “Specifying Program Options”

Section 13.5, “SQL Syntax for Prepared Statements”
Section 2.10.4.7, “Starting MySQL as a Windows
Service”
Section 2.10.3.1, “Starting the MySQL Server Instance
Configuration Wizard”
Section 4.6.10.3, “Starting the MySQL Server with
MySQL Instance Manager”
Section 2.18.2, “Starting the Server”
Section 9.1.1, “String Literals”
Section 2.10.8.4, “Testing a Windows Source Build”
Section 2.18.3, “Testing the Server”
Section 11.4.3, “The BLOB and TEXT Types”
Section 18.3.1, “Trigger Syntax and Examples”
Section 14.2.13.3, “Troubleshooting InnoDB Data
Dictionary Operations”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Chapter 3, Tutorial
Section 1.2, “Typographical and Syntax Conventions”
Section 7.3.2, “Using Backups for Recovery”
Section 3.5, “Using mysql in Batch Mode”
Section 7.4, “Using mysqldump for Backups”
Section 4.2.6, “Using Option Files”
Section 4.2.4, “Using Options on the Command Line”
Section 4.2.8, “Using Options to Set Program Variables”
Section 21.3.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”
Using the --safe-updates Option
Section 2.10.6, “Windows Postinstallation Procedures”

mysql ...
Section 21.3.1.1, “Compiling MySQL for Debugging”

mysql mysql < mysql.dump
Section 2.19.2.1, “Changes Affecting Downgrades from
MySQL 5.0”

mysql stop
Section 4.6.10.3, “Starting the MySQL Server with
MySQL Instance Manager”

mysql-server
Section 2.20.4.1, “FreeBSD Notes”

mysql-test-run.pl
Section 2.10.8.4, “Testing a Windows Source Build”
Section 21.1.2, “The MySQL Test Suite”

mysql-test-run.pl test_name
Section 21.1.2, “The MySQL Test Suite”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2259

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql.exe
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”

mysql.server
Section 17.2.1.2, “Installing MySQL Cluster from RPM”
Section 2.20.1.4, “Linux Postinstallation Notes”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.1, “Overview of MySQL Programs”
Section 5.1.3, “Server Command Options”
Section 2.18.5, “Starting and Stopping MySQL
Automatically”
Section 4.6.10.3, “Starting the MySQL Server with
MySQL Instance Manager”
Section B.5.3.7, “Time Zone Problems”
Section 21.2.2.5, “UDF Compiling and Installing”

mysql.server stop
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”

mysql_config
Section 20.6.4.1, “Building C API Client Programs”
Section 2.17.4, “Dealing with Problems Compiling
MySQL”
Section 4.7.2, “mysql_config — Display Options for
Compiling Clients”
Section 4.1, “Overview of MySQL Programs”

mysql_convert_table_format
Section 4.6.11, “mysql_convert_table_format —
Convert Tables to Use a Given Storage Engine”
Section 4.1, “Overview of MySQL Programs”

mysql_explain_log
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”
Section 4.1, “Overview of MySQL Programs”

mysql_find_rows
Section 21.3.1.7, “Making a Test Case If You Experience
Table Corruption”
Section 4.6.13, “mysql_find_rows — Extract SQL
Statements from Files”
Section 4.1, “Overview of MySQL Programs”

mysql_fix_extensions
Section 4.6.14, “mysql_fix_extensions — Normalize
Table File Name Extensions”
Section 4.1, “Overview of MySQL Programs”

mysql_fix_privilege_tables
Section 2.19.2.1, “Changes Affecting Downgrades from
MySQL 5.0”
Section 4.4.5, “mysql_fix_privilege_tables —
Upgrade MySQL System Tables”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.1, “Overview of MySQL Programs”

mysql_install_db
Section 2.18.1, “Initializing the Data Directory”
Section 2.7, “Installation Layouts”
Section 2.15, “Installing MySQL on NetWare”
Section 2.11, “Installing MySQL on OS X”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”
Section 2.20.1.2, “Linux Binary Distribution Notes”
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”
Section 4.1, “Overview of MySQL Programs”
Section 2.18.1.1, “Problems Running mysql_install_db”
Section 5.1.3, “Server Command Options”

mysql_secure_installation
Section 4.4.7, “mysql_secure_installation —
Improve MySQL Installation Security”
Section 4.1, “Overview of MySQL Programs”
Section 2.18.4, “Securing the Initial MySQL Accounts”

mysql_setpermission
Section 1.9.1, “Contributors to MySQL”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”
Section 4.6.15, “mysql_setpermission —
Interactively Set Permissions in Grant Tables”
Section 4.1, “Overview of MySQL Programs”
Section 2.18.2, “Starting the Server”

mysql_setpermissions
Section 4.6.15, “mysql_setpermission —
Interactively Set Permissions in Grant Tables”

mysql_stmt_execute()
Section 5.1.6, “Server Status Variables”

mysql_stmt_prepare()
Section 5.1.6, “Server Status Variables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2260

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysql_tableinfo
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 4.1, “Overview of MySQL Programs”

mysql_tzinfo_to_sql
Section 10.6, “MySQL Server Time Zone Support”
Section 4.4.8, “mysql_tzinfo_to_sql — Load the
Time Zone Tables”
Section 4.1, “Overview of MySQL Programs”

mysql_upgrade
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 2.19.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
defined Functions”
Section 2.19.2, “Downgrading MySQL”
Section 2.18.1, “Initializing the Data Directory”
Section 4.4.5, “mysql_fix_privilege_tables —
Upgrade MySQL System Tables”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.1, “Overview of MySQL Programs”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 2.19.4, “Rebuilding or Repairing Tables or
Indexes”
Section 5.1.3, “Server Command Options”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 2.19.1, “Upgrading MySQL”
Section 2.10.7, “Upgrading MySQL on Windows”

mysql_waitpid
Section 4.6.17, “mysql_waitpid — Kill Process and
Wait for Its Termination”
Section 4.1, “Overview of MySQL Programs”

mysql_waitpid()
Section 4.6.17, “mysql_waitpid — Kill Process and
Wait for Its Termination”

mysql_zap
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 4.6.18, “mysql_zap — Kill Processes That
Match a Pattern”
Section 4.1, “Overview of MySQL Programs”

mysqlaccess
Section 1.9.1, “Contributors to MySQL”

Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.1, “Overview of MySQL Programs”
Section 2.18.2, “Starting the Server”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”

mysqladmin
Section 6.3.5, “Assigning Account Passwords”
Section 16.3.1.1, “Backing Up a Slave Using mysqldump”
Section 2.20.4.6, “BSD/OS Version 4.x Notes”
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 4.2.2, “Connecting to the MySQL Server”
Section 1.9.1, “Contributors to MySQL”
Section 13.1.6, “CREATE DATABASE Syntax”
Section 2.10.4.6, “Customizing the PATH for MySQL
Tools”
Section 21.3.1, “Debugging a MySQL Server”
Section 13.1.13, “DROP DATABASE Syntax”
Section 20.6.3, “Example C API Client Programs”
Section 13.7.6.2, “FLUSH Syntax”
Section B.5.1, “How to Determine What Is Causing a
Problem”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 2.14, “Installing MySQL on i5/OS”
Section 2.15, “Installing MySQL on NetWare”
Section 2.11, “Installing MySQL on OS X”
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 5.4, “MySQL Server Logs”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.1, “Overview of MySQL Programs”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.5.3, “Running Multiple MySQL Instances on
Unix”
Section 2.18.4, “Securing the Initial MySQL Accounts”
Section 2.10.4.7, “Starting MySQL as a Windows
Service”
Section 2.10.4.5, “Starting MySQL from the Windows
Command Line”
Section 2.18.3, “Testing the Server”
Section 1.3.2, “The Main Features of MySQL”
Section 5.1.10, “The Server Shutdown Process”
Section 8.12.2, “Tuning Server Parameters”
Section 2.10.7, “Upgrading MySQL on Windows”
Section 4.2.6, “Using Option Files”
Section 4.2.4, “Using Options on the Command Line”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2261

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysqladmin create
Section 2.20.5.7, “SGI Irix Notes”

mysqladmin debug
Section 21.3.1, “Debugging a MySQL Server”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

mysqladmin extended-status
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.7.5.32, “SHOW STATUS Syntax”

mysqladmin flush-hosts
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”
Section B.5.2.6, “Host 'host_name' is blocked”
Section 5.1.4, “Server System Variables”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”

mysqladmin flush-logs
Section 7.3.3, “Backup Strategy Summary”
Section 7.3.1, “Establishing a Backup Policy”
Section 5.4.5, “Server Log Maintenance”
Section 5.4.3, “The Binary Log”
Section 5.4.1, “The Error Log”
Section 16.2.2.1, “The Slave Relay Log”

mysqladmin flush-privileges
Section 2.19.2.1, “Changes Affecting Downgrades from
MySQL 5.0”
Section 2.19.5, “Copying MySQL Databases to Another
Machine”
Section 6.2.2, “Grant Tables”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 5.1.3, “Server Command Options”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 6.2.6, “When Privilege Changes Take Effect”

mysqladmin flush-tables
Section 8.5.2, “Bulk Data Loading for MyISAM Tables”
Section 8.11.4, “External Locking”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 7.6.1, “Using myisamchk for Crash Recovery”

mysqladmin flush-xxx
Section 6.3.2, “Adding User Accounts”

mysqladmin kill
Section 2.20.5.6, “Alpha-DEC-OSF/1 Notes”
Section B.5.3.4, “How MySQL Handles a Full Disk”
Section 2.20.5.3, “IBM-AIX notes”
Section 13.7.6.3, “KILL Syntax”
Section 12.15, “Miscellaneous Functions”
Section B.5.2.9, “MySQL server has gone away”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.7.6, “Windows Platform Limitations”

mysqladmin password
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”

mysqladmin processlist
Section 6.3.2, “Adding User Accounts”
Section 8.14, “Examining Thread Information”
Section 13.7.6.3, “KILL Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 21.1.1, “MySQL Threads”
Section 20.6.7.43, “mysql_list_processes()”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.27, “SHOW PROCESSLIST Syntax”

mysqladmin processlist status
Section 21.3.1, “Debugging a MySQL Server”

mysqladmin refresh
Section 6.3.2, “Adding User Accounts”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section B.5.7, “Known Issues in MySQL”
Section 5.4.5, “Server Log Maintenance”

mysqladmin reload
Section 6.3.2, “Adding User Accounts”
Section 6.2.2, “Grant Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 5.1.3, “Server Command Options”
Section 6.3.4, “Setting Account Resource Limits”
Section 6.2.6, “When Privilege Changes Take Effect”

mysqladmin reload version
Section 1.7, “How to Report Bugs or Problems”

mysqladmin shutdown
Section 6.2.5, “Access Control, Stage 2: Request
Verification”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2262

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 2.20.5.6, “Alpha-DEC-OSF/1 Notes”
Section 21.3.1.2, “Creating Trace Files”
Section 13.7.1.3, “GRANT Syntax”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 2.20.5.3, “IBM-AIX notes”
Section 14.2.1.1, “Initializing InnoDB”
Section 2.11, “Installing MySQL on OS X”
Section 21.3.1.7, “Making a Test Case If You Experience
Table Corruption”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.16, “Replication and Temporary Tables”
Section 17.2.5, “Safe Shutdown and Restart of MySQL
Cluster”
Section 2.10.4.7, “Starting MySQL as a Windows
Service”
Section 5.1.10, “The Server Shutdown Process”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”
Section C.7.6, “Windows Platform Limitations”

mysqladmin status
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 20.6.7.68, “mysql_stat()”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”

mysqladmin variables
Section B.5.2.9, “MySQL server has gone away”
Section 13.7.5.36, “SHOW VARIABLES Syntax”

mysqladmin variables extended-
status processlist
Section 1.7, “How to Report Bugs or Problems”

mysqladmin ver
Section 21.3.1.1, “Compiling MySQL for Debugging”

mysqladmin version
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 1.7, “How to Report Bugs or Problems”
Section B.5.2.9, “MySQL server has gone away”
Section 2.18.3, “Testing the Server”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

mysqlanalyze
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

mysqlbinlog
Section 14.2.6, “Backing Up and Recovering an InnoDB
Database”
Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 16.4.5, “How to Report Replication Bugs or
Problems”
Section B.5.7, “Known Issues in MySQL”
Section 12.15, “Miscellaneous Functions”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.1, “Overview of MySQL Programs”
Section 7.5, “Point-in-Time (Incremental) Recovery Using
the Binary Log”
Section 7.5.2, “Point-in-Time Recovery Using Event
Positions”
Section 7.5.1, “Point-in-Time Recovery Using Event
Times”
Section 16.4.1.29, “Replication and Variables”
Section 13.7.4, “SET Syntax”
Section 13.7.5.2, “SHOW BINLOG EVENTS Syntax”
Section 13.4.2.7, “START SLAVE Syntax”
Section 5.4.3, “The Binary Log”
Section 16.2.2.1, “The Slave Relay Log”
Section 7.3.2, “Using Backups for Recovery”

mysqlbinlog binary-log-file | mysql
Section 21.3.1.7, “Making a Test Case If You Experience
Table Corruption”

mysqlbinlog|mysql
Section B.5.7, “Known Issues in MySQL”

mysqlbug
Section 4.4.4, “mysqlbug — Generate Bug Report”

mysqlcheck
Section 2.19.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.1, “Overview of MySQL Programs”
Section 2.19.4, “Rebuilding or Repairing Tables or
Indexes”
Section 5.1.4, “Server System Variables”
Section 1.3.2, “The Main Features of MySQL”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2263

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 14.1, “The MyISAM Storage Engine”

mysqld
Section 21.2.2, “Adding a New User-Defined Function”
Section 21.2, “Adding New Functions to MySQL”
Section 2.20.5.6, “Alpha-DEC-OSF/1 Notes”
Section 2.20.5.5, “Alpha-DEC-UNIX Notes (Tru64)”
Section 14.2.6, “Backing Up and Recovering an InnoDB
Database”
Section 14.5.3, “BDB Startup Options”
Section 16.1.2.4, “Binary Log Options and Variables”
Section 2.20.4.5, “BSD/OS Version 3.x Notes”
Section 2.20.4.6, “BSD/OS Version 4.x Notes”
Section 17.2.1.3, “Building MySQL Cluster from Source
on Linux”
Section 2.10.8.1, “Building MySQL from the Standard
Source Distribution”
Section 6.3.6.2, “Building MySQL with Support for Secure
Connections”
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section B.5.2.13, “Can't create/write to file”
Section B.5.2.17, “Can't initialize character set”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 14.2.4, “Changing the Number or Size of InnoDB
Redo Log Files”
Section 14.5.4, “Characteristics of BDB Tables”
Section 2.4.2.2, “Choosing a Distribution Format”
Section B.5.2.4, “Client does not support authentication
protocol”
Section 17.5.2, “Commands in the MySQL Cluster
Management Client”
Section 9.6, “Comment Syntax”
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 2.17.5, “Compiling and Linking an Optimized
mysqld Server”
Section 21.3.1.1, “Compiling MySQL for Debugging”
Section 14.2.1, “Configuring InnoDB”
Section 14.1.4.1, “Corrupted MyISAM Tables”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
defined Functions”
Section 13.1.12, “CREATE VIEW Syntax”
Section 21.3.1.2, “Creating Trace Files”
Section 14.2.1.2, “Dealing with InnoDB Initialization
Problems”
Section 2.17.4, “Dealing with Problems Compiling
MySQL”
Section 21.3.1, “Debugging a MySQL Server”
Section 21.3, “Debugging and Porting MySQL”
Section 21.3.1.4, “Debugging mysqld under gdb”

Section 17.3.3.6, “Defining SQL and Other API Nodes in
a MySQL Cluster”
Section 2.3.1, “Enterprise Server Distribution Types”
Section 2.21, “Environment Variables”
Section 14.5.6, “Errors That May Occur When Using BDB
Tables”
Section 8.11.4, “External Locking”
Section B.5.2.18, “File Not Found and Similar Errors”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 13.7.6.2, “FLUSH Syntax”
Section 14.2.6.2, “Forcing InnoDB Recovery”
Section 2.20.4.1, “FreeBSD Notes”
Section 8.14.2, “General Thread States”
Section 15.2.3, “Handling MySQL Recovery with ZFS”
Section B.5.2.6, “Host 'host_name' is blocked”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 8.2.1.17, “How to Avoid Full Table Scans”
Section B.5.1, “How to Determine What Is Causing a
Problem”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 2.20.5.3, “IBM-AIX notes”
Section 9.2.2, “Identifier Case Sensitivity”
Section B.5.2.15, “Ignoring user”
Section 12.13, “Information Functions”
Section 17.2.2, “Initial Configuration of MySQL Cluster”
Section 17.2.3, “Initial Startup of MySQL Cluster”
Section 14.2.1.1, “Initializing InnoDB”
Section 2.18.1, “Initializing the Data Directory”
Section 14.2.11.1, “InnoDB Disk I/O”
Section 14.2.1.4, “InnoDB File-Per-Table Tablespaces”
Section 14.2.13.2, “InnoDB General Troubleshooting”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 2.7, “Installation Layouts”
Section 17.2.1.1, “Installing a MySQL Cluster Binary
Release on Linux”
Section 17.2.1.2, “Installing MySQL Cluster from RPM”
Section 17.2.1, “Installing MySQL Cluster on Linux”
Section 2.14, “Installing MySQL on i5/OS”
Section 2.12, “Installing MySQL on Linux Using RPM
Packages”
Section 2.11, “Installing MySQL on OS X”
Section 2.16, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”
Section 17.1.5.8, “Issues Exclusive to MySQL Cluster”
Section 13.7.6.3, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 2.20.1.7, “Linux Alpha Notes”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2264

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 2.20.1.2, “Linux Binary Distribution Notes”
Section 2.20.1.1, “Linux Operating System Notes”
Section 2.20.1.4, “Linux Postinstallation Notes”
Section 2.20.1.3, “Linux Source Distribution Notes”
Section 2.20.1.5, “Linux x86 Notes”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 21.3.1.7, “Making a Test Case If You Experience
Table Corruption”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 14.1.1, “MyISAM Startup Options”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section A.1, “MySQL 5.0 FAQ: General”
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section A.3, “MySQL 5.0 FAQ: Server SQL Mode”
Section 17.5.10.3, “MySQL Cluster and MySQL Security
Procedures”
Section 17.3, “MySQL Cluster Configuration”
Section 17.3.3.1, “MySQL Cluster Configuration: Basic
Example”
Section 17.1.1, “MySQL Cluster Core Concepts”
Section 17.2, “MySQL Cluster Installation and Upgrades”
Section 17.3.2.5, “MySQL Cluster mysqld Option and
Variable Reference”
Section 17.1.2, “MySQL Cluster Nodes, Node Groups,
Replicas, and Partitions”
Section 17.4, “MySQL Cluster Programs”
MySQL Cluster System Variables
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 4.6.10.2, “MySQL Instance Manager
Configuration Files”
Chapter 5, MySQL Server Administration
Section 4.3, “MySQL Server and Server-Startup
Programs”
Section B.5.2.9, “MySQL server has gone away”
Section 5.4, “MySQL Server Logs”
Section 10.6, “MySQL Server Time Zone Support”
Section 17.5.4, “MySQL Server Usage for MySQL
Cluster”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 1.8, “MySQL Standards Compliance”
Section 21.1.1, “MySQL Threads”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 20.6.7.1, “mysql_affected_rows()”
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”

Section 20.6.7.49, “mysql_options()”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
mysqld Command Options for MySQL Cluster
Section 4.3.1, “mysqld — The MySQL Server”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 17.4.17, “ndb_show_tables — Display List of
NDB Tables”
Section 14.5.1, “Operating Systems Supported by BDB”
Section 13.7.2.5, “OPTIMIZE TABLE Syntax”
Section B.5.5, “Optimizer-Related Issues”
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”
Section 2.20.2.1, “OS X 10.x (Darwin)”
Section 17.3.2, “Overview of MySQL Cluster
Configuration Parameters, Options, and Variables”
Section 4.1, “Overview of MySQL Programs”
Section B.5.2.10, “Packet Too Large”
Section 17.5.5, “Performing a Rolling Restart of a MySQL
Cluster”
Section 14.1.4.2, “Problems from Tables Not Being
Closed Properly”
Section 2.18.1.1, “Problems Running mysql_install_db”
Section B.5.3.1, “Problems with File Permissions”
Section 4.2.5, “Program Option Modifiers”
Section 8.10.3.3, “Query Cache Configuration”
Section 16.1.2.1, “Replication and Binary Logging Option
and Variable Reference”
Section 16.1.2, “Replication and Binary Logging Options
and Variables”
Section 16.1.2.2, “Replication Master Options and
Variables”
Resetting the Root Password: Unix and Unix-Like
Systems
Resetting the Root Password: Windows Systems
Section 4.7.4, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 14.5.5, “Restrictions on BDB Tables”
Section B.5.4.5, “Rollback Failure for Nontransactional
Tables”
Section 5.5, “Running Multiple MySQL Instances on One
Machine”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2265

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 2.20.5.8, “SCO UNIX and OpenServer 5.0.x
Notes”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 6.1.4, “Security-Related mysqld Options and
Variables”
Section 13.2.8.1, “SELECT ... INTO Syntax”
Section 2.10.4.3, “Selecting a MySQL Server Type”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.3, “Server Command Options”
Section 5.1.9, “Server Response to Signals”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 10.2, “Setting the Error Message Language”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance
Schedule”
Section 2.20.5.7, “SGI Irix Notes”
Section 14.2.13.1, “SHOW ENGINE INNODB STATUS
and the InnoDB Monitors”
Section 20.6.2, “Simultaneous MySQL Server and
Connector/C Installations”
Section 2.20.3, “Solaris Notes”
Section 2.20.3.2, “Solaris x86 Notes”
Section 2.18.5, “Starting and Stopping MySQL
Automatically”
Section 5.5.2.2, “Starting Multiple MySQL Instances as
Windows Services”
Section 5.5.2.1, “Starting Multiple MySQL Instances at
the Windows Command Line”
Section 2.10.4.7, “Starting MySQL as a Windows
Service”
Section 2.10.4.5, “Starting MySQL from the Windows
Command Line”
Section 4.6.10.3, “Starting the MySQL Server with
MySQL Instance Manager”
Section 10.6.1, “Staying Current with Time Zone
Changes”
Section 2.20.5.4, “SunOS 4 Notes”
Section 1.9.5, “Supporters of MySQL”
Section 16.3.6, “Switching Masters During Failover”
Section 8.11.2, “Table Locking Issues”
Section B.5.2.19, “Table-Corruption Issues”
Section 2.10.8.4, “Testing a Windows Source Build”
Section 2.10.4.8, “Testing The MySQL Installation”
Section 2.18.3, “Testing the Server”
Section 5.4.3, “The Binary Log”
Section 14.10, “The BLACKHOLE Storage Engine”
Section 5.4.1, “The Error Log”
Section 5.4.2, “The General Query Log”
Section 14.1, “The MyISAM Storage Engine”
Section 8.10.3, “The MySQL Query Cache”
Section 5.1, “The MySQL Server”
Section 21.1.2, “The MySQL Test Suite”
Section 5.4.4, “The Slow Query Log”

Section B.5.3.7, “Time Zone Problems”
Section B.5.2.7, “Too many connections”
Section 2.10.5, “Troubleshooting a MySQL Installation
Under Windows”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 2.18.2.1, “Troubleshooting Problems Starting the
MySQL Server”
Section 8.12.2, “Tuning Server Parameters”
Section 1.2, “Typographical and Syntax Conventions”
Section 21.2.2.5, “UDF Compiling and Installing”
Section 21.2.2.6, “UDF Security Precautions”
Section 2.19.1, “Upgrading MySQL”
Section 2.10.7, “Upgrading MySQL on Windows”
Section 21.3.1.5, “Using a Stack Trace”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 4.2.6, “Using Option Files”
Section 21.3.1.3, “Using pdb to create a Windows
crashdump”
Section 21.3.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”
Section 8.12.4.3, “Using Symbolic Links for Databases
on Windows”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”
Section 17.1.4, “What is New in MySQL Cluster”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”
Section 6.2.6, “When Privilege Changes Take Effect”
Section B.5.3.5, “Where MySQL Stores Temporary Files”

mysqld mysqld.trace
Section 21.3.1.2, “Creating Trace Files”

mysqld-abc.exe
Section 4.4.2, “make_win_bin_dist — Package
MySQL Distribution as Zip Archive”

mysqld-debug
Section 2.4.2.2, “Choosing a Distribution Format”
Section 21.3.1.2, “Creating Trace Files”
Section 2.3.1, “Enterprise Server Distribution Types”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 2.10.4.3, “Selecting a MySQL Server Type”
Section 5.1.3, “Server Command Options”
Section 5.5.2.1, “Starting Multiple MySQL Instances at
the Windows Command Line”

mysqld-max
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2266

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

mysqld-nt
Section 2.10.4.3, “Selecting a MySQL Server Type”
Section 5.1.3, “Server Command Options”
Section 5.5.2.2, “Starting Multiple MySQL Instances as
Windows Services”
Section 5.5.2.1, “Starting Multiple MySQL Instances at
the Windows Command Line”

mysqld_multi
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.6.10, “mysqlmanager — The MySQL Instance
Manager”
Section 4.1, “Overview of MySQL Programs”
Section 5.5.3, “Running Multiple MySQL Instances on
Unix”

mysqld_safe
Section 2.20.5.5, “Alpha-DEC-UNIX Notes (Tru64)”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 21.3.1.1, “Compiling MySQL for Debugging”
Section 8.12.5.2, “Enabling Large Page Support”
Section B.5.2.18, “File Not Found and Similar Errors”
Section 2.20.4.1, “FreeBSD Notes”
Section B.5.3.6, “How to Protect or Change the MySQL
Unix Socket File”
Section 2.20.5.3, “IBM-AIX notes”
Section 14.2.1.1, “Initializing InnoDB”
Section 14.2.13.2, “InnoDB General Troubleshooting”
Section 17.2.1.2, “Installing MySQL Cluster from RPM”
Section 2.14, “Installing MySQL on i5/OS”
Section 2.15, “Installing MySQL on NetWare”
Section 2.11, “Installing MySQL on OS X”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”
Section B.5.7, “Known Issues in MySQL”
Section 2.20.1.4, “Linux Postinstallation Notes”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 17.5.10.3, “MySQL Cluster and MySQL Security
Procedures”
Section 10.6, “MySQL Server Time Zone Support”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 4.2.9, “Option Defaults, Options Expecting
Values, and the = Sign”
Section 4.1, “Overview of MySQL Programs”
Section B.5.2.10, “Packet Too Large”
Section B.5.3.1, “Problems with File Permissions”

Section 5.5, “Running Multiple MySQL Instances on One
Machine”
Section 5.5.3, “Running Multiple MySQL Instances on
Unix”
Section 2.20.5.8, “SCO UNIX and OpenServer 5.0.x
Notes”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 2.18.5, “Starting and Stopping MySQL
Automatically”
Section 4.6.10.3, “Starting the MySQL Server with
MySQL Instance Manager”
Section 2.18.2, “Starting the Server”
Section 2.18.3, “Testing the Server”
Section 5.4.1, “The Error Log”
Section B.5.3.7, “Time Zone Problems”
Section 2.18.2.1, “Troubleshooting Problems Starting the
MySQL Server”
Section 8.12.2, “Tuning Server Parameters”
Section 21.2.2.5, “UDF Compiling and Installing”
Section 4.2.6, “Using Option Files”

mysqldump
Section 16.3.1.1, “Backing Up a Slave Using mysqldump”
Section 14.2.6, “Backing Up and Recovering an InnoDB
Database”
Chapter 7, Backup and Recovery
Section 7.1, “Backup and Recovery Types”
Section 7.3.3, “Backup Strategy Summary”
Section 13.7.2.2, “BACKUP TABLE Syntax”
Section 8.6.4, “Bulk Data Loading for InnoDB Tables”
Section 2.19.2.1, “Changes Affecting Downgrades from
MySQL 5.0”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 2.19.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”
Choosing an Installation Type
Section 4.2.2, “Connecting to the MySQL Server”
Section 1.9.1, “Contributors to MySQL”
Section 7.4.5.2, “Copy a Database from one Server to
Another”
Section 2.19.5, “Copying MySQL Databases to Another
Machine”
Section 13.1.8, “CREATE INDEX Syntax”
Section 13.1.12, “CREATE VIEW Syntax”
Section 16.1.1.5, “Creating a Data Snapshot Using
mysqldump”
Section 16.1.1.6, “Creating a Data Snapshot Using Raw
Data Files”
Section 2.10.4.6, “Customizing the PATH for MySQL
Tools”
Section 7.2, “Database Backup Methods”
Section 12.17.2, “DECIMAL Data Type Characteristics”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2267

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 14.2.11.3, “Defragmenting a Table”
Section 2.19.2, “Downgrading MySQL”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and Content
Separately”
Section 15.1.2, “EC2 Instance Limitations”
Section 14.5.6, “Errors That May Occur When Using BDB
Tables”
Section 7.3.1, “Establishing a Backup Policy”
Section 7.3, “Example Backup and Recovery Strategy”
Section 1.7, “How to Report Bugs or Problems”
Section 16.1.1, “How to Set Up Replication”
Section 9.2.2, “Identifier Case Sensitivity”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 13.4.2.2, “LOAD DATA FROM MASTER Syntax”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.4.2.3, “LOAD TABLE tbl_name FROM
MASTER Syntax”
Section 7.4.5.1, “Making a Copy of a Database”
Section 14.2.7, “Moving an InnoDB Database to Another
Machine”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 17.2.4, “MySQL Cluster Example with Tables
and Data”
Section 17.1, “MySQL Cluster Overview”
Section 4.5.1.1, “mysql Options”
Section 5.4, “MySQL Server Logs”
Section 7.4.5, “mysqldump Tips”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”
Section 11.1.1, “Numeric Type Overview”
Section 16.1.1.4, “Obtaining the Replication Master
Binary Log Coordinates”
Section 17.5.3, “Online Backup of MySQL Cluster”
Section 4.1, “Overview of MySQL Programs”
Section 17.5.5, “Performing a Rolling Restart of a MySQL
Cluster”
Section B.5.4.8, “Problems with Floating-Point Values”
Section 2.19.4, “Rebuilding or Repairing Tables or
Indexes”
Section 7.4.4, “Reloading Delimited-Text Format
Backups”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 16.3.4, “Replicating Different Databases to
Different Slaves”
Section 14.2.5, “Resizing the InnoDB System
Tablespace”

Section 14.5.5, “Restrictions on BDB Tables”
Section C.4, “Restrictions on Views”
Section 5.4.5, “Server Log Maintenance”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 16.1.1.8, “Setting Up Replication with Existing
Data”
Section B.5.4.7, “Solving Problems with No Matching
Rows”
Section 4.2.3, “Specifying Program Options”
Section 2.10.4.7, “Starting MySQL as a Windows
Service”
Section 2.10.3.1, “Starting the MySQL Server Instance
Configuration Wizard”
Section 11.4.3, “The BLOB and TEXT Types”
Section 8.10.2, “The InnoDB Buffer Pool”
Section 1.3.2, “The Main Features of MySQL”
Section 10.6.2, “Time Zone Leap Second Support”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 17.2.6, “Upgrading and Downgrading MySQL
Cluster”
Section 2.19.1, “Upgrading MySQL”
Section 13.1.10.3, “Using FOREIGN KEY Constraints”
Section 7.4, “Using mysqldump for Backups”
Section 16.3.1, “Using Replication for Backups”
Section 16.3.2, “Using Replication with Different Master
and Slave Storage Engines”
Section 11.3.4, “YEAR(2) Limitations and Migrating to
YEAR(4)”

mysqldump mysql
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”

mysqldumpslow
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.1, “Overview of MySQL Programs”
Section 5.4.4, “The Slow Query Log”

mysqlfailover
Section 16.3.6, “Switching Masters During Failover”

mysqlhotcopy
Chapter 7, Backup and Recovery
Section 7.1, “Backup and Recovery Types”
Section 13.7.2.2, “BACKUP TABLE Syntax”
Section 1.9.1, “Contributors to MySQL”
Section 7.2, “Database Backup Methods”
Section 13.4.2.2, “LOAD DATA FROM MASTER Syntax”
Section 13.4.2.3, “LOAD TABLE tbl_name FROM
MASTER Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2268

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.1, “Overview of MySQL Programs”

mysqlimport
Section 7.1, “Backup and Recovery Types”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 2.19.5, “Copying MySQL Databases to Another
Machine”
Section 7.2, “Database Backup Methods”
Section 2.19.2, “Downgrading MySQL”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.1, “Overview of MySQL Programs”
Section 7.4.4, “Reloading Delimited-Text Format
Backups”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”

mysqlmanager
Section 4.6.10.4, “Instance Manager User and Password
Management”
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 4.6.10, “mysqlmanager — The MySQL Instance
Manager”
Section 4.1, “Overview of MySQL Programs”
Section 4.6.10.3, “Starting the MySQL Server with
MySQL Instance Manager”

mysqloptimize
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

mysqlrepair
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

mysqlshow
Section 4.2.2, “Connecting to the MySQL Server”
Section 20.6.3, “Example C API Client Programs”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 4.1, “Overview of MySQL Programs”
Section 13.7.5.11, “SHOW DATABASES Syntax”
Section 13.7.5.18, “SHOW INDEX Syntax”
Section 13.7.5.33, “SHOW TABLE STATUS Syntax”
Section 2.10.4.8, “Testing The MySQL Installation”
Section 2.18.3, “Testing the Server”
Section 2.10.6, “Windows Postinstallation Procedures”

mysqlshow db_name
Section 13.7.5.34, “SHOW TABLES Syntax”

mysqlshow db_name tbl_name
Section 13.7.5.5, “SHOW COLUMNS Syntax”

mysqlshow mysql user
Section B.5.2.15, “Ignoring user”

mysqltest
Section 21.1.2, “The MySQL Test Suite”

N

[index top]

ndb_config
Section 17.4, “MySQL Cluster Programs”
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”

ndb_cpcd
Section 17.4.5, “ndb_cpcd — Automate Testing for NDB
Development”

ndb_delete_all
Section 17.4.6, “ndb_delete_all — Delete All Rows
from an NDB Table”

ndb_desc
Section 17.3.3.5, “Defining MySQL Cluster Data Nodes”
Section 17.5.10.3, “MySQL Cluster and MySQL Security
Procedures”
mysqld Command Options for MySQL Cluster
Section 17.4.7, “ndb_desc — Describe NDB Tables”

ndb_drop_index
Section 17.4.8, “ndb_drop_index — Drop Index from
an NDB Table”

ndb_drop_table
Section 17.4.8, “ndb_drop_index — Drop Index from
an NDB Table”
Section 17.4.9, “ndb_drop_table — Drop an NDB
Table”

ndb_error_reporter
Section 17.4.10, “ndb_error_reporter — NDB Error-
Reporting Utility”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2269

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

ndb_mgm
Section 17.2.1.3, “Building MySQL Cluster from Source
on Linux”
Section 17.5.2, “Commands in the MySQL Cluster
Management Client”
Section 17.3.3.5, “Defining MySQL Cluster Data Nodes”
Section 17.2.3, “Initial Startup of MySQL Cluster”
Section 17.2.1.1, “Installing a MySQL Cluster Binary
Release on Linux”
Section 17.2.1.2, “Installing MySQL Cluster from RPM”
Section 17.2.1, “Installing MySQL Cluster on Linux”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 17.1.1, “MySQL Cluster Core Concepts”
Section 17.5.6.1, “MySQL Cluster Logging Management
Commands”
Section 17.1.2, “MySQL Cluster Nodes, Node Groups,
Replicas, and Partitions”
Section 17.4, “MySQL Cluster Programs”
Section 17.5.10.1, “MySQL Cluster Security and
Networking Issues”
mysqld Command Options for MySQL Cluster
Section 17.4.3, “ndb_mgm — The MySQL Cluster
Management Client”
Section 17.4.2, “ndb_mgmd — The MySQL Cluster
Management Server Daemon”
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”
Section 17.5.3, “Online Backup of MySQL Cluster”
Section 17.5.5, “Performing a Rolling Restart of a MySQL
Cluster”
Section 17.2.5, “Safe Shutdown and Restart of MySQL
Cluster”
Section 4.2.4, “Using Options on the Command Line”
Section 17.5.3.2, “Using The MySQL Cluster
Management Client to Create a Backup”

ndb_mgmd
Section 17.2.1.3, “Building MySQL Cluster from Source
on Linux”
Section 17.5.2, “Commands in the MySQL Cluster
Management Client”
Section 17.3.3.4, “Defining a MySQL Cluster
Management Server”
Section 17.3.3.5, “Defining MySQL Cluster Data Nodes”
Section 17.2.3, “Initial Startup of MySQL Cluster”
Section 17.2.1.1, “Installing a MySQL Cluster Binary
Release on Linux”
Section 17.2.1.2, “Installing MySQL Cluster from RPM”
Section 17.2.1, “Installing MySQL Cluster on Linux”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 17.3.3.1, “MySQL Cluster Configuration: Basic
Example”
Section 17.3.3.2, “MySQL Cluster Connection Strings”

Section 17.1.1, “MySQL Cluster Core Concepts”
Section 17.5.6.1, “MySQL Cluster Logging Management
Commands”
Section 17.1.2, “MySQL Cluster Nodes, Node Groups,
Replicas, and Partitions”
Section 17.4, “MySQL Cluster Programs”
mysqld Command Options for MySQL Cluster
Section 17.4.2, “ndb_mgmd — The MySQL Cluster
Management Server Daemon”
Section 17.5.5, “Performing a Rolling Restart of a MySQL
Cluster”
Section 17.3.1, “Quick Test Setup of MySQL Cluster”
Section 17.2.5, “Safe Shutdown and Restart of MySQL
Cluster”
Section 17.5.1, “Summary of MySQL Cluster Start
Phases”

ndb_print_backup_file
Section 17.4.11, “ndb_print_backup_file — Print
NDB Backup File Contents”
Section 17.4.12, “ndb_print_schema_file — Print
NDB Schema File Contents”
Section 17.4.13, “ndb_print_sys_file — Print NDB
System File Contents”
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”

ndb_print_schema_file
Section 17.4.11, “ndb_print_backup_file — Print
NDB Backup File Contents”
Section 17.4.12, “ndb_print_schema_file — Print
NDB Schema File Contents”
Section 17.4.13, “ndb_print_sys_file — Print NDB
System File Contents”
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”

ndb_print_sys_file
Section 17.4.11, “ndb_print_backup_file — Print
NDB Backup File Contents”
Section 17.4.12, “ndb_print_schema_file — Print
NDB Schema File Contents”
Section 17.4.13, “ndb_print_sys_file — Print NDB
System File Contents”
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”

ndb_restore
Section 7.1, “Backup and Recovery Types”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2270

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 17.1.1, “MySQL Cluster Core Concepts”
Section 17.1, “MySQL Cluster Overview”
Section 17.4, “MySQL Cluster Programs”
Section 17.5.8, “MySQL Cluster Single User Mode”
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”
Section 17.5.3, “Online Backup of MySQL Cluster”
Section 17.5.5, “Performing a Rolling Restart of a MySQL
Cluster”
Section 17.2.6, “Upgrading and Downgrading MySQL
Cluster”

ndb_schema_backup_file
Section 17.4.12, “ndb_print_schema_file — Print
NDB Schema File Contents”

ndb_select_all
Section 17.5.10.3, “MySQL Cluster and MySQL Security
Procedures”
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”
Section 17.4.17, “ndb_show_tables — Display List of
NDB Tables”

ndb_select_count
Section 17.4.16, “ndb_select_count — Print Row
Counts for NDB Tables”

ndb_show_tables
Section 17.5.10.3, “MySQL Cluster and MySQL Security
Procedures”
Section 17.4, “MySQL Cluster Programs”
mysqld Command Options for MySQL Cluster
Section 17.4.17, “ndb_show_tables — Display List of
NDB Tables”

ndb_size.pl
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
mysqld Command Options for MySQL Cluster
Section 17.4.18, “ndb_size.pl — NDBCLUSTER Size
Requirement Estimator”
Section 2.22, “Perl Installation Notes”

ndb_waiter
Section 17.4.19, “ndb_waiter — Wait for MySQL
Cluster to Reach a Given Status”

ndbd
Section 17.2.1.3, “Building MySQL Cluster from Source
on Linux”
Section 17.5.2, “Commands in the MySQL Cluster
Management Client”

Section 17.3.3.5, “Defining MySQL Cluster Data Nodes”
Section 17.2.3, “Initial Startup of MySQL Cluster”
Section 17.2.1.1, “Installing a MySQL Cluster Binary
Release on Linux”
Section 17.2.1.2, “Installing MySQL Cluster from RPM”
Section 17.2.1, “Installing MySQL Cluster on Linux”
Section 17.1.5.9, “Limitations Relating to Multiple MySQL
Cluster Nodes”
Section 17.5, “Management of MySQL Cluster”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 17.3.3.1, “MySQL Cluster Configuration: Basic
Example”
Section 17.1.1, “MySQL Cluster Core Concepts”
Section 17.2, “MySQL Cluster Installation and Upgrades”
Section 17.3.4.2, “MySQL Cluster Interconnects and
Performance”
Section 17.1.2, “MySQL Cluster Nodes, Node Groups,
Replicas, and Partitions”
Section 17.4, “MySQL Cluster Programs”
mysqld Command Options for MySQL Cluster
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”
Section 17.4.19, “ndb_waiter — Wait for MySQL
Cluster to Reach a Given Status”
Section 17.4.1, “ndbd — The MySQL Cluster Data Node
Daemon”
Section 17.3.2, “Overview of MySQL Cluster
Configuration Parameters, Options, and Variables”
Section 17.5.5, “Performing a Rolling Restart of a MySQL
Cluster”
Section 17.1.5.10, “Previous MySQL Cluster Issues
Resolved in MySQL 5.0”
Section 17.3.1, “Quick Test Setup of MySQL Cluster”
Section 17.2.5, “Safe Shutdown and Restart of MySQL
Cluster”
Section 17.3.3.11, “SCI Transport Connections in MySQL
Cluster”
Section 17.5.1, “Summary of MySQL Cluster Start
Phases”
Section 17.5.6.3, “Using CLUSTERLOG STATISTICS in
the MySQL Cluster Management Client”
Section 17.3.4, “Using High-Speed Interconnects with
MySQL Cluster”

NET
Section 2.10.4.7, “Starting MySQL as a Windows
Service”

NET START
Section 5.5.2.2, “Starting Multiple MySQL Instances as
Windows Services”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2271

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

NET START MySQL
Section 2.10.4.7, “Starting MySQL as a Windows
Service”
Section 2.10.5, “Troubleshooting a MySQL Installation
Under Windows”
Section 2.10.7, “Upgrading MySQL on Windows”

NET STOP
Section 5.5.2.2, “Starting Multiple MySQL Instances as
Windows Services”

NET STOP MySQL
Section 2.10.4.7, “Starting MySQL as a Windows
Service”

nm
Section 4.7.4, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 21.3.1.5, “Using a Stack Trace”

nohup
Section 2.20.5.5, “Alpha-DEC-UNIX Notes (Tru64)”

O

[index top]

openssl
Section 6.3.7, “Creating SSL Certificates and Keys Using
openssl”

openssl md5 package_name
Section 2.6.1, “Verifying the MD5 Checksum”

P

[index top]

perror
Section B.5.2.13, “Can't create/write to file”
Section B.5.2.18, “File Not Found and Similar Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.1, “perror — Explain Error Codes”
Section B.1, “Sources of Error Information”

pfexec
Section 2.16, “Installing MySQL on Unix/Linux Using
Generic Binaries”

PGP
Section 2.6.2, “Signature Checking Using GnuPG”

pkgadd
Section 2.20.5.9, “SCO OpenServer 6.0.x Notes”

ppm
Section 2.22, “Perl Installation Notes”

ps
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 8.12.5.1, “How MySQL Uses Memory”
Section B.5.1, “How to Determine What Is Causing a
Problem”
Section 2.20.1.4, “Linux Postinstallation Notes”
Section 4.6.18, “mysql_zap — Kill Processes That
Match a Pattern”
Section 2.18.2.1, “Troubleshooting Problems Starting the
MySQL Server”

ps auxw
Section 4.2.2, “Connecting to the MySQL Server”

ps xa | grep mysqld
Section B.5.2.2, “Can't connect to [local] MySQL server”

R

[index top]

rename
Section 5.4.5, “Server Log Maintenance”

replace
Section 1.8.2.5, “'--' as the Start of a Comment”
Section 4.7.1, “msql2mysql — Convert mSQL
Programs for Use with MySQL”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 16.3.3, “Using Replication for Scale-Out”

resolve_stack_dump
Section 4.1, “Overview of MySQL Programs”
Section 4.7.4, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 21.3.1.5, “Using a Stack Trace”

resolveip
Section 2.20.1.2, “Linux Binary Distribution Notes”
Section 4.1, “Overview of MySQL Programs”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2272

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.8.3, “resolveip — Resolve Host name to IP
Address or Vice Versa”

rm
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”

rpm
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”
Section 2.6.4, “Signature Checking Using RPM”

rpmbuild
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”

rsync
Section 7.1, “Backup and Recovery Types”
Section 16.1.1.6, “Creating a Data Snapshot Using Raw
Data Files”
Section 16.1.1.9, “Introducing Additional Slaves to an
Existing Replication Environment”

S

[index top]

safe_mysqld
Section 2.11, “Installing MySQL on OS X”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”

scp
Section 7.1, “Backup and Recovery Types”
Section 16.1.1.6, “Creating a Data Snapshot Using Raw
Data Files”

sed
Section 3.3.4.7, “Pattern Matching”

SELECT
Section 17.2.4, “MySQL Cluster Example with Tables
and Data”

Service Control Manager
Section 2.10, “Installing MySQL on Microsoft Windows”
Section 2.10.4.7, “Starting MySQL as a Windows
Service”

Services
Section 2.10.4.7, “Starting MySQL as a Windows
Service”

setenv
Section 4.2.10, “Setting Environment Variables”

setrlimit
Section 15.3.2, “Using memcached”

sh
Section 2.20.4.4, “BSD/OS Version 2.x Notes”
Section 2.20.4.5, “BSD/OS Version 3.x Notes”
Section B.5.2.18, “File Not Found and Similar Errors”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.10, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”

SHOW
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”
Section 17.3.1, “Quick Test Setup of MySQL Cluster”

SHOW ERRORS
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”

SHOW WARNINGS
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”

ssh
Section 17.5.10.1, “MySQL Cluster Security and
Networking Issues”
Section 15.2.1, “Using ZFS for File System Replication”

Start>Run>cmd.exe
Section 6.3.7, “Creating SSL Certificates and Keys Using
openssl”

strings
Section 6.1.1, “Security Guidelines”

su root
Section 17.2.1.1, “Installing a MySQL Cluster Binary
Release on Linux”

sudo
Section 17.2.1.1, “Installing a MySQL Cluster Binary
Release on Linux”
Section 2.16, “Installing MySQL on Unix/Linux Using
Generic Binaries”

sysctl
Section 2.20.4.1, “FreeBSD Notes”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2273

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

T

[index top]

tar
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.1, “Backup and Recovery Types”
Section 2.4.2.2, “Choosing a Distribution Format”
Section 16.1.1.6, “Creating a Data Snapshot Using Raw
Data Files”
Section 3.3, “Creating and Using a Database”
Section 1.7, “How to Report Bugs or Problems”
Section 2.20.5.1, “HP-UX Version 10.20 Notes”
Section 2.20.5.2, “HP-UX Version 11.x Notes”
Section 2.7, “Installation Layouts”
Section 2.17, “Installing MySQL from Source”
Section 2.11, “Installing MySQL on OS X”
Section 2.13, “Installing MySQL on Solaris”
Section 2.16, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”
Section 2.22.1, “Installing Perl on Unix”
Section 16.1.1.9, “Introducing Additional Slaves to an
Existing Replication Environment”
Section 2.4.2.4, “MySQL Binaries Compiled by Oracle
Corporation”
Section 2.20.2, “OS X Notes”
Section 2.20.5.9, “SCO OpenServer 6.0.x Notes”
Section 20.6.2, “Simultaneous MySQL Server and
Connector/C Installations”
Section 2.20.3, “Solaris Notes”

tcpdump
Section 6.1.1, “Security Guidelines”

tcsh
Section B.5.2.18, “File Not Found and Similar Errors”
Section 2.11, “Installing MySQL on OS X”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.2.10, “Setting Environment Variables”
Section 1.2, “Typographical and Syntax Conventions”

tee
Section 4.5.1.2, “mysql Commands”

Telnet
Section 15.3.4, “Getting memcached Statistics”

telnet
Section 15.3.4, “Getting memcached Statistics”
Section 6.1.1, “Security Guidelines”

Text in this style
Section 1.2, “Typographical and Syntax Conventions”

top
Section B.5.1, “How to Determine What Is Causing a
Problem”

U

[index top]

ulimit
Section 2.20.4.4, “BSD/OS Version 2.x Notes”
Section 2.20.4.5, “BSD/OS Version 3.x Notes”
Section 17.3.3.5, “Defining MySQL Cluster Data Nodes”
Section 8.12.5.2, “Enabling Large Page Support”
Section B.5.2.18, “File Not Found and Similar Errors”
Section 2.20.5.3, “IBM-AIX notes”
Section 2.20.1.4, “Linux Postinstallation Notes”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”
Section B.5.2.10, “Packet Too Large”
Section 5.1.3, “Server Command Options”
Section 15.3.2, “Using memcached”

update-rc.d
Section 17.2.1.1, “Installing a MySQL Cluster Binary
Release on Linux”

UPGMYSQL
Section 2.14, “Installing MySQL on i5/OS”

useradd
Section 17.2.1.1, “Installing a MySQL Cluster Binary
Release on Linux”
Section 2.12, “Installing MySQL on Linux Using RPM
Packages”
Section 2.16, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”

usermod
Section 2.12, “Installing MySQL on Linux Using RPM
Packages”

V

[index top]

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2274

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

vi
Section 17.2.2, “Initial Configuration of MySQL Cluster”
Section 4.5.1.2, “mysql Commands”
Section 3.3.4.7, “Pattern Matching”

vmstat
Section 15.3.2, “Using memcached”

W

[index top]

WinDbg
Section 21.3.1.3, “Using pdb to create a Windows
crashdump”

winMd5Sum
Section 2.6.1, “Verifying the MD5 Checksum”

WinZip
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 2.10.8.2, “Building MySQL from a Windows
Source Distribution”
Section 2.10.8.1, “Building MySQL from the Standard
Source Distribution”
Section 2.17, “Installing MySQL from Source”

WordPad
Section 13.2.6, “LOAD DATA INFILE Syntax”

X

[index top]

xlC_r
Section 21.3, “Debugging and Porting MySQL”

Y

[index top]

yacc
Section 21.2.3, “Adding a New Native Function”
Section 2.17.4, “Dealing with Problems Compiling
MySQL”
Section 9.3, “Keywords and Reserved Words”

yum
Section 15.3.1, “Installing memcached”
Section 15.1.1, “Setting Up MySQL on an EC2 AMI”

Section 15.3.3.3, “Using libmemcached with C and C+
+”

Z

[index top]

zfs recv
Section 15.2.1, “Using ZFS for File System Replication”

zip
Section 16.1.1.6, “Creating a Data Snapshot Using Raw
Data Files”
Section 1.7, “How to Report Bugs or Problems”

zsh
Section 4.2.10, “Setting Environment Variables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2275

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Function Index
Symbols | A | B | C | D | E | F | G | H | I | L | M | N | O | P |
Q | R | S | T | U | V | W | X | Y

Symbols

[index top]

%
Section 1.8.1, “MySQL Extensions to Standard SQL”

A

[index top]

ABS()
Section 21.2, “Adding New Functions to MySQL”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
defined Functions”
Section 9.2.3, “Function Name Parsing and Resolution”
Section 12.6.2, “Mathematical Functions”

ACOS()
Section 12.6.2, “Mathematical Functions”

add()
Section 15.3.3.1, “Basic memcached Operations”

ADDDATE()
Section 12.7, “Date and Time Functions”

addslashes()
Section 6.1.7, “Client Programming Security Guidelines”

ADDTIME()
Section 12.7, “Date and Time Functions”

AES_DECRYPT()
Section 12.12, “Encryption and Compression Functions”

AES_ENCRYPT()
Section 12.12, “Encryption and Compression Functions”

Area()
Section 12.14.7, “Geometry Property Functions”
Section 12.14.7.4, “Polygon and MultiPolygon Property
Functions”

AsBinary()
Section 11.5.3.4, “Fetching Spatial Data”

Section 12.14.6, “Geometry Format Conversion
Functions”

ASCII()
Section 13.8.3, “HELP Syntax”
Section 12.5, “String Functions”

ASIN()
Section 12.6.2, “Mathematical Functions”

AsText()
Section 11.5.3.4, “Fetching Spatial Data”
Section 12.14.6, “Geometry Format Conversion
Functions”

AsWKB()
Section 12.14.6, “Geometry Format Conversion
Functions”

AsWKT()
Section 12.14.6, “Geometry Format Conversion
Functions”

ATAN()
Section 12.6.2, “Mathematical Functions”

ATAN2()
Section 12.6.2, “Mathematical Functions”

AVG()
Section 11.1.2, “Date and Time Type Overview”
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”
Section 11.4.4, “The ENUM Type”
Section 1.3.2, “The Main Features of MySQL”
Section 11.4.5, “The SET Type”

B

[index top]

BENCHMARK()
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.13, “Information Functions”
Section 8.13.1, “Measuring the Speed of Expressions
and Functions”
Section 13.2.9.10, “Optimizing Subqueries”
Section 13.2.9.8, “Subqueries in the FROM Clause”

BIN()
Section 9.1.6, “Bit-Field Literals”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2276

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 12.5, “String Functions”

BIT_AND()
Section 12.11, “Bit Functions and Operators”
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

BIT_COUNT()
Section 12.11, “Bit Functions and Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”

BIT_LENGTH()
Section 12.5, “String Functions”

BIT_OR()
Section 12.11, “Bit Functions and Operators”
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

BIT_XOR()
Section 12.11, “Bit Functions and Operators”
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

C

[index top]

CAST()
Section 9.1.6, “Bit-Field Literals”
Section 12.10, “Cast Functions and Operators”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 12.3.2, “Comparison Functions and Operators”
Section 11.3.7, “Conversion Between Date and Time
Types”
Section 10.1.9.2, “CONVERT() and CAST()”
Section 12.7, “Date and Time Functions”
Section 9.1.4, “Hexadecimal Literals”
Section 1.8.2, “MySQL Differences from Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 10.1.7.7, “The BINARY Operator”
Section 11.3.1, “The DATE, DATETIME, and
TIMESTAMP Types”
Section 12.2, “Type Conversion in Expression
Evaluation”
Section 9.4, “User-Defined Variables”

