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Abstract

In applications such as secure group communication and
broadcasting, it is important to efficiently deliver multiple
messages to different recipients at once. To this end, multi-
message multi-recipient Public Key Encryption (mmPKE)
enables the batch encryption of multiple messages for multi-
ple independent recipients in one go, significantly reducing
costs–particularly bandwidth–compared to the trivial solu-
tion of encrypting each message individually. This capability
is especially desirable in the post-quantum setting, where
the ciphertext length is typically significantly larger than the
corresponding plaintext. However, almost all prior works
on mmPKE are limited to quantum-vulnerable traditional
assumptions.

In this work, we propose the first CPA-secure mmPKE and
Multi-Key Encapsulation Mechanism (mmKEM) from the
standard Module Learning with Errors (MLWE) lattice as-
sumption, named mmCipher-PKE and mmCipher-KEM, re-
spectively. Our design proceeds in two steps: (i) We introduce
a novel generic construction of mmPKE by proposing a new
PKE variant—extended reproducible PKE (XR-PKE)—that
enables the reproduction of ciphertexts through additional
hints; (ii) We instantiate a lattice-based XR-PKE using a new
technique that can precisely estimate the impact of such hints
on the ciphertext security while also establishing suitable pa-
rameters. We believe both to be of independent interest. As
a bonus contribution, we explore generic constructions of
adaptively secure mmPKE, resisting adaptive corruption and
chosen-ciphertext attacks.

We also provide an efficient implementation and thorough
evaluation of the practical performance of our mmCipher.
The results demonstrate substantial bandwidth and compu-
tational savings over the state-of-the-art. For example, for
1024 recipients, our mmCipher-KEM achieves a 23–45ˆ re-
duction in bandwidth overhead, with ciphertexts only 4–9%
larger than the plaintexts (near optimal bandwidth), while
also offering a 3–5ˆ reduction in computational cost.

1 Introduction

Public Key Encryption (PKE) and Key Encapsulation Mecha-
nism (KEM) are foundational cryptographic primitives that
underpin secure digital communication systems–such as
Zoom, Signal, and WhatsApp–serving billions of users. The
rapid progress in quantum computing [26] has led to a shift to-
wards post-quantum cryptography. In response, the National
Institute of Standards and Technology (NIST) has selected
Kyber, a lattice-based KEM/PKE, as a primary candidate
for standardization [2]. However, these quantum-resistant
constructions generally require significantly more bandwidth
resources than their traditional counterparts [9]. Therefore,
reducing communication costs for multiple recipients, even
for moderately large number of recipients, say N ě 10, is
already of practical significance.

Multi-message multi-recipient PKE. To address this need,
multi-message multi-recipient PKE (mmPKE) was introduced
to efficiently batch encryption by Kurosawa [43]. Specifically,
given N recipient public keys ppkiqiPrNs and a message vector
pmiqiPrNs, where each message mi is intended for recipient i,
an mmPKE can output a multi-recipient ciphertext ct that can
be extracted as the individual ciphertext cti for each recipient
i by any third party (e.g., delivery service server). Roughly
speaking, each message mi should remain private even given
the multi-recipient ciphertext ct and all other recipient decryp-
tion keys psk jq jPrNszi.

Compared to the trivial solutions where each message is
encrypted separately, mmPKE allows for significant band-
width savings, especially valuable in post-quantum settings
where ciphertexts are large. We call an mmPKE (asymp-
totically) bandwidth-optimal if the length of its ciphertexts
approaches the total length of its plaintexts (for a large num-
ber of recipients). When each message is an encapsulated
key, we obtain the multi-key multi-recipient KEM (mmKEM).
A special case of mmPKE and mmKEM is multi-recipient
PKE (mPKE) and multi-recipient KEM (mKEM), which only
support sending the same message or encapsulated key to all
recipients. In this case, since each recipient receives the same
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message, the security model excludes the insider adversaries
(recipients).

Applications. In (m)mPKE/KEM schemes, the delivery ser-
vice is modeled as a public bulletin board, where the sender
uploads the multi-recipient ciphertext and each recipient
downloads their corresponding individual ciphertext. Thus, a
direct application is to replace individual PKE/KEM in multi-
recipient scenarios to reduce communication and computation
costs at the sender, which are typically much higher than those
at each recipient, especially in the post-quantum setting. For
example, [39] uses post-quantum mKEM to improve the effi-
ciency of Messaging Layer Security (MLS) protocol, an IETF
secure group messaging standard [10], by an order of magni-
tude. Similarly, [36] employs post-quantum mPKE to double
the efficiency of Secure Group Messaging (SGM). In addition,
[5] leverages mmPKE to generically build an efficient Con-
tinuous Group Key Agreement (CGKA). (m)mPKE is also a
promising tool for improving the efficiency of messaging apps
over short-range wireless mesh networks such as Bridgefy
or BitChat [64] using Bluetooth, where bandwidth-efficient
broadcasting is a natural requirement.

Besides secure digital communication, another com-
pelling use case is confidential transactions in account-based
blockchains, such as (Anonymous) Zether [21, 27] and PriDe
CT [35].1 Briefly, the spender submits a transaction contain-
ing a multi-recipient ciphertext and a well-formedness proof
to the blockchain, where each amount is encrypted for its cor-
responding recipient. Furthermore, receiver anonymity can
be achieved, similar to ring signatures [59], where the “real”
recipients are hidden among “decoy” recipients, and identical
zero-valued messages are encrypted for the latter. Thus, a
full CPA-secure2 mmPKE is required to ensure transaction
confidentiality, so that no recipient can learn others’ amounts,
even if some amounts are identical. However, since the only
known post-quantum mmPKE [6] cannot achieve full CPA
security (as illustrated in Figure 1 and discussed later), it is
not applicable in such scenarios. Considering that large trans-
action sizes (primarily due to ciphertext size) would lead to
practically unacceptable transaction (gas) fees and blockchain
storage is highly limited, we believe that the absence of full
CPA-secure mmPKE is the primary bottleneck in shifting
such confidential transactions to the post-quantum setting.

Existing works and challenges. Due to their practically ap-
pealing and theoretically interesting nature, studies on mmP-
KE/mmKEM [6, 11, 12, 43, 58] and mPKE/mKEM [8, 23, 36,
39, 48, 61, 65], have attracted significant attention. Among
them, the foundational work on mmPKE was proposed by
Bellare et al. in [11, 12] that significantly expanded Kuro-

1These confidential transactions implicitly employ mmPKE, i.e., they
directly utilize ElGamal-based mmPKE [11, 43] as a fundamental building
block.

2What we call “full CPA” security here is the standard CPA security
notion. In contrast, some earlier works such as [6] only obtain a weaker form
of CPA security, which does not protect the structure of the message vector.

sawa’s work [43] by: (1) introducing the insider adversary to
formalize the full CPA security of mmPKE, ensuring that no
recipient can obtain another recipient’s message; (2) identify-
ing possible attacks (e.g., rogue public key attacks) and intro-
ducing the knowledge-of-secret-key (KOSK) assumption–that
is, each public key is assumed to be well-formed (i.e., the
challenger knows the private key of each public key)–for pro-
tection; and (3) defining reproducible PKE to generically
construct mmPKE. Informally, reproducibility requires the
existence of an efficient algorithm that can transform a ci-
phertext into another ciphertext for a different public key and
message while using the same randomness. They further no-
ticed that only discrete-log-based encryption schemes, such
as ElGamal [28] and Cramer–Shoup [24], are reproducible
and can be extended to mmPKE under the KOSK assumption.
Thus, they raised an open question—which has stood for over
two decades—of whether (full CPA-secure) mmPKE schemes
(and its underlying reproducible encryption) under other as-
sumptions exist [11, page 12]. Unfortunately, such property
remains unknown for post-quantum assumptions, particularly
for lattices, since fresh randomness/noise in each ciphertext
is inherently required and cannot be fully eliminated.

Currently, the only known post-quantum mmPKE [6] is
generically constructed from mKEM, but it only supports
batching consecutive identical messages in the message vec-
tor, as illustrated in Figure 1. Here, we identify two key
limitations of this approach: (1) its efficiency is close to triv-
ial solution when messages are independent, and (2) it cannot
achieve full CPA security, as it leaks the structure of the in-
put message vector, i.e., given the multi-recipient ciphertext,
others can identify whether any two consecutive messages
in the message vector are identical. These significantly limit
the application of [6] in many practical scenarios, such as
confidential transactions [21, 27, 35], as discussed above.

Overall, despite strong practical demand and rapid progress,
significant challenges remain in fully realizing the potential
of mmPKE in post-quantum settings, especially for generic
constructions, leading to our question:

Question: Are there any simple and efficient generic construc-
tions of fully batched mmPKE based on the post-quantum
assumptions, while enjoying full CPA-security, regardless of
the message vector?

We refer to Table 1 for a summary of the existing post-
quantum mmPKE schemes. We note that this comparison ex-
cludes [6], as their benchmarks only focus on mKEM, which
we consider incomparable to the case of mmKEM/mmPKE.
Furthermore, in our setting, since the messages/keys are in-
dependent of each other, the probability of consecutive iden-
tical messages appearing in the message vector is negligible.
Therefore, as [6] only supports batching consecutive identi-
cal messages, its performance under independent messages
would be equivalent to the trivial solution with Kyber.
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Structure leakage

!! !! !" !# !# !# !$

Only consecutive identical messages are batched

(a) Existing post-quantum mmPKE [6]

!! !! !" !# !# !# !$

All messages are batched
No leakage

(b) Our scheme

Figure 1: Comparison between the existing post-quantum
mmPKE [6] and our scheme. boxes indicates that the en-
closed message is encrypted as a ciphertext for an independent
recipient, while boxes indicates that each enclosed cipher-
texts are batched. Since [6] only supports batching consecu-
tive identical messages, the structure of the message vector
can be inferred from its ciphertext (e.g., the first two mes-
sages are identical), whereas our scheme supports batching
all messages while protecting this structure.

Table 1: Comparison of current lattice-based CPA-secure
mmPKE/mmKEM schemes, for N “ 1024 recipients.

Scheme PQ-
Sec.

Level

Enc.
Size

(KB)

Improve.
Factor

(ˆ)

Enc.
Time
(ms)

Full
CPA

Plaintext˚: ´ 32 ´ ´ ˆ

Baseline: 128 768 ´ 36
✓Kyber [19] 192 1088 ´ 58

(ML-KEM [53]) 256 1568 ´ 87

Our work: 128 333333 222333...111ˆ 12
✓mmCipher-KEM 192 333444 333111...666ˆ 16

(Cons. 4.3+B.1) 256 333555 444444...777ˆ 17

Our work: 128 65 11.8ˆ 13
✓mmCipher-PKE 192 66 16.4ˆ 16

(Cons. 4.3+5.3) 256 67 23.3ˆ 18
˚ Here, Enc. Size is the plaintext size of all encapsulated keys/messages

(i.e., optimal bandwidth).
Notes: For each scheme, we report the size of the multi-recipient cipher-
text (Enc. Size) in kilobytes (KB) as well as the improvement, relative to
the trivial solution with CPA-secure Kyber (parameterized by ML-KEM
standard [53]), and the encryption/encapsulation time (Enc. Time) in mil-
liseconds (ms), under 128-bit, 192-bit, and 256-bit post-quantum security
levels (PQ-Sec. Level), respectively. Each message/key is 256 bits and
independently chosen across 1024 recipients. Full CPA indicates that the
scheme protects both semantics and structure of the message vector.

1.1 Contribution

In this work, we answer the above question affirma-
tively by proposing the first full CPA-secure mmPKE and
mmKEM, based on the standard MLWE assumption, named
mmCipher-PKE and mmCipher-KEM, respectively. Specif-
ically, we introduce a new generic construction of mmPKE
from a novel variant of PKE, called extended reproducible
PKE (XR-PKE). We then present lattice-based instantiations
of XR-PKE and provide parameter sets for different security
levels. Lastly, we give an efficient implementation and a thor-
ough performance evaluation of our mmCipher. The main
contributions of our work are summarized as follows. For
detailed technical discussions, see Section 2.
New generic construction of post-quantum mmPKE. Our
first contribution is a new generic construction of post-
quantum mmPKE from XR-PKE. To accommodate the post-
quantum setting—particularly the lattice-based setting—we
formally define XR-PKE, which significantly enhances the
functionality of the original reproducible PKE [11], in both
syntax (by incorporating hints into the reproduction algorithm
and providing a hint generation algorithm) and security model
(by modeling the semantic security of ciphertexts given the
associated hints). We believe such new generic constructions
could be of independent interest that may spark other post-
quantum instantiations, such as code-based schemes.
mmCipher: the first mmPKE instantiations from lattices.
Our second contribution is the construction of lattice-based
XR-PKE and XR-KEM schemes, from which we instantiate
the first lattice-based mmPKE. To achieve extended repro-
ducibility, we leverage the decryption error as a hint to enable
ciphertext reproduction. To establish the semantic security of
ciphertexts given the associated hints, we rely on the Matrix
Hint-MLWE assumption [31], for which a reduction from the
standard MLWE assumption exists under suitable parameter
choices, arguing that the security impact of the hints is negli-
gible. Along the way, as a bonus technical contribution, we
generalize the underlying matrix in Matrix Hint-MLWE to the
non-square setting and identify a missing efficient sampleabil-
ity condition in the parameter instantiation for the reduction
of [31]. Both results may be of independent interest for other
applications of Hint-MLWE, e.g., [1, 42, 45].

Then, following our generic construction, we instan-
tiate two lattice-based CPA-secure mmPKE under the
KOSK assumption: (1) an mmPKE for short messages
(mmCipher-PKE) and (2) a hybrid mmKEM-DEM scheme
for arbitrary-length messages (mmCipher-KEM). Both
achieve full CPA-security, protecting both semantics and struc-
ture of input message vector, thereby preventing the identifica-
tion of identical messages. This represents a key improvement
over [6] and significantly broadens potential applications.

Furthermore, to fit the real-world applications, we intro-
duce a compiler in Remark 4.5, that removes the KOSK
assumption from mmPKE/mmKEM with polynomial-size
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number of recipients by leveraging a multi-proof extractable
Non-Interactive Zero-Knowledge (NIZK) proof system.
While [11] observed that the KOSK assumption could be
removed using NIZK, no concrete construction or formal
security proof was given prior to this work.
Bandwidth-optimal mmPKE implementation and eval-
uation. We also provide a C implementation3 of our
lattice-based mmPKE schemes (i.e., mmCipher), together
with computational performance and bandwidth benchmarks.
Compared to the state-of-the-art, the performance of our
mmCipher is independent of the message vector structure, i.e.,
whether the message vector has identical or distinct messages.
For N “ 1024 recipients and different security levels (128-
, 192-, 256-bit), our mmCipher-KEM and mmCipher-PKE
achieve a 23–45ˆ and 12–23ˆ reduction in bandwidth over-
head, respectively, and offer a 3–5ˆ reduction in computa-
tional cost, compared to [6] with independent messages and
the trivial solution with Kyber. Notably, by using a reconcili-
ation mechanism [56], each public-key-dependent ciphertext
in our mmCipher-KEM is minimized to the size of the encap-
sulated key (e.g., 256 bits), thereby making our construction
asymptotically bandwidth-optimal, with ciphertext size only
4% (resp. 9%) larger than the plaintext size for 128-bit (resp.
256-bit) security levels, when N “ 1024 recipients.
Generic construction of adaptively secure mmPKE. As
a bonus contribution, we propose generic constructions that
transform the CPA-secure mmPKE into an adaptively se-
cure mmPKE, achieving security against adaptive corruption
and CCA. Specifically, due to the absence of fully batched
post-quantum mmPKE constructions, there remains a gap in
achieving adaptive security in such settings. For example,
since the public parameters and randomness are shared among
recipients, standard techniques such as the Fujisaki-Okamoto
(FO) transform [32, 63], lossy trapdoor functions [57, 62],
and the BCHK transform via IBE [16, 22, 49] cannot be ap-
plied in the post-quantum mmPKE setting. To this end, we
generalize the Naor-Yung paradigm [51, 60] to the mmPKE
setting. Furthermore, by leveraging the structure of mmPKE,
we can safely merge the two ciphertexts into a single multi-
recipient ciphertext by doubling recipient number from N to
2N. As a result, only one public-key-independent ciphertext
needs to be generated, significantly reducing overhead. The
detailed construction is provided in Appendix E.

2 Technical Overview

In this section, we provide a self-contained overview of our
techniques for constructing a lattice-based mmPKE. The
discussion is given at a high level to provide an intuitive
understanding of our approach.

We begin by recalling the syntax of mmPKE [11]. Specifi-
cally, the setup, key generation and decryption algorithms of

3Provided in our artifact: https://doi.org/10.5281/zenodo.17849532

mmPKE are the same as the ones in the standard PKE. For the
multi-encryption, i.e., ct Ð mmEncppp,ppkiqiPrNs,pmiqiPrNsq,
it takes as input the public parameter pp, a set of public keys
ppkiqiPrNs along with a message vector pmiqiPrNs and outputs
a multi-recipient ciphertext ct. The multi-recipient ciphertext
ct can later be extracted to the individual ciphertext cti for
the public key pki by some extraction algorithm.

The correctness of mmPKE is that each individual cipher-
text cti can be successfully decrypted to the message mi by
the corresponding private key ski.

The full IND-CPA security model of mmPKE is more com-
plicated than standard PKE, since it considers the insider
attack where the adversary is allowed to be some recipi-
ents, i.e., generate some public keys for the challenger to
encrypt the challenge ciphertext. Specifically, the adver-
sary selects ℓ honestly generated (i.e., challenger’s) pub-
lic keys ppkiqiPrℓs and ℓ message pairs pm0

i ,m1
i qiPrℓs It also

chooses N ´ ℓ adversarially generated (i.e., adversary’s) pub-
lic keys ppkiqiPrℓ:Ns (along with the corresponding private
keys pskiqiPrℓ:Ns when under the KOSK assumption) and
the associated messages pmiqiPrℓ:Ns. It should be infeasi-
ble for the adversary to distinguish the challenge ciphertext
ct Ð mmEncppp,ppkiqiPrNs,pmb

i qiPrℓs,pmiqiPrℓ:Nsq for a ran-
domly chosen bit b P t0,1u.

Recall: traditional mmPKE from reproducible PKE. Be-
fore delving into the specifics of our approach, it is useful
to recall the traditional constructions of mmPKE from re-
producible PKE [11]. The syntax, correctness and security
definition of reproducible PKE is the same as standard PKE,
except introducing a reproducibility property.

The reproducibility requires that given a ciphertext ct Ð

Encppp,pk,m; rq which encrypts the message m with the pub-
lic key pk and some randomness r, there exists an efficient
algorithm, called reproduction algorithm, satisfying

Encppp,pk1,m1; rq “ Repppp,ct,m1,sk1,pk1q.

It means that the Rep algorithm can use the private key sk1 to
reproduce a ciphertext ct to another ciphertext ct1 for the cor-
responding public key pk1 and different message m1 but with
the same randomness r. For example, for ElGamal scheme,
given a ciphertext pgr,m ¨pgxqrq for public key gx and message
m, the other ciphertext for public key gx1

and message m1 can
be reproduced as pgr,m1 ¨ pgrqx1

q by the private key x1.
Now, let us discuss how [11] constructs an mmPKE from

reproducible PKE. The setup, key generation, and decryp-
tion algorithms of mmPKE are the same as the ones in re-
producible PKE. In multi-encryption, it uses the same ran-
domness r to encrypt each message mi for the corresponding
public key pki to the ciphertext cti Ð Encppp,pki,mi; rq and
concatenate the ciphertexts together as multi-recipient cipher-
text ct :“ pct1, . . . ,ctNq.

Notably, if all cti have a same part due to the randomness
reuse, this part only needs to be computed and communicated
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once in the multi-recipient ciphertext and that is the reason for
the bandwidth and computation savings of mmPKE. For ex-
ample, the part gr of the ciphertext only needs to be generated
once in ElGamal-based mmPKE which can save about half
bandwidth and computation compared to the trivial solution.

