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Abstract

Atomic swaps enable asset exchanges across blockchains without relying on trusted inter-
mediaries, and are a key component of decentralized finance (DeFi) ecosystems. Recently,
Chung, Masserova, Shi, and Thyagarajan introduced Rapidash (Financial Cryptography 2025),
an atomic swap protocol that remains incentive compatible under user-miner collusion, by en-
suring that the honest strategy forms a coalition-resistant Nash equilibrium. However, their
model assumes a closed system where players act solely based on internal protocol incentives.
In practice, participants may be influenced by external incentives such as off-chain rewards or
adversarial bribes, which can undermine such equilibrium guarantees.

In this work, we introduce a new game-theoretic notion, bounded mazimin fairness, which
ensures that honest participants remain protected against rational adversaries with arbitrary but
bounded external incentives. We construct an atomic swap protocol that satisfies this notion,
while preserving the equilibrium properties of prior work in the absence of external influence.
As we show, our protocol is easy to implement and can be instantiated even in Bitcoin’s limited
scripting language.
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1 Introduction

In distributed systems and cryptographic protocols, fairness is a central yet elusive goal. However,
achieving the strongest form of fairness — either all parties receive the output or none do — is
often impossible for general multi-party functionalities without heavy assumptions such as honest
majority or trusted execution environments [PG99]. This limitation has motivated the search for
relaxed fairness notions that still provide meaningful guarantees for honest participants, even when
full fairness is unattainable.

One promising direction is to embrace a game-theoretic perspective, recognizing that real-
world participants are often rational parties, motivated by self-interest rather than classified as
either honest or malicious in the classical cryptographic sense. Protocols in this paradigm aim
to ensure that no coalition of rational parties has an incentive to deviate from the prescribed
behavior. This shift in perspective has already led to substantial progress in domains previously
blocked by impossibility results. For instance, in the case of fair coin tossing recent game-theoretic
protocols [WAS22, TSW24, CGL 18] obtained fairness even under dishonest majority — a setting
where classical cryptographic notions of fairness have long been known to be impossible to achieve.

We revisit another fundamental primitive in decentralized environments: atomic swaps. These
protocols enable two mutually distrustful parties to exchange digital assets across different chains
without relying on a trusted intermediary. However, the blockchain setting introduces new chal-
lenges: miners can selectively include, exclude, or reorder transactions, and users may collude with
the miners to extract unfair advantage. To address this, a recent work dubbed Rapidash [CMST22b]
laid a foundational game-theoretic framework for atomic swaps that remain incentive-compatible
even in the presence of user-miner collusion. The Rapidash protocol was proven to satisfy cooper-
ative strategy proofness (CSP-fairness), which guarantees that the coalition’s utility is maximized
when all players in the coalition follow the honest strategy. Thus, informally, in Rapidash’s atomic
swap the honest strategy formed a coalition-resistant Nash equilibrium.

Yet, Rapidash left one important question open: what if parties have access to external in-
centives, such as side payments or off-chain contracts with external entities? In realistic settings,
particularly in decentralized finance (DeFi), participants do not operate in isolation. They may be
subject to off-protocol pressures or rewards that alter their incentives. Consider an atomic swap
where one party, Alice, is a major liquidity provider on a decentralized exchange, and her ability
to maintain this role depends on successfully completing a swap with Bob, e.g., acquiring BTC
to rebalance her position. Suppose a third party, Eve, stands to gain market dominance if Alice’s
trading capacity is disrupted. In this scenario, Eve may have a strong incentive to bribe Bob to
misbehave during the atomic swap — ensuring that Alice does not receive the BTC in time, thereby
impairing her operations. Note that in this case, the CSP guarantee is insufficient, as it offers no
protection when Bob is willing to adopt a strategy that does not maximize his utility within the
swap itself. Without external incentives, such scenarios are not of concern, since it is reasonable to
assume that Bob would always aim to maximize his own profit within the atomic swap. However,
in the presence of off-protocol incentives, Bob may find it optimal to even intentionally lose money
within the atomic swap protocol as long as Eve’s compensation offsets this loss.

As out-of-band incentives clearly violate the closed-world assumption underlying many rational
protocol models and can undermine the guarantees of even game-theoretically secure constructions,
in this work we ask ourselves the following question:

Is it possible to provide an atomic swap protocol that is secure against strategic players with
external incentives?



1.1 Owur Contributions

We answer this question positively, and our contribution here is two-fold. First, we formalize a
new game-theoretic notion, called bounded mazimin fairness, which captures the idea that honest
players should not be harmed by the presence of external incentives, and it may be of independent
interest in a broader context. Second, we design an atomic swap protocol that satisfies this notion.
Moreover, we present the Bitcoin instantiation of our protocol showcasing the practicality of our
solution.

New definition: bounded maximin fairness. As explained above, the notion of CSP fairness
does not capture scenarios where parties can be influenced by external incentives. Intutively, when
such incentives are unbounded, they can motivate the participating parties to behave arbitrarily
maliciously. In this sense, the strongest possible game-theoretic notion one can hope for is that
even when the strategic coalition can be arbitrarily malicious, honest players should not be harmed.
This idea underpins maximin fairness, a notion introduced in recent works [PS17,CGL118, WAS22].
Maximin fairness implicitly assumes that the external incentives may be arbitrary and unbounded,
which explains why the strategic players’ behavior may appear arbitrarily malicious from the per-
spective of the present protocol. Maximin fairness, however, is a very stringent requirement, and
insisting on such a strong notion of fairness may severely constrain the design space or even lead
to impossibility results in some applications.

For atomic swap, we currently do not know how to achieve maximin fairness given strategic
miners. Instead, we suggest a meaningful relaxation called bounded maximin fairness. Unlike its
more stringent counterpart, bounded maximin fairness allows external incentives to be arbitrarily
large but assumes there is an upper bound on the external incentives and the bound is known to
the protocol. We want to guarantee that honest participation will not lead to negative utility as
long as the other strategic players behave rationally in light of the arbitrary but bounded external
incentives. This guarantee nicely complements equilibrium-type guarantees such as CSP fairness
— essentially, bounded maximin provides a safety net for honest parties if they suspect that there
may be external influence at play. In other words, simple-minded, non-strategic players can always
feel safe participating in the protocol.

Secure atomic swap. We design an atomic swap protocol that satisfies both bounded maximin
fairness and CSP fairness. Additionally, our protocol has dropout resilience, which ensures that an
honest player is protected from loss if the other player plays honestly, but drops offline at any point
during the protocol. This property is important in practice since the honest player may go offline
due to loss of password or network outage.

Finally, we implement our protocol for blockchains that support general smart contracts, and
also demonstrate how it can be instantiated with Bitcoin scripts — showcasing its practicality even
on more restrictive platforms like Bitcoin.

1.2 Related Work

Over the past decades, significant effort has been devoted to achieving fair exchange on blockchains.
Numerous elegant solutions have been proposed under the assumption that miners behave honestly.
For example, Choudhuri et al. [CGJT17] presented a solution for achieving fair exchange and fair
multi-party computation using a public bulletin board and extractable witness encryption. For
atomic swaps, several approaches have been developed [Her18, MMS™, vdM19, MD19, ZDBN19).
Typically, atomic swaps are based on hashed time-lock contracts (HTLCs) [Herl8] or a novel
cryptographic primitive known as adaptor signatures [DH20).



Another line of work focuses on achieving fair exchange when miners may behave strategi-
cally [CMST22b, WSZN22, CMST22a]. A series of papers [WHF19, Bon16, MHM18] demonstrated
how users can bribe miners to censor competing transactions. To improve the robustness of HTLCs
under such adversarial conditions, Tsabary et al. [TYME21] proposed MAD-HTLC, which requires
the initiating party to lock up extra collateral. Although MAD-HTLC mitigates certain bribery
attacks, it fails to achieve CSP-fairness in the presence of general user-miner collusion. More recent
works, such as Rapidash [CMST22b] and He-HTLC [WSZN22|, extend the ideas behind MAD-
HTLC. These works propose new knowledge-coin exchange protocols, which achieve the same func-
tionality as HTLCs, while providing provable CSP-fairness guarantees. However, none of these
protocols satisfies the bounded maximin fairness.

Interestingly, as pointed out by Chung et al. [CMST22b], even if the underlying knowledge-
coin exchange protocols are CSP-fair, the atomic swap protocol built upon them may not inherit
this property. This highlights that game-theoretic properties like CSP-fairness are not necessarily
composable. Therefore, a carefully designed atomic swap protocol is required to ensure CSP-
fairness. A more detailed discussion on achieving CSP-fairness in atomic swaps is provided in
Section 2.2.

Beyond fair exchange, a notable category of external incentives in blockchain systems is oracle
manipulation attacks. An oracle is a service that provides real-world data to smart contracts on a
blockchain. Some oracles are themselves implemented as smart contracts, where users stake tokens
and receive rewards for supplying data. When the outcomes of other applications, e.g., prediction
markets, depend on the oracle’s data, these applications introduce external incentives that may
motivate oracle participants to submit incorrect information in order to manipulate outcomes. It
was reported that over $400 million was lost to oracle manipulation attacks in 2022 [ora22].

2 Technical Overview

The goal of an atomic swap is to enable two parties to exchange their cryptocurrencies across two
different blockchains. Before diving into our solution, we first introduce a helpful simpler primitive,
knowledge-coin exchange. In Section 2.1, we review the existing knowledge-coin exchange protocols,
and explain why they fail to achieve bounded maximin fairness even with limited external incentives.
Then, we explain the necessary modifications to achieve bounded maximin fairness. In Section 2.2,
we explain how to realize atomic swap based on knowledge-coin exchange. We highlight the key
challenges of designing an atomic swap protocol, and summarize the key ideas of our construction.
In the following, we use “strategic players,” or “coalition,” to describe colluding parties (that can
potentially exhibit malicious behavior).

2.1 Knowledge-Coin Exchange

Hash timelock contract (HTLC). In a knowledge-coin exchange, Bob wants to buy a secret s
from Alice at a price of $v coins. In practice, such functionality is often realized by hash timelock
contracts (HTLCs), which work as follows. Alice first sends hs = H(s) to Bob, where H(-) denotes
a cryptographic hash function. Then, Bob deposits $v into the contract upfront, and the contract
is parametrized with the hash value hs; and a timeout T

HTLC

e On receiving s from Alice such that H(s) = hs, send $v to Alice.



e After T, on receiving ping from Bob, send $v to Bob.

Above, ping is a predetermined message which triggers the corresponding activation point, i.e., the
corresponding part of the smart contract logic. The first activation point allows Alice and Bob to
exchange the secret and the payment, and the second one allows Bob to recover its deposit if Alice
drops offline. Since the total deposit is only $v, the two activation points are mutually exclusive,
i.e., only one of them can be activated and only once.

While HTLC is dropout resilient, it is unfortunately not CSP fair in the presence of user-miner
coalitions. If Alice offers a transaction fee of $f, then as long as Bob bribes each miner $f + $e (for
some small € > 0) for excluding Alice’s transaction, rational miners will take the bribe [TYME21].
This bribery attack makes sense for Bob as long as $v > $f - T'. It may seem like HTLC is secure
as long as T'- $ f is sufficiently large. However, Tsabary et al. [TYME21] showed new attacks where
the cost to Bob is not dependent on 7.

Prior work: Achieving CSP-fairness. To address user-miner collusion, Chung et al. [CMST22b]
proposed a new protocol that achieves CSP-fairness. In this protocol, Alice first computes hy; =
H(s). Additionally, Bob samples a random string pre,, and computes hg = H(pre,). They deploy
the following smart contract parametrized by hash values hs and hy, the timeout T and T3, the
value of the secret $v, the collateral $¢,, and a predetermined small amount $e.

CSP-fair knowledge-coin exchange contract
/* Params: (hg, hy, T1, T2, $v, $¢p, $€), Bob deposits $v + $cp. */

Piefaulr: On receiving z from Alice s.t. H(z) = hsg, send $v to Alice and $¢; to Bob.

Prefung: Time T3 or greater: on receiving z from Bob s.t. H(z) = hy, do nothing.

Crefund: At least Ty after Prefung is activated: on receiving ping from anyone, send $v + $¢;, to
Bob.

Churn: On receiving (21, z2) from any P s.t. H(z1) = hs and H(z2) = hy, send $e to player P.

All remaining coins are burnt.

Figure 1: Rapidash’s CSP-fair knowledge-coin exchange contract [CMST22b].

In the above construction, the activation points starting with the same capital letter are mu-
tually exclusive. For example, once Pgefauir is activated, Prefund cannot be activated. We adopt
the same convention in this work. The formal specification of writing a smart contract is given in
Section 3.1.

To complete the knowledge-coin exchange, Bob deposits the intended payment $v, and an
additional $¢, amount of collateral into the contract. Then, Alice sends s t0 Pyefaulr as soon as
Bob’s deposit takes effect. In this case, Alice receives the payment $v, and Bob learns s and gets
his collateral back all at once. If Alice fails to post s by time 77, Bob sends prey, to Prefund at time 77
to request a refund. The activation point Pefung merely allows Bob to express his intent to request
a refund. The actual refund happens when 75 time has passed since the activation of Prefund —
at this point, Bob sends to Ciefung which actually sends him the refund. An honest miner always
includes all outstanding transactions in any block it mines. Importantly, if an honest miner has
observed both s and pre, contained in the transactions posted, it will immediately post (s, prey)
to Churn, and this transaction will always be ordered in front of others in the block it mines.

The knowledge-coin protocol above achieves CSP-fairness. The key insight here is that the
activation point Chpy,m serves as a “bomb”. Suppose that the honest Alice has posted s. Now,
should a strategic Bob-miner coalition post pre; to Prefund in an attempt to get refunded and thus



get the secret s for free, both s and pre, will be publicly known. Note that the coalition has to
wait at least To amount of time before the actual refund Clefung can be activated. During this 75
window, if any non-colluding miner mines a block, it will trigger the bomb by posting (s, pre,) to
Clurn, which will cause Bob to lose its collateral. Thus, if a Bob-miner coalition wishes to get the
secret for free, it has to take a gamble that it will be able to mine all blocks in the 75 window.

Why Rapidash does not satisfy bounded maximin fairness. Unfortunately, the above
protocol does not satisfy bounded maximin fairness, as an externally motivated Alice can harm
Bob. Indeed, Alice can withhold s and wait until Bob sends pre, to Prefund- Then, Alice can
send s and pre;, to Cpym to redeem $e, thus making Bob lose his collateral $c,. As long as Alice
is compensated externally by $v — $e, she is incentivized to trigger C,., instead of sending s to
Pyeaule to earn $v.

Bounded maximin fairness: definition subtleties. Before we explain our modifications to
the above protocol towards one that is better aligned with our bounded maximin fairness notion,
we first discuss the proposed fairness definition itself. At a first glance, a natural way to define
bounded maximin fairness is to require that the optimal strategy that maximizes the externally
incentivized coalition’s utility does not harm any honest player. It implicitly assumes that the
coalition knows the optimal strategy. However, the external incentive can be an arbitrary function
of the blockchain states, and finding the optimal strategy may not be computationally efficient. To
capture the security that defends against probabilistic polynomial-time (PPT) players, we define
a set of blatantly irrational strategies R, where a strategy S is in R, i.e., it is blatantly irrational,
if one can efficiently find another strategy S’ such that the coalition’s utility when adopting S’ is
strictly larger than that of S. Then, we say that a protocol is bounded maximin fair if honest
players’ utility is non-negative when the coalition adopts any strategy outside R. We provide the
formal definition in Section 3.3.1.

