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Abstract

Atomic swaps enable asset exchanges across blockchains without relying on trusted inter-
mediaries, and are a key component of decentralized finance (DeFi) ecosystems. Recently,
Chung, Masserova, Shi, and Thyagarajan introduced Rapidash (Financial Cryptography 2025),
an atomic swap protocol that remains incentive compatible under user-miner collusion, by en-
suring that the honest strategy forms a coalition-resistant Nash equilibrium. However, their
model assumes a closed system where players act solely based on internal protocol incentives.
In practice, participants may be influenced by external incentives such as off-chain rewards or
adversarial bribes, which can undermine such equilibrium guarantees.

In this work, we introduce a new game-theoretic notion, bounded maximin fairness, which
ensures that honest participants remain protected against rational adversaries with arbitrary but
bounded external incentives. We construct an atomic swap protocol that satisfies this notion,
while preserving the equilibrium properties of prior work in the absence of external influence.
As we show, our protocol is easy to implement and can be instantiated even in Bitcoin’s limited
scripting language.
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1 Introduction

In distributed systems and cryptographic protocols, fairness is a central yet elusive goal. However,
achieving the strongest form of fairness — either all parties receive the output or none do — is
often impossible for general multi-party functionalities without heavy assumptions such as honest
majority or trusted execution environments [PG99]. This limitation has motivated the search for
relaxed fairness notions that still provide meaningful guarantees for honest participants, even when
full fairness is unattainable.

One promising direction is to embrace a game-theoretic perspective, recognizing that real-
world participants are often rational parties, motivated by self-interest rather than classified as
either honest or malicious in the classical cryptographic sense. Protocols in this paradigm aim
to ensure that no coalition of rational parties has an incentive to deviate from the prescribed
behavior. This shift in perspective has already led to substantial progress in domains previously
blocked by impossibility results. For instance, in the case of fair coin tossing recent game-theoretic
protocols [WAS22,TSW24,CGL+18] obtained fairness even under dishonest majority — a setting
where classical cryptographic notions of fairness have long been known to be impossible to achieve.

We revisit another fundamental primitive in decentralized environments: atomic swaps. These
protocols enable two mutually distrustful parties to exchange digital assets across different chains
without relying on a trusted intermediary. However, the blockchain setting introduces new chal-
lenges: miners can selectively include, exclude, or reorder transactions, and users may collude with
the miners to extract unfair advantage. To address this, a recent work dubbed Rapidash [CMST22b]
laid a foundational game-theoretic framework for atomic swaps that remain incentive-compatible
even in the presence of user-miner collusion. The Rapidash protocol was proven to satisfy cooper-
ative strategy proofness (CSP-fairness), which guarantees that the coalition’s utility is maximized
when all players in the coalition follow the honest strategy. Thus, informally, in Rapidash’s atomic
swap the honest strategy formed a coalition-resistant Nash equilibrium.

Yet, Rapidash left one important question open: what if parties have access to external in-
centives, such as side payments or off-chain contracts with external entities? In realistic settings,
particularly in decentralized finance (DeFi), participants do not operate in isolation. They may be
subject to off-protocol pressures or rewards that alter their incentives. Consider an atomic swap
where one party, Alice, is a major liquidity provider on a decentralized exchange, and her ability
to maintain this role depends on successfully completing a swap with Bob, e.g., acquiring BTC
to rebalance her position. Suppose a third party, Eve, stands to gain market dominance if Alice’s
trading capacity is disrupted. In this scenario, Eve may have a strong incentive to bribe Bob to
misbehave during the atomic swap — ensuring that Alice does not receive the BTC in time, thereby
impairing her operations. Note that in this case, the CSP guarantee is insufficient, as it offers no
protection when Bob is willing to adopt a strategy that does not maximize his utility within the
swap itself. Without external incentives, such scenarios are not of concern, since it is reasonable to
assume that Bob would always aim to maximize his own profit within the atomic swap. However,
in the presence of off-protocol incentives, Bob may find it optimal to even intentionally lose money
within the atomic swap protocol as long as Eve’s compensation offsets this loss.

As out-of-band incentives clearly violate the closed-world assumption underlying many rational
protocol models and can undermine the guarantees of even game-theoretically secure constructions,
in this work we ask ourselves the following question:

Is it possible to provide an atomic swap protocol that is secure against strategic players with
external incentives?
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1.1 Our Contributions

We answer this question positively, and our contribution here is two-fold. First, we formalize a
new game-theoretic notion, called bounded maximin fairness, which captures the idea that honest
players should not be harmed by the presence of external incentives, and it may be of independent
interest in a broader context. Second, we design an atomic swap protocol that satisfies this notion.
Moreover, we present the Bitcoin instantiation of our protocol showcasing the practicality of our
solution.

New definition: bounded maximin fairness. As explained above, the notion of CSP fairness
does not capture scenarios where parties can be influenced by external incentives. Intutively, when
such incentives are unbounded, they can motivate the participating parties to behave arbitrarily
maliciously. In this sense, the strongest possible game-theoretic notion one can hope for is that
even when the strategic coalition can be arbitrarily malicious, honest players should not be harmed.
This idea underpins maximin fairness, a notion introduced in recent works [PS17,CGL+18,WAS22].
Maximin fairness implicitly assumes that the external incentives may be arbitrary and unbounded,
which explains why the strategic players’ behavior may appear arbitrarily malicious from the per-
spective of the present protocol. Maximin fairness, however, is a very stringent requirement, and
insisting on such a strong notion of fairness may severely constrain the design space or even lead
to impossibility results in some applications.

For atomic swap, we currently do not know how to achieve maximin fairness given strategic
miners. Instead, we suggest a meaningful relaxation called bounded maximin fairness. Unlike its
more stringent counterpart, bounded maximin fairness allows external incentives to be arbitrarily
large but assumes there is an upper bound on the external incentives and the bound is known to
the protocol. We want to guarantee that honest participation will not lead to negative utility as
long as the other strategic players behave rationally in light of the arbitrary but bounded external
incentives. This guarantee nicely complements equilibrium-type guarantees such as CSP fairness
— essentially, bounded maximin provides a safety net for honest parties if they suspect that there
may be external influence at play. In other words, simple-minded, non-strategic players can always
feel safe participating in the protocol.

Secure atomic swap. We design an atomic swap protocol that satisfies both bounded maximin
fairness and CSP fairness. Additionally, our protocol has dropout resilience, which ensures that an
honest player is protected from loss if the other player plays honestly, but drops offline at any point
during the protocol. This property is important in practice since the honest player may go offline
due to loss of password or network outage.

Finally, we implement our protocol for blockchains that support general smart contracts, and
also demonstrate how it can be instantiated with Bitcoin scripts — showcasing its practicality even
on more restrictive platforms like Bitcoin.

1.2 Related Work

Over the past decades, significant effort has been devoted to achieving fair exchange on blockchains.
Numerous elegant solutions have been proposed under the assumption that miners behave honestly.
For example, Choudhuri et al. [CGJ+17] presented a solution for achieving fair exchange and fair
multi-party computation using a public bulletin board and extractable witness encryption. For
atomic swaps, several approaches have been developed [Her18, MMS+, vdM19, MD19, ZDBN19].
Typically, atomic swaps are based on hashed time-lock contracts (HTLCs) [Her18] or a novel
cryptographic primitive known as adaptor signatures [DH20].
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Another line of work focuses on achieving fair exchange when miners may behave strategi-
cally [CMST22b,WSZN22,CMST22a]. A series of papers [WHF19,Bon16,MHM18] demonstrated
how users can bribe miners to censor competing transactions. To improve the robustness of HTLCs
under such adversarial conditions, Tsabary et al. [TYME21] proposed MAD-HTLC, which requires
the initiating party to lock up extra collateral. Although MAD-HTLC mitigates certain bribery
attacks, it fails to achieve CSP-fairness in the presence of general user-miner collusion. More recent
works, such as Rapidash [CMST22b] and He-HTLC [WSZN22], extend the ideas behind MAD-
HTLC. These works propose new knowledge-coin exchange protocols, which achieve the same func-
tionality as HTLCs, while providing provable CSP-fairness guarantees. However, none of these
protocols satisfies the bounded maximin fairness.

Interestingly, as pointed out by Chung et al. [CMST22b], even if the underlying knowledge-
coin exchange protocols are CSP-fair, the atomic swap protocol built upon them may not inherit
this property. This highlights that game-theoretic properties like CSP-fairness are not necessarily
composable. Therefore, a carefully designed atomic swap protocol is required to ensure CSP-
fairness. A more detailed discussion on achieving CSP-fairness in atomic swaps is provided in
Section 2.2.

Beyond fair exchange, a notable category of external incentives in blockchain systems is oracle
manipulation attacks. An oracle is a service that provides real-world data to smart contracts on a
blockchain. Some oracles are themselves implemented as smart contracts, where users stake tokens
and receive rewards for supplying data. When the outcomes of other applications, e.g., prediction
markets, depend on the oracle’s data, these applications introduce external incentives that may
motivate oracle participants to submit incorrect information in order to manipulate outcomes. It
was reported that over $400 million was lost to oracle manipulation attacks in 2022 [ora22].

2 Technical Overview

The goal of an atomic swap is to enable two parties to exchange their cryptocurrencies across two
different blockchains. Before diving into our solution, we first introduce a helpful simpler primitive,
knowledge-coin exchange. In Section 2.1, we review the existing knowledge-coin exchange protocols,
and explain why they fail to achieve bounded maximin fairness even with limited external incentives.
Then, we explain the necessary modifications to achieve bounded maximin fairness. In Section 2.2,
we explain how to realize atomic swap based on knowledge-coin exchange. We highlight the key
challenges of designing an atomic swap protocol, and summarize the key ideas of our construction.
In the following, we use “strategic players,” or “coalition,” to describe colluding parties (that can
potentially exhibit malicious behavior).

2.1 Knowledge-Coin Exchange

Hash timelock contract (HTLC). In a knowledge-coin exchange, Bob wants to buy a secret s
from Alice at a price of $v coins. In practice, such functionality is often realized by hash timelock
contracts (HTLCs), which work as follows. Alice first sends hs = H(s) to Bob, where H(·) denotes
a cryptographic hash function. Then, Bob deposits $v into the contract upfront, and the contract
is parametrized with the hash value hs and a timeout T .

HTLC

• On receiving s from Alice such that H(s) = hs, send $v to Alice.
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• After T , on receiving ping from Bob, send $v to Bob.

Above, ping is a predetermined message which triggers the corresponding activation point, i.e., the
corresponding part of the smart contract logic. The first activation point allows Alice and Bob to
exchange the secret and the payment, and the second one allows Bob to recover its deposit if Alice
drops offline. Since the total deposit is only $v, the two activation points are mutually exclusive,
i.e., only one of them can be activated and only once.

While HTLC is dropout resilient, it is unfortunately not CSP fair in the presence of user-miner
coalitions. If Alice offers a transaction fee of $f , then as long as Bob bribes each miner $f +$ϵ (for
some small ϵ > 0) for excluding Alice’s transaction, rational miners will take the bribe [TYME21].
This bribery attack makes sense for Bob as long as $v > $f · T . It may seem like HTLC is secure
as long as T ·$f is sufficiently large. However, Tsabary et al. [TYME21] showed new attacks where
the cost to Bob is not dependent on T .

Prior work: Achieving CSP-fairness. To address user-miner collusion, Chung et al. [CMST22b]
proposed a new protocol that achieves CSP-fairness. In this protocol, Alice first computes hs =
H(s). Additionally, Bob samples a random string preb, and computes hB = H(preb). They deploy
the following smart contract parametrized by hash values hs and hb, the timeout T1 and T2, the
value of the secret $v, the collateral $cb, and a predetermined small amount $ϵ.

CSP-fair knowledge-coin exchange contract
/* Params: (hs, hb, T1, T2, $v, $cb, $ϵ), Bob deposits $v + $cb. */

Pdefault: On receiving z from Alice s.t. H(z) = hs, send $v to Alice and $cb to Bob.
Prefund: Time T1 or greater: on receiving z from Bob s.t. H(z) = hb, do nothing.
Crefund: At least T2 after Prefund is activated: on receiving ping from anyone, send $v + $cb to

Bob.
Cburn: On receiving (z1, z2) from any P s.t. H(z1) = hs and H(z2) = hb, send $ϵ to player P .

All remaining coins are burnt.

Figure 1: Rapidash’s CSP-fair knowledge-coin exchange contract [CMST22b].

In the above construction, the activation points starting with the same capital letter are mu-
tually exclusive. For example, once Pdefault is activated, Prefund cannot be activated. We adopt
the same convention in this work. The formal specification of writing a smart contract is given in
Section 3.1.

To complete the knowledge-coin exchange, Bob deposits the intended payment $v, and an
additional $cb amount of collateral into the contract. Then, Alice sends s to Pdefault as soon as
Bob’s deposit takes effect. In this case, Alice receives the payment $v, and Bob learns s and gets
his collateral back all at once. If Alice fails to post s by time T1, Bob sends preb to Prefund at time T1

to request a refund. The activation point Prefund merely allows Bob to express his intent to request
a refund. The actual refund happens when T2 time has passed since the activation of Prefund —
at this point, Bob sends to Crefund which actually sends him the refund. An honest miner always
includes all outstanding transactions in any block it mines. Importantly, if an honest miner has
observed both s and preb contained in the transactions posted, it will immediately post (s, preb)
to Cburn, and this transaction will always be ordered in front of others in the block it mines.

The knowledge-coin protocol above achieves CSP-fairness. The key insight here is that the
activation point Cburn serves as a “bomb”. Suppose that the honest Alice has posted s. Now,
should a strategic Bob-miner coalition post preb to Prefund in an attempt to get refunded and thus
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get the secret s for free, both s and preb will be publicly known. Note that the coalition has to
wait at least T2 amount of time before the actual refund Crefund can be activated. During this T2

window, if any non-colluding miner mines a block, it will trigger the bomb by posting (s, preb) to
Cburn, which will cause Bob to lose its collateral. Thus, if a Bob-miner coalition wishes to get the
secret for free, it has to take a gamble that it will be able to mine all blocks in the T2 window.

Why Rapidash does not satisfy bounded maximin fairness. Unfortunately, the above
protocol does not satisfy bounded maximin fairness, as an externally motivated Alice can harm
Bob. Indeed, Alice can withhold s and wait until Bob sends preb to Prefund. Then, Alice can
send s and preb to Cburn to redeem $ϵ, thus making Bob lose his collateral $cb. As long as Alice
is compensated externally by $v − $ϵ, she is incentivized to trigger Cburn instead of sending s to
Pdefault to earn $v.

Bounded maximin fairness: definition subtleties. Before we explain our modifications to
the above protocol towards one that is better aligned with our bounded maximin fairness notion,
we first discuss the proposed fairness definition itself. At a first glance, a natural way to define
bounded maximin fairness is to require that the optimal strategy that maximizes the externally
incentivized coalition’s utility does not harm any honest player. It implicitly assumes that the
coalition knows the optimal strategy. However, the external incentive can be an arbitrary function
of the blockchain states, and finding the optimal strategy may not be computationally efficient. To
capture the security that defends against probabilistic polynomial-time (PPT) players, we define
a set of blatantly irrational strategies R̄, where a strategy S is in R̄, i.e., it is blatantly irrational,
if one can efficiently find another strategy S′ such that the coalition’s utility when adopting S′ is
strictly larger than that of S. Then, we say that a protocol is bounded maximin fair if honest
players’ utility is non-negative when the coalition adopts any strategy outside R̄. We provide the
formal definition in Section 3.3.1.

