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Abstract Falcon is a winner of NIST’s six-year post-quantum cryptography standardisation
competition. Based on the celebrated full-domain-hash framework of Gentry, Peikert and
Vaikuntanathan (GPV) (STOC’08), Falcon leverages NTRU lattices to achieve the most compact
signatures among lattice-based schemes.
Its security hinges on a Rényi divergence-based argument for Gaussian samplers. However, the GPV
proof, which uses statistical distance to argue closeness of distributions, fails when applied naively
to Falcon due to parameter choices resulting in statistical distances as large as 2−34. Additional
implementation-driven deviations from the GPV framework further invalidate the original proof, leaving
Falcon without a security proof despite its selection for standardisation.
In this work, we provide the first formal security proof of Falcon in the random oracle model, achieved
through a few conservative modifications, now incorporated into the forthcoming standard. At the heart
of our analysis lies an adaptation of the GPV framework to work with the Rényi divergence, along with
an optimised method for parameter selection under this measure. We also analyse the FFO Sampler
that is used in Falcon. Further, we prove the equivalence of plain unforgeability to a multi-target
inhomogeneous SIS problem, and strong unforgeability to a second-preimage version of this problem,
providing clear targets for cryptanalysis. Assuming these problems are as hard as standard SIS, we
demonstrate that Falcon-512 barely satisfies the claimed 120-bit security target, while Falcon-1024
achieves the claimed security level.
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1 Introduction

Among the 69 submissions to the NIST post-quantum cryptography standardisation process in 2016 [Kim16],
Falcon [PFH+20] was selected as one of four winning algorithms in 2022. Currently, NIST is in the process
of drafting the corresponding FIPS standard. Falcon is a signature scheme based on the full-domain-hash
(FDH) paradigm [BR96], commonly known as “hash-and-sign”. In this framework, the public verification key
is a trapdoor permutation f and the signing key is the inverse f−1. To sign a message m, one first hashes
m to some point y = H(m) in the range of f , then outputs the signature σ = f−1(y). Verification consists
of checking that f(σ) = H(m). Falcon, like most of the selected algorithms such as Kyber [SAB+22] and
Dilithium [LDK+22], relies on the hardness of lattice problems. Its design follows the FDH framework over
lattices, as formalised in the celebrated work of Gentry, Peikert and Vaikuntanathan (GPV) [GPV08], which
generalised the FDH paradigm to work with preimage sampleable trapdoor functions, rather than solely
permutations. Concretely, GPV signatures σ are sampled from f−1(H(m)). By leveraging NTRU lattices,
introduced by Hoffstein, Pipher, and Silverman [HPS98,HHP+03], Falcon benefits from their ring structure.
This allows a reduction in public keys by a factor of O(n) and accelerates many computations by a factor of
O(n/ logn), where n is the polynomial ring dimension. More importantly, [DLP14] showed that, by choosing
appropriate parameters, the length of NTRU trapdoors can be within a small constant factor of the theoretical
optimal, achieving the most compact signatures among lattice-based schemes. These optimal parameters can
be efficiently generated using a key generation algorithm from [PP19], which leverages the tower-of-fields
structure in powers of 2 cyclotomic fields. The final component of Falcon is an efficient sampler derived from
the Fast Fourier Orthogonalization (FFO) technique described by Ducas and Prest in [DP16] that samples in
time O(n logn), again leveraging the tower-of-fields structure. Compared to other signature schemes selected
for standardisation by NIST, such as Dilithium [LDK+22] and Sphincs+ [HBD+22], Falcon stands out
for its compactness, minimising both public key and signature sizes.

While the GPV framework was originally proven [GPV08] under the plain (unstructured) Short Integer
Solution (SIS) assumption [Ajt96], adapting it to the (structured) NTRU-SIS setting is described in the
Falcon specification as “straightforward”. The GPV proof relies on the “leftover hash lemma” [HILL99,
Lem. 4.8] to argue that the simulation of the random oracle is statistically close to uniform. While this
statistical argument can be adapted using a regularity lemma for rings [SS11,LPR13,RSW18], applying this
argument with Falcon parameters leads to statistical distances as large as 2−34. Moreover, Falcon deviates
from the GPV framework by relying on the Rényi divergence instead of statistical distance, to achieve tighter
parameters and smaller signature sizes. Therefore, as stated in [LAZ19, Sec. 2.3], the parameters used in
Falcon are not supported by the GPV proof.

Given the importance of thoroughly understanding schemes intended for mass deployment, and in light of
recent classical attacks on post-quantum schemes [Beu22,CD23,MMP+23,Rob23], careful security analysis is
paramount. Despite successfully progressing through all three stages of the NIST process and being selected
for standardisation, a formal proof of Falcon remains elusive raising the following pertinent question.

Can Falcon be proven secure? If so, what is its concrete security?

1.1 Contributions

This work provides the first concrete security analysis of Falcon-type signature schemes in the GPV
framework. Our main contributions are:
Extending the GPV framework to Rényi divergence. We extend the GPV framework to
incorporate the Rényi divergence, adapting key lemmata to support the Rényi divergence and NTRU rings.
These results are broadly applicable to other constructions including [EFG+22, ENS+23, GJK24, YJW23].
We also develop tools for optimally selecting parameters for Rényi divergence. While these contributions
are not fundamentally new [SS11, LPR13, BLL+15, TT15], we present them here in full due to their
practical significance. For instance, while Falcon recommends using a Rényi divergence of order a = 2λ,
this results in a 60-bit security loss for the Falcon-1024 parameter set. Our tools reduce this loss to just 8
bits.
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Falcon+: modifications to Falcon for provable security. While our extensions to the GPV
framework and parameter optimisation tools improve the security analysis, we were not able to prove the
security of Falcon without modifications. To this end, we introduce Falcon+, a minor modification of
Falcon, that can easily be justified at this late stage of the standardisation process. The differences to
Falcon are sketched in Figure 6. Besides hashing the public key (which is standard cryptographic
practice), Falcon+ crucially samples a random salt and samples a preimage of the hash of the
message/salt pair within the repeat loop of signing, i.e., until a sufficiently short preimage is found. In
contrast, Falcon picks a fixed random salt outside of the repeat loop and then samples the preimage.5
This modification incurs minimal additional cost since the loop is executed only once or twice in
expectation. Furthermore, the costs associated with Gaussian sampling within the loop far outweigh the
hashing and FFT costs, even for large messages. Our proposed changes have already been integrated into
the latest implementation of Falcon [Por25a, Por25b] and are due to be integrated into the forthcoming
FIPS standard.

Sgn(sk,m)

01 Sample salt r

02 repeat
03 s $← f−1(H(r,m))
04 until ∥s∥2 ≤ β

05 σ := (r,s)

Sgn+(sk,m)

06 repeat
07 Sample salt r

08 s $← f−1(H(pk,r,m))
09 until ∥s∥2 ≤ β

10 σ := (r,s)

Figure 1. Signing (simplified) of original Falcon (left) and our modification Falcon+ (right). Sampling from f−1(·)
is done using sk.

Security analysis. We provide a thorough security analysis of Falcon+ in the random oracle model. Using
our tools, we derive concrete security bounds from our theorems, which focus on minimising bit security loss
due to Rényi divergence arguments. We formalise the hardness assumptions that are not only sufficient
to prove the security of Falcon+ but also necessary, thereby providing clear targets for cryptanalysts.
Specifically, the plain unforgeability of Falcon+ is equivalent to a multi-target inhomogeneous SIS problem,
while strong unforgeability corresponds to a second-preimage version of the same problem, which we define
here. Assuming that both problems are as hard as standard SIS, we show that Falcon+-512 (NIST Level I)
achieves 113 bits of provable security for both plain unforgeability and strong unforgeability. Furthermore, by
reducing the number of allowed signing queries from 264 to 258, this increases to 119 bits, nearing the claimed
security level. For Falcon+-1024 (NIST Level V), we prove that it meets 256 bits of security for both plain
unforgeability and strong unforgeability. An overview of the provable bit security is shown in Table 1.
FFO Sampler. The Fast-Fourier Orthogonalization (FFO) process, introduced by Ducas and Prest [DP16],
improves the running time of matrix orthogonalisation for matrices with circulant blocks. When the matrix
dimensions are powers of 2, the time complexity improves by a factor of O((n/ logn)), where n is the block
size. This can be seen as a structured variant of the Gram-Schmidt algorithm. In Falcon, the FFO algorithm
accelerates Gaussian sampling through the FFO Sampler. A proof of the FFO Sampler has not been
published, neither in the Falcon specification nor in [Pre17], where the GPV sampler is analysed using the
Rényi divergence rather than statistical distance. This use of the Rényi divergence, as opposed to statistical
distance, enables the reduction of floating-point precision to 53 bits while maintaining a 256-bit security level.
In Appendix E.3, we show that a similar result to the one from [Pre17] also holds for the FFO Sampler.
This strengthens the theoretical foundation of the Falcon signature scheme and provides formal backing
for its security claims.
5 Note that SQUIRRELS [ENST23], a scheme submitted to the first round of the NIST Call for Additional Post-

Quantum Signature Schemes, suffers from the same shortcoming.
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Scheme Notion Multiplicative Loss and Assumption Bit Security

Falcon+-512 (Qs = 264)
UF-CMA (Th. 1)

SUF-CMA (Th. 2)
rQs

u · rQs
p ·QH-R-ISISβ

UF-CMA + rQs
p ·Qs-R-SPISISβ

113

Falcon+-512 (Qs = 258) 119

Falcon+-1024 (Qs = 264) 256
Table 1. Provable bit security levels of Falcon+-512 and Falcon+-1024, along with the simplified concrete security
loss for Falcon+ in the random oracle model. Constants ru = 1 + δu and rp = 1 + δp represent Rényi divergences
related to the uniformity of an NTRU evaluation on Gaussian inputs (ru) and the preimage sampler (rp). Qs and
QH denote the number of signing and random oracle queries, respectively.

1.2 Technical Overview

The Gentry-Peikert-Vaikuntanathan Framework. The GPV framework [GPV08] provides a method
for constructing secure lattice-based signature schemes using the full-domain-hash (FDH) paradigm [BR96],
commonly referred to as “hash-and-sign”. Central to this framework is a “preimage sampleable trapdoor
function” a primitive, instantiated (in part) by a function fA(s) := As mod q where A ∈ Zn×m

q . Here, each
signature essentially corresponds to a short preimage of the hash of a message. More specifically, the public
key pk is a full-rank matrix A ∈ Zn×m

q (with n≤m) forming the basis of the orthogonal q-ary “SIS” lattice
Λ = {z ∈ Zm |Az = 0 mod q}. The secret key (or trapdoor) sk is a matrix B ∈ Zm×m

q that also generates
Λ, and is orthogonal to A, i.e., A ·B = 0. Provided the Gram-Schmidt norm of B is small, a short preimage
under fA can be found efficiently using B. A signature on a message m is a short vector s ∈ Zm such
that H(m) = As mod q, where H : {0,1}∗→ Zn

q is a hash function. Verification involves checking both the
shortness of s and that fA(s) = H(m). We consider the probabilistic (or salted) variant of the scheme, where
a signature is a short preimage of H(m,r) for a random salt r.
The GPV Proof Template. The GPV framework was proven secure in both the random oracle
model [BR93, GPV08] and the quantum random oracle model [BDF+11] under the plain (unstructured)
SIS assumption [Ajt96]. Security can be established in two ways: (1) via collision resistance of fA, reducing
to SIS, or (2) via one-wayness of fA, reducing to ISIS. The original work [GPV08] provided a tight proof of
strong unforgeability for FDH, leveraging collision resistance. In this overview, we focus on the one-wayness
proof.

Suppose, for the sake of contradiction, that an adversary A breaks the plain unforgeability of the signature
scheme, producing a forgery s⋆ for a message m⋆ and salt r⋆, where s⋆ is short and H(m⋆, r⋆) = As⋆ mod q.
We construct a reduction B that solves the one-wayness of fA on image u by using A as a subroutine. The
reduction proceeds as follows:

– Set the public key pk of the signature scheme to be the matrix A from the one wayness game.
– Whenever A makes a signing query on message m, the random oracle is programmed for each fresh query

to H(m,r). The reduction samples a Gaussian vector sm, programs H(m,r) := Asm mod q, and returns
the signature (sm, r) to A. Crucially, by the “leftover hash lemma” [HILL99], the simulated random
oracle output is statistically close to uniform.

– Program the hash of the target message m⋆ to be the one-wayness target vector, H(m⋆, r⋆) := u. 6

– When A outputs a forgery (s⋆, r⋆) for m⋆, the reduction outputs s⋆ as a solution to the one-wayness
challenge. By construction, it holds fA(s⋆) = H(m⋆, r⋆) = u, and s⋆ is short, so B succeeds.

Clearly, the one-wayness of fA with target u can be directly reduced to an ISIS instance on input (A,u).
Falcon Instantiation of the GPV Framework. The design of Falcon prioritises compactness,
minimising the combined size of |pk|+ |σ|. To achieve this, Falcon relies on the class of NTRU lattices
introduced by Hoffstein, Pipher, and Silverman [HPS98, HHP+03], which come with an additional ring
6 For simplicity in this overview, we ignore losses due to guessing and do not address the multi-target assumption.

5



structure that reduces the public key size by a factor of O(n) and accelerates many computations by a
factor of at least O(n/ logn). Among structured lattices, NTRU lattices are particularly efficient, with
public keys represented as a single polynomial h ∈ Rq = Zq[X]/(Xn + 1). Falcon instantiates a
randomised version of the GPV framework with the NTRU-based preimage sampleable trapdoor function
fh [HPS98,DLP14,PFH+22]. Specifically, fh maps two ring elements (s1,s2) to s1 +h ·s2 mod q. Observe
that fh is a special case of the GPV trapdoor function fA(s) = As mod q. A valid signature on message m
consists of a tuple (s1,s2) ∈R2 and a random salt r ∈ {0,1}k satisfying

H(m,r) = s1 +h ·s2 mod q ∧ ∥(s1,s2)∥2 ≤ β.

This adaptation requires the standard “randomised GPV” proof to be based on an “NTRU-SIS” assumption,
a process described as “straightforward” in the Falcon specification [PFH+22].
Repeated Sampling and Salting. One key difference in Falcon compared to the GPV framework is
that signatures are not directly output from the preimage sampling procedure, as they may fail verification
if their norms are too large – something that occurs with small probability of about 2−14. To eliminate
this correctness error, signatures are checked for shortness, and if the norm exceeds some threshold, a
new preimage is sampled repeatedly until one with a sufficiently small norm is found. This introduces a
complications for simulating signing queries, as the process involves conditional distributions. The signing
oracle outputs preimages conditioned on having a sufficiently small norm, whereas programming the random
oracle with this constraint and analysing the uniformity of outputs appears to be challenging.