Our knowledge-coin exchange. The challenge in designing a bounded-maximin-fair protocol is
to make sure every strategy that may harm the honest players is blatantly irrational. We achieve
this by ensuring that the following conditions hold:

1. Harming the honest player necessarily puts the adversary at risk of triggering the bomb.

2. The utility of the externally incentived coalition strictly decreases if the bomb activation point
gets triggered.

3. The last message that contributes to the bomb getting triggered is always being sent by a
strategic player.

The last two conditions ensure that activating the bomb is a blatantly irrational strategy: Whenever
a strategic player is about to send a message which would trigger a bomb, their utility is strictly
improved if they instead simply stop sending messages from that moment on. Therefore, given any
strategy S, we only need to check whether stopping to send messages is a better strategy than
continuing with S, which is efficiently verifiable.

To ensure that the second condition holds, we set the collateral high enough to ensure that the
external incentive cannot offset the loss which occurs when a bomb is triggered. As we know that
an externally incentivized Alice can harm Bob, we have Alice supply the collateral as well (and
burn it together with Bob’s when a bomb is triggered).

At a first glance, the second condition may seem trivial, because how and why would honest
players trigger the bomb? However, surprisingly, the CSP-fair contract specified in Figure 1 does
not satisfy this condition. Consider the following: A strategic Bob posts pre, publicly even “before



making his deposit”. Then, once Bob made his deposit, the honest Alice follows the protocol and
posts s t0 Pefault- At this moment, both s and pre, are publicly known, so the miner can post
(s, prey) to Cpym to trigger the bomb.

To prevent the scenario above, we regulate the timing when the strategic Bob would want to
reveal pre,. To do so, we add the following activation points, where hy, = H (prey).

Befuse: On receiving ping from anyone, do nothing.

Bpum: On receiving z from anyone P such that H(z) = hy, send $e to player P and burn
remaining coins.

The effect of Bpym is similar to Cpyn as it burns most of the deposits, but Bp,m can be triggered
simply by pre,. Recall that the activation points of the same type are mutually exclusive. Once
Byefuse has been activated, Bpym cannot be activated. Thus, the purpose of Byefuse is to “defuse” the
bomb of Bpym, i.e., a strategic Bob would only want to post pre, after Bgefuse has been activated.
Since Bgefuse can only be triggered when the deposits have been made, this ensures that a strategic
Bob would not want to post pre, before making his deposit (which was the problem in the scenario
considered above). Intuitively, posting pre;, before the deposits is now a blatantly irrational strategy.
Consequently, the resulting contract is as follows.

Our knowledge-coin exchange contract
/* Params: (hg, hy, T1, To, $v, $¢p, $€), Bob deposits $v + $¢p, Alice deposits $cq. */

Byefuse: On receiving ping from anyone, do nothing.

Bpurn: On receiving z from anyone P such that H(z) = hy, send $e to player P and burn
remaining coins.

Pyefauit: On receiving z from Alice s.t. H(z) = hs, send $v + $¢, to Alice and $¢;, to Bob.
Prefund: Time T3 or greater: on receiving z from Bob s.t. H(z) = hy, do nothing.

Crefund: At least Ty after Prefung is activated: on receiving ping from anyone, send $c, to Alice
and send $v + $c¢, to Bob.

Churn: On receiving (z1, z9) from any P s.t. H(z1) = hs and H(z2) = hy, send $e to player P.
All remaining coins are burnt.

2.2 From Knowledge-Coin Exchange to Atomic Swap

Intuitively, an atomic swap can be realized by two knowledge-coin exchange instances, one on
each blockchain. Suppose Bob has x; coins on BobChain (denoted Bxy), and Alice has x, coins on
AliceChain (denoted Az,). The goal is for Bob to exchange his 3z}, for Alice’s Az,. The blueprint for
atomic swaps via knowledge-coin exchange composition is as follows: Alice samples a random string
preg, and sends hs = H(pre,) to Bob. Then, she deposits a prescribed amount into a knowledge-
coin exchange on AliceChain parametrized with the hash value hy. Similarly, Bob deposits Bz into
another knowledge-coin exchange on BobChain parametrized with the same hash value hgs. Once
both Alice and Bob have deposited their coins, Alice sends pre, to the contract on BobChain to
obtain Bxzp. At this moment, pre, is publicly known, and Bob can send pre, to the contract on
AliceChain to obtain Ax,.

Naive composition. We can hope that this logic can be used to satisfy bounded maximin and
CSP fairness, if we use our knowledge-coin exchange scheme from above as a base. Towards



this, in addition to pre,, Alice samples a random string pre, to help with the refund procedure.
Similarly, Bob samples a random pre;. They deploy a contract parametrized with the hash values
hs, he = H(pre,) on AliceChain, and another contract parametrized with hg, hy = H(pre,) on
BobChain. They also put the prescribed deposits and collaterals into the contracts. Ideally, when
everyone is honest, Alice will send pre; to PdBefault on BobChain (henceforth, the superscript B
indicates that the activation point is in the contract on BobChain), and Bob uses the same pre, to
activate P(ﬁefault on AliceChain (similarly, the superscript A indicates that P(ﬁfault is on AliceChain)
to complete the atomic swap. If the other party drops out, Alice and Bob can use pre, and pre,
to get refunded, respectively.

However, as Chung et al. [CMST22b] pointed out, the direct composition of two CSP-fair
knowledge-coin exchanges does not yield a CSP-fair atomic swap. Here we briefly review the issues
and their solution, as it is crucial to our construction. The issue is that Alice-miner coalition can
withhold pre,, and try to get refunded on AliceChain. Of course, at this moment, the honest Bob
will also try to get refunded on BobChain by sending pre,, but Alice-miner coalition defers Bob’s
refunding transaction. After Alice successfully gets refunded on AliceChain, she immediately sends
preg to PdBefamt to obtain Bx;. Unlike the context of knowledge-coin exchange where Bob wants to
buy the secret pre, at certain price, in atomic swap, pre, is just a random string facilitating the
exchange. Once Alice gets refunded on AliceChain, pre is worth nothing to Bob. Consequently,
Alice-miner coalition can get Bz for free!

To address this issue, we allow the bomb Cﬁum on AliceChain to be triggered by pre, and pre,,.
Consequently, if Alice-miner coalition withholds pre, so that the honest Bob tries to get refunded
by prep, Alice-miner coalition is disincentivized to send pre,. This patch indeed fixes the attack
above, while we lose the dropout resilience for Alice. If Alice’s deposit on AliceChain is delayed,
e.g., due to a network congestion, Bob will send pre;, to BobChain to get refunded. At this moment,
after the deposit is finalized, the honest Alice could not get refunded by pre, because the bomb
C’bAum can be triggered by (pre,, prep).

A key challenge of designing an atomic swap protocol is to find the right balance for how easy
the player can be refunded. If it is too easy, it may become risk-free to attack the honest player; if
it is too difficult, the honest player’s coins may be locked simply due to network congestion.

Two-phase preparation. Chung et al. [CMST22b| proposed a two-phase preparation to address
the above issue. They locked PdBefault and CbBum on BobChain with an additional hash h. of a
random string pre. sampled by Bob. Bob the published pre. if the deposits into the contracts on
both blockchains are finalized in a timely manner. The extra lock h. then helped to distinguish the
two cases depending on whether Alice strategically withholds pre, or not.

1. If the deposit transactions are not finalized in time, Bob will never publish pre.. In this case,
Bob will send ping to Péfund and send pre, to PdBefault to get refunded. Because PdE;fault is
locked with h., Alice cannot cash out Bz, from Pdifault, and Bob can safely help Alice get
refunded.

2. If the deposit transactions are finalized in time, then Bob will publish pre,. Here, if Bob ever
needs to post pre, to Prlzfund, it must be because Alice-miner coalition withholds pre,.
Bounded-maximin-fair atomic swap. We adapt the ideas above and combine these with our
knowledge-coin exchange to achieve bounded-maximin-fair atomic swap. Specifically, Alice and

Bob deploy a knowledge-coin exchange contract on AliceChain with the following modifications:

° CbAum can be triggered by pre, and pre,. This is to prevent Alice-miner coalition from with-
holding pre, on BobChain.



A .
burn*

e Add an activation point A

— On receiving z; from anyone P such that H(z1) = hg, or on receiving z5 from anyone P
such that H(z2) = hy, send Ae? to player P.

AA

burn regulates the timing that Alice and Bob can reveal pre, and pre;, respectively, and it

is crucial to the proof of bounded-maximin fairness. We also add A% to defuse the bomb

A defuse
of A n-

° Pr/é\fund can be trigger by ping sent by Bob. This is to ensure that Bob can help Alice get

refunded if the deposits are not finalized in time.
On BobChain, we modify the knowledge-coin exchange contract as follows:

° CEum can be triggered by preg, pre, and pre.. The revelation of pre. indicates that the
deposits into the contracts on both blockchains are finalized in a timely manner. Thus, once

the honest Alice posts pre, to PdBefault, Bob should never try to get refunded by pre,.

° BEum can be triggered by pre, instead of pre,. Because of the two-phase preparation, we need
to ensure that Bob only posts pre. after the deposits are finalized, which is crucial to the

proof of bounded-maximin fairness.

e PB | can be trigger by ping sent by Alice. This step is crucial to for Alice to get refunded

r

from BobChain if Bob drops out.

We give the complete specification of our contracts in Figure 3 and formally prove the full
construction secure in Section 5.

3 Model

3.1 Blockchain and Smart Contracts

We model a blockchain as an append-only public ledger consisting of a sequence of ordered blocks.
We consider an idealized mining process in which, at each block height ¢, a miner is selected with
probability proportional to its mining power. This model captures both proof-of-work and proof-
of-stake blockchains, where mining power corresponds to computational power and staked assets,
respectively. The selected miner may then choose any subset of transactions from the pool of
pending transactions and append a new block to the blockchain. Transactions in the block are
executed in the order they appear.

We model a smart contract as an ideal functionality that can send and receive coins from
players and the state of a smart contract is publicly observable. A smart contract may contain one
or more activation points. Each transaction has a unique identifier and consists of: 1) an activation
point of a smart contract, 2) a non-negative amount of coins, and 3) an arbitrary message. When
a transaction is executed, the corresponding activation point of the smart contract is invoked,
triggering the computation specified by the contract and possibly transferring coins. For simplicity,
we use the phrase “A user sends a message msg to an activation point A” to mean that the user
sends a transaction to the activation point A with message msg. The balance of a smart contract
is defined as the net amount of coins it has received minus those it has sent, and must remain
non-negative.

We use the following style of pseudo-code to express smart contracts. We use ping to denote an
empty message.

10



A toy contract
e Parameters: time 7. Alice deposits $d,, Bob deposits $dp.

Afast: On receiving ping from Alice: send $d, to Alice.
Auait: After T, on receiving ping from Alice: send $d, + $d;, to Alice.
Bother: On receiving ping from Bob: send $d, to Bob.

The capital letter in the contract defines the type of an activation point. All activation points
of the same type are mutually exclusive. For example, if Az has been invoked, then neither Agys:
nor Aya,it can be invoked again. If an activation point is constrained to a specific time interval (e.g.,
after block height T'), then any attempt to invoke it outside that interval is considered invalid and
is ignored. An activation point cannot be invoked if the contract’s balance is insufficient to cover
the amount it is supposed to send. For example, if Ay.i has been invoked, Bgther cannot be invoked
anymore.

The contract parameters specify the amounts of coins that must be deposited for the contract
to become active. Once all required deposits are in place, the contract becomes active and its
activation points can be invoked. Before the contract becomes active, each player is allowed to
withdraw their own deposit if other players has not yet made the deposits. However, once the
contract is active, the distribution of coins is only possible through the activation points.

3.2 Players and Strategy Spaces

There are three types of players in the model: Alice, Bob, and the miners. Alice and Bob are the
two users who wish to exchange coins across different blockchains. We refer to them collectively as
users to distinguish them from miners. All players are modeled as probabilistic polynomial-time
(PPT) interactive Turing machines that can adaptively decide how to act based on the view in the
protocol so far. We consider the following strategy spaces. Any player, including Alice, Bob, and
miners, is allowed to do the following at any time:

1. Post a transaction. A player may post a transaction to the network at the beginning of any
time step. We assume a synchronous network with zero delay. Transactions posted at time ¢
are immediately visible to all players and miners. When miners decide which transactions to
include in a block at time ¢, they can observe all transactions posted at that time.

2. Create smart contracts. A player may create an arbitrary smart contract and deposit any
amount of coins into it. For example, a smart contract might specify: “If the blockchain state
satisfies a particular predicate at some future time, transfer a specified amount of coins to a
particular pseudonym,” where both the recipient and the amount may depend on the state
of the blockchain.

In addition to the above, miners are further allowed the following:

3. Block mining. When a miner is selected to mine a block, it may include an arbitrary subset
of the outstanding transactions into the block and order them arbitrarily. The miner may
also generate and include new transactions of its own.

Alice or Bob can form a coalition with some miners. Within a coalition, all private information
is shared among members. The strategy space of a coalition is defined as the union of the strategy
spaces of its individual members.

Throughout the paper, except in Section 6, we do not explicitly model the process of coalition
formation. Instead, we assume that all members within a coalition are bound together and act to
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maximize the coalition’s joint utility. For simplicity, we ignore the transaction fee in our model. The
bribery attack done by the transaction fee can be viewed as the transfer “within” the coalition, and
does not affect the coalition’s utility. In Section 6, we analyze the metagame that models coalition
formation.

3.3 Game-Theoretic Properties

Cooperative Strategy Proofness. The first property we consider is cooperative strategy proof-
ness (CSP-fairness), which was formulated and adopted in prior works [PS17, CGL™18, WAS22,
CS23,SCW23, CRS24, CMST22b]. Conceptually, a protocol satisfies CSP-fairness if following the
protocol maximizes the expected utility of a coalition of strategic players, assuming that the remain-
ing players follows the protocol honestly. Consequently, deviation is not profitable, and the honest
protocol achieves a coalition-resistant Nash Equilibrium. The formal definition of CSP-fairness is
as follows.

Definition 3.1 (CSP fairness). A protocol satisfies y-CSP-fairness iff the following holds. Let C be
any coalition that controls at most a vy € [0,1) fraction of the mining power, and possibly includes
either Alice or Bob. Then, for any probabilistic polynomial-time (PPT) strategy S¢ of C, there
exists a negligible function negl(-) such that except with negl(\) probability, we have

util®(Se, HS_¢) < util’(HSe, HS_¢), (1)

where HS¢ denotes the honest strategy of C, HS_¢ denotes the honest strategy of anyone other
than C, and utiIC(Xc, Y_¢) is the expected utility of the coalition C when C is executing strategy X
and the remaining players (denoted by —C) execute strategy Y.!

Dropout Resilience. In atomic swap, we want to guarantee dropout resilience, which protects
an honest player when the counterparty drops out from the protocol. In practice, a dropout can
happen due to mistakes, misconfiguration, or unforeseen circumstances, e.g., Alice may lose her
hardware wallet. Conceptually, a protocol satisfies dropout resilience if an honest player’s utility is
always non-negative, even when the counterparty stops responding and drops out before the end
of the protocol assuming at least 1/poly(\) fraction of the mining power is honest. The formal
definition of dropout resilience is as follows.

Definition 3.2 (Dropout resilience). A protocol is dropout resilient, iff as long as at least 1/poly(\)
fraction of the mining power is honest, then with 1 — negl(\) probability, an honest Alice (or Bob)
is guaranteed to have non-negative utility even when Bob (or Alice) is honest but drops out during
the protocol’s execution.

We emphasize that our dropout resilience notion is very strong: we want it to hold even when
many miners (up to 1 —1/poly(X) fraction) are not necessarily playing honestly. In such a scenario,
transactions may take polynomially long to confirm, and players may time out during the protocol
and try to back out.