To reduce the security of mmPKE to that of the underlying
reproducible PKE, the reduction, under the KOSK assump-
tion, can obtain the private key of other recipients and generate
the multi-recipient ciphertext by reproducing its challenge
ciphertext. For details, we refer readers to [11, Theorem 6.2].

Challenge I: generic construction of post-quantum
mmPKE from XR-PKE. The major limitation of the above
mmPKE [11] is that it does not seem to extend to the post-
quantum setting, especially lattice-based setting. The reason
is that the randomness of the ciphertext in lattice-based PKE
schemes cannot be fully reused as in the discrete-log-based
assumptions. In particular, in encryption scheme based on the
LWE lattice problem, the ciphertext for message m typically
takes the form pAr ` eu,xb,ry ` y ` tq{2s ¨ mq. For security,
the message error term y cannot be reused across multiple
messages/public keys. Moreover, there are additional repro-
ducibility security issues caused by such error terms.

To get around this issue, we first consider the (extended)
reproducible PKE in a decomposable variant. Specifically, a
decomposable encryption algorithm Enc takes as input the
randomness r :“ pr0, r̂q and creates a public-key-independent
ciphertext ct0 Ð Encippp; r0q and a public-key-dependent ci-
phertext pctÐEncdppp,pk,m; r0, r̂q. Note that the randomness
r̂ in key-dependent ciphertext can be set empty, i.e., r̂ :“ K,
if it is unnecessary. We view this as a natural formalization
of (extended) reproducible PKE as it is satisfied by all the
constructions that we are aware of.

Therefore, we intend to reuse only the randomness r0
in key-independent ciphertext instead of the entire random-
ness r “ pr0, r̂q, so that we can achieve the same savings in
bandwidth and computation as fully reusing the randomness
when constructing mmPKE. We formalize this new primitive,
called XR-PKE, which significantly improves upon repro-
ducible PKE in both syntax and security model.

From the perspective of syntax, to formalize the property
of reproducibility, we introduce an additional input h1, called
hint, into the reproduction algorithm. Looking ahead to our
lattice-based instantiation, the hint there will be used to pro-
vide randomized information on the ciphertext error terms
needed to reproduce the ciphertext for new recipient. We
require that, given a ciphertext ct Ð Encppp,pk,m; r0, r̂q, the
following property always holds

Encppp,pk1,m1; r0, r̂1q “ Repppp,ct,m1,pk1,sk1,h1q.

Additionally, we provide an auxiliary algorithm, named hint
generation algorithm, for generating the hint h1. It takes as
input the public parameter pp, the reused randomness r0, a
fresh randomness r̂1, and a public-private key pair ppk1,sk1q,

i.e.,
h1 Ð HintGenppp, r0, r̂1,pk1,sk1q.

Regarding the security model, we require that the adver-
sary’s advantage against semantic security remains negligi-
ble, even given the hints associated with the challenge ci-
phertext. More precisely, we introduce a hint query phase
before the adversary output in the security game. In the
hint query phase, after receiving the challenge ciphertext
ct˚ Ð Encppp,pk˚,m˚

b ; r0, r̂˚q, the adversary is allowed to
query N hints on the challenge ciphertext by N public-private
key pairs ppki,skiqiPrNs. The challenger then computes the
hints as phiqiPrNs Ð HintGenppp, r0,pr̂iqiPrNs,ppki,skiqiPrNsq

and returns them to the adversary. The formal definitions of
XR-PKE are provided in Section 4.

We now describe the generic construction of post-quantum
mmPKE from XR-PKE. The setup, key generation, and
decryption algorithms are identical to those in XR-PKE, ex-
cept that the setup algorithm additionally takes the recipi-
ent number N as input. In the multi-encryption algorithm
mmEnc, the randomness is structured as r :“ pr0, r̂1, . . . , r̂Nq.
The algorithm first generates a key-independent ciphertext
ct0 Ð Encippp; r0q, then computes N key-dependent cipher-
texts pcti Ð Encdppp,pki,mi; r0, r̂iq, and concatenates them as
multi-recipient ciphertext ct :“ pct0, pct1, . . . , pctNq. For each
recipient, the individual ciphertext cti :“ pct0, pctiq can be ex-
tracted from ct and decrypted by the private key ski.

Finally, we outline the security reduction from our mmPKE
to its underlying XR-PKE. The reduction largely follows
the structure of the above traditional mmPKE [11], except
that, before reproducing the ciphertext, it sends the public-
private key pairs ppki,skiqiPrNs to its challenger during the hint
query phase, and receive the corresponding hints phiqiPrNs to
complete the reproduction. The detailed proof is given in
Theorem 4.4. We emphasize that the hints and their associated
algorithms are only used in the security reduction, not in real-
world deployment. Both our mmPKE and the traditional
mmPKE rely on the KOSK assumption, and we show how to
explicitly remove this requirement via NIZK in Remark 4.5.
Challenge II: constructing lattice-based XR-PKE. To the
best of our knowledge, no existing lattice-based PKE schemes
currently satisfy the extended reproducibility property. The
primary reason is that they fail to achieve semantic security
of the ciphertext given the associated hints.

To this end, we begin with one of the most efficient lattice-
based PKE schemes, Kyber [19], and show a step-by-step
transformation to XR-PKE. Our approach may be of indepen-
dent interest, as it applies to both plain and ring-based lattice
settings, such as, Frodo [18] and NewHope [4].

At the beginning, a uniformly random matrix A Ð

UpR mˆn
q q is sampled as the public parameter where Rq “

ZqrXs{pXd ` 1q and R “ ZrXs{pXd ` 1q. Then, the public
key is generated by

b :“ AJs ` e (1)
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where the private key ps,eq Ð UpSm
ν q ˆ UpSn

νq has coeffi-
cients uniformly randomly sampled from set r´ν, ...,νs for
ν ! q. To encrypt a message m, the ciphertext can be de-
composed into two parts: a key-independent ciphertext c, a
key-dependent ciphertexts u as below,

c :“ Ar ` eu, u :“ xb,ry ` y ` tq{2s ¨ m, (2)

where randomness are sampled from some distribution χ over
R as r Ð χn, eu Ð χm, y Ð χ , and m P t0,1ud (interpreted
as a polynomial in R with binary coefficients). To decrypt
the ciphertext pc,uq to the message m, the recipient uses the
private key to compute u´xc,sy. Using Equations (1) and (2),
we have

u ´ xc,sy “ x´s||e,eu||ry ` y ` tq{2s ¨ m.

where || denotes the usual concatenation. If the PKE is correct,
i.e., }x´s||e,eu||ry ` y}8 ď tq{4s, after rounding the above
term as tu ´ xc,sys2, each recipient can obtain the message m
and the decryption error h :“ x´s||e,eu||ry ` y.

Here we use the decryption error h as the hint to reproduce
the ciphertext. Given a ciphertext pc,uq, a new ciphertext
pc,u1q for another public key b1 “ AJs1 ` e1 and message
m1 using randomness ppr,euq,y1q can be reproduced by the
corresponding private key s1 and the hint h1 as

u1 :“ xc,s1y ` h1 ` tq{2s ¨ m1 “ xb1,ry ` y1 ` tq{2s ¨ m1. (3)

The hint h1 is computed via

h1 “ x´s1||e1,eu||ry ` y1 (4)

using the reused independent randomness r0 “ pr,euq, the cor-
responding private key ps1,e1q and a fresh dependent random-
ness r̂1 “ y1. This technique can naturally extend to multiple
hints hi given multiple pbi,siq and yi. As a result, we obtain
the reproduction algorithm and hint generation algorithm.

Since the hints phiqiPrNs reveal partial information about
the randomness pr,euq, establishing semantic security of the
ciphertext is non-trivial. To address this challenge, we rely on
the Matrix Hint-MLWE assumption [31] to precisely measure
how much information on the randomness (i.e., the MLWE
secret) is leaked from the hints and to make that impact on the
hardness of MLWE ciphertext negligible under suitable pa-
rameter setting. Informally, the Matrix Hint-MLWE assump-
tion states that given a hint vector h P R ℓ where h :“ Rr̂ ` y,
the MLWE instance rI|Asr̂ is still indistinguishable from the
uniformly random values if r̂ and y are sampled from appro-
priate discrete Gaussian distributions. Here, the hint h in the
Matrix Hint-MLWE assumption is composed of the matrix
product of an MLWE secret vector r̂ and a bounded square
matrix R picked by the adversary, masked by a fresh vector y.

From our intuition in XR-PKE, the hints are in the form
of hi :“ xγγγi, r̂y ` yi for i P rNs. Here, hi is composed of the
inner product of an MLWE secret vector r̂ :“ py||eu||rq and

a vector γγγi :“ p0|| ´ si||eiq, which is bounded by }γγγi}8 ď ν

and chosen by the adversary, and masked by a fresh element
yi. Thus, we instantiate Matrix Hint-MLWE for XR-PKE by
concatenating the hints phiqiPrNs as a hint vector h such that
h :“ Rr̂ ` y where R :“ pγγγJ

i qiPrNs and y :“ pyiqiPrNs.
To this end, we generalize the matrix R to a non-square

setting, refine the reduction of Matrix Hint-MLWE from stan-
dard MLWE, and derive new conditions on the parameters,
as presented in Theorem 5.2. To satisfy these conditions, we
carefully choose two discrete Gaussian distributions Dσ0 , Dσ1

for the randomness pr,euq and y, respectively, rather than the
uniform distribution over intervals used in Kyber. The latter
appears to preclude an efficient Matrix Hint-MLWE to stan-
dard MLWE security reduction. More details are provided in
Section 5.1 and Section 5.3.

Finally, we employ the reconciliation mechanism from [56]
and the bit-dropping technique as in Kyber [19] to compress
the ciphertext, particularly the key-dependent ciphertexts, as
much as possible. These optimizations bring the bandwidth
cost of our mmPKE construction close to optimal.

3 Preliminaries

In this section, we provide some of the preliminaries needed
for our paper, and refer the reader to Appendix A for more
preliminaries.

3.1 Notation

Let λ P N denote the security parameter. For a positive in-
teger n, we denote the set t0, . . . ,n ´ 1u by rns and the set
tℓ, . . . ,n ´ 1u by rℓ : ns. For a positive integer q, we denote
Zq as the integers modulo q and Rq “ ZqrXs{pXd ` 1q as the
polynomials modulo q and Xd ` 1. For positive integer ν, we
write Sν to denote the set of polynomials in Rq with infinity
norm bounded by ν. The size of the Sν coefficient support is
denoted ν̄ ď 2ν`1; for example ν “ 1, ν̄ “ 2 indicates binary
polynomials. We denote assignment as :“, e.g., x :“ y assigns
the value of y to x. We denote sampling or output as Ð, e.g.,
x Ð D indicates that x is sampled from the distribution D,
and x ÐApyq denotes that x is the output of probabilistic poly-
nomial time (PPT) algorithm A given input y. Particularly, we
write x Ð S when x P S is sampled uniformly randomly from
the finite set S. We denote the uniform distribution on a set
S as UpSq. We denote polypλq as polynomial functions such
that polypλq “

Ť

cPN Opλcq and negpλq as negligible func-
tions such that negpλq “

Ş

cPN opλ´cq. We denote rounding
operation as t¨s, e.g., tas rounds the result to the nearest inte-
ger of a. For any two subset X , Y of some additive group, we
define ´X “ t´x : x P Xu and X `Y “ tx ` y : x P X ,y P Y u.

Vector and matrix. We denote bold lowercase letters as vec-
tors of polynomial elements, e.g., u P R m

q , bold uppercase let-
ters as matrices of polynomial elements, e.g., U P R mˆn

q , low-
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ercase letters with an arrow as vectors of integers or reals, e.g.,
a⃗ P Zm

q , and uppercase letters as matrices of integers or reals,
e.g., A P Rmˆn

q . For a polynomial element, e.g., a P Rq, we de-
fine its negacyclic matrix as Ā :“ Γpaq P Zdˆd

q . Similarly, for
a polynomial vector and matrix, e.g., b P R m and D P R mˆn

q ,
we define their negacyclic matrix as B̄ :“ Γpbq P Zmdˆd and
D̄ :“ ΓpDq P Zmdˆnd

q , respectively, where each polynomial
element in the vector and matrix is replaced by its negacyclic
matrix. For the vectors over integers and polynomials, we
denote their inner product as x¨, ¨y, e.g., x⃗a,⃗by and xa,by. For
a vector a (or a⃗), we write }a}, }a}1, and }a}8 to denote its
ℓ2-norm, ℓ1-norm and ℓ8-norm, respectively. For a matrix
A (or A), we write }A}, }A}1 and }A}8 to denote its matrix
2-norm (largest singular value), matrix 1-norm (maximum col-
umn ℓ1-norm), and matrix 8-norm (maximum row ℓ1-norm),
respectively. We write σminpAq and σmaxpAq to denote the
smallest and largest singular values of A, respectively.

3.2 Lattice Preliminaries
We show the definition of the standard lattice-based problem.
Additional lattice preliminaries are given in Appendix A.1.

Definition 3.1 (MLWE Problem). Let m,n ą 0 be positive
integers. Let χ be an error distribution over R m`n, A Ð

UpR mˆn
q q. Let r Ð χ be a secret vector and u Ð UpR m

q q be
a uniformly random vector. The MLWE problem, denoted by
MLWER ,m,n,q,χ, asks an adversary A to distinguish between
pA, rIm|Asrq and pA,uq. We say MLWER ,m,n,q,χ is hard if
for any PPT adversary A , the following advantage of A is
negligible in λ,

AdvMLWE
para,A pλq :“

ˇ

ˇ

ˇ

ˇ

Pr
„

b “ 1
ˇ

ˇ

ˇ

ˇ

A Ð UpR mˆn
q q,r Ð χ

b Ð ApA, rIm|Asrq

ȷ

´ Pr
„

b “ 1
ˇ

ˇ

ˇ

ˇ

A Ð UpR mˆn
q q,u Ð UpR m

q q

b Ð ApA,uq

ȷ
ˇ

ˇ

ˇ

ˇ

where para “ pR ,m,n,q,χq.

3.3 Multi-Message Multi-Recipient Public Key
Encryption

Basically, an mmPKE scheme allows a sender to encrypt a
set of messages to a set of public keys. We generalize the
syntax of decomposable mPKE in [39] to mmPKE as follows.
Like [39], our definition of mmPKE can capture all kinds of
mmPKE as well.

Definition 3.2 (Decomposable Multi-Message Multi-Recipi-
ent PKE). A decomposable mmPKE scheme with a public-
private key pair space K , a message space M , a multi-
recipient ciphertext space C , and an individual ciphertext
space Cs consists of the following algorithms:
• pp Ð mmSetupp1λ,Nq: On input a security parameter 1λ

and a number of recipients N, it outputs a public parameter
pp.

• ppk,skq Ð mmKGenpppq: On input a public parameter pp,
it outputs a public-private key pair ppk,skq P K .

• ct :“ pct0,p pctiqiPrNsq ÐmmEncppp,ppkiqiPrNs,pmiqiPrNs; r0,
pr̂iqiPrNsq : On input a public parameter pp, N public keys
ppkiqiPrNs, N messages pmiqiPrNs, pN ` 1q randomness r0,
pr̂iqiPrNs, it can be split into two algorithms:
– ct0 Ð mmEncippp; r0q: On input a public parameter pp,

and a randomness r0, it outputs a public-key-independent
ciphertext ct0.

– pcti Ð mmEncdppp,pki,mi; r0, r̂iq: On input a public pa-
rameter pp, a public key pki, a message mi P M , and
randomness r0, r̂i, it outputs a public-key-dependent ci-
phertext pcti.

• cti :“ pct0, pctiq{K Ð mmExtppp, i,ctq: On input a public
parameter pp, a multi-recipient ciphertext ct P C , and an
index i P N, it deterministically outputs the individual ci-
phertext cti P Cs or a symbol K to indicate extraction failure.

• m{K Ð mmDecppp,sk,ctq: On input a public parameter
pp, a private key sk, and an individual ciphertext ct P Cs,
it outputs a message m P M or a symbol K to indicate
decryption failure.

Correctness. We adopt the correctness definition of mmPKE
in [6]. Let ζ : N Ñ r0,1s. We say an mmPKE scheme is
ζ-correct, if for all λ,N P N and i P rNs, message mi P M , the
following probability is at most ζpλq,

Pr

»

—

—

–

Di P rNs :
mmDecppp,ski,ctiq ‰ mi

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pp Ð mmSetupp1λ,Nq;
@i P rNs : ppki,skiq Ð mmKGenpppq;

ct Ð mmEncppp,ppkiqiPrNs,pmiqiPrNsq;
cti Ð mmExtppp, i,ctq

fi

ffi

ffi

fl

.

Security. Following [11], we formalize the security model
for mmPKE. In contrast to the model in [6], our definition
captures full CPA (or CCA) security. Briefly, we do not im-
pose the restriction that the two challenge message vectors
must have identical structures.

Let mmPKE be an mmPKE scheme, let N,λ be integers.
We define the mmIND-CPAKOSK security game in Figure 2
and defer the remaining security models to Appendix A.3,
where we also provide a simple extension of our model to the
security model in [58].

We say mmPKE is mmIND-CPAKOSK secure if for all PPT
adversary A , the following advantage AdvmmIND-CPAKOSK

mmPKE,N,A pλq

is negligible with λ,
ˇ

ˇ

ˇ

ˇ

PrrGAMEmmIND-CPAKOSK

mmPKE,N,A pλq “ 1s ´
1
2

ˇ

ˇ

ˇ

ˇ

.

We say A wins if the game outputs 1.

4 Extended Reproducible Public Key Encryp-
tion

In this section, we provide the formal definition of XR-PKE,
significantly extending on reproducible PKE in [11], and then
show how it can be used to build an mmPKE.
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Game GAMEmmIND-CPAKOSK

mmPKE,N,A pλq

pA0,A1,A2q Ð A
pp Ð mmSetupp1λ,Nq

pℓ,stq Ð A0pppq

@i P rℓs, ppki,skiq Ð mmKGenpppq

ppm0
i ,m1

i qiPrℓs,pmiqiPrℓ:Ns,ppki,skiqiPrℓ:Ns,stq Ð A1pppkiqiPrℓs,stq
req: @i P rℓs, |m0

i | “ |m1
i |

req: @i P rℓ : Ns, ppki,skiq P K
b Ð t0,1u

ct Ð mmEncppp,ppkiqiPrNs,pmb
i qiPrℓs,pmiqiPrℓ:Nsq

b1 Ð A2pct,stq
return rb “ b1s

Figure 2: The mmIND-CPAKOSK security game for mmPKE.

Definition 4.1 (XR-PKE). A (decomposable) XR-PKE with
a public-private key space K , a message space M , two
randomness distributions pDi,Ddq for key-independent/key-
dependent parts, respectively, and a ciphertext space Cs con-
sists of the following algorithms:

• pp Ð Setupp1λ,Nq: On input a security parameter 1λ and
a reproducibility count N, it outputs a public parameter pp.

• ppk,skq Ð KGenpppq: On input a public parameter pp, it
outputs a public-private key pair ppk,skq P K .

• ct :“ pct0, pctq Ð Encppp,pk,m; r0, r̂q : On input a public
parameter pp, a public key pk, a messages m, two random-
nesses pr0, r̂q, it can be split into two algorithms:

– ct0 Ð Encippp; r0q: On input a public parameter pp, and
a randomness r0 sampled from the distribution r0 Ð Di,
it outputs a public-key-independent ciphertext ct0.

– pct Ð Encdppp,pk,m; r0, r̂q: On input a public parameter
pp, a public key pk, a message m P M , and random-
ness r0, r̂ where the latter is sampled from distribution
r̂ Ð Dd independently, it outputs a public-key-dependent
ciphertext pct.

• m{K Ð Decppp,sk,ctq: On input a public parameter pp, a
private key sk, and a ciphertext ct P Cs, it outputs a message
m P M or a symbol K to indicate decryption failure.