Our knowledge-coin exchange. The challenge in designing a bounded-maximin-fair protocol is
to make sure every strategy that may harm the honest players is blatantly irrational. We achieve
this by ensuring that the following conditions hold:

1. Harming the honest player necessarily puts the adversary at risk of triggering the bomb.

2. The utility of the externally incentived coalition strictly decreases if the bomb activation point
gets triggered.

3. The last message that contributes to the bomb getting triggered is always being sent by a
strategic player.

The last two conditions ensure that activating the bomb is a blatantly irrational strategy: Whenever
a strategic player is about to send a message which would trigger a bomb, their utility is strictly
improved if they instead simply stop sending messages from that moment on. Therefore, given any
strategy S, we only need to check whether stopping to send messages is a better strategy than
continuing with S, which is efficiently verifiable.

To ensure that the second condition holds, we set the collateral high enough to ensure that the
external incentive cannot offset the loss which occurs when a bomb is triggered. As we know that
an externally incentivized Alice can harm Bob, we have Alice supply the collateral as well (and
burn it together with Bob’s when a bomb is triggered).

At a first glance, the second condition may seem trivial, because how and why would honest
players trigger the bomb? However, surprisingly, the CSP-fair contract specified in Figure 1 does
not satisfy this condition. Consider the following: A strategic Bob posts preb publicly even “before
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making his deposit”. Then, once Bob made his deposit, the honest Alice follows the protocol and
posts s to Pdefault. At this moment, both s and preb are publicly known, so the miner can post
(s, preb) to Cburn to trigger the bomb.

To prevent the scenario above, we regulate the timing when the strategic Bob would want to
reveal preb. To do so, we add the following activation points, where hb = H(preb).

Bdefuse: On receiving ping from anyone, do nothing.

Bburn: On receiving z from anyone P such that H(z) = hb, send $ϵ to player P and burn
remaining coins.

The effect of Bburn is similar to Cburn as it burns most of the deposits, but Bburn can be triggered
simply by preb. Recall that the activation points of the same type are mutually exclusive. Once
Bdefuse has been activated, Bburn cannot be activated. Thus, the purpose of Bdefuse is to “defuse” the
bomb of Bburn, i.e., a strategic Bob would only want to post preb after Bdefuse has been activated.
Since Bdefuse can only be triggered when the deposits have been made, this ensures that a strategic
Bob would not want to post preb before making his deposit (which was the problem in the scenario
considered above). Intuitively, posting preb before the deposits is now a blatantly irrational strategy.
Consequently, the resulting contract is as follows.

Our knowledge-coin exchange contract
/* Params: (hs, hb, T1, T2, $v, $cb, $ϵ), Bob deposits $v + $cb, Alice deposits $ca. */

Bdefuse: On receiving ping from anyone, do nothing.

Bburn: On receiving z from anyone P such that H(z) = hb, send $ϵ to player P and burn
remaining coins.

Pdefault: On receiving z from Alice s.t. H(z) = hs, send $v + $ca to Alice and $cb to Bob.

Prefund: Time T1 or greater: on receiving z from Bob s.t. H(z) = hb, do nothing.

Crefund: At least T2 after Prefund is activated: on receiving ping from anyone, send $ca to Alice
and send $v + $cb to Bob.

Cburn: On receiving (z1, z2) from any P s.t. H(z1) = hs and H(z2) = hb, send $ϵ to player P .
All remaining coins are burnt.

2.2 From Knowledge-Coin Exchange to Atomic Swap

Intuitively, an atomic swap can be realized by two knowledge-coin exchange instances, one on
each blockchain. Suppose Bob has xb coins on BobChain (denoted Bxb), and Alice has xa coins on
AliceChain (denoted Axa). The goal is for Bob to exchange his Bxb for Alice’s Axa. The blueprint for
atomic swaps via knowledge-coin exchange composition is as follows: Alice samples a random string
pres, and sends hs = H(pres) to Bob. Then, she deposits a prescribed amount into a knowledge-
coin exchange on AliceChain parametrized with the hash value hs. Similarly, Bob deposits Bxb into
another knowledge-coin exchange on BobChain parametrized with the same hash value hs. Once
both Alice and Bob have deposited their coins, Alice sends pres to the contract on BobChain to
obtain Bxb. At this moment, pres is publicly known, and Bob can send pres to the contract on
AliceChain to obtain Axa.

Naive composition. We can hope that this logic can be used to satisfy bounded maximin and
CSP fairness, if we use our knowledge-coin exchange scheme from above as a base. Towards
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this, in addition to pres, Alice samples a random string prea to help with the refund procedure.
Similarly, Bob samples a random preb. They deploy a contract parametrized with the hash values
hs, ha = H(prea) on AliceChain, and another contract parametrized with hs, hb = H(preb) on
BobChain. They also put the prescribed deposits and collaterals into the contracts. Ideally, when
everyone is honest, Alice will send pres to PB

default on BobChain (henceforth, the superscript B
indicates that the activation point is in the contract on BobChain), and Bob uses the same pres to
activate PA

default on AliceChain (similarly, the superscript A indicates that PA
default is on AliceChain)

to complete the atomic swap. If the other party drops out, Alice and Bob can use prea and preb
to get refunded, respectively.

However, as Chung et al. [CMST22b] pointed out, the direct composition of two CSP-fair
knowledge-coin exchanges does not yield a CSP-fair atomic swap. Here we briefly review the issues
and their solution, as it is crucial to our construction. The issue is that Alice-miner coalition can
withhold pres, and try to get refunded on AliceChain. Of course, at this moment, the honest Bob
will also try to get refunded on BobChain by sending preb, but Alice-miner coalition defers Bob’s
refunding transaction. After Alice successfully gets refunded on AliceChain, she immediately sends
pres to PB

default to obtain Bxb. Unlike the context of knowledge-coin exchange where Bob wants to
buy the secret pres at certain price, in atomic swap, pres is just a random string facilitating the
exchange. Once Alice gets refunded on AliceChain, pres is worth nothing to Bob. Consequently,
Alice-miner coalition can get Bxb for free!

To address this issue, we allow the bomb CA
burn on AliceChain to be triggered by prea and preb.

Consequently, if Alice-miner coalition withholds pres so that the honest Bob tries to get refunded
by preb, Alice-miner coalition is disincentivized to send prea. This patch indeed fixes the attack
above, while we lose the dropout resilience for Alice. If Alice’s deposit on AliceChain is delayed,
e.g., due to a network congestion, Bob will send preb to BobChain to get refunded. At this moment,
after the deposit is finalized, the honest Alice could not get refunded by prea because the bomb
CA
burn can be triggered by (prea, preb).
A key challenge of designing an atomic swap protocol is to find the right balance for how easy

the player can be refunded. If it is too easy, it may become risk-free to attack the honest player; if
it is too difficult, the honest player’s coins may be locked simply due to network congestion.

Two-phase preparation. Chung et al. [CMST22b] proposed a two-phase preparation to address
the above issue. They locked PB

default and CB
burn on BobChain with an additional hash hc of a

random string prec sampled by Bob. Bob the published prec if the deposits into the contracts on
both blockchains are finalized in a timely manner. The extra lock hc then helped to distinguish the
two cases depending on whether Alice strategically withholds pres or not.

1. If the deposit transactions are not finalized in time, Bob will never publish prec. In this case,
Bob will send ping to PA

refund and send preb to PB
default to get refunded. Because PB

default is
locked with hc, Alice cannot cash out Bxb from PB

default, and Bob can safely help Alice get
refunded.

2. If the deposit transactions are finalized in time, then Bob will publish prec. Here, if Bob ever
needs to post preb to PB

refund, it must be because Alice-miner coalition withholds pres.

Bounded-maximin-fair atomic swap. We adapt the ideas above and combine these with our
knowledge-coin exchange to achieve bounded-maximin-fair atomic swap. Specifically, Alice and
Bob deploy a knowledge-coin exchange contract on AliceChain with the following modifications:

• CA
burn can be triggered by prea and preb. This is to prevent Alice-miner coalition from with-

holding pres on BobChain.
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• Add an activation point AA
burn:

– On receiving z1 from anyone P such that H(z1) = ha, or on receiving z2 from anyone P
such that H(z2) = hb, send AϵA to player P .

AA
burn regulates the timing that Alice and Bob can reveal prea and preb, respectively, and it

is crucial to the proof of bounded-maximin fairness. We also add AA
defuse to defuse the bomb

of AA
burn.

• PA
refund can be trigger by ping sent by Bob. This is to ensure that Bob can help Alice get

refunded if the deposits are not finalized in time.

On BobChain, we modify the knowledge-coin exchange contract as follows:

• CB
burn can be triggered by pres, preb and prec. The revelation of prec indicates that the

deposits into the contracts on both blockchains are finalized in a timely manner. Thus, once
the honest Alice posts pres to PB

default, Bob should never try to get refunded by preb.

• BB
burn can be triggered by prec instead of preb. Because of the two-phase preparation, we need

to ensure that Bob only posts prec after the deposits are finalized, which is crucial to the
proof of bounded-maximin fairness.

• PB
refund can be trigger by ping sent by Alice. This step is crucial to for Alice to get refunded

from BobChain if Bob drops out.

We give the complete specification of our contracts in Figure 3 and formally prove the full
construction secure in Section 5.

3 Model

3.1 Blockchain and Smart Contracts

We model a blockchain as an append-only public ledger consisting of a sequence of ordered blocks.
We consider an idealized mining process in which, at each block height t, a miner is selected with
probability proportional to its mining power. This model captures both proof-of-work and proof-
of-stake blockchains, where mining power corresponds to computational power and staked assets,
respectively. The selected miner may then choose any subset of transactions from the pool of
pending transactions and append a new block to the blockchain. Transactions in the block are
executed in the order they appear.

We model a smart contract as an ideal functionality that can send and receive coins from
players and the state of a smart contract is publicly observable. A smart contract may contain one
or more activation points. Each transaction has a unique identifier and consists of: 1) an activation
point of a smart contract, 2) a non-negative amount of coins, and 3) an arbitrary message. When
a transaction is executed, the corresponding activation point of the smart contract is invoked,
triggering the computation specified by the contract and possibly transferring coins. For simplicity,
we use the phrase “A user sends a message msg to an activation point A” to mean that the user
sends a transaction to the activation point A with message msg. The balance of a smart contract
is defined as the net amount of coins it has received minus those it has sent, and must remain
non-negative.

We use the following style of pseudo-code to express smart contracts. We use ping to denote an
empty message.

10



A toy contract

• Parameters: time T . Alice deposits $da, Bob deposits $db.

Afast: On receiving ping from Alice: send $db to Alice.
Await: After T , on receiving ping from Alice: send $da + $db to Alice.
Bother: On receiving ping from Bob: send $da to Bob.

The capital letter in the contract defines the type of an activation point. All activation points
of the same type are mutually exclusive. For example, if Await has been invoked, then neither Afast

nor Await can be invoked again. If an activation point is constrained to a specific time interval (e.g.,
after block height T ), then any attempt to invoke it outside that interval is considered invalid and
is ignored. An activation point cannot be invoked if the contract’s balance is insufficient to cover
the amount it is supposed to send. For example, if Await has been invoked, Bother cannot be invoked
anymore.

The contract parameters specify the amounts of coins that must be deposited for the contract
to become active. Once all required deposits are in place, the contract becomes active and its
activation points can be invoked. Before the contract becomes active, each player is allowed to
withdraw their own deposit if other players has not yet made the deposits. However, once the
contract is active, the distribution of coins is only possible through the activation points.

3.2 Players and Strategy Spaces

There are three types of players in the model: Alice, Bob, and the miners. Alice and Bob are the
two users who wish to exchange coins across different blockchains. We refer to them collectively as
users to distinguish them from miners. All players are modeled as probabilistic polynomial-time
(PPT) interactive Turing machines that can adaptively decide how to act based on the view in the
protocol so far. We consider the following strategy spaces. Any player, including Alice, Bob, and
miners, is allowed to do the following at any time:

1. Post a transaction. A player may post a transaction to the network at the beginning of any
time step. We assume a synchronous network with zero delay. Transactions posted at time t
are immediately visible to all players and miners. When miners decide which transactions to
include in a block at time t, they can observe all transactions posted at that time.

2. Create smart contracts. A player may create an arbitrary smart contract and deposit any
amount of coins into it. For example, a smart contract might specify: “If the blockchain state
satisfies a particular predicate at some future time, transfer a specified amount of coins to a
particular pseudonym,” where both the recipient and the amount may depend on the state
of the blockchain.

In addition to the above, miners are further allowed the following:

3. Block mining. When a miner is selected to mine a block, it may include an arbitrary subset
of the outstanding transactions into the block and order them arbitrarily. The miner may
also generate and include new transactions of its own.

Alice or Bob can form a coalition with some miners. Within a coalition, all private information
is shared among members. The strategy space of a coalition is defined as the union of the strategy
spaces of its individual members.

Throughout the paper, except in Section 6, we do not explicitly model the process of coalition
formation. Instead, we assume that all members within a coalition are bound together and act to
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maximize the coalition’s joint utility. For simplicity, we ignore the transaction fee in our model. The
bribery attack done by the transaction fee can be viewed as the transfer “within” the coalition, and
does not affect the coalition’s utility. In Section 6, we analyze the metagame that models coalition
formation.

3.3 Game-Theoretic Properties

Cooperative Strategy Proofness. The first property we consider is cooperative strategy proof-
ness (CSP-fairness), which was formulated and adopted in prior works [PS17, CGL+18,WAS22,
CS23, SCW23,CRS24,CMST22b]. Conceptually, a protocol satisfies CSP-fairness if following the
protocol maximizes the expected utility of a coalition of strategic players, assuming that the remain-
ing players follows the protocol honestly. Consequently, deviation is not profitable, and the honest
protocol achieves a coalition-resistant Nash Equilibrium. The formal definition of CSP-fairness is
as follows.

Definition 3.1 (CSP fairness). A protocol satisfies γ-CSP-fairness iff the following holds. Let C be
any coalition that controls at most a γ ∈ [0, 1) fraction of the mining power, and possibly includes
either Alice or Bob. Then, for any probabilistic polynomial-time (PPT) strategy SC of C, there
exists a negligible function negl(·) such that except with negl(λ) probability, we have

utilC(SC , HS−C) ≤ utilC(HSC , HS−C), (1)

where HSC denotes the honest strategy of C, HS−C denotes the honest strategy of anyone other
than C, and utilC(XC , Y−C) is the expected utility of the coalition C when C is executing strategy X
and the remaining players (denoted by −C) execute strategy Y .1

Dropout Resilience. In atomic swap, we want to guarantee dropout resilience, which protects
an honest player when the counterparty drops out from the protocol. In practice, a dropout can
happen due to mistakes, misconfiguration, or unforeseen circumstances, e.g., Alice may lose her
hardware wallet. Conceptually, a protocol satisfies dropout resilience if an honest player’s utility is
always non-negative, even when the counterparty stops responding and drops out before the end
of the protocol assuming at least 1/poly(λ) fraction of the mining power is honest. The formal
definition of dropout resilience is as follows.

Definition 3.2 (Dropout resilience). A protocol is dropout resilient, iff as long as at least 1/poly(λ)
fraction of the mining power is honest, then with 1− negl(λ) probability, an honest Alice (or Bob)
is guaranteed to have non-negative utility even when Bob (or Alice) is honest but drops out during
the protocol’s execution.

We emphasize that our dropout resilience notion is very strong: we want it to hold even when
many miners (up to 1−1/poly(λ) fraction) are not necessarily playing honestly. In such a scenario,
transactions may take polynomially long to confirm, and players may time out during the protocol
and try to back out.

3.3.1 New Definition: Bounded Maximin Fairness

While CSP-fairness assumes that players do not have incentives outside the present protocol, achiev-
ing resilience against such external incentives is very meaningful. In particular, such incentives may

1The formal definition of the utility function util is given in Section 3.4 in the context of atomic swap.
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lead strategic players to adopt a broader class of strategies, including ones where players suffer loss
within the protocol but are compensated by the external incentives. Given unbounded external
incentives, strategic players can behave arbitrarily (like a “malicious” adversary using standard
cryptographic terminology). The strongest game theoretic notion one can hope for is that honest
players are not harmed even when others behave arbitrarily. This notion is called maximin fairness
in some recent works [PS17,CGL+18,WAS22].