3.3.1 New Definition: Bounded Maximin Fairness

While CSP-fairness assumes that players do not have incentives outside the present protocol, achiev-
ing resilience against such external incentives is very meaningful. In particular, such incentives may

!The formal definition of the utility function util is given in Section 3.4 in the context of atomic swap.
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lead strategic players to adopt a broader class of strategies, including ones where players suffer loss
within the protocol but are compensated by the external incentives. Given unbounded external
incentives, strategic players can behave arbitrarily (like a “malicious” adversary using standard
cryptographic terminology). The strongest game theoretic notion one can hope for is that honest
players are not harmed even when others behave arbitrarily. This notion is called mazimin fairness
in some recent works [PS17,CGL118, WAS22].

Maximin fairness, however, can be too stringent and challenging to satisfy. Thus, many real-
world protocols that hope to incentivize honest behavior aim to provide incentive compatibility
only when the parties’ external incentives are bounded. Specifically for atomic swap, it is unclear
whether a protocol that achieves maximin fairness given user-miner coalition exists at all. Hence, we
define a relaxed notion of fairness called bounded maximin fairness. It protects honest individuals
from rational players who may have arbitrary but bounded external incentives. Although we focus
on applying this notion to atomic swap, it would be interesting apply it more broadly to formally
analyze real-world protocols that currently try to provide heuristic guarantees in the face of bounded
external incentives.

Defining bounded maximin fairness. Imagine a set of players C’ who have external incentives
that might entice them to deviate from honest behavior. We want to argue that even when their
external incentives are arbitrary, then as long as the incentives are bounded and C’ is rational, any
group of players without external incentives should feel safe to participate honestly — as long as
they participate honestly, their utility will not be negative.

When defining rationality of the externally incentivized coalition, interesting technicalities arise
due to the fact that we model players and contracts as PPT interactive Turing machines. It is
tempting to assume that the externally incentivized coalition C' uses the optimal strategy that
maximizes its expected utility, and ensure no harm for any honest group or individual. However,
this approach would make the possibly unrealistic assumption that C’ knows the optimal strategy
based on the external incentive function. Indeed, finding such a strategy may be computationally
hard, since the external incentive function can take an arbitrary form.

Instead, we will protect honest participants against any PPT strategy of the coalition C’ as long
as the strategy is not blatantly irrational. A family of strategies R is called blatantly irrational, if
for any strategy S € R, one can efficiently find another strategy S’, such that S’ does strictly better
than S.2 We can often show that some strategies are blatantly irrational without finding the optimal
strategy. Later in our formal proofs, we show that a class of strategies is blatantly irrational, since
simple modifications of such strategies lead to better outcomes for C’. We then show that as long
as C’ does not adopt a blatantly irrational strategy, honest participants are protected.

We therefore devise the following definition which is parametrized by a strategy space R that
contains all possible PPT strategies except for the set of blatantly irrational strategies R.

Definition 3.3 (Bounded maximin fairness). A protocol satisfies a-bounded maximin fairness
w.r.t. some strategy space R, iff for any set of PPT players C without external incentives, and any
externally incentivized PPT coalition C’ that is disjoint from C, controls at most « fraction of the
mining power, and uses any strategy Se: € R, there is a negligible function negl(-) such that except
with negl(\) probability®, it holds that

uti|C(HSc, Ser, HSp) > 0,

2How we construct blatantly irrational strategies is given in Section 5.2.1, and how one can find a better strategy
efficiently is explained in Lemma 5.7 and Lemma 5.10.

3The negligible failure probability in our proofs arises due to the following bad events: 1) either the hash is
inverted, or 2) honest miners have never mined a block even after polynomially many blocks have been mined.
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where D denotes all players not in CUC’, HS¢ and HSp denote the honest strategy of C and D, re-
spectively, and util’(HS¢, S¢r, HSp) denotes the utility of C given that the strategy (HSe, Ser, HSp)
is adopted.

Regarding external incentives. As mentioned above, our modeling of external incentives is
general and captures external incentives of any form. Precisely, any side contract where money
is redistributed to players of the present protocol is considered as external incentive if (1) the
contract is pre-existing, i.e., created before the start of the present protocol; or (2) the contract is
created at any time, and an outsider, i.e., not a player of the present protocol, deposited money
into it. As an example of the former, imagine that Alice was involved in some bet prior to the
atomic swap protocol, and the bet depends on the state of a future block. Because the outcome of
the atomic swap protocol may affect the blockchain state, Alice may be incentivized to manipulate
the state even if doing so lead to a loss within the atomic swap protocol. As an example of the
latter, imagine that Alice is Mallory’s competitor, and Mallory is offering external incentives for
anyone who can cause financial loss to Alice. Without loss of generality, we consider non-negative
external incentives. Further, for pre-existing smart contracts, we do not distinguish between those
funded by the participants in our protocol and those funded by external parties — gains from all
pre-existing smart contracts are considered external.

3.4 Atomic Swap

An atomic swap allows two mutually distrustful parties to exchange coins across different blockchains
without relying on a trusted third party. Consider two parties, Alice and Bob. Bob owns x; coins
on BobChain (denoted Bxy), and Alice owns z, coins on AliceChain (denoted Az,). The goal is for
Bob to exchange his Bz, for Alice’s Ax,.

In this work, we consider three kinds of strategic players: 1) Alice-miner coalition (or Alice
alone); 2) Bob-miner coalition (or Bob alone); and 3) miner-only coalition. Let $AV(-) denote the
valuation function of Alice (or the Alice-miner coalition), defined as:

$AV(Bzy + Azg) = $08 - 2y 4+ $072 - 2,

where $02 > 0 and $v2 > 0 represent the value Alice places on each coin on BobChain and
AliceChain, respectively. Similarly, let $BV(:) denote the valuation function of Bob (or the Bob-
miner coalition), and $MV(-) denote that of the miner-only coalition. We make the assumption:
$AV(Bxzp — Axg) > 0, $BV(Az, — Bxp) > 0, which justifies why Alice wants to exchange her Az,
with Bob’s Bz, and vice versa.

Let C be any subset of players, with S¢ and S’ , denoting the strategies of C and —C, respec-
tively. Let Ad”,Bd® > 0 be the amounts deposited by Alice (or the Alice-miner coalition) into the
respective smart contracts, and Aré\, ]}37’5 > 0 be the amounts received during protocol execution.
Let $eq(...) > 0 represent the external incentives for Alice or the Alice-miner coalition, where the
value may depend arbitrarily on the blockchain state. We define the utility utiIC(SC, S’ ¢) when C
is Alice or Alice-miner coalition as follows:

util®(Se, 87 o) = $AV(Ar2 — AdA + BrB — BdB) + $eu(. . .).

We define Ad2, Bd?, Arlf‘,Brf, $ep(...) > 0 analogously for Bob (or the Bob-miner coalition),
and Arf BrB AdR BB $e,(...) > 0 for the miner-only coalition. The utility utiIC(S’c, S’ ) when
C consists of Bob or a Bob-miner coalition is defined as

util®(Se, S" o) = $BV(Ars — Ads + Br2 — BdB) + $ey(.. ),
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and the utility util®(Sc, S’ ») when C is a miner-only coalition is defined as

util®(Se, S”¢) = SMV(Arh — Adh + BrB — BdB) + $en(...).

4 Secure Atomic Swap

We now present the smart contracts and the protocol of our atomic swap. Say Alice owns x, coins
on AliceChain (denoted Ax,), and Bob owns x; coins on BobChain (denoted Bz). Bob wants to
exchange his Bz, for Alice’s Ax,. Either Alice or Bob can be a strategic player, and collude with
the miners on both chains. $F is the upper bound of the external incentive of the coalition, and
a € [0,1) is the fraction of the mining power controlled by the coalition.

To initiate an atomic swap, Alice samples pre, < {0,1}* pre, < {0,1}*, and Bob samples
prey, «— {0,1}* and pre, < {0,1}*, where X is the security parameter. Alice and Bob choose
the parameters that respect the constraints in Figure 2. Then, Alice and Bob deploy two con-
tracts: CONTRACT® and CONTRACT® specified in Figure 3. We rename the block height where
CoNTRACT is deployed on AliceChain to be AliceChain time 0 (only deployed, Alice and Bob have
not deposited their coins yet). Similarly, BobChain time 0 is the block height where CoONTRACTD
is deployed on BobChain.

We give the protocols specifying the honest behaviors of Alice, Bob, and miners in Figure 4,
Figure 5, and Figure 6, respectively. This atomic swap protocol satisfies CSP-fairness, bounded
maximin fairness, and dropout resilience:

Theorem 4.1. Suppose that the hash function H(-) is a one-way function, and the choice of the
parameters satisfy the constraints in Figure 2. Then, the following statements hold:

e For any v € [0,1 — 1/poly(N)], if the parameters further satisfy 'yTA < % and WTB <
ACo T4LATa

BB

BBy Bay” then atomic swap protocol satisfies v-CSP-fairness.
e b

o If a € [0,1 — 1/poly(XN)], then atomic swap protocol satisfies a-bounded maximin fairness
against external incentives.

o [f all players are PPT, then atomic swap protocol is dropout resilient.

The formal proof of Theorem 4.1 is given in Section 5. In Section 6, we analyze the metagame
that captures the formation of the coalition. We show that our atomic swap protocol disincentivizes
100% of the miners to collude with the strategic players, and thus justifies the assumption of having
1/poly()) fraction of honest miners.

In addition to the game-theoretic properties above, we also show that honest players can get
their collateral back in a timely manner as specified in the following theorem.

Theorem 4.2. Suppose Alice, Bob, and all miners are honest. Alice gets Bxy,, Bob gets Ax,, and
both parties get their collateral back in & BobChain time plus 2 AliceChain time.

Proof. If Alice and Bob are both honest, they will send the deposit transactions to CONTRACT®
and CONTRACT® at BobChain time ¢ = 0. Because all the miners are honest, CONTRACT® and
CONTRACT? both enter the execution phase no later than one block on BobChain or one block on
AliceChain is mined. As soon as CONTRACT® and CONTRACT® both enter the execution phase,
Bob sends ping to BcEfefuse. Because all the miners are honest, Bffefuse will be activated no later

than one block on BobChain is mined. As soon as BE. _ is activated, Bob sends pre, to P2, .

15



Constraints for Contract® (on BobChain):
e hy = H(pre,), hy = H(prey) and h. = H(pre,).
e TE>TE>TB > 0.

o BB > B0, BB > BeB, and BCE > BeB.

o SAV(BeB) > AV taba) 5B g
$BV(BCE) > $BV(Az,+aB2y)+$E

11—«

Constraints for Contract® (on AliceChain):
e hy = H(pre,) and h, = H(pre,).
o TA>TH > 0.

e AliceChain time T > BobChain time T, i.e., the AliceChain block of length T4 is mined
after the BobChain block of length T.¢

o At > A0, Ach > KM, and Ac) > Al

and

o SAV(ACA) > $AV(Bxb;rsz;A.xa)+$E
$BV(Ach) > $BV(B%+0¢A%)+$E.

11—«

Choice of timeouts:

o TB>1 7A>1.

“In practice, this constraint should be respected except with negligible probability despite the variance in
inter-block times.

Figure 2: Parameter constraints for atomic swap. H(-) is a cryptographic hash function. All times
are expressed in the time of the respective chain.

Because we assume the network delay is zero, Alice and Bob both enter the execution phase when
Bob sends pre, to Pd'ifault.

When Alice enters the execution phase, she sends pre, to PdBefault immediately. Because all the
miners are honest, PdBefault will be activated no later than one block on BobChain is mined. As soon
as Pdl?efault is activated, Alice sends ping to P(ﬁefault. Again, ecause all the miners are honest, P(ﬁefauh
will be activated no later than one block on AliceChain is mined. When Pdifault and Pféfault are

activated, Alice gets Bxp, Bob gets Az,, and both parties get their collateral back. O
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Contract® (on BobChain)
/* parametrized with (hs, hy, he, TE, 7B, Bxb,BcE,BeB)*/
Deposits: Bob deposits B:chchf’, and Alice deposits 13¢2. Once both parties have deposited
the required amount, the contract becomes active.

Bcl?efuse: On receiving ping from anyone, do nothing. > BcEfefuse is to invalidate BEum.
BEum: On receiving z from anyone P such that H(z) = h., send BeB to player P.  All

remaining coins are burnt.

PB. .t On receive 21 from Alice such that H(21) = hs and 2o from Bob such that H(z2) = h,,
send Bxp + BCE to Alice and BCE to Bob.

refund: L1me TlB or greater: On receive z from Bob such that H(z) = hy or on receiving ping
from Alice, do nothing.

C’E_fund: At least 78 after PrEﬂmd is activated: on receiving ping from anyone, send Bx;, + Bcg to

Bob and Bcs’ to Alice.

C’Eum: On receive (21, 22, 23) from anyone P such that H(z1) = hs, H(z2) = hy, and H(z3) = h,
send BeB to player P. All remaining coins are burnt.

Contract® (on AliceChain)
/* parametrized with (hg, ha, TP, 72, Azq, Kch, $AeM)*/

Deposits: Alice deposits Az,+Ach, and Bob deposits Ac’ﬁ‘. Once both parties have deposited
the required amount, the contract becomes active.

AdAefuse: Time TP or greater: on receiving ping from Alice or Bob, do nothing. © Aﬁefuse is to

. . A
invalidate Ay, .

Aﬁum: On receiving z; from anyone P such that H(z1) = hg, or on receiving zs from anyone
P such that H(z) = hy, send A€ to player P. All remaining coins are burnt.
P oo On receiving 2 from Bob such that H(z) = hs or on receiving ping from Alice, send
Az, + Ac? to Bob and send Acé‘ to Alice.
Y efund: Time TP or greater: on receiving z from Alice such that H(z) = h, or on receiving
ping from Bob, do nothing.
Céfund: At least 7” after Préfund is activated: on receiving ping from anyone, send Az, + Ach

to Alice and Acﬁ‘ to Bob.

C{ ..t Onreceiving (21, 22) from anyone P such that (21) = hy and H(z) = hg, or on receiving
(22, 23) from anyone P such that H(z) = hq and H(z3) = hy, send Ae? to player P.
All remaining coins are burnt.

Figure 3: Smart contracts for atomic swap. Activation points of the same type are mutually
exclusive. Activation points can be triggered only after both parties have deposited.
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Atomic Swap Protocol — Alice

Preparation Phase:

1.

2.

When both CONTRACT® and CONTRACT® have been deployed on the respective chains,
Alice sends the deposit Az, + AcaA to CONTRACT?; and the collateral BCS to CONTRACT®.

Wait until one of the following happens:

e Either CONTRACT® or CONTRACT® has not been active, and it is at least BobChain time
TB: Alice enters the abort phase.

e Bob has not sent pre. to Pd
abort phase.

e Bob sent pre. to Pd
phase.

~faulps and it is at least BobChain time T8: Alice enters the

e and it is before BobChain time T: Alice enters the execution

Execution phase:

1.
2.

3.

Alice sends pre, to P As soon as P has been activated, Alice sends ping to P

default”

(Note

default” default

If 78 BobChain time has passed since Pefund is activated, Alice sends ping to CB
that as soon as C'Efund is activated, Bob sends ping to Pre]cund )

refund”

If 7* AliceChain time has passed since activating P Alice sends ping to C%

refund ’ refund*

Abort Phase:

1.

. At AliceChain time TOA, Alice sends ping to Pefund and and ping to A%
. If Bob has not sent ping to P, refund by AliceChain time T1 , Alice waits until A%

If CONTRACT® (CONTRACTA, resp.) has not been active, Alice withdraws her deposit from
CONTRACT® (CONTRACTA, resp.).

defuse*

Gefuse 15 activated

and sends pre, to Pefund

If 7” AliceChain time has passed since P2 efund 15 activated, Alice sends ping to Crefund’

larly, if 78 BobChain time has passed since Preﬂmd is activated, Alice sends ping to C’refund

simi-

Ignore all other events.