In the current Falcon specification, the random salt r is chosen before the preimage sampling loop and
therefore does not help mitigate the issue of conditional distributions. In our modified scheme, Falcon+,
we propose drawing a new salt each time the preimage sampling process results in too large signatures. This
modification allows the reduction to continue programming the random oracle with large preimages, while
still being able to produce valid signatures. If a sampled preimage is too large, the reduction can simply
choose a new salt, yielding a new random oracle output and a new preimage. This change incurs only a minor
constant overhead in the security bound, corresponding to the maximum number of repetitions. In practice,
the efficiency impact is minimal, as preimage sampling remains the dominant computational cost in both
the original and modified schemes. The latest Falcon implementation incorporates these changes [Por25a,
Por25b], and the forthcoming FIPS standard will include them as well.
Rényi Divergence in Falcon. Another issue is that Falcon relies on the Rényi divergence, whereas the
GPV framework uses the statistical (or total variation) distance to prove the closeness of the sampler and
a Gaussian. Citing [Pre17, Lem. 6] as the analysis of the Klein Sampler [Kle00], Falcon claims that for
suitable parameters, the Rényi divergence between the FFO Sampler’s output and an ideal Gaussian is
bounded by 1+O(1)/Qs, incurring a loss of at most O(1) bits of security. However, we are interested in the
concrete bounds. To address this, we modify the GPV framework to the handle Rényi divergence, enabling
the simulation of signing queries.

Furthermore, the GPV framework uses a second statistical argument, the “leftover hash lemma” [HILL99,
Lem. 4.8], to show that the programmed output of the random oracle is close to uniform. However, two
challenges arise. First, the argument, originally stated for unstructured lattices, must be adapted to the
ring setting, which can be done using a regularity lemma from [SS11, Sec. 3.3] or [LPR13, Sec. 4]. More
critically, applying such a statistical argument to the Falcon parameters yields statistical distances as large
as 2−34, for each simulated random oracle output. As a result, further modifications to the GPV framework
are necessary to argue that the random oracle’s output is Rényi-close to uniform. That is, we require a
lemma showing that H(m,r) := s1 +h ·s2 mod q is Rényi close to uniform for Gaussian s1,s2. However, the
Rényi divergence arguments are highly sensitive to the number of queries, and the Falcon parameters are
specifically tuned to accommodate the number of signing queries, Qs = 264, rather than the random oracle
queries, QH = 296≫Qs. Thus, these tools cannot be applied directly in the random oracle model, requiring
us to carefully program only those random oracle queries originating from signing queries.
Norm Bound. GPV [GPV08] showed that strong unforgeability follows from the collision resistance of fA,
which reduces to SIS with norm bound 2β. Similarly, plain unforgeability follows from the one-wayness of
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fA, reducing to ISIS with norm bound only β. While the plain unforgeability proof extends to Falcon,
the strong unforgeability proof does not: under Falcon-1024 parameters, SIS with norm 2β is trivial, and
for Falcon-512, it falls short of the desired security margin. This motivates a proof of strong unforgeability
where the resulting (I)SIS instance has norm bound β. We show that such a proof exists under the second
preimage resistance of fA, which reduces to a corresponding second preimage variant of the ISIS problem
with norm bound β. Refer to Figure 2 for an overview.

Assumption SIS2β SPISISβ ISISβ

Property of fA Collision Resistance Second Preimage Resistance One-Wayness

Security Notion Strong Unforgeability Strong Unforgeability Unforgeability

Figure 2. Relationships between computational hardness assumptions, properties of the preimage-sampleable
trapdoor function fA, and security notions of the resulting signature scheme. Our results are highlighted by the
dotted box.

FFO Sampler. The Falcon specification does not explicitly analyse the FFO Sampler; instead, it bounds
the relative error by relying on an analysis of the Klein Sampler presented in [Pre17, Sec. 4.5]. The
technique used in this analysis consists of proving the probability that the Klein Sampler will output the
vector z. This distribution is then compared to the discrete Gaussian distribution using Rényi divergence
tools. Our analysis of the FFO Sampler follows the same approach, with the key step being the proof
of its distribution. The FFO Sampler works with a matrix of polynomials, whereas the Klein Sampler
operates on a matrix in R2n×2n. The Klein Sampler relies on two fundamental results. The first states
that in a lattice generated by an orthogonal basis, one can sample vectors from a Gaussian distribution
by independently sampling each coordinate from a discrete Gaussian over the integers. The second result
provides a transformation that reduces the problem of sampling from a lattice generated by an arbitrary
basis B to the problem of sampling from the lattice defined by its Gram-Schmidt orthogonalisation.

The FFO Sampler builds on the same principles as the Klein Sampler, but also leverages the tower-
of-fields Kn/Kn/2/. . ./K2/Q, where Ki = Q[x]/(xi +1), to reduce complexity via a recursive algorithm. The
tower-of-fields is navigated using linear mappings V and M . In particular, the mapping V is an isometry,
which ensures that the Gaussian distribution of the output vector is preserved as an invariant throughout the
recursion.To sample from the lattice generated by the basis B = (b1,b2) around a target vector (t1,t2), the
FFO Sampler performs 2logn recursive calls. At the top of the recursion tree, a transformation (Lemma 18)
reduces the problem to sampling in the lattice generated by the Gram-Schmidt orthogonalized basis B̃ =
(b̃1, b̃2) around the vector (t′1,t′2). Since B̃ is orthogonal, the two coordinates can be sampled independently
(Lemma 17). The vector b̃1 is transformed into a 2× 2 matrix (b11,b12) whose entries are polynomials of
degree n/2 using a linear mapping M . Similarly, t′1 is mapped to a pair (t11,t12), consisting of polynomials
of degree n/2, using a mapping V . These inputs are then recursively sampled to yield a Gaussian vector
(z11,z12). This allows us to recover the coordinates z1 = V −1(z11,z12), which itself follows a Gaussian
distribution. The same procedure is applied to obtain z2. At each step of the recursion, the number of
columns of the input matrix remains two, while the number of rows doubles. At the leaves of the recursive
tree, the entries of the matrix are reals (polynomials of degree 0), and since the number of columns is 2, the
Klein Sampler can be applied directly in dimension 2. The analysis of the FFO Sampler builds upon
that of the Klein Sampler, leveraging the isometry property of the mapping V .
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Concrete Security of Falcon+. Table 1 summarises the concrete security bounds of Falcon+, our
modified version of Falcon. Here, t-R-ISIS denotes the multi-target variant of the ring inhomogeneous
SIS problem with t targets, while t-R-SPISIS denotes a second-preimage variant, where an adversary is
given t targets with valid short preimages and must output a different short preimage for one of them. The
Falcon parameters have been carefully chosen so that the Rényi divergence bound rQs

u = (1+δu)Qs remains
a small constant for Qs = 264 signing queries. This allows signing queries to be simulated by programming
the random oracle. The forgery in the (plain) unforgeability game is related to one of QH direct random
oracle queries. To use the forgery, the proof of UF-CMA in Theorem 1 relies on the t-R-ISIS assumption
with t≈QH targets. The challenge targets are embedded into the random oracle, allowing one to be solved
upon receiving a forgery. The Rényi loss introduced is rQs

u due to the changes in the signing distribution.
For Falcon+-512, parameters were selected with a narrow margin, resulting in a Rényi loss of 7 bits when
Qs = 264. Reducing the allowed number of signing queries to Qs = 258 lowers the loss to just 1 bit. For
Falcon+-1024, the Rényi loss is 8 bits when Qs = 264 signing queries, but due to the substantial security
margin for larger SIS instances, this does not compromise the target 256-bit security.

Theorem 2 for strong unforgeability reduces to both UF-CMA and the second-preimage version
t-R-SPISIS. Here, the short preimages are used to simulate signing queries, and the strong forgery is used
to obtain a second preimage. Using techniques from [BBD+23a, FFH25], we can set t = Qs. Assuming
t-R-SPISIS is as hard as standard SIS, and factoring in Rényi losses, the dominant term in Theorem 2 is
the UF-CMA term. Thus, the concrete security of SUF-CMA and UF-CMA is essentially the same for
both parameter sets.

The resulting bit security levels for Falcon+-512 (NIST Level I) and Falcon+-1024 (NIST Level V)
are shown in Table 1. These values are derived from Theorem 1 and Theorem 2, taking into account the
Rényi loss for the Falcon parameter sets, and using the “lattice-estimator” [APS15a,APS15b] to estimate
the hardness of SIS.

Open Problems. Finally, we leave as an open problem a proof in the quantum random oracle model
(QROM), which could likely be achieved using the techniques from [BBD+23a, FFH25], provided that the
Rényi arguments can be handled correctly. For comparison, Hawk [BBD+23b] was analysed in the
QROM [FH23] but does not rely on Rényi arguments.

2 Preliminaries

We introduce some relevant notation and definitions used throughout the paper.

2.1 Notation

Sets and Algorithms. We write s $← S to denote the uniform sampling of s from the finite set S and
by U(S) the uniform distribution over S. For an integer n, we define [n] := {1, . . . ,n}. The notation JbK,
where b is a boolean statement, evaluates to 1 if the statement is true and 0 otherwise. We use uppercase
letters A,B,C,D to denote algorithms. Unless otherwise stated, algorithms are probabilistic, and we write
(y1, . . .) $← A(x1, . . .) to denote that A returns (y1, . . .) when run on input (x1, . . .). We write AB to denote
that A has oracle access to B during its execution. The support of a discrete random variable X is defined
as sup(X) := {x ∈ R | Pr[X = x] > 0}. For two polynomials f ,g ∈ Rq = Zq[X]/(Xn + 1), we denote the
polynomial multiplication of f and g by f ·g. When the rank needs to be made explicit, we write Rq(n).
We use R̄q(n) to denote polynomials in (R/qZ)[X]/(Xn + 1). By “log” we denote the logarithm of base 2,
by “ln” of base e. We use ≲ to denote an approximate inequality.
Security Games. We use standard code-based security games [BR06]. A game G is a probability experiment
in which an adversary A interacts with an implicit challenger that answers oracle queries issued by A. The
game G has one main procedure and an arbitrary amount of additional oracle procedures which describe how
these oracle queries are answered. We denote the (binary) output b of game G between a challenger and
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an adversary A as G(A)⇒ b. A is said to win G if GA⇒ 1, or shortly G⇒ 1. Unless otherwise stated, the
randomness in the probability term Pr[G(A)⇒ 1] is over all the random coins in game G and adversary A. To
provide a cleaner description and avoid repetitions, we sometimes refer to procedures of different games. To
call the oracle procedure Oracle of game G on input x, we shortly write G.Oracle(x). If a game is aborted
the output is 0. For our analysis we rely on the commonly used main difference lemma or the multiplicative
difference lemma for independent events. Security notions are considered in the random oracle model [BR93].

2.2 Signatures

We recall the syntax and standard security notions of signatures.

Definition 1 (Signature Scheme). A signature scheme Sig is defined as a tuple (Gen,Sgn,Ver) of the
following three algorithms.

(sk,pk) $← Gen: The probabilistic key generation algorithm returns a secret key sk and a corresponding
public key pk, where pk defines a message space M.

σ $← Sgn(sk,m): Given a secret key sk and a message m∈M, the probabilistic signing algorithm Sgn returns
a signature σ.

b← Ver(pk,m,σ): Given a public key pk, a message m, and a signature σ, the deterministic verification
algorithm Ver returns a bit b, such that b = 1 if and only if σ is a valid signature on m and b = 0
otherwise.

Sig has ε-correctness error if for all (sk,pk) ∈ sup(Gen) and any m ∈M Pr[Ver(pk,m,Sgn(sk,m)) ̸= 1]≤ ε,
where the probability is taken over the random choices of Sgn.

Definition 2 ((Strong) Unforgeability). The notions of (strong) existential unforgeability under chosen
message attacks are formalised via the games Qs-UF-CMASig(A) and Qs-SUF-CMASig(A). Both are
depicted in Figure 3, where Qs is the maximum number of the adversary’s signing queries. We define the
advantage functions of adversary A as

AdvQs-UF-CMA
Sig,A := Pr[Qs-UF-CMASig(A)⇒ 1],

AdvQs-SUF-CMA
Sig,A := Pr[Qs-SUF-CMASig(A)⇒ 1].

Games Qs-UF-CMASig(A)/Qs-SUF-CMASig(A)

01 Q← ∅
02 (sk,pk) $← Gen
03 (m⋆,σ⋆) $← ASgn(·)(pk)
04 return JVer(m⋆,σ⋆) = 1∧ (m⋆, ·) /∈QK // UF-CMA
05 return JVer(pk,m⋆,σ⋆) = 1∧ (m⋆,σ⋆) /∈QK // SUF-CMA

Oracle Sgn(m)

06 σ $← Sgn(sk,m)
07 Q←Q∪{(m,σ)}
08 return σ

Figure 3. Games defining UF-CMA and SUF-CMA for a signature scheme Sig = (Gen,Sgn,Ver) and adversary A
making at most Qs queries to Sgn.
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2.3 Lattices

Rings and Norms. In this work, we work with polynomial rings of the form R = Z[X]/(Xn + 1) and
Rq = Zq[X]/(Xn + 1), for n = 2k and k,q ∈ N. For a polynomial f ∈ Rq, let f ∈ Zn

q denote the coefficient
embedding of f , and fi ∈ Z the ith coefficient.

Definition 3 (Anticirculant Matrix). For a polynomial f ∈R=Z[X]/(Xn +1), the anticirculant matrix
of f is defined as

A(f) =


f0 −fn−1 · · · −f1
f1 f0 · · · −f2
...

...
. . .

...
fn−1 fn−2 · · · f0

 ∈ Zn×n.

Anticirculant matrices satisfy the following useful properties.

Lemma 1. Let f ,g ∈R. Then A(f)+A(g) =A(f +g) and A(f) ·A(g) =A(f ·g).

This implies an isomorphism between R and the anticirculant matrices over Zn×n, Rq and Zn×n
q

respectively. Sometimes we overload the notation and write A(f) for the coefficient embedding f ∈ Zn of f
instead of A(f).

Let the ℓ2-norm for f = f0 + f1X + . . . + fn−1Xn−1 ∈ R be defined as ∥f∥2 :=
√∑n−1

i=0 |fi|2. For two
polynomials f ,g ∈R we use the notation

∥(f ,g)∥2 :=

√√√√n−1∑
i=0

(
|fi|2 + |gi|2

)
.

Lattices. A lattice Λ⊆ Rn is a discrete additive subgroup of Rn.

Definition 4 (Lattice). A rank m lattice in Rn is defined via the set b1, . . . , bm ∈Rn of linearly independent
vectors that form a basis B = {b1, . . . , bm} for the lattice

Λ := Λ(B) = Λ(b1, . . . , bm) =
{

m∑
i=1

cibi | c1, . . . , cm ∈ Z

}
.

If m = n, then Λ is a full-rank lattice.

The determinant of a lattice Λ = Λ(B) ⊆ Rn for some basis B ∈ Rn×m is defined as
det(Λ) =

√
det(B⊤B). For an n-dimensional lattice Λ, a lattice Λ′ ⊆ Λ is called a sublattice of Λ. The

shifted lattice by t ∈ Rn is denoted by Λ + t = {x + t | x ∈ Λ}. One can define the following quotient group
Λ/Λ′ := {t+Λ′ | t ∈Λ}, which forms a group under the addition of cosets t+Λ′. The orthogonal lattice for
A ∈ Zn×m

q is defined as Λ⊥(A) := {e ∈ Zm |Ae = 0 mod q} and its shifted lattice, for a shift t ∈ Zn, is
defined as Λ⊥t (A) := {e ∈ Zm |Ae = t mod q}. If Λ is an orthogonal lattice, then Λt denotes its shift by t.