• phiqiPrNs Ð HintGenpr0,ppki,skiqiPrNs,pr̂iqiPrNsq: On input
a randomness r0 sampled from the distribution r0 Ð Di,
N public-private key pairs ppki,skiqiPrNs P K , and N ran-
domnesses pr̂iqiPrNs where each of them is sampled from
the distribution r̂i Ð Dd independently, it outputs N hints
phiqiPrNs.

• ct1{K Ð Reppct,m1,pk1,sk1,h1q: On input a ciphertext
ct P Cs, a message m1 P M , a public-private key pair
ppk1,sk1q P K , and an associated hint h1, it outputs a re-
produced ciphertext ct1 or a symbol K to indicate repro-
ducibility failure.

Correctness. Let ζ : N Ñ r0,1s. We say a XR-PKE scheme
is ζ-correct, if for all λ,N P N`, the following probability is
at most ζpλq,

Pr

»

—

—

–

Decppp,sk,ctq ‰ m

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pp Ð Setupp1λ,Nq;
ppk,skq Ð KGenpppq,m Ð M ;

pr0, r̂q Ð Di ˆ Dd;
ct Ð Encppp,pk,m; r0, r̂q

fi

ffi

ffi

fl

.

Extended Reproducibility. We first define extended re-
producibility game in Figure 3. We say that PKE is ex-
tended reproducible if for any λ,N P N`, there exists PPT
algorithms HintGen and Rep, called hint-generation algo-
rithm and reproduction algorithm, respectively, such that
Gameext-reprPKE,Rep,Npλq always outputs 1. More precisely, the prob-
ability of PrrGameext-reprPKE,Rep,Npλq “ 1s “ 1 holds.

Game Gameext-reprPKE,Rep,Npλq

pp Ð Setupp1λ,Nq

ppk˚,sk˚q Ð KGenpppq

m˚ Ð M
pr0, r̂˚q Ð Di ˆ Dd

ct˚ Ð Encppp,pk˚,m˚, r0, r̂˚q

for all i P rNs

ppki,skiq Ð KGenpppq

mi Ð M
r̂i Ð Dd

end for
phiqiPrNs Ð HintGenpr0,ppki,skiqiPrNs,pr̂iqiPrNsq

if @ i P rNs, Encppp,pki,mi; r0, r̂iq “ Reppct˚,mi,pki,ski,hiq

then
return 1

else
return 0

end if

Figure 3: The extended reproducibility game for XR-PKE.

Security. To fit the property of extended reproducibility,
we modify the IND-ATK security of standard PKE to
IND-ATKXR for ATK “ tCPA,CCAu. Roughly speaking, we
say an XR-PKE is secure if the hints generated by HintGen
would not help the adversary to break the security of the
challenge ciphertext.

Specifically, let PKE be an XR-PKE and we pro-
vide the security game of PKE in Figure 4. With the
game GameIND-ATKXR

PKE,N,b,A pλq, we say PKE is IND-ATKXR se-
cure if for all PPT adversary A , the following advantage
AdvIND-ATKXR

PKE,N,A pλq is negligible with λ,
ˇ

ˇ

ˇ
Pr

”

GAMEIND-ATKXR

PKE,N,0,A pλq “ 0
ı

´ Pr
”

GAMEIND-ATKXR

PKE,N,1,A pλq “ 0
ı
ˇ

ˇ

ˇ
.

Remark 4.2. Our definition of XR-PKE actually captures the
case of original reproducible PKE in [11]. When describing
the original reproducible PKE, we can make the hint gener-
ation algorithm HintGen output nothing, i.e., set each of the
output hints hi as an empty symbol K.
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Game GAMEIND-ATKXR

PKE,N,b,A pλq for ATK “ tCPA,CCAu

pA0,A1,A2q Ð A
pp Ð Setupp1λ,Nq

ppk˚,sk˚q Ð KGenpppq

if ATK “ CPA do pm˚
0 ,m˚

1 ,stq Ð A0ppp,pk˚q

if ATK “ CCA do pm˚
0 ,m˚

1 ,stq Ð ADec0
0 ppp,pk˚q

req: |m˚
0 | “ |m˚

1 |

pr0, r̂˚q Ð Di ˆ Dd

ct˚ Ð Encppp,pk˚,m˚
b ; r0, r̂˚q

if ATK “ CPA do pppki,skiqiPrNs,stq Ð A1pct˚,stq
if ATK “ CCA do pppki,skiqiPrNs,stq Ð ADec1

1 pct˚,stq
req: @i P rNs, ppki,skiq P K
@i P rNs : r̂i Ð Dd

phiqiPrNs Ð HintGenpr0,ppki,skiqiPrNs,pr̂iqiPrNsq

if ATK “ CPA do b1 Ð A2pphiqiPrNs,stq
if ATK “ CCA do b1 Ð ADec1

2 pphiqiPrNs,stq
return b1

Oracle Dec0pctq

return m Ð Decppp,sk˚,ctq
Oracle Dec1pctq

req: ct ‰ ct˚

return m Ð Decppp,sk˚,ctq

Figure 4: The IND-ATKXR security game for XR-PKE with
ATK “ tCPA,CCAu.

4.1 Generic Construction of mmPKE from
XR-PKE

In this subsection, we show the generic construction of
mmPKE from XR-PKE.

Construction 4.3 (XR-PKEÑmmPKE Compiler). For
ATK P tCPA,CCAu, let PKE “ pSetup,KGen,Enc “

pEnci,Encdq,Decq be a (decomposable) IND-ATKXR se-
cure XR-PKE with public-private key space K and two
randomness distributions pDi,Ddq for key-independent/key-
dependent parts, respectively. Let Compress, Decompress be
the compression and decompression algorithms which can
be ignored if there does not exist suitable algorithms. Our
compiler CompmmPKErPKEs is defined in Figure 5, which
outputs an mmIND-ATKKOSK secure mmPKE.

Correctness. It is not difficult to see that correctness of our
Construction 4.3 follows if the input PKE is correct and the
output by decompression algorithm Decompress can still be
successfully decrypted with overwhelming probability.
Security. Some intuitive discussion on the security reduction
was provided in Technical Overview (Section 2). At a high
level, since the provided hints do not help the adversary (or
reduction) to break the security of the underlying XR-PKE,
we can establish the security of its corresponding mmPKE.
Formally, we have the following theorem, the proof of which
is given in Appendix F.1.

Theorem 4.4 (Security). For ATK P tCPA,CCAu, if PKE is
IND-ATKXR secure and satisfies extended reproducibility, our

mmPKE Ð CompmmPKErPKEs output by Construction 4.3
is mmIND-ATKKOSK secure.

Remark 4.5 (Removing the KOSK Assumption). We also
present a generic KOSK compiler that can eliminate the re-
liance on the KOSK assumption for both our post-quantum
and traditional mmPKE schemes, e.g., [11, 12, 43]. Detailed
construction with its formal proof, and an instantiation for
our lattice-based mmPKE are given in Appendix C.

5 Lattice-Based XR-PKE

In this section, we construct lattice-based XR-PKE which
can be used to build efficient mmPKE/KEM via the compiler
introduced in the last section.

Our constructions are based on the Matrix Hint-MLWE
assumption [31], a variant of the MLWE assumption gen-
eralized from the Hint-MLWE assumption [42] and can be
reduced from the standard MLWE via appropriate param-
eters. Specifically, we first present a more general Matrix
Hint-MLWE along with our refined reduction, followed by
an instantiation for our XR-PKE. We then detail the construc-
tions. Finally, we specify the parameter choices and present
a theoretical analysis of our mmPKE, comparing it with the
trivial solution with Kyber.

5.1 Refined Matrix Hint-MLWE Assumption
In this subsection, we generalize Matrix Hint-MLWE to a
non-square version, refine its reduction from standard MLWE
by introducing a sampleability condition missing in prior
works, and then derive a new parameter setting. Next, we
provide an instantiation of Matrix Hint-MLWE to establish
the CPA security of our XR-PKE introduced in the following
subsection. We start by generalizing the definition of Matrix
Hint-MLWE in [31].

Definition 5.1 (Matrix Hint-MLWE, generalized [31]). Let
m, n, ℓ be positive integers. Let S ,χ0,χ1 be distributions
over R ℓˆpm`nq,R m`n,R ℓ, respectively. The Matrix Hint-
MLWE, denoted by MatrixHint-MLWE

ℓ,χ1,S
R ,m,n,q,χ0

, asks a PPT
adversary A to distinguish the following two cases:
1. pA, rIm|Asr,R,hq for A Ð UpR mˆn

q q, r Ð χ0, y Ð χ1,
R Ð S , and h :“ Rr ` y.

2. pA,u,R,hq for A Ð UpR mˆn
q q, u Ð UpR m

q q, r Ð χ0,
y Ð χ1, R Ð S , and h :“ Rr ` y.

We say MatrixHint-MLWE
ℓ,χ1,S
R ,m,n,q,χ0

is hard if for any PPT
adversary A , the following advantage of A is negligible in λ,

AdvMatrixHint-MLWE
para,A pλq :“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Pr

»

–b “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A Ð UpR mˆn
q q,r Ð χ0,y Ð χ1,

R Ð S ,h :“ Rr ` y,
b Ð ApA, rIm|Asr,R,hq

fi

fl

´ Pr

»

—

—

–

b “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

A Ð UpR mˆn
q q,

r Ð χ0,y Ð χ1,R Ð S ,
h :“ Rr ` y,u Ð UpR m

q q,
b Ð ApA,u,R,hq

fi

ffi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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mmSetupp1λ,Nq

Input:
• security parameter 1λ

• recipient number N
pp Ð Setupp1λ,Nq

return pp

mmKGenpppq

Input: public parameter pp
ppk,skq Ð KGenpppq

return ppk,skq

mmEncppp,ppkiqiPrNs,pmiqiPrNsq

Input:
• public parameter pp
• a set of public keys ppkiqiPrNs

• a set of messages pmiqiPrNs

r0 Ð Di

ct0 Ð Encippp; r0q

sct0 Ð Compresspct0q

for i P rNs

r̂i Ð Dd

pcti Ð Encdppp,pki,mi; r0, r̂iq
end for
ct :“ p sct0,p pctiqiPrNsq

return ct

mmExtpct,kq

Input: multi-recipient ciphertext ct, index k
req: k P rNs

p sct0,p pctiqiPrNsq Ð ct
return ctk :“ p sct0, pctkq

mmDecppp,sk,ctq

Input:
• public parameter pp
• private key sk
• individual ciphertext ct
p sct0, pctq Ð ct
ct1

0 Ð Decompressp sct0q

m Ð Decppp,sk,pct1
0, pctqq

return m

Figure 5: Generic constructions of mmIND-ATKKOSK mmPKE output by the compiler CompmmPKErPKEs for ATK P

tCPA,CCAu.

where para “ ppR ,m,n,q,χ0q,pℓ,χ1,Sqq.

We slightly adapt the notation towards our needs. In [31],
the public matrix R is defined only for the square case (i.e.,
ℓ “ m ` n). Here, we relax this requirement and generalize R
to a rectangular form with ℓ not necessarily equal to m ` n.

Theorem 5.2 (Hardness of Matrix Hint-MLWE). Let
m,n,q,ℓ be positive integers. Let S be a distribution
over R ℓˆpm`nq. Let B ą 0 be a real number such that
}R̄}2 ď B where R̄ :“ ΓpRq for all possible R Ð S .
Let σ0,σ1,σ,δ ą 0 be real numbers. Let Σ1, Σy be a
positive definite symmetric matrices over Rpm`nqdˆpm`nqd

and Rℓdˆℓd , respectively, such that }Σ
´1
1 } ď 1

σ2
0

and

}Σ´1
y } ď 1

σ2
1
. Let χ0 :“ DZpm`nqd ,

?
Σ1

, χ1 :“ DZℓd ,
?

Σy
, χ :“

DZpm`nqd ,σ be distributions over R m`n,R ℓ,R m`n, respec-
tively. There exists an efficient reduction from MLWER ,m,n,q,χ

to MatrixHint-MLWE
ℓ,χ1,S
R ,m,n,q,χ0

that reduces the advantage by
at most 2ε, if the sampleability condition

1
p1 ` δqσ2 ` δ0

ě
1

σ2
0

`
B
σ2

1
(5)

where δ0 :“
b

lnp2pm`nqdq`4
π

, and the convolution condition

σ ě
a

1 ` 1{δ ¨ ηεpZpm`nqdq (6)

are satisfied.
Specifically, for any PPT adversary A against the

MatrixHint- MLWE
ℓ,χ1,S
R ,m,n,q,χ0

assumption, there exists a PPT
adversary B against the MLWER ,m,n,q,χ assumption, such
that

AdvMatrixHint-MLWE
para0,A pλq ď AdvMLWE

para1,B pλq ` 2ε

where para0 “ ppR ,m,n,q,χ0q,pℓ,χ1,Sqq and para1 “

pR ,m,n,q,χq.

The proof is provided in Appendix F.2, which presents a
refined version of [31].
Matrix Hint-MLWE Instantiation for XR-PKE. We first
define the distribution S such that matrix R can be sampled
as follows,

R :“

¨

˚

˝

0
...
0

´sJ
0 eJ

0
...

...
´sJ

ℓ´1 eJ
ℓ´1

˛

‹

‚

P R ℓˆp1`m`nq (7)

where si Ð UpSn
νq, ei Ð UpSm

ν q for each i P rℓs.
Then, we transfer the polynomial matrix R to its integer

matrix R̄ :“ ΓpRq P Zℓdˆp1`m`nqd by substitute the polyno-
mial elements in each vector si, ei by its negacyclic matrix
Γp¨q as follows,

R̄ :“

¨

˚

˝

0 Γp´s0q Γpe0q

...
...

...
0 Γp´sℓ´1q Γpeℓ´1q

˛

‹

‚

.

To bound the norm of the matrix R̄, we use the inequality
}R̄} ď

a

}R̄}1 ¨ }R̄}8, where }R̄}1 ď νℓd and }R̄}8 ď νpm `

nqd. Thus, }R̄}2 ď B, where

B :“ ℓpm ` nqpdνq2 (8)

Last, we define the matrix Σ1 P Rp1`m`nqdˆp1`m`nqd and
Σy P Rℓdˆℓd below,

Σ1 :“
ˆ

σ1Id 0
0 σ0Ipm`nqd

˙

, Σy :“ σ1Iℓd . (9)

We set σ1 ě σ0 so that we have }Σ
´1
1 } “ maxp 1

σ2
0
, 1

σ2
1
q ď 1

σ2
0

and }Σ´1
y } ď 1

σ2
1
.

10



5.2 Construction of XR-PKE
In this subsection, we present the lattice-based construction
of XR-PKE. At a high level, we leverage the decryption error
as a hint to enable ciphertext reproducibility. To this end,
we sample the ciphertext randomness from carefully chosen
Gaussian distributions, allowing us to reduce the security
of our XR-PKE scheme to the hardness of the Matrix Hint-
MLWE problem.

Construction 5.3 (XR-PKE from Lattices). Let λ be a se-
curity parameter, m “ mpλq, n “ npλq, d “ dpλq, q “ qpλq,
N “ Npλq, ν “ νpλq be positive integers. Let σ0 “ σ0pλq,
σ1 “ σ1pλq be Gaussian width parameters. For the message
space M “ t0,1ud , the detailed construction is shown in
Figure 6. We summarize the notations in Table 2.

Table 2: Summary of main notations used in our lattice-based
XR-PKE/KEM.

Notation Description
λ security parameter
ζ correctness parameter
N # of recipients

m,n # of rows of A, # of columns of A
q system modulus
d ring dimension of R “ ZrXs{pXd ` 1q

ℓ dimension of hint vector h in Matrix Hint-MLWE
ν ℓ8-norm bound on private key psi,eiq

ν̄ support size ν̄ ď 2ν ` 1 of private key psi,eiq

χ̄ private key distribution
σ0 Gaussian width of pr,euq in the ciphertext

χ1,σ1 distribution and Gaussian width of y in the ciphertext

χ,σ distribution and Gaussian width of secret in MLWE
(hardness equal to Matrix Hint-MLWE)

χ0,Σ1
distribution and covariance matrix of secret in Matrix
Hint-MLWE

B square of matrix 2-norm bound on R̄ :“ ΓpRq

S distribution of R
du # of bits of each coefficient in key-independent ciphertext
dv # of bits of each coefficient in key-dependent ciphertext

Extended Reproducibility. We show the extended repro-
ducibility of our construction as follows. The proof is pro-
vided in Appendix F.3.

Theorem 5.4 (Extended Reproducibility). For any positive
integer N, our PKE in Construction 5.3 is extended repro-
ducible. More precisely, for the extended reproducible game
in Figure 3, the probability of PrrGameext-reprPKE,Rep,Npλq “ 1s “ 1
holds.

Correctness. We set Compresspxq “ tx mod qs2du and
Decompresspxq “ tx mod 2dusq. Here, we mainly consider
the case that the (key-independent) ciphertext is compressed
and then decompressed before the decryption, as done in
mmPKE compiler of Construction 4.3.

We show the correctness of our construction as follows.
We will select parameters in Section 5.3 to make our con-

struction ζ-correct with ζ ď 2´128. The proof is provided in
Appendix F.3.

Theorem 5.5 (Correctness). Let e,s,r,eu,y be random vari-
ables that have the corresponding distribution as in Construc-
tion 5.3. Denote ζ as

Pr r }xe,ry ` y ´ xs,euy ´ cv ` xs,cuy}8 ě tq{4s s

where cu :“ c´ ttc mod qs2du sq P R m, and cv :“ c´ ttc mod
qs2dv sq P R . We say our Construction 5.3 is ζ-correct.

Security. We show that our Construction 5.3 is IND-CPAXR

secure if the MLWE assumption and the Matrix Hint-MLWE
assumption are hard. The proof is provided in Appendix F.3.

Theorem 5.6 (Security). Let m,n,d,q,N,ν be positive in-
tegers parameters. Let σ,σ0,σ1 be Gaussian width pa-
rameters. Let the positive real matrices Σ1 and Σy be as
Equation (9). Let the distribution S and the bound B be
as Equation (7) and (8) respectively. Let the distribution
χ0 :“ DZpm`n`1qd ,

?
Σ1

, χ1 :“ DZNd ,
?

Σy
, χ̄ :“ UpSνq. Sup-

pose Equation (5) and (6) hold.
Our PKE in Construction 5.3 is IND-CPAXR secure un-

der the MLWER ,n,m,q,χ̄ and MatrixHint-MLWE
N,χ1,S
R ,m`1,n,q,χ0

assumptions. More precisely, for any PPT adversary A , there
exist PPT adversaries B0, B1 against MLWE assumption and
Matrix Hint-MLWE assumption, such that

AdvIND-CPAXR

PKE,N,A pλq “ AdvMLWE
para0,B0

pλq `AdvMatrixHint-MLWE
para1,B1

pλq

where para0 :“ pR ,n,m,q, χ̄q and para1 :“ ppR ,m `

1,n,q,χ0q, pN,χ1,Sqq.

Remark 5.7 (Lattice-based XR-KEM (mmKEM)). By apply-
ing the reconciliation mechanism [56] (see Appendix A.2) to
our XR-PKE (mmPKE), we can minimize the key-dependent
ciphertext to the length of the encapsulated key (e.g., 256
bits), thus achieving an asymptotically bandwidth-optimal
mmKEM that can be extended to an mmPKE for arbitrary-
length message via a Data Encapsulation Mechanism (DEM),
as in [58]. Detailed constructions are provided in Appendix B.

5.3 Parameter Setting
In this subsection, we discuss parameter selection for the
above constructions. Then, we theoretically demonstrate the
performance of the mmPKE/mmKEM built from our con-
structions, compared to the trivial solution with Kyber.

As discussed before, we need to guarantee that our lattice-
based constructions of XR-PKE/KEM satisfy the follow prop-
erties:
• MLWER ,n,m,q,χ̄ problem is hard (at 128-bit, 192-bit, and

256-bit security).