CEIL()
Section 12.6.2, “Mathematical Functions”

CEILING()
Section 12.6.2, “Mathematical Functions”

Centroid()
Section 12.14.7.4, “Polygon and MultiPolygon Property
Functions”

CHAR()
Section 12.10, “Cast Functions and Operators”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 12.12, “Encryption and Compression Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

CHAR_LENGTH()
Section 12.5, “String Functions”
Section 10.1.13.1, “Unicode Character Sets”

CHARACTER_LENGTH()
Section 12.5, “String Functions”

CHARSET()
Section 12.13, “Information Functions”
Section 10.1.9.1, “Result Strings”

COALESCE()
Section 12.3.2, “Comparison Functions and Operators”
Section 13.2.8.2, “JOIN Syntax”

COERCIBILITY()
Section 10.1.7.5, “Collation of Expressions”
Section 12.13, “Information Functions”

COLLATION()
Section B.5.4.1, “Case Sensitivity in String Searches”
Section 12.13, “Information Functions”
Section 10.1.9.1, “Result Strings”

COMPRESS()
Section 12.12, “Encryption and Compression Functions”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 5.1.4, “Server System Variables”

CONCAT()
Section 12.10, “Cast Functions and Operators”
Section 10.1.7.5, “Collation of Expressions”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
defined Functions”
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2277

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 5.1.7, “Server SQL Modes”
Section 13.7.5.10, “SHOW CREATE VIEW Syntax”
Section 12.5, “String Functions”
Section 10.1.8, “String Repertoire”
Section 19.17, “The INFORMATION_SCHEMA VIEWS
Table”
Section 12.2, “Type Conversion in Expression
Evaluation”

CONCAT_WS()
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”
Section 12.5, “String Functions”

CONNECTION_ID()
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.13, “Information Functions”
Section 13.7.6.3, “KILL Syntax”
Section 13.7.5.27, “SHOW PROCESSLIST Syntax”

Contains()
Section 12.14.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”

CONV()
Section 12.6.2, “Mathematical Functions”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

CONVERT()
Section 12.10, “Cast Functions and Operators”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 10.1.3.5, “Character String Literal Character Set
and Collation”
Section 12.3.2, “Comparison Functions and Operators”
Section 10.1.9.2, “CONVERT() and CAST()”
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”

CONVERT_TZ()
Section 12.7, “Date and Time Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 16.4.1.25, “Replication and Time Zones”

COS()
Section 12.6.2, “Mathematical Functions”

COT()
Section 12.6.2, “Mathematical Functions”

COUNT()
Section 3.3.4.8, “Counting Rows”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
defined Functions”
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”
Section 8.2.1.2, “How MySQL Optimizes WHERE
Clauses”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section B.5.4.3, “Problems with NULL Values”
Section 5.1.7, “Server SQL Modes”
Section 1.3.2, “The Main Features of MySQL”
Section 18.4.3, “Updatable and Insertable Views”
Section 18.4.2, “View Processing Algorithms”

CRC32()
Section 12.6.2, “Mathematical Functions”

Crosses()
Section 12.14.9.1, “Spatial Relation Functions That Use
Object Shapes”

crypt()
Section 12.12, “Encryption and Compression Functions”
Section 5.1.4, “Server System Variables”

CURDATE()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_DATE
Section 13.1.10, “CREATE TABLE Syntax”
Section 11.6, “Data Type Default Values”
Section 12.7, “Date and Time Functions”

CURRENT_DATE()
Section 12.7, “Date and Time Functions”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_TIME
Section 12.7, “Date and Time Functions”

CURRENT_TIME()
Section 12.7, “Date and Time Functions”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_TIMESTAMP
Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2278

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 13.1.10, “CREATE TABLE Syntax”
Section 11.6, “Data Type Default Values”
Section 12.7, “Date and Time Functions”

CURRENT_TIMESTAMP()
Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP”
Section 12.7, “Date and Time Functions”
Section 8.10.3.1, “How the Query Cache Operates”

CURRENT_USER
Section 18.5, “Access Control for Stored Programs and
Views”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.11, “CREATE TRIGGER Syntax”
Section 13.1.12, “CREATE VIEW Syntax”
Section 6.2.2, “Grant Tables”
Section 12.13, “Information Functions”
Section 6.2.3, “Specifying Account Names”

CURRENT_USER()
Section 6.2.4, “Access Control, Stage 1: Connection
Verification”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.11, “CREATE TRIGGER Syntax”
Section 13.1.12, “CREATE VIEW Syntax”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.13, “Information Functions”
Section 16.4.1.9, “Replication and System Functions”
Section 13.7.1.6, “SET PASSWORD Syntax”
Section 6.2.3, “Specifying Account Names”
Section 6.3.9, “SQL-Based MySQL Account Activity
Auditing”
Section 10.1.11, “UTF-8 for Metadata”

CURTIME()
Section 12.7, “Date and Time Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 10.6, “MySQL Server Time Zone Support”

D

[index top]

DATABASE()
Section 3.3.1, “Creating and Selecting a Database”
Section 13.1.13, “DROP DATABASE Syntax”
Section 3.4, “Getting Information About Databases and
Tables”
Section 8.10.3.1, “How the Query Cache Operates”

Section 12.13, “Information Functions”
Section B.5.7, “Known Issues in MySQL”
Section 10.1.11, “UTF-8 for Metadata”

DATE()
Section 12.7, “Date and Time Functions”

DATE_ADD()
Section 12.6.1, “Arithmetic Operators”
Section 12.7, “Date and Time Functions”
Section 11.3, “Date and Time Types”
Section 3.3.4.5, “Date Calculations”
Section 9.5, “Expression Syntax”

DATE_FORMAT()
Section 20.6.17, “C API Prepared Statement Problems”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
Section 5.1.4, “Server System Variables”

DATE_SUB()
Section 12.7, “Date and Time Functions”
Section 11.3, “Date and Time Types”

DATEDIFF()
Section 12.7, “Date and Time Functions”

DAY()
Section 12.7, “Date and Time Functions”

DAYNAME()
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
Section 5.1.4, “Server System Variables”

DAYOFMONTH()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”

DAYOFWEEK()
Section 12.7, “Date and Time Functions”

DAYOFYEAR()
Section 12.7, “Date and Time Functions”

DECODE()
Section 12.12, “Encryption and Compression Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2279

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

decr()
Section 15.3.3.1, “Basic memcached Operations”

DEFAULT()
Section 11.6, “Data Type Default Values”
Section 13.2.5, “INSERT Syntax”
Section 12.15, “Miscellaneous Functions”
Section 13.2.7, “REPLACE Syntax”

DEGREES()
Section 12.6.2, “Mathematical Functions”

delete()
Section 15.3.3.1, “Basic memcached Operations”

DES_DECRYPT()
Section 12.12, “Encryption and Compression Functions”
Section 5.1.3, “Server Command Options”

DES_ENCRYPT()
Section 12.12, “Encryption and Compression Functions”
Section 5.1.3, “Server Command Options”

Dimension()
Section 12.14.7.1, “General Geometry Property
Functions”

Disjoint()
Section 12.14.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”

E

[index top]

ELT()
Section B.5.7, “Known Issues in MySQL”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

ENCODE()
Section 12.12, “Encryption and Compression Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

ENCRYPT()
Section 1.9.1, “Contributors to MySQL”
Section 12.12, “Encryption and Compression Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 5.1.4, “Server System Variables”
Section 6.3.1, “User Names and Passwords”

EndPoint()
Section 12.14.7.3, “LineString and MultiLineString
Property Functions”
Section 12.14.8, “Spatial Operator Functions”

Envelope()
Section 12.14.7.1, “General Geometry Property
Functions”
Section 12.14.8, “Spatial Operator Functions”

Equals()
Section 12.14.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”

EXP()
Section 12.6.2, “Mathematical Functions”

EXPORT_SET()
Section 12.5, “String Functions”

expr IN ()
Section 12.3.2, “Comparison Functions and Operators”

expr NOT IN ()
Section 12.3.2, “Comparison Functions and Operators”

ExteriorRing()
Section 12.14.7.4, “Polygon and MultiPolygon Property
Functions”
Section 12.14.8, “Spatial Operator Functions”

EXTRACT()
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”

F

[index top]

FIELD()
Section 12.5, “String Functions”

FIND_IN_SET()
Section 12.5, “String Functions”
Section 11.4.5, “The SET Type”

FLOOR()
Section 12.6.2, “Mathematical Functions”

flush_all
Section 15.3.3.1, “Basic memcached Operations”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2280

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

FORMAT()
Section 12.6.2, “Mathematical Functions”
Section 12.15, “Miscellaneous Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

FOUND_ROWS()
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.13, “Information Functions”
Section 16.4.1.9, “Replication and System Functions”

FROM_DAYS()
Section 12.7, “Date and Time Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

FROM_UNIXTIME()
Section 1.9.1, “Contributors to MySQL”
Section 12.7, “Date and Time Functions”
Section 16.4.1.25, “Replication and Time Zones”

G

[index top]

GeomCollFromText()
Section 12.14.3, “Functions That Create Geometry
Values from WKT Values”

GeomCollFromWKB()
Section 12.14.4, “Functions That Create Geometry
Values from WKB Values”

GeometryCollection()
Section 12.14.5, “MySQL-Specific Functions That Create
Geometry Values”

GeometryCollectionFromText()
Section 12.14.3, “Functions That Create Geometry
Values from WKT Values”

GeometryCollectionFromWKB()
Section 12.14.4, “Functions That Create Geometry
Values from WKB Values”

GeometryFromText()
Section 12.14.3, “Functions That Create Geometry
Values from WKT Values”

GeometryFromWKB()
Section 12.14.4, “Functions That Create Geometry
Values from WKB Values”

GeometryN()
Section 12.14.7.5, “GeometryCollection Property
Functions”
Section 12.14.8, “Spatial Operator Functions”

GeometryType()
Section 12.14.7.1, “General Geometry Property
Functions”

GeomFromText()
Section 12.14.3, “Functions That Create Geometry
Values from WKT Values”
Section 11.5.3.3, “Populating Spatial Columns”

GeomFromWKB()
Section 12.14.4, “Functions That Create Geometry
Values from WKB Values”
Section 12.14.5, “MySQL-Specific Functions That Create
Geometry Values”

get()
Section 15.3.3.1, “Basic memcached Operations”

GET_FORMAT()
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”

GET_LOCK()
Section 20.6.15, “Controlling Automatic Reconnection
Behavior”
Section 8.14.2, “General Thread States”
Section 8.10.3.1, “How the Query Cache Operates”
Section 8.11.1, “Internal Locking Methods”
Section 13.7.6.3, “KILL Syntax”
Section 12.15, “Miscellaneous Functions”
Section 20.6.7.3, “mysql_change_user()”
Section 16.4.1.9, “Replication and System Functions”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”

gethostbyaddr()
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”

gethostbyaddr_r()
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”

gethostbyname()
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2281

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

gethostbyname_r()
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”

GLength()
Section 11.5, “Extensions for Spatial Data”
Section 12.14.7.3, “LineString and MultiLineString
Property Functions”
Section 12.5, “String Functions”

GREATEST()
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 12.3.2, “Comparison Functions and Operators”
Section 10.1.9.1, “Result Strings”

GROUP_CONCAT()
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section B.5.7, “Known Issues in MySQL”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 5.1.4, “Server System Variables”
Section 1.3.2, “The Main Features of MySQL”

H

[index top]

HEX()
Section 10.1.3.5, “Character String Literal Character Set
and Collation”
Section 9.1.4, “Hexadecimal Literals”
Section 12.6.2, “Mathematical Functions”
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

HOUR()
Section 12.7, “Date and Time Functions”

I

[index top]

IF()
Section 12.4, “Control Flow Functions”
Section 13.6.5.2, “IF Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”

IFNULL()
Section 12.4, “Control Flow Functions”
Section B.5.4.3, “Problems with NULL Values”

IN
Section 12.3.1, “Operator Precedence”

IN()
Section 8.8.2, “EXPLAIN Output Format”
Section C.3, “Restrictions on Subqueries”
The Range Access Method for Single-Part Indexes
Section 12.2, “Type Conversion in Expression
Evaluation”

incr()
Section 15.3.3.1, “Basic memcached Operations”

INET_ATON()
Section 12.15, “Miscellaneous Functions”

INET_NTOA()
Section 12.15, “Miscellaneous Functions”

INSERT()
Section 12.5, “String Functions”

INSTR()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

InteriorRingN()
Section 12.14.7.4, “Polygon and MultiPolygon Property
Functions”
Section 12.14.8, “Spatial Operator Functions”

Intersects()
Section 12.14.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”

INTERVAL()
Section 12.3.2, “Comparison Functions and Operators”

IS_FREE_LOCK()
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.15, “Miscellaneous Functions”
Section 16.4.1.9, “Replication and System Functions”

IS_USED_LOCK()
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.15, “Miscellaneous Functions”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2282

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 16.4.1.9, “Replication and System Functions”

IsClosed()
Section 12.14.7.3, “LineString and MultiLineString
Property Functions”

IsEmpty()
Section 12.14.7.1, “General Geometry Property
Functions”

ISNULL()
Section 12.3.2, “Comparison Functions and Operators”

IsSimple()
Section 12.14.7.1, “General Geometry Property
Functions”

L

[index top]

LAST_DAY()
Section 12.7, “Date and Time Functions”

LAST_INSERT_ID()
Section 12.3.2, “Comparison Functions and Operators”
Section 20.6.15, “Controlling Automatic Reconnection
Behavior”
Section 13.1.10, “CREATE TABLE Syntax”
Section 8.10.3.1, “How the Query Cache Operates”
Section 20.6.14.3, “How to Get the Unique ID for the Last
Inserted Row”
Section 12.13, “Information Functions”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 20.6.7.37, “mysql_insert_id()”
Section 20.6.11.16, “mysql_stmt_insert_id()”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 5.1.4, “Server System Variables”
Section 18.2.4, “Stored Procedures, Functions, Triggers,
and LAST_INSERT_ID()”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 1.8.2.3, “Transactions and Atomic Operations”
Section 16.4.4, “Troubleshooting Replication”
Section 18.4.3, “Updatable and Insertable Views”
Section 3.6.9, “Using AUTO_INCREMENT”

LCASE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

LEAST()
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 12.3.2, “Comparison Functions and Operators”
Section 10.1.9.1, “Result Strings”

LEFT()
Section 12.10, “Cast Functions and Operators”
Section 12.5, “String Functions”

LENGTH()
Section 12.5, “String Functions”

Length()
Section 11.5, “Extensions for Spatial Data”
Section 12.14.7.3, “LineString and MultiLineString
Property Functions”

LineFromText()
Section 12.14.3, “Functions That Create Geometry
Values from WKT Values”

LineFromWKB()
Section 12.14.4, “Functions That Create Geometry
Values from WKB Values”

LineString()
Section 12.14.5, “MySQL-Specific Functions That Create
Geometry Values”

LineStringFromText()
Section 12.14.3, “Functions That Create Geometry
Values from WKT Values”

LineStringFromWKB()
Section 12.14.4, “Functions That Create Geometry
Values from WKB Values”

LN()
Section 12.6.2, “Mathematical Functions”

LOAD_FILE()
Section 8.10.3.1, “How the Query Cache Operates”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.9, “Replication and System Functions”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2283

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

LOCALTIME
Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP”
Section 12.7, “Date and Time Functions”

LOCALTIME()
Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP”
Section 12.7, “Date and Time Functions”

LOCALTIMESTAMP
Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP”
Section 12.7, “Date and Time Functions”

LOCALTIMESTAMP()
Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP”
Section 12.7, “Date and Time Functions”

LOCATE()
Section 12.5, “String Functions”

LOG()
Section 12.6.2, “Mathematical Functions”

LOG10()
Section 12.6.2, “Mathematical Functions”

LOG2()
Section 12.6.2, “Mathematical Functions”

LOWER()
Section 12.10, “Cast Functions and Operators”
Chapter 19, INFORMATION_SCHEMA Tables
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

LPAD()
Section 12.5, “String Functions”

LTRIM()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

M

[index top]

MAKE_SET()
Section 12.5, “String Functions”

MAKEDATE()
Section 12.7, “Date and Time Functions”

MAKETIME()
Section 12.7, “Date and Time Functions”

MASTER_POS_WAIT()
Section 8.10.3.1, “How the Query Cache Operates”
Section 13.4.2.4, “MASTER_POS_WAIT() Syntax”
Section 12.15, “Miscellaneous Functions”
Section A.13, “MySQL 5.0 FAQ: Replication”

MATCH
Section 9.5, “Expression Syntax”

MATCH ()
Section 12.9, “Full-Text Search Functions”

MATCH()
Section 12.9.2, “Boolean Full-Text Searches”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 12.9.5, “Full-Text Restrictions”
Section 12.9, “Full-Text Search Functions”
Section 12.9.1, “Natural Language Full-Text Searches”

MAX()
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”
Section 8.3.1, “How MySQL Uses Indexes”
Section B.5.7, “Known Issues in MySQL”
Loose Index Scan
Section 12.16.3, “MySQL Handling of GROUP BY”
Section 11.1.1, “Numeric Type Overview”
Section 13.2.9.10, “Optimizing Subqueries”
Section 5.1.7, “Server SQL Modes”
Section 1.3.2, “The Main Features of MySQL”
Section 11.3.8, “Two-Digit Years in Dates”
Section 18.4.3, “Updatable and Insertable Views”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 18.4.2, “View Processing Algorithms”

MBRContains()
Section 12.14.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”
Section 11.5.3.7, “Using Spatial Indexes”

MBRDisjoint()
Section 12.14.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2284

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MBREqual()
Section 12.14.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”

MBRIntersects()
Section 12.14.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”

MBROverlaps()
Section 12.14.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”

MBRTouches()
Section 12.14.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”

MBRWithin()
Section 12.14.9.3, “MySQL-Specific Spatial Relation
Functions That Use Minimum Bounding Rectangles
(MBRs)”
Section 11.5.3.7, “Using Spatial Indexes”

MD5()
Section 12.12, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing
Changes in MySQL 4.1 for Application Programs”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 9.2, “Schema Object Names”
Section 6.1.1, “Security Guidelines”

MICROSECOND()
Section 12.7, “Date and Time Functions”

MID()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

MIN()
Section 20.6.17, “C API Prepared Statement Problems”
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”
Section 8.2.1.2, “How MySQL Optimizes WHERE
Clauses”
Section 8.3.1, “How MySQL Uses Indexes”
Section B.5.7, “Known Issues in MySQL”
Loose Index Scan
Section 12.16.3, “MySQL Handling of GROUP BY”

Section 11.1.1, “Numeric Type Overview”
Section 13.2.9.10, “Optimizing Subqueries”
Section B.5.4.3, “Problems with NULL Values”
Section 1.3.2, “The Main Features of MySQL”
Section 11.3.8, “Two-Digit Years in Dates”
Section 18.4.3, “Updatable and Insertable Views”
Section 18.4.2, “View Processing Algorithms”

MINUTE()
Section 12.7, “Date and Time Functions”

MLineFromText()
Section 12.14.3, “Functions That Create Geometry
Values from WKT Values”

MLineFromWKB()
Section 12.14.4, “Functions That Create Geometry
Values from WKB Values”

MOD()
Section 12.6.1, “Arithmetic Operators”
Section 3.3.4.5, “Date Calculations”
Section 12.6.2, “Mathematical Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 5.1.7, “Server SQL Modes”

MONTH()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”

MONTHNAME()
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
Section 5.1.4, “Server System Variables”

MPointFromText()
Section 12.14.3, “Functions That Create Geometry
Values from WKT Values”

MPointFromWKB()
Section 12.14.4, “Functions That Create Geometry
Values from WKB Values”

MPolyFromText()
Section 12.14.3, “Functions That Create Geometry
Values from WKT Values”

MPolyFromWKB()
Section 12.14.4, “Functions That Create Geometry
Values from WKB Values”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2285

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

MultiLineString()
Section 12.14.5, “MySQL-Specific Functions That Create
Geometry Values”

MultiLineStringFromText()
Section 12.14.3, “Functions That Create Geometry
Values from WKT Values”

MultiLineStringFromWKB()
Section 12.14.4, “Functions That Create Geometry
Values from WKB Values”

MultiPoint()
Section 12.14.5, “MySQL-Specific Functions That Create
Geometry Values”

MultiPointFromText()
Section 12.14.3, “Functions That Create Geometry
Values from WKT Values”

MultiPointFromWKB()
Section 12.14.4, “Functions That Create Geometry
Values from WKB Values”

MultiPolygon()
Section 12.14.5, “MySQL-Specific Functions That Create
Geometry Values”

MultiPolygonFromText()
Section 12.14.3, “Functions That Create Geometry
Values from WKT Values”

MultiPolygonFromWKB()
Section 12.14.4, “Functions That Create Geometry
Values from WKB Values”

N

[index top]

NAME_CONST()
Section 18.6, “Binary Logging of Stored Programs”
Section 12.15, “Miscellaneous Functions”

NOW()
Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.10, “CREATE TABLE Syntax”
Section 11.6, “Data Type Default Values”

Section 12.7, “Date and Time Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section A.1, “MySQL 5.0 FAQ: General”
Section 10.6, “MySQL Server Time Zone Support”
Section 16.4.1.9, “Replication and System Functions”
Section 16.4.1.25, “Replication and Time Zones”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 11.3.3, “The YEAR Type”
Section 10.6.2, “Time Zone Leap Second Support”

NULLIF()
Section 12.4, “Control Flow Functions”

NumGeometries()
Section 12.14.7.5, “GeometryCollection Property
Functions”

NumInteriorRings()
Section 12.14.7.4, “Polygon and MultiPolygon Property
Functions”

NumPoints()
Section 12.14.7.3, “LineString and MultiLineString
Property Functions”

O

[index top]

OCT()
Section 12.5, “String Functions”

OCTET_LENGTH()
Section 12.5, “String Functions”

OLD_PASSWORD()
Section B.5.2.4, “Client does not support authentication
protocol”
Section 12.12, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing
Changes in MySQL 4.1 for Application Programs”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.4, “Server System Variables”
Section 13.7.1.6, “SET PASSWORD Syntax”

ORD()
Section 12.5, “String Functions”

Overlaps()
Section 12.14.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2286

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

P

[index top]

PASSWORD()
Section 6.2.4, “Access Control, Stage 1: Connection
Verification”
Section 6.3.2, “Adding User Accounts”
Section 6.3.5, “Assigning Account Passwords”
Section 13.7.1.1, “CREATE USER Syntax”
Section 12.12, “Encryption and Compression Functions”
Section B.5.2.15, “Ignoring user”
Section 6.1.2.5, “Implications of Password Hashing
Changes in MySQL 4.1 for Application Programs”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.1.2.3, “Passwords and Logging”
Section 5.1.4, “Server System Variables”
Section 13.7.1.6, “SET PASSWORD Syntax”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 6.3.1, “User Names and Passwords”

PERIOD_ADD()
Section 12.7, “Date and Time Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

PERIOD_DIFF()
Section 12.7, “Date and Time Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

PI()
Section 9.2.3, “Function Name Parsing and Resolution”
Section 12.6.2, “Mathematical Functions”

Point()
Section 12.14.5, “MySQL-Specific Functions That Create
Geometry Values”
Well-Known Text (WKT) Format

PointFromText()
Section 12.14.3, “Functions That Create Geometry
Values from WKT Values”

PointFromWKB()
Section 12.14.4, “Functions That Create Geometry
Values from WKB Values”

PointN()
Section 12.14.7.3, “LineString and MultiLineString
Property Functions”
Section 12.14.8, “Spatial Operator Functions”

PolyFromText()
Section 12.14.3, “Functions That Create Geometry
Values from WKT Values”

PolyFromWKB()
Section 12.14.4, “Functions That Create Geometry
Values from WKB Values”

Polygon()
Section 12.14.5, “MySQL-Specific Functions That Create
Geometry Values”

PolygonFromText()
Section 12.14.3, “Functions That Create Geometry
Values from WKT Values”

PolygonFromWKB()
Section 12.14.4, “Functions That Create Geometry
Values from WKB Values”

POSITION()
Section 12.5, “String Functions”

POW()
Section 12.6.2, “Mathematical Functions”

POWER()
Section 12.6.2, “Mathematical Functions”

pthread_mutex()
Section 1.9.1, “Contributors to MySQL”

Q

[index top]

QUARTER()
Section 12.7, “Date and Time Functions”

QUOTE()
Section 20.6.7.53, “mysql_real_escape_string()”
Section 12.5, “String Functions”
Section 9.1.1, “String Literals”

R

[index top]

RADIANS()
Section 12.6.2, “Mathematical Functions”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2287

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

RAND()
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.6.2, “Mathematical Functions”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 16.4.1.9, “Replication and System Functions”
Section 5.1.4, “Server System Variables”

RELEASE_ALL_LOCKS()
Section 8.10.3.1, “How the Query Cache Operates”

RELEASE_LOCK()
Section 13.2.3, “DO Syntax”
Section 8.10.3.1, “How the Query Cache Operates”
Section 8.11.1, “Internal Locking Methods”
Section 12.15, “Miscellaneous Functions”
Section 16.4.1.9, “Replication and System Functions”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”

REPEAT()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

REPLACE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

replace()
Section 15.3.3.1, “Basic memcached Operations”

REVERSE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

RIGHT()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

ROUND()
Section 12.6.2, “Mathematical Functions”
Section 12.17, “Precision Math”
Section 12.17.5, “Precision Math Examples”
Section B.5.4.8, “Problems with Floating-Point Values”
Section 12.17.4, “Rounding Behavior”

ROW_COUNT()
Section 13.2.1, “CALL Syntax”
Section 13.2.2, “DELETE Syntax”

Section 12.13, “Information Functions”
Section 13.2.5, “INSERT Syntax”
Section 20.6.7.1, “mysql_affected_rows()”
Section 16.4.1.9, “Replication and System Functions”

RPAD()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

RTRIM()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

S

[index top]

SCHEMA()
Section 12.13, “Information Functions”

SEC_TO_TIME()
Section 12.7, “Date and Time Functions”

SECOND()
Section 12.7, “Date and Time Functions”

SESSION_USER()
Section 12.13, “Information Functions”
Section 10.1.11, “UTF-8 for Metadata”

set()
Section 15.3.3.1, “Basic memcached Operations”

setrlimit()
Section 5.1.3, “Server Command Options”

SHA()
Section 12.12, “Encryption and Compression Functions”

SHA1()
Section 12.12, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing
Changes in MySQL 4.1 for Application Programs”
Section 6.1.1, “Security Guidelines”

SIGN()
Section 12.6.2, “Mathematical Functions”

SIN()
Section 12.6.2, “Mathematical Functions”
Section 21.2.2.3, “UDF Argument Processing”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2288

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SLEEP()
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.15, “Miscellaneous Functions”
Section 16.4.1, “Replication Features and Issues”

SOUNDEX()
Section 21.2, “Adding New Functions to MySQL”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

SPACE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

SQRT()
Section 12.6.2, “Mathematical Functions”

SRID()
Section 12.14.7.1, “General Geometry Property
Functions”

StartPoint()
Section 12.14.7.3, “LineString and MultiLineString
Property Functions”
Section 12.14.8, “Spatial Operator Functions”

STD()
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 1.3.2, “The Main Features of MySQL”

STDDEV()
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”

STDDEV_POP()
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”

STDDEV_SAMP()
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”

STR_TO_DATE()
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”

STRCMP()
Section B.5.4.2, “Problems Using DATE Columns”
Section 12.5.1, “String Comparison Functions”

SUBDATE()
Section 12.7, “Date and Time Functions”

SUBSTR()
Section 12.5, “String Functions”

SUBSTRING()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

SUBSTRING_INDEX()
Section 6.3.9, “SQL-Based MySQL Account Activity
Auditing”
Section 12.5, “String Functions”

SUBTIME()
Section 12.7, “Date and Time Functions”

SUM()
Section 21.2.2, “Adding a New User-Defined Function”
Section 11.1.2, “Date and Time Type Overview”
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”
Section B.5.4.3, “Problems with NULL Values”
Section 11.4.4, “The ENUM Type”
Section 1.3.2, “The Main Features of MySQL”
Section 11.4.5, “The SET Type”
Section 18.4.3, “Updatable and Insertable Views”
Section 18.4.2, “View Processing Algorithms”

SYSDATE()
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 12.7, “Date and Time Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 16.4.1.9, “Replication and System Functions”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

SYSTEM_USER()
Section 12.13, “Information Functions”
Section 10.1.11, “UTF-8 for Metadata”

T

[index top]

TAN()
Section 12.6.2, “Mathematical Functions”

thr_setconcurrency()
Section 5.1.4, “Server System Variables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2289

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

TIME()
Section 12.7, “Date and Time Functions”

TIME_FORMAT()
Section 12.7, “Date and Time Functions”

TIME_TO_SEC()
Section 12.7, “Date and Time Functions”

TIMEDIFF()
Section 12.7, “Date and Time Functions”

TIMESTAMP()
Section 12.7, “Date and Time Functions”

TIMESTAMPADD()
Section 12.7, “Date and Time Functions”

TIMESTAMPDIFF()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”

TO_DAYS()
Section 12.7, “Date and Time Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

Touches()
Section 12.14.9.1, “Spatial Relation Functions That Use
Object Shapes”

TRIM()
Section 10.1.12, “Column Character Set Conversion”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

TRUNCATE()
Section 12.6.2, “Mathematical Functions”

U

[index top]

UCASE()
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”

UNCOMPRESS()
Section 12.12, “Encryption and Compression Functions”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 5.1.4, “Server System Variables”

UNCOMPRESSED_LENGTH()
Section 12.12, “Encryption and Compression Functions”

UNHEX()
Section 12.12, “Encryption and Compression Functions”
Section 12.5, “String Functions”

UNIX_TIMESTAMP()
Section 12.7, “Date and Time Functions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 5.1.4, “Server System Variables”
Section B.5.3.7, “Time Zone Problems”

UPPER()
Section 12.10, “Cast Functions and Operators”
Chapter 19, INFORMATION_SCHEMA Tables
Section 10.1.9.1, “Result Strings”
Section 12.5, “String Functions”
Section 10.1.8, “String Repertoire”

USER()
Section 10.1.7.5, “Collation of Expressions”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.13, “Information Functions”
Section 16.4.1.9, “Replication and System Functions”
Section 6.3.9, “SQL-Based MySQL Account Activity
Auditing”
Section 10.1.11, “UTF-8 for Metadata”

UTC_DATE
Section 12.7, “Date and Time Functions”

UTC_DATE()
Section 12.7, “Date and Time Functions”

UTC_TIME
Section 12.7, “Date and Time Functions”

UTC_TIME()
Section 12.7, “Date and Time Functions”

UTC_TIMESTAMP
Section 12.7, “Date and Time Functions”

UTC_TIMESTAMP()
Section 12.7, “Date and Time Functions”
Section 10.6, “MySQL Server Time Zone Support”

UUID()
Section 18.6, “Binary Logging of Stored Programs”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2290

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 8.10.3.1, “How the Query Cache Operates”
Section 12.15, “Miscellaneous Functions”
Section 16.4.1.9, “Replication and System Functions”

V

[index top]

VALUES()
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 12.15, “Miscellaneous Functions”

VAR_POP()
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”

VAR_SAMP()
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”

VARIANCE()
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”

VERSION()
Section B.5.4.1, “Case Sensitivity in String Searches”
Section 10.1.7.5, “Collation of Expressions”
Section 2.2, “Determining Your Current MySQL Version”
Section 12.13, “Information Functions”
Section 16.4.1.9, “Replication and System Functions”
Section 10.1.11, “UTF-8 for Metadata”

W

[index top]

WEEK()
Section 12.7, “Date and Time Functions”
Section 5.1.4, “Server System Variables”

WEEKDAY()
Section 12.7, “Date and Time Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”

WEEKOFYEAR()
Section 12.7, “Date and Time Functions”

Within()
Section 12.14.9.2, “Spatial Relation Functions That Use
Minimum Bounding Rectangles (MBRs)”

X

[index top]

X()
Section 12.14.7.2, “Point Property Functions”

Y

[index top]

Y()
Section 12.14.7.2, “Point Property Functions”

YEAR()
Section 12.7, “Date and Time Functions”
Section 3.3.4.5, “Date Calculations”

YEARWEEK()
Section 12.7, “Date and Time Functions”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2291

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

INFORMATION_SCHEMA
Index
C | I | K | P | R | S | T | U | V

C

[index top]

CHARACTER_SETS
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 19.1, “The INFORMATION_SCHEMA
CHARACTER_SETS Table”

COLLATION_CHARACTER_SET_APPLICABILITY
Section 19.3, “The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY
Table”

COLLATIONS
Section 20.6.5, “C API Data Structures”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 19.2, “The INFORMATION_SCHEMA
COLLATIONS Table”

COLUMN_PRIVILEGES
Section 19.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”

COLUMNS
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 19.4, “The INFORMATION_SCHEMA
COLUMNS Table”

I

[index top]

INFORMATION_SCHEMA.CHARACTER_SETS
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”

INFORMATION_SCHEMA.COLLATIONS
Section 10.4.2, “Choosing a Collation ID”

INFORMATION_SCHEMA.COLUMNS
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”

INFORMATION_SCHEMA.KEY_COLUMN_USAGE
Section 1.8.3.2, “FOREIGN KEY Constraints”
Section 14.2.3.4, “InnoDB and FOREIGN KEY
Constraints”
Section 13.1.10.3, “Using FOREIGN KEY Constraints”

INFORMATION_SCHEMA.ROUTINES
Chapter 19, INFORMATION_SCHEMA Tables
Section A.4, “MySQL 5.0 FAQ: Stored Procedures and
Functions”
Section 19.8, “The INFORMATION_SCHEMA
ROUTINES Table”

INFORMATION_SCHEMA.TABLES
Chapter 19, INFORMATION_SCHEMA Tables

INFORMATION_SCHEMA.TRIGGERS
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section A.5, “MySQL 5.0 FAQ: Triggers”

INFORMATION_SCHEMA.VIEWS
Section 18.4.3, “Updatable and Insertable Views”

K

[index top]

KEY_COLUMN_USAGE
Section 19.6, “The INFORMATION_SCHEMA
KEY_COLUMN_USAGE Table”

P

[index top]

PROFILING
Section 13.7.5.28, “SHOW PROFILE Syntax”

R

[index top]

ROUTINES
Section A.4, “MySQL 5.0 FAQ: Stored Procedures and
Functions”
Section 13.7.5.26, “SHOW PROCEDURE STATUS
Syntax”
Section 18.2.3, “Stored Routine Metadata”
Section 19.8, “The INFORMATION_SCHEMA
ROUTINES Table”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2292

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

S

[index top]

SCHEMA_PRIVILEGES
Section 19.10, “The INFORMATION_SCHEMA
SCHEMA_PRIVILEGES Table”

SCHEMATA
Section 6.2.2, “Grant Tables”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 19.9, “The INFORMATION_SCHEMA
SCHEMATA Table”

STATISTICS
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 19.11, “The INFORMATION_SCHEMA
STATISTICS Table”

T

[index top]

TABLE_CONSTRAINTS
Section 19.13, “The INFORMATION_SCHEMA
TABLE_CONSTRAINTS Table”

TABLE_PRIVILEGES
Section 19.14, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”

TABLES
Section 14.7.2, “How to Use FEDERATED Tables”
Chapter 19, INFORMATION_SCHEMA Tables
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 19.12, “The INFORMATION_SCHEMA TABLES
Table”

TRIGGERS
Section 13.7.5.35, “SHOW TRIGGERS Syntax”
Section 19.15, “The INFORMATION_SCHEMA
TRIGGERS Table”
Section 18.3.2, “Trigger Metadata”

U

[index top]

USER_PRIVILEGES
Section 19.16, “The INFORMATION_SCHEMA
USER_PRIVILEGES Table”

V

[index top]

VIEWS
Section 13.7.5.10, “SHOW CREATE VIEW Syntax”
Section 19.17, “The INFORMATION_SCHEMA VIEWS
Table”
Section 18.4.5, “View Metadata”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2293

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Join Types Index
A | C | E | F | I | R | S | U

A

[index top]

ALL
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.17, “How to Avoid Full Table Scans”
Section 8.2.1.8, “Nested-Loop Join Algorithms”

C

[index top]

const
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.11, “ORDER BY Optimization”
Section 13.2.8, “SELECT Syntax”
The Range Access Method for Single-Part Indexes

E

[index top]

eq_ref
Section 8.8.2, “EXPLAIN Output Format”
Section 14.3.1, “MERGE Table Advantages and
Disadvantages”
Section 8.2.1.14, “Optimizing Subqueries with EXISTS
Strategy”

F

[index top]

fulltext
Section 8.8.2, “EXPLAIN Output Format”

I

[index top]

index
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.8, “Nested-Loop Join Algorithms”

index_merge
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.4, “Index Merge Optimization”

index_subquery
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.9.10, “Optimizing Subqueries”
Section 8.2.1.14, “Optimizing Subqueries with EXISTS
Strategy”

R

[index top]

range
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.4, “Index Merge Optimization”
Loose Index Scan
Section 8.2.1.8, “Nested-Loop Join Algorithms”
Section 8.2.1.3, “Range Optimization”
The Range Access Method for Single-Part Indexes

ref
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 14.3.1, “MERGE Table Advantages and
Disadvantages”
Section 8.3.7, “MyISAM Index Statistics Collection”
Section 8.2.1.14, “Optimizing Subqueries with EXISTS
Strategy”

ref_or_null
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.6, “IS NULL Optimization”
Section 8.2.1.14, “Optimizing Subqueries with EXISTS
Strategy”

S

[index top]

system
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.8, “SELECT Syntax”
The Range Access Method for Single-Part Indexes

U

[index top]

unique_subquery
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.9.10, “Optimizing Subqueries”
Section 8.2.1.14, “Optimizing Subqueries with EXISTS
Strategy”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2294

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2295

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Operator Index
Symbols | A | B | C | D | E | I | L | N | O | R | X

Symbols

[index top]

-
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 11.1.1, “Numeric Type Overview”

!
Section 9.5, “Expression Syntax”
Section 12.3.3, “Logical Operators”
Section 12.3.1, “Operator Precedence”

!=
Section 12.3.2, “Comparison Functions and Operators”
Section 12.3.1, “Operator Precedence”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes

%
Section 12.6.1, “Arithmetic Operators”

&
Section 12.11, “Bit Functions and Operators”

&&
Section 12.3.3, “Logical Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”

>
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes

>>
Section 12.11, “Bit Functions and Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”

>=
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”

Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes

<
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 3.3.4.6, “Working with NULL Values”

<>
Section 12.3.2, “Comparison Functions and Operators”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 3.3.4.6, “Working with NULL Values”

<<
Section 12.11, “Bit Functions and Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”

<=
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes

<=>
Section 12.3.2, “Comparison Functions and Operators”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 12.2, “Type Conversion in Expression
Evaluation”

*
Section 12.6.1, “Arithmetic Operators”
Section 11.1.1, “Numeric Type Overview”

+
Section 12.6.1, “Arithmetic Operators”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2296

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 12.10, “Cast Functions and Operators”
Section 12.7, “Date and Time Functions”
Section 11.1.1, “Numeric Type Overview”

/
Section 12.6.1, “Arithmetic Operators”
Section 5.1.4, “Server System Variables”

:=
Section 12.3.4, “Assignment Operators”
Section 12.3.1, “Operator Precedence”
Section 13.7.4, “SET Syntax”
Section 9.4, “User-Defined Variables”

=
Section 12.3.4, “Assignment Operators”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section C.3, “Restrictions on Subqueries”
Section 13.7.4, “SET Syntax”
Section 12.5.1, “String Comparison Functions”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 9.4, “User-Defined Variables”
Section 3.3.4.6, “Working with NULL Values”

^
Section 12.11, “Bit Functions and Operators”
Section 9.5, “Expression Syntax”
Section 12.3.1, “Operator Precedence”

|
Section 12.11, “Bit Functions and Operators”

||
Section 10.1.7.3, “COLLATE Clause Precedence”
Section 9.5, “Expression Syntax”
Section 12.3.3, “Logical Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 10.1.9.1, “Result Strings”
Section 5.1.7, “Server SQL Modes”

~
Section 12.11, “Bit Functions and Operators”

A

[index top]

AND
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.2.1.4, “Index Merge Optimization”
Section 12.3.3, “Logical Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 8.2.1.14, “Optimizing Subqueries with EXISTS
Strategy”
Section C.3, “Restrictions on Subqueries”
Section 8.2.1.16, “Row Constructor Expression
Optimization”
Section 3.6.7, “Searching on Two Keys”
Section 3.3.4.2, “Selecting Particular Rows”
Section 12.5.1, “String Comparison Functions”
The Index Merge Intersection Access Algorithm
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 18.4.2, “View Processing Algorithms”
Section 1.4, “What Is New in MySQL 5.0”

B

[index top]

BETWEEN
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.8.2, “EXPLAIN Output Format”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 12.2, “Type Conversion in Expression
Evaluation”

BINARY
Section 12.10, “Cast Functions and Operators”
Section 3.3.4.7, “Pattern Matching”
Section 3.3.4.4, “Sorting Rows”
Section 10.1.7.7, “The BINARY Operator”

BINARY str
Section 12.10, “Cast Functions and Operators”

C

[index top]

CASE
Section 13.6.5.1, “CASE Syntax”
Section 12.4, “Control Flow Functions”
Section 9.5, “Expression Syntax”
Section 1.8.1, “MySQL Extensions to Standard SQL”

CASE value WHEN END
Section 12.4, “Control Flow Functions”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2297

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

CASE WHEN END
Section 12.4, “Control Flow Functions”

CASE WHEN expr1 = expr2 THEN
NULL ELSE expr1 END
Section 12.4, “Control Flow Functions”

D

[index top]

DIV
Section 12.6.1, “Arithmetic Operators”

E

[index top]

expr BETWEEN min AND max
Section 12.3.2, “Comparison Functions and Operators”

expr LIKE pat
Section 12.5.1, “String Comparison Functions”

expr NOT BETWEEN min AND max
Section 12.3.2, “Comparison Functions and Operators”

expr NOT LIKE pat
Section 12.5.1, “String Comparison Functions”

expr NOT REGEXP pat
Section 12.5.2, “Regular Expressions”

expr NOT RLIKE pat
Section 12.5.2, “Regular Expressions”

expr REGEXP pat
Section 12.5.2, “Regular Expressions”

expr RLIKE pat
Section 12.5.2, “Regular Expressions”

expr1 SOUNDS LIKE expr2
Section 12.5, “String Functions”

I

[index top]

IS
Section 12.3.1, “Operator Precedence”

IS boolean_value
Section 12.3.2, “Comparison Functions and Operators”

IS NOT boolean_value
Section 12.3.2, “Comparison Functions and Operators”

IS NOT NULL
Section 12.3.2, “Comparison Functions and Operators”
Section B.5.4.3, “Problems with NULL Values”
The Range Access Method for Single-Part Indexes
Section 3.3.4.6, “Working with NULL Values”

IS NULL
Section 12.3.2, “Comparison Functions and Operators”
Section 8.8.2, “EXPLAIN Output Format”
Section 8.2.1.6, “IS NULL Optimization”
Section 8.2.1.14, “Optimizing Subqueries with EXISTS
Strategy”
Section B.5.4.3, “Problems with NULL Values”
Section 5.1.4, “Server System Variables”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 3.3.4.6, “Working with NULL Values”

L

[index top]

LIKE
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 12.10, “Cast Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 19.18, “Extensions to SHOW Statements”
Section 13.8.3, “HELP Syntax”
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.1.4, “mysql Server-Side Help”
Section 12.3.1, “Operator Precedence”
Section 3.3.4.7, “Pattern Matching”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.7.5.3, “SHOW CHARACTER SET Syntax”
Section 13.7.5.4, “SHOW COLLATION Syntax”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.11, “SHOW DATABASES Syntax”
Section 13.7.5.23, “SHOW OPEN TABLES Syntax”
Section 13.7.5.26, “SHOW PROCEDURE STATUS
Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 13.7.5.32, “SHOW STATUS Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2298

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 13.7.5.33, “SHOW TABLE STATUS Syntax”
Section 13.7.5.34, “SHOW TABLES Syntax”
Section 13.7.5.35, “SHOW TRIGGERS Syntax”
Section 13.7.5.36, “SHOW VARIABLES Syntax”
Section 6.2.3, “Specifying Account Names”
Section 12.5.1, “String Comparison Functions”
Section 9.1.1, “String Literals”
Section 5.1.5.1, “Structured System Variables”
Section 11.4.1, “The CHAR and VARCHAR Types”
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 11.4.5, “The SET Type”
Section 5.1.5, “Using System Variables”

LIKE '_A%'
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”

LIKE 'pattern'
Section 13.7.5, “SHOW Syntax”
The Range Access Method for Multiple-Part Indexes

LIKE ... ESCAPE
Section B.5.7, “Known Issues in MySQL”

N

[index top]

N % M
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”

N MOD M
Section 12.6.1, “Arithmetic Operators”
Section 12.6.2, “Mathematical Functions”

NOT
Section 12.3.3, “Logical Operators”
Section 5.1.7, “Server SQL Modes”

NOT LIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.5.1, “String Comparison Functions”

NOT REGEXP
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 3.3.4.7, “Pattern Matching”
Section 12.5.1, “String Comparison Functions”

NOT RLIKE
Section 3.3.4.7, “Pattern Matching”

Section 12.5.1, “String Comparison Functions”

O

[index top]

OR
Section 9.5, “Expression Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 8.2.1.4, “Index Merge Optimization”
Section 12.3.3, “Logical Operators”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 8.2.1.14, “Optimizing Subqueries with EXISTS
Strategy”
Section 8.2.1.16, “Row Constructor Expression
Optimization”
Section 3.6.7, “Searching on Two Keys”
Section 3.3.4.2, “Selecting Particular Rows”
Section 5.1.7, “Server SQL Modes”
Section 12.5.1, “String Comparison Functions”
The Index Merge Sort-Union Access Algorithm
The Index Merge Union Access Algorithm
The Range Access Method for Multiple-Part Indexes
The Range Access Method for Single-Part Indexes
Section 1.4, “What Is New in MySQL 5.0”

R

[index top]

REGEXP
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 12.3.1, “Operator Precedence”
Section 3.3.4.7, “Pattern Matching”
Section 12.5.2, “Regular Expressions”
Section C.6, “Restrictions on Character Sets”

RLIKE
Section 3.3.4.7, “Pattern Matching”
Section 12.5.2, “Regular Expressions”
Section C.6, “Restrictions on Character Sets”

X

[index top]

XOR
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”
Section 12.3.3, “Logical Operators”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2299

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Option Index
Symbols | A | B | C | D | E | F | G | H | I | J | K | L | M | N |
O | P | Q | R | S | T | U | V | W | X | Z

Symbols

[index top]

--
Section 1.8.2.5, “'--' as the Start of a Comment”
Section 4.8.2, “replace — A String-Replacement Utility”

-#
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 5.1.3, “Server Command Options”
Section 21.3.3, “The DBUG Package”

-1
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

-?
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File
Contents”

Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”
Section 4.6.17, “mysql_waitpid — Kill Process and
Wait for Its Termination”
Section 4.6.18, “mysql_zap — Kill Processes That
Match a Pattern”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.8.3, “resolveip — Resolve Host name to IP
Address or Vice Versa”
Section 5.1.3, “Server Command Options”
Section 1.3.2, “The Main Features of MySQL”
Section 4.2.4, “Using Options on the Command Line”

A

[index top]

-A
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.3.4, “Other myisamchk Options”

-a
Section 2.20.1.7, “Linux Alpha Notes”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2300

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 7.6.4, “MyISAM Table Optimization”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.6.3.4, “Other myisamchk Options”
Section 15.3.2, “Using memcached”

--abort-slave-event-count
Section 16.1.2.3, “Replication Slave Options and
Variables”

--add-drop-database
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--add-drop-table
Section 4.5.4, “mysqldump — A Database Backup
Program”

--add-locks
Section 4.5.4, “mysqldump — A Database Backup
Program”

--addtodest
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--all-databases
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 2.19.4, “Rebuilding or Repairing Tables or
Indexes”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 2.19.1, “Upgrading MySQL”

--all-in-1
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--allow-keywords
Section 4.5.4, “mysqldump — A Database Backup
Program”

--allow-suspicious-udfs
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 5.1.3, “Server Command Options”
Section 21.2.2.6, “UDF Security Precautions”

--allowold
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--analyze
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.6.3.4, “Other myisamchk Options”

--angel-pid-file
Section 4.6.10.1, “MySQL Instance Manager Command
Options”

--ansi
Section 1.8, “MySQL Standards Compliance”
Section 5.1.3, “Server Command Options”

--append
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

--auto-rehash
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

--auto-repair
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--autoclose
Section 2.15, “Installing MySQL on NetWare”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”

B

[index top]

-B
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2301

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 15.3.2, “Using memcached”

-b
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.3, “Server Command Options”
Section 15.3.2, “Using memcached”

--back_log
Section 2.20.3, “Solaris Notes”

--backup
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”

--backup_id
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

--backup_path
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

backup_path
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

--backupid
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

--basedir
Section 2.18.1, “Initializing the Data Directory”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 17.1.5.10, “Previous MySQL Cluster Issues
Resolved in MySQL 5.0”
Section 5.5, “Running Multiple MySQL Instances on One
Machine”

Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 2.10.8.4, “Testing a Windows Source Build”
Section 2.18.2.1, “Troubleshooting Problems Starting the
MySQL Server”

basedir
Section 2.10.4.2, “Creating an Option File”
Section 2.10.5, “Troubleshooting a MySQL Installation
Under Windows”

--batch
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”

--bdb-home
Section 14.5.3, “BDB Startup Options”

--bdb-lock-detect
Section 14.5.3, “BDB Startup Options”

--bdb-logdir
Section 14.5.3, “BDB Startup Options”
Section 14.5.4, “Characteristics of BDB Tables”
Section 5.5, “Running Multiple MySQL Instances on One
Machine”
Section 5.1.4, “Server System Variables”

--bdb-no-recover
Section 14.5.3, “BDB Startup Options”
Section 2.18.2.1, “Troubleshooting Problems Starting the
MySQL Server”

--bdb-no-sync
Section 14.5.3, “BDB Startup Options”

--bdb-shared-data
Section 14.5.3, “BDB Startup Options”
Section 5.1.4, “Server System Variables”

--bdb-tmpdir
Section 14.5.3, “BDB Startup Options”
Section 5.5, “Running Multiple MySQL Instances on One
Machine”

--big-tables
Section 5.1.3, “Server Command Options”

--bind-address
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 4.6.10.4, “Instance Manager User and Password
Management”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2302

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 17.4.1, “ndbd — The MySQL Cluster Data Node
Daemon”
Section 5.5, “Running Multiple MySQL Instances on One
Machine”
Section 5.1.3, “Server Command Options”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”

--binlog-do-db
Section 16.1.2.4, “Binary Log Options and Variables”
Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 5.4.3, “The Binary Log”

--binlog-ignore-db
Section 16.1.2.4, “Binary Log Options and Variables”
Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 5.4.3, “The Binary Log”

--block-search
Section 4.6.3.4, “Other myisamchk Options”

--bootstrap
Section 2.10.8.1, “Building MySQL from the Standard
Source Distribution”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”
Section 5.1.3, “Server Command Options”

--brief
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”

--builddir
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”

C

[index top]

-C
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 5.1.3, “Server Command Options”
Section 15.3.2, “Using memcached”

-c
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File
Contents”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”
Section 17.4.2, “ndb_mgmd — The MySQL Cluster
Management Server Daemon”
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”
Section 15.3.2, “Using memcached”

--cflags
Section 2.17.4, “Dealing with Problems Compiling
MySQL”
Section 4.7.2, “mysql_config — Display Options for
Compiling Clients”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2303

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--character-set-client-handshake
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 5.1.3, “Server Command Options”
The cp932 Character Set

--character-set-filesystem
Section 5.1.3, “Server Command Options”

--character-set-server
Section 10.5, “Character Set Configuration”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.3, “Server Command Options”

--character-sets-dir
Section B.5.2.17, “Can't initialize character set”
Section 10.5, “Character Set Configuration”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”
Section 17.1.5.10, “Previous MySQL Cluster Issues
Resolved in MySQL 5.0”
Section 5.1.3, “Server Command Options”

--charset
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--check-only-changed
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--check-upgrade
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--checkpoint
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--chroot
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 5.1.3, “Server Command Options”

--clear
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”

--clear-only
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”

--col
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”

--collation-server
Section 10.5, “Character Set Configuration”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.3, “Server Command Options”

--column-names
Section 4.5.1.1, “mysql Options”
Section 4.2.5, “Program Option Modifiers”

--columns
Section 4.5.5, “mysqlimport — A Data Import Program”

--comments
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2304

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--commit
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”

--comp
Section 4.2.3, “Specifying Program Options”

--compact
Section 4.5.4, “mysqldump — A Database Backup
Program”

--compatible
Section 4.5.4, “mysqldump — A Database Backup
Program”

--complete-insert
Section 4.5.4, “mysqldump — A Database Backup
Program”

--compr
Section 4.2.3, “Specifying Program Options”

--compress
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 4.5.1.1, “mysql Options”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 4.2.3, “Specifying Program Options”

--config-file
Section 17.2.3, “Initial Startup of MySQL Cluster”
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 17.3.3.1, “MySQL Cluster Configuration: Basic
Example”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”
Section 17.4.2, “ndb_mgmd — The MySQL Cluster
Management Server Daemon”

--connect-string
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”

--connections
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”

--console
Section 14.2.1.1, “Initializing InnoDB”
Section 14.2.13.2, “InnoDB General Troubleshooting”
Resetting the Root Password: Windows Systems
Section 5.1.3, “Server Command Options”
Section 14.2.13.1, “SHOW ENGINE INNODB STATUS
and the InnoDB Monitors”
Section 2.10.4.4, “Starting the Server for the First Time”
Section 5.4.1, “The Error Log”

--copy
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”

--core-file
Section 21.3.1.4, “Debugging mysqld under gdb”
Section 2.20.1.4, “Linux Postinstallation Notes”
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”
Section 5.1.3, “Server Command Options”

--core-file-size
Section 2.20.1.4, “Linux Postinstallation Notes”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 5.1.3, “Server Command Options”

--correct-checksum
Section 4.6.3.3, “myisamchk Repair Options”