Maximin fairness, however, can be too stringent and challenging to satisfy. Thus, many real-
world protocols that hope to incentivize honest behavior aim to provide incentive compatibility
only when the parties’ external incentives are bounded. Specifically for atomic swap, it is unclear
whether a protocol that achieves maximin fairness given user-miner coalition exists at all. Hence, we
define a relaxed notion of fairness called bounded maximin fairness. It protects honest individuals
from rational players who may have arbitrary but bounded external incentives. Although we focus
on applying this notion to atomic swap, it would be interesting apply it more broadly to formally
analyze real-world protocols that currently try to provide heuristic guarantees in the face of bounded
external incentives.

Defining bounded maximin fairness. Imagine a set of players C′ who have external incentives
that might entice them to deviate from honest behavior. We want to argue that even when their
external incentives are arbitrary, then as long as the incentives are bounded and C′ is rational, any
group of players without external incentives should feel safe to participate honestly — as long as
they participate honestly, their utility will not be negative.

When defining rationality of the externally incentivized coalition, interesting technicalities arise
due to the fact that we model players and contracts as PPT interactive Turing machines. It is
tempting to assume that the externally incentivized coalition C′ uses the optimal strategy that
maximizes its expected utility, and ensure no harm for any honest group or individual. However,
this approach would make the possibly unrealistic assumption that C′ knows the optimal strategy
based on the external incentive function. Indeed, finding such a strategy may be computationally
hard, since the external incentive function can take an arbitrary form.

Instead, we will protect honest participants against any PPT strategy of the coalition C′ as long
as the strategy is not blatantly irrational. A family of strategies R̄ is called blatantly irrational, if
for any strategy S ∈ R̄, one can efficiently find another strategy S′, such that S′ does strictly better
than S.2 We can often show that some strategies are blatantly irrational without finding the optimal
strategy. Later in our formal proofs, we show that a class of strategies is blatantly irrational, since
simple modifications of such strategies lead to better outcomes for C′. We then show that as long
as C′ does not adopt a blatantly irrational strategy, honest participants are protected.

We therefore devise the following definition which is parametrized by a strategy space R that
contains all possible PPT strategies except for the set of blatantly irrational strategies R.

Definition 3.3 (Bounded maximin fairness). A protocol satisfies α-bounded maximin fairness
w.r.t. some strategy space R, iff for any set of PPT players C without external incentives, and any
externally incentivized PPT coalition C′ that is disjoint from C, controls at most α fraction of the
mining power, and uses any strategy SC′ ∈ R, there is a negligible function negl(·) such that except
with negl(λ) probability3, it holds that

utilC(HSC , SC′ , HSD) ≥ 0,

2How we construct blatantly irrational strategies is given in Section 5.2.1, and how one can find a better strategy
efficiently is explained in Lemma 5.7 and Lemma 5.10.

3The negligible failure probability in our proofs arises due to the following bad events: 1) either the hash is
inverted, or 2) honest miners have never mined a block even after polynomially many blocks have been mined.
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where D denotes all players not in C ∪C′, HSC and HSD denote the honest strategy of C and D, re-
spectively, and utilC(HSC , SC′ , HSD) denotes the utility of C given that the strategy (HSC , SC′ , HSD)
is adopted.

Regarding external incentives. As mentioned above, our modeling of external incentives is
general and captures external incentives of any form. Precisely, any side contract where money
is redistributed to players of the present protocol is considered as external incentive if (1) the
contract is pre-existing, i.e., created before the start of the present protocol; or (2) the contract is
created at any time, and an outsider, i.e., not a player of the present protocol, deposited money
into it. As an example of the former, imagine that Alice was involved in some bet prior to the
atomic swap protocol, and the bet depends on the state of a future block. Because the outcome of
the atomic swap protocol may affect the blockchain state, Alice may be incentivized to manipulate
the state even if doing so lead to a loss within the atomic swap protocol. As an example of the
latter, imagine that Alice is Mallory’s competitor, and Mallory is offering external incentives for
anyone who can cause financial loss to Alice. Without loss of generality, we consider non-negative
external incentives. Further, for pre-existing smart contracts, we do not distinguish between those
funded by the participants in our protocol and those funded by external parties — gains from all
pre-existing smart contracts are considered external.

3.4 Atomic Swap

An atomic swap allows two mutually distrustful parties to exchange coins across different blockchains
without relying on a trusted third party. Consider two parties, Alice and Bob. Bob owns xb coins
on BobChain (denoted Bxb), and Alice owns xa coins on AliceChain (denoted Axa). The goal is for
Bob to exchange his Bxb for Alice’s Axa.

In this work, we consider three kinds of strategic players: 1) Alice-miner coalition (or Alice
alone); 2) Bob-miner coalition (or Bob alone); and 3) miner-only coalition. Let $AV(·) denote the
valuation function of Alice (or the Alice-miner coalition), defined as:

$AV(Bxb + Axa) = $vBa · xb + $vAa · xa,

where $vBa ≥ 0 and $vAa ≥ 0 represent the value Alice places on each coin on BobChain and
AliceChain, respectively. Similarly, let $BV(·) denote the valuation function of Bob (or the Bob-
miner coalition), and $MV(·) denote that of the miner-only coalition. We make the assumption:
$AV(Bxb − Axa) > 0, $BV(Axa − Bxb) > 0, which justifies why Alice wants to exchange her Axa
with Bob’s Bxb, and vice versa.

Let C be any subset of players, with SC and S′
−C denoting the strategies of C and −C, respec-

tively. Let AdAa ,Bd
B
a ≥ 0 be the amounts deposited by Alice (or the Alice-miner coalition) into the

respective smart contracts, and ArAa ,Br
B
a ≥ 0 be the amounts received during protocol execution.

Let $ea(. . .) ≥ 0 represent the external incentives for Alice or the Alice-miner coalition, where the
value may depend arbitrarily on the blockchain state. We define the utility utilC(SC , S

′
−C) when C

is Alice or Alice-miner coalition as follows:

utilC(SC , S
′
−C) = $AV(ArAa − AdAa + BrBa − BdBa ) + $ea(. . .).

We define AdAb ,Bd
B
b ,Ar

A
b ,Br

B
b , $eb(. . .) ≥ 0 analogously for Bob (or the Bob-miner coalition),

and ArAm,BrBm,AdAm,BdBm, $em(. . .) ≥ 0 for the miner-only coalition. The utility utilC(SC , S
′
−C) when

C consists of Bob or a Bob-miner coalition is defined as

utilC(SC , S
′
−C) = $BV(ArAb − AdAb + BrBb − BdBb ) + $eb(. . .),
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and the utility utilC(SC , S
′
−C) when C is a miner-only coalition is defined as

utilC(SC , S
′
−C) = $MV(ArAm − AdAm + BrBm − BdBm) + $em(. . .).

4 Secure Atomic Swap

We now present the smart contracts and the protocol of our atomic swap. Say Alice owns xa coins
on AliceChain (denoted Axa), and Bob owns xb coins on BobChain (denoted Bxb). Bob wants to
exchange his Bxb for Alice’s Axa. Either Alice or Bob can be a strategic player, and collude with
the miners on both chains. $E is the upper bound of the external incentive of the coalition, and
α ∈ [0, 1) is the fraction of the mining power controlled by the coalition.

To initiate an atomic swap, Alice samples pres ← {0, 1}λ, prea ← {0, 1}λ, and Bob samples
preb ← {0, 1}λ and prec ← {0, 1}λ, where λ is the security parameter. Alice and Bob choose
the parameters that respect the constraints in Figure 2. Then, Alice and Bob deploy two con-
tracts: ContractA and ContractB specified in Figure 3. We rename the block height where
ContractA is deployed on AliceChain to be AliceChain time 0 (only deployed, Alice and Bob have
not deposited their coins yet). Similarly, BobChain time 0 is the block height where ContractB

is deployed on BobChain.
We give the protocols specifying the honest behaviors of Alice, Bob, and miners in Figure 4,

Figure 5, and Figure 6, respectively. This atomic swap protocol satisfies CSP-fairness, bounded
maximin fairness, and dropout resilience:

Theorem 4.1. Suppose that the hash function H(·) is a one-way function, and the choice of the
parameters satisfy the constraints in Figure 2. Then, the following statements hold:

• For any γ ∈ [0, 1 − 1/poly(λ)], if the parameters further satisfy γτ
A ≤ AcAa

AcAa+Axa
and γτ

B ≤
BcBb

BcBb+Bxb
, then atomic swap protocol satisfies γ-CSP-fairness.

• If α ∈ [0, 1 − 1/poly(λ)], then atomic swap protocol satisfies α-bounded maximin fairness
against external incentives.

• If all players are PPT, then atomic swap protocol is dropout resilient.

The formal proof of Theorem 4.1 is given in Section 5. In Section 6, we analyze the metagame
that captures the formation of the coalition. We show that our atomic swap protocol disincentivizes
100% of the miners to collude with the strategic players, and thus justifies the assumption of having
1/poly(λ) fraction of honest miners.

In addition to the game-theoretic properties above, we also show that honest players can get
their collateral back in a timely manner as specified in the following theorem.

Theorem 4.2. Suppose Alice, Bob, and all miners are honest. Alice gets Bxb, Bob gets Axa, and
both parties get their collateral back in 3 BobChain time plus 2 AliceChain time.

Proof. If Alice and Bob are both honest, they will send the deposit transactions to ContractB

and ContractA at BobChain time t = 0. Because all the miners are honest, ContractB and
ContractA both enter the execution phase no later than one block on BobChain or one block on
AliceChain is mined. As soon as ContractB and ContractA both enter the execution phase,
Bob sends ping to BB

defuse. Because all the miners are honest, BB
defuse will be activated no later

than one block on BobChain is mined. As soon as BB
defuse is activated, Bob sends prec to PB

default.
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Constraints for ContractB (on BobChain):

• hs = H(pres), hb = H(preb) and hc = H(prec).

• TB
1 > TB

0 > TB > 0.

• BϵB > B0, BcBa > BϵB, and BcBb > BϵB.

• $AV(BcBa ) >
$AV(Axa+αBxb)+$E

1−α and

$BV(BcBb ) >
$BV(Axa+αBxb)+$E

1−α

Constraints for ContractA (on AliceChain):

• hs = H(pres) and ha = H(prea).

• TA
1 > TA

0 > 0.

• AliceChain time TA
1 > BobChain time TB

1 , i.e., the AliceChain block of length TA
1 is mined

after the BobChain block of length TB
1 .

a

• AϵA > A0, AcAa > AϵA, and AcAb > AϵA.

• $AV(AcAa ) >
$AV(Bxb+αAxa)+$E

1−α and

$BV(AcAb ) >
$BV(Bxb+αAxa)+$E

1−α .

Choice of timeouts:

• τB ≥ 1, τA ≥ 1.

aIn practice, this constraint should be respected except with negligible probability despite the variance in
inter-block times.

Figure 2: Parameter constraints for atomic swap. H(·) is a cryptographic hash function. All times
are expressed in the time of the respective chain.

Because we assume the network delay is zero, Alice and Bob both enter the execution phase when
Bob sends prec to PB

default.
When Alice enters the execution phase, she sends pres to PB

default immediately. Because all the
miners are honest, PB

default will be activated no later than one block on BobChain is mined. As soon
as PB

default is activated, Alice sends ping to PA
default. Again, ecause all the miners are honest, PA

default

will be activated no later than one block on AliceChain is mined. When PB
default and PA

default are
activated, Alice gets Bxb, Bob gets Axa, and both parties get their collateral back.
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ContractB (on BobChain)
/* parametrized with (hs, hb, hc, T

B
1 , τ

B,Bxb,Bc
B
b ,Bϵ

B)*/
Deposits: Bob deposits Bxb+BcBb , and Alice deposits BcBa . Once both parties have deposited
the required amount, the contract becomes active.

BB
defuse: On receiving ping from anyone, do nothing. ▷ BB

defuse is to invalidate BB
burn.

BB
burn: On receiving z from anyone P such that H(z) = hc, send BϵB to player P . All

remaining coins are burnt.

PB
default: On receive z1 from Alice such that H(z1) = hs and z2 from Bob such that H(z2) = hc,

send Bxb + BcBa to Alice and BcBb to Bob.

PB
refund: Time TB

1 or greater: On receive z from Bob such that H(z) = hb or on receiving ping
from Alice, do nothing.

CB
refund: At least τB after PB

refund is activated: on receiving ping from anyone, send Bxb+BcBb to
Bob and BcBa to Alice.

CB
burn: On receive (z1, z2, z3) from anyone P such thatH(z1) = hs,H(z2) = hb, andH(z3) = hc

send BϵB to player P . All remaining coins are burnt.

ContractA (on AliceChain)
/* parametrized with (hs, ha, T

A
1 , τ

A,Axa,Ac
A
a , $Aϵ

A)*/

Deposits: Alice deposits Axa+AcAa , and Bob deposits AcAb . Once both parties have deposited
the required amount, the contract becomes active.

AA
defuse: Time TA

1 or greater: on receiving ping from Alice or Bob, do nothing. ▷ AA
defuse is to

invalidate AA
burn.

AA
burn: On receiving z1 from anyone P such that H(z1) = ha, or on receiving z2 from anyone

P such that H(z2) = hb, send AϵA to player P . All remaining coins are burnt.

PA
default: On receiving z from Bob such that H(z) = hs or on receiving ping from Alice, send

Axa + AcAb to Bob and send AcAa to Alice.

PA
refund: Time TA

1 or greater: on receiving z from Alice such that H(z) = ha or on receiving
ping from Bob, do nothing.

CA
refund: At least τA after PA

refund is activated: on receiving ping from anyone, send Axa + AcAa
to Alice and AcAb to Bob.

CA
burn: On receiving (z1, z2) from anyone P such that (z1) = hs andH(z2) = ha, or on receiving

(z2, z3) from anyone P such that H(z2) = ha and H(z3) = hb, send AϵA to player P .
All remaining coins are burnt.

Figure 3: Smart contracts for atomic swap. Activation points of the same type are mutually
exclusive. Activation points can be triggered only after both parties have deposited.
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Atomic Swap Protocol — Alice
Preparation Phase:

1. When both ContractA and ContractB have been deployed on the respective chains,
Alice sends the deposit Axa +AcAa to ContractA; and the collateral BcBa to ContractB.

2. Wait until one of the following happens:

• Either ContractB or ContractA has not been active, and it is at least BobChain time
TB: Alice enters the abort phase.

• Bob has not sent prec to PB
default, and it is at least BobChain time TB

0 : Alice enters the
abort phase.

• Bob sent prec to PB
default and it is before BobChain time TB

0 : Alice enters the execution
phase.

Execution phase:

1. Alice sends pres to PB
default. As soon as PB

default has been activated, Alice sends ping to PA
default.

2. If τB BobChain time has passed since PB
refund is activated, Alice sends ping to CB

refund. (Note
that as soon as CB

refund is activated, Bob sends ping to PA
refund.)

3. If τA AliceChain time has passed since activating PA
refund, Alice sends ping to CA

refund.

Abort Phase:

1. If ContractB (ContractA, resp.) has not been active, Alice withdraws her deposit from
ContractB (ContractA, resp.).

2. At AliceChain time TA
0 , Alice sends ping to PB

refund and and ping to AA
defuse.

3. If Bob has not sent ping to PA
refund by AliceChain time TA

1 , Alice waits until A
A
defuse is activated

and sends prea to PA
refund.

4. If τA AliceChain time has passed since PA
refund is activated, Alice sends ping to CA

refund; simi-
larly, if τB BobChain time has passed since PB

refund is activated, Alice sends ping to CB
refund.

Ignore all other events.

Figure 4: Atomic swap protocol for Alice.
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Atomic Swap Protocol — Bob
Preparation Phase:

1. When both ContractA and ContractB have been deployed on the respective chains,
Bob sends the deposit transaction of Bxb + BcBb to ContractB and sends the collateral
transaction of AcAb to ContractA.

