Comprehensive Deniability Analysis of Signal Handshake Protocols:
X3DH, PQXDH to Fully Post-Quantum with Deniable Ring Signatures

Shuichi Katsumata @ !-2 Guilhem Niot® 13 Ida Tucker ® !
Thom Wiggers ® !
I PQShield
2 AIST

3 Univ Rennes, CNRS, IRISA
August 27, 2025

The Signal protocol relies on a handshake protocol, formerly X3DH and now PQXDH, to set up secure
conversations. One of its privacy properties, of value to Signal, is deniability, allowing users to deny participation
in communications. Prior analyses of deniability for these protocols, including post-quantum variants, use models
highly tailored to the individual protocols and generally make ad-hoc adaptations to “standard” AKE definitions,
obscuring the concrete deniability guarantees and complicating comparisons across protocols. Building on
Hashimoto, Katsumata, and Wiggers’s abstraction for Signal handshake protocols (USENIX’25), we address this
gap by presenting a unified framework for analyzing their deniability. We analyze Signal’s classically secure
X3DH and harvest-now-decrypt-later-secure PQXDH, and show the settings for which PQXDH is (un)deniable
against harvest-now-judge-later attacks, where a quantum judge retrospectively assesses the participation of
classical users. We further analyze post-quantum alternatives like RingXKEM, whose deniability relies on ring
signatures (RS). By introducing a novel metric inspired by differential privacy, we provide relaxed, pragmatic
guarantees for deniability. We also use this metric to define deniability for RS, a relaxation of anonymity, allowing
us to build an efficient RS from NIST-standardized Falcon (and MAYO), which is not anonymous, but is provably
deniable.

This is the full version of a paper appearing in the proceedings of the 34th USENIX Security Symposium (USENIX
Security ’25). This version additionally includes formal statements and proofs for the Deniable BAKE protocols considered
in this work, as well as additional details and proofs for our ring signature constructions.

Contents

1. Introduction 3
I.1. Contributions o e e e e e e e e e e e 3
1.2. Related Work L e e 5

2. Modeling Signal Handshake Protocols and Problem Setting 6
2.1. Modeling Signal Handshake Protocols with Bundled AKEs 6
2.2. Deniability: Entitiesand Roles e 7
2.3. Distinguisher Capabilities o . e e e e e e 7
2.4. Scopes of Deniability L e e e e e e e e 8
2.5. Modeling Choices and Simplifications i i e e e e e e 8

3. Defining Deniable Bundled AKE Protocols 8
3.1. Overview of Our Deniability Definition et 8
3.2. Deniability Against Honest-but-Curious ACCUSEIrS v v v v v v v v it et e e e e 9
3.3. Deniability Against Malicious ACCUSEIS v i ittt e e e 11

4. Deniability of X3DH and PQXDH 12
4.1. The X3DH and PQXDH Protocols o o i i i i e e e 12
4.2. Summary: Deniability of X3DH & PQXDH 13

https://orcid.org/0000-0002-8496-0476
https://orcid.org/0000-0002-2497-8770
https://orcid.org/0000-0003-4895-5896
https://orcid.org/0000-0001-8967-8456

. Deniability of RingXKEM

5.1. Deniable Ring Signatures L e e e
5.2. The RiIngXKEM protocol e e
5.3. Summary: Deniability of RINgXKEM e
5.4. Alternative BAKE from Plain Signatures e

. Ring Signatures from Falcon and MAYO

6.1. Falcon-Based Ring Signature i i i e e e e e e e e e e
6.2. MAYO-based Ring Signature L. e e e
6.3. Comparison with Previous Works on Ring Signatures

. Efficiency Comparison

. Basic Building Blocks

A.l. Symmetric Key Encryption L e e e e e e
A.2. Key Encapsulation Mechanisms 0 . e e e e e e e
A3, Signature Schemes L L. e e
A.4. Ring Signature Schemes
AS. Merkle Trees o o o o e e e e e e

. Cryptographic Models
B.1. Generic Group Model with Oblivious Sampling
B.2. Quantum Random Oracle Model e

. Combinations of Leakage and Disclosure
. Strong Implies Standard Deniability

. Proof of Deniability of X3DH and PQXDH

E.1. Local Deniability of X3DHand PQXDH e
E.2. Global Deniability of X8DH e
E.3. Global Deniability of PQXDH e e e
E.4. Strong Local and Global Deniability of X3DHand PQXDH
E.5. Strong HNJL Deniability of PQXDH for Accused Receivers
E.6. POXDHModelling Gap v o v v et e e e e e e e e e e e e e e e e e e

. Single to Multi-Challenge Deniability for Ring Signatures

. Proofs of Deniability for RingXKEM

G.1. Standard Local Deniability of RIngXKEM
G.2. Standard Global Deniability of RIngXKEM o
G.3. Strong Local and Global Deniability of RingXKEM for Accused Receivers