--count
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”

--create-options
Section 4.5.4, “mysqldump — A Database Backup
Program”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2305

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--cross-bootstrap
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”

D

[index top]

-D
Section 20.6.4.1, “Building C API Client Programs”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 21.1.1, “MySQL Threads”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”
Section 15.3.2, “Using memcached”

-d
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 17.4.7, “ndb_desc — Describe NDB Tables”
Section 17.4.2, “ndb_mgmd — The MySQL Cluster
Management Server Daemon”
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”
Section 17.4.17, “ndb_show_tables — Display List of
NDB Tables”
Section 17.4.1, “ndbd — The MySQL Cluster Data Node
Daemon”
Section 4.6.3.4, “Other myisamchk Options”
Section 5.1.4, “Server System Variables”
Section 15.3.2, “Using memcached”

--daemon
Section 17.4.2, “ndb_mgmd — The MySQL Cluster
Management Server Daemon”
Section 17.4.1, “ndbd — The MySQL Cluster Data Node
Daemon”

--data-file-length
Section 4.6.3.3, “myisamchk Repair Options”

--database
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 17.4.7, “ndb_desc — Describe NDB Tables”
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”
Section 17.4.17, “ndb_show_tables — Display List of
NDB Tables”

--databases
Section 7.4.5.2, “Copy a Database from one Server to
Another”
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 7.4.5.1, “Making a Copy of a Database”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 2.19.4, “Rebuilding or Repairing Tables or
Indexes”
Section 7.4.2, “Reloading SQL-Format Backups”

--datadir
Section 14.5.3, “BDB Startup Options”
Section 2.10.4.2, “Creating an Option File”
Section 2.18.1, “Initializing the Data Directory”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 5.5, “Running Multiple MySQL Instances on One
Machine”
Section 5.5.3, “Running Multiple MySQL Instances on
Unix”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.5.1, “Setting Up Multiple Data Directories”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2306

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 2.10.8.4, “Testing a Windows Source Build”
Section 2.18.2.1, “Troubleshooting Problems Starting the
MySQL Server”
Section 4.2.6, “Using Option Files”

datadir
Section 2.10.4.2, “Creating an Option File”
Section 15.1.1, “Setting Up MySQL on an EC2 AMI”
Section 4.6.10.3, “Starting the MySQL Server with
MySQL Instance Manager”
Section 2.10.5, “Troubleshooting a MySQL Installation
Under Windows”
Section C.7.6, “Windows Platform Limitations”

--date
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”

--db
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”

--debug
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 21.3.1.1, “Compiling MySQL for Debugging”
Section 4.4.2, “make_win_bin_dist — Package
MySQL Distribution as Zip Archive”
Section 4.4.3, “make_win_src_distribution —
Create Source Distribution for Windows”
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”
Section 5.1.3, “Server Command Options”
Section 2.10.4.5, “Starting MySQL from the Windows
Command Line”
Section 21.3.3, “The DBUG Package”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 2.18.2.1, “Troubleshooting Problems Starting the
MySQL Server”

--debug-info
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.5.1.1, “mysql Options”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--default-character-set
Section 10.5, “Character Set Configuration”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 4.5.1.5, “Executing SQL Statements from a Text
File”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 4.5.1.1, “mysql Options”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 6.3.1, “User Names and Passwords”

--default-collation
Section 5.1.3, “Server Command Options”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2307

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--default-mysqld-path
Section 4.6.10.1, “MySQL Instance Manager Command
Options”

--default-storage-engine
Section 14.2.1, “Configuring InnoDB”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Chapter 14, Storage Engines

--default-table-type
Section 5.1.3, “Server Command Options”
Chapter 14, Storage Engines

--default-time-zone
Section 10.6, “MySQL Server Time Zone Support”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--default.key_buffer_size
Section 5.1.5.1, “Structured System Variables”

--defaults-extra-file
Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 5.1.3, “Server Command Options”
Section 4.2.6, “Using Option Files”

--defaults-file
Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”
Section 14.2.1, “Configuring InnoDB”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 4.6.10.7, “MySQL Instance Manager Commands”
Section 4.6.10.2, “MySQL Instance Manager
Configuration Files”
Section 4.5.1.1, “mysql Options”
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Resetting the Root Password: Windows Systems
Section 5.5, “Running Multiple MySQL Instances on One
Machine”
Section 5.5.3, “Running Multiple MySQL Instances on
Unix”
Section 5.1.3, “Server Command Options”
Section 5.5.2.2, “Starting Multiple MySQL Instances as
Windows Services”
Section 5.5.2.1, “Starting Multiple MySQL Instances at
the Windows Command Line”
Section 2.10.4.7, “Starting MySQL as a Windows
Service”
Section 2.10.3.1, “Starting the MySQL Server Instance
Configuration Wizard”

--defaults-group-suffix
Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”
Section 2.21, “Environment Variables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2308

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 5.1.3, “Server Command Options”

--delay-key-write
Section 8.11.4, “External Locking”
Section 14.1.1, “MyISAM Startup Options”
Section A.13, “MySQL 5.0 FAQ: Replication”
Section 5.1.3, “Server Command Options”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

--delay_key_write
Section 5.1.4, “Server System Variables”
Section 5.1.5, “Using System Variables”

--delayed-insert
Section 4.5.4, “mysqldump — A Database Backup
Program”

--delete
Section 4.5.5, “mysqlimport — A Data Import Program”

--delete-master-logs
Section 4.5.4, “mysqldump — A Database Backup
Program”

--delimiter
Section 4.5.1.1, “mysql Options”
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”

--demangle
Section 21.3.1.5, “Using a Stack Trace”

--des-key-file
Section 12.12, “Encryption and Compression Functions”
Section 13.7.6.2, “FLUSH Syntax”
Section 5.1.3, “Server Command Options”

--descending
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”

--description
Section 4.6.3.4, “Other myisamchk Options”

--dirname
Section 4.4.3, “make_win_src_distribution —
Create Source Distribution for Windows”

--disable
Section 4.2.5, “Program Option Modifiers”

--disable-auto-rehash
Section 4.5.1.1, “mysql Options”

--disable-grant-options
Section 2.17.3, “MySQL Source-Configuration Options”
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--disable-keys
Section 4.5.4, “mysqldump — A Database Backup
Program”

--disable-log-bin
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--disable-named-commands
Section 4.5.1.1, “mysql Options”

--disable-shared
Section 2.20.4.6, “BSD/OS Version 4.x Notes”
Section 2.17.3, “MySQL Source-Configuration Options”

--disable-ssl
Section 6.3.6.5, “Command Options for Secure
Connections”
Section 6.3.6.4, “Configuring MySQL to Use Secure
Connections”

--disconnect-slave-event-count
Section 16.1.2.3, “Replication Slave Options and
Variables”

--dont_ignore_systab_0
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2309

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--dryrun
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--dump
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”

--dump-date
Section 4.5.4, “mysqldump — A Database Backup
Program”

E

[index top]

-E
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”

-e
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 4.5.1.1, “mysql Options”
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.4.3, “ndb_mgm — The MySQL Cluster
Management Client”
Section 4.6.3.5, “Obtaining Table Information with
myisamchk”
Section 17.2.5, “Safe Shutdown and Restart of MySQL
Cluster”
Section 4.2.4, “Using Options on the Command Line”
Section 17.5.3.2, “Using The MySQL Cluster
Management Client to Create a Backup”

--embedded
Section 4.4.2, “make_win_bin_dist — Package
MySQL Distribution as Zip Archive”
Section 4.7.2, “mysql_config — Display Options for
Compiling Clients”

--enable-64bit
Section 15.3.1, “Installing memcached”

--enable-assembler
Section 2.20.3, “Solaris Notes”

--enable-dtrace
Section 15.3.1, “Installing memcached”
Section 15.3.2.5, “Using memcached and DTrace”

--enable-local-infile
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”

--enable-locking
Section 5.1.3, “Server Command Options”

--enable-memcache
Section 15.3.3.6, “Using MySQL and memcached with
PHP”

--enable-named-pipe
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 4.2.2, “Connecting to the MySQL Server”
Section 2.10.4.3, “Selecting a MySQL Server Type”
Section 5.1.3, “Server Command Options”
Section 1.3.2, “The Main Features of MySQL”

--enable-profiling
Section 2.17.3, “MySQL Source-Configuration Options”

--enable-pstack
Section 5.1.3, “Server Command Options”

--enable-thread-safe-client
Section 2.17.3, “MySQL Source-Configuration Options”

--enable-threads
Section 15.3.1, “Installing memcached”

--engine-condition-pushdown
Section 17.1.4, “What is New in MySQL Cluster”

--example
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”

--exe-suffix
Section 4.4.2, “make_win_bin_dist — Package
MySQL Distribution as Zip Archive”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2310

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--execute
Section 4.5.1.3, “mysql Logging”
Section 4.5.1.1, “mysql Options”
Section 17.4.3, “ndb_mgm — The MySQL Cluster
Management Client”
Section 4.2.4, “Using Options on the Command Line”
Section 17.5.3.2, “Using The MySQL Cluster
Management Client to Create a Backup”

--exit-info
Section 5.1.3, “Server Command Options”

--extend-check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.3, “myisamchk Repair Options”

--extended
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--extended-insert
Section 4.5.4, “mysqldump — A Database Backup
Program”

--external-locking
Section 8.11.4, “External Locking”
Section 14.1.1, “MyISAM Startup Options”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 8.12.1, “System Factors and Startup Parameter
Tuning”

--extra-file
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”

--extra-partition-info
Section 17.4.7, “ndb_desc — Describe NDB Tables”

F

[index top]

-F
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.2, “mysql Commands”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

Section 4.5.4, “mysqldump — A Database Backup
Program”

-f
Section 2.17.5, “Compiling and Linking an Optimized
mysqld Server”
Section 2.17.4, “Dealing with Problems Compiling
MySQL”
Section 2.20.5.3, “IBM-AIX notes”
Section 17.2.3, “Initial Startup of MySQL Cluster”
Section 2.17, “Installing MySQL from Source”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File
Contents”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 4.5.1.1, “mysql Options”
Section 4.6.18, “mysql_zap — Kill Processes That
Match a Pattern”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”
Section 17.4.2, “ndb_mgmd — The MySQL Cluster
Management Server Daemon”
Section 21.3.1.5, “Using a Stack Trace”
Section 15.3.2, “Using memcached”

--fast
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--federated
Section 14.7, “The FEDERATED Storage Engine”

--fields
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”

--fields-enclosed-by
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2311

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

--fields-escaped-by
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”

--fields-optionally-enclosed-by
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

--fields-terminated-by
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

--fields-xxx
Section 4.5.4, “mysqldump — A Database Backup
Program”

--first-slave
Section 4.5.4, “mysqldump — A Database Backup
Program”

--flush
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

--flush-logs
Section 7.3.1, “Establishing a Backup Policy”
Section 5.4, “MySQL Server Logs”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--flush-privileges
Section 4.5.4, “mysqldump — A Database Backup
Program”

--flush_time
Section 21.1.1, “MySQL Threads”

--flushlog
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--force
Section 2.20.1.2, “Linux Binary Distribution Notes”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.6.11, “mysql_convert_table_format —
Convert Tables to Use a Given Storage Engine”
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 21.1.2, “The MySQL Test Suite”
Section 3.5, “Using mysql in Batch Mode”

--force-read
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--foreground
Section 17.4.1, “ndbd — The MySQL Cluster Data Node
Daemon”

--fs
Section 17.4.10, “ndb_error_reporter — NDB Error-
Reporting Utility”

G

[index top]

-G
Section 4.5.1.1, “mysql Options”

-g
Section 21.3.1.1, “Compiling MySQL for Debugging”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2312

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.5.1.1, “mysql Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”

--gci
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”

--gci64
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”

--gdb
Section 21.3.1.4, “Debugging mysqld under gdb”
Section 5.1.3, “Server Command Options”

H

[index top]

-H
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

-h
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.5.1.1, “mysql Options”
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 4.7.4, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 5.1.3, “Server Command Options”
Section 1.2, “Typographical and Syntax Conventions”
Section 15.3.2, “Using memcached”
Section 4.2.4, “Using Options on the Command Line”

--header
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”

--header_file
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--HELP
Section 4.6.3.1, “myisamchk General Options”

--help
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.4.3, “make_win_src_distribution —
Create Source Distribution for Windows”
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.11, “mysql_convert_table_format —
Convert Tables to Use a Given Storage Engine”
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”
Section 4.6.13, “mysql_find_rows — Extract SQL
Statements from Files”
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2313

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.6.15, “mysql_setpermission —
Interactively Set Permissions in Grant Tables”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.6.17, “mysql_waitpid — Kill Process and
Wait for Its Termination”
Section 4.6.18, “mysql_zap — Kill Processes That
Match a Pattern”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”
Section 4.1, “Overview of MySQL Programs”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.7.4, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 4.8.3, “resolveip — Resolve Host name to IP
Address or Vice Versa”
Section 5.1.3, “Server Command Options”
Section 2.18.3, “Testing the Server”
Section 1.3.2, “The Main Features of MySQL”
Section 2.18.2.1, “Troubleshooting Problems Starting the
MySQL Server”
Section 8.12.2, “Tuning Server Parameters”
Chapter 3, Tutorial
Section 4.2.6, “Using Option Files”
Section 4.2.4, “Using Options on the Command Line”

--hex
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

--hex-blob
Section 4.5.4, “mysqldump — A Database Backup
Program”

--hexdump
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--host
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Options”
Section 4.6.11, “mysql_convert_table_format —
Convert Tables to Use a Given Storage Engine”
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”
Section 4.6.15, “mysql_setpermission —
Interactively Set Permissions in Grant Tables”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”
Section 4.2.9, “Option Defaults, Options Expecting
Values, and the = Sign”
Section 5.1.3, “Server Command Options”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 1.2, “Typographical and Syntax Conventions”
Section 5.5.4, “Using Client Programs in a Multiple-
Server Environment”
Section 4.2.6, “Using Option Files”
Section 4.2.4, “Using Options on the Command Line”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2314

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--howto
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”

--html
Section 4.5.1.1, “mysql Options”

I

[index top]

-I
Section 20.6.4.1, “Building C API Client Programs”
Section 15.3.5, “memcached FAQ”
Section 4.6.4, “myisamlog — Display MyISAM Log File
Contents”
Section 4.6.17, “mysql_waitpid — Kill Process and
Wait for Its Termination”
Section 4.6.18, “mysql_zap — Kill Processes That
Match a Pattern”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.8.3, “resolveip — Resolve Host name to IP
Address or Vice Versa”
Section 15.3.2, “Using memcached”

-i
Section 17.5.2, “Commands in the MySQL Cluster
Management Client”
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File
Contents”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 15.3.2, “Using memcached”
Section 21.3.1.3, “Using pdb to create a Windows
crashdump”

--i-am-a-dummy
Section 4.5.1.1, “mysql Options”
Using the --safe-updates Option

--id
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”

--idx
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”

--ignore
Section 4.5.5, “mysqlimport — A Data Import Program”

--ignore-lines
Section 4.5.5, “mysqlimport — A Data Import Program”

--ignore-spaces
Section 4.5.1.1, “mysql Options”

--ignore-table
Section 4.5.4, “mysqldump — A Database Backup
Program”

--in_file
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--include
Section 4.7.2, “mysql_config — Display Options for
Compiling Clients”

--info
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.3, “resolveip — Resolve Host name to IP
Address or Vice Versa”

--Information
Section 4.6.13, “mysql_find_rows — Extract SQL
Statements from Files”

--information
Section 4.6.3.2, “myisamchk Check Options”

--init-file
Section 2.10.8.1, “Building MySQL from the Standard
Source Distribution”
Section 2.17.3, “MySQL Source-Configuration Options”
Resetting the Root Password: Unix and Unix-Like
Systems
Resetting the Root Password: Windows Systems
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2315

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 14.4, “The MEMORY (HEAP) Storage Engine”

--init_connect
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”

--initial
Section 17.3.3.5, “Defining MySQL Cluster Data Nodes”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 17.3.2.1, “MySQL Cluster Data Node
Configuration Parameters”
Section 17.3.2.2, “MySQL Cluster Management Node
Configuration Parameters”
Section 17.3.2.3, “MySQL Cluster SQL Node and API
Node Configuration Parameters”
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”
Section 17.4.1, “ndbd — The MySQL Cluster Data Node
Daemon”
Section 17.3.2.4, “Other MySQL Cluster Configuration
Parameters”
Section 17.3.2, “Overview of MySQL Cluster
Configuration Parameters, Options, and Variables”
Section 17.5.5, “Performing a Rolling Restart of a MySQL
Cluster”
Section 17.5.1, “Summary of MySQL Cluster Start
Phases”

--initial-start
Section 17.4.1, “ndbd — The MySQL Cluster Data Node
Daemon”

--innodb
Section 14.2.2, “InnoDB Startup Options and System
Variables”

--innodb-safe-binlog
Section 16.4.1.14, “Replication and Master or Slave
Shutdowns”
Section 5.1.3, “Server Command Options”
Section 5.4.3, “The Binary Log”

--innodb-status-file
Section 14.2.2, “InnoDB Startup Options and System
Variables”

innodb-status-file
Section 14.2.13.1, “SHOW ENGINE INNODB STATUS
and the InnoDB Monitors”

--innodb-xxx
Section 5.1.3, “Server Command Options”

--innodb_checksums
Section 14.2.2, “InnoDB Startup Options and System
Variables”

--innodb_file_per_table
Section 14.2.1.4, “InnoDB File-Per-Table Tablespaces”
Section 8.12.4.3, “Using Symbolic Links for Databases
on Windows”

innodb_file_per_table
Section 16.1.1.6, “Creating a Data Snapshot Using Raw
Data Files”

--innodb_rollback_on_timeout
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 14.2.12, “InnoDB Error Handling”
Section 14.2.2, “InnoDB Startup Options and System
Variables”

--insert-ignore
Section 4.5.4, “mysqldump — A Database Backup
Program”

--install
Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 5.1.3, “Server Command Options”
Section 5.5.2.2, “Starting Multiple MySQL Instances as
Windows Services”
Section 2.10.4.7, “Starting MySQL as a Windows
Service”

--install-manual
Section 5.1.3, “Server Command Options”
Section 5.5.2.2, “Starting Multiple MySQL Instances as
Windows Services”
Section 2.10.4.7, “Starting MySQL as a Windows
Service”

--interactive
Section 17.4.2, “ndb_mgmd — The MySQL Cluster
Management Server Daemon”

J

[index top]

-j
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2316

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--join
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”

K

[index top]

-K
Section 4.5.4, “mysqldump — A Database Backup
Program”

-k
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 15.3.2, “Using memcached”

--keep_files_on_create
Section 13.1.10, “CREATE TABLE Syntax”

--keepold
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--key_buffer_size
Section 5.1.3, “Server Command Options”

--keys
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”

--keys-used
Section 4.6.3.3, “myisamchk Repair Options”

L

[index top]

-L
Section 20.6.4.1, “Building C API Client Programs”
Section 2.20.1.3, “Linux Source Distribution Notes”
Section 4.5.1.1, “mysql Options”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 2.22.3, “Problems Using the Perl DBI/DBD
Interface”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 10.2, “Setting the Error Message Language”
Section 2.20.3, “Solaris Notes”
Section 15.3.2, “Using memcached”

-l
Section 2.20.5.5, “Alpha-DEC-UNIX Notes (Tru64)”
Section 20.6.4.1, “Building C API Client Programs”
Section 20.6.13, “C API Embedded Server Function
Descriptions”
Section 20.6.6, “C API Function Overview”
Section 2.17.4, “Dealing with Problems Compiling
MySQL”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.3.3, “myisamchk Repair Options”
Section 20.6.7.39, “mysql_library_end()”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”
Section 17.4.17, “ndb_show_tables — Display List of
NDB Tables”
Section 2.22.3, “Problems Using the Perl DBI/DBD
Interface”
Section 2.20.5.8, “SCO UNIX and OpenServer 5.0.x
Notes”
Section 5.1.3, “Server Command Options”
Section 2.20.3.1, “Solaris 2.7/2.8 Notes”
Section 2.20.3, “Solaris Notes”
Section 5.4.2, “The General Query Log”
Section 15.3.2, “Using memcached”

--language
Section 5.1.3, “Server Command Options”
Section 10.2, “Setting the Error Message Language”

--large-pages
Section 8.12.5.2, “Enabling Large Page Support”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--ldata
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”

--ledir
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”

--length
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2317

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--libmysqld-libs
Section 4.7.2, “mysql_config — Display Options for
Compiling Clients”

--libs
Section 4.7.2, “mysql_config — Display Options for
Compiling Clients”

--libs_r
Section 4.7.2, “mysql_config — Display Options for
Compiling Clients”

--line-numbers
Section 4.5.1.1, “mysql Options”

--lines-terminated-by
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”

--local
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”

--local-infile
Section 4.5.1.1, “mysql Options”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”

--local-load
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--local-service
Section 5.1.3, “Server Command Options”
Section 2.10.4.7, “Starting MySQL as a Windows
Service”

--lock
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”

--lock-all-tables
Section 4.5.4, “mysqldump — A Database Backup
Program”

--lock-tables
Section 4.5.4, “mysqldump — A Database Backup
Program”

Section 4.5.5, “mysqlimport — A Data Import Program”

--log
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 5.5, “Running Multiple MySQL Instances on One
Machine”
Section 5.1.3, “Server Command Options”
Section 5.4.5, “Server Log Maintenance”
Section 5.4.2, “The General Query Log”

--log-bin
Section 7.3.3, “Backup Strategy Summary”
Section 16.1.2.4, “Binary Log Options and Variables”
Section 18.6, “Binary Logging of Stored Programs”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 16.4.5, “How to Report Replication Bugs or
Problems”
Section B.5.7, “Known Issues in MySQL”
Section 7.5, “Point-in-Time (Incremental) Recovery Using
the Binary Log”
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 5.5, “Running Multiple MySQL Instances on One
Machine”
Section 5.4.5, “Server Log Maintenance”
Section 5.1.4, “Server System Variables”
Section 16.3.6, “Switching Masters During Failover”
Section 5.4.3, “The Binary Log”
Section 16.4.4, “Troubleshooting Replication”
Section 16.4.3, “Upgrading a Replication Setup”
Section 7.3.2, “Using Backups for Recovery”

--log-bin-index
Section 16.1.2.4, “Binary Log Options and Variables”
Section 5.4.3, “The Binary Log”

--log-bin-trust-function-creators
Section 16.1.2.4, “Binary Log Options and Variables”
Section 18.6, “Binary Logging of Stored Programs”

--log-bin-trust-routine-creators
Section 16.1.2.4, “Binary Log Options and Variables”
Section 18.6, “Binary Logging of Stored Programs”

--log-error
Section 13.7.6.2, “FLUSH Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2318

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.2.9, “Option Defaults, Options Expecting
Values, and the = Sign”
Section 5.5, “Running Multiple MySQL Instances on One
Machine”
Section 5.1.3, “Server Command Options”
Section 5.4.5, “Server Log Maintenance”
Section 5.4.1, “The Error Log”

--log-isam
Section 4.6.4, “myisamlog — Display MyISAM Log File
Contents”
Section 5.1.3, “Server Command Options”

--log-long-format
Section 5.1.3, “Server Command Options”

--log-queries-not-using-indexes
Section 5.1.3, “Server Command Options”
Section 5.4.4, “The Slow Query Log”

--log-short-format
Section 5.1.3, “Server Command Options”

--log-slave-updates
Section 16.4.5, “How to Report Replication Bugs or
Problems”
Section 16.3.5, “Improving Replication Performance”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 16.3.6, “Switching Masters During Failover”
Section 5.4.3, “The Binary Log”

--log-slow-admin-statements
Section 5.1.3, “Server Command Options”
Section 5.4.4, “The Slow Query Log”

--log-slow-queries
Section 5.1.3, “Server Command Options”
Section 5.4.5, “Server Log Maintenance”
Section 5.1.4, “Server System Variables”
Section 5.4.4, “The Slow Query Log”

--log-tc
Section 5.1.3, “Server Command Options”

--log-tc-size
Section 5.1.3, “Server Command Options”

Section 5.1.6, “Server Status Variables”

--log-warnings
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section B.5.2.9, “MySQL server has gone away”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 5.1.3, “Server Command Options”
Section 5.4.1, “The Error Log”

--loops
Section 17.4.17, “ndb_show_tables — Display List of
NDB Tables”

--loose
Section 4.2.5, “Program Option Modifiers”

--loose-opt_name
Section 4.2.6, “Using Option Files”

--low-priority
Section 4.5.5, “mysqlimport — A Data Import Program”

--low-priority-updates
Section 8.11.3, “Concurrent Inserts”
Section 13.2.5, “INSERT Syntax”
Section A.13, “MySQL 5.0 FAQ: Replication”
Section 5.1.3, “Server Command Options”
Section 8.11.2, “Table Locking Issues”

--lower-case-table-names
Section 9.2.2, “Identifier Case Sensitivity”

M

[index top]

-M
Section 15.3.2, “Using memcached”

-m
Section 2.17.5, “Compiling and Linking an Optimized
mysqld Server”
Section 2.20.5.3, “IBM-AIX notes”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”
Section 2.20.3, “Solaris Notes”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2319

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 15.3.2, “Using memcached”

--master-connect-retry
Section 16.4.1.14, “Replication and Master or Slave
Shutdowns”
Section 8.14.6, “Replication Slave I/O Thread States”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”

--master-data
Section 16.1.1.5, “Creating a Data Snapshot Using
mysqldump”
Section 7.3.1, “Establishing a Backup Policy”
Section 5.4, “MySQL Server Logs”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--master-host
Section 16.1.2.3, “Replication Slave Options and
Variables”

--master-info-file
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 16.2.2.2, “Slave Status Logs”

--master-password
Section 16.1.2.3, “Replication Slave Options and
Variables”

--master-port
Section 16.1.2.3, “Replication Slave Options and
Variables”

--master-retry-count
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 16.1.2.3, “Replication Slave Options and
Variables”

--master-ssl
Section 16.1.2.3, “Replication Slave Options and
Variables”

--master-ssl*
Section 6.3.6.5, “Command Options for Secure
Connections”

--master-ssl-ca
Section 16.1.2.3, “Replication Slave Options and
Variables”

--master-ssl-capath
Section 16.1.2.3, “Replication Slave Options and
Variables”

--master-ssl-cert
Section 16.1.2.3, “Replication Slave Options and
Variables”

--master-ssl-cipher
Section 16.1.2.3, “Replication Slave Options and
Variables”

--master-ssl-key
Section 16.1.2.3, “Replication Slave Options and
Variables”

--master-user
Section 16.1.2.3, “Replication Slave Options and
Variables”

--max
Section 4.2.8, “Using Options to Set Program Variables”

--max-binlog-dump-events
Section 16.1.2.4, “Binary Log Options and Variables”

--max-binlog-size
Section 16.1.2.3, “Replication Slave Options and
Variables”

--max-record-length
Section 4.6.3.3, “myisamchk Repair Options”
Section 13.7.2.6, “REPAIR TABLE Syntax”

--max-relay-log-size
Section 16.1.2.3, “Replication Slave Options and
Variables”

--max-seeks-for-key
Section 8.2.1.17, “How to Avoid Full Table Scans”
Section B.5.5, “Optimizer-Related Issues”

--max_a
Section 4.2.8, “Using Options to Set Program Variables”

--max_join_size
Using the --safe-updates Option

--maximum
Section 4.2.5, “Program Option Modifiers”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2320

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--maximum-max_heap_table_size
Section 4.2.5, “Program Option Modifiers”

--maximum-query_cache_size
Section 4.2.5, “Program Option Modifiers”
Section 5.1.5, “Using System Variables”

--maximum-var_name
Section 5.1.3, “Server Command Options”
Section 5.1.5, “Using System Variables”

--medium-check
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--memlock
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.2.1.3, “Using Raw Devices for the System
Tablespace”

--method
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--monitoring-interval
Section 4.6.10.1, “MySQL Instance Manager Command
Options”

--mycnf
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”
Section 17.4.2, “ndb_mgmd — The MySQL Cluster
Management Server Daemon”

--myisam-block-size
Section 8.10.1.5, “Key Cache Block Size”
Section 5.1.3, “Server Command Options”

--myisam-recover
Section 14.1.1, “MyISAM Startup Options”
Section 8.5.1, “Optimizing MyISAM Queries”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance
Schedule”
Section B.5.2.19, “Table-Corruption Issues”
Section 14.1, “The MyISAM Storage Engine”
Section 21.3.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”

--mysqladmin
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”

--mysqld
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”

mysqld-path
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 4.6.10.3, “Starting the MySQL Server with
MySQL Instance Manager”

--mysqld-version
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”

N

[index top]

-N
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”

-n
Section 17.5.2, “Commands in the MySQL Cluster
Management Client”
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”
Section 17.4.19, “ndb_waiter — Wait for MySQL
Cluster to Reach a Given Status”
Section 17.4.1, “ndbd — The MySQL Cluster Data Node
Daemon”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2321

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.7.4, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 15.3.2, “Using memcached”

--name_file
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--named-commands
Section 4.5.1.1, “mysql Options”

--ndb
Section 4.8.1, “perror — Explain Error Codes”

--ndb-cluster
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”

--ndb-connectstring
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 17.1.1, “MySQL Cluster Core Concepts”
Section 17.5.4, “MySQL Server Usage for MySQL
Cluster”
mysqld Command Options for MySQL Cluster
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”

--ndb-mgmd-host
mysqld Command Options for MySQL Cluster
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”

--ndb-nodeid
mysqld Command Options for MySQL Cluster
Section 17.4.1, “ndbd — The MySQL Cluster Data Node
Daemon”
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”

--ndb-optimized-node-selection
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”

--ndb-shm
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”

--ndbcluster
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 17.5.10.2, “MySQL Cluster and MySQL
Privileges”
Section 17.3, “MySQL Cluster Configuration”
Section 17.1.1, “MySQL Cluster Core Concepts”
Section 17.5.4, “MySQL Server Usage for MySQL
Cluster”
mysqld Command Options for MySQL Cluster
Section 13.7.5.13, “SHOW ENGINES Syntax”

net_retry_count
Section 16.2.1, “Replication Implementation Details”

net_write_timeout
Section 16.2.1, “Replication Implementation Details”

--nice
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”

--no-auto-rehash
Section 4.5.1.1, “mysql Options”

--no-autocommit
Section 4.5.4, “mysqldump — A Database Backup
Program”

--no-beep
Section 4.5.1.1, “mysql Options”

--no-contact
Section 17.4.19, “ndb_waiter — Wait for MySQL
Cluster to Reach a Given Status”

--no-create-db
Section 4.5.4, “mysqldump — A Database Backup
Program”

--no-create-info
Section 7.4.5.4, “Dumping Table Definitions and Content
Separately”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--no-data
Section 7.4.5.4, “Dumping Table Definitions and Content
Separately”
Section 4.5.4, “mysqldump — A Database Backup
Program”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2322

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--no-debug
Section 4.4.2, “make_win_bin_dist — Package
MySQL Distribution as Zip Archive”

--no-defaults
Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 5.1.3, “Server Command Options”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”

--no-embedded
Section 4.4.2, “make_win_bin_dist — Package
MySQL Distribution as Zip Archive”

--no-log
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”

--no-named-commands
Section 4.5.1.1, “mysql Options”

--no-nodeid-checks
Section 17.4.2, “ndb_mgmd — The MySQL Cluster
Management Server Daemon”

--no-pager
Section 4.5.1.1, “mysql Options”

--no-set-names
Section 4.5.4, “mysqldump — A Database Backup
Program”

--no-symlinks
Section 4.6.3.3, “myisamchk Repair Options”

--no-tee
Section 4.5.1.1, “mysql Options”

--nodaemon
Section 17.4.2, “ndb_mgmd — The MySQL Cluster
Management Server Daemon”
Section 17.4.1, “ndbd — The MySQL Cluster Data Node
Daemon”

--nodata
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”

--nodeid
mysqld Command Options for MySQL Cluster
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

--nodes
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”

--noindices
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

nonguarded
Section 4.6.10, “mysqlmanager — The MySQL Instance
Manager”

--nostart
Section 17.4.1, “ndbd — The MySQL Cluster Data Node
Daemon”

--not-started
Section 17.4.19, “ndb_waiter — Wait for MySQL
Cluster to Reach a Given Status”

--nowait-nodes
Section 17.4.1, “ndbd — The MySQL Cluster Data Node
Daemon”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2323

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--numeric-dump-file
Section 4.7.4, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”

O

[index top]

-O
Section 2.20.5.6, “Alpha-DEC-OSF/1 Notes”
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 2.17.4, “Dealing with Problems Compiling
MySQL”
Section 2.20.5.1, “HP-UX Version 10.20 Notes”
Section 2.20.5.3, “IBM-AIX notes”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 5.1.3, “Server Command Options”
Section 2.20.3, “Solaris Notes”

-o
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File
Contents”
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”
Section 8.12.3, “Optimizing Disk I/O”

--offset
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--old-style-user-limits
Section 5.1.3, “Server Command Options”
Section 6.3.4, “Setting Account Resource Limits”

--old_server
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”

ON
Section 3.3.4.9, “Using More Than one Table”

--one-database
Section 4.5.1.1, “mysql Options”

--one-thread
Section 5.1.3, “Server Command Options”

--only-debug
Section 4.4.2, “make_win_bin_dist — Package
MySQL Distribution as Zip Archive”

--open-files-limit
Section B.5.2.18, “File Not Found and Similar Errors”
Section 2.20.4.1, “FreeBSD Notes”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

open-files-limit
Section B.5.2.7, “Too many connections”

open_files_limit
Section C.7.6, “Windows Platform Limitations”

--opt
Section 8.6.4, “Bulk Data Loading for InnoDB Tables”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”

--opt_name
Section 4.2.6, “Using Option Files”

--optimize
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--order
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”

--order-by-primary
Section 4.5.4, “mysqldump — A Database Backup
Program”

--out_dir
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--out_file
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2324

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

P

[index top]

-P
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 17.4.2, “ndb_mgmd — The MySQL Cluster
Management Server Daemon”
Section 5.1.3, “Server Command Options”
Section 15.3.2, “Using memcached”

-p
Section 6.3.2, “Adding User Accounts”
Section 2.20.5.5, “Alpha-DEC-UNIX Notes (Tru64)”
Section 4.2.2, “Connecting to the MySQL Server”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 2.15, “Installing MySQL on NetWare”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File
Contents”
Section 4.5.1.1, “mysql Options”
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”

Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 17.4.7, “ndb_desc — Describe NDB Tables”
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”
Section 17.4.17, “ndb_show_tables — Display List of
NDB Tables”
Section B.5.2.5, “Password Fails When Entered
Interactively”
Section 2.18.4, “Securing the Initial MySQL Accounts”
Section 2.10.4.7, “Starting MySQL as a Windows
Service”
Section 2.10.4.5, “Starting MySQL from the Windows
Command Line”
Section 2.10.4.8, “Testing The MySQL Installation”
Section 2.18.3, “Testing the Server”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 2.10.7, “Upgrading MySQL on Windows”
Section 6.3.1, “User Names and Passwords”
Section 15.3.2, “Using memcached”
Section 4.2.4, “Using Options on the Command Line”
Section 2.10.6, “Windows Postinstallation Procedures”

--pager
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

--parallel-recover
Section 4.6.3.3, “myisamchk Repair Options”

--parallelism
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2325

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

parallelism
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”

--parsable
Section 17.4.17, “ndb_show_tables — Display List of
NDB Tables”

--passwd
Section 4.6.10.4, “Instance Manager User and Password
Management”
Section 4.6.10.1, “MySQL Instance Manager Command
Options”

--password
Section 6.3.2, “Adding User Accounts”
Section 4.2.2, “Connecting to the MySQL Server”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 7.3, “Example Backup and Recovery Strategy”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.5.1.1, “mysql Options”
Section 4.6.11, “mysql_convert_table_format —
Convert Tables to Use a Given Storage Engine”
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”
Section 4.6.15, “mysql_setpermission —
Interactively Set Permissions in Grant Tables”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section B.5.2.5, “Password Fails When Entered
Interactively”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”

Section 6.3.1, “User Names and Passwords”
Section 4.2.4, “Using Options on the Command Line”

--password-file
Section 4.6.10.4, “Instance Manager User and Password
Management”
Section 4.6.10.1, “MySQL Instance Manager Command
Options”

--pid-file
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 5.5, “Running Multiple MySQL Instances on One
Machine”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 5.4.1, “The Error Log”

--pipe
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 2.10.4.8, “Testing The MySQL Installation”

--plan
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”

--port
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 4.5.1.1, “mysql Options”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 4.7.2, “mysql_config — Display Options for
Compiling Clients”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2326

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.6.11, “mysql_convert_table_format —
Convert Tables to Use a Given Storage Engine”
Section 4.6.15, “mysql_setpermission —
Interactively Set Permissions in Grant Tables”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 5.5, “Running Multiple MySQL Instances on One
Machine”
Section 5.5.3, “Running Multiple MySQL Instances on
Unix”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 2.18.2.1, “Troubleshooting Problems Starting the
MySQL Server”
Section 5.5.4, “Using Client Programs in a Multiple-
Server Environment”

port
Section 4.6.10.3, “Starting the MySQL Server with
MySQL Instance Manager”

--port-open-timeout
Section 5.1.3, “Server Command Options”

--position
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--prefix
Section 17.2.1.3, “Building MySQL Cluster from Source
on Linux”
Section 15.3.1, “Installing memcached”
Section 2.17.2, “Installing MySQL Using a Development
Source Tree”

Section 2.17.3, “MySQL Source-Configuration Options”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 5.5.3, “Running Multiple MySQL Instances on
Unix”

--preview
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”

--print
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

--print-defaults
Section 4.2.7, “Command-Line Options that Affect
Option-File Handling”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 4.5.1.1, “mysql Options”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 5.1.3, “Server Command Options”
Section 2.19.1, “Upgrading MySQL”

--print-full-config
Section 17.4.2, “ndb_mgmd — The MySQL Cluster
Management Server Daemon”

--print_*
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

--print_data
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

--print_log
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2327

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--print_meta
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

--printerror
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”

--prompt
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

--protocol
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 5.5.3, “Running Multiple MySQL Instances on
Unix”
Section 2.10.4.4, “Starting the Server for the First Time”
Section 2.10.4.8, “Testing The MySQL Installation”
Section 1.3.2, “The Main Features of MySQL”
Section 5.5.4, “Using Client Programs in a Multiple-
Server Environment”

Q

[index top]

-Q
Section 4.5.4, “mysqldump — A Database Backup
Program”

-q
Section 2.20.5.3, “IBM-AIX notes”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”

--query
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”

--query-cache-size
Section 8.11.4, “External Locking”

--quick
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.1, “mysql — The MySQL Command-Line
Tool”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section B.5.2.8, “Out of memory”
Section 7.6.1, “Using myisamchk for Crash Recovery”
Section 4.2.6, “Using Option Files”

--quiet
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--quote-names
Section 4.5.4, “mysqldump — A Database Backup
Program”

R

[index top]

-R
Section 15.3.4.1, “memcached General Statistics”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.4, “myisamlog — Display MyISAM Log File
Contents”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.3.4, “Other myisamchk Options”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2328

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 15.3.2, “Using memcached”

-r
Section 21.2.2, “Adding a New User-Defined Function”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 2.16, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File
Contents”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”
Section 17.4.7, “ndb_desc — Describe NDB Tables”
Section 5.1.3, “Server Command Options”
Section 15.3.2, “Using memcached”

--raw
Section 4.5.1.1, “mysql Options”

--read-from-remote-server
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--read-only
Section 4.6.3.2, “myisamchk Check Options”

--reconnect
Section 4.5.1.1, “mysql Options”

--record_log_pos
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--recover
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”

--regexp
Section 4.6.13, “mysql_find_rows — Extract SQL
Statements from Files”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--relative
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”

--relay-log
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 16.3.5, “Improving Replication Performance”
Section 16.1.1.9, “Introducing Additional Slaves to an
Existing Replication Environment”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 16.2.2.1, “The Slave Relay Log”

--relay-log-index
Section 16.1.1.9, “Introducing Additional Slaves to an
Existing Replication Environment”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 16.2.2.1, “The Slave Relay Log”

--relay-log-info-file
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 16.2.2.2, “Slave Status Logs”

--relay-log-purge
Section 16.1.2.3, “Replication Slave Options and
Variables”

--relay-log-space-limit
Section 16.1.2.3, “Replication Slave Options and
Variables”

--relnotes
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”

--remove
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 5.1.3, “Server Command Options”
Section 5.5.2.2, “Starting Multiple MySQL Instances as
Windows Services”
Section 2.10.4.7, “Starting MySQL as a Windows
Service”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2329

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--repair
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--replace
Section 4.5.5, “mysqlimport — A Data Import Program”

--replicate-*
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 16.2.3.3, “Replication Rule Application”
Section 16.1.2.3, “Replication Slave Options and
Variables”

--replicate-*-db
Section 16.2.3.3, “Replication Rule Application”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section C.1, “Restrictions on Stored Programs”

--replicate-*-do-*
Section 13.4.2.2, “LOAD DATA FROM MASTER Syntax”

--replicate-*-ignore-*
Section 13.4.2.2, “LOAD DATA FROM MASTER Syntax”

--replicate-*-table
Section 18.6, “Binary Logging of Stored Programs”
Section 16.2.3.3, “Replication Rule Application”

--replicate-do-db
Section 16.1.2.4, “Binary Log Options and Variables”
Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 16.3.4, “Replicating Different Databases to
Different Slaves”
Section 16.4.1.20, “Replication and Reserved Words”
Section 16.4.1.16, “Replication and Temporary Tables”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 5.4.3, “The Binary Log”

--replicate-do-table
Section 16.2.3.2, “Evaluation of Table-Level Replication
Options”
Section 16.4.1.20, “Replication and Reserved Words”

Section 16.4.1.16, “Replication and Temporary Tables”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”

--replicate-ignore-db
Section 16.1.2.4, “Binary Log Options and Variables”
Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 16.4.1.20, “Replication and Reserved Words”
Section 16.2.3.3, “Replication Rule Application”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 5.4.3, “The Binary Log”

--replicate-ignore-table
Section 16.2.3.2, “Evaluation of Table-Level Replication
Options”
Section 16.4.1.20, “Replication and Reserved Words”
Section 16.4.1.16, “Replication and Temporary Tables”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”

--replicate-rewrite-db
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 13.4.2.2, “LOAD DATA FROM MASTER Syntax”
Section 16.1.2.3, “Replication Slave Options and
Variables”

--replicate-same-server-id
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 16.1.2.3, “Replication Slave Options and
Variables”

--replicate-wild-do-table
Section 16.2.3.2, “Evaluation of Table-Level Replication
Options”
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 16.3.4, “Replicating Different Databases to
Different Slaves”
Section 16.4.1.16, “Replication and Temporary Tables”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section C.1, “Restrictions on Stored Programs”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2330

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”

--replicate-wild-ignore-table
Section 16.2.3.2, “Evaluation of Table-Level Replication
Options”
Section A.13, “MySQL 5.0 FAQ: Replication”
Section 16.4.1.16, “Replication and Temporary Tables”
Section 16.4.1.18, “Replication and User Privileges”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”

replication-ignore-table
Section 16.4.1.28, “Replication and Views”

--replication-rewrite-db
Section 16.1.2.3, “Replication Slave Options and
Variables”

--report-host
Section 16.1.3.1, “Checking Replication Status”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.7.5.30, “SHOW SLAVE HOSTS Syntax”

--report-password
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.7.5.30, “SHOW SLAVE HOSTS Syntax”

--report-port
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.7.5.30, “SHOW SLAVE HOSTS Syntax”

--report-user
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.7.5.30, “SHOW SLAVE HOSTS Syntax”

--resetmaster
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--resetslave
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--restore_data
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

--restore_meta
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”

--result-file
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--retries
Section 17.4.7, “ndb_desc — Describe NDB Tables”

--rhost
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”

--rollback
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”

--routines
Section 7.4.5.3, “Dumping Stored Programs”
Section 7.4.5.4, “Dumping Table Definitions and Content
Separately”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--rowid
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”

--rows
Section 4.6.13, “mysql_find_rows — Extract SQL
Statements from Files”
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”

--rpm
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”

--run-as-service
Section 4.6.10.1, “MySQL Instance Manager Command
Options”

S

[index top]

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2331

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

-S
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.2.1, “Invoking MySQL Programs”
Section 7.6.4, “MyISAM Table Optimization”
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 4.6.3.4, “Other myisamchk Options”

-s
Section 2.17.5, “Compiling and Linking an Optimized
mysqld Server”
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 2.16, “Installing MySQL on Unix/Linux Using
Generic Binaries”
Section 2.20.1.2, “Linux Binary Distribution Notes”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.6.18, “mysql_zap — Kill Processes That
Match a Pattern”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.7.4, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 4.8.3, “resolveip — Resolve Host name to IP
Address or Vice Versa”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance
Schedule”
Section 15.3.2, “Using memcached”

--safe-mode
Section 5.1.3, “Server Command Options”

--safe-recover
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”

--safe-show-database
Section 5.1.3, “Server Command Options”

--safe-updates
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Using the --safe-updates Option

--safe-user-create
Section 5.1.3, “Server Command Options”

--secure-auth
Section 4.5.1.1, “mysql Options”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.3, “Server Command Options”

--secure-file-priv
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--select_limit
Using the --safe-updates Option

--server-id
Section 16.1.2, “Replication and Binary Logging Options
and Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.5.30, “SHOW SLAVE HOSTS Syntax”
Section 16.4.4, “Troubleshooting Replication”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2332

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

server-id
Section 16.1.1.9, “Introducing Additional Slaves to an
Existing Replication Environment”
Section 16.1, “Replication Configuration”
Section 16.1.2.2, “Replication Master Options and
Variables”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 16.1.1.1, “Setting the Replication Master
Configuration”
Section 16.1.1.2, “Setting the Replication Slave
Configuration”
Section 16.1.1.8, “Setting Up Replication with Existing
Data”

--service-startup-timeout
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”

--set-auto-increment
Section 4.6.3.4, “Other myisamchk Options”

--set-character-set
Section 4.6.3.3, “myisamchk Repair Options”

--set-charset
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--set-collation
Section 4.6.3.3, “myisamchk Repair Options”

--set-variable
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 5.1.3, “Server Command Options”
Section 4.2.8, “Using Options to Set Program Variables”

set-variable
Section 4.2.8, “Using Options to Set Program Variables”

--shared-memory
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”

Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 5.1.3, “Server Command Options”
Section 5.5.2.1, “Starting Multiple MySQL Instances at
the Windows Command Line”
Section 2.10.4.4, “Starting the Server for the First Time”
Section 1.3.2, “The Main Features of MySQL”

--shared-memory-base-name
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 20.6.7.49, “mysql_options()”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 5.5, “Running Multiple MySQL Instances on One
Machine”
Section 5.1.3, “Server Command Options”
Section 5.5.2.1, “Starting Multiple MySQL Instances at
the Windows Command Line”
Section 5.5.4, “Using Client Programs in a Multiple-
Server Environment”

--short-form
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--show-slave-auth-info
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.7.5.30, “SHOW SLAVE HOSTS Syntax”

--show-table-type
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2333

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--show-temp-status
Section 17.4.17, “ndb_show_tables — Display List of
NDB Tables”

--show-warnings
Section 4.5.1.1, “mysql Options”

--sigint-ignore
Section 4.5.1.1, “mysql Options”

--silent
Section 4.4.3, “make_win_src_distribution —
Create Source Distribution for Windows”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.3, “resolveip — Resolve Host name to IP
Address or Vice Versa”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance
Schedule”

--single-transaction
Section 14.2.6, “Backing Up and Recovering an InnoDB
Database”
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--single-user
Section 17.4.19, “ndb_waiter — Wait for MySQL
Cluster to Reach a Given Status”

--skip
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.2.5, “Program Option Modifiers”

--skip-add-drop-table
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-add-locks
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-auto-rehash
Section 4.5.1.1, “mysql Options”
Section 14.2.13.3, “Troubleshooting InnoDB Data
Dictionary Operations”

--skip-bdb
Section 14.5.3, “BDB Startup Options”
Section 14.5.1, “Operating Systems Supported by BDB”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

--skip-character-set-client-
handshake
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
The cp932 Character Set

--skip-column-names
Section 4.5.1.1, “mysql Options”

--skip-comments
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-compact
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-concurrent-insert
Section 5.1.3, “Server Command Options”

--skip-disable-keys
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-dump-date
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-engine_name
Section 13.7.5.13, “SHOW ENGINES Syntax”

--skip-extended-insert
Section 4.5.4, “mysqldump — A Database Backup
Program”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2334

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--skip-external-locking
Section 8.11.4, “External Locking”
Section 8.14.2, “General Thread States”
Section 2.15, “Installing MySQL on NetWare”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 8.12.1, “System Factors and Startup Parameter
Tuning”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

--skip-grant-tables
Section 2.10.8.1, “Building MySQL from the Standard
Source Distribution”
Section 2.19.2.1, “Changes Affecting Downgrades from
MySQL 5.0”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
defined Functions”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Resetting the Root Password: Generic Instructions
Section 5.1.3, “Server Command Options”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 21.2.2.5, “UDF Compiling and Installing”
Section 4.2.4, “Using Options on the Command Line”
Section 6.2.6, “When Privilege Changes Take Effect”

--skip-host-cache
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”
Section 5.1.3, “Server Command Options”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”

--skip-innodb
Section 14.2.1, “Configuring InnoDB”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section A.13, “MySQL 5.0 FAQ: Replication”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.7.5.13, “SHOW ENGINES Syntax”
Section 16.3.2, “Using Replication with Different Master
and Slave Storage Engines”

--skip-innodb_adaptive_hash_index
Section 14.2.2, “InnoDB Startup Options and System
Variables”

--skip-innodb_checksums
Section 14.2.2, “InnoDB Startup Options and System
Variables”

--skip-innodb_doublewrite
Section 14.2.2, “InnoDB Startup Options and System
Variables”

--skip-kill-mysqld
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”

--skip-line-numbers
Section 4.5.1.1, “mysql Options”

--skip-lock-tables
Section 4.5.5, “mysqlimport — A Data Import Program”

--skip-merge
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 14.3, “The MERGE Storage Engine”

--skip-name-resolve
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”
Section 2.20.4.1, “FreeBSD Notes”
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”
Section 2.18.4, “Securing the Initial MySQL Accounts”
Section 5.1.3, “Server Command Options”
Section 2.10.4.8, “Testing The MySQL Installation”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”

--skip-named-commands
Section 4.5.1.1, “mysql Options”

--skip-ndbcluster
Section 17.3.2.5, “MySQL Cluster mysqld Option and
Variable Reference”
MySQL Cluster System Variables
mysqld Command Options for MySQL Cluster

--skip-networking
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”
Section B.5.2.9, “MySQL server has gone away”
Resetting the Root Password: Generic Instructions
Section 5.1.3, “Server Command Options”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2335

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 5.1.4, “Server System Variables”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 16.4.3, “Upgrading a Replication Setup”

skip-networking
Section A.13, “MySQL 5.0 FAQ: Replication”
Section 16.1.1.1, “Setting the Replication Master
Configuration”
Section 16.4.4, “Troubleshooting Replication”

--skip-new
Section 21.3.1, “Debugging a MySQL Server”
Section 13.7.2.5, “OPTIMIZE TABLE Syntax”
Section 5.1.4, “Server System Variables”

--skip-opt
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-pager
Section 4.5.1.1, “mysql Options”

--skip-quick
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-quote-names
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-reconnect
Section 20.6.15, “Controlling Automatic Reconnection
Behavior”
Disabling mysql Auto-Reconnect
Section 4.5.1.1, “mysql Options”

--skip-routines
Section 2.19.2.1, “Changes Affecting Downgrades from
MySQL 5.0”
Section 7.4.5.3, “Dumping Stored Programs”

--skip-safemalloc
Section 2.17.5, “Compiling and Linking an Optimized
mysqld Server”
Section 21.3.1.1, “Compiling MySQL for Debugging”
Section 5.1.3, “Server Command Options”

--skip-set-charset
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-show-database
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.3, “Server Command Options”
Section 13.7.5.11, “SHOW DATABASES Syntax”
Section 1.9.5, “Supporters of MySQL”

--skip-slave-start
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 16.3.7, “Setting Up Replication to Use Secure
Connections”
Section 16.1.1.8, “Setting Up Replication with Existing
Data”
Section 13.4.2.7, “START SLAVE Syntax”
Section 16.4.4, “Troubleshooting Replication”
Section 16.4.3, “Upgrading a Replication Setup”

--skip-ssl
Section 6.3.6.5, “Command Options for Secure
Connections”
Section 6.3.6.4, “Configuring MySQL to Use Secure
Connections”

--skip-stack-trace
Section 21.3.1.4, “Debugging mysqld under gdb”
Section 5.1.3, “Server Command Options”

--skip-symbolic-links
Section 13.1.10, “CREATE TABLE Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 8.12.4.3, “Using Symbolic Links for Databases
on Windows”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”

--skip-sync-bdb-logs
Section 14.5.3, “BDB Startup Options”

--skip-tee
Section 4.5.1.1, “mysql Options”

--skip-thread-priority
Section 2.20.4.5, “BSD/OS Version 3.x Notes”
Section 2.20.2.1, “OS X 10.x (Darwin)”
Section 5.1.3, “Server Command Options”

--skip-triggers
Section 2.19.2.1, “Changes Affecting Downgrades from
MySQL 5.0”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2336

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 7.4.5.3, “Dumping Stored Programs”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-tz-utc
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip-use-db
Section 4.6.13, “mysql_find_rows — Extract SQL
Statements from Files”

--skip-xxx
Section 4.5.4, “mysqldump — A Database Backup
Program”

--skip_grant_tables
Section 4.2.4, “Using Options on the Command Line”

--slave-load-tmpdir
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.2, “Database Backup Methods”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section B.5.3.5, “Where MySQL Stores Temporary Files”

--slave-net-timeout
Section 16.1.2.3, “Replication Slave Options and
Variables”

--slave-skip-errors
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 16.4.1.21, “Slave Errors During Replication”

--slave_compressed_protocol
Section 16.1.2.3, “Replication Slave Options and
Variables”

--sleep
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”

--socket
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 4.2.2, “Connecting to the MySQL Server”
Section B.5.3.6, “How to Protect or Change the MySQL
Unix Socket File”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.6.10.1, “MySQL Instance Manager Command
Options”

