Sunfish: Reading Ledgers with Sparse Nodes

Giulia Scaffino!, Karl Wiist?, Deepak Maram?,

Alberto Sonnino??2, and Lefteris Kokoris-Kogias?

! TU Wien & Common Prefix & CDL-BOT
2 Mysten Labs
3 University College of London (UCL)

Abstract. The increased throughput offered by modern blockchains,
such as Sui, Aptos, and Solana, enables processing thousands of trans-
actions per second, but it also introduces higher costs for decentralized
application (dApp) developers who need to track and verify changes in
the state of their application. Currently, dApp developers run full nodes,
which download and re-execute every transaction to track the global state
of the chain. This becomes prohibitively expensive for high-throughput
chains due to increased bandwidth, computational, and storage require-
ments. Alternatively, light nodes only verify the inclusion of a set of
transactions and have no guarantees on whether the set includes all rele-
vant transactions. In extreme cases with dishonest majority, light nodes
will also forfeit safety and accept invalid transactions.

To bridge the gap between full and light nodes, we propose and formalize
a new type of blockchain node: the sparse node. A sparse node tracks
only a subset of the blockchain’s state: it verifies that the received set
of transactions touching the substate is complete, and re-executes those
transactions to confirm their validity. A sparse node requires resources
roughly proportional to the number of transactions in the substate and to
the size of the substate itself, retaining a meaningful validity notion even
under adversarial majorities. Further, we present Sunfish, a secure sparse-
node protocol compatible with most existing blockchains. Our analysis
and evaluation show that Sunfish reduces the computational and storage
resources by several orders of magnitude when compared to a full node.

1 Introduction

Modern blockchains, such as Sui, Aptos, and Solana, scale up to thousands of
transactions per second, with Ethereum targeting a comparable throughput in
its roadmap. This increased capacity improves the user experience and allows
for onboarding millions of new users and dApps. However, it also introduces a
new, important challenge: dApp developers who want to verifiably and trust-
lessly track the state of their application face higher costs. Traditionally, dApp
developers run full nodes to listen to events, follow changes in the state of their
application, and keep audit proofs. This is no longer possible, as their bandwidth,
computational, and storage costs are prohibitively expensive for high-throughput
blockchains. As a result, developers resort to querying third-party full node op-
erators and accepting their responses blindly. This behavior is dangerous, as it

2 Scaffino, Wiist, Maram, Sonnino, Kokoris-Kogias

fully relies on the honesty of the full node operator and negates the trust benefits
of using a decentralized blockchain.

An alternative approach to operating full nodes is to run light nodes [1-
4], such as clients using the Bitcoin Simplified Payment Verification protocol
[5]. Unfortunately, light nodes are insufficient to verifiably track the state of an
application: they only verify the transaction inclusion and, without additional
trust assumptions, they have no guarantees over whether the set of transactions
received is complete, e.g., if it includes all transactions writing to the state of a
particular dApp. This can lead to stale and, over time, potentially inconsistent
results if the light node connects to a full node that withholds data, either
inadvertently or maliciously. A light node is also problematic in case the security
of a blockchain is compromised: by not re-executing transactions, a light node can
be tricked into accepting invalid transactions. In contrast, a full node re-executes
all transactions and, therefore, always maintains a valid local state, regardless
of the number of adversarial validators. The lack of validity guarantees for light
nodes is troublesome, as users and dApp operators mainly care about the security
of their dApps and less about the security of the blockchain as a whole: If the
underlying chain is compromised, e.g., there are forks, dApp operators that run
their own full nodes can choose one of the forks, be sure that there are no validity
violations or lost updates, and migrate the dApp state to another blockchain.

In this paper, we introduce, for the first time, a new type of blockchain
node that sits between light and full nodes: the sparse node. Sparse nodes follow
a subset of the blockchain state by retrieving, verifying inclusion of, and re-
executing only the set of transactions that read from or write to, e.g., the state of
a specific dApp or a user account. A seemingly similar type of client is mentioned
in an independent post by Vitalik Buterin [6] under the name of partially-stateless
client. While the post does not provide a formalization, nor a design, it highlights
interest in this direction and points toward the relevance of such clients. We
define sparse nodes formally through a predicate, which, when applied to the
global state of the chain, identifies a subset thereof called the sparse state. We
introduce a filtering function ¢ which, given a predicate and a ledger, outputs
an order-preserving subsequence of the ledger—the sparse ledger—consisting
of all transactions in the global ledger that read from or write to the sparse
state associated with the predicate. Finally, we define the security of a sparse
node protocol in terms of safety and liveness of its sparse output ledger. By
re-executing the sparse ledger, the sparse node ensures that its local sparse state
is always valid, even when the ledger is compromised by adversarial majorities.

The cost of running a sparse node is roughly proportional to the number of
transactions touching its sparse state, thus isolating the cost of running a sparse
node from the external workload of other dApps. This makes it feasible again for
dApp developers to download, verify, execute, and store transactions relevant to
their dApp, thus increasing the robustness of applications, especially for high-
throughput blockchains. Sparse nodes can be run by users or operators that wish
to monitor the state of an application and listen to the events: notable examples
are bridge operators, rollup sequencers and watchers, payment channel users

Sunfish: Reading Ledgers with Sparse Nodes 3

and watchtowers, re-staking and remote staking collectives [7,8], user wallets,
DAO token holders, and many more. Sparse nodes can additionally function as
read caches or replicas, facilitating the separation of read and write operations
during scaling. This enables the dynamic deployment of sparse nodes to increase
redundancy and read bandwidth for popular dApps, reducing the need for more
full nodes and thereby saving network bandwidth and disk space. Therefore,
the advantages of using sparse nodes equally benefit high- and low-throughput
blockchains.

Contributions. After presenting the model and assumptions (Section 2), we
introduce and formalize, for the first time, the concept of a sparse node, and we
define the security guarantees it provides (Section 3). Then, we present Sunfish
(Section 4), the first secure protocol for sparse nodes. We describe two instances
of Sunfish that offer different trade-offs: Sunfish-C uses counters and minimizes
validator overhead, Sunfish-HC uses trees and hash chains and minimizes the
overhead on the client side (small proofs). The Sunfish design can be adopted
out-of-the-box by wvalidators and clients of most existing blockchains, as it is
independent from any specific transaction model or scripting capabilities. After-
ward, we showcase the required resources for both Sunfish-C and Sunfish-HC
(Section 7) based on real-world usage data of two dApps: a blockchain bridge
and a wallet user. We estimate bandwidth reductions of 10x and 10%x for the
bridge and wallet dapps, respectively, when compared to running a full node (im-
provement is inversely proportional to how frequently the app interacts with the
chain). Finally, we compare sparse nodes with full and light nodes, and also with
orthogonal concepts such as clients for lazy ledgers and sharding (Section 8).

2 Preliminaries and Models

Notation. The curly bracket notation {-} refers to sets, whereas the square
bracket notation [-] refers to ordered sequences. The symbols A < Band A < E
indicate that A is a prefix of B and a strict prefix of E. The notation |D| denotes
the size of the sequence if D is a sequence, or the size of a set if D is a set.

Ledger Model. We model a ledger £ as the output of a Byzantine fault
tolerant state machine replication (BFT-SMR) protocol [9-11]. State machines
are deterministic machines that, at all times, store the state of the system and,
upon receiving a set of inputs, they output a new, updated state by evaluating
the inputs over a state transition function 6. A state transition is wvalid if 0
executes without errors. In a network of mutually distrusting nodes, each running
a replica of the same state machine, a BFT-SMR protocol ensures that all correct
nodes output a consistent state, even in the presence of a subset of adversarial
nodes. On input a transaction tx from the environment, correct nodes move from
state S? to STt = §(S?, tx) only if §(S%, tx) is a valid state transition. Consider
an empty ledger £° with genesis state S°. To ascertain the i-th state S° of a
ledger £ = [txq,...,tx;], with i > 0, transactions are applied as follows: S* :=
§(...0(6(S°% tx1),tx2) ..., tx;). As shorthand notation, we use S* := §(S°, £?) to
denote successive application of all transactions tx € £! given an initial state SV.