Figure 4: Atomic swap protocol for Alice.
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Atomic Swap Protocol — Bob
Preparation Phase:

1. When both CoNTRACT® and CONTRACTP have been deployed on the respective chains,
Bob sends the deposit transaction of Bz + BCE’ to CONTRACT®? and sends the collateral
transaction of Ach to CONTRACTA.

2. Wait until one of the following happens:

e Both CONTRACTP and CONTRACT® are active: Bob sends ping to Bdeﬂlse As soon as
Bdefuse is activated, Bob sends pre, to Pdefault and enters the execution phase.

e Either CONTRACT® or CONTRACT® has not been active, and it is at least BobChain
time TB: Bob enters the abort phase;

Execution phase:
1. Wait until one of the following happens:

o Alice sent preg to Pdifault' Bob sends pre, to PdAefau|t

e Alice has not sent pre, to Pdefault, and it is at least BobChain time T1 Bob sends ping

to AA As soon as A% is activated, Bob sends pre, to P2

defuse* defuse refund*

2. If 7B BobChain time has passed since Prefund is activated, Bob sends ping to CB As soon

as C’Efund is activated, Bob sends ping to P2

refund*

refund*

3. If 72 AliceChain time has passed since Pefund is activated, Bob sends ping to Crefund

Abort Phase:

1. If CoNnTRACTP (CONTRACTA, resp.) has not been active, Bob withdraws his deposit from
CONTRACT? (CONTRACT?, resp.).

2. At AliceChain time 73, Bob sends ping to P4, and ping to A}

defuse*

3. If Alice has not sent ping to P, by AliceChain time T, Bob waits until A% . __ is activated

and sends pre; to Pefund

refu nd defuse

4. If 7 AliceChain time has passed since Prefund is activated, Bob sends ping to Crefund,
if 78 BobChain time has passed since Pefund is activated, Bob sends ping to CB

similarly,

refund”

Ignore all other events.

Figure 5: Atomic swap protocol for Bob.
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Atomic Swap Protocol — Miner

: : B B B B B B
T%e mlnel;‘watchgs all trinsactlor;s posted to ABdefuse’ Bpins Pictaut> Prefund® Crefund> Churns
Altises Aburms Phetauitr Prefunds Crafungs @nd CF. (i.e., all the activation points for both

contracts), to see if they contain a valid preg, pre,, pre,, and pre,.

If CEfund has not been activated, as soon as the miner has observed pre,, pre, and pre,, it
posts (preg, prey, pre..) to CEum. Similarly, if Céfund has not been activated, as soon as the
miner has observed both pre, and pre, it posts (pre,, pre,) to C@um; as soon as the miner

has observed pre, and pre,, it posts (pre,, pre,) to Ch

urn’

B . . . B
If B%efuse has not been activated, as soon as the miner observes pre,, it posts pre, to By, .
If Af¢ .. has not been activated, as soon as miner observes pre, or prey, it posts pre, or
prey to Ag,.-

Whenever the miner mines a block, it always includes its own transactions ahead of others.

Figure 6: Atomic swap protocol for miners.
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5 Proof of Theorem 4.1

5.1 Achieving CSP Fairness

This subsection is dedicated to proving CSP-fairness which formally stated as follows.

Theorem 5.1 (CSP fairness). Suppose that the hash function H(-) is a one-way function. Suppose
Ach

the choice of the parameters satisfy the constraints in Figure 2, and further satisfy WTA < v

B
and VTB < %. Then, the atomic swap protocol satisfies v-CSP-fairness.
Cb Tp

Before proving Theorem 5.1, we define the following events.

e Normal®: PdBefault is activated.

e Refund®: either (P5; , + OB, ) are activated, or one of Alice and Bob withdraws their
deposits from CONTRACT® successfully before CONTRACT® becomes active.

e BurnB: BEum

A. A
Normal™: Pilc i

B . .
or Cy ., is activated.

is activated.

Refund®: either (Pheund + Chcing) are activated, or one of Alice and Bob withdraws their

deposits from CONTRACT? successfully before CONTRACT® becomes active.

e Burn®: AA

A . .
burn O CY, is activated.

Normally, when Alice and Bob follow the protocol, PdBefault and PdAefault will be activated, and they
exchange the coins successfully. However, if one of the parties drops out, the other party will trigger
(PB4 + CB. ) and (PA. .4 + Chrng) to get refunded. Finally, BE,  CB AR —and Cf, —are

refund refund refund burn> ~burn? ““burn

the bombs, and both Alice and Bob lose their collateral when a bomb is triggered.

Lemma 5.2. Suppose the parameters are set according to Figure 2. Then, the following statements
hold.

e Suppose the coalition A consists of Alice and an arbitrary v € [0,1] fraction of the mining
power. The utility of A can be more than the honest case, that is, SAV(Bxy — Ax,), only if
Normal® and Refund® both happen.

e Suppose the coalition B consists of Bob and an arbitrary v € [0,1] fraction of the mining
power. The utility of B can be more than the honest case, that is, $BV(Ax, — Bxy), only if
Refund® and Normal® both happen.

Proof. Notice that if any of Normal®, Refund® and Burn® happens, no coin is left in BobChain, so
no one can get more coin from BobChain anymore. Thus, consider all possible cases, including none
of Normal®, Refund® and Burn® happens, we have the following table.

which is activated | net profit of Alice’s coalition | net profit of Bob’s coalition
none —BcE —Bay — BCE
Normal® By, —Bxyp
Refund® 0 0
Burn® < BeB — BCE < BeB — Bay, — Bcf

Table 1: The net profit of Bob’s coalition from BobChain.
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Similarly, if any of Normal®, Refund® and Burn® happens, no coin is left in AliceChain, so no
one can get more coin from AliceChain anymore. Thus, consider all possible cases, including none
of Normal®, Refund® and Burn® happens, we have the following table.

which is activated | net profit of Alice’s coalition | net profit of Bob’s coalition
none —Ax, — AcaA —Ac{:‘
Normal® —Az, Az,
Refund? 0 0
Burn?® < A — Kz, — K < AeP — Ach

Table 2: The net profit of Alice’s coalition and Bob’s coalition from AliceChain.

Alice-miner coalition. Suppose the coalition A consists of Alice and an arbitrary v € [0, 1]
fraction of the mining power. If A follows the protocol, Normal® and Normal® will happen, and
the utility of C is $AV(Bx;, — Az,) > 0. When Normal® and Refund® both happen, A’s utility is
$AV(Bxp). Now, we will show that this is the only possible scenario for A’s utility to exceed the
honest case. In other words, if either Normal® or Refund® does not happen, the utility of A is at
most $AV(Bxz, — Az,). There are two cases.

e Case 1: Normal® does not happen. Because BCE > BeB, the net profit from BobChain is at
most 0 if Normal® does not happen. Then, because Az, > Ae®, we have Ae® — Az, — AcaA < 0.
Thus, the net profit from AliceChain is also at most 0. Consequently, the utility of C is at
most zero, which is less than $AV(Bx, — Az,).

e Case 2: Refund® does not happen. Because Ach > A, we have Ae® — Az, — Ach < —Axz,.
Thus, assuming Refund® does not happen, the net profit from AliceChain is at most —Axz,.
However, the net profit from BobChain is at most Bx,. Thus, the utility of C is at most
$AV(Bxy — Az,), which is the same as the honest case.

Bob-miner coalition. Using a completely symmetric proof, we can show that the only way for a
Bob-miner coalition’s utility to exceed the honest case is when Refund® and Normal® both happen.
O

Lemma 5.3 (Alice-miner coalition). Suppose that the hash function H(-) is a one-way function.

Let A be any coalition that consists of Alice and 7y fraction of mining power. Then, as long as
A A

'yTA < ﬁ, for any PPT coalition strateqy Sa, except with negligible probability, it must be

ch Tq

util (S, HS_4) < uti*(HS 4, HS_ 1),
where HS_ 4 denotes the honest strategy for everyone not in A.

Proof. Recall that the utility of A is $AV (Bxp — Az,) > 0 under an honest execution. Now, suppose
A may deviate from the protocol. We may assume that the coalition does not post any new smart
contract on the fly and deposit money into it — if it did so, it cannot recover more than its
deposit since any player not in A will not invoke the smart contract. We analyze the possible cases
depending on which phase Bob enters.

Bob enters the abort phase. Because Az, > Ae®, the net profit of A from AliceChain is at
most zero, no matter whether CONTRACT® is active or not. We will show that the net profit of
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A from BobChain is also at most zero except with negligible probability. If CONTRACT® never
becomes active, the net profit of A from BobChain is at most zero. Now, assume CONTRACT®
becomes active. When Bob enters the abort phase, he never sends any transaction containing pre,.
Ignoring the negligible probability that A finds pre,. by itself, Bbum, Pdifault, and Cbum can never
be activated. Because Alice does not get any coin from Bdefuse’ Prz’fund or CB the net profit of
A from BobChain is at most zero.

To sum up, except with negligible probability, the utility of A is at most zero, which is less than

the honest case.

refund>

Bob enters the execution phase. If Bob enters the execution phase, both CONTRACT® and
CONTRACT® must be active. By Lemma 5.2, the utility of A can exceed the honest case only when
Normal® and Refund® both happen, so we assume it is the case. Because CONTRACT® is active, for
Refund” to happen, P2 Yefund Must be activated. When Bob enters the execution phase, PA Yefund Can
be activated only either 1) by Bob sending ping to Peﬂmd after C’refund has been activated, or 2) by
Alice sending pre, to Pefund Consider the first scenario. Since CZ refynd has been activated, Alice
cannot get any money from CONTRACT®. However, from CONTRACT?, Alice can get at most zero.
Thus, the utility of A is less than the honest case.
Now consider the second case. Suppose that Prefund is activated at AliceChain time t* > T 1A,

pre, is publicly known after AliceChain time ¢*. By assumptlon, Normal® happens, so Pdefault must
be activated. In this case, A has to send pre, to Pd

efault*

e Case 1: A sends pre, to PB_ . before BobChain time TE. Since BobChain time TP is earlier
than AliceChain time T}, pre, and pre, are both publicly known at AliceChain time t*.  Thus,
during AliceChain time (t*,* 4+ 74], any honest miner will activate Cp\ . if it wins a block.
We say A loses the race if a non-colluding miner mines a new block during AliceChain time
(t*,t* + 7A]. Otherwise, we say A wins the race. If A loses the race, it gets nothing from
CA 4 or CA _, and its utility is at most $AV(Bz, — Az, — AcaA). Else if A wins the race,

refun burn>
then its utility is at most $AV(Bx;), which can be achieved by activating P2 Céfund and

refund’
Pdefault The probability p that A wins the race is upper bounded by p < 7 U . Therefore, the

expected utility of A is upper bounded by
SAV((Bay — Azy — Acd) - (1= p) + Bay - p). (2)

Si <A™ < AcA L
mce p =~y ~ m, we nave

$AV((Bzyp — Azy — AcY) - (1 — p) + Bay - p) < SAV(Bzy — Ax,).

o Case 2: A does not send any transaction containing pre, before BobChain time TlB’. In this

case, the honest Bob will send ping to A% .. at BobChain time TE. If Aﬁefuse has not been
activated at AliceChain time ¢* > T, then, during AliceChain time (t* t* + 7A], any honest
miner will activate Abum if it wins a block. On the other hand, if Adefuse has been activated
at AliceChain time t* > TlA, the honest Bob will send pre, to Pefund as soon as Adefuse
is activated. Thus, at AliceChain time t* > T, pre, and pre, are both publicly known.

Thus, during AliceChain time (¢*,t* 4+ 7], any honest miner will activate C’b o if it wins a

block. By the same calculation as the previous case, since p < ~7 ™ < ch\i P we have
SAV((Azq — Kcf + Bay) - (1 —p) + Bay - p) < SAV(Bxp — Azy).
O
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Lemma 5.4 (Bob-miner coalition). Suppose that the hash function H(-) is a one-way function.
Let B be any coalition that consists of Bob and a subset of miners controlling at most v fraction of

Bep

mining power. Then, as long as fyTB < B+ Bay’ for any PPT coalition strateqy Sg, except with
cp Ty

negligible probability, it must be
util®(Sg, HS_g) < util®(HSg, HS_g),
where HS_p denotes the honest strategy for everyone not in B.

Proof. Recall that the utility of B is $BV(Axz, —Bxp) > 0 under an honest execution. Now, suppose
B may deviate from the protocol. We may assume that the coalition does not post any new smart
contract on the fly and deposit money into it — if it did so, it cannot recover more than its deposit
since any player not in B will not invoke the smart contract. We analyze the two possible cases
depending on which phase Alice enters.

Alice enters the abort phase. If CONTRACT® never becomes active, the net profit of B from

AliceChain is at most zero. Now, assume CONTRACT® is active. When Alice enters the abort phase,
she never sends any transaction containing pre,. Ignoring the negligible probability that B finds
preg by itself, PdAmcault can never be activated, which means Normal® never happens. According to
Table 2, if Normal® does not happens, the net profit of B from AliceChain is at most zero. On
the other hand, because Bz, > BeB, the net profit of B from BobChain is at most zero, no matter
CONTRACT® is active or not.

To sum up, except with negligible probability, the utility of B is at most zero, which is less than

the honest case.

Alice enters the execution phase. By Lemma 5.2, the utility of B can be more than the honest
case only if Refund® and Normal® both happen, so we assume it is the case. Because Alice enters the
execution phase, both CONTRACT® and CONTRACT® must be active. Thus, Refund® happens only
if PrEfund is activated. When Alice enters the execution phase, she never sends ping to Pr'zfund, SO
PrEfund must be activated by pre, sent by Bob. Therefore, we may assume that Prlzﬂmd is activated
at BobChain time ¢* > TlB, and pre, is publicly known after BobChain time ¢*. If Alice enters
the execution, Bob must have sent pre. before BobChain time 7j. Moreover, Alice sends pre, to
PdBefault at BobChain time T and Ty < TlB. Therefore, preg, pre, and pre,. are all publicly known
at BobChain time ¢*. Thus, during BobChain time (¢*,t* 4+ 78], any honest miner will activate
CB, . if it wins a block. We say B loses the race if a non-colluding miner mines a new block during
BobChain time (t*,t* + 78]. Otherwise, we say B wins the race. If B loses the race, it gets nothing
from C’E_fund or C’Eum, and its utility is at most $BV(Ax, — Bz — BCE) which can be achieved by

Pcﬁfault. Else if B wins the race, then its utility is at most $BV(Axz,) which can be achieved by
BB

q and P&A Since p < VTB < Bobay’ we have

efault* =

activating P2 CcB

refund? ~refun

$BV((Az, — Bxy — BCE) (1 =p)+ Azq - p) < $BV(Az, — Bay).
O

Proof of Theorem 5.1. Now, we are ready to prove Theorem 5.1. In Lemma 5.3 and Lemma 5.4,
we show that the atomic swap protocol satisfies v-CSP-fairness when the coalition consists of Alice
or Bob, and possibly with some miners. Because we assume that Alice and Bob are not in the same
coalition, it remains to show y-CSP-fairness when the coalition C consists only of miners controlling
at most ~ fraction of the mining power.
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Henceforth, we assume Alice and Bob are both honest. It is clear from the protocol that the
honest Alice and honest Bob always make the same decision whether to enter the execution phase
or abort phase.

