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Learning/Estimation vs Decision-Making

Machine Learning: predicting patterns from passively observed data

Image classification, speech recognition, machine translation

Decision Making: actively gathering information

Clinical decision systems, recommendation systems, robotics, game playing
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Supervised Learning

e Step 1: Pick set of models & that capture domain knowledge.
e Ex: Linear models, neural nets, ...
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Supervised Learning

e Step 1: Pick set of models & that capture domain knowledge.
e Ex: Linear models, neural nets, ...

Lt

® Step 2: Gather dataset (zy,y,), ..., (2,,, Yp,)-

e Step 3: Return f € F that fits data well.

Statistical learning: If data is independent/identically distributed, generalize to
future examples.
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Why is ML successful?

Capture the input-output relationship

y =~ f(z)

by wisely choosing a class F (e.g. convolutional NN)

® z is high dimensional but highly structured

® model class F facilitates generalization
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Why is ML successful?

Capture the input-output relationship

y =~ f(z)

by wisely choosing a class F (e.g. convolutional NN)

® z is high dimensional but highly structured

® model class F facilitates generalization

Can we use rich function classes for decision making?
e.g. can we adaptively learn patient data +— treatment?
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Learning vs Decision Making

Key difficulty: feedback loops / active data collection
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Learning vs Decision Making

Key difficulty: feedback loops / active data collection

&0

ko
Algorithm

Decision

Prediction

Naively applying ML to decision making may produce bad decisions.
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Exploration

One of the treatments is better on average, but which one?

&/
decision 7Tt * ﬁ
- reward rt 8

\/

Oneachroundt=1,...,T:
1. Learner selects decision 7" € 11
2. Nature reveals reward r* ~ M*(7")
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The advantage of sequential
over fixed-size sampling lies in the fact that in some circumstances
the judicious choice of a sequential plan can bring about a con-
siderable reduction in the average sample size necessary to reduce the
probability of erroneous decision to a desired low level. The theory of
sequential analysis is still very incomplete, and much work remains
to be done before optimum sequential methods become available for
treating the standard problems of statistics.

H. Robbins, “Some Aspects of the Sequential Design of Experiments,” 1951
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Measure of Performance: Regret

where
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Exploration in Structured Problems
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Key message

[ Decision Making = Estimation + Exploration
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Tutorial Outline
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Multi-Armed Bandits
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Upper Confidence Bound (UCB) Algorithm for MAB

Reward

UCB Algorithm: at time ¢ choose the arm with largest ucb’ () where

ucb’(m) =

sample mean + standard devs
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Upper Confidence Bound (UCB) Algorithm for MAB

Reward
® o o0

UCB Algorithm: at time ¢ choose the arm with largest uch’ () where

¢ — Fe(r 2logd—t
ueb'(m) = J'(m) -+ T

fi(m) = Witw)\ ZSET%) r, and 7' (r) = timesteps prior to ¢t when arm 7 was
chosen, 1 — § is confidence level.
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Why does optimism work?
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UCB analysis for IT = {1, ..., A}
UCB algorithm: For each time ¢:
e Let n'(w) := # arm pulls for = and f*(x) := sample mean.
* uch’(m) := f*(m) + bon'(w), bon(7) x —-

nt(m)"

® Play 7' = argmax ucb’(r).
mell

Proof sketch: Let f*(7) = E[r | 7).

e Optimism: ucb’(7) > f*(x) Vr,t, since |f*(x) — f*(7)| < T
® Round ¢: By optimism,
max f*(m) — f*(7') < maxuch'(r) — f*(7') = ucb’(7*) — f* ('),
and ucb’ (") — f*(r') = f*(r') — f*(n') + bon(n") < 2~
® Regret bound:

T T
Regy,, = > _max f'(m)— (') s Y < var
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UCB analysis for IT = {1, ..., A}
UCB algorithm: For each time ¢:
e Let n'(m) := # arm pulls for = and f*(r) := sample mean.
* uch’(m) := f*(m) + bon'(7), bon(m) xx —L

nt(m)"

® Play 7' = argmax ucb’ ().
well

Proof sketch: Let [*(7) = E[r | 7].

e Optimism: ucb'(7) > f*(x) Vn,t, since |f*(7) — f*(7)] < —-L

® Round ¢: By optimism,

max f+(r) — [*(x') < maxuch’ (r) — f*(x') = ueb'(x') — [*(x"),

and ucb’ (') — f*(r') = f(x') — f*(x') + bon'(r") < 2=k
® Regret bound:

T
Reg,,, = ngxf*( — fr(x Z - < VAT .
=1

=1

potential func argument
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[ Decision Making = Estimation + Exploration
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Contextual Bandits

Oneachroundt=1,...,T:
0. Nature reveals z* € X (either from fixed P or arbitrarily)
1. Learner selects decision 7' € II

2. Nature reveals reward r*
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Contextual Bandits

Oneachroundt=1,...,T:
0. Nature reveals z* € X (either from fixed P or arbitrarily)
1. Learner selects decision 7' € II

2. Nature reveals reward r*

Assumption: we have a model class & such that
,r,t — f‘(’/T[',.'I:t) + gt

for some unknown f* € J and zero-mean noise &°.

® e.9. 7 is aclass of neural networks, generalized linear models, decision
trees, kernels, etc.
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Contextual Bandits

Oneachroundt=1,...,T:
0. Nature reveals z* € X (either from fixed P or arbitrarily)
1. Learner selects decision 7' € II

2. Nature reveals reward r*

Assumption: we have a model class & such that
,r,t — fx(,/..(_t7xt) + gt

for some unknown f* € J and zero-mean noise &°.
® e.9. 7 is aclass of neural networks, generalized linear models, decision
trees, kernels, etc.
Regret:
T
Regy,, = > E[f*(r",a") — f*(n",2")]
t=1

where
m (x) = argmax f*(m, z).
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Contextual Bandits
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Contextual Bandits

* No analogue of “upper confidence bound” (UCB) for general classes.