2. Wait until one of the following happens:

• Both ContractB and ContractA are active: Bob sends ping to BB
defuse. As soon as

BB
defuse is activated, Bob sends prec to PB

default and enters the execution phase.

• Either ContractB or ContractA has not been active, and it is at least BobChain
time TB: Bob enters the abort phase;

Execution phase:

1. Wait until one of the following happens:

• Alice sent pres to PB
default: Bob sends pres to PA

default.

• Alice has not sent pres to PB
default, and it is at least BobChain time TB

1 : Bob sends ping
to AA

defuse. As soon as AA
defuse is activated, Bob sends preb to PB

refund.

2. If τB BobChain time has passed since PB
refund is activated, Bob sends ping to CB

refund. As soon
as CB

refund is activated, Bob sends ping to PA
refund.

3. If τA AliceChain time has passed since PA
refund is activated, Bob sends ping to CA

refund.

Abort Phase:

1. If ContractB (ContractA, resp.) has not been active, Bob withdraws his deposit from
ContractB (ContractA, resp.).

2. At AliceChain time TA
0 , Bob sends ping to PA

refund and ping to AA
defuse.

3. If Alice has not sent ping to PB
refund by AliceChain time TA

1 , Bob waits until AA
defuse is activated

and sends preb to PB
refund.

4. If τA AliceChain time has passed since PA
refund is activated, Bob sends ping to CA

refund; similarly,
if τB BobChain time has passed since PB

refund is activated, Bob sends ping to CB
refund.

Ignore all other events.

Figure 5: Atomic swap protocol for Bob.
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Atomic Swap Protocol — Miner

• The miner watches all transactions posted to BB
defuse, B

B
burn, P

B
default, P

B
refund, C

B
refund, C

B
burn,

AA
defuse, AA

burn, PA
default, PA

refund, CA
refund, and CA

burn (i.e., all the activation points for both
contracts), to see if they contain a valid pres, prea, preb, and prec.

• If CB
refund has not been activated, as soon as the miner has observed pres, preb and prec, it

posts (pres, preb, prec) to CB
burn. Similarly, if CA

refund has not been activated, as soon as the
miner has observed both prea and pres, it posts (prea, pres) to CA

burn; as soon as the miner
has observed prea and preb, it posts (prea, preb) to CA

burn.

• If BB
defuse has not been activated, as soon as the miner observes prec, it posts prec to BB

burn.
If AA

defuse has not been activated, as soon as miner observes prea or preb, it posts prea or
preb to AA

burn.

• Whenever the miner mines a block, it always includes its own transactions ahead of others.

Figure 6: Atomic swap protocol for miners.
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5 Proof of Theorem 4.1

5.1 Achieving CSP Fairness

This subsection is dedicated to proving CSP-fairness which formally stated as follows.

Theorem 5.1 (CSP fairness). Suppose that the hash function H(·) is a one-way function. Suppose

the choice of the parameters satisfy the constraints in Figure 2, and further satisfy γτ
A ≤ AcAa

AcAa+Axa

and γτ
B ≤ BcBb

BcBb+Bxb
. Then, the atomic swap protocol satisfies γ-CSP-fairness.

Before proving Theorem 5.1, we define the following events.

• NormalB: PB
default is activated.

• RefundB: either (PB
refund + CB

refund) are activated, or one of Alice and Bob withdraws their
deposits from ContractB successfully before ContractB becomes active.

• BurnB: BB
burn or CB

burn is activated.

• NormalA: PA
default is activated.

• RefundA: either (PA
refund + CA

refund) are activated, or one of Alice and Bob withdraws their
deposits from ContractA successfully before ContractA becomes active.

• BurnA: AA
burn or CA

burn is activated.

Normally, when Alice and Bob follow the protocol, PB
default and PA

default will be activated, and they
exchange the coins successfully. However, if one of the parties drops out, the other party will trigger
(PB

refund + CB
refund) and (PA

refund + CA
refund) to get refunded. Finally, BB

burn, C
B
burn, A

A
burn and CA

burn are
the bombs, and both Alice and Bob lose their collateral when a bomb is triggered.

Lemma 5.2. Suppose the parameters are set according to Figure 2. Then, the following statements
hold.

• Suppose the coalition A consists of Alice and an arbitrary γ ∈ [0, 1] fraction of the mining
power. The utility of A can be more than the honest case, that is, $AV(Bxb − Axa), only if
NormalB and RefundA both happen.

• Suppose the coalition B consists of Bob and an arbitrary γ ∈ [0, 1] fraction of the mining
power. The utility of B can be more than the honest case, that is, $BV(Axa − Bxb), only if
RefundB and NormalA both happen.

Proof. Notice that if any of NormalB, RefundB and BurnB happens, no coin is left in BobChain, so
no one can get more coin from BobChain anymore. Thus, consider all possible cases, including none
of NormalB, RefundB and BurnB happens, we have the following table.

which is activated net profit of Alice’s coalition net profit of Bob’s coalition

none −BcBa −Bxb − BcBb
NormalB Bxb −Bxb
RefundB 0 0

BurnB ≤ BϵB − BcBa ≤ BϵB − Bxb − BcBb

Table 1: The net profit of Bob’s coalition from BobChain.
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Similarly, if any of NormalA, RefundA and BurnA happens, no coin is left in AliceChain, so no
one can get more coin from AliceChain anymore. Thus, consider all possible cases, including none
of NormalA, RefundA and BurnA happens, we have the following table.

which is activated net profit of Alice’s coalition net profit of Bob’s coalition

none −Axa − AcAa −AcAb
NormalA −Axa Axa
RefundA 0 0

BurnA ≤ AϵA − Axa − AcAa ≤ AϵA − AcAb

Table 2: The net profit of Alice’s coalition and Bob’s coalition from AliceChain.

Alice-miner coalition. Suppose the coalition A consists of Alice and an arbitrary γ ∈ [0, 1]
fraction of the mining power. If A follows the protocol, NormalB and NormalA will happen, and
the utility of C is $AV(Bxb − Axa) > 0. When NormalB and RefundA both happen, A’s utility is
$AV(Bxb). Now, we will show that this is the only possible scenario for A’s utility to exceed the
honest case. In other words, if either NormalB or RefundA does not happen, the utility of A is at
most $AV(Bxb − Axa). There are two cases.

• Case 1: NormalB does not happen. Because BcBa > BϵB, the net profit from BobChain is at
most 0 if NormalB does not happen. Then, because Axa > AϵA, we have AϵA−Axa−AcAa < 0.
Thus, the net profit from AliceChain is also at most 0. Consequently, the utility of C is at
most zero, which is less than $AV(Bxb − Axa).

• Case 2: RefundA does not happen. Because AcAa > AϵA, we have AϵA−Axa−AcAa < −Axa.
Thus, assuming RefundA does not happen, the net profit from AliceChain is at most −Axa.
However, the net profit from BobChain is at most Bxb. Thus, the utility of C is at most
$AV(Bxb − Axa), which is the same as the honest case.

Bob-miner coalition. Using a completely symmetric proof, we can show that the only way for a
Bob-miner coalition’s utility to exceed the honest case is when RefundB and NormalA both happen.

Lemma 5.3 (Alice-miner coalition). Suppose that the hash function H(·) is a one-way function.
Let A be any coalition that consists of Alice and γ fraction of mining power. Then, as long as

γτ
A ≤ AcAa

AcAa+Axa
, for any PPT coalition strategy SA, except with negligible probability, it must be

utilA(SA, HS−A) ≤ utilA(HSA, HS−A),

where HS−A denotes the honest strategy for everyone not in A.

Proof. Recall that the utility of A is $AV(Bxb−Axa) > 0 under an honest execution. Now, suppose
A may deviate from the protocol. We may assume that the coalition does not post any new smart
contract on the fly and deposit money into it –— if it did so, it cannot recover more than its
deposit since any player not in A will not invoke the smart contract. We analyze the possible cases
depending on which phase Bob enters.

Bob enters the abort phase. Because Axa > AϵA, the net profit of A from AliceChain is at
most zero, no matter whether ContractA is active or not. We will show that the net profit of
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A from BobChain is also at most zero except with negligible probability. If ContractB never
becomes active, the net profit of A from BobChain is at most zero. Now, assume ContractB

becomes active. When Bob enters the abort phase, he never sends any transaction containing prec.
Ignoring the negligible probability that A finds prec by itself, BB

burn, P
B
default, and CB

burn can never
be activated. Because Alice does not get any coin from BB

defuse, P
B
refund or CB

refund, the net profit of
A from BobChain is at most zero.

To sum up, except with negligible probability, the utility of A is at most zero, which is less than
the honest case.

Bob enters the execution phase. If Bob enters the execution phase, both ContractB and
ContractA must be active. By Lemma 5.2, the utility of A can exceed the honest case only when
NormalB and RefundA both happen, so we assume it is the case. Because ContractA is active, for
RefundA to happen, PA

refund must be activated. When Bob enters the execution phase, PA
refund can

be activated only either 1) by Bob sending ping to PA
refund after CB

refund has been activated, or 2) by
Alice sending prea to PA

refund. Consider the first scenario. Since CB
refund has been activated, Alice

cannot get any money from ContractB. However, from ContractA, Alice can get at most zero.
Thus, the utility of A is less than the honest case.

Now consider the second case. Suppose that PA
refund is activated at AliceChain time t∗ ≥ TA

1 , so
prea is publicly known after AliceChain time t∗. By assumption, NormalB happens, so PB

default must
be activated. In this case, A has to send pres to PB

default.

• Case 1: A sends pres to PB
default before BobChain time TB

1 . Since BobChain time TB
1 is earlier

than AliceChain time TA
1 , pres and prea are both publicly known at AliceChain time t∗. Thus,

during AliceChain time (t∗, t∗ + τA], any honest miner will activate CA
burn if it wins a block.

We say A loses the race if a non-colluding miner mines a new block during AliceChain time
(t∗, t∗ + τA]. Otherwise, we say A wins the race. If A loses the race, it gets nothing from
CA
refund or CA

burn, and its utility is at most $AV(Bxb − Axa − AcAa ). Else if A wins the race,
then its utility is at most $AV(Bxb), which can be achieved by activating PA

refund, C
A
refund and

PB
default. The probability p that A wins the race is upper bounded by p ≤ γτ

A
. Therefore, the

expected utility of A is upper bounded by

$AV((Bxb − Axa − AcAa ) · (1− p) + Bxb · p). (2)

Since p ≤ γτ
A ≤ AcAa

AcAa+Axa
, we have

$AV((Bxb − Axa − AcAa ) · (1− p) + Bxb · p) < $AV(Bxb − Axa).

• Case 2: A does not send any transaction containing pres before BobChain time TB
1 . In this

case, the honest Bob will send ping to AA
defuse at BobChain time TB

1 . If AA
defuse has not been

activated at AliceChain time t∗ ≥ TA
1 , then, during AliceChain time (t∗, t∗ + τA], any honest

miner will activate AA
burn if it wins a block. On the other hand, if AA

defuse has been activated
at AliceChain time t∗ ≥ TA

1 , the honest Bob will send preb to PB
refund as soon as AA

defuse

is activated. Thus, at AliceChain time t∗ ≥ TA
1 , prea and preb are both publicly known.

Thus, during AliceChain time (t∗, t∗ + τA], any honest miner will activate CA
burn if it wins a

block. By the same calculation as the previous case, since p ≤ γτ
A ≤ AcAa

AcAa+Axa
, we have

$AV((Axa − AcAa + Bxb) · (1− p) + Bxb · p) < $AV(Bxb − Axa).
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Lemma 5.4 (Bob-miner coalition). Suppose that the hash function H(·) is a one-way function.
Let B be any coalition that consists of Bob and a subset of miners controlling at most γ fraction of

mining power. Then, as long as γτ
B ≤ BcBb

BcBb+Bxb
, for any PPT coalition strategy SB, except with

negligible probability, it must be

utilB(SB, HS−B) ≤ utilB(HSB, HS−B),

where HS−B denotes the honest strategy for everyone not in B.

Proof. Recall that the utility of B is $BV(Axa−Bxb) > 0 under an honest execution. Now, suppose
B may deviate from the protocol. We may assume that the coalition does not post any new smart
contract on the fly and deposit money into it –— if it did so, it cannot recover more than its deposit
since any player not in B will not invoke the smart contract. We analyze the two possible cases
depending on which phase Alice enters.

Alice enters the abort phase. If ContractA never becomes active, the net profit of B from
AliceChain is at most zero. Now, assume ContractA is active. When Alice enters the abort phase,
she never sends any transaction containing pres. Ignoring the negligible probability that B finds
pres by itself, PA

default can never be activated, which means NormalA never happens. According to
Table 2, if NormalA does not happens, the net profit of B from AliceChain is at most zero. On
the other hand, because Bxb > BϵB, the net profit of B from BobChain is at most zero, no matter
ContractB is active or not.

To sum up, except with negligible probability, the utility of B is at most zero, which is less than
the honest case.

Alice enters the execution phase. By Lemma 5.2, the utility of B can be more than the honest
case only if RefundB and NormalA both happen, so we assume it is the case. Because Alice enters the
execution phase, both ContractB and ContractA must be active. Thus, RefundB happens only
if PB

refund is activated. When Alice enters the execution phase, she never sends ping to PB
refund, so

PB
refund must be activated by preb sent by Bob. Therefore, we may assume that PB

refund is activated
at BobChain time t∗ ≥ TB

1 , and preb is publicly known after BobChain time t∗. If Alice enters
the execution, Bob must have sent prec before BobChain time T0. Moreover, Alice sends pres to
PB
default at BobChain time T0 and T0 < TB

1 . Therefore, pres, preb and prec are all publicly known
at BobChain time t∗. Thus, during BobChain time (t∗, t∗ + τB], any honest miner will activate
CB
burn if it wins a block. We say B loses the race if a non-colluding miner mines a new block during

BobChain time (t∗, t∗ + τB]. Otherwise, we say B wins the race. If B loses the race, it gets nothing
from CB

refund or CB
burn, and its utility is at most $BV(Axa − Bxb − BcBb ) which can be achieved by

PA
default. Else if B wins the race, then its utility is at most $BV(Axa) which can be achieved by

activating PB
refund, C

B
refund and PA

default. Since p ≤ γτ
B ≤ BcBb

BcBb+Bxb
, we have

$BV((Axa − Bxb − BcBb ) · (1− p) + Axa · p) < $BV(Axa − Bxb).

Proof of Theorem 5.1. Now, we are ready to prove Theorem 5.1. In Lemma 5.3 and Lemma 5.4,
we show that the atomic swap protocol satisfies γ-CSP-fairness when the coalition consists of Alice
or Bob, and possibly with some miners. Because we assume that Alice and Bob are not in the same
coalition, it remains to show γ-CSP-fairness when the coalition C consists only of miners controlling
at most γ fraction of the mining power.
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Henceforth, we assume Alice and Bob are both honest. It is clear from the protocol that the
honest Alice and honest Bob always make the same decision whether to enter the execution phase
or abort phase.

Next, when C follows the protocol, its utility is always zero. Suppose C may deviate from the
protocol. Notice that the utility of C can be positive only when AA

burn, B
B
burn, C

B
burn or CA

burn is
activated. Because Bob only sends prec when BB

defuse has been activated, ignoring the negligible
probability that C find prec by itself, BB

burn can never be activated. In the following, we will show
that AA

burn, C
B
burn and CA

burn are never activated except with negligible probability. There are two
possible cases.

• Case 1: both Alice and Bob enter the execution phase. In this case, Alice always sends
pres to PB

default, and she never sends any transaction containing prea. Ignoring the negligible
probability that C finds prea by itself, CA

burn can never be activated, and AA
burn can only be

activated by preb. Moreover, Alice always sends pres to PB
default at latest at BobChain time T0,

and thus Bob will not post any transaction containing preb. Ignoring the negligible probability
that C finds preb by itself, AA

burn and CB
burn can never be activated. To sum up, except the

negligible probability, the utility of C is at most zero, which is the same as the honest case.