Next, when C follows the protocol, its utility is always zero. Suppose C may deviate from the
protocol. Notice that the utility of C can be positive only when A{;\um, BE’um, CEum or C@um is
activated. Because Bob only sends pre,. when BdBefuse has been activated, ignoring the negligible
probability that C find pre, by itself, BE, can never be activated. In the following, we will show

burn
that A@um, CB and C{,  are never activated except with negligible probability. There are two

burn burn
possible cases.

o Case 1: both Alice and Bob enter the execution phase. In this case, Alice always sends
preg to Pdifault, and she never sends any transaction containing pre,. Ignoring the negligible
probability that C finds pre, by itself, Cf‘um can never be activated, and Aﬁum can only be
activated by pre,. Moreover, Alice always sends pre, to PdBefault at latest at BobChain time T,
and thus Bob will not post any transaction containing pre,. Ignoring the negligible probability
that C finds pre, by itself, A{;\um and CEum can never be activated. To sum up, except the
negligible probability, the utility of C is at most zero, which is the same as the honest case.

e (Case 2: both Alice and Bob enter the abort phase. In this case, Bob always sends ping to Pr'i‘fund

and Alice always sends ping to PrEfun 4- Thus, Bob never sends any transaction containing prey,
and Alice never sends any transaction containing pre,. Ignoring the negligible probability
that C finds pre, or pre, by itself, A’Qum, CEum and C@um cannot be activated by (pre,, prey).

Thus, except with negligible probability, the utility of C is at most zero, which is the same as
the honest case.

5.2 Achieving Bounded Maximin Fairness

Henceforth, let o € [0,1 — 1/poly(\)] denote the maximum fraction of mining power controlled
by the set of externally incentivized players, and let $F be an upper bound on any individual or
coalition’s valuation of the total possible external incentive.

Proof Roadmap. Conceptually, because Alice and Bob both put the collateral on both CONTRACT®
and CONTRACT?, none of them wants to trigger any of the bombs (BE’um, C’Eum, Aﬁ‘um and CbAum).
In Section 5.2.1, we define a set of “bad events” that leads to the activation of the bomb. The bad
events are defined such that if any of the bad events is about to happen, it must be that a strategic
individual or coalition is about to send a transaction that does not follow from the honest protocol.
In Section 5.2.2, we show that whenever the Bob-miner coalition B is about to send a message that
makes a bad event happen, B’s expected utility can be strictly improved if B simply stops sending
any messages (including the message that is about to trigger the bad event) from that moment
on (Lemma 5.7). Hence, any strategy that makes the bad event happen is a blatantly irrational
strategy for B, so a rational player would never make the bad events happen. Then, we show that
as long as none of the bad events happens, the honest Alice’s utility is never negative (Lemma 5.6
and Lemma 5.8). A similar argument can be made for the case of an Alice-miner coalition (see
Section 5.2.3). Finally, in Section 5.2.4, we combine all the arguments above, and prove that the
atomic swap protocol achieves bounded maximin fairness.

5.2.1 Irrational Strategies

In this section, we will define a family of PPT strategies denoted R, and we will show given any
strategy S € R, we can give a simple modification of S, resulting in a new PPT strategy which
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makes the externally incentivized coalition better off — in this sense, the strategy space R is
blatantly irrational.

Terminologies. Consider any user-miner coalition, and we define the following terminologies.

e We say an activation point X is guaranteed to be activated at some time T, iff either X was
already activated before T', or a colluding miner has been chosen as the winning miner at
time T, and it activates X in the new block it mines.

o We say a smart contract is guaranteed to be active at some time T, iff either the contract was
already active before T', or a colluding miner has been chosen as the winning miner at time
T, and it includes Alice’s and Bob’s deposit transactions for the contract in the new block it
mines.

o We say Alice is guaranteed to withdraw her deposit from a contract at some time T, iff either
Alice already withdrew her deposit from the contract before T, or all the following conditions
hold.

— The contract is not active before time T'.

— At time T, a colluding miner is chosen as the winning miner, and Alice’s withdrawal
transaction is included in the block at time T

The case that Bob is guaranteed to withdraw his deposit from the contract is defined similarly.

Irrational strategies. The set R of irrational strategies for the externally incentivized Bob-miner
coalition (including Bob alone) B is the set of strategies such that with non-negligible probability,
any of the following happens:

: Before Bdefuse is guaranteed to be activated and before Bob is guaranteed to withdraw his
deposit from CONTRACT®, anyone in B sends pre, to (BEum, Pdifault or C’E’um) and the deposit
transaction to CONTRACTD.

E,: CoNTRACT® and CONTRACT? are guaranteed to be active before BobChain time TB. Ad-
ditionally, anyone in B sends pre, to (Bbum, PdBefault or C’bBum) before BobChain time TOB, and
sends pre, to (P2 CB . AL or Cf ) before (P8 or CB. ) is guaranteed to be

burn? burn efault
activated.

refund?

E;3: Before AdefuSe is guaranteed to be activated and before Bob is guaranteed to withdraw his
deposit from CONTRACT®, anyone in B sends prey, to (P2 CB AL or cy and the

burn urn)
deposit transaction to CONTRACT.

refund’ ~burn?’

Ey: Alice enters the abort phase, and Bob does not send ping to Prefund before AllceChaln time
Additionally, at AliceChain time T f‘ or later, anyone in B sends pre, to (P2 C’bum,
or O ) before (Ple, oF CAc, ) is guaranteed to be activated.

refund?

AA

burn

The set R of irrational strategies for the externally incentivized Alice-miner coalition (including
Alice alone) A is the set of strategies such that with non-negligible probability, any of the following
happens:

Es5: Bob sends pre, to Pde]cault before BobChain time To , and Alice does not send pre, to Pdefault
untll BobChain tlme T1 However, at BobChain time T1 or later, anyone in A sends preg to
(PB  efault> Cbum, default or C’bum) before (PdBefault or C’reﬂmd) is guaranteed to be activated.
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is guaranteed to be activated and before Alice is guaranteed to withdraw her
PA. L or CA ) and the deposit

burn’ © refun

: Before Adefuse
dep051t from CONTRACT?, anyone in A sends pre, to (AP
transaction to CONTRACT.

})A

E7 Anyone in A sends preg to ( default? Cburn’ default or Cburn) and pre, to (Aburm refun

CR ) before (Phe,ue oF Che,nq) is guaranteed to be activated.

Es: Any one of the conditions holds.

— Bob enters the execution phase, and Alice does not send pre, to PdBefault before BobChain
time T1 Additionally, at AliceChain time TlA or later, anyone in A sends pre, to (A}

burn?’
A A . .
P cing OF Cbum) before (Pjie, i OF Crefund) is guaranteed to be activated.

— Bob enters the abort phase, and Alice does not send ping to Pefund before AliceChain
time T{. Additionally, at AliceChain time T} or later, anyone in A sends pre, to (A

burn>’
A A . .
P tung OF Cbum) before (Pjie, i OF Crefund) is guaranteed to be activated.

The following lemma specifies the upper bounds of the utility of the externally incentivized
players.

Lemma 5.5. Suppose the coalition B consists of Bob and possibly some miners. Let $E be an
upper bound on B’s valuation of the total possible external incentive. If BCE’ > BeB, Ach > Aeh,
then, the following statements hold.

o The utility of B is at most $BV(Azx,) + $E.

e If Burn® is activated by an honest miner ¢ B, the utility of B is at most $BV(Az, — By, —
BcE) + $E.

e If Burn® is activated by an honest miner ¢ B, the utility of B is at most $BV(—AC’{;\) + $E.

Stmilarly, suppose the coalition A consists of Alice and possibly some miners. Let $E be an
upper bound on A’s valuation of the total possible external incentive. If BB > BeB, Ach > Aeh,
then, the following statements hold.

o The utility of A is at most $AV(Bxyp) + $E.
e If Burn® is activated by an honest miner ¢ A, the utility of A is at most $AV(—BcB) + $E.

e If Burn® is activated by an honest miner ¢ A, the utility of A is at most $AV(Bxy — Az, —
Ach) + $E.

Proof. The maximal possible utilities under different events are summarized in Table 1 and Table 2
The lemma directly follows from the calculation of the utilities in the table. O
5.2.2 Against Externally Incentivized Bob-Miner Coalition

Lemma 5.6. Let B be the coalition consisting of Bob and miners controlling no more than «
fraction of the mining power where o € [0,1 —1/poly(\)]. Suppose Alice and at least 1 — «v fraction
of mining power are honest. For any PPT strategy by B, except with negligible probability, as long
as none of E1, Eq, Es, By happens, then, one and only one of the following statement holds.

1. Normal® and Normal® happen in polynomial time.

27



2. Normal® and Refund® happen in polynomial time.
3. Refund® and Refund® happen in polynomial time.

Proof. First, we are going to show that one of Normal® and Refund® will happen. There are two
cases.

e Case 1: Alice enters the execution phase. We will show that Pdefault must be activated
in polynomial time except with negligible probability. Once Pdefault is activated, Normal®
happens. In the execution phase, Alice always sends pre, to Pdefault' If BEum, Prz’fund and CEum
are not activated, the honest miners will include Alice’s transaction, pre, to PdBefault, once they
mine a block. Thus, it suffices to show that Bg’um, Preﬂm|7 C’bBum (all activations points that
PdBefault is mutually exclusive with) cannot be activated except with negligible probability.
First, because E; does not happen, B never sends pre, before Bc?efuse is guaranteed to be

activated. Thus, Bburn can never be activated.

Next, because Alice enters the execution phase, CONTRACT® and CONTRACT® must be active,
and Bob already sent pre, to Pdefau't before BobChain time 7} 63 . Because Ey does not happen,
no one in B sends pre;, to C’bum before Pdifault or C’Efund is guaranteed to be activated. Thus,
CB _ cannot be activated.

It remains to show that PB refund cannot be activated. In the execution phase Alice never
sends ping to Prefund, SO Prefund can be activated only if Bob sends preb to Prefund Because
E5 does not happen Bob never sends pre;, to pB refund before Pdefau't or Crefund is guaranteed to
be activated. If Pdefault is guaranteed to be activated, P, efund cannot be activated as they are
mutually exclusive. On the other hand, if Crefund is guaranteed to be activated, P, efund must
have been activated 78 > 1 BobChain time before. Thus, by the time Pefund is act1vated,
CB. .4 has not been guaranteed to be activated. However, and Bob never sends pre;, to P2

refund
before Crefund is guaranteed to be activated. Therefore, P2 4 can never be activated.

burn

refun

e Cuase 2: Alice enters the abort phase In this case, Alice will send the withdrawal transaction
to CONTRACT®, and ping to Pefund When CONTRACT® has not been active yet, the honest
miner will include Alice’s withdrawal transactions once they mine a block. Thus, except
with negligible probability, in polynomial time, either CONTRACT® becomes active, or Alice
successfully withdraws her deposit from CONTRACTE. If Alice withdraws her deposit from
CONTRACT®, Refund® happens.

Henceforth, we assume CONTRACT® becomes active. Because E; does not happen, B never
sends pre, before Bc?efuse is guaranteed to be activated. Thus, BEum can never be activated.
Then, notice that Alice never sends pre, when she enters the abort phase. Ignoring the
negligible probability that B finds pre, by itself, CbBum can never be activated.

Thus, since 1 — « fraction of mining power is honest, either Pdefamt or Pre]cund will be activated
in polynomial time. If Pdefault is activated, Normal® happens. If P ef nd 1s activated, Alice will
send ping to C’reﬂmd when 78 BobChain time has passed since Prefund is activated. Again, the
honest miner will include Alice’s transaction ping to CB once they mine a block. Thus,
Refund® will happen in polynomial time.

refund>

Next, we are going to show that one of Normal® and Refund® will happen. There are two cases.

o Case 1: Alice enters the execution phase. As we have shown, when Alice enters the execution
phase, PdBefault must be activated in polynomial time. Then, Alice will send ping to P(féfau't as

soon as Py . is activated. Because E3 does not happen and Alice never sends pre, when
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in the execution phase, Ab m cannot be activated. Ignoring the negligible probability that

B finds pre, by itself, Cbum cannot be activated. Because 1 — a fraction of mining power is

honest, either Pdefault or PeﬂmI will be activated in polynomial time. If Pdefault is activated,

Normal® happens, If Prefund is activated, Alice will send ping to Crefund Again, the honest

miner will include a transaction ping to C’refund, once they mine a block. Thus, Céfund will be

activated in polynomial time, and Refund® happens.

o Case 2: Alice enters the abort phase. In this case, Alice will send the withdrawal transaction
to CONTRACT?, and ping to Adefuse If CONTRACT® has not been active, the honest miner
will include Alice’s withdrawal transactions once they mine a block. Thus, in polynomial
time, either CONTRACT® becomes active, or Alice successfully withdraws her deposit from
CONTRACT?, so Refund” happens.

Henceforth, we assume CONTRACT® becomes active in polynomial time. Because E3 does
not happen, B never sends pre, before Adefuse is guaranteed to be activated. As Adefuse and
Aburn are mutually exclusive, Abum can not be activated via pre,. Since Alice sends pre, to
Pr/i_‘fund only after Adefuse is activated, 1) A@um can not be activated via pre,, and 2) C’bum
not happen before Adefuse is activated. If either Pdefault or CA tefund are activated, Normal
Refund® happens. Otherwise, the honest miner will include the transaction ping to A%
once they mine a block. Because 1 — « fraction of mining power is honest, A%

activated in polynomial time.

defuse

will be

defuse

When Alice is in abort phase, either Bob sends ping to Preﬂmd before AliceChain time T
or Alice sends pre, to Prefund when Adefuse is activated. If Bob sends ping to Pefund before
AliceChain time Tf, Alice never sends pre,, and thus C urn can not be activated. When Alice
enters the abort phase, she never sends pre,, and thus PdefauIt can not be activated. As we
showed before, Abum can not be activated either, and thus the honest miner will include Bob’s
transaction, ping to Prefund, once they mine a block, so Pre1cund will be activated in polynomial
time.

On the other hand, suppose Bob does not send ping to Pefund before AliceChain time T1 ,
Alice sends pre, to PA refund- Because Ey does not happen, B never sends pre;, before Pdefault
or CA rofund 18 guaranteed to be activated. If Pdefa it is activated, Normal® happens, if CrAefund is
activated, Prefund must have been activated previously, and thus Refund” happens Otherwise,
recall that Alice never sends pre, in the abort phase. Without pre, and prey, Pdefault and Cburn
cannot be activated, and as Abum can not be activated either as shown before, the honest
miner will include Alice’s transaction, pre, to PA once they mine a block. Thus, efund

will again be activated in polynomial time.

refund?

Then, Alice will send ping to Crefund when 7” AliceChain time has passed since Preﬂmd is
activated. Again, the honest miner will include Alice’s transaction, ping to C once they
mine a block. Thus, Refund® will happen in polynomial time.

refund’

So far, we have shown one of Normal® and Refund® will happen and one of Normal® and Refund?®
will happen. To prove the lemma statement, it suffices to show that Refund® and Normal® never
happen simultaneously. For the sake of reaching a contradiction, suppose Refund® and Normal®
happen. Event Normal® happens implies P(fefauh is activated, and Pdefault is activated only when
Bob sends pre, or Alice sends ping. The honest Alice only sends ping to Pcﬁfault when PdBefault is
activated, which implies Normal® happens. Henceforth, we assume Pdefault is activated when by
Bob’s pre,. Ignoring the negligible probability that B can find preg by itself, Alice must enter

the execution phase and send pre, to Pdefault at BobChain time TOB. On the other hand, event
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Refund® happens implies either (P2 rofund T Crefund) are activated or Bob withdraws his deposfc from
CONTRACTPE. Because Alice enters the execution phase, both CONTRACT® and CONTRACT® must
also enter the execution, and thus we exclude that Bob withdraws his deposit from CONTRACT®.
Thus, event Refund® happens only when (PB e fund T Crefund) are activated. Moreover, because Alice
enters the execution phase, Bob must have sent pre. to Pdefau't Therefore, to activate P2 refund> BOD

has to send pre, before Crefund is guaranteed to be activated, which implies event Es happens.

O]

Lemma 5.7 (Blatant irrationality of R for Bob-miner coalition). Suppose that the parameter
constraints in Figure 2 hold and that the coalition B consists of Bob and miners controlling no
more than « fraction of the mining power where o € [0,1 — 1/poly(A)]. Given any PPT strategy
Sp € R for some (externally incentivized) coalition B, there is a PPT strategy Sp such that

util®(Sz, HS_g) > util®(Sp, HS_p).