• MatrixHint-MLWE
N,χ1,S
R ,m`1,n,q,χ0

problem is hard (at 128-bit,
192-bit, and 256-bit security).
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Setupp1λ,Nq

Input:
• security parameter 1λ

• recipient number N
A Ð UpR mˆn

q q

return pp :“ A

KGenpppq

Input: pp “ A
ps,eq Ð UpSm

ν q ˆ UpSn
νq

b :“ AJs ` e
return ppk :“ b,sk :“ sq

Encppp,pk,mq

Input:
• public parameter pp “ A
• public key pk “ b
• message m

r0 :“ pr,euq Ð Dn
σ0

ˆ Dm
σ0

ct0 Ð Encippp; r0q

r̂ :“ y Ð Dσ1
pct Ð Encdppp,pk,m; r0, r̂q
return ct :“ pct0, pctq

Encdppp,pk,m; r0, r̂q

Input:
• public parameter pp “ A
• public key pk “ b
• message m “ m P t0,1ud

• randomness r0 “ pr,euq

• randomness r̂ “ y
c :“ xb,ry ` y ` t

q
2 s ¨ m

u :“ tc mod qs2dv

return pct :“ u

Encippp; r0q

Input:
• public parameter pp “ A
• randomness r0 “ pr,euq

c :“ Ar ` eu
return ct0 :“ c

Decppp,sk,ctq

Input:
• public parameter pp “ A
• private key sk “ s
• ciphertext ct “ pc,uq

u1 :“ tu mod 2dvsq
m :“ tu1 ´ xc,sy mod 2dus2
return m :“ m

HintGenppp, r0,ppki,skiqiPrNsq

Input:
• public parameter pp “ A
• randomness r0 “ pr,euq

• a set of public-private key pairs
ppki,skiqiPrNs “ pbi,siqiPrNs

for all i P rNs

yi Ð Dσ1

ei :“ bi ´ AJsi
hi :“ xr,eiy ´ xeu,siy ` yi

end for
return phiqiPrNs

Reppct,m1,pk1,sk1,h1q

Input:
• ciphertext ct “ pc,uq

• message m1 “ m1 P t0,1ud

• public-private key
ppk1,sk1q “ pb1,s1q

• hint h1 “ h1

c1 :“ xc,s1y ` h1 `
X q

2

T

¨ m1

u1 :“ tc1 mod qs2dv

return ct1 :“ pc,u1q

Figure 6: An IND-CPAXR secure lattice-based XR-PKE.

• ζ-correctness holds with ζ ď 2´128.
To estimate the practical hardness of MLWE problem against
known attacks, we follow a strategy similar to Kyber [19] and
use the Lattice Estimator (a.k.a. LWE Estimator [3]). For
MatrixHint-MLWE, we follow a strategy as in the original
Hint MLWE paper [31, 42] and estimate the practical hard-
ness of the related MLWE problem. The parameters of our
constructions are summarized in Table 3.

Table 3: Parameter set for our lattice-based constructions of
XR-PKE and -KEM, aiming at ζ-correctness with ζ ď 2´128.

N rlogqs d m n pν, ν̄q pdu,dvq pσ0,σ1q pq-sec

210 25 256 4 4 p1,3q p10,2q p15.9,368459q 128
210 25 256 7 7 p1,2q p11,2q p15.9,488797q 192
210 25 256 9 9 p1,2q p11,2q p15.9,554941q 256

We now present a step-by-step procedure for selecting the
parameters. First, we choose ν “ 1, fixing the ℓ8-norm of
S and the private key. We choose ternary (ν̄ “ 3) support
t0,˘1u for S in the 128-bit parameter set, and binary (ν̄ “ 2)
support t0,1u for 192- and 256-bit parameter sets.

Second, we fix δ “ 1 in Theorem 5.2. Then, we need
to guarantee that 2ε ď 2´128 and the requirements in Equa-
tion (5) and (6) hold. By Lemma A.4, we set σ :“

?
2 ¨

a

lnp2dpm ` nqp1 ` 1{εqq{π so that σ ě
?

2 ¨ ηεpZpm`nqdq

holds. Then, we set σ0 :“ 2
a

σ2 ` δ0{2, and σ1 :“

2
?

B
a

σ2 ` δ0{2 where δ0 :“
a

plnp2pm ` nqdq ` 4q{π so
that 1

2σ2`δ0
ě 1

σ2
0

` B
σ2

1
holds. Here, we set the bound B as in

Equation (8), i.e., B :“ Npm ` nqpdνq2.
Third, we set n “ m and d “ 256. Thus, the encapsulated

key space and the short message space M “ t0,1u256 is the
same as the one in Kyber.

Fourth, we pick the recipient numbers N (e.g., N “ 1024)
for usability. By Lemma A.3, we can derive the tail bound of
the Gaussian distribution to guarantee that the ℓ8-norm bound
βPKE of the following term in Theorem 5.5 for XR-PKE holds
except with negligible probability, i.e., 2´128,

βPKE :“ }xe,ry ` y ´ xs,euy ` xs,cuy ´ cv}8 ă
q
4

where ps,eq Ð UpSn
νq ˆ UpSm

ν q, pr,euq Ð Dn
σ0

ˆ Dm
σ0

, y Ð

Dσ1 , cu :“ c ´ ttcs2du sq, and cv :“ c ´ ttcs2dv sq. Thus, we
can bound the ℓ8-norms by }cu}8 ď q{2du`1, and }cv}8 ď

q{2dv`1, respectively. Similarly, we can derive the tail bound
of the ℓ8-norm βKEM in Theorem B.2 as well.

Fifth, towards XR-PKE, we fix dv “ 2 in advance to com-
press the size of key-dependent ciphertext as much as possible.
Note that the sizes of key-dependent ciphertext in the con-
structions of XR-KEM and XR-PKE are both independent
with the value of reproducibility count N, i.e., | pct| “ d{8 “ 32
Bytes and | pct| “ d ¨ dv{8 “ 64 Bytes, respectively.

Sixth, we begin by setting the modulus q « 212 and
du :“ tlogqu. We compute n,m with χ̄ :“ UpSνq and χ :“ Dσ

by the LWE estimator [3] to guarantee practical hardness of
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MLWER ,n,m,q,χ̄ and MLWER ,m`N,n,q,χ at 128-bit, 192-bit, and
256-bit security levels. The latter MLWE assumption stems
from MatrixHint-MLWE

N,χ1,S
R ,m`N,n,q,χ0

problem via the reduc-
tion in Theorem 5.2. As earlier works [19, 29, 30, 46], we
use root Hermite factor (RHF) around 1.0045, 1.0029, 1.0023
to measure the practical hardness of MLWE at 128-bit, 192-
bit, and 256-bit secure level, respectively. With the specific
n,m,N,q, we compute the ℓ8-norm bound β and compare β

with rq{4s. We increase the modulus q by factor 2 and repeat
computing the parameters until β ă r

q
4 s.

In the end, after finding the smallest modulus q, we
show how to find the smallest du in the compression func-
tion of mmPKE constructions which can compress the key-
independent ciphertext as much as possible. We first change
du “ 1 and increase du until β ă rq{4s holds with overwhelm-
ing probability. We provide a script to compute a tight upper
bound on ζ as part of our implementation code.

Following the metric in [39], for CON P tKEM,PKEu, we
define

kCON
com :“

N ¨
ˇ

ˇctKyber
ˇ

ˇ

ˇ

ˇctCON
0

ˇ

ˇ ` N ¨

ˇ

ˇ

ˇ

pct
CON

ˇ

ˇ

ˇ

NÑ8
ÝÝÝÑ

ˇ

ˇctKyber
ˇ

ˇ

ˇ

ˇ

ˇ

pct
CON

ˇ

ˇ

ˇ

,

which measures the compactness of our mmPKE/mmKEM
compared to the trivial solution via Kyber in the asymptotic
regime. Notably, we achieve significant improvements, with
kKEMcom “ 24,34,49 and kPKEcom “ 12,17,24.5 when compared to
Kyber512, Kyber768, and Kyber1024 [19], respectively.

6 Implementations and Benchmarks

To evaluate the performance of our constructions, we have
implemented the lattice-based mmPKE and mmKEM built
from our XR-PKE and XR-KEM, named mmCipher-PKE
and mmCipher-KEM, respectively, in portable C 4. Further
details of our implementations and benchmarks are shown in
Appendix D.

As a baseline comparison, we compare our plain C im-
plementations to the official C reference implementation of
(CPA-secure) Kyber5 with the standard parameter settings of
ML-KEM-512, ML-KEM-768, ML-KEM-1024 to achieve 128-
bit, 192-bit, 256-bit security, respectively [53, Table 2]. We
compare this baseline to our C implementation using the same
compiler and target system, an AMD Ryzen 7 4850U Linux
laptop running at 3.3 GHz (with overclocking disabled) for
1000 repetitions. Average timing is reported.

In mmPKE/mmKEM, encryption/encapsulation is the most
costly operation as its cost increases with the number of recip-
ients N. Our main contribution is to significantly reduce this
cost. We summarize the results on the encryption/encapsula-
tion operation comparing with CPA-secure Kyber (ML-KEM)

4Provided in our artifact: https://doi.org/10.5281/zenodo.17849532
5Kyber C reference code (ref): https://github.com/pq-crystals/kyber

in Figure 7 and Figure 8, while deferring the results for other
operations to Appendix D.

As predicted by the theoretical analysis in Section 5.3,
for N “ 1024 recipients, among different security levels,
mmCipher-KEM and mmCipher-PKE achieve a 23–45ˆ and
12–23ˆ reduction in bandwidth, respectively. In particu-
lar, for N ě 16 recipients, our constructions already demon-
strate a significant improvement (by a factor of over 5). Fur-
thermore, for N “ 1024 recipients, the bandwidth of our
mmCipher-KEM is only 4–9% larger than the plaintext size
(near optimal bandwidth).

Regarding the computational cost of encapsulation/encryp-
tion, for N “ 1024 recipients, among different security levels,
our mmCipher- KEM and mmCipher-PKE offer 3–5ˆ reduc-
tion. For N ě 4, our constructions are already faster than
the baseline. This is because the most expensive operation,
i.e., generating the key-independent ciphertext, is amortized
across recipients.

20 21 22 23 24 25 26 27 28 29 210

Number of Recipients

25

26

27

28

29

210

211

212
Ci
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er

te
xt

 b
yt

es
 / 

Re
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ie
nt

Plaintext (optimal ciphertext size) : 32

ML-KEM-512: 768
ML-KEM-768: 1088
ML-KEM-1024: 1568

mmCipher-PKE: 65. . 67

mmCipher-KEM: 33. . 35

mmCipher-KEM-256
mmCipher-PKE-256
mmCipher-KEM-192
mmCipher-PKE-192
mmCipher-KEM-128
mmCipher-PKE-128

Figure 7: mmCipher and ML-KEM total ciphertext output
in bytes when sending N 256-bit messages (or keys) to N
recipients, divided by the number of recipients.
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1.00 ×

2.78 ×
2.86 ×

3.56 ×
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4.86 ×
5.25 ×mmCipher-KEM-256

mmCipher-PKE-256
mmCipher-KEM-192
mmCipher-PKE-192
mmCipher-KEM-128
mmCipher-PKE-128
Kyber/ML-KEM base

Figure 8: mmCipher encryption/encapsulation speed when
sending N 256-bit messages (or keys) to N recipients, relative
to ML-KEM at the same security level.
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Ethical Considerations

Our work proposes more efficient post-quantum multi-
recipient encryption techniques, which may impact several
stakeholders, including end-users of secure communication
systems, developers deploying PQC, and broader society.
While stronger and more scalable encryption improves pri-
vacy and security, it also carries inherent dual-use concerns
because the same capabilities may be misused to conceal
harmful activity. Recognizing these implications, we assess
our contributions primarily as enhancing the practical adop-
tion and performance of post-quantum protection in large-
scale systems, while acknowledging the possibility of misuse
that exists for all cryptographic primitives.

All experiments were conducted using synthetic data in
isolated environments, without interacting with real users, ex-
ternal systems, or production networks. No artifacts that could
meaningfully aid malicious behavior are released. We believe
publishing this work is ethically justified because it promotes
transparency in cryptographic design, supports secure sys-
tem development, and informs the community about both the
capabilities and limitations of emerging post-quantum mecha-
nisms. Some of this ethical reflection is necessarily post hoc,
and we hope it will help guide future research on the broader
societal impact of foundational cryptographic tools.

Open Science

Artifact URL: https://doi.org/10.5281/zenodo.17849532.

We provide self-contained Python and portable C imple-
mentations of the scheme (with some aspects that may need
further optimization for production-level deployment). The
artifact also contains the code used for generating the com-
parative benchmarks reported in this work, source code for
ZK proof experiments using the LaZer Library, and scripts
and tools used for security parameter selection (computation
of lattice parameter sets and decryption failure probabilities).
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A Additional Preliminaries

A.1 Additional Lattice Preliminaries

Discrete Gaussian Distribution. We first define the n-
dimensional spherical Gaussian function ρ⃗c,σ : Rn Ñ p0,1s

centered at c⃗ P Rn with a Gaussian width6 σ ą 0 as ρ⃗c,σp⃗xq :“
expp´π ¨ p⃗x ´ c⃗qJp⃗x ´ c⃗q{σ2q for x⃗ P Rn. More generally, we
define the elliptical Gaussian function ρ⃗c,

?
Σ

: Rn Ñ p0,1s

centered at c⃗ P Rn with a positive definite symmetric covari-
ance parameter matrix Σ P Rnˆn as ρ⃗c,

?
Σ
p⃗xq :“ expp´π ¨ p⃗x´

c⃗qJΣ´1p⃗x ´ c⃗qq for x⃗ P Rn. Last, we define the discrete Gaus-
sian distribution DΛ,Σ,⃗c over an n-dimensional lattice Λ Ď Rn

centered at c⃗ with covariance parameter Σ and support Λ as

D
Λ,⃗c,

?
Σ

:“
ρc⃗,

?
Σ

p⃗xq
ř

y⃗PΛ ρc⃗,
?

Σ
p⃗yq

for x⃗ P Λ. When Σ “ σ2In, i.e., spher-

ical discrete Gaussian distribution, we replace
?

Σ by σ in the
subscript and denote it as DΛ,⃗c,σ. If c⃗ “ 0⃗, we will omit c⃗ for
simplification.

Lemma A.1 ([20]). Let B “ p⃗b1, ...,⃗bnq be a basis of a full
rank n-dimensional lattice Λ, Σ be a positive definite symmet-
ric matrix, c⃗ P Rn be a center, if

c

lnp2n ` 4q

π
¨ max

i

›

›

›
Σ

´1{2⃗bi

›

›

›
ď 1

holds, there exists a PPT algorithm that can return a sample
from D

Λ,⃗c,
?

Σ
.

Lemma A.2 ([42]). Let Σ0, Σ1 be positive definite matrices
such that Σ

´1
2 :“ Σ

´1
0 ` Σ

´1
1 satisfies

?
Σ2 ě ηεpZnq for 0 ă

ε ă 1{2. Then for an arbitrary c⃗ P Zn, the distribution
!

x⃗0 ` x⃗1 |⃗x0 Ð DZn,
?

Σ0
, x⃗1 Ð DZn ,⃗c,

?
Σ1

)

6Note that the Gaussian width σ is related to the standard deviation s by
σ “

?
2π ¨ s.

is within statistical distance 2ε of DZn ,⃗c,
?

Σ0`Σ1
.

Lemma A.3 ([44]). For a Gaussian distribution Dσ with
Gaussian width σ ą 0, we have Prr|z| ě τ ¨ σ|z Ð Dσs ď

2 ¨ e´πτ2
. E.g., for τ :“ 5.335, 2 ¨ e´πτ2

« 2´128.

Smoothing Parameter. As in [50], for an n-dimensional lattice
Λ and a positive real ε ą 0, the smoothing parameter ηεpΛq is
the smallest s such that ρ1{spΛ˚zt⃗0uq ď ε where Λ˚ denotes
the dual lattice of Λ. As in [55], for a positive definite sym-
metric matrix Σ, we say

?
Σ ě ηεpΛq if ηεp

?
Σ

´1
¨ Λq ď 1.

Lemma A.4 ([50]). For any n-dimensional lattice Λ and
ε ą 0, there exists

ηεpΛq ď

c

lnp2np1 ` 1{εqq

π
¨ λnpΛq

where λnpΛq is the smallest real number r ą 0 such that
dimpspanpΛ X rBqq “ n and B is the n-dimensional unit ball
centered at the origin.

Lemma A.5 ([42]). For a positive definite matrix Σ, if
}Σ´1}2 ď ηεpΛq´2, then

?
Σ ě ηεpΛq.

A.2 Reconciliation Mechanism
We recall the reconciliation mechanism proposed by Peik-
ert [56]. At a high level, this mechanism shows that if an
element v P Zq (or v P Rq) is uniformly random, then its
rounding value tvs2 is uniformly random even given its cross
rounding value xvy2. And others can recover tvs2 by xvy2 and
another value w close to v. We illustrate the mechanism by
the following lemmas from [56].

Lemma A.6. Define the modular rounding function t¨sp :
Zq Ñ Zp as tvsp :“ t

p
q ¨ vs and similar for t¨up. Define the

cross-rounding function x¨y2 : Zq Ñ Z2 as xvy2 :“ t 4
q ¨ vu

mod 2. Define the randomized function dblp¨q : Zq Ñ Z2q
as dblpvq :“ 2v ´ ē P Z2q where v P Zq is an input and e
is a error independently sampled from the distribution of a
set t0,˘1u with probability 1{2, 1{4, and 1{4 respectively.
For an (odd) modulus q, if v P Zq is uniformly random and
v̄ :“ dblpvq P Z2q, then tv̄s2 is uniformly random even given
xv̄y2.

Lemma A.7. Define two disjoint intervals as I0 :“
t0,1, ..., t p

4 s ´ 1u, I1 :“ t´t
p
4 u, ...,´1u mod p. Observe that:

(1) these intervals form a partition of all the elements v P Zp
such that tvs2 “ 0. Similarly I0 `

p
2 and I1 `

p
2 partition all

the elements v P Zp such that tvs2 “ 1; (2) b “ xvy2 if and
only if v P Ib Y p

p
2 ` Ibq. Define the reconciliation function

recp¨, ¨q : Zp ˆZ2 Ñ Z2 as

recpw,bq :“

#

0 if w P Ib ` E mod p

1 otherwise.
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where the set E :“ r´
p
8 , p

8 q XZ. For even modulus p, if w “

v ` e mod p for some v P Zp and e P E, then recpw,xvy2q “

tvs2.

Remark A.8. We can directly extend Lemma A.6 and A.7 to
polynomial rings Rq by applying t¨s2, x¨y2, dblp¨q, recp¨, ¨q in
coefficient-wise.

A.3 Security Model of Multi-Message Multi-
Recipient Public Encryption

Let mmPKE be an mmPKE scheme, let N,λ be integers. Let
ATK P tCPA,CCAu. We provide multiple security games
of mmPKE in Figure 9 to capture different securities of
mmPKE.

• mmIND-CCAKOSK: We say mmPKE is mmIND-CCAKOSK

secure if for all PPT adversary A , the following advantage
AdvmmIND-CCAKOSK

mmPKE,N,A pλq is negligible with λ,
ˇ

ˇ

ˇ

ˇ

PrrGAMEmmIND-CCAKOSK

mmPKE,N,A pλq “ 1s ´
1
2

ˇ

ˇ

ˇ

ˇ

.

We say A wins if the game outputs 1.

• mmIND-ATKCor: We define mmIND-ATK security with
adaptive corruption of mmPKE as mmIND-ATKCor.
Like [6], we remove the KOSK assumption and give the
access of the corruption oracle to the above adversary A .
Namely, the adversary A can adaptively corrupt the recipi-
ent by obtaining their private key. To avoid the trivial win,
we require that the length of each challenge messages must
be the same.