. Deniability of SignXKEM

H.1. The SignXKEM protocol e e e e e e e
H.2. Summary: Deniability of SignXKEM e
H.3. Local and Global Deniability of SignXKEM
H.4. Strong Local and Global Deniability of SignXKEM for Accused Receivers

Omitted Details for Ring Signature Constructions
I.1. Falcon-based Ring Signature 0 0 i e e e e e e e
2. MAYO-based Ring Signature e

15
16
16
18
18

19
19
20
21

21

27
27
28
28
29
29

30
30
30

30

31

31
31
32
33
34
37
38

38

1. Introduction

The Signal protocol [MP16; PM16] does not just power the Signal app, it also underpins messaging apps such as What-
sApp [Wha23], Google RCS [Goo22], and Facebook Messenger [Met23], collectively serving billions of users. To initiate
a conversation, Signal users perform a handshake protocol to establish a shared key, which is then used for encrypted
communication via the Double Ratchet protocol [PM16]. This handshake was originally implemented as X3DH [MP16],
based on Triple Diffie-Hellman [KPO5]. In late 2023, as a step towards fully post-quantum (PQ) security, X3DH was replaced
with PQXDH [KS23], offering protection against ‘“harvest-now-decrypt-later” (HNDL) attacks. There also exist several
proposals for fully PQ Signal handshake protocols [Bre+22; Col+24; Has+22; HKW25].

Until recently, analysis of Signal handshake protocols were performed in ad-hoc security models, sometimes deviating
from the way they will be implemented in practice, e.g., assuming one-time prekey bundles never deplete. This made the
concrete security properties attained unclear and hindered comparisons of the strengths and weaknesses of different protocols.
Recently, Hashimoto, Katsumata, and Wiggers [HKW25] proposed Bundled Authenticated Key Exchange (BAKE) protocols,
allowing to analyze existing Signal handshake protocols in a unified manner. This was a modification to the standard AKE
definition, with a focus on a more general and formal handling of prekey bundles; a distinct component of Signal handshake
protocols, allowing users to upload batches of key materials onto the server so that any sender can establish communication
even when recipients are offline. This led to a more efficient PQ handshake protocol, RingXKEM, relying on ring signatures
(RS) and Merkle trees, which could not have been captured in previous models.

The main goal of [HKW25] was to define a security model for BAKE, treating key indistinguishability and authentication
properties. However, the issue of deniability — one of the key features of the original Signal protocol [KS23; MP16] —
was left open. Deniability is a privacy property ensuring that the transcript of a communication session cannot serve as
evidence that a user participated in said communication, even if another party attempts to frame them. This is particularly
relevant in scenarios involving, e.g., oppressive regimes or whistleblowers, where participation alone can be incriminating. For
Signal, deniability is integral to their protocol’s design [KS23; MP16]. Selecting the most suitable protocols thus requires not
only considering key indistinguishability and authentication guarantees, but also placing equal emphasis on their deniability
guarantees. However, as was the case with key indistinguishability and authentication, existing protocols have been analyzed
using tailored deniability models [Bre+22; Col+24; FJ24; Has+22; Vat+20] — often treating protocols informally as AKE
protocols and disregarding the implication of using prekey bundles — thereby giving incomplete analyses and complicating
meaningful comparisons.

1.1. Contributions

In this work, we propose a unified framework for analyzing the deniability of BAKE protocols, thereby completing the
formal treatment of Signal handshake protocols initiated by [HKW25]. We analyze X3DH and PQXDH, proving for the first
time that PQXDH is deniable even against quantum distinguishers. Additionally, we examine the deniability of fully PQ
BAKE protocols, such as RingXKEM, and provide instantiations of ring signatures based on NIST-standardized signatures, to
encourage adoption. We will now detail these contributions.

Unified deniability model. We formally capture the deniability of general Signal handshake (i.e., BAKE) protocols, building
upon prior work on the deniability of AKE [CF11; Dag+13; DGKO06; UG15; UG18], and adaptations made for specific
handshake protocols [Bre+22; Col+24; FJ24; Has+22; Vat+20]. Following the general approach common to existing
simulation-based definitions, we define an accuser, who collects evidence which is provided to a distinguisher] , who, in turn,
decides if the evidence could have been simulated by the accuser. Our model differentiates information that may leak from the
accused user’s device, and evidence disclosed by accusers, to the distinguisher. We account for varying adversarial capabilities,
distinguishing between honest-but-curious accusers (standard deniability) and malicious accusers (strong deniability), as did
[Has+22]. We also introduce notions of local deniability, where an accused participant can deny having engaged in a BAKE
protocol with the accuser, and a strictly stronger global deniability, which further ensures both participants can deny their
involvement, even if the accuser is an outsider to the conversation. Our notions of deniability benefit from a hierarchical
structure, allowing for ease of comparisons.