Definition 5 (NTRU Lattice). Let n = 2k for k ∈ Z, q prime, f ,g ∈R= Z[X]/(Xn +1), and h = g ·f−1

mod q. The NTRU lattice parameterised by h and q is a lattice of volume qn in R2n in the coefficient
embedding of the following module

{(u,v) ∈R2 | u+v ·h = 0 mod q}.

Equivalently, for R= Z[X]/(Xn + 1), an NTRU lattice is a full-rank submodule lattice of R2 generated
by the columns of a matrix of the form

Bh =
[
−h q
1 0

]
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for prime q, q = q ·1, and some h ∈Rq. A trapdoor for this lattice is a relatively short basis

Bf ,g =
[

g G
−f −F

]
where the basis vectors (f ,g) ∈R2 and (F ,G) ∈R2 are not much larger than

√
detBh =√q and f ·G−g ·

F = q mod (Xn +1).
Gaussians and Preimage Sampling. We define discrete Gaussians and state some of their useful
properties.

Definition 6 (Discrete Gaussian Distribution over Λ). The n-dimensional Gaussian function
ρs,c : Rn→ (0,1] on Rn centered at c ∈ Rn with standard deviation s > 0 is defined by

ρs,c(x) := exp
(
−
∥x− c∥22

2s2

)
.

For any c ∈ Rn, s ∈ R+, and lattice Λ, the discrete Gaussian distribution over Λ is defined as

∀ x ∈Λ, DΛ,s,c := ρs,c(x)∑
z∈Λ ρs,c(z) .

We sometimes use the following notation ρs,c(Λ) =
∑

x∈Λ ρs,c(x). We omit the subscript c when the
Gaussian is centered at 0 and subscript Λ when the Gaussian is over Zn. We use f ∼ DR to denote the
polynomial f :=

∑n−1
i=0 fiX

i mod (Xn +1) for f ∼DZn .
For bounding the probability that a random variable deviates a long way from the mean, we will use the

following tail bound from [Ban93,Lyu12,DRSD14,ADRS15].

Lemma 2 (Gaussian Tail Bound (unnormalised version of [ADRS15, Lem. 2]). For any lattice
Λ⊆ Rn, standard deviation s > 0, shift t ∈ Rn, and tailcut rate τ > 1,

Pr
z←DΛ+t,s

[
∥z∥2 > τs

√
n
]
≤ ρs(Λ)

ρs(Λ+ t)

(√
e1−τ2

τ2
)n

.

Definition 7 (Gram-Schmidt Norm [GPV08, DLP14]). For a finite basis B = (bi)i∈I , let
B̃ = (b̃i)i∈I be its Gram-Schmidt orthogonalization. Then the Gram-Schmidt norm of B is the value
∥B∥GS := maxi∈I

∥∥b̃i

∥∥.

Lemma 3 (NTRU Trapdoor Generation [HPS98, Pre15]). For a ring R, the NTRU trapdoor
generation algorithm TpdGen(α,q) → (f ,g,F ,G,h) takes a target quality α ≥ 1 and a modulus q, and
returns a public key h ∈ Rq \ {0} together with the corresponding trapdoor (f ,g,F ,G) ∈ R4, such that
Bh and Bf ,g form a basis of the same lattice. Furthermore,

∥∥Bf ,g

∥∥
GS
≤ α
√

q. When convenient, we write
(B,h) ∈ TpdGen for short.

Let Λ be an n-dimensional lattice and ϵ > 0, the (scaled) smoothing parameter ηϵ(Λ) is the smallest s > 0
such that ρ1/s(Λ∗ \0)≤ ϵ, where Λ∗ denotes the dual lattice (the exact definition of the dual is not required
for this work). We will use the following upper bound on the smoothing parameter.

Lemma 4 (Special Case of [MR07, Lem. 3.3]). For any ϵ ∈ (0,1) it holds that

ηϵ

(
Z2n

)
≤ 1

π
·
√

ln(4n(1+1/ϵ))
2 .

The following lemma appears implicitly in [MR04,MR07].
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Lemma 5 (Implicit in [MR07, Lem. 4.4]). For any n-dimensional lattice Λ, center c ∈ Rn, and reals
0 < ϵ < 1, s≥ ηϵ(Λ), we have

ρs,c(Λ) ∈ [1− ϵ,1+ ϵ] · (
√

2π ·s)n

det(Λ) .

FFO Sampler. The mappings M and V are similar to the mapping A used to define anticirculant matrices,
but they work step by step. While A expresses matrices of polynomials in Rq as block matrices with elements
from Zq, V and M express matrices of polynomials in Rq =Zq[X]/(Xn +1) as block matrices of anticirculant
matrices. These matrices are polynomials in Zq[X]/(Xn/2 + 1). The idea behind the FFO Sampler is to
recursively apply the operator Mk/(k/2), working with polynomials of degree k/2 at each step. The operator
Vk/(k/2) splits degree-k polynomials into their even and odd components, each of degree k/2, similar to the
decomposition used in the FFT.

Conversely, V −1
k/(k/2) recombines the two halves into a single degree-k polynomial. The sampling procedure

begins with the matrix B, and at each step, the factorisation LDL∗ is computed, corresponding to the
Gram-Schmidt orthogonalisation. This step may be skipped by using the Falcon tree, which essentially
precomputes the Gram-Schmidt orthogonalisation. At the leaves of the recursion tree, the matrix B contains
integer entries in two columns, and the Klein Sampler is called. At each other step, the FFO Sampler
takes care of computing with orthogonal basis. The operator Mk/(k/2) transforms the orthogonal vectors b̃1
and b̃2 into 4 mutually orthogonal vectors b̃11, b̃12, b̃21, b̃22. Thus, each recursive call to FFO Sampler
receives a basis consisting of two orthogonal column vectors. At the leaves, the Klein Sampler performs
integer sampling, with a standard deviation depending on the initial standard deviation s and the norms
∥b̃i∥. The notation ⊙ denotes the multiplication in the ring Rq,k = Z[X](Xk +1, q) with k|n a power of two.
Figure 4 describes the FFO Sampler.

FFOSampler
(

B = [b1,b2] ∈R2n−k+1×2
q,k ,s ∈ R,t = (t1, t2) ∈R2n−k+1×2

q,k

)
01 (L,B̃)← LDL∗(B) so that B = LB̃ and B̃ = [b̃1, b̃2]
02 if k = 0, KleinSampler(B = [b1,b2] ∈ Zn×2,s,t = (t1, t2) ∈ (Rn)2)
03 else // KleinSampler en dimension 2 with recursive calls
04 z2

$← V −1
k/(k/2)(FFOSampler(Mk/(k/2)(b̃2),s,Vk/(k/2)(t2)))

05 t′1 = t1− (z2− t2)⊙L1,2

06 z1
$← V −1

k/(k/2)(FFOSampler(Mk/(k/2)(b̃1),s,Vk/(k/2)(t′1)))
07 return z = (z1,z2)

Figure 4. FFO Sampler.

2.4 Rényi Divergence

Definition 8 (Rényi Divergence [Rén61, BLL+15, Pre17]). Let P,Q be two distributions such that
sup(P)⊆ sup(Q). For a ∈ (1,∞), we define the Rényi divergence of order a as

Ra(P||Q) =

 ∑
x∈sup(P)

P(x)a

Q(x)a−1

 1
a−1

.

In addition, we define the Rényi divergence of order +∞ as

R∞(P||Q) = max
x∈sup(P)

P(x)
Q(x) .
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Note that it is not symmetric and does not satisfy the triangle inequality. When the Rényi divergence
is finite, which it will be for all our applications, we can think of it as a value 1 + δ for δ ≥ 0. A smaller δ
indicates that the distributions are closer.

The Rényi divergence satisfies several useful properties. A detailed overview can be found in Appendix A.

Definition 9 (Relative Error (implicit in [Pre17, Lem. 3])). Let P and Q be two distributions such
that sup(P) = sup(Q). The relative error of P and Q is defined as

δRE(P,Q) := max
x∈sup(P)

|P(x)−Q(x)|
Q(x) .

The following lemma shows that the relative error can be used to bound the Rényi divergence. The
original proof in [Pre17, Lem. 3] uses a Taylor expansion to approximate the function as δ→ 0, denoted ≲.
For simplicity, when applying the lemma we only use ≤.

Lemma 6 (Relative Error [Pre17, Lem. 3]). Let P,Q be two distributions such that sup(P) = sup(Q)
and δRE > 0. Then for all a ∈ (1,+∞)

Ra(P || Q) ≲ 1+
aδ2

RE

2 .

The Klein Sampler [Kle00, GPV08] was analysed in [Pre17] with respect to its relative error and
Rényi divergence. We analyse the FFO Sampler (Fast Fourier Orthogonalization) from [DP16] as used in
Falcon in Appendix E and state the main results here.

Lemma 7 (Relative Error of FFO Sampler). Let n be a positive integer and ϵ ∈ (0,1/4). Then
the relative error of the FFO Sampler PreSmp and the lattice Λ = Λ(B)(c,0) for any basis B ∈ Z2n×2n,
standard deviation s≥ ηϵ(Z2n) · ∥B∥GS , and arbitrary syndrome c ∈Rq is bounded by

δRE

(
PreSmp(B,s,(c,0)),DΛ,s

)
≤
(

1+ ϵ/2n

1− ϵ/2n

)2n

−1≈ 2ϵ.

The proof can be found in Appendix E.3.

Corollary 1 (Rényi Divergence of FFO Sampler). Let n be a be a positive integer, a > 1, and
ϵ ∈ (0,1/4). Then for the FFO Sampler PreSmp and the lattice Λ = Λ(B)(c,0), for any basis B ∈ Z2n×2n,
standard deviation s ≥ ηϵ(Z2n) · ∥B∥GS , and arbitrary syndrome c ∈ Rq, the Rényi divergence is bounded
by

Ra

(
PreSmp(B,s,(c,0)) || DΛ,s

)
≲ 1+2aϵ2.

2.5 Hardness Assumptions

We define two inhomogeneous variants of the Short Integer Solution problem over NTRU lattices. The first
is a multi-target version, where the adversary is given t challenges and may solve one of them. The second is
a second-preimage version, where the adversary is given t targets together with valid short preimages 7 and
must output a distinct short preimage for one of them.

Definition 10 (t-R-ISIS, t-R-SPISIS). Let t≥ 1 andR be a ring. The Ring Inhomogeneous Short Integer
Solution problem and the Ring Second-preimage Inhomogeneous Short Integer Solution problem relative to
the NTRU trapdoor algorithm TpdGen with parameters q,s,B > 0, α≥ 1 are defined via the games t-R-ISIS
and t-R-SPISIS, depicted in Figure 5. We define the advantages of A as

Advt-R-ISIS
q,α,B,A := Pr[t-R-ISISq,α,B(A)⇒ 1],

Advt-R-SPISIS
q,α,s,B,A := Pr[t-R-SPISISq,α,s,B(A)⇒ 1].

7 Note that the game itself does not need to run in polynomial time; only the adversary is required to be efficient.
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According to [LM06], 1-R-ISISq,α,B is as hard as SVPγ for γ = Õ(nB) over ideal lattices. We define the
problems with respect to an NTRU key instead of a uniformly random element, since ISIS is not believed to
become easier in that case. However, if this should turn out to be wrong, the advantage of our definition can
be trivially upper bounded by the sum of the decisional NTRU advantage and the usual ring ISIS definition.
We do not aim to determine the exact hardness of these somewhat tailored assumptions, and we make the
assumption that both t-R-ISIS and t-R-SPISIS instances are as hard as random ISIS instances, though
improved attacks on t-R-ISIS may exist [Ber22]. Rather, our primary goal is to define assumptions that
precisely capture Falcon’s security – assumptions that are not merely sufficient but also necessary – thereby
providing clear and well-posed targets for cryptanalysts. In particular, any improvements in cryptanalytic
attacks against these assumptions directly translates into attacks on the plain or strong unforgeability of
Falcon. More precisely, given an attacker against (QH +1)-R-ISIS (QH being the number of random oracle
queries) one can directly use it to break Falcon’s UF-CMA security by simply forwarding random oracle
queries to the (QH +1)-R-ISIS adversary. The same holds for Qs-R-SPISIS (Qs being the number of signing
queries) and Falcon’s SUF-CMA security.

Game t-R-ISISq,α,B(A)

01 (·, ·, ·, ·,h) $← TpdGen(α,q)
02 for i ∈ [t]
03 ci

$←Rq

04 (j,u,v) $← A(h,c1, . . . ,ct)
05 return

q
u + h ·v = cj ∧∥(u,v)∥2 ≤B

y

Game t-R-SPISISq,α,s,B(A)

06 (·, ·, ·, ·,h) $← TpdGen(α,q)
07 Λ := Λ(Bh)
08 for i ∈ [t]
09 repeat
10 ci

$←Rq

11 (ui,vi) $←DΛ(ci,0),s

12 until ∥(ui,vi)∥2 ≤B

13 (j,u,v) $← A(h,{(ci,ui,vi)}i∈[t])
14 return

q
u + h ·v = cj ∧∥(u,v)∥2 ≤B∧ (u,v) ̸= (uj ,vj)

y

Figure 5. Games defining t-R-ISISq,α,B and t-R-SPISISq,α,s,B.

3 Security arguments using the Rényi Divergence
We introduce new techniques for applying Rényi arguments to prove the security of Falcon-type schemes.
These general results may be useful for a broader class of schemes that rely on the Rényi divergence, with
potential applications to works such as [EFG+22,ENS+23,GJK24,YJW23]. First, we extend [GPV08, Cor.
2.8], originally stated in terms of statistical distance, to accommodate the Rényi divergence. Such a lemma
for Rényi order ∞ was stated in [BLL+15, Lem. 2.10]. While these results are not entirely novel, we provide
the necessary details for their application in our formal proof. Lemma 8 shows that a Gaussian sample
over Λ is distributed almost-uniformly modulo a sublattice Λ′, provided the standard deviation exceeds the
smoothing parameter of Λ′.
Lemma 8 (Rényi Divergence of Gaussian Sample over Λ/Λ′ (adapted from [GPV08, Cor. 2.8])).

Let Λ,Λ′ be n-dimensional full-rank lattices with Λ′ ⊆Λ. Then for any a∈ (1,∞), ϵ∈ (0, 1
2 ), any s≥ ηϵ(Λ′),
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and any c ∈ Rn,

Ra

(
U(Λ/Λ′) || DΛ/Λ′,s,c

)
≲ 1+ 2aϵ2

(1− ϵ)2 .

The proof can be found in Appendix B.1. Similarly, we extend [GPV08, Lem. 5.2], also originally stated
in terms of statistical distance, to work with the Rényi divergence. The following lemma states that an error
vector taken from an appropriate Discrete Gaussian over Zm corresponds to a nearly-uniform syndrome.

Lemma 9 (Rényi divergence (adapted from [GPV08, Lem 5.2])). If the columns of A ∈ Zn×m
q

generate Zn
q , a ∈ (1,∞), ϵ ∈ (0, 1

2 ), and s≥ ηϵ(Λ⊥(A)); then for e∼DZm,s, the distribution P = U(Zn
q ), and

the distribution Q of the syndromes u = Ae mod q, it holds that

Ra(P || Q) ≲ 1+ 2aϵ2

(1− ϵ)2 .

The proof can be found in Appendix B.2.