4 Scaffino, Wiist, Maram, Sonnino, Kokoris-Kogias

A ledger protocol is secure if it fulfills the following properties:

Definition 1 (Ledger Safety) For every two honest nodes i,j and for every
two times t,t', if L is the log output by i at t and EE- is the log output by j at
t/

s or vice versa.

', then the two logs are consistent, i.e., L! < L

Definition 2 (Ledger Liveness) For every ty and every transaction tx, if ev-
ery honest node i receives tx by time ty, then there exists a t1 > tog such that for
every ta > t1 and for every honest node i, tx € E?.

Let K and V be sets of valid keys and valid values, respectively. Without loss
of generality, we model the state of a node as a key-value store, i.e., a collection
of (k,v), with k € K and v € V. In particular, k is a unique identifier (e.g.,
address of an account or contract, or the hash of a UTXO) used to reference a
specific value, whereas v is the data (e.g., account balance, contract state, or the
UTXO itself) associated with a particular key. A transaction reads from an input
state S? and writes to an output state S*! by consuming some state elements
(k,v) in S* and generating new ones. We refer to the values that are read and
written by a transaction as the read set and the write set, respectively. This is
to clearly distinguish it from the input and output of a transaction, which, in
some chains like Ethereum [12], is the whole state of the ledger. We let R(tx)
and W(tx) denote the read and the write set of a transaction tx, respectively.
For efficiency of Sunfish (and not for its security), we assume the ledger includes
intermediate state commitments as in [13], or transactions include commitments
to the read set as in Bitcoin and Solana [14]. In Ethereum, block-level access
lists are under discussion in the EIP-7928 [15] and may be included in the future:
this would help verify transaction read sets.

Client Model. A client protocol is a protocol between a client, acting as verifier
V', and a non-empty set P of prover nodes. We assume V is honest, i.e., it adheres
to the correct protocol execution, and that it connects to at least one honest,
non-eclipsed prover.

Cryptographic Assumptions. We assume collision resistant and preimage
resistant hash functions.

Network Assumptions. We consider protocols whose execution proceed in
discrete rounds r = {0,1,2,...}. We assume the communication between the
client and the provers is synchronous, i.e., a message sent by one honest node
at the end of round r is received by all honest nodes within r + A, with A be-
ing a known upper bound on the network delay. We observe that synchronous
communication is already needed for client security (identify the correct chain)
on blockchains such as Bitcoin and Ethereum. In these cases, our work does
not introduce any strict network assumption for the security of the client. In
blockchains that run partially synchronous consensus protocols, our work natu-
rally extends to the partially synchronous model.

“A more precise formulation of the read and write set is R(S,tx) and W(S,tx)
because, depending on the current state S of the ledger, the read and write sets may
have different keys or different values.

Sunfish: Reading Ledgers with Sparse Nodes 5
3 Sparse Client: Formalization and Security

Our goal is to define a node that only downloads and validates a specific subset
of transactions of the ledger and, through re-execution of these transactions,
maintains a partial state of the ledger. To this end, we must first formalize
substates and subsequences of the ledger by introducing predicates and filtering
operations. Consider a ledger £. The state S of the ledger is a key value store
(k,v) s.t. each key is associated with exactly one value: V(k,v) € S : (k,v') €
S — v =1". We let Xs(k) be a state predicate, i.e., a function K — {1,0} that
identifies a subset S C S of state elements we call sparse state.

Definition 3 (Sparse State S) S := {(k,v)|(k,v) € S A X,(k)} is the sparse
state identified by X.

Although, in principle, any sparse state can be defined by specifying an ap-
propriate state predicate — leading to a potentially unbounded number of such
substates — in this work we restrict our attention to practically meaningful
cases, such as the substate of a particular dApp or the state of a selected set of
accounts (see Section 5). Since the state of the ledger changes any time a new
transaction is appended to it, at every new append X; must be evaluated on all
updated and added elements.

Let X be the set of all possible state predicates, and L be the set of all
possible ledgers. We now define a filtering function ¢ : X x L — L that, on
input a state predicate Xy € X and a ledger £ € L, it returns a sparse ledger L.
The sparse ledger L is the order-preserving subsequence of transactions from £
whose read or write sets include state elements that satisfy the predicate X.

Definition 4 (Sparse Ledger L) Let L be a ledger and X, a state predicate.
Then, L = p(Xs, L) = [tx|tx € LA (k € R(tx) : Xs(k) vV Ik € W(tx) : Xs(k))]
s a sparse ledger.

We now define the sparse client protocol interface and its security.

Definition 5 (Sparse Client Protocol Interface) A sparse client protocol
is an interactive protocol between a client and a set of provers. On input a state
predicate X at the client, the protocol outputs a sparse ledger L at the client.

We now define what it means for a sparse client of a ledger £ to be secure.
Let £ be the intersection of the view of all honest parties at the end of round
r, whereas let L be the blocktree of the union of the ledgers of all honest
nodes — we recall, honest nodes have different views of the ledger because of
network delays. Informally, a sparse client protocol is safe if, for every round r,
it outputs a sparse ledger L" that is a prefix of the ledgers in all honest nodes’s
views filtered by the predicate Xs, and is live if it outputs a sparse ledger Lr
that extends the shortest among the honest nodes’ stable ledgers filtered by the
predicate X.

6 Scaffino, Wiist, Maram, Sonnino, Kokoris-Kogias

Definition 6 (Sparse Client Protocol Security) Let x andv be protocol se-
curity parameters. A sparse client protocol parameterized by X, is secure in a
synchronous network iff, in every synchronous execution with at least one honest,
non-eclipsed prover, except with probability negl(k), the client outputs a sparse
ledger L such that, for every round r and v’ > r + v, the following properties
hold:

Safety: L7 is a prefiz of @(XS,EG).
Liveness: @(XS,EF]) is a prefiz of L7

As we will see in Section 6, the safety parameter v is the liveness parameter
of the ledger, i.e., the time it takes for transactions to be confirmed in the ledger.
We note that a full node is a sparse node for which, at any round r, " = S”
and £" = L. To briefly summarize, so far, we have formalized a sparse state as
a substate of the global state of the system and a sparse ledger as a subsequence
of the global ledger that preserves the relative order of transactions. We have
also defined a sparse client protocol interface and stated the security of a sparse
client protocol, specifying the safety and liveness properties that the sparse ledger
output by the client satisfies. We now characterize the execution semantics of
the client. As seen in Section 2, the transition function ¢ of the ledger takes as
inputs the global state S and a transaction tx: ST = §(S?, tx). Therefore, the
sequence of transactions uniquely determines the global state. Unfortunately,
we cannot let a sparse client use the same execution semantics: If we allow 0
to take as input a sparse state and a transaction, i.e., 5(S’i7tx), execution may
fail because the transaction could read from state elements (e.g., gas objects,
contracts, etc) that lie outside the sparse state. In other words, a sparse ledger
does not uniquely determine the sparse state: to uniquely define the sparse state
one needs the sparse ledger as well as the read sets of all transactions in it.
Therefore, we define a new state transition function 5 that takes as input the
sparse state together with a transaction and its read set: $t1 = §(S*UR(tx), tx).
Formally, we define § as both a domain restriction and a range restriction of ¢:
Given as input a subset of the global state and a transaction, h) updates the state
elements in exactly the same manner as ¢, but returns only the subset of output
clements satisfying X, (k) = 1. If an element was deleted, § outputs (k, L). We
recall that, in the standard setting, ledger validity ensures that all transactions
are valid with respect to the global state. For sparse ledgers, validity instead
requires that each transaction is valid with respect to the client’s sparse state.
We discuss which notion of validity one can achieve with sparse nodes and how
we do it in Sunfish in Section 4 and Section 6.