Unique features of our model. By adopting the BAKE formalism of [HKW25], we can capture the lifecycle of prekey
bundles. Each batch of prekey bundles contains a number of one-time prekey bundles, and a single /ast-resort prekey bundle.
One-time prekey bundles are deleted after use. The last-resort prekey bundle ensures recipient availability even if they are
offline for extended amounts of time; it is only used if all one-time prekey bundles are used up, and is only deleted when a
new batch of prekeys is uploaded [KS23; MP16]. Our model distinguishes deniability guarantees based on whether one-time
prekeys are depleted, revealing interesting separations. For example, in X3DH and PQXDH, using last-resort prekeys does not
affect local deniability, but does harm global deniability, just as it impacted key indistinguishability in [HKW25].
Moreover, we highlight that when a batch of prekey bundles is generated, a user state is generated — this was a unique
feature of the BAKE formalism, allowing the secret information associated to each prekey bundle to be correlated. This state

Prior work has also used the term “Judge”; we prefer “distinguisher”, which better reflects its algorithmic (as opposed to human) nature.

is then updated after each key exchange. For an example, in X3DH and PQXDH, the secret associated to the one-time prekey
bundle is removed after the receiver completes the key exchange. Leakage of a users’ updated state may thus reveal how many
handshake protocols it has executed as a receiver. We require that said leakage does not expose the sender identities for those
handshakes, preserving deniability with respect to the communicating parties. As deniability under standard AKE formalism
do not track persistent user states, this subtlety is absent in prior definitions. See Sec. 1.2 for more details.

Harvest now judge later. Extending beyond classical deniability, we consider deniability against quantum accusers and
distinguishers. We also consider scenarios — relevant foday — where the accuser is classical, but the distinguisher is
quantum. Indeed, transcripts stored now could later be exploited when quantum capabilities become available, a risk we term
“harvest-now-judge-later” (HNJL).” Surprisingly, while harvest-now-decrypt-later attacks have garnered significant attention,
particularly for the PQXDH protocol, no prior work provides this level of analysis for deniability. We close this gap and
prove PQXDH to be deniable against HNJL attacks in a setting where the accusers are limited to be honest-but-curious. More
interestingly though, against malicious receiver accusers, we show PQXDH to be undeniable, showing that protocols may
become undeniable when the distinguisher is more powerful than the accuser. Intuitively, using the powerful distinguisher, a
weak accuser can “prove” to the distinguisher that it could not have computed some secret known to the sender. This is akin
to a recent result by Fiedler and Langrehr [FL25], where they show X3DH and PQXDH to be undeniable when the running
time of the (classical, polynomial time) accuser is shorter compared to the (classical, polynomial time) distinguisher, and
when all parties have access to some extra auxiliary input.

A pragmatic metric for deniability. We introduce a novel measure for deniability inspired by concepts in differential
privacy and differential indistinguishability [Bac+15; Dwo+06; Mir+09]. Prior works required the real evidence myeq
and simulated evidence mgi,m to be indistinguishable by the distinguisher D. That is, the statistical distance of the two
distributions is close: |Pr[D(mreq) = 0] ~ Pr[D(7gim) = 0]|. While sufficient, we observe this level of deniability to be overly
conservative. In practice, the accused user only needs to prove that a simulator could have generated the evidence, not that
the simulator outputs evidence with the same probability as the accused user. We thus only require a relaxed condition:
Pr[D(mreal) = 0] = u - Pr[D(7msim) = 0] for some multiplicative slack y (possibly non-negligibly) close to 1. Technically, this
means the two distributions are close in terms of the hockey-stick divergence [SV16]. As discussed later, this new pragmatic
metric for deniability is the key enabler for building efficient PQ (deniable) ring signatures from NIST-standardized signatures.

Analysis of X3DH and PQXDH. In the classical setting, we prove that both X3DH and PQXDH attain the highest level
of (standard and strong) deniability one may hope for, so long as one-time prekey bundles are not depleted. Otherwise,
deniability only holds if the distinguisher does not see the accused users’ state (relevant to the conversation). This is because
states associated with last-resort prekey-bundles are not immediately deleted after use; if the accused user’s phone is seized
before the next generation of a prekey bundle batch, this state leaks to the distinguisher and can be used to prove participation.
This distinction highlights the advantage of using the BAKE framework [HKW25], accurately modeling prekey bundles.

We further prove that PQXDH is standard HNJL deniable by considering quantum distinguishers in the quantum random
oracle model (QROM), consistent with its HNDL key-indistinguishability security. Finally, we show that, in the classical
ROM?, PQXDH is strong HNJL deniable in case the accuser is limited to a malicious sender. However, as stated above,
PQXDH is not strong HNJL deniable when the accuser is a malicious receiver.