Proof. Suppose the coalition B adopts a strategy in which E;, Ey, E3 or E4 happens with non-
negligible probability. We can construct a new strategy for B with strictly better expected utility.
Specifically, consider a modified PPT strategy denoted §Bi whenever by the original strategy, the
first of E1, Eo, E3 or E4 is about to happen, B simply stops sending any messages (including the
message that is about to trigger Eq, Ey, E3 or E4) to the contract from that moment on.

By definition, when E; or Eg happens, it must due to a message sent by B. According to the
protocol, honest Alice always enters the execution or the abort phase no later than BobChain time
T(‘)B. Because AliceChain time TlA is later than BobChain time TOB by the choice of the parameters,
when E, happens, it must also due to a message sent by B. Next, if CONTRACT® has not been
guaranteed to be active, Adefuse cannot be guaranteed to be activated. Similarly, if CONTRACT®
has not been guaranteed to be active, Bdefuse cannot be guaranteed to be activated. Thus, if
anyone in B sends pre, to (BE, ., PB. = —or CB ) and sends pre, to (PB ., CB . AL —or
C{ ) before CONTRACTE and CONTRACT? both are guaranteed to be active, one of E; and Ej
must happen. Consequently, if E; and Es do not happen while Es happens, it must due to a
message sent by B. Thus, as long as B stops sending any messages before the first of Ei, Es, E3
or E4 is about to happen, none of Ei, Eo, E35 and E4 can happen in the future. By Lemma 5.6,
in polynomial time, one of (Normal® + Normal®), (Normal® + Refund®) and (Refund® + Refund”)
must happen. By direct calculation, we have the following table. Among (NormalB + NormaIA),

Normal® Refund® Burn®
Normal® | —Bxy + Az, | Az, | —Bxy — B + Az,
Refund”® —Bay, 0 —Bap, — BB
Burn? —Bxy — Acﬁ —Ach —Bxy — BCE - Acﬁ‘

Table 3: Bob’s net profit under all possible events.

(Normal® + Refund®) and (Refund® + Refund®), B’s utility is at least $BV(—13xz3). In other words,
we have utilB(gg,HS_B) > $BV(—Bxp). Thus, to show utilB(gg,HS_B) > util®(Sg, HS_g), we
only need to show util®(Sz, HS_5) < $BV(—Bxy).

We consider four cases, depending on whether E;, Es, Es or E4 happens first in the original
strategy Spg.

Event E; happens first. Consider some strategy S; € R with non-negligible probability that
E; happens. When E; happens, because Bob is not guaranteed to withdraw his deposit from
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CONTRACTE, the 1 — & fraction of honest miners would send the deposit to CONTRACT® and pre,.
to Bburn (and potentially Cbum as well if pre, and pre, are available), if they are chosen to mine
a block. By Lemma 5.5, if Bburn or Cbum is activated by an honest miner, the utility of B is at
most $BV(Ax, — Bxy — Bcb )+ $E. On the other hand, if neither Bburn nor C’bum is activated by an
honest miner, the utility of B is at most $BV(Az,) + $E. When E; happens, the probability that

BEum or C’Eum is activated by an honest miner is at least 1 — «. Thus, the utility of B is at most

(1 — a)($BV(Azy — Bxy — BE) + $E) 4+ a($BV(Az,) + $E) < $BV(—Bxy),

$BV Awa+asz)+$E
11—«

where the inequality arises from the fact that $BV(13c2) >

Event E; happens first. Consider some strategy S € R with non-negligible probability that Eo
happens. When Ey happens, because both CONTRACT® and CONTRACT® become active before
BobChain time 7® and Bob sends pre, before BobChain time TOB, Alice enters the execution phase.
In this case, Alice always sends pre, to PdBefault at BobChain time Té3 . However, Bob also sends
prey, before CrBefund is guaranteed to be activated. Thus, the 1 — « fraction of honest miners would
send (preg, prey, pre,) to C’bum (and potentially send pre. to BEum), if they are chosen to mine a
block. By Lemma 5.5, if C’bum or Bburn is activated by an honest miner, the utility of B is at most
$BV(Az, — By —Bcb )+ $E. On the other hand, if neither C’bum nor B . is activated by an honest
miner, the utility of B is at most $BV(Az,) + $E. When E, happens the probability that C’bum
or Bburn is activated by an honest miner is at least 1 — a. Thus, by the same calculation as the
previous case, the utility of B is strictly less than $BV(—Bxy).

Event E3; happens first. Consider some strategy S3 € R with non-negligible probability that
E; happens. When Es happens, because Bob is not guaranteed to withdraw his deposit from
CONTRACT?, the 1 — « fraction of honest miners would send the deposit to CONTRACT and prey

to AL, (and to CP, . if pre, is available as well), if they are chosen to mine a block. By Lemma 5.5,
if A _—or CJ\  is activated by an honest miner, the utility of B is at most $BV(—Ac)) + $E. On

the other hand, if neither Abum nor Cbum is activated by an honest miner, the utility of B is at most
$BV(Az,) + $E. When E3 happens, the probability that A2  or C’b is activated by an honest
miner is at least 1 — a. Thus, the utility of B is at most

burn urn

(1 —a)($BV(—Ac)) + $E) + a($BV(Az,) + $E) < $BV(—Bay),

$BV BberaAma +$E
l—«

where the inequality arises from the fact that $BV(Acp') >

Event E; happens first. Consider some strategy Sy € R with non-negligible probability that
Ey happens When E, happens, because Alice enters the abort phase and Bob does not send ping
to Pefund before AliceChain time T1 , Alice will send pre, as soon as Adefuse is activated. However,
Bob also sends pre;, before Pdefault or Crefund is guaranteed to be activated. If Bob sends pre;, before
Adefuse is activated, the 1 — « fraction of honest miners would send pre; to Abum, if they are chosen
to mine a block. If Bob sends pre, after A4.q . is activated, the 1 — o fraction of honest miners
would send (pre,, prey) to Cbum, if they are chosen to mine a block. By Lemma 5.5, if Abum or CbAum
is activated by an honest miner, the utility of B is at most $BV(—Acy') + $E. On the other hand, if
neither A nor CJ\ s activated by an honest miner, the utility of B is at most $BV(Az,) + $E.
When E4 happens, the probability that Aburn or Cﬁ‘um is activated by an honest miner is at least
1 — a. Thus, by the same calculation as the previous case, the utility of B is strictly less than

$BV (—Bay,).
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Finally, notice that the above analysis holds even if B may post a new contract on the fly during
the protocol execution, since all other players are honest and will not deposit money into the new
contract. O

Lemma 5.8 (Against Externally Incentivized Bob-Miner Coalition). Suppose that the hash function
H(-) is a one-way function. Let C be a group consisting of Alice and possibly any subset of the
miners, and let B be a disjoint coalition consisting of Bob and at most « fraction of the mining
power where o € [0,1 — 1/poly(A)]. Suppose that C does not have external incentives but B may
have up to $E amount of external incentives. Let Sg be an arbitrary PPT strategy of B that is
not in R. Then, there exists a negligible function negl(-) such that except with negligible probability
negl(\), it holds that
util®(HSe, Sp, HSp) > 0,

where D denotes everyone else not in C U B.

Proof. By Lemma 5.7, any strategy that makes one of E1, Eo, Es, E4 happen is blatantly irrational.
By direct calculation, we have the following table.

Normal® Refund® Burn®
Normal® Bz, — Az, —Ax, —Bcf — Az,
Refund? By, 0 —BCE
Burn | Bay, — Az, — Ach | —Az, — Ach | —BB — Aa, — Ach

Table 4: Alice’s net profit under all possible events.

By Lemma 5.6, if none of E1, Eo, E3, E4 happens, then one of (NormalB + NormaIA), (NormalB +
Refund®) and (Refund® + Refund”) must happen. Because $AV(Bzy, — Az,) > 0, except with some
negligible probability, for all three possible cases Alice’s utility is non-negative.

O

5.2.3 Against Externally Incentivized Alice-Miner Coalition

Lemma 5.9. Let A be the coalition consisting of Alice and miners controlling no more than o
fraction of the mining power where o € [0,1 — 1/poly(N)]. Suppose Bob and at least 1 — « fraction
of mining power are honest. For any PPT strategy by A, except with negligible probability, as long
as none of Es, Eg, E7, Eg happens, then, one and only one of the following statement holds.

1. Normal® and Normal® happen in polynomial time.
2. Refund® and Normal® happen in polynomial time.
3. Refund® and Refund® happen in polynomial time.

Proof. First, we are going to show that one of Normal® and Refund® will happen. There are two
cases.

e Case 1: Bob enters the execution phase. In this case, CONTRACT® and CONTRACT® must
be active, and Bob already sent pre. to PdBefault before BobChain time T(')S. There are two
subcases.
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— Subcase 1: Alice sends preg to Pdifault before BobChain time TIB. In this case, Bob never
sends pre,. Without prey, C’E‘um can never be activated. As Bob is in the execution phase,
Bdefuse was activated and thus Bbu'rn can never be activated. As Alice sent pre, to Pdefault
and Bob sent pre. to Pdefau|t, either Pdefau|t is activated in polynomial time, or Prefund is
activated instead. If Pdefault is activated, Normal® happens. If PB refund 1S activated, Bob
sends an empty message to C2 and thus CB 4 1s activated in polynomial time and

Refund® happens.

refund> refun

— Subcase 2: Alice does not send pre, to PdEéfault before BobChain time TlB. In this case,
Bob will send ping to Adefuse As Eg does not happen, Alice never sends pre, before
Adefuse is guaranteed to be activated, and thus Abu is never activated. Thus, Adefuse is
activated in polynomial time and Bob sends pre; to Pre]cund as soon as Ad fuse 15 activated.
Because E5 does not happen, Alice never sends pre, before Pdefault or CB refund 1S activated.
Thus, C’bum can never be activated. As Bob is in the execution phase, Bburn can never
be activated. Thus, either Pdeﬂ,au't is activated (Normal happens), or Crefund is activated
(thus Prefund has been activated before and Refund® happens), or the honest miner will
include Bob’s transaction, pre, to pB refund> once they mine a block. Then, when B
BobChain time has passed since PB ofund 15 activated, Bob will send ping to Crefund and
thus Refund® happens.

e Case 2: Bob enters the abort phase. In this case, Bob will send the withdrawal transaction
to CONTRACT®, and ping to Adefuse If CoNTRACT® has not been active, the honest miner
will include Bob’s withdrawal transactions once they mine a block. Thus, in polynomial
time, either CONTRACT® becomes active, or Bob successfully withdraws his deposit from
CONTRACT®, which implies Refund® happens.

Henceforth, we assume CONTRACT® becomes active in polynomial time. Because Bob is in
the abort phase, Bob never sent pre. and thus, up to negligible probability, B, bum and CB
can not be activated. Because Eg does not happen, A never sends pre, before Adefuse
guaranteed to be activated. Thus, Adefuse is activated in polynomial time. Then, either Alice
sends plng to Pefund before AliceChain time Tf, or Bob sends pre, to Peﬂmd Either way,
either Pdefault is activated (thus Normal® happens) or Pefund is activated in polynomial time.
When 78 BobChain time has passed since Preﬂmd is activated, Bob will send ping to CB
Thus, CB 4 Will be activated, and so Refund® happens.

burn

refund*

refun

Next, we are going to show that one of Normal® and Refund® will happen. There are two cases.

e Case 1: Bob enters the execution phase. First, because Eg does not happen, Alice never sends
pre,, before Adefuse is guaranteed to be activated, and as Bob sends pre, only after A% is
activated, it follows that A2

burn

defuse
is never activated.

Suppose Alice sends pre, to Pdefau|t before BobChain time TIB. Then, Bob never sends prey,
and so Cbum can not be activated via (prea, prep). Because E; does not happen, C’bum can not
be activated via (pre, pre,). Thus, C’bum is never activated. As Bob sends pre, to Pd
either Normal® happens, or Prefund is activated. In the latter case, Bob sends ping to C4
and so Refund® happens.

efault’

refund>

Henceforth, we assume Alice does not send preg to P2, before BobChain time 7. As we
have shown before, either Normal® happens, or Refund® happens. If Normal® happens, Bob
sends pre, to Pdefamt If Refund® happens, Bob will send ping to Prefund as soon as C’refund
is activated. As Eg does not happen, Cbum can not be activated using pre, after AliceChain

time 7. As Eg does not happen, C{}  can not be activated using pre, before AliceChain
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time T either. Thus, C’bum is never activated. Thus, in both cases (Normal® and Refund®),
either Pdefault or Prefund will be activated in polynomial time. If Pdefau't is activated, Normal®
happens. If PA Yefund 18 activated, Bob will send ping to cA tefund- The honest miners will include
Bob’s transaction, ping to Crefund, once they mine a block. Thus, CA 4 Will be activated in
polynomial time, so Refund” happens.

refun

e (lase 2: Bob enters the abort phase. In this case, Bob will send the withdrawal transaction
to CONTRACT®, ping to Prefund and ping to Adefuse If CoNTRACT® has not been active,
the honest miner will include Bob’s withdrawal transactions once they mine a block. Thus,
in polynomial time, either CONTRACT?® becomes active, or Bob successfully withdraws his
deposit from CONTRACT?, which implies Refund® happens.

Henceforth, we assume CONTRACT™ becomes active in polynomial time. Because Eg does
not happen, A never sends pre, before Adefuse is guaranteed to be activated. As Bob’s sends
ping to Adefuse, AdAefuse will be activated in polynomial time. If Alice sends ping to P efund by
AliceChain time T1 , Bob never sends prey,, and thus Cbum can be activated only via (preg, preg)
(excluded by E7). If Alice does not send ping to Pefund by AliceChain time T1 , because Eg does
not happen, Alice does not send pre, before Pdefault or Crefund is guaranteed to be activated.
Thus, Cb - can not be activated via pre,. Thus, C’b 18 never activated. As Bob sends ping
to Prefund, or Alice’s transaction, either Pdefault or Prefund will be activated in polynomial time.
If Pdefault is activated, Normal® happens. If Pefund is activated, Bob will send ping to C2

Thus, CrAefund will be activated in polynomial time, so Refund® happens.

refund*

So far, we have shown one of Normal® and Refund® will happen and one of Normal® and Refund®
will happen. To prove the lemma statement, it suffices to show that Normal® and Refund® never
happen simultaneously. For the sake of reaching a contradiction, suppose Normal® and Refund®
happen. Event Normal® happens implies PdBefault is activated. If Bob enters the abort phase, Bob
never sends pre, to Pdefault Ignoring the negligible probability that A finds prec by itself and forges
Bob’s signature, Bob must enter the execution, which implies both CONTRACT and CONTRACTA
are active. On the other hand, event Refund® happens implies either (P2 refund T Crefund) are activated
or Alice withdraws her deposit from CONTRACT™. As we have shown, CONTRACT” must be active,
so Refund® happens implies (PA efund T Crefund) are activated. In the execution phase, Bob will send
ping to Prefund only if Crefund is activated, which is 1mp0551ble given that Pdefault is activated. Thus,
Péfund can be activated only if Alice sends pre, to P4 refund- Because Crefund can be activated when TA
AliceChain time has passed since Prefund is activated, Alice must send pre, to Prefund before C’refund
is guaranteed to be activated. There are two subcases.

e Subcase 1: pre, is sent to P2, . before BobChain time TE. Because P4 , must be activated
after AliceChain time TA which is later than BobChain time T1 , A must send pre; to Pdefault
and pre, to PA refung Defore Crefund is guaranteed to be activated. Thus, depends on whether

AdAefuse is guaranteed to be activated, either Eg or E7 happens.

before BobChain time TE. Because Bob enters the
refund &S soon as AdefuSe is activated. Thus, depending
is guaranteed to be activated, either Eg or Eg happens.

e Subcase 2: pre, has not been sent to Pdefault
execution phase, he will send pre, to pB
on whether A%

defuse
Because we assume none of Es5, Eg, E7, Eg happens, either subcase leads to a contradiction.
O

Lemma 5.10 (Blatant irrationality of R for Alice-miner coalition). Suppose that the parameter
constraints in Figure 2 hold and that the coalition A consists of Alice and miners controlling no
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more than « fraction of the mining power where o € [0,1 — 1/poly(\)]. Given any PPT strategy
S4 € R for some (externally incentivized) coalition A, there is a PPT strategy S4 such that

util(S 4, HS_ 4) > util(Sa, HS_4).