® How does information propagate?
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Outline

Contextual Bandits
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A minimax optimal solution for I = {1, ..., A}

SquareCB algorithm ,IF R

Oneachroundt=1,...,T:
Estimate f* via online regression wrt data {(z?, 7, r¥) }it.
Given z*, compute the Inverse Gap Weighting (IGW) distribution

p'(m) = A+ - (FH(F, @) — fi(m,zt))

with A such that >~ _p*(7) = 1.
Select decision 7 ~ p and observe reward r*.
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A minimax optimal solution for I = {1, ..., A}

SquareCB algorithm ,IF R

Oneachroundt=1,...,T:
Estimate f* via online regression wrt data {(z?, 7, r¥) }it.
Given z*, compute the Inverse Gap Weighting (IGW) distribution

p'(m) = A+ - (FH(F, @) — fi(m,zt))

with A such that >~ _p*(7) = 1.

Select decision 7 ~ p and observe reward r*.

® Decision-making without confidence or optimism!
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Multi-Armed Bandits, IT = {1, ..., A}

Given f, v >0,
_ 1
Ay (f@) = f(m)

p(T)

with A such that 3 _p(m) = 1.

~— Lemma.

Forany f*, f, IGW ensures

€y 1) = 10| 5 2 49+ Euny () = F)?

regret estimation error

4l
2!
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Multi-Armed Bandits, IT = {1, ..., A}: Proof

B |1 () = (0)] = By [ 7R = )| 4 By [ ) = 1) + 1) — 5

(Il1) est error at opt

(1) exploration bias () est error on policy
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B |1 () = (0)] = By [ 7R = )| 4 By [ ) = 1) + 1) — 5

(Il1) est error at opt

() exploration bias (Il) est error on policy
F@ - f(m) A-1

) = = =

R P T )

— (@ = f(=)

1
2vp(7*)
ey () = F)2 4 5

Lpe L T 2qp(w)
est error

—(f@ = f(=))

(IV) enough mass on 7* ?
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Multi-Armed Bandits, IT = {1, ..., A}: Proof

B |1 () = (0)] = By [ 7R = )| 4 By [ ) = 1) + 1) — 5

(Il1) est error at opt

() exploration bias (Il) est error on policy
F@ - f(m) A-1

) = = =

R P T )

) = () = (") = (@) = Fm*)
< 3o(e) (£ (7 = )" + gis = (F@) = Flr)
g o F 1 oy P
< 3 g (P (0) = F)2 4 s = (R = fm)

est error
(IV) enough mass on 7* ?

(@ - F) = o< 2

)
=)
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—{Theorem (F., R. 20).)

Given online regression oracle, SquareCB guarantees

Reg,,, < \/A T -Estg,(#,7)

for any* sequence z*, ..., 2™ of contexts.

\

* even adaptively chosen.

® Analogous result with offline (classical) regression when contexts i.i.d.
[Simchi-Levi, Xu 20]

® Est (7, T) is rate of online or offline regression, o(T') if 7 is learnable.
® Minimax optimal if regression method is optimal.
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Estimation Error (Supervised Learning)

34 /119

Estimation error
EStSq f T Z[E tupt ( T 7']?1’(71”)) .

Due to realizability (f* € &),

> (e ) 5 30— i) Pomind ()

t=1 t=1

[Cesa-Bianchi & Lugosi, 06]

Online regression. Minimax rates understood for any #. [R., Sridharan 14]



Applying the main theorem

SquareCB guarantees

Reg,,, < \/A T -Estg,(F,T)

Finite classes: Est; (7,T) < log|7| = Regp,, < /AT -log|7F|
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Applying the main theorem

SquareCB guarantees

Regpy < /4T Ests,(7,T)

Finite classes: Est; (7,T) <log|7| = Regg,, < /AT -log|7F]|

Linear functions (¥ = {r — (f,7) : € © C R?}):
Choice 1:

® Online Least Squares

® Est, (7,7)<d = Reg,, S VA-T-d

e Runtime: O(A - d?) per step
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Applying the main theorem

SquareCB guarantees

Regpy < /4T Ests,(7,T)

Finite classes: Est; (7,T) <log|7| = Regg,, < /AT -log|7F]|

Linear functions (¥ = {r > (0,7) : 0 € © C R?}):
Choice 1:

® Online Least Squares

° Estsq(?,T) <sd = Regy, S VA-T-d

e Runtime: O(A - d?) per step
Choice 2:

® Online Gradient Descent

* Est, (7,7) < VT = Reg, < VAT3/*

® Runtime: O(A - d) per step
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Estimation and Exploration are Decoupled

[ Decision Making = Estimation + Exploration
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Experiments

e “A Contextual Bandit Bake-off,” Bietti, Agarwal, and Langford, 2018
® re-ran experiments + included SquareCB

® incorporated in https://vowpalwabbit.org
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Experiments

e “A Contextual Bandit Bake-off,” Bietti, Agarwal, and Langford, 2018
® re-ran experiments + included SquareCB
® incorporated in https://vowpalwabbit.org

Results on datasets with K > 3:

lvs> | G| R |RO|Cmnu| B |Bg|eG|C-u|Sm | Sq | Sg-e

G - | -17| 48 | -51 |-14 | -19 | -6 | 52 | -41 | -55 | -64
R 17 | - | -23 | -19 4 -5 | 10 | 61 | -11 | -21 | -43
RO 48 | 23 - 6 36 | 31 | 40 | 76 | 10 | 5 -21
C-nu 51 | 19 | -6 - 24 | 25 | 33 | 84 | 13 | -8 | -27
B 14 | -4 | -36 | -24 - -8 | -1 | 70 |-16 | -31 | -50
B-g 19 | 5 | -31 | -25 8 - 9 77 | -20 | -33 | -47
eG 6 |-10 | -40 | -33 1 -9 - 71 | -30 | -45 | -58
C-u -52 | -61 | -76 | -84 | -70 | -77 | -71 - | -80 | -78 | -87
Sm 41 | 11 | -10 | -13 | 16 | 20 | 30 | 80 - | -14 | -33
Sq 55 | 21 | -5 8 31 | 33 | 45 | 78 | 14 - -23

AdaCB | 64 | 43 | 21 27 50 | 47 | 58 | 87 | 33 | 23 -

G = Greedy; B = online Bootstrap Thompson sampling; Sm = softmax / Boltzmann; eG = e-Greedy;
C-nu = Online Cover without uniform exp; RO = RegCB-optimistic; Sq = SquareCB ; AdaCB =
adaptive SquareCB with elim
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& Vowpal Wabbit Getstarted  Features Tutorials  Research wiki ) aitHub

Your go-to interactive
machine learning library

Vowpal Wabbit provides a fast, flexible, online, and active learning
solution that empowers you to solve complex interactive machine
learning problems.