Analysis of fully PQ protocols. We extend our study to Hashimoto et al.’s fully PQ RingXKEM [HKW25], which uses RSs.
While they demonstrated its key indistinguishability properties, we finalize the security evaluation by proving deniability.
Finally, we examine SignXKEM, a RingXKEM variant suggested in [Has+21], which replaces RSs by (plain) signatures, and
show that it offers some level of deniability under limited leakage and disclosure, highlighting the precise nature of our model
in capturing weaker notions of deniability. Table 1 summarizes the deniability of these protocols.

Ring signature instantiations. Proving the deniability of RingXKEM is straightforward if the underlying RS scheme is anony-
mous, but compact lattice-based RSs satisfying anonymity turn out difficult to construct; the most compact schemes [GIK24b;
LAZ19b] only provide roughly 30 bits of security for anonymity when instantiated with concrete parameters (see Sec. 6
for details). We observe that, thanks to our new metric for measuring the deniability of BAKE protocols, a weaker notion
than anonymity, coined deniability for RS, is sufficient for constructing deniable BAKE protocols. This relaxation enables
us to design PQ RS schemes for small ring sizes, based on the standardized signature Falcon [Pre+22], and the additional
signature candidate MAYO [Beu+24]. Our RS using Falcon is based on the generic lattice-based RS design by [GJK24b].
Our RS schemes are as compact as the state-of-the-art. We further provide implementations outperforming previous works by
a factor 32-66x for signing, and 146-1025x for verification. We note that, in line with the security proofs of the underlying
signatures, our proofs are in the classical random oracle model (ROM), but not in the QROM.

2To avoid confusion with the acronym of harvest-now-decrypt-later, we chose the term Jjudge' as opposed to distinguish.
3We leave it as future work to extend this result to the QROM.

Table 1: Signal key exchange protocols and their deniability and security properties

L d
Signal handshake protocol deniability properties ceen

Last- key:
Protocol: X3DH PQXDH PQXDH RingXKEM SignXKEM ast-resort prekey

No Yes
e e Classic A Classic or Quantum Classic or Quantum
Classic A/D Classic A/D Quantum D AID AID Icon leak/disc leak/disc
Deniability Leakage Leakage Leakage Leakage Leakage [) high high
Level leak disc leak disc leak disc QrROM leak disc QrROM leak disc QrROM © high med
® med med
local o o e o o o v L v e o v D) med low
global ()] () [e o v - o v e © v @] low low
? Open problem
& local o o o ® e ? e ? eCeo ?
S Accusers A restricted
% global e o e o eCeo ? @0 g ? eCeo ? SO to being senders, no
deniability otherwise.
Security [HKW25] Classical Harvest-Now Decrypt-Later Fully post-quantum + Proof using GGM.

Example: RingXKEM is local deniable with leakage leak = high and disclosure disc = high even if a last-resort prekey bundle was used.
SignXKEM is local deniable with leak = high and disc = med, but restricted to leak = med and disc = low using a last resort prekey
bundle.

Remark: For strong deniability, we always set disc = high, since we have no control over the information a malicious accuser may reveal.

1.2. Related Work

Deniability of X3DH. The introduction of Off-the-Record Messaging established deniability as a key feature for secure
messaging [BGB04]. The Signal protocol adopted this goal in its X3DH handshake [MP16], analyzed by Vatandas et al.
[Vat+20] under the simulation-based model of [DGKO06] for AKEs. Their work proves offline deniability for X3DH under
knowledge-of-exponent assumptions, and links the deniability of a communication session to the deniability of the key
agreement protocol starting the session. This allows to extend results on the deniability of handshake protocols to the entire
conversation.

Deniability of PQXDH. Signal’s PQXDH protocol [KS23], deployed in 2023, combines the classical X3DH handshake
with a PQ KEM. While not fully PQ, it provides key indistinguishability against “harvest-now-decrypt-later” adversaries, as
analyzed in [Bha+24; FG25; HKW25]. The deniability guarantees of PQXDH were recently analyzed in [FJ24], viewing it
as a specific handshake protocol proposed by [FG25]. The analysis assumes a classical distinguisher, leaving deniability
guarantees against “harvest-now-judge-later”” adversaries open; and only considers distinguishers either having no access to
any secret key, or full access to all secret keys (of both accusing and accused; and for identity keys and prekeys). They hence
do not capture scenarios where accusers disclose more information to the distinguisher than accused users. We also note that
their model does not distinguish the attained deniability guarantees when one-time prekey bundles are, or are not, depleted.
In a very recent work, Fiedler and Langrehr [FL.25] showed the undeniability of X3DH and PQXDH when receivers are
malicious, are provided as auxiliary input some hint on a Diffie-Hellman instance, and can maliciously generate their identity
keys. More concretely, their result relies on the non-standard hinted computational Diffie-Hellman (CDH) problem which is
difficult for a (classical) accuser running in time 7" but easy for a (classical) distinguisher running in time 77 > 7. When the
distinguisher is quantum, as in the case of HNJL deniability, we show that we can simply rely on the standard CDH problem.

