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Abstract

In applications such as secure group communication and
broadcasting, it is important to efficiently deliver multiple
messages to different recipients at once. To this end, multi-
message multi-recipient Public Key Encryption (mmPKE)
enables the batch encryption of multiple messages for multi-
ple independent recipients in one go, significantly reducing
costs—particularly bandwidth—compared to the trivial solu-
tion of encrypting each message individually. This capability
is especially desirable in the post-quantum setting, where
the ciphertext length is typically significantly larger than the
corresponding plaintext. However, almost all prior works
on mmPKE are limited to quantum-vulnerable traditional
assumptions.

In this work, we propose the first CPA-secure mmPKE and
Multi-Key Encapsulation Mechanism (mmKEM) from the
standard Module Learning with Errors (MLWE) lattice as-
sumption, named mmCipher-PKE and mmCipher-KEM, re-
spectively. Our design proceeds in two steps: (i) We introduce
a novel generic construction of mmPKE by proposing a new
PKE variant—extended reproducible PKE (XR-PKE)—that
enables the reproduction of ciphertexts through additional
hints; (ii) We instantiate a lattice-based XR-PKE using a new
technique that can precisely estimate the impact of such hints
on the ciphertext security while also establishing suitable pa-
rameters. We believe both to be of independent interest. As
a bonus contribution, we explore generic constructions of
adaptively secure mmPKE, resisting adaptive corruption and
chosen-ciphertext attacks.

We also provide an efficient implementation and thorough
evaluation of the practical performance of our mmCipher.
The results demonstrate substantial bandwidth and compu-
tational savings over the state-of-the-art. For example, for
1024 recipients, our mmCipher-KEM achieves a 2345 x re-
duction in bandwidth overhead, with ciphertexts only 4-9%
larger than the plaintexts (near optimal bandwidth), while
also offering a 3-5 x reduction in computational cost.

Ron Steinfeld
Monash University

Markku-Juhani O. Saarinen
Tampere University

Siu-Ming Yiu

The University of Hong Kong

1 Introduction

Public Key Encryption (PKE) and Key Encapsulation Mecha-
nism (KEM) are foundational cryptographic primitives that
underpin secure digital communication systems—such as
Zoom, Signal, and WhatsApp-serving billions of users. The
rapid progress in quantum computing [26] has led to a shift to-
wards post-quantum cryptography. In response, the National
Institute of Standards and Technology (NIST) has selected
Kyber, a lattice-based KEM/PKE, as a primary candidate
for standardization [2]. However, these quantum-resistant
constructions generally require significantly more bandwidth
resources than their traditional counterparts [9]. Therefore,
reducing communication costs for multiple recipients, even
for moderately large number of recipients, say N > 10, is
already of practical significance.

Multi-message multi-recipient PKE. To address this need,
multi-message multi-recipient PKE (mmPKE) was introduced
to efficiently batch encryption by Kurosawa [43]. Specifically,
given N recipient public keys (pk;);c[y] and a message vector
(m;)ie V] where each message m; is intended for recipient i,
an mmPKE can output a multi-recipient ciphertext ct that can
be extracted as the individual ciphertext ct; for each recipient
i by any third party (e.g., delivery service server). Roughly
speaking, each message m; should remain private even given
the multi-recipient ciphertext ct and all other recipient decryp-
tion keys (sk;) je[n\i-

Compared to the trivial solutions where each message is
encrypted separately, mmPKE allows for significant band-
width savings, especially valuable in post-quantum settings
where ciphertexts are large. We call an mmPKE (asymp-
totically) bandwidth-optimal if the length of its ciphertexts
approaches the total length of its plaintexts (for a large num-
ber of recipients). When each message is an encapsulated
key, we obtain the multi-key multi-recipient KEM (mmKEM).
A special case of mmPKE and mmKEM is multi-recipient
PKE (mPKE) and multi-recipient KEM (mKEM), which only
support sending the same message or encapsulated key to all
recipients. In this case, since each recipient receives the same



message, the security model excludes the insider adversaries
(recipients).

Applications. In (m)mPKE/KEM schemes, the delivery ser-
vice is modeled as a public bulletin board, where the sender
uploads the multi-recipient ciphertext and each recipient
downloads their corresponding individual ciphertext. Thus, a
direct application is to replace individual PKE/KEM in multi-
recipient scenarios to reduce communication and computation
costs at the sender, which are typically much higher than those
at each recipient, especially in the post-quantum setting. For
example, [39] uses post-quantum mKEM to improve the effi-
ciency of Messaging Layer Security (MLS) protocol, an IETF
secure group messaging standard [10], by an order of magni-
tude. Similarly, [36] employs post-quantum mPKE to double
the efficiency of Secure Group Messaging (SGM). In addition,
[5] leverages mmPKE to generically build an efficient Con-
tinuous Group Key Agreement (CGKA). (m)mPKE is also a
promising tool for improving the efficiency of messaging apps
over short-range wireless mesh networks such as Bridgefy
or BitChat [64] using Bluetooth, where bandwidth-efficient
broadcasting is a natural requirement.

Besides secure digital communication, another com-
pelling use case is confidential transactions in account-based
blockchains, such as (Anonymous) Zether [21, 27] and PriDe
CT [35]." Briefly, the spender submits a transaction contain-
ing a multi-recipient ciphertext and a well-formedness proof
to the blockchain, where each amount is encrypted for its cor-
responding recipient. Furthermore, receiver anonymity can
be achieved, similar to ring signatures [59], where the “real”
recipients are hidden among “decoy” recipients, and identical
zero-valued messages are encrypted for the latter. Thus, a
full CPA-secure” mmPKE is required to ensure transaction
confidentiality, so that no recipient can learn others’ amounts,
even if some amounts are identical. However, since the only
known post-quantum mmPKE [6] cannot achieve full CPA
security (as illustrated in Figure | and discussed later), it is
not applicable in such scenarios. Considering that large trans-
action sizes (primarily due to ciphertext size) would lead to
practically unacceptable transaction (gas) fees and blockchain
storage is highly limited, we believe that the absence of full
CPA-secure mmPKE is the primary bottleneck in shifting
such confidential transactions to the post-quantum setting.

Existing works and challenges. Due to their practically ap-
pealing and theoretically interesting nature, studies on mmP-
KE/mmKEM [6, 11, 12,43, 58] and mPKE/mKEM [8, 23, 36,
39, 48, 61, 65], have attracted significant attention. Among
them, the foundational work on mmPKE was proposed by
Bellare et al. in [11, 12] that significantly expanded Kuro-

IThese confidential transactions implicitly employ mmPKE, i.e., they
directly utilize ElGamal-based mmPKE [11, 43] as a fundamental building
block.

2What we call “full CPA” security here is the standard CPA security
notion. In contrast, some earlier works such as [6] only obtain a weaker form
of CPA security, which does not protect the structure of the message vector.

sawa’s work [43] by: (1) introducing the insider adversary to
formalize the full CPA security of mmPKE, ensuring that no
recipient can obtain another recipient’s message; (2) identify-
ing possible attacks (e.g., rogue public key attacks) and intro-
ducing the knowledge-of-secret-key (KOSK) assumption—that
is, each public key is assumed to be well-formed (i.e., the
challenger knows the private key of each public key)—for pro-
tection; and (3) defining reproducible PKE to generically
construct mmPKE. Informally, reproducibility requires the
existence of an efficient algorithm that can transform a ci-
phertext into another ciphertext for a different public key and
message while using the same randomness. They further no-
ticed that only discrete-log-based encryption schemes, such
as ElGamal [28] and Cramer—Shoup [24], are reproducible
and can be extended to mmPKE under the KOSK assumption.
Thus, they raised an open question—which has stood for over
two decades—of whether (full CPA-secure) mmPKE schemes
(and its underlying reproducible encryption) under other as-
sumptions exist [11, page 12]. Unfortunately, such property
remains unknown for post-quantum assumptions, particularly
for lattices, since fresh randomness/noise in each ciphertext
is inherently required and cannot be fully eliminated.

Currently, the only known post-quantum mmPKE [6] is
generically constructed from mKEM, but it only supports
batching consecutive identical messages in the message vec-
tor, as illustrated in Figure 1. Here, we identify two key
limitations of this approach: (1) its efficiency is close to triv-
ial solution when messages are independent, and (2) it cannot
achieve full CPA security, as it leaks the structure of the in-
put message vector, i.e., given the multi-recipient ciphertext,
others can identify whether any two consecutive messages
in the message vector are identical. These significantly limit
the application of [6] in many practical scenarios, such as
confidential transactions [21, 27, 35], as discussed above.

Overall, despite strong practical demand and rapid progress,
significant challenges remain in fully realizing the potential
of mmPKE in post-quantum settings, especially for generic
constructions, leading to our question:

Question: Are there any simple and efficient generic construc-
tions of fully batched mmPKE based on the post-quantum
assumptions, while enjoying full CPA-security, regardless of
the message vector?

We refer to Table | for a summary of the existing post-
quantum mmPKE schemes. We note that this comparison ex-
cludes [6], as their benchmarks only focus on mKEM, which
we consider incomparable to the case of mmKEM/mmPKE.
Furthermore, in our setting, since the messages/keys are in-
dependent of each other, the probability of consecutive iden-
tical messages appearing in the message vector is negligible.
Therefore, as [6] only supports batching consecutive identi-
cal messages, its performance under independent messages
would be equivalent to the trivial solution with Kyber.
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Figure 1: Comparison between the existing post-quantum

mmPKE [6] and our scheme. indicates that the en-
closed message is encrypted as a ciphertext for an independent
recipient, while u’_l;(_)_)gé_s_j indicates that each enclosed cipher-
texts are batched. Since [6] only supports batching consecu-
tive identical messages, the structure of the message vector
can be inferred from its ciphertext (e.g., the first two mes-
sages are identical), whereas our scheme supports batching

all messages while protecting this structure.

Table 1: Comparison of current lattice-based CPA-secure
mmPKE/mmKEM schemes, for N = 1024 recipients.

Scheme PQ- Enc. Improve. Enc. Full

Sec. Size Factor  Time CPA
Level (KB) (x) (ms)

Plaintext¥* — 32 — — X

Baseline: 128 768 — 36

Kyber [19] 192 1088 — 58 v

(ML-KEM [53]) 256 1568 — 87

Our work: 128 33 23.1x 12

mmCipher-KEM 192 34 31.6x 16 v

(Cons. 4.3+B.1) 256 35 44.7x 17

Our work: 128 65 11.8x% 13

mmCipher-PKE 192 66 16.4x 16 v

(Cons. 4.3+5.3) 256 67  23.3x 18

* Here, Enc. Size is the plaintext size of all encapsulated keys/messages
(i.e., optimal bandwidth).

Notes: For each scheme, we report the size of the multi-recipient cipher-
text (Enc. Size) in kilobytes (KB) as well as the improvement, relative to
the trivial solution with CPA-secure Kyber (parameterized by ML-KEM
standard [53]), and the encryption/encapsulation time (Enc. Time) in mil-
liseconds (ms), under 128-bit, 192-bit, and 256-bit post-quantum security
levels (PQ-Sec. Level), respectively. Each message/key is 256 bits and
independently chosen across 1024 recipients. Full CPA indicates that the
scheme protects both semantics and structure of the message vector.

1.1 Contribution

In this work, we answer the above question affirma-
tively by proposing the first full CPA-secure mmPKE and
mmKEM, based on the standard MLWE assumption, named
mmCipher-PKE and mmCipher-KEM, respectively. Specif-
ically, we introduce a new generic construction of mmPKE
from a novel variant of PKE, called extended reproducible
PKE (XR-PKE). We then present lattice-based instantiations
of XR-PKE and provide parameter sets for different security
levels. Lastly, we give an efficient implementation and a thor-
ough performance evaluation of our mmCipher. The main
contributions of our work are summarized as follows. For
detailed technical discussions, see Section 2.

New generic construction of post-quantum mmPKE. Our
first contribution is a new generic construction of post-
quantum mmPKE from XR-PKE. To accommodate the post-
quantum setting—particularly the lattice-based setting—we
formally define XR-PKE, which significantly enhances the
functionality of the original reproducible PKE [11], in both
syntax (by incorporating hints into the reproduction algorithm
and providing a hint generation algorithm) and security model
(by modeling the semantic security of ciphertexts given the
associated hints). We believe such new generic constructions
could be of independent interest that may spark other post-
quantum instantiations, such as code-based schemes.
mmCipher: the first mmPKE instantiations from lattices.
Our second contribution is the construction of lattice-based
XR-PKE and XR-KEM schemes, from which we instantiate
the first lattice-based mmPKE. To achieve extended repro-
ducibility, we leverage the decryption error as a hint to enable
ciphertext reproduction. To establish the semantic security of
ciphertexts given the associated hints, we rely on the Matrix
Hint-MLWE assumption [31], for which a reduction from the
standard MLWE assumption exists under suitable parameter
choices, arguing that the security impact of the hints is negli-
gible. Along the way, as a bonus technical contribution, we
generalize the underlying matrix in Matrix Hint-MLWE to the
non-square setting and identify a missing efficient sampleabil-
ity condition in the parameter instantiation for the reduction
of [31]. Both results may be of independent interest for other
applications of Hint-MLWE, e.g., [1, 42, 45].

Then, following our generic construction, we instan-
tiate two lattice-based CPA-secure mmPKE under the
KOSK assumption: (1) an mmPKE for short messages
(mmCipher-PKE) and (2) a hybrid mmKEM-DEM scheme
for arbitrary-length messages (mmCipher-KEM).  Both
achieve full CPA-security, protecting both semantics and struc-
ture of input message vector, thereby preventing the identifica-
tion of identical messages. This represents a key improvement
over [6] and significantly broadens potential applications.

Furthermore, to fit the real-world applications, we intro-
duce a compiler in Remark 4.5, that removes the KOSK
assumption from mmPKE/mmKEM with polynomial-size



number of recipients by leveraging a multi-proof extractable
Non-Interactive Zero-Knowledge (NIZK) proof system.
While [11] observed that the KOSK assumption could be
removed using NIZK, no concrete construction or formal
security proof was given prior to this work.

Bandwidth-optimal mmPKE implementation and eval-
uation. We also provide a C implementation’ of our
lattice-based mmPKE schemes (i.e., mmCipher), together
with computational performance and bandwidth benchmarks.
Compared to the state-of-the-art, the performance of our
mmCipher is independent of the message vector structure, i.e.,
whether the message vector has identical or distinct messages.
For N = 1024 recipients and different security levels (128-
, 192-, 256-bit), our mmCipher-KEM and mmCipher-PKE
achieve a 23-45x and 12-23 x reduction in bandwidth over-
head, respectively, and offer a 3—5 x reduction in computa-
tional cost, compared to [6] with independent messages and
the trivial solution with Kyber. Notably, by using a reconcili-
ation mechanism [56], each public-key-dependent ciphertext
in our mmCipher-KEM is minimized to the size of the encap-
sulated key (e.g., 256 bits), thereby making our construction
asymptotically bandwidth-optimal, with ciphertext size only
4% (resp. 9%) larger than the plaintext size for 128-bit (resp.
256-bit) security levels, when N = 1024 recipients.

Generic construction of adaptively secure mmPKE. As
a bonus contribution, we propose generic constructions that
transform the CPA-secure mmPKE into an adaptively se-
cure mmPKE, achieving security against adaptive corruption
and CCA. Specifically, due to the absence of fully batched
post-quantum mmPKE constructions, there remains a gap in
achieving adaptive security in such settings. For example,
since the public parameters and randomness are shared among
recipients, standard techniques such as the Fujisaki-Okamoto
(FO) transform [32, 63], lossy trapdoor functions [57, 62],
and the BCHK transform via IBE [16, 22, 49] cannot be ap-
plied in the post-quantum mmPKE setting. To this end, we
generalize the Naor-Yung paradigm [51, 60] to the mmPKE
setting. Furthermore, by leveraging the structure of mmPKE,
we can safely merge the two ciphertexts into a single multi-
recipient ciphertext by doubling recipient number from N to
2N. As aresult, only one public-key-independent ciphertext
needs to be generated, significantly reducing overhead. The
detailed construction is provided in Appendix E.

2 Technical Overview

In this section, we provide a self-contained overview of our
techniques for constructing a lattice-based mmPKE. The
discussion is given at a high level to provide an intuitive
understanding of our approach.

We begin by recalling the syntax of mmPKE [11]. Specifi-
cally, the setup, key generation and decryption algorithms of

3Provided in our artifact: https://doi.org/10.5281/zenodo. 17849532

mmPKE are the same as the ones in the standard PKE. For the
multi-encryption, i.e., ct <= mmEnc(pp, (pk;)iciny> (M;)ie[n])-
it takes as input the public parameter pp, a set of public keys
(pk;)ie[n] along with a message vector (m;);e[y] and outputs
a multi-recipient ciphertext ct. The multi-recipient ciphertext
ct can later be extracted to the individual ciphertext ct; for
the public key pk; by some extraction algorithm.

The correctness of mmPKE is that each individual cipher-
text ct; can be successfully decrypted to the message m; by
the corresponding private key sk;.

The full IND-CPA security model of mmPKE is more com-

plicated than standard PKE, since it considers the insider
attack where the adversary is allowed to be some recipi-
ents, i.e., generate some public keys for the challenger to
encrypt the challenge ciphertext. Specifically, the adver-
sary selects ¢ honestly generated (i.e., challenger’s) pub-
lic keys (pk;)ie[s] and £ message pairs (m?,m})iem It also
chooses N — ¢ adversarially generated (i.e., adversary’s) pub-
lic keys (pk;)ie[s:n] (along with the corresponding private
keys (sk;)ie[e.v) when under the KOSK assumption) and
the associated messages (mi),-e[g:N]. It should be infeasi-
ble for the adversary to distinguish the challenge ciphertext
ct — mmEnc(pp, (pk;)iefv]> (M )iee)> (Mi)iegeny) for a ran-
domly chosen bit b € {0, 1}.
Recall: traditional mmPKE from reproducible PKE. Be-
fore delving into the specifics of our approach, it is useful
to recall the traditional constructions of mmPKE from re-
producible PKE [11]. The syntax, correctness and security
definition of reproducible PKE is the same as standard PKE,
except introducing a reproducibility property.

The reproducibility requires that given a ciphertext ct «—
Enc(pp, pk, m;r) which encrypts the message m with the pub-
lic key pk and some randomness r, there exists an efficient
algorithm, called reproduction algorithm, satisfying

Enc(pp,pk’,m’;r) = Rep(pp,ct,m’,sk’, pk’).

It means that the Rep algorithm can use the private key sk’ to
reproduce a ciphertext ct to another ciphertext ct’ for the cor-
responding public key pk’ and different message m’ but with
the same randomness r. For example, for ElGamal scheme,
given a ciphertext (g",m- (g*)") for public key g* and message
m, the other ciphertext for public key gx/ and message m’ can
be reproduced as (g",m’ - (¢")* ) by the private key x'.

Now, let us discuss how [11] constructs an mmPKE from
reproducible PKE. The setup, key generation, and decryp-
tion algorithms of mmPKE are the same as the ones in re-
producible PKE. In multi-encryption, it uses the same ran-
domness r to encrypt each message m; for the corresponding
public key pk; to the ciphertext ct; < Enc(pp, pk;, m;;r) and
concatenate the ciphertexts together as multi-recipient cipher-
text ¢t := (cty,...,Cty).