What does Vowpal Wabbit do?

Vowpal Wabbit provides fast, efficient, and flexible online machine learning
techniques for reinforcement learning, supervised learning, and more. It is influenced
by an ecosystem of community contributions, academic research, and proven
algorithms. Microsoft Research is a major contributor to Vowpal Wabbit.

) & %ié
X
Reinforcement learning Supervised learning Interactive learning Efficient learning Versatile learning
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Sneak peak: Where does IGW come from?

[ Decision Making = Estimation + Exploration
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Sneak peak: Where does IGW come from?

[ Decision Making = Estimation + Exploration

[ Exploration = Decision Making - Estimation

For a context x, estimated model f , and parameter v > 0, consider

max (7, 2) ~ f(5,2) = -{({(r.0) - f(r.2)]

estimation error for obs.

min maxk,__,
peA(Il) feF

regret of decision

IGW guarantees that that this minimax value is at most %.
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Structured Multi-Armed Bandits
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(Structured) Multi-Armed Bandits

Oneachroundt=1,...,T:
1. Learner selects decision 7° € II

2. Nature reveals reward r* ~ M*(7")
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(Structured) Multi-Armed Bandits

Oneachroundt=1,...,T:
1. Learner selects decision 7" € I1
2. Nature reveals reward r* ~ M*(7")
Assumption: we have a model class & such that
=) e

for some unknown f* € # and zero-mean noise &*.

42 /119



Example: Linear Bandits and Optimism
ILOCRY, F={f(r)={(r0):0c0}

LinUCB: construct confidence set F* such that f* € F* with high probability,

then select
mt = argmax (m,0)
0Tt rell
xt ™ I
T 1 T t—1
Z ) SVAT — Z\/(ﬂ’)TE;l’/’T/'S\/dT, Y, = (7)) T
=1 V1T =1 s=1
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Is Optimism the right principle for Structured Multi-Armed Bandits?
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Information vs regret
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Information vs regret
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Information vs regret
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Failure of UCB

® does not take advantage of structure
® cannot always construct shrinking confidence sets

Is there a generic solution?
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Outline

Structured Bandits
Decision-Estimation Coefficient
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Decision-Estimation Coefficient

Recall: in unstructured problems, IGW is a minimizer of

dec.(F,f) = min maxE__ | max f(r*) — f(x) — - (f(r) — f(n))?
ec,(7.J) = min maxE__,| maxf(r) — f(x) - (f(x) ~ J(x))
— estimation error for obs?
regret of decision

for an estimated model f and parameter v > 0.

dec (F) = maxdec (7, f)
feT

48 /119



Estimation-to-Decisions Meta-Algorithm (E2D)

Fort=1,..,T:
® Get estimator ft € F from supervised estimation algorithm.

® Solve min-max optimization problem:
p* =argmin maxE, _, [f(x*) = f(m) — - (f(z) — f*(m))?].

peA(II) feF

® Sample 7 ~ p* and update estimation algorithm with r*.

49/119



Estimation-to-Decisions Meta-Algorithm (E2D)
Fort=1,..,T:
® Get estimator ff € F from supervised estimation algorithm.

® Solve min-max optimization problem:

p' = argmin max[E, _, [f(w*) — f(@) = (f(m) — ft(f”f))ﬂ-

peA(n) [f€F

® Sample 7 ~ p* and update estimation algorithm with r*.

E2D regret:

Reg,,,(T) < dec (F)-T +~-Ests (F,T).

Regret controlled by estimation error + DEC
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Estimation-to-Decisions Meta-Algorithm (E2D)
Fort=1,..,T:
® Get estimator ff € F from supervised estimation algorithm.

® Solve min-max optimization problem:

p' = argmin max[E, _, [f(w*) — f(@) = (f(m) — ft(ﬁ))2]~

peA(n) [f€F

® Sample 7 ~ p* and update estimation algorithm with r*.

E2D regret:

7

Reg,,,(T) < dec (F)-T +~-Ests (F,T).

Regret controlled by estimation error + DEC

7

Decision Making < Estimation + Exploration
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Easy Proof

Reg,, (T

50/ 119
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Easy Proof

Reg,,, (T Z[E_Np — f(7)]
Z ot [[1) = [ (1) = - (f(7) = f1(7))?] + 7 - Esteg (T, T)

For each step t, since [* € 7,
E,opt [£(7) = £ (1) = (£(m) = F(m))?)
< MaxE,pe [£(x7) = f(m) =7+ (f(m) = J(x))?]

= min maxE,_,[f(m) — f(r) = (f(7) = F(r))?]

peA(Il) feF

= decy(?,ft).
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Easy Proof

RegDM<T>:Z et L1 () = ()]

Z ot [[1) = [ (1) = - (f(7) = f1(7))?] + 7 - Esteg (T, T)

For each step t, since [* € 7,
E,opt [£(7) = £ (1) = (£(m) = F(m))?)
< MaxE,pe [£(x7) = f(m) =7+ (f(m) = J(x))?]

= min maxE,_,[f(m) — f(r) = (f(7) = F(r))?]

peA(II) feF
= decﬂ/({}’,ft).
Summing,
Reg,,, (T Zdec (F, f*) +-Estey(F,T) < dec (F)-T +-Ests (7, T).

t=1
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DEC examples

Multi-armed bandit

dec () < = Regpy (7)< AVT (canimprove to VAT)

SIS

51/119



DEC examples

Multi-armed bandit

dec () < = Regpy (7)< AVT (canimprove to VAT)

SIS

Linear bandits (% = Linear functions on RY)

dec (7)< d

= = Regpy(T) < dVT.
5
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dec () < = Regpy (7)< AVT (canimprove to VAT)

SIS

Linear bandits (% = Linear functions on RY)

decw(?)gg = Regp,(T) < dVT.

Many classes have similar

fF-di
dec,(F) 5 $

scaling (cvx. bandits, generalized linear, ...)