Deniability of fully PQ protocols. Hashimoto et al. [Has+22] construct a PQ Signal handshake protocol from RSs, and
show deniability against honest-but-curious quantum adversaries, using a simplification of the deniability model of [DGKO06].
To prove deniability against malicious (classical) accusers, they require knowledge assumptions. In concurrent work, Brendel
et al. [Bre+22] proposed a similar protocol based on designated verifier signatures, along with a new game-based deniability
notion, which focuses solely on sender deniability but captures scenarios where judges may coerce users to reveal secret keys.
Recently, Collins et al. [Col+24] introduced K-Waay, a protocol based on split-KEMs [Bre+20; Nio25]. They extend the
framework of Brendel et al. to model receivers who hand over their entire state to the distinguisher. Collins et al. do not
model one-time vs. last-resort prekey bundles, but rather suggest that, if prekey bundles run out, then the sender should reuse
an old one. However, their deniability model does not capture prekey bundle reuse. Both [Bre+22; Col+24] only consider
honest-but-curious accusers, and attain deniability against quantum distinguishers.

A more detailed comparison. We here outline differences between our deniability model for BAKE, and tailored deniability
models from prior works. The primary differences are explained in Sec. 1.1. Compared to [Has+22; Vat+20], we allow
the distinguisher to obtain leakage from honest users; accounting for scenarios where judges may coerce secret keys from
accused users. The models introduced in [Bre+22; FJ24] allow judges to compromise secrets associated to identity keys
and last resort prekeys of all users, and [Col+24] also capture the leakage of state associated to one-time prekeys. While
our model captures these scenarios, it also differentiates which specific keys leak from accused as opposed to accusing
users. Additionally, [Bre+22; Col+24] do not incorporate the simulation of prekey generation, and limit their study to

honest-but-curious adversaries. Global deniability is not captured by the models of [Bre+22; Col+24; Has+22; Vat+20].
Fiedler and Janson [FJ24] require deniability of prekey bundle uploads (i.e. of the general use of the Signal protocol), whereas
we consider deniability within specific conversations, this results in different conclusions regarding the deniability guarantees
of PQXDH.

Scope of our work. We focus on the deniability of messages. This means that like prior work (e.g., [Bre+22; Col+24]), we do
not consider the deniability of registering or uploading prekey bundles. Our focus is the deniability of the handshake message
and the computation of the resulting handshake key by both sender and receiver, even if there is evidence of registration. Other
security notions than deniability can also enhance privacy in secure messaging. For instance, one can add sender/receiver
privacy [Lun18; Mad+22], metadata protection [HKP22; TWG24], anonymity and unlinkability [PH10; Ung+15]. We leave
the interplay of deniability and other privacy notions as an interesting future work. We also do not consider network-level
adversaries. We believe countermeasures such as padding [Nik+19] or anonymous communication [DMS04; JSH24] to be
complimentary to deniability, but leave their analysis open.

Lastly, deniability is not the only way to enhance privacy in secure messaging. For instance, one can add sender/receiver
privacy [Lun18; Mad+22], metadata protection [HKP22; TWG24], anonymity and unlinkability [PH10; Ung+15].

2. Modeling Signal Handshake Protocols and Problem Setting

We model Signal handshake protocols as bundled authenticated key exchange (BAKE) protocols, introduced in [HKW25].
BAKE is a variant of the traditional AKE model allowing to formally model prekey bundles and user states. It is general
enough to capture Signal’s X3DH and PQXDH [KS23; MP16], among other constructions such as RingXKEM [HKW25] and
variants [Bre+22; Has+21; Has+22]. In [HKW25], they defined key indistinguishability of BAKE, a fundamental security
property for any key exchange protocol.

In this work, we define what it means for a BAKE to be deniable, a key security feature of Signal’s X3DH and PQXDH
protocols. Before introducing the formal definition of deniability, we recall the definition of a BAKE protocol and explain the
high-level problem setting for deniability.

Standard notations and definitions. Let Z denote the natural numbers, and Zp the natural numbers modulo N. If P is a
point on an elliptic curve, we denote multiplication by scalar k as [k]P. We denote by A the security parameter, and by [N]
the set of integers {1, ..., N}. Definitions of basic cryptographic primitives such as symmetric key encryption, signature
schemes, and KEMs are deferred to App. A.