With GAMEIND-ATKCor

mmPKE,N,b,A pλq, we say mmPKE is
mmIND-ATKCor secure if for all PPT adversary A ,
the following AdvmmIND-ATKCor

mmPKE,N,A pλq is negligible with λ,
ˇ

ˇ

ˇ
PrrGAMEmmIND-ATKCor

mmPKE,N,0,A pλq “ 1s ´ PrrGAMEmmIND-ATKCor

mmPKE,N,1,A pλq “ 1s

ˇ

ˇ

ˇ
.

We say A wins if the game outputs 1.

• mmIND-ATK: The game of mmIND-ATK security for
mmPKE is the same as mmIND-ATKCor except that the ad-
versary cannot obtain the access of corruption oracle. With
GAMEIND-ATK

mmPKE,N,A pλq, we say mmPKE is mmIND-ATK se-
cure if for all PPT adversary A , the following advantage
AdvmmIND-ATK

mmPKE,N,A pλq is negligible with λ,
ˇ

ˇ

ˇ
PrrGAMEmmIND-ATK

mmPKE,N,0,A pλq “ 1s ´ PrrGAMEmmIND-ATK
mmPKE,N,1,A pλq “ 1s

ˇ

ˇ

ˇ
.

We say A wins if the game outputs 1.

A.4 Non-Interactive Zero Knowledge Argu-
ment System

We recall the definitions of non-interactive zero knowledge
(NIZK) argument system in the random oracle from [17, 25]
as follows.

Game GAMEmmIND-ATKKOSK

mmPKE,N,A pλq, ATK “ CCA

pA0,A1,A2q Ð A
pp Ð mmSetupp1λ,Nq

pℓ,stq Ð A0pppq

@i P rℓs, ppki,skiq Ð mmKGenpppq

ppm0
i ,m1

i qiPrℓs,pmiqiPrℓ:Ns,ppki,skiqiPrℓ:Ns,stq Ð

ADec0
1 pppkiqiPrℓs,stq

req: @i P rℓ : Ns, ppki,skiq P K
b Ð t0,1u

ct Ð mmEncppp,ppkiqiPrNs,pmb
i qiPrℓs,pmiqiPrℓ:Nsq

b1 Ð ADec1
2 pct,stq

req: @i P rℓs, |m0
i | “ |m1

i |

return rb “ b1s

Game GAMEmmIND-ATKCor

mmPKE,N,b,A pλq, ATK “ CCA

pA0,A1,A2q Ð A
pp Ð mmSetupp1λ,Nq

pℓ,stq Ð A0pppq

for i P rℓs do ppki,skiq Ð mmKGenpppq

Cor Ð H

ppm0
i ,m1

i qiPrℓs,pmiqiPrℓ:Ns,ppkiqiPrℓ:Ns,stq Ð

ADec0,Cor
1 pppkiqiPrNs,stq

ct Ð mmEncppp,ppkiqiPrNs,pmb
i qiPrℓs,pmiqiPrℓ:Nsq

b1 Ð ADec1,Cor
2 pct,stq

req: @i P rℓs, m0
i “ m1

i _ ppki R Cor^ |m0
i | “ |m1

i |q

return rb “ b1s

Oracle Corpiq

req: i P rℓs
Cor` Ð i
return ski

Oracle Dec0pi,ctq

req: i P rℓs
return m Ð mmDecppp,ski,ctq

Oracle Dec1pi,ctq

req: i P rℓs
req: ct ‰ mmExtpct, iq
return m Ð mmDecppp,ski,ctq

Figure 9: The mmIND-ATKKOSK and mmIND-ATKCor secu-
rity games for mmPKE with ATK “ CCA. For ATK “ CPA,
the adversary A does not have the access of the decryp-
tion oracle Dec0, Dec1. The mmIND-ATK is the same as
mmIND-ATKCor except that the adversary A does not have
the access of corruption oracle Cor.

Definition A.9 (Non-Interactive Zero Knowledge Argument
System). Let R be a polynomial-time verifiable relation of
statement-witness px,wq. Denote a language L as a set of
statements where there exists a witness w with px,wq P R. A
NIZK protocol Π is defined as follows.

• crsΠ Ð Π.Setupp1λq: On input a security parameter 1λ, it
outputs the common reference string crsΠ P t0,1uℓpλq.

• π{K Ð Π.ProveHpcrsΠ,x,wq: On input the public parame-
ters crsΠ P t0,1uℓ, a statement x and a witness w such that
px,wq P R, it outputs a proof π or an abort symbol K.

• 0{1 Ð Π.VerifyHpcrsΠ,x,πq: On input the public parame-
ters crsΠ P t0,1uℓ, a statement x and a proof π, it output 1
if accepts, otherwise, it outputs 0.
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We first define the properties of correctness, zero knowl-
edge, and multi-proof extractability (i.e. straight-line ex-
tractability) for NIZK argument system.
Correctness. A NIZK argument system Π is correct if
for all crsΠ P t0,1uℓ and px,wq P R, the probability that
Π.ProveHpcrsΠ,x,wq outputs K is neglpλq, and the follow-
ing probability holds,

Pr

«

π Ð Π.ProveHpcrsΠ,x,wq :

Π.VerifyHpcrsΠ,x,πq “ 1
ˇ

ˇπ ‰ K

ff

“ 1 ´neglpλq.

Zero-Knowledge. A NIZK argument system Π is zero-
knowledge if for any PPT adversary A , there exists a simulator
Π.Sim “ pSim0,Sim1q which consists of two PPT algorithms
with a shared state such that the following AdvZKΠ,A pλq is neg-
ligible in λ,

ˇ

ˇPrr1 Ð AH,Π.ProvepcrsΠqs ´ Prr1 Ð ASim0,Sim1pcrsΠqs
ˇ

ˇ

where Π.Prove and Π.Sim are prover and simulator oracles
which, given px,wq, output K if px,wq R R and otherwise return
Π.ProveH pcrsΠ,x,wq and Sim1pcrsΠ,xq respectively. The
probability is also taken over the randomness of generating
the common reference string crsΠ Ð Setupp1λq.
Multi-Proof Extractability. A NIZK argument system Π has
multi-proof extractability if the following hold:

• CRS Simulatability: For any PPT adversary A , we have the
following AdvcrsΠ,A pλq is negligible in λ,

|PrrcrsΠ Ð Π.Setupp1λq : 1 Ð AHpcrsΠqs´

PrrpĂcrsΠ,τq Ð Simcrsp1λq : 1 Ð AHpĂcrsΠqs| “ neglpλq

• Straight-Line Extractability: There exist constants e1, e2, c
such that for any QH,Qs P polypλq and any PPT adversary
A that makes at most QH random oracle queries with

Pr
„

pĂcrsΠ,τq Ð Simcrsp1λq,
tpxi,πiquiPrQss Ð AHpĂcrsq

:
@i P rQss,

Π.VerifyHpĂcrsΠ,xi,πiq “ 1

ȷ

ě εpλq

where εpλq is non-negligible, we have the following proba-
bility no less than 1

2 ¨ εpλq ´neglpλq

Pr

»

—

—

–

pĂcrsΠ,τq Ð Simcrsp1λq,tpxi,πiquiPrQss Ð AHpĂcrsΠq,

twi Ð Multi-ExtractpQH,Qs,1{ε, ĂcrsΠ,τ,xi,πiquiPrQss :

@i P rQss,pxi,wiq P R ^VerifyHpĂcrsΠ,xi,πiq “ 1

fi

ffi

ffi

fl

where the runtime of the extractor is upper-bound by Qe1
H ¨

Qe2
s ¨ 1

εpλqc ¨polypλq.

There are some other scenarios that requires NIZK argu-
ment system satisfying other properties. Following [60], we
define simulation soundness as follows. Remark that the no-
tion of simulation soundness is a form of non-malleability of
NIZK, as noted in [37, 41, 60]. For simplification, here we
do not involve the random oracle model.

Simulation Soundness. A NIZK protocol Π is simulation
sound if for any PPT adversary A “ pA0,A1q, any PPT rela-
tions R along with its language L, the following AdvSSΠ,A pλq

is negligible in λ,

Pr

»

—

—

–

π ‰ π1;
x1 R L;

Π.VerifypcrsΠ,x1,π1q “ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

pcrsΠ,τq Ð Sim0p1λq;
px,stq Ð A0pcrsΠq;

π Ð Sim1pcrsΠ,x,τq;
px1,π1q Ð A1pcrsΠ,x,π,stq

fi

ffi

ffi

fl

.

B Construction of XR-KEM

Employing the reconciliation mechanism (as introduced in
Appendix A.2), we can further compress the ciphertext size,
especially for the key-dependent ciphertext, and then obtain
a lattice-based XR-KEM, which can be used to build an
mmKEM. Following [58], the mmKEM can be extended
to an mmPKE for arbitrary-length message via a DEM.

Construction B.1 (XR-KEM from Lattices). Let λ be a se-
curity parameter, m “ mpλq, n “ npλq, d “ dpλq, q “ qpλq,
N “ Npλq, ν “ νpλq be positive integers. Let σ0 “ σ0pλq,
σ1 “ σ1pλq be Gaussian width parameters. Let dblp¨q,
recp¨, ¨q, t¨s2, and x¨y2 be the functions as define in Lemma A.6
and Lemma A.7 which are extended to Rq per Remark A.8.
For the encapsulated key space M “ t0,1ud , the detailed con-
struction is shown in Figure 10. We summarize the notations
in Table 2.

The extended reproducibility of our XR-KEM is analogous
to that of our XR-PKE in Construction 5.3. The security proof
of our XR-KEM closely follows that of our XR-PKE, except
that, due to the reconciliation mechanism, the encapsulated
key is statistically indistinguishable from random under the
(Matrix Hint-)MLWE assumption.

We focus on its correctness, as follows.

Correctness. We set Compresspxq “ tx mod qs2du and
Decompresspxq “ tx mod 2dusq. Like our XR-PKE, here, we
mainly consider the case that the key-independent ciphertext
is compressed and then decompressed before the decryption,
as done in mmPKE compiler of Construction 4.3.

Theorem B.2 (Correctness). Let e,s,r,eu,y be random vari-
ables that have the corresponding distribution as in Construc-
tion B.1. Denote ζ as

Pr
”
›

›

›
2

´

xe,ry ` y ´ xs,euy ` xs,cuy

¯

´ ē
›

›

›

8
ě

q
4

ı

where cu :“ c´ttc mod qs2du sq P R m, and ē denotes the error
in dblpcq function. We say our Construction B.1 is ζ-correct.

Proof. Considering the compression and decompression of
independent ciphertext c, the value c (renamed as c1) in Decap
algorithm is

c1 :“ t t c mod q s2du sq .
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One can observe that the decapsulation is made via recon-
ciliation mechanism. It means that the decapsulation succeeds
if and only if the following equation holds,

t c̄ s2 “ rec
`

2 ¨ xc1,sy, x c̄ y2
˘

.

By Lemma A.7, recp¨, ¨q works if the following holds,

} c̄ ´ 2 ¨ xc1,sy mod 2q }8 ă
2q
8

“
q
4

.

Plugging c̄ “ dblpcq “ 2c ´ ē and c1 “ c ´ cu, the above in-
equality is equivalent to

} 2c ´ ē ´ 2 ¨ xc ´ cu,sy }8 ă
q
4

.

Since the value of c :“ xb,ry ` y in Encapd algorithm where
the value of b :“ AJs ` e, we can obtain

2c ´ ē ´ 2 ¨ xc ´ cu,sy “ 2
´

xe,ry ` y ´ xs,euy ` xs,cuy

¯

´ ē.

It means that when ℓ8-norm of the decapsulation error is
no less than q{4, i.e., }2pxe,ry`y´xs,euy`xcu,syq´ ē}8 ě

q{4, the decapsulation will fail. Thus, the value ζ is no more
than the probability of decapsulation failure.

C Removing the KOSK Assumption

In this section, using a multi-proof extractable NIZK argu-
ment system, we present a compiler that can remove the
KOSK assumption of the mmPKE with the polynomial-sized
number of recipients and provide a detailed analysis of its
security. Last, we provide an instantiation for our mmPKE.

Construction C.1 (KOSK Compiler). For ATK P

tCPA,CCAu, let mmPKE1 be an mmIND-ATKKOSK secure
mmPKE with public-private key space K and randomness
distributions Di, Dd. Let Π be a NIZK argument system.
Denote the relation RΠ in Π as

RΠ :“ tppk;skq | ppk,skq P K u

We assume the hash value Hp0q “ crsΠ. The construction
of compiler CompKOSK rmmPKE1,Πs is defined in Figure 11
which outputs an mmIND-ATK secure mmPKE.

The correctness is easy to see. We show how to reduce the
security of mmPKE output by CompKOSKrmmPKE1,Πs to
the security of input mmPKE1 and Π. The proof is provided
in Appendix F.4.

Theorem C.2 (Security). For ATK P tCPA,CCAu,
if mmPKE1 is mmIND- ATKKOSK secure and Π

is a NIZK argument system satisfies correctness,
multi-proof extractability and zero knowledge, our
mmPKE Ð CompKOSKrmmPKE1,Πs output by Construc-
tion C.1 is mmIND-ATK secure.

Remark C.3 (Recipient Registration and Delegate Verifica-
tion). In practice, each recipient can be required to “register”
to some semi-honest third party, e.g., server in advance. Both
proving and the verification for each public key are one-time
and the latter can be delegated to the server as well. Thus, in
this setting, both bandwidth and computation for the encryp-
tion do not increase.

C.1 NIZK Instantiations in KOSK Compiler
In this subsection, we discuss the post-quantum instantiations
of NIZK in the KOSK complier. and present proof-of-concept
implementations of the NIZK instantiations, which help esti-
mate their practical cost.

Specifically, we recommend Schnorr-like lattice-based pro-
tocols that satisfy knowledge soundness and can efficiently
prove the well-formedness of ciphertexts and keys. To achieve
the multi-proof extractability, we can apply Katsumata Trans-
form [38] as demonstrated in [17, 25], which leverages an
extractable linear homomorphic commitment (LHC) that can
be seen as a linear homomorphic encryption scheme with
pseudo-random public keys.

Among them, LNP22 [46] is one of the most efficient
lattice-based NIZKs and has recently been implemented in
the LaZer library [47]. Recent work [17] extends LNP22 to
achieve multi-proof extractability, but they do not provide the
implementation of this variant. Therefore, we report on the
results of the regular LNP22 implementation from the LaZer
library as a proof-of-concept.

Specifically, we need to generate the “exact” range proof
for the private key psi,eiq, i.e., ||psi,eiq||8 ď 1, along with a
linear relation AJsi ` ei “ bi. For ν̄ “ 2 (i.e., each coefficient
is in t0,1u), we simply use the concatenation p sJ || eJ q as a
binary witness, proving that

`

AJ || I
˘

p sJ || eJ qJ ´ b “ 0.
For ternary secrets (ν̄ “ 3), the secret key is split into binary
components representing positive and negative coefficients
and the proof is of the form

`

AJ || I || ´AJ || ´I
˘

p sJ
` || eJ

` || sJ
´ || eJ

´ qJ ´ b “ 0.

During the proof, we need to first prove the witness with
binary coefficients and then prove the linear relation. Here
although the modulus q may be smaller than the modulus in
the proof system, LNP22 and its implementation in LaZer
can still prove such relations efficiently. More details can be
referred their papers [46, 47].

Table 4 offers representative numbers (timings on an AMD
Ryzen 7 7840U laptop, 3.3 GHz). Note that the proofs have
not been optimized for size or tuned for the target security
level. We observe that these NIZK proofs, which need to
be verified only once after generation, are less than 30 KB
in size. Furthermore, proof generation and verification are
very efficient. In practice, this process can be delegated to
a semi-honest third party, e.g., a server, and completed in
“registration” phase. Hence, this NIZK has minimal impact
on the performance of both encapsulation and decapsulation.
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Encapppp,pkq

Input:
• public parameter pp “ A
• public key pk “ b
r0 :“ pr,euq Ð Dn

σ0
ˆ Dm

σ0

ct0 Ð Encippp; r0q

r̂ :“ y Ð Dσ1

p pct,Kq Ð Encapdppp,pk; r0, r̂q
ct :“ pct0, pctq
return pct,Kq

Decapppp,sk,ctq

Input:
• public parameter pp “ A
• private key sk “ s
• ciphertext ct “ pc,uq

w :“ 2 ¨ xc,sy mod 2q
return K :“ µ Ð recpw,uq

Encapdppp,pk; r0, r̂q

Input:
• public parameter pp “ A
• public key pk “ b
• randomness r0 “ pr,euq

• randomness r̂ “ y
c :“ xb,ry ` y
c̄ Ð dblpcq

u :“ xc̄y2
µ :“ tc̄s2
return p pct :“ u,K :“ µq

Reppct,m1,pk1,sk1,h1q

Input:
• ciphertext ct “ pc,uq

• message m1 “ m1

• public-private key
ppk1,sk1q “ pb1,s1q

• hint h1 “ h1

c1 :“ xc,s1y ` h1

c̄1 Ð dblpc1q

u1 :“ xc̄1y2
µ1 :“ tc̄1s2
return pct1 :“ pc,u1q,K1 :“ µ1q

Figure 10: An IND-CPAXR secure lattice-based XR-KEM where Setup, KGen, Enci, and HintGen are the same as the ones in
Construction 5.3.

mmSetupp1λ,Nq

Input:
• security parameter 1λ

• recipient number N
pp1 Ð mmPKE1.mmSetupp1λ,Nq

crsΠ Ð Π.Setupp1λq

return pp :“ ppp1,crsΠq

mmKGenpppq

Input: public parameter pp “ ppp1,crsΠq

ppk1,sk1q Ð mmPKE1.mmKGenppp1q

π Ð Π.ProveHpcrsΠ,ppp1,pk1q,sk1q

return ppk :“ pπ,pk1q, sk :“ sk1q

mmEncppp,ppkiqiPrNs,pmiqiPrNsq

Input:
• public parameter pp “ ppp1,crsΠq

• a set of public keys ppki “ ppk1
i,πiqqiPrNs

• a set of messages pmiqiPrNs

r0 Ð Di, ct0 Ð mmPKE1.mmEncippp1; r0q

for all i P rNs

if Π.VerifyHpcrsΠ,ppp1,pk1
iq,πiq “ 0 do pcti :“ K

else do r̂i Ð Dd, pcti Ð mmPKE1.mmEncdppp1,pk1
i,mi; r0, r̂iq

end for
return ct :“ pct0,p pctiqiPrNsq

Figure 11: An mmIND-ATK secure mmPKE output by the KOSK compiler CompKOSKrmmPKE1,Πs for ATK P tCPA,CCAu.
mmExt and mmDec are the same as the ones in mmPKE1.

Table 4: mmCipher public-key NIZK proof sizes, proof
generation and verification timings using LNP22.

Scheme Dist. Proof
Size

Proof
time

Verify
time

mmCipher-128 ν̄ “ 3 26,473 B 0.078 s 0.040 s
mmCipher-192 ν̄ “ 2 25,261 B 0.075 s 0.042 s
mmCipher-256 ν̄ “ 2 28,022 B 0.105 s 0.056 s

D Implementation and Benchmarking Details

In this section, we detail the implementation aspects of our
CPA-secure primitives mmCipher-KEM (Cons. 4.3+B.1) and
mmCipher-PKE (Cons. 4.3+5.3) and provide further bench-
marks.

We list some key technical similarities and differences be-
tween Kyber (ML-KEM) and mmCipher that impact perfor-

mance characteristics. In the following, references are made
to Kyber components as described in the ML-KEM standard
FIPS 203 [53] rather than in the original Kyber paper [19].
Our comparison uses the reference code and parameter sets
of the final standard.

• The programming interfaces of mmCipher are designed for
batch encryption of unique messages/shared secrets to a
large number of recipients. This is the main use case and
optimization target of the implementation.