• Case 2: both Alice and Bob enter the abort phase. In this case, Bob always sends ping to PA
refund

and Alice always sends ping to PB
refund. Thus, Bob never sends any transaction containing preb,

and Alice never sends any transaction containing prea. Ignoring the negligible probability
that C finds preb or prea by itself, AA

burn, C
B
burn and CA

burn cannot be activated by (prea, preb).
Thus, except with negligible probability, the utility of C is at most zero, which is the same as
the honest case.

5.2 Achieving Bounded Maximin Fairness

Henceforth, let α ∈ [0, 1 − 1/poly(λ)] denote the maximum fraction of mining power controlled
by the set of externally incentivized players, and let $E be an upper bound on any individual or
coalition’s valuation of the total possible external incentive.

Proof Roadmap. Conceptually, because Alice and Bob both put the collateral on bothContractB

and ContractA, none of them wants to trigger any of the bombs (BB
burn, C

B
burn, A

A
burn and CA

burn).
In Section 5.2.1, we define a set of “bad events” that leads to the activation of the bomb. The bad
events are defined such that if any of the bad events is about to happen, it must be that a strategic
individual or coalition is about to send a transaction that does not follow from the honest protocol.
In Section 5.2.2, we show that whenever the Bob-miner coalition B is about to send a message that
makes a bad event happen, B’s expected utility can be strictly improved if B simply stops sending
any messages (including the message that is about to trigger the bad event) from that moment
on (Lemma 5.7). Hence, any strategy that makes the bad event happen is a blatantly irrational
strategy for B, so a rational player would never make the bad events happen. Then, we show that
as long as none of the bad events happens, the honest Alice’s utility is never negative (Lemma 5.6
and Lemma 5.8). A similar argument can be made for the case of an Alice-miner coalition (see
Section 5.2.3). Finally, in Section 5.2.4, we combine all the arguments above, and prove that the
atomic swap protocol achieves bounded maximin fairness.

5.2.1 Irrational Strategies

In this section, we will define a family of PPT strategies denoted R, and we will show given any
strategy S ∈ R, we can give a simple modification of S, resulting in a new PPT strategy which
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makes the externally incentivized coalition better off — in this sense, the strategy space R is
blatantly irrational.

Terminologies. Consider any user-miner coalition, and we define the following terminologies.

• We say an activation point X is guaranteed to be activated at some time T , iff either X was
already activated before T , or a colluding miner has been chosen as the winning miner at
time T , and it activates X in the new block it mines.

• We say a smart contract is guaranteed to be active at some time T , iff either the contract was
already active before T , or a colluding miner has been chosen as the winning miner at time
T , and it includes Alice’s and Bob’s deposit transactions for the contract in the new block it
mines.

• We say Alice is guaranteed to withdraw her deposit from a contract at some time T , iff either
Alice already withdrew her deposit from the contract before T , or all the following conditions
hold.

– The contract is not active before time T .

– At time T , a colluding miner is chosen as the winning miner, and Alice’s withdrawal
transaction is included in the block at time T .

The case that Bob is guaranteed to withdraw his deposit from the contract is defined similarly.

Irrational strategies. The set R of irrational strategies for the externally incentivized Bob-miner
coalition (including Bob alone) B is the set of strategies such that with non-negligible probability,
any of the following happens:

E1: Before BB
defuse is guaranteed to be activated and before Bob is guaranteed to withdraw his

deposit from ContractB, anyone in B sends prec to (BB
burn, P

B
default or C

B
burn) and the deposit

transaction to ContractB.

E2: ContractB and ContractA are guaranteed to be active before BobChain time TB. Ad-
ditionally, anyone in B sends prec to (BB

burn, P
B
default or C

B
burn) before BobChain time TB

0 , and
sends preb to (PB

refund, C
B
burn, A

A
burn or CA

burn) before (PB
default or CB

refund) is guaranteed to be
activated.

E3: Before AA
defuse is guaranteed to be activated and before Bob is guaranteed to withdraw his

deposit from ContractA, anyone in B sends preb to (PB
refund, C

B
burn, A

A
burn or CA

burn) and the
deposit transaction to ContractA.

E4: Alice enters the abort phase, and Bob does not send ping to PA
refund before AliceChain time

TA
1 . Additionally, at AliceChain time TA

1 or later, anyone in B sends preb to (PB
refund, C

B
burn,

AA
burn or CA

burn) before (PA
default or C

A
refund) is guaranteed to be activated.

The set R of irrational strategies for the externally incentivized Alice-miner coalition (including
Alice alone) A is the set of strategies such that with non-negligible probability, any of the following
happens:

E5: Bob sends prec to PB
default before BobChain time TB

0 , and Alice does not send pres to PB
default

until BobChain time TB
1 . However, at BobChain time TB

1 or later, anyone in A sends pres to
(PB

default, C
B
burn, P

A
default or C

A
burn) before (PB

default or C
B
refund) is guaranteed to be activated.
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E6: Before AA
defuse is guaranteed to be activated and before Alice is guaranteed to withdraw her

deposit from ContractA, anyone in A sends prea to (AA
burn, P

A
refund or CA

burn) and the deposit
transaction to ContractA.

E7: Anyone in A sends pres to (PB
default, C

B
burn, P

A
default or CA

burn) and prea to (AA
burn, P

A
refund or

CA
burn) before (PA

default or C
A
refund) is guaranteed to be activated.

E8: Any one of the conditions holds.

– Bob enters the execution phase, and Alice does not send pres to PB
default before BobChain

time TB
1 . Additionally, at AliceChain time TA

1 or later, anyone in A sends prea to (AA
burn,

PA
refund or CA

burn) before (PA
default or C

A
refund) is guaranteed to be activated.

– Bob enters the abort phase, and Alice does not send ping to PB
refund before AliceChain

time TA
1 . Additionally, at AliceChain time TA

1 or later, anyone in A sends prea to (AA
burn,

PA
refund or CA

burn) before (PA
default or C

A
refund) is guaranteed to be activated.

The following lemma specifies the upper bounds of the utility of the externally incentivized
players.

Lemma 5.5. Suppose the coalition B consists of Bob and possibly some miners. Let $E be an
upper bound on B’s valuation of the total possible external incentive. If BcBb > BϵB, AcAb > AϵA,
then, the following statements hold.

• The utility of B is at most $BV(Axa) + $E.

• If BurnB is activated by an honest miner /∈ B, the utility of B is at most $BV(Axa − Bxb −
BcBb ) + $E.

• If BurnA is activated by an honest miner /∈ B, the utility of B is at most $BV(−AcAb ) + $E.

Similarly, suppose the coalition A consists of Alice and possibly some miners. Let $E be an
upper bound on A’s valuation of the total possible external incentive. If BcBa > BϵB, AcAa > AϵA,
then, the following statements hold.

• The utility of A is at most $AV(Bxb) + $E.

• If BurnB is activated by an honest miner /∈ A, the utility of A is at most $AV(−BcBa ) + $E.

• If BurnA is activated by an honest miner /∈ A, the utility of A is at most $AV(Bxb − Axa −
AcAa ) + $E.

Proof. The maximal possible utilities under different events are summarized in Table 1 and Table 2.
The lemma directly follows from the calculation of the utilities in the table.

5.2.2 Against Externally Incentivized Bob-Miner Coalition

Lemma 5.6. Let B be the coalition consisting of Bob and miners controlling no more than α
fraction of the mining power where α ∈ [0, 1− 1/poly(λ)]. Suppose Alice and at least 1−α fraction
of mining power are honest. For any PPT strategy by B, except with negligible probability, as long
as none of E1,E2,E3,E4 happens, then, one and only one of the following statement holds.

1. NormalB and NormalA happen in polynomial time.
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2. NormalB and RefundA happen in polynomial time.

3. RefundB and RefundA happen in polynomial time.

Proof. First, we are going to show that one of NormalB and RefundB will happen. There are two
cases.

• Case 1: Alice enters the execution phase. We will show that PB
default must be activated

in polynomial time except with negligible probability. Once PB
default is activated, NormalB

happens. In the execution phase, Alice always sends pres to PB
default. If B

B
burn, P

B
refund and CB

burn

are not activated, the honest miners will include Alice’s transaction, pres to PB
default, once they

mine a block. Thus, it suffices to show that BB
burn, P

B
refund, C

B
burn (all activations points that

PB
default is mutually exclusive with) cannot be activated except with negligible probability.

First, because E1 does not happen, B never sends prec before BB
defuse is guaranteed to be

activated. Thus, BB
burn can never be activated.

Next, because Alice enters the execution phase, ContractB andContractA must be active,
and Bob already sent prec to PB

default before BobChain time TB
0 . Because E2 does not happen,

no one in B sends preb to CB
burn before PB

default or C
B
refund is guaranteed to be activated. Thus,

CB
burn cannot be activated.

It remains to show that PB
refund cannot be activated. In the execution phase, Alice never

sends ping to PB
refund, so PB

refund can be activated only if Bob sends preb to PB
refund. Because

E2 does not happen, Bob never sends preb to PB
refund before PB

default or C
B
refund is guaranteed to

be activated. If PB
default is guaranteed to be activated, PB

refund cannot be activated as they are
mutually exclusive. On the other hand, if CB

refund is guaranteed to be activated, PB
refund must

have been activated τB ≥ 1 BobChain time before. Thus, by the time PB
refund is activated,

CB
refund has not been guaranteed to be activated. However, and Bob never sends preb to PB

refund

before CB
refund is guaranteed to be activated. Therefore, PB

refund can never be activated.

• Case 2: Alice enters the abort phase. In this case, Alice will send the withdrawal transaction
to ContractB, and ping to PB

refund. When ContractB has not been active yet, the honest
miner will include Alice’s withdrawal transactions once they mine a block. Thus, except
with negligible probability, in polynomial time, either ContractB becomes active, or Alice
successfully withdraws her deposit from ContractB. If Alice withdraws her deposit from
ContractB, RefundB happens.

Henceforth, we assume ContractB becomes active. Because E1 does not happen, B never
sends prec before BB

defuse is guaranteed to be activated. Thus, BB
burn can never be activated.

Then, notice that Alice never sends pres when she enters the abort phase. Ignoring the
negligible probability that B finds pres by itself, CB

burn can never be activated.

Thus, since 1−α fraction of mining power is honest, either PB
default or P

B
refund will be activated

in polynomial time. If PB
default is activated, NormalB happens. If PB

refund is activated, Alice will
send ping to CB

refund when τB BobChain time has passed since PB
refund is activated. Again, the

honest miner will include Alice’s transaction ping to CB
refund, once they mine a block. Thus,

RefundB will happen in polynomial time.

Next, we are going to show that one of NormalA and RefundA will happen. There are two cases.

• Case 1: Alice enters the execution phase. As we have shown, when Alice enters the execution
phase, PB

default must be activated in polynomial time. Then, Alice will send ping to PA
default as

soon as PB
default is activated. Because E3 does not happen and Alice never sends prea when
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in the execution phase, AA
burn cannot be activated. Ignoring the negligible probability that

B finds prea by itself, CA
burn cannot be activated. Because 1 − α fraction of mining power is

honest, either PA
default or PA

refund will be activated in polynomial time. If PA
default is activated,

NormalA happens, If PA
refund is activated, Alice will send ping to CA

refund. Again, the honest
miner will include a transaction ping to CA

refund, once they mine a block. Thus, CA
refund will be

activated in polynomial time, and RefundA happens.

• Case 2: Alice enters the abort phase. In this case, Alice will send the withdrawal transaction
to ContractA, and ping to AA

defuse. If ContractA has not been active, the honest miner
will include Alice’s withdrawal transactions once they mine a block. Thus, in polynomial
time, either ContractA becomes active, or Alice successfully withdraws her deposit from
ContractA, so RefundA happens.

Henceforth, we assume ContractA becomes active in polynomial time. Because E3 does
not happen, B never sends preb before AA

defuse is guaranteed to be activated. As AA
defuse and

AA
burn are mutually exclusive, AA

burn can not be activated via preb. Since Alice sends prea to
PA
refund only after AA

defuse is activated, 1) A
A
burn can not be activated via prea, and 2) CA

burn can
not happen before AA

defuse is activated. If either PA
default or CA

refund are activated, NormalA or
RefundA happens. Otherwise, the honest miner will include the transaction ping to AA

defuse

once they mine a block. Because 1 − α fraction of mining power is honest, AA
defuse will be

activated in polynomial time.

When Alice is in abort phase, either Bob sends ping to PA
refund before AliceChain time TA

1

or Alice sends prea to PA
refund when AA

defuse is activated. If Bob sends ping to PA
refund before

AliceChain time TA
1 , Alice never sends prea, and thus CA

burn can not be activated. When Alice
enters the abort phase, she never sends pres, and thus PA

default can not be activated. As we
showed before, AA

burn can not be activated either, and thus the honest miner will include Bob’s
transaction, ping to PA

refund, once they mine a block, so PA
refund will be activated in polynomial

time.

On the other hand, suppose Bob does not send ping to PA
refund before AliceChain time TA

1 , so
Alice sends prea to PA

refund. Because E4 does not happen, B never sends preb before PA
default

or CA
refund is guaranteed to be activated. If PA

default is activated, NormalA happens, if CA
refund is

activated, PA
refund must have been activated previously, and thus RefundA happens. Otherwise,

recall that Alice never sends pres in the abort phase. Without pres and preb, P
A
default and CA

burn

cannot be activated, and as AA
burn can not be activated either as shown before, the honest

miner will include Alice’s transaction, prea to PA
refund, once they mine a block. Thus, PA

refund

will again be activated in polynomial time.

Then, Alice will send ping to CA
refund when τA AliceChain time has passed since PA

refund is
activated. Again, the honest miner will include Alice’s transaction, ping to CA

refund, once they
mine a block. Thus, RefundA will happen in polynomial time.

So far, we have shown one of NormalB and RefundB will happen and one of NormalA and RefundA

will happen. To prove the lemma statement, it suffices to show that RefundB and NormalA never
happen simultaneously. For the sake of reaching a contradiction, suppose RefundB and NormalA

happen. Event NormalA happens implies PA
default is activated, and PA

default is activated only when
Bob sends pres or Alice sends ping. The honest Alice only sends ping to PA

default when PB
default is

activated, which implies NormalB happens. Henceforth, we assume PA
default is activated when by

Bob’s pres. Ignoring the negligible probability that B can find pres by itself, Alice must enter
the execution phase and send pres to PB

default at BobChain time TB
0 . On the other hand, event
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RefundB happens implies either (PB
refund + CB

refund) are activated or Bob withdraws his deposit from
ContractB. Because Alice enters the execution phase, both ContractB and ContractA must
also enter the execution, and thus we exclude that Bob withdraws his deposit from ContractB.
Thus, event RefundB happens only when (PB

refund + CB
refund) are activated. Moreover, because Alice

enters the execution phase, Bob must have sent prec to PB
default. Therefore, to activate PB

refund, Bob
has to send preb before CB

refund is guaranteed to be activated, which implies event E2 happens.

Lemma 5.7 (Blatant irrationality of R for Bob-miner coalition). Suppose that the parameter
constraints in Figure 2 hold and that the coalition B consists of Bob and miners controlling no
more than α fraction of the mining power where α ∈ [0, 1 − 1/poly(λ)]. Given any PPT strategy
SB ∈ R for some (externally incentivized) coalition B, there is a PPT strategy ŜB such that

utilB(ŜB, HS−B) > utilB(SB, HS−B).

Proof. Suppose the coalition B adopts a strategy in which E1,E2,E3 or E4 happens with non-
negligible probability. We can construct a new strategy for B with strictly better expected utility.
Specifically, consider a modified PPT strategy denoted ŜB: whenever by the original strategy, the
first of E1,E2,E3 or E4 is about to happen, B simply stops sending any messages (including the
message that is about to trigger E1,E2,E3 or E4) to the contract from that moment on.