Notably, if all ct; have a same part due to the randomness
reuse, this part only needs to be computed and communicated
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once in the multi-recipient ciphertext and that is the reason for
the bandwidth and computation savings of mmPKE. For ex-
ample, the part g” of the ciphertext only needs to be generated
once in ElGamal-based mmPKE which can save about half
bandwidth and computation compared to the trivial solution.

To reduce the security of mmPKE to that of the underlying
reproducible PKE, the reduction, under the KOSK assump-
tion, can obtain the private key of other recipients and generate
the multi-recipient ciphertext by reproducing its challenge
ciphertext. For details, we refer readers to [11, Theorem 6.2].

Challenge I: generic construction of post-quantum
mmPKE from XR-PKE. The major limitation of the above
mmPKE [11] is that it does not seem to extend to the post-
quantum setting, especially lattice-based setting. The reason
is that the randomness of the ciphertext in lattice-based PKE
schemes cannot be fully reused as in the discrete-log-based
assumptions. In particular, in encryption scheme based on the
LWE lattice problem, the ciphertext for message m typically
takes the form (Ar + e,,{b,r)+y+ |g/2] - m). For security,
the message error term y cannot be reused across multiple
messages/public keys. Moreover, there are additional repro-
ducibility security issues caused by such error terms.

To get around this issue, we first consider the (extended)
reproducible PKE in a decomposable variant. Specifically, a
decomposable encryption algorithm Enc takes as input the
randomness r := (ro,?) and creates a public-key-independent
ciphertext ctg < Enc'(pp;ro) and a public-key-dependent ci-
phertext ct — Encd (pp, pk, m;rp, ). Note that the randomness
t in key-dependent ciphertext can be set empty, i.e., 1= L,
if it is unnecessary. We view this as a natural formalization
of (extended) reproducible PKE as it is satisfied by all the
constructions that we are aware of.

Therefore, we intend to reuse only the randomness ry
in key-independent ciphertext instead of the entire random-
ness r = (ro,7), so that we can achieve the same savings in
bandwidth and computation as fully reusing the randomness
when constructing mmPKE. We formalize this new primitive,
called XR-PKE, which significantly improves upon repro-
ducible PKE in both syntax and security model.

From the perspective of syntax, to formalize the property
of reproducibility, we introduce an additional input h’, called
hint, into the reproduction algorithm. Looking ahead to our
lattice-based instantiation, the hint there will be used to pro-
vide randomized information on the ciphertext error terms
needed to reproduce the ciphertext for new recipient. We
require that, given a ciphertext ct < Enc(pp, pk, m;ro,?), the
following property always holds

Enc(pp, pk’,m’;ry,#) = Rep(pp,ct,m’, pk’,sk’, h’).

Additionally, we provide an auxiliary algorithm, named hint
generation algorithm, for generating the hint h’. Tt takes as
input the public parameter pp, the reused randomness rg, a
fresh randomness #, and a public-private key pair (pk’,sk’),

i.e.,
h’ < HintGen(pp,ro,?, pk’,sk’).

Regarding the security model, we require that the adver-
sary’s advantage against semantic security remains negligi-
ble, even given the hints associated with the challenge ci-
phertext. More precisely, we introduce a hint query phase
before the adversary output in the security game. In the
hint query phase, after receiving the challenge ciphertext
ct® «— Enc(pp,pk*,m;";ro,?*), the adversary is allowed to
query N hints on the challenge ciphertext by N public-private
key pairs (pk;,sk;)ic[y]. The challenger then computes the
hints as (h;)iepy) < HintGen(pp, ro, (:)ic(v]. (Pk;, Ski)ie[ny)
and returns them to the adversary. The formal definitions of
XR-PKE are provided in Section 4.

We now describe the generic construction of post-quantum
mmPKE from XR-PKE. The setup, key generation, and
decryption algorithms are identical to those in XR-PKE, ex-
cept that the setup algorithm additionally takes the recipi-
ent number N as input. In the multi-encryption algorithm
mmEnc, the randomness is structured as r := (ro,fy,..., 7).
The algorithm first generates a key-independent ciphertext
cto < Enc'(pp;ro), then computes N key-dependent cipher-
texts CAL‘ « Enc? (pp, pk;, m;; ro, f;), and concatenates them as
multi-recipient ciphertext ct := (cto,&l, R &N). For each
recipient, the individual ciphertext ct; := (cto,ct;) can be ex-
tracted from ct and decrypted by the private key sk;.

Finally, we outline the security reduction from our mmPKE
to its underlying XR-PKE. The reduction largely follows
the structure of the above traditional mmPKE [11], except
that, before reproducing the ciphertext, it sends the public-
private key pairs (pk;, sk;)ic[nq to its challenger during the hint
query phase, and receive the corresponding hints (h;);e[n to
complete the reproduction. The detailed proof is given in
Theorem 4.4. We emphasize that the hints and their associated
algorithms are only used in the security reduction, not in real-
world deployment. Both our mmPKE and the traditional
mmPKE rely on the KOSK assumption, and we show how to
explicitly remove this requirement via NIZK in Remark 4.5.

Challenge II: constructing lattice-based XR-PKE. To the
best of our knowledge, no existing lattice-based PKE schemes
currently satisfy the extended reproducibility property. The
primary reason is that they fail to achieve semantic security
of the ciphertext given the associated hints.

To this end, we begin with one of the most efficient lattice-
based PKE schemes, Kyber [19], and show a step-by-step
transformation to XR-PKE. Our approach may be of indepen-
dent interest, as it applies to both plain and ring-based lattice
settings, such as, Frodo [18] and NewHope [4].

At the beginning, a uniformly random matrix A «
U(R,"™") is sampled as the public parameter where R, =
Zq[X1/(X9+1) and R = Z[X]/(X¢ + 1). Then, the public
key is generated by

b:=ATs+e ()



where the private key (s,e) «— U(S}') x U(SY) has coeffi-
cients uniformly randomly sampled from set [—Vv,...,v] for
v « g. To encrypt a message m, the ciphertext can be de-
composed into two parts: a key-independent ciphertext ¢, a
key-dependent ciphertexts u as below,

c:=Ar+e, u:=<b,xr)+y+|q/2] -m, (2)
where randomness are sampled from some distribution ), over
Rasr ", e, < x" y<y,and me {0,1} (interpreted
as a polynomial in & with binary coefficients). To decrypt
the ciphertext (c,u) to the message m, the recipient uses the
private key to compute u —{c,s). Using Equations (1) and (2),
we have

u—-<c,8) ={(—slle,e,||r)+y+]|q/2] m.

where || denotes the usual concatenation. If the PKE is correct,
i.e., [(—s|le,e,||r) + ¥l < |g/4], after rounding the above
term as |u — {¢,s)]», each recipient can obtain the message m
and the decryption error h := (—s||e,e,||r) + y.

Here we use the decryption error £ as the hint to reproduce
the ciphertext. Given a ciphertext (c,u), a new ciphertext
(c,u’) for another public key b’ = ATs’ + €’ and message
m’ using randomness ((r,e,),y") can be reproduced by the
corresponding private key s’ and the hint 4’ as

W i={e,s)+h +1q/2]-m" =W 1) +y +q/2]-m'". (3)
The hint /' is computed via
W ={(-5'||e,e,|[r)+y 4)

using the reused independent randomness ry = (r,e,), the cor-
responding private key (s’,e’) and a fresh dependent random-
ness " = y’. This technique can naturally extend to multiple
hints 4; given multiple (b;,s;) and y;. As a result, we obtain
the reproduction algorithm and hint generation algorithm.
Since the hints (4;);c[y] reveal partial information about
the randomness (r, e, ), establishing semantic security of the
ciphertext is non-trivial. To address this challenge, we rely on
the Matrix Hint-MLWE assumption [31] to precisely measure
how much information on the randomness (i.e., the MLWE
secret) is leaked from the hints and to make that impact on the
hardness of MLWE ciphertext negligible under suitable pa-
rameter setting. Informally, the Matrix Hint-MLWE assump-
tion states that given a hint vector h € K[ where h := Rf +y,
the MLWE instance [I|A]# is still indistinguishable from the
uniformly random values if T and y are sampled from appro-
priate discrete Gaussian distributions. Here, the hint h in the
Matrix Hint-MLWE assumption is composed of the matrix
product of an MLWE secret vector f and a bounded square
matrix R picked by the adversary, masked by a fresh vector y.
From our intuition in XR-PKE, the hints are in the form
of hj :=(¥,,t)+y; for i € [N]. Here, h; is composed of the
inner product of an MLWE secret vector f := (y||e,||r) and

a vector y; := (0|| —s;||e;), which is bounded by |¥;]lsc <V
and chosen by the adversary, and masked by a fresh element
yi. Thus, we instantiate Matrix Hint-MLWE for XR-PKE by
concatenating the hints (k;) ie[v] @s a hint vector h such that
h:= Rt +y where R := ('Y,T)ie[N] and 'y := (yi)ie[n]-

To this end, we generalize the matrix R to a non-square
setting, refine the reduction of Matrix Hint-MLWE from stan-
dard MLWE, and derive new conditions on the parameters,
as presented in Theorem 5.2. To satisfy these conditions, we
carefully choose two discrete Gaussian distributions D, D,
for the randomness (r,e,) and y, respectively, rather than the
uniform distribution over intervals used in Kyber. The latter
appears to preclude an efficient Matrix Hint-MLWE to stan-
dard MLWE security reduction. More details are provided in
Section 5.1 and Section 5.3.

Finally, we employ the reconciliation mechanism from [56]
and the bit-dropping technique as in Kyber [19] to compress
the ciphertext, particularly the key-dependent ciphertexts, as
much as possible. These optimizations bring the bandwidth
cost of our mmPKE construction close to optimal.

3 Preliminaries

In this section, we provide some of the preliminaries needed
for our paper, and refer the reader to Appendix A for more
preliminaries.

3.1 Notation

Let A € N denote the security parameter. For a positive in-
teger n, we denote the set {0,...,n— 1} by [n] and the set
{¢,...,n—1} by [£: n]. For a positive integer ¢, we denote
Z, as the integers modulo g and R, = Z,[X]/(X? + 1) as the
polynomials modulo ¢ and X¢ + 1. For positive integer v, we
write Sy to denote the set of polynomials in &, with infinity
norm bounded by V. The size of the Sy coefficient support is
denoted V < 2v + 1; for example v = 1,V = 2 indicates binary
polynomials. We denote assignment as :=, €.g., x := y assigns
the value of y to x. We denote sampling or output as <, e.g.,
x < D indicates that x is sampled from the distribution D,
and x — A(y) denotes that x is the output of probabilistic poly-
nomial time (PPT) algorithm A given input y. Particularly, we
write x < S when x € S is sampled uniformly randomly from
the finite set S. We denote the uniform distribution on a set
S as U(S). We denote poly(A) as polynomial functions such
that poly(A) = |J,.ey O(A°) and neg(A) as negligible func-
tions such that neg(A) = .oy o(A ™). We denote rounding
operation as |-], e.g., |a] rounds the result to the nearest inte-
ger of a. For any two subset X, Y of some additive group, we
define —X = {—x:xeX}and X +Y ={x+y:xeX,yeY}.

Vector and matrix. We denote bold lowercase letters as vec-
tors of polynomial elements, e.g., u € K", bold uppercase let-
ters as matrices of polynomial elements, e.g., U e ?{q’”X”, low-



ercase letters with an arrow as vectors of integers or reals, e.g.,
d € 7y, and uppercase letters as matrices of integers or reals,
e.g., A€ Rg™". For a polynomial element, e.g., a € Ry, we de-
fine its negacyclic matrix as A := T'(a) € Z3*“. Similarly, for
a polynomial vector and matrix, e.g., b€ X" and D € R"*",
we define their negacyclic matrix as B := I'(b) € Z"¢*? and
D:=T(D)e Z;"dx”d , respectively, where each polynomial
element in the vector and matrix is replaced by its negacyclic
matrix. For the vectors over integers and polynomials, we
denote their inner product as {-,-), e.g., {d,b) and (a,b). For
a vector a (or @), we write |a|, |al|;, and |a]|, to denote its
{>-norm, ¢;-norm and /.,-norm, respectively. For a matrix
A (or A), we write |A[, |A; and |A | to denote its matrix
2-norm (largest singular value), matrix 1-norm (maximum col-
umn £1-norm), and matrix co-norm (maximum row £;-norm),
respectively. We write Gpin(A) and Gpax(A) to denote the
smallest and largest singular values of A, respectively.

3.2 Lattice Preliminaries

We show the definition of the standard lattice-based problem.
Additional lattice preliminaries are given in Appendix A.1.

Definition 3.1 (MLWE Problem). Let m,n > 0 be positive
integers. Let % be an error distribution over R, A «
‘Zl(ﬂ%’"x"). Letr < be a secret vector and u < U(R,") be
a uniformly random vector. The MLWE problem, denoted by
MLWEg .4, asks an adversary A to distinguish between
(A, [L;|A]r) and (A,u). We say MLWEg ,, .4, is hard if
for any PPT adversary A4, the following advantage of 4 is
negligible in A,

Advml;;/ﬁ(l) =

Pr [b =1 ‘ A;;_ euﬁ(l&”,l [XI’:,BI’I:]}_) * ]

St sl |

where para = (R, m,n,q,%).

3.3 Multi-Message Multi-Recipient Public Key
Encryption

Basically, an mmPKE scheme allows a sender to encrypt a
set of messages to a set of public keys. We generalize the
syntax of decomposable mPKE in [39] to mmPKE as follows.
Like [39], our definition of mmPKE can capture all kinds of
mmPKE as well.

Definition 3.2 (Decomposable Multi-Message Multi-Recipi-

ent PKE). A decomposable mmPKE scheme with a public-

private key pair space X, a message space M, a multi-

recipient ciphertext space C, and an individual ciphertext

space (s consists of the following algorithms:

* pp mmSetup(l’”,N): On input a security parameter 1*
and a number of recipients N, it outputs a public parameter

Pp.

* (pk,sk) < mmKGen(pp): On input a public parameter pp,
it outputs a public-private key pair (pk,sk) € K.

* ct:=(cto, (ct))icpv]) < mMmEnc(pp, (Pk;)icv, (Mi)ic [y Fos
(f1)iern7) : On input a public parameter pp, N public keys
(pk;)ie[n]> N messages (m;)iev], (N + 1) randomness ro,
(71)ie[ny» it can be split into two algorithms:

— ctg < mmEnc'(pp;ro): On input a public parameter pp,
and a randomness ro, it outputs a public-key-independent
ciphertext ctp.

- ct; < mmEnc?(pp, pk;,m;;ro,7;): On input a public pa-
rameter pp, a public key pk;, a message m; € M, and
randomness rg, f;, it outputs a public-key-dependent ci-
phertext ct;.

e ct; := (ctp,ct;)/L — mmExt(pp,i,ct): On input a public
parameter pp, a multi-recipient ciphertext ct € C, and an
index i € N, it deterministically outputs the individual ci-
phertext ct; € (; or a symbol L to indicate extraction failure.

e m/L <« mmDec(pp,sk,ct): On input a public parameter
pp, a private key sk, and an individual ciphertext ct € (,
it outputs a message m € M or a symbol L to indicate
decryption failure.

Correctness. We adopt the correctness definition of mmPKE
in [6]. Let {: N — [0,1]. We say an mmPKE scheme is
C-correct, if for all A, N € N and i € [N], message m; € M, the
following probability is at most {(A),
pp «— mmSetup(lx,N);
. Jie[N]: Vi€ [N]: (pk;,ski) < mmKGen(pp); .
mmDec(pp. ski,ct;) # mijct <~ mmEnc(pp, (pk;) e, (Mi)ien] )
ct; < mmExt(pp,i,ct)
Security. Following [11], we formalize the security model
for mmPKE. In contrast to the model in [6], our definition
captures full CPA (or CCA) security. Briefly, we do not im-
pose the restriction that the two challenge message vectors
must have identical structures.

Let mmPKE be an mmPKE scheme, let N, A be integers.
We define the mmIND-CPAKOSK security game in Figure 2
and defer the remaining security models to Appendix A.3,
where we also provide a simple extension of our model to the
security model in [58].

We say mmPKE is mmIND-CPAKOSK secure if for all PPT

adversary 4, the following advantage AdvmmLNK%,%?QKOSK (A)

is negligible with A,
_~paKOSK 1
PrIGAMETTRRSTA ™™ () = 1]~ 5.

We say A4 wins if the game outputs 1.

4 Extended Reproducible Public Key Encryp-
tion

In this section, we provide the formal definition of XR-PKE,
significantly extending on reproducible PKE in [11], and then
show how it can be used to build an mmPKE.



Game GAMETMIND-GPA'® 3

(Ao, A1, ) — A

pp < mmSetup(1*,N)

(£st) < Ao(pp)

Vie [€], (pk;,sk;) < mmKGen(pp)

(M2 mD)icqers (m)ieqeny» (PKi Skiieev st) «— i ((Pk;)ieqe)» st)
0

req: Vie [£], |m?| = |m]]|
req: Vie [(: N], (pk;,ski) € K
b {0,1}

ct — mmEnc(pp, (pk;)ie(v], (M)iefe (Mi)ieqeny)
b — Z(ctst)
return [b =]

Figure 2: The mmIND-CPAKOSK security game for mmPKE.

Definition 4.1 (XR-PKE). A (decomposable) XR-PKE with
a public-private key space %, a message space M, two
randomness distributions (D, Dy) for key-independent/key-
dependent parts, respectively, and a ciphertext space (; con-
sists of the following algorithms:

* pp«— Setup(l",N): On input a security parameter 1* and
a reproducibility count N, it outputs a public parameter pp.

* (pk,sk) < KGen(pp): On input a public parameter pp, it
outputs a public-private key pair (pk,sk) € X.

e ct:= (cto,&) «— Enc(pp,pk,m;ro,f) : On input a public
parameter pp, a public key pk, a messages m, two random-
nesses (ro, ), it can be split into two algorithms:

- cty — Enc (pp;ro): On input a public parameter pp, and
a randomness ro sampled from the distribution ry < 2,
it outputs a public-key-independent ciphertext ctg.

— ¢t « Enc® (pp,pk,m;rp,7): On input a public parameter
pp, a public key pk, a message m € M, and random-
ness rg, ¥ where the latter is sampled from distribution
t < Dy independently, it outputs a public-key-dependent
ciphertext ct.

* m/L < Dec(pp,sk,ct): On input a public parameter pp, a
private key sk, and a ciphertext ct € (%, it outputs a message
m € M or a symbol L to indicate decryption failure.

* (hi)ievy < HintGen(ro, (pk;,ski)ie[n: (Fi)iefv): On input
a randomness ryp sampled from the distribution rg < 7,
N public-private key pairs (pk;,sk;);e[n) € X, and N ran-
domnesses (F;)ic(n] Where each of them is sampled from
the distribution ; «<— Dy independently, it outputs N hints
(hi)iemv-

e ct//1 <« Rep(ct,m’,pk’,sk’,h’): On input a ciphertext
ct € G, a message m’ € M, a public-private key pair
(pk’,sk’) € K, and an associated hint h’, it outputs a re-
produced ciphertext ct’ or a symbol L to indicate repro-
ducibility failure.

Correctness. Let { : N — [0, 1]. We say a XR-PKE scheme
is {-correct, if for all A, N € N, the following probability is
at most (1),

pp <« Setup(lk,N);
(pk,sk) < KGen(pp),m «— M
(ro,f) < Dy x Dy;
ct — Enc(pp, pk,m;rg,?)