Proof. Suppose the coalition A adopts a strategy in which Es, Eg, Ey or Eg happens with non-
negligible probability. We can construct a new strategy for A with strictly better expected utility.
Specifically, consider a modified PPT strategy denoted S 'A: whenever by the original strategy, the
first of E5, Eg, E7 or Eg is about to happen, A simply stops sending any messages (including the
message that is about to trigger E5, Eg, E7 or Eg) to the contract from that moment on.

By definition, when E5, Eg, E7r or Eg happens, it must be caused by a message sent by A. Thus,
as long as A stops sending any messages before the first of Eg, Eg, E; or Eg is about to happen,
none of E5, Eg, E7 and Eg can happen in the future. By Lemma 5.9, in polynomial time, one of
(Normal® + Normal?), (Refund® + Normal®) and (Refund® + Refund®) must happen. According to
Table 4, among (Normal® + Normal?), (Refund® + Normal®) and (Refund® + Refund?), A’s utility
is at least $AV(—Az,). In other words, we have util(Sy, HS_4) > $AV(—Az,). Thus, to show
utit(S4, HS_ 4) > utilA(S4, HS_4), we only need to show utilA(S4, HS_4) < $AV(—Axz,).

We consider four cases, depending on whether Es, Eg, Ey or Eg happens first in the original
strategy S4.

Event E; happens first. Consider some strategy S5 € R with non-negligible probability that Es
happens. When E5 happens, the honest Bob will send pre; to PrEfund as soon as AdAefuse is activated.
Thus, when A sends any transaction containing pre,, the 1 —« fraction of honest miners would send
(preg, prey, pre,) to CEum, if they are chosen to mine a block. By Lemma 5.5, if CEum is activated
by an honest miner, the utility of A is at most $AV(—13cB) + $E. On the other hand, if CE,  is
not activated by an honest miner, the utility of A is at most $AV(Bxp) + $E. When Es happens,
the probability that C’bBum is activated by an honest miner is at least 1 — .. Thus, the utility of A
is at most

(1 — a)(SAV(—BcB) + $E) + a(SAV(Bxy) + $E) < SAV(—Az,),
> $AV(Axa+anb)+$E.

l—«

where the inequality arises from the fact that $AV(13cB)

Event Eg happens first. Consider some strategy Sg € R with non-negligible probability that
E¢ happens. When Eg happens, the 1 — a fraction of honest miners would send pre, to Aﬁ‘um
(or to le‘um if additionally either preg or pre, is known), if they are chosen to mine a block. By
Lemma 5.5, if either A@um or C@um is activated by an honest miner, the utility of A is at most

$AV (Bay, — Axg — Ach) +$E. On the other hand, if neither A7\ nor Cp\  is activated by an honest

miner, the utility of A is at most $AV(Bz;) + $E. When Eg happens, the probability that A2 or
C’bAum is activated by an honest miner is at least 1 — .. Thus, the utility of A is at most

(1 — ) (SAV(Bxy — Az, — AY) + $F) + a($AV(Bxy) + SE) < $AV(—Az,),

$AV(sz+ana)+$E

l—«a

where the inequality arises from the fact that $AV(Ac)) >

Event E; happens first. Consider some strategy S7 € R with non-negligible probability that E;

happens. When E; happens, the 1 — « fraction of honest miners would send (preg, pre,) to C@um,

if they are chosen to mine a block. By Lemma 5.5, if CbAum is activated by an honest miner, the
utility of A is at most $AV(Bx, — Az, — ACQA) +$E. On the other hand, if CA is not activated

burn

by an honest miner, the utility of A is at most $AV(Bz;) + $E. When E7 happens, the probability
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that C’lf‘um is activated by an honest miner is at least 1 — «. Thus, by the same calculation as the
previous case, the utility of A is strictly less than $AV(—Ax,).

Event Eg happens first. Consider some strategy Sy € R with non-negligible probability that
Eg happens. If Bob enters the execution phase, because Alice does not send pre, to PdBefault before
BobChain time TlB, Bob will send pre;, to Prlzfund as soon as Aﬁefuse is activated. On the other hand,
if Bob enters the abort phase, because Alice does not send ping to PB 4 before AliceChain time
is activated. In either case, Bob always sends

refun
A : B A
T7, Bob will send pre, to P2g , as soon as Aj¢

prey to Pgﬂmd as soon as Ay .. is activated.
If Aﬁefuse is guaranteed to be activated at AliceChain time t*, it must be activated no later than
AliceChain time t* 4+ 1. When Eg happens, Aﬁefuse has been guaranteed to be activated. Thus, when

Eg happens, pre, and pre, are both publicly known. Then, the 1 — « fraction of honest miners
would send (pre,, pre,) to C’bAum if they are chosen to mine a block. By Lemma 5.5, if C’@um is
activated by an honest miner, the utility of A is at most $AV(Bxy, — Az, — Ac?) 4+ $E. On the other
hand, if C{ _is not activated by an honest miner, the utility of A is at most $AV (B3z;) +$E. When

burn
Eg happens, the probability that C’bAum is activated by an honest miner is at least 1 — . Thus, by
the same calculation as the previous case, the utility of A is strictly less than $AV(—Ax,).
Finally, notice that the above analysis holds even if A may post a new contract on the fly during
the protocol execution, since all other players are honest and will not deposit money into the new
contract.

O]

Lemma 5.11 (Against Externally Incentivized Alice-Miner Coalition). Suppose that the hash func-
tion H(-) is a one-way function. Let C be a coalition consisting of Bob and possibly any subset of
the miners, and let A be a disjoint coalition consisting of Alice and at most a fraction of the mining
power where a € [0,1 — 1/poly(A\)]. Suppose that C does not have external incentives but A may
have up to $E amount of external incentives. Let S be an arbitrary PPT strateqy of A that is
not in R. Then, there erists a negligible function negl(-) such that except with negligible probability
negl(A), it holds that
util(HSe, Sa, HSp) > 0,

where D denotes everyone else not in C U A.

Proof. By Lemma 5.7, any strategy that makes one of E5, Eg, E7, Eg happen is blatantly irrational.
By Lemma 5.9, if none of Es, Eg, E7, Eg happen, the one of (NormalB + NormaIA), (RefundB +
Normal®), and (Refund® + Refund®) must happen. According to Table 3, because $BV(—Bz; +
Ax,) > 0, for all three possible cases, Bob’s utility is never negative. O
5.2.4 Combine Everything Together

Now, we are ready to prove that the atomic swap protocol satisfies bounded maximin fairness.

Theorem 5.12 (Bounded maximin fairness). Suppose that H(-) is a one-way function and suppose
the parameters BCEaACQ,BCE,AC?, a € 10,1 —1/poly(N)] satisfy the constraints in Figure 2. Then,
the atomic swap protocol satisfies a-bounded maximin fairness against external incentives.

Proof. Let C be a set of honest players where we want to show that C’s utility is non-negative, and
let C' be an externally incentivized coalition. There are five cases to consider.

Case 1: Alice € C and Bob € C': covered by Lemma 5.8.

Case 2: Bob € C and Alice € C’: covered by Lemma 5.11.
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Case 3: C is miner-only: It is straightforward to see that no matter how players outside C
behave, as long as C behaves honestly, its utility is non-negative.

Case 4: Alice € C and C’ is miner-only: Notice that both Alice and Bob are assumed to be
honest. In the protocol, Alice and Bob decide whether they will go to the abort phase according
to whether Bob sends pre. to Pdifault. Thus, when Alice and Bob are both honest, both of them
enter the execution phase or both of them enter the abort phase. There are two subcases.

e Subcase 1: Both Alice and Bob enter the execution phase. Bob only sends pre, to Pdefault
when Bdefuse has been activated. Ignoring the negligible probablhty that C' finds pre, by
itself, Bburn can never be activated. Alice would send pre, to Pd
the execution phase, and Bob would send pre, to Pdefault as soon as Alice sent preg to Pdefault
Because Alice always sends pre, to Pdefault before BobChain time T1 , Bob never sends pre;.
Besides, Alice never sends pre,. Ignoring the negligible probability that C’ finds pre, or pre,
by itself, Abum, C’bum and C{:‘um can never be activated. When Alice and Bob are in the
execution phase, Prefund can be activated only by Bob sending pre,. As we have shown, Bob
never sends prey, so pPB fund Can never be activated. Moreover, when Alice and Bob are in the
execution phase P/ g can be activated only by Bob sending ping. However, Bob will only
send ping to PA refund if Crefund is activated. Because Pefund cannot be activated, CB refund Cannot
be activated either. Thus, Prefund cannot ever be activated. The 1 — « fraction of honest miner
will include Alice’s and Bob’s transactions, so except the negligible probability, P2 and

default
Pcféfault will be activated in polynomial time. Thus, the honest C obtains non-negative utility.

“fault @s soon as she enters

o Subcase 2: Both Alice and Bob go to the abort phase. In this case, Bob never sends pre,.

In the abort phase Alice always sends ping to Preﬂmd at AliceChain time To , so Bob never
sends pre,. Similarly, Bob always sends ping to Peﬂma| at AliceChain time T0 , so Alice never
sends pre,. Moreover, Alice never sends pre,. Ignoring the negligible probability that C’
finds preg, pre,, prey, pre. by itself, Aﬁ‘um, BEum, PdBefau|t7 C’Eum, Ptﬁ‘efault, CbAum can never be

activated.

If CONTRACT® (CONTRACT?, resp.) has not been active, Alice and Bob send the withdrawal
transaction to CONTRACT® (CONTRACT?, resp.). The 1 — « fraction of honest miner will
include Alice’s and Bob’s withdrawal transactions, so except the negligible probability, they
can get their deposit back unless the contract becomes active. Next, we analyze different
cases depending on which contract becomes active.

— CONTRACT® is active. As we have shown, BEum, Pd'ifault, CbBum cannot be activated. The

1 — « fraction of honest miner will include Alice’s transaction, ping to Prefund, once they
mine a block. Thus, PB refund will be activated in polynomial time. When 78 BobChain
time has passed since Prefund is activated, Alice and Bob will send ping to Crefund Again,
the 1 — « fraction of honest miner will include Alice’s and Bob’s transactions, ping to

CcB once they mine a block. Thus, CB 4 Will be activated in polynomial time.

refund?

— CONTRACT® is active. As we have shown, Abum, Pdefault, C’t’f‘um cannot be activated. The
1 — « fraction of honest miner will include Bob’s transaction, ping to Pefund, once they
mine a block. Thus, rlifund will be activated in polynomial time. When 7" AliceChain

time has passed since Prefund is activated, Alice and Bob will send ping to C% rofund- Again,

the 1 — « fraction of honest miner will include Alice’s and Bob’s transactions, ping to

Céfund, once they mine a block. Thus, C% 4 Will be activated in polynomial time.

refun

refun

In all cases, C’s utility is non-negative except with negligible probability.
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Case 5: Bob € C and C’ is miner-only: The argument is the same as Case 4. O

5.3 Achieving Dropout Resilience

Theorem 5.13 (Dropout resilience of atomic swap). Suppose that H(-) is a one-way function and
that all players are PPT machines. Our atomic swap protocol is dropout resilient. In other words,
suppose at least 1/poly(X) fraction of the mining power is honest on either chain; if either Alice or
Bob plays honestly but drops out before the end of the protocol, then with 1 — negl(\) probability,
the other party’s utility must be non-negative.

Proof. Throughout the proof, for any X € {preg, pre,, prey, pre.}, we ignore the negligible prob-
ability that the miners can find the preimage X by itself if Alice and Bob have never sent X
before.

We first analyze the cases where Alice drops out. If any of E5, Eg, E7, Eg is about to happen,
it must be that Alice deviates from the protocol and is about to send a transaction that does not
follow from the honest protocol. Because Alice is honest, no matter when Alice drops out, none of
Es5, Eg, E7, Eg would happen. By Lemma 5.9, one and only one of (NormalB + NormaIA), (RefundB +
Normal®) and (Refund®+Refund?) will happen. According to Table 3, because $BV (Azq —Bap) > 0,
for any of the three cases, Bob’s utility is non-negative.

Next, we analyze the cases where Bob drops out. If any of E1, Eo, E3, E4 is about to happen,
it must be that Bob deviates from the protocol and is about to send a transaction that does not
follow from the honest protocol. Because Bob is honest, no matter when Bob drops out, none of
E,, Es, E3, E4 would happen. By Lemma 5.6, one and only one of (Normal® 4+ Normal®), (Normal® +
Refund®) and (Refund® + Refund?) will happen. According to Table 4, because $AV (Bx, — Az,) > 0,
for any of the three cases, Alice’s utility is non-negative. O

6 Rational Defection from Grand Coalition

In Theorem 4.1, we prove that the atomic swap protocol is secure assuming at least 1/poly(\)
fraction of honest miners. Here, we justify this assumption by considering a metagame that captures
the formation of the coalition. In more detail, we argue that when everyone else joins the coalition,
a rational miner will prefer to defect the coalition. In other words, a grand coalition consisting
100% of the mining power is unstable if each individual miner is rational.

6.1 Disincentivizing the Grand Coalition Absent of External Incentive.

We first assume the coalition is formed without any external incentive, and we show that any grand
coalition whose strategic utility is higher than the honest utility is not stable, and thus justify the
assumption of 1/poly(A) fraction of honest miners for CSP-fairness. The analysis is similar to the
metagame for knowledge-coin exchange in [CMST22b].

We start with Alice-miner coalition. According to Lemma 5.2, their utility is better than the
honest case only if Normal® and Refund® both happen, which leads to a strategic utility Bap.
Suppose Alice controls 100% of the mining power, and they adopt a strategy that leads to Normal®
and Refund® with non-negligible probability. When Normal® happens, i.e., PdBefault is activated, Bob
must have sent pre. to PdBefault, and it implies CONTRACT® has been active and Bob enters the
execution phase. If CONTRACT" is active, (Péfund + C’rAefund) is the only possibility for Refund?.

I
However, in the execution phase, Bob sends ping to P(f‘ only after Pdifauh has been activated.

efault

Thus, the fact that Normal® and Refund® both happen implies that Pr’i‘fund is activated by pre,.
When Bob enters the execution phase, there are two possible cases:
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o Alice sends preg to Pdefault before TE. Because P 4 can only be activated after T/ > TE,
the moment that Pre]cund is activated, both pre, and pre, are publicly known. Within the time
window 7" that C%, 4 can be activated, anyone can send (pre, + pre,) to Cf\, ...

o Alice does not send pre, before TlB In this case, either Adefuse has not been activated, or Bob
has sent pre, to P2 refund- If PA efund 1S activated, anyone can either send pre, to AA
(pre, + pre,) to CQ

burn OF send

burn*

Recall that the coalition’s strategic utility is at most Bx,. Suppose the coalition distributes the
strategic gain proportionally to the mining power, and consider a small miner ¢ that has a small
mining power «. If 7 joins the coalition and cooperates, its expected reward is at most py - By,
where p denotes the probability that Pefu 4 is activated. On the other hand, suppose i chooses to
not join the coalition. Since its influence to the block generation process is small, we may assume
that P2 Yefund 15 activated with probability p or more. Without loss of generality, we may assume
that every miner in the coalition commits to starving Abum or Cbum in every block they mine, e.g.,
by placing a collateral that it will honor its commitment if not, then the coalition will not be
stable since a coalition member will be incentivized to defect from the coalition and claim A2
Cbum itself, which is what we want to prove.