Corollary 2 (Rényi uniformity for NTRU). Let q be prime, h ∈ Rq \ {0}, a ∈ (1,∞), ϵ ∈ (0, 1
2 ),

s≥ ηϵ(Λh,q), P = U(Rq), and Q the distribution of u+v ·h mod q where u,v ∼DR,s. Then it holds that

Ra(P || Q) ≲ 1+ 2aϵ2

(1− ϵ)2 .

The proof can be found in Appendix B.3.
The next lemma shows that the tailbounds of two distributions with a small relative error are close.8

Lemma 10 (Relative Error for Tailbounds). Let P and Q be two distributions with
sup(P) = sup(Q) = Zn and δRE(P,Q) = δ. Then for any β ≥ 0,

Pr
x←P

[∥x∥2 > β]≤ Pr
x←Q

[∥x∥2 > β] · (1+ δ).

The proof can be found in Appendix B.4.
For the Rényi divergence, the order a can take any value in (1,∞), where a smaller a offers better

efficiency, and a larger a enables a tighter proof. The description of the lemma is chosen to match statements
usually occurring in a security bound (compare for example Section 4.2). For two events E1 and E2, Lemma 11
states the minimal number of bits that are lost when moving from E1 to E2. Optimising the Rényi order was
previously considered in [TT15].

Lemma 11 (Optimal Rényi Order). For λ∈N, let E1,E2 be two events such that Pr[E1]≥ 2−λ. Assume
that for any Q ∈ N, a ∈ (1,∞), and Ra ∈ [1,∞) it holds that

Pr[E2]≤RQ
a ·Pr[E1]

a−1
a .

Then

− log(Pr[E2])≥− log(Pr[E1])−min
a>1

{
Q logRa + λ

a

}
.

The proof can be found in Appendix B.5.
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Gen

01 (f ,g,F ,G,h) $← TpdGen(α,q)

02 B :=
[
A(g) A(G)
−A(f) −A(F )

]
∈ Z2n×2n

03 return (sk := B,pk := h)

Sgn(sk = B,m)

04 r $←{0,1}k

05 c := H(pk,r,m) ∈Rq

06 repeat
07 (s1,s2) $← PreSmp(B,s,(c,0))
08 until ∥(s1,s2)∥2 ≤ β

09 σ := (r,s2) ∈ {0,1}k×R
10 return σ

Ver(pk = h,m,σ = (r,s2))

11 c := H(pk,r,m)
12 s1 := c−s2 ·h mod q

13 return J∥(s1,s2)∥2 ≤ βK

Sgn+(sk = B,m)

14 repeat
15 r $←{0,1}k

16 c := H(pk,r,m) ∈Rq

17 (s1,s2) $← PreSmp(B,s,(c,0))
18 until ∥(s1,s2)∥2 ≤ β

19 σ := (r,s2) ∈ {0,1}k×R
20 return σ

Figure 6. Construction of the CoreFalcon = (Gen,Sgn,Ver) and CoreFalcon+ = (Gen,Sgn+,Ver) signature
schemes.

4 CoreFalcon+: A Framework for Falcon

Let n be a power of 2, q prime, and R = Z[X]/(Xn + 1). Let α ∈ R>1 (basis quality), β ∈ R>0 (signature
norm bound), s ∈ R>0 (Gaussian standard deviation), and k ∈ N (size of seed) be fixed parameters. Let
TpdGen : R×Z→R5 be a trapdoor generation algorithm, let PreSmp : Z2n×2n×R×R2→R2 be a preimage
sampling algorithm, and H :Rq×{0,1}k×M→Rq be a hash function. The defining algorithms of signature
schemes CoreFalcon+ and CoreFalcon are given in Figure 6.

Note that CoreFalcon+ is a slight modification of CoreFalcon: In signing Sgn+ of CoreFalcon+,
picking the random seed r and computing the ring element c = H(pk,r,m) is performed inside the repeat
loop (lines 14-18), while CoreFalcon picks a fixed seed r. This modification is not only conceptual; see the
discussion below.

The NIST Falcon signature schemes, Falcon-512 and Falcon-1024, can be seen as specific
instantiations of CoreFalcon.9 Unfortunately, we were not able to analyse the security of CoreFalcon
since picking the random seed r outside of the repeat loop crucially affects the distribution of the signature
in a way we are not able to simulate. Instead, in the next section, we will provide a general security
analysis of the CoreFalcon+ framework and derive concrete security levels from modifications
Falcon+-512 and Falcon+-1024.

Note that our modular analysis can be applied to CoreFalcon+ variants that use alternative samplers
or key generation procedures, including recent approaches like [EFG+22] and [ENS+23].
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Parameter
hhhhhhhhhhhhhhDescription

NIST Level Falcon-512 Falcon-1024
I V

n Degree of ring R 512 1024
q Modulus 12289
ϵ smoothing parameter quality 2−35.5 2−36

s Standard deviation 165.736617183 168.388571447
τ Tailcut rate 1.1
β Max. signature norm bound 5833.93 8382.44
k Bit size of the salt 320

Table 2. Parameter sets for Falcon-512/Falcon+-512 and Falcon-1024/Falcon+-1024 [PFH+22, Tab. 3.3].

4.1 Falcon Parameter Sets

As discussed above, Falcon can be seen as CoreFalcon with two parameter sets [PFH+22]; a smaller set
with ring degree n = 512 (Falcon-512) targeting NIST security level I, and a larger set with ring degree
n = 1024 (Falcon-1024), targeting NIST security level V. Both sets use the same modulus q = 12289. The
smoothing parameter quality is defined as ϵ = 1/

√
Qs ·λ, where Qs represents the recommend maximum

number of signing queries, set to 264, and λ is the security parameter, set to 128 for NIST level I and 256
for NIST level V. Given ϵ, the standard deviation s is given by

s = 1
π

√
ln(4n(1+1/ϵ))

2 ·1.17√q.

By Definition 7 and Lemmas 3 and 4, the standard deviation of signatures is lower bounded by the smoothing
parameter multiplied by the Gram-Schmidt norm of the trapdoor. The maximum signature norm bound β
is set using a fixed tailcut rate τ = 1.1, resulting in β = τs

√
2n. An overview of the relevant parameters of

Falcon-512 and Falcon-1024 can be found in Table 2. We define Falcon+-512 and Falcon+-1024 using
the CoreFalcon+ framework, instantiated with the parameters from Table 2. Falcon uses the so-called
FFO Sampler (Fast Fourier Orthogonalization) from [DP16] to instantiate the preimage sampler PreSmp.
For completeness we include an analysis of the FFO Sampler in Appendix E.

4.2 Security Bounds for CoreFalcon+

In this section, we present two theorems that quantify the concrete security of CoreFalcon+ in the random
oracle model. Theorem 1 provides a security bound for unforgeability. Theorem 2 provides a security bound
for strong unforgeability but relies on a stronger assumption.

Theorem 1 (Unforgeability). For any adversary A against the UF-CMA security of CoreFalcon+

(Figure 6) running in time tA, making at most Qs signing queries and QH random oracle queries, there exists

8 Note that the Rényi divergence can be bounded by the relative error using Lemma 6.
9 In the signing process for Falcon-512 and Falcon-1024, a (public) compression technique is applied to the

signature, and the loop is repeated until the signature reaches the desired compression level. This modification is
mainly conceptual, as with the parameters of Falcon, the compressed signature typically reaches a sufficiently
small size with high probability. Furthermore, CoreFalcon includes the public key in the hash function H,
whereas Falcon-512 and Falcon-1024 do not. Including the public key in the hash function to make it key-
contributory is generally considered good cryptographic engineering. Moreover, including the public key in the
hash, as in the Pornin-Stern transformation [PS05], has been shown to provide additional security properties
beyond unforgeability [CDF+21,DFF24].
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an adversary B against (QH +1)-R-ISIS running in time tB ≈ tA such that for all Cs ∈N≥1 and au,ap ∈R>1

it holds

AdvQs-UF-CMA
CoreFalcon+,A ≤

(
rCs

u ·
(

rCs
p ·Adv(QH+1)-R-ISIS

q,α,β,B

)ap−1
ap

)au−1
au

+
Qs∑
i=0

(
Cs

i

)
(1−pPreSmp,β)Cs−i(pPreSmp,β)i + Cs(QH +Cs)

2k
,

where

pPreSmp,β := min(B,·)∈TpdGen,c∈Rq
Pr(s1,s2) $←PreSmp(B,s,(c,0))[∥(s1,s2)∥2 ≤ β],

ru = max(·,h)∈TpdGen Rau(P || Qh) with P = U(Rq) and Qh the distribution of s1 + s2 ·h mod q, where
s1,s2 ∼DR,s,

rp = max(B,·)∈TpdGen,c∈Rq
Rap(PreSmp(B,s,(c,0)) || DΛ,s) with Λ = Λ(B)(c,0).

Remark. Note that the bound of Theorem 1 (and Theorem 2) holds for all choices of constants Cs ∈N≥1 and
au,ap ∈ R>1. We will refer to these as proof constants. In Section 6, we will derive optimal choices for these
proof constants that minimise the security loss for concrete and relevant instantiations of CoreFalcon+.
The proof of Theorem 1 can be found in Section 5.

Interestingly, the hardness of (QH +1)-R-ISIS is not only sufficient for Theorem 1, but it is also necessary.
Specifically, an attack on (QH + 1)-R-ISIS would directly lead to an attack on the UF-CMA security of
Falcon. Similarly, Theorem 2 requires the hardness of Qs-R-SPISIS, and an attack on this would result
in an attack on the SUF-CMA security of Falcon.

Theorem 2 (Strong Unforgeability). For any adversary A against the SUF-CMA security of
CoreFalcon+ (Figure 6) running in time tA, making at most Qs signing queries and QH random oracle
queries, there exist an adversary B against Qs-R-SPISIS running in time tB ≈ tA such that for all
Cs ∈ N≥1 and ap ∈ R>1 it holds

AdvQs-SUF-CMA
CoreFalcon+,A ≤AdvQs-UF-CMA

CoreFalcon+,A +
(

rCs
p ·

(
AdvQs-R-SPISIS

q,α,s,β,B +pbinom

))ap−1
ap

+pbinom +
(

Qs +1
2p2

PreSmp,β

+ 2QH
pPreSmp,β

)
Qs2−k,

where

pPreSmp,β := min(B,·)∈TpdGen,c∈Rq
Pr(s1,s2) $←PreSmp(B,s,(c,0))[∥(s1,s2)∥2 ≤ β],

pbinom :=
∑Qs

i=0
(Cs

i

)
(1−pPreSmp,β)Cs−i(pPreSmp,β)i

rp = max(B,·)∈TpdGen,c∈Rq
Rap(PreSmp(B,s,(c,0)) || DΛ,s) with Λ = Λ(B)(c,0).

The proof of Theorem 2 can be found in Appendix C.

5 Proof of Theorem 1

Consider the sequence of games depicted in Figure 7.

Game G0. This is the unforgeability game for CoreFalcon+ so by definition we have

Pr[GA
0 ⇒ 1] = AdvQs-UF-CMA

CoreFalcon+,A.
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Games G0−G5

01 H,Q← ∅
02 cnt := 0
03 (B,h) $← Gen
04 (m⋆,σ⋆) $← ASgn(·),H(·,·,·)(h)
05 return JVer(h,m⋆,σ⋆) = 1∧ (m⋆, ·) /∈QK

Oracle Sgn(m)

06 repeat
07 cnt← cnt + 1 // G1−G5
08 if cnt > Cs // G1−G5
09 abort // G1−G5
10 r $←{0,1}k

11 c := H(h, r,m) // G0−G1
12 (c,s1,s2) := H′(h, r,m) // G2−G5
13 (s1,s2) $← PreSmp(B,s,(c,0)) // G0−G3
14 (s1,s2) $←DΛ(B)(c,0),s // G4

15 until ∥(s1,s2)∥2 ≤ β

16 σ := (r,s2)
17 Q←Q∪{(m,σ)}
18 return σ

Oracle H(pk,r,m)

19 if ∃ c : (c,pk,r,m) ∈H
20 return c

21 c $←Rq

22 H←H∪{(c,pk,r,m)}
23 return c

Oracle H′(pk,r,m)

24 pk→ h

25 if ∃ c : (c,h, r,m) ∈H
26 abort
27 c $←Rq

28 (s1,s2) := (⊥,⊥)
29 s1,s2←DR,s // G3−G5
30 c := s1 + s2 ·h mod q // G3−G5
31 H :=H∪{(c,h, r,m)}
32 return (c,s1,s2)

Figure 7. Games for the proof of Theorem 1.

Game G1. This game is identical to the previous one, except that it aborts if the overall number of sampled
preimages in the signing oracle, i.e. including potential repetitions, exceeds threshold Cs.

Claim 1: For pPreSmp,β := min(B,·)∈TpdGen,c∈Rq
Pr(s1,s2) $←PreSmp(B,s,(c,0))[∥(s1,s2)∥2 ≤ β] it holds that∣∣Pr

[
GA

0 ⇒ 1
]
−Pr

[
GA

1 ⇒ 1
]∣∣≤∑Qs

i=0
(Cs

i

)
(1−pPreSmp,β)Cs−i(pPreSmp,β)i.

Proof. To proof the claim, we model the experiment using a binomial distributed random variable X ∼
B(Cs,pPreSmp,β), i.e. we have Cs Bernoulli trials and success probability pPreSmp,β . A trial corresponds to
sampling a preimage using PreSmp in the signing oracle and the trial succeeds if the norm is sufficiently small,
i.e. ∥(s1,s2)∥2 ≤ β. Hence, the random variable, counting the overall number of successes in the Bernoulli
trials, tells us the number of signing queries we are able to answer. Since we need to answer Qs signing
queries, we are interested in the CDF for value Qs, i.e. Pr[X ≤Qs] which is exactly the claim. ■

Game G2. This game is identical to the previous one, except that it aborts during a signing oracle query
if there already exists a query to the random oracle for the same public key, salt r, and message m as the
output signature. To ease the depiction in further hybrids, we define a new RO H′ maintaining the same set
H as H but aborting in case of a query on the same input as a previous query. Oracle H′ is then called within
the signing oracle instead of H.

Claim 2:
∣∣Pr
[
GA

1 ⇒ 1
]
−Pr

[
GA

2 ⇒ 1
]∣∣≤ Cs(Cs+QH)

2k .

Proof. The salt r is chosen uniformly at random from {0,1}k for each RO query during a signing query. The
total number of elements in H is at most Cs +QH, as at most one element is added per query to H (or H′).
Thus, the probability that the freshly chosen salt was part of a previous query is at most Cs+QH

2k . For Cs

queries to the internal oracle H′, we obtain the claimed bound. ■
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Game G3. This game is the same as the previous one, except that random oracle H′ no longer returns a
uniformly random element c $←Rq. Instead, it computes c as follows: It samples two elements s1,s2 from a
Gaussian distribution DR,s with standard deviation s over ring R. Then, c is computed as c = s1 + s2 ·h
mod q, where h is the public key. For future use, s1,s2 are returned together with the RO output (note that
H′ cannot be called directly by the adversary).

Claim 3: For h∈R, let P := U(Rq) and Qh be the distribution of s1 +s2 ·h mod q where s1,s2
$←DR,s.

Then, for any au ∈ (1,∞),

Pr[GA
2 ⇒ 1]≤

(
max

(·,h)∈TpdGen
Rau(P || Qh)Cs ·Pr[GA

3 ⇒ 1]
)au−1

au

.