Pr| Dec(pp,sk,ct) #m

Extended Reproducibility. We first define extended re-
producibility game in Figure 3. We say that PKE is ex-
tended reproducible if for any A,N € N, there exists PPT
algorithms HintGen and Rep, called hint-generation algo-
rithm and reproduction algorithm, respectively, such that
Gamepyt gep.yv (M) always outputs 1. More precisely, the prob-

ext-repr

ability of Pr{Gamepyg g, v(A) = 1] = 1 holds.

ext-repr
Game GamePKE’Rep’N(k)

pp < Setup(lx,N)
(pk*,sk*) < KGen(pp)
m* «— M
(r(),?*) — D x Dy
ct* « Enc(pp, pk*,m*,ro, #*)
forallie [N]
(Pk;»ski) < KGen(pp)
m; «—
P — Dy
end for
(hi)ierw) < HintGen(ro, (pk;, ski)iefnys (Fi)ien)
if V i € [N], Enc(pp,pk;,mi;ro,f;) = Rep(ct*,m;,pk;,sk;,h;)
then
return 1
else
return 0
end if

Figure 3: The extended reproducibility game for XR-PKE.

Security. To fit the property of extended reproducibility,
we modify the IND-ATK security of standard PKE to
IND-ATK*R for ATK = {CPA, CCA}. Roughly speaking, we
say an XR-PKE is secure if the hints generated by HintGen
would not help the adversary to break the security of the
challenge ciphertext.

Specifically, let PKE be an XR-PKE and we pro-

vide the security game of PKE in Figure 4. With the

game GameLNKDlgfvT’gng(k), we say PKE is IND-ATK*R ge-

cure if for all PPT adversary A, the following advantage
AdvINDATI™ () is negligible with A,

~ XR : XR
‘Pr | GAMERRATIS" (1) = 0] - Pr[ GAMERGATIS () = 0] ’ .

Remark 4.2. Our definition of XR-PKE actually captures the
case of original reproducible PKE in [11]. When describing
the original reproducible PKE, we can make the hint gener-
ation algorithm HintGen output nothing, i.e., set each of the
output hints h; as an empty symbol .
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Game GAMEPNRATIC" (1) for ATK = {CPA,CCA}

(Ao, A1, ) — A

pp < Setup(1*,N)

(pk*,sk*) < KGen(pp)

if ATK=CPA do (m,m,st) — Ay(pp,pk*)

if ATK =CCA do (m#,m¥,st) — 47°% (pp, pk*)
req: [mg| = |m¥|

(o, 7*) «— D; x Dy

ct* « Enc(pp, pk*,m}:ro,?*)

if ATK = CPA do ((pk;,ski)ie[n].st) < Ar(ct*,st)
if ATK =CCA do ((pk;,ski)icfv.st) < A% (ct*,st)
req: Vi€ [N], (pk;,ski) € K

ViE[N]Z?,%—@d

(hi)iepvy < HintGen(ro, (pk;, ski)ieni, (Fi)ie[n1)

if ATK=CPA do ' — ﬂz((h[)ie[N],St)

if ATK=CCA do b’ < 2,°° ((h;)ienys st)
return b’

Oracle Decy(ct) Oracle Dec (ct)
return m < Dec(pp,sk*,ct) req: ct # ct*
return m < Dec(pp,sk*,ct)

Figure 4: The IND-ATK*R security game for XR-PKE with
ATK = {CPA,CCA}.

4.1 Generic Construction of mmPKE from
XR-PKE

In this subsection, we show the generic construction of
mmPKE from XR-PKE.

Construction 4.3 (XR-PKE—mmPKE Compiler). For
ATK e {CPA,CCA}, let PKE = (Setup,KGen,Enc =
(Enc',Enc?),Dec) be a (decomposable) IND-ATK*R se-
cure XR-PKE with public-private key space X and two
randomness distributions (2, Dy) for key-independent/key-
dependent parts, respectively. Let Compress, Decompress be
the compression and decompression algorithms which can
be ignored if there does not exist suitable algorithms. Our
compiler Comp™™FPKE[PKE] is defined in Figure 5, which
outputs an mmIND-ATKKOSK secure mmPKE.

Correctness. It is not difficult to see that correctness of our
Construction 4.3 follows if the input PKE is correct and the
output by decompression algorithm Decompress can still be
successfully decrypted with overwhelming probability.

Security. Some intuitive discussion on the security reduction
was provided in Technical Overview (Section 2). At a high
level, since the provided hints do not help the adversary (or
reduction) to break the security of the underlying XR-PKE,
we can establish the security of its corresponding mmPKE.
Formally, we have the following theorem, the proof of which
is given in Appendix F.1.

Theorem 4.4 (Security). For ATK € {CPA,CCA}, if PKE is
IND-ATK*R secure and satisfies extended reproducibility, our

mmPKE «— Comp™™PKE[PKE] output by Construction 4.3
is mmIND-ATKKOSK secure.

Remark 4.5 (Removing the KOSK Assumption). We also
present a generic KOSK compiler that can eliminate the re-
liance on the KOSK assumption for both our post-quantum
and traditional mmPKE schemes, e.g., [11, 12, 43]. Detailed
construction with its formal proof, and an instantiation for
our lattice-based mmPKE are given in Appendix C.

5 Lattice-Based XR-PKE

In this section, we construct lattice-based XR-PKE which
can be used to build efficient mmPKE/KEM via the compiler
introduced in the last section.

Our constructions are based on the Matrix Hint-MLWE
assumption [31], a variant of the MLWE assumption gen-
eralized from the Hint-MLWE assumption [42] and can be
reduced from the standard MLWE via appropriate param-
eters. Specifically, we first present a more general Matrix
Hint-MLWE along with our refined reduction, followed by
an instantiation for our XR-PKE. We then detail the construc-
tions. Finally, we specify the parameter choices and present
a theoretical analysis of our mmPKE, comparing it with the
trivial solution with Kyber.

5.1 Refined Matrix Hint-MLWE Assumption

In this subsection, we generalize Matrix Hint-MLWE to a
non-square version, refine its reduction from standard MLWE
by introducing a sampleability condition missing in prior
works, and then derive a new parameter setting. Next, we
provide an instantiation of Matrix Hint-MLWE to establish
the CPA security of our XR-PKE introduced in the following
subsection. We start by generalizing the definition of Matrix
Hint-MLWE in [31].

Definition 5.1 (Matrix Hint-MLWE, generalized [31]). Let

m, n, ¢ be positive integers. Let $,%o,%1 be distributions

over R{x(mtn) gmin Rl respectively. The Matrix Hint-

MLWE, denoted by MatrixHint-M LWE%V";’“:’%XO, asks a PPT

adversary A4 to distinguish the following two cases:

1. (A, [Ln]A]r,R.h) for A — U(R™"), ¥ < %o, ¥y < X1,
R« S,andh:=Rr+y.

2. (A,w,R,h) for A — U(R™"), u < UR"), T < Xo,
y<—%i,R— S, andh:=Rr+y.

We say MatrixHint-M LWE%’;”‘Z%XO is hard if for any PPT

adversary 4, the following advantage of 4 is negligible in A,

A — U(RS™"),x < X0,Y < %1,
Prib=1

AdeatrixHint-MLWE(}L) = R<— S,h:= Rr+y
—Prib=1

para, A4

b« A(A,[L,|A]r,R,h)
A(_ u(quXn)’
r—xo.y < xR,
h:=Rr+y,u« UR"),
b A(A,u,R.h)



mmSetup(1*,N)

mmEnc(pp, (Pki)ie[N] > (mi)ie[N])

mmExt(ct, k)

Input:
« security parameter 1*
* recipient number N
pp — Setup(1*,N)

Input:

return (pk,sk)
end for

return ct

¢ public parameter pp
» aset of public keys (pk;)ie[n]
* aset of messages (m;)ie[n]

return pp oD
cto < Enc'(ppro)
mmKGen(pp) cto « Compress(cto)
Input: public parameter pp forie [N]
(pk,sk) < KGen(pp) #; — Dy

ct; < Enc(pp, pk;, m;iro, 1)

ct:= (cto, (Cti)ieqn))

Input: multi-recipient ciphertext ct, index k
req: ke [N]
(cto. (Cti)ieny) < et
return ct; := (cto,cty)

mmDec(pp, sk, ct)

Input:
* public parameter pp
* private key sk
« individual ciphertext ct
(&(),&) «—ct
cty < Decompress(ctp)
m < Dec(pp, sk, (ct},ct))
return m

Figure 5: Generic constructions of mmIND-ATKXOSK mmPKE output by the compiler Comp™™PKE[PKE] for ATK e

{CPA,CCA}.

where para = ((R,m,n,q,%0), (€.X1,5)).

We slightly adapt the notation towards our needs. In [31],
the public matrix R is defined only for the square case (i.e.,
¢ = m+ n). Here, we relax this requirement and generalize R
to a rectangular form with ¢ not necessarily equal to m + n.

Theorem 5.2 (Hardness of Matrix Hint-MLWE). Let
m,n,q,l be positive integers. Let S be a distribution
over R*+1)  Let B> 0 be a real number such that
IR|> < B where R := T'(R) for all possible R « §.
Let 6¢,01,0,0 > 0 be real numbers. Let ¥, Yy be a
positive definite symmetric matrices over R(m+mdx(m+n)d
and RY* yespectively, such that |Z7'| < é and
0

HZ;lH < é~ Let %o := @Z(ern)d,ﬂ’ X1 = @Zfdy\/fy’ X:=
Dym+ma 5 be distributions over Rt QL RMEN pespec-
tively. There exists an efficient reduction from MUIWEg ., 5 o
to MatrixHint-M LWE%:Jfa,q,XO that reduces the advantage by
at most 2¢, if the sampleability condition

1 1 B

(1+8)c2+8 ~of of

®)

M, and the convolution condition

6= +/1+1/8-me(zmmd)

where &g :=

(6)

are satisfied.
Specifically, for any PPT adversary A against the

. . X108
MatrixHint- M LWER,m,n,q,xO

adversary B against the MIMWEgy, ., .o assumption, such
that

assumption, there exists a PPT

MatrixHint-MLWE MLWE
Adearao,ﬂl A) < Adearal,fB

(A) +2¢

Where parap = ((Ram,mq,xo),(&x,l,é‘)) and para; =

(Rﬁ m,n,q, X)
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The proof is provided in Appendix F.2, which presents a
refined version of [31].
Matrix Hint-MLWE Instantiation for XR-PKE. We first

define the distribution .S such that matrix R can be sampled
as follows,

0 -s; e
R:= : : c Kéx(l-&-m-ﬁ-n) (7
0 —s/, e,

where s; — U(SY), e; — U(SY) for each i € [/].

Then, we transfer the polynomial matrix R to its integer
matrix R := [(R) e Z/*(+m+n)d by qubstitute the polyno-
mial elements in each vector s;, e; by its negacyclic matrix
I['(-) as follows,

0 T(-sp)  IYep)

0 T(-si_1) Tler_1)

To bound the norm of the matrix R, we use the inequality

IR| < /IR[1 - |R]0. where |R]; < Vid and [R]o < V(m+
n)d. Thus, ||R|*> < B, where

B:=((m+n)(dv)? (8)

Last, we define the matrix £, € RU+m+m)dx(1+m+n)d gpq
¥y € RUx! pelow,

o1y 0 )
Y= , Xy:=01ly. 9
1 ( 0 Soliminya y 1ea ©
We set 61 > Gp so that we have £, = max(Z;, ) < 4
1 | 0y 01 S0
and [Z] < g



5.2 Construction of XR-PKE

In this subsection, we present the lattice-based construction
of XR-PKE. At a high level, we leverage the decryption error
as a hint to enable ciphertext reproducibility. To this end,
we sample the ciphertext randomness from carefully chosen
Gaussian distributions, allowing us to reduce the security
of our XR-PKE scheme to the hardness of the Matrix Hint-
MLWE problem.

Construction 5.3 (XR-PKE from Lattices). Let A be a se-
curity parameter, m = m(A), n = n(A), d =d(A), g = q(A),
N = N(A), v =v(A) be positive integers. Let 6y = Go(A),
61 = 01 () be Gaussian width parameters. For the message
space M = {0,1}9, the detailed construction is shown in
Figure 6. We summarize the notations in Table 2.

Table 2: Summary of main notations used in our lattice-based
XR-PKE/KEM.

Notation| Description
A security parameter
C correctness parameter

N # of recipients

m,n # of rows of A, # of columns of A
q system modulus
d ring dimension of ® = Z[X]/(X7 + 1)
l dimension of hint vector h in Matrix Hint-MLWE
v {-norm bound on private key (s;, ;)
v support size V < 2v + 1 of private key (s;,e;)
X private key distribution
Go Gaussian width of (r,e,) in the ciphertext
X1,01 distribution and Gaussian width of y in the ciphertext
7.0 distribution and Gaussian width of secret in MLWE
’ (hardness equal to Matrix Hint-MLWE)
20, Z1 distribution and covariance matrix of secret in Matrix

Hint-MLWE

B square of matrix 2-norm bound on R := I'(R)

S distribution of R

dy # of bits of each coefficient in key-independent ciphertext
d, # of bits of each coefficient in key-dependent ciphertext

Extended Reproducibility. We show the extended repro-
ducibility of our construction as follows. The proof is pro-
vided in Appendix F.3.

Theorem 5.4 (Extended Reproducibility). For any positive
integer N, our PKE in Construction 5.3 is extended repro-
ducible. More precisely, for the extended reproducible game
in Figure 3, the probability of Pr[Gamepyg e, y(A) = 1] =1
holds.

Correctness. We set Compress(x) = |x mod g],s, and
Decompress(x) = |x mod 29],. Here, we mainly consider
the case that the (key-independent) ciphertext is compressed
and then decompressed before the decryption, as done in
mmPKE compiler of Construction 4.3.

We show the correctness of our construction as follows.
We will select parameters in Section 5.3 to make our con-
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struction {-correct with { < 27128, The proof is provided in
Appendix F.3.

Theorem 5.5 (Correctness). Let e,s,r,e,,y be random vari-
ables that have the corresponding distribution as in Construc-
tion 5.3. Denote C as

Pr[ [[<e,r) +y—(s.ew) —cv+(s.¢0)] . > 19/4] |

where ¢, := ¢ —||e¢ mod ¢4, |4 € R, and c, := ¢ — ||c mod
q]zdv]q € R. We say our Construction 5.3 is C-correct.

Security. We show that our Construction 5.3 is IND-CPAXR
secure if the MLWE assumption and the Matrix Hint-MLWE
assumption are hard. The proof is provided in Appendix F.3.

Theorem 5.6 (Security). Let m,n,d,q,N,v be positive in-
tegers parameters. Let 6,060,061 be Gaussian width pa-
rameters. Let the positive real matrices ¥1 and Xy be as
Equation (9). Let the distribution S and the bound B be
as Equation (7) and (8) respectively. Let the distribution
X0 = @z<m+n+l>d,ﬁ’ X1 = Q)ZNd,\/fy’ %= U(Sy). Sup-
pose Equation (5) and (6) hold.

Our PKE in Construction 5.3 is IND-CPAXR secure un-

T N.x1.S
der the MLWEg . gz and MatrixHint-MLWE%>,

assumptions. More precisely, for any PPT adversary A, there
exist PPT adversaries By, By against MLWE assumption and
Matrix Hint-MLWE assumption, such that

. XR T
AdeNKDEgv’?Q ) = Adv&&!‘(}”%ﬂ (A) + Adv';’i,?;']'fg'”t MLWE )
((R,m +

where parag := (R,n,m,q,X) and para; :=
Ln,q,%0), (N,X1,5)).

Remark 5.7 (Lattice-based XR-KEM (mmKEM)). By apply-
ing the reconciliation mechanism [56] (see Appendix A.2) to
our XR-PKE (mmPKE), we can minimize the key-dependent
ciphertext to the length of the encapsulated key (e.g., 256
bits), thus achieving an asymptotically bandwidth-optimal
mmKEM that can be extended to an mmPKE for arbitrary-
length message via a Data Encapsulation Mechanism (DEM),
as in [58]. Detailed constructions are provided in Appendix B.

5.3 Parameter Setting

In this subsection, we discuss parameter selection for the
above constructions. Then, we theoretically demonstrate the
performance of the mmPKE/mmKEM built from our con-
structions, compared to the trivial solution with Kyber.

As discussed before, we need to guarantee that our lattice-
based constructions of XR-PKE/KEM satisfy the follow prop-
erties:

* MLWEg ;.45 problem is hard (at 128-bit, 192-bit, and
256-bit security).

* MatrixHint-MLWER ™"

192-bit, and 256-bit security).

problem is hard (at 128-bit,



Setup(1*,N) KGen(pp)

Input: Input: pp=A
* security parameter 1* (s,e) — U(SY) x U(Sy)
* recipient number N b:=ATs+e
A — URM) return (pk:=b,sk:=s)
return pp:=A

Enci(pp; ro) Dec(pp, sk, ct)

Input: Input:

* public parameter pp = A
e private key sk = s

* public parameter pp = A

* randomness ry = (r,e,)

c:=Ar+e, * ciphertext ct = (c,u)

return cty:=c u' :=|u mod2%],
m:=|u' —{c,s) mod2%],
return m:=m

Enc(pp, pk,m)
Input:

HintGen(pp, ro, (pk;, ski)ie[n)

* public parameter pp = A

* public key pk =b

Enc?(pp, pk.m; g, F)

Input:
* public parameter pp = A
* public key pk =b

* message m * message m = me {0,1}¢

ro:=(r,e,) <« Q)go X Q)g;) * randomness ry = (r,e,)
cto — Endl(pp;ro) * randomness f =y
fi=y— D, c:=<(bry+y+ 4] -m
ct < Enc’(pp, pk,m; o, ) w:=lc mod gl
return ct := (cto,ct) return ct:=u

Rep(ct,m’, pk’,sk’,h’)

Input:

Input:
* ciphertext ct = (c,u)
* message m’ = m’ € {0,1}¢
* public-private key

* public parameter pp = A
* randomness ry = (r,e,)
* a set of public-private key pairs

(pk;»ski)iepvy = (bisSi)ie[n] (pk',sk’) = (b'.s")
forall i  [N] * hinth’ = A’
e D, im ey 4]
ei:=b;—ATs; u' :=|c’" mod qlyd,
hii= (r,e;) — (eu,80) + i return ct’:= (c,u’)
end for

return (hi)ie[N]

Figure 6: An IND-CPAXR secure lattice-based XR-PKE.

* {-correctness holds with { <2128,

To estimate the practical hardness of MLWE problem against
known attacks, we follow a strategy similar to Kyber [19] and
use the Lattice Estimator (a.k.a. LWE Estimator [3]). For
MatrixHint-MLWE, we follow a strategy as in the original
Hint MLWE paper [31, 42] and estimate the practical hard-
ness of the related MLWE problem. The parameters of our
constructions are summarized in Table 3.

Table 3: Parameter set for our lattice-based constructions of
XR-PKE and -KEM, aiming at {-correctness with { < 27128,

N [logq| d m n (V,V) (dy,dy) (0p,01) pg-sec
210 25 256 4 4 (1,3) (10,2) (15.9,368459) 128
210 25 256 7 7 (1,2) (11,2)(15.9,488797) 192
210025 256 9 9 (1,2) (11,2)(15.9,554941) 256

We now present a step-by-step procedure for selecting the
parameters. First, we choose v = 1, fixing the ¢4 -norm of
S and the private key. We choose ternary (Vv = 3) support
{0,+1} for S in the 128-bit parameter set, and binary (V = 2)
support {0, 1} for 192- and 256-bit parameter sets.