2.1. Modeling Signal Handshake Protocols with Bundled AKEs
We recall the definition of a BAKE protocol [HKW25].

Definition 1. A two-round bundled authenticated key exchange protocol BAKE consists of the following four probabilistic

polynomial time (PPT) algorithms, where L € poly(4).

BAKE.IdKeyGen(1%) 5 (ik,isk): The identity key generation algorithm, on input security parameter 14, outputs identity
public key ik and associated secret key isk.

BAKE.PreKeyBundleGen(isk,,) 5 (pr_éku, st,): On input a user u’s identity secret key, outputs a number of prekey bundles
pr_éku = (prek, ;) relL]uf L}’ and a user state st,. Prekey bundles with ¢+ # L are called one-time prekey bundles,
whereas prek,, | is called the last-resort prekey bundle. The state may for example include the (ephemeral) secret keys

associated to public keys included in pr_éku.

BAKE.Send(isks, ik;, prek, ,) BN (K,p): Oninput a sender s’s identity secret key iskj, the intended receiver r’s identity
key ik;, and a prekey bundle prek,. ,, outputs a session key K and a handshake message p.

BAKE.Receive(isk,, st,, iks, f, p) — (K’, st,): The (deterministic) receiver algorithm, on input a receiver r’s identity secret
key isk, and state st,, a sender s’s identity key iky, with the identifier of the used prekey bundle r € [L] U{ L }, and a
handshake message p, outputs a key K’ and an updated state st,.. Key agreement may fail, in which case K’ = L, and
the state is rolled back.

A BAKE protocol is a two-party protocol, with a server relaying communications. Unlike standard AKE protocols, BAKE
supports prekey bundles, a feature central to Signal handshake protocols [KS23; MP16]. Prekey bundles, uploaded to a server,
are pre-generated key material consumed during new communication setups, enabling senders to establish secure sessions
with offline recipients, facilitating asynchronous communication. Prekey bundles are generally one-time use, which naively
limits the number of handshakes. To ensure availability, even during extended recipient offline periods, a last-resort prekey
bundle is used when the list of one-time bundles is depleted. This bundle, designated by the label L, is not deleted after use
until the next PreKeyBundleGen is performed once back online. In protocol execution, the server first distributes all one-time
prekey bundles; and only once these are exhausted is the last-resort prekey used [MP16].

2.2. Deniability: Entities and Roles

The entities involved in deniability are categorized as follows, following established terminologies, e.g., [CCH23; DGKO6;
Ung+15].

Accused users: The set of honest users, denoted as H, whose goal is to deny their involvement in the BAKE protocol. An
accused user can either be a sender or a receiver.

(Insider) accusers: The set of corrupted users, denoted as C, that communicate* with an accused user. Their goal is to prove
that the accused user ran a BAKE protocol with them. We consider two levels of insider accusers: honest-but-curious
accusers and malicious accusers. The former honestly follows the protocol description but may collect as much
information as possible to accuse their peer; for instance, this captures a device injected by a malware, secretly storing
all the states on the device while still using the official secure messaging application. In contrast, the latter considers
much stronger accusers that can execute arbitrary code; capturing, e.g., devices running a modified secure messaging
application.

(Outsider) accuser: An adversary aiming to prove that a pair of honest users communicated. This could be, e.g., the server
or another user of the secure messaging application.

Distinguisher: An entity (often called “judge”) outputting a verdict on whether a user participated in a BAKE protocol.

2.3. Distinguisher Capabilities

The distinguisher determines whether an accused user participated in a BAKE protocol based on a transcript (i.e., prekey
bundles and handshake message) and the session key K. It is important that K also be deniable since it is used to exchange the
actual payload of the secure messaging protocol [DGKO06; Vat+20]. To make its verdict, the distinguisher may further be
provided information through so-called leakage and disclosure functions. The former dictates how much information of the
accused user leaks to the distinguisher, whereas the latter dictates how much information the accusing user discloses to the
distinguisher. A BAKE protocol is more deniable if it allows leaking and disclosing more information to the distinguisher.

Leakage function for accused users. The amount of information leakage of an accused user is formalized using a function
Lieak- We consider three levels of leakage: leak = low is the weakest setting where no leakage occurs; leak = med leaks the
identity secret key; and, leak = high leaks all secret information of the accused user.

Definition 2. The leakage function Lieax for the set H of accused users of a BAKE protocol is defined as follows:

(L, 1) if leak = low
Lioak ((isKy, Stu) year) =1 ((isku)yeq, L) if leak = med.
((isky, Sty)yeqy) if leak = high

Disclosure function for honest-but-curious accusers. The amount of information disclosed by the honest-but-curious
(insider) accusers is formalized using a function Dyisc. Similarly to the above, we consider three levels of disclosures:
disc = low is the weakest setting where the accuser only discloses its identity secret key; disc = med additionally discloses its
current state; lastly, disc = high further discloses the initial state output by algorithm BAKE.PreKeyBundleGen. The third
setting models an honest-but-curious accuser that follows the protocol description, but may store information without deleting
it.”