It is important to note that while the ledger is produced by the consen-
sus protocol and, thus, is available and verifiable by clients, the read set of a
transaction is not directly accessible, nor often easily verifiable. For instance,
Ethereum has transactions that specify the keys of the state elements they read
from (e.g., account addresses or contract storage slots), but the actual values as-
sociated with those keys (e.g., account balances, values of contract variables) are
not specified nor committed in the transaction itself. Ethereum blocks include a

Sunfish: Reading Ledgers with Sparse Nodes 7

commitment to the state tree, providing a per-block validity check of transaction
read sets. However, this only suffices to verify the read set of the first transaction
in the block, not those of subsequent transactions. On the other hand, Bitcoin
transactions commit to the hash of the transaction containing the read element,
yielding a somewhat convoluted yet effective per-transaction validity check of the
read set. In this work, we assume the correctness of a transaction read set can
be easily verified: in EVM-based chains, this is achieved by adding intermediate
state roots within block headers [13]. Alternatively, transactions could include a
commitment to the values of their read set, as in Bitcoin.

4 Sunfish: A Protocol for Sparse Nodes

Before introducing Sunfish, we first show how block headers can be augmented
with commitments to multiple sparse ledgers, allowing sparse clients to verify the
correctness and completeness of the sparse ledger received. A block is valid only
if its commitment is valid. This simple extension makes Sunfish out-of-the-box
compatible with most existing chains, such as Bitcoin, Ethereum, Sui, Solana,
Aptos, and the EVM-based chains. We discuss which sparse states validators
could include in the commitment in Section 5. Below, we present two authenti-
cated data structures, Sunfish-C and Sunfish-HC, each with different trade-offs:
Sunfish-C minimizes validator overhead, while Sunfish-HC reduces the cost for
sparse nodes. Due to space constraints, trade-offs are discussed in Appendix B.
The different operating modes for a sparse client are discussed in Appendix C,
e.g, header mode, continuous mode, intermittent mode, and on-demand mode:
the data structures below enable them all.

4.1 Committing to Sparse Ledgers: Sunfish-C

One way to verify that a sparse ledger update includes all transactions newly
appended to (p(S’ , L) is to include, in each block, a commitment to the number of
transactions to be appended to the sparse ledger, combined with the transactions
inclusion proofs. Since transaction inclusion proofs are already widely used, we
focus our discussion on the counter mechanism. We will refer to the combination
of counter and inclusion proofs as commitment, even if this is a slight abuse of
terminology, as it is not a cryptographic commitment.

Naive Attempts. Consider validators maintaining a global counter ctrg for
any sparse state whose predicate is supported by the ledger. The global counter is
iatialized at 0 at genesis and incremented by 1 every time a new transaction tx
touching the sparse state is added to the ledger. One option would be for valida-
tors to build a Merkle tree with all counters ctrg and include it in every block
header; unfortunately, this comes with the impractical cost of having validators
maintain a massive tree and update it at every block. Alternatively, validators
could maintain a local counter ctry, for any sparse state whose predicate is sup-
ported by the ledger, with ctry, initialized at 0 at every new block and incremented
by 1 every time a transaction tx touching the sparse state is added to the block.

8 Scaffino, Wiist, Maram, Sonnino, Kokoris-Kogias

Block Height 1 Block Height 2 Block Height 3 Block Height 4 Block Height 5

[\ (T T Tt \ [P \ (T T T T [\

O I I I 1 O | 1O O | NOJO) I

(= | I | 1 1 | 1 1 |

C

| \) | l O O | | O | 1 O 1 | O O |

CounterDigest CounterDigest CounterDigest CounterDigest CounterDigest

S i Ko Ko e
(O (O (61 ()32 ()4 ()51 ()42 (().94

(20 (2 ()42 ()3 #((:8)=0

Fig.1: Sunfish-C. In each block, validators build a Merkle tree with leaves
(idS, ctre, ctrr), sorted lexicographically by idS (colored coin), and include the digest
in the block header. The tree includes one leaf for every idS with ctry, # 0 and for every
idS satisfying §(id§, h) = 0. E.g., for block height 5 the tree contains a leaf for the red
transactions and a leaf the blue coin’s periodicity.

For each new block, validators construct a Merkle tree with the non-zero local
counters for the block and commit this tree within the block header. Since the
number of transactions in a block is rather small, it is feasible for validators to
handle these trees; however, to know the total number of transactions in the
sparse state, a sparse node needs to download and check all block headers.

Sunfish-C. While the first approach commits to the global state of counters
ctrg, the second approach commits to the local, per-block state of counters ctry,.
Towards our final data structure, we get the best of both worlds by combining
global and local counters, but without committing to the global state of counters.
Instead, we periodically and deterministically include in the local per-block tree
a subset of global counters, to ease bootstrapping and securely enable other
operating modes (see Appendix C). Let each sparse state S supported by the
chain have a unique identifier idS; in case of the substate of a dApp, e.g., the
identifier could be the hash of the application logic.

As shown in Figure 1, Sunfish-C requires validators building a per-block
Merkle tree as follows: (i) the leaves of the tree are tuples (idS, ctrg,ctry) lex-
icographically sorted by id§7 (ii) the tree has one leaf for each sparse states
with ctry, # 0, and (iii) the tree has one leaf for each sparse states whose idS,
given on input to a function £ along with the height h of the block, yields
0. We require £ to be a deterministic, predictable, and periodic function: e.g.,
£(idS, h) := (idS + h)%N for a period N. The root of the tree is then included
in the block header. Thus, block headers commit to the counters updated in the
block and, periodically, to a subset of global counters as well.

With this data structure, we get several advantages. A sparse node can verify
if its sparse state with identifier idS has a leaf in the tree of a block (inclusion
proof) and, if this is the case, it checks completeness by reading the correspon-
dent counters. A sparse node can also verify if its sparse state lacks a leaf in the
tree because the tree is lexicographically sorted. A non-inclusion proof consists
of two inclusion proofs for the leaves lexicographically preceding and following

Sunfish: Reading Ledgers with Sparse Nodes 9

the idS of the sparse state, and it is verified by checking adjacency and validity
of the two proofs. With this data structure, a sparse node can only download the
block headers relevant for its sparse state, while periodically having complete-
ness guarantees (no relevant block header was skipped) by verifying that the
number of transactions received match the value of ctrg committed in the last
block for which ¢ = 0. Finally, by reading the counters for two adjacent blocks
with & = 0, sparse nodes can read chunks of the chain with constant cost.

4.2 Committing to Sparse Ledgers: Sunfish-HC

With the Sunfish-C data structure, operating a sparse node assumes a light client
protocol exists for the blockchain. In fact, besides verifying the correct number of
transactions have been received, the sparse node would also need to (efficiently)
check that the received transactions are the ones included on-chain. In many
chains, this can be achieved by verifying transaction inclusion with a Merkle
proof; however, some high-throughput chains, such as Sui, do not include in
block headers an efficiently verifiable commitment to prove transaction inclusion.
Therefore, we propose adding to block header an alternative commitment to a
data structure that allows to verify at the same time completeness and inclusion
of transactions—this time, a cryptographic commitment in the usual sense of the
term. Sunfish-HC asks validators to generate, per sparse state, a hash chain of
transactions and include the chain head in every block header. A sparse node can
be certain to have a complete set of transactions by locally computing the hash
chain and compare the obtained chain head with the one in the block header.
Towards efficiency and parallelizability, we combine hash chains and Merkle trees
as depicted in Figure 2.