Second, we fix & = 1 in Theorem 5.2. Then, we need
to guarantee that 2¢ < 27128 and the requirements in Equa-
tion (5) and (6) hold. By Lemma A .4, we set G := +/2-
V/In(2d(m +n)(1+1/g))/m so that 6 = /2 - ne(ZmMd)
holds. Then, we set 0y := 24/6%2+8/2, and G :=

12

2\/7«/62+80 2 Where 8 := +/(In(2(m+n)d) +4)/n so

that 202 5 > 2 +3 B holds. Here, we set the bound B as in

Equation (8), i 1.e., B. N(m+n)(dv)>.

Third, we set n = m and d = 256. Thus, the encapsulated
key space and the short message space M = {0,1}>° is the
same as the one in Kyber.

Fourth, we pick the recipient numbers N (e.g., N = 1024)
for usability. By Lemma A.3, we can derive the tail bound of
the Gaussian distribution to guarantee that the £,,-norm bound
Bpke of the following term in Theorem 5.5 for XR-PKE holds
except with negligible probability, i.e., 27128,

Beke 1= [{e,r)+y—{s,e,) +{s,c) — v, < %
where (s,e) < U(S]) x U(SY), (r.e,) < D5, x D, y
Ds,, €y :=¢—||€]ra g, and ¢, := ¢ — “C-Izdv]q. Thus, we

can bound the £,;-norms by | ¢, [ < g/2%*!, and ¢, | <
q/2%*!, respectively. Similarly, we can derive the tail bound
of the £o,-norm Pgep in Theorem B.2 as well.

Fifth, towards XR-PKE, we fix d, = 2 in advance to com-
press the size of key-dependent ciphertext as much as possible.
Note that the sizes of key-dependent ciphertext in the con-
structions of XR-KEM and XR-PKE are both independent
with the value of reproducibility count N, i.e., |ct| = d/8 = 32
Bytes and |ct| = d - d, /8 = 64 Bytes, respectively.

Sixth, we begin by setting the modulus ¢ ~ 2!> and
d, :=|logq|. We compute n,m with % := U(Sy) and ¥, := Dy
by the LWE estimator [3] to guarantee practical hardness of



MLWER jm,q.5 and MLWE g 4 v g,y at 128-bit, 192-bit, and
256-bit security levels. The latter MLWE assumption stems

from MatrixHint-M LWE?éﬁfN’n’q’XO problem via the reduc-
tion in Theorem 5.2. As earlier works [19, 29, 30, 46], we
use root Hermite factor (RHF) around 1.0045, 1.0029, 1.0023
to measure the practical hardness of MLWE at 128-bit, 192-
bit, and 256-bit secure level, respectively. With the specific
n,m,N,q, we compute the {,-norm bound  and compare 3
with [¢/4]. We increase the modulus ¢ by factor 2 and repeat
computing the parameters until f < [%].

In the end, after finding the smallest modulus ¢, we
show how to find the smallest d,, in the compression func-
tion of mmPKE constructions which can compress the key-
independent ciphertext as much as possible. We first change
d, = 1 and increase d,, until B < [g/4] holds with overwhelm-
ing probability. We provide a script to compute a tight upper
bound on { as part of our implementation code.

Following the metric in [39], for CON € {KEM, PKE}, we
define

N- ’CtKyber| Neso |CtKyber|

o ~ CON ~ CON
|ct§ON| + N - ‘ct ‘ ‘ct

kCON -

com ?

which measures the compactness of our mmPKE/mmKEM
compared to the trivial solution via Kyber in the asymptotic
regime. Notably, we achieve significant improvements, with
KKEM — 434,49 and kPXE = 12,17,24.5 when compared to

com com

Kyber512, Kyber768, and Kyber1024 [19], respectively.

6 Implementations and Benchmarks

To evaluate the performance of our constructions, we have
implemented the lattice-based mmPKE and mmKEM built
from our XR-PKE and XR-KEM, named mmCipher-PKE
and mmCipher-KEM, respectively, in portable C *. Further
details of our implementations and benchmarks are shown in
Appendix D.

As a baseline comparison, we compare our plain C im-
plementations to the official C reference implementation of
(CPA-secure) Kyber® with the standard parameter settings of
ML-KEM-512, ML-KEM-768, ML-KEM-1024 to achieve 128-
bit, 192-bit, 256-bit security, respectively [53, Table 2]. We
compare this baseline to our C implementation using the same
compiler and target system, an AMD Ryzen 7 4850U Linux
laptop running at 3.3 GHz (with overclocking disabled) for
1000 repetitions. Average timing is reported.

In mmPKE/mmKEM, encryption/encapsulation is the most
costly operation as its cost increases with the number of recip-
ients N. Our main contribution is to significantly reduce this
cost. We summarize the results on the encryption/encapsula-
tion operation comparing with CPA-secure Kyber (ML-KEM)

4Provided in our artifact: https://doi.org/10.5281/zenodo.17849532
SKyber C reference code (ref): https://github.com/pg-crystals/kyber

in Figure 7 and Figure 8, while deferring the results for other
operations to Appendix D.

As predicted by the theoretical analysis in Section 5.3,
for N = 1024 recipients, among different security levels,
mmCipher-KEM and mmCipher-PKE achieve a 23-45x and
12-23 x reduction in bandwidth, respectively. In particu-
lar, for N > 16 recipients, our constructions already demon-
strate a significant improvement (by a factor of over 5). Fur-
thermore, for N = 1024 recipients, the bandwidth of our
mmCipher-KEM is only 4-9% larger than the plaintext size
(near optimal bandwidth).

Regarding the computational cost of encapsulation/encryp-
tion, for N = 1024 recipients, among different security levels,
our mmCipher- KEM and mmCipher-PKE offer 3-5 x reduc-
tion. For N > 4, our constructions are already faster than
the baseline. This is because the most expensive operation,
i.e., generating the key-independent ciphertext, is amortized
across recipients.

21 \

210 \\\

ML-KEM-1024: 1568
ML-KEM-768: 1088
ML-KEM-512: 768

27{ —— mmCipher-KEM-256
—8— mmCipher-PKE-256
26| —<= mmCipher-KEM-192
—a— mmCipher-PKE-192
s mmCipher-KEM-128
21 _~ mmCipher-PKE-128

Ciphertext bytes / Recipient

mmCipher-PKE: 65..67

mmCipher-KEM: 33..35

Plaintext (optimal ciphertext size) : 32
20 21 72 P 24 25 26 77 78 29 2l
Number of Recipients

Figure 7: mmCipher and ML-KEM total ciphertext output
in bytes when sending N 256-bit messages (or keys) to N
recipients, divided by the number of recipients.

—4— mmCipher-KEM-256
—— mmCipher-PKE-256
—<¢— mmCipher-KEM-192
—a— mmCipher-PKE-192

mmCipher-KEM-128
~&— mmCipher-PKE-128
—&— Kyber/ML-KEM base

(O]

IS

N

1.00 x

-

Encryption cycles: Kyber / mmCipher
w

20 21 22 23 24 25 25 27 28 29 210
Number of Recipients

Figure 8: mmCipher encryption/encapsulation speed when
sending N 256-bit messages (or keys) to N recipients, relative
to ML-KEM at the same security level.


https://doi.org/10.5281/zenodo.17849532
https://github.com/pq-crystals/kyber

Ethical Considerations

Our work proposes more efficient post-quantum multi-
recipient encryption techniques, which may impact several
stakeholders, including end-users of secure communication
systems, developers deploying PQC, and broader society.
While stronger and more scalable encryption improves pri-
vacy and security, it also carries inherent dual-use concerns
because the same capabilities may be misused to conceal
harmful activity. Recognizing these implications, we assess
our contributions primarily as enhancing the practical adop-
tion and performance of post-quantum protection in large-
scale systems, while acknowledging the possibility of misuse
that exists for all cryptographic primitives.

All experiments were conducted using synthetic data in
isolated environments, without interacting with real users, ex-
ternal systems, or production networks. No artifacts that could
meaningfully aid malicious behavior are released. We believe
publishing this work is ethically justified because it promotes
transparency in cryptographic design, supports secure sys-
tem development, and informs the community about both the
capabilities and limitations of emerging post-quantum mecha-
nisms. Some of this ethical reflection is necessarily post hoc,
and we hope it will help guide future research on the broader
societal impact of foundational cryptographic tools.

Open Science

Artifact URL: https://doi.org/10.5281/zenodo.17849532.

We provide self-contained Python and portable C imple-
mentations of the scheme (with some aspects that may need
further optimization for production-level deployment). The
artifact also contains the code used for generating the com-
parative benchmarks reported in this work, source code for
ZK proof experiments using the LaZer Library, and scripts
and tools used for security parameter selection (computation
of lattice parameter sets and decryption failure probabilities).

Acknowledgments

R. Steinfeld, M.F. Esgin was supported by Australian Re-
search Council Discovery Grant DP250100229. R. Steinfeld
was also supported by Australian Research Council Discov-
ery Grant DP220101234. Siu-Ming Yiu was supported by
HKU-SCF FinTech Academy, Shenzhen-Hong Kong-Macao
Science and Technology Plan Project (Category C Project:
SGDX20210823103537030), Theme-based Research Scheme
of RGC, Hong Kong (T35-710/20-R). We thank the anony-
mous reviewers for their helpful comments.

14

References

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

[9]

[10]

(11]

C. Abou Haidar, A. Passelegue, and D. Stehlé. Ef-
ficient updatable public-key encryption from lattices.
In Advances in Cryptology — ASIACRYPT 2023, pages
342-373, 2023.

G. Alagic, G. Alagic, D. Apon, D. Cooper, Q. Dang,
T. Dang, J. Kelsey, J. Lichtinger, Y.-K. Liu, C. Miller,
et al. Status report on the third round of the nist post-
quantum cryptography standardization process. Techni-
cal report, National Institute of Standards and Technol-
ogy, 2022.

M. R. Albrecht, R. Player, and S. Scott. On the concrete
hardness of learning with errors. Journal of Mathemati-
cal Cryptology, 9(3):169-203, 2015.

E. Alkim, L. Ducas, T. Péppelmann, and P. Schwabe.
Post-quantum key exchange — a new hope. In 25th
USENIX security symposium (USENIX Security 16),
pages 327-343, 2016.

J. Alwen, D. Hartmann, E. Kiltz, and M. Mularczyk.
Server-aided continuous group key agreement. In Proc.
CCS 2022, page 69-82, 2022.

J. Alwen, D. Hartmann, E. Kiltz, M. Mularczyk, and
P. Schwabe. Post-quantum multi-recipient public key
encryption. In Proc. CCS 2023, page 1108-1122, 2023.

S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubrama-
niam. Ligero: Lightweight sublinear arguments without
a trusted setup. In Proc. CCS 2017, page 2087-2104,
2017.

M. Barbosa and P. Farshim. Randomness reuse: Ex-
tensions and improvements. In Cryptography and Cod-
ing: 11th IMA International Conference, pages 257—
276, 2007.

E. Barker, L. Chen, S. Keller, A. Roginsky, A. Vas-
silev, and R. Davis. Recommendation for pair-wise key-
establishment schemes using discrete logarithm cryptog-
raphy. Technical report, National Institute of Standards
and Technology, 2017.

R. Barnes, B. Beurdouche, R. Robert, J. Millican,
E. Omara, and K. Cohn-Gordon. The Messaging Layer
Security (MLS) Protocol. RFC 9420, July 2023.

M. Bellare, A. Boldyreva, and J. Staddon. Multi-
recipient encryption schemes: Security notions and ran-
domness re-use. In Public Key Cryptography — PKC
2003, pages 85-99, 2002. URL https://cseweb.ucsd.
edu/~mihir/papers/bbs.pdf.


https://doi.org/10.5281/zenodo.17849532
https://cseweb.ucsd.edu/~mihir/papers/bbs.pdf
https://cseweb.ucsd.edu/~mihir/papers/bbs.pdf

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

M. Bellare, A. Boldyreva, K. Kurosawa, and J. Staddon.
Multirecipient encryption schemes: How to save on
bandwidth and computation without sacrificing security.
IEEE Transactions on Information Theory, 53(11):3927—
3943, 2007.

E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev.
Scalable, transparent, and post-quantum secure compu-
tational integrity. Cryptology ePrint Archive, Paper
2018/046, 2018.

E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner,
M. Virza, and N. P. Ward. Aurora: Transparent suc-
cinct arguments for rlcs. In Advances in Cryptology —
EUROCRYPT 2019, pages 103-128, 2019.

W. Beullens and G. Seiler. Labrador: Compact proofs
for rlcs from module-sis. In Advances in Cryptology —
CRYPTO 2023, pages 518-548, 2023.

D. Boneh, R. Canetti, S. Halevi, and J. Katz. Chosen-
ciphertext security from identity-based encryption.
SIAM Journal on Computing, 36(5):1301-1328, 2007.

J. Bootle, V. Lyubashevsky, N. K. Nguyen, and
A. Sorniotti. A framework for practical anonymous
credentials from lattices. In Advances in Cryptology —
CRYPTO 2023, pages 384417, 2023.

J. Bos, C. Costello, L. Ducas, 1. Mironov, M. Naehrig,
V. Nikolaenko, A. Raghunathan, and D. Stebila. Frodo:
Take off the ring! practical, quantum-secure key ex-
change from lwe. In Proc. CCS 2016, pages 1006-1018,
2016.

J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehle.
Crystals - kyber: A cca-secure module-lattice-based
kem. In 2018 IEEE European Symposium on Security
and Privacy (EuroS&P), pages 353-367, 2018.

Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and
D. Stehlé. Classical hardness of learning with errors. In
Proc. STOC 2013, page 575-584, 2013.

B. Biinz, S. Agrawal, M. Zamani, and D. Boneh. Zether:
Towards privacy in a smart contract world. In Financial
Cryptography and Data Security, pages 423-443, 2020.

R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext se-
curity from identity-based encryption. In Advances
in Cryptology-EUROCRYPT 2004, pages 207-222.
Springer, 2004.

H. Cheng, X. Li, H. Qian, and D. Yan. Cca secure
multi-recipient kem from Ipn. In Information and Com-
munications Security, pages 513-529, 2018.

15

[24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

[35]

R. Cramer and V. Shoup. A practical public key cryp-
tosystem provably secure against adaptive chosen ci-
phertext attack. In Advances in Cryptology — CRYPTO
"98, pages 13-25, 1998.

R. del Pino and S. Katsumata. A new framework for
more efficient round-optimal lattice-based (partially)
blind signature via trapdoor sampling. In Advances
in Cryptology — CRYPTO 2022, pages 306-336, 2022.

M. H. Devoret and R. J. Schoelkopf. Superconducting
circuits for quantum information: an outlook. Science,
339(6124):1169-1174, 2013.

B. E. Diamond. Many-out-of-many proofs and applica-
tions to anonymous zether. In 2021 IEEE Symposium
on Security and Privacy (SP), pages 1800-1817, 2021.

T. ElGamal. A public key cryptosystem and a signature
scheme based on discrete logarithms. IEEE transactions
on information theory, 31(4):469-472, 1985.

M. F. Esgin, R. Steinfeld, and R. K. Zhao. MatRiCT+:
More efficient post-quantum private blockchain pay-
ments. In 2022 IEEE Symposium on Security and Pri-
vacy (SP), pages 1281-1298, 2022.

M. F. Esgin, R. Steinfeld, D. Liu, and S. Ruj. Ef-
ficient hybrid exact/relaxed lattice proofs and applica-
tions to rounding and vrfs. In Advances in Cryptology —
CRYPTO 2023, pages 484-517, 2023.

T. Espitau, G. Niot, and T. Prest. Flood and sub-
merse: Distributed key generation and robust threshold
signature from lattices. In Advances in Cryptology —
CRYPTO 2024, pages 425458, 2024.

E. Fujisaki and T. Okamoto. Secure integration of
asymmetric and symmetric encryption schemes. In
Advances in Cryptology — CRYPTO’ 99, pages 537-
554, 1999.

C. Gentry and B. Waters. Adaptive security in broad-
cast encryption systems (with short ciphertexts). In
Advances in Cryptology - EUROCRYPT 2009, pages
171-188, 2009.

A. Golovnev, J. Lee, S. Setty, J. Thaler, and R. S. Wahby.
Brakedown: Linear-time and field-agnostic snarks for
rlcs. In Advances in Cryptology — CRYPTO 2023, pages
193-226, 2023.

Y. Guo, H. Karthikeyan, A. Polychroniadou, and C. Hu-
ussin. Pride ct: Towards public consensus, private trans-
actions, and forward secrecy in decentralized payments.
In 2024 IEEE Symposium on Security and Privacy (SP),
pages 3904-3922. 1IEEE, 2024.



[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

K. Hashimoto, S. Katsumata, E. Postlethwaite, T. Prest,
and B. Westerbaan. A concrete treatment of efficient
continuous group key agreement via multi-recipient
pkes. In Proc. CCS 2021, page 1441-1462, 2021.

A. Jain and O. Pandey. Non-malleable zero knowledge:
Black-box constructions and definitional relationships.
In Security and Cryptography for Networks, pages 435—
454,2014.

S. Katsumata. A new simple technique to bootstrap
various lattice zero-knowledge proofs to qrom secure
nizks. In Advances in Cryptology — CRYPTO 2021,
pages 580-610, 2021.

S. Katsumata, K. Kwiatkowski, F. Pintore, and T. Prest.
Scalable ciphertext compression techniques for post-
quantum kems and their applications. In Advances in
Cryptology — ASIACRYPT 2020, pages 289-320, 2020.

J. Katz and N. Wang. Efficiency improvements for
signature schemes with tight security reductions. In
Proc. CCS 2003, page 155-164, 2003.

A. Kim, X. Liang, and O. Pandey. A new approach to
efficient non-malleable zero-knowledge. In Advances
in Cryptology — CRYPTO 2022, pages 389418, 2022.

D. Kim, D. Lee, J. Seo, and Y. Song. Toward practical
lattice-based proof of knowledge from hint-mlwe. In
Advances in Cryptology — CRYPTO 2023, pages 549—
580, 2023.

K. Kurosawa. Multi-recipient public-key encryption
with shortened ciphertext. In Public Key Cryptography,
pages 48—63, 2002.

M. Ledoux. Concentration of measure and isoperimetric
inequalities in product spaces. Publications Mathéma-
tiques de 'IHES, 95(1):183-206, 2001.

Z. Liu, K. Sotiraki, E. Tromer, and Y. Wang. Snake-eye
resistant pke from Iwe for oblivious message retrieval
and robust encryption. In Advances in Cryptology —
EUROCRYPT 2025, pages 126—156. Springer, 2025.

V. Lyubashevsky, N. K. Nguyen, and M. Plancon.
Lattice-based zero-knowledge proofs and applications:
Shorter, simpler, and more general. In Advances in
Cryptology — CRYPTO 2022, pages 71-101, 2022.

V. Lyubashevsky, G. Seiler, and P. Steuer. The lazer li-
brary: Lattice-based zero knowledge and succinct proofs
for quantum-safe privacy. In Proc. CCS 2024, page
3125-3137, 2024.

T. Matsuda and G. Hanaoka. Key encapsulation mecha-
nisms from extractable hash proof systems, revisited. In

16

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

Public-Key Cryptography — PKC 2013, pages 332-351,
2013.