• The parameter selection of the implementation supports 210

recipients, which requires a larger modulus q “ 225 ´212 `

1. Hence, the Number Theoretic Transforms (NTTs) oper-
ate on 32-bit elements rather than 16-bit elements, as with
Kyber’s q “ 3329. Our 25-bit ring is quite similar to the
23-bit, degree-256 ring of Dilithium (ML-DSA [54]). The
binary and ternary secret distributions of mmCipher also al-
low efficient non-NTT ring multiplication operations based
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on conditional additions, although these may be difficult to
implement in constant time in software.

• We use the SHAKE eXtendable-Output Function (XOF)
[52] for all random sampling, as is done in ML-KEM.
SHAKE-128 is used for all operations at the 128-bit se-
curity level and for A matrix expansion at all security levels
(as in ML-KEM). SHAKE-256 is used for other samplers
and hashes at levels 192 and 256.

• Secret keys are sampled from a narrow uniform distribution
UpSνq instead of a Centered Binomial Distribution (CBD)
as in ML-KEM. The ternary (ν̄ “ 3) sampler uses rejection
sampling of bytes against 35 “ 243; only 1´243{256 « 5%
of bytes are rejected, while accepted bytes yield 5 ternary
digits t´1,0,`1u5. The “base-243” system also allows a
convenient and compact storage format for ternary secret
keys. Binary (ν̄ “ 2) secret key sampling and storage is
trivial and optimally efficient.

• We sample ephemeral randomness from discrete Gaus-
sian distributions Dσ0 and Dσ1 rather than from CBD.
7 Note that Gaussian widths σ are related to standard
deviation s by s “ σ{

?
2π. More precisely, following

Section 5.3, we fix the Gaussian width σ0 “ 15.90 and
σ1 “ 368459.34,488797.36,554941.07 to support up to
210 recipients at 128-bit, 192-bit, and 256-bit security, re-
spectively.

• The encryption/decryption mechanism of mmCipher-PKE
is similar to Kyber, but mmCipher-KEM uses a reconcil-
iation mechanism over Rq, requiring the cross-rounding
function x¨y2 and the reconciliation function recp¨, ¨q. The
Python implementation also has the randomized doubling
function dblp¨q available, but since entropy leakage (“bias”)
fixed by dblp¨q can be shown to be practically negligible
with our q value, the C code does not implement random-
ization here. These implementations are interoperable (and
produce fully matching ciphertext with high probability.)

• Since SHAKE/SHA3 [52] computation is typically the
biggest individual ML-KEM performance bottleneck (on
some platforms consuming more than half of total key
establishment cycles), for a fair comparison, the under-
lying KECCAK-pr1600,24s permutation implementation
in mmCipher is the same plain C code as in the Kyber
reference implementation.

Note that these algorithms would greatly benefit from hand-
crafted SIMD and vectorization optimizations (e.g., AVX-512
or ARM SVE2). However, we currently only have a portable

7Artifact code uses rounded Gaussians for Dσ0 and Dσ1 , using the polar
Marsaglia method implemented with 64-bit IEEE 754 arithmetic to sample
from a rounding-compensated s1 “

a

σ2{2π ´ 1{12 continuous Gaussian
distribution. This sampler is approximate and not constant-time; it is a
placeholder implementation. A more appropriate Discrete Gaussian sampler
is required for production-level implementation.

C implementation for mmCipher, so we are comparing such
implementations of both schemes.

We also list the computational costs of other operations
in Table 5. The results show that the key generation and
decryption/decapsulation operations are equally fast or faster
than those equivalent Kyber operations at the same security
level. Note that the input seed (e.g., 32 bytes) for mmSetuppq

is a public “system parameter” shared by all users, and the
operation needs to be re-run only when it changes.

Regarding the bandwidth of key generation, for N “ 1024
recipients, the public key sizes are 2.4, 4.3, 5.5 KB larger
than the one in the baseline, among 128-, 192-, 256-bit secu-
rity. However, these additional costs are one-time and can be
amortized over multiple uses, minimizing their impact on the
overall efficiency.

Towards the bandwidth of decryption/decapsulation, for
N “ 1024 recipients, the individual ciphertext in our
mmCipher is only 0.5, 1.4, 1.6 KB larger than the one in
the baseline, among 128-, 192-, 256-bit security. These addi-
tional costs will likely not affect the usability of the scheme
in the use cases for which it is best suited.

In the end, Table 6 includes more comprehen-
sive benchmark results, including cycle counts for
mmCipher-KEM encapsulation, mmCipher-PKE encryption,
and K-PKE.Encrypt() of ML-KEM (Kyber) with various N
levels up to N “ 1024. The bandwidth of all the operations is
presented in Tables 7 to 9.

Table 5: Cycle counts of other operations in mmCipher and
ML-KEM (Kyber). Note that K-PKE is an internal CPA
subcomponent of ML-KEM.

Operation PQ Security

128-bit 192-bit 256-bit

mmSetup() 188,755 543,640 916,016
mmKGen() 58,815 78,383 106,504
mmDec() 43,511 68,072 85,872
mmDecap() 43,246 67,705 85,323

ML-KEM.KeyGen() 99,145 170,323 262,044
ML-KEM.Decaps() 168,358 259,511 372,644
K-PKE.Decrypt() 40,987 54,547 68,070

E Our Adaptively Secure mmPKE

In this section, we propose a generic construction that
transforms a CPA-secure mmPKE into an adaptively se-
cure mmPKE. Our approach generalizes the Naor-Yung
paradigm [51, 60] to mmPKE, introducing an optimization:
we merge the double encryption into a single multi-recipient
ciphertext, only need to generate a single independent cipher-
text. This optimization significantly reduces the size of both
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Table 6: Per-message/key encryption or encapsulation latency in cycles (batch timing divided by the number of recipients N.)
Note that ML-KEM becomes slower with larger N due to cache effects, whereas mmCipher significantly benefits from batching.

Scheme N “ 20 N “ 22 N “ 24 N “ 26 N “ 28 N “ 29 N “ 210

mmCipher-PKE-128 270,208 97,295 54,410 43,800 42,819 42,447 42,342
mmCipher-KEM-128 268,764 94,633 52,899 42,309 41,380 41,259 41,120
ML-KEM-512 111,006 110,929 111,025 111,301 117,662 117,679 117,665

mmCipher-PKE-192 509,848 167,253 81,055 58,540 54,873 54,126 53,849
mmCipher-KEM-192 512,542 164,080 79,468 57,706 53,774 53,265 53,138
ML-KEM-768 177,324 177,528 177,353 191,047 192,014 191,776 191,794

mmCipher-PKE-256 660,108 205,586 93,958 65,735 60,495 59,470 58,798
mmCipher-KEM-256 647,983 199,270 89,458 61,087 56,040 54,920 54,458
ML-KEM-1024 260,478 260,322 260,817 286,016 285,937 285,846 285,729

Table 7: Bandwidth of multi-recipient ciphertext |ct|, individual ciphertext |cti|, and total public keys |pk| for N recipients,
aiming at 128-bit security.

Recipt. Multi. Cipher. |ct| (KB) Indiv. Cipher. |cti| (KB) Total Public Keys |pk| (KB)

N ML mmCipher mmCipher ML mmCipher mmCipher ML mmCipher mmCipher
KEM KEM PKE KEM KEM PKE KEM KEM PKE

1 0.75 1.28 1.31 0.75 1.28 1.31 0.78 3.16 3.16
16 12.00 1.75 2.25 0.75 1.28 1.31 12.50 50.50 50.50
64 48.00 3.25 5.25 0.75 1.28 1.31 50.00 202.00 202.00

256 192.00 9.25 17.25 0.75 1.28 1.31 200.00 808.00 808.00
512 384.00 17.20 33.25 0.75 1.28 1.31 400.00 1616.00 1616.00

1024 768.00 33.25 65.25 0.75 1.28 1.31 800.00 3232.00 3232.00

Table 8: Bandwidth of multi-recipient ciphertext |ct|, individual ciphertext |cti|, and total public keys |pk| for N recipients,
aiming at 192-bit security.

Recipt. Multi. Cipher. |ct| (KB) Indiv. Cipher. |cti| (KB) Total Public Keys |pk| (KB)

N ML mmCipher mmCipher ML mmCipher mmCipher ML mmCipher mmCipher
KEM KEM PKE KEM KEM PKE KEM KEM PKE

1 1.06 2.44 2.47 1.06 2.44 2.47 1.16 5.50 5.50
16 17.00 2.91 3.41 1.06 2.44 2.47 18.56 88.00 88.00
64 68.00 4.41 6.41 1.06 2.44 2.47 74.24 352.00 352.00

256 272.00 10.41 18.41 1.06 2.44 2.47 296.96 1408.00 1408.00
512 544.00 18.41 34.41 1.06 2.44 2.47 593.92 2816.00 2816.00

1024 1088.00 34.41 66.41 1.06 2.44 2.47 1187.84 5632.00 5632.00

multi-recipient and individual ciphertexts. With our construc-
tion, not only can our lattice-based mmPKEs be transformed
to achieve adaptive security, but also can the traditional mmP-
KEs proposed in [11, 12, 43, 58].

Compared to other adaptively secure (m)PKE construc-

tions [6, 36, 39], our approach requires only the addition of
NIZK proofs. These proofs can be aggregated, making the
size constant or polylogarithmic in the number of recipients,
and verification can be delegated to a server, making our
construction remain both flexible and efficient, especially for
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Table 9: Bandwidth of multi-recipient ciphertext |ct|, individual ciphertext |cti|, and total public keys |pk| for N recipients,
aiming at 256-bit security.

Recipt. Multi. Cipher. |ct| (KB) Indiv. Cipher. |cti| (KB) Total Public Keys |pk| (KB)

N ML mmCipher mmCipher ML mmCipher mmCipher ML mmCipher mmCipher
KEM KEM PKE KEM KEM PKE KEM KEM PKE

1 1.53 3.13 3.16 1.53 3.13 3.16 1.53 7.06 7.06
16 24.50 3.59 4.09 1.53 3.13 3.16 24.48 112.96 112.96
64 98.00 5.09 7.09 1.53 3.13 3.16 97.92 451.84 451.84

256 392.00 11.09 19.09 1.53 3.13 3.16 391.68 1807.36 1807.36
512 784.00 19.09 35.09 1.53 3.13 3.16 783.36 3614.72 3614.72

1024 1568.00 35.09 67.09 1.53 3.13 3.16 1566.72 7229.44 7229.44

large numbers of recipients.
In addition, our constructions also imply an adaptive cor-

ruption compiler which enables both CPA- and CCA-secure
mmPKEs, such as the ones in [11, 12, 43, 58], to resist adap-
tive corruption, with some requiring KOSK assumption re-
moval through our KOSK compiler in advance.

Construction E.1 (Adaptive Security Compiler). Let
mmPKE1 be an mmIND-CPA secure mmPKE with the ran-
domness distributions Di, Dd. Let Π1 be a NIZK argument
system. Denote the relation RΠ1 in Π1 as
$

&

%

pppp1,pk0,pk1,
ct0, pct0, pct1,βq;
pm, r0, r̂0, r̂1qq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ct0 “ mmPKE1.mmEncippp1; r0q^

pct0 “ mmPKE1.mmEncdppp1,pkβ,m; r0, r̂βq^

pct1 “ mmPKE1.mmEncdppp1,pk1´β,m; r0, r̂1´βq

,

.

-

.

The construction of compiler CompCCArmmPKE1,Π1s is de-
fined in Figure 12 which outputs an mmIND-CCACor secure
mmPKE.

The correctness is direct. We show how to reduce the secu-
rity of mmPKE output by CompCCArmmPKE1,Π1s to the in-
put mmPKE1 and Π1. The proof is provided in Appendix F.5.

Theorem E.2 (Security). If mmPKE1 is mmIND-CPA se-
cure and Π1 is a NIZK argument system satisfies cor-
rectness, zero knowledge, and simulation soundness, our
mmPKE Ð CompCCArmmPKE1,Π1s output by Construc-
tion E.1 is mmIND-CCACor secure.

Remark E.3 (Batch Proof and Delegate Verification). In
practice, the verification of πi can be delegated to some
semi-honest third party, e.g., delivery service server. In
this case, the encryptor can batch (aggregate) the proof to-
gether, i.e., generating a single proof π for the statement
pppp1,ppkpiq

0 ,pkpiq
1 qiPrNs,ct0,p pct

piq
0 , pct

piq
1 qiPrNs ,⃗βq, and the wit-

ness ppmiqiPrNs, r0,pr̂piq
0 , r̂piq

1 qiPrNsqq under the following rela-
tion,

R̄Π1 :“

$

’

’

’

&

’

’

’

%

ct0 “ mmPKE1.mmEncippp1; r0q ^

@i P rNs :
pct

piq
0 “ mmPKE1.mmEncdppp1,pkpiq

βi
,mi; r0, r̂piq

βi
q^

pct
piq
1 “ mmPKE1.mmEncdppp1,pkpiq

1´βi
,mi; r0, r̂piq

1´βi
q

,

/

/

/

.

/

/

/

-

.

Therefore, each recipient does not need to download and
verify the proof during the decryption.
Remark E.4 (Adaptive Corruption Compiler). By removing
the NIZK component from our CCA compiler, we obtain
an adaptive corruption compiler that generalizes the double
encryption technique [33, 40] to the mmPKE setting.
Remark E.5 (NIZK Instantiations). For the NIZK instantia-
tions in adaptive secure mmPKE compiler, we recommend
post-quantum (zk)SNARKs [7, 13–15, 34] that satisfy simu-
lation soundness and provide succinct proofs (about 50–100
KB) with efficient verification (in a few milliseconds).

F Deferred Proofs

F.1 Proof for Generic Construction of mmPKE
We restate the Theorem 4.4 below and provide its formal
proof.

Theorem F.1 (Security). For ATK P tCPA,CCAu, if PKE is
IND-ATKXR secure and satisfies extended reproducibility, our
mmPKE Ð CompmmPKErPKEs output by Construction 4.3
is mmIND-ATKKOSK secure.

Proof. The proof is based on [11, Theorem 6.2]. We first
consider that the case of ATK “ CPA only and then briefly in-
dicate how to extend the argument to the case of ATK “ CCA.
Let A be a PPT adversary against the mmIND-CPAKOSK se-
curity of mmPKE. Let B be the reduction that utilizes the
adversary A to break the IND-CPAXR security of PKE. The
reduction B is described in Figure 14 where its challenger C
is from the IND-CPAXR security game of PKE.

Like [11], we begin by defining some hybrid games associ-
ated to A and mmPKE in Figure 13. We parameterize these
games via an index j P t0,1, . . . ,Nu.

Denote Pj :“ PrrHyb j “ 0s as the probability that experi-
ment Hyb j returns 0, for j P t0,1, . . . ,Nu. We show that

AdvmmIND-CPAKOSK

mmPKE,N,A pλq “ PN ´ P0 (10)
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mmKGenpppq

Input: Public parameter pp “ ppp1,crsΠ1 q

for all i P t0,1u

ppki,skiq Ð mmPKE1.mmKGenppp1q

end for
α Ð t0,1u

return ppk :“ ppk0,pk1q, sk :“ pα,skαqq

mmDecppp,sk,ct,auxq

Input:
• public parameter pp “ ppp1,crsΠ1 q

• private key sk “ pα,skαq

• ciphertext ct “ pct0, pct0, pct1,β,πq

• auxiliary information aux :“ pk “ ppk0,pk1q

req: Π1.VerifypcrsΠ1 ,ppp1,pk0,pk1,ct0, pct0, pct1,βq,πq “ 1
return m Ð mmPKE1.mmDecppp1,pct0, pctα‘βq,skαq

mmEncppp,ppkiqiPrNs,pmiqiPrNsq

Input:
• public parameter pp “ ppp1,crsΠ1q

• a set of public keys ppki “ ppk
piq
0 ,pkpiq

1 qqiPrNs

• a set of messages pmiqiPrNs

r0 Ð Di, ct0 Ð mmPKE1.mmEncippp1; r0q

β⃗ :“ pβiqiPrNs Ð t0,1uN

for all i P rNs

r̂
piq
0 , r̂piq

1 Ð Dd

pct
piq
0 Ð mmPKE1.mmEncdppp1,pkpiq

βi
,mi; r0, r̂piq

βi
q

pct
piq
1 Ð mmPKE1.mmEncdppp1,pkpiq

1´βi
,mi; r0, r̂piq

1´βi
q

πi Ð Π1.ProvepcrsΠ1 ,ppp1,pkpiq
0 ,pkpiq

1 ,ct0, pct
piq
0 , pct

piq
1 ,βiq,pmi, r0, r̂piq

0 , r̂piq
1 qq

end for
return ct :“ pct0,p pct

piq
0 , pct

piq
1 qiPrNs ,⃗β,pπiqiPrNsq

Figure 12: An adaptively secure mmPKE output by the compiler CompCCArmmPKE1,Π1s. mmExt with input index i is defined
by picking the relevant components pct0, pct

piq
0 , pct

piq
1 ,βi,πiq from ct. mmSetup is the same as the one in Construction C.1 except

for replacing Π by Π1.

Game Hyb j for j P t0,1, . . . ,Nu

pA0,A1,A2q Ð A
pp Ð mmSetupp1λq

ℓ Ð A0ppp,Nq

req: ℓ P rNs

@ i P rℓs, ppki,skiq Ð mmKGenpppq

ppm0
i qiPrℓs,pm1

i qiPrℓs,pmiqiPrℓ:Ns,ppki,skiqiPrℓ:Ns,stq Ð

A1ppp,ppkiqiPrℓsq

req: @i P rℓ : Ns : ppki,skiq P K
if j ď ℓ then

pmiqiPrℓs :“ pm0
1, . . . ,m0

j ,m
1
j`1, . . . ,m1

ℓq

else
pmiqiPrℓs :“ pm0

1, . . . ,m0
ℓq

end if
ct Ð mmEncppp,ppkiqiPrNs,pmiqiPrNsq

b Ð A2pct,stq
req: @i P rℓs : |m0

i | “ |m1
i |

return b

Figure 13: The hybrid games in Theorem F.1.

as follows. One can observe that

PrrGAMEmmIND-CPAKOSK

mmPKE,N,0,A “ 0s “ PN (11)

PrrGAMEmmIND-CPAKOSK

mmPKE,N,1,A “ 0s “ P0 (12)

since when j “ N, the message vector inside the challenge
ciphertext is pm0

i qiPrNs and when j “ 0, the one is pm1
i qiPrNs.

Therefore, in the adversary A’s view, the experiment HybN

is the same as GAMEmmIND-CPAKOSK

mmPKE,N,0,A and Hyb0 is the same

as GAMEmmIND-CPAKOSK

mmPKE,N,1,A . After subtraction between Equa-
tion (11) and Equation (12), we can get Equation (10).

From the description of reduction B in Figure 14, we claim

that

Pr
”

GAMEIND-CPAXR

PKE,N,0,B pλq “ 0
ı

“
1
N

¨

N
ÿ

j“1

Pj , (13)

Pr
”

GAMEIND-CPAXR

PKE,N,1,B pλq “ 0
ı

“
1
N

¨

N
ÿ

j“1

Pj´1 . (14)

We explain the reason of the above equations holding as
follows. Firstly, each index j P rNs is equally likely for the re-
duction B and then the j-th extracted individual ciphertext ct j
from the adversary A’s multi-recipient challenge ciphertext
ct is the reduction B’s challenge ciphertext ct˚. Furthermore,
due to the extended reproducibility of PKE, all extracted
individual ciphertexts pctiqiPrNs from the multi-recipient chal-
lenge ciphertext ct are generated using the same randomness
r0 and different randomness pr̂iqiPrNs. Therefore, one can ob-

serve that the game GAMEIND-CPAXR

PKE,N,0,B pλq is the same as Hyb j

and the game GAMEIND-CPAXR

PKE,N,1,B pλq is the same as Hyb j´1.
Then after the subtraction between Equation (13) and Equa-

tion (14), we can obtain

AdvIND-CPAXR

PKE,N,B pλq “ Pr
”

GAMEIND-CPAXR

PKE,N,0,B pλq “ 0
ı

´ Pr
”

GAMEIND-CPAXR

PKE,N,1,B pλq “ 0
ı

“
1
N

¨

¨

˝

n
ÿ

j“1

Pj ´

n
ÿ

j“1

Pj´1

˛

‚“
1
N

¨ pPN ´ P0q

“
1
N

¨AdvmmIND-CPAKOSK

mmPKE,N,A pλq.