Block Height 1 Block Height 2 Block Height 3 Block Height 4 Block Height 5

HeadDigest HeadDigest HeadDigest HeadDigest HeadDigest

@] @) HC L) HC L) O HCH)
ChainHead t / I @((),5)=0 t
I oot () - root

o (ONO) O] (©) 0000

TxDigest TxDigests TxDigest TxDigest TxDigests

Fig. 2: Sunfish-HC. Blue, green, and red coins denote transactions of different sparse
states. When a red transaction appears in a block, validators build a lexicographically
ordered Merkle tree of all red transactions in that block. The roots across blocks form a
hash chain, whose head is added to a Merkle tree of digests, and this digest is included in
the block header. The same applies to other sparse states. Notably, the block at height
5 also includes the chain head for the blue sparse state, as required by its periodicity.

10 Scaffino, Wiist, Maram, Sonnino, Kokoris-Kogias

For each sparse state and each block, validators build a Merkle tree with the
transactions in the block that touch the sparse state. Then, per sparse state, they
generate a hash chain with the roots of these trees spread across different blocks.
Finally, per each block, validators construct an overlay Merkle tree including the
chain heads of the sparse states that got transactions in the block; the leaves
of this tree are of the form (idS, head), with head being the chain head for the
sparse state idS. To enable the same features of Sunfish-C, i.e., non-inclusion
proofs, efficient bootstrapping and reads, the overlay tree is lexicographically
sorted by idS and further includes a leaf for a sparse state with periodicity given
by &. Finally, validators include the Merkle root of the overlay tree in the block
header.

4.3 Sunfish: A Sparse Client Protocol

We now present the Sunfish protocol. In Appendix A.1, we showcase the algo-
rithms run by the verifier (Algorithm 1) and the prover (Algorithm 2).
Consider a sparse client that wishes to monitor the state of a DeFi contract on
Ethereum. We use Ethereum as an example because it hosts the largest number
of dApps, though a similar logic applies to other chains such as Bitcoin, Sui, or
Solana. Recalling Section 3 and accounting for Ethereum’s account-based model,
we represent a contract by using its address as the key of the state element and
its storage as the value. Let X be the state predicate that outputs 1 on input the
contract address. We also recall that the client is interested in all transactions
that read from or write to this contract, from its deployment to the present.
Crucially, the client must be protected against an adversary that attempts to
inject invalid transactions into its sparse ledger or censor valid ones, fooling it
into computing an incorrect contract state. The Sunfish client connects to a
set of full nodes acting as provers, at least one of which must be honest and
non-eclipsed, and sends X to all provers. Each prover then returns:

— Tip of the chain: Block headers identifying the current tip of the chain.
The way this is achieved is out of the scope of this work, as it can be inherited
verbatim from existing light client protocols. We refer to Appendix A.1 for
more details.

— Relevant transactions: All transactions in £ = ©(Xs, L), together with:
their read sets and their proof of correctness (recall, we assume blocks in-
clude intermediate state roots [13] or we assume transactions include a com-
mitment to the read set as in Bitcoin), the headers of the blocks they are
included in, and if Sunfish-C is used, also their inclusion proof.

— Sparse ledger commitment opening: The opening of the Sunfish-C or
Sunfish-HC commitment to the node’s sparse ledger. This commitment veri-
fies completeness (Sunfish-C, Sunfish-HC) and integrity (Sunfish-HC) of the
transaction set.

— Ancestry proofs: Data to ensure that block headers containing relevant
transactions belong to the same (fork of the) chain. This is particularly im-
portant for the Sunfish client in the bootstrap phase where, upon identifying

Sunfish: Reading Ledgers with Sparse Nodes 11

the tip of the chain, it starts receiving older, non-sequential blocks that in-
clude relevant transactions.Ancestry proofs [16] are enabled by using Merkle
Mountain Ranges, vector commitments, or skip lists —alternatively, all block
headers can be sent, as in SPV clients. The prover provides the required
commitments and openings. We refer to Appendix A.1 for more details.

Upon receiving this data, the client reconstructs the validator set history,
verifies all proofs, and, if successful, computes the contract’s current state by lo-
cally applying § to the sparse ledger transactions. Blocks containing transactions
invalid with respect to the client’s sparse state are rejected. As the chain grows,
provers continue supplying new relevant transactions and associated proofs. Af-
ter verification, the client extends its sparse ledger and updates its sparse state.

5 Discussion

Optimizations. Instead of connecting to multiple full nodes, a sparse client
could connect to a single validator, only trusted for liveness. Should the validator
not respond or provide incorrect data, the sparse node can detect the misbehavior
and connect to a different one. This avoids that the resource consumption of
the node grows with the number of provers. It also allows sparse clients to
synchronize much faster, not bottlenecked by the sync time of full nodes.

Sparse State Policy. As discussed in Section 4, Sunfish requires validators
to add an extra commitment to block headers. In principle, validators could
support any sparse state, including logical operations over multiple sparse states,
but the space of admissible sparse states could grow uncontrollably, overloading
validators and slowing down the chain. To mitigate this, validators can adopt a
sparse state policy that limits how fine-grained the supported sparse states may
be. For example, the service could be offered only by subscription, or restricted to
high-traffic dApps. We are currently exploring protocols that shift this overhead
away from validators and move the commitment to the execution layer. These
approaches, however, require a quasi—Turing-complete scripting language and
impose additional gas costs on users. We highlight that requiring validators to
perform additional tasks is not without precedent. In recent years, validator
nodes have evolved into increasingly resource-intensive machines (Solana, Sui)
and have assumed responsibilities beyond block proposal and voting. Examples
include serving as storage nodes for data availability, participating in randomness
generation or participating as custodians for bridging through re-staking.

Applications. Users can choose which node type fits their desiderata and use
case best. Prior to our work, if they have high-security requirements (e.g., ex-
change), running a full node is the go-to option; if they run an application over a
resource-constrained environment (e.g., a wallet on a phone) and favor efficiency
over security, light nodes are instead the best fit. However, after a blockchain en-
ables support for sparse nodes, operators, developers, or users that want strong
security guarantees while retaining practical costs can now choose to run a sparse
node. Sparse nodes can also help optimize the blockchain infrastructure: they can

12 Scaffino, Wiist, Maram, Sonnino, Kokoris-Kogias

serve reads to light nodes, maintain custom indezes for on-chain data, take care
of hot spots (e.g., popular contracts, or geographic locations with high network
load) to take load off of full nodes, and communicate with other sparse nodes in
a transparency network to detect forks [17].

Event Client. A typical way to read blockchains is to listen to events emitted
by smart contracts, which are stored in the transaction’s logs as part of the
transaction metadata. Events inform about changes in the state of a contract
or about calls to specific functions. At present, most applications developers or
operators run full nodes to listen to specific logs generated during execution.
Therefore, one could define an event client that given an event predicate X,
outputs all events in a specific stream (e.g., lock and/or mint events of a bridge).
On one hand, an event client is very similar to a light client that instead of
checking transaction inclusion it checks event inclusion. On the other hand, while
light clients can use transaction Merkle roots to verify transaction inclusion,
event clients need to resort to additional data structures to verify event inclusion.
By having validators to commit to all the events in an event stream —an approach
similar to Sunfish—event clients could offer completeness guarantees, i.e., be sure
to receive all events in the stream of choice. We explore this in future work.

6 Analysis

Sunfish Security. We prove the theorem below in Appendix A.2.

Theorem 1 (Sunfish Security) Sunfish is secure as per Definition 6, with v
being the liveness parameter of the ledger.