Section 4.5.1.1, “mysql Options”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 4.7.2, “mysql_config — Display Options for
Compiling Clients”
Section 4.6.11, “mysql_convert_table_format —
Convert Tables to Use a Given Storage Engine”
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”
Section 4.6.15, “mysql_setpermission —
Interactively Set Permissions in Grant Tables”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 5.5, “Running Multiple MySQL Instances on One
Machine”
Section 5.5.3, “Running Multiple MySQL Instances on
Unix”
Section 5.1.3, “Server Command Options”
Section 2.10.4.8, “Testing The MySQL Installation”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 5.5.4, “Using Client Programs in a Multiple-
Server Environment”

--sort-index
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.4, “Other myisamchk Options”

--sort-records
Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.4, “Other myisamchk Options”

--sort-recover
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2337

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--sort_buffer_size
Section 4.6.3.6, “myisamchk Memory Usage”

--spassword
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”

--sporadic-binlog-dump-fail
Section 16.1.2.4, “Binary Log Options and Variables”

--sql-mode
Chapter 12, Functions and Operators
Section A.3, “MySQL 5.0 FAQ: Server SQL Mode”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”

sql-mode
Section 5.1.7, “Server SQL Modes”

--sql_mode
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”

--srcdir
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”

--ssl
Section 6.3.6.2, “Building MySQL with Support for Secure
Connections”
Section 6.3.6.5, “Command Options for Secure
Connections”
Section 6.3.6.4, “Configuring MySQL to Use Secure
Connections”
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.5.1.1, “mysql Options”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 5.1.3, “Server Command Options”

--ssl*
Section 4.2.2, “Connecting to the MySQL Server”

Section 4.5.1.1, “mysql Options”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 5.1.3, “Server Command Options”

--ssl-ca
Section 6.3.6.5, “Command Options for Secure
Connections”
Section 6.3.6.4, “Configuring MySQL to Use Secure
Connections”
Section 6.3.7, “Creating SSL Certificates and Keys Using
openssl”
Section 13.7.1.3, “GRANT Syntax”
Section 16.1.2.3, “Replication Slave Options and
Variables”

ssl-ca
Section 16.3.7, “Setting Up Replication to Use Secure
Connections”

--ssl-capath
Section 6.3.6.5, “Command Options for Secure
Connections”
Section 13.7.1.3, “GRANT Syntax”
Section 6.3.6.1, “OpenSSL Versus yaSSL”
Section 16.1.2.3, “Replication Slave Options and
Variables”

--ssl-cert
Section 6.3.6.5, “Command Options for Secure
Connections”
Section 6.3.6.4, “Configuring MySQL to Use Secure
Connections”
Section 6.3.7, “Creating SSL Certificates and Keys Using
openssl”
Section 13.7.1.3, “GRANT Syntax”
Section 16.1.2.3, “Replication Slave Options and
Variables”

ssl-cert
Section 16.3.7, “Setting Up Replication to Use Secure
Connections”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2338

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--ssl-cipher
Section 6.3.6.5, “Command Options for Secure
Connections”
Section 6.3.6.1, “OpenSSL Versus yaSSL”
Section 16.1.2.3, “Replication Slave Options and
Variables”

--ssl-key
Section 6.3.6.5, “Command Options for Secure
Connections”
Section 6.3.6.4, “Configuring MySQL to Use Secure
Connections”
Section 6.3.7, “Creating SSL Certificates and Keys Using
openssl”
Section 13.7.1.3, “GRANT Syntax”
Section 16.1.2.3, “Replication Slave Options and
Variables”

ssl-key
Section 16.3.7, “Setting Up Replication to Use Secure
Connections”

--ssl-verify-server-cert
Section 6.3.6.5, “Command Options for Secure
Connections”

--ssl-xxx
Section 6.3.6.2, “Building MySQL with Support for Secure
Connections”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 6.3.6.5, “Command Options for Secure
Connections”
Section 6.3.6.4, “Configuring MySQL to Use Secure
Connections”
Section 5.1.4, “Server System Variables”

--standalone
Section 21.3.1.2, “Creating Trace Files”
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 5.1.3, “Server Command Options”
Section 2.10.4.5, “Starting MySQL from the Windows
Command Line”

--start-datetime
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 7.5.1, “Point-in-Time Recovery Using Event
Times”

--start-position
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 7.5.2, “Point-in-Time Recovery Using Event
Positions”

--start_row
Section 4.6.13, “mysql_find_rows — Extract SQL
Statements from Files”

--statefile
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”

--static
Section 2.20.3, “Solaris Notes”

--stats
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”

--status
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”

--stop-datetime
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 7.5.1, “Point-in-Time Recovery Using Event
Times”

--stop-position
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 7.5.2, “Point-in-Time Recovery Using Event
Positions”

--suffix
Section 4.4.3, “make_win_src_distribution —
Create Source Distribution for Windows”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

--superuser
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”

--symbolic-links
Section 5.1.3, “Server Command Options”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2339

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--symbols-file
Section 4.7.4, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”

--sync-bdb-logs
Section 14.5.3, “BDB Startup Options”

--sysconfdir
Section 4.2.6, “Using Option Files”

--sysdate-is-now
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 12.7, “Date and Time Functions”
Section 16.4.1.9, “Replication and System Functions”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

T

[index top]

-T
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.6.3.2, “myisamchk Check Options”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”
Section 5.1.3, “Server Command Options”

-t
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.6.18, “mysql_zap — Kill Processes That
Match a Pattern”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”

Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 17.4.6, “ndb_delete_all — Delete All Rows
from an NDB Table”
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”
Section 17.4.17, “ndb_show_tables — Display List of
NDB Tables”
Section 17.4.19, “ndb_waiter — Wait for MySQL
Cluster to Reach a Given Status”
Section 5.1.3, “Server Command Options”
Section 15.3.2, “Using memcached”

--tab
Section 7.1, “Backup and Recovery Types”
Section 7.2, “Database Backup Methods”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”
Section 7.4, “Using mysqldump for Backups”

--table
Section 4.5.1.1, “mysql Options”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”

--table_cache
Section 8.4.3.1, “How MySQL Opens and Closes Tables”

--tables
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--tar
Section 4.4.3, “make_win_src_distribution —
Create Source Distribution for Windows”

--tbl-status
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”

--tc-heuristic-recover
Section 5.1.3, “Server Command Options”

--tcp-ip
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2340

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--tee
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”

--temp-pool
Section 5.1.3, “Server Command Options”

--test
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”

Text
Section 1.2, “Typographical and Syntax Conventions”

--thread-stack
Section 2.20.1.5, “Linux x86 Notes”

--thread_cache_size
Section 21.3.1.4, “Debugging mysqld under gdb”

--thread_stack
Section 8.12.6.1, “How MySQL Uses Threads for Client
Connections”

--timeout
Section 17.4.19, “ndb_waiter — Wait for MySQL
Cluster to Reach a Given Status”

--timezone
Section 10.6, “MySQL Server Time Zone Support”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 16.4.1.25, “Replication and Time Zones”
Section 5.1.4, “Server System Variables”
Section B.5.3.7, “Time Zone Problems”

--tmp
Section 4.4.3, “make_win_src_distribution —
Create Source Distribution for Windows”

--tmpdir
Section B.5.2.13, “Can't create/write to file”
Section 4.6.3.6, “myisamchk Memory Usage”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 5.5, “Running Multiple MySQL Instances on One
Machine”

Section 5.1.3, “Server Command Options”
Section B.5.3.5, “Where MySQL Stores Temporary Files”

tmpdir
Section 2.10, “Installing MySQL on Microsoft Windows”

--to-last-log
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

--transaction-isolation
Section 14.2.8, “InnoDB Transaction Model and Locking”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”

--transactional
Section 17.4.6, “ndb_delete_all — Delete All Rows
from an NDB Table”

--triggers
Section 7.4.5.3, “Dumping Stored Programs”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--try-reconnect
Section 17.4.3, “ndb_mgm — The MySQL Cluster
Management Client”

--tupscan
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”

--type
Section 4.6.11, “mysql_convert_table_format —
Convert Tables to Use a Given Storage Engine”
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”
Section 17.4.17, “ndb_show_tables — Display List of
NDB Tables”

--tz-utc
Section 4.5.4, “mysqldump — A Database Backup
Program”

U

[index top]

-U
Section 4.6.3.2, “myisamchk Check Options”
Section 4.5.1.1, “mysql Options”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2341

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 15.3.2, “Using memcached”

-u
Section 4.2.2, “Connecting to the MySQL Server”
Section 4.2.1, “Invoking MySQL Programs”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File
Contents”
Section 4.5.1.1, “mysql Options”
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 17.4.7, “ndb_desc — Describe NDB Tables”
Section 17.4.17, “ndb_show_tables — Display List of
NDB Tables”
Section 5.1.3, “Server Command Options”
Section 2.10.4.8, “Testing The MySQL Installation”
Section 2.18.3, “Testing the Server”
Section 6.3.1, “User Names and Passwords”
Section 15.3.2, “Using memcached”
Section 2.10.6, “Windows Postinstallation Procedures”

--unbuffered
Section 4.5.1.1, “mysql Options”

--unpack
Section 14.1.3, “MyISAM Table Storage Formats”
Section 4.6.3.3, “myisamchk Repair Options”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”

--unqualified
Section 17.4.7, “ndb_desc — Describe NDB Tables”

Section 17.4.17, “ndb_show_tables — Display List of
NDB Tables”

--update-state
Section 7.6.3, “How to Repair MyISAM Tables”
Section 4.6.3.2, “myisamchk Check Options”
Section 14.1, “The MyISAM Storage Engine”

--usage
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”

--use-frm
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”

--use-manager
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”

--use-mysqld_safe
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”

--useHexFormat
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”

--user
Section 4.2.2, “Connecting to the MySQL Server”
Section 7.3, “Example Backup and Recovery Strategy”
Section B.5.2.18, “File Not Found and Similar Errors”
Section 6.1.5, “How to Run MySQL as a Normal User”
Section 2.18.1, “Initializing the Data Directory”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”
Section 4.2.1, “Invoking MySQL Programs”
Section 2.20.1.2, “Linux Binary Distribution Notes”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 17.5.10.3, “MySQL Cluster and MySQL Security
Procedures”
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 4.5.1.1, “mysql Options”
Section 4.3.3, “mysql.server — MySQL Server
Startup Script”
Section 4.6.11, “mysql_convert_table_format —
Convert Tables to Use a Given Storage Engine”
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2342

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”
Section 4.6.15, “mysql_setpermission —
Interactively Set Permissions in Grant Tables”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.3.2, “mysqld_safe — MySQL Server Startup
Script”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 4.2.9, “Option Defaults, Options Expecting
Values, and the = Sign”
Resetting the Root Password: Unix and Unix-Like
Systems
Section 5.1.3, “Server Command Options”
Section 2.18.2, “Starting the Server”
Section 6.3.1, “User Names and Passwords”
Section 4.2.6, “Using Option Files”

V

[index top]

-V
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File
Contents”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 4.5.1.1, “mysql Options”

Section 4.6.17, “mysql_waitpid — Kill Process and
Wait for Its Termination”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 4.7.4, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 4.8.3, “resolveip — Resolve Host name to IP
Address or Vice Versa”
Section 5.1.3, “Server Command Options”
Section 4.2.4, “Using Options on the Command Line”

-v
Section 7.6.2, “How to Check MyISAM Tables for Errors”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 15.3.2.8, “memcached Logs”
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File
Contents”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.6.17, “mysql_waitpid — Kill Process and
Wait for Its Termination”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2343

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 4.6.3.5, “Obtaining Table Information with
myisamchk”
Section 4.8.1, “perror — Explain Error Codes”
Section 4.8.2, “replace — A String-Replacement Utility”
Section 5.1.3, “Server Command Options”
Section 15.3.2, “Using memcached”
Section 4.2.4, “Using Options on the Command Line”

--var_name
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 4.6.3.1, “myisamchk General Options”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 5.1.3, “Server Command Options”

--verbose
Section 4.5.1.5, “Executing SQL Statements from a Text
File”
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.6.2, “myisam_ftdump — Display Full-Text
Index information”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.6.11, “mysql_convert_table_format —
Convert Tables to Use a Given Storage Engine”
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.6.17, “mysql_waitpid — Kill Process and
Wait for Its Termination”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup
Program”

Section 4.6.8, “mysqldumpslow — Summarize Slow
Query Log Files”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 17.4.14, “ndb_restore — Restore a MySQL
Cluster Backup”
Section 4.6.3.4, “Other myisamchk Options”
Section 4.8.1, “perror — Explain Error Codes”
Section 5.1.3, “Server Command Options”
Section 2.18.2.1, “Troubleshooting Problems Starting the
MySQL Server”
Section 8.12.2, “Tuning Server Parameters”
Section 4.2.6, “Using Option Files”
Section 4.2.4, “Using Options on the Command Line”

--version
Section 4.4.1, “comp_err — Compile MySQL Error
Message File”
Section 4.7.3, “my_print_defaults — Display Options
from Option Files”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.6.10.1, “MySQL Instance Manager Command
Options”
Section 4.5.1.1, “mysql Options”
Section 4.7.2, “mysql_config — Display Options for
Compiling Clients”
Section 4.6.11, “mysql_convert_table_format —
Convert Tables to Use a Given Storage Engine”
Section 4.6.17, “mysql_waitpid — Kill Process and
Wait for Its Termination”
Section 4.6.6, “mysqlaccess — Client for Checking
Access Privileges”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 17.4.4, “ndb_config — Extract MySQL Cluster
Configuration Information”
Section 17.4.20, “Options Common to MySQL Cluster
Programs — Options Common to MySQL Cluster
Programs”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2344

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.8.1, “perror — Explain Error Codes”
Section 4.7.4, “resolve_stack_dump — Resolve
Numeric Stack Trace Dump to Symbols”
Section 4.8.3, “resolveip — Resolve Host name to IP
Address or Vice Versa”
Section 5.1.3, “Server Command Options”
Section 4.2.4, “Using Options on the Command Line”

--vertical
Section 1.7, “How to Report Bugs or Problems”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”

W

[index top]

-W
Section 4.2.2, “Connecting to the MySQL Server”
Section 2.20.5.3, “IBM-AIX notes”
Section 2.20.1.3, “Linux Source Distribution Notes”
Section 4.5.1.1, “mysql Options”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 5.1.3, “Server Command Options”
Section 2.20.3, “Solaris Notes”

-w
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.4, “myisamlog — Display MyISAM Log File
Contents”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”
Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 4.5.4, “mysqldump — A Database Backup
Program”

--wait
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.5, “myisampack — Generate Compressed,
Read-Only MyISAM Tables”

Section 4.5.1.1, “mysql Options”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”

--wait-timeout
Section 4.6.10.1, “MySQL Instance Manager Command
Options”

--where
Section 4.5.4, “mysqldump — A Database Backup
Program”

--windows
Section 4.4.6, “mysql_install_db — Initialize MySQL
Data Directory”

--with-archive-storage-engine
Section 14.8, “The ARCHIVE Storage Engine”

--with-berkeley-db
Section 2.4.2.2, “Choosing a Distribution Format”
Section 14.5.2, “Installing BDB”

--with-big-tables
Section 14.3.2, “MERGE Table Problems”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 5.1.4, “Server System Variables”
Section 14.1, “The MyISAM Storage Engine”

--with-blackhole-storage-engine
Section 14.10, “The BLACKHOLE Storage Engine”

--with-charset
Section 10.3, “Adding a Character Set”
Section B.5.2.17, “Can't initialize character set”
Section 2.17.5, “Compiling and Linking an Optimized
mysqld Server”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 10.1.3.1, “Server Character Set and Collation”

--with-collation
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 10.1.3.1, “Server Character Set and Collation”

--with-comment
Section 5.1.4, “Server System Variables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2345

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--with-csv-storage-engine
Section 14.9, “The CSV Storage Engine”

--with-debug
Section 2.4.2.2, “Choosing a Distribution Format”
Section 2.17.5, “Compiling and Linking an Optimized
mysqld Server”
Section 21.3.1.1, “Compiling MySQL for Debugging”
Section 21.3.2, “Debugging a MySQL Client”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”
Section 4.5.1.1, “mysql Options”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 5.1.3, “Server Command Options”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”

--with-embedded-privilege-control
Section 20.5, “libmysqld, the Embedded MySQL Server
Library”

--with-embedded-server
Section 2.17.3, “MySQL Source-Configuration Options”

--with-example-storage-engine
Section 14.6, “The EXAMPLE Storage Engine”

--with-extra-charsets
Section B.5.2.17, “Can't initialize character set”
Section 2.17.3, “MySQL Source-Configuration Options”

--with-federated-storage-engine
Section 14.7, “The FEDERATED Storage Engine”

--with-libevent
Section 15.3.1, “Installing memcached”

--with-libwrap
Section 2.4.2.2, “Choosing a Distribution Format”

--with-low-memory
Section 2.20.4.4, “BSD/OS Version 2.x Notes”
Section 2.17.4, “Dealing with Problems Compiling
MySQL”

--with-max-indexes
Section 14.1, “The MyISAM Storage Engine”

--with-mysqld-ldflags
Section 21.2.2, “Adding a New User-Defined Function”

Section 2.20.1.7, “Linux Alpha Notes”

--with-named-thread-libs
Section 2.20.5.6, “Alpha-DEC-OSF/1 Notes”

--with-named-z-libs
Section 2.4.2.2, “Choosing a Distribution Format”
Section 2.20.3.1, “Solaris 2.7/2.8 Notes”
Section 2.20.3, “Solaris Notes”

--with-ndb-sci
Section 17.3.4.1, “Configuring MySQL Cluster to use SCI
Sockets”
Section 17.3.3.11, “SCI Transport Connections in MySQL
Cluster”

--with-ndb-shm
Section 17.3.3.10, “MySQL Cluster Shared-Memory
Connections”

--with-ndbcluster
Section 17.2.1.3, “Building MySQL Cluster from Source
on Linux”
Section 17.5.4, “MySQL Server Usage for MySQL
Cluster”

--with-pstack
Section 5.1.3, “Server Command Options”

--with-tcp-port
Section 2.17.2, “Installing MySQL Using a Development
Source Tree”
Section 2.17.3, “MySQL Source-Configuration Options”

--with-unix-socket-path
Section B.5.3.6, “How to Protect or Change the MySQL
Unix Socket File”
Section 2.17.2, “Installing MySQL Using a Development
Source Tree”

with-unix-socket-path
Section 2.17.3, “MySQL Source-Configuration Options”

--with-vio
Section 6.3.6.2, “Building MySQL with Support for Secure
Connections”

--with-zlib-dir
Section 2.17.3, “MySQL Source-Configuration Options”

--without-query-cache
Section 8.10.3, “The MySQL Query Cache”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2346

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

--without-server
Section 2.17.3, “MySQL Source-Configuration Options”

X

[index top]

-X
Section 4.5.1.2, “mysql Commands”
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 2.20.3, “Solaris Notes”

-x
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”

--xml
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”

Z

[index top]

-z
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2347

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Privileges Index
A | C | D | E | F | G | I | L | P | R | S | T | U

A

[index top]

ALL
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

ALL PRIVILEGES
Section 6.2.1, “Privileges Provided by MySQL”

ALTER
Section 13.1.1, “ALTER DATABASE Syntax”
Section 13.1.4, “ALTER TABLE Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.1.20, “RENAME TABLE Syntax”
Section 19.14, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”

ALTER ROUTINE
Section 13.1.2, “ALTER FUNCTION Syntax”
Section 13.1.3, “ALTER PROCEDURE Syntax”
Section 18.6, “Binary Logging of Stored Programs”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.16, “DROP PROCEDURE and DROP
FUNCTION Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 18.2.2, “Stored Routines and MySQL Privileges”

C

[index top]

CREATE
Section 13.1.4, “ALTER TABLE Syntax”
Section 13.1.6, “CREATE DATABASE Syntax”
Section 13.1.10, “CREATE TABLE Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.1.20, “RENAME TABLE Syntax”

CREATE ROUTINE
Section 18.6, “Binary Logging of Stored Programs”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”

Section 13.7.1.3, “GRANT Syntax”
Section A.4, “MySQL 5.0 FAQ: Stored Procedures and
Functions”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 18.2.2, “Stored Routines and MySQL Privileges”

CREATE TEMPORARY TABLES
Section 13.1.10, “CREATE TABLE Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

CREATE USER
Section 6.3.2, “Adding User Accounts”
Section 6.3.5, “Assigning Account Passwords”
Section 13.7.1.1, “CREATE USER Syntax”
Section 13.7.1.2, “DROP USER Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.4, “RENAME USER Syntax”
Section 13.7.1.5, “REVOKE Syntax”

CREATE VIEW
Section 13.1.5, “ALTER VIEW Syntax”
Section 13.1.12, “CREATE VIEW Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.4, “Restrictions on Views”
Section 19.14, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”

D

[index top]

DELETE
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 13.1.10, “CREATE TABLE Syntax”
Section 13.2.2, “DELETE Syntax”
Section 13.7.3.2, “DROP FUNCTION Syntax”
Section 13.7.1.2, “DROP USER Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 17.5.10.2, “MySQL Cluster and MySQL
Privileges”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.2.7, “REPLACE Syntax”
Section 14.3, “The MERGE Storage Engine”
Section 21.2.2.5, “UDF Compiling and Installing”
Section 21.2.2.6, “UDF Security Precautions”

DROP
Section 13.1.4, “ALTER TABLE Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2348

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 13.1.5, “ALTER VIEW Syntax”
Section 13.1.12, “CREATE VIEW Syntax”
Section 13.1.13, “DROP DATABASE Syntax”
Section 13.1.17, “DROP TABLE Syntax”
Section 13.1.19, “DROP VIEW Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.1.20, “RENAME TABLE Syntax”
Section 19.14, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”
Section 6.2, “The MySQL Access Privilege System”

E

[index top]

EXECUTE
Section 18.5, “Access Control for Stored Programs and
Views”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.16, “DROP PROCEDURE and DROP
FUNCTION Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 18.2.2, “Stored Routines and MySQL Privileges”

F

[index top]

FILE
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.2.8.1, “SELECT ... INTO Syntax”
Section 13.7.5.12, “SHOW ENGINE Syntax”
Section 12.5, “String Functions”
Section 11.4.3, “The BLOB and TEXT Types”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”

G

[index top]

GRANT OPTION
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.5, “REVOKE Syntax”
Section 19.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”

I

[index top]

INDEX
Section 13.1.4, “ALTER TABLE Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.14, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”

INSERT
Section 18.5, “Access Control for Stored Programs and
Views”
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 6.3.2, “Adding User Accounts”
Section 13.1.4, “ALTER TABLE Syntax”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 6.3.5, “Assigning Account Passwords”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
defined Functions”
Section 13.7.1.1, “CREATE USER Syntax”
Section 13.1.12, “CREATE VIEW Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.7.2.5, “OPTIMIZE TABLE Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.1.20, “RENAME TABLE Syntax”
Section 13.7.2.6, “REPAIR TABLE Syntax”
Section 13.2.7, “REPLACE Syntax”
Section 5.1.3, “Server Command Options”
Section 19.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”
Section 19.14, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”
Section 21.2.2.5, “UDF Compiling and Installing”
Section 21.2.2.6, “UDF Security Precautions”

L

[index top]

LOCK TABLES
Section 13.7.1.3, “GRANT Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2349

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”

P

[index top]

PROCESS
Section 6.3.2, “Adding User Accounts”
Section 8.14, “Examining Thread Information”
Section 13.7.1.3, “GRANT Syntax”
Section 13.7.6.3, “KILL Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 17.5.4, “MySQL Server Usage for MySQL
Cluster”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.12, “SHOW ENGINE Syntax”
Section 13.7.5.27, “SHOW PROCESSLIST Syntax”

R

[index top]

REFERENCES
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 19.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”
Section 19.14, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”

RELOAD
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 6.3.2, “Adding User Accounts”
Section 12.12, “Encryption and Compression Functions”
Section 13.7.6.2, “FLUSH Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 13.4.2.2, “LOAD DATA FROM MASTER Syntax”
Section 13.4.2.3, “LOAD TABLE tbl_name FROM
MASTER Syntax”
Section 20.6.7.55, “mysql_refresh()”
Section 20.6.7.56, “mysql_reload()”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”

Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.6.5, “RESET Syntax”

REPLICATION CLIENT
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.21, “SHOW MASTER STATUS Syntax”
Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”

REPLICATION SLAVE
Section 16.1.1.3, “Creating a User for Replication”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 16.3.7, “Setting Up Replication to Use Secure
Connections”

S

[index top]

SELECT
Section 18.5, “Access Control for Stored Programs and
Views”
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.10.1, “CREATE TABLE ... LIKE Syntax”
Section 13.1.10, “CREATE TABLE Syntax”
Section 13.1.11, “CREATE TRIGGER Syntax”
Section 13.1.12, “CREATE VIEW Syntax”
Section 13.2.2, “DELETE Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.4.2.2, “LOAD DATA FROM MASTER Syntax”
Section 13.4.2.3, “LOAD TABLE tbl_name FROM
MASTER Syntax”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 17.5.10.2, “MySQL Cluster and MySQL
Privileges”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 13.7.2.5, “OPTIMIZE TABLE Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.2.6, “REPAIR TABLE Syntax”
Section C.4, “Restrictions on Views”
Section 13.7.5.10, “SHOW CREATE VIEW Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2350

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 13.7.5.17, “SHOW GRANTS Syntax”
Section 19.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”
Section 19.14, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”
Section 14.3, “The MERGE Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 18.3.1, “Trigger Syntax and Examples”
Section 13.2.10, “UPDATE Syntax”

SHOW DATABASES
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.4, “Server System Variables”
Section 13.7.5.11, “SHOW DATABASES Syntax”

SHOW VIEW
Section 13.7.1.3, “GRANT Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.4, “Restrictions on Views”
Section 13.7.5.10, “SHOW CREATE VIEW Syntax”
Section 19.17, “The INFORMATION_SCHEMA VIEWS
Table”

SHUTDOWN
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 20.6.7.65, “mysql_shutdown()”
Section 4.3.4, “mysqld_multi — Manage Multiple
MySQL Servers”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.10, “The Server Shutdown Process”

SUPER
Section 18.5, “Access Control for Stored Programs and
Views”
Section 13.1.2, “ALTER FUNCTION Syntax”
Section 13.1.5, “ALTER VIEW Syntax”
Section 18.6, “Binary Logging of Stored Programs”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.11, “CREATE TRIGGER Syntax”
Section 13.1.12, “CREATE VIEW Syntax”
Section 13.1.18, “DROP TRIGGER Syntax”
Section 12.12, “Encryption and Compression Functions”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 13.7.1.3, “GRANT Syntax”

Section 16.1.1, “How to Set Up Replication”
Section 13.7.6.3, “KILL Syntax”
Section 13.4.2.2, “LOAD DATA FROM MASTER Syntax”
Section 13.4.2.3, “LOAD TABLE tbl_name FROM
MASTER Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section A.4, “MySQL 5.0 FAQ: Stored Procedures and
Functions”
Section 10.7, “MySQL Server Locale Support”
Section 10.6, “MySQL Server Time Zone Support”
Section 20.6.7.12, “mysql_dump_debug_info()”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 13.4.1.3, “SET sql_log_bin Syntax”
Section 13.7.4, “SET Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.7.5.1, “SHOW BINARY LOGS Syntax”
Section 13.7.5.21, “SHOW MASTER STATUS Syntax”
Section 13.7.5.27, “SHOW PROCESSLIST Syntax”
Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”
Section 13.7.5.35, “SHOW TRIGGERS Syntax”
Section 13.4.2.7, “START SLAVE Syntax”
Section 13.4.2.8, “STOP SLAVE Syntax”
Section 5.4.3, “The Binary Log”
Section 19.15, “The INFORMATION_SCHEMA
TRIGGERS Table”
Section B.5.2.7, “Too many connections”
Section 5.1.5, “Using System Variables”

T

[index top]

TRIGGER
Section 13.1.11, “CREATE TRIGGER Syntax”
Section 13.7.1.3, “GRANT Syntax”

U

[index top]

UPDATE
Section 18.5, “Access Control for Stored Programs and
Views”
Section 6.3.5, “Assigning Account Passwords”
Section 13.1.10, “CREATE TABLE Syntax”
Section 13.1.11, “CREATE TRIGGER Syntax”
Section 13.7.1.3, “GRANT Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2351

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 13.2.5, “INSERT Syntax”
Section 17.5.10.2, “MySQL Cluster and MySQL
Privileges”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.4, “RENAME USER Syntax”
Section 13.7.1.5, “REVOKE Syntax”
Section 19.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”
Section 19.14, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”
Section 14.3, “The MERGE Storage Engine”
Section 18.3.1, “Trigger Syntax and Examples”
Section 13.2.10, “UPDATE Syntax”

USAGE
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2352

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2353

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SQL Modes Index
A | D | E | H | I | M | N | O | P | R | S | T

A

[index top]

ALLOW_INVALID_DATES
Section 12.7, “Date and Time Functions”
Section 11.3, “Date and Time Types”
Section B.5.4.2, “Problems Using DATE Columns”
Section 5.1.7, “Server SQL Modes”
Section 11.3.1, “The DATE, DATETIME, and
TIMESTAMP Types”

ANSI
Section 9.2.3, “Function Name Parsing and Resolution”
Section 5.1.7, “Server SQL Modes”
Section 13.7.5.10, “SHOW CREATE VIEW Syntax”
Section 19.17, “The INFORMATION_SCHEMA VIEWS
Table”

ANSI_QUOTES
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 9.2, “Schema Object Names”
Section 5.1.7, “Server SQL Modes”
Section 9.1.1, “String Literals”
Section 13.1.10.3, “Using FOREIGN KEY Constraints”

D

[index top]

DB2
Section 5.1.7, “Server SQL Modes”

E

[index top]

ERROR_FOR_DIVISION_BY_ZERO
Section 12.17.3, “Expression Handling”
Section 12.17.5, “Precision Math Examples”
Section 5.1.7, “Server SQL Modes”

H

[index top]

HIGH_NOT_PRECEDENCE
Section 9.5, “Expression Syntax”
Section 12.3.1, “Operator Precedence”
Section 5.1.7, “Server SQL Modes”

I

[index top]

IGNORE_SPACE
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 9.2.3, “Function Name Parsing and Resolution”
Section 4.5.1.1, “mysql Options”
Section 5.1.7, “Server SQL Modes”

M

[index top]

MAXDB
Section 11.1.2, “Date and Time Type Overview”
Section 5.1.7, “Server SQL Modes”
Section 11.3.1, “The DATE, DATETIME, and
TIMESTAMP Types”

MSSQL
Section 5.1.7, “Server SQL Modes”

MYSQL323
Section 5.1.7, “Server SQL Modes”

MYSQL40
Section 5.1.7, “Server SQL Modes”

N

[index top]

NO_AUTO_CREATE_USER
Section 6.3.2, “Adding User Accounts”
Section 13.7.1.3, “GRANT Syntax”
Section 5.1.7, “Server SQL Modes”

NO_AUTO_VALUE_ON_ZERO
Section 13.1.10, “CREATE TABLE Syntax”
Section 5.1.7, “Server SQL Modes”
Section 3.6.9, “Using AUTO_INCREMENT”

NO_BACKSLASH_ESCAPES
Section 5.1.7, “Server SQL Modes”
Section 12.5.1, “String Comparison Functions”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2354

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 9.1.1, “String Literals”

NO_DIR_IN_CREATE
Section 16.4.1.6, “Replication and DIRECTORY Table
Options”
Section 16.4.1.29, “Replication and Variables”
Section 5.1.7, “Server SQL Modes”

NO_ENGINE_SUBSTITUTION
Section 13.1.4, “ALTER TABLE Syntax”
Section 13.1.10, “CREATE TABLE Syntax”
Section 5.1.7, “Server SQL Modes”
Section 16.3.2, “Using Replication with Different Master
and Slave Storage Engines”

NO_FIELD_OPTIONS
Section 5.1.7, “Server SQL Modes”

NO_KEY_OPTIONS
Section 5.1.7, “Server SQL Modes”

NO_TABLE_OPTIONS
Section 5.1.7, “Server SQL Modes”

NO_UNSIGNED_SUBTRACTION
Section 12.6.1, “Arithmetic Operators”
Section 12.10, “Cast Functions and Operators”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 11.1.1, “Numeric Type Overview”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 5.1.7, “Server SQL Modes”

NO_ZERO_DATE
Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP”
Section 12.10, “Cast Functions and Operators”
Section 11.3, “Date and Time Types”
Section B.5.4.2, “Problems Using DATE Columns”
Section 5.1.7, “Server SQL Modes”

NO_ZERO_IN_DATE
Section 13.1.10, “CREATE TABLE Syntax”
Section 11.3, “Date and Time Types”
Section B.5.4.2, “Problems Using DATE Columns”
Section 5.1.7, “Server SQL Modes”

O

[index top]

ONLY_FULL_GROUP_BY
Section 3.3.4.8, “Counting Rows”

Section 12.16.2, “GROUP BY Modifiers”
Section 12.16.3, “MySQL Handling of GROUP BY”
Section 5.1.7, “Server SQL Modes”

ORACLE
Section 5.1.7, “Server SQL Modes”

P

[index top]

PIPES_AS_CONCAT
Section 9.5, “Expression Syntax”
Section 12.3.1, “Operator Precedence”
Section 5.1.7, “Server SQL Modes”

POSTGRESQL
Section 5.1.7, “Server SQL Modes”

R

[index top]

REAL_AS_FLOAT
Section 11.1.1, “Numeric Type Overview”
Section 11.2, “Numeric Types”
Section 5.1.7, “Server SQL Modes”

S

[index top]

STRICT_ALL_TABLES
Section 6.3.2, “Adding User Accounts”
Section 1.8.3.3, “Constraints on Invalid Data”
Section 12.17.3, “Expression Handling”
Section A.3, “MySQL 5.0 FAQ: Server SQL Mode”
Section 5.1.7, “Server SQL Modes”

STRICT_TRANS_TABLES
Section 6.3.2, “Adding User Accounts”
Section 1.8.3.3, “Constraints on Invalid Data”
Section 12.17.3, “Expression Handling”
Section A.3, “MySQL 5.0 FAQ: Server SQL Mode”
Section 5.1.7, “Server SQL Modes”

T

[index top]

TRADITIONAL
Section 11.3.5, “Automatic Initialization and Updating for
TIMESTAMP”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2355

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 12.17.3, “Expression Handling”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section A.3, “MySQL 5.0 FAQ: Server SQL Mode”
Section 5.1.7, “Server SQL Modes”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2356

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2357

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Statement/Syntax Index
A | B | C | D | E | F | G | H | I | K | L | O | P | R | S | T | U |
W | X

A

[index top]

ALTER DATABASE
Section 13.1.1, “ALTER DATABASE Syntax”
Section 16.1.2.4, “Binary Log Options and Variables”
Section 10.1.3.2, “Database Character Set and Collation”
Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 16.1.2.3, “Replication Slave Options and
Variables”

ALTER FUNCTION
Section 13.1.2, “ALTER FUNCTION Syntax”
Section 18.6, “Binary Logging of Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.2.1, “Stored Routine Syntax”

ALTER PROCEDURE
Section 13.1.3, “ALTER PROCEDURE Syntax”
Section 18.6, “Binary Logging of Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.2.1, “Stored Routine Syntax”

ALTER SCHEMA
Section 13.1.1, “ALTER DATABASE Syntax”

ALTER TABLE
Section 13.1.4.1, “ALTER TABLE Examples”
Section 13.1.4, “ALTER TABLE Syntax”
Section 14.2.3.3, “AUTO_INCREMENT Handling in
InnoDB”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 13.7.2.3, “CHECK TABLE Syntax”
Section 10.1.3.4, “Column Character Set and Collation”
Section 10.1.12, “Column Character Set Conversion”
Section 8.3.4, “Column Indexes”
Section 14.2.8.4, “Consistent Nonlocking Reads”
Section 14.2.3.2, “Converting Tables from Other Storage
Engines to InnoDB”
Section 13.1.8, “CREATE INDEX Syntax”

Section 13.1.10, “CREATE TABLE Syntax”
Section 3.3.2, “Creating a Table”
Section 11.5.3.2, “Creating Spatial Columns”
Section 11.5.3.6, “Creating Spatial Indexes”
Section 17.3.3.5, “Defining MySQL Cluster Data Nodes”
Section 14.2.11.3, “Defragmenting a Table”
Section 13.1.15, “DROP INDEX Syntax”
Section 8.8.2, “EXPLAIN Output Format”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 14.2.6.2, “Forcing InnoDB Recovery”
Section 1.8.3.2, “FOREIGN KEY Constraints”
Section 12.9, “Full-Text Search Functions”
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section B.5.3.4, “How MySQL Handles a Full Disk”
Section 8.10.3.1, “How the Query Cache Operates”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 17.2.2, “Initial Configuration of MySQL Cluster”
Section 14.2.3.4, “InnoDB and FOREIGN KEY
Constraints”
Section 14.2.3.5, “InnoDB and MySQL Replication”
Section 14.2.1.4, “InnoDB File-Per-Table Tablespaces”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 17.1.5.8, “Issues Exclusive to MySQL Cluster”
Section 13.7.6.3, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 14.7.3, “Limitations of the FEDERATED Storage
Engine”
Section 17.1.5.9, “Limitations Relating to Multiple MySQL
Cluster Nodes”
Section 17.1.5.2, “Limits and Differences of MySQL
Cluster from Standard MySQL Limits”
Section 14.2.14, “Limits on InnoDB Tables”
Section C.7.3, “Limits on Table Size”
Section 17.1.5.3, “Limits Relating to Transaction
Handling in MySQL Cluster”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 14.3.2, “MERGE Table Problems”
Section 8.3.7, “MyISAM Index Statistics Collection”
Section 14.1.1, “MyISAM Startup Options”
Section 14.1.3, “MyISAM Table Storage Formats”
Section 4.6.3.1, “myisamchk General Options”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 17.3.3.1, “MySQL Cluster Configuration: Basic
Example”
Section 17.2.4, “MySQL Cluster Example with Tables
and Data”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 20.6.7.35, “mysql_info()”
Section 4.5.4, “mysqldump — A Database Backup
Program”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2358

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 13.7.2.5, “OPTIMIZE TABLE Syntax”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 6.2.1, “Privileges Provided by MySQL”
Section B.5.6.1, “Problems with ALTER TABLE”
Section 2.19.4, “Rebuilding or Repairing Tables or
Indexes”
Section 13.1.20, “RENAME TABLE Syntax”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 16.4.1.20, “Replication and Reserved Words”
Section C.4, “Restrictions on Views”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 13.7.5.12, “SHOW ENGINE Syntax”
Section 13.7.5.18, “SHOW INDEX Syntax”
Section 13.7.5.37, “SHOW WARNINGS Syntax”
Section 13.1.10.4, “Silent Column Specification Changes”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Chapter 14, Storage Engines
Section 11.1.3, “String Type Overview”
Section 10.1.3.3, “Table Character Set and Collation”
Section B.5.6.2, “TEMPORARY Table Problems”
Section 14.4, “The MEMORY (HEAP) Storage Engine”
Section 14.1, “The MyISAM Storage Engine”
Section 5.4.4, “The Slow Query Log”
Section 14.2.13.3, “Troubleshooting InnoDB Data
Dictionary Operations”
Section 17.1.5.6, “Unsupported or Missing Features in
MySQL Cluster”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.10.3, “Using FOREIGN KEY Constraints”
Section 16.3.2, “Using Replication with Different Master
and Slave Storage Engines”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”
Section 1.4, “What Is New in MySQL 5.0”
Section B.5.3.3, “What to Do If MySQL Keeps Crashing”
Section B.5.3.5, “Where MySQL Stores Temporary Files”
Section C.7.6, “Windows Platform Limitations”
Section 11.3.4, “YEAR(2) Limitations and Migrating to
YEAR(4)”

ALTER TABLE ... ENGINE =
MEMORY
Section 16.4.1.15, “Replication and MEMORY Tables”

ALTER TABLE ... RENAME
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”

ALTER VIEW
Section 13.1.5, “ALTER VIEW Syntax”

Section 13.1.12, “CREATE VIEW Syntax”
Section C.1, “Restrictions on Stored Programs”
Section C.4, “Restrictions on Views”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.4.2, “View Processing Algorithms”
Section 18.4.1, “View Syntax”

ANALYZE TABLE
Section 13.1.4, “ALTER TABLE Syntax”
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 14.5.4, “Characteristics of BDB Tables”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.14.2, “General Thread States”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section B.5.7, “Known Issues in MySQL”
Section 14.2.14, “Limits on InnoDB Tables”
Section 14.3.2, “MERGE Table Problems”
Section 8.3.7, “MyISAM Index Statistics Collection”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section 4.6.3.1, “myisamchk General Options”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 13.7.2.5, “OPTIMIZE TABLE Syntax”
Section 8.5.1, “Optimizing MyISAM Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.8, “Replication and FLUSH”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.7.5.18, “SHOW INDEX Syntax”
Section 8.2.1.1, “Speed of SELECT Statements”
Section 5.4.4, “The Slow Query Log”

B

[index top]

BACKUP TABLE
Section 13.7.2.2, “BACKUP TABLE Syntax”
Section 13.7.2.7, “RESTORE TABLE Syntax”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”

BEGIN
Section 13.6.1, “BEGIN ... END Compound-Statement
Syntax”
Section 18.6, “Binary Logging of Stored Programs”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2359

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 14.5.4, “Characteristics of BDB Tables”
Section 14.2.12, “InnoDB Error Handling”
Section 14.2.8, “InnoDB Transaction Model and Locking”
Section 16.4.1.26, “Replication and Transactions”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section C.1, “Restrictions on Stored Programs”
Section 5.1.4, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

BEGIN ... END
Section 13.6.1, “BEGIN ... END Compound-Statement
Syntax”
Section 13.6.5.1, “CASE Syntax”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 13.1.11, “CREATE TRIGGER Syntax”
Section 13.6.6.1, “Cursor CLOSE Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.3, “DECLARE Syntax”
Section 18.1, “Defining Stored Programs”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.4.1, “Local Variable DECLARE Syntax”
Section 13.6.4.2, “Local Variable Scope and Resolution”
Section 13.6, “MySQL Compound-Statement Syntax”
Section C.1, “Restrictions on Stored Programs”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 13.6.2, “Statement Label Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.3.1, “Trigger Syntax and Examples”

BEGIN WORK
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”

C

[index top]

CACHE INDEX
Section 13.7.6.1, “CACHE INDEX Syntax”
Section 8.10.1.4, “Index Preloading”
Section 13.7.6.4, “LOAD INDEX INTO CACHE Syntax”
Section 8.10.1.2, “Multiple Key Caches”

CALL
Section 18.5, “Access Control for Stored Programs and
Views”
Section 18.6, “Binary Logging of Stored Programs”

Section 20.6.17, “C API Prepared Statement Problems”
Section 20.6.16, “C API Support for Multiple Statement
Execution”
Section 20.6.19, “C API Support for Prepared CALL
Statements”
Section 13.2.1, “CALL Syntax”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 20.6.7.1, “mysql_affected_rows()”
Section 20.6.7.37, “mysql_insert_id()”
Section 20.6.7.45, “mysql_more_results()”
Section 20.6.7.46, “mysql_next_result()”
Section 20.6.7.52, “mysql_real_connect()”
Section 20.6.7.64, “mysql_set_server_option()”
Section C.1, “Restrictions on Stored Programs”
Section 13.5, “SQL Syntax for Prepared Statements”
Chapter 18, Stored Programs and Views
Section 18.2.1, “Stored Routine Syntax”
Section 18.3.1, “Trigger Syntax and Examples”

CASE
Section 13.6.5.1, “CASE Syntax”
Section 12.4, “Control Flow Functions”
Section 13.6.5, “Flow Control Statements”

CHANGE MASTER TO
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 16.1.1.5, “Creating a Data Snapshot Using
mysqldump”
Section 13.7.1.3, “GRANT Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.14, “Replication and Master or Slave
Shutdowns”
Section 16.1, “Replication Configuration”
Section 8.14.8, “Replication Slave Connection Thread
States”
Section 8.14.6, “Replication Slave I/O Thread States”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.7.1.6, “SET PASSWORD Syntax”
Section 16.1.1.10, “Setting the Master Configuration on
the Slave”
Section 16.3.7, “Setting Up Replication to Use Secure
Connections”
Section 16.1.1.8, “Setting Up Replication with Existing
Data”
Section 16.1.1.7, “Setting Up Replication with New
Master and Slaves”
Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”
Section 16.2.2.2, “Slave Status Logs”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2360

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 16.3.6, “Switching Masters During Failover”

CHECK TABLE
Section 14.2.6, “Backing Up and Recovering an InnoDB
Database”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 13.7.2.3, “CHECK TABLE Syntax”
Section 2.19.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”
Section 14.1.4.1, “Corrupted MyISAM Tables”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.12, “CREATE VIEW Syntax”
Section 8.11.4, “External Locking”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 4.6.1, “innochecksum — Offline InnoDB File
Checksum Utility”
Section 14.2.13.2, “InnoDB General Troubleshooting”
Section 2.15, “Installing MySQL on NetWare”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”
Section A.6, “MySQL 5.0 FAQ: Views”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section B.5.2.9, “MySQL server has gone away”
Section 20.6.7.69, “mysql_store_result()”
Section 4.4.9, “mysql_upgrade — Check Tables for
MySQL Upgrade”
Section 20.6.7.71, “mysql_use_result()”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 14.1.4.2, “Problems from Tables Not Being
Closed Properly”
Section 2.19.4, “Rebuilding or Repairing Tables or
Indexes”
Section C.2, “Restrictions on Server-Side Cursors”
Section C.1, “Restrictions on Stored Programs”
Section C.4, “Restrictions on Views”
Section 5.1.3, “Server Command Options”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance
Schedule”
Section 14.8, “The ARCHIVE Storage Engine”
Section 14.3, “The MERGE Storage Engine”
Section 5.4.4, “The Slow Query Log”

CHECK TABLE ... EXTENDED
Section 13.7.2.3, “CHECK TABLE Syntax”

CHECK TABLE ... FOR UPGRADE
Section 2.19.3, “Checking Whether Tables or Indexes
Must Be Rebuilt”

Section 13.7.2.6, “REPAIR TABLE Syntax”

CHECKSUM TABLE
Section 13.7.2.4, “CHECKSUM TABLE Syntax”
Section 13.1.10, “CREATE TABLE Syntax”
Section 16.4.1.3, “Replication and CHECKSUM TABLE”

COMMIT
Section 18.6, “Binary Logging of Stored Programs”
Section 8.6.4, “Bulk Data Loading for InnoDB Tables”
Section 14.5.4, “Characteristics of BDB Tables”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 14.2.3.1, “How to Use Transactions in InnoDB
with Different APIs”
Section 14.2.8.7, “Implicit Transaction Commit and
Rollback”
Section 14.2.12, “InnoDB Error Handling”
Section 14.2.8, “InnoDB Transaction Model and Locking”
Section B.5.7, “Known Issues in MySQL”
Section 14.2.14, “Limits on InnoDB Tables”
Section 13.3, “MySQL Transactional and Locking
Statements”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 16.1.1.4, “Obtaining the Replication Master
Binary Log Coordinates”
Section 16.4.1.26, “Replication and Transactions”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO
SAVEPOINT, and RELEASE SAVEPOINT, and Syntax”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Chapter 14, Storage Engines
Section 14.5, “The BDB (BerkeleyDB) Storage Engine”
Section 5.4.3, “The Binary Log”
Section 1.8.2.3, “Transactions and Atomic Operations”
Section 18.3.1, “Trigger Syntax and Examples”

CREATE DATABASE
Section 7.1, “Backup and Recovery Types”
Section 16.1.2.4, “Binary Log Options and Variables”
Section 20.6.6, “C API Function Overview”
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 7.4.5.2, “Copy a Database from one Server to
Another”
Section 13.1.6, “CREATE DATABASE Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2361

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 10.1.3.2, “Database Character Set and Collation”
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 9.2.2, “Identifier Case Sensitivity”
Section 17.1.5.8, “Issues Exclusive to MySQL Cluster”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 20.6.7.8, “mysql_create_db()”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4.2, “Reloading SQL-Format Backups”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 10.1.3.1, “Server Character Set and Collation”
Section B.3, “Server Error Codes and Messages”
Section 13.7.5.6, “SHOW CREATE DATABASE Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

CREATE DATABASE dbx
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”

CREATE FUNCTION
Section 21.2, “Adding New Functions to MySQL”
Section 13.1.2, “ALTER FUNCTION Syntax”
Section 18.6, “Binary Logging of Stored Programs”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 1.9.1, “Contributors to MySQL”
Section 13.1.7, “CREATE FUNCTION Syntax”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
defined Functions”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.7.3.2, “DROP FUNCTION Syntax”
Section 9.2.3, “Function Name Parsing and Resolution”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section C.1, “Restrictions on Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.2.1, “Stored Routine Syntax”
Section 21.2.2.1, “UDF Calling Sequences for Simple
Functions”
Section 21.2.2.5, “UDF Compiling and Installing”
Section 21.2.2.6, “UDF Security Precautions”
Section 2.19.1, “Upgrading MySQL”

CREATE INDEX
Section 8.3.4, “Column Indexes”
Section 13.1.8, “CREATE INDEX Syntax”
Section 13.1.10, “CREATE TABLE Syntax”
Section 11.5.3.6, “Creating Spatial Indexes”
Section 12.9, “Full-Text Search Functions”
Section 17.1.5.8, “Issues Exclusive to MySQL Cluster”
Section 8.7, “Optimizing for MEMORY Tables”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.7.5.18, “SHOW INDEX Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 5.4.4, “The Slow Query Log”
Section 17.1.5.6, “Unsupported or Missing Features in
MySQL Cluster”

CREATE OR REPLACE VIEW
Section 13.1.5, “ALTER VIEW Syntax”
Section 13.1.12, “CREATE VIEW Syntax”
Section C.4, “Restrictions on Views”

CREATE PROCEDURE
Section 13.1.3, “ALTER PROCEDURE Syntax”
Section 18.6, “Binary Logging of Stored Programs”
Section 13.2.1, “CALL Syntax”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.2.1, “Stored Routine Syntax”

CREATE SCHEMA
Section 13.1.6, “CREATE DATABASE Syntax”
Section 17.1.5.8, “Issues Exclusive to MySQL Cluster”

CREATE TABLE
Section 13.1.4, “ALTER TABLE Syntax”
Section 14.2.3.3, “AUTO_INCREMENT Handling in
InnoDB”
Section 7.1, “Backup and Recovery Types”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 10.1.3.4, “Column Character Set and Collation”
Section 8.3.4, “Column Indexes”
Section 13.1.8, “CREATE INDEX Syntax”
Section 13.1.10.2, “CREATE TABLE ... SELECT Syntax”
Section 13.1.10, “CREATE TABLE Syntax”
Section 3.3.2, “Creating a Table”
Section 14.2.3, “Creating and Using InnoDB Tables”
Section 11.5.3.2, “Creating Spatial Columns”
Section 11.5.3.6, “Creating Spatial Indexes”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2362

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 7.2, “Database Backup Methods”
Section 10.1.3.2, “Database Character Set and Collation”
Section 17.3.3.5, “Defining MySQL Cluster Data Nodes”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 1.8.3.2, “FOREIGN KEY Constraints”
Section 12.9, “Full-Text Search Functions”
Section 3.4, “Getting Information About Databases and
Tables”
Section 13.8.3, “HELP Syntax”
Section 9.2.2, “Identifier Case Sensitivity”
Section 17.2.2, “Initial Configuration of MySQL Cluster”
Section 14.2.3.4, “InnoDB and FOREIGN KEY
Constraints”
Section 14.2.3.5, “InnoDB and MySQL Replication”
Section 14.2.13.2, “InnoDB General Troubleshooting”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 17.1.5.8, “Issues Exclusive to MySQL Cluster”
Section 17.1.5.9, “Limitations Relating to Multiple MySQL
Cluster Nodes”
Section 14.2.14, “Limits on InnoDB Tables”
Section C.7.3, “Limits on Table Size”
Section 17.1.5.3, “Limits Relating to Transaction
Handling in MySQL Cluster”
Section 3.3.3, “Loading Data into a Table”
Section 14.1.3, “MyISAM Table Storage Formats”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 17.3.3.1, “MySQL Cluster Configuration: Basic
Example”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 8.4.1, “Optimizing Data Size”
Section 8.6.6, “Optimizing InnoDB DDL Operations”
Section 6.2.1, “Privileges Provided by MySQL”
Section 2.19.4, “Rebuilding or Repairing Tables or
Indexes”
Section 7.4.4, “Reloading Delimited-Text Format
Backups”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 16.4.1.2, “Replication and Character Sets”
Section 16.4.1.6, “Replication and DIRECTORY Table
Options”
Section 16.4.1.9, “Replication and System Functions”
Section 8.14.8, “Replication Slave Connection Thread
States”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.9, “SHOW CREATE TABLE Syntax”
Section 14.2.13.1, “SHOW ENGINE INNODB STATUS
and the InnoDB Monitors”

Section 13.7.5.12, “SHOW ENGINE Syntax”
Section 13.7.5.18, “SHOW INDEX Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 13.7.5.33, “SHOW TABLE STATUS Syntax”
Section 13.7.5.37, “SHOW WARNINGS Syntax”
Section 13.1.10.4, “Silent Column Specification Changes”
Section B.1, “Sources of Error Information”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Chapter 14, Storage Engines
Section 11.1.3, “String Type Overview”
Section 10.1.3.3, “Table Character Set and Collation”
Section 11.4.4, “The ENUM Type”
Section 14.4, “The MEMORY (HEAP) Storage Engine”
Section 14.1, “The MyISAM Storage Engine”
Section 13.2.9.1, “The Subquery as Scalar Operand”
Section 14.2.13.3, “Troubleshooting InnoDB Data
Dictionary Operations”
Section 17.1.5.6, “Unsupported or Missing Features in
MySQL Cluster”
Section 3.6.9, “Using AUTO_INCREMENT”
Section 13.1.10.3, “Using FOREIGN KEY Constraints”
Section 3.3.4.9, “Using More Than one Table”
Section 7.4, “Using mysqldump for Backups”
Section 16.3.2, “Using Replication with Different Master
and Slave Storage Engines”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”
Section C.7.6, “Windows Platform Limitations”

CREATE TABLE ... LIKE
Section 13.1.10.1, “CREATE TABLE ... LIKE Syntax”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”
Section 14.3, “The MERGE Storage Engine”

CREATE TABLE ... SELECT
Section 18.6, “Binary Logging of Stored Programs”
Section 12.10, “Cast Functions and Operators”
Section 14.2.8.4, “Consistent Nonlocking Reads”
Section 13.1.10.2, “CREATE TABLE ... SELECT Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 16.4.1.4, “Replication of CREATE TABLE ...
SELECT Statements”
Section 1.8.2.1, “SELECT INTO TABLE”