Proof. We define two underlying distributions for a (Q+1)-tuple of random variables (c0 = (B,h),c1, . . . ,cQ).

P̄ Q̄
(B,h) $← TpdGen (B,h) $← TpdGen
for i ∈ [Q] for i ∈ [Q]

ci
$←Rq (s1,s2)←DR,s

return ((B,h),c1, . . . ,cQ) ci := s1 +s2 ·h mod q

return ((B,h),c1, . . . ,cQ)

These distributions describe the underlying distributions of G2 and G3. By the data processing inequality
(Lemma 15) it holds that, for any a ∈ (1,∞),

Ra(G2 || G3)≤Ra(P̄ || Q̄). (1)

Let the marginal distribution of ci be denoted by P̄i (Q̄i resp.) and the distribution of ci conditioned on
c<i = (c0, . . . ,ci−1) as P̄i|c<i

(Q̄i|c<i
resp.). Since the distribution of c0 = (B,h) is the same for P̄ and Q̄,

it holds that
Ra(P̄0 || Q̄0) = 1.

For the conditional distributions, note that random variable ci is independent of the previous random
variables c1, . . . ,ci−1. However, ci might depend on h and thus on random variable c0 = (B,h). Hence for
all i ∈ [Q+1],

Ra(P̄i|c<i
|| Q̄i|c<i

) = Ra(P̄i|(c0,...,ci−1) || Q̄i|(c0,...,ci−1))
≤ max

(B,h)∈TpdGen
Ra(P̄i|((B,h),c1,...,ci−1) || Q̄i|((B,h),c1,...,ci−1))

= max
(·,h)∈TpdGen

Ra(P || Qh),

where P := U(Rq) and Qh the distribution of s1 +s2 ·h mod q where s1,s2
$←DR,s. Note that h does not

occur in distribution P because the individual random variables ci (for i≥ 1) are independent of h.
By Lemma 16 it follows

Ra(P̄ || Q̄)≤ max
(·,h)∈TpdGen

Ra(P || Qh)Q. (2)

Combining probability preservation (Lemma 14) with Equation (1) and Equation (2), we obtain

Pr[GA
3 ⇒ 1]≥ Pr[GA

2 ⇒ 1]
a

a−1

Ra(G2 || G3) ≥
Pr[GA

2 ⇒ 1]
a

a−1

max(·,h)∈TpdGen Ra(P || Qh)Q
.

The claim follows by setting Q := Cs due to at most Cs queries from Sgn to H′ in Line 12. ■
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Game G4. This game is identical to the previous one except that the output of the preimage sampler
PreSmp(B,s,(c,0)) is replaced by a Gaussian over the lattice Λ = Λ(B)(c,0), namely DΛ,s.

Claim 4: For distributions PreSmp := PreSmp(B,s,(c,0)), D :=DΛ,s, and ap ∈ (1,∞) it holds that

Pr[GA
3 ⇒ 1]≤ max

(B,·)∈TpdGen,c∈Rq

(
Rap(PreSmp || D)Cs ·Pr[GA

4 ⇒ 1]
)ap−1

ap
.

Proof. The claim follows analogously to Game G3. ■

Game G5. This game is identical to the previous one except that preimages s1,s2 are not sampled from
a Gaussian distribution over the lattice shifted by (c,0) as before. Instead, the preimages of c that were
sampled in H′ are used.

Claim 5: Pr[GA
4 ⇒ 1] = Pr[GA

5 ⇒ 1].

Proof. We need to show that the distributions of the games are the same. The RO output c is the same in
both games. In G4, the signing oracle outputs (s1,s2)∼DΛ(B)(c,0),s. Since Λ(B) is the NTRU lattice shifted
by (c,0), the output is distributed according to a Gaussian DR,s conditioned on s1 +s2 ·h = c mod q. The
output distribution in Game G5 is a Gaussian DR,s as well where the condition s1 + s2 ·h = c mod q is
fulfilled by construction (Line 30). ■

Reduction from R-ISIS. Claim 6: There exists an adversary B against (QH +1)-R-ISIS such that

Pr[GA
5 ⇒ 1]≤Adv(QH+1)-R-ISIS

q,α,β,B .

Proof. Adversary B is formally constructed in Figure 8. Due to the changes in the previous games, adversary
B can perfectly simulate the game for adversary A against G5 without having the secret key for h. Further,
B embeds their own targets in the queries to H. Let us assume, that A wins G5, i.e. the forgery verifies and
(m⋆, ·) was not queried to Sgn before. This implies that there exists an i⋆ such that ĉi⋆ = c⋆ because if A wins
the game, the challenge RO output c⋆ equals one of B’s targets (that is exactly ĉi⋆) or to a signing query.
If it corresponds to a signing query, there is no way that adversary A can win the game due to the freshness
condition (m⋆, ·) /∈Q. Hence, Line 06 ensures the first winning condition of B, which is s⋆

1 +s⋆
2 ·h = ĉ mod q.

Further, the norm bound from A directly translates to the second winning condition, i.e. ∥(s⋆
1,s⋆

2)∥2 ≤ β.
■

B(h, ĉ1, . . . , ĉQH+1)

01 H,Q← ∅
02 cnt, ℓ := 0
03 (m⋆,σ⋆) $← ASgn(·),H(·,·,·)(h)
04 parse σ⋆→ (r⋆,s⋆

2)
05 c⋆ := H(h, r⋆,m⋆)
06 s⋆

1 := c⋆−s⋆
2 ·h mod q

07 find i⋆ : c⋆ = ĉi⋆

08 return (i⋆,s⋆
1,s⋆

2)

Oracle Sgn(m)

09 return G5.Sgn(m)

Oracle H(pk,r,m)

10 if ∃ c : (c,pk,r,m) ∈H
11 return c

12 ℓ := ℓ + 1
13 c := ĉℓ // embed challenge target
14 H←H∪{(c,pk,r,m)}
15 return c

Oracle H′(h, r,m)

16 return G5.H′(h, r,m)

Figure 8. Adversary B against t-R-ISIS for the proof of Theorem 1.
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6 Parameters and Analysing the Security Bound

In this section, we analyse the concrete security bounds for Falcon+-512 and Falcon+-1024 from
Section 4.1. Recall that Falcon+-512 and Falcon+-1024 are slight modifications of Falcon-512 and
Falcon-1024, respectively (with the same parameter sets), where signing includes picking the random seed
inside of the repeat loop. Concretely, we will use the Theorems from Section 4.2 to derive the proof
constants Cs, au, and ap for an optimal tightness of the security proofs. The Falcon specification suggests
setting the Rényi order to ap = 2λ, which is sufficient, but not ideal. We proceed as follows: first, we
estimate the t-R-ISIS/t-R-SPISIS bit security. Next, we analyse the bound in Theorem 1 and Theorem 2,
beginning with proof constant Cs, denoting the maximal repetitions in the signing oracle. Next, based on
the bit security of the t-R-ISIS/t-R-SPISIS term, we iteratively apply the Rényi arguments, carefully
choosing the optimal orders au and ap to minimise the security loss. Finally, we combine all results to
calculate the final bit security, presenting an overview in Table 3, followed by a discussion of the findings.

6.1 Security of t-R-ISIS and t-R-SPISIS
We estimate the security of the t-R-ISIS and t-R-SPISIS terms in our bounds. We consider the t-R-ISIS
and t-R-SPISIS problems (as defined in Definition 10), parametrised by a trapdoor generation algorithm
TpdGen with trapdoor quality α and modulus q. For plain unforgeability, Theorem 1 provides a reduction to
t-R-ISIS with a norm bound of β. For strong unforgeability, Theorem 2 gives a reduction to t-R-SPISIS
with the same norm bound. For the hardness of t-R-ISIS / t-R-SPISIS we use a ring dimension of n = 512
(n = 1024) and modulus q = 12289. The length bound β = τs

√
2n results in βI = 5833.93 for Falcon+-512

and βV = 8382.44 for Falcon+-1024 (see Table 2). We make the assumption that t-R-ISIS and t-R-SPISIS
instances are as hard as random SIS instances. Although it is possible that there are more efficient attacks
against t-R-ISIS [Ber22], we argue that a direct reduction to t-R-ISIS in Theorem 1 is meaningful, as it most
accurately captures the security of the scheme. That is, t-R-ISIS does not only suffice for plain unforgeability,
but is, in fact, also necessary. Specifically, an attack on t-R-ISIS would directly imply an attack on the plain
unforgeability of Falcon. The same applies to t-R-SPISIS and the strong unforgeability of Falcon. We
estimate the security of SIS using the “lattice-estimator” [APS15a,APS15b] with the SIS.estimate.rough()
function, which computes the concrete bit security based on the core-SVP methodology from [ADPS16].10

The resulting levels of bit security are summarised in Table 3. We refer to Figure 11 in Appendix D for the
concrete prompts of the lattice estimator.

6.2 Number Of Signing Repetitions Cs

The proof constant Cs defines the maximum number of repetitions to the signing oracle. Increasing Cs

inflates all terms in the security bound, except for the binomial term. Hence, to obtain an optimal bound
that fulfils the target security level λ, we have to find the smallest Cs such that the binomial term is less
than 2−λ. The following lemma establishes this for Falcon+-512 and Falcon+-1024.
Lemma 12 (Optimal Cs). For Falcon+-512 with λ = 128 it holds that,

argmin
Cs

Cs

∣∣∣∣∣∣
Qs∑
i=0

(
Cs

i

)
(1−pPreSmp,β)Cs−i(pPreSmp,β)i ≤ 2λ

≲ 264 +250,

and for Falcon+-1024 with λ = 256 it holds that

argmin
Cs

Cs

∣∣∣∣∣∣
Qs∑
i=0

(
Cs

i

)
(1−pPreSmp,β)Cs−i(pPreSmp,β)i ≤ 2λ

≲ 264 +236.

10 We acknowledge that other tools for estimating the hardness of lattice problems exist [DDGR20,Duc20], and work
has been done to analyse the hardness of ISIS for small moduli [DEP23]. Any improvements in the cryptanalysis
of the underlying problems would also lead to improved attacks on the scheme, in which case our theorem bounds
would remain unchanged, and only Table 3 would need to be updated.
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The proof can be found in Appendix D.1. For different values Qs, Cs can be computed in the same way,
as shown in Table 3.

6.3 Rényi Terms

Falcon builds on the work of [Pre17, Lem. 6] which suggests that setting ap = 2λ “seems to be good
compromise”. Although this is true for certain problem instantiations, Lemma 11 makes this choice less
ad hoc and allows us to set the order of the Rényi divergence optimally, similar to [TT15]. We start with
optimising the Rényi order for the unforgeability bound (Theorem 1), i.e., the reduction to t-R-ISIS.
Falcon+-512. We start with the advantage for t-R-ISIS which gives 120 bits security, so for the inner most
part of the bound we have to preserve at most λ = 120 bits of security.

Corollary 3 (Rényi Loss for Falcon+-512 (Preimage Sampler) in Thm. 1). For ε≥ 2−λ = 2−120,
rp = Rap(PreSmp || D), Cs = 264 +250, and the parameters for Falcon+-512, the Rényi argument for

rCs
p ε

ap−1
ap

loses at most 3.5 bits for an order ap ≈ 72.96.

The proof can be found in Appendix D.2. Next, we consider the 3.5 bits lost from Corollary 3 when
analysing the bits lost for the uniformity result.

Corollary 4 (Rényi Loss for Falcon+-512 (Uniformity) in Thm. 1). For ε ≥ 2−λ = 2−116.5, ru =
Rau(U(Rq) || Uh), Cs = 264 +250, and the parameters for Falcon+-512, the Rényi argument for

rCs
u ε

au−1
au

loses at most 3.5 bits for an order au ≈ 71.73.

The proof can be found in Appendix D.3.
Falcon+-1024. We apply the same arguments as for Falcon+-512. The analogous corollaries can be found
in Appendix D.4.
Other Bounds and Number of Signing Queries. The optimal Rényi orders for the strong unforgeability
bound (Theorem 2) as well as for different choices of the maximum number of signing queries Qs can be
computed in the same way. We give an overview in the following section.

6.4 Final Security and Discussion

Corollaries 3, 4, 5 and 6 show that Cs < 2Qs. To conclude the analysis of the bounds, we note that the
term Cs(Cs +QH)/2k provides λ bits of security when k ≥ log(2Qs)+λ. For both parameter sets, Falcon+

achieves this by its choice of k = 320 up to a loss of less than a bit. The binomial term fulfils λ bits of
security by choosing an appropriate Cs, as detailed in the proof of Lemma 12. An overview of the results
from the previous subsections is presented in Table 3 for Falcon+-512 and Falcon+-1024. Note that while
the computational term in the bound for Falcon+-1024 ensures 270 bits of security, the statistical terms
described above limit the overall security to 256 bits. Below, we address key findings and issues, suggesting
possible solutions.
Strong Unforgeability. We assume that both t-R-SPISIS (and t-R-ISIS) are as hard as plain SIS.
Comparing the security bounds from Theorem 1 and Theorem 2, one can observe that the dominating term
in Theorem 2 is the UF-CMA term. Therefore, the provable bit security levels for the strong unforgeability
of Falcon+-512 and Falcon+-1024 are essentially the same as in Table 3.
Number of Signing Queries. For Falcon+-512, we provide bit security estimates for both reduced and
full 264 signing queries, as required by NIST. Allowing 264 queries increases the Rényi divergence loss, which
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Table 3. Provable security levels of Falcon+-512 and Falcon+-1024. The ⋆ symbol at 270 bits refers to the bit
security of the computational term. For further details, see Section 6.4.

Parameters
UF-CMA (Thm. 1)

Falcon+-512 Falcon+-1024

Ring Rq Z12289[X]/(X512 + 1) Z12289[X]/(X1024 + 1)
t-R-ISIS length bound β 5833.93 8382.44
Bit security (core-SVP), t-R-ISISq=q,α=1.17,B=β 120 278

Max Signing queries Qs 258 264 264

Max repetitions, Cs(λ,Qs) 258 + 244 264 + 250 264 + 236

Rényi Order, ap 583.67 72.96 157.05
Rényi Order, au 582.46 71.73 155.92
Bits lost from Rényi ap 0.5 3.5 4
Bits lost from Rényi au 0.5 3.5 4
Final bit security 119 113 256 (270)⋆

is problematic, since the security of SIS is already tightly set to the target level. In contrast, Falcon+-1024
benefits from a larger security margin between SIS and the target security, making it more tolerant to larger
Rényi losses. Therefore, we also present the maximum number of signing queries that can be supported
while maintaining a Rényi loss of at most 1 bit. This issue is not an artifact of our proof strategy but stems
from the sensitivity of the Rényi arguments. While increasing the smoothing parameter error ϵ could help
maintain tight Rényi bounds even up to 264 queries, doing so would increase other parameters – such as the
signature size.
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A Additional Preliminaries

Lemma 13 (Multiplicativity [LSS14, Lem. 4.1]). Let a ∈ (1,∞). Let P and Q denote distributions
of a pair of random variables (Y1,Y2). Also, for i ∈ {1,2} let Pi and Qi be the marginal distribution of Yi

under P and Q, respectively. Then if Y1 and Y2 are independent, Ra(P || Q) = Ra(P1 || Q1) ·Ra(P2 || Q2).