We now discuss which wvalidity property fulfills the sparse ledger output by
Sunfish. We recall that in the standard setting, ledger validity ensures that all
transactions are valid with respect to the global state. For sparse ledgers, va-
lidity instead requires that each transaction is valid with respect to the client’s
sparse state. Concretely, the Sunfish client verifies that every state element in
a transaction’s read set such that X (k) = 1 belongs to its local sparse state;
otherwise, the block containing that transaction is rejected. When the Sunfish
client reads from a secure ledger containing only valid transactions, the valid-
ity of its sparse ledger follows directly from the validity of the global ledger. If,
however, the chain is compromised and an adversarial majority injects invalid
transactions into the global ledger, the Sunfish client only accepts transactions
that represent valid state transitions for its sparse state, even if they correspond
to invalid transitions with respect to the global state of the chain (for exam-
ple, a Sunfish client monitoring an ERC-20 contract will accept as valid a block
that correctly updates ERC-20 balances, even if the same block also contains
an invalid transaction—such as one that illegitimately assigns ownership of an
ERC-721 token to an attacker). Therefore, the walidity property of the sparse
ledger output by Sunfish is weaker than the validity property of the ledger out-
put by full nodes, but still meaningful for dApp developers and project operators

Sunfish: Reading Ledgers with Sparse Nodes 13

who are exclusively interested in a valid snapshot of the dApp state to migrate
to a different chain once security is broken for the current chain.

Finally, we note that sparse nodes could use synchronous gossip techniques [17—
19] to efficiently detect forks. In these protocols, nodes periodically exchange
their view of the state with a randomly selected subset of other nodes in the
network, ensuring that any divergence is detected within a bounded time under
network synchrony. We will further explore this as future work.

Sunfish Resources. Like light and full nodes, a Sunfish sparse node must
regularly update consensus parameters (e.g., the current validator set or PoW
difficulty). This costs O(A|L]), where A captures the rate of committee changes.
In most PoS chains, committees change infrequently (e.g., once per day), so the
overhead is negligible, i.e., A < 1. For sparse nodes that synchronize rarely
or only once, these updates can be further compressed using succinct zero-
knowledge proofs [20-22]. The Sunfish client downloads only the headers of
blocks containing relevant transactions, i.e., a subset of the ledger. To ensure
these scattered blocks belong to the same chain, we rely on proofs of ancestry
[16] and we denote the resources for ancestry proofs as O(p|L]), with p < 1. The
bandwidth, computation, and storage costs of a Sunfish client are proportional
to the size of its S , the number of transactions in its Zﬁ, and the degree of external
state dependencies [23] passed through transaction read sets. For example, a
sparse node monitoring a flash loan contract must often handle interactions with
external contracts such as DEXs. Incorporating external dependencies directly
into the tracked state may be more efficient for frequently accessed read sets.
To account for sparse node access to the read set and its correctness, we intro-
duce a factor ¢ > 0 multiplying |S|, with S < S. Finally, verifying transaction
inclusion in ledgers with non-constant opening sizes (e.g., Merkle trees) adds a
factor n > 0 to |ﬁ\, with n£ < £. We prove the theorem below in Appendix A.2.

Theorem 2 (Sunfish Resources) The bandwidth, computational, and storage
resources consumed by Sunfish are O(Ap|L] + n|L| + |S]).

We observe that the cost O(Ap|L| + n|L| + |S]) is dominated by different
terms depending on the workload. If the sparse state is frequently accessed, then
n|£| +1|S| dominates. If the sparse state is rarely updated, then Ap|£| becomes
more significant. This is in contrast with full nodes, which consume O(|£|+S|)
resources, and light nodes, which consume O(Ap|L|) resources.

7 Evaluation

Since Sunfish performs simple operations (DB lookups, integer arithmetic, hash-
ing), we expect minimal computational impact on validators for a controlled
number of sparse states tracked. We highlight that benchmarking sparse node
resources against the ones of full and light nodes is challenging, as sparse nodes
resources greatly vary depending on the size and the transaction traffic of the
sparse state. On the contrary, Resources do not vary much for full nodes (val-
idators are incentivized to completely fill blocks) and light nodes (signature

14 Scaffino, Wiist, Maram, Sonnino, Kokoris-Kogias

verification of rarely-changing validators). Hot, interdependent Ethereum sub-
states (DEXes,bridges) may incur higher overheads (2-5% the one of full nodes),
whereas colder substates (wallets), < 0.1%. For instance, consider Uniswap, one
of the most popular dApps on Ethereum: in the last 24h, Ethereum has roughly
processed 1,673,545 transactions [24], while Uniswap 85,210 transactions across
multiple chains [25]. Without considering transaction dependencies, a sparse
node running Sunfish-HC and monitoring Uniswap would consume < 5% of
full nodes resources, as only 20% Uniswap activity occurs on Ethereum [26]. We
evaluate Sunfish on Sui to show its practicality for high-performance blockchains.

The Sui Blockchain. Sui [27] is a decentralized, permissionless smart-contract
platform designed for high-throughput and low-latency asset management. Sui
uses the Move programming language to define assets as objects. The basic unit
of storage in Sui is the object, addressable on-chain by a unique ID. A smart con-
tract is also an object (“package”), and it manipulates objects on the Sui network.
To support on-chain activity monitoring, the Sui network emits events. Sui val-
idators produce certified checkpoints [28] that contain a sequence of transactions
and form a hash-chain. Sui checkpoints contain a summary (equivalent to a block
header), containing the various digests: We assume each summary includes the
Merkle root of all the transactions in the checkpoint and their execution results
(“effects”), as well as the commitment to sparse states.

Integrating Sunfish into Sui. We consider a few applications currently run-
ning on the Sui blockchain. The state of Sui can be viewed as a key-value store
with object IDs as keys and the digests as values. We compare the data con-
sumed by a full and a sparse node for the Wormhole bridge [29] and the Wave
wallet [30]. We consider sparse states identified by different predicates: package-
based, event-based, and address-based. We consider: (i) the Wormhole bridge,
via package (if tx touches the Wormhole package). (ii) The Wormhole bridge,
via events (if tx emits Wormhole events). Here, the sparse node only receives
events, not transactions. (iii) The Wave wallet, via address (if tx sends coins to
or receives coins from the address of a Wave wallet user).

Data collection. We have collected real-world data from the Sui blockchain
measuring past traffic patterns of the aforementioned applications. In this anal-
ysis we omit the term Ap|L|, as we consider popular applications for which its
weight is very small compared to n|£| + v|5|. Specifically, we looked at a day’s
worth of data corresponding to epoch 507 (August 31st, 2024). On that day,
Sui had 356279 checkpoints, i.e., an average of 4.12 checkpoints per second. We
then measured the following data: (1) Number of dapp-specific transactions or
events emitted per second (R); (2) Number of checkpoints with at least one dapp-
specific transaction or event emitted per second (C' < R and C < 4.12; worst-case
estimate, C' = min(R,4.12)); (3) Avg. transaction effect size e = 1044.74 B and
avg. event size v = 106.48 B; (4) Avg. number of transactions per checkpoint
(T = 9.35) and unique streams touched per checkpoint (S, which we approx-
imate and set to S = T'); (5) Avg size of summary o = 1457.40 B/s and full
checkpoint 8 = 213.49 KB/s. In table 1 we show the actual stream rate R, ob-

Sunfish: Reading Ledgers with Sparse Nodes 15

Table 1: Rate of traffic (R) generated by different dApps on 31st August, 2024. Last
two columns show the amount of data a sparse node needs to download if a blockchain
enables Sunfish commitments along with the percentage improvement over a full node
(213.49 KB/s).

App [type] R |7re| [Thel

Bridge [package] 8.55 16.56 KB/s (7.75%) 15.46 KB/s (7.24%)
Bridge [event)] 8.65 16.56 KB/s (7.75%) 7.44 KB/s (3.4%)
Wallet [address| 2-107° 0.05 B/s (1077%) 0.05 B/s (107" %)

tained from a blockchain analytics software. We approximate other values by
sampling 1000 checkpoints (out of 356279) and calculating the mean.

Results. We compare the proof sizes. The average size of a transaction inclusion
proof is |m,| = e + 32 -log(T) = 1172.74 B, and the average size of a stream
inclusion proof is |7s| = 32 - log(S) = 128 Bytes.