CREATE TABLE ... SELECT ...
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”

CREATE TEMPORARY TABLE
Section 13.7.1.3, “GRANT Syntax”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2363

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 7.5, “Point-in-Time (Incremental) Recovery Using
the Binary Log”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

CREATE TRIGGER
Section 18.6, “Binary Logging of Stored Programs”
Section 13.1.11, “CREATE TRIGGER Syntax”
Section A.5, “MySQL 5.0 FAQ: Triggers”
Section 8.2.1.14, “Optimizing Subqueries with EXISTS
Strategy”
Section 16.4.1.27, “Replication and Triggers”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.3.1, “Trigger Syntax and Examples”

CREATE USER
Section 6.3.2, “Adding User Accounts”
Section 6.3.5, “Assigning Account Passwords”
Section 13.7.1.1, “CREATE USER Syntax”
Section 16.1.1.3, “Creating a User for Replication”
Section 12.12, “Encryption and Compression Functions”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 13.7.6.2, “FLUSH Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 17.5.10.2, “MySQL Cluster and MySQL
Privileges”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.1.2.3, “Passwords and Logging”
Section 6.2.1, “Privileges Provided by MySQL”
Section 2.18.1.1, “Problems Running mysql_install_db”
Section 16.4.1.18, “Replication and User Privileges”
Section 16.4.1.17, “Replication of the mysql System
Database”
Section 5.1.4, “Server System Variables”
Section 6.2.3, “Specifying Account Names”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 6.2, “The MySQL Access Privilege System”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 6.3.1, “User Names and Passwords”

CREATE VIEW
Section 13.1.5, “ALTER VIEW Syntax”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 13.1.12, “CREATE VIEW Syntax”

Section 8.14.2, “General Thread States”
Section 6.2.1, “Privileges Provided by MySQL”
Section C.4, “Restrictions on Views”
Section 9.2, “Schema Object Names”
Section 13.7.5.10, “SHOW CREATE VIEW Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 19.17, “The INFORMATION_SCHEMA VIEWS
Table”
Section 18.4.3, “Updatable and Insertable Views”
Section 18.4.2, “View Processing Algorithms”
Section 18.4.1, “View Syntax”

D

[index top]

DEALLOCATE PREPARE
Section 13.5.3, “DEALLOCATE PREPARE Syntax”
Section 13.5.1, “PREPARE Syntax”
Section C.1, “Restrictions on Stored Programs”
Section 5.1.6, “Server Status Variables”
Section 13.5, “SQL Syntax for Prepared Statements”

DECLARE
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.6.3, “DECLARE Syntax”
Section 13.6.4, “Variables in Stored Programs”

DECLARE ... CONDITION
Section 13.6.7, “Condition Handling”
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”

DECLARE ... HANDLER
Section 13.6.7, “Condition Handling”
Section 13.6.7.1, “DECLARE ... CONDITION Syntax”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”

DELETE
Section 6.3.2, “Adding User Accounts”
Section 16.1.2.4, “Binary Log Options and Variables”
Section 18.6, “Binary Logging of Stored Programs”
Section 8.5.2, “Bulk Data Loading for MyISAM Tables”
Section 20.6.6, “C API Function Overview”
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 14.5.4, “Characteristics of BDB Tables”
Section 17.3.3.12, “Configuring MySQL Cluster
Parameters for Local Checkpoints”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2364

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 13.1.11, “CREATE TRIGGER Syntax”
Section 13.1.12, “CREATE VIEW Syntax”
Section 13.2.2, “DELETE Syntax”
Section B.5.4.6, “Deleting Rows from Related Tables”
Section 14.2.6.2, “Forcing InnoDB Recovery”
Chapter 12, Functions and Operators
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 8.2.1.2, “How MySQL Optimizes WHERE
Clauses”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.13, “Information Functions”
Chapter 19, INFORMATION_SCHEMA Tables
Section 14.2.3.5, “InnoDB and MySQL Replication”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 8.11.1, “Internal Locking Methods”
Section 13.2.8.2, “JOIN Syntax”
Section 9.3, “Keywords and Reserved Words”
Section 13.7.6.3, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 14.7.3, “Limitations of the FEDERATED Storage
Engine”
Section 17.1.5.2, “Limits and Differences of MySQL
Cluster from Standard MySQL Limits”
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”
Section 14.3.2, “MERGE Table Problems”
Section 17.5.10.3, “MySQL Cluster and MySQL Security
Procedures”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.1.1, “mysql Options”
Section 20.6.7.1, “mysql_affected_rows()”
Section 20.6.7.48, “mysql_num_rows()”
Section 20.6.11.10, “mysql_stmt_execute()”
Section 20.6.11.13, “mysql_stmt_field_count()”
Section 20.6.11.17, “mysql_stmt_num_rows()”
Section 17.4.6, “ndb_delete_all — Delete All Rows
from an NDB Table”
Section 8.2.2, “Optimizing DML Statements”
Section 8.2.1, “Optimizing SELECT Statements”
Section 17.5.5, “Performing a Rolling Restart of a MySQL
Cluster”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.10, “Replication and LIMIT”
Section 16.4.1.15, “Replication and MEMORY Tables”
Section 16.4.1.19, “Replication and the Query Optimizer”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section C.4, “Restrictions on Views”
Section 13.7.1.5, “REVOKE Syntax”
Section 13.2.9.11, “Rewriting Subqueries as Joins”
Section 3.3.4.1, “Selecting All Data”

Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.2.9.9, “Subquery Errors”
Section 13.2.9, “Subquery Syntax”
Section 8.11.2, “Table Locking Issues”
Section 14.8, “The ARCHIVE Storage Engine”
Section 5.4.3, “The Binary Log”
Section 14.10, “The BLACKHOLE Storage Engine”
Section 19.17, “The INFORMATION_SCHEMA VIEWS
Table”
Section 1.3.2, “The Main Features of MySQL”
Section 14.4, “The MEMORY (HEAP) Storage Engine”
Section 14.3, “The MERGE Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 18.3.1, “Trigger Syntax and Examples”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 13.1.21, “TRUNCATE TABLE Syntax”
Section 18.4.3, “Updatable and Insertable Views”
Section 13.1.10.3, “Using FOREIGN KEY Constraints”
Using the --safe-updates Option
Section 20.6.14.2, “What Results You Can Get from a
Query”
Section 6.2.6, “When Privilege Changes Take Effect”
Section 20.6.14.1, “Why mysql_store_result() Sometimes
Returns NULL After mysql_query() Returns Success”

DELETE FROM ... WHERE ...
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”

DELETE FROM a.t
Section 16.1.2.3, “Replication Slave Options and
Variables”

DESCRIBE
Section 20.6.5, “C API Data Structures”
Section 20.6.6, “C API Function Overview”
Section 14.5.4, “Characteristics of BDB Tables”
Section 13.1.10, “CREATE TABLE Syntax”
Section 3.3.2, “Creating a Table”
Section 13.8.1, “DESCRIBE Syntax”
Section 13.8.2, “EXPLAIN Syntax”
Section 19.18, “Extensions to SHOW Statements”
Section 3.4, “Getting Information About Databases and
Tables”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 8.2.1.15, “LIMIT Query Optimization”
Section 20.6.11.27, “mysql_stmt_store_result()”
Section 20.6.7.69, “mysql_store_result()”
Section 20.6.7.71, “mysql_use_result()”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2365

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.1.10.4, “Silent Column Specification Changes”
Section 3.6.6, “Using Foreign Keys”
Section 10.1.11, “UTF-8 for Metadata”

DO
Section 18.6, “Binary Logging of Stored Programs”
Section 13.2.3, “DO Syntax”
Section 12.15, “Miscellaneous Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 13.2.9, “Subquery Syntax”

DROP DATABASE
Section 16.1.2.4, “Binary Log Options and Variables”
Section 18.6, “Binary Logging of Stored Programs”
Section 20.6.6, “C API Function Overview”
Section 13.1.13, “DROP DATABASE Syntax”
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Section 8.10.3.1, “How the Query Cache Operates”
Section 17.1.5.8, “Issues Exclusive to MySQL Cluster”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 20.6.7.11, “mysql_drop_db()”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.5, “Point-in-Time (Incremental) Recovery Using
the Binary Log”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section C.7.6, “Windows Platform Limitations”

DROP DATABASE IF EXISTS
Section 16.4.1.5, “Replication of DROP ... IF EXISTS
Statements”

DROP FUNCTION
Section 21.2, “Adding New Functions to MySQL”
Section 13.1.2, “ALTER FUNCTION Syntax”
Section 18.6, “Binary Logging of Stored Programs”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 1.9.1, “Contributors to MySQL”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
defined Functions”
Section 13.1.14, “DROP FUNCTION Syntax”
Section 13.7.3.2, “DROP FUNCTION Syntax”

Section 13.1.16, “DROP PROCEDURE and DROP
FUNCTION Syntax”
Section 9.2.3, “Function Name Parsing and Resolution”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.2.1, “Stored Routine Syntax”
Section 21.2.2.5, “UDF Compiling and Installing”
Section 21.2.2.6, “UDF Security Precautions”
Section 2.19.1, “Upgrading MySQL”

DROP INDEX
Section 13.1.4, “ALTER TABLE Syntax”
Section 11.5.3.6, “Creating Spatial Indexes”
Section 13.1.15, “DROP INDEX Syntax”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 5.1.3, “Server Command Options”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 5.4.4, “The Slow Query Log”

DROP PROCEDURE
Section 13.1.3, “ALTER PROCEDURE Syntax”
Section 18.6, “Binary Logging of Stored Programs”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.2.1, “Stored Routine Syntax”

DROP SCHEMA
Section 13.1.13, “DROP DATABASE Syntax”
Section 17.1.5.8, “Issues Exclusive to MySQL Cluster”

DROP TABLE
Section 13.1.4, “ALTER TABLE Syntax”
Section 14.2.8.4, “Consistent Nonlocking Reads”
Section 13.1.11, “CREATE TRIGGER Syntax”
Section 13.1.17, “DROP TABLE Syntax”
Section 8.10.3.1, “How the Query Cache Operates”
Section 14.2.1.4, “InnoDB File-Per-Table Tablespaces”
Section 17.1.5.8, “Issues Exclusive to MySQL Cluster”
Section B.5.7, “Known Issues in MySQL”
Section 14.7.3, “Limitations of the FEDERATED Storage
Engine”
Section 17.1.5.2, “Limits and Differences of MySQL
Cluster from Standard MySQL Limits”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 14.3.2, “MERGE Table Problems”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.1.1, “mysql Options”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.4.8, “ndb_drop_index — Drop Index from
an NDB Table”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2366

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 17.4.9, “ndb_drop_table — Drop an NDB
Table”
Section 8.6.6, “Optimizing InnoDB DDL Operations”
Section C.4, “Restrictions on Views”
Section 5.1.4, “Server System Variables”
Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”
Section 13.4.2.7, “START SLAVE Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 14.4, “The MEMORY (HEAP) Storage Engine”
Section 14.3, “The MERGE Storage Engine”
Section 14.2.13.3, “Troubleshooting InnoDB Data
Dictionary Operations”
Section 13.1.10.3, “Using FOREIGN KEY Constraints”
Section C.7.6, “Windows Platform Limitations”

DROP TABLE IF EXISTS
Section 16.4.1.5, “Replication of DROP ... IF EXISTS
Statements”

DROP TRIGGER
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 13.1.18, “DROP TRIGGER Syntax”
Section A.5, “MySQL 5.0 FAQ: Triggers”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.3.1, “Trigger Syntax and Examples”

DROP USER
Section 13.7.1.2, “DROP USER Syntax”
Section 13.7.6.2, “FLUSH Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 17.5.10.2, “MySQL Cluster and MySQL
Privileges”
Section 6.2.1, “Privileges Provided by MySQL”
Section 6.3.3, “Removing User Accounts”
Section 16.4.1.18, “Replication and User Privileges”
Section 16.4.1.17, “Replication of the mysql System
Database”
Section 13.7.1.5, “REVOKE Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 6.3.1, “User Names and Passwords”

DROP VIEW
Section 2.19.2.1, “Changes Affecting Downgrades from
MySQL 5.0”
Section 13.1.19, “DROP VIEW Syntax”
Section C.4, “Restrictions on Views”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.4.1, “View Syntax”

DROP VIEW IF EXISTS
Section 16.4.1.5, “Replication of DROP ... IF EXISTS
Statements”

E

[index top]

EXECUTE
Section 13.2.1, “CALL Syntax”
Section 13.5.2, “EXECUTE Syntax”
Section 13.5.1, “PREPARE Syntax”
Section C.1, “Restrictions on Stored Programs”
Section C.4, “Restrictions on Views”
Section 5.1.6, “Server Status Variables”
Section 13.5, “SQL Syntax for Prepared Statements”

EXPLAIN
Section 13.1.4, “ALTER TABLE Syntax”
Section 20.6.5, “C API Data Structures”
Section 20.6.6, “C API Function Overview”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 21.3.1, “Debugging a MySQL Server”
Section 13.8.1, “DESCRIBE Syntax”
Section 8.2.1.13, “DISTINCT Optimization”
Section 8.2.1.5, “Engine Condition Pushdown
Optimization”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 8.2.1.17, “How to Avoid Full Table Scans”
Section 8.9.2, “Index Hints”
Section 8.2.1.4, “Index Merge Optimization”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 8.2.1.6, “IS NULL Optimization”
Loose Index Scan
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”
Section 20.6.11.27, “mysql_stmt_store_result()”
Section 20.6.7.69, “mysql_store_result()”
Section 20.6.7.71, “mysql_use_result()”
Section B.5.5, “Optimizer-Related Issues”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 13.2.9.10, “Optimizing Subqueries”
Section 8.2.1.14, “Optimizing Subqueries with EXISTS
Strategy”
Section 8.2.1.11, “ORDER BY Optimization”
Section 4.1, “Overview of MySQL Programs”
Section C.1, “Restrictions on Stored Programs”
Section 13.2.8, “SELECT Syntax”
Section B.3, “Server Error Codes and Messages”
Section 13.7.5.37, “SHOW WARNINGS Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2367

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section B.5.4.7, “Solving Problems with No Matching
Rows”
Section 8.2.1.1, “Speed of SELECT Statements”
Section 13.2.9.8, “Subqueries in the FROM Clause”
The Index Merge Intersection Access Algorithm
Section 1.3.2, “The Main Features of MySQL”
The Range Access Method for Multiple-Part Indexes
Section 8.8, “Understanding the Query Execution Plan”
Section 21.3.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”
Section 11.5.3.7, “Using Spatial Indexes”
Section 8.3.6, “Verifying Index Usage”
Section 17.1.4, “What is New in MySQL Cluster”

EXPLAIN EXTENDED
Section 8.2.1.5, “Engine Condition Pushdown
Optimization”
Section 13.8.2, “EXPLAIN Syntax”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.1.14, “Optimizing Subqueries with EXISTS
Strategy”
Section 13.7.5.37, “SHOW WARNINGS Syntax”

EXPLAIN SELECT
Section 8.8.2, “EXPLAIN Output Format”
Section 14.2.8.9, “How to Cope with Deadlocks”
Section 1.7, “How to Report Bugs or Problems”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 13.2.9.8, “Subqueries in the FROM Clause”

EXPLAIN SELECT ... ORDER BY
Section 8.2.1.11, “ORDER BY Optimization”

EXPLAIN tbl_name
Section 8.8.1, “Optimizing Queries with EXPLAIN”

F

[index top]

FETCH
Section 13.6.6.2, “Cursor DECLARE Syntax”
Section 13.6.6.3, “Cursor FETCH Syntax”
Section C.1, “Restrictions on Stored Programs”

FETCH ... INTO var_list
Section 13.6.4, “Variables in Stored Programs”

FLUSH
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.6.2, “FLUSH Syntax”
Section 13.7.1.3, “GRANT Syntax”

Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.8, “Replication and FLUSH”
Section 13.7.6.5, “RESET Syntax”
Section C.1, “Restrictions on Stored Programs”
Section 2.18.4, “Securing the Initial MySQL Accounts”
Section 5.1.9, “Server Response to Signals”

FLUSH DES_KEY_FILE
Section 12.12, “Encryption and Compression Functions”

FLUSH HOSTS
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”
Section B.5.2.6, “Host 'host_name' is blocked”
Section 20.6.7.55, “mysql_refresh()”
Section 5.1.4, “Server System Variables”

FLUSH LOGS
Section 7.3.3, “Backup Strategy Summary”
Section 14.5.4, “Characteristics of BDB Tables”
Section 7.2, “Database Backup Methods”
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.6.2, “FLUSH Syntax”
Section 5.4, “MySQL Server Logs”
Section 20.6.7.55, “mysql_refresh()”
Section 16.4.1.8, “Replication and FLUSH”
Section 5.4.5, “Server Log Maintenance”
Section 5.1.6, “Server Status Variables”
Section 5.4.1, “The Error Log”
Section 5.4.2, “The General Query Log”
Section 16.2.2.1, “The Slave Relay Log”

FLUSH MASTER
Section 13.7.6.2, “FLUSH Syntax”
Section 16.4.1.8, “Replication and FLUSH”

FLUSH PRIVILEGES
Section 6.3.2, “Adding User Accounts”
Section 13.7.6.2, “FLUSH Syntax”
Section 6.2.2, “Grant Tables”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 17.5.10.3, “MySQL Cluster and MySQL Security
Procedures”
Section 20.6.7.55, “mysql_refresh()”
Section 20.6.7.56, “mysql_reload()”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 16.4.1.8, “Replication and FLUSH”
Section 5.1.3, “Server Command Options”
Section 6.3.4, “Setting Account Resource Limits”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2368

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 1.2, “Typographical and Syntax Conventions”
Section 6.2.6, “When Privilege Changes Take Effect”

FLUSH QUERY CACHE
Section 13.7.6.2, “FLUSH Syntax”
Section 8.10.3.4, “Query Cache Status and Maintenance”

FLUSH SLAVE
Section 13.7.6.2, “FLUSH Syntax”
Section 16.4.1.8, “Replication and FLUSH”

FLUSH STATUS
Section 20.6.7.55, “mysql_refresh()”
Section 5.1.6, “Server Status Variables”

FLUSH TABLE
Section 8.5.2, “Bulk Data Loading for MyISAM Tables”
Section 13.7.6.2, “FLUSH Syntax”

FLUSH TABLES
Section 8.5.2, “Bulk Data Loading for MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 13.7.6.2, “FLUSH Syntax”
Section 8.14.2, “General Thread States”
Section 13.2.4, “HANDLER Syntax”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 17.1.5.8, “Issues Exclusive to MySQL Cluster”
Section 14.3.2, “MERGE Table Problems”
Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”
Section 17.2.4, “MySQL Cluster Example with Tables
and Data”
Section 20.6.7.55, “mysql_refresh()”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 16.1.1.4, “Obtaining the Replication Master
Binary Log Coordinates”
Section 14.1.4.2, “Problems from Tables Not Being
Closed Properly”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 16.4.1.8, “Replication and FLUSH”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section C.7.6, “Windows Platform Limitations”

FLUSH TABLES WITH READ LOCK
Section 16.1.1.5, “Creating a Data Snapshot Using
mysqldump”
Section 7.2, “Database Backup Methods”

Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.6.2, “FLUSH Syntax”
Section 8.14.2, “General Thread States”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section B.5.7, “Known Issues in MySQL”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 16.1.1.4, “Obtaining the Replication Master
Binary Log Coordinates”
Section 16.4.1.8, “Replication and FLUSH”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

FLUSH USER_RESOURCES
Section 13.7.6.2, “FLUSH Syntax”
Section 6.3.4, “Setting Account Resource Limits”

G

[index top]

GRANT
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 6.3.2, “Adding User Accounts”
Section 6.3.5, “Assigning Account Passwords”
Section 6.3.6.5, “Command Options for Secure
Connections”
Section 6.3.6.4, “Configuring MySQL to Use Secure
Connections”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.11, “CREATE TRIGGER Syntax”
Section 13.7.1.1, “CREATE USER Syntax”
Section 13.1.12, “CREATE VIEW Syntax”
Section 16.1.1.3, “Creating a User for Replication”
Section 12.12, “Encryption and Compression Functions”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 13.7.6.2, “FLUSH Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section A.13, “MySQL 5.0 FAQ: Replication”
Section 17.5.10.2, “MySQL Cluster and MySQL
Privileges”
Section 8.2.3, “Optimizing Database Privileges”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2369

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.1.2.3, “Passwords and Logging”
Section 6.2.1, “Privileges Provided by MySQL”
Section 2.18.1.1, “Problems Running mysql_install_db”
Section 16.4.1.8, “Replication and FLUSH”
Section 16.4.1.18, “Replication and User Privileges”
Section 16.4.1.17, “Replication of the mysql System
Database”
Section 13.7.1.5, “REVOKE Syntax”
Section 6.1.1, “Security Guidelines”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 6.3.4, “Setting Account Resource Limits”
Section 13.7.5.17, “SHOW GRANTS Syntax”
Section 6.2.3, “Specifying Account Names”
Section 6.2, “The MySQL Access Privilege System”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 6.3.1, “User Names and Passwords”
Section 6.3.6, “Using Secure Connections”
Section 6.2.6, “When Privilege Changes Take Effect”

GRANT ALL
Section 13.7.1.3, “GRANT Syntax”

GRANT USAGE
Section 6.3.5, “Assigning Account Passwords”
Section 13.7.1.3, “GRANT Syntax”
Section 6.3.4, “Setting Account Resource Limits”

H

[index top]

HANDLER
Section 20.6.15, “Controlling Automatic Reconnection
Behavior”
Section 14.7.3, “Limitations of the FEDERATED Storage
Engine”
Section A.4, “MySQL 5.0 FAQ: Stored Procedures and
Functions”
Section 1.8, “MySQL Standards Compliance”
Section 20.6.7.3, “mysql_change_user()”

HANDLER ... CLOSE
Section 13.7.5.23, “SHOW OPEN TABLES Syntax”

HANDLER ... OPEN
Section 13.7.5.23, “SHOW OPEN TABLES Syntax”

HELP
Section 13.8.3, “HELP Syntax”

Section 5.1.8, “Server-Side Help”

I

[index top]

IF
Section 12.4, “Control Flow Functions”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.2, “IF Syntax”

INSERT
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 6.3.2, “Adding User Accounts”
Section 14.2.3.3, “AUTO_INCREMENT Handling in
InnoDB”
Section 7.1, “Backup and Recovery Types”
Section 18.6, “Binary Logging of Stored Programs”
Section 8.6.4, “Bulk Data Loading for InnoDB Tables”
Section 8.5.2, “Bulk Data Loading for MyISAM Tables”
Section 20.6.6, “C API Function Overview”
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.16, “C API Support for Multiple Statement
Execution”
Section 10.1.12, “Column Character Set Conversion”
Section 8.11.3, “Concurrent Inserts”
Section 17.3.3.12, “Configuring MySQL Cluster
Parameters for Local Checkpoints”
Section 1.8.3.3, “Constraints on Invalid Data”
Section 13.1.8, “CREATE INDEX Syntax”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.11, “CREATE TRIGGER Syntax”
Section 13.1.12, “CREATE VIEW Syntax”
Section 11.6, “Data Type Default Values”
Section 11.1.2, “Date and Time Type Overview”
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.2.2, “DELETE Syntax”
Section 7.3.1, “Establishing a Backup Policy”
Section 12.17.3, “Expression Handling”
Section 14.2.6.2, “Forcing InnoDB Recovery”
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 8.10.3.1, “How the Query Cache Operates”
Section 20.6.14.3, “How to Get the Unique ID for the Last
Inserted Row”
Section 14.2.3.1, “How to Use Transactions in InnoDB
with Different APIs”
Section 12.13, “Information Functions”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2370

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 19, INFORMATION_SCHEMA Tables
Section 14.2.8.2, “InnoDB Record, Gap, and Next-Key
Locks”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5.1, “INSERT ... SELECT Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 8.11.1, “Internal Locking Methods”
Section 14.7.3, “Limitations of the FEDERATED Storage
Engine”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 3.3.3, “Loading Data into a Table”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”
Section 14.3.2, “MERGE Table Problems”
Section 12.15, “Miscellaneous Functions”
Section A.1, “MySQL 5.0 FAQ: General”
Section A.5, “MySQL 5.0 FAQ: Triggers”
Section A.6, “MySQL 5.0 FAQ: Views”
Section 17.2.4, “MySQL Cluster Example with Tables
and Data”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.1.1, “mysql Options”
Section B.5.2.9, “MySQL server has gone away”
Section 20.6.7.1, “mysql_affected_rows()”
Section 20.6.7.37, “mysql_insert_id()”
Section 20.6.7.48, “mysql_num_rows()”
Section 20.6.11.10, “mysql_stmt_execute()”
Section 20.6.11.13, “mysql_stmt_field_count()”
Section 20.6.11.16, “mysql_stmt_insert_id()”
Section 20.6.11.17, “mysql_stmt_num_rows()”
Section 20.6.11.20, “mysql_stmt_prepare()”
Section 20.6.7.69, “mysql_store_result()”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 13.7.2.5, “OPTIMIZE TABLE Syntax”
Section 8.2.2, “Optimizing DML Statements”
Section 8.5.1, “Optimizing MyISAM Queries”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 17.5.5, “Performing a Rolling Restart of a MySQL
Cluster”
Section 11.5.3.3, “Populating Spatial Columns”
Section 1.8.3.1, “PRIMARY KEY and UNIQUE Index
Constraints”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.2.7, “REPLACE Syntax”
Section 16.4.1.1, “Replication and AUTO_INCREMENT”

Section 16.4.1.22, “Replication and Server SQL Mode”
Section 16.4.1.9, “Replication and System Functions”
Section 16.4.1.29, “Replication and Variables”
Section 16.1.2.2, “Replication Master Options and
Variables”
Section 16.2.3.3, “Replication Rule Application”
Section C.1, “Restrictions on Stored Programs”
Section 5.1.3, “Server Command Options”
Section B.3, “Server Error Codes and Messages”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 13.7.5.25, “SHOW PROCEDURE CODE Syntax”
Section 13.7.5.37, “SHOW WARNINGS Syntax”
Section 16.4.1.21, “Slave Errors During Replication”
Section 8.2.2.1, “Speed of INSERT Statements”
Section 13.2.9, “Subquery Syntax”
Section 8.11.2, “Table Locking Issues”
Section 10.1.7.6, “The _bin and binary Collations”
Section 14.8, “The ARCHIVE Storage Engine”
Section 5.4.3, “The Binary Log”
Section 14.10, “The BLACKHOLE Storage Engine”
Section 19.17, “The INFORMATION_SCHEMA VIEWS
Table”
Section 1.3.2, “The Main Features of MySQL”
Section 14.3, “The MERGE Storage Engine”
Section 14.1, “The MyISAM Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 8.10.3, “The MySQL Query Cache”
Section 5.1.10, “The Server Shutdown Process”
Section 18.3.1, “Trigger Syntax and Examples”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 18.4.3, “Updatable and Insertable Views”
Section 13.1.10.3, “Using FOREIGN KEY Constraints”
Section 18.3, “Using Triggers”
Section 20.6.14.2, “What Results You Can Get from a
Query”
Section 6.2.6, “When Privilege Changes Take Effect”
Section 20.6.14.1, “Why mysql_store_result() Sometimes
Returns NULL After mysql_query() Returns Success”
Section C.7.6, “Windows Platform Limitations”

INSERT ... ON DUPLICATE KEY
UPDATE
Section 12.13, “Information Functions”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 14.7.3, “Limitations of the FEDERATED Storage
Engine”
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”
Section 14.3.2, “MERGE Table Problems”
Section 12.15, “Miscellaneous Functions”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2371

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 20.6.7.1, “mysql_affected_rows()”
Section 5.4.3, “The Binary Log”

INSERT ... SELECT
Section 8.11.3, “Concurrent Inserts”
Section 13.2.5.1, “INSERT ... SELECT Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”
MySQL Cluster System Variables
Section 20.6.7.37, “mysql_insert_id()”
Section 16.4.1.10, “Replication and LIMIT”
Section 5.1.4, “Server System Variables”
Section 5.4.3, “The Binary Log”

INSERT ... SET
Section 13.2.5, “INSERT Syntax”

INSERT ... VALUES
Section 13.2.5, “INSERT Syntax”
Section 20.6.7.35, “mysql_info()”

INSERT DELAYED
Section 13.1.4, “ALTER TABLE Syntax”
Section 8.5.2, “Bulk Data Loading for MyISAM Tables”
Section 8.14.3, “Delayed-Insert Thread States”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 13.7.6.3, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 2.20.1.3, “Linux Source Distribution Notes”
Section 14.3.2, “MERGE Table Problems”
Section 21.1.1, “MySQL Threads”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 8.5.1, “Optimizing MyISAM Queries”
Section 16.4.1.9, “Replication and System Functions”
Section C.1, “Restrictions on Stored Programs”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.11.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 14.8, “The ARCHIVE Storage Engine”
Section 14.4, “The MEMORY (HEAP) Storage Engine”
Section 1.8.2.3, “Transactions and Atomic Operations”
Section 18.4.3, “Updatable and Insertable Views”

INSERT IGNORE
Section 1.8.3.3, “Constraints on Invalid Data”
Section 1.8.3.4, “ENUM and SET Constraints”

Section 12.13, “Information Functions”
Section 13.2.5, “INSERT Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.1.5.10, “Previous MySQL Cluster Issues
Resolved in MySQL 5.0”
Section 5.1.7, “Server SQL Modes”

INSERT INTO ... SELECT
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 14.2.8.4, “Consistent Nonlocking Reads”
Section 1.8.3.3, “Constraints on Invalid Data”
Section 13.2.5, “INSERT Syntax”
Section 1.8.2.1, “SELECT INTO TABLE”
Section 14.4, “The MEMORY (HEAP) Storage Engine”

INSERT INTO ... SELECT ...
Section 14.7.3, “Limitations of the FEDERATED Storage
Engine”
Section 20.6.7.35, “mysql_info()”
Section 20.6.14.2, “What Results You Can Get from a
Query”

INSERT INTO ... SELECT FROM
memory_table
Section 16.4.1.15, “Replication and MEMORY Tables”

ITERATE
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.2, “Statement Label Syntax”

K

[index top]

KILL
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section 13.7.6.3, “KILL Syntax”
Section B.5.2.9, “MySQL server has gone away”
Section 20.6.7.38, “mysql_kill()”
Section 4.6.18, “mysql_zap — Kill Processes That
Match a Pattern”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.5.27, “SHOW PROCESSLIST Syntax”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”

KILL CONNECTION
Section 13.7.6.3, “KILL Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2372

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 13.4.2.8, “STOP SLAVE Syntax”
Section 5.1.10, “The Server Shutdown Process”

KILL QUERY
Section 13.7.6.3, “KILL Syntax”
Section 12.15, “Miscellaneous Functions”
Section 13.4.2.8, “STOP SLAVE Syntax”
Section 5.1.10, “The Server Shutdown Process”

L

[index top]

LEAVE
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.5, “LOOP Syntax”
Section C.1, “Restrictions on Stored Programs”
Section 13.6.5.7, “RETURN Syntax”
Section 13.6.2, “Statement Label Syntax”

LOAD DATA
Section 8.11.3, “Concurrent Inserts”
Section 13.1.11, “CREATE TRIGGER Syntax”
Section 10.1.3.2, “Database Character Set and Collation”
Section B.5.7, “Known Issues in MySQL”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 3.3.3, “Loading Data into a Table”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section C.1, “Restrictions on Stored Programs”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”
Section 3.3.4.1, “Selecting All Data”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 11.4.4, “The ENUM Type”
Section 9.4, “User-Defined Variables”
Section 13.1.10.3, “Using FOREIGN KEY Constraints”
Section 18.3, “Using Triggers”

LOAD DATA FROM MASTER
Section 8.14.8, “Replication Slave Connection Thread
States”

LOAD DATA INFILE
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section 7.1, “Backup and Recovery Types”
Section 8.5.2, “Bulk Data Loading for MyISAM Tables”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 8.11.3, “Concurrent Inserts”
Section 7.2, “Database Backup Methods”
Section B.5.3.4, “How MySQL Handles a Full Disk”
Section B.5.7, “Known Issues in MySQL”

Section 17.1.5.3, “Limits Relating to Transaction
Handling in MySQL Cluster”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 14.1.1, “MyISAM Startup Options”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.5.5, “mysqlimport — A Data Import Program”
Section 17.4.17, “ndb_show_tables — Display List of
NDB Tables”
Section 9.1.7, “NULL Values”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 4.1, “Overview of MySQL Programs”
Section 17.5.5, “Performing a Rolling Restart of a MySQL
Cluster”
Section 6.2.1, “Privileges Provided by MySQL”
Section B.5.4.3, “Problems with NULL Values”
Section 7.4.4, “Reloading Delimited-Text Format
Backups”
Section 16.4.1.11, “Replication and LOAD Operations”
Section 16.4.2, “Replication Compatibility Between
MySQL Versions”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 8.14.7, “Replication Slave SQL Thread States”
Section C.6, “Restrictions on Character Sets”
Section 13.2.8.1, “SELECT ... INTO Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.7.5.37, “SHOW WARNINGS Syntax”
Section 8.2.2.1, “Speed of INSERT Statements”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 13.2.9, “Subquery Syntax”
Section 14.4, “The MEMORY (HEAP) Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 13.2.9.1, “The Subquery as Scalar Operand”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section B.5.3.5, “Where MySQL Stores Temporary Files”
Section C.7.6, “Windows Platform Limitations”

LOAD DATA INFILE ...
Section 20.6.7.35, “mysql_info()”
Section 20.6.14.2, “What Results You Can Get from a
Query”

LOAD DATA LOCAL
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 20.6.7.49, “mysql_options()”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2373

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 20.6.7.52, “mysql_real_connect()”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”

LOAD DATA LOCAL INFILE
Section 20.6.6, “C API Function Overview”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 20.6.7.49, “mysql_options()”
Section 20.6.7.62, “mysql_set_local_infile_default()”
Section 20.6.7.63, “mysql_set_local_infile_handler()”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 16.4.1.11, “Replication and LOAD Operations”

LOAD INDEX INTO CACHE
Section 13.7.6.1, “CACHE INDEX Syntax”
Section 8.10.1.4, “Index Preloading”
Section 13.7.6.4, “LOAD INDEX INTO CACHE Syntax”

LOAD INDEX INTO CACHE ...
IGNORE LEAVES
Section 13.7.6.4, “LOAD INDEX INTO CACHE Syntax”

LOAD TABLE FROM MASTER
Section 14.2.3.5, “InnoDB and MySQL Replication”
Section 14.2.14, “Limits on InnoDB Tables”
Section 8.14.8, “Replication Slave Connection Thread
States”

LOCK TABLE
Section 8.11.3, “Concurrent Inserts”
Section 8.14.2, “General Thread States”
Section B.5.6.1, “Problems with ALTER TABLE”

LOCK TABLES
Section 13.7.2.2, “BACKUP TABLE Syntax”
Section 8.5.2, “Bulk Data Loading for MyISAM Tables”
Section 14.5.4, “Characteristics of BDB Tables”
Section 13.1.11, “CREATE TRIGGER Syntax”
Section 12.7, “Date and Time Functions”
Section 14.2.8.8, “Deadlock Detection and Rollback”
Section 13.7.6.2, “FLUSH Syntax”
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section 13.8.3, “HELP Syntax”
Section 14.2.8.9, “How to Cope with Deadlocks”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 8.11.1, “Internal Locking Methods”

Section 17.1.5.9, “Limitations Relating to Multiple MySQL
Cluster Nodes”
Section 14.2.14, “Limits on InnoDB Tables”
Section 13.3.5.2, “LOCK TABLES and Triggers”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 4.6.9, “mysqlhotcopy — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 14.1.4.2, “Problems from Tables Not Being
Closed Properly”
Section C.1, “Restrictions on Stored Programs”
Section 5.1.4, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 8.12.1, “System Factors and Startup Parameter
Tuning”
Section 8.11.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 1.8.2.3, “Transactions and Atomic Operations”

LOOP
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.5, “LOOP Syntax”
Section 13.6.2, “Statement Label Syntax”

O

[index top]

OPTIMIZE TABLE
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 14.5.4, “Characteristics of BDB Tables”
Section 21.3.1, “Debugging a MySQL Server”
Section 13.2.2, “DELETE Syntax”
Section 14.1.3.2, “Dynamic Table Characteristics”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.14.2, “General Thread States”
Section B.5.3.4, “How MySQL Handles a Full Disk”
Section 14.2.1.4, “InnoDB File-Per-Table Tablespaces”
Section 13.7.6.3, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 14.3.2, “MERGE Table Problems”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2374

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 7.6.4, “MyISAM Table Optimization”
Section 4.6.3.1, “myisamchk General Options”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 13.7.2.5, “OPTIMIZE TABLE Syntax”
Section 8.5.1, “Optimizing MyISAM Queries”
Section 8.2.4, “Other Optimization Tips”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.8, “Replication and FLUSH”
Section C.1, “Restrictions on Stored Programs”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance
Schedule”
Section 8.2.2.2, “Speed of UPDATE Statements”
Section 14.1.3.1, “Static (Fixed-Length) Table
Characteristics”
Section 14.8, “The ARCHIVE Storage Engine”
Section 5.1.10, “The Server Shutdown Process”
Section 5.4.4, “The Slow Query Log”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”

P

[index top]

PREPARE
Section 13.2.1, “CALL Syntax”
Section 13.5.3, “DEALLOCATE PREPARE Syntax”
Section 13.5.2, “EXECUTE Syntax”
Section 9.2.2, “Identifier Case Sensitivity”
Section 13.5.1, “PREPARE Syntax”
Section C.1, “Restrictions on Stored Programs”
Section C.4, “Restrictions on Views”
Section 5.1.6, “Server Status Variables”
Section 13.5, “SQL Syntax for Prepared Statements”

PURGE BINARY LOGS
Section 7.3.1, “Establishing a Backup Policy”
Section 13.7.1.3, “GRANT Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 5.4.5, “Server Log Maintenance”
Section 5.1.4, “Server System Variables”
Section 5.4.3, “The Binary Log”

R

[index top]

RELEASE SAVEPOINT
Section 13.3.4, “SAVEPOINT, ROLLBACK TO
SAVEPOINT, and RELEASE SAVEPOINT, and Syntax”

RENAME TABLE
Section 13.1.4, “ALTER TABLE Syntax”
Section 13.2.2, “DELETE Syntax”
Section 8.14.2, “General Thread States”
Section 9.2.2, “Identifier Case Sensitivity”
Section 14.2.1.4, “InnoDB File-Per-Table Tablespaces”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 13.1.20, “RENAME TABLE Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”

RENAME USER
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.1.4, “RENAME USER Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”

REPAIR TABLE
Section 13.1.4, “ALTER TABLE Syntax”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 14.1.4.1, “Corrupted MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 8.11.4, “External Locking”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 8.14.2, “General Thread States”
Section 15.2.3, “Handling MySQL Recovery with ZFS”
Section B.5.3.4, “How MySQL Handles a Full Disk”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 1.7, “How to Report Bugs or Problems”
Section 2.15, “Installing MySQL on NetWare”
Section 13.7.6.3, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 14.3.2, “MERGE Table Problems”
Section 14.1.1, “MyISAM Startup Options”
Section 7.6, “MyISAM Table Maintenance and Crash
Recovery”
Section 4.6.3.1, “myisamchk General Options”
Section 4.6.3, “myisamchk — MyISAM Table-
Maintenance Utility”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.3, “mysqlcheck — A Table Maintenance
Program”
Section 6.2.1, “Privileges Provided by MySQL”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2375

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 14.1.4.2, “Problems from Tables Not Being
Closed Properly”
Section B.5.6.1, “Problems with ALTER TABLE”
Section 2.19.4, “Rebuilding or Repairing Tables or
Indexes”
Section 13.7.2.6, “REPAIR TABLE Syntax”
Section 16.4.1.8, “Replication and FLUSH”
Section 16.4.1.13, “Replication and REPAIR TABLE”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 7.6.5, “Setting Up a MyISAM Table Maintenance
Schedule”
Section 8.5.3, “Speed of REPAIR TABLE Statements”
Section 14.8, “The ARCHIVE Storage Engine”
Section 5.1.10, “The Server Shutdown Process”
Section 5.4.4, “The Slow Query Log”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”

REPEAT
Section 13.6.7.2, “DECLARE ... HANDLER Syntax”
Section 18.1, “Defining Stored Programs”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.5.6, “REPEAT Syntax”
Section 13.6.2, “Statement Label Syntax”

REPLACE
Section 13.1.10.2, “CREATE TABLE ... SELECT Syntax”
Section 13.1.11, “CREATE TRIGGER Syntax”
Section 11.6, “Data Type Default Values”
Section 12.13, “Information Functions”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”
Section 14.3.2, “MERGE Table Problems”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section B.5.2.9, “MySQL server has gone away”
Section 20.6.7.1, “mysql_affected_rows()”
Section 8.1, “Optimization Overview”
Section 17.1.5.10, “Previous MySQL Cluster Issues
Resolved in MySQL 5.0”
Section 13.2.7, “REPLACE Syntax”
Section 5.1.3, “Server Command Options”
Section 13.2.9, “Subquery Syntax”
Section 14.8, “The ARCHIVE Storage Engine”
Section 1.3.2, “The Main Features of MySQL”

REPLACE ... SELECT
Section B.5.7, “Known Issues in MySQL”

RESET
Section 13.7.6.2, “FLUSH Syntax”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 13.7.6.5, “RESET Syntax”

RESET MASTER
Section 13.7.6.2, “FLUSH Syntax”
Section 20.6.7.55, “mysql_refresh()”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 16.3.6, “Switching Masters During Failover”
Section 5.4.3, “The Binary Log”

RESET SLAVE
Section 13.7.6.2, “FLUSH Syntax”
Section 20.6.7.55, “mysql_refresh()”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.4.2.5, “RESET SLAVE Syntax”

RESTORE TABLE
Section 13.7.2.2, “BACKUP TABLE Syntax”
Section 13.7.2.7, “RESTORE TABLE Syntax”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”

RETURN
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.5, “LOOP Syntax”
Section C.1, “Restrictions on Stored Programs”
Section 13.6.5.7, “RETURN Syntax”

REVOKE
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 13.7.1.2, “DROP USER Syntax”
Section 13.7.6.2, “FLUSH Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 8.12.5.1, “How MySQL Uses Memory”
Section A.13, “MySQL 5.0 FAQ: Replication”
Section 17.5.10.2, “MySQL Cluster and MySQL
Privileges”
Section 1.8.2, “MySQL Differences from Standard SQL”
Section 6.2.1, “Privileges Provided by MySQL”
Section 2.18.1.1, “Problems Running mysql_install_db”
Section 16.4.1.18, “Replication and User Privileges”
Section 16.4.1.17, “Replication of the mysql System
Database”
Section 13.7.1.5, “REVOKE Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2376

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 6.1.1, “Security Guidelines”
Section 6.2, “The MySQL Access Privilege System”
Section 6.3.1, “User Names and Passwords”
Section 6.2.6, “When Privilege Changes Take Effect”

REVOKE ALL PRIVILEGES
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.1, “Privileges Provided by MySQL”

ROLLBACK
Section 18.6, “Binary Logging of Stored Programs”
Section 14.5.4, “Characteristics of BDB Tables”
Section 14.2.3.1, “How to Use Transactions in InnoDB
with Different APIs”
Section 12.13, “Information Functions”
Section 14.2.12, “InnoDB Error Handling”
Section 14.2.8, “InnoDB Transaction Model and Locking”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 17.1.5.3, “Limits Relating to Transaction
Handling in MySQL Cluster”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 13.3, “MySQL Transactional and Locking
Statements”
Section 20.6.7.3, “mysql_change_user()”
Section 16.4.1.26, “Replication and Transactions”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section B.5.4.5, “Rollback Failure for Nontransactional
Tables”
Section 13.3.4, “SAVEPOINT, ROLLBACK TO
SAVEPOINT, and RELEASE SAVEPOINT, and Syntax”
Section 5.1.4, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 13.3.2, “Statements That Cannot Be Rolled
Back”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Chapter 14, Storage Engines
Section 14.5, “The BDB (BerkeleyDB) Storage Engine”
Section 5.4.3, “The Binary Log”
Section 1.8.2.3, “Transactions and Atomic Operations”
Section 18.3.1, “Trigger Syntax and Examples”

ROLLBACK TO SAVEPOINT
Section 13.3.4, “SAVEPOINT, ROLLBACK TO
SAVEPOINT, and RELEASE SAVEPOINT, and Syntax”

ROLLBACK to SAVEPOINT
Section 18.3.1, “Trigger Syntax and Examples”

S

[index top]

SAVEPOINT
Section 13.3.4, “SAVEPOINT, ROLLBACK TO
SAVEPOINT, and RELEASE SAVEPOINT, and Syntax”

SELECT
Section 13.1.4, “ALTER TABLE Syntax”
Section 13.1.5, “ALTER VIEW Syntax”
Section 12.3.4, “Assignment Operators”
Section 14.2.8.3, “Avoiding the Phantom Problem Using
Next-Key Locking”
Section 18.6, “Binary Logging of Stored Programs”
Section 8.5.2, “Bulk Data Loading for MyISAM Tables”
Section 20.6.5, “C API Data Structures”
Section 20.6.6, “C API Function Overview”
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.16, “C API Support for Multiple Statement
Execution”
Section 13.2.1, “CALL Syntax”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 8.3.4, “Column Indexes”
Section 12.3.2, “Comparison Functions and Operators”
Section 8.3.8, “Comparison of B-Tree and Hash Indexes”
Section 8.11.3, “Concurrent Inserts”
Section 17.3.3.12, “Configuring MySQL Cluster
Parameters for Local Checkpoints”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 14.2.8.4, “Consistent Nonlocking Reads”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.10.2, “CREATE TABLE ... SELECT Syntax”
Section 13.1.10, “CREATE TABLE Syntax”
Section 13.1.12, “CREATE VIEW Syntax”
Section 3.3.1, “Creating and Selecting a Database”
Section 13.6.6.2, “Cursor DECLARE Syntax”
Section 13.6.6.3, “Cursor FETCH Syntax”
Section 13.2.2, “DELETE Syntax”
Section 2.2, “Determining Your Current MySQL Version”
Section 8.4.3.2, “Disadvantages of Creating Many Tables
in the Same Database”
Section 13.2.3, “DO Syntax”
Section 5.1.5.2, “Dynamic System Variables”
Section 3.2, “Entering Queries”
Section 10.1.7.8, “Examples of the Effect of Collation”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 14.2.6.2, “Forcing InnoDB Recovery”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2377

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Chapter 12, Functions and Operators
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”
Section 13.2.4, “HANDLER Syntax”
Section 8.2.1.2, “How MySQL Optimizes WHERE
Clauses”
Section 8.10.3.1, “How the Query Cache Operates”
Section 14.2.8.9, “How to Cope with Deadlocks”
Section 1.7, “How to Report Bugs or Problems”
Section 14.2.3.1, “How to Use Transactions in InnoDB
with Different APIs”
Section 9.2.1, “Identifier Qualifiers”
Section 8.9.2, “Index Hints”
Section 12.13, “Information Functions”
Chapter 19, INFORMATION_SCHEMA Tables
Section 2.18.1, “Initializing the Data Directory”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 13.2.5.1, “INSERT ... SELECT Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”
Section 8.11.1, “Internal Locking Methods”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 13.2.8.2, “JOIN Syntax”
Section 9.3, “Keywords and Reserved Words”
Section 13.7.6.3, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 14.7.3, “Limitations of the FEDERATED Storage
Engine”
Section 17.1.5.3, “Limits Relating to Transaction
Handling in MySQL Cluster”
Section 13.4.2.2, “LOAD DATA FROM MASTER Syntax”
Section 13.4.2.3, “LOAD TABLE tbl_name FROM
MASTER Syntax”
Section 13.6.4.2, “Local Variable Scope and Resolution”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 14.3.2, “MERGE Table Problems”
Section 8.3.5, “Multiple-Column Indexes”
Section 7.6.4, “MyISAM Table Optimization”
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section A.13, “MySQL 5.0 FAQ: Replication”
Section A.4, “MySQL 5.0 FAQ: Stored Procedures and
Functions”
Section 17.2.4, “MySQL Cluster Example with Tables
and Data”

Section 1.8.2, “MySQL Differences from Standard SQL”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.1.1, “mysql Options”
Section 20.6.7.1, “mysql_affected_rows()”
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”
Section 20.6.7.17, “mysql_fetch_field()”
Section 20.6.7.22, “mysql_field_count()”
Section 20.6.7.37, “mysql_insert_id()”
Section 20.6.7.47, “mysql_num_fields()”
Section 20.6.7.48, “mysql_num_rows()”
Section 20.6.11.10, “mysql_stmt_execute()”
Section 20.6.11.11, “mysql_stmt_fetch()”
Section 20.6.11.17, “mysql_stmt_num_rows()”
Section 20.6.11.27, “mysql_stmt_store_result()”
Section 20.6.7.69, “mysql_store_result()”
Section 20.6.7.71, “mysql_use_result()”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 12.9.1, “Natural Language Full-Text Searches”
Section 17.4.15, “ndb_select_all — Print Rows from
an NDB Table”
Section 8.3, “Optimization and Indexes”
Section B.5.5, “Optimizer-Related Issues”
Section 8.5.1, “Optimizing MyISAM Queries”
Section 8.8.1, “Optimizing Queries with EXPLAIN”
Section 8.2.1, “Optimizing SELECT Statements”
Section 8.2.1.14, “Optimizing Subqueries with EXISTS
Strategy”
Section 4.6.3.4, “Other myisamchk Options”
Section 6.2.1, “Privileges Provided by MySQL”
Section B.5.4.2, “Problems Using DATE Columns”
Section 8.10.3.2, “Query Cache SELECT Options”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 16.2, “Replication Implementation”
Section 16.1.2.2, “Replication Master Options and
Variables”
Section C.1, “Restrictions on Stored Programs”
Section C.4, “Restrictions on Views”
Section 3.3.4, “Retrieving Information from a Table”
Section 3.6.7, “Searching on Two Keys”
Section 2.18.4, “Securing the Initial MySQL Accounts”
Section 14.2.8.5, “SELECT ... FOR UPDATE and
SELECT ... LOCK IN SHARE MODE Locking Reads”
Section 13.2.8.1, “SELECT ... INTO Syntax”
Section 13.2.8, “SELECT Syntax”
Section 3.3.4.1, “Selecting All Data”
Section 3.3.4.2, “Selecting Particular Rows”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 2.20.5.7, “SGI Irix Notes”
Section 13.7.5.2, “SHOW BINLOG EVENTS Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2378

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 13.7.5.8, “SHOW CREATE PROCEDURE
Syntax”
Section 13.7.5.10, “SHOW CREATE VIEW Syntax”
Section 13.7.5.14, “SHOW ERRORS Syntax”
Section 13.7.5.25, “SHOW PROCEDURE CODE Syntax”
Section 13.7.5.27, “SHOW PROCESSLIST Syntax”
Section 13.7.5, “SHOW Syntax”
Section 13.7.5.37, “SHOW WARNINGS Syntax”
Section B.5.4.7, “Solving Problems with No Matching
Rows”
Section 8.2.1.1, “Speed of SELECT Statements”
Section 8.2.2.2, “Speed of UPDATE Statements”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 18.2.1, “Stored Routine Syntax”
Section 9.1.1, “String Literals”
Section 13.2.9.8, “Subqueries in the FROM Clause”
Section 13.2.9.6, “Subqueries with EXISTS or NOT
EXISTS”
Section 13.2.9.9, “Subquery Errors”
Section 13.2.9, “Subquery Syntax”
Section 8.11.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 14.8, “The ARCHIVE Storage Engine”
Section 5.4.3, “The Binary Log”
Section 11.4.4, “The ENUM Type”
Section 19.4, “The INFORMATION_SCHEMA
COLUMNS Table”
Section 19.17, “The INFORMATION_SCHEMA VIEWS
Table”
Section 1.3.2, “The Main Features of MySQL”
Section 14.3, “The MERGE Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 8.10.3, “The MySQL Query Cache”
The Range Access Method for Single-Part Indexes
Section 13.2.9.1, “The Subquery as Scalar Operand”
Section 18.3.1, “Trigger Syntax and Examples”
Section 1.2, “Typographical and Syntax Conventions”
Section 13.2.8.3, “UNION Syntax”
Section 13.2.10, “UPDATE Syntax”
Section 9.4, “User-Defined Variables”
Section 8.4.2.4, “Using PROCEDURE ANALYSE”
Section 21.3.1.6, “Using Server Logs to Find Causes of
Errors in mysqld”
Section 11.5.3.7, “Using Spatial Indexes”
Section 5.1.5, “Using System Variables”
Using the --safe-updates Option
Section 10.1.11, “UTF-8 for Metadata”
Section 18.4.1, “View Syntax”
Section B.5.3.5, “Where MySQL Stores Temporary Files”
Section C.7.6, “Windows Platform Limitations”

SELECT *
Section 11.4.3, “The BLOB and TEXT Types”

SELECT * INTO OUTFILE 'file_name'
FROM tbl_name
Section 7.2, “Database Backup Methods”

SELECT ... FOR UPDATE
Section 14.2.8.9, “How to Cope with Deadlocks”
Section 14.2.8.1, “InnoDB Lock Modes”
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”
Section 14.2.8.5, “SELECT ... FOR UPDATE and
SELECT ... LOCK IN SHARE MODE Locking Reads”

SELECT ... FROM
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”

SELECT ... FROM ... FOR UPDATE
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”

SELECT ... FROM ... LOCK IN SHARE
MODE
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”

SELECT ... INTO
Section 13.6.4.2, “Local Variable Scope and Resolution”
Section 16.4.1.9, “Replication and System Functions”
Section 13.2.8.1, “SELECT ... INTO Syntax”
Section 1.8.2.1, “SELECT INTO TABLE”
Section 13.2.8, “SELECT Syntax”

SELECT ... INTO DUMPFILE
Section 2.18.1, “Initializing the Data Directory”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.4, “Server System Variables”

SELECT ... INTO OUTFILE
Section 7.1, “Backup and Recovery Types”
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 7.4.3, “Dumping Data in Delimited-Text Format
with mysqldump”
Section 14.2.6.2, “Forcing InnoDB Recovery”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 9.1.7, “NULL Values”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2379

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 6.2.1, “Privileges Provided by MySQL”
Section 13.2.8.1, “SELECT ... INTO Syntax”
Section 1.8.2.1, “SELECT INTO TABLE”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 1.2, “Typographical and Syntax Conventions”
Section C.7.6, “Windows Platform Limitations”