D. Micciancio and C. Peikert. Trapdoors for lattices:
Simpler, tighter, faster, smaller. In Annual Interna-
tional Conference on the Theory and Applications of
Cryptographic Techniques, pages 700-718. Springer,
2012.

D. Micciancio and O. Regev. Worst-case to average-
case reductions based on gaussian measures. SIAM
Journal on Computing, 37(1):267-302, 2007.

M. Naor and M. Yung. Public-key cryptosystems prov-
ably secure against chosen ciphertext attacks. In Pro-
ceedings of the twenty-second annual ACM symposium
on Theory of computing, pages 427-437, 1990.

NIST. SHA-3 standard: Permutation-based hash and
extendable-output functions. Federal Information Pro-
cessing Standards Publication FIPS 202, August 2015.

NIST. Module-Lattice-based Key-Encapsulation Mech-
anism Standard. Federal Information Processing Stan-
dards Publication FIPS 203, August 2024.

NIST. Module-Lattice-Based Digital Signature Stan-
dard. Federal Information Processing Standards Publi-
cation FIPS 204, August 2024.

C. Peikert. An efficient and parallel gaussian sampler
for lattices. In Advances in Cryptology — CRYPTO 2010,
pages 80-97, 2010.

C. Peikert. Lattice cryptography for the internet. In
Post-Quantum Cryptography, pages 197-219, 2014.

C. Peikert and B. Waters. Lossy trapdoor functions
and their applications. In Proceedings of the fortieth
annual ACM symposium on Theory of computing, pages
187-196, 2008.

A. Pinto, B. Poettering, and J. C. Schuldt. Multi-
recipient encryption, revisited. In Proc. AsiaCCS 2014,
page 229-238, 2014.

R. L. Rivest, A. Shamir, and Y. Tauman. How to leak
a secret. In International conference on the theory

and application of cryptology and information security,
pages 552-565. Springer, 2001.

A. Sahai. Non-malleable non-interactive zero knowl-
edge and adaptive chosen-ciphertext security. In 40th
annual symposium on foundations of computer science
(Cat. No. 99CB37039), pages 543-553, 1999.

N. P. Smart. Efficient key encapsulation to multiple
parties. In Security in Communication Networks, pages
208-219, 2005.



[62] R. Steinfeld, S. Ling, J. Pieprzyk, C. Tartary, and
H. Wang. Ntrucca: How to strengthen ntruencrypt
to chosen-ciphertext security in the standard model. In
Public Key Cryptography—PKC 2012, pages 353-371.
Springer, 2012.

[63] E. E. Targhi and D. Unruh. Post-quantum security of
the fujisaki-okamoto and oaep transforms. In Theory of

Cryptography, pages 192-216, 2016.

[64] P. Technology. BitChat Protocol Whitepa-
per. https://github.com/permissionlesstech/bitchat/blob/

main/WHITEPAPER.md, 2025. Accessed: 2025-08-25.

[65] Z. Yang. On constructing practical multi-recipient key-
encapsulation with short ciphertext and public key. Se-
curity and Communication Networks, 8(18):4191-4202,

2015.

A Additional Preliminaries

A.1 Additional Lattice Preliminaries

Discrete Gaussian Distribution. We first define the n-
dimensional spherical Gaussian function pzs : R” — (0, 1]
centered at ¢ € R” with a Gaussian width® 6 > 0 as pz (%) :=
exp(—n- (¥—¢) T (¥—¢)/c?) for ¥ € R". More generally, we
define the elliptical Gaussian function p; 5 : R" — (0, 1]
centered at ¢ € R” with a positive definite symmetric covari-
ance parameter matrix £ € R"*" as p;; 5(X) := exp(—7- (X —
&) T~ 1(#—¢)) for ¥ e R"™. Last, we define the discrete Gaus-
sian distribution Dy 5 z over an n-dimensional lattice A € R”
centered at ¢ with covariance parameter X and support A as

D  Peys®
AZVE T Y5enPz 5 0)

ical discrete Gaussian distribution, we replace NG by G in the
subscript and denote it as Dy z . If ¢ = 0, we will omit ¢ for
simplification.

Lemma A.1 ([20]). Let B = (51,...,77,1) be a basis of a full
rank n-dimensional lattice A, X be a positive definite symmet-
ric matrix, ¢ € R" be a center, if

for¥e A. When X = 621, i.e., spher-

In(2n+4) Hz—l/zgiH <1

holds, there exists a PPT algorithm that can return a sample
from D AZAE

Lemma A.2 ([42]). Let Xy, X1 be positive definite matrices
such that Zgl = Zal + Zfl satisfies /Xp = Me(Z") for 0 <
€ < 1/2. Then for an arbitrary ¢ € 7", the distribution

{56'0 + X1 |Xp < @Zn,ﬁ, X1 «— D, n’a\/g}

5Note that the Gaussian width G is related to the standard deviation s by
0 =+/21-s.
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is within statistical distance 2¢€ of D, nEn T e
Lemma A.3 ([44]). For a Gaussian distribution Dgs with
Gaussian width ¢ > 0, we have Pr[|z| = 1- 06|z — D] <

2. Eg., fort:=53352-¢" ~ 27128

Smoothing Parameter. As in [50], for an n-dimensional lattice
A and a positive real € > 0, the smoothing parameter Mg (A) is
the smallest s such that p; /S(A*\{a}) < € where A* denotes
the dual lattice of A. As in [55], for a positive definite sym-

metric matrix X, we say v/Z = Ne(A) if ng(\/f_l ‘A) < 1.

Lemma A.4 ([50]). For any n-dimensional lattice A and
€ > 0, there exists

In(2n(1 + 1/¢))

nt—t(A) < p : 7\«n (A)
where Ay, (A) is the smallest real number r > 0 such that
dim(span(A n rB)) = n and ‘B is the n-dimensional unit ball

centered at the origin.

Lemma A.5 ([42]). For a positive definite matrix X, if
=12 <e(A) 2 then VE > Me(A).

A.2 Reconciliation Mechanism

We recall the reconciliation mechanism proposed by Peik-
ert [56]. At a high level, this mechanism shows that if an
element v € Z, (or v € &) is uniformly random, then its
rounding value |v]; is uniformly random even given its cross
rounding value {(v);. And others can recover |v|, by {(v), and
another value w close to v. We illustrate the mechanism by
the following lemmas from [56].

Lemma A.6. Define the modular rounding function |-], :
Ly — Zp as |v]p = [§ -v| and similar for |-|,. Define the
cross-rounding function (-)> : Ly — Zo as {v); := [3 v
mod 2. Define the randomized function dbl(-) : Z, — Zo,
as dbl(v) := 2v—é € Zy, where v € Ly is an input and e
is a error independently sampled from the distribution of a
set {0, 11} with probability 1/2, 1/4, and 1/4 respectively.
For an (odd) modulus q, if v € Z, is uniformly random and
v :=dbl(v) € Zyg, then ||, is uniformly random even given

<17>2.

Lemma A.7. Define two disjoint intervals as Iy :=
{0,1,...141 =1}, Iy := {—|4]....—1} mod p. Observe that:
(1) these intervals form a partition of all the elements v € Z,,
such that |v], = 0. Similarly Iy + g and I + g partition all
the elements v € Z, such that |v], = 1; (2) b = {(v), if and
only ifvel, u (% +1p). Define the reconciliation function
rec(-,) : Zy X Zy — 7 as

0 ifwelb+E modp

1 otherwise.

rec(w,b) := {


https://github.com/permissionlesstech/bitchat/blob/main/WHITEPAPER.md
https://github.com/permissionlesstech/bitchat/blob/main/WHITEPAPER.md

where the set E := [—£, %) n 7. For even modulus p, if w =
v+e mod p for some v e Z, and e € E, then rec(w,(v),) =

|_V]2.
Remark A.8. We can directly extend Lemma A.6 and A.7 to

polynomial rings &, by applying |-]», (-2, dbl(-), rec(-,-) in
coefficient-wise.

A.3 Security Model of Multi-Message Multi-
Recipient Public Encryption

Let mmPKE be an mmPKE scheme, let N, A be integers. Let
ATK € {CPA,CCA}. We provide multiple security games
of mmPKE in Figure 9 to capture different securities of
mmPKE.

« mmIND-CCAXOSK: We say mmPKE is mmIND-CCAKOSK
secure if for all PPT adversary 4, the following advantage

Advmmg\‘KDE'f\,?ﬁKOSK (A) is negligible with A,

mmIND-CCAKOSK 1
Pr[GAMEmmLNKE:E,(Z:VEQ (}\’) = 1] - E .

We say A4 wins if the game outputs 1.

« mmIND-ATK®": We define mmIND-ATK security with
adaptive corruption of mmPKE as mmIND-ATK®".
Like [6], we remove the KOSK assumption and give the
access of the corruption oracle to the above adversary 4.
Namely, the adversary A4 can adaptively corrupt the recipi-
ent by obtaining their private key. To avoid the trivial win,
we require that the length of each challenge messages must
be the same.

With GAM ELr':'rE,;’lA(TE'fAC,;:ﬂ (A), we say mmPKE is
mmIND-ATK®® secure if for all PPT adversary A4,
the following AdvTmIND-ATKE () is negligible with A,

- Cor _ Cor
Pr{GAMERTIEATES” (M) = 1] — P{GAMERMNRATIS™ () = 1]].

We say A4 wins if the game outputs 1.

* mmIND-ATK: The game of mmIND-ATK security for

mmPKE is the same as mmIND-ATK®°" except that the ad-
versary cannot obtain the access of corruption oracle. With

GAMEN SR E Yy a(A), we say mmPKE is mmIND-ATK se-

cure if for all PPT adversary A4, the following advantage

AdvpmiAT R () s negligible with A,
PrIGAMERRRGENTA (M) = 11— PrGAMERTIG I () = 1]].

We say 4 wins if the game outputs 1.

A.4 Non-Interactive Zero Knowledge Argu-
ment System
We recall the definitions of non-interactive zero knowledge

(NIZK) argument system in the random oracle from [17, 25]
as follows.
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Game GAMEMMIND-ATET™ (2), ATK = CCA
(A0, A1, ) — A
pp <« mmSetup(l}‘,N)
(£.st) < Ao(pp)
Vie (€], (pk;,ski) < mmKGen(pp)
(%, mDiereg, (M)ieeny (Pki» Ski)ieen) - St) —
A% ((pky)iefr]-st)
req: Vi€ [(: N|, (pk;,ski) € K
b—{0,1}
ct «— mmEnc(pp, (pky)icn)- (M?)icre: (Mi)ieen))
b — AP (ct,st)
req: Vie [£]. |m?| = |m!|
return [b = 0]

Game GAMERTINDATKC™ (1), ATK = CCA
(A, A1, %) — A
pp — mmSetup(1*,N)
(¢,5t) < Ao(pp)
for i € [¢] do (pk;,sk;) <— mmKGen(pp)
Cor — ¥
((m%,mDicqey, (Mi)ieeny» (PK;)iefe:ny»St) =
7% ((pk;)ien - st)
ct — mmEnc(pp, (pk;)iev], (MP)ieres (Mi)iegeny)
b — 2% (et st)

req: Vi€ [¢], m{ = m} v (pk; ¢ Cor A |m?| = |m}])
return [b=0/]
Oracle Cor(i) Oracle Decy(i,ct)
req: i € [{] req: i € [{]
Cor+ «—1i return m < mmDec(pp,sk;,ct)
return sk;

Oracle Dec; (i, ct)
req: i € [{]
req: ct # mmExt(ct, i)
return m < mmDec(pp,sk;,ct)

Figure 9: The mmIND-ATKXOSK and mmIND-ATK®" secu-
rity games for mmPKE with ATK = CCA. For ATK = CPA,
the adversary 4 does not have the access of the decryp-
tion oracle Dec?, Dec!. The mmIND-ATK is the same as
mmIND-ATK®" except that the adversary 4 does not have
the access of corruption oracle Cor.

Definition A.9 (Non-Interactive Zero Knowledge Argument
System). Let R be a polynomial-time verifiable relation of
statement-witness (x,w). Denote a language L as a set of
statements where there exists a witness w with (x,w) e R. A
NIZK protocol IT is defined as follows.

crspp < I1.Setup(1*): On input a security parameter 1%, it
outputs the common reference string crspy € {0, l}w‘).

/Ll — I1.Provet (crsm,x,w): On input the public parame-
ters crspy € {0, 1}, a statement x and a witness w such that
(x,w) € R, it outputs a proof T or an abort symbol L.

0/1 « I1.Verify" (crsp, x,m): On input the public parame-
ters crsp € {0, 1}, a statement x and a proof T, it output 1
if accepts, otherwise, it outputs 0.



We first define the properties of correctness, zero knowl-
edge, and multi-proof extractability (i.e. straight-line ex-
tractability) for NIZK argument system.

Correctness. A NIZK argument system II is correct if
for all crspp € {0,1}¢ and (x,w) € R, the probability that
H.ProveH(crsn,x, w) outputs L is negl(X), and the follow-
ing probability holds,

T — H.ProveH(crsn,x, w):
r H = 1—negl(A).
IT.Verify" (crsp, x, ) = 1|7E # 1

Zero-Knowledge. A NIZK argument system II is zero-
knowledge if for any PPT adversary 4, there exists a simulator
I1.Sim = (Simg, Sim ) which consists of two PPT algorithms
with a shared state such that the following Advﬁ&(%) is neg-
ligible in A,

Pr[1 M ILProve (crg)] — Pr[1 « g5mo-Simi (crsm)]|

where I1.Prove and I1.Sim are prover and simulator oracles
which, given (x,w), output L if (x,w) ¢ R and otherwise return
I1.Prove (crspp,x,w) and Simj(crsm,x) respectively. The
probability is also taken over the randomness of generating
the common reference string crspy «<— Setup(1%).

Multi-Proof Extractability. A NIZK argument system IT has
multi-proof extractability if the following hold:

* CRS Simulatability: For any PPT adversary A4, we have the

Crs

following Advir;(A) is negligible in A,

|Prlcrsy «— IL.Setup(1*) : 1 — 4" (crspy)]—
Pr[(&F511,T) < Simers (1Y) : 1 — a7 (aFp)]| = negl(A)

* Straight-Line Extractability: There exist constants eg, 2, ¢
such that for any Qu, Qs € poly(A) and any PPT adversary
A that makes at most Qp random oracle queries with

Vie [Qs],

ILVerifyH (&, 5, m) = 1

(évrSH,T) «— Simcrs(lh)’

P 22 :
| {(m) iego,) — AN (&)

where €(A) is non-negligible, we have the following proba-
bility no less than 1 -&(A) — negl(})
(€Fs1,7) — Simers (1), { (4 1) iefo,) < A7 (€Fs),
Pr | {w; < Multi-Extract(Qu, Os, l/E,EVrSn,T,xi,ﬂi)}ie[Qf] :
Vie [Qs], (xi,wi) ER A VerifyH (cPsm,x;,m;) =1

where the runtime of the extractor is upper-bound by Qﬂ .
?2 . E(;l\‘)c : p0|y(}\‘)

There are some other scenarios that requires NIZK argu-
ment system satisfying other properties. Following [60], we
define simulation soundness as follows. Remark that the no-
tion of simulation soundness is a form of non-malleability of
NIZK, as noted in [37, 41, 60]. For simplification, here we
do not involve the random oracle model.

>e(A)

Simulation Soundness. A NIZK protocol IT is simulation
sound if for any PPT adversary 4 = (A, 4; ), any PPT rela-

tions R along with its language L, the following Advls]s’ 2(A)
is negligible in A,

(crsm.T) « Simo(1%);
(x,st) <« Ap(crsm);
T« Simj (crsp, x,T);
(«', ') < 4 (crsp, x, T, st)

T #T;
Pr X ¢L;
I1.Verify(crsp,x/, ') = 1

B Construction of XR-KEM

Employing the reconciliation mechanism (as introduced in
Appendix A.2), we can further compress the ciphertext size,
especially for the key-dependent ciphertext, and then obtain
a lattice-based XR-KEM, which can be used to build an
mmKEM. Following [58], the mmKEM can be extended
to an mmPKE for arbitrary-length message via a DEM.

Construction B.1 (XR-KEM from Lattices). Let A be a se-
curity parameter, m = m(L), n = n(A), d = d(A), g = g(A),
N =N(A), v=v(A) be positive integers. Let 6y = Go(A),
61 = 61(A) be Gaussian width parameters. Let dbl(.),
rec(+,-), | ]2, and {-), be the functions as define in Lemma A.6
and Lemma A.7 which are extended to &, per Remark A.8.
For the encapsulated key space M = {0,1}¢, the detailed con-
struction is shown in Figure 10. We summarize the notations
in Table 2.

The extended reproducibility of our XR-KEM is analogous
to that of our XR-PKE in Construction 5.3. The security proof
of our XR-KEM closely follows that of our XR-PKE, except
that, due to the reconciliation mechanism, the encapsulated
key is statistically indistinguishable from random under the
(Matrix Hint-)MLWE assumption.

We focus on its correctness, as follows.

Correctness. We set Compress(x) = |x mod g],s, and
Decompress(x) = |x mod 24],. Like our XR-PKE, here, we
mainly consider the case that the key-independent ciphertext
is compressed and then decompressed before the decryption,
as done in mmPKE compiler of Construction 4.3.

Theorem B.2 (Correctness). Let e,s,r,e,,y be random vari-
ables that have the corresponding distribution as in Construc-
tion B.1. Denote C as

Pr[H2(<e,r>+y—<s,eu>+<s,cu>) —éHOO > %]

where ¢, := ¢ —||e¢ mod ¢,4, |4 € R, and & denotes the error
in dbl(c) function. We say our Construction B.1 is {-correct.

Proof. Considering the compression and decompression of
independent ciphertext ¢, the value ¢ (renamed as ¢’) in Decap
algorithm is

¢:=[|lc modgq |l -



One can observe that the decapsulation is made via recon-
ciliation mechanism. It means that the decapsulation succeeds
if and only if the following equation holds,

[ ]2 =rec(2-(c,s), (& ).
By Lemma A.7, rec(-,-) works if the following holds,

29 ¢

|a=2-(c's) mod2q s < = 1.

Plugging ¢ = dbl(c) = 2¢ — € and ¢/ = ¢ — ¢, the above in-
equality is equivalent to

[2c—e—2-{c—cy,S) oo < 9

Z .
Since the value of ¢ := (b,r) +y in Encap? algorithm where
the value of b := ATs + e, we can obtain

2c—é—2-{c—¢y,S) = 2<<e,r>+y—<s,eu>+<s,cu>) —e.

It means that when ¢, -norm of the decapsulation error is
no less than g/4, i.e., |2({e,r)+y—s,e,)+{cy,s)) — &0 =
q/4, the decapsulation will fail. Thus, the value { is no more
than the probability of decapsulation failure. O

C Removing the KOSK Assumption

In this section, using a multi-proof extractable NIZK argu-
ment system, we present a compiler that can remove the
KOSK assumption of the mmPKE with the polynomial-sized
number of recipients and provide a detailed analysis of its
security. Last, we provide an instantiation for our mmPKE.

Construction C.1 (KOSK Compiler). For ATK €
{CPA,CCA}, let mmPKE’ be an mmIND-ATKKOSK secure
mmPKE with public-private key space X and randomness
distributions D, Dy. Let IT be a NIZK argument system.
Denote the relation Ryy in IT as

Ry := {(pkisk) | (pk,sk) € K}

We assume the hash value H(0) = crs. The construction
of compiler CompX®SK [mmPKE’,I1] is defined in Figure 11

which outputs an mmIND-ATK secure mmPKE.
The correctness is easy to see. We show how to reduce the

security of mmPKE output by CompKOSK[mmPKE’,H] to
the security of input mmPKE’ and I1. The proof is provided
in Appendix F.4.