If the blockchain implements Sunfish-C, a sparse node only needs to download
e = R|miz| + C(a+|ms|) B/s. With Sunfish-HC, we have 7}~ = Re+C(a+|ms|)
B/s. With event-nodes and Sunfish-HC, the proof sizes are smaller at w§u¢"* =

Rv+C(a+|ms|) B/s (because transactions are not downloaded by event nodes).

8 Related Work

Sunfish bridges the gapbetween full nodes [31-33] and light nodes [4, 34, 35,1, 3,
2,22, 21]. Unlike full nodes, Sunfish does not require to download and re-execute a
complete copy of the ledger: it only downloads and re-executes a subset thereof.
Sunfish ensures sparse validity, completeness, and fork consistency properties
that light clients do not provide because of their minimalist design and the lack
of transaction re-execution. Some light client designs [36, 37] consider complete-
ness as an important property, however, they achieve it by relying on trusted
execution environments [38| and do not consider re-execution. Other light clients
[13] have been designed to help secure the chain: these include data availability
and validity checks, and require deploying multiple client instances. In this way,
each client verifies a small random subset of the chain and, all together, they
ensure validity of the whole chain. A sparse node is different from [13] in scope
and functioning: it operates stand-alone by reading the chain and maintaining a
valid substate of the global state of the ledger.

Light clients that help secure the chain have become popular in the context
of lazy ledgers [23,39]. Lazy ledgers decouple consensus from transaction ver-
ification and execution to increase throughput. The validity of these chains is
defined at the client level, and nodes that need to validate a specific application
do not need to validate transactions pertaining to external applications. In this
sense, a sparse node and an application-specific client of a lazy ledger share some
similarities. However, application-specific clients of lazy ledgers need to download
the entire dirty ledger, forgoing communication efficiency. Instead, a sparse nodes

16 Scaffino, Wiist, Maram, Sonnino, Kokoris-Kogias

achieves the same properties by taking a much harder approach that limits the
amount of data that is downloaded.

Finally, in sharding [40, 41| the consensus nodes are divided to work in groups,
with each group running the consensus of a shard, i.e., one of many parallel
blockchains. In a sharding protocol, a subset of nodes run the consensus of the
shard over a subset of the transactions and a subset of the state of the entire
system. A sparse node is different from a node of a shard: a sparse node does
not participate in the consensus protocol. A blockchain that enables sparse reads
does not need to shard its state, its transactions, or its consensus nodes.

Acknowledgments

This work was supported by Mysten Labs and conducted during Giulia Scaffino’s
internship with the company. We thank the Mysten Labs Data Science team for
providing necessary data to conduct our evaluation. We thank George Danezis,
Joachim Neu, Philipp Slowak, Dionysis Zindros, and Zeta Avarikioti for fruitful
discussions and feedback. The support by the Christian Doppler Research Asso-
ciation through the Christian Doppler Laboratory Blockchain Technologies for
the Internet of Things (CDL-BOT) is gratefully acknowledged.

References

1. Lukas Aumayr, Zeta Avarikioti, Matteo Maffei, Giulia Scaffino, and Dionysis Zin-
dros. Blink: An optimal proof of proof-of-work. Financial Cryptography and Data
security 2025, 2024.

2. Shresth Agrawal, Joachim Neu, Ertem Nusret Tas, and Dionysis Zindros. Proofs
of Proof-Of-Stake with Sublinear Complexity. In 5th Conference on Advances
in Financial Technologies (AFT 20283). Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik, 2023.

3. Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of
proof-of-work. In Joseph Bonneau and Nadia Heninger, editors, Financial Cryp-
tography and Data Security. Springer International Publishing, 2020.

4. Ertem Nusret Tas, David Tse, Lei Yang, and Dionysis Zindros. Light clients for
lazy blockchains. In Financial Cryptography and Data Security 2024 (FC24), 2024.

5. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009. http:
//bitcoin.org/bitcoin.pdf.

6. Vitalik Buterin. A local-node-favoring delta to the scaling roadmap, 2025.

7. EigenLayer Team. Eigenlayer: The restaking collective, 2024.

8. Xinshu Dong, Orfeas Stefanos Thyfronitis Litos, Ertem Nusret Tas, David Tse,
Robin Linus Woll, Lei Yang, and Mingchao Yu. Remote staking with economic
safety, 2024.

9. Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals
problem. ACM Trans. Program. Lang. Syst., 1982.

10. Leslie Lamport. The implementation of reliable distributed multiprocess systems.
1978.

11. Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proac-
tive recovery. 2002.

12.
13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.
30.
31.
32.

33.

Sunfish: Reading Ledgers with Sparse Nodes 17

Ethereum yellowpaper, 2024.

Mustafa Al-Bassam, Alberto Sonnino, Vitalik Buterin, and Ismail Khoffi. Fraud
and data availability proofs: Detecting invalid blocks in light clients. In Nikita
Borisov and Claudia Diaz, editors, Financial Cryptography and Data Security.
Springer Berlin Heidelberg, 2021.

Solana: Transactions and instructions, 2025.

Toni Wahrstaetter, Dankrad Feist, Francesco D’Amato, Jochem Brouwer, and Ig-
nacio Hagopian. Eip-7928: Block-level access lists, 2025.

Pericle Perazzo and Riccardo Xefraj. Smartfly: Fork-free super-light ethereum
classic clients for internet of things. IEEE Internet of Things Journal, 11(9):15348—
15358, 2024.

Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and
Michael J. Freedman. CONIKS: Bringing key transparency to end users. In 24th
USENIX Security Symposium (USENIX Security 15), pages 383-398, Washington,
D.C., August 2015. USENIX Association.

David Maziéres and Dennis Shasha. Building secure file systems out of byzantine
storage. New York, NY, USA, 2002. Association for Computing Machinery.
Christian Cachin, Abhi Shelat, and Alexander Shraer. Efficient fork-linearizable
access to untrusted shared memory. PODC ’07. Association for Computing Ma-
chinery, 2007.

Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decen-
tralized cryptocurrency at scale, 2020. https://eprint.iacr.org/2020/352.pdf.
Mina docs, 2023. https://docs.minaprotocol.com/about-mina.

Psi Vesely, Kobi Gurkan, Michael Straka, Ariel Gabizon, Philipp Jovanovic, Geor-
gios Konstantopoulos, Asa Oines, Marek Olszewski, and Eran Tromer. Plumo: An
Ultralight Blockchain Client, 2023.

Mustafa Al-Bassam. LazyLedger: A Distributed Data Availability Ledger With
Client-Side Smart Contracts, 2019.

Etherscan. https://etherscan.io/txs.

Defillama. https://defillama.com/protocol /uniswap.

Unichain surpasses ethereum as top chain for uniswap v4 by transaction vol-
ume. https://www.theblock.co/post/353769/unichain-surpasses-ethereum-as-top-
chain-for-uniswap-v4-by-transaction-volume.

Same Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris
Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd Nowacki, Alberto Son-
nino, et al. Sui lutris: A blockchain combining broadcast and consensus. arXiv
preprint arXiw:2310.18042, 2023.

Sam Blackshear, Andrey Chursin, George Danezis, Anastasios Kichidis, Lefteris
Kokoris-Kogias, Xun Li, Mark Logan, Ashok Menon, Todd Nowacki, Alberto Son-
nino, Brandon Williams, and Lu Zhang. Sui lutris: A blockchain combining broad-
cast and consensus, 2024.

Wormbhole Bridge, 2024. https://docs.sui.io/concepts/tokenomics/sui-bridging.
Wave Wallet on Sui. https://waveonsui.com/.

Sui full node transaction signatures are not verified, 2024.