As we have shown above, since the moment Pefund is activated, miner i has a 7" lead in time
to mine a block in which ¢ can redeem $6 from Abum or C2 . The probability that i mines a block

in a window of 7” blocks is 1 — (1-— ’y) . Therefore, if 7 does not join the coalition, its expected

burn O

burn*

gain would be at least p-Be-1— (1 — v)TA. If ¢ joins the coalition, its expected gain is py - Bxy.
Thus, as long as p-Be- (1 — (1 — v)TA) > py - By, i’s best strategy is to not join the coalition. This
means that if everyone else joins the coalition, some small miner ¢ wants to defect.

Next, we analyze Bob-miner coalition. By Lemma 5.2, the coalition’s utility is better off only
if RefundB and Normal® both happen. Normal® happeuns, i.e. Pdefau|t is activated, only if Bob sends
preg or Alice sends ping. However, Alice sends plng to Pdefamt only if PdBefault has been activated
which leads to Normal®. Thus, we assume that Pdefault is activated by pre,. Ignoring the negligible
probability that Bob finds pre, by itself, Alice only sends pre, if Bob has sent pre. to Pdefa“”t and
CONTRACTP® is active. Thus, the fact that Refund® happens implies that PB ofund 15 activated by
prey,. Consequently, whenever P sfund is activated, pre,, pre,, and pre, are all publicly known, and
anyone can send all of them to C’bum. By the similar argument as Alice-miner coalition, if everyone
else joins the coalition, some small miner ¢ controlling v fraction of the mining power wants to
defect.

6.2 Disincentivizing the Grand Coalition in the Presence of External Incentive.

Now we consider the strategic coalition with external incentive, and we show that any grand
coalition that harms the honest players is not stable, and thus justify the assumption of 1/poly(\)
fraction of honest miners for bounded maximin fairness.

Let $F be the upper bound of the external incentive, and let $V be the maximum value of
the atomic swap protocol to the coalition, where $V < $F + Bx to Alice-miner coalition and
$V < $E + Az, to Bob-miner coalition. We start with Alice-miner coalition. According to Table 3,
the honest Bob’s utility is negative if any of the following conditions hold: 1) Refund® and Normal®
both happen; 2) Burn® happens; 3) Burn® happens.

By the choice of Ac® and BcB (Figure 2), once Burn® or Burn® happens, the coalition’s utility is
negative even if it is compensated by the external incentive. Thus, the only profitable strategy for
the externally incentivized coalition that may harm honest players is to invoke Refund® and Normal®.
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In this case, we can follow the same argument as in Section 6.1. As long as p-$e- (1 — (1 — 'y)TA) >

py - $V, the small miner i’s best strategy is to not join the coalition.

Similarly, we can show that Bob-miner coalition is not stable. According to Table 4, the honest
Alice’s utility is negative if any of the following conditions hold: 1) Refund® and Normal® both
happen; 2) Burn® happens; 3) Burn® happens. By the choice of Ac{j and BCE, once Burn® or Burn®
happens, the coalition’s utility is negative even if it is compensated by the external incentive. Thus,
the only profitable strategy for the externally incentivized coalition that may harm honest players
is to invoke Refund® and Normal®. In this case, we can follow the same argument as in Section 6.1,
as long as p-$e- (1 — (1 — 7)TA) > pvy - $V, the small miner i’s best strategy is to not join the
coalition.

7 Instantiation

We now discuss the instantiation of our scheme. We first implement it using a general-purpose
smart contract language, and then show an instantiation in Bitcoin’s UTXO model.

7.1 Ethereum Instantiation

We implemented our contracts in 340 LoC in Solidity, Ethereum’s smart contract language. Trans-
action fees on Ethereum are determined by gas usage, which corresponds to the total cost of
operations executed by the contract.

We give the gas cost of our scheme in Table 5. Additionally, we compare our gas cost to those of
Rapidash’s CSP-fair swap [CMST22b] in Table 6. As expected, our costs are slightly higher overall
due to the extra input logic and the extra defuse logic that are necessary to achieve bounded
maximin fairness. However, we note that once the contracts are active, the optimistic paths have
similar costs in both schemes.
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Table 5: Bounded maximin fair atomic swap, gas cost. (O) denotes an optimistic case where both
Alice and Bob are honest.

‘ Contract Redeem path Gas
Input, Alice 48,355
CONTRACTB Input, Bob 50,583
Withdraw, Alice 35,956
Withdraw, Bob 38,271
(0) (P3.,.1), Alice 35,405
(O) (Btl:lgefuse + PdBefauIt)7 Bob 887399
Refund (Prgfund + CrB;_fund)ﬂ Alice 114,662
Refund (Bhf e + Porund + Cosung), Bob | 147,567
Early Bomb (Bf, ), Miner 50,295
Bomb (CE,,,), Miner 57,152
Input, Alice 50,650
Input, Bob 48,333
Withdraw, Alice 38,251
Withdraw, Bob 35,912
CONTRACT# (O) (Piauie)s Alice 54,925
(O)(PdAefault)’ Bob 58,679
Refund (Aﬁefuse + Préfund + Céfund), Alice | 149,634
Refund (Aﬁefuse + Préfund + C’rAefund)’ Bob 145,894
Early bomb (Af ), Miner 49,956
Bomb (CP,..), Miner 53,475
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Table 6: Gas cost comparison between Rapidash and our bounded maximin fair atomic swap. (O)
denotes an optimistic case.

Contract Redeem path Gas
Normal path (P2, ), Alice 52,279
B Normal path (PL, ), Bob 56,681
RaPIDASH Refund path (P8, + CB,. ), Bob | 123,631
Burn path (C2, ), Miner 42,266
Input, Alice 50,465
Input, Bob 55,817
Withdraw, Alice 38,228
Withdraw, Bob 35,911
RAPIDASH (®) (Pd*}efault) Alice 54,904
(O) (PdAefault) Bob 58,656
Refund (P24 + Chrung)s Alice 118,379
Refund (Préfund + Crefund) Bob 1147647
Burn (C}),,.,), Miner 53,431
Input, Alice 48,355
Input, Bob 50,583
Contract” Withdraw, Alice 35.956
Withdraw, Bob 38,271
(0) (PdBefauIt) Alice 35,405
(O) (Bc?efuse + Pdefault) Bob 88,399
Refund (P24 + CE;.4), Alice 114,662
Refund (Bl e + Pound + Cofund): Bob | 147,567
Early Bomb (Bg, ), Miner 50,295
Bomb (Cg,,,), Miner 57,152
Input, Alice 50,650
Input, Bob 48,333
Withdraw, Alice 38,251
Withdraw, Bob 35,912
CoNTRACT® (O) (PReuin)s Alice 54,925
(O)(Pc'joéfault) Bob 58’679
Refund (Af ¢ o + Prefund + CRena), Alice | 149,634
Refund (Al cc + Prarung + Cratuna)» Bob | 145,894
Early bomb (A ), Miner 49,956
Bomb (CP\,,,,), Miner 53,475
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7.2 Bitcoin Instantiation

Traditional smart contracts operate by receiving coins from users, holding them within the contract
until specific conditions activate the transfer. Once triggered, the contract disperses some or all
of the coins to designated recipients. Bitcoin, however, follows the Unspent Transaction Output
(UTXO) model, where coins are linked to addresses represented as Adr € {0,1}*. Each address can
be spent only once, ensuring that once used in a transaction, it cannot be reused. Transactions are
recorded on the blockchain, facilitating the movement of coins from input addresses to new output
addresses. Any excess coins not explicitly allocated are collected by the miner as a transaction fee
for processing the block.

Bitcoin transactions can be thought of as being generated by the transaction function tzx. A
transaction tx 4, denoted

fo 4 1= 1 [(Adri, ®1,%v1), ..., (Adry,, @y, $v,)],
4 [(Adry, @4, 80v)),..., (Adry,, ®;,,$v;,)] )’

transfers v; coins from each input address Adr;, i € [n], and deposits v} coins to each output address
Adr’;, j € [m]. To prevent minting coins from thin air, it must be guaranteed that D i) Svi 2
Zje[m} $v’, where the difference is offered as transaction fee to the miners.

Bitcoin addresses are governed by scripts ® : {0,1}* — {0, 1}, which define spending conditions
for their coins. Unlike smart contracts, which allow arbitrary logic, Bitcoin’s scripting language has
limited expressiveness. A transaction is authorized when witnesses [x1,...,z,] satisfy ®;(z;) = 1
for all ¢, and confirmed once recorded on the blockchain.

Since addresses can only be spent once, contract logic must be encoded directly within scripts.
Our approach relies on standard Bitcoin scripts, ensuring compatibility. An address Adr is con-
trolled by a user if they possess a valid witness x such that ®(x) = 1.

7.2.1 Instantiating Contract® with Bounded Maximin Fairness

We depict the payment flow in Figure 7. Alice and Bob use transaction t:z_?tp that creates Adr_?tp

with $2, +$c8 + $cP coins and another address AdTBEF with $n” coins in it. Here zp, + $cZ + $n”

efuse

coins come from Bob and $¢Z coins come from Alice. We have two new transactions tzgs  and

defuse

. . . . B B . .
tz BB corresponding to the activation points By, and B, ., respectively. Transaction tx BB,

redeems $n° coins from the address Adr BB, provided a timeout of T} 1B has passed since the setup

eruse

transaction was published on the blockchain. The other transaction tzgs redeems the $n" coins

burn

from Adrge , as well as the coins from the setup address Adr?tp provided pre, is released. The

defuse

transaction burns ($z;, + $c8 + $cB + $n° — $¢B) coins leaving behind $€® coins as transaction fees.
Transaction tzpe  can only be activated with pre, (pre-image of hg) and z. (pre-image of h,)

efault

are available. This transaction spends coins from Adrgp, and sends $z; + $cZ coins to an address

of Alice and send $c{73 coins to an address of Bob. We then have two cases: two transactions tz PE.
and txpir%fgund can activate P2 . and spend from Adrgp after a timeout of T}” has passed. The only
difference is tz p8_ can be activated by Bob only with pre-image pre,, while anyone, especially
Alice can publish tw’;gg without needing any pre-image. If either one of those transactions are

refund

published, after a timeout of 72, Alice and Bob can get a full refund of their locked coins with

transactions thEfund and txg'g;g , respectively. However, before the timeout, the C’Eum path can be
. . rene . B . PBf q PBf 4,PINg .
activated in both cases before the timeout 7° passes using tz B and tz o , respectively. In
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both cases, all of preg, prey, pre, must be available. Finally we have transaction ta:os that can

burn

also directly activate C’bum path from AdrZ
signed by both Alice and Bob.

Protocol Flow. Alice and bob first agree on the setup transaction txstp and sign all other redeem-
ing transactions. T hey ensure that the signatures on the transaction tz BB, are only with Bob, and

defuse

stp given all of pre, prey, pre.. All transactions must be

the signatures on tz”'5® are only with Alice. Alice and Bob keep these signatures privately and

refund

broadcast all other transactions and signatures into the network. By posting the setup transaction
on the blockchain, we enter the execution phase.

Whenever Bob wishes to activate Bdefuse branch, he publishes tz BB, along with the corre-

sponding signatures on the blockchain. Notice that since tx BB and tx BB spend from the address
Adrge , they are mutually exclusive, meaning only one of them can be posted on the blockchain.

defuse

Notice that any of the other branches can be activated if and only if Bdefuse was activated (or
in other words, Bbum was not activated with tz BB ). Alice can publish tz PB._ with pre-images
efault

burn

pre, and pre.. If not, Bob can initiate the refund using tz PE. after a timeout of 7% and us-

re fund

ing the pre-image pre,. Whenever Alice wants to activate pB 4 With a ping, she publishes the

. refun
transaction tz”n® along with valid signatures in her possession. If the transaction is published,

refund

activation point Crefund can be activated by txggf ) after a timeout of 7 time. The C'Eum path can
be activated using transactions thB tx C“gf”“d or tr C'gf“”d’p " depending on which paths have been

burn burn

activated so far.

7.2.2 Instantiating Contract® with Bounded Maximin Fairness

The payment flow is depicted in Figure 8. Alice and Bob use transaction mstp that creates Adrstp

with $z, +$c2 +$c;! coins and another address AdrAA with $n* coins in it. Here 2, + $cit + $n4

defuse

coins come from Alice and $¢;' coins come from Bob. We have two new transactions tz 4,4 and
defuse
and AR

burn> respectively. Transaction tz 4a
redeems $n" coins from the address Adr A provided a timeout of TA ' has passed since the setup

tx Ap corresponding to the activation points Adefuse

defuse
defuse

transaction was published on the blockchain. The other transaction tz 4a redeems the $n™ coins

burn

from Adr AR, s well as the coins from the setup address Adr

defi use

«tp Provided pre, or pre; is released.

The transaction burns ($z, + $ch + $cit + $n™ — $e) coins leaving behind $e? coins as transaction
fees.

n
‘We have transaction txp' g
default

we have transaction tx PA, that can only be activated with pre, (pre-image of hs) is available.

default

that can activate PdAefault by a ping by anyone. On the other hand,

Both of these transactions will spend the coins from Adrgp, and send $x, + $c coins to an address

of Bob and send $¢;' coins to an address of Alice. We then have two cases: two transactions ¢z pa

refund
pmg

can activate PA

and tx refun

4 and spend from Adri after a timeout of T{ has passed. The only

stp

refund

difference is tx pA  can be activated by Alice only with pre-image pre

refund

4, While anyone, especially

Bob can publish tz i:g without needing any pre-image. If either one of those transactions are

refund

published, after a timeout of 78, Alice and Bob can get a full refund of their locked coins with
transactions tzoa  and tzP2® | respectively. However, before the timeout, the Cﬁ‘um path can be

refund refund

ping
activated in both cases using iz 'ef”"d and tx 'ef”"d

burn burn

, respectively. In both cases, either pre, and
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Figure 7: The transaction flow of CONTRACT® in Bitcoin for an atomic swap with bounded maximin fairness.
Rounded boxes denote transactions, and rectangles within are outputs of the transaction. Incoming arrows
denote transaction inputs, outgoing arrows denote how an output can be spent by a transaction at the end
of the arrow. Solid lines indicate the transaction output can be spent only if both users sign the spending
transaction. Dashed arrows indicate that the output can be spent by one user (A for Alice and B for Bob).

preg, or pre, and pre, must be available. Finally we have transaction tr s that can also directly

burn
A

activate Cf\,_ path from Adrg,

given either pre, and preg, or pre, and pre, are available. All
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transactions are required to be signed by both Alice and Bob.

Protocol Flow. We proceed exactly as in CONTRACT®, except for the two additional transactions
intr,a andtzya . Alice and Bob sign the two transactions prior to signing the setup transaction.

defuse burn

Alice has the signatures on tx AR that she keeps privately, while tz A7 and the signatures on this
transaction are broadcast to the network. After the setup transaction, t:pép is published on the

blockchain, and the execution phase begins whenever Aﬁefuse is to be activated, Alice publishes

tr 4o and the signatures on the blockchain. To activate Aﬁ‘um, transaction tz AR along with the

defuse m

corresponding signatures, and either pre, or pre, are published on the blockchain. Notice that, as
required, only one of these two transactions can be posted, allowing us to realize that AdAefuse and
A{;\um are mutually exclusive. The rest of the protocol proceeds as the description for the previous

instantiation.
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Incoming arrows denote transaction inputs, outgoing arrows denote how an output can be spent by
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