DEC examples

Multi-armed bandit

dec () < = Regpy (7)< AVT (canimprove to VAT)

SIS

Linear bandits (% = Linear functions on RY)

decw(?)sg = Regp,(T) < dVT.

Many classes have similar

fF-di
dec,(F) 5 $

scaling (cvx. bandits, generalized linear, ...)

Nonparametric bandits (7 = Lipschitz functions on R%).

1 d+1

dec () < T = Regp(T) s T2,
’y +1

51/119



Outline

Structured Bandits

Connections to Other Approaches
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Optimism
Ensure that for all ¢, shrinking confidence sets 7, C 7 satisfy f* € F,.

dec, (7) can be smaller if T shrinks quickly.

UCB:
Tt = arg:nax frr;?%( f(m)

Certifies that
decy (") < ucb(n'; F*) — lcb(n'; F1),

where ucb(m; 7*) := maX e e f(m), leb(m; F°) :=min e f().
Conclusion: UCB upper bounds DEC for finite-armed bandits, but not an

optimal strategy in general.
53/119



Define

bon’ () = ucb’(7) — fi(r)

Then

A ; N flr) — At/
dec, (7, 1) = min max .., |max f(r) — f(m) —v-(f'(x

54 /119

—



Define

bon’ () = ucb’(7) — fi(r)

Then

dec, (7, ') = min max E,_,| max f(x) — f(r) = (F'(r) = f(r))?

peA(I) feT
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Define

bon’(m) = ucb’(7) — f(x)

Then

dec, (1) = min, max £, [ max () () = 1-(F'(r) ~ ()]

< min max [E,,Np[mgx uch’ () — f(7) —~ -(ft(n) —f(ﬂ))2:|

T peA(I) feT,
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Define ~

Then

dec, (7., ) = i max €., | max (x') ~ £(r) 7 (F(r) = (7))

< it max ., maxuch' () () = () = £

< maX|:qut(7Tt) — f(r*)—~ -(ft(TrT') — f(ﬂt))2]

fery
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Define ~

Then

dec, (7., ) = i max €., | max (x') ~ £(r) 7 (F(r) = (7))

< it max ., maxuch' () () = () = £

< max| 71 (x) = £(7) = -(F) = £+ bon' ()

fery
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Define

Then

dec, (1) = min, max E.., [ max f(x) () = 1-(F'(x) ~ ()]

< min, max ., [ maxuch’(r) — £(r) ~ (' ()~ £(7))?]
< max | Fi(n0) = () = (71 () = F() ] +bon ()

feFy




Posterior Sampling and the Information Ratio

dec,(7,f) = min maxE.., | max f(r) — f(m) = -(f(r) - f(m))?

55/119



Posterior Sampling and the Information Ratio

dec, (. f) = min max E., | max () = () = -(f() — f(x)?

55/119



Posterior Sampling and the Information Ratio

dec,(F, /)= min max ., [max f(r) — f(r) —y-(f(r) — F(m)?

PpeA(IL) pe A (T
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Posterior Sampling and the Information Ratio

dec,(F, /)= max min ¢, ., [max f(r) — f(r) —y(f(r) — F(m))?

PEA(F) pe A(II)

55/119



Posterior Sampling and the Information Ratio

dec, (7, f) = max min £, E.[ max f(m) = f(m) =7 ((m) = f()?

Posterior Sampling [Thompson 33, Agrawal-Goyal 13, Russo-Van Roy 14]

f ~ p, choose argmax f

Yields dec_ (7, f) < %, but does not give primal (frequentist) algorithm.

55/119



Posterior Sampling and the Information Ratio

dec (F, f) = min Eop| max f(m) = f(m) =7 -(f(m) = f(m))?

PpEA(IL)
Posterior Sampling

f ~ p, choose argmax f

Yields dec_ (7, f ) < 3, but does not give primal (frequentist) algorithm.

Information ratio
® Complexity measure used to analyze posterior sampling and variants.
* Coincides with convexified DEC dec, (co(F)). F. R

55/119



Summary of Part |

[ Decision Making = Estimation + Exploration

® Contextual Bandits and Structured Bandits can be solved by combining
online/offline regression and DEC.
e DEC can be analyzed via IGW, Optimism/UCB, or Posterior Sampling

Next hour: more general decision making and Reinforcement Learning

56/ 119
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Decision Making with Structured Observations (DMSO)

\/

t
reward r

9 decision t 14
W, ;

observation Ot —

Oneachroundt=1,...,T:
1. Learner selects decision 7* € 11

2. Nature reveals reward r* € R and observation o* € O, where
(rt,ot) ~ M*(7*).
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Decision Making with Structured Observations (DMSO)

Oneachroundt=1,...,T:
1. Learner selects decision 7' € II

2. Nature reveals reward r* € R and observation o* € ), where
(rt,0") ~ M*(7").

Realizability: Assume M* € M, where M is a known model class (captures
prior knowledge).



Decision Making with Structured Observations (DMSO)

Oneachroundt=1,...,T:
1. Learner selects decision 7' € II

2. Nature reveals reward r* € R and observation o* € ), where
(rt,0") ~ M*(7").

Realizability: Assume M* € M, where M is a known model class (captures
prior knowledge).

Regret: .
Reg,,, = tz; Evpt S () = 2 (70)]
where for each model M, i
fM(m) :==EMr|x], and m,, :=argmax f"(r).

mell

Shorthand: 7* := 7,,., f* := f*" (generalizes notation from Part I).



Example: Multi-Armed Bandit

j A

b >

Reward

In DMSO framework:
©0={0}
o II={1,.., A}

® M = "all 1-subgaussian reward distributions” or similar



Example: Structured Bandits

Linear bandits
e 0={0}
e [ICR?
® T =A{f"|M e M} = linear functions

[Abe & Long '99, Auer '02, Dani et al. 08, Chu et al. '11, Abbasi-Yadkori et al. "11, ...]

Nonparametric bandits
o 0 =1{0}
° [ICR?
® F, = Lipschitz or Hélder functions

[Kleinberg '04, Auer et al. '07, Kleinberg et al. "08, ...]