And the running time of the reduction B is the sum of the
adversary A and the reproduce algorithm Rep. Overall, we
get the security of mmPKE.

Here, we briefly discuss how to extend the above proof to
the case of ATK “ CCA. The definition of the hybrid games
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is the same as in Figure 13. We show how the reduction B
answers the decryption queries from the adversary A . First of
all, the reduction B is also given the access of the decryption
oracle of IND-CCAXR secure PKE. Therefore, when requir-
ing to decrypt the individual ciphertext for the public key pk j,
B will provide the answer by invoking its own given decryp-
tion oracle. For the ciphertexts for the public keys, i.e., pki
for i P rℓszt ju, B can decrypt the ciphertext by itself since it
is in possession of the corresponding private key ski.

Reduction B

pA0,A1,A2q Ð A
ppp,pk˚q Ð C p1λq

ℓ Ð A0pppq

req: ℓ P rNs

j Ð rNs

if j ď ℓ then
@i P t1, . . . , j ´ 1, j ` 1, . . . ,ℓu, ppki,skiq Ð mmKGenpppq

pk j :“ pk˚

else
for all i P rℓs do ppki,skiq Ð mmKGenpppq

end if
ppm0

i qiPrℓs,pm1
i qiPrℓs,pmiqiPrℓ:Ns,ppki,skiqiPrℓ:Ns,stq Ð

A1ppp,ppkiqiPrℓsq

req: @i P rℓs : |m0
i | “ |m1

i |

req: @i P rℓ : Ns : ppki,skiq P K
if j ď ℓ then

pm˚
0 ,m˚

1 q :“ pm0
j ,m

1
jq

else
pm˚

0 ,m˚
1 q :“ pm j,m jq

end if
ct˚ Ð C pm˚

0 ,m˚
1 q

if j ď ℓ do phiqiPrNs{t ju Ð C pppki,skiqiPrNs{t juq

else do phiqiPrNs Ð C pppki,skiqiPrNsq

if j ď ℓ then
pmiqiPrℓs{t ju :“ pm0

1, . . . ,m0
j ,m

1
j`1, . . . ,m1

ℓq

@i P t1, . . . , j ´ 1, j ` 1, . . . ,Nu,
cti Ð Repppk,ct˚,mi,pki,ski,hiq

ct j :“ ct˚

else
pmiqiPrℓs :“ pm0

1, . . . ,m0
ℓq

@i P rNs, cti Ð Repppk,ct˚,mi,pki,ski,hiq

end if
@i P rNs, pct0, pctiq Ð cti
sct0 Ð Compresspct0q

ct :“ p sct0,p pctiqiPrNsq

b Ð A2pct,stq
return b

Figure 14: The reduction B using the adversary A of mmPKE
to break the security of PKE in Theorem F.1. The parts where
B’s operations are different from mmIND-CPAKOSK security
game are marked by boxes . The parts which are different
from the reduction in [11] are highlighted by boxes .

F.2 Proofs for Matrix Hint-MLWE
We first restate the lemma from [31, 42] below which is
the stepping-stone to prove the hardness of the Matrix Hint-
MLWE assumption. At a high level, the following lemma
states that the conditional distribution of r⃗ given R⃗r ` y⃗ turns
out to be a non-zero centered skewed Gaussian distribution
with a covariance parameter Σ0 that is dependent on the public
matrix R and the covariance parameters of r⃗ and y⃗.

Lemma F.2. Let d,ℓ ą 0 be integers. Let Σ1, Σy be pos-
itive definite symmetric matrices over Rdˆd and Rℓˆℓ, re-
spectively. Let R P Zℓˆd be an integer matrix. Denote

Σ0 :“
´

Σ
´1
1 ` RJΣ´1

y R
¯´1

. Then, the following two distribu-

tions over Zd`ℓ are statistically identical:
#

´

r⃗,⃗h
¯ ˇ

ˇ

ˇ
r⃗ Ð DZd ,

?
Σ1

, y⃗ Ð DZℓ,
?

Σy
, h⃗ “ R⃗r ` y⃗

+

«

$

&

%

´

⃗̂r,⃗h
¯

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

r⃗ Ð DZd ,
?

Σ1
, y⃗ Ð DZℓ,

?
Σy

, h⃗ “ R⃗r ` y⃗

c⃗ “ Σ0RJ
Σy

´1⃗h, ⃗̂r Ð DZd ,⃗c,
?

Σ0

,

.

-

.

Proof. The proof is similar to [42, Lemma 7]. We show that
two random variables have the same probability mass func-
tion. The probability that the first random variable outputs
p⃗v, w⃗q P Zd ˆZℓ can be written as follows:

Pr
”

r⃗ “ v⃗, R⃗r ` y⃗ “ w⃗ | r⃗ Ð DZd ,
?

Σ1
, y⃗ Ð DZℓ,

?
Σy

ı

“DZd ,
?

Σ1
p⃗vq ¨ DZℓ,

?
Σy

pw⃗ ´ R⃗vq

9exp
”

´π

´

v⃗J
Σ

´1
1 v⃗ ` pw⃗ ´ R⃗vqJ

Σ
´1
y pw⃗ ´ R⃗vq

¯ı

“exp
”

´π

´

p⃗v ´ c⃗qJ
Σ

´1
0 p⃗v ´ c⃗q ´ c⃗J

Σ
´1
0 c⃗ ` w⃗J

Σ
´1
y w⃗

¯ı

where c⃗ “ Σ0RJΣ´1
y w⃗.

Since the term ´⃗cJΣ
´1
0 c⃗ ` w⃗JΣ´1

y w⃗ is a con-
stant that does not depend on v⃗ and the conditional
probability Pr r⃗r “ v⃗ | R⃗r ` y⃗ “ w⃗s is proportional to
exp

”

´πp⃗v ´ c⃗qJΣ
´1
0 p⃗v ´ c⃗q

ı

, it implies

Pr r⃗r “ v⃗ | R⃗r ` y⃗ “ w⃗s ” ρ?
Σ0

p⃗v ´ c⃗q ” Pr
”

⃗̂r “ v⃗ | R⃗r ` y⃗ “ w⃗
ı

.

Therefore, the given two distributions are statistically identi-
cal.

Based on the above lemma, we refine the reduction from
the standard MLWE to the Matrix Hint-MLWE along with
the conditions on the parameters.

Theorem F.3 (Hardness of Matrix Hint-MLWE). Let m,n,q,ℓ
be positive integers. Let S be a distribution over R ℓˆpm`nq.
Let B ą 0 be a real number such that }R̄}2 ď B for any pos-
sible R Ð S and R̄ :“ ΓpRq. Let σ0,σ1,σ,δ ą 0 be real
numbers. Let Σ1, Σy be a positive definite symmetric ma-
trices over Rpm`nqdˆpm`nqd and Rℓdˆℓd , respectively, such
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that }Σ
´1
1 } ď 1

σ2
0

and }Σ´1
y } ď 1

σ2
1
. Let χ0 :“ DZpm`nqd ,

?
Σ1

be

a distribution over R m`n, χ1 :“ DZℓd ,
?

Σy
be a distribution

over R ℓ, and χ :“ DZpm`nqd ,σ be a distribution over R m`n.
There exists an efficient reduction from MLWER ,m,n,q,χ to
MatrixHint-MLWE

ℓ,χ1,S
R ,m,n,q,χ0

that reduces the advantage by
at most 2ε, if the sampleability condition

1
p1 ` δqσ2 ` δ0

ě
1

σ2
0

`
B
σ2

1
(15)

where δ0 :“
b

lnp2pm`nqdq`4
π

, and the convolution condition

σ ě
a

1 ` 1{δ ¨ ηεpZpm`nqdq (16)

are satisfied.
Specifically, for any PPT adversary A against the

MatrixHint- MLWE
ℓ,χ1,S
R ,m,n,q,χ0

assumption, there exists a PPT
adversary B against the MLWER ,m,n,q,χ assumption, such
that

AdvMatrixHint-MLWE
para0,A pλq ď AdvMLWE

para1,B pλq ` 2ε

where para0 “ ppR ,m,n,q,χ0q,pℓ,χ1,Sqq and para1 “

pR ,m,n,q,χq.

Proof. The proof is based on [42, Theorem 1] and
[31, Theorem 2]. With an adversary A against
MatrixHint-MLWE

ℓ,χ1,S
R ,m,n,q,χ0

, we show how the adversary B
breaks MLWER ,m,n,q,χ.

Given an MLWER ,m,n,q,χ instance pA,bq P R mˆn
q ˆ R m

q , B
first samples R Ð S , sets R̄ :“ ΓpRq and

Σ0 :“
´

Σ
´1
1 ` R̄J

Σ
´1
y R̄

¯´1
.

Then, B samples the following elements over R ,

• r Ð χ0

• y Ð χ1

• t Ð DZpm`nqd ,⃗c,
b

Σ0´σ2Ipm`nqd
where c⃗ “ Σ0R̄JΣ´1

y pR̄ ¨

Γprq ` Γpyqq

By Lemma A.1, t can be PPT sampled from
DZpm`nqd ,⃗c,

b

Σ0´σ2Ipm`nqd
if the following conditions

hold: (1) Σ is positive definite where Σ :“ Σ0 ´ σ2Ipm`nqd ,

i.e., σminpΣq ą 0; (2) δ0 ¨BΣ ď 1 where δ0 :“
b

lnp2pm`nqdq`4
π

and BΣ denotes the max value among the norm of each
column of

?
Σ´1. One can observe that

BΣ ď

b

σmaxpΣ´1q ď
1

a

σminpΣq
“

1
a

σminpΣ0q ´ σ2
.

And since σminpΣ0q “ 1
}Σ

´1
0 }

, we have

}Σ
´1
0 } “ }Σ

´1
1 ` R̄J

Σ
´1
y R̄} ď }Σ

´1
1 } ` }Σ

´1
y } ¨ }R̄JR̄} ď

1
σ2

0
`

B
σ2

1

where the first inequality is obtained by the triangle inequality,
and the second inequality uses the fact }R̄JR̄} “ }R̄}2 and the
requirement bound }Σ

´1
1 } ď 1

σ2
0
, }Σ´1

y } ď 1
σ2

1
, }R̄}2 ď B. Thus,

the above two conditions for Lemma A.1 can be combined as
sampleability condition, i.e.,

σminpΣ0q “
1

}Σ
´1
0 }

ě
1

1
σ2

0
` B2

σ2
1

ě p1`δq ¨σ
2 `δ0 ě σ

2 (17)

for some δ ě 0.
Later, B uses the sampled elements to transform the given

MLWE instance pA,bq into an MatrixHint-MLWE instance
and sends it to the adversary A . Finally, B utilizes the reply
from A to break MLWE. B starts by constructing

pA,b ` rIm|Ast,R,hq (18)

where h :“ Rr ` y.
Suppose b “ rIm|Asr1 where r1 Ð χ, we have

b ` rIm|Ast “ rIm|Aspr1 ` tq

where r1 ` t is under the distribution

DZpm`nqd ,σIpm`nqd
` DZpm`nqd ,⃗c,

b

Σ0´σ2Ipm`nqd
.

Denote Σ
´1
2 :“ σ´2Ipm`nqd ` pΣ0 ´ σ2Ipm`nqdq´1.

By Lemma A.2, the distribution DZpm`nqd ,σIpm`nqd
`

DZpm`nqd ,⃗c,
b

Σ0´σ2Ipm`nqd
is within the statistical distance

2ε of DZpm`nqd ,⃗c,
?

Σ0
if

?
Σ2 ě ηεpZpm`nqdq holds. We

have }pΣ0 ´ σ2Ipm`nqdq´1} “ 1
σminpΣ0´σ2Ipm`nqdq

and if

Equation (17) holds, we can obtain

σminpΣ0 ´ σ
2Ipm`nqdq “ σminpΣ0q ´ σ

2 ě δ ¨ σ
2 ` δ0 ě δ ¨ σ

2.

Combining the triangle inequality with Lemma A.5, we show
the convolution condition as

}Σ
´1
2 } ď

1
σ2 `

1
σminpΣ0 ´ σ2Ipm`nqdq

ď
1 ` 1{δ

σ2 ď ηεpZpm`nqdq´2.

(19)
If the convolution condition holds, the distribution of Equa-

tion (18) is within statistical distance 2ε of

pA, rIm|Asr̂,R,hq (20)

where r̂ Ð DZpm`nqd ,⃗c,
?

Σ0
.

Then, by Lemma F.2, the distribution of pr̂,hq is identical
to that of pr,hq. Thus, the distribution of Equation (20) is
identical to

pA, rIm|Asr,R,hq (21)
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which are the instance of MatrixHint-MLWE
ℓ,χ1,S
R ,m,n,q,χ0

as-
sumption.

In summary, if sampleability condition and convolu-
tion condition in Equation (15) and (16) hold and the
MLWER ,m,n,q,χ assumption is hard, i.e., the adversary B can-
not distinguish between rIm|Asr1 with r1 Ð χ and the uni-
formly random value b Ð R m

q , then the adversary A cannot
distinguish between the Equation (18) and

pA,u,R,hq (22)

where u Ð R m
q is uniformly random, with additional advan-

tage at most 2ε.

F.3 Proofs for XR-PKE

We restate Theorem 5.4, Theorem 5.5, and Theorem 5.6 below
and provide their formal proofs.

Theorem F.4 (Extended Reproducibility). For any positive
integer N, our PKE in Construction 5.3 is extended repro-
ducible. More precisely, for the extended reproducible game
in Figure 3, the following probability holds,

Pr
”

Gameext-reprPKE,Rep,Npλq “ 1
ı

“ 1.

Proof. Suppose ct˚ :“ pc,u˚q Ð EncpA,b˚,m˚q with ran-
domness r0 :“ pr,euq, r̂˚ :“ y˚, where we have

c “ Ar ` eu. (23)

and u˚ “ txb˚,ry ` y˚ ` t
q
2 s ¨ m˚s2dv . For each i P rNs, the

public key bi Ð KGenpAq. Thus, we have

bi “ AJsi ` ei. (24)

For the hints phiqiPrNs Ð

HintGenppr,euq,pbi,eiqiPrNs,pyiqiPrNsq, we have

hi “ xr,eiy ´ xeu,siy ` yi. (25)

On input hi, Repppc,u˚q,mi,bi,si,hiq outputs the reproduced
ciphertext pc,uiq for bi, where

ui “ txc,siy ` hi ` t
q
2

s ¨ mis2dv . (26)

When plugging Equation (23), Equation (24), Equation (25)
into Equation (26), we have

ui “ txbi,ry ` yi ` t
q
2

s ¨ mis2dv

which is the same as the output from EncpA,bi,mi;pr,euq,yiq.
Overall, we get the extended reproducibility of our con-

struction.

Theorem F.5 (Correctness). Let e,s,r,eu,y be random vari-
ables that have the corresponding distribution as in Construc-
tion 5.3. Denote ζ as

Pr r }xe,ry ` y ´ xs,euy ´ cv ` xs,cuy}8 ě tq{4s s

where cu :“ c´ ttc mod qs2du sq P R m, and cv :“ c´ ttc mod
qs2dv sq P R . We say our Construction 5.3 is ζ-correct.

Proof. The value u1 in Dec algorithm is

u1 :“ tu mod 2dvsq “ t t c mod q s2dv sq .

Considering the compression and decompression of key-
independent ciphertext c, the value c (renamed as c1) in Dec
algorithm is

c1 :“ t t c mod q s2du sq .

Plugging ttc mod q s2du sq “ c ´ cu, and ttc mod qs2dv sq “

c ´ cv, we have

u1 ´ xc1,sy “ c ´ cv ´ xc ´ cu,sy .

Since c “ xb,ry`y`tq{2s ¨m and c :“ Ar`eu, where b :“
AJs ` e, we can obtain the decryption is made by computing

u1 ´ xc1,sy “ xe,ry ` y ´ xs,euy ´ cv ` xs,cuy ` tq{2s ¨ m .

It means that when ℓ8-norm of the decryption error is no less
than tq{4s, i.e., }xe,ry ` y ´ xs,euy ´ cv ` xs,cuy}8 ě tq{4s,
the decryption will fail. Thus, the probability ζ is no more
than the probability of decryption failure.

Theorem F.6 (Security). Let m,n,d,q,N,ν be positive in-
tegers parameters. Let σ,σ0,σ1 be Gaussian width pa-
rameters. Let the positive real matrices Σ1 and Σy be as
Equation (9). Let the distribution S and the bound B be
as Equation (7) and (8) respectively. Let the distribution
χ0 :“ DZpm`n`1qd ,

?
Σ1

, χ1 :“ DZNd ,
?

Σy
, χ̄ :“ UpSνq. Sup-

pose Equation (5) and (6) hold.
Our PKE in Construction 5.3 is IND-CPAXR secure un-

der the MLWER ,n,m,q,χ̄ and MatrixHint-MLWE
N,χ1,S
R ,m`1,n,q,χ0

assumptions. More precisely, for any PPT adversary A , there
exist PPT adversaries B0, B1 against MLWE assumption and
Matrix Hint-MLWE assumption, such that

AdvIND-CPAXR

PKE,N,A pλq “ AdvMLWE
para0,B0

pλq `AdvMatrixHint-MLWE
para1,B1

pλq

where para0 :“ pR ,n,m,q, χ̄q and para1 :“ ppR ,m `

1,n,q,χ0q, pN,χ1,Sqq.

Proof. Let A be a PPT adversary against the IND-CPAXR

security of our PKE as defined in Figure 4. We upper bound
the advantage of A by the following games. Denote Ei as the
event A wins Gamei. The games are described in Figure 15.

• Game0: The game is the real IND-CPAXR security game
shown in Figure 4 so that we have

PrrE0s “ Pr
”

GAMEIND-CPAXR

PKE,N,A pλq “ 1
ı

.
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Game GAMEIND-CPAXR

PKE,N,A pλq

pA0,A1,A2q Ð A
A Ð UpR mˆn

q q

ps˚,e˚q Ð UpSm
ν q ˆ UpSn

νq, b˚ :“ AJs˚ ` e˚ Ź Game0

u Ð UpR n
q q Ź Game1 – Game2

pm˚
0 ,m˚

1 ,stq Ð A0pA, u q

b Ð t0,1u

pr,euq Ð Dn
σ0

ˆ Dm
σ0

, y˚ Ð Dσ1

c˚ :“ Ar ` eu Ź Game0 – Game1
c˚ :“ xb˚,ry ` y˚ ` t

q
2 s ¨ m˚

b

pv,vq Ð UpR m`1
q q Ź Game2

ppbi,siqiPrNs,stq Ð A1p pv, tvs2dv q ,stq
req: @i P rNs, pbi,siq P K
for all i P rNs

yi Ð Dσ1

ei :“ bi ´ AJsi
hi :“ xr,eiy ´ xeu,siy ` yi

end for
b1 Ð A2pphiqiPrNs,stq
return rb “ b1s

Figure 15: The games for the proof of Theorem F.4.

• Game1: The game is the same as Game0 except that the
challenger replaces the public key b˚ by the uniformly
random values u.

The public key b˚ is honestly generated, satisfying

b˚ “ AJs˚ ` e˚

where s˚ Ð χ̄m and e˚ Ð χ̄n.

Therefore, the adversary A cannot distinguish between the
challenger’s public key b˚ and the uniformly random values
u under the MLWE assumption. There exists an adversary
B0 with about the same running time as that of A such that

|PrrE1s ´ PrrE0s| “ AdvMLWE
para0,B0

pλq

where para0 :“ pR ,n,m,q, χ̄q.

• Game2: The game is the same as Game1 except that the
challenger modifies how the challenge ciphertext pc˚,c˚q

is generated.