SELECT ... INTO OUTFILE 'file_name'
Section 13.2.8.1, “SELECT ... INTO Syntax”

SELECT ... INTO var_list
Section C.1, “Restrictions on Stored Programs”
Section 13.6.4, “Variables in Stored Programs”

SELECT ... LOCK IN SHARE MODE
Section 14.2.8.1, “InnoDB Lock Modes”
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”
Section 14.2.8.5, “SELECT ... FOR UPDATE and
SELECT ... LOCK IN SHARE MODE Locking Reads”
Section 13.3.6, “SET TRANSACTION Syntax”

SELECT DISTINCT
Section 8.14.2, “General Thread States”
Section C.3, “Restrictions on Subqueries”

SET
Section 12.3.4, “Assignment Operators”
Section 16.1.2.4, “Binary Log Options and Variables”
Section 18.6, “Binary Logging of Stored Programs”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 18.1, “Defining Stored Programs”
Section 5.1.5.2, “Dynamic System Variables”
Section 12.1, “Function and Operator Reference”
Chapter 12, Functions and Operators
Section 12.13, “Information Functions”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.6.13, “mysql_find_rows — Extract SQL
Statements from Files”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 12.3, “Operators”
Section 8.10.3.3, “Query Cache Configuration”
Section 16.1.2.2, “Replication Master Options and
Variables”
Section 16.1.2.3, “Replication Slave Options and
Variables”

Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 13.7.5.36, “SHOW VARIABLES Syntax”
Section 13.2.9, “Subquery Syntax”
Section 18.3.1, “Trigger Syntax and Examples”
Section 9.4, “User-Defined Variables”
Section 4.2.8, “Using Options to Set Program Variables”
Section 5.1.5, “Using System Variables”
Using the --safe-updates Option
Section 13.6.4, “Variables in Stored Programs”

SET autocommit
Section 8.6.4, “Bulk Data Loading for InnoDB Tables”
Section 13.3, “MySQL Transactional and Locking
Statements”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”

SET GLOBAL
Section 5.1.5.2, “Dynamic System Variables”
Section 13.7.1.3, “GRANT Syntax”
Section 8.10.1.2, “Multiple Key Caches”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.7.4, “SET Syntax”
Section 5.1.5, “Using System Variables”

SET PASSWORD
Section 6.3.5, “Assigning Account Passwords”
Section B.5.2.4, “Client does not support authentication
protocol”
Section 6.1.2.1, “End-User Guidelines for Password
Security”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 6.1.2.3, “Passwords and Logging”
Section 16.4.1.18, “Replication and User Privileges”
Section 16.4.1.29, “Replication and Variables”
Section 16.4.1.17, “Replication of the mysql System
Database”
Resetting the Root Password: Generic Instructions
Section 2.18.4, “Securing the Initial MySQL Accounts”
Section 5.1.4, “Server System Variables”
Section 13.7.1.6, “SET PASSWORD Syntax”
Section 13.7.4, “SET Syntax”
Section 6.2.3, “Specifying Account Names”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 6.2.6, “When Privilege Changes Take Effect”

SET PASSWORD ... = PASSWORD()
Section 6.3.5, “Assigning Account Passwords”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2380

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SET SESSION
Section 5.1.5.2, “Dynamic System Variables”
Section 13.7.4, “SET Syntax”
Section 5.1.5, “Using System Variables”

SET sql_mode='modes'
Section A.3, “MySQL 5.0 FAQ: Server SQL Mode”

SET TIMESTAMP = value
Section 8.14, “Examining Thread Information”

SET TRANSACTION
Section 14.2.8, “InnoDB Transaction Model and Locking”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”

SET TRANSACTION ISOLATION
LEVEL
Section 13.7.4, “SET Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”

SHOW
Section 20.6.5, “C API Data Structures”
Section 20.6.6, “C API Function Overview”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 3.3, “Creating and Using a Database”
Section 14.2.3, “Creating and Using InnoDB Tables”
Section 13.6.6.2, “Cursor DECLARE Syntax”
Section 19.18, “Extensions to SHOW Statements”
Chapter 19, INFORMATION_SCHEMA Tables
Section A.13, “MySQL 5.0 FAQ: Replication”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 20.6.11.27, “mysql_stmt_store_result()”
Section 20.6.7.69, “mysql_store_result()”
Section 20.6.7.71, “mysql_use_result()”
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section C.1, “Restrictions on Stored Programs”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.18, “SHOW INDEX Syntax”
Section 13.7.5.23, “SHOW OPEN TABLES Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 13.7.5, “SHOW Syntax”
Section 13.7.5.34, “SHOW TABLES Syntax”
Section 13.4.1, “SQL Statements for Controlling Master
Servers”

Section 18.2.3, “Stored Routine Metadata”
Section 5.4.3, “The Binary Log”
Section 19.1, “The INFORMATION_SCHEMA
CHARACTER_SETS Table”
Section 19.3, “The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY
Table”
Section 19.2, “The INFORMATION_SCHEMA
COLLATIONS Table”
Section 19.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”
Section 19.4, “The INFORMATION_SCHEMA
COLUMNS Table”
Section 19.6, “The INFORMATION_SCHEMA
KEY_COLUMN_USAGE Table”
Section 19.7, “The INFORMATION_SCHEMA
PROFILING Table”
Section 19.10, “The INFORMATION_SCHEMA
SCHEMA_PRIVILEGES Table”
Section 19.9, “The INFORMATION_SCHEMA
SCHEMATA Table”
Section 19.11, “The INFORMATION_SCHEMA
STATISTICS Table”
Section 19.13, “The INFORMATION_SCHEMA
TABLE_CONSTRAINTS Table”
Section 19.14, “The INFORMATION_SCHEMA
TABLE_PRIVILEGES Table”
Section 19.12, “The INFORMATION_SCHEMA TABLES
Table”
Section 19.15, “The INFORMATION_SCHEMA
TRIGGERS Table”
Section 19.16, “The INFORMATION_SCHEMA
USER_PRIVILEGES Table”
Section 19.17, “The INFORMATION_SCHEMA VIEWS
Table”
Section 1.3.2, “The Main Features of MySQL”
Section 10.1.11, “UTF-8 for Metadata”

SHOW BINARY LOGS
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 13.7.5.1, “SHOW BINARY LOGS Syntax”
Section 13.4.1, “SQL Statements for Controlling Master
Servers”

SHOW BINLOG EVENTS
Section C.2, “Restrictions on Server-Side Cursors”
Section 13.7.5.2, “SHOW BINLOG EVENTS Syntax”
Section 13.4.1, “SQL Statements for Controlling Master
Servers”
Section 13.4.2.7, “START SLAVE Syntax”

SHOW CHARACTER SET
Section 13.1.1, “ALTER DATABASE Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2381

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 10.1.2, “Character Sets and Collations in
MySQL”
Section 10.1.13, “Character Sets and Collations That
MySQL Supports”
Section 19.18, “Extensions to SHOW Statements”
Section 13.7.5.3, “SHOW CHARACTER SET Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”

SHOW COLLATION
Section 13.1.1, “ALTER DATABASE Syntax”
Section 20.6.5, “C API Data Structures”
Section 10.5, “Character Set Configuration”
Section 10.1.2, “Character Sets and Collations in
MySQL”
Section 10.1.3.5, “Character String Literal Character Set
and Collation”
Section 10.4.2, “Choosing a Collation ID”
Section 10.1.3.4, “Column Character Set and Collation”
Section 10.1.3.2, “Database Character Set and Collation”
Section 2.17.3, “MySQL Source-Configuration Options”
Section 13.7.5.4, “SHOW COLLATION Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 10.1.3.3, “Table Character Set and Collation”
Section 19.3, “The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY
Table”
Section 19.2, “The INFORMATION_SCHEMA
COLLATIONS Table”

SHOW COLUMNS
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 13.8.2, “EXPLAIN Syntax”
Section 19.18, “Extensions to SHOW Statements”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 8.2.1.15, “LIMIT Query Optimization”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”

SHOW COLUMNS FROM tbl_name
LIKE 'enum_col'
Section 11.4.4, “The ENUM Type”

SHOW COUNT()
Section 13.7.5.14, “SHOW ERRORS Syntax”
Section 13.7.5.37, “SHOW WARNINGS Syntax”

SHOW CREATE DATABASE
Section 5.1.4, “Server System Variables”

Section 13.7.5.6, “SHOW CREATE DATABASE Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”

SHOW CREATE FUNCTION
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 1.7, “How to Report Bugs or Problems”
Section A.4, “MySQL 5.0 FAQ: Stored Procedures and
Functions”
Section 13.7.5.8, “SHOW CREATE PROCEDURE
Syntax”
Section 18.2.3, “Stored Routine Metadata”

SHOW CREATE PROCEDURE
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 1.7, “How to Report Bugs or Problems”
Section A.4, “MySQL 5.0 FAQ: Stored Procedures and
Functions”
Section 13.7.5.7, “SHOW CREATE FUNCTION Syntax”
Section 18.2.3, “Stored Routine Metadata”

SHOW CREATE SCHEMA
Section 13.7.5.6, “SHOW CREATE DATABASE Syntax”

SHOW CREATE TABLE
Section 14.5.4, “Characteristics of BDB Tables”
Section 13.1.8, “CREATE INDEX Syntax”
Section 13.1.10, “CREATE TABLE Syntax”
Section 11.6, “Data Type Default Values”
Section 13.8.2, “EXPLAIN Syntax”
Section 3.4, “Getting Information About Databases and
Tables”
Section 7.6.3, “How to Repair MyISAM Tables”
Section 14.7.2, “How to Use FEDERATED Tables”
Section 17.1.5.1, “Noncompliance with SQL Syntax in
MySQL Cluster”
Section 2.19.4, “Rebuilding or Repairing Tables or
Indexes”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.9, “SHOW CREATE TABLE Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 13.1.10.4, “Silent Column Specification Changes”
Section 13.1.10.3, “Using FOREIGN KEY Constraints”
Section 3.6.6, “Using Foreign Keys”

SHOW CREATE VIEW
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 13.7.1.3, “GRANT Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2382

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 6.2.1, “Privileges Provided by MySQL”
Section C.4, “Restrictions on Views”
Section 13.7.5.10, “SHOW CREATE VIEW Syntax”
Section 19.17, “The INFORMATION_SCHEMA VIEWS
Table”
Section 18.4.5, “View Metadata”

SHOW DATABASES
Section 13.1.6, “CREATE DATABASE Syntax”
Section 3.3, “Creating and Using a Database”
Section 19.18, “Extensions to SHOW Statements”
Section 3.4, “Getting Information About Databases and
Tables”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 9.2.2, “Identifier Case Sensitivity”
Chapter 19, INFORMATION_SCHEMA Tables
Section 2.20.1.6, “Linux SPARC Notes”
Section 13.4.2.2, “LOAD DATA FROM MASTER Syntax”
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 17.5.10.2, “MySQL Cluster and MySQL
Privileges”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.7.5.11, “SHOW DATABASES Syntax”

SHOW ENGINE
Section 13.7.5.12, “SHOW ENGINE Syntax”

SHOW ENGINE BDB LOGS
Section 13.7.5.12, “SHOW ENGINE Syntax”
Section 13.7.5.20, “SHOW LOGS Syntax”

SHOW ENGINE INNODB MUTEX
Section 5.1.4, “Server System Variables”
Section 13.7.5.22, “SHOW MUTEX STATUS Syntax”

SHOW ENGINE INNODB STATUS
Section 14.2.8.9, “How to Cope with Deadlocks”
Section 14.2.3.4, “InnoDB and FOREIGN KEY
Constraints”
Section 14.2.1.4, “InnoDB File-Per-Table Tablespaces”
InnoDB Standard Monitor and Lock Monitor Output
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 14.2.13.1, “SHOW ENGINE INNODB STATUS
and the InnoDB Monitors”
Section 13.7.5.12, “SHOW ENGINE Syntax”
Section 13.7.5.19, “SHOW INNODB STATUS Syntax”

Section B.1, “Sources of Error Information”
Section 13.1.10.3, “Using FOREIGN KEY Constraints”

SHOW ENGINE NDB STATUS
Section 17.5, “Management of MySQL Cluster”
Section 17.5.9, “Quick Reference: MySQL Cluster SQL
Statements”
Section 13.7.5.12, “SHOW ENGINE Syntax”

SHOW ENGINE NDBCLUSTER
STATUS
mysqld Command Options for MySQL Cluster
Section 17.5.9, “Quick Reference: MySQL Cluster SQL
Statements”
Section 13.7.5.12, “SHOW ENGINE Syntax”

SHOW ENGINES
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
MySQL Cluster System Variables
Section 17.5.4, “MySQL Server Usage for MySQL
Cluster”
Section 2.10.4.3, “Selecting a MySQL Server Type”
Section 5.1.4, “Server System Variables”
Section 13.7.5.13, “SHOW ENGINES Syntax”
Chapter 14, Storage Engines
Section 14.2, “The InnoDB Storage Engine”

SHOW ERRORS
Section 14.2.3.4, “InnoDB and FOREIGN KEY
Constraints”
Section 5.1.4, “Server System Variables”
Section 13.7.5.14, “SHOW ERRORS Syntax”
Section 13.7.5.37, “SHOW WARNINGS Syntax”
Section B.1, “Sources of Error Information”

SHOW FULL COLUMNS
Section 13.1.10, “CREATE TABLE Syntax”
Section 10.1.9.3, “SHOW Statements and
INFORMATION_SCHEMA”
Section 19.5, “The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table”

SHOW FULL PROCESSLIST
Section 8.14, “Examining Thread Information”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”

SHOW FULL TABLES
Section 4.5.6, “mysqlshow — Display Database, Table,
and Column Information”
Section 13.7.5.34, “SHOW TABLES Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2383

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

SHOW FUNCTION CODE
Section 13.7.5.15, “SHOW FUNCTION CODE Syntax”
Section 13.7.5.25, “SHOW PROCEDURE CODE Syntax”

SHOW FUNCTION STATUS
Section 13.7.5.26, “SHOW PROCEDURE STATUS
Syntax”
Section 18.2.3, “Stored Routine Metadata”

SHOW GLOBAL STATUS
Section 5.1.4, “Server System Variables”

SHOW GRANTS
Section 6.3.2, “Adding User Accounts”
Section 13.7.1.2, “DROP USER Syntax”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 13.7.1.5, “REVOKE Syntax”
Section 6.1.1, “Security Guidelines”
Section 13.7.5.17, “SHOW GRANTS Syntax”
Section 13.7.5.24, “SHOW PRIVILEGES Syntax”
Section 6.2, “The MySQL Access Privilege System”

SHOW INDEX
Section 13.7.2.1, “ANALYZE TABLE Syntax”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.8.2, “EXPLAIN Syntax”
Section 8.9.2, “Index Hints”
Section 14.2.14, “Limits on InnoDB Tables”
Section 8.3.7, “MyISAM Index Statistics Collection”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 4.6.3.4, “Other myisamchk Options”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.18, “SHOW INDEX Syntax”
Section 19.11, “The INFORMATION_SCHEMA
STATISTICS Table”
Section 19.13, “The INFORMATION_SCHEMA
TABLE_CONSTRAINTS Table”

SHOW INNODB STATUS
Section 13.7.5.12, “SHOW ENGINE Syntax”
Section 13.7.5.19, “SHOW INNODB STATUS Syntax”

SHOW MASTER LOGS
Section 13.7.5.1, “SHOW BINARY LOGS Syntax”

SHOW MASTER STATUS
Section 16.1.1.5, “Creating a Data Snapshot Using
mysqldump”
Section 16.4.5, “How to Report Replication Bugs or
Problems”

Section 16.1.1.4, “Obtaining the Replication Master
Binary Log Coordinates”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.4.1, “SQL Statements for Controlling Master
Servers”
Section 16.4.4, “Troubleshooting Replication”

SHOW MUTEX STATUS
Section 13.7.5.22, “SHOW MUTEX STATUS Syntax”

SHOW OPEN TABLES
Section 13.7.5.23, “SHOW OPEN TABLES Syntax”

SHOW PRIVILEGES
Section 13.7.5.24, “SHOW PRIVILEGES Syntax”

SHOW PROCEDURE CODE
Section 13.7.5.15, “SHOW FUNCTION CODE Syntax”
Section 13.7.5.25, “SHOW PROCEDURE CODE Syntax”

SHOW PROCEDURE STATUS
Section 13.7.5.16, “SHOW FUNCTION STATUS Syntax”
Section 18.2.3, “Stored Routine Metadata”

SHOW PROCESSLIST
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 16.1.3.1, “Checking Replication Status”
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section 12.13, “Information Functions”
Section 14.2.12, “InnoDB Error Handling”
Section 13.7.6.3, “KILL Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section A.13, “MySQL 5.0 FAQ: Replication”
Section 17.5.4, “MySQL Server Usage for MySQL
Cluster”
Section 20.6.7.43, “mysql_list_processes()”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.2.1, “Replication Implementation Details”
Section 13.7.5.27, “SHOW PROCESSLIST Syntax”
Section 13.7.5.28, “SHOW PROFILE Syntax”
Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 16.3.6, “Switching Masters During Failover”
Section B.5.2.7, “Too many connections”
Section 16.4.4, “Troubleshooting Replication”

SHOW PROFILE
Section 8.14, “Examining Thread Information”
Section 8.14.2, “General Thread States”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2384

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 2.17.3, “MySQL Source-Configuration Options”
Section 5.1.4, “Server System Variables”
Section 13.7.5.28, “SHOW PROFILE Syntax”
Section 13.7.5.29, “SHOW PROFILES Syntax”
Section 19.7, “The INFORMATION_SCHEMA
PROFILING Table”

SHOW PROFILES
Section 2.17.3, “MySQL Source-Configuration Options”
Section 5.1.4, “Server System Variables”
Section 13.7.5.28, “SHOW PROFILE Syntax”
Section 13.7.5.29, “SHOW PROFILES Syntax”
Section 19.7, “The INFORMATION_SCHEMA
PROFILING Table”

SHOW SCHEMAS
Section 13.7.5.11, “SHOW DATABASES Syntax”

SHOW SLAVE HOSTS
Section 16.1.3.1, “Checking Replication Status”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.4.1, “SQL Statements for Controlling Master
Servers”

SHOW SLAVE STATUS
Section 16.1.3.1, “Checking Replication Status”
Section 16.4.5, “How to Report Replication Bugs or
Problems”
Section A.13, “MySQL 5.0 FAQ: Replication”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 16.2.1, “Replication Implementation Details”
Section 8.14.6, “Replication Slave I/O Thread States”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 16.3.7, “Setting Up Replication to Use Secure
Connections”
Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”
Section 16.4.1.21, “Slave Errors During Replication”
Section 16.2.2.2, “Slave Status Logs”
Section B.1, “Sources of Error Information”
Section 13.4.2, “SQL Statements for Controlling Slave
Servers”
Section 13.4.2.7, “START SLAVE Syntax”
Section 16.4.4, “Troubleshooting Replication”

SHOW STATUS
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 17.3.3.6, “Defining SQL and Other API Nodes in
a MySQL Cluster”

Section 13.2.5.2, “INSERT DELAYED Syntax”
mysqld Command Options for MySQL Cluster
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 16.4.1.16, “Replication and Temporary Tables”
Section 16.2.1, “Replication Implementation Details”
Section 16.4.1.23, “Replication Retries and Timeouts”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.5.32, “SHOW STATUS Syntax”

SHOW TABLE STATUS
Section 14.2.3.3, “AUTO_INCREMENT Handling in
InnoDB”
Section 13.1.10, “CREATE TABLE Syntax”
Section 14.2.3, “Creating and Using InnoDB Tables”
Section 13.8.2, “EXPLAIN Syntax”
Section 14.2.11.2, “File Space Management”
Section 14.7.2, “How to Use FEDERATED Tables”
Section 14.2.14, “Limits on InnoDB Tables”
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 14.2.10.5, “Physical Row Structure”
Section 13.7.5.5, “SHOW COLUMNS Syntax”
Section 13.7.5.33, “SHOW TABLE STATUS Syntax”
Section 14.8, “The ARCHIVE Storage Engine”

SHOW TABLES
Section 3.3.2, “Creating a Table”
Section 19.18, “Extensions to SHOW Statements”
Section 9.2.2, “Identifier Case Sensitivity”
Chapter 19, INFORMATION_SCHEMA Tables
Section 4.6.16, “mysql_tableinfo — Generate
Database Metadata”
Section 13.7.5.33, “SHOW TABLE STATUS Syntax”
Section 13.7.5.34, “SHOW TABLES Syntax”
Section B.5.2.16, “Table 'tbl_name' doesn't exist”
Section B.5.6.2, “TEMPORARY Table Problems”

SHOW TRIGGERS
Section A.5, “MySQL 5.0 FAQ: Triggers”
Section 13.7.5.35, “SHOW TRIGGERS Syntax”
Section 19.15, “The INFORMATION_SCHEMA
TRIGGERS Table”
Section 18.3.2, “Trigger Metadata”

SHOW VARIABLES
Section 2.2, “Determining Your Current MySQL Version”
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 5.5, “Running Multiple MySQL Instances on One
Machine”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2385

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 13.7.5.36, “SHOW VARIABLES Syntax”
Section 5.1.5, “Using System Variables”

SHOW WARNINGS
Section 13.1.4, “ALTER TABLE Syntax”
Section 13.1.16, “DROP PROCEDURE and DROP
FUNCTION Syntax”
Section 8.8.3, “EXPLAIN EXTENDED Output Format”
Section 8.8.2, “EXPLAIN Output Format”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 8.2.1.14, “Optimizing Subqueries with EXISTS
Strategy”
Section 1.8.3.1, “PRIMARY KEY and UNIQUE Index
Constraints”
Section B.3, “Server Error Codes and Messages”
Section 5.1.4, “Server System Variables”
Section 13.7.5.14, “SHOW ERRORS Syntax”
Section 13.7.5.37, “SHOW WARNINGS Syntax”
Section B.1, “Sources of Error Information”

START SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 16.1.3.2, “Pausing Replication on the Slave”
Section 16.3.4, “Replicating Different Databases to
Different Slaves”
Section 16.2.1, “Replication Implementation Details”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”
Section 16.4.1.21, “Slave Errors During Replication”
Section 13.4.2.7, “START SLAVE Syntax”
Section 13.4.2.8, “STOP SLAVE Syntax”
Section 16.3.6, “Switching Masters During Failover”
Section 16.4.4, “Troubleshooting Replication”

START TRANSACTION
Section 13.6.1, “BEGIN ... END Compound-Statement
Syntax”
Section 14.5.4, “Characteristics of BDB Tables”
Section 14.2.8.9, “How to Cope with Deadlocks”
Section 14.2.3.1, “How to Use Transactions in InnoDB
with Different APIs”
Section 14.2.12, “InnoDB Error Handling”
Section 14.2.8, “InnoDB Transaction Model and Locking”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 13.3, “MySQL Transactional and Locking
Statements”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section C.1, “Restrictions on Stored Programs”

Section 14.2.8.5, “SELECT ... FOR UPDATE and
SELECT ... LOCK IN SHARE MODE Locking Reads”
Section 5.1.4, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 18.3.1, “Trigger Syntax and Examples”
Section 13.3.7.2, “XA Transaction States”

START TRANSACTION WITH
CONSISTENT SNAPSHOT
Section 14.2.8.4, “Consistent Nonlocking Reads”

STOP SLAVE
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 16.1.3.1, “Checking Replication Status”
Section 16.1.1.9, “Introducing Additional Slaves to an
Existing Replication Environment”
Section 16.1.3.2, “Pausing Replication on the Slave”
Section 13.4.1.2, “RESET MASTER Syntax”
Section 13.4.2.5, “RESET SLAVE Syntax”
Section 13.4.2.7, “START SLAVE Syntax”
Section 13.4.2.8, “STOP SLAVE Syntax”
Section 16.3.6, “Switching Masters During Failover”

T

[index top]

TRUNCATE TABLE
Section 14.1.3.3, “Compressed Table Characteristics”
Section 13.1.11, “CREATE TRIGGER Syntax”
Section 13.2.2, “DELETE Syntax”
Section 8.10.3.1, “How the Query Cache Operates”
Section 14.2.1.4, “InnoDB File-Per-Table Tablespaces”
Section 17.1.5.2, “Limits and Differences of MySQL
Cluster from Standard MySQL Limits”
Section 17.1.5.3, “Limits Relating to Transaction
Handling in MySQL Cluster”
Section 14.3.2, “MERGE Table Problems”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 17.4.6, “ndb_delete_all — Delete All Rows
from an NDB Table”
Section 8.6.6, “Optimizing InnoDB DDL Operations”
Section 16.4.1.15, “Replication and MEMORY Tables”
Section 5.1.4, “Server System Variables”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 14.4, “The MEMORY (HEAP) Storage Engine”
Section 13.1.21, “TRUNCATE TABLE Syntax”
Section 1.4, “What Is New in MySQL 5.0”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2386

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 20.6.14.2, “What Results You Can Get from a
Query”

U

[index top]

UNION
Section 20.6.5, “C API Data Structures”
Section 13.1.10, “CREATE TABLE Syntax”
Section 13.1.12, “CREATE VIEW Syntax”
Section 8.8.2, “EXPLAIN Output Format”
Section 12.13, “Information Functions”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”
Section 11.2.5, “Numeric Type Attributes”
Section C.4, “Restrictions on Views”
Section 10.1.9.1, “Result Strings”
Section 3.6.7, “Searching on Two Keys”
Section 13.2.8, “SELECT Syntax”
Section 5.1.6, “Server Status Variables”
Section 13.2.9, “Subquery Syntax”
Section 14.3, “The MERGE Storage Engine”
The Range Access Method for Single-Part Indexes
Section 13.2.8.3, “UNION Syntax”
Section 18.4.3, “Updatable and Insertable Views”
Section 8.4.2.4, “Using PROCEDURE ANALYSE”
Section 18.4.2, “View Processing Algorithms”
Section 18.4.1, “View Syntax”

UNION ALL
Section 12.13, “Information Functions”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 13.2.8.3, “UNION Syntax”
Section 18.4.3, “Updatable and Insertable Views”
Section 18.4.2, “View Processing Algorithms”

UNION DISTINCT
Section 13.2.8.3, “UNION Syntax”

UNLOCK TABLES
Section 8.5.2, “Bulk Data Loading for MyISAM Tables”
Section 7.2, “Database Backup Methods”
Section 13.7.6.2, “FLUSH Syntax”
Section 14.2.8.9, “How to Cope with Deadlocks”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 14.2.14, “Limits on InnoDB Tables”
Section 13.3.5, “LOCK TABLES and UNLOCK TABLES
Syntax”
Section 4.5.4, “mysqldump — A Database Backup
Program”

Section C.1, “Restrictions on Stored Programs”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 13.3.3, “Statements That Cause an Implicit
Commit”
Section 8.12.1, “System Factors and Startup Parameter
Tuning”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 1.8.2.3, “Transactions and Atomic Operations”

UPDATE
Section 6.2.5, “Access Control, Stage 2: Request
Verification”
Section 6.3.2, “Adding User Accounts”
Section 12.3.4, “Assignment Operators”
Section 16.1.2.4, “Binary Log Options and Variables”
Section 18.6, “Binary Logging of Stored Programs”
Section 8.5.2, “Bulk Data Loading for MyISAM Tables”
Section 20.6.6, “C API Function Overview”
Section 20.6.10, “C API Prepared Statement Function
Overview”
Section 20.6.16, “C API Support for Multiple Statement
Execution”
Section 13.7.2.3, “CHECK TABLE Syntax”
Section 10.1.12, “Column Character Set Conversion”
Section 17.3.3.12, “Configuring MySQL Cluster
Parameters for Local Checkpoints”
Section 1.8.3.3, “Constraints on Invalid Data”
Section 13.1.11, “CREATE TRIGGER Syntax”
Section 13.1.12, “CREATE VIEW Syntax”
Section 11.6, “Data Type Default Values”
Section 11.1.2, “Date and Time Type Overview”
Section 14.2.6.2, “Forcing InnoDB Recovery”
Section 12.1, “Function and Operator Reference”
Chapter 12, Functions and Operators
Section 8.14.2, “General Thread States”
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 8.2.1.2, “How MySQL Optimizes WHERE
Clauses”
Section 8.10.3.1, “How the Query Cache Operates”
Section 12.13, “Information Functions”
Chapter 19, INFORMATION_SCHEMA Tables
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 13.2.5.3, “INSERT ... ON DUPLICATE KEY
UPDATE Syntax”
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 13.2.5, “INSERT Syntax”
Section 8.11.1, “Internal Locking Methods”
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 13.2.8.2, “JOIN Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2387

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 13.7.6.3, “KILL Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 14.7.3, “Limitations of the FEDERATED Storage
Engine”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”
Section 12.15, “Miscellaneous Functions”
Section A.4, “MySQL 5.0 FAQ: Stored Procedures and
Functions”
Section 1.8.1, “MySQL Extensions to Standard SQL”
Section 4.5.1.1, “mysql Options”
Section 20.6.7.1, “mysql_affected_rows()”
Section 4.6.12, “mysql_explain_log — Use EXPLAIN
on Statements in Query Log”
Section 20.6.7.35, “mysql_info()”
Section 20.6.7.37, “mysql_insert_id()”
Section 20.6.7.48, “mysql_num_rows()”
Section 20.6.7.49, “mysql_options()”
Section 20.6.11.10, “mysql_stmt_execute()”
Section 20.6.11.16, “mysql_stmt_insert_id()”
Section 20.6.11.17, “mysql_stmt_num_rows()”
Section 12.3, “Operators”
Section 8.2.2, “Optimizing DML Statements”
Section 11.2.6, “Out-of-Range and Overflow Handling”
Section 1.8.3.1, “PRIMARY KEY and UNIQUE Index
Constraints”
Section 6.2.1, “Privileges Provided by MySQL”
Section B.5.4.2, “Problems Using DATE Columns”
Section 16.4.1.10, “Replication and LIMIT”
Section 16.4.1.19, “Replication and the Query Optimizer”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section C.4, “Restrictions on Views”
Section 13.2.9.11, “Rewriting Subqueries as Joins”
Section 2.18.4, “Securing the Initial MySQL Accounts”
Section 14.2.8.5, “SELECT ... FOR UPDATE and
SELECT ... LOCK IN SHARE MODE Locking Reads”
Section 3.3.4.1, “Selecting All Data”
Section 5.1.3, “Server Command Options”
Section 5.1.7, “Server SQL Modes”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.1.6, “SET PASSWORD Syntax”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.7.5.37, “SHOW WARNINGS Syntax”
Section 16.4.1.21, “Slave Errors During Replication”
Section 13.2.9.9, “Subquery Errors”
Section 13.2.9, “Subquery Syntax”
Section 8.11.2, “Table Locking Issues”
Section 13.3.5.3, “Table-Locking Restrictions and
Conditions”
Section 10.1.7.6, “The _bin and binary Collations”
Section 14.8, “The ARCHIVE Storage Engine”

Section 5.4.3, “The Binary Log”
Section 14.10, “The BLACKHOLE Storage Engine”
Section 19.17, “The INFORMATION_SCHEMA VIEWS
Table”
Section 1.3.2, “The Main Features of MySQL”
Section 14.3, “The MERGE Storage Engine”
Section 14.1, “The MyISAM Storage Engine”
Section 6.2, “The MySQL Access Privilege System”
Section 5.1.10, “The Server Shutdown Process”
Section 1.8.2.3, “Transactions and Atomic Operations”
Section 18.3.1, “Trigger Syntax and Examples”
Section 6.2.7, “Troubleshooting Problems Connecting to
MySQL”
Section 18.4.3, “Updatable and Insertable Views”
Section 1.8.2.2, “UPDATE”
Section 13.2.10, “UPDATE Syntax”
Section 13.1.10.3, “Using FOREIGN KEY Constraints”
Using the --safe-updates Option
Section 20.6.14.2, “What Results You Can Get from a
Query”
Section 6.2.6, “When Privilege Changes Take Effect”
Section 20.6.14.1, “Why mysql_store_result() Sometimes
Returns NULL After mysql_query() Returns Success”

UPDATE ... ()
Section 14.2.8.4, “Consistent Nonlocking Reads”

UPDATE ... WHERE ...
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”

UPDATE IGNORE
Section 5.1.7, “Server SQL Modes”

USE
Section 16.1.2.4, “Binary Log Options and Variables”
Section 7.4.5.2, “Copy a Database from one Server to
Another”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 3.3.1, “Creating and Selecting a Database”
Section 3.3, “Creating and Using a Database”
Section 7.4.1, “Dumping Data in SQL Format with
mysqldump”
Section 16.2.3.1, “Evaluation of Database-Level
Replication and Binary Logging Options”
Chapter 19, INFORMATION_SCHEMA Tables
Section 4.5.1.1, “mysql Options”
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 4.5.4, “mysqldump — A Database Backup
Program”
Section 7.4.2, “Reloading SQL-Format Backups”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2388

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 18.2.1, “Stored Routine Syntax”
Section 13.8.4, “USE Syntax”

USE db2
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

USE db_name
Section 4.5.1.1, “mysql Options”

USE test
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”

W

[index top]

WHILE
Section 13.6.5, “Flow Control Statements”
Section 13.6.5.3, “ITERATE Syntax”
Section 13.6.5.4, “LEAVE Syntax”
Section 13.6.2, “Statement Label Syntax”
Section 13.6.5.8, “WHILE Syntax”

X

[index top]

XA COMMIT
Section 2.19.2, “Downgrading MySQL”
Section 5.1.4, “Server System Variables”
Section 2.19.1, “Upgrading MySQL”
Section 13.3.7.2, “XA Transaction States”

XA END
Section C.5, “Restrictions on XA Transactions”
Section 13.3.7.1, “XA Transaction SQL Syntax”
Section 13.3.7.2, “XA Transaction States”

XA PREPARE
Section 13.3.7.2, “XA Transaction States”

XA RECOVER
Section 2.19.2, “Downgrading MySQL”
Section 2.19.1, “Upgrading MySQL”
Section 13.3.7.1, “XA Transaction SQL Syntax”
Section 13.3.7.2, “XA Transaction States”

XA ROLLBACK
Section 2.19.2, “Downgrading MySQL”

Section 5.1.4, “Server System Variables”
Section 2.19.1, “Upgrading MySQL”
Section 13.3.7.2, “XA Transaction States”

XA START
Section C.5, “Restrictions on XA Transactions”
Section 13.3.7.1, “XA Transaction SQL Syntax”
Section 13.3.7.2, “XA Transaction States”

XA START xid
Section 13.3.7.1, “XA Transaction SQL Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2389

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Status Variable Index
A | B | C | D | F | H | I | K | L | M | N | O | P | Q | R | S | T |
U

A

[index top]

Aborted_clients
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section 5.1.6, “Server Status Variables”

Aborted_connects
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section 5.1.6, “Server Status Variables”

B

[index top]

Binlog_cache_disk_use
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 5.4.3, “The Binary Log”

Binlog_cache_use
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 5.4.3, “The Binary Log”

Bytes_received
Section 5.1.6, “Server Status Variables”

Bytes_sent
Section 5.1.6, “Server Status Variables”

C

[index top]

Com_flush
Section 5.1.6, “Server Status Variables”

Compression
Section 5.1.6, “Server Status Variables”

Connections
Section 5.1.6, “Server Status Variables”

Section 5.1.4, “Server System Variables”

Created_tmp_disk_tables
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Created_tmp_files
Section 5.1.6, “Server Status Variables”

Created_tmp_tables
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

D

[index top]

Delayed_errors
Section 5.1.6, “Server Status Variables”

Delayed_insert_threads
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.6, “Server Status Variables”

Delayed_writes
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.6, “Server Status Variables”

F

[index top]

Flush_commands
Section 5.1.6, “Server Status Variables”

H

[index top]

Handler_commit
Section 5.1.6, “Server Status Variables”

Handler_delete
Section 5.1.6, “Server Status Variables”

Handler_discover
MySQL Cluster Status Variables

Handler_prepare
Section 5.1.6, “Server Status Variables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2390

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Handler_read_first
Section 5.1.6, “Server Status Variables”

Handler_read_key
Section 5.1.6, “Server Status Variables”

Handler_read_next
Section 5.1.6, “Server Status Variables”

Handler_read_prev
Section 5.1.6, “Server Status Variables”

Handler_read_rnd
Section 5.1.6, “Server Status Variables”

Handler_read_rnd_next
Section 5.1.6, “Server Status Variables”

Handler_rollback
Section 5.1.6, “Server Status Variables”

Handler_savepoint
Section 5.1.6, “Server Status Variables”

Handler_savepoint_rollback
Section 5.1.6, “Server Status Variables”

Handler_update
Section 5.1.6, “Server Status Variables”

Handler_write
Section 5.1.6, “Server Status Variables”

I

[index top]

Innodb_buffer_pool_pages_data
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_dirty
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_flushed
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_free
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_latched
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_misc
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_pages_total
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_read_ahead_rnd
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_read_ahead_seq
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_read_requests
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_reads
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_wait_free
Section 5.1.6, “Server Status Variables”

Innodb_buffer_pool_write_requests
Section 5.1.6, “Server Status Variables”

Innodb_data_fsyncs
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 5.1.6, “Server Status Variables”

Innodb_data_pending_fsyncs
Section 5.1.6, “Server Status Variables”

Innodb_data_pending_reads
Section 5.1.6, “Server Status Variables”

Innodb_data_pending_writes
Section 5.1.6, “Server Status Variables”

Innodb_data_read
Section 5.1.6, “Server Status Variables”

Innodb_data_reads
Section 5.1.6, “Server Status Variables”

Innodb_data_writes
Section 5.1.6, “Server Status Variables”

Innodb_data_written
Section 5.1.6, “Server Status Variables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2391

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Innodb_dblwr_pages_written
Section 5.1.6, “Server Status Variables”

Innodb_dblwr_writes
Section 5.1.6, “Server Status Variables”

Innodb_log_waits
Section 5.1.6, “Server Status Variables”

Innodb_log_write_requests
Section 5.1.6, “Server Status Variables”

Innodb_log_writes
Section 5.1.6, “Server Status Variables”

Innodb_os_log_fsyncs
Section 5.1.6, “Server Status Variables”

Innodb_os_log_pending_fsyncs
Section 5.1.6, “Server Status Variables”

Innodb_os_log_pending_writes
Section 5.1.6, “Server Status Variables”

Innodb_os_log_written
Section 5.1.6, “Server Status Variables”

Innodb_page_size
Section 5.1.6, “Server Status Variables”

Innodb_pages_created
Section 5.1.6, “Server Status Variables”

Innodb_pages_read
Section 5.1.6, “Server Status Variables”

Innodb_pages_written
Section 5.1.6, “Server Status Variables”

Innodb_row_lock_current_waits
Section 5.1.6, “Server Status Variables”

Innodb_row_lock_time
Section 5.1.6, “Server Status Variables”

Innodb_row_lock_time_avg
Section 5.1.6, “Server Status Variables”

Innodb_row_lock_time_max
Section 5.1.6, “Server Status Variables”

Innodb_row_lock_waits
Section 5.1.6, “Server Status Variables”

Innodb_rows_deleted
Section 5.1.6, “Server Status Variables”

Innodb_rows_inserted
Section 5.1.6, “Server Status Variables”

Innodb_rows_read
Section 5.1.6, “Server Status Variables”

Innodb_rows_updated
Section 5.1.6, “Server Status Variables”

K

[index top]

Key_blocks_not_flushed
Section 5.1.6, “Server Status Variables”

Key_blocks_unused
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Key_blocks_used
Section 5.1.6, “Server Status Variables”

Key_read_requests
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Key_reads
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Key_write_requests
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Key_writes
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

L

[index top]

Last_query_cost
Section 5.1.6, “Server Status Variables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2392

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

M

[index top]

Max_used_connections
Section 13.7.6.2, “FLUSH Syntax”
Section 5.1.6, “Server Status Variables”

N

[index top]

Ndb_cluster_node_id
MySQL Cluster Status Variables

Ndb_config_from_host
MySQL Cluster Status Variables

Ndb_config_from_port
MySQL Cluster Status Variables

Ndb_number_of_data_nodes
MySQL Cluster Status Variables

Not_flushed_delayed_rows
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.6, “Server Status Variables”

O

[index top]

Open_files
Section 5.1.6, “Server Status Variables”

Open_streams
Section 5.1.6, “Server Status Variables”

Open_tables
Section 5.1.6, “Server Status Variables”

Opened_tables
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

P

[index top]

Prepared_stmt_count
Section 5.1.6, “Server Status Variables”

Section 5.1.4, “Server System Variables”

Q

[index top]

Qcache_free_blocks
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 5.1.6, “Server Status Variables”

Qcache_free_memory
Section 5.1.6, “Server Status Variables”

Qcache_hits
Section 8.10.3.1, “How the Query Cache Operates”
Section 5.1.6, “Server Status Variables”

Qcache_inserts
Section 5.1.6, “Server Status Variables”

Qcache_lowmem_prunes
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 5.1.6, “Server Status Variables”

Qcache_not_cached
Section 5.1.6, “Server Status Variables”

Qcache_queries_in_cache
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.6, “Server Status Variables”

Qcache_total_blocks
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.4, “Query Cache Status and Maintenance”
Section 5.1.6, “Server Status Variables”

Queries
Section 5.1.6, “Server Status Variables”

Questions
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 5.1.6, “Server Status Variables”

R

[index top]

Rpl_status
Section 5.1.6, “Server Status Variables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2393

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

S

[index top]

Select_full_join
Section 5.1.6, “Server Status Variables”

Select_full_range_join
Section 5.1.6, “Server Status Variables”

Select_range
Section 5.1.6, “Server Status Variables”

Select_range_check
Section 5.1.6, “Server Status Variables”

Select_scan
Section 5.1.6, “Server Status Variables”

Slave_open_temp_tables
Section 16.4.1.16, “Replication and Temporary Tables”
Section 5.1.6, “Server Status Variables”

Slave_retried_transactions
Section 5.1.6, “Server Status Variables”

Slave_running
Section 16.2.1, “Replication Implementation Details”
Section 5.1.6, “Server Status Variables”

Slow_launch_threads
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Slow_queries
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Sort_merge_passes
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Sort_range
Section 5.1.6, “Server Status Variables”

Sort_rows
Section 5.1.6, “Server Status Variables”

Sort_scan
Section 5.1.6, “Server Status Variables”

Ssl_accept_renegotiates
Section 5.1.6, “Server Status Variables”

Ssl_accepts
Section 5.1.6, “Server Status Variables”

Ssl_callback_cache_hits
Section 5.1.6, “Server Status Variables”

Ssl_cipher
Section 6.3.6.4, “Configuring MySQL to Use Secure
Connections”
Section 6.3.6.3, “Secure Connection Protocols and
Ciphers”
Section 5.1.6, “Server Status Variables”

Ssl_cipher_list
Section 6.3.6.3, “Secure Connection Protocols and
Ciphers”
Section 5.1.6, “Server Status Variables”

Ssl_client_connects
Section 5.1.6, “Server Status Variables”

Ssl_connect_renegotiates
Section 5.1.6, “Server Status Variables”

Ssl_ctx_verify_depth
Section 5.1.6, “Server Status Variables”

Ssl_ctx_verify_mode
Section 5.1.6, “Server Status Variables”

Ssl_default_timeout
Section 5.1.6, “Server Status Variables”

Ssl_finished_accepts
Section 5.1.6, “Server Status Variables”

Ssl_finished_connects
Section 5.1.6, “Server Status Variables”

Ssl_session_cache_hits
Section 5.1.6, “Server Status Variables”

Ssl_session_cache_misses
Section 5.1.6, “Server Status Variables”

Ssl_session_cache_mode
Section 5.1.6, “Server Status Variables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2394

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Ssl_session_cache_overflows
Section 5.1.6, “Server Status Variables”

Ssl_session_cache_size
Section 5.1.6, “Server Status Variables”

Ssl_session_cache_timeouts
Section 5.1.6, “Server Status Variables”

Ssl_sessions_reused
Section 5.1.6, “Server Status Variables”

Ssl_used_session_cache_entries
Section 5.1.6, “Server Status Variables”

Ssl_verify_depth
Section 5.1.6, “Server Status Variables”

Ssl_verify_mode
Section 5.1.6, “Server Status Variables”

Ssl_version
Section 6.3.6.3, “Secure Connection Protocols and
Ciphers”
Section 5.1.6, “Server Status Variables”

T

[index top]

Table_locks_immediate
Section 8.11.1, “Internal Locking Methods”
Section 5.1.6, “Server Status Variables”

Table_locks_waited
Section 8.11.1, “Internal Locking Methods”
Section 5.1.6, “Server Status Variables”

Tc_log_max_pages_used
Section 5.1.6, “Server Status Variables”

Tc_log_page_size
Section 5.1.6, “Server Status Variables”

Tc_log_page_waits
Section 5.1.6, “Server Status Variables”

Threads_cached
Section 8.12.6.1, “How MySQL Uses Threads for Client
Connections”

Section 5.1.6, “Server Status Variables”

Threads_connected
Section 5.1.6, “Server Status Variables”

Threads_created
Section 8.12.6.1, “How MySQL Uses Threads for Client
Connections”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

Threads_running
Section 5.1.6, “Server Status Variables”

U

[index top]

Uptime
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 5.1.6, “Server Status Variables”

Uptime_since_flush_status
Section 5.1.6, “Server Status Variables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2395

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

System Variable Index

A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q |
R | S | T | U | V | W

A

[index top]

auto_increment_increment
Section A.1, “MySQL 5.0 FAQ: General”
Section 17.1.5.10, “Previous MySQL Cluster Issues
Resolved in MySQL 5.0”
Section 16.1.2.2, “Replication Master Options and
Variables”
Section 3.6.9, “Using AUTO_INCREMENT”

auto_increment_offset
Section A.1, “MySQL 5.0 FAQ: General”
Section 17.1.5.10, “Previous MySQL Cluster Issues
Resolved in MySQL 5.0”
Section 16.1.2.2, “Replication Master Options and
Variables”
Section 3.6.9, “Using AUTO_INCREMENT”

autocommit
Section 14.2.8.8, “Deadlock Detection and Rollback”
Section 13.2.2, “DELETE Syntax”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 13.3.5.1, “Interaction of Table Locking and
Transactions”
Section 14.2.14, “Limits on InnoDB Tables”
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”
Section 16.4.1.26, “Replication and Transactions”
Section 14.2.8.5, “SELECT ... FOR UPDATE and
SELECT ... LOCK IN SHARE MODE Locking Reads”
Section 5.1.4, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 1.8.2.3, “Transactions and Atomic Operations”

automatic_sp_privileges
Section 13.1.3, “ALTER PROCEDURE Syntax”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 5.1.4, “Server System Variables”
Section 18.2.2, “Stored Routines and MySQL Privileges”

B

[index top]

back_log
Section 5.1.4, “Server System Variables”

basedir
Section 5.1.4, “Server System Variables”

bdb_cache_size
Section 5.1.4, “Server System Variables”

bdb_home
Section 5.1.4, “Server System Variables”

bdb_log_buffer_size
Section 5.1.4, “Server System Variables”

bdb_logdir
Section 5.1.4, “Server System Variables”

bdb_max_lock
Section 14.5.3, “BDB Startup Options”
Section 5.1.4, “Server System Variables”

bdb_shared_data
Section 5.1.4, “Server System Variables”

bdb_tmpdir
Section 5.1.4, “Server System Variables”

big_tables
Section 5.1.4, “Server System Variables”

binlog_cache_size
Section 14.5.3, “BDB Startup Options”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 5.4.3, “The Binary Log”

binlog_format
Section A.13, “MySQL 5.0 FAQ: Replication”

bulk_insert_buffer_size
Section 14.1.1, “MyISAM Startup Options”
Section 5.1.4, “Server System Variables”
Section 8.2.2.1, “Speed of INSERT Statements”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2396

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

C

[index top]

character_set_client
Section 20.6.9.1, “C API Prepared Statement Type
Codes”
Section 10.5, “Character Set Configuration”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 16.4.1.29, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 5.4.3, “The Binary Log”

character_set_connection
Section 10.1.3.5, “Character String Literal Character Set
and Collation”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 10.1.9.2, “CONVERT() and CAST()”
Section 12.7, “Date and Time Functions”
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 10.7, “MySQL Server Locale Support”
Section 10.1.9.1, “Result Strings”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 9.1.1, “String Literals”
Section 10.1.8, “String Repertoire”

character_set_database
Section 10.1.4, “Connection Character Sets and
Collations”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 10.1.3.2, “Database Character Set and Collation”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”

character_set_filesystem
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 13.2.8.1, “SELECT ... INTO Syntax”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”

character_set_results
Section 20.6.5, “C API Data Structures”

Section 10.1.6, “Character Set for Error Messages”
Section 10.1.4, “Connection Character Sets and
Collations”
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 10.1.11, “UTF-8 for Metadata”

character_set_server
Section 10.5, “Character Set Configuration”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 10.1.3.2, “Database Character Set and Collation”
Section 12.9.4, “Full-Text Stopwords”
Section 16.4.1.2, “Replication and Character Sets”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.4, “Server System Variables”

character_set_system
Section 10.5, “Character Set Configuration”
Section 5.1.4, “Server System Variables”
Section 10.1.11, “UTF-8 for Metadata”

character_sets_dir
Section 10.4.3, “Adding a Simple Collation to an 8-Bit
Character Set”
Section 10.4.4.1, “Defining a UCA Collation Using LDML
Syntax”
Section 5.1.4, “Server System Variables”

collation_connection
Section 10.1.3.5, “Character String Literal Character Set
and Collation”
Section 10.1.4, “Connection Character Sets and
Collations”
Section 10.1.9.2, “CONVERT() and CAST()”
Section 12.7, “Date and Time Functions”
Section 16.4.1.29, “Replication and Variables”
Section 10.1.9.1, “Result Strings”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 5.4.3, “The Binary Log”

collation_database
Section 10.1.4, “Connection Character Sets and
Collations”
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 10.1.3.2, “Database Character Set and Collation”
Section 16.4.1.29, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 5.4.3, “The Binary Log”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2397

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

collation_server
Section 10.1.4, “Connection Character Sets and
Collations”
Section 10.1.3.2, “Database Character Set and Collation”
Section 12.9.4, “Full-Text Stopwords”
Section 16.4.1.29, “Replication and Variables”
Section 10.1.3.1, “Server Character Set and Collation”
Section 5.1.4, “Server System Variables”
Section 5.4.3, “The Binary Log”

completion_type
Section 20.6.7.6, “mysql_commit()”
Section 20.6.7.57, “mysql_rollback()”
Section 5.1.4, “Server System Variables”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”

concurrent_insert
Section 8.11.3, “Concurrent Inserts”
Section 8.11.1, “Internal Locking Methods”
Section 8.5.1, “Optimizing MyISAM Queries”
Section 5.1.4, “Server System Variables”

connect_timeout
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section B.5.2.3, “Lost connection to MySQL server”
Section 20.6.7.52, “mysql_real_connect()”
Section 5.1.4, “Server System Variables”

D

[index top]

datadir
Section 2.10, “Installing MySQL on Microsoft Windows”
Section 5.1.4, “Server System Variables”
Section 5.2, “The MySQL Data Directory”

date_format
Section 5.1.4, “Server System Variables”

datetime_format
Section 5.1.4, “Server System Variables”

default_week_format
Section 12.7, “Date and Time Functions”
Section 5.1.4, “Server System Variables”

delay_key_write
Section 13.1.10, “CREATE TABLE Syntax”

Section 5.1.4, “Server System Variables”

delayed_insert_limit
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.4, “Server System Variables”

delayed_insert_timeout
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.4, “Server System Variables”

delayed_queue_size
Section 13.2.5.2, “INSERT DELAYED Syntax”
Section 5.1.4, “Server System Variables”

div_precision_increment
Section 12.6.1, “Arithmetic Operators”
Section 5.1.4, “Server System Variables”

E

[index top]

engine_condition_pushdown
Section 8.2.1.5, “Engine Condition Pushdown
Optimization”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

error_count
Section 5.1.4, “Server System Variables”
Section 13.7.5.14, “SHOW ERRORS Syntax”
Section B.1, “Sources of Error Information”

expire_logs_days
Section 13.4.1.1, “PURGE BINARY LOGS Syntax”
Section 5.4.5, “Server Log Maintenance”
Section 5.1.4, “Server System Variables”

F

[index top]

flush
Section 5.1.4, “Server System Variables”

flush_time
Section 5.1.4, “Server System Variables”

foreign_key_checks
Section 13.1.4, “ALTER TABLE Syntax”
Section 16.4.1.29, “Replication and Variables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2398

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 5.4.3, “The Binary Log”
Section 13.1.10.3, “Using FOREIGN KEY Constraints”

ft_boolean_syntax
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 5.1.4, “Server System Variables”

ft_max_word_len
Section 16.1.1.6, “Creating a Data Snapshot Using Raw
Data Files”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 5.1.4, “Server System Variables”

ft_min_word_len
Section 12.9.2, “Boolean Full-Text Searches”
Section 16.1.1.6, “Creating a Data Snapshot Using Raw
Data Files”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 5.1.4, “Server System Variables”

ft_query_expansion_limit
Section 5.1.4, “Server System Variables”

ft_stopword_file
Section 16.1.1.6, “Creating a Data Snapshot Using Raw
Data Files”
Section 12.9.6, “Fine-Tuning MySQL Full-Text Search”
Section 5.1.4, “Server System Variables”

G

[index top]

group_concat_max_len
Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”
Section 5.1.4, “Server System Variables”

H

[index top]

have_archive
Section 5.1.4, “Server System Variables”

have_bdb
Section 5.1.4, “Server System Variables”

have_blackhole_engine
Section 5.1.4, “Server System Variables”

have_community_features
Section 5.1.4, “Server System Variables”

have_compress
Section 5.1.4, “Server System Variables”

have_crypt
Section 5.1.4, “Server System Variables”

have_csv
Section 5.1.4, “Server System Variables”

have_example_engine
Section 5.1.4, “Server System Variables”

have_federated_engine
Section 5.1.4, “Server System Variables”

have_geometry
Section 5.1.4, “Server System Variables”

have_innodb
Section B.5.4.5, “Rollback Failure for Nontransactional
Tables”
Section 5.1.4, “Server System Variables”

have_isam
Section 5.1.4, “Server System Variables”

have_merge_engine
Section 5.1.4, “Server System Variables”

have_ndbcluster
MySQL Cluster System Variables

have_openssl
Section 6.3.6.2, “Building MySQL with Support for Secure
Connections”
Section 5.1.4, “Server System Variables”

have_profiling
Section 5.1.4, “Server System Variables”

have_query_cache
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.4, “Server System Variables”

have_raid
Section 5.1.4, “Server System Variables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2399