Example: Reinforcement Learning

Finite-horizon episodic MDP:
M= {57 A, {P}y}l[z{:h {Riy}thb dl}
® §is state space, A is action space.

e PM:8x A— A(S)is prob. transition kernel.
R} : 8§ x A — A(R) is reward distribution.
d, € A(8) is initial state distribution.

Dynamics for each episode t =1, ..., T"
e Forh=1,..,H, (with s, ~ d;)

ay ~ my(8),  ~ Ry (sy5ap,) @nd s,y ~ P | sy, ap).



Example: Reinforcement Learning

Finite-horizon episodic MDP:
o M= {8, AP AR, d;}
® §is state space, A is action space.
e PM:8x A— A(S)is prob. transition kernel.
°* RY:8x A— A(R) is reward distribution.
® d, € A(S) is initial state distribution.

Dynamics for each episode t =1, ..., T"
e Forh=1,..,H, (with s, ~ d;)

ay ~ my(8),  ~ Ry (sy5ap,) @nd s,y ~ P | sy, ap).

With this notation:
e IIis set of all non-stationary policies © = (7, ..., 7y), m, : § = A(A)
® Observation of = (si,a},rt),..., (s, al, ) when 7 is executed in M*.

H
® Rewardr* =3 1}



Example: Reinforcement Learning

Many examples of { for reinforcement learning:

® Finite State/Action (tabular) ® Predictive State Rrepresentations
® Low-Rank MDP
® |inear Quadratic Regulator (LQR) ® Bellman Complete

* Linear Mixture MDP ® Low Occupancy Complexity

® State Aggregation

® Kernelized Nonlinear Regulator
® Block MDP
® Factored MDP



DMSO: Further Examples

. t
decision ™

t
reward T

observation Ot




DMSQO: Further Examples

e M ¢
. =2 V) S

decision T _

t

reward r
observation Ot 8

0
®)

Additional examples:
e Contextual bandits (RL with H = 1)
® Graphical bandits
® Partial monitoring*

POMDPs



Decision Making with Structured Observations (DMSO)

Oneachroundt=1,...,T:
1. Learner selects decision 7* € II

2. Nature reveals reward r* € R and observation o* € ), where
(rt,0%) ~ M*(7").

Questions

Algorithm design: General algorithmic principles that work for anyc sc | ass M?

Statistical complexity : Optimal regret as a function of horizon T', class M?




Understanding statistical complexity: Challenges

Reward structure and information sharing (recall structured bandits)
X Hard: Many models, many optimal decisions.
v Easy: Many models, few optimal decisions.
X Hard: Selecting 7 only reveals 7's own reward.
v Easy: Select single 7 reveals information about all rewards.

Information-theoretic considerations
* Noise/observations can leak identity of true model.
* Handling large, structured decision/observation spaces (e.g., RL).

Statistical complexity is tied to algorithm design



Outline

General Decision Making

Decision-Estimation Coefficient: General Results



The Decision-Estimation Coefficient (DEC)
Given M € M and v >0,

dec, (0, 70) = min. max £, 12(n,) = £(x) = Do (M) T

-
regret of decision information gain for obs.

where:
® m,, is optimal decision for M.

* D}, (P, Q)= [(\/p(2) — a(2))%d=z is Helinger distance.

(KL leads to slight differences)

Mem

[ dec (M) = max dec (M,M) ]




The Decision-Estimation Coefficient (DEC)
Given M € M and v >0,

dec, (M, M) = min max [Em[f%mffﬂf( )= -Dia (M (wLM(w))]

t of decisi i i -
regret of decision information gain for obs.

where:
® m,, is optimal decision for M.

* DY (P, Q)= [(v/p(2) — /a(z))?dz is Hellinger distance.

(KL leads to slight differences)

[ dec (M) = max dec_ (M, M) ]
MeM

Features:
® | ower bound on regret in terms of (a localized version) of DEC

® Achievability: Given an estimate M, minimize over p, draw m, update M
with an online method, repeat (E2D).

Generalizes IGW strategy [Abe & Long '99, F. & R. '20], information ratio [Russo & Van Roy "14, "18].



DEC: Lower bounds

Localized version of DEC lower bounds regret for any problem
(for appropriate choice of )

Setting Lower Bound from DEC Tight?
Multi-Armed Bandit VAT v/
Multi-Armed Bandit w/ gap A/A v
Linear Bandit VdT X (dVT)
Lipschitz Bandit TS v
RelU Bandit 2 v/
Tabular RL VHSAT v
Linear MDP VdT X (dVT)
RL w/ linear Q* 24 v/
Deterministic RL w/ linear Q* d v




DEC: Algorithms

Estimation-to-Decisions Meta-Algorithm (E2D)
Fort=1,..,T:
* Get estimator M* € M from supervised estimation algorithm.

® Solve min-max optimization problem:

p'= fgﬂr} max Epp | FY(mag) = £ (7) =7 - Dt (M (), M ‘(w))} :

(corresponds to dec. (M, M*))

® Sample 7' ~ p* and update estimation algorithm with (7%, r*, o*).

E2D guarantee: Regret is controlled by estimation error + DEC



DEC: Regret bound

Define estimation error:

T

Esty(M.T):= > E,., t[ b (11 (0 ),Mi(ﬂf))].

t=1

Theorem (F., Kakade, Qian, R. ’21).)

The E2D algorithm (w/ parameter v > 0) has
Regp (T') < dec, (M) - T + - Esty (M, T).

Can guarantee Esty (M, T') < small using online learning/estimation (sequential
prediction) [Vovk '98, Cesa-Bianchi-Lugosi ‘06, R-Sridharan *14,...].



Estimation

Can guarantee Esty (M, T') < small using online density estimation (sequential
prediction w/ log loss) R

If M* e M, then with probability at least 1 — 6,
ZDHeI (M* ('), M*(n')) < Regy (T) + 2log(6~1),

where
Reg, (T Zﬁlog(M’ - mln Zé‘og

and
flog (M) = —log(m™ (r*, 0" | ")),
where m™ (-, - | ) is the conditional density for (r, o) under M.