Anamika Chauhan, Om Prakash Malviya, Madhav Verma, and Tejinder Singh Mor.
Blockchain and scalability. In 2018 IEEE international conference on software
quality, reliability and security companion (QRS-C), pages 122-128. IEEE, 2018.
Christos Stefo, Zhuolun Xiang, and Lefteris Kokoris-Kogias. Executing and proving
over dirty ledgers. In Financial Cryptography and Data Security 2023, 2023.

18 Scaffino, Wiist, Maram, Sonnino, Kokoris-Kogias

34. Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. Sok:
Blockchain light clients. In International Conference on Financial Cryptography
and Data Security, pages 615—-641. Springer, 2022.

35. Sean Braithwaite, Ethan Buchman, Ismail Khoffi, Igor Konnov, Zarko Milosevic,
Romain Ruetschi, and Josef Widder. A tendermint light client. arXiv preprint
arXw:2010.07031, 2020.

36. Sinisa Matetic, Karl Wiist, Moritz Schneider, Kari Kostiainen, Ghassan Karame,
and Srdjan Capkun. BITE: Bitcoin lightweight client privacy using trusted execu-
tion. In 28th USENIX Security Symposium (USENIX Security 19), pages 783-800,
2019.

37. Karl Wiist, Sinisa Matetic, Moritz Schneider, Ian Miers, Kari Kostiainen, and
Srdjan Capkun. Zlite: Lightweight clients for shielded zcash transactions using
trusted execution. In Financial Cryptography and Data Security: 23rd International
Conference, FC 2019, February 18-22, 2019, pages 179-198. Springer, 2019.

38. Moritz Schneider, Ramya Jayaram Masti, Shweta Shinde, Srdjan Capkun, and
Ronald Perez. Sok: Hardware-supported trusted execution environments. arXiv
preprint arXiw:2205.12742, 2022.

39. Christos Stefo, Zhuolun Xiang, and Lefteris Kokoris-Kogias. Executing and proving
over dirty ledgers. In International Conference on Financial Cryptography and
Data Security, pages 3—20. Springer, 2023.

40. Zeta Avarikioti, Antoine Desjardins, Lefteris Kokoris-Kogias, and Roger Watten-
hofer. Divide & scale: Formalization and roadmap to robust sharding. In Structural
Information and Communication Complexity. Springer Nature Switzerland, 2023.

41. Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via
sharding. In 2018 IEEE symposium on security and privacy (SP), pages 583-598.
IEEE, 2018.

A Algorithms and Proofs

A.1 Algorithms

We showcase the algorithms for the Sunfish protocol: Algorithm 1 for the client
and Algorithm 2 for the prover. We use m --» A to indicate that message m is
sent to party A and m «-- A to indicate that message m is received from party
A. In the algorithms, we denote with B a block header, and with m;, 74, 7., and
s the inclusion, ancestry, sparse ledger, and read set proofs, respectively. We
now intuitively describe the behavior of the functions used in the algorithms.
IsBLOCKVALID: This function verifies that the block header received from
the prover is valid, i.e., that it is indeed an ancestor of the chain’s tip. As dis-
cussed in Section 4, the sparse node relies on a secure light client protocol to
identify the tip of the chain. The details of the light client protocol are beyond
the scope of this work, as they can be inherited directly from state-of-the-art
constructions. For example, PoW light client protocols such as [1]| enable identi-
fication of the chain tip without downloading the full history of block headers,
while PoS light client protocols such as [2] allow efficient discovery of the cur-
rent validator set and, consequently, of the tip of the chain. Since the sparse
client is only concerned with block headers that contain transactions relevant to

Sunfish: Reading Ledgers with Sparse Nodes 19

its sparse state, it must additionally verify ancestry proofs ensuring that these
headers are indeed ancestors of the identified tip. This is particularly important
in the bootstrap phase where the Sunfish client, after identifying the tip of the
chain, starts receiving all the older blocks that include relevant transactions.

ISSPARSELEDGERCOMMITMENT VERIFIED: This function verifies that the trans-
actions received from the prover verify against the sparse state commitment in-
cluded in the block header. For Sunfish-C, this means that the client counts how
many transactions it had received from the prover and compares it with the
value of the counter included in the block header. Additionally, it verifies that
such transactions are included in the ledger. For Sunfish-HC, this means that the
transactions received from the prover verify against the hash chain head included
in the block header. In other words, the client locally recomputes the hash chain
from the sequence of transactions received from the prover and compares the
obtained chain head with the one included in the block header.

ISVALIDSPARSESTATEUPDATE: This function is responsible for executing the
transactions that touch the sparse state of the client, checking the correctness
oftheir read sets and assessing their validity with respect to the current sparse
state. The execution takes place via 5, which is a domain and range restriction
of the global transition function d.

UPDATESPARSELEDGER: The function updates the sparse ledger with the
transactions received —provided that all the checks in ISBLOCKVALID,
ISSPARSELEDGERCOMMITMENT VERIFIED, and ISVALIDSPARSESTATE UPDATE pass.

We note that, upon updating the sparse ledger, the sparse client updates its
sparse state (Algorithm 1, line 18).

A.2 Proofs

Theorem 3 (Sunfish Security) Sunfish is secure as per Definition 6.

Proof. Safety: To prove safety of Sunfish, we need to prove that, for any r,
the sparse ledger L£L" output by the client is a prefix of £ =< go(XS,Lb), with

r’" > r 4+ v. Towards this, consider the sparse ledger Lr output by the client
in Algorithm 1, line 17. At each round r, the client tries to extend L7 with
the transactions received by the provers (Algorithm 1, line 10). Because the
sparse client runs a secure light client protocol, it is able to correctly identify
the stable tip of the chain. Because the client verifies that the received batch
of transactions belong to a block that is an ancestor of the stable tip of the
chain (Algorithm 1, line 12), at round r, it only attempts to extend L" with
transactions that are final, i.e., that are at least v rounds old—with v being
the transaction confirmation time of the ledger. Because the block header the
client accepts is final, and because we consider secure blockchains operated by
an honest (super)majority of consensus nodes, the commitments to the sparse
ledger that are included in block headers are correct. The client extends its local
sparse ledger (Algorithm 1, line 17) only if the transactions received correctly
verify against the commitment (Algorithm 1, line 13). Therefore, at any round r,
the sparse ledger £" < o(Xs, EU) To complete the proof, we now show that the

20 Scaffino, Wiist, Maram, Sonnino, Kokoris-Kogias

Algorithm 1 The algorithm executed by the Sunfish sparse client V. If Sunfish-
HC is used, the transaction inclusion proof 7; is not needed. We omit from the
algorithm the logic used by the client to verify the canonical chain, as it varies
from chain to chain and it can be inherited verbatim from existing light client
protocols.

1: function VERIFIER(Xs, P, G)

2: S« G, L« |],bool «— L

3: for P € P do

4: Xy --»

5: run VERIFY(S, Xs, £)

6: end for

7: end function

8: function VERIFY(S, X;, £)

9: while True do

10: €=

11: (header, txs, R(txs), Tq, e, Ti, Trs) = D

12: bool = 1sBLockVaLID(header, 7,) A

13: 1SSPARSELEDGERCOMMITMENT VERIFIED(txs, header, X5, m¢, m;)
14: if bool then

15: (bool, Siemp) = 1SVALIDSPARSESTATEUPDATE(X, S, txs, R(txs), ms)
16: if bool then

17: L = UPDATESPARSELEDGER(L, txs)

18: S’ — gtemp

19: end if

20: end if

21: end while
22: end function

Sunfish-C and Sunfish-HC commitments to the sparse ledger uniquely identify
a sparse ledger.