Lemma 14 (Probability Preservation [LSS14, Lem. 4.1]). Let a ∈ (1,∞) and E ⊆ sup(Q) be an
arbitrary event. Then,

Q(E)≥ P(E)
a

a−1 /Ra(P || Q)
Q(E)≥ P(E)/R∞(P || Q).

Lemma 15 (Data Processing Inequality [vEH14, Thm. 9]). Let α ∈ (1,∞). For any function f ,
where Pf (respectively Qf ) denotes the distribution of f(x) induced by sampling x ← P (respectively
x←Q), Ra(Pf || Qf )≤Ra(P || Q).

We use the following bound on the Rényi Divergence for Dependent Random Variables from [HPRR20].

Lemma 16 (Rényi Divergence for Dependent Random Variables [HPRR20, Prop. 4]). Let P
and Q denote two distributions of an N -tuple of random variables (Xi)i<N . For each 0≤ i < N , let Pi (resp.
Qi) denote the marginal distribution of Xi, and let Pi|<i(· |X<i) represent the conditional distribution of
Xi given the values of the preceding varibles (X0, . . . ,Xi−1) = X<i. Let a > 1 and suppose that for every
0≤ i < N , there exists a constant ra,i ≥ 1 such that for every i-tuple X<i in the support of Q restricted to
its first i variables,

Ra(Pi|X<i
|| Qi|X<i

)≤ ra,i.

Then,
Ra(P || Q)≤

∏
i<N

ra,i.

B Proofs for Section 2 and Section 3

B.1 Proof of Lemma 8

Lemma 8 (Rényi Divergence of Gaussian Sample over Λ/Λ′ (adapted from [GPV08, Cor. 2.8])).
Let Λ,Λ′ be n-dimensional full-rank lattices with Λ′ ⊆Λ. Then for any a∈ (1,∞), ϵ∈ (0, 1

2 ), any s≥ ηϵ(Λ′),
and any c ∈ Rn,

Ra

(
U(Λ/Λ′) || DΛ/Λ′,s,c

)
≲ 1+ 2aϵ2

(1− ϵ)2 .

Proof. Much of the proof follows from [GPV08, Cor. 2.8], but for completeness and verifiability, we have fully
proved these adaptations. The quotient group Λ/Λ′ is defined as the additive group of cosets x+Λ′,x ∈Λ.
Sampling from a discrete Gaussian over this quotient group we obtain that for any x ∈Λ

DΛ/Λ′,s,c(x) = ρs,c(x+Λ′)
ρs,c(Λ) .

By assumption Λ′ ⊆Λ which implies ηϵ(Λ)≤ ηϵ(Λ′)≤ s. Therefore, we can apply Lemma 5 and get

ρs,c(Λ) ∈ [1− ϵ,1+ ϵ] · sn

det(Λ) .

Again, since s≥ ηϵ(Λ′)
ρs,c(x+Λ′) ∈ [1− ϵ,1+ ϵ] · sn

det(Λ′) .
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Combining these results yields

DΛ/Λ′,s,c ∈
[

1− ϵ

1+ ϵ
,
1+ ϵ

1− ϵ

]
· det(Λ)
det(Λ′) .

Since Λ and Λ′ are full rank, their spans are the same (Rn) and hence the size of their quotient group Λ/Λ′

is finite. Therefore, by [DD18, Lem. 10] we get that |Λ/Λ′|= det(Λ′)
det(Λ) . Computing the relative error between

the Gaussian distribution and the uniform distribution U(Λ/Λ′)(x) = 1
|Λ/Λ′| gives

U(|Λ/Λ′|)(x)
DΛ/Λ′,s,c(x) ∈

[
1− ϵ

1+ ϵ
,
1+ ϵ

1− ϵ

]
=
[
1− 2ϵ

1− ϵ
,1+ 2ϵ

1− ϵ

]
.

Applying Lemma 6 with δ = 2ϵ
1−ϵ , we obtain

Ra

(
U(Λ/Λ′) || DΛ/Λ′,s,c

)
≲ 1+ 2aϵ2

(1− ϵ)2 .

This completes the proof. ■

B.2 Proof of Lemma 9

Lemma 9 (Rényi divergence (adapted from [GPV08, Lem 5.2])). If the columns of A ∈ Zn×m
q

generate Zn
q , a ∈ (1,∞), ϵ ∈ (0, 1

2 ), and s≥ ηϵ(Λ⊥(A)); then for e∼DZm,s, the distribution P = U(Zn
q ), and

the distribution Q of the syndromes u = Ae mod q, it holds that

Ra(P || Q) ≲ 1+ 2aϵ2

(1− ϵ)2 .

Proof. For simplicity we denote Λ⊥ = Λ⊥(A). By assumption the set of all syndromes of A equals Zn
q ,

i.e. {Ae mod q | e ∈ Zm} = Zn
q . Consider the quotient group (Zm/Λ⊥) which is defined as the group of

all cosets, i.e. {e + Λ⊥ | e ∈ Zm}. This quotient group is isomorphic to the set of syndromes of A via the
mapping e + Λ⊥ 7→ Ae mod q, where e ∈ Zm. Hence, we have P ≃ U(Zm/Λ⊥). Further, the distribution
DZm/Λ⊥,s =DZm,s mod Λ⊥ is the distribution of e∼DZm,s reduced modulo Λ⊥. That is, the coset e+Λ⊥
for e ∼ DZm,s. Applying the above isomorphism, this distribution is isomorphic to distribution Q. Finally
we can apply Lemma 8 with Λ = Zm, Λ′ = Λ⊥ and c = 0 to obtain the claim. ■

B.3 Proof of Corollary 2

Corollary 2 (Rényi uniformity for NTRU). Let q be prime, h ∈ Rq \ {0}, a ∈ (1,∞), ϵ ∈ (0, 1
2 ),

s≥ ηϵ(Λh,q), P = U(Rq), and Q the distribution of u+v ·h mod q where u,v ∼DR,s. Then it holds that

Ra(P || Q) ≲ 1+ 2aϵ2

(1− ϵ)2 .

Proof. Elements in R are polynomials of degree n that can be described via their anticirculant matrix A(·)∈
Zn×n. For q prime and h ∈ Rq \{0}, we consider matrix A =

[
IN A(h)

]
∈ Zn×2n that defines the NTRU

lattice Λh,q = Λ⊥(A). By Lemma 1 the anticircuclant matrices with matrix addition and multiplication
form a ring that is isomorphic to R. In particular, this holds for the anticirculant of samples e = (e1,e2)
with ei ∼ DZn,s and (u,v) with u,v ∼ DR,s as well as for the resulting distributions A ·A(e) mod q and

the distribution of z such that A(z) = A

[
A(u)
A(v)

]
= A(u) +A(h) · A(v) mod q. The latter distribution is

equivalent to Q. Finally, due to its special structure with identity IN on the left, A generates Zn
q such that

we can apply Lemma 9 to conclude the proof. ■
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B.4 Proof of Lemma 10

Lemma 10 (Relative Error for Tailbounds). Let P andQ be two distributions with sup(P) = sup(Q) =
Zn and δRE(P,Q) = δ. Then for any β ≥ 0,

Pr
x←P

[∥x∥2 > β]≤ Pr
x←Q

[∥x∥2 > β] · (1+ δ).

Proof. We can use the relative error to upper bound the Rényi divergence of order ∞:

R∞(P || Q) = max
x∈sup(P)

P(x)
Q(x) ≤ (1+ δ).

Applying the probability preservation for R∞ (Lemma 14) we obtain

Pr
x←Q

[∥x∥2 > β]≥
Prx←P [∥x∥2 > β]

R∞(P || Q) ≥ Pr
x←P

[∥x∥2 > β]/(1+ δ).

■

B.5 Proof of Lemma 11

Lemma 11 (Optimal Rényi Order). For λ ∈N, let E1,E2 be two events such that Pr[E1]≥ 2−λ. Assume
that for any Q ∈ N, a ∈ (1,∞), and Ra ∈ [1,∞) it holds that

Pr[E2]≤RQ
a ·Pr[E1]

a−1
a .

Then
− log(Pr[E2])≥− log(Pr[E1])−min

a>1

{
Q logRa + λ

a

}
.

Proof. By assumption it holds that Pr[E1]≥ 2−λ. Minimising for a > 1 yields

Pr[E2]≤min
a>1

{
RQ

a ·Pr[E1]
a−1

a

}
= min

a>1

{
RQ

a ·Pr[E1]−1/a
}
·Pr[E1]

≤min
a>1

{
RQ

a ·2λ/a
}
·Pr[E1].

In other words, this gives at least

− log(Pr[E1])−min
a>1

{
Q logRa + λ

a

}
bits success probability for E2. ■

C Proof of Theorem 2

Theorem 2 (Strong Unforgeability). For any adversary A against the SUF-CMA security of
CoreFalcon+ (Figure 6) running in time tA, making at most Qs signing queries and QH random oracle
queries, there exist an adversary B against Qs-R-SPISIS running in time tB ≈ tA such that for all
Cs ∈ N≥1 and ap ∈ R>1 it holds

AdvQs-SUF-CMA
CoreFalcon+,A ≤AdvQs-UF-CMA

CoreFalcon+,A +
(

rCs
p ·

(
AdvQs-R-SPISIS

q,α,s,β,B +pbinom

))ap−1
ap

+pbinom +
(

Qs +1
2p2

PreSmp,β

+ 2QH
pPreSmp,β

)
Qs2−k,

where
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Games G0−G5

01 H,Q← ∅
02 cnt := 0
03 (m⋆,σ⋆) $← ASgn(·),H(·,·,·)(h)
04 parse σ⋆→ (r⋆,s⋆

2)
05 c⋆ := H(h, r⋆,m⋆)
06 s⋆

1 := c⋆−s⋆
2 ·h mod q

07 return JVer(h,m⋆,σ⋆) = 1∧ (m⋆, ·) /∈QK

Oracle H′(h, r,m) // G2−G5

08 flag := false
09 if ∃ c : (c,h, r,m) ∈H
10 flag := true
11 c $←Rq

12 return c

Oracle Sgn(m)

13 repeat
14 cnt← cnt + 1 // G3−G4
15 if cnt > Cs // G3−G4
16 abort // G3−G4
17 r $←{0,1}k

18 c := H(h, r,m) // G0−G1
19 c := H′(h, r,m) // G2−G5
20 (s1,s2) $← PreSmp(B,s,(c,0))
21 (s1,s2) $←DΛ(B)(c,0),s // G4−G5

22 until ∥(s1,s2)∥2 ≤ β

23 if flag = true // G2−G5
24 abort // G2−G5
25 H :=H∪{(c,h, r,m)} // G2−G5
26 σ := (r,s2)
27 Q←Q∪{(m,σ)}
28 return σ

Oracle H(pk,r,m)

29 if ∃ c : (c,pk,r,m) ∈H
30 return c

31 c $←Rq

32 H←H∪{(c,pk,r,m)}
33 return c

Figure 9. Games G0−G5 for the proof of Theorem 2.

pPreSmp,β := min(B,·)∈TpdGen,c∈Rq
Pr(s1,s2) $←PreSmp(B,s,(c,0))[∥(s1,s2)∥2 ≤ β],

pbinom :=
∑Qs

i=0
(Cs

i

)
(1−pPreSmp,β)Cs−i(pPreSmp,β)i

rp = max(B,·)∈TpdGen,c∈Rq
Rap(PreSmp(B,s,(c,0)) || DΛ,s) with Λ = Λ(B)(c,0).

Proof. We prove the theorem by a sequence of games.

Game G0. We start with the SUF-CMA game for CoreFalcon+:

Pr[GA
0 ⇒ 1] = AdvQs-SUF-CMA

CoreFalcon+,A.

To prove the theorem, we distinguish between two kind of adversaries. One is a plain unforgeability
adversary who returns a forgery which is the preimage of an RO output that corresponds to a previous query
to the signing oracle. Such an adversary directly reduces to the bound of Theorem 1. The second adversary
returns a forgery corresponding to a RO oracle query that was issued in the signing oracle.

Game G1. This is the same game as the previous one except that the adversary only outputs forgeries such
that the associated RO was programmed during a signing query.∣∣∣Pr

[
GA

0 ⇒ 1
]
−Pr

[
GA

1 ⇒ 1
]∣∣∣≤AdvQs-UF-CMA

CoreFalcon+,A.
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Game G2. This is the same game as the previous one except that it aborts in the signing oracle if the
random oracle was already queried on the same input before. We only consider the query corresponding to
the signature that is eventually output by the signing oracle. Additionally, we only program the random
oracle on that query and ignore the other repetitions before.

Claim 7: It holds that

∣∣∣Pr
[
GA

1 ⇒ 1
]
−Pr

[
GA

2 ⇒ 1
]∣∣∣≤( Qs +1

2p2
PreSmp,β

+ 2QH
pPreSmp,β

)
Qs2−k.

Proof. The claim is implicit in [BBD+23a, Thm. 3], where it is separated into two steps. The first step is
denoted by the difference between “Sign” and “Prog”, and the second one by the difference between “Prog”
and “Trans”. ■

Game G3. This game is identical to the previous one, except that it aborts if the overall number of sampled
preimages in the signing oracle, i.e. including potential repetitions, exceeds threshold Cs.

Claim 8: For pPreSmp,β := min(B,·)∈TpdGen,c∈Rq
Pr(s1,s2) $←PreSmp(B,s,(c,0))[∥(s1,s2)∥2 ≤ β] it holds that∣∣Pr

[
GA

2 ⇒ 1
]
−Pr

[
GA

3 ⇒ 1
]∣∣≤∑Qs

i=0
(Cs

i

)
(1−pPreSmp,β)Cs−i(pPreSmp,β)i.

Proof. To proof the claim, we model the experiment using a binomial distributed random variable X ∼
B(Cs,pPreSmp,β), i.e. we have Cs Bernoulli trials and success probability pPreSmp,β . A trial corresponds to
sampling a preimage using PreSmp in the signing oracle and the trial succeeds if the norm is sufficiently small,
i.e. ∥(s1,s2)∥2 ≤ β. Hence, the random variable, counting the overall number of successes in the Bernoulli
trials, tells us the number of signing queries we are able to answer. Since we need to answer Qs signing
queries, we are interested in the CDF for value Qs, i.e. Pr[X ≤Qs] which is exactly the claim. ■

Game G4. This game is identical to the previous one except that the output of the preimage sampler
PreSmp(B,s,(c,0)) is replaced by a Gaussian over the lattice Λ = Λ(B)(c,0), namely DΛ,s.

Claim 9: For distributions PreSmp := PreSmp(B,s,(c,0)), D :=DΛ,s, and ap ∈ (1,∞) it holds that

Pr[GA
3 ⇒ 1]≤ max

(B,·)∈TpdGen,c∈Rq

(
Rap(PreSmp || D)Cs ·Pr[GA

4 ⇒ 1]
)ap−1

ap
.

Proof. The claim follows analogously to the proof of Theorem 1. ■

Game G5. This game reverts the changes made in G3. Claim 10: For

pPreSmp,β := min
(B,·)∈TpdGen,c∈Rq

Pr
(s1,s2) $←PreSmp(B,s,(c,0))

[∥(s1,s2)∥2 ≤ β]

it holds that ∣∣∣Pr
[
GA

4 ⇒ 1
]
−Pr

[
GA

5 ⇒ 1
]∣∣∣≤ Qs∑

i=0

(
Cs

i

)
(1−pPreSmp,β)Cs−i(pPreSmp,β)i.