By definition, when E1 or E3 happens, it must due to a message sent by B. According to the
protocol, honest Alice always enters the execution or the abort phase no later than BobChain time
TB
0 . Because AliceChain time TA

1 is later than BobChain time TB
0 by the choice of the parameters,

when E4 happens, it must also due to a message sent by B. Next, if ContractA has not been
guaranteed to be active, AA

defuse cannot be guaranteed to be activated. Similarly, if ContractB

has not been guaranteed to be active, BB
defuse cannot be guaranteed to be activated. Thus, if

anyone in B sends prec to (BB
burn, PB

default or CB
burn) and sends preb to (PB

refund, CB
burn, AA

burn or
CA
burn) before ContractB and ContractA both are guaranteed to be active, one of E1 and E3

must happen. Consequently, if E1 and E3 do not happen while E2 happens, it must due to a
message sent by B. Thus, as long as B stops sending any messages before the first of E1,E2,E3

or E4 is about to happen, none of E1,E2,E3 and E4 can happen in the future. By Lemma 5.6,
in polynomial time, one of (NormalB + NormalA), (NormalB + RefundA) and (RefundB + RefundA)
must happen. By direct calculation, we have the following table. Among (NormalB + NormalA),

NormalB RefundB BurnB

NormalA −Bxb + Axa Axa −Bxb − BcBb + Axa
RefundA −Bxb 0 −Bxb − BcBb
BurnA −Bxb − AcAb −AcAb −Bxb − BcBb − AcAb

Table 3: Bob’s net profit under all possible events.

(NormalB + RefundA) and (RefundB + RefundA), B’s utility is at least $BV(−Bxb). In other words,
we have utilB(ŜB, HS−B) ≥ $BV(−Bxb). Thus, to show utilB(ŜB, HS−B) ≥ utilB(SB, HS−B), we
only need to show utilB(SB, HS−B) < $BV(−Bxb).

We consider four cases, depending on whether E1,E2,E3 or E4 happens first in the original
strategy SB.

Event E1 happens first. Consider some strategy S1 ∈ R with non-negligible probability that
E1 happens. When E1 happens, because Bob is not guaranteed to withdraw his deposit from
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ContractB, the 1−α fraction of honest miners would send the deposit to ContractB and prec
to BB

burn (and potentially CB
burn as well if pres and preb are available), if they are chosen to mine

a block. By Lemma 5.5, if BB
burn or CB

burn is activated by an honest miner, the utility of B is at
most $BV(Axa−Bxb−BcBb )+ $E. On the other hand, if neither BB

burn nor CB
burn is activated by an

honest miner, the utility of B is at most $BV(Axa) + $E. When E1 happens, the probability that
BB

burn or CB
burn is activated by an honest miner is at least 1− α. Thus, the utility of B is at most

(1− α)($BV(Axa − Bxb − BcBb ) + $E) + α($BV(Axa) + $E) < $BV(−Bxb),

where the inequality arises from the fact that $BV(BcBb ) >
$BV(Axa+αBxb)+$E

1−α .

Event E2 happens first. Consider some strategy S2 ∈ R with non-negligible probability that E2

happens. When E2 happens, because both ContractB and ContractA become active before
BobChain time TB and Bob sends prec before BobChain time TB

0 , Alice enters the execution phase.
In this case, Alice always sends pres to PB

default at BobChain time TB
0 . However, Bob also sends

preb before CB
refund is guaranteed to be activated. Thus, the 1− α fraction of honest miners would

send (pres, preb, prec) to CB
burn (and potentially send prec to BB

burn), if they are chosen to mine a
block. By Lemma 5.5, if CB

burn or BB
burn is activated by an honest miner, the utility of B is at most

$BV(Axa−Bxb−BcBb )+$E. On the other hand, if neither CB
burn nor BB

burn is activated by an honest
miner, the utility of B is at most $BV(Axa) + $E. When E2 happens, the probability that CB

burn

or BB
burn is activated by an honest miner is at least 1 − α. Thus, by the same calculation as the

previous case, the utility of B is strictly less than $BV(−Bxb).

Event E3 happens first. Consider some strategy S3 ∈ R with non-negligible probability that
E3 happens. When E3 happens, because Bob is not guaranteed to withdraw his deposit from
ContractA, the 1−α fraction of honest miners would send the deposit to ContractA and preb
to AA

burn (and to CA
burn if prea is available as well), if they are chosen to mine a block. By Lemma 5.5,

if AA
burn or CA

burn is activated by an honest miner, the utility of B is at most $BV(−AcAb ) + $E. On
the other hand, if neither AA

burn nor CA
burn is activated by an honest miner, the utility of B is at most

$BV(Axa) + $E. When E3 happens, the probability that AA
burn or CA

burn is activated by an honest
miner is at least 1− α. Thus, the utility of B is at most

(1− α)($BV(−AcAb ) + $E) + α($BV(Axa) + $E) < $BV(−Bxb),

where the inequality arises from the fact that $BV(AcAb ) >
$BV(Bxb+αAxa)+$E

1−α .

Event E4 happens first. Consider some strategy S4 ∈ R with non-negligible probability that
E4 happens. When E4 happens, because Alice enters the abort phase and Bob does not send ping
to PA

refund before AliceChain time TA
1 , Alice will send prea as soon as AA

defuse is activated. However,
Bob also sends preb before P

A
default or C

A
refund is guaranteed to be activated. If Bob sends preb before

AA
defuse is activated, the 1−α fraction of honest miners would send preb to AA

burn, if they are chosen
to mine a block. If Bob sends preb after AA

defuse is activated, the 1 − α fraction of honest miners
would send (prea, preb) to CA

burn, if they are chosen to mine a block. By Lemma 5.5, if AA
burn or C

A
burn

is activated by an honest miner, the utility of B is at most $BV(−AcAb )+$E. On the other hand, if
neither AA

burn nor CA
burn is activated by an honest miner, the utility of B is at most $BV(Axa)+ $E.

When E4 happens, the probability that AA
burn or CA

burn is activated by an honest miner is at least
1 − α. Thus, by the same calculation as the previous case, the utility of B is strictly less than
$BV(−Bxb).
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Finally, notice that the above analysis holds even if B may post a new contract on the fly during
the protocol execution, since all other players are honest and will not deposit money into the new
contract.

Lemma 5.8 (Against Externally Incentivized Bob-Miner Coalition). Suppose that the hash function
H(·) is a one-way function. Let C be a group consisting of Alice and possibly any subset of the
miners, and let B be a disjoint coalition consisting of Bob and at most α fraction of the mining
power where α ∈ [0, 1 − 1/poly(λ)]. Suppose that C does not have external incentives but B may
have up to $E amount of external incentives. Let SB be an arbitrary PPT strategy of B that is
not in R. Then, there exists a negligible function negl(·) such that except with negligible probability
negl(λ), it holds that

utilC(HSC , SB, HSD) ≥ 0,

where D denotes everyone else not in C ∪ B.

Proof. By Lemma 5.7, any strategy that makes one of E1,E2,E3,E4 happen is blatantly irrational.
By direct calculation, we have the following table.

NormalB RefundB BurnB

NormalA Bxb − Axa −Axa −BcBa − Axa
RefundA Bxb 0 −BcBa
BurnA Bxb − Axa − AcAa −Axa − AcAa −BcBa − Axa − AcAa

Table 4: Alice’s net profit under all possible events.

By Lemma 5.6, if none of E1,E2,E3,E4 happens, then one of (NormalB+NormalA), (NormalB+
RefundA) and (RefundB + RefundA) must happen. Because $AV(Bxb − Axa) > 0, except with some
negligible probability, for all three possible cases Alice’s utility is non-negative.

5.2.3 Against Externally Incentivized Alice-Miner Coalition

Lemma 5.9. Let A be the coalition consisting of Alice and miners controlling no more than α
fraction of the mining power where α ∈ [0, 1− 1/poly(λ)]. Suppose Bob and at least 1− α fraction
of mining power are honest. For any PPT strategy by A, except with negligible probability, as long
as none of E5,E6,E7,E8 happens, then, one and only one of the following statement holds.

1. NormalB and NormalA happen in polynomial time.

2. RefundB and NormalA happen in polynomial time.

3. RefundB and RefundA happen in polynomial time.

Proof. First, we are going to show that one of NormalB and RefundB will happen. There are two
cases.

• Case 1: Bob enters the execution phase. In this case, ContractB and ContractA must
be active, and Bob already sent prec to PB

default before BobChain time TB
0 . There are two

subcases.
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– Subcase 1: Alice sends pres to PB
default before BobChain time TB

1 . In this case, Bob never
sends preb. Without preb, C

B
burn can never be activated. As Bob is in the execution phase,

BB
defuse was activated and thus BB

burn can never be activated. As Alice sent pres to PB
default

and Bob sent prec to PB
default, either P

B
default is activated in polynomial time, or PB

refund is
activated instead. If PB

default is activated, NormalB happens. If PB
refund is activated, Bob

sends an empty message to CB
refund, and thus CB

refund is activated in polynomial time and
RefundB happens.

– Subcase 2: Alice does not send pres to PB
default before BobChain time TB

1 . In this case,
Bob will send ping to AA

defuse. As E6 does not happen, Alice never sends prea before
AA

defuse is guaranteed to be activated, and thus AA
burn is never activated. Thus, AA

defuse is
activated in polynomial time and Bob sends preb to PB

refund as soon as AA
defuse is activated.

Because E5 does not happen, Alice never sends pres before P
B
default or C

B
refund is activated.

Thus, CB
burn can never be activated. As Bob is in the execution phase, BB

burn can never
be activated. Thus, either PB

default is activated (NormalB happens), or CB
refund is activated

(thus PB
refund has been activated before and RefundB happens), or the honest miner will

include Bob’s transaction, preb to PB
refund, once they mine a block. Then, when τB

BobChain time has passed since PB
refund is activated, Bob will send ping to CB

refund and
thus RefundB happens.

• Case 2: Bob enters the abort phase. In this case, Bob will send the withdrawal transaction
to ContractB, and ping to AA

defuse. If ContractB has not been active, the honest miner
will include Bob’s withdrawal transactions once they mine a block. Thus, in polynomial
time, either ContractB becomes active, or Bob successfully withdraws his deposit from
ContractB, which implies RefundB happens.

Henceforth, we assume ContractB becomes active in polynomial time. Because Bob is in
the abort phase, Bob never sent prec and thus, up to negligible probability, BB

burn and CB
burn

can not be activated. Because E6 does not happen, A never sends prea before AA
defuse is

guaranteed to be activated. Thus, AA
defuse is activated in polynomial time. Then, either Alice

sends ping to PB
refund before AliceChain time TA

1 , or Bob sends preb to PB
refund. Either way,

either PB
default is activated (thus NormalB happens), or PB

refund is activated in polynomial time.
When τB BobChain time has passed since PB

refund is activated, Bob will send ping to CB
refund.

Thus, CB
refund will be activated, and so RefundB happens.

Next, we are going to show that one of NormalA and RefundA will happen. There are two cases.

• Case 1: Bob enters the execution phase. First, because E6 does not happen, Alice never sends
prea before AA

defuse is guaranteed to be activated, and as Bob sends preb only after AA
defuse is

activated, it follows that AA
burn is never activated.

Suppose Alice sends pres to PB
default before BobChain time TB

1 . Then, Bob never sends preb,
and so CA

burn can not be activated via (prea, preb). Because E7 does not happen, C
A
burn can not

be activated via (pres, prea). Thus, CA
burn is never activated. As Bob sends pres to PA

default,
either NormalA happens, or PA

refund is activated. In the latter case, Bob sends ping to CA
refund,

and so RefundA happens.

Henceforth, we assume Alice does not send pres to PB
default before BobChain time TB

1 . As we
have shown before, either NormalB happens, or RefundB happens. If NormalB happens, Bob
sends pres to PA

default. If RefundB happens, Bob will send ping to PA
refund as soon as CB

refund

is activated. As E8 does not happen, CA
burn can not be activated using prea after AliceChain

time TA
1 . As E6 does not happen, CA

burn can not be activated using prea before AliceChain
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time TA
1 either. Thus, CA

burn is never activated. Thus, in both cases (NormalB and RefundB),
either PA

default or P
A
refund will be activated in polynomial time. If PA

default is activated, NormalA

happens. If PA
refund is activated, Bob will send ping to CA

refund. The honest miners will include
Bob’s transaction, ping to CA

refund, once they mine a block. Thus, CA
refund will be activated in

polynomial time, so RefundA happens.

• Case 2: Bob enters the abort phase. In this case, Bob will send the withdrawal transaction
to ContractA, ping to PA

refund and ping to AA
defuse. If ContractA has not been active,

the honest miner will include Bob’s withdrawal transactions once they mine a block. Thus,
in polynomial time, either ContractA becomes active, or Bob successfully withdraws his
deposit from ContractA, which implies RefundA happens.

Henceforth, we assume ContractA becomes active in polynomial time. Because E6 does
not happen, A never sends prea before AA

defuse is guaranteed to be activated. As Bob’s sends
ping to AA

defuse, A
A
defuse will be activated in polynomial time. If Alice sends ping to PB

refund by
AliceChain time TA

1 , Bob never sends preb, and thus CA
burn can be activated only via (pres, prea)

(excluded by E7). If Alice does not send ping to PB
refund by AliceChain time TA

1 , because E8 does
not happen, Alice does not send prea before PA

default or C
A
refund is guaranteed to be activated.

Thus, CA
burn can not be activated via prea. Thus, C

A
burn is never activated. As Bob sends ping

to PA
refund, or Alice’s transaction, either P

A
default or P

A
refund will be activated in polynomial time.

If PA
default is activated, NormalA happens. If PA

refund is activated, Bob will send ping to CA
refund.

Thus, CA
refund will be activated in polynomial time, so RefundA happens.

So far, we have shown one of NormalB and RefundB will happen and one of NormalA and RefundA

will happen. To prove the lemma statement, it suffices to show that NormalB and RefundA never
happen simultaneously. For the sake of reaching a contradiction, suppose NormalB and RefundA

happen. Event NormalB happens implies PB
default is activated. If Bob enters the abort phase, Bob

never sends prec to PB
default. Ignoring the negligible probability that A finds prec by itself and forges

Bob’s signature, Bob must enter the execution, which implies both ContractB and ContractA

are active. On the other hand, event RefundA happens implies either (PA
refund + CA

refund) are activated
or Alice withdraws her deposit from ContractA. As we have shown, ContractA must be active,
so RefundA happens implies (PA

refund + CA
refund) are activated. In the execution phase, Bob will send

ping to PA
refund only if CB

refund is activated, which is impossible given that PB
default is activated. Thus,

PA
refund can be activated only if Alice sends prea to PA

refund. Because C
A
refund can be activated when τA

AliceChain time has passed since PA
refund is activated, Alice must send prea to PA

refund before CA
refund

is guaranteed to be activated. There are two subcases.

• Subcase 1: pres is sent to PB
default before BobChain time TB

1 . Because P
A
refund must be activated

after AliceChain time TA
1 which is later than BobChain time TB

1 , A must send pres to PB
default

and prea to PA
refund before CA

refund is guaranteed to be activated. Thus, depends on whether
AA

defuse is guaranteed to be activated, either E6 or E7 happens.

• Subcase 2: pres has not been sent to PB
default before BobChain time TB

1 . Because Bob enters the
execution phase, he will send preb to PB

refund as soon as AA
defuse is activated. Thus, depending

on whether AA
defuse is guaranteed to be activated, either E6 or E8 happens.

Because we assume none of E5,E6,E7,E8 happens, either subcase leads to a contradiction.