Examples:
* Exponential weights (Vovk's aggregating algorithm) has Reg,, < log|/1|

e For linear (or parametric) classes in RY, Estyy (M, T) = O(d)



DEC: Learnability

,—(Theorem (F., Kakade, Qian, R. ’21).}

Under appropriate assumptions, any algorithm must have
Reg,,(T) = ng)(min{decwv(M) T, 7}’

and E2D achieves

Regpy(T) < max min{decmsv (M) T,~ - sty (M, T)},

where dec%87 (M) is a “localized” variant of the DEC.

Example: Multi-armed bandit w/ IT = {1, ..., A}:

A (AT
decwv(]\/[) x 5 = Regp(T) > r?% mm{T,»y} =VAT.



DEC: Learnability

,—[Theorem (F., Kakade, Qian, R. ’21).}

Under appropriate assumptions, any algorithm must have
Regp,(T) = T;i())(min{decme’y(]\/[) 2T 7}’

and E2D achieves

Regpy(T) < max min{dec%% (M) T,~ - sty (M, T)},

where dec, . (M) is a “localized” variant of the DEC.

Characterization for learnability:

Suppose M is convex and has bounded estimation complexity.

dec (M)
~P

Sublinear regret is possible iff lim. _, = 0 for some p > 0.



DEC and E2D: Summary

Bridges learning and decision making!
Use any out-of-the-box supervised estimation algorithm for M.
— E2D takes care of the rest.

[ Decision Making = Estimation + Exploration




Connection to statistical estimation

Modulus of Continuity

w. (M, M) = max{[f¥ = || Dia(M, M) <%}

Gives lower bounds (in some cases, upper bounds) on rates for nonparametric
functional estimation.

DEC extends classical theory of statistical estimation to interactive
decision making (in a general setting).



Connections to other approaches

Optimism and UCB

® Can combine E2D meta-algorithm with confidence sets; optimism/UCB leads to
upper bounds on DEC.

Posterior sampling and information ratio
® Bayesian approaches (posterior sampling, information-directed) sampling lead to
bounds on DEC via minimax theorem.

® |nformation ratio (complexity measure used to analyze posterior sampling and
variants) coincides with convexified DEC dec., (co(M)). [F., R

Adversarial bandit algorithms
® DEC upper and lower bounds extend to adversarial setting via alternative algorithm:

exploration-by-optimization F-R

® Recovers adversarial (structured) bandit algorithms (Exp3, Exp4, ...).



Additional remarks

Why Hellinger distance?
If all M € M admit densities bounded above by B, can derive similar results using DEC
with KL divergence, with extra log(B) factors.

Caveats
Depending on assumptions, various gaps between upper and lower bounds (and
opportunities for improvement)

® | ocalization radius

® Convex M vs. general M.

® |n-expectation vs. in-probability.

® Esty (M, T) vs. weaker notions of estimation error

See [F R for more details.



Outline

General Decision Making

lllustrative Examples



DEC: lllustrative Examples

Examples
1. Bandits: Capturing complexity of reward-based feedback
2. Structure in noise

3. Tabular (Finite State/Action) RL



Example #1: Structured Bandits
Mean rewards act as sufficient statistic; replace Hellinger with squared error.

AT — i M M 2 v
dec, (M, M) = i max Ervp FM () = fY () = 7y - Dy (M (), M(ﬂ))]

Linear bandits [Auer '02, Dani et al. 08, Chu et al. "1, Abbasi-Yadkori et al. "11]

° O ={0}.

e TICRY

® Fari={fM| M e M} = linear functions.

dec, (M) x & = Regpy(T) > maxmin{y,'y} = dT.
ol >0 Y

Nonparametric bandits [<lcinberg ‘04, Aver et al. '07, Kleinberg et al. '08, .|

° O ={0}.

° TICRY

® 5 = Lipschitz functions.

1
dec,(M)x —— — Regp,(T) > T3,

fy+1



Example #1: Structured Bandits
Mean rewards act as sufficient statistic; replace Hellinger with squared error.

AT ~ ; M M () o~y (M _fM 2
dec (M, M) \‘pénA'Pm{Pf%Emp J () = ) = - (fM () = fM ()

Linear bandits [/Aucr ‘02, Dani et al. '08, Chu et al. "1, Abbasi-Yadkori et al. "11]

° O ={0}.

e TICRY

® Fari={fM| M e M} = linear functions.

dec, (M) x & = Regpy(T) > maxmin{ﬂ,y} = dT.
ol >0 Y

Nonparametric bandits [<lcinberg ‘04, Aver et al. '07, Kleinberg et al. '08, .|

° O ={0}.

° TICRY

® 5 = Lipschitz functions.

1 d+

dec, (M) x —— = Regpy(T)>Td2.

fy+1



Example #2: Structure in Noise

For examples so far, only mean reward function mattered.

Another bandit variant: TI = {1, ..., A}, O = {0}, forall M € M:
Ber(1/2 +¢), =Ty,
. { NOpY,  m
Computing the DEC:
dec, (M) x I{y < A/2} = Regpy(T) =z A.

(compare to v AT for MAB)

Hellinger (information-theoretic divergence) strongly distinguishes changes in distribution.

D}y (M(m), M(m)) o< l{m = m,,}, while (f™(r) — f™())? depends on scale.



Generalizing further, can encode arbitrary auxiliary information in lower bits of
reward signal.



Example #3: Tabular (Finite State/Action) Reinforcement Learning

Setup:
® M: Episodic horizon-H MDPs with |§| = S, |A| = A, ® = [0, 1].
¢ II = {non-stationary policies 7, : § — A}.
° of = (st at,rt), ..., (s, aty,ry).

H
t t
o rt=35 et Th

Dynamics for each episode t = 1,...,T"
e Forh=1,...,H, (with st ~ d;)

aj, ~ 7 (sh) T ~ By (s, af) and s,y ~ PO (| s aj,).



Example #3: Tabular (Finite State/Action) Reinforcement Learning

Setup:
® M: Episodic horizon-H MDPs with |§| = S, |A| = =[0,1].

¢ II = {non-stationary policies 7, : § — A}.

® 0=(5,,ay,71);,(5p, Q7))

Lower bound:
HSA
dec (M) > — = Reg,,(T) > VHSAT.
Upper bounds:
® dec (M) < H® H254 via Policy-Cover Inverse Gap Weighting (‘PC-IGW").