Proof. To proof is analogous to the proof for G3. ■
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Adversary B(h,{(cj ,uj ,vj)}j∈[Qs])

01 H,Q← ∅
02 cnt := 0
03 (m⋆,σ⋆) $← ASgn(·),H(·,·,·)(h)
04 parse σ⋆→ (r⋆,s⋆

2)
05 c⋆ := H(h, r⋆,m⋆)
06 s⋆

1 := c⋆−s⋆
2 ·h mod q

07 find cnt⋆ : c⋆ = ccnt⋆ ∧ (s⋆
1,s⋆

2) ̸= (ucnt⋆ ,vcnt⋆ )
08 return (cnt⋆,s⋆

1,s⋆
2)

Oracle Sgn(m)

09 cnt← cnt + 1
10 r $←{0,1}k

11 c := ccnt // embed target
12 (s1,s2) := (ucnt,vcnt) // embed preimage
13 H :=H∪{(c,h, r,m)} // program RO
14 σ := (r,s2)
15 Q←Q∪{(m,σ)}
16 return σ

Oracle H(pk,r,m)

17 if ∃ c : (c,pk,r,m) ∈H
18 return c

19 c $←Rq

20 H←H∪{(c,pk,r,m)}
21 return c

Figure 10. Adversary C against t-R-SPISIS for the proof of Theorem 2 simulating G5.

Final reduction. We can reduce G5 to t-R-SPISIS.
Claim 11: There exists an adversary C against t-R-SPISIS such that

Pr[GA
5 ⇒ 1]≤AdvQs-R-SPISIS

q,α,s,β,B .

Proof. Reduction B is formally constructed in Figure 10.
The simulations of the random oracle and the signing oracle Sgn are perfect since the distribution of B’s

inputs exactly follow the distributions required in G5. This is the case because exactly one random oracle
position is programmed during a signing query. B can answer the signing query because their preimages have
a sufficiently small norm. If A wins, the reduction finds an index in Line 07 because we are only considering
forgeries that correspond to a previous signing query and due to A’s freshness condition, namely (m⋆,σ⋆) /∈Q.
Note that if A wins their game, all winning conditions of C are fulfilled. First, (s⋆

1,s⋆
2) is a preimage of ccnt⋆

(Line 06) which must have a norm of at most β if A wins their unforgeability game. Lastly, due to the check
in Line 07, the output solution must be fresh. ■

This completes the proof. ■

D Appendix for Section 6

sage: SIS.estimate.rough(SIS.Parameters(n=512,q=12289,length_bound=5833.93,norm=2,m=2*512))
lattice :: rop: ≈2^121.2, red: ≈2^121.2, δ: 1.003882, β: 415, d: 1024, tag: euclidean
sage: SIS.estimate.rough(SIS.Parameters(n=1024,q=12289,length_bound=8382.44,norm=2,m=2*1024))
lattice :: rop: ≈2^279.2, red: ≈2^279.2, δ: 1.002114, β: 956, d: 2048, tag: euclidean

Figure 11. SIS hardness estimates for ring dimension n = 512, n = 1024 and length bound β.
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D.1 Proof of Lemma 12

Lemma 12 (Optimal Cs). For Falcon+-512 with λ = 128 it holds that,

argmin
Cs

Cs

∣∣∣∣∣∣
Qs∑
i=0

(
Cs

i

)
(1−pPreSmp,β)Cs−i(pPreSmp,β)i ≤ 2λ

≲ 264 +250,

and for Falcon+-1024 with λ = 256 it holds that

argmin
Cs

Cs

∣∣∣∣∣∣
Qs∑
i=0

(
Cs

i

)
(1−pPreSmp,β)Cs−i(pPreSmp,β)i ≤ 2λ

≲ 264 +236.

Proof. First, we compute pPreSmp,β as follows.

pPreSmp,β := min
c∈Rq

(B,·)∈TpdGen

Pr
(s1,s2) $←PreSmp(B,s,(c,0))

[∥(s1,s2)∥2 ≤ β]

= min
c∈Rq

(B,·)∈sup(Gen)

1− Pr
(s1,s2) $←PreSmp(B,s,(c,0))

[∥(s1,s2)∥2 > β]

≳ min
c∈Rq

(B,·)∈sup(Gen)

1− Pr
(s1,s2)←DΛ(B)(c,0),s

[∥(s1,s2)∥2 > β] · (1+2ϵ) (Lemma 7, Lemma 10)

≥ min
c∈Rq

(B,·)∈sup(Gen)

1−
(

ρs(Λ(B))
ρs (Λ(B)+ t) ·

(√
e1−τ2

τ2
)2n
· (1+2ϵ)

)
, for t ∈Λ(B)(c,0)

(
Lemma 2 and β = τs

√
2n

)

≥ 1−
(

1+ ϵ

1− ϵ
·
(√

e1−τ2
τ2
)2n
· (1+2ϵ)

)
.

(
Lemma 5, det(Λ(B)) = det(Λ(B)+ t),
and s≥ ηϵ(Λ(B))

)
For Falcon+-512 and λ = 128, setting ϵ = (264 ·128)−1/2, τ = 1.1, and n = 512 yields

pPreSmp,β ≥ 1−2−14.31.

For Falcon+-1024 and λ = 256, setting ϵ = (264 ·256)−1/2, τ = 1.1, and n = 1024 analogously yields

pPreSmp,β ≥ 1−2−28.63.

When the following condition is satisfied:

Qs ≤ CspPreSmp,β , (3)

Hoeffding’s inequality can be applied to obtain a tail bound on the probability of observing at most Qs
successes in Cs independent Bernoulli trials. Specifically, the bound is given by,

Qs∑
i=0

(
Cs

i

)
(1−pPreSmp,β)Cs−i(pPreSmp,β)i ≤ exp

(
−2Cs

(
pPreSmp,β−

Qs
Cs

)2
)

(4)

where Qs is the number of successes, Cs is the number of trials, and pPreSmp,β is the probability of success
in each trial. To satisfy the condition of Equation (3), Cs is set as follows,

Cs := 264 +250 ≥ 264

1−2−14.31 ≥
Qs

pPreSmp,β
.

Finally, the bound in Equation (4) is verified as follows,

exp
(
−2 ·

(
264 +250)(1−2−14.31− 264

264 +250

)2)
≪ 2λ (for λ = 128).

Similarly, setting Cs := 264 +236 suffices when pPreSmp,β ≥ 1−2−28.63 and λ = 256.
■
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D.2 Proof of Corollary 3

Corollary 3 (Rényi Loss for Falcon+-512 (Preimage Sampler) in Thm. 1). For ε≥ 2−λ = 2−120,
rp = Rap(PreSmp || D), Cs = 264 +250, and the parameters for Falcon+-512, the Rényi argument for

rCs
p ε

ap−1
ap

loses at most 3.5 bits for an order ap ≈ 72.96.

Proof. By Lemma 11 we need to solve

min
ap>1

Cs · log
(
Rap(PreSmp || D)

)
+ λ

ap
.

By Corollary 1 we can upper bound Rap

min
ap>1

Cs · log
(
1+2apϵ2)+ λ

ap
.

Differentiating with respect to ap gives

2 ·Cs · ϵ2

ln(2) · (2apϵ2 +1) −
λ

a2
p

.

Setting the derivative to 0 and rearranging the terms yields

0 = 2a2
pCsϵ2−λ ln(2)−2apϵ2λ ln(2).

With the condition ap > 1 the solution of the quadratic equation is

ap =
λϵ2 ln(4)+

√
8Cs λϵ2 ln(2)+λ2 ϵ4 ln2(4)

4Cs ϵ2 (5)

Plugging λ = 120, ϵ = 1/
√

264 ·128 = 2−35.5 and Cs = 264 +250 into Equation (5) gives

ap ≈ 72.96

and thus a bit loss of at most
Cs · log(1+2 ·72.96 · ϵ2)+ 120

72.96 ≤ 3.29.

■

D.3 Proof of Corollary 4

Corollary 4 (Rényi Loss for Falcon+-512 (Uniformity) in Thm. 1). For ε ≥ 2−λ = 2−116.5, ru =
Rau(U(Rq) || Uh), Cs = 264 +250, and the parameters for Falcon+-512, the Rényi argument for

rCs
u ε

au−1
au

loses at most 3.5 bits for an order au ≈ 71.73.

Proof. The corollary can be proved similar to the proof of Corollary 3 except that the Rényi divergence is
upper bounded using Corollary 2. This leads to minimizing

min
au>1

Cs · log
(

1+ 2 ·au · ϵ2

(1− ϵ)2

)
+ λ

a
,

which yields the statement. ■
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D.4 Additional Rényi Corollaries

For the t-R-ISIS term we obtain a security of 278 bits, i.e. we can assume that the Rényi argument of the
preimage sampler needs to preserve at most λ = 278 bits.

Corollary 5 (Rényi Loss for Falcon+-1024 (Preimage Sampler) in Thm. 1). For ε≥ 2−λ = 2−278,
rp = Rap(PreSmp || D), Cs = 264 +236, and the parameters for Falcon+-1024, the Rényi argument for

rCs
p ε

ap−1
ap

loses at most 4 bits for an order ap ≈ 157.05.

Proof. The proof works as the proof of Corollary 3 with different parameters. ■

Since we already lost 4 bits when unfolding the Rényi argument for the preimage sampler, we need to
apply the following corollary with a security level of only 274 bits.

Corollary 6 (Rényi Loss for Falcon+-1024 (Uniformity) in Thm. 1). For ε ≥ 2−λ = 2−274, ru =
Rau(U(Rq) || Uh), Cs = 264 +236, and the parameters for Falcon+-1024, the Rényi argument for

rCs
u ε

au−1
au

loses at most 4 bits for an order au ≈ 155.92.

Proof. The proof works as the proof of Corollary 4 with different parameters. ■

E Samplers

Here we recall the Klein Sampler [Kle00] and the FFO Sampler and prove similar results as in [Pre17].
However, we first present the Gram-Schmidt orthogonalization and LDL decomposition at the core of the
samplers.

To present the FFO Sampler, we require some additional notation. The canonical embedding of a ∈
R[X]/(Xn +1) is a = (a(ζ))ζn+1=0 ∈Cn/2, since there are n/2 complex primitive elements ζ such ζn +1 = 0
when n is a power of two. The mapping between R[X]/(Xn +1) and Cn/2 is called the canonical embedding.
With every element a∈R[X]/(Xn +1), there is an adjoint a†, uniquely defined by the condition a†(ζ) = a(ζ)
for all ζ such ζn + 1 = 0. It allows to define an inner product over Cn/2 ⟨a,b⟩ =

∑
ζd+1=0 a(ζ)b(ζ) and the

associated norm ∥a∥ =
√
⟨a,a⟩. Equipped with this scalar product, the embedding allows to view the ring

of integers Z[X]/(Xn + 1) as a euclidean lattice in Cn/2, or in Rn. From now on, lowercase letters denote
polynomials, and bold lowercase letters denote vectors as is customary in lattice literature.

E.1 Orthogonalizations

Gram-Schmidt orthogonalization. For any linearly independent vectors (b1, . . . ,bn) there exist
orthogonal vectors (b̃1, . . . , b̃n) such that

∀ i ∈ [n] : span(b1, . . . ,bi) = span(b̃1, . . . , b̃i)

and one can compute such orthogonal vectors with the following formula:

∀ i ∈ [n] : b̃i = bi−
i−1∑
j=1

⟨bi, b̃j⟩2
⟨b̃j , b̃j⟩2

b̃j .
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One can write this in matrix form: B = B̃ ·L, where L is unit upper triangular, and B and B̃ are the
column matrices of (b1, . . . ,bn) and (b̃1, . . . , b̃n), respectively. The unit upper triangular condition on L makes
the Gram-Schmidt decomposition unique.

LDL† decomposition. For any matrix A such that A = A† (Hermitian matrix), there exists a unique pair
(L,D), where L is upper unit triangular and D is diagonal, such that A = L†DL. It is worth noting that
the Gram-Schmidt decomposition and the LDL† decomposition are closely related. By the uniqueness of
both decompositions, one can identify L in B = B̃ ·L and in the LDL† decomposition of A = B†B, which
is an Hermitian matrix, as A = B†B = L†B̃†B̃L = L†DL and B̃ is an orthogonal basis.

E.2 Klein Sampler

Lemma 17 (Isotropic Gaussian in Orthogonal Basis). For any s ∈ R, for any t ∈ Rn and any
orthogonal basis B̃ = (b̃1, . . . , b̃n), where zib̃i←DZb̃i,s,tib̃i

then Bz←DΛ(B̃),s,tB̃ .

Proof. We denote by (Zi)i∈[n] the random choices made for each coordinate of z. Then, by the definition

of DZb̃i,s,tib̃i
, we have Pr[Zi = zi] = ρs((zi−ti)b̃i)

ρs(Zb̃i) . Since each coordinate is sampled independently, it follows

that Pr[Z = z] =
∏

i∈[n] Pr[Zi = zi] =
∏

i∈[n] ρs((zi−ti)b̃i)∏
i∈[n] ρs(Zb̃i) . The numerator in the above expression simplifies

as
∏

i∈[n] ρs

(
(zi− ti)b̃i

)
= ρs

(∑
i∈[n](zi− ti)b̃i

)
= ρs

(
(z− t)B̃

)
where the penultimate equality holds since

the vectors b̃i are orthogonal and as Gaussian function ρs is additive for orthogonal vectors. Finally, by
probability normalization, we obtain Pr[Z = z] = ρs((z−t)B̃)

ρs(Λ(B̃)) which is exactly the expected distribution. ■

This sampler, studied in [Kle00, GPV08], is an adaptation of Babai’s nearest plane algorithm that
introduces Gaussian sampling so that the output distribution does not reveal information about the secret
basis used as the CVP trapdoor.

Algorithm 1 KleinB,s(t ∈ Rn)
Require: s≥ ηϵ(Zn) · ∥B∥GS , the Gram-Schmidt decomposition B = B̃ ·L and the values sj = s/∥b̃j∥2 for j ∈ [n]
Ensure: A vector z such that Bz←DΛ(B),s,Bt

1: for j ∈ {n, . . . ,1} do
2: t′j ← tj +

∑
i>j Lij(ti−zi)

3: zj ←DZ,sj ,t′
j

4: return z

For completeness and because the proof of the Klein Sampler is similar to the one of the FFO Sampler,
we recall its output distribution and some intermediate lemmas.

Lemma 18 ([GPV08, Lem 4.4]). Let B be the lattice basis, and B̃ its orthogonalisation basis. For any
input t ∈ Rn, t′ ∈ Rn as defined in Algorithm 1, and any output z ∈ Zn of KleinL,s,

B · (z− t) = B̃ · (z− t′).

Proof. Using the transition matrix L, one can compute the coordinates of B · (z− t) in basis B̃:
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(L · (z− t))i =
n∑

j=1
Lij · (z− t)j

= zi− ti +
∑
j>i

Lij · (z− t)j (L is unit upper triangular)

= zi− t′i
= (z− t′)i.

Therefore,
B · (z− t) = B̃ ·L · (z− t) = B̃ · (z− t′).