Lemma 5.10 (Blatant irrationality of R for Alice-miner coalition). Suppose that the parameter
constraints in Figure 2 hold and that the coalition A consists of Alice and miners controlling no
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more than α fraction of the mining power where α ∈ [0, 1 − 1/poly(λ)]. Given any PPT strategy
SA ∈ R for some (externally incentivized) coalition A, there is a PPT strategy ŜA such that

utilA(ŜA, HS−A) > utilA(SA, HS−A).

Proof. Suppose the coalition A adopts a strategy in which E5,E6,E7 or E8 happens with non-
negligible probability. We can construct a new strategy for A with strictly better expected utility.
Specifically, consider a modified PPT strategy denoted ŜA: whenever by the original strategy, the
first of E5,E6,E7 or E8 is about to happen, A simply stops sending any messages (including the
message that is about to trigger E5,E6,E7 or E8) to the contract from that moment on.

By definition, when E5,E6,E7 or E8 happens, it must be caused by a message sent by A. Thus,
as long as A stops sending any messages before the first of E5,E6,E7 or E8 is about to happen,
none of E5,E6,E7 and E8 can happen in the future. By Lemma 5.9, in polynomial time, one of
(NormalB + NormalA), (RefundB + NormalA) and (RefundB + RefundA) must happen. According to
Table 4, among (NormalB + NormalA), (RefundB + NormalA) and (RefundB + RefundA), A’s utility
is at least $AV(−Axa). In other words, we have utilA(ŜA, HS−A) ≥ $AV(−Axa). Thus, to show
utilA(ŜA, HS−A) ≥ utilA(SA, HS−A), we only need to show utilA(SA, HS−A) < $AV(−Axa).

We consider four cases, depending on whether E5,E6,E7 or E8 happens first in the original
strategy SA.

Event E5 happens first. Consider some strategy S5 ∈ R with non-negligible probability that E5

happens. When E5 happens, the honest Bob will send preb to PB
refund as soon as AA

defuse is activated.
Thus, when A sends any transaction containing pres, the 1−α fraction of honest miners would send
(pres, preb, prec) to CB

burn, if they are chosen to mine a block. By Lemma 5.5, if CB
burn is activated

by an honest miner, the utility of A is at most $AV(−BcBa ) + $E. On the other hand, if CB
burn is

not activated by an honest miner, the utility of A is at most $AV(Bxb) + $E. When E5 happens,
the probability that CB

burn is activated by an honest miner is at least 1− α. Thus, the utility of A
is at most

(1− α)($AV(−BcBa ) + $E) + α($AV(Bxb) + $E) < $AV(−Axa),

where the inequality arises from the fact that $AV(BcBa ) >
$AV(Axa+αBxb)+$E

1−α .

Event E6 happens first. Consider some strategy S6 ∈ R with non-negligible probability that
E6 happens. When E6 happens, the 1 − α fraction of honest miners would send prea to AA

burn

(or to CA
burn if additionally either pres or preb is known), if they are chosen to mine a block. By

Lemma 5.5, if either AA
burn or CA

burn is activated by an honest miner, the utility of A is at most
$AV(Bxb−Axa−AcAa )+$E. On the other hand, if neither AA

burn nor CA
burn is activated by an honest

miner, the utility of A is at most $AV(Bxb) + $E. When E6 happens, the probability that AA
burn or

CA
burn is activated by an honest miner is at least 1− α. Thus, the utility of A is at most

(1− α)($AV(Bxb − Axa − AcAa ) + $E) + α($AV(Bxb) + $E) < $AV(−Axa),

where the inequality arises from the fact that $AV(AcAa ) >
$AV(Bxb+αAxa)+$E

1−α .

Event E7 happens first. Consider some strategy S7 ∈ R with non-negligible probability that E7

happens. When E7 happens, the 1− α fraction of honest miners would send (pres, prea) to CA
burn,

if they are chosen to mine a block. By Lemma 5.5, if CA
burn is activated by an honest miner, the

utility of A is at most $AV(Bxb − Axa − AcAa ) + $E. On the other hand, if CA
burn is not activated

by an honest miner, the utility of A is at most $AV(Bxb) + $E. When E7 happens, the probability
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that CA
burn is activated by an honest miner is at least 1− α. Thus, by the same calculation as the

previous case, the utility of A is strictly less than $AV(−Axa).

Event E8 happens first. Consider some strategy S8 ∈ R with non-negligible probability that
E8 happens. If Bob enters the execution phase, because Alice does not send pres to PB

default before
BobChain time TB

1 , Bob will send preb to PB
refund as soon as AA

defuse is activated. On the other hand,
if Bob enters the abort phase, because Alice does not send ping to PB

refund before AliceChain time
TA
1 , Bob will send preb to PB

refund as soon as AA
defuse is activated. In either case, Bob always sends

preb to PB
refund as soon as AA

defuse is activated.
If AA

defuse is guaranteed to be activated at AliceChain time t∗, it must be activated no later than
AliceChain time t∗+1. When E8 happens, AA

defuse has been guaranteed to be activated. Thus, when
E8 happens, prea and preb are both publicly known. Then, the 1 − α fraction of honest miners
would send (prea, preb) to CA

burn if they are chosen to mine a block. By Lemma 5.5, if CA
burn is

activated by an honest miner, the utility of A is at most $AV(Bxb−Axa−AcAa )+$E. On the other
hand, if CA

burn is not activated by an honest miner, the utility of A is at most $AV(Bxb)+$E. When
E8 happens, the probability that CA

burn is activated by an honest miner is at least 1− α. Thus, by
the same calculation as the previous case, the utility of A is strictly less than $AV(−Axa).

Finally, notice that the above analysis holds even if A may post a new contract on the fly during
the protocol execution, since all other players are honest and will not deposit money into the new
contract.

Lemma 5.11 (Against Externally Incentivized Alice-Miner Coalition). Suppose that the hash func-
tion H(·) is a one-way function. Let C be a coalition consisting of Bob and possibly any subset of
the miners, and let A be a disjoint coalition consisting of Alice and at most α fraction of the mining
power where α ∈ [0, 1 − 1/poly(λ)]. Suppose that C does not have external incentives but A may
have up to $E amount of external incentives. Let SA be an arbitrary PPT strategy of A that is
not in R. Then, there exists a negligible function negl(·) such that except with negligible probability
negl(λ), it holds that

utilC(HSC , SA, HSD) ≥ 0,

where D denotes everyone else not in C ∪ A.

Proof. By Lemma 5.7, any strategy that makes one of E5,E6,E7,E8 happen is blatantly irrational.
By Lemma 5.9, if none of E5,E6,E7,E8 happen, the one of (NormalB + NormalA), (RefundB +
NormalA), and (RefundB + RefundA) must happen. According to Table 3, because $BV(−Bxb +
Axa) > 0, for all three possible cases, Bob’s utility is never negative.

5.2.4 Combine Everything Together

Now, we are ready to prove that the atomic swap protocol satisfies bounded maximin fairness.

Theorem 5.12 (Bounded maximin fairness). Suppose that H(·) is a one-way function and suppose
the parameters BcBa ,Ac

A
a ,Bc

B
b ,Ac

A
b , α ∈ [0, 1− 1/poly(λ)] satisfy the constraints in Figure 2. Then,

the atomic swap protocol satisfies α-bounded maximin fairness against external incentives.

Proof. Let C be a set of honest players where we want to show that C’s utility is non-negative, and
let C′ be an externally incentivized coalition. There are five cases to consider.

Case 1: Alice ∈ C and Bob ∈ C′: covered by Lemma 5.8.

Case 2: Bob ∈ C and Alice ∈ C′: covered by Lemma 5.11.
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Case 3: C is miner-only: It is straightforward to see that no matter how players outside C
behave, as long as C behaves honestly, its utility is non-negative.

Case 4: Alice ∈ C and C′ is miner-only: Notice that both Alice and Bob are assumed to be
honest. In the protocol, Alice and Bob decide whether they will go to the abort phase according
to whether Bob sends prec to PB

default. Thus, when Alice and Bob are both honest, both of them
enter the execution phase or both of them enter the abort phase. There are two subcases.

• Subcase 1: Both Alice and Bob enter the execution phase. Bob only sends prec to PB
default

when BB
defuse has been activated. Ignoring the negligible probability that C′ finds prec by

itself, BB
burn can never be activated. Alice would send pres to PB

default as soon as she enters
the execution phase, and Bob would send pres to PA

default as soon as Alice sent pres to PB
default.

Because Alice always sends pres to PB
default before BobChain time TB

1 , Bob never sends preb.
Besides, Alice never sends prea. Ignoring the negligible probability that C′ finds preb or prea
by itself, AA

burn, CB
burn and CA

burn can never be activated. When Alice and Bob are in the
execution phase, PB

refund can be activated only by Bob sending preb. As we have shown, Bob
never sends preb, so PB

refund can never be activated. Moreover, when Alice and Bob are in the
execution phase, PA

refund can be activated only by Bob sending ping. However, Bob will only
send ping to PA

refund if CB
refund is activated. Because PB

refund cannot be activated, CB
refund cannot

be activated either. Thus, PA
refund cannot ever be activated. The 1−α fraction of honest miner

will include Alice’s and Bob’s transactions, so except the negligible probability, PB
default and

PA
default will be activated in polynomial time. Thus, the honest C obtains non-negative utility.

• Subcase 2: Both Alice and Bob go to the abort phase. In this case, Bob never sends prec.
In the abort phase Alice always sends ping to PB

refund at AliceChain time TA
0 , so Bob never

sends preb. Similarly, Bob always sends ping to PA
refund at AliceChain time TA

0 , so Alice never
sends prea. Moreover, Alice never sends pres. Ignoring the negligible probability that C′
finds pres, prea, preb, prec by itself, AA

burn, B
B
burn, P

B
default, C

B
burn, P

A
default, C

A
burn can never be

activated.

If ContractB (ContractA, resp.) has not been active, Alice and Bob send the withdrawal
transaction to ContractB (ContractA, resp.). The 1 − α fraction of honest miner will
include Alice’s and Bob’s withdrawal transactions, so except the negligible probability, they
can get their deposit back unless the contract becomes active. Next, we analyze different
cases depending on which contract becomes active.

– ContractB is active. As we have shown, BB
burn, P

B
default, C

B
burn cannot be activated. The

1−α fraction of honest miner will include Alice’s transaction, ping to PB
refund, once they

mine a block. Thus, PB
refund will be activated in polynomial time. When τB BobChain

time has passed since PB
refund is activated, Alice and Bob will send ping to CB

refund. Again,
the 1 − α fraction of honest miner will include Alice’s and Bob’s transactions, ping to
CB
refund, once they mine a block. Thus, CB

refund will be activated in polynomial time.

– ContractA is active. As we have shown, AA
burn, P

A
default, C

A
burn cannot be activated. The

1− α fraction of honest miner will include Bob’s transaction, ping to PA
refund, once they

mine a block. Thus, PA
refund will be activated in polynomial time. When τA AliceChain

time has passed since PA
refund is activated, Alice and Bob will send ping to CA

refund. Again,
the 1 − α fraction of honest miner will include Alice’s and Bob’s transactions, ping to
CA
refund, once they mine a block. Thus, CA

refund will be activated in polynomial time.

In all cases, C’s utility is non-negative except with negligible probability.
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Case 5: Bob ∈ C and C′ is miner-only: The argument is the same as Case 4.

5.3 Achieving Dropout Resilience

Theorem 5.13 (Dropout resilience of atomic swap). Suppose that H(·) is a one-way function and
that all players are PPT machines. Our atomic swap protocol is dropout resilient. In other words,
suppose at least 1/poly(λ) fraction of the mining power is honest on either chain; if either Alice or
Bob plays honestly but drops out before the end of the protocol, then with 1 − negl(λ) probability,
the other party’s utility must be non-negative.

Proof. Throughout the proof, for any X ∈ {pres, prea, preb, prec}, we ignore the negligible prob-
ability that the miners can find the preimage X by itself if Alice and Bob have never sent X
before.

We first analyze the cases where Alice drops out. If any of E5,E6,E7,E8 is about to happen,
it must be that Alice deviates from the protocol and is about to send a transaction that does not
follow from the honest protocol. Because Alice is honest, no matter when Alice drops out, none of
E5,E6,E7,E8 would happen. By Lemma 5.9, one and only one of (NormalB+NormalA), (RefundB+
NormalA) and (RefundB+RefundA) will happen. According to Table 3, because $BV(Axa−Bxb) > 0,
for any of the three cases, Bob’s utility is non-negative.

Next, we analyze the cases where Bob drops out. If any of E1,E2,E3,E4 is about to happen,
it must be that Bob deviates from the protocol and is about to send a transaction that does not
follow from the honest protocol. Because Bob is honest, no matter when Bob drops out, none of
E1,E2,E3,E4 would happen. By Lemma 5.6, one and only one of (NormalB+NormalA), (NormalB+
RefundA) and (RefundB+RefundA) will happen. According to Table 4, because $AV(Bxb−Axa) > 0,
for any of the three cases, Alice’s utility is non-negative.

6 Rational Defection from Grand Coalition

In Theorem 4.1, we prove that the atomic swap protocol is secure assuming at least 1/poly(λ)
fraction of honest miners. Here, we justify this assumption by considering a metagame that captures
the formation of the coalition. In more detail, we argue that when everyone else joins the coalition,
a rational miner will prefer to defect the coalition. In other words, a grand coalition consisting
100% of the mining power is unstable if each individual miner is rational.

6.1 Disincentivizing the Grand Coalition Absent of External Incentive.

We first assume the coalition is formed without any external incentive, and we show that any grand
coalition whose strategic utility is higher than the honest utility is not stable, and thus justify the
assumption of 1/poly(λ) fraction of honest miners for CSP-fairness. The analysis is similar to the
metagame for knowledge-coin exchange in [CMST22b].

We start with Alice-miner coalition. According to Lemma 5.2, their utility is better than the
honest case only if NormalB and RefundA both happen, which leads to a strategic utility Bxb.
Suppose Alice controls 100% of the mining power, and they adopt a strategy that leads to NormalB

and RefundA with non-negligible probability. When NormalB happens, i.e., PB
default is activated, Bob

must have sent prec to PB
default, and it implies ContractA has been active and Bob enters the

execution phase. If ContractA is active, (PA
refund + CA

refund) is the only possibility for RefundA.
However, in the execution phase, Bob sends ping to PA

default only after PB
default has been activated.

Thus, the fact that NormalB and RefundA both happen implies that PA
refund is activated by prea.

When Bob enters the execution phase, there are two possible cases:
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• Alice sends pres to PB
default before TB

1 . Because PA
refund can only be activated after TA

1 > TB
1 ,

the moment that PA
refund is activated, both pres and prea are publicly known. Within the time

window τA that CA
refund can be activated, anyone can send (pres + prea) to CA

burn.

• Alice does not send pres before TB
1 . In this case, either AA

defuse has not been activated, or Bob
has sent preb to PB

refund. If PA
refund is activated, anyone can either send prea to AA

burn or send
(prea + preb) to CA

burn.

Recall that the coalition’s strategic utility is at most Bxb. Suppose the coalition distributes the
strategic gain proportionally to the mining power, and consider a small miner i that has a small
mining power γ. If i joins the coalition and cooperates, its expected reward is at most pγ · Bxb,
where p denotes the probability that PA

refund is activated. On the other hand, suppose i chooses to
not join the coalition. Since its influence to the block generation process is small, we may assume
that PA

refund is activated with probability p or more. Without loss of generality, we may assume
that every miner in the coalition commits to starving AA

burn or CA
burn in every block they mine, e.g.,

by placing a collateral that it will honor its commitment —– if not, then the coalition will not be
stable since a coalition member will be incentivized to defect from the coalition and claim AA

burn or
CA
burn itself, which is what we want to prove.
As we have shown above, since the moment PA

refund is activated, miner i has a τA lead in time
to mine a block in which i can redeem $ϵ from AA

burn or CA
burn. The probability that i mines a block

in a window of τA blocks is 1 − (1 − γ)τ
A
. Therefore, if i does not join the coalition, its expected

gain would be at least p · Bϵ · 1 − (1 − γ)τ
A
. If i joins the coalition, its expected gain is pγ · Bxb.