Definition 3. The disclosure function Dyisc for the set C of honest-but-curious (insider) accusers of a BAKE protocol is
defined as follows:
((isku)yecs L, L) if disc = low

Ddiso((iSkm st,, Sti‘?n)uec) = { ((isky, Stu) yec» L) if disc = med
((isku, sty, st‘[j”)uec) if disc = high.

Disclosure function for malicious accusers. Malicious accusers can deviate arbitrarily from the protocol, such as by
maliciously generating prekeys, possibly without knowing the associated secrets. We thus assume the malicious accuser to
always disclose their entire state st #. Note that despite the general unpredictability of malicious accusers, we require that st.4
includes their identity secret keys, based on the assumption that they register a valid identity public key (cf. Sec. 2.5).

“4Throughout the paper, for readability, we may say users u and v communicated with each other to mean that u and v participated in a BAKE protocol.
3Considering initial state leakage for the accused user would imply that their device was tampered with. We do not consider such settings as deniability
can be trivially lost through other means.

2.4. Scopes of Deniability

Lastly, we consider two scopes of deniability: one focused on protecting individual users and the other on shielding the
conversation between two users as a whole.

Local deniability: Allows an accused user, either a sender or a receiver, to deny participating in a BAKE protocol.

Global deniability: Further allows a pair of communicating accused users to simultaneously deny participating in a BAKE
protocol. This implicitly accounts for outsider accusers, while local deniability considers only insider accusers.

Formalizing what it means to “deny participating” is one of our main technical contributions, which we explain in Sec. 3.
At a high level, in a locally deniable protocol, a distinguisher may be convinced that either one of the users participated
in the BAKE protocol, but cannot determine which one. Local deniability thus suffices when the accused user seeks only
individual protection. In contrast, when both communicating users simultaneously seek deniability — such as in highly
sensitive communications, like a journalist communicating with a source — global deniability is required. In such cases, the
distinguisher cannot exclude the possibility that the communication was generated by an unrelated third party.

2.5. Modeling Choices and Simplifications

This subsection outlines the modeling choices and assumptions underpinning our work.

Focus on deniability of protocol participation. We do not aim to address the deniability of being a user of the secure
messaging application. Specifically, user registration of identity keys and prekey bundle uploads may not be deniable. Our
goal is to show that users using the app can plausibly deny participating in any communication. Such practical levels of
deniability were also considered in, e.g., [Bre+22; Col+24].

Honest registration of identity keys. Similarly to other works on the deniability of Signal handshake protocols [Bre+22;
Jia+22; Vat+20], we assume that users honestly generate their identity keys. This simplifies the definition and proofs of
deniability while maintaining practical relevance. Works allowing maliciously generated identity keys [FJ24; Has+22] rely on
strong knowledge type assumptions, forcing the proof to go through by pushing the burden onto the assumption. We can also
rely on zero-knowledge proofs, guaranteeing that a registered identity public key has an associated identity secret key.

Disclosure vs. leakage. We assume that honest-but-curious accusers disclose at least as much as the information leaked
from accused users, e.g., if the accused leak updated states, then so do the accusers. This highlights that accusers are expected
to actively provide information to the distinguisher to incriminate the accused user, and limits the leakage and disclosure
combinations we analyze. We summarize the combinations of leakage and disclosure we consider in App. C.

3. Defining Deniable Bundled AKE Protocols

We define the deniability of a BAKE protocol. The main novelty in our definitions is a new pragmatic metric for deniability,
inspired by differential privacy and differential indistinguishability [Bac+15; Dwo+06; Mir+09], which may be of an
independent interest. Looking ahead, our definition allows constructing a post-quantum BAKE protocol using a new efficient
“deniable” ring signature based on the NIST-standardized Falcon.

3.1. Overview of Our Deniability Definition

Say an accused user wants to deny participating in a certain protocol, or, more formally, the user wants to prove that any
evidence the distinguisher holds could have come from somebody else. In the context of a BAKE protocol, evidence is the
protocol transcript (prekey bundles and handshake message) and the session key, cf. Sec. 2.3. A standard way to formalize this
is to construct a simulator that can output simulated evidence indistinguishable from real evidence to a distinguisher [DNS98].
This has been used to define deniable AKEs, e.g., [DGKO06]. We highlight that this simulator must not only exist but also be
constructible in the real world [Pas03]. An accused user must convince the judge (i.e., distinguisher) by showing that such a
simulator could have been actually used by the accuser.