This completes the proof. ■

Lemma 19 ([GPV08, Lem 4.5]). For any input t ∈ Rn, any z ∈ Zn, and any s ≥ ηϵ(Zn) · ∥B∥GS ,
with ϵ ∈ (0,1/4), and Gram-Schmidt decomposition B = B̃ ·L and the values sj = s/∥b̃j∥2 for j ∈ [n], the
probability that KleinB,s outputs z ∈ Rn is exactly

ρs(B · (t−z)) ·
∏

i∈[n]

1
ρsi,t′

i
(Z) ,

where the values si, t
′
i are as in the execution of KleinB,s(t)→ z.

Proof. Consider the event E that KleinL,s(t) is exactly z. We denote by (Zi)i∈[n] the random choices made
by KleinL,s(t), the event E is exactly the event where each Zi = zi for i∈ [n]. Now for each i, the probability
that Zi = zi conditioned on Zj = zj for each j = n, . . . , i+1, is exactly DZ,si,t′

i
(zi). Therefore the probability

of E is

∏
i∈[n]

DZ,si,t′
i
(zi) =

∏
i∈[n] ρsi,t′

i
(zi)∏

i∈[n] ρsi,t′
i
(Z) .

The numerator in the above expression is∏
i∈[n]

ρsi,t′
i
(zi) =

∏
i∈[n]

ρs

(
(t′i−zi) · ∥b̃i∥

)

= ρs

∑
i∈[n]

b̃i · (t′i−zi)

 (orthogonality of B̃)

= ρs

(
B̃ · (t′−z)

)
= ρs (B · (t−z)) . (Lemma 18)

This completes the proof. ■

Lemma 20 (Rényi Divergence of Klein Sampler [Pre17, Lem. 6]). Let n be a positive integer,
a > 1, and ϵ ∈ (0,1/4). Then for the Klein Sampler PreSmp and the lattice Λ = Λ(B)(c,0), for any basis
B ∈ Z2n×2n, standard deviation s≥ ηϵ(Z2n) · ∥B∥GS , and arbitrary syndrome c ∈Rq, the Rényi divergence
is bounded by

Ra

(
PreSmp(B,s,(c,0)) || DΛ,s

)
≲ 1+2aϵ2.
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Proof. In the proof, t = (c,0). As stated in previous lemma, the probability that KleinL,s(t) outputs a
given z is exactly

ρs(B · (t−z)) ·
∏

i∈[2n]

1
ρsi,t′

i
(Z) .

As si = s/∥b̃i∥2 ≥ s/∥B∥GS , by assumption si ≥ ηϵ(Z2n)≥ ηϵ/2n(Z), therefore ρsi,t′
i
(Z)∈

[
1−ϵ/2n
1+ϵ/2n ,1

]
·ρsi(Z)

by [MR04, Lemma 4.4]. Since DΛ,s(B ·z) is proportional to ρs(B · (t−z)) and as si = s/∥b̃i∥2 ≥ s/∥B∥GS ,
by assumption si ≥ ηϵ(Z2n)≥ ηϵ/2n(Z), therefore ρsi,t′

i
(Z)∈

[
1−ϵ/2n
1+ϵ/2n ,1

]
·ρsi(Z) by [MR04, Lemma 4.4]. Since

DΛ,s(B ·z) is proportional to ρs(B · (t−z)) and both DΛ,s and PreSmp(B,s,(c,0)) sum up to one, we have(
1− ϵ/2n

1+ ϵ/2n

)2n

≤ PreSmp(B,s,(c,0))
DΛ,s

≤
(

1+ ϵ/2n

1− ϵ/2n

)2n

.

Therefore,

δRE

(
PreSmp(B,s,(c,0)),DΛ,s

)
≤
(

1+ ϵ/2n

1− ϵ/2n

)2n

−1≈ 2ϵ,

from which we can conclude the proof by using the relative error lemma. ■

E.3 FFO Sampler

The main drawback of the Klein Sampler is its quadratic complexity. The FFO Sampler algorithm is
an adaptation of the Klein Sampler that exploits the structure of the NTRU matrices using an advanced
Fast Fourier Transform depicted in [DP16]. We first present how the Klein Sampler is modified.

The Klein Sampler uses the orthogonalization of the matrix B to sample 2n vectors in the 2n orthogonal
lattices Λ(b̃j) (this is what the line zj ←DZ,sj ,t′

j
does). One can take advantage of the structure of NTRU

lattices and modify this procedure to achieve quasi-linear complexity. Given a basis

B =
(

g G
−f −F

)
∈R2×2

q ,

one wants to sample a vector from the lattice Λ(A(B)). To do this, one can apply Klein’s algorithm in
dimension 2 on the basis B. First, one compute a block orthogonalisation of the NTRU basis B: B =(
b̃1 b̃2

)
·L. Then, it is sufficient to be able to sample in the lattices Λ(A(b̃1)) and Λ(A(b̃2)) using two

recursive calls, which would yield our quasi-linear algorithm.
The obstacle is that A(b̃1) and A(b̃2) cannot be interpreted as matrices of the image of A, as the

coefficients of b̃i are not integers. To overcome this issue, new operators analogous to c (coefficient embedding
of an element ofRq) and A (anticirculant matrix) are introduced: Vd/d′ and Md/d′ , where d and d′ are powers
of 2. It is possible to define a more general V but for NTRU, powers of 2 are sufficient. Informally, V can be
viewed as iterations of the “split” operator used in the fast Fourier transform.

To go down the tower rings, let us introduce the notation Rq(d) to denote the subring of dimension 2d of
Rq(k) with n = 2k. The tower-of-fields of the cyclotomic field Q[X]/(Xn + 1) for n = 2k has corresponding
subfields that we will write as Q(d). This notation is the same as in the forthcoming FN-DSA standard.

The following definitions and properties come from [DP16].

– Define V2d/2d−1 , for a ∈Rq(d), V2d/2d−1(a) =
(

p0
p1

)
where p0,p1 ∈Rq(d−1) are the unique polynomials

such that a(X) = p0(X2)+Xp1(X2).
– Define V2d/2d′ with d≥ d′ recursively as the identity if d = d′, otherwise for a ∈Rq(d), V2d/2d′ (a) is the

result of the coefficient-wise application of V2d−1/2d′ to V2d/2d−1(a).
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– For a ∈Rq(d), if V2d/2d−1(a) =
(

p0
p1

)
then

M2d/2d−1(a) =
[
p0 Xp1
p1 p0

]
=
[
V2d/2d−1(a) V2d/2d−1(Xa)

]
∈Rq(d−1)2×2.

– As for V , define M2d/2d′ with d ≥ d′ recursively as the identity if d = d′, otherwise for a ∈ Rq(d),
M2d/2d′ (a) is the result of the coefficient wise application of M2d−1/2d′ to M2d/2d−1(a).

– V and M generalize to vectors and matrices in a coefficient-wise manner.

Observe that, as stated in [DP16], the following properties hold:

– M(A ·B) = M(A) ·M(B)
– V (ab) = M(a) ·V (b)
– V is an isometry: ⟨V (a),V (b)⟩2 = ⟨a,b⟩2

In the FFO Sampler algorithm, instead of sampling in the lattice generated by A(B), one samples
in the lattice generated by M2k/1(B). The operator M2k/1 enables the recursive call discussed earlier.
When sampling in the lattice generated by M2k/1(b̃i), one can decompose b̃i ∈ Rq(k)m as a matrix B̃i ∈
Rq(k−1)2×2m using the partial operator M2k/2k−1 . By definition of M , the lattices generated by M2k/1(b̃i)
and M2k−1/1(B̃i) are the same.

Compact LDL† decomposition. These linearization operators provide a compact way to express the
LDL† decomposition. This decomposition is given by algorithm 2:

Algorithm 2 ffLDL†(Q)
Require: A positive-definite self-adjoint matrix Q ∈Q(k)2×2

Ensure: A binary tree T .
1: (L10,D00,D11)← LDL†(Q)
2: T .value← L10
3: if d = 1 then
4: T .leftchild←D00
5: T .rightchild←D11
6: return T
7: else
8: Q0←M2d/2d−1 (D00)
9: Q1←M2d/2d−1 (D11)

10: T .leftchild← ffLDL†(Q0)
11: T .rightchild← ffLDL†(Q1)
12: return T

This algorithm computes a “compact LDL decomposition.” Indeed, consider B ∈ Rq(k)2×m by writing

ffLDL†(B† ·B) in the form

L

L0

L00

D1

L01

· · · · · ·

L1

L10

· · · · · ·

L11

D2n

, and with the properties of LDL†, an immediate induction

provides the following results:
M2d/2d−i(B) = B̃i ·Li
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where B̃i is the Gram–Schmidt matrix of M2d/2d−i(B), and Li is defined recursively by

L0 =
[
1 L
0 1

]
, ∀ i > 0 : Li =



1 L0 · · ·0︸ ︷︷ ︸
i

0 1
0

1 L0···01
0 1

. . .
0 1 L1···1

0 1


·M2k−i+1/2k−i(Li−1)

Moreover, as Diag(D1, . . . ,D2n) = B̃†nB̃n the (D1, . . . ,D2n) are the squares of the norms of the Gram–Schmidt
basis vectors of M2k/1(B).
FFO Sampler. We can now put into practice the suggested idea to efficiently sample vectors from a lattice
generated by the secret basis B.

Algorithm 3 ffSampling(t,T )
Require: An element t = [t0, t1] ∈Q(k)2, and an LDL tree T .
Ensure: An element z = [z0,z1] ∈Rq(k)2.
1: if k = 1 then
2: l←T .value
3: s0← s/

√
T .leftchild

4: s1← s/
√
T .rightchild

5: z1←DZ,t1,s1
6: t′0← t0 + l · (t1−z1)
7: z0←DZ,t′

0,s0

8: return (z = [z0,z1])
9: (L,T0,T1)← (T .value,T .leftchild,T .rightchild)

10: t1← Vk/ k
2

(t1)
11: z1← ffSampling(t1,T1)
12: z1← V −1

k/ k
2

(z1)

13: t′0← t0 + L · (t1−z1)
14: t′0← Vk/ k

2
(t′0)

15: z0← ffSampling(t′0,T0)
16: z0← V −1

k/ k
2

(z0)
17: return (z = [z0,z1])

Now, we can prove that the distribution of this new sampler has the same properties as the Klein
Sampler with respect to the Rényi divergence.

Lemma 7 (Relative Error of FFO Sampler). Let n be a positive integer and ϵ ∈ (0,1/4). Then the
relative error of the FFO Sampler PreSmp and the lattice Λ = Λ(B)(c,0) for any basis B ∈ Z2n×2n,
standard deviation s≥ ηϵ(Z2n) · ∥B∥GS , and arbitrary syndrome c ∈Rq is bounded by

δRE

(
PreSmp(B,s,(c,0)),DΛ,s

)
≤
(

1+ ϵ/2n

1− ϵ/2n

)2n

−1≈ 2ϵ.

In order to prove this lemma, we show the same intermediate lemma as for the Klein Sampler
(Lemma 19) by computing the distribution of the FFO Sampler. Consequently, since the last part of the
proof is exactly the same as in Corollary 1, the theorem is proved. The vector t denotes (c,0).
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Lemma 21. Let B =
(
b1, b2

)
∈ Q(k)2×m and B̃ =

(
b̃1, b̃2

)
be its Gram-Schmidt orthogonalization. The

vectors z and t′ =
(

t′0
t1

)
in the first step of ffSampling(t,TB) satisfy

B · (z− t) = B̃ · (z− t′).

Proof. The proof is exactly the same as for Lemma 18, as each individual step of ffSampling is basically
the Klein Sampler, where the calls to the Gaussian sampler over the integers are replaced by recursive
calls. ■

Lemma 22. For any basis B ∈ Q(k)2×m, vector t ∈ Q(k)2, for any z = (ẑ0, ẑ1) ∈ R(k)2, and for any
s≥ ηϵ(Zn) · ∥B∥GS, with the Gram-Schmidt decomposition B = B̃ ·L, the probability that ffSampling(t,TB)
outputs z is exactly

ρs(B · (t−z)) ·
∏

i∈[2n]

1
ρŝi,t̂i

(Z) ,

where
– ŝi, t̂i are the parameters of the distributions DZ,t̂i,ŝi

from which the execution of ffSampling→ z samples,
in reverse order.

– TB = ffLDL†(BB†).

Proof. In this proof, will write V = Vk/ k
2

and M = Mk/ k
2

for conciseness. Consider the event E : the output
of ffSampling(t,TB) is exactly (z0,z1). We will prove the result inductively:

If k = 1, as the base case of ffSampling is exactly an execution of Klein of dimension 2, Lemma 19
concludes.

If k ̸= 1, we denote by Z0,Z1 the random choices made by ffSampling(t,TB), E occurs if and only if
Z0 = z0 and Z1 = z1. We note that

Pr[Z1 = z1] = Pr
[
V −1(ffSampling(t1,T1)) = z1

]
, and

Pr[Z0 = z0 | Z1 = z1] = Pr
[
V −1(ffSampling(t′0,T0)) = z0

]
.

Then using the bijectivity of V , we obtain

Pr[E] = Pr[ffSampling(t1,T1) = V (z1)] ·Pr
[
ffSampling(t′0,T0) = V (z0)

]
.

Now we would like to use the induction hypothesis. Looking at the algorithm ffLDL†, we know that T0 and
T1 are the results of ffLDL†(B̃†0B̃0) and ffLDL†(B̃†1B̃1) with B̃0 = M(b̃0) and B̃1 = M(b̃1) where (b̃0, b̃1) is
the orthogonalization of B. This allows to use induction hypothesis and write

Pr[E] = ρs

(
B̃0 · (t0−V (z0))

)
·ρs

(
B̃1 · (t′1−V (z1))

)
·
∏

i∈[2n]

1
ρŝi,t̂i

(Z) .

The numerator in the above expression is

ρs

(
B̃0 · (t0−V (z0))

)
·ρs

(
B̃1 · (t′1−V (z1))

)
= ρs

(
M(b̃0) · (V (t0)−V (z0))

)
·ρs

(
M(b̃1) · (V (t′1)−V (z1))

)
(definition of B̃0,B̃1,t0 and t′1)

= ρs

(
V
(
(t0−z0) · b̃0

))
·ρs

(
V
(
(t′1−z1) · b̃1

))
(linearity of V and M)

= ρs

(
(t0−z0) · b̃0

)
·ρs

(
(t′1−z1) · b̃1

)
(V isometry)

= ρs

(
(t0−z0) · b̃0 +(t′1−z1) · b̃1

)
(orthogonality of b̃0 and b̃1 (Lemma 17))

= ρs ((t0−z0) ·b0 +(t1−z1) ·b1) (Lemma 21)
= ρs (B · (t−z)) .

The orthogonality of B̃0 = M(b̃0) and B̃1 = M(b̃1) is inherited from orthogonality of b̃0 and b̃1. Indeed,
as b̃0 · b̃†1 = 0 and M satisfies M(A ·B) = M(A) ·M(B), it holds that M(b̃0) ·M(b̃1)† = 0. ■
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Now, we can go back the proof of Lemma 7. As in the proof of Lemma 20, since the intermediate lemmas
are similar, we get

δRE

(
PreSmp(B,s,(c,0)),DΛ,s

)
≤
(

1+ ϵ/2n

1− ϵ/2n

)2n

−1≈ 2ϵ.
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