Thus, as long as p ·Bϵ · (1− (1− γ)τ
A
) > pγ ·Bxb, i’s best strategy is to not join the coalition. This

means that if everyone else joins the coalition, some small miner i wants to defect.
Next, we analyze Bob-miner coalition. By Lemma 5.2, the coalition’s utility is better off only

if RefundB and NormalA both happen. NormalA happens, i.e., PA
default is activated, only if Bob sends

pres or Alice sends ping. However, Alice sends ping to PA
default only if PB

default has been activated
which leads to NormalB. Thus, we assume that PA

default is activated by pres. Ignoring the negligible
probability that Bob finds pres by itself, Alice only sends pres if Bob has sent prec to PB

default and
ContractB is active. Thus, the fact that RefundB happens implies that PB

refund is activated by
preb. Consequently, whenever P

B
refund is activated, pres, preb, and prec are all publicly known, and

anyone can send all of them to CB
burn. By the similar argument as Alice-miner coalition, if everyone

else joins the coalition, some small miner i controlling γ fraction of the mining power wants to
defect.

6.2 Disincentivizing the Grand Coalition in the Presence of External Incentive.

Now we consider the strategic coalition with external incentive, and we show that any grand
coalition that harms the honest players is not stable, and thus justify the assumption of 1/poly(λ)
fraction of honest miners for bounded maximin fairness.

Let $E be the upper bound of the external incentive, and let $V be the maximum value of
the atomic swap protocol to the coalition, where $V ≤ $E + Bxb to Alice-miner coalition and
$V ≤ $E+Axa to Bob-miner coalition. We start with Alice-miner coalition. According to Table 3,
the honest Bob’s utility is negative if any of the following conditions hold: 1) RefundA and NormalB

both happen; 2) BurnA happens; 3) BurnB happens.
By the choice of AcAa and BcBa (Figure 2), once BurnA or BurnB happens, the coalition’s utility is

negative even if it is compensated by the external incentive. Thus, the only profitable strategy for
the externally incentivized coalition that may harm honest players is to invoke RefundA and NormalB.
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In this case, we can follow the same argument as in Section 6.1. As long as p · $ϵ · (1− (1− γ)τ
A
) >

pγ · $V , the small miner i’s best strategy is to not join the coalition.
Similarly, we can show that Bob-miner coalition is not stable. According to Table 4, the honest

Alice’s utility is negative if any of the following conditions hold: 1) RefundB and NormalA both
happen; 2) BurnA happens; 3) BurnB happens. By the choice of AcAb and BcBb , once BurnA or BurnB

happens, the coalition’s utility is negative even if it is compensated by the external incentive. Thus,
the only profitable strategy for the externally incentivized coalition that may harm honest players
is to invoke RefundB and NormalA. In this case, we can follow the same argument as in Section 6.1,
as long as p · $ϵ · (1 − (1 − γ)τ

A
) > pγ · $V , the small miner i’s best strategy is to not join the

coalition.

7 Instantiation

We now discuss the instantiation of our scheme. We first implement it using a general-purpose
smart contract language, and then show an instantiation in Bitcoin’s UTXO model.

7.1 Ethereum Instantiation

We implemented our contracts in 340 LoC in Solidity, Ethereum’s smart contract language. Trans-
action fees on Ethereum are determined by gas usage, which corresponds to the total cost of
operations executed by the contract.

We give the gas cost of our scheme in Table 5. Additionally, we compare our gas cost to those of
Rapidash’s CSP-fair swap [CMST22b] in Table 6. As expected, our costs are slightly higher overall
due to the extra input logic and the extra defuse logic that are necessary to achieve bounded
maximin fairness. However, we note that once the contracts are active, the optimistic paths have
similar costs in both schemes.
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Table 5: Bounded maximin fair atomic swap, gas cost. (O) denotes an optimistic case where both
Alice and Bob are honest.

Contract Redeem path Gas

ContractB

Input, Alice 48,355
Input, Bob 50,583

Withdraw, Alice 35,956
Withdraw, Bob 38,271

(O) (PB
default), Alice 35,405

(O) (BB
defuse + PB

default), Bob 88,399
Refund (PB

refund + CB
refund), Alice 114,662

Refund (BB
defuse + PB

refund + CB
refund), Bob 147,567

Early Bomb (BB
burn), Miner 50,295

Bomb (CB
burn), Miner 57,152

ContractA

Input, Alice 50,650
Input, Bob 48,333

Withdraw, Alice 38,251
Withdraw, Bob 35,912

(O) (PA
default), Alice 54,925

(O)(PA
default), Bob 58,679

Refund (AA
defuse + PA

refund + CA
refund), Alice 149,634

Refund (AA
defuse + PA

refund + CA
refund), Bob 145,894

Early bomb (AA
burn), Miner 49,956

Bomb (CA
burn), Miner 53,475
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Table 6: Gas cost comparison between Rapidash and our bounded maximin fair atomic swap. (O)
denotes an optimistic case.

Contract Redeem path Gas

RapidashB

Normal path (PB
default), Alice 52,279

Normal path (PB
default), Bob 56,681

Refund path (PB
refund + CB

refund), Bob 123,631
Burn path (CB

burn), Miner 42,266

RapidashA

Input, Alice 50,465
Input, Bob 55,817

Withdraw, Alice 38,228
Withdraw, Bob 35,911

(O) (PA
default), Alice 54,904

(O) (PA
default), Bob 58,656

Refund (PA
refund + CA

refund), Alice 118,379
Refund (PA

refund + CA
refund), Bob 114,647

Burn (CA
burn), Miner 53,431

ContractB

Input, Alice 48,355
Input, Bob 50,583

Withdraw, Alice 35,956
Withdraw, Bob 38,271

(O) (PB
default), Alice 35,405

(O) (BB
defuse + PB

default), Bob 88,399
Refund (PB

refund + CB
refund), Alice 114,662

Refund (BB
defuse + PB

refund + CB
refund), Bob 147,567

Early Bomb (BB
burn), Miner 50,295

Bomb (CB
burn), Miner 57,152

ContractA

Input, Alice 50,650
Input, Bob 48,333

Withdraw, Alice 38,251
Withdraw, Bob 35,912

(O) (PA
default), Alice 54,925

(O)(PA
default), Bob 58,679

Refund (AA
defuse + PA

refund + CA
refund), Alice 149,634

Refund (AA
defuse + PA

refund + CA
refund), Bob 145,894

Early bomb (AA
burn), Miner 49,956

Bomb (CA
burn), Miner 53,475
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7.2 Bitcoin Instantiation

Traditional smart contracts operate by receiving coins from users, holding them within the contract
until specific conditions activate the transfer. Once triggered, the contract disperses some or all
of the coins to designated recipients. Bitcoin, however, follows the Unspent Transaction Output
(UTXO) model, where coins are linked to addresses represented as Adr ∈ {0, 1}λ. Each address can
be spent only once, ensuring that once used in a transaction, it cannot be reused. Transactions are
recorded on the blockchain, facilitating the movement of coins from input addresses to new output
addresses. Any excess coins not explicitly allocated are collected by the miner as a transaction fee
for processing the block.

Bitcoin transactions can be thought of as being generated by the transaction function tx . A
transaction txA, denoted

txA := tx

(
[(Adr1,Φ1, $v1), . . . , (Adrn,Φn, $vn)],
[(Adr ′1,Φ

′
1, $v

′
1), . . . , (Adr

′
m,Φ′

m, $v′m)]

)
,

transfers vi coins from each input address Adr i, i ∈ [n], and deposits v′i coins to each output address
Adr ′j , j ∈ [m]. To prevent minting coins from thin air, it must be guaranteed that

∑
i∈[n] $vi ≥∑

j∈[m] $v
′
j , where the difference is offered as transaction fee to the miners.

Bitcoin addresses are governed by scripts Φ : {0, 1}λ → {0, 1}, which define spending conditions
for their coins. Unlike smart contracts, which allow arbitrary logic, Bitcoin’s scripting language has
limited expressiveness. A transaction is authorized when witnesses [x1, . . . , xn] satisfy Φi(xi) = 1
for all i, and confirmed once recorded on the blockchain.

Since addresses can only be spent once, contract logic must be encoded directly within scripts.
Our approach relies on standard Bitcoin scripts, ensuring compatibility. An address Adr is con-
trolled by a user if they possess a valid witness x such that Φ(x) = 1.

7.2.1 Instantiating ContractB with Bounded Maximin Fairness

We depict the payment flow in Figure 7. Alice and Bob use transaction txB
stp that creates AdrBstp

with $xb+$cBa +$cBb coins and another address AdrBB
defuse

with $ηB coins in it. Here xb+$cBb +$ηB

coins come from Bob and $cBa coins come from Alice. We have two new transactions txBB
defuse

and

txBB
burn

, corresponding to the activation points BB
defuse and BB

burn, respectively. Transaction txBB
defuse

redeems $ηB coins from the address AdrBB
defuse

provided a timeout of TB
1 has passed since the setup

transaction was published on the blockchain. The other transaction txBB
burn

redeems the $ηB coins

from AdrBB
defuse

, as well as the coins from the setup address AdrBstp provided prec is released. The

transaction burns ($xb +$cBa +$cBb +$ηB− $ϵB) coins leaving behind $ϵB coins as transaction fees.
Transaction txPB

default
can only be activated with pres (pre-image of hs) and zc (pre-image of hc)

are available. This transaction spends coins from AdrBstp, and sends $xb + $cBa coins to an address

of Alice and send $cBb coins to an address of Bob. We then have two cases: two transactions txPB
refund

and tx ping

PB
refund

can activate PB
refund and spend from AdrBstp after a timeout of TB

1 has passed. The only

difference is txPB
refund

can be activated by Bob only with pre-image preb, while anyone, especially

Alice can publish tx ping

PB
refund

without needing any pre-image. If either one of those transactions are

published, after a timeout of τB, Alice and Bob can get a full refund of their locked coins with
transactions txCB

refund
and tx ping

CB
refund

, respectively. However, before the timeout, the CB
burn path can be

activated in both cases before the timeout τB passes using tx
PB
refund

CB
burn

and tx
PB
refund,ping

CB
burn

, respectively. In
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both cases, all of pres, preb, prec must be available. Finally we have transaction txCB
burn

that can

also directly activate CB
burn path from AdrBstp given all of pres, preb, prec. All transactions must be

signed by both Alice and Bob.

Protocol Flow. Alice and bob first agree on the setup transaction txB
stp and sign all other redeem-

ing transactions. They ensure that the signatures on the transaction txBB
defuse

are only with Bob, and

the signatures on tx ping

PB
refund

are only with Alice. Alice and Bob keep these signatures privately and

broadcast all other transactions and signatures into the network. By posting the setup transaction
on the blockchain, we enter the execution phase.

Whenever Bob wishes to activate BB
defuse branch, he publishes txBB

defuse
along with the corre-

sponding signatures on the blockchain. Notice that since txBB
defuse

and txBB
burn

spend from the address

AdrBB
defuse

, they are mutually exclusive, meaning only one of them can be posted on the blockchain.

Notice that any of the other branches can be activated if and only if BB
defuse was activated (or

in other words, BB
burn was not activated with txBB

burn
). Alice can publish txPB

default
with pre-images

pres and prec. If not, Bob can initiate the refund using txPB
refund

after a timeout of TB
1 and us-

ing the pre-image preb. Whenever Alice wants to activate PB
refund with a ping, she publishes the

transaction tx ping

PB
refund

along with valid signatures in her possession. If the transaction is published,

activation point CB
refund can be activated by tx ping

CB
refund

after a timeout of τB time. The CB
burn path can

be activated using transactions txCB
burn

, tx
PB
refund

CB
burn

or tx
PB
refund,ping

CB
burn

depending on which paths have been

activated so far.

7.2.2 Instantiating ContractA with Bounded Maximin Fairness

The payment flow is depicted in Figure 8. Alice and Bob use transaction txA
stp that creates AdrAstp

with $xa+$cAa +$cAb coins and another address AdrAA
defuse

with $ηA coins in it. Here xa+$cAa +$ηA

coins come from Alice and $cAb coins come from Bob. We have two new transactions txAA
defuse

and

txAA
burn

, corresponding to the activation points AA
defuse and AA

burn, respectively. Transaction txAA
defuse

redeems $ηB coins from the address AdrAA
defuse

provided a timeout of TA
1 has passed since the setup

transaction was published on the blockchain. The other transaction txAA
burn

redeems the $ηA coins

from AdrAA
defuse

, as well as the coins from the setup address AdrAstp provided prea or preb is released.

The transaction burns ($xa +$cAa +$cAb +$ηA− $ϵA) coins leaving behind $ϵA coins as transaction
fees.

We have transaction tx ping

PA
default

that can activate PA
default by a ping by anyone. On the other hand,

we have transaction txPA
default

that can only be activated with pres (pre-image of hs) is available.

Both of these transactions will spend the coins from AdrAstp, and send $xa+$cAa coins to an address

of Bob and send $cAb coins to an address of Alice. We then have two cases: two transactions txPA
refund

and tx ping

PA
refund

can activate PA
refund and spend from AdrAstp after a timeout of TA

1 has passed. The only

difference is txPA
refund

can be activated by Alice only with pre-image prea, while anyone, especially

Bob can publish tx ping

PA
refund

without needing any pre-image. If either one of those transactions are

published, after a timeout of τB, Alice and Bob can get a full refund of their locked coins with
transactions txCA

refund
and tx ping

CA
refund

, respectively. However, before the timeout, the CA
burn path can be

activated in both cases using tx
PA
refund

CA
burn

and tx
PA
refund,ping

CB
burn

, respectively. In both cases, either prea and
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Figure 7: The transaction flow ofContractB in Bitcoin for an atomic swap with bounded maximin fairness.
Rounded boxes denote transactions, and rectangles within are outputs of the transaction. Incoming arrows
denote transaction inputs, outgoing arrows denote how an output can be spent by a transaction at the end
of the arrow. Solid lines indicate the transaction output can be spent only if both users sign the spending
transaction. Dashed arrows indicate that the output can be spent by one user (A for Alice and B for Bob).

pres, or prea and preb must be available. Finally we have transaction txCA
burn

that can also directly

activate CA
burn path from AdrAstp given either prea and pres, or prea and preb are available. All
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transactions are required to be signed by both Alice and Bob.

Protocol Flow. We proceed exactly as in ContractB, except for the two additional transactions
in txAA

defuse
and txAA

burn
. Alice and Bob sign the two transactions prior to signing the setup transaction.

Alice has the signatures on txAA
defuse

that she keeps privately, while txAA
burn

and the signatures on this

transaction are broadcast to the network. After the setup transaction, txA
stp is published on the

blockchain, and the execution phase begins whenever AA
defuse is to be activated, Alice publishes

txAA
defuse

and the signatures on the blockchain. To activate AA
burn, transaction txAA

burn
along with the

corresponding signatures, and either prea or pres are published on the blockchain. Notice that, as
required, only one of these two transactions can be posted, allowing us to realize that AA

defuse and
AA

burn are mutually exclusive. The rest of the protocol proceeds as the description for the previous
instantiation.
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(or)

(or)

(or)

(or)

(or)

Figure 8: The transaction flow ofContractA in Bitcoin for an atomic swap with bounded maximin
fairness. Rounded boxes denote transactions, and rectangles within are outputs of the transaction.
Incoming arrows denote transaction inputs, outgoing arrows denote how an output can be spent by
a transaction at the end of the arrow. Solid lines indicate the transaction output can be spent only
if both users sign the spending transaction. Dashed arrows indicate that the output can be spent
by one user (A for Alice, and B for Bob). The timelock (TA

1 and τA) associated with a transaction
output is written over the corresponding outgoing arrow.
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