* dec, (M) < HTSA via posterior sampling.

Incorporating observations is critical!
Allows us to break a big decision (policy) into a sequence of small decisions (actions).



Example #3: Tabular (Finite State/Action) Reinforcement Learning

Policy Cover Inverse Gap Weighting

Idea: Apply inverse gap weighting to small set of representative policies .




Example #3: Tabular (Finite State/Action) Reinforcement Learning

Policy Cover Inverse Gap Weighting

Given tabular MDP M € M, v > 0:
® Foreach h € [H|, s € 8, a € A, compute
ﬁ"ﬂ—(sh = S,ap = a)
Lty (fM(mgg) — S ()

Policy cover: VU := {ﬂ-M} U {ﬂ-h,s.a}he[H]?s€S,a€A'

Th.s.q i= argmax
™

® Foreach 7 e W, set
- 1
Ay (F () — f¥ ()

p(m)
w/ X >0 chosen such that 3-_p(m) = 1.

Key ideas:
® Balances exploration (reaching all parts of the MDP) and exploitation.
® Change of measure: Either have good coverage on M™*, or estimation error is big.

* Certifies that dec. (A, M) < #254,



Example #3: Tabular (Finite State/Action) Reinforcement Learning

Policy Cover Inverse Gap Weighting

Given tabular MDP M € M, v > 0:
® Foreach h € [H|, s € 8, a € A, compute
ﬁ"ﬂ—(sh = S,ap = a)
Lty (fM(mgg) — S ()

Policy cover: VU := {ﬂ-M} U {ﬂ-h,s.a}he[H]?s€S,a€A'

Th.s.q i= argmax
™

® Foreach 7 e W, set
1

P = () = £ ()

w/ X >0 chosen such that 3-_p(m) = 1.

Remarks:
® Ganfind m,  , efficiently using linear programming.

® Optimal rates:
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Recap: Tabular (Finite-State/Action) RL

Tabular RL:
® M: Episodic horizon-H MDPs with |§| = S, |A| = =[0,1].

¢ II = {non-stationary policies 7, : § — A}.

® 0=(5,,ay,71);,(5p, Q7))

decw(M)aw —  Reg,,,(T) x /poly(H, S, A) - T.

v

Challenge: States are typically rich/complex/high-dimensional.

® Ex: robotics: s, = cameraimage, § = all possible images
= |8| = intractably large

Conclusion: Need to restrict M to avoid intractable sample complexity.
How to generalize across states?



RL: The need for modeling and generalization

Challenge: States are typically rich/complex/high-dimensional.

® Ex: robotics: s, = cameraimage, § = all possible images

= |8| = intractably large



RL: The need for modeling and generalization

Challenge: States are typically rich/complex/high-dimensional.

® Ex: robotics: s, = cameraimage, § = all possible images

= |8| = intractably large

Consider an exponentially large binary
tree with reward at a single leaf.

Need to try all leaves to get reward.

= min{|8|,|A|""} episodes required!
le.g., Kearns et al. '02, Krishnamurthy et al.’16] X X X x X 8 X X

|S| =" leaves

Conclusion: Need to restrict M to avoid exponential sample complexity.
= RL is a family of problems.



RL: The need for modeling and generalization

Challenge: States are typically rich/complex/high-dimensional.

® Ex: robotics: s, = cameraimage, § = all possible images

= |8| = intractably large

Approach: Use hypothesis class // to model:
® Rewards/responses
® Dynamics
® |ong-term rewards

In general, model class might consist of:
® Deep neural networks
® Generalized linear models

® Kernels



RL: Modeling and generalization

Approach: Use hypothesis class /) to model:
* Rewards/responses
® Dynamics

® Long-term rewards

In general, model class might consist of:
® Deep neural networks
® Generalized linear models
® Kernels

[ Decision Making = Estimation + Exploration




RL: Modeling approaches

Want to handle large state spaces = Use modeling / function approx.

Model-based methods
® Model class M directly parameterizes transition dynamics.
e Ex: M = MDPs with linear dynamics



RL: Modeling approaches

Want to handle large state spaces = Use modeling / function approx.

Model-based methods
® Model class M directly parameterizes transition dynamics.
e Ex: M = MDPs with linear dynamics

Value-based methods






Value functions and dynamic programming

Value functions: For MDP M:
o VM (s) = EMT [Zf,:h T | sy = s} (state value function)

QM (s,a) =EMT [Zi{:h Ty | s, =s,a;, = a] (state-action value function)

*

Define V* := VM 7" Q* = QM*m )



Value functions and dynamic programming

Dynamic programming (“value iteration”):
Starting with Vi, (s) == 0, iterate

h(s:a) =Elrp + Viii(sni) | sn = s,ap = a],  Vi(s) = maxQj (s, a).

Optimal policy is 7}, (s) = argmax Q7 (s, a).
acA



RL: Modeling approaches

Want to handle large state spaces = Use modeling / function approx.

Model-based methods
® Model class M directly parameterizes transition dynamics.

e Ex: M = MDPs with linear dynamics

Value-based methods
® Model state-action value functions with value fn. class Q C {$ x A — R}.

M, v H
Qh W(Sva> = M7 Eh/zh Th! | Sp=S8,a = aj.

® Induced model class: M = {M | Q™™ € Q Vr} or similar



RL: Modeling approaches

Want to handle large state spaces = Use modeling / function approx.

Model-based methods
® Model class M directly parameterizes transition dynamics.

e Ex: M = MDPs with linear dynamics

Value-based methods
® Model state-action value functions with value fn. class Q C {$ x A — R}.

M, v H
Q}L W(Sva> = M7 Eh/zh Th! | Sp=S8,a = aj.

® Induced model class: M = {M | Q™™ € Q Vr} or similar

Many examples of both:

® |Low rank MDP ® Factored MDP ® Low occupancy

° LGR * Predictive state complexity

® Linear mixture MDP representations e Kernelized nonlinear
e State aggregation e Linear belman regulator

® Block MDP complete



Distribution shift: How much do we need to explore?

What we would like:
1. Gather data using policy 7*.
2. Fitmodel M* € M (value fn., transition dynamics) to data (supervised estimation).
3. Update policy 7**! using M.
4. Performance improves?