Theorem C.2 (Security). For ATK e {CPA,CCA}
if mmPKE" is mmIND- ATKKOSK  secure and TI
is a NIZK argument system satisfies correctness,
multi-proof extractability and zero knowledge, our
mmPKE « CompKOSK[mmPKE’,H] output by Construc-
tion C.1 is mmIND-ATK secure.
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Remark C.3 (Recipient Registration and Delegate Verifica-
tion). In practice, each recipient can be required to “register”
to some semi-honest third party, e.g., server in advance. Both
proving and the verification for each public key are one-time
and the latter can be delegated to the server as well. Thus, in
this setting, both bandwidth and computation for the encryp-
tion do not increase.

C.1 NIZK Instantiations in KOSK Compiler

In this subsection, we discuss the post-quantum instantiations
of NIZK in the KOSK complier. and present proof-of-concept
implementations of the NIZK instantiations, which help esti-
mate their practical cost.

Specifically, we recommend Schnorr-like lattice-based pro-
tocols that satisfy knowledge soundness and can efficiently
prove the well-formedness of ciphertexts and keys. To achieve
the multi-proof extractability, we can apply Katsumata Trans-
form [38] as demonstrated in [17, 25], which leverages an
extractable linear homomorphic commitment (LHC) that can
be seen as a linear homomorphic encryption scheme with
pseudo-random public keys.

Among them, LNP22 [46] is one of the most efficient
lattice-based NIZKs and has recently been implemented in
the LaZer library [47]. Recent work [17] extends LNP22 to
achieve multi-proof extractability, but they do not provide the
implementation of this variant. Therefore, we report on the
results of the regular LNP22 implementation from the LaZer
library as a proof-of-concept.

Specifically, we need to generate the “exact” range proof
for the private key (s;,€;), i.e., ||(s;,€;)]| < 1, along with a
linear relation A 's; +; = b;. For v = 2 (i.e., each coefficient
is in {0,1}), we simply use the concatenation (s’ || e ) asa
binary witness, proving that (AT || T)(s" [[e" )T —=b=0.
For ternary secrets (V = 3), the secret key is split into binary
components representing positive and negative coefficients
and the proof is of the form

(AT L[ -AT | =I) (s} Jlef lIsl[[el)T ~b=0.

During the proof, we need to first prove the witness with
binary coefficients and then prove the linear relation. Here
although the modulus ¢ may be smaller than the modulus in
the proof system, LNP22 and its implementation in LaZer
can still prove such relations efficiently. More details can be
referred their papers [46, 47].

Table 4 offers representative numbers (timings on an AMD
Ryzen 7 7840U laptop, 3.3 GHz). Note that the proofs have
not been optimized for size or tuned for the target security
level. We observe that these NIZK proofs, which need to
be verified only once after generation, are less than 30 KB
in size. Furthermore, proof generation and verification are
very efficient. In practice, this process can be delegated to
a semi-honest third party, e.g., a server, and completed in
“registration” phase. Hence, this NIZK has minimal impact
on the performance of both encapsulation and decapsulation.



Encap(pp, pk)
Input:

Decap(pp,sk,ct)
Input:

* public parameter pp = A
* public key pk =b

ro:=(r,e,) — Dy, * Dy,

* public parameter pp = A
* private key sk = s

* ciphertext ct = (c,u)
w:=2-{¢,s) mod2q

cto < Enc'(pp;ro)
return K:=u«— rec(w,u)

fi=y«— D,

(ct,K) — Encap®(pp, pk; ro, )
ct := (cto, ct)

return (ct,K)

Rep(ct,m’, pk’,sk’,h’)
Input:

Encap® (pp. pk; ro, )

Input:

* ciphertext ct = (c,u)

* message m’ = m’

* public-private key
(pk’,sk’) = (b’,s")

* public parameter pp = A
public key pk =b

* randomness ry = (r,e,)
e randomness f =y

ci=(b,r)+y e hinth’ =/’
¢ < dbl(c) =8+ N
u:={_{Cn ¢ —dbl(c)
wi=|é u' =)
return (ct:=u,K:=py) W=7

return (ct’:= (c,u’),K =)

Figure 10: An IND-CPAXR secure lattice-based XR-KEM where Setup, KGen, Enc', and HintGen are the same as the ones in

Construction 5.3.

mmSetup(1*,N)

mmEnc(pp, (pki)ie[N] > (mi)ie[N])

Input: Input:
« security parameter 1*
e recipient number N
pp’ — mmPKE'.mmSetup(1*,N)
crsyp «— I1.Setup(1%)
return pp := (pp’,crsn)

mmKGen(pp)

Input: public parameter pp = (pp’,crsp)
(pk’,sk’) «— mmPKE’.mmKGen(pp’)

7t — IL.Prove™ (crspp, (pp’, pk’). sk')
return (pk := (m,pk’), sk :=sk’)

* public parameter pp = (pp’,crsy)
« a set of public keys (pk; = (pk;,T:))ie[n]
* aset of messages (M;)ie[n]
ro < D, cty «<— mmPKE/.mmEnci(pp’;ro)
for alli e [N]
if T1.Verify! (crsp, (pp’, pk}),m;) = 0 do ct; := L
else do ?; — Dy, Ct; «— mmPKE’.mmEncd(pp’,pkf,mi;ro,?i)
end for
return ct := (cto, (&,-),-E[N])

Figure 11: An mmIND-ATK secure mmPKE output by the KOSK compiler CompX®°K[mmPKE’,IT] for ATK € {CPA, CCA}.

mmExt and mmDec are the same as the ones in mmPKE’.

Table 4: mmCipher public-key NIZK proof sizes, proof
generation and verification timings using LNP22.

Scheme Dist. Proof Proof Verify

Size time time
mmCipher-128 v=3 26473B 0.078 s 0.040 s
mmCipher-192  v=2 25261B 0.075s 0.042 s
mmCipher-256 v=2 28,022B 0.105s 0.056 s

D Implementation and Benchmarking Details

In this section, we detail the implementation aspects of our
CPA-secure primitives mmCipher-KEM (Cons. 4.3+B.1) and
mmCipher-PKE (Cons. 4.345.3) and provide further bench-
marks.

We list some key technical similarities and differences be-
tween Kyber (ML-KEM) and mmCipher that impact perfor-
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mance characteristics. In the following, references are made
to Kyber components as described in the ML-KEM standard
FIPS 203 [53] rather than in the original Kyber paper [19].
Our comparison uses the reference code and parameter sets
of the final standard.

* The programming interfaces of mmCipher are designed for
batch encryption of unique messages/shared secrets to a
large number of recipients. This is the main use case and
optimization target of the implementation.

* The parameter selection of the implementation supports 2'°
recipients, which requires a larger modulus g = 2% — 212 +
1. Hence, the Number Theoretic Transforms (NTTs) oper-
ate on 32-bit elements rather than 16-bit elements, as with
Kyber’s ¢ = 3329. Our 25-bit ring is quite similar to the
23-bit, degree-256 ring of Dilithium (ML-DSA [54]). The
binary and ternary secret distributions of mmCipher also al-
low efficient non-NTT ring multiplication operations based



on conditional additions, although these may be difficult to
implement in constant time in software.

* We use the SHAKE eXtendable-Output Function (XOF)
[52] for all random sampling, as is done in ML-KEM.
SHAKE-128 is used for all operations at the 128-bit se-
curity level and for A matrix expansion at all security levels
(as in ML-KEM). SHAKE-256 is used for other samplers
and hashes at levels 192 and 256.

* Secret keys are sampled from a narrow uniform distribution
U(Sy) instead of a Centered Binomial Distribution (CBD)
as in ML-KEM. The ternary (Vv = 3) sampler uses rejection
sampling of bytes against 3% = 243; only 1 —243/256 ~ 5%
of bytes are rejected, while accepted bytes yield 5 ternary
digits {—1,0,+1}°. The “base-243" system also allows a
convenient and compact storage format for ternary secret
keys. Binary (v = 2) secret key sampling and storage is
trivial and optimally efficient.

* We sample ephemeral randomness from discrete Gaus-
sian distributions Dg, and D, rather than from CBD.
’ Note that Gaussian widths ¢ are related to standard
deviation s by 5 = 6/4/2n. More precisely, following
Section 5.3, we fix the Gaussian width 6y = 15.90 and
o1 = 368459.34,488797.36,554941.07 to support up to
210 recipients at 128-bit, 192-bit, and 256-bit security, re-
spectively.

* The encryption/decryption mechanism of mmCipher-PKE
is similar to Kyber, but mmCipher-KEM uses a reconcil-
iation mechanism over K,, requiring the cross-rounding
function {-); and the reconciliation function rec(-,-). The
Python implementation also has the randomized doubling
function dbl(-) available, but since entropy leakage (“bias™)
fixed by dbl(-) can be shown to be practically negligible
with our g value, the C code does not implement random-
ization here. These implementations are interoperable (and
produce fully matching ciphertext with high probability.)

» Since SHAKE/SHA3 [52] computation is typically the
biggest individual ML-KEM performance bottleneck (on
some platforms consuming more than half of total key
establishment cycles), for a fair comparison, the under-
lying KECCAK-p[1600,24] permutation implementation
in mmCipher is the same plain C code as in the Kyber
reference implementation.

Note that these algorithms would greatly benefit from hand-
crafted SIMD and vectorization optimizations (e.g., AVX-512
or ARM SVE2). However, we currently only have a portable

7 Artifact code uses rounded Gaussians for Dy, and Dy, , using the polar
Marsaglia method implemented with 64-bit IEEE 754 arithmetic to sample
from a rounding-compensated s’ = /02 /21 — 1/12 continuous Gaussian
distribution. This sampler is approximate and not constant-time; it is a
placeholder implementation. A more appropriate Discrete Gaussian sampler
is required for production-level implementation.
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C implementation for mmCipher, so we are comparing such
implementations of both schemes.

We also list the computational costs of other operations
in Table 5. The results show that the key generation and
decryption/decapsulation operations are equally fast or faster
than those equivalent Kyber operations at the same security
level. Note that the input seed (e.g., 32 bytes) for mmSetup()
is a public “system parameter” shared by all users, and the
operation needs to be re-run only when it changes.

Regarding the bandwidth of key generation, for N = 1024
recipients, the public key sizes are 2.4, 4.3, 5.5 KB larger
than the one in the baseline, among 128-, 192-, 256-bit secu-
rity. However, these additional costs are one-time and can be
amortized over multiple uses, minimizing their impact on the
overall efficiency.

Towards the bandwidth of decryption/decapsulation, for
N = 1024 recipients, the individual ciphertext in our
mmCipher is only 0.5, 1.4, 1.6 KB larger than the one in
the baseline, among 128-, 192-, 256-bit security. These addi-
tional costs will likely not affect the usability of the scheme
in the use cases for which it is best suited.

In the end, Table 6 includes more comprehen-
sive benchmark results, including cycle counts for
mmCipher-KEM encapsulation, mmCipher-PKE encryption,
and K-PKE.Encrypt() of ML-KEM (Kyber) with various N
levels up to N = 1024. The bandwidth of all the operations is
presented in Tables 7 to 9.

Table 5: Cycle counts of other operations in mmCipher and
ML-KEM (Kyber). Note that K-PKE is an internal CPA
subcomponent of ML-KEM.

Operation PQ Security

128-bit 192-bit 256-bit
mmSetup() 188,755 543,640 916,016
mmKGen() 58,815 78,383 106,504
mmDec() 43,511 68,072 85,872
mmDecap() 43,246 67,705 85,323
ML-KEM.KeyGen() 99,145 170,323 262,044
ML-KEM.Decaps() 168,358 259,511 372,644
K-PKE.Decrypt() 40,987 54,547 68,070

E Our Adaptively Secure mmPKE

In this section, we propose a generic construction that
transforms a CPA-secure mmPKE into an adaptively se-
cure mmPKE. Our approach generalizes the Naor-Yung
paradigm [51, 60] to mmPKE, introducing an optimization:
we merge the double encryption into a single multi-recipient
ciphertext, only need to generate a single independent cipher-
text. This optimization significantly reduces the size of both



Table 6: Per-message/key encryption or encapsulation latency in cycles (batch timing divided by the number of recipients N.)
Note that ML-KEM becomes slower with larger N due to cache effects, whereas mmCipher significantly benefits from batching.

Scheme N=20 N=22

N=2 N=20 N=28 N=2° N=210

mmCipher-PKE-128 270,208 97,295
mmCipher-KEM-128 268,764 94,633

54,410 43,800 42,819 42,447 42,342
52,899 42,309 41,380 41,259 41,120
ML-KEM-512 111,006 110,929 111,025 111,301 117,662 117,679 117,665

mmCipher-PKE-192 509,848 167,253
mmCipher-KEM-192 512,542 164,080

81,055 58,540 54,873 54,126 53,849
79,468 577706 53,7774 53,265 53,138
ML-KEM-768 177,324 177,528 177,353 191,047 192,014 191,776 191,794

mmCipher-PKE-256 660,108 205,586
mmCipher-KEM-256 647,983 199,270

93,958 65,735 60,495 59,470 58,798
89,458 61,087 56,040 54,920 54,458
ML-KEM-1024 260,478 260,322 260,817 286,016 285,937 285,846 285,729

Table 7: Bandwidth of multi-recipient ciphertext |ct
aiming at 128-bit security.

, individual ciphertext |ct;

, and total public keys |pk| for N recipients,

Recipt. Multi. Cipher. |ct| (KB) Indiv. Cipher. |ct;| (KB) Total Public Keys |pk| (KB)
N ML  mmCipher mmCipher ML  mmCipher mmCipher ML  mmCipher mmCipher
KEM KEM PKE KEM KEM PKE KEM KEM PKE
1 0.75 1.28 1.31 0.75 1.28 1.31 0.78 3.16 3.16
16 12.00 1.75 2.25 0.75 1.28 1.31 12.50 50.50 50.50
64 48.00 3.25 5.25 0.75 1.28 1.31 50.00 202.00 202.00
256 192.00 9.25 17.25 0.75 1.28 1.31 200.00 808.00 808.00
512 384.00 17.20 33.25 0.75 1.28 1.31 400.00 1616.00 1616.00
1024 768.00 33.25 65.25 0.75 1.28 1.31 800.00 3232.00 3232.00

Table 8: Bandwidth of multi-recipient ciphertext |ct|, individual ciphertext |ct;|, and total public keys |pk| for N recipients,

aiming at 192-bit security.

Recipt. Multi. Cipher. |ct| (KB) Indiv. Cipher. |ct;| (KB) Total Public Keys |pk| (KB)
N ML  mmCipher mmCipher ML  mmCipher mmCipher ML  mmCipher mmCipher
KEM KEM PKE KEM KEM PKE KEM KEM PKE
1 1.06 2.44 2.47 1.06 2.44 247 1.16 5.50 5.50
16 17.00 291 341 1.06 2.44 247 18.56 88.00 88.00
64 68.00 4.41 6.41 1.06 2.44 247 74.24 352.00 352.00
256 272.00 10.41 18.41 1.06 2.44 247 296.96 1408.00 1408.00
512 544.00 18.41 34.41 1.06 2.44 247 593.92 2816.00 2816.00
1024 1088.00 34.41 66.41 1.06 2.44 247 1187.84 5632.00 5632.00

multi-recipient and individual ciphertexts. With our construc-
tion, not only can our lattice-based mmPKEs be transformed
to achieve adaptive security, but also can the traditional mmP-
KEs proposed in [11, 12, 43, 58].

Compared to other adaptively secure (m)PKE construc-
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tions [6, 36, 39], our approach requires only the addition of
NIZK proofs. These proofs can be aggregated, making the
size constant or polylogarithmic in the number of recipients,
and verification can be delegated to a server, making our
construction remain both flexible and efficient, especially for



Table 9: Bandwidth of multi-recipient ciphertext |ct|, individual ciphertext |ct;

aiming at 256-bit security.

, and total public keys |pk| for N recipients,

Recipt. Multi. Cipher. |ct| (KB) Indiv. Cipher. |ct;| (KB) Total Public Keys |pk| (KB)
N ML mmCipher  mmCipher ML  mmCipher mmCipher ML  mmCipher mmCipher
KEM KEM PKE KEM KEM PKE KEM KEM PKE
1 1.53 3.13 3.16 1.53 3.13 3.16 1.53 7.06 7.06
16 24.50 3.59 4.09 1.53 3.13 3.16 24.48 112.96 112.96
64 98.00 5.09 7.09 1.53 3.13 3.16 97.92 451.84 451.84
256 392.00 11.09 19.09 1.53 3.13 3.16 391.68 1807.36 1807.36
512 784.00 19.09 35.09 1.53 3.13 3.16 783.36 3614.72 3614.72
1024 1568.00 35.09 67.09 1.53 3.13 3.16 1566.72 7229.44 7229.44

large numbers of recipients.

In addition, our constructions also imply an adaptive cor-
ruption compiler which enables both CPA- and CCA-secure
mmPKEs, such as the ones in [11, 12, 43, 58], to resist adap-
tive corruption, with some requiring KOSK assumption re-
moval through our KOSK compiler in advance.

Construction E.1 (Adaptive Security Compiler). Let
mmPKE’ be an mmIND-CPA secure mmPKE with the ran-
domness distributions 2, Dy. Let IT" be a NIZK argument
system. Denote the relation Ry in IT' as

{((pp’, pko. pky,

ctg = mmPKE’.mmEnc' (pp’;rg) A
St = mmPKE/.mmEncd(pp’,pkﬁ,m;ro,?ﬁ)/\

cto, Cto, Ct1, B); .
&y = mmPKE'.mmEncd(pp’,pklfﬁ,m;ro,?l,ﬁ)

(m,ro,0,71))

The construction of compiler Comp““A[mmPKE’,IT'] is de-
fined in Figure 12 which outputs an mmIND-CCA" secure
mmPKE.

The correctness is direct. We show how to reduce the secu-
rity of mmPKE output by Comp®“A[mmPKE’,IT’] to the in-
put mmPKE’ and IT’. The proof is provided in Appendix F.5.

Theorem E.2 (Security). If mmPKE’ is mmIND-CPA se-
cure and II' is a NIZK argument system satisfies cor-
rectness, zero knowledge, and simulation soundness, our
mmPKE « Comp““*[mmPKE',IT"] output by Construc-
tion E.1 is mmIND-CCA®®" secure.

Remark E.3 (Batch Proof and Delegate Verification). In
practice, the verification of m; can be delegated to some
semi-honest third party, e.g., delivery service server. In
this case, the encryptor can batch (aggregate) the proof to-
gether, i.e., generating a single proof 1 for the statement

(PP, (Py s Pk icqy» o (St €ty ey, B), and the wit-
ness ((M;)ie[n7- o, (?(()’),?Y)),»G[N])) under the following rela-
tion,
ctg = mmPKE’.mmEnc' (pp’;rg) A
Vie[N]:
= mmPKE’.mmEncd(pp’,pkéi),mi;ro,?é?)/\

— mmPKE’.mmEncd(pp',pkfilﬁ,m,-;ro,?f’v_)ﬁi)

Rl’l/ = &(()')
&l
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Therefore, each recipient does not need to download and
verify the proof during the decryption.