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

have_rtree_keys
Section 5.1.4, “Server System Variables”

have_ssl
Section 6.3.6.2, “Building MySQL with Support for Secure
Connections”
Section 5.1.4, “Server System Variables”

have_symlink
Section 5.1.4, “Server System Variables”
Section 8.12.4.3, “Using Symbolic Links for Databases
on Windows”
Section 8.12.4.2, “Using Symbolic Links for MyISAM
Tables on Unix”

hostname
Section 5.1.4, “Server System Variables”

I

[index top]

identity
Section 5.1.4, “Server System Variables”

init_connect
Section 10.1.5, “Configuring the Character Set and
Collation for Applications”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”

init_file
Section 5.1.4, “Server System Variables”

init_slave
Section 16.1.2.3, “Replication Slave Options and
Variables”

innodb_autoextend_increment
Section 14.2.1, “Configuring InnoDB”
Section 14.2.1.4, “InnoDB File-Per-Table Tablespaces”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 14.2.5, “Resizing the InnoDB System
Tablespace”

innodb_buffer_pool_awe_mem_mb
Section 14.2.1, “Configuring InnoDB”

innodb_buffer_pool_instances
Section 8.12.5.1, “How MySQL Uses Memory”

innodb_buffer_pool_size
Section 8.12.5.1, “How MySQL Uses Memory”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 8.6.7, “Optimizing InnoDB Disk I/O”
Section B.3, “Server Error Codes and Messages”
Section 8.10.2, “The InnoDB Buffer Pool”

innodb_checksums
Section 14.2.2, “InnoDB Startup Options and System
Variables”

innodb_concurrency_tickets
Section 14.2.2, “InnoDB Startup Options and System
Variables”

innodb_data_file_path
Section 14.2.1, “Configuring InnoDB”
Section 14.2.1.2, “Dealing with InnoDB Initialization
Problems”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 14.2.5, “Resizing the InnoDB System
Tablespace”
Section 14.2.1.3, “Using Raw Devices for the System
Tablespace”

innodb_data_home_dir
Section 14.2.1, “Configuring InnoDB”
Section 14.2.1.2, “Dealing with InnoDB Initialization
Problems”
Section 14.2.2, “InnoDB Startup Options and System
Variables”

innodb_doublewrite
Section 14.2.1, “Configuring InnoDB”
Section 14.2.11.1, “InnoDB Disk I/O”

innodb_fast_shutdown
Section 14.2.4, “Changing the Number or Size of InnoDB
Redo Log Files”
Section 14.2.6.1, “The InnoDB Recovery Process”
Section 5.1.10, “The Server Shutdown Process”

innodb_file_io_threads
InnoDB Standard Monitor and Lock Monitor Output
Section 21.1.1, “MySQL Threads”

innodb_file_per_table
Section 13.1.10, “CREATE TABLE Syntax”
Section 14.2.1.1, “Initializing InnoDB”
Section 14.2.3.5, “InnoDB and MySQL Replication”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2400

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 14.2.1.4, “InnoDB File-Per-Table Tablespaces”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
InnoDB Tablespace Monitor Output
Section 16.3.4, “Replicating Different Databases to
Different Slaves”
Section 14.2.13.3, “Troubleshooting InnoDB Data
Dictionary Operations”

innodb_flush_log_at_trx_commit
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 8.6.2, “Optimizing InnoDB Transaction
Management”

innodb_flush_method
Section 14.2.1.4, “InnoDB File-Per-Table Tablespaces”
Section 8.6.7, “Optimizing InnoDB Disk I/O”

innodb_force_recovery
Section 14.2.6.2, “Forcing InnoDB Recovery”
Section 1.7, “How to Report Bugs or Problems”
Section 8.6.2, “Optimizing InnoDB Transaction
Management”
Section 14.2.6.1, “The InnoDB Recovery Process”

innodb_lock_wait_timeout
Section 14.2.8.8, “Deadlock Detection and Rollback”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 16.4.1.23, “Replication Retries and Timeouts”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section B.3, “Server Error Codes and Messages”

innodb_locks_unsafe_for_binlog
Section 14.2.8.4, “Consistent Nonlocking Reads”
Section 14.2.8.2, “InnoDB Record, Gap, and Next-Key
Locks”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”

innodb_log_buffer_size
Section 8.6.7, “Optimizing InnoDB Disk I/O”
Section 8.6.3, “Optimizing InnoDB Redo Logging”

innodb_log_file_size
Section 14.2.1, “Configuring InnoDB”
Section 14.2.2, “InnoDB Startup Options and System
Variables”

Section 8.6.7, “Optimizing InnoDB Disk I/O”
Section 8.6.3, “Optimizing InnoDB Redo Logging”

innodb_log_files_in_group
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 8.6.3, “Optimizing InnoDB Redo Logging”

innodb_max_dirty_pages_pct
Section 8.6.7, “Optimizing InnoDB Disk I/O”

innodb_max_purge_lag
Section 14.2.9, “InnoDB Multi-Versioning”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 8.6.7, “Optimizing InnoDB Disk I/O”

innodb_open_files
Section 8.6.7, “Optimizing InnoDB Disk I/O”

innodb_support_xa
Section 14.2.8.9, “How to Cope with Deadlocks”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 8.6.2, “Optimizing InnoDB Transaction
Management”

innodb_table_locks
Section 14.2.2, “InnoDB Startup Options and System
Variables”

innodb_thread_concurrency
InnoDB Standard Monitor and Lock Monitor Output
Section 14.2.2, “InnoDB Startup Options and System
Variables”

innodb_use_legacy_cardinality_algorithm
Section 14.2.2, “InnoDB Startup Options and System
Variables”

insert_id
Section 5.1.4, “Server System Variables”

interactive_timeout
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section 2.20.4.1, “FreeBSD Notes”
Section 20.6.7.52, “mysql_real_connect()”
Section 2.20.2.1, “OS X 10.x (Darwin)”
Section 5.1.4, “Server System Variables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2401

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

J

[index top]

join_buffer_size
Section 8.2.1.8, “Nested-Loop Join Algorithms”
Section 5.1.4, “Server System Variables”

K

[index top]

keep_files_on_create
Section 5.1.4, “Server System Variables”

key_buffer_size
Section 8.5.2, “Bulk Data Loading for MyISAM Tables”
Section 8.8.4, “Estimating Query Performance”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 7.6.3, “How to Repair MyISAM Tables”
Section B.5.7, “Known Issues in MySQL”
Section 8.10.1.2, “Multiple Key Caches”
Section 8.10.1.6, “Restructuring a Key Cache”
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.2.2.3, “Speed of DELETE Statements”
Section 8.5.3, “Speed of REPAIR TABLE Statements”
Section 5.1.5.1, “Structured System Variables”
Section 8.10.1, “The MyISAM Key Cache”
Section 8.12.2, “Tuning Server Parameters”
Section 4.2.6, “Using Option Files”

key_cache_age_threshold
Section 8.10.1.3, “Midpoint Insertion Strategy”
Section 5.1.4, “Server System Variables”
Section 5.1.5.1, “Structured System Variables”

key_cache_block_size
Section 8.10.1.5, “Key Cache Block Size”
Section 8.10.1.6, “Restructuring a Key Cache”
Section 5.1.4, “Server System Variables”
Section 5.1.5.1, “Structured System Variables”

key_cache_division_limit
Section 8.10.1.3, “Midpoint Insertion Strategy”
Section 5.1.4, “Server System Variables”
Section 5.1.5.1, “Structured System Variables”

L

[index top]

language
Section 5.1.4, “Server System Variables”

large_files_support
Section 5.1.4, “Server System Variables”

large_page_size
Section 5.1.4, “Server System Variables”

large_pages
Section 5.1.4, “Server System Variables”

last_insert_id
Section 5.1.4, “Server System Variables”

lc_time_names
Section 2.19.1.1, “Changes Affecting Upgrades to 5.0”
Section 12.7, “Date and Time Functions”
Section 10.7, “MySQL Server Locale Support”
Section 5.1.4, “Server System Variables”

license
Section 5.1.4, “Server System Variables”

local
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 6.1.6, “Security Issues with LOAD DATA LOCAL”

local_infile
Section 5.1.4, “Server System Variables”

locked_in_memory
Section 5.1.4, “Server System Variables”

log
Section 5.1.4, “Server System Variables”

log_bin
Section 16.1.2.4, “Binary Log Options and Variables”

log_bin_trust_function_creators
Section 16.1.2.4, “Binary Log Options and Variables”
Section 18.6, “Binary Logging of Stored Programs”
Section A.4, “MySQL 5.0 FAQ: Stored Procedures and
Functions”
Section 5.1.4, “Server System Variables”

log_error
Section 5.1.4, “Server System Variables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2402

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 5.4.1, “The Error Log”

log_queries_not_using_indexes
Section 5.1.4, “Server System Variables”

log_slave_updates
Section 16.1.2.4, “Binary Log Options and Variables”

log_slow_queries
Section 5.1.4, “Server System Variables”

log_warnings
Section 5.1.4, “Server System Variables”
Section 5.4.1, “The Error Log”

long_query_time
Section 5.4, “MySQL Server Logs”
Section 4.5.2, “mysqladmin — Client for Administering a
MySQL Server”
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 5.4.4, “The Slow Query Log”

low_priority_updates
Section 5.1.4, “Server System Variables”
Section 8.11.2, “Table Locking Issues”

lower_case_file_system
Section 5.1.4, “Server System Variables”

lower_case_table_names
Section 13.7.1.3, “GRANT Syntax”
Section 16.2.3, “How Servers Evaluate Replication
Filtering Rules”
Section 1.7, “How to Report Bugs or Problems”
Section 9.2.2, “Identifier Case Sensitivity”
Section 16.4.1.29, “Replication and Variables”
Section 13.7.1.5, “REVOKE Syntax”
Section 5.1.4, “Server System Variables”
Section 13.7.5.34, “SHOW TABLES Syntax”
Section 13.1.10.3, “Using FOREIGN KEY Constraints”

M

[index top]

max_allowed_packet
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section 12.3.2, “Comparison Functions and Operators”
Section B.5.4.6, “Deleting Rows from Related Tables”

Section 12.16.1, “GROUP BY (Aggregate) Function
Descriptions”
Section 8.12.5.1, “How MySQL Uses Memory”
Section B.5.2.3, “Lost connection to MySQL server”
Section 20.6, “MySQL C API”
Section B.5.2.9, “MySQL server has gone away”
Section 20.6.7.71, “mysql_use_result()”
Section B.5.2.10, “Packet Too Large”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”
Section 11.4.3, “The BLOB and TEXT Types”
Section 4.2.6, “Using Option Files”

max_binlog_cache_size
Section 14.5.3, “BDB Startup Options”
Section 16.1.2.4, “Binary Log Options and Variables”
Section 5.4.3, “The Binary Log”

max_binlog_size
Section 16.1.2.4, “Binary Log Options and Variables”
Section 5.4, “MySQL Server Logs”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 5.4.5, “Server Log Maintenance”
Section 5.1.4, “Server System Variables”
Section 5.4.3, “The Binary Log”
Section 16.2.2.1, “The Slave Relay Log”

max_connect_errors
Section 8.12.6.2, “DNS Lookup Optimization and the
Host Cache”
Section 13.7.6.2, “FLUSH Syntax”
Section B.5.2.6, “Host 'host_name' is blocked”
Section 5.1.4, “Server System Variables”

max_connections
Section 21.3.1.4, “Debugging mysqld under gdb”
Section B.5.2.18, “File Not Found and Similar Errors”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.12.6.1, “How MySQL Uses Threads for Client
Connections”
Section 2.20.1.4, “Linux Postinstallation Notes”
Section 6.2.1, “Privileges Provided by MySQL”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section B.5.2.7, “Too many connections”

max_delayed_threads
Section 5.1.4, “Server System Variables”

max_error_count
Section 13.2.6, “LOAD DATA INFILE Syntax”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2403

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 5.1.4, “Server System Variables”
Section 13.7.5.14, “SHOW ERRORS Syntax”
Section 13.7.5.37, “SHOW WARNINGS Syntax”

max_heap_table_size
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section C.7.3, “Limits on Table Size”
Section 16.4.1.15, “Replication and MEMORY Tables”
Section 16.4.1.29, “Replication and Variables”
Section C.2, “Restrictions on Server-Side Cursors”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 14.4, “The MEMORY (HEAP) Storage Engine”

max_insert_delayed_threads
Section 5.1.4, “Server System Variables”

max_join_size
Section 8.8.2, “EXPLAIN Output Format”
Section 5.1.4, “Server System Variables”
Section 13.7.4, “SET Syntax”
Section 5.1.5, “Using System Variables”

max_length_for_sort_data
Section 8.2.1.11, “ORDER BY Optimization”
Section 5.1.4, “Server System Variables”

max_prepared_stmt_count
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 13.5, “SQL Syntax for Prepared Statements”

max_relay_log_size
Section 16.1.2.4, “Binary Log Options and Variables”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”
Section 16.2.2.1, “The Slave Relay Log”

max_seeks_for_key
Section 14.2.14, “Limits on InnoDB Tables”
Section 5.1.4, “Server System Variables”

max_sort_length
Section 13.1.10, “CREATE TABLE Syntax”
Section B.5.7, “Known Issues in MySQL”
Section 5.1.4, “Server System Variables”
Section 11.4.3, “The BLOB and TEXT Types”

max_sp_recursion_depth
Section 5.1.4, “Server System Variables”

Section 18.2.1, “Stored Routine Syntax”

max_tmp_tables
Section 5.1.4, “Server System Variables”

max_user_connections
Section 13.7.1.3, “GRANT Syntax”
Section 6.2.2, “Grant Tables”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.4, “Server System Variables”
Section 6.3.4, “Setting Account Resource Limits”

max_write_lock_count
Section 5.1.4, “Server System Variables”
Section 8.11.2, “Table Locking Issues”

multi_range_count
Section 5.1.4, “Server System Variables”

myisam_data_pointer_size
Section 13.1.10, “CREATE TABLE Syntax”
Section C.7.3, “Limits on Table Size”
Section 5.1.4, “Server System Variables”

myisam_max_extra_sort_file_size
Section 5.1.4, “Server System Variables”

myisam_max_sort_file_size
Section 14.1.1, “MyISAM Startup Options”
Section 5.1.4, “Server System Variables”
Section 8.5.3, “Speed of REPAIR TABLE Statements”

myisam_mmap_size
Section 5.1.4, “Server System Variables”

myisam_recover_options
Section 5.1.4, “Server System Variables”

myisam_repair_threads
Section 5.1.4, “Server System Variables”

myisam_sort_buffer_size
Section 13.1.4, “ALTER TABLE Syntax”
Section 14.1.1, “MyISAM Startup Options”
Section 5.1.4, “Server System Variables”
Section 8.5.3, “Speed of REPAIR TABLE Statements”

myisam_stats_method
Section 8.3.7, “MyISAM Index Statistics Collection”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2404

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 5.1.4, “Server System Variables”

N

[index top]

named_pipe
Section 5.1.4, “Server System Variables”

ndb_autoincrement_prefetch_sz
MySQL Cluster System Variables

ndb_cache_check_time
MySQL Cluster System Variables

ndb_force_send
MySQL Cluster System Variables

ndb_index_stat_cache_entries
MySQL Cluster System Variables

ndb_index_stat_enable
MySQL Cluster System Variables

ndb_index_stat_update_freq
MySQL Cluster System Variables

ndb_optimized_node_selection
MySQL Cluster System Variables
Section 17.5.6.3, “Using CLUSTERLOG STATISTICS in
the MySQL Cluster Management Client”

ndb_report_thresh_binlog_epoch_slip
MySQL Cluster System Variables

ndb_report_thresh_binlog_mem_usage
MySQL Cluster System Variables

ndb_use_exact_count
MySQL Cluster System Variables

ndb_use_transactions
MySQL Cluster System Variables

net_buffer_length
Section 8.12.5.1, “How MySQL Uses Memory”
Section 20.6, “MySQL C API”
Section 4.5.4, “mysqldump — A Database Backup
Program”

Section 5.1.4, “Server System Variables”

net_read_timeout
Section 2.20.4.1, “FreeBSD Notes”
Section 13.4.2.2, “LOAD DATA FROM MASTER Syntax”
Section B.5.2.3, “Lost connection to MySQL server”
Section 2.20.2.1, “OS X 10.x (Darwin)”
Section 5.1.4, “Server System Variables”

net_retry_count
Section 5.1.4, “Server System Variables”

net_write_timeout
Section 13.4.2.2, “LOAD DATA FROM MASTER Syntax”
Section 5.1.4, “Server System Variables”

new
Section 5.1.4, “Server System Variables”

O

[index top]

old_passwords
Section 6.3.5, “Assigning Account Passwords”
Section B.5.2.4, “Client does not support authentication
protocol”
Section 12.12, “Encryption and Compression Functions”
Section 6.1.2.5, “Implications of Password Hashing
Changes in MySQL 4.1 for Application Programs”
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.4, “Server System Variables”
Section 13.7.1.6, “SET PASSWORD Syntax”

one_shot
Section 5.1.4, “Server System Variables”

open_files_limit
Section B.5.2.18, “File Not Found and Similar Errors”
Section 5.1.4, “Server System Variables”

optimizer_prune_level
Section 8.9.1, “Controlling Query Plan Evaluation”
Section 5.1.4, “Server System Variables”

optimizer_search_depth
Section 8.9.1, “Controlling Query Plan Evaluation”
Section 5.1.4, “Server System Variables”

P

[index top]

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2405

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

pid_file
Section 5.1.4, “Server System Variables”

plugin_dir
Section 6.1.2.2, “Administrator Guidelines for Password
Security”
Section 13.7.3.1, “CREATE FUNCTION Syntax for User-
defined Functions”
Section 2.18.1, “Initializing the Data Directory”
Section 2.17.1, “Installing MySQL Using a Standard
Source Distribution”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 5.1.4, “Server System Variables”
Section 21.2.2.5, “UDF Compiling and Installing”

port
Section B.5.2.2, “Can't connect to [local] MySQL server”
Section 5.1.4, “Server System Variables”

preload_buffer_size
Section 5.1.4, “Server System Variables”

prepared_stmt_count
Section 5.1.4, “Server System Variables”

profiling
Section 5.1.4, “Server System Variables”
Section 13.7.5.28, “SHOW PROFILE Syntax”
Section 19.7, “The INFORMATION_SCHEMA
PROFILING Table”

profiling_history_size
Section 5.1.4, “Server System Variables”
Section 13.7.5.28, “SHOW PROFILE Syntax”

protocol_version
Section 5.1.4, “Server System Variables”

pseudo_thread_id
Section 5.1.4, “Server System Variables”

Q

[index top]

query_alloc_block_size
Section 5.1.4, “Server System Variables”

query_cache_limit
Section 8.10.3.3, “Query Cache Configuration”

Section 5.1.4, “Server System Variables”

query_cache_min_res_unit
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.4, “Server System Variables”

query_cache_size
Section 8.10.3.3, “Query Cache Configuration”
Section 5.1.4, “Server System Variables”
Section 8.10.3, “The MySQL Query Cache”
Section 5.1.5, “Using System Variables”

query_cache_type
Section 8.10.3.3, “Query Cache Configuration”
Section 8.10.3.2, “Query Cache SELECT Options”
Section 13.2.8, “SELECT Syntax”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

query_cache_wlock_invalidate
Section 5.1.4, “Server System Variables”

query_prealloc_size
Section 5.1.4, “Server System Variables”

R

[index top]

rand_seed
Section 5.1.4, “Server System Variables”

range_alloc_block_size
Section 5.1.4, “Server System Variables”

read_buffer_size
Section 8.12.5.1, “How MySQL Uses Memory”
Section 5.1.4, “Server System Variables”
Section 8.5.3, “Speed of REPAIR TABLE Statements”

read_only
Section 6.2.1, “Privileges Provided by MySQL”
Section 16.4.1.29, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 13.7.1.6, “SET PASSWORD Syntax”

read_rnd_buffer_size
Section 8.12.5.1, “How MySQL Uses Memory”
Section 8.2.1.11, “ORDER BY Optimization”
Section 5.1.4, “Server System Variables”
Section 8.12.2, “Tuning Server Parameters”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2406

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

relay_log
Section 16.1.2.3, “Replication Slave Options and
Variables”

relay_log_index
Section 16.1.2.3, “Replication Slave Options and
Variables”

relay_log_info_file
Section 16.1.2.3, “Replication Slave Options and
Variables”

relay_log_purge
Section 13.4.2.1, “CHANGE MASTER TO Syntax”
Section 5.1.4, “Server System Variables”

relay_log_space_limit
Section 8.14.6, “Replication Slave I/O Thread States”
Section 5.1.4, “Server System Variables”

Rpl_recovery_rank
Section 13.7.5.30, “SHOW SLAVE HOSTS Syntax”

rpl_recovery_rank
Section 16.1.2.3, “Replication Slave Options and
Variables”

S

[index top]

secure_auth
Section 6.1.2.4, “Password Hashing in MySQL”
Section 5.1.4, “Server System Variables”

secure_file_priv
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 6.1.3, “Making MySQL Secure Against Attackers”
Section 6.2.1, “Privileges Provided by MySQL”
Section 13.2.8.1, “SELECT ... INTO Syntax”
Section 5.1.4, “Server System Variables”
Section 12.5, “String Functions”

server_id
Section 4.6.7, “mysqlbinlog — Utility for Processing
Binary Log Files”
Section 5.1.4, “Server System Variables”

shared_memory
Section 5.1.4, “Server System Variables”

shared_memory_base_name
Section 5.1.4, “Server System Variables”

skip_external_locking
Section 8.11.4, “External Locking”
Section 5.1.4, “Server System Variables”

skip_networking
Section 5.1.4, “Server System Variables”

skip_show_database
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

slave_compressed_protocol
Section 16.1.2.3, “Replication Slave Options and
Variables”

slave_load_tmpdir
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”

slave_net_timeout
Section 16.1.3.1, “Checking Replication Status”
Section 16.4.1.14, “Replication and Master or Slave
Shutdowns”
Section 8.14.6, “Replication Slave I/O Thread States”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”

slave_skip_errors
Section 16.1.2.3, “Replication Slave Options and
Variables”

slave_transaction_retries
Section 16.4.1.23, “Replication Retries and Timeouts”
Section 16.1.2.3, “Replication Slave Options and
Variables”

slow_launch_time
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

socket
Section 5.1.4, “Server System Variables”

sort_buffer_size
Section 7.6.3, “How to Repair MyISAM Tables”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2407

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Section 8.2.1.11, “ORDER BY Optimization”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

sql_auto_is_null
Section 12.3.2, “Comparison Functions and Operators”
Section 13.1.10, “CREATE TABLE Syntax”
Section 16.4.1.29, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 5.4.3, “The Binary Log”

sql_big_selects
Section 5.1.4, “Server System Variables”

sql_buffer_result
Section 5.1.4, “Server System Variables”

sql_log_bin
Section 16.1.2.4, “Binary Log Options and Variables”
Section 17.1.5.8, “Issues Exclusive to MySQL Cluster”
Section 16.1.2.1, “Replication and Binary Logging Option
and Variable Reference”
Section 5.1.4, “Server System Variables”
Section 13.4.1.3, “SET sql_log_bin Syntax”
Section 13.7.4, “SET Syntax”
Section 16.4.3, “Upgrading a Replication Setup”

sql_log_off
Section 16.1.2.4, “Binary Log Options and Variables”
Section 16.1.2.1, “Replication and Binary Logging Option
and Variable Reference”
Section 5.4.5, “Server Log Maintenance”
Section 5.1.4, “Server System Variables”

sql_log_update
Section 5.1.4, “Server System Variables”

sql_mode
Section 13.1.9, “CREATE PROCEDURE and CREATE
FUNCTION Syntax”
Section 13.1.11, “CREATE TRIGGER Syntax”
Section 12.17.3, “Expression Handling”
Section 1.7, “How to Report Bugs or Problems”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section A.11, “MySQL 5.0 FAQ: MySQL Chinese,
Japanese, and Korean Character Sets”
Section 1.8, “MySQL Standards Compliance”
Section B.5.4.2, “Problems Using DATE Columns”
Section 16.4.1.29, “Replication and Variables”
Section 5.1.7, “Server SQL Modes”
Section 5.1.4, “Server System Variables”
Section 13.7.5.10, “SHOW CREATE VIEW Syntax”

Section 5.4.3, “The Binary Log”
Section 19.17, “The INFORMATION_SCHEMA VIEWS
Table”
Section 4.2.6, “Using Option Files”
Section 5.1.5, “Using System Variables”

sql_notes
Section 5.1.4, “Server System Variables”
Section 13.7.5.37, “SHOW WARNINGS Syntax”

sql_quote_show_create
Section 5.1.4, “Server System Variables”
Section 13.7.5.6, “SHOW CREATE DATABASE Syntax”
Section 13.7.5.9, “SHOW CREATE TABLE Syntax”

sql_safe_updates
Section 5.1.4, “Server System Variables”

sql_select_limit
Section 5.1.4, “Server System Variables”

sql_slave_skip_counter
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 13.7.5.31, “SHOW SLAVE STATUS Syntax”

sql_warnings
Section 5.1.4, “Server System Variables”

ssl_ca
Section 5.1.4, “Server System Variables”

ssl_capath
Section 5.1.4, “Server System Variables”

ssl_cert
Section 5.1.4, “Server System Variables”

ssl_cipher
Section 5.1.4, “Server System Variables”

ssl_key
Section 5.1.4, “Server System Variables”

storage_engine
Section 16.4.1.29, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Chapter 14, Storage Engines
Section 16.3.2, “Using Replication with Different Master
and Slave Storage Engines”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2408

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

sync_binlog
Section 16.1.2.4, “Binary Log Options and Variables”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 8.6.7, “Optimizing InnoDB Disk I/O”
Section 16.4.1.14, “Replication and Master or Slave
Shutdowns”
Section 5.4.3, “The Binary Log”

sync_frm
Section 5.1.4, “Server System Variables”

system_time_zone
Section 10.6, “MySQL Server Time Zone Support”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”

T

[index top]

table_cache
Section B.5.2.18, “File Not Found and Similar Errors”
Section 8.14.2, “General Thread States”
Section 8.4.3.1, “How MySQL Opens and Closes Tables”
Section 8.12.5.1, “How MySQL Uses Memory”
Section 5.1.3, “Server Command Options”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”
Section 8.12.2, “Tuning Server Parameters”

table_lock_wait_timeout
Section 5.1.4, “Server System Variables”

table_type
Section 5.1.4, “Server System Variables”
Chapter 14, Storage Engines
Section 16.3.2, “Using Replication with Different Master
and Slave Storage Engines”

thread_cache_size
Section 21.3.1.4, “Debugging mysqld under gdb”
Section 8.12.6.1, “How MySQL Uses Threads for Client
Connections”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

thread_concurrency
Section 5.1.4, “Server System Variables”

thread_stack
Section 8.12.5.1, “How MySQL Uses Memory”

Section 5.1.4, “Server System Variables”
Section 18.2.1, “Stored Routine Syntax”

time_format
Section 5.1.4, “Server System Variables”

time_zone
Section 12.7, “Date and Time Functions”
Section 10.6, “MySQL Server Time Zone Support”
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 11.3.1, “The DATE, DATETIME, and
TIMESTAMP Types”

timed_mutexes
Section 5.1.4, “Server System Variables”
Section 13.7.5.22, “SHOW MUTEX STATUS Syntax”

timestamp
Section 5.1.4, “Server System Variables”

tmp_table_size
Section 8.4.4, “Internal Temporary Table Use in MySQL”
Section C.2, “Restrictions on Server-Side Cursors”
Section 5.1.6, “Server Status Variables”
Section 5.1.4, “Server System Variables”

tmpdir
Section 16.3.1.2, “Backing Up Raw Data from a Slave”
Section B.5.2.13, “Can't create/write to file”
Section 7.2, “Database Backup Methods”
Section 13.2.6, “LOAD DATA INFILE Syntax”
Section 8.2.1.11, “ORDER BY Optimization”
Section 16.1.2.3, “Replication Slave Options and
Variables”
Section 5.1.4, “Server System Variables”

transaction_alloc_block_size
Section 5.1.4, “Server System Variables”

transaction_prealloc_size
Section 5.1.4, “Server System Variables”

tx_isolation
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”

U

[index top]

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2409

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

unique_checks
Section 14.2.3.2, “Converting Tables from Other Storage
Engines to InnoDB”
Section 16.4.1.29, “Replication and Variables”
Section 5.1.4, “Server System Variables”
Section 5.4.3, “The Binary Log”

updatable_views_with_limit
Section 5.1.4, “Server System Variables”
Section 18.4.3, “Updatable and Insertable Views”

V

[index top]

version
Section 12.13, “Information Functions”
Section 5.1.4, “Server System Variables”

version_bdb
Section 5.1.4, “Server System Variables”

version_comment
Section 5.1.4, “Server System Variables”
Section 13.7.5.36, “SHOW VARIABLES Syntax”

version_compile_machine
Section 5.1.4, “Server System Variables”

version_compile_os
Section 5.1.4, “Server System Variables”

W

[index top]

wait_timeout
Section B.5.2.11, “Communication Errors and Aborted
Connections”
Section 2.20.4.1, “FreeBSD Notes”
Section B.5.2.9, “MySQL server has gone away”
Section 20.6.7.52, “mysql_real_connect()”
Section 2.20.2.1, “OS X 10.x (Darwin)”
Section 5.1.4, “Server System Variables”

warning_count
Section 5.1.4, “Server System Variables”
Section 13.7.5.14, “SHOW ERRORS Syntax”
Section 13.7.5.37, “SHOW WARNINGS Syntax”

Section B.1, “Sources of Error Information”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2410

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2411

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

Transaction Isolation Level
Index
R | S

R

[index top]

READ COMMITTED
Section 14.2.8.4, “Consistent Nonlocking Reads”
Section 14.2.8.9, “How to Cope with Deadlocks”
Section 14.2.8.2, “InnoDB Record, Gap, and Next-Key
Locks”
Section 14.2.2, “InnoDB Startup Options and System
Variables”
Section 14.2.8, “InnoDB Transaction Model and Locking”
Section 17.1.5.3, “Limits Relating to Transaction
Handling in MySQL Cluster”
Section A.1, “MySQL 5.0 FAQ: General”
Section A.10, “MySQL 5.0 FAQ: MySQL Cluster”
Section 8.6.2, “Optimizing InnoDB Transaction
Management”
Section 13.3.6, “SET TRANSACTION Syntax”

READ UNCOMMITTED
Section 14.2.8, “InnoDB Transaction Model and Locking”
Section 17.1.5.3, “Limits Relating to Transaction
Handling in MySQL Cluster”
Section 13.3.6, “SET TRANSACTION Syntax”

READ-COMMITTED
Section 5.1.3, “Server Command Options”
Section 13.3.6, “SET TRANSACTION Syntax”

READ-UNCOMMITTED
Section 5.1.3, “Server Command Options”
Section 13.3.6, “SET TRANSACTION Syntax”

REPEATABLE READ
Section 14.2.8.4, “Consistent Nonlocking Reads”
Section 14.2.8.2, “InnoDB Record, Gap, and Next-Key
Locks”
Section 14.2.8, “InnoDB Transaction Model and Locking”
Section 17.1.5.3, “Limits Relating to Transaction
Handling in MySQL Cluster”
Section 8.6.2, “Optimizing InnoDB Transaction
Management”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”

Section 13.3.7, “XA Transactions”

REPEATABLE-READ
Section 5.1.3, “Server Command Options”
Section 5.1.4, “Server System Variables”
Section 13.3.6, “SET TRANSACTION Syntax”

S

[index top]

SERIALIZABLE
Section 14.2.8.4, “Consistent Nonlocking Reads”
Section 8.10.3.1, “How the Query Cache Operates”
Section 14.2.8, “InnoDB Transaction Model and Locking”
Section 17.1.5.3, “Limits Relating to Transaction
Handling in MySQL Cluster”
Section 14.2.8.6, “Locks Set by Different SQL
Statements in InnoDB”
Section 5.1.3, “Server Command Options”
Section 13.3.6, “SET TRANSACTION Syntax”
Section 13.3.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”
Section 13.3.7, “XA Transactions”

This
documentation
is for an
older version.
If you're
using the
most current
version,
select the
documentation
for that
version with
the version
switch in the
upper right
corner of
the online
documentation,
or by
downloading a
newer PDF or
EPUB file. 2412

This
documentation

is for an
older version.

If you're
using the

most current
version,

select the
documentation

for that
version with
the version

switch in the
upper right

corner of
the online

documentation,
or by

downloading a
newer PDF or

EPUB file.

	MySQL 5.0 Reference Manual
	Table of Contents
	Preface and Legal Notices
	Chapter 1 General Information
	1.1 About This Manual
	1.2 Typographical and Syntax Conventions
	1.3 Overview of the MySQL Database Management System
	1.3.1 What is MySQL?
	1.3.2 The Main Features of MySQL
	1.3.3 History of MySQL

	1.4 What Is New in MySQL 5.0
	1.5 MySQL Development History
	1.6 MySQL Information Sources
	1.6.1 MySQL Mailing Lists
	1.6.1.1 Guidelines for Using the Mailing Lists

	1.6.2 MySQL Community Support at the MySQL Forums
	1.6.3 MySQL Community Support on Internet Relay Chat (IRC)
	1.6.4 MySQL Enterprise

	1.7 How to Report Bugs or Problems
	1.8 MySQL Standards Compliance
	1.8.1 MySQL Extensions to Standard SQL
	1.8.2 MySQL Differences from Standard SQL
	1.8.2.1 SELECT INTO TABLE
	1.8.2.2 UPDATE
	1.8.2.3 Transactions and Atomic Operations
	1.8.2.4 Foreign Key Differences
	1.8.2.5 '--' as the Start of a Comment

	1.8.3 How MySQL Deals with Constraints
	1.8.3.1 PRIMARY KEY and UNIQUE Index Constraints
	1.8.3.2 FOREIGN KEY Constraints
	1.8.3.3 Constraints on Invalid Data
	1.8.3.4 ENUM and SET Constraints

	1.9 Credits
	1.9.1 Contributors to MySQL
	1.9.2 Documenters and translators
	1.9.3 Packages that support MySQL
	1.9.4 Tools that were used to create MySQL
	1.9.5 Supporters of MySQL

	Chapter 2 Installing and Upgrading MySQL
	2.1 MySQL Installation Overview
	2.2 Determining Your Current MySQL Version
	2.3 Notes for MySQL Enterprise Server
	2.3.1 Enterprise Server Distribution Types
	2.3.2 Upgrading MySQL Enterprise Server

	2.4 Notes for MySQL Community Server
	2.4.1 Overview of MySQL Community Server Installation
	2.4.2 Choosing Which MySQL Distribution to Install
	2.4.2.1 Choosing Which Version of MySQL to Install
	2.4.2.2 Choosing a Distribution Format
	2.4.2.3 How and When Updates Are Released
	2.4.2.4 MySQL Binaries Compiled by Oracle Corporation

	2.5 How to Get MySQL
	2.6 Verifying Package Integrity Using MD5 Checksums or GnuPG
	2.6.1 Verifying the MD5 Checksum
	2.6.2 Signature Checking Using GnuPG
	2.6.3 Signature Checking Using Gpg4win for Windows
	2.6.4 Signature Checking Using RPM

	2.7 Installation Layouts
	2.8 Compiler-Specific Build Characteristics
	2.9 Standard MySQL Installation from a Binary Distribution
	2.10 Installing MySQL on Microsoft Windows
	2.10.1 Choosing An Installation Package
	2.10.2 Installing MySQL on Microsoft Windows Using an MSI Package
	2.10.2.1 Using the MySQL Installation Wizard
	Downloading and Starting the MySQL Installation Wizard
	Choosing an Installation Type
	The Custom Installation Dialog
	The Confirmation Dialog
	Changes Made by MySQL Installation Wizard
	Upgrading MySQL with the Installation Wizard

	2.10.3 MySQL Server Instance Configuration Wizard
	2.10.3.1 Starting the MySQL Server Instance Configuration Wizard
	2.10.3.2 Choosing a Maintenance Option
	2.10.3.3 Choosing a Configuration Type
	2.10.3.4 The Server Type Dialog
	2.10.3.5 The Database Usage Dialog
	2.10.3.6 The InnoDB Tablespace Dialog
	2.10.3.7 The Concurrent Connections Dialog
	2.10.3.8 The Networking and Strict Mode Options Dialog
	2.10.3.9 The Character Set Dialog
	2.10.3.10 The Service Options Dialog
	2.10.3.11 The Security Options Dialog
	2.10.3.12 The Confirmation Dialog

	2.10.4 Installing MySQL on Microsoft Windows Using a noinstall Zip Archive
	2.10.4.1 Extracting the Install Archive
	2.10.4.2 Creating an Option File
	2.10.4.3 Selecting a MySQL Server Type
	2.10.4.4 Starting the Server for the First Time
	2.10.4.5 Starting MySQL from the Windows Command Line
	2.10.4.6 Customizing the PATH for MySQL Tools
	2.10.4.7 Starting MySQL as a Windows Service
	2.10.4.8 Testing The MySQL Installation

	2.10.5 Troubleshooting a MySQL Installation Under Windows
	2.10.6 Windows Postinstallation Procedures
	2.10.7 Upgrading MySQL on Windows
	2.10.8 Installing MySQL from Source on Windows
	2.10.8.1 Building MySQL from the Standard Source Distribution
	2.10.8.2 Building MySQL from a Windows Source Distribution
	2.10.8.3 Installing MySQL from a Source Build on Windows
	2.10.8.4 Testing a Windows Source Build
	2.10.8.5 Creating a Windows Source Package from the Bazaar Repository

	2.11 Installing MySQL on OS X
	2.12 Installing MySQL on Linux Using RPM Packages
	2.13 Installing MySQL on Solaris
	2.14 Installing MySQL on i5/OS
	2.15 Installing MySQL on NetWare
	2.16 Installing MySQL on Unix/Linux Using Generic Binaries
	2.17 Installing MySQL from Source
	2.17.1 Installing MySQL Using a Standard Source Distribution
	2.17.2 Installing MySQL Using a Development Source Tree
	2.17.3 MySQL Source-Configuration Options
	2.17.4 Dealing with Problems Compiling MySQL
	2.17.5 Compiling and Linking an Optimized mysqld Server

	2.18 Postinstallation Setup and Testing
	2.18.1 Initializing the Data Directory
	2.18.1.1 Problems Running mysql_install_db

	2.18.2 Starting the Server
	2.18.2.1 Troubleshooting Problems Starting the MySQL Server

	2.18.3 Testing the Server
	2.18.4 Securing the Initial MySQL Accounts
	2.18.5 Starting and Stopping MySQL Automatically

	2.19 Upgrading or Downgrading MySQL
	2.19.1 Upgrading MySQL
	2.19.1.1 Changes Affecting Upgrades to 5.0

	2.19.2 Downgrading MySQL
	2.19.2.1 Changes Affecting Downgrades from MySQL 5.0

	2.19.3 Checking Whether Tables or Indexes Must Be Rebuilt
	2.19.4 Rebuilding or Repairing Tables or Indexes
	2.19.5 Copying MySQL Databases to Another Machine

	2.20 Operating System-Specific Notes
	2.20.1 Linux Notes
	2.20.1.1 Linux Operating System Notes
	2.20.1.2 Linux Binary Distribution Notes
	2.20.1.3 Linux Source Distribution Notes
	2.20.1.4 Linux Postinstallation Notes
	2.20.1.5 Linux x86 Notes
	2.20.1.6 Linux SPARC Notes
	2.20.1.7 Linux Alpha Notes
	2.20.1.8 Linux PowerPC Notes
	2.20.1.9 Linux MIPS Notes
	2.20.1.10 Linux IA-64 Notes
	2.20.1.11 SELinux Notes

	2.20.2 OS X Notes
	2.20.2.1 OS X 10.x (Darwin)
	2.20.2.2 OS X Server 1.2 (Rhapsody)

	2.20.3 Solaris Notes
	2.20.3.1 Solaris 2.7/2.8 Notes
	2.20.3.2 Solaris x86 Notes

	2.20.4 BSD Notes
	2.20.4.1 FreeBSD Notes
	2.20.4.2 NetBSD Notes
	2.20.4.3 OpenBSD 2.5 Notes
	2.20.4.4 BSD/OS Version 2.x Notes
	2.20.4.5 BSD/OS Version 3.x Notes
	2.20.4.6 BSD/OS Version 4.x Notes

	2.20.5 Other Unix Notes
	2.20.5.1 HP-UX Version 10.20 Notes
	2.20.5.2 HP-UX Version 11.x Notes
	2.20.5.3 IBM-AIX notes
	2.20.5.4 SunOS 4 Notes
	2.20.5.5 Alpha-DEC-UNIX Notes (Tru64)
	2.20.5.6 Alpha-DEC-OSF/1 Notes
	2.20.5.7 SGI Irix Notes
	2.20.5.8 SCO UNIX and OpenServer 5.0.x Notes
	2.20.5.9 SCO OpenServer 6.0.x Notes
	2.20.5.10 SCO UnixWare 7.1.x and OpenUNIX 8.0.0 Notes

	2.20.6 OS/2 Notes

	2.21 Environment Variables
	2.22 Perl Installation Notes
	2.22.1 Installing Perl on Unix
	2.22.2 Installing ActiveState Perl on Windows
	2.22.3 Problems Using the Perl DBI/DBD Interface

	Chapter 3 Tutorial
	3.1 Connecting to and Disconnecting from the Server
	3.2 Entering Queries
	3.3 Creating and Using a Database
	3.3.1 Creating and Selecting a Database
	3.3.2 Creating a Table
	3.3.3 Loading Data into a Table
	3.3.4 Retrieving Information from a Table
	3.3.4.1 Selecting All Data
	3.3.4.2 Selecting Particular Rows
	3.3.4.3 Selecting Particular Columns
	3.3.4.4 Sorting Rows
	3.3.4.5 Date Calculations
	3.3.4.6 Working with NULL Values
	3.3.4.7 Pattern Matching
	3.3.4.8 Counting Rows
	3.3.4.9 Using More Than one Table

	3.4 Getting Information About Databases and Tables
	3.5 Using mysql in Batch Mode
	3.6 Examples of Common Queries
	3.6.1 The Maximum Value for a Column
	3.6.2 The Row Holding the Maximum of a Certain Column
	3.6.3 Maximum of Column per Group
	3.6.4 The Rows Holding the Group-wise Maximum of a Certain Column
	3.6.5 Using User-Defined Variables
	3.6.6 Using Foreign Keys
	3.6.7 Searching on Two Keys
	3.6.8 Calculating Visits Per Day
	3.6.9 Using AUTO_INCREMENT

	3.7 Using MySQL with Apache

	Chapter 4 MySQL Programs
	4.1 Overview of MySQL Programs
	4.2 Using MySQL Programs
	4.2.1 Invoking MySQL Programs
	4.2.2 Connecting to the MySQL Server
	4.2.3 Specifying Program Options
	4.2.4 Using Options on the Command Line
	4.2.5 Program Option Modifiers
	4.2.6 Using Option Files
	4.2.7 Command-Line Options that Affect Option-File Handling
	4.2.8 Using Options to Set Program Variables
	4.2.9 Option Defaults, Options Expecting Values, and the = Sign
	4.2.10 Setting Environment Variables

	4.3 MySQL Server and Server-Startup Programs
	4.3.1 mysqld — The MySQL Server
	4.3.2 mysqld_safe — MySQL Server Startup Script
	4.3.3 mysql.server — MySQL Server Startup Script
	4.3.4 mysqld_multi — Manage Multiple MySQL Servers

	4.4 MySQL Installation-Related Programs
	4.4.1 comp_err — Compile MySQL Error Message File
	4.4.2 make_win_bin_dist — Package MySQL Distribution as Zip Archive
	4.4.3 make_win_src_distribution — Create Source Distribution for Windows
	4.4.4 mysqlbug — Generate Bug Report
	4.4.5 mysql_fix_privilege_tables — Upgrade MySQL System Tables
	4.4.6 mysql_install_db — Initialize MySQL Data Directory
	4.4.7 mysql_secure_installation — Improve MySQL Installation Security
	4.4.8 mysql_tzinfo_to_sql — Load the Time Zone Tables
	4.4.9 mysql_upgrade — Check Tables for MySQL Upgrade

	4.5 MySQL Client Programs
	4.5.1 mysql — The MySQL Command-Line Tool
	4.5.1.1 mysql Options
	4.5.1.2 mysql Commands
	4.5.1.3 mysql Logging
	4.5.1.4 mysql Server-Side Help
	4.5.1.5 Executing SQL Statements from a Text File
	4.5.1.6 mysql Tips
	Input-Line Editing
	Displaying Query Results Vertically
	Using the --safe-updates Option
	Disabling mysql Auto-Reconnect

	4.5.2 mysqladmin — Client for Administering a MySQL Server
	4.5.3 mysqlcheck — A Table Maintenance Program
	4.5.4 mysqldump — A Database Backup Program
	4.5.5 mysqlimport — A Data Import Program
	4.5.6 mysqlshow — Display Database, Table, and Column Information

	4.6 MySQL Administrative and Utility Programs
	4.6.1 innochecksum — Offline InnoDB File Checksum Utility
	4.6.2 myisam_ftdump — Display Full-Text Index information
	4.6.3 myisamchk — MyISAM Table-Maintenance Utility
	4.6.3.1 myisamchk General Options
	4.6.3.2 myisamchk Check Options
	4.6.3.3 myisamchk Repair Options
	4.6.3.4 Other myisamchk Options
	4.6.3.5 Obtaining Table Information with myisamchk
	4.6.3.6 myisamchk Memory Usage

	4.6.4 myisamlog — Display MyISAM Log File Contents
	4.6.5 myisampack — Generate Compressed, Read-Only MyISAM Tables
	4.6.6 mysqlaccess — Client for Checking Access Privileges
	4.6.7 mysqlbinlog — Utility for Processing Binary Log Files
	4.6.8 mysqldumpslow — Summarize Slow Query Log Files
	4.6.9 mysqlhotcopy — A Database Backup Program
	4.6.10 mysqlmanager — The MySQL Instance Manager
	4.6.10.1 MySQL Instance Manager Command Options
	4.6.10.2 MySQL Instance Manager Configuration Files
	4.6.10.3 Starting the MySQL Server with MySQL Instance Manager
	4.6.10.4 Instance Manager User and Password Management
	4.6.10.5 MySQL Server Instance Status Monitoring
	4.6.10.6 Connecting to MySQL Instance Manager
	4.6.10.7 MySQL Instance Manager Commands

	4.6.11 mysql_convert_table_format — Convert Tables to Use a Given Storage Engine
	4.6.12 mysql_explain_log — Use EXPLAIN on Statements in Query Log
	4.6.13 mysql_find_rows — Extract SQL Statements from Files
	4.6.14 mysql_fix_extensions — Normalize Table File Name Extensions
	4.6.15 mysql_setpermission — Interactively Set Permissions in Grant Tables
	4.6.16 mysql_tableinfo — Generate Database Metadata
	4.6.17 mysql_waitpid — Kill Process and Wait for Its Termination
	4.6.18 mysql_zap — Kill Processes That Match a Pattern

	4.7 MySQL Program Development Utilities
	4.7.1 msql2mysql — Convert mSQL Programs for Use with MySQL
	4.7.2 mysql_config — Display Options for Compiling Clients
	4.7.3 my_print_defaults — Display Options from Option Files
	4.7.4 resolve_stack_dump — Resolve Numeric Stack Trace Dump to Symbols

	4.8 Miscellaneous Programs
	4.8.1 perror — Explain Error Codes
	4.8.2 replace — A String-Replacement Utility
	4.8.3 resolveip — Resolve Host name to IP Address or Vice Versa

	Chapter 5 MySQL Server Administration
	5.1 The MySQL Server
	5.1.1 Server Option and Variable Reference
	5.1.2 Server Configuration Defaults
	5.1.3 Server Command Options
	5.1.4 Server System Variables
	5.1.5 Using System Variables
	5.1.5.1 Structured System Variables
	5.1.5.2 Dynamic System Variables

	5.1.6 Server Status Variables
	5.1.7 Server SQL Modes
	5.1.8 Server-Side Help
	5.1.9 Server Response to Signals
	5.1.10 The Server Shutdown Process

	5.2 The MySQL Data Directory
	5.3 The mysql System Database
	5.4 MySQL Server Logs
	5.4.1 The Error Log
	5.4.2 The General Query Log
	5.4.3 The Binary Log
	5.4.4 The Slow Query Log
	5.4.5 Server Log Maintenance

	5.5 Running Multiple MySQL Instances on One Machine
	5.5.1 Setting Up Multiple Data Directories
	5.5.2 Running Multiple MySQL Instances on Windows
	5.5.2.1 Starting Multiple MySQL Instances at the Windows Command Line
	5.5.2.2 Starting Multiple MySQL Instances as Windows Services

	5.5.3 Running Multiple MySQL Instances on Unix
	5.5.4 Using Client Programs in a Multiple-Server Environment

	Chapter 6 Security
	6.1 General Security Issues
	6.1.1 Security Guidelines
	6.1.2 Keeping Passwords Secure
	6.1.2.1 End-User Guidelines for Password Security
	6.1.2.2 Administrator Guidelines for Password Security
	6.1.2.3 Passwords and Logging
	6.1.2.4 Password Hashing in MySQL
	6.1.2.5 Implications of Password Hashing Changes in MySQL 4.1 for Application Programs

	6.1.3 Making MySQL Secure Against Attackers
	6.1.4 Security-Related mysqld Options and Variables
	6.1.5 How to Run MySQL as a Normal User
	6.1.6 Security Issues with LOAD DATA LOCAL
	6.1.7 Client Programming Security Guidelines

	6.2 The MySQL Access Privilege System
	6.2.1 Privileges Provided by MySQL
	6.2.2 Grant Tables
	6.2.3 Specifying Account Names
	6.2.4 Access Control, Stage 1: Connection Verification
	6.2.5 Access Control, Stage 2: Request Verification
	6.2.6 When Privilege Changes Take Effect
	6.2.7 Troubleshooting Problems Connecting to MySQL

	6.3 MySQL User Account Management
	6.3.1 User Names and Passwords
	6.3.2 Adding User Accounts
	6.3.3 Removing User Accounts
	6.3.4 Setting Account Resource Limits
	6.3.5 Assigning Account Passwords
	6.3.6 Using Secure Connections
	6.3.6.1 OpenSSL Versus yaSSL
	6.3.6.2 Building MySQL with Support for Secure Connections
	6.3.6.3 Secure Connection Protocols and Ciphers
	6.3.6.4 Configuring MySQL to Use Secure Connections
	6.3.6.5 Command Options for Secure Connections

	6.3.7 Creating SSL Certificates and Keys Using openssl
	6.3.8 Connecting to MySQL Remotely from Windows with SSH
	6.3.9 SQL-Based MySQL Account Activity Auditing

	Chapter 7 Backup and Recovery
	7.1 Backup and Recovery Types
	7.2 Database Backup Methods
	7.3 Example Backup and Recovery Strategy
	7.3.1 Establishing a Backup Policy
	7.3.2 Using Backups for Recovery
	7.3.3 Backup Strategy Summary

	7.4 Using mysqldump for Backups
	7.4.1 Dumping Data in SQL Format with mysqldump
	7.4.2 Reloading SQL-Format Backups
	7.4.3 Dumping Data in Delimited-Text Format with mysqldump
	7.4.4 Reloading Delimited-Text Format Backups
	7.4.5 mysqldump Tips
	7.4.5.1 Making a Copy of a Database
	7.4.5.2 Copy a Database from one Server to Another
	7.4.5.3 Dumping Stored Programs
	7.4.5.4 Dumping Table Definitions and Content Separately
	7.4.5.5 Using mysqldump to Test for Upgrade Incompatibilities

	7.5 Point-in-Time (Incremental) Recovery Using the Binary Log
	7.5.1 Point-in-Time Recovery Using Event Times
	7.5.2 Point-in-Time Recovery Using Event Positions

	7.6 MyISAM Table Maintenance and Crash Recovery
	7.6.1 Using myisamchk for Crash Recovery
	7.6.2 How to Check MyISAM Tables for Errors
	7.6.3 How to Repair MyISAM Tables
	7.6.4 MyISAM Table Optimization
	7.6.5 Setting Up a MyISAM Table Maintenance Schedule

	Chapter 8 Optimization
	8.1 Optimization Overview
	8.2 Optimizing SQL Statements
	8.2.1 Optimizing SELECT Statements
	8.2.1.1 Speed of SELECT Statements
	8.2.1.2 How MySQL Optimizes WHERE Clauses
	8.2.1.3 Range Optimization
	The Range Access Method for Single-Part Indexes
	The Range Access Method for Multiple-Part Indexes

	8.2.1.4 Index Merge Optimization
	The Index Merge Intersection Access Algorithm
	The Index Merge Union Access Algorithm
	The Index Merge Sort-Union Access Algorithm

	8.2.1.5 Engine Condition Pushdown Optimization
	8.2.1.6 IS NULL Optimization
	8.2.1.7 LEFT JOIN and RIGHT JOIN Optimization
	8.2.1.8 Nested-Loop Join Algorithms
	8.2.1.9 Nested Join Optimization
	8.2.1.10 Outer Join Simplification
	8.2.1.11 ORDER BY Optimization
	8.2.1.12 GROUP BY Optimization
	Loose Index Scan
	Tight Index Scan

	8.2.1.13 DISTINCT Optimization
	8.2.1.14 Optimizing Subqueries with EXISTS Strategy
	8.2.1.15 LIMIT Query Optimization
	8.2.1.16 Row Constructor Expression Optimization
	8.2.1.17 How to Avoid Full Table Scans

	8.2.2 Optimizing DML Statements
	8.2.2.1 Speed of INSERT Statements
	8.2.2.2 Speed of UPDATE Statements
	8.2.2.3 Speed of DELETE Statements

	8.2.3 Optimizing Database Privileges
	8.2.4 Other Optimization Tips

	8.3 Optimization and Indexes
	8.3.1 How MySQL Uses Indexes
	8.3.2 Using Primary Keys
	8.3.3 Using Foreign Keys
	8.3.4 Column Indexes
	8.3.5 Multiple-Column Indexes
	8.3.6 Verifying Index Usage
	8.3.7 MyISAM Index Statistics Collection
	8.3.8 Comparison of B-Tree and Hash Indexes