At a high level, the challenger replaces the challenge ci-
phertext pc˚,c˚q by the uniformly random values pv,vq Ð

UpR m`1
q q and the hints phiqiPrNs can be interpreted as the

hints for the secret of Matrix Hint-MLWE assumption. We
show how to reduce this modification to the Matrix Hint-
MLWE assumption as follows.

Denote the column vector ŷ “ pyiqiPrNs which is the con-
catenations of yi in row-wise. Denote the column vector r̃
and row vector γγγi for each i P rNs as

r̃ :“

¨

˝

y˚

eu
r

˛

‚, γγγi :“
`

0 || ´ psiq
J|| peiq

J
˘

and the hints can be rewritten as hi “ γγγir̃ ` yi for i P rNs.
Denote the concatenation of γγγi and hi for i P rNs in row-
wise as R :“ pγγγiqiPrNs and h :“ phiqiPrNs respectively, we
have

h “ Rr̃ ` ŷ

where R, r̃, and ŷ are over the distributions of S , χ0, and χ1
respectively.

Note that the challenger will check the public-private key
pairs provided by the adversary and if there exists ps˚

i ,e˚
i q R

Sm
ν ˆ Sn

ν, the challenger aborts the game and outputs K.
Thus, h can be seen as the hint of secret vector r̃ for the
matrix R with ℓ :“ N. And the challenge ciphertext pc˚,c˚q

can be represented as
ˆ

Im`1

ˇ

ˇ

ˇ

ˇ

uJ

A

˙

¨ r̃ `

ˆ X q
2

T

¨ m˚
b

0

˙

“

ˆ

c˚

c˚

˙

.

It leads that even the adversary A can get the hint vector
h, the MLWE instance of r̃, i.e., pc˚,c˚q, is still indistin-
guished to the uniformly random values pv,vq Ð UpR m`1

q q

under MatrixHint-MLWE
k,χ1,S
R ,m`1,n,q,χ0

assumption.

Therefore, there exists an adversary B1 with about the same
running time as that of A such that

|PrrE2s ´ PrrE1s| “ AdvMatrixHint-MLWE
para1,B1

pλq

where para1 :“ ppR ,m ` 1,n,q,χ0q,pN,χ1,Sqq.

Furthermore, in Game2, the ciphertext output by the chal-
lenger is independent of the challenge bit b and therefore
we have

PrrE2s “
1
2

.

Collecting all the games from Game0 to Game3, we get the
required bound.

F.4 Security Proof for KOSK Compiler
We restate Theorem C.2 below and provide its formal proof.

Theorem F.7 (Security). For ATK P tCPA,CCAu,
if mmPKE1 is mmIND- ATKKOSK secure and Π

is a NIZK argument system satisfies correctness,
multi-proof extractability and zero knowledge, our
mmPKE Ð CompKOSKrmmPKE1,Πs output by Construc-
tion C.1 is mmIND-ATK secure.
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Proof. The proof is similar to [17, Theorem 8.3], espe-
cially on the use of multi-proof extractability. Suppose
there is a PPT adversary A :“ pA0,A1,A2q which wins the
mmIND-ATK security game of mmPKE with non-negligible
probability ε. Suppose A makes at most QH queries to the
random oracles H. Without loss of generality, assume that A
never repeats a random oracle query.

We prove the statement by introducing a sequence of games.
Denote Ei as the event A wins Gamei. The games are de-
scribed in Figure 16.

• Game0: The game is the real mmIND-ATK security game
of mmPKEÐCompKOSKrmmPKE1,Πs shown in Figure 9.
Here, by definition we have

PrrE0s “ ε.

• Game1: The game is the same as Game0 except that we
generate the proof pπiqiPrℓs by the simulator Sim1. It is easy
to see that Game1 and Game0 are indistinguishable by the
zero-knowledge property of Π, i.e., one can construct a PPT
adversary B0 such that

PrrE1s ě PrrE0s ´ ℓ ¨AdvZK
Π,B0

pλq “ PrrE0s ´neglpλq.

• Game2: The game is the same as Game1 except that
we program the output of Hp0q from crsΠ to ĂcrsΠ where
pĂcrsΠ,τq Ð Simcrsp1λq. It can be checked that Game2 and
Game1 are indistinguishable by the CRS indistinguishabil-
ity in multi-proof extractability. Specifically, there exists a
PPT adversary B1 such that

PrrE2s ě PrrE1s ´Advcrs
Π,B1

pλq “ PrrE1s ´neglpλq.

• Game3: The game is the same as Game2 except that we use
the multi-proof extractability of Π to extract the witnesses
for all proofs pπiqiPrℓ:Ns that are generated by the adversary
A . More precisely, the reduction will run

ski Ð Multi-Extractp1λ,QH,Qs,1{PrrE2s,τ,pki,πiq

where QH “ polypλq is the number of the random oracle
queries by the adversary A and Qs ď N is the number of
statement-proof pairs ppki,πiq generated by the adversary
A .

Let Abortextract be the event that ppki,skiq R RΠ for some
i P rQss. If Abortextract occurs then the reduction aborts and
overwrites the adversary’s output to be K. We note that the
reduction does not use the extracted witness in this game.

Arguing identically as in [25, Lemma 3.6] and assuming
that PrrE2s is non-negligible, the runtime of the reduction
is still polypλq and also

PrrE3s ě
1
2

PrrE2s ´neglpλq.

• Game4: The game is the same as Game3 except that we
generate pp1, ppkiqiPrℓs, and ct by the challenger C in
mmIND-ATKKOSK security game of mmPKE1.

Specifically, we first forward the value ℓ from the adversary
A to the challenger C and get ppkiqiPrℓs from the challenger
C . Then, we run the simulator to obtain pπiqiPrℓs. Af-
ter sending them to A , we can obtain ppki,πiqiPrℓ:Ns and
pm0

i ,m1
i qiPrℓs, pmiqiPrℓ:Ns from A . With the multi-proof ex-

tractor, the private key ski of the public key pki generated
by A can be extracted. We send the extracted private key
along with the public key, and the two challenge message
vectors pm0

i ,m1
i qiPrℓs and pmiqiPrℓ:Ns provided by A to C

and receive the challenge ciphertext ct from C . After for-
ward ct to A , we can obtain the guess bit b1 from A and set
the guess bit for C .

One can observe Game4 is the same as Game3, i.e.,

PrrE4s “ PrrE3s

and also Game4 is the mmIND-ATKKOSK security game of
mmPKE1. Thus, there exists an adversary B2 with about
the same running time as that of A such that

PrrE4s “ AdvmmIND-ATKKOSK

mmPKE1,N,B2
pλq

Collecting all the games from Game0 to Game4, we get the
mmIND-ATK security of mmPKE.

F.5 Security Proof for Adaptive Security Com-
piler

We restate Theorem E.2 below and provide their formal
proofs.

Theorem F.8 (Security). If mmPKE1 is mmIND-CPA se-
cure and Π1 is a NIZK argument system satisfies cor-
rectness, zero knowledge, and simulation soundness, our
mmPKE Ð CompCCArmmPKE1,Π1s output by Construc-
tion E.1 is mmIND-CCACor secure.

Proof. Let A be an PPT adversary against the
mmIND-CCACor security of mmPKE. We define the follow-
ing sequence of games where the first and last game are the
game GAMEmmIND-CCACor

mmPKE,N,0,A pλq and GAMEmmIND-CCACor

mmPKE,N,1,A pλq,
respectively. Denote Ei as the event that A wins the game
Gamei.

• Game0: The game is the real security game
GAMEmmIND-CCACor

mmPKE,N,0,A pλq shown in Figure 9 with the
challenge bit b “ 0. It means that the challenger encrypts
the messages pm0

i qiPrℓs and pmiqiPrℓ:Ns to the challenge
ciphertext ct.

PrrE0s “ Pr
”

GAMEmmIND-CCACor

mmPKE,N,0,A pλq “ 1
ı

.
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Game GAMEmmIND-CCA
mmPKE,N,A pλq

pA0,A1,A2q Ð A

pp1 Ð mmPKE1.mmSetupp1λ,Nq Ź Game0 – Game3
pp1 Ð C p1λ,Nq Ź Game4
crsΠ Ð Π.Setupp1λq Ź Game0 – Game1
pĂcrsΠ,τq Ð Simcrsp1λq Ź Game2 – Game4

pℓ,stq Ð A0ppp1,crsΠq

ppkiqiPrℓs Ð C pℓq Ź Game4
for all i P rℓs

ppki,skiq Ð mmPKE1.mmKGenppp1q Ź Game0 –
Game3
πi Ð Π.ProveHpcrsΠ,ppp1,pkiq,skiq Ź Game0
πi Ð Sim1pcrsΠ,ppp1,pkiqq Ź Game1 – Game4

end for

ppm0
i ,m1

i qiPrℓs,pmiqiPrℓ:Ns,ppki,πiqiPrℓ:Ns,stq{K Ð

ADec0
1 pppki,πiqiPrℓs,stq

req: @i P rℓs, |m0
i | “ |m1

i |

req: @i P rℓ : Ns, Π.VerifypcrsΠ,ppp1,pkiq,πiq “ 1

b Ð t0,1u

ct ÐmmPKE1.mmEncppp1,ppkiqiPrNs,pmb
i qiPrℓs,pmiqiPrℓ:Nsq

Ź Game0 – Game3

for all i P rℓ : Ns

ski Ð Multi-Extractp1λ,QH,Qs,1{PrrE2s,τ,pki,πiq Ź

Game3 – Game4
req: ppki,skiq P mmPKE1.K

end for
ct Ð C ppm0

i ,m1
i qiPrℓs,pmiqiPrℓ:Ns,ppki,skiqiPrℓ:Nsq Ź Game4

b1 Ð ADec1
2 pct,stq

return rb “ b1s

Oracle Dec0pi,ctq

req: i P rℓs
m Ð

mmPKE1.mmDecppp,ski,ctq

m Ð C .Dec0pi,ctq Ź

Game4

return m

Oracle Dec1pi,ctq

req: i P rℓs
req: ct ‰ mmExtpct, iq
m Ð

mmPKE1.mmDecppp,ski,ctq

m Ð C .Dec2pi,ctq Ź

Game4

return m

Figure 16: Game0 - Game4 for the proof of Theorem F.7. For
ATK “ CPA, the adversary A does not have the access to
decryption oracles Dec0 and Dec1.

• Game1: The game is the same as Game0 except that the
challenger simulates the proof pπiqiPrNs in the ciphertext ct
by the simulator Sim1 as shown in Figure 17.

Hence, there exists a reduction B0 to the computational
zero knowledge of Π1 such that

|PrrE1s ´ PrrE0s| ď N ¨AdvZK
Π1,B0

pλq.

• Game2: The game is the same as Game1 except
that the challenger switches pm0

i qiPrNs to pm1
i qiPrNs in

p pct
piq
0 qiPrNs, the first key-dependent ciphertext of p pcti :“

p pct
piq
0 , pct

piq
1 qqiPrNs, as shown in Figure 17. Note that here we

set m0
i “ m1

i “ mi for i P rℓ : Ns to simplify the presentation.

r0 Ð Di, ct0 Ð mmPKE1.mmEncippp; r0q

β⃗ :“ pβiqiPrNs Ð t0,1uN

for all i P rNs

r̂
piq
0 , r̂piq

1 Ð Dd

pct
piq
0 Ð mmPKE1.mmEncdppp,pkpiq

βi
, m1

i ; r0, r̂piq
βi

q Ź Game2

pct
piq
1 Ð mmPKE1.mmEncdppp,pkpiq

1´βi
, m0

i ; r0, r̂piq
1´βi

q Ź

Game2

πi Ð Sim1pcrsΠ1 ,ppp1,pkpiq
0 ,pkpiq

1 , pct, pct
piq
0 , pct

piq
1 ,βiqq Ź

Game1 - Game2
pcti :“ p pct

piq
0 , pct

piq
1 q

end for
return ct :“ pct0,p pctiqiPrNs ,⃗β,pπiqiPrNsq

Figure 17: Game1 and Game2 for the proof of Theorem F.8.

Let BAD be the event that the adversary A can make a
valid but improper query (e.g., double encryption for differ-
ent message) to the decryption oracle (different from the
challenge ciphertext ct). If BAD happens, we abort the re-
duction. We claim that there exists an reduction algorithm
B1 whose running time is about the same as A , such that

|PrrE2s ´ PrrE1s| ď AdvmmIND-CPA
mmPKE1,2N,B1

pλq ` PrrBADs.

The reduction B1 is described in Figure 18.

The proof is a combination between the proof in [6, 33, 36]
and [51, 60]. Roughly, B1 combines two key-dependent
ciphertext of mmPKE1 to form the ciphertext of mmPKE,
which one is encrypted by the public keys from B1’s chal-
lenger and the other is encrypted by the public keys from B1
itself. B1 will switch the message pm0

i qiPrNs to pm1
i qiPrNs in

the key-dependent ciphertext encrypted by its challenger’s
public key. If A can identify the modification, B1 can utilize
A to break the mmIND-CPA security of mmPKE1.

Specifically, after receiving ℓ public keys ppk˚
i qiPrℓs from

the challenger of mmPKE1, B1 picks these ℓ public keys
as the part of the public keys for mmPKE and generates
the rest ℓ public-private key pair ppk1

i,sk
1
iqiPrℓs by itself. To

decide which one of the two pubic keys in each public
keys pki of mmPKE is from the challenger, B1 tosses a
random bit αi: if αi “ 0, then pki :“ ppk˚

i ,pk1
iq; otherwise,

pki :“ ppk1
i,pk

˚
i q. Then, like Game1, B1 runs the simulator

to get pppΠ1 ,τq Ð Sim0 and sends the public parameter
along with the public keys to the adversary A .

To handle the corruption query, B1 can just flip the random
bit αi in the private key and provide the private key corre-
sponding to public key generated by itself as the respond.
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And the adversary A cannot distinguish between the two
public key since the random bit αi in each uncorrupted
private key is information-theoretically hiding to A .

To handle the decryption query, B1 can use the private key
generated by itself to decrypt the ciphertext. If BAD does
not happen, it means that the adversary A cannot generate
a valid proof for a ciphertext with different message to
distinguish between the two public keys, even after seeing
the simulated proof in the challenge ciphertext ct. Thus,
we can bound PrrBADs by constructing a reduction B2 to
the computational simulation soundness of Π1, i.e.,

PrrBADs ď QD ¨AdvSS
Π1,B2

pλq

where QD denotes the number of the adversary A’s queries
to the decryption oracles Dec0 and Dec1.

To encrypt the challenge ciphertext, after receiving the pub-
lic keys and message chosen by the adversary A , B1 set
β⃗ :“ α⃗ for switching the public keys during the encryp-
tion. It leads that the first key-dependent ciphertext pct

piq
0 in

each key-dependent ciphertext p pct
piq
0 , pct

piq
1 q of mmPKE is

encrypted by the challenger’s public key. Since these cases
are exclusive, αi or βi is uniformly random in A’s view.
After sending the public keys along with the two message
vectors to its challenger, B1 obtains the ciphertext from its
challenger. Like Game1, B1 runs the simulator to obtain the
proof πi Ð Sim1 for each i P rNs. The challenge ciphertext
with the proofs are sent to the adversary A .

In the end, B1 uses the guess bit b1 from A to break the
mmIND-CPA security of mmPKE1. Thus, if mmPKE1 is
mmIND-CPA secure, the adversary A cannot know whether
B1 switches the message m0 to m1 or not in the first key-
dependent ciphertext. We get the above bound.

• Game3: The game is the same as Game2 except
that the challenger switches pm0

i qiPrNs to pm1
i qiPrNs in

p pct
piq
1 qiPrNs, the second key-dependent ciphertext of p pcti :“

p pct
piq
0 , pct

piq
1 qqiPrNs.

If mmPKE1 is mmIND-CPA secure, the adversary A is
indistinguished between Game2 and Game3. We claim that
there exists an reduction algorithm B3 whose running time
is about the same as A , such that

|PrrE3s ´ PrrE2s| ď AdvmmIND-CPA
mmPKE1,2N,B3

pλq ` PrrBADs.

The reduction B3 is analogous to B1 in Game1 except that
the challenger’s public key is the second one in the public
key of mmPKE.

• Game4: The game is the same as Game3 except that the
challenger generates the proof pπiqiPrNs in the ciphertext
ct by Π1.Prove. Hence, there exists a reduction B4 to the
computational zero knowledge of Π1 such that

|PrrE4s ´ PrrE3s| ď N ¨AdvZK
Π1,B4

pλq.

Finally, Game4 is the mmIND-CCACor security game with
the challenge bit b “ 1. And if the honestly generated proof
πi is not valid, the reduction aborts. Thus, we have

PrrE4s “ Pr
”

GAMEmmIND-CCACor

mmPKE,N,1,A pλq “ 1
ı

.

Collecting all the games from Game0 to Game4, we get the
mmIND-CCACor security of mmPKE.
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Reduction B1

pA0,A1,A2q Ð A
pp˚ Ð mmPKE1.C p2Nq

crsΠ1 Ð Π1.Setupp1λq

pℓ,stq Ð A0ppp˚,crsΠ1 q

req: ℓ P rNs

ppk˚
i qiPrℓs Ð mmPKE1.C pℓq

α⃗ :“ pα0, . . . .αN´1q Ð t0,1uN

for all i P rℓs

ppk1
i,sk

1
iq Ð mmPKE1.mmKGenppp˚q

if αi “ 0 do pki :“ ppk˚
i ,pk1

iq else pki :“ ppk1
i,pk

˚
i q

ski :“ p1 ´ αi,sk1
iq

end for
Cor Ð H

ppm0
i ,m1

i qiPrℓs,pmiqiPrℓ:Ns,ppkiqiPrℓ:Ns,stq Ð

ACor,Dec0
1 p pp :“ ppp˚,crsΠ1 q ,ppkiqiPrℓsq

β⃗ :“ α⃗

for all i P rℓ : Ns do rmi :“ mi, rmN`i :“ mi

for all i P rℓs do rm0
i :“ m0

i , rm1
i :“ m1

i , rmN`i :“ m0
i

for all i P rℓs do ĂpkN`i :“ pk1
i

for all i P rℓ : Ns

ppk:

i,0,pk:

i,1q Ð pki

Ăpki :“ pk:

i,βi
; ĂpkN`i :“ pk:

i,1´βi

end for
pct0,p rctiqiPr2Nsq ÐmmPKE1.C ppĂpkiqiPrℓ:2Ns,prm0

i , rm1
i qiPrℓs,prmiqiPrℓ:2Nsq

for all i P rℓs do pk:

i,αi
:“ pk˚

i , pk:

i,1´αi
:“ pk1

i
for all i P rNs

p pct
piq
βi

, pct
piq
1´βi

q :“ p rcti, rctN`iq

πi Ð Sim1pcrsΠ1 ,ppp1,pk:

i,0,pk:

i,1,ct0, pct
piq
0 , pct

piq
1 ,βiqq

end for
b1 Ð ACor,Dec1

2 pct :“ pct0,p pct
piq
0 , pct

piq
1 qiPrNs ,⃗β,pπiqiPrNsq,stq

req: @i P rℓs, m0
i “ m1

i _ ppki R Cor^ |m0
i | “ |m1

i |q

return b1

Oracle Corpiq

req: i P rℓs
Cor` Ð i
return
p1 ´ αi,sk1

iq

Oracle Decbtpi,ctq

req: i P rℓs
pct0, pct0, pct1,π,βq Ð ct
req: Π1.VerifypcrsΠ1 ,pp˚,pki,ct0, pct0, pct1,β,πq “

1
if bt “ 1 req: ct ‰ mmExtpct, iq
m Ð mmPKE1.mmDecppp,sk1

i,p pct, pct1´αiqq

return m

Figure 18: The reduction B1 using a distinguisher A be-
tween Game1 and Game2 to break the mmIND-CPA security
of mmPKE1 in Theorem F.8. Decbt oracle is assigned to Abt
for bt P t0,1u. The parts where B1’s operations are different
from mmIND-CCACor security game are marked by boxes .
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