Why doesn’t this work?
1. Mtis only guaranteed to generalize on data collected with 7*.
2. No guarantee on performance on dataset induced by 7/ *!.

= fail to improve performance or explore.



RL: Distribution shift and solutions

Approaches to addressing distribution shift

1. Extrapolation

2. Control # effective distributions



RL: Distribution shift and solutions

Approaches to addressing distribution shift

1. Extrapolation



RL: Distribution shift and solutions

Solution #1: Extrapolation
® For linear contextual bandits with H = 1 (E[r(a) | s] = (¢(s, a), 8)), LINUCB has

Regp, (T) < d-VT.

® |dea: Can extrapolate once we have info from all d dimensions.

From bandits to RL (H > 1).
Assume access to value function class

Q= {Qh(sza) = <¢(sva)’0h> I eh € [Rd}
with Q* € 0.

Negative result: Even if Linear-Q* assumption holds, any algorithm must have:

Regp,,(T") > min{exp(d), exp(H)} .

Intuition: Induced model class M = {M | QM* € Q} is too big:
dec, (M) = min{exp(d), exp(H)}.



Landscape of RL

All of reinforcement learning

r

Bilinear Dimension

r

Witness Rank

1
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é
Low-Rank MDP
Eluder (Known ¢)
Dimension
Block
Tabular MDP

- \
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Extrapolation: Linear models

Low-Rank MDP: Have (i) P (s’ | 5,a) = (¢(s,a), u(s")), (i) RM (s,a) = (¢(s,a),0).
(&(-, -) known, p(-) & 6 unknown)

(s,a)

Rank-d

Under low-rank MDP assumption, can achieve

Reg,,(T") < \/poly(d,H)-T.

Idea: Combine optimism (LInUCB-type confidence bonuses) with dynamic programming.

® [ ow-rank MDP structure prevents statistical errors from accumulating.

® Can also show dec (M) < M (currently need UCB-type ideas to get best
rates).
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Extrapolation: Eluder dimension

Eluder dimension: Combinatorial parameter controlling extrapolation.

Foraclass # C (Z — R), eluder dimension dg(&F , ) is the length of the longest
sequence z', ..., 2" such that for all t < N,

€T |f(2) = (2N >e, St~ r)f <e.
i<t
Results:
. : y/dg(9Q) - T regret for bandits.
. 1 y/Poly(de(Q), H) - T for RL (w/ additional assns.).

® Under appropriate conditions, dec. (M) < @

Examples:
® Linear: dg(Q,¢) = 5(d).
® Extends to generalized linear:

e Q(s,a)=c({¢(s,a),0))forc:R—-Rw/0<c<o <C

® RelU: dg(Q,e) = exp(d) F . (o(z) = max{z, 0})




RL: Distribution shift and solutions

Approaches to addressing distribution shift

2. Control # effective distributions
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Distribution shift: Bellman rank

Observation: In alow rank MDP, for any function g(s), can write E™[g(s},)] as

E7(Elg(sn) | s anall = £7[ [ (601 an 1), nls)gls)ds]

— (6o 1,0 ), [ is)a(s)ds) = (X (), Wia)).

Bellman residual: For Q € O and , define (g = opt policy for Q)

€h<7r7 Q) = [Eshw‘rr,ahwﬂQ(sh) [Qh(shv ah) - (rh + m(?x Qh+l(sh+17 a))] .
Low-Rank MDP has &, (7, Q) = (X, (7), W,(Q)).

Motivation: &, (7, Q*) =0 V.

Bellman rank:
dge := maxrank(&y, (-, ). | &0



Distribution shift: Bellman rank

Under low Bellman rank, can achieve

Reg,,,(T) < poly(dg,, A, H,Est(Q)) - T*/5.

Ideas:
® Explore optimistically; eliminate value functions with large residual.
® Only O(dg.) effective distributions; can only be “surprised” O(dg,) times.

Further results:

® Variants: Witness Rank , Bilinear rank , Bellman-Eluder
dimension

® Decision-Estimation Coefficient:

< poly(dge, A, H).

dec., (M) .



Bellman rank: Examples

Pt s.a)| = [ue|-[ s6.0) ]

Low-Rank MDP: Dimension
(even w/ ¢h unknown)

Linear-Quadratic Regulator (LQR): Block MDP:
state*action dimension # latent states

Further examples: [Jiang etal. 17, Jinetal. 21, Du et al.’21]
+ Low occupancy complexity + Linear Bellman-Complete
» Linear 0* & V* + Predictive state representations
+ State abstraction + Reactive POMDP



Bellman rank: Bounding the DEC

Expanding the DEC:

dec'y(Mv ]/\4\) = pernAiPH) Arpgaﬂx\/[ [ETNP [fM (TFM) - fM (77) - D|2'|e| (]\4(7T), ﬁ(w))]

~ f M _ M o~ D2 AT
~p€ngpmq13;‘<{fEM[f () = £ (7)) =y - D (M (), M(r))].

Using Bellman rank property for M € M, can write

H

fM(T"M) - fﬁ(ﬂm) = Z EM-7M {Q}Y’*(Sm ap) —rp — m[?x Qﬁi;(le’ a)]

h=1

H —
Z<Xh m00), WH(M)),

so that

— H —_—
dec,, (M, M) ~ pem&nn max E.., LZI<X,L o), (]\{)>—»Y‘Dael(]V[(W%M(w))}.
Ideas:

® Only dg, effective state distributions—similar to DEC for linear bandits.

® Explore using a representative basis for {X;?(ﬁ)}nen'
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RL Landscape: Summary

Multiple ways to handle distribution shift:
e Extrapolation: Linear models, eluder dimension.
e Effective # distributions: Bellman rank and friends.

Decision-estimation coefficient provides necessary conditions.

Questions:
® Right models to capture real-world problems (e.g., continuous control)?

e Computational efficiency?
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Conclusion

Decision Making = Estimation + Exploration

Steps toward RL/decision-making with large/deep models?
® Lots of room for new theoretical/algorithmic insights.
® Bridging theory + practice.

Further questions:

e Extend development beyond basic setting (offline data, multiple agents, ...)

https://dylanfoster.net/bldm.html


https://dylanfoster.net/bldm.html
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