Consider a state predicate X and a blockchain that uses Sunfish-C: We show
that combining a commitment to the number of transactions in a block touch-
ing Xs; with a commitment to the transactions included in that block, uniquely
identifies the sparse ledger (X, EG) The per-block commitment described in
Section 4.1 commits to a counter whose value corresponds to the number of
transactions in the block that touch the sparse state X;. It also commits to
the hash of the transactions included in the block. Because of the collision re-
sistance and preimage resistance properties of the hash function, an adversary
cannot find different preimages to the same counter and inclusion commitments,
unless with negligible probability in x. Because we consider secure blockchains,
we know that the commitments are correct and, therefore, the two commitments
together ensure completeness and uniqueness of the set of transactions touch-
ing Xs. Therefore, the Sunfish-C commitments to the sparse ledger uniquely
identifies a sparse ledger.

Sunfish: Reading Ledgers with Sparse Nodes 21

Algorithm 2 The algorithm executed by a Sunfish prover P. We omit from
the algorithm the logic used by the prover to identify the canonical chain and
communicate it to the client, as it varies from chain to chain and it can be
inherited verbatim from existing light client protocols.

1: function (17)

2: Xy «--V

3: C <+ GETCHAIN()

4: ©) > Bootstrapping the sparse node.

5: while True do

6: block = wAITFORNEWFINALBLOCK(C) > Update the sparse node at every
new block.

7 (block)

8: end while
9: end function

10: function ©)

11: for height in (0,|C|) do

12: block = GETBLOCK(C,height)
13: (block)

14: end for
15: end function

16: function (block)

17: txs < [], e <[], ma <[], m <[], 7es < []

18: for tx in (X5, block.transactions) do

19: txs.append(tx)

20: m;.append(GENINCLPROOF(tx, block)) > Inclusion proof not needed if

Sunfish-HC is used.
21: end for

22: if txs is not @ then

23: Ta < GENANCESTRYPROOF(C, block.header)

24: e < GENSPARSECOMMITMENTPROOF(txs, block.header)

25: (R(txs), ms) < GENREADSETPROOF(txs, block.header)

26: --» Vb Inclusion proof not sent if
Sunfish-HC is used.

27: end if

28: end function

Consider now a state predicate Xs and a blockchain that uses Sunfish-HC:
We show that committing to the head of the hash chain generated by hashing
the transactions that touch Xs, uniquely identifies the sparse ledger (X, [’6)
Because we consider secure blockchains, we know that the per-block commit-
ment described in Section 4.2 is correct. Because of the collision resistance and
preimage resistance of the hash function, an adversary cannot find a different
sequence of transactions whose hash yields to the same commitment, unless with
negligible probability in . Therefore, the Sunfish-HC commitment to the sparse
ledger uniquely identifies a sparse ledger.

22 Scaffino, Wiist, Maram, Sonnino, Kokoris-Kogias

Liveness: To prove liveness of Sunfish, we need to prove that (X, Lﬁ) =

L. In other words, we need to prove that the sparse ledger output by the client
at any round r extends the shortest among the honest nodes’ stable ledgers
filtered by the predicate Xs;. Because we assume that the client connects to at
least one honest prover, the client is guaranteed to receive updates for its sparse
ledger from that prover. Because we assume the prover is non-eclipsed, at any
round r, the ledger of the honest prover extends the ledger in the view of at
least one honest consensus node. The honest prover runs the PROCESSBLOCK
function at each new final block that it sees (Algorithm 2, line 7): Therefore, it
generates the Sunfish necessary proofs (Algorithm 2, line 19, 20, 23, 24, 25), and
it sends them to the client (Algorithm 2, line 26). Because the communication is
synchronous, the client is guaranteed to receive the update from the honest, non-
eclipsed prover (Algorithm 2, line 26) within A time. Because the time between
ledger updates is larger than the network delay for security reasons, the sparse
ledger £" output by the client always extends o(Xs, Cﬁ) <L

O

Theorem 2 (Sunfish Resources) The bandwidth, computational, and storage
resources consumed by Sunfish are O(Ap|L| + n|L] + ¢¥|S)).

Proof. Bandwidth: Merkle tree-based ancestry proofs require the node to down-
load O(|L|log N) of data, so p = log N. Downloading transactions requires
O(|£|) and downloading their read sets along with their correctness proofs re-
quires O(¢|S]). Downloading inclusion proofs requires O(|£|log M) with M
being the average number of transactions in a block. Downloading complete-
ness proofs requires O(|ﬁ| log @), with @ being the average number of updated
sparse states in a block. Therefore, for Sunfish-C we have O(n|£|) with n =
log M + log Q, while for Sunfish-HC we have O(n|£|) with 1 = log Q. Computa-
tion: We consider a constant upper bound to the computation associated to a
transaction. The computation required to verify transaction inclusion, check the
sparse ledger commitment, and verify the transaction read set is O(|ﬁ| log M),
O(|£|log Q), and O(|1S]), respectively. The computational complexity of exe-
cution is O(|£]). Therefore, this makes for a total computation of O(n|£]) with
n = log M + log Q for Sunfish-C and O(n|£|) with n = log @ for Sunfish-HC.
Storage: The sparse node stores £ as well as S, yielding O(|£| + |S|) storage
complexity.

It follows that the resources consumed by Sunfish are O(Ap|L|+n|L|+v]9)),
with n = log M + log @) for Sunfish-C and n = log @ for Sunfish-HC. a

B Sunfish-C vs Sunfish-HC

We note that Sunfish-C requires the blockchain to have, in each block header,
a commitment to a Merkle tree over the transaction of the block, so to ver-
ify transaction inclusion. This is not the case when using the data structure of
Sunfish-HC, as hash chains entirely commit to transactions, allowing to verify

Sunfish: Reading Ledgers with Sparse Nodes 23

completeness and inclusion at the same time. Sunfish-C is minimizes the val-
idators’ overhead, while Sunfish-HC minimizes the resources of the sparse node.
We now compare the two data structures in terms of proof size and validators’
storage and computation. Let) be the average number of sparse states having
transactions in a block, and M the average number of transactions per block.
We omit from the client proof size the overhead due to the read set proof, as it
is the same for both data structures.

Proof Size: In Sunfish-C, the sparse node receives O(|£|) transactions, reads
the counters in O(|£|log Q), and checks transaction inclusion in O(|£|log M).
The proof size is O(n|ﬁ|), with n = log M + log Q. In Sunfish-HC, the sparse
node receives O(|£|) transactions and verifies the chain head inclusion in O(n|£|)
with 7 = log . The proof size for Sunfish-HC is smaller because the hash chain
already guarantees transaction inclusion.

Validators’ storage and compute: In Sunfish-C, validators store and update 1
counter per sparse state (8 bytes with O(1) updates). In Sunfish-HC, validators
store and update 1 chain head per sparse state (64 bytes with O(1) updates).

C Sparse Node Operating Modes
Sparse nodes can have various operating modes.

Header Mode. A header node is always online and reads all block headers, irre-
spective of whether a relevant transaction is in the block (similar to SPV light
nodes). This mode offers the benefit that liveness failures are detectable early on
(assuming blocks are produced at a known rate and the network is synchronous),
although at the cost of increased resource consumption.

Continuous Mode. A continuous sparse node only receives the (scattered) head-
ers of those blocks that include transactions relevant for them. Such a node is
always online so that it can be immediately notified when a relevant transaction
gets appended to the ledger. Assuming it connects to an honest prover, the ledger
of a continuous sparse node is complete at all times. We can further categorize
based on how quickly a sparse node is notified, e.g., as soon as a transaction gets
added to a block or as soon as it gets finalized (which is consensus-specific and
may be earlier). We leave this exploration for future work. This is the primary
operating mode considered in the main body of this work.

Intermittent Mode. An intermittent sparse node alternates between wake and
sleep periods, either with some periodicity or at random. Assuming it connects
to at least one honest node, the ledger of an intermittent node is prefix complete
at all times and complete only when awake.

On-Demand Mode. An on-demand sparse node wakes up, stays awake for the
time it takes to get the data, and then falls asleep forever. This node is only
interested in a single snapshot of a complete and valid sparse ledger and its
state.