Remark E.4 (Adaptive Corruption Compiler). By removing
the NIZK component from our CCA compiler, we obtain
an adaptive corruption compiler that generalizes the double
encryption technique [33, 40] to the mmPKE setting.

Remark E.5 (NIZK Instantiations). For the NIZK instantia-
tions in adaptive secure mmPKE compiler, we recommend
post-quantum (zk)SNARKSs [7, 13—15, 34] that satisfy simu-
lation soundness and provide succinct proofs (about 50-100
KB) with efficient verification (in a few milliseconds).

F Deferred Proofs

F.1 Proof for Generic Construction of mmPKE

We restate the Theorem 4.4 below and provide its formal
proof.

Theorem F.1 (Security). For ATK € {CPA,CCA}, if PKE is
IND-ATK*R secure and satisfies extended reproducibility, our
mmPKE «— Comp™™PXE[PKE] output by Construction 4.3
is mmIND-ATKKOSK secure.

Proof. The proof is based on [11, Theorem 6.2]. We first
consider that the case of ATK = CPA only and then briefly in-
dicate how to extend the argument to the case of ATK = CCA.
Let 4 be a PPT adversary against the mmIND-CPAKOSK ge.
curity of mmPKE. Let B be the reduction that utilizes the
adversary 4 to break the IND-CPAXR security of PKE. The
reduction B is described in Figure 14 where its challenger C
is from the IND-CPAXR security game of PKE.

Like [11], we begin by defining some hybrid games associ-
ated to 4 and mmPKE in Figure 13. We parameterize these
games via an index j € {0,1,...,N}.

Denote P; := Pr[Hyb; = 0] as the probability that experi-
ment Hyb; returns 0, for j € {0,1,...,N}. We show that

- KOSK
Advirdia S (W) =Py —P (10)



mmKGen(pp)

mmEnc(pp, (pk;)iciv]: (Mi)icn])

Input: Public parameter pp = (pp’,crspy)
forall ie {0,1}
(pk;,sk;) < mmPKE'.mmKGen(pp’)
end for
o {0,1}
return (pk := (pkg,pk;), sk := (o, skq))

mmDec(pp, sk, ct,aux)
Input:
* public parameter pp = (pp’,crsy)
* private key sk = (o, sko) _
* ciphertext ct = (cto, cto,ct, [, )
* auxiliary information aux := pk = (pkg, pk;)
req: IT'.Verify (crspy, (pp’, ko, Pk, Cto, Cto, ct1, B), ) = 1
return m < mmPKE'.mmDec(pp’, (cto, cto@ﬁ) ska)

Input:

¢ty

* public parameter pp = (pp’,crsnl) _
+ aset of public keys (pk; = (pk, pk\”))icpy]
* aset of messages (M;)ie[n)
ro < D, cty «— mmPKE/.mmEnci(pp’;ro)
B:= (Bi)ie[N] {0, 1}N
forallie [N]

#0400 g,

()

cty

2. (i)

n; < IT.Prove(crspy, (pp’, pk(()i), pk(
end for
return ct:=

« mmPKE".mmEnc® (pp', pky mis o, )
« mmPKE".mmEnc? (pp', pk{” 6, ,mz;ro,?i")[5 )

230 A

ccto, &, &7, By, (miro, 20, #0))

(cto, (CAtg),CAtY))ie[N] B (m)iew)

Figure 12: An adaptively secure mmPKE output by the compiler Comp““A[mmPKE’,IT']. mmExt with input index i is defined

by picking the relevant components (cto, @c(()i)

for replacing IT by IT'.

Game Hyb; for j e {0,1,...,N}

(R0, A1, ) — A
pp <« mmSetup(1*)
£ Ay(pp.N)
req: (€ [N]
Vi€ [{], (pk;,sk;) <— mmKGen(pp)
((mD)iers (m)ierer (Mi)iegenys (Pkis skiiepen st)
A1 (pp. (Pki)ies)
req: Vie [(:N]: (pk;sk;) €
if j </ then

(my)ieey = (mf....
else

(My)iegq) ==
end if
ct — mmEnc(p
b— ﬂz(ct St)
req: Vie [{]:
return b

X

0 1 1
mj’m/+l7"'sm1;‘)

(m?,...,m?)

P, (Pk;)iev)> (Mi)ierny)

mP| = [m]]

Figure 13: The hybrid games in Theorem F. 1.

as follows. One can observe that

PI[GAM Emm|ND-CpAKOsK

mmPKENO.2 = 0] =Py

Y

Pr{GAM EmmIND—CPAKOSK (12)

mmPKE,N,1,4
since when j = N, the message vector inside the challenge
ciphertext is (m?),-e[N] and when j = 0, the one is (ml-l),-e[N].
Therefore, in the adversary A’s view, the experiment Hyb,,
. _CcpaKOSK
is the same as GAM EQQLNK%’%FE 2
KOSK .
as GAM EQQLNK%,%T 21 - After subtraction between Equa-
tion (11) and Equation (12), we can get Equation (10).
From the description of reduction B in Figure 14, we claim

and Hyby is the same
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,&EZ), B;,m;) from ct. mmSetup is the same as the one in Construction C.1 except

that
XR 1 N
Pr|GAMERRSIA () =0] =+ D1p. (3)
=
XR 1 N
PqﬁAMEﬁ%ﬁﬁB@)zoyzﬁ-Ejﬁ_l (14)

We explain the reason of the above equations holding as
follows. Firstly, each index j € [N] is equally likely for the re-
duction ‘B and then the j-th extracted individual ciphertext ct;
from the adversary A4’s multi-recipient challenge ciphertext
ct is the reduction B’s challenge ciphertext ct*. Furthermore,
due to the extended reproducibility of PKE, all extracted
individual ciphertexts (ct;);c (v] from the multi-recipient chal-
lenge ciphertext ct are generated using the same randomness
ro and different randomness (7;);c[n]. Therefore, one can ob-

serve that the game GAM E:DNKDE"%F’)@;R (A) is the same as Hyb,

and the game GAM ELNKDE',%T;R (A) is the same as Hyb;_;.
Then after the subtraction between Equation (13) and Equa-
tion (14), we can obtain

IND-CPAXR IND-CPAXR
AdVpyE 5.5 (M) =Pr [GAMEPKENO’B A) =

L ( ZPJ 1) “(Pv—Po)

N Advm'F?‘KDE%PﬁKOSK
And the running time of the reduction B is the sum of the
adversary 4 and the reproduce algorithm Rep. Overall, we
get the security of mmPKE.
Here, we briefly discuss how to extend the above proof to
the case of ATK = CCA. The definition of the hybrid games

XR
—Pr [GAM Eg\‘KEI)E(IiJPlAQ% *)

d



is the same as in Figure 13. We show how the reduction B
answers the decryption queries from the adversary 4. First of
all, the reduction ‘B is also given the access of the decryption
oracle of IND-CCAXR secure PKE. Therefore, when requir-
ing to decrypt the individual ciphertext for the public key pk;,
B will provide the answer by invoking its own given decryp-
tion oracle. For the ciphertexts for the public keys, i.e., pk;
fori € [(]\{,j}, B can decrypt the ciphertext by itself since it
is in possession of the corresponding private key sk;. O

Reduction B
(A, A1, %) — A

(pp. pk*) « C(1%)
£ Ay(pp)
req: (€ [N]
j V]
if j </ then
Vie{l,...,j—1,j+1,...,£}, (pk;,sk;) < mmKGen(pp)

else
for all i€ [¢] do (pk;,sk;) <— mmKGen(pp)
end if
(Mg (MDiegers (Mi)iegeny» (Pkis Ski)iefen)»St) “—
A1 (pp, (Pky)ie[n)
req: Vie [(]: |m0| = |m}]|
req: Vie [(:N]: (pk;ski) € K
if j < ( then
[(m§.m}) i= (mf.m))
else
(mg,mf) := (mj,m;)
end if
ct* «— C(mg,m})
if j<t do (hi)iewy/gjy < C((Pki»Ski)ieny/giy)
else do  (h;)iciyy < C((pk;»ski)ierny)
if j < { then
‘ (Mieqey/gjy 2= (mfsomfmi . my)
Vi c (... — 1j + L..N}
ct; < Rep(pk, ct*, m;, pk;,sk;, h;)
ctj:=ct*
else

(mi)ie[l] = (m?,..‘,m?)
Vie[N], ct; < Rep(pk,ct*, m;, pk;,ski,h;)
end if
Vie[N], (Cto,a:[) —ct;
cto < Compress(ctg)
ct:= (cto, (Cti)ierv))
b — ﬂz(ct,st)
return b

Figure 14: The reduction B using the adversary 4 of mmPKE
to break the security of PKE in Theorem F.1. The parts where
B’s operations are different from mmIND-CPAKOSK security
game are marked by . The parts which are different

from the reduction in [11] are highlighted by boxes .
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F.2 Proofs for Matrix Hint-MLWE

We first restate the lemma from [31, 42] below which is
the stepping-stone to prove the hardness of the Matrix Hint-
MLWE assumption. At a high level, the following lemma
states that the conditional distribution of 7 given R¥ + ¥ turns
out to be a non-zero centered skewed Gaussian distribution
with a covariance parameter Xy that is dependent on the public
matrix R and the covariance parameters of 7 and y.

Lemma F.2. Let d,l > 0 be integers. Let X1, Xy be pos-
itive definite symmetric matrices over R¥*? and R, re-
spectively. Let R € Z'*¢ be an integer matrix. Denote

-1
Yo = (Zfl +RTZy_ lR) . Then, the following two distribu-

Zd+é

tions over are statistically identical:

{ (?,71) ‘ P Dy e T Dy s b= R4S }

(?ﬁ> ?H@Zd,ﬁ’?“@za\/ﬁ,flzRﬁrY
~< (7

Proof. The proof is similar to [42, Lemma 7]. We show that
two random variables have the same probability mass func-
tion. The probability that the first random variable outputs
(¥,w) € Z¢ x Z' can be written as follows:

¢=XoR"Zy'h, F— Dy s

Pr|F =, R7+5 = | 7 Dy for ¥ o @Zf,\/z»]

Y
= Z“’,ﬂ(v) :
cexp [_n (sz;‘ V4 (6 — R) T2y ( —RV))]

Dy /5, (V= R)

—exp [—n ((V— ATr (-0 —aTxy '+ szy—lw)]

where ¢ = ZORTZ;IW.
Since the term fETZO_lE + WTE;1W is a con-

stant that does not depend on V and the conditional
probability Pr[F=V|RF+y=w] is proportional to

exp [—n(V—E)TZEI (V—E‘)], it implies
Pr[F = 7| RF+5 = ] =p g (F—0) Epr[?=m RF+3 = w].

Therefore, the given two distributions are statistically identi-
cal. O

Based on the above lemma, we refine the reduction from
the standard MLWE to the Matrix Hint-MLWE along with
the conditions on the parameters.

Theorem F.3 (Hardness of Matrix Hint-MLWE). Letm,n,q,{
be positive integers. Let S be a distribution over R ("+1).
Let B > 0 be a real number such that |R|* < B for any pos-
sible R < S and R :=T'(R). Let 69,61,0,8 > 0 be real
numbers. Let Xy, Xy be a positive definite symmetric ma-

trices over RUnmdx(mimd g g R pospectively, such



that [Ty < 5 and |2y < % Let X0 := Dymina , /5, be

a distribution over mtn = be a distribution
17{ X1 = Dy, o

over RY, and X 1= Dymny o be a distribution over R,
There exists an eﬁ‘iczent reduction Sfrom MIWEg ,, .44 10

MatrixHint- MLWEf,gylni that reduces the advantage by

at most 2¢, if the sampleablollty condition
1 1 B
w5 s = 5t 15
(1+8)c>+8 o3 oF (15)

In(2(m+n)d)+4
T

where &g := , and the convolution condition

1+ 1/8-me(ztmmd) (16)
are satisfied.
Specifically, for any PPT adversary A against the

/X] ")
MatrixHint- MLWERmn %o

adversary B against the MIWEg, ,,, , o assumption, such
that

assumption, there exists a PPT

MatrixHint-MLWE MLWE
Adearaoﬂ (A) < Adearal,fB

(M) +2¢

where parag =

(R.m,n,q,%).

((R.m.n.q.%0) (£ %1,5)) and para; =

Proof. The proof is based on [42, Theorem 1] and

[31, Theorem 2]. With an adversary A4 against
MatrixHint- MLWEiixjni aoxer WE show how the adversary B

breaks MIWEg ;1 1.g.5-
Given an MLWEg ,, 4 instance (A,b) €
first samples R <, sets R := I['(R) and

ﬂqul’l X qu

_ N\ 1
Yo = (2;‘ +RT2;1R)

Then, B samples the following elements over &,

*r<—Xo

*Yy—Xi

*t— D i N where & = ZoRTE; (R -
I'(r) +I(y))

By Lemma A.l, t can be PPT sampled from

Q)Z('”+”)d,5,\/m if the following conditions
hold: (1) X is positive definite where £ := Xo — 6%I(4n)a

i.e., Omin(Z) > 0; (2) 8- By < 1 where §) := 4/ REtnd)+4
and By denotes the max value among the norm of each
column of vZ~1. One can observe that

/ 1 1
By < A/ O (Z_l) < = .
e \/Gmin (Z) \/Gmin (ZO) - 02
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And since Opin (Xo) = we have

_1
=1
=51’

_ 1
—1 -1 - 1

12 I = I1=7 "+ RTEGIRI < = + 12| [RTR] < <gt
0

where the first inequality is obtained by the triangle inequality,

and the second inequality uses the fact HRTRH = |R|? and the

requirement bound |[Z; || < 62, =57t < 62, |R|? < B. Thus,
0 1
the above two conditions for Lemma A.1 can be combined as
sampleability condition, i.e.,
1 1

R IH > (1498)-6*+8 =0> (17)

Omin (ZO)

B2
72

4
o2
oy  Of

for some & > 0.

Later, B uses the sampled elements to transform the given
MLWE instance (A,b) into an MatrixHint-MLWE instance
and sends it to the adversary 4. Finally, B utilizes the reply
from A4 to break MLWE. ‘B starts by constructing

(A,b+[L,|A]t,R,h) (18)

where h := Rr +y.
Suppose b = [L,|A]r’ where r’ < 7y, we have

b + [Ly|A]t = [L,|A](x' +t)

where r’ + t is under the distribution

@Z(ern)d,o-I(ern)d + Q)Z(m+n)d’a /&)_Gzl(m+n)d'
| _ _
Denote X' = 6 Hpmina + (Z0 — 6 Lpninya) "

By Lemma A.2, the distribution Dy(utna sy

@Z("’ +nd g m is within the statistical distance

2 of Dyuenas fs i VE2 > Me(Z0H4) holds.  We
2 -1 _ 1 :
have H(ZQ — O I(m+n)d) ” = m and if

Equation (17) holds, we can obtain
= Gmin(ZO) _62 = 8'(52 +dp = 5'62.

Combining the triangle inequality with Lemma A.5, we show
the convolution condition as

1 1 +1 /8
Gmm(zo —O I(m+n)d) o’

Omin (ZO - 62](m+n)d)

1
—1
75 < o+

(19)
If the convolution condition holds, the distribution of Equa-
tion (18) is within statistical distance 2¢ of

(A.[L,|AJ#,R,h) (20)
where £ <« Q)Z(’"Jr”)d,a\/%'

Then, by Lemma F.2, the distribution of (¥,h) is identical
to that of (r,h). Thus, the distribution of Equation (20) is
identical to

(A, [Ly]A]r,R,h) 21)

<Me (Z(ern)d)fZ'

B

o2

1



which are the instance of MatrixHint-I\/ILWEe’Xl’S

. Rmnq,%0
sumption.

In summary, if sampleability condition and convolu-
tion condition in Equation (15) and (16) hold and the
MLWEg 1.1.4., assumption is hard, i.e., the adversary B can-
not distinguish between [L,|A]r’ with r’ < % and the uni-
formly random value b < X", then the adversary A4 cannot
distinguish between the Equation (18) and

as-

(A,u,R.h) (22)

where u «— ﬂ(q’” is uniformly random, with additional advan-
tage at most 2€. U

F.3 Proofs for XR-PKE

‘We restate Theorem 5.4, Theorem 5.5, and Theorem 5.6 below
and provide their formal proofs.

Theorem F.4 (Extended Reproducibility). For any positive
integer N, our PKE in Construction 5.3 is extended repro-
ducible. More precisely, for the extended reproducible game
in Figure 3, the following probability holds,

Pr [Game,egxé'é’eg;pw(k) = 1] =1.

(c,u*) < Enc(A,b*,m*) with ran-
:= y*, where we have

Proof. Suppose ct* :=
domness ry := (r,e,), i*
c=Ar+e,. 23)

and u* = [(b*,r) + y* + %] -m*|,4,. For each i € [N], the
public key b; — KGen(A). Thus, we have

b; = ATSi +e;. (24)

For the hints (h) ie[N] —
HintGen((r, eu), (bi,e,-)l-e[N], (yi),-e[N] ), we have

h; = {r,e;y —{e,,s;)+ yi. (25)

On input A;, Rep((¢,u™),m;,b;,s;, h;) outputs the reproduced
ciphertext (¢, u;) for b;, where

ui = |<¢,si) +hi + [g] M| 5d -

(26)
When plugging Equation (23), Equation (24), Equation (25)
into Equation (26), we have

i = [0bir) +yi-+ 5] -milaa
which is the same as the output from Enc(A,b;,m;; (r,e,),y;).
Overall, we get the extended reproducibility of our con-
struction. O
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Theorem E.5 (Correctness). Let e,s,r,e,,y be random vari-
ables that have the corresponding distribution as in Construc-
tion 5.3. Denote C as

Pr[ [[<e,r) +y—(s.eu) —cv+(s.¢0)] . > 9/4] ]

where ¢, 1= ¢—||c¢ mod g|,a, |4 € R, and ¢, := ¢ — ||c mod
qlras 1q € R. We say our Construction 5.3 is {-correct.

Proof. The value «’ in Dec algorithm is

/

W' =|u mod2®|,=|]c modgq sl -

Considering the compression and decompression of key-
independent ciphertext ¢, the value ¢ (renamed as ¢’) in Dec
algorithm is

:=]|lc modgq |l -
Plugging ||¢ mod ¢ |y, |4 = ¢ — ¢4, and ||c mod gy, |4 =
¢ —c,, we have

W —{c;s)y=c—c,—{c—¢ys).

Since c =(b,r)+y+|g/2]-mand c:= Ar+e,, where b :=
ATs+e, we can obtain the decryption is made by computing

u' —{c,s)={e,;r)y+y—{s,e,)—c,+{s,c,)+|q/2]-m.

It means that when ¢,,-norm of the decryption error is no less
than |g/4], i.e., |[{e,r)+y—{s,e,) — ¢, + {(s,¢)|l0 = |g/4],
the decryption will fail. Thus, the probability  is no more
than the probability of decryption failure. O

Theorem F.6 (Security). Let m,n,d,q,N,v be positive in-
tegers parameters. Let 6,060,061 be Gaussian width pa-
rameters. Let the positive real matrices Xy and Xy be as
Equation (9). Let the distribution S and the bound B be
as Equation (7) and (8) respectively. Let the distribution
Xo = @Z('"+"+')d,\/271’ X1 = Q)ZNd,\/Z;’ X = ﬂ(SV) Sl/tp-
pose Equation (5) and (6) hold.