	8.4 Optimizing Database Structure
	8.4.1 Optimizing Data Size
	8.4.2 Optimizing MySQL Data Types
	8.4.2.1 Optimizing for Numeric Data
	8.4.2.2 Optimizing for Character and String Types
	8.4.2.3 Optimizing for BLOB Types
	8.4.2.4 Using PROCEDURE ANALYSE

	8.4.3 Optimizing for Many Tables
	8.4.3.1 How MySQL Opens and Closes Tables
	8.4.3.2 Disadvantages of Creating Many Tables in the Same Database

	8.4.4 Internal Temporary Table Use in MySQL

	8.5 Optimizing for MyISAM Tables
	8.5.1 Optimizing MyISAM Queries
	8.5.2 Bulk Data Loading for MyISAM Tables
	8.5.3 Speed of REPAIR TABLE Statements

	8.6 Optimizing for InnoDB Tables
	8.6.1 Optimizing Storage Layout for InnoDB Tables
	8.6.2 Optimizing InnoDB Transaction Management
	8.6.3 Optimizing InnoDB Redo Logging
	8.6.4 Bulk Data Loading for InnoDB Tables
	8.6.5 Optimizing InnoDB Queries
	8.6.6 Optimizing InnoDB DDL Operations
	8.6.7 Optimizing InnoDB Disk I/O
	8.6.8 Optimizing InnoDB for Systems with Many Tables

	8.7 Optimizing for MEMORY Tables
	8.8 Understanding the Query Execution Plan
	8.8.1 Optimizing Queries with EXPLAIN
	8.8.2 EXPLAIN Output Format
	8.8.3 EXPLAIN EXTENDED Output Format
	8.8.4 Estimating Query Performance

	8.9 Controlling the Query Optimizer
	8.9.1 Controlling Query Plan Evaluation
	8.9.2 Index Hints

	8.10 Buffering and Caching
	8.10.1 The MyISAM Key Cache
	8.10.1.1 Shared Key Cache Access
	8.10.1.2 Multiple Key Caches
	8.10.1.3 Midpoint Insertion Strategy
	8.10.1.4 Index Preloading
	8.10.1.5 Key Cache Block Size
	8.10.1.6 Restructuring a Key Cache

	8.10.2 The InnoDB Buffer Pool
	8.10.3 The MySQL Query Cache
	8.10.3.1 How the Query Cache Operates
	8.10.3.2 Query Cache SELECT Options
	8.10.3.3 Query Cache Configuration
	8.10.3.4 Query Cache Status and Maintenance

	8.11 Optimizing Locking Operations
	8.11.1 Internal Locking Methods
	8.11.2 Table Locking Issues
	8.11.3 Concurrent Inserts
	8.11.4 External Locking

	8.12 Optimizing the MySQL Server
	8.12.1 System Factors and Startup Parameter Tuning
	8.12.2 Tuning Server Parameters
	8.12.3 Optimizing Disk I/O
	8.12.4 Using Symbolic Links
	8.12.4.1 Using Symbolic Links for Databases on Unix
	8.12.4.2 Using Symbolic Links for MyISAM Tables on Unix
	8.12.4.3 Using Symbolic Links for Databases on Windows

	8.12.5 Optimizing Memory Use
	8.12.5.1 How MySQL Uses Memory
	8.12.5.2 Enabling Large Page Support

	8.12.6 Optimizing Network Use
	8.12.6.1 How MySQL Uses Threads for Client Connections
	8.12.6.2 DNS Lookup Optimization and the Host Cache

	8.13 Measuring Performance (Benchmarking)
	8.13.1 Measuring the Speed of Expressions and Functions
	8.13.2 The MySQL Benchmark Suite
	8.13.3 Using Your Own Benchmarks

	8.14 Examining Thread Information
	8.14.1 Thread Command Values
	8.14.2 General Thread States
	8.14.3 Delayed-Insert Thread States
	8.14.4 Query Cache Thread States
	8.14.5 Replication Master Thread States
	8.14.6 Replication Slave I/O Thread States
	8.14.7 Replication Slave SQL Thread States
	8.14.8 Replication Slave Connection Thread States
	8.14.9 MySQL Cluster Thread States

	Chapter 9 Language Structure
	9.1 Literal Values
	9.1.1 String Literals
	9.1.2 Number Literals
	9.1.3 Date and Time Literals
	9.1.4 Hexadecimal Literals
	9.1.5 Boolean Literals
	9.1.6 Bit-Field Literals
	9.1.7 NULL Values

	9.2 Schema Object Names
	9.2.1 Identifier Qualifiers
	9.2.2 Identifier Case Sensitivity
	9.2.3 Function Name Parsing and Resolution

	9.3 Keywords and Reserved Words
	9.4 User-Defined Variables
	9.5 Expression Syntax
	9.6 Comment Syntax

	Chapter 10 Globalization
	10.1 Character Set Support
	10.1.1 Character Sets and Collations in General
	10.1.2 Character Sets and Collations in MySQL
	10.1.3 Specifying Character Sets and Collations
	10.1.3.1 Server Character Set and Collation
	10.1.3.2 Database Character Set and Collation
	10.1.3.3 Table Character Set and Collation
	10.1.3.4 Column Character Set and Collation
	10.1.3.5 Character String Literal Character Set and Collation
	10.1.3.6 National Character Set
	10.1.3.7 Examples of Character Set and Collation Assignment
	10.1.3.8 Compatibility with Other DBMSs

	10.1.4 Connection Character Sets and Collations
	10.1.5 Configuring the Character Set and Collation for Applications
	10.1.6 Character Set for Error Messages
	10.1.7 Collation Issues
	10.1.7.1 Collation Naming Conventions
	10.1.7.2 Using COLLATE in SQL Statements
	10.1.7.3 COLLATE Clause Precedence
	10.1.7.4 Collations Must Be for the Right Character Set
	10.1.7.5 Collation of Expressions
	10.1.7.6 The _bin and binary Collations
	10.1.7.7 The BINARY Operator
	10.1.7.8 Examples of the Effect of Collation

	10.1.8 String Repertoire
	10.1.9 Operations Affected by Character Set Support
	10.1.9.1 Result Strings
	10.1.9.2 CONVERT() and CAST()
	10.1.9.3 SHOW Statements and INFORMATION_SCHEMA

	10.1.10 Unicode Support
	10.1.10.1 The ucs2 Character Set (UCS-2 Unicode Encoding)
	10.1.10.2 The utf8 Character Set (3-Byte UTF-8 Unicode Encoding)

	10.1.11 UTF-8 for Metadata
	10.1.12 Column Character Set Conversion
	10.1.13 Character Sets and Collations That MySQL Supports
	10.1.13.1 Unicode Character Sets
	10.1.13.2 West European Character Sets
	10.1.13.3 Central European Character Sets
	10.1.13.4 South European and Middle East Character Sets
	10.1.13.5 Baltic Character Sets
	10.1.13.6 Cyrillic Character Sets
	10.1.13.7 Asian Character Sets
	The cp932 Character Set

	10.2 Setting the Error Message Language
	10.3 Adding a Character Set
	10.3.1 Character Definition Arrays
	10.3.2 String Collating Support for Complex Character Sets
	10.3.3 Multi-Byte Character Support for Complex Character Sets

	10.4 Adding a Collation to a Character Set
	10.4.1 Collation Implementation Types
	10.4.2 Choosing a Collation ID
	10.4.3 Adding a Simple Collation to an 8-Bit Character Set
	10.4.4 Adding a UCA Collation to a Unicode Character Set
	10.4.4.1 Defining a UCA Collation Using LDML Syntax
	10.4.4.2 LDML Syntax Supported in MySQL

	10.5 Character Set Configuration
	10.6 MySQL Server Time Zone Support
	10.6.1 Staying Current with Time Zone Changes
	10.6.2 Time Zone Leap Second Support

	10.7 MySQL Server Locale Support

	Chapter 11 Data Types
	11.1 Data Type Overview
	11.1.1 Numeric Type Overview
	11.1.2 Date and Time Type Overview
	11.1.3 String Type Overview

	11.2 Numeric Types
	11.2.1 Integer Types (Exact Value) - INTEGER, INT, SMALLINT, TINYINT, MEDIUMINT, BIGINT
	11.2.2 Fixed-Point Types (Exact Value) - DECIMAL, NUMERIC
	11.2.3 Floating-Point Types (Approximate Value) - FLOAT, DOUBLE
	11.2.4 Bit-Value Type - BIT
	11.2.5 Numeric Type Attributes
	11.2.6 Out-of-Range and Overflow Handling

	11.3 Date and Time Types
	11.3.1 The DATE, DATETIME, and TIMESTAMP Types
	11.3.2 The TIME Type
	11.3.3 The YEAR Type
	11.3.4 YEAR(2) Limitations and Migrating to YEAR(4)
	11.3.5 Automatic Initialization and Updating for TIMESTAMP
	11.3.6 Fractional Seconds in Time Values
	11.3.7 Conversion Between Date and Time Types
	11.3.8 Two-Digit Years in Dates

	11.4 String Types
	11.4.1 The CHAR and VARCHAR Types
	11.4.2 The BINARY and VARBINARY Types
	11.4.3 The BLOB and TEXT Types
	11.4.4 The ENUM Type
	11.4.5 The SET Type

	11.5 Extensions for Spatial Data
	11.5.1 Spatial Data Types
	11.5.2 The OpenGIS Geometry Model
	11.5.2.1 The Geometry Class Hierarchy
	11.5.2.2 Geometry Class
	11.5.2.3 Point Class
	11.5.2.4 Curve Class
	11.5.2.5 LineString Class
	11.5.2.6 Surface Class
	11.5.2.7 Polygon Class
	11.5.2.8 GeometryCollection Class
	11.5.2.9 MultiPoint Class
	11.5.2.10 MultiCurve Class
	11.5.2.11 MultiLineString Class
	11.5.2.12 MultiSurface Class
	11.5.2.13 MultiPolygon Class

	11.5.3 Using Spatial Data
	11.5.3.1 Supported Spatial Data Formats
	Well-Known Text (WKT) Format
	Well-Known Binary (WKB) Format

	11.5.3.2 Creating Spatial Columns
	11.5.3.3 Populating Spatial Columns
	11.5.3.4 Fetching Spatial Data
	11.5.3.5 Optimizing Spatial Analysis
	11.5.3.6 Creating Spatial Indexes
	11.5.3.7 Using Spatial Indexes

	11.6 Data Type Default Values
	11.7 Data Type Storage Requirements
	11.8 Choosing the Right Type for a Column
	11.9 Using Data Types from Other Database Engines

	Chapter 12 Functions and Operators
	12.1 Function and Operator Reference
	12.2 Type Conversion in Expression Evaluation
	12.3 Operators
	12.3.1 Operator Precedence
	12.3.2 Comparison Functions and Operators
	12.3.3 Logical Operators
	12.3.4 Assignment Operators

	12.4 Control Flow Functions
	12.5 String Functions
	12.5.1 String Comparison Functions
	12.5.2 Regular Expressions

	12.6 Numeric Functions and Operators
	12.6.1 Arithmetic Operators
	12.6.2 Mathematical Functions

	12.7 Date and Time Functions
	12.8 What Calendar Is Used By MySQL?
	12.9 Full-Text Search Functions
	12.9.1 Natural Language Full-Text Searches
	12.9.2 Boolean Full-Text Searches
	12.9.3 Full-Text Searches with Query Expansion
	12.9.4 Full-Text Stopwords
	12.9.5 Full-Text Restrictions
	12.9.6 Fine-Tuning MySQL Full-Text Search
	12.9.7 Adding a Collation for Full-Text Indexing

	12.10 Cast Functions and Operators
	12.11 Bit Functions and Operators
	12.12 Encryption and Compression Functions
	12.13 Information Functions
	12.14 Spatial Analysis Functions
	12.14.1 Spatial Function Reference
	12.14.2 Argument Handling by Spatial Functions
	12.14.3 Functions That Create Geometry Values from WKT Values
	12.14.4 Functions That Create Geometry Values from WKB Values
	12.14.5 MySQL-Specific Functions That Create Geometry Values
	12.14.6 Geometry Format Conversion Functions
	12.14.7 Geometry Property Functions
	12.14.7.1 General Geometry Property Functions
	12.14.7.2 Point Property Functions
	12.14.7.3 LineString and MultiLineString Property Functions
	12.14.7.4 Polygon and MultiPolygon Property Functions
	12.14.7.5 GeometryCollection Property Functions

	12.14.8 Spatial Operator Functions
	12.14.9 Functions That Test Spatial Relations Between Geometry Objects
	12.14.9.1 Spatial Relation Functions That Use Object Shapes
	12.14.9.2 Spatial Relation Functions That Use Minimum Bounding Rectangles (MBRs)
	12.14.9.3 MySQL-Specific Spatial Relation Functions That Use Minimum Bounding Rectangles (MBRs)

	12.15 Miscellaneous Functions
	12.16 GROUP BY (Aggregate) Functions
	12.16.1 GROUP BY (Aggregate) Function Descriptions
	12.16.2 GROUP BY Modifiers
	12.16.3 MySQL Handling of GROUP BY

	12.17 Precision Math
	12.17.1 Types of Numeric Values
	12.17.2 DECIMAL Data Type Characteristics
	12.17.3 Expression Handling
	12.17.4 Rounding Behavior
	12.17.5 Precision Math Examples

	Chapter 13 SQL Statement Syntax
	13.1 Data Definition Statements
	13.1.1 ALTER DATABASE Syntax
	13.1.2 ALTER FUNCTION Syntax
	13.1.3 ALTER PROCEDURE Syntax
	13.1.4 ALTER TABLE Syntax
	13.1.4.1 ALTER TABLE Examples

	13.1.5 ALTER VIEW Syntax
	13.1.6 CREATE DATABASE Syntax
	13.1.7 CREATE FUNCTION Syntax
	13.1.8 CREATE INDEX Syntax
	13.1.9 CREATE PROCEDURE and CREATE FUNCTION Syntax
	13.1.10 CREATE TABLE Syntax
	13.1.10.1 CREATE TABLE ... LIKE Syntax
	13.1.10.2 CREATE TABLE ... SELECT Syntax
	13.1.10.3 Using FOREIGN KEY Constraints
	13.1.10.4 Silent Column Specification Changes

	13.1.11 CREATE TRIGGER Syntax
	13.1.12 CREATE VIEW Syntax
	13.1.13 DROP DATABASE Syntax
	13.1.14 DROP FUNCTION Syntax
	13.1.15 DROP INDEX Syntax
	13.1.16 DROP PROCEDURE and DROP FUNCTION Syntax
	13.1.17 DROP TABLE Syntax
	13.1.18 DROP TRIGGER Syntax
	13.1.19 DROP VIEW Syntax
	13.1.20 RENAME TABLE Syntax
	13.1.21 TRUNCATE TABLE Syntax

	13.2 Data Manipulation Statements
	13.2.1 CALL Syntax
	13.2.2 DELETE Syntax
	13.2.3 DO Syntax
	13.2.4 HANDLER Syntax
	13.2.5 INSERT Syntax
	13.2.5.1 INSERT ... SELECT Syntax
	13.2.5.2 INSERT DELAYED Syntax
	13.2.5.3 INSERT ... ON DUPLICATE KEY UPDATE Syntax

	13.2.6 LOAD DATA INFILE Syntax
	13.2.7 REPLACE Syntax
	13.2.8 SELECT Syntax
	13.2.8.1 SELECT ... INTO Syntax
	13.2.8.2 JOIN Syntax
	13.2.8.3 UNION Syntax

	13.2.9 Subquery Syntax
	13.2.9.1 The Subquery as Scalar Operand
	13.2.9.2 Comparisons Using Subqueries
	13.2.9.3 Subqueries with ANY, IN, or SOME
	13.2.9.4 Subqueries with ALL
	13.2.9.5 Row Subqueries
	13.2.9.6 Subqueries with EXISTS or NOT EXISTS
	13.2.9.7 Correlated Subqueries
	13.2.9.8 Subqueries in the FROM Clause
	13.2.9.9 Subquery Errors
	13.2.9.10 Optimizing Subqueries
	13.2.9.11 Rewriting Subqueries as Joins

	13.2.10 UPDATE Syntax

	13.3 MySQL Transactional and Locking Statements
	13.3.1 START TRANSACTION, COMMIT, and ROLLBACK Syntax
	13.3.2 Statements That Cannot Be Rolled Back
	13.3.3 Statements That Cause an Implicit Commit
	13.3.4 SAVEPOINT, ROLLBACK TO SAVEPOINT, and RELEASE SAVEPOINT, and Syntax
	13.3.5 LOCK TABLES and UNLOCK TABLES Syntax
	13.3.5.1 Interaction of Table Locking and Transactions
	13.3.5.2 LOCK TABLES and Triggers
	13.3.5.3 Table-Locking Restrictions and Conditions

	13.3.6 SET TRANSACTION Syntax
	13.3.7 XA Transactions
	13.3.7.1 XA Transaction SQL Syntax
	13.3.7.2 XA Transaction States

	13.4 Replication Statements
	13.4.1 SQL Statements for Controlling Master Servers
	13.4.1.1 PURGE BINARY LOGS Syntax
	13.4.1.2 RESET MASTER Syntax
	13.4.1.3 SET sql_log_bin Syntax

	13.4.2 SQL Statements for Controlling Slave Servers
	13.4.2.1 CHANGE MASTER TO Syntax
	13.4.2.2 LOAD DATA FROM MASTER Syntax
	13.4.2.3 LOAD TABLE tbl_name FROM MASTER Syntax
	13.4.2.4 MASTER_POS_WAIT() Syntax
	13.4.2.5 RESET SLAVE Syntax
	13.4.2.6 SET GLOBAL sql_slave_skip_counter Syntax
	13.4.2.7 START SLAVE Syntax
	13.4.2.8 STOP SLAVE Syntax

	13.5 SQL Syntax for Prepared Statements
	13.5.1 PREPARE Syntax
	13.5.2 EXECUTE Syntax
	13.5.3 DEALLOCATE PREPARE Syntax

	13.6 MySQL Compound-Statement Syntax
	13.6.1 BEGIN ... END Compound-Statement Syntax
	13.6.2 Statement Label Syntax
	13.6.3 DECLARE Syntax
	13.6.4 Variables in Stored Programs
	13.6.4.1 Local Variable DECLARE Syntax
	13.6.4.2 Local Variable Scope and Resolution

	13.6.5 Flow Control Statements
	13.6.5.1 CASE Syntax
	13.6.5.2 IF Syntax
	13.6.5.3 ITERATE Syntax
	13.6.5.4 LEAVE Syntax
	13.6.5.5 LOOP Syntax
	13.6.5.6 REPEAT Syntax
	13.6.5.7 RETURN Syntax
	13.6.5.8 WHILE Syntax

	13.6.6 Cursors
	13.6.6.1 Cursor CLOSE Syntax
	13.6.6.2 Cursor DECLARE Syntax
	13.6.6.3 Cursor FETCH Syntax
	13.6.6.4 Cursor OPEN Syntax

	13.6.7 Condition Handling
	13.6.7.1 DECLARE ... CONDITION Syntax
	13.6.7.2 DECLARE ... HANDLER Syntax

	13.7 Database Administration Statements
	13.7.1 Account Management Statements
	13.7.1.1 CREATE USER Syntax
	13.7.1.2 DROP USER Syntax
	13.7.1.3 GRANT Syntax
	13.7.1.4 RENAME USER Syntax
	13.7.1.5 REVOKE Syntax
	13.7.1.6 SET PASSWORD Syntax

	13.7.2 Table Maintenance Statements
	13.7.2.1 ANALYZE TABLE Syntax
	13.7.2.2 BACKUP TABLE Syntax
	13.7.2.3 CHECK TABLE Syntax
	13.7.2.4 CHECKSUM TABLE Syntax
	13.7.2.5 OPTIMIZE TABLE Syntax
	13.7.2.6 REPAIR TABLE Syntax
	13.7.2.7 RESTORE TABLE Syntax

	13.7.3 User-Defined Function Statements
	13.7.3.1 CREATE FUNCTION Syntax for User-defined Functions
	13.7.3.2 DROP FUNCTION Syntax

	13.7.4 SET Syntax
	13.7.5 SHOW Syntax
	13.7.5.1 SHOW BINARY LOGS Syntax
	13.7.5.2 SHOW BINLOG EVENTS Syntax
	13.7.5.3 SHOW CHARACTER SET Syntax
	13.7.5.4 SHOW COLLATION Syntax
	13.7.5.5 SHOW COLUMNS Syntax
	13.7.5.6 SHOW CREATE DATABASE Syntax
	13.7.5.7 SHOW CREATE FUNCTION Syntax
	13.7.5.8 SHOW CREATE PROCEDURE Syntax
	13.7.5.9 SHOW CREATE TABLE Syntax
	13.7.5.10 SHOW CREATE VIEW Syntax
	13.7.5.11 SHOW DATABASES Syntax
	13.7.5.12 SHOW ENGINE Syntax
	13.7.5.13 SHOW ENGINES Syntax
	13.7.5.14 SHOW ERRORS Syntax
	13.7.5.15 SHOW FUNCTION CODE Syntax
	13.7.5.16 SHOW FUNCTION STATUS Syntax
	13.7.5.17 SHOW GRANTS Syntax
	13.7.5.18 SHOW INDEX Syntax
	13.7.5.19 SHOW INNODB STATUS Syntax
	13.7.5.20 SHOW LOGS Syntax
	13.7.5.21 SHOW MASTER STATUS Syntax
	13.7.5.22 SHOW MUTEX STATUS Syntax
	13.7.5.23 SHOW OPEN TABLES Syntax
	13.7.5.24 SHOW PRIVILEGES Syntax
	13.7.5.25 SHOW PROCEDURE CODE Syntax
	13.7.5.26 SHOW PROCEDURE STATUS Syntax
	13.7.5.27 SHOW PROCESSLIST Syntax
	13.7.5.28 SHOW PROFILE Syntax
	13.7.5.29 SHOW PROFILES Syntax
	13.7.5.30 SHOW SLAVE HOSTS Syntax
	13.7.5.31 SHOW SLAVE STATUS Syntax
	13.7.5.32 SHOW STATUS Syntax
	13.7.5.33 SHOW TABLE STATUS Syntax
	13.7.5.34 SHOW TABLES Syntax
	13.7.5.35 SHOW TRIGGERS Syntax
	13.7.5.36 SHOW VARIABLES Syntax
	13.7.5.37 SHOW WARNINGS Syntax

	13.7.6 Other Administrative Statements
	13.7.6.1 CACHE INDEX Syntax
	13.7.6.2 FLUSH Syntax
	13.7.6.3 KILL Syntax
	13.7.6.4 LOAD INDEX INTO CACHE Syntax
	13.7.6.5 RESET Syntax

	13.8 MySQL Utility Statements
	13.8.1 DESCRIBE Syntax
	13.8.2 EXPLAIN Syntax
	13.8.3 HELP Syntax
	13.8.4 USE Syntax

	Chapter 14 Storage Engines
	14.1 The MyISAM Storage Engine
	14.1.1 MyISAM Startup Options
	14.1.2 Space Needed for Keys
	14.1.3 MyISAM Table Storage Formats
	14.1.3.1 Static (Fixed-Length) Table Characteristics
	14.1.3.2 Dynamic Table Characteristics
	14.1.3.3 Compressed Table Characteristics

	14.1.4 MyISAM Table Problems
	14.1.4.1 Corrupted MyISAM Tables
	14.1.4.2 Problems from Tables Not Being Closed Properly

	14.2 The InnoDB Storage Engine
	14.2.1 Configuring InnoDB
	14.2.1.1 Initializing InnoDB
	14.2.1.2 Dealing with InnoDB Initialization Problems
	14.2.1.3 Using Raw Devices for the System Tablespace
	14.2.1.4 InnoDB File-Per-Table Tablespaces

	14.2.2 InnoDB Startup Options and System Variables
	14.2.3 Creating and Using InnoDB Tables
	14.2.3.1 How to Use Transactions in InnoDB with Different APIs
	14.2.3.2 Converting Tables from Other Storage Engines to InnoDB
	14.2.3.3 AUTO_INCREMENT Handling in InnoDB
	14.2.3.4 InnoDB and FOREIGN KEY Constraints
	14.2.3.5 InnoDB and MySQL Replication

	14.2.4 Changing the Number or Size of InnoDB Redo Log Files
	14.2.5 Resizing the InnoDB System Tablespace
	14.2.6 Backing Up and Recovering an InnoDB Database
	14.2.6.1 The InnoDB Recovery Process
	14.2.6.2 Forcing InnoDB Recovery
	14.2.6.3 InnoDB Checkpoints

	14.2.7 Moving an InnoDB Database to Another Machine
	14.2.8 InnoDB Transaction Model and Locking
	14.2.8.1 InnoDB Lock Modes
	14.2.8.2 InnoDB Record, Gap, and Next-Key Locks
	14.2.8.3 Avoiding the Phantom Problem Using Next-Key Locking
	14.2.8.4 Consistent Nonlocking Reads
	14.2.8.5 SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE Locking Reads
	14.2.8.6 Locks Set by Different SQL Statements in InnoDB
	14.2.8.7 Implicit Transaction Commit and Rollback
	14.2.8.8 Deadlock Detection and Rollback
	14.2.8.9 How to Cope with Deadlocks

	14.2.9 InnoDB Multi-Versioning
	14.2.10 InnoDB Table and Index Structures
	14.2.10.1 Clustered and Secondary Indexes
	14.2.10.2 Physical Structure of an InnoDB Index
	14.2.10.3 Insert Buffering
	14.2.10.4 Adaptive Hash Indexes
	14.2.10.5 Physical Row Structure

	14.2.11 InnoDB Disk I/O and File Space Management
	14.2.11.1 InnoDB Disk I/O
	14.2.11.2 File Space Management
	14.2.11.3 Defragmenting a Table

	14.2.12 InnoDB Error Handling
	14.2.13 InnoDB Troubleshooting
	14.2.13.1 SHOW ENGINE INNODB STATUS and the InnoDB Monitors
	InnoDB Standard Monitor and Lock Monitor Output
	InnoDB Tablespace Monitor Output
	InnoDB Table Monitor Output

	14.2.13.2 InnoDB General Troubleshooting
	14.2.13.3 Troubleshooting InnoDB Data Dictionary Operations

	14.2.14 Limits on InnoDB Tables

	14.3 The MERGE Storage Engine
	14.3.1 MERGE Table Advantages and Disadvantages
	14.3.2 MERGE Table Problems

	14.4 The MEMORY (HEAP) Storage Engine
	14.5 The BDB (BerkeleyDB) Storage Engine
	14.5.1 Operating Systems Supported by BDB
	14.5.2 Installing BDB
	14.5.3 BDB Startup Options
	14.5.4 Characteristics of BDB Tables
	14.5.5 Restrictions on BDB Tables
	14.5.6 Errors That May Occur When Using BDB Tables

	14.6 The EXAMPLE Storage Engine
	14.7 The FEDERATED Storage Engine
	14.7.1 Description of the FEDERATED Storage Engine
	14.7.2 How to Use FEDERATED Tables
	14.7.3 Limitations of the FEDERATED Storage Engine

	14.8 The ARCHIVE Storage Engine
	14.9 The CSV Storage Engine
	14.10 The BLACKHOLE Storage Engine

	Chapter 15 High Availability and Scalability
	15.1 Using MySQL within an Amazon EC2 Instance
	15.1.1 Setting Up MySQL on an EC2 AMI
	15.1.2 EC2 Instance Limitations
	15.1.3 Deploying a MySQL Database Using EC2

	15.2 Using ZFS Replication
	15.2.1 Using ZFS for File System Replication
	15.2.2 Configuring MySQL for ZFS Replication
	15.2.3 Handling MySQL Recovery with ZFS

	15.3 Using MySQL with memcached
	15.3.1 Installing memcached
	15.3.2 Using memcached
	15.3.2.1 memcached Deployment
	15.3.2.2 Using Namespaces
	15.3.2.3 Data Expiry
	15.3.2.4 memcached Hashing/Distribution Types
	15.3.2.5 Using memcached and DTrace
	15.3.2.6 Memory Allocation within memcached
	15.3.2.7 memcached Thread Support
	15.3.2.8 memcached Logs

	15.3.3 Developing a memcached Application
	15.3.3.1 Basic memcached Operations
	15.3.3.2 Using memcached as a MySQL Caching Layer
	15.3.3.3 Using libmemcached with C and C++
	libmemcached Base Functions
	libmemcached Server Functions
	libmemcached Set Functions
	libmemcached Get Functions
	Controlling libmemcached Behaviors
	libmemcached Command-Line Utilities

	15.3.3.4 Using MySQL and memcached with Perl
	15.3.3.5 Using MySQL and memcached with Python
	15.3.3.6 Using MySQL and memcached with PHP
	15.3.3.7 Using MySQL and memcached with Ruby
	15.3.3.8 Using MySQL and memcached with Java
	15.3.3.9 Using the memcached TCP Text Protocol

	15.3.4 Getting memcached Statistics
	15.3.4.1 memcached General Statistics
	15.3.4.2 memcached Slabs Statistics
	15.3.4.3 memcached Item Statistics
	15.3.4.4 memcached Size Statistics
	15.3.4.5 memcached Detail Statistics
	15.3.4.6 Using memcached-tool

	15.3.5 memcached FAQ

	Chapter 16 Replication
	16.1 Replication Configuration
	16.1.1 How to Set Up Replication
	16.1.1.1 Setting the Replication Master Configuration
	16.1.1.2 Setting the Replication Slave Configuration
	16.1.1.3 Creating a User for Replication
	16.1.1.4 Obtaining the Replication Master Binary Log Coordinates
	16.1.1.5 Creating a Data Snapshot Using mysqldump
	16.1.1.6 Creating a Data Snapshot Using Raw Data Files
	16.1.1.7 Setting Up Replication with New Master and Slaves
	16.1.1.8 Setting Up Replication with Existing Data
	16.1.1.9 Introducing Additional Slaves to an Existing Replication Environment
	16.1.1.10 Setting the Master Configuration on the Slave

	16.1.2 Replication and Binary Logging Options and Variables
	16.1.2.1 Replication and Binary Logging Option and Variable Reference
	16.1.2.2 Replication Master Options and Variables
	16.1.2.3 Replication Slave Options and Variables
	16.1.2.4 Binary Log Options and Variables

	16.1.3 Common Replication Administration Tasks
	16.1.3.1 Checking Replication Status
	16.1.3.2 Pausing Replication on the Slave

	16.2 Replication Implementation
	16.2.1 Replication Implementation Details
	16.2.2 Replication Relay and Status Logs
	16.2.2.1 The Slave Relay Log
	16.2.2.2 Slave Status Logs

	16.2.3 How Servers Evaluate Replication Filtering Rules
	16.2.3.1 Evaluation of Database-Level Replication and Binary Logging Options
	16.2.3.2 Evaluation of Table-Level Replication Options
	16.2.3.3 Replication Rule Application

	16.3 Replication Solutions
	16.3.1 Using Replication for Backups
	16.3.1.1 Backing Up a Slave Using mysqldump
	16.3.1.2 Backing Up Raw Data from a Slave

	16.3.2 Using Replication with Different Master and Slave Storage Engines
	16.3.3 Using Replication for Scale-Out
	16.3.4 Replicating Different Databases to Different Slaves
	16.3.5 Improving Replication Performance
	16.3.6 Switching Masters During Failover
	16.3.7 Setting Up Replication to Use Secure Connections

	16.4 Replication Notes and Tips
	16.4.1 Replication Features and Issues
	16.4.1.1 Replication and AUTO_INCREMENT
	16.4.1.2 Replication and Character Sets
	16.4.1.3 Replication and CHECKSUM TABLE
	16.4.1.4 Replication of CREATE TABLE ... SELECT Statements
	16.4.1.5 Replication of DROP ... IF EXISTS Statements
	16.4.1.6 Replication and DIRECTORY Table Options
	16.4.1.7 Replication and Floating-Point Values
	16.4.1.8 Replication and FLUSH
	16.4.1.9 Replication and System Functions
	16.4.1.10 Replication and LIMIT
	16.4.1.11 Replication and LOAD Operations
	16.4.1.12 Replication and the Slow Query Log
	16.4.1.13 Replication and REPAIR TABLE
	16.4.1.14 Replication and Master or Slave Shutdowns
	16.4.1.15 Replication and MEMORY Tables
	16.4.1.16 Replication and Temporary Tables
	16.4.1.17 Replication of the mysql System Database
	16.4.1.18 Replication and User Privileges
	16.4.1.19 Replication and the Query Optimizer
	16.4.1.20 Replication and Reserved Words
	16.4.1.21 Slave Errors During Replication
	16.4.1.22 Replication and Server SQL Mode
	16.4.1.23 Replication Retries and Timeouts
	16.4.1.24 Replication and TIMESTAMP
	16.4.1.25 Replication and Time Zones
	16.4.1.26 Replication and Transactions
	16.4.1.27 Replication and Triggers
	16.4.1.28 Replication and Views
	16.4.1.29 Replication and Variables

	16.4.2 Replication Compatibility Between MySQL Versions
	16.4.3 Upgrading a Replication Setup
	16.4.4 Troubleshooting Replication
	16.4.5 How to Report Replication Bugs or Problems

	Chapter 17 MySQL Cluster
	17.1 MySQL Cluster Overview
	17.1.1 MySQL Cluster Core Concepts
	17.1.2 MySQL Cluster Nodes, Node Groups, Replicas, and Partitions
	17.1.3 MySQL Cluster Hardware, Software, and Networking Requirements
	17.1.4 What is New in MySQL Cluster
	17.1.5 Known Limitations of MySQL Cluster
	17.1.5.1 Noncompliance with SQL Syntax in MySQL Cluster
	17.1.5.2 Limits and Differences of MySQL Cluster from Standard MySQL Limits
	17.1.5.3 Limits Relating to Transaction Handling in MySQL Cluster
	17.1.5.4 MySQL Cluster Error Handling
	17.1.5.5 Limits Associated with Database Objects in MySQL Cluster
	17.1.5.6 Unsupported or Missing Features in MySQL Cluster
	17.1.5.7 Limitations Relating to Performance in MySQL Cluster
	17.1.5.8 Issues Exclusive to MySQL Cluster
	17.1.5.9 Limitations Relating to Multiple MySQL Cluster Nodes
	17.1.5.10 Previous MySQL Cluster Issues Resolved in MySQL 5.0

	17.2 MySQL Cluster Installation and Upgrades
	17.2.1 Installing MySQL Cluster on Linux
	17.2.1.1 Installing a MySQL Cluster Binary Release on Linux
	17.2.1.2 Installing MySQL Cluster from RPM
	17.2.1.3 Building MySQL Cluster from Source on Linux

	17.2.2 Initial Configuration of MySQL Cluster
	17.2.3 Initial Startup of MySQL Cluster
	17.2.4 MySQL Cluster Example with Tables and Data
	17.2.5 Safe Shutdown and Restart of MySQL Cluster
	17.2.6 Upgrading and Downgrading MySQL Cluster

	17.3 MySQL Cluster Configuration
	17.3.1 Quick Test Setup of MySQL Cluster
	17.3.2 Overview of MySQL Cluster Configuration Parameters, Options, and Variables
	17.3.2.1 MySQL Cluster Data Node Configuration Parameters
	17.3.2.2 MySQL Cluster Management Node Configuration Parameters
	17.3.2.3 MySQL Cluster SQL Node and API Node Configuration Parameters
	17.3.2.4 Other MySQL Cluster Configuration Parameters
	17.3.2.5 MySQL Cluster mysqld Option and Variable Reference

	17.3.3 MySQL Cluster Configuration Files
	17.3.3.1 MySQL Cluster Configuration: Basic Example
	17.3.3.2 MySQL Cluster Connection Strings
	17.3.3.3 Defining Computers in a MySQL Cluster
	17.3.3.4 Defining a MySQL Cluster Management Server
	17.3.3.5 Defining MySQL Cluster Data Nodes
	17.3.3.6 Defining SQL and Other API Nodes in a MySQL Cluster
	17.3.3.7 MySQL Server Options and Variables for MySQL Cluster
	mysqld Command Options for MySQL Cluster
	MySQL Cluster System Variables
	MySQL Cluster Status Variables

	17.3.3.8 MySQL Cluster TCP/IP Connections
	17.3.3.9 MySQL Cluster TCP/IP Connections Using Direct Connections
	17.3.3.10 MySQL Cluster Shared-Memory Connections
	17.3.3.11 SCI Transport Connections in MySQL Cluster
	17.3.3.12 Configuring MySQL Cluster Parameters for Local Checkpoints

	17.3.4 Using High-Speed Interconnects with MySQL Cluster
	17.3.4.1 Configuring MySQL Cluster to use SCI Sockets
	17.3.4.2 MySQL Cluster Interconnects and Performance

	17.4 MySQL Cluster Programs
	17.4.1 ndbd — The MySQL Cluster Data Node Daemon
	17.4.2 ndb_mgmd — The MySQL Cluster Management Server Daemon
	17.4.3 ndb_mgm — The MySQL Cluster Management Client
	17.4.4 ndb_config — Extract MySQL Cluster Configuration Information
	17.4.5 ndb_cpcd — Automate Testing for NDB Development
	17.4.6 ndb_delete_all — Delete All Rows from an NDB Table
	17.4.7 ndb_desc — Describe NDB Tables
	17.4.8 ndb_drop_index — Drop Index from an NDB Table
	17.4.9 ndb_drop_table — Drop an NDB Table
	17.4.10 ndb_error_reporter — NDB Error-Reporting Utility
	17.4.11 ndb_print_backup_file — Print NDB Backup File Contents
	17.4.12 ndb_print_schema_file — Print NDB Schema File Contents
	17.4.13 ndb_print_sys_file — Print NDB System File Contents
	17.4.14 ndb_restore — Restore a MySQL Cluster Backup
	17.4.15 ndb_select_all — Print Rows from an NDB Table
	17.4.16 ndb_select_count — Print Row Counts for NDB Tables
	17.4.17 ndb_show_tables — Display List of NDB Tables
	17.4.18 ndb_size.pl — NDBCLUSTER Size Requirement Estimator
	17.4.19 ndb_waiter — Wait for MySQL Cluster to Reach a Given Status
	17.4.20 Options Common to MySQL Cluster Programs — Options Common to MySQL Cluster Programs

	17.5 Management of MySQL Cluster
	17.5.1 Summary of MySQL Cluster Start Phases
	17.5.2 Commands in the MySQL Cluster Management Client
	17.5.3 Online Backup of MySQL Cluster
	17.5.3.1 MySQL Cluster Backup Concepts
	17.5.3.2 Using The MySQL Cluster Management Client to Create a Backup
	17.5.3.3 Configuration for MySQL Cluster Backups
	17.5.3.4 MySQL Cluster Backup Troubleshooting

	17.5.4 MySQL Server Usage for MySQL Cluster
	17.5.5 Performing a Rolling Restart of a MySQL Cluster
	17.5.6 Event Reports Generated in MySQL Cluster
	17.5.6.1 MySQL Cluster Logging Management Commands
	17.5.6.2 MySQL Cluster Log Events
	17.5.6.3 Using CLUSTERLOG STATISTICS in the MySQL Cluster Management Client

	17.5.7 MySQL Cluster Log Messages
	17.5.7.1 MySQL Cluster: Messages in the Cluster Log
	17.5.7.2 MySQL Cluster Log Startup Messages
	17.5.7.3 MySQL Cluster: NDB Transporter Errors

	17.5.8 MySQL Cluster Single User Mode
	17.5.9 Quick Reference: MySQL Cluster SQL Statements
	17.5.10 MySQL Cluster Security Issues
	17.5.10.1 MySQL Cluster Security and Networking Issues
	17.5.10.2 MySQL Cluster and MySQL Privileges
	17.5.10.3 MySQL Cluster and MySQL Security Procedures

	Chapter 18 Stored Programs and Views
	18.1 Defining Stored Programs
	18.2 Using Stored Routines (Procedures and Functions)
	18.2.1 Stored Routine Syntax
	18.2.2 Stored Routines and MySQL Privileges
	18.2.3 Stored Routine Metadata
	18.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()

	18.3 Using Triggers
	18.3.1 Trigger Syntax and Examples
	18.3.2 Trigger Metadata

	18.4 Using Views
	18.4.1 View Syntax
	18.4.2 View Processing Algorithms
	18.4.3 Updatable and Insertable Views
	18.4.4 The View WITH CHECK OPTION Clause
	18.4.5 View Metadata

	18.5 Access Control for Stored Programs and Views
	18.6 Binary Logging of Stored Programs

	Chapter 19 INFORMATION_SCHEMA Tables
	19.1 The INFORMATION_SCHEMA CHARACTER_SETS Table
	19.2 The INFORMATION_SCHEMA COLLATIONS Table
	19.3 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
	19.4 The INFORMATION_SCHEMA COLUMNS Table
	19.5 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
	19.6 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
	19.7 The INFORMATION_SCHEMA PROFILING Table
	19.8 The INFORMATION_SCHEMA ROUTINES Table
	19.9 The INFORMATION_SCHEMA SCHEMATA Table
	19.10 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
	19.11 The INFORMATION_SCHEMA STATISTICS Table
	19.12 The INFORMATION_SCHEMA TABLES Table
	19.13 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
	19.14 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
	19.15 The INFORMATION_SCHEMA TRIGGERS Table
	19.16 The INFORMATION_SCHEMA USER_PRIVILEGES Table
	19.17 The INFORMATION_SCHEMA VIEWS Table
	19.18 Extensions to SHOW Statements

	Chapter 20 Connectors and APIs
	20.1 MySQL Connector/ODBC
	20.2 MySQL Connector/Net
	20.3 MySQL Connector/J
	20.4 MySQL Connector/C
	20.5 libmysqld, the Embedded MySQL Server Library
	20.6 MySQL C API
	20.6.1 MySQL C API Implementations
	20.6.2 Simultaneous MySQL Server and Connector/C Installations
	20.6.3 Example C API Client Programs
	20.6.4 Building and Running C API Client Programs
	20.6.4.1 Building C API Client Programs
	20.6.4.2 Writing C API Threaded Client Programs
	20.6.4.3 Running C API Client Programs
	20.6.4.4 C API Server and Client Library Versions

	20.6.5 C API Data Structures
	20.6.6 C API Function Overview
	20.6.7 C API Function Descriptions
	20.6.7.1 mysql_affected_rows()
	20.6.7.2 mysql_autocommit()
	20.6.7.3 mysql_change_user()
	20.6.7.4 mysql_character_set_name()
	20.6.7.5 mysql_close()
	20.6.7.6 mysql_commit()
	20.6.7.7 mysql_connect()
	20.6.7.8 mysql_create_db()
	20.6.7.9 mysql_data_seek()
	20.6.7.10 mysql_debug()
	20.6.7.11 mysql_drop_db()
	20.6.7.12 mysql_dump_debug_info()
	20.6.7.13 mysql_eof()
	20.6.7.14 mysql_errno()
	20.6.7.15 mysql_error()
	20.6.7.16 mysql_escape_string()
	20.6.7.17 mysql_fetch_field()
	20.6.7.18 mysql_fetch_field_direct()
	20.6.7.19 mysql_fetch_fields()
	20.6.7.20 mysql_fetch_lengths()
	20.6.7.21 mysql_fetch_row()
	20.6.7.22 mysql_field_count()
	20.6.7.23 mysql_field_seek()
	20.6.7.24 mysql_field_tell()
	20.6.7.25 mysql_free_result()
	20.6.7.26 mysql_get_character_set_info()
	20.6.7.27 mysql_get_client_info()
	20.6.7.28 mysql_get_client_version()
	20.6.7.29 mysql_get_host_info()
	20.6.7.30 mysql_get_proto_info()
	20.6.7.31 mysql_get_server_info()
	20.6.7.32 mysql_get_server_version()
	20.6.7.33 mysql_get_ssl_cipher()
	20.6.7.34 mysql_hex_string()
	20.6.7.35 mysql_info()
	20.6.7.36 mysql_init()
	20.6.7.37 mysql_insert_id()
	20.6.7.38 mysql_kill()
	20.6.7.39 mysql_library_end()
	20.6.7.40 mysql_library_init()
	20.6.7.41 mysql_list_dbs()
	20.6.7.42 mysql_list_fields()
	20.6.7.43 mysql_list_processes()
	20.6.7.44 mysql_list_tables()
	20.6.7.45 mysql_more_results()
	20.6.7.46 mysql_next_result()
	20.6.7.47 mysql_num_fields()
	20.6.7.48 mysql_num_rows()
	20.6.7.49 mysql_options()
	20.6.7.50 mysql_ping()
	20.6.7.51 mysql_query()
	20.6.7.52 mysql_real_connect()
	20.6.7.53 mysql_real_escape_string()
	20.6.7.54 mysql_real_query()
	20.6.7.55 mysql_refresh()
	20.6.7.56 mysql_reload()
	20.6.7.57 mysql_rollback()
	20.6.7.58 mysql_row_seek()
	20.6.7.59 mysql_row_tell()
	20.6.7.60 mysql_select_db()
	20.6.7.61 mysql_set_character_set()
	20.6.7.62 mysql_set_local_infile_default()
	20.6.7.63 mysql_set_local_infile_handler()
	20.6.7.64 mysql_set_server_option()
	20.6.7.65 mysql_shutdown()
	20.6.7.66 mysql_sqlstate()
	20.6.7.67 mysql_ssl_set()
	20.6.7.68 mysql_stat()
	20.6.7.69 mysql_store_result()
	20.6.7.70 mysql_thread_id()
	20.6.7.71 mysql_use_result()
	20.6.7.72 mysql_warning_count()

	20.6.8 C API Prepared Statements
	20.6.9 C API Prepared Statement Data Structures
	20.6.9.1 C API Prepared Statement Type Codes
	20.6.9.2 C API Prepared Statement Type Conversions

	20.6.10 C API Prepared Statement Function Overview
	20.6.11 C API Prepared Statement Function Descriptions
	20.6.11.1 mysql_stmt_affected_rows()
	20.6.11.2 mysql_stmt_attr_get()
	20.6.11.3 mysql_stmt_attr_set()
	20.6.11.4 mysql_stmt_bind_param()
	20.6.11.5 mysql_stmt_bind_result()
	20.6.11.6 mysql_stmt_close()
	20.6.11.7 mysql_stmt_data_seek()
	20.6.11.8 mysql_stmt_errno()
	20.6.11.9 mysql_stmt_error()
	20.6.11.10 mysql_stmt_execute()
	20.6.11.11 mysql_stmt_fetch()
	20.6.11.12 mysql_stmt_fetch_column()
	20.6.11.13 mysql_stmt_field_count()
	20.6.11.14 mysql_stmt_free_result()
	20.6.11.15 mysql_stmt_init()
	20.6.11.16 mysql_stmt_insert_id()
	20.6.11.17 mysql_stmt_num_rows()
	20.6.11.18 mysql_stmt_param_count()
	20.6.11.19 mysql_stmt_param_metadata()
	20.6.11.20 mysql_stmt_prepare()
	20.6.11.21 mysql_stmt_reset()
	20.6.11.22 mysql_stmt_result_metadata()
	20.6.11.23 mysql_stmt_row_seek()
	20.6.11.24 mysql_stmt_row_tell()
	20.6.11.25 mysql_stmt_send_long_data()
	20.6.11.26 mysql_stmt_sqlstate()
	20.6.11.27 mysql_stmt_store_result()

	20.6.12 C API Threaded Function Descriptions
	20.6.12.1 my_init()
	20.6.12.2 mysql_thread_end()
	20.6.12.3 mysql_thread_init()
	20.6.12.4 mysql_thread_safe()

	20.6.13 C API Embedded Server Function Descriptions
	20.6.13.1 mysql_server_init()
	20.6.13.2 mysql_server_end()

	20.6.14 Common Questions and Problems When Using the C API
	20.6.14.1 Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns Success
	20.6.14.2 What Results You Can Get from a Query
	20.6.14.3 How to Get the Unique ID for the Last Inserted Row

	20.6.15 Controlling Automatic Reconnection Behavior
	20.6.16 C API Support for Multiple Statement Execution
	20.6.17 C API Prepared Statement Problems
	20.6.18 C API Prepared Statement Handling of Date and Time Values
	20.6.19 C API Support for Prepared CALL Statements

	20.7 MySQL PHP API
	20.8 MySQL Perl API
	20.9 MySQL Python API
	20.10 MySQL Ruby APIs
	20.10.1 The MySQL/Ruby API
	20.10.2 The Ruby/MySQL API

	20.11 MySQL Tcl API
	20.12 MySQL Eiffel Wrapper

	Chapter 21 Extending MySQL
	21.1 MySQL Internals
	21.1.1 MySQL Threads
	21.1.2 The MySQL Test Suite

	21.2 Adding New Functions to MySQL
	21.2.1 Features of the User-Defined Function Interface
	21.2.2 Adding a New User-Defined Function
	21.2.2.1 UDF Calling Sequences for Simple Functions
	21.2.2.2 UDF Calling Sequences for Aggregate Functions
	21.2.2.3 UDF Argument Processing
	21.2.2.4 UDF Return Values and Error Handling
	21.2.2.5 UDF Compiling and Installing
	21.2.2.6 UDF Security Precautions

	21.2.3 Adding a New Native Function

	21.3 Debugging and Porting MySQL
	21.3.1 Debugging a MySQL Server
	21.3.1.1 Compiling MySQL for Debugging
	21.3.1.2 Creating Trace Files
	21.3.1.3 Using pdb to create a Windows crashdump
	21.3.1.4 Debugging mysqld under gdb
	21.3.1.5 Using a Stack Trace
	21.3.1.6 Using Server Logs to Find Causes of Errors in mysqld
	21.3.1.7 Making a Test Case If You Experience Table Corruption

	21.3.2 Debugging a MySQL Client
	21.3.3 The DBUG Package

	Chapter 22 MySQL Enterprise Edition
	22.1 MySQL Enterprise Monitor Overview
	22.2 MySQL Enterprise Backup Overview
	22.3 MySQL Enterprise Security Overview
	22.4 MySQL Enterprise Encryption Overview
	22.5 MySQL Enterprise Audit Overview
	22.6 MySQL Enterprise Firewall Overview
	22.7 MySQL Enterprise Thread Pool Overview

	Appendix A MySQL 5.0 Frequently Asked Questions
	A.1 MySQL 5.0 FAQ: General
	A.2 MySQL 5.0 FAQ: Storage Engines
	A.3 MySQL 5.0 FAQ: Server SQL Mode
	A.4 MySQL 5.0 FAQ: Stored Procedures and Functions
	A.5 MySQL 5.0 FAQ: Triggers
	A.6 MySQL 5.0 FAQ: Views
	A.7 MySQL 5.0 FAQ: INFORMATION_SCHEMA
	A.8 MySQL 5.0 FAQ: Migration
	A.9 MySQL 5.0 FAQ: Security
	A.10 MySQL 5.0 FAQ: MySQL Cluster
	A.11 MySQL 5.0 FAQ: MySQL Chinese, Japanese, and Korean Character Sets
	A.12 MySQL 5.0 FAQ: Connectors & APIs
	A.13 MySQL 5.0 FAQ: Replication

	Appendix B Errors, Error Codes, and Common Problems
	B.1 Sources of Error Information
	B.2 Types of Error Values
	B.3 Server Error Codes and Messages
	B.4 Client Error Codes and Messages
	B.5 Problems and Common Errors
	B.5.1 How to Determine What Is Causing a Problem
	B.5.2 Common Errors When Using MySQL Programs
	B.5.2.1 Access denied
	B.5.2.2 Can't connect to [local] MySQL server
	Connection to MySQL Server Failing on Windows

	B.5.2.3 Lost connection to MySQL server
	B.5.2.4 Client does not support authentication protocol
	B.5.2.5 Password Fails When Entered Interactively
	B.5.2.6 Host 'host_name' is blocked
	B.5.2.7 Too many connections
	B.5.2.8 Out of memory
	B.5.2.9 MySQL server has gone away
	B.5.2.10 Packet Too Large
	B.5.2.11 Communication Errors and Aborted Connections
	B.5.2.12 The table is full
	B.5.2.13 Can't create/write to file
	B.5.2.14 Commands out of sync
	B.5.2.15 Ignoring user
	B.5.2.16 Table 'tbl_name' doesn't exist
	B.5.2.17 Can't initialize character set
	B.5.2.18 File Not Found and Similar Errors
	B.5.2.19 Table-Corruption Issues

	B.5.3 Administration-Related Issues
	B.5.3.1 Problems with File Permissions
	B.5.3.2 How to Reset the Root Password
	Resetting the Root Password: Windows Systems
	Resetting the Root Password: Unix and Unix-Like Systems
	Resetting the Root Password: Generic Instructions

	B.5.3.3 What to Do If MySQL Keeps Crashing
	B.5.3.4 How MySQL Handles a Full Disk
	B.5.3.5 Where MySQL Stores Temporary Files
	B.5.3.6 How to Protect or Change the MySQL Unix Socket File
	B.5.3.7 Time Zone Problems

	B.5.4 Query-Related Issues
	B.5.4.1 Case Sensitivity in String Searches
	B.5.4.2 Problems Using DATE Columns
	B.5.4.3 Problems with NULL Values
	B.5.4.4 Problems with Column Aliases
	B.5.4.5 Rollback Failure for Nontransactional Tables
	B.5.4.6 Deleting Rows from Related Tables
	B.5.4.7 Solving Problems with No Matching Rows
	B.5.4.8 Problems with Floating-Point Values

	B.5.5 Optimizer-Related Issues
	B.5.6 Table Definition-Related Issues
	B.5.6.1 Problems with ALTER TABLE
	B.5.6.2 TEMPORARY Table Problems

	B.5.7 Known Issues in MySQL

	Appendix C Restrictions and Limits
	C.1 Restrictions on Stored Programs
	C.2 Restrictions on Server-Side Cursors
	C.3 Restrictions on Subqueries
	C.4 Restrictions on Views
	C.5 Restrictions on XA Transactions
	C.6 Restrictions on Character Sets
	C.7 Limits in MySQL
	C.7.1 Limits on Joins
	C.7.2 Limits on Number of Databases and Tables
	C.7.3 Limits on Table Size
	C.7.4 Limits on Table Column Count and Row Size
	C.7.5 Limits Imposed by .frm File Structure
	C.7.6 Windows Platform Limitations

	General Index
	C Function Index
	Command Index
	Function Index
	INFORMATION_SCHEMA Index
	Join Types Index
	Operator Index
	Option Index
	Privileges Index
	SQL Modes Index
	Statement/Syntax Index
	Status Variable Index
	System Variable Index
	Transaction Isolation Level Index