Our PKE in Construction 5.3 is IND-CPAXR secure un-
der the MUWEg, 45 and MatrixHint-MIWER* S,
assumptions. More precisely, for any PPT adversary A, there
exist PPT adversaries By, By against MLWE assumption and
Matrix Hint-MLWE assumption, such that

AQVBIESTE (1) = Advins

Pafao,%(%) + AdVMatrixHint.MLWE (7\’)

paray,B;
where parag = (R,n,m,q,%) and para; = ((R,m +

1,n,q,%0), (N, %1,5)).
Proof. Let 4 be a PPT adversary against the IND-CPAXR
security of our PKE as defined in Figure 4. We upper bound

the advantage of 4 by the following games. Denote E; as the
event 4 wins Game;. The games are described in Figure 15.

+ Gamey: The game is the real IND-CPAXR security game
shown in Figure 4 so that we have
1.

XR
Pr[Eo] = Pr| GAMERGSA " (1) =



Game GAMERND-GPA™ (1)
(40,41, 2) — A
A — H(K(;nxn)

(s*,e*) — UST) x U(S), b* := ATs* +e* > Game

u— UR) > Game; — Game,

(mg,mi,st) — Ap(A.[u))
b<—{0,1}
(rseu) — @g() X @’5’10’)7* <~ @0]

c*:=Ar+e, > Gamey — Game;
c*i={b*, 1)+ y* + |§]-mf

(v.v) — U(R) = Game,

((bi,s)ieqny,st) — A (| (v, [vV]oa) st)
req: Vi€ [N], (b;,s;) € X
for all i € [N]
Yi— Do,
ei:=b;—ATs
hi =r,e;) — ey, Siy+yi
end for
b" — A ((hi)ie[n-st)
return [b="b']

Figure 15: The games for the proof of Theorem F.4.

* Game;: The game is the same as Gameg except that the
challenger replaces the public key b* by the uniformly
random values u.

The public key b* is honestly generated, satisfying
b* = ATs* +e*

where s* « ¥ and e* «— ¥".

Therefore, the adversary A4 cannot distinguish between the
challenger’s public key b* and the uniformly random values
u under the MLWE assumption. There exists an adversary
By with about the same running time as that of 4 such that

[Pr[E1] — Pr[Eo]| = Advii, (M)

where parag := (R,n,m,q,%)-

Game;: The game is the same as Game; except that the
challenger modifies how the challenge ciphertext (¢*,c*)
is generated.

At a high level, the challenger replaces the challenge ci-
phertext (¢*,c*) by the uniformly random values (v,v) «
U(R,"*") and the hints (h;);e[y] can be interpreted as the
hints for the secret of Matrix Hint-MLWE assumption. We
show how to reduce this modification to the Matrix Hint-
MLWE assumption as follows.
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Denote the column vector § = (y;) ie[v] Which is the con-
catenations of y; in row-wise. Denote the column vector ¥
and row vector ¥; for each i € [N] as

F=| e |, v:=0]-6)TE)")

r

and the hints can be rewritten as i; = ¥,¥ + y; for i € [N].
Denote the concatenation of y; and A; for i € [N] in row-
wise as R := (¥;)ie(v) and h := (h;);e[n) respectively, we
have

h=Ri+§

where R, T, and § are over the distributions of S, ), and %
respectively.

Note that the challenger will check the public-private key
pairs provided by the adversary and if there exists (s;",e}) ¢
S§ x S§, the challenger aborts the game and outputs L.
Thus, h can be seen as the hint of secret vector ¥ for the
matrix R with £ := N. And the challenge ciphertext (¢*,c*)
can be represented as

(o %) (B )= ()

It leads that even the adversary A4 can get the hint vector
h, the MLWE instance of F, i.e., (¢*,c*), is still indistin-
guished to the uniformly random values (v,v) — U(R,"*")

. . k1.8 .
under MatrixHint-M LWER,mH,n,q,xg assumption.

Therefore, there exists an adversary B; with about the same
running time as that of A4 such that

\Pr[Ez] _ PI‘[E]]| _ AdeatrixHint—MLWE(}\')

paraj, B

where para; := ((R,m+1,n,4,%0), (N, %1,S)).

Furthermore, in Game;, the ciphertext output by the chal-
lenger is independent of the challenge bit b and therefore

we have |

PI‘[EQ] = i

Collecting all the games from Gameg to Games, we get the
required bound. O

F.4 Security Proof for KOSK Compiler

We restate Theorem C.2 below and provide its formal proof.

Theorem F.7 (Security). For ATK e {CPA,CCA},
if mmPKE' is mmIND- ATKKOSK secure and 11
is a NIZK argument system satisfies correctness,
multi-proof extractability and zero knowledge, our
mmPKE CompKOSK[mmPKE’,H] output by Construc-
tion C.1 is mmIND-ATK secure.



Proof. The proof is similar to [17, Theorem 8.3], espe-
cially on the use of multi-proof extractability. Suppose
there is a PPT adversary 4 := (4, 4;, ) which wins the
mmIND-ATK security game of mmPKE with non-negligible
probability €. Suppose 4 makes at most Oy queries to the
random oracles H. Without loss of generality, assume that 4
never repeats a random oracle query.

We prove the statement by introducing a sequence of games.
Denote E; as the event 4 wins Game;. The games are de-
scribed in Figure 16.

* Gamey: The game is the real mmIND-ATK security game
of mMMPKE «— CompX°S®[mmPKE’, I1] shown in Figure 9.
Here, by definition we have

Pr[Eo] =E.

* Game;: The game is the same as Gamey except that we
generate the proof (7;),e[¢] by the simulator Sim;. It is easy
to see that Game;| and Gamey are indistinguishable by the
zero-knowledge property of I, i.e., one can construct a PPT
adversary By such that

Pr[E;] = Pr[Eo] —¢- Advﬁ'fg0 (A) = Pr[Eo] — negl(A).

* Game;: The game is the same as Game; except that
we program the output of H(0) from crsyy to crsip where
(P8, T) < Simes(1%). Tt can be checked that Game, and
Game are indistinguishable by the CRS indistinguishabil-
ity in multi-proof extractability. Specifically, there exists a
PPT adversary B; such that

Pr[E;| > Pr[E; ] — Advi’g (A) = Pr[E;] —negl(}).

* Games: The game is the same as Game; except that we use
the multi-proof extractability of IT to extract the witnesses
for all proofs (7;);e[¢.n] that are generated by the adversary
A. More precisely, the reduction will run

sk; <« Multi-Extract(l}‘, On, O, 1/Pr[Ez], 7, pk;, ;)

where Oy = poly(A) is the number of the random oracle
queries by the adversary A4 and Qs < N is the number of
statement-proof pairs (pk;, ;) generated by the adversary
A.

Let Aborteyract be the event that (pk;,sk;) ¢ Ry for some
i € [Qs]. If Abortexiract occurs then the reduction aborts and
overwrites the adversary’s output to be L. We note that the
reduction does not use the extracted witness in this game.

Arguing identically as in [25, Lemma 3.6] and assuming
that Pr[E;] is non-negligible, the runtime of the reduction
is still poly(A) and also

Pr[Es] = %Pr[Eg] —negl(A).
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e Gamey: The game is the same as Games except that we
generate pp’, (pk;)icrg), and ct by the challenger C in
mmIND-ATKKXOSK security game of mmPKE'.

Specifically, we first forward the value ¢ from the adversary
A to the challenger C and get (pk;);e[¢) from the challenger
C. Then, we run the simulator to obtain (7;)ic[s]. Af-
ter sending them to A4, we can obtain (pkisni)ie[é:N] and
(m?, m})ie[[], (mi)iee:ny from A. With the multi-proof ex-
tractor, the private key sk; of the public key pk; generated
by A4 can be extracted. We send the extracted private key
along with the public key, and the two challenge message
vectors (m?,m})iem and (m;)e[s.n] provided by A4 to C
and receive the challenge ciphertext ct from C. After for-
ward ct to 4, we can obtain the guess bit &’ from 4 and set
the guess bit for C.

One can observe Gamey is the same as Games, i.e.,

Pr[E4] = PI[E3]

and also Gamey is the mmIND-ATKXOSK security game of

mmPKE’. Thus, there exists an adversary B, with about
the same running time as that of 4 such that
IND-ATKKOSK
Pr{E4] = Advpm s (V)

Collecting all the games from Gamey to Gamey, we get the
mmIND-ATK security of mmPKE. O

F.5 Security Proof for Adaptive Security Com-
piler

We restate Theorem E.2 below and provide their formal
proofs.

Theorem F.8 (Security). If mmPKE’ is mmIND-CPA se-
cure and TI' is a NIZK argument system satisfies cor-
rectness, zero knowledge, and simulation soundness, our
mmPKE « Comp““*[mmPKE’,IT"] output by Construc-
tion E.1 is mmIND-CCAS" secure.

Proof. Let 4 be an PPT adversary against the
mmIND-CCA®®" security of mmPKE. We define the follow-
ing sequence of games where the first and last game are the
game GAMERTRSSAC () and GAMERTAR S5 (1),
respectively. Denote E; as the event that 4 wins the game
Game;.

¢ Gamey: The game is the real security game
GAM EmmLNKDE',(,:\f&;OF (A) shown in Figure 9 with the
challenge bit b = 0. It means that the challenger encrypts
the messages (m?)ie[g] and (m;)ie[e.n) to the challenge
ciphertext ct.
1].

Cor
Pr[Eo] = Pr | GAMERTRRSHG " (1) =



Game GAMERTINE-SCA (1)

(A0, 41, 2%) — A4

pp’ — mmPKE’.mmSetup(lx,N) > Gamey — Games

pp’ C(lx,N) > Gamey
crsy «— H.Setup(lx) > Gamey — Game;
(Crsm,T) < Simcrs(lx) > Game, — Gamey

(L,st) <« Ay(pp’,crsm)

(Pki)iepey < C(0) = Gamey
for all i € [{]
(pk;,ski) < mmPKE".mmKGen(pp’) > Gameg —
Games
; — IT.Prove! (crsp, (pp’, pk;),sk;) = Gamey
w; < Simy (crsi, (pp’, pk;)) > Game| — Gamey
end for
(M2, mD)icpey, (my)ieqeng» (PK; ) iefen) - St) /L -

AP (ks T)ie-st)
req: Vie [£], |mY| = |m}]|

req: Vi€ [(: N, ILVerify(crsm, (pp’, pk;). i) = 1

b 1{0,1}
ct — mmPKE".mmEnc(pp’. (pk;)iepv) (M?)ieqe) (Mi)iefeny)
> Gamey — Games

forallie[/:N]
sk; «— Multi-Extract(1*, On, Qs, 1/Pr[E2], T, pk;, ;) =
Game; — Gamey
req: (pk;,sk;) € mmPKE". K

end for

ct— C((mf,m})iegegs (Mi)iefenys (PisSkiiepeny) = Gamey

b — A% (ct,st)
return [b=10]

Oracle Dec(i,ct) Oracle Dec; (i,ct)
req: i € [/] req: i € /]
m «— req: ct # mmExt(ct,i)
mmPKE’.mmDec(pp, sk;, ct) m —

mmPKE".mmDec(pp,sk;, ct)

m — C.Decy(i,ct) >
Gamey m — C.Decy(i,ct) =
return m Gamey
return m

Figure 16: Gameg - Gamey for the proof of Theorem F.7. For
ATK = CPA, the adversary A4 does not have the access to
decryption oracles Decy and Dec;.

* Game;: The game is the same as Gameg except that the
challenger simulates the proof (7;);c[y] in the ciphertext ct
by the simulator Sim; as shown in Figure 17.

Hence, there exists a reduction B to the computational
zero knowledge of IT such that

[Pr[E;] — Pr[Eo]| < N- /—\dvﬁ}f’%(k).

* Gamep: The game is the same as Game; except
that the challenger switches (m?),-e[N] to (m})ie[N] in
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(&(()i)) ic[n]» the first key-dependent ciphertext of (cti =
(cAt(()l),cAtEl)))ie[N], as shown in Figure 17. Note that here we

setm? =m/} = m; forie [£: N] to simplify the presentation.

ro < D, cty «— mmPKE’.mmEnci(pp; ro)
Bi= (B — (0.1}
forallie [N]
0,1 — Dy
cAt((P — mmPKE’.mmEncd(pp, pk[(;_),; ro,f'g)) > Game,

cAt(li) — mmPKE’.mmEncd(pp,pkEilBi,;ro,?gilﬁi) >
Game,

T Siml(crsn/a(PP/aPk(()i>sPkgi)’&’&éi)’&gi)’ﬁi)) ‘ =
Game; - Game;
&= (et ct)”)

end for R

return ct:= (cto,(&i);e[N],B, (m)ie[n)

Figure 17: Game; and Game; for the proof of Theorem F.8.

Let BAD be the event that the adversary A4 can make a
valid but improper query (e.g., double encryption for differ-
ent message) to the decryption oracle (different from the
challenge ciphertext ct). If BAD happens, we abort the re-
duction. We claim that there exists an reduction algorithm
B; whose running time is about the same as A4, such that

|Pr[E;] —Pr[Eq]| < Adv:QLNKDE}(’:;]Q% (A) +Pr[BAD].

The reduction B is described in Figure 18.

The proof is a combination between the proof in [6, 33, 36]
and [51, 60]. Roughly, B; combines two key-dependent
ciphertext of mmPKE’ to form the ciphertext of mmPKE,
which one is encrypted by the public keys from B;’s chal-
lenger and the other is encrypted by the public keys from B,
itself. B; will switch the message (m?)ie[N] to (m})iE[N] in
the key-dependent ciphertext encrypted by its challenger’s
public key. If A4 can identify the modification, B, can utilize
4 to break the mmIND-CPA security of mmPKE'.

Specifically, after receiving £ public keys (pk;");c[¢) from
the challenger of mmPKE’, B, picks these ¢ public keys
as the part of the public keys for mmPKE and generates
the rest £ public-private key pair (pk;,sk);c[¢] by itself. To
decide which one of the two pubic keys in each public
keys pk; of mmPKE is from the challenger, B; tosses a
random bit o;: if a; = 0, then pk; := (pk¥, pk}); otherwise,
pk; := (pkj, pk’). Then, like Game;, Bj runs the simulator
to get (ppry,T) < Simg and sends the public parameter
along with the public keys to the adversary 4.

To handle the corruption query, B; can just flip the random
bit a; in the private key and provide the private key corre-
sponding to public key generated by itself as the respond.



And the adversary A4 cannot distinguish between the two
public key since the random bit ¢; in each uncorrupted
private key is information-theoretically hiding to 4.

To handle the decryption query, B; can use the private key
generated by itself to decrypt the ciphertext. If BAD does
not happen, it means that the adversary A4 cannot generate
a valid proof for a ciphertext with different message to
distinguish between the two public keys, even after seeing
the simulated proof in the challenge ciphertext ct. Thus,
we can bound Pr[BAD] by constructing a reduction B, to
the computational simulation soundness of IT, i.e.,

Pr[BAD] < Qp - Advip 5 (A)

where Qp denotes the number of the adversary A’s queries
to the decryption oracles Decy and Dec;.

To encrypt the challenge ciphertext, after receiving the pub-
lic keys and message chosen by the adversary A4, B; set
E := @ for switching the public keys during the encryp-
tion. It leads that the first key-dependent ciphertext &é') in
each key-dependent ciphertext (&3’),&5’)) of mmPKE is
encrypted by the challenger’s public key. Since these cases
are exclusive, o; or PB; is uniformly random in A4’s view.
After sending the public keys along with the two message
vectors to its challenger, B; obtains the ciphertext from its
challenger. Like Gamej, B; runs the simulator to obtain the
proof m; < Sim; for each i € [N]. The challenge ciphertext
with the proofs are sent to the adversary 4.

In the end, By uses the guess bit b’ from 4 to break the
mmIND-CPA security of mmPKE'. Thus, if mmPKE' is
mmIND-CPA secure, the adversary A cannot know whether
B, switches the message mg to m; or not in the first key-
dependent ciphertext. We get the above bound.

Games: The game is the same as Game, except
that the challenger switches (m{)icivy to (m})iepyy in
(cAtY)) ie[n]- the second key-dependent ciphertext of (ct; :=
(&".&)iepwy-

If mmPKE’ is mmIND-CPA secure, the adversary A4 is
indistinguished between Game; and Games. We claim that
there exists an reduction algorithm B3 whose running time
is about the same as A4, such that

IPr{Es] — Pr[Ea]| < AdymmIND-CPA

mmPKE’ 2N, B; (A) +Pr[BAD].

The reduction B; is analogous to B; in Game; except that
the challenger’s public key is the second one in the public
key of mmPKE.

Gamey: The game is the same as Games except that the
challenger generates the proof (7;);c[y] in the ciphertext
ct by IT.Prove. Hence, there exists a reduction By to the
computational zero knowledge of IT such that

[Pr[E4] — Pr[E3]| < N- AdvIZT'fj;4 (A).
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Finally, Gamey is the mmIND-CCA®" security game with
the challenge bit b = 1. And if the honestly generated proof
T; is not valid, the reduction aborts. Thus, we have

Pr[E;] = Pr| GAMERINR SRS (1) = 1.

Collecting all the games from Gamey to Gamey, we get the
mmIND-CCA®®" security of mmPKE. O



(A0, A1, ) — A

pp* < mmPKE'.C(2N)

crspy «— H/.Setup(]x)

(€,st) < Ao(pp*,crspy)

req: (€ [N]

(PkF)iefe) — mmPKE".C(¢)

G = (d,....0y_1) < {0,1}¥

for all i e [(]
‘ (pk},ski) < mmPKE.mmKGen(pp*)
if o = 0 do| pk; 1= (pky',pk}) | else | pk; := (pkf,pk?) |
sk; := (1 —ay,sk})

end for

Cor — (¥
((m%,mD)ieqey, (mi)iegen)» (PK:)ieen) - St) —

a5°"P% (| pp = (pp*,crsmr) | (Pkyiers))

B:=a
forall ic[(:N] do m;:=m;, My :=m;
forall ie|
forall i€[(] do pky.;:= pk!
forallie[(:N]

(PklgsPkl)) — pki

P o
(] do ‘m,- =my, M i=m;, My =m;

‘ pk; = pkjﬁi | PRy o= pkll—ﬁi
end for

(cto, (Cti)icpany) < MMPKE'.C((PKy)iefeangs (MO W) icrays (Mi)iegean]

forall i [(] do pkzm = pkf, pk}:]f0le = pk;
foralli e [N]

(Gt g,) = (Ctin i)

7; < Simy (crsy, (pp’, kaO, pk}tI ,cto, cAt(()L) , &(11) ,Bi))

end for @ Al
Cor, ~() ~ 3
b — A5°"P% (et 1= (cto, (cty .t Jieny: Bs (i) ieny)-st)
req: Vie [¢], m? = m! v (pk; ¢ Cor A [m{| = |m!|
return b’
Oracle Cor(i) Oracle Decy, (i,ct)
req: i € [{] req: i € [{]
Cor+ «— i (cto, cto,cty,m,P) < ct
return req: IT'.Verify(crspy, pp*, pk;, cto, Cto, cty, B, ) =

(] —(li,sk;) 1
if bt = 1 req: ct # mmExt(ct, i)
m «— mmPKE’.mmDec(pp, sk}, (ct,ct; _q,))

return m

Figure 18: The reduction B; using a distinguisher 4 be-
tween Game; and Game; to break the mmIND-CPA security
of mmPKE’ in Theorem F.8. Decy,; oracle is assigned to A,
for bt € {0, 1}. The parts where B;’s operations are different

from mmIND-CCA®°" security game are marked by .

-
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