We also use simulators to define deniability of a BAKE protocol, but with a twist, inspired by concepts in differential
privacy and differential indistinguishability [Bac+15; Dwo+06; Mir+09]. Prior works required the real evidence 75 and
simulated evidence 7, to be indistinguishable by a distinguisher D. That is, they (informally) required the statistical distance
to be close: |Pr[D(myeq) = 0] — Pr[D(msim) = 0]| = §(2) for some negligible function 6. While sufficient, we observe this
level of deniability to be overly conservative. In practice, the accused user only needs to prove that a simulator could have
generated the evidence, not that the simulator outputs evidence with the same probability as the accused user. As a concrete
example, assume the evidence includes a ring signature o~ where the ring consists of two users: the accused u and the accuser v.
Roughly, prior definitions require that the probability of # and v outputting o is identical. We relax this so that there could be

a higher chance that u outputs o, as long as v could have output ¢. Put differently, while o is more likely to have come from
u, we cannot deny the possibility that it came from v. This is sufficient for u to plausibly deny the conversation.

In order to formalize this idea, we introduce a multiplicative slack u (1), and only require a relaxed condition: Pr[D(7eq) =
0] < u(A) - Pr[D(mgim) = 0] + 6(2). Technically, this means the two distributions are close in terms of the hockey-stick
divergence [SV16]. While the original definition is recovered by setting u(1) = 1 + negl(1), we obtain a relaxed definition
by setting, say (A1) = 1 +0.1. This indicates that while the evidence is (roughly) 10% more likely to have come from the
accused user, we cannot ignore the high possibility that the accuser outputs it by running the simulator.®

The benefit of relaxing the definition becomes clear when we later construct a post-quantum BAKE protocol based on ring
signatures. We notice that while a ring signature based on the same parameter sets as Falcon [Pre+22] is insufficient for the
standard notion of deniability, it is sufficient for the relaxed definition with a multiplicative slack p(1) = 1 +2727. See Sec. 5
and Sec. 6.1 for details.

3.2. Deniability Against Honest-but-Curious Accusers

We first define local and global deniability against honest-but-curious accusers,” formally defined through a game in Alg. 1.
The distinguisher D is given the set of identity keys and prekey bundles, and can adaptively query transcripts exchanged
between users (cf. Ln. 16). At the end of the game, D is given the leakage and disclosed information of the accused and
accusing users (cf. Lns. 19 to 21). It then outputs some bit b (e.g., a verdict of the judge). As discussed above, we require that
the probability D outputs b in the real world (i.e., mode = real) is overwhelmingly likely to be within some multiplicative
slack u of the probability D outputs b in the simulated world (i.e., mode = sim). Importantly, our definition captures the
deniability of last-resort prekey bundles as well (cf. Ln. 29).

The simulated world is defined using a simulator Sim = (SimPreK, SimTrans, SimSt¢,, SimSt¢). Below, for readability,
we call the accused and accusing users as honest and corrupted users, denoted with H and C, respectively. As shown in
Ln. 13, SimPreK simulates the prekey bundles of all the users. Importantly, we allow simulation of the honest users’ prekey
bundles as these are not necessarily tied to the identity key, which we assume to be honestly registered (see Sec. 2.5). As an
example, assume a prekey bundle consisting of two public keys where one key is signed using the identity key, while the other
is not. Generating the latter key can then be plausibly denied, as it could have been injected by an accuser.

Next, SimTrans simulates the honest user’s transcripts and session keys using only the accuser’s secret information. Insider
sender and receiver accusers are captured by Lns. 34 to 38, respectively. Outsider accusers, used for global deniability, are
captured by Lns. 39 to 41, where no user secrets are provided to the simulator.

Lastly, SimStg; and SimSt¢ simulate the honest and corrupt user’s state, which may be leaked and disclosed to the
distinguisher, respectively.® As the state is only used by the BAKE.Receive algorithm, SimSt, is run when simulating an
honest receiver r’s updated state (cf. Ln. 42). Importantly, we do not allow SimSt¢; to take the sender information s (and
hence simulation state stgiy) as input. This is because if receiver r’s updated state depended on the sender s, the state may
prove to the distinguisher that » was communicating with s. As an extreme example, consider a BAKE protocol where the
updated state includes a signature on s under r’s identity key; such a protocol where the updated state depends on the sender
should not be considered deniable. On the other hand, we allow SimSty¢; to take the identity secret key isk, as input since, by
definition of the BAKE.PreKeyBundleGen algorithm, the state can depend on isk,.. Finally, we consider a one-shot simulation
for the corrupted users, where SimSt¢ outputs the initial and updated states (cf. Ln. 18). As SimSt¢ can take the simulation
state stsim as input, which can record all the oracle queries to Oark, this is without loss of generality.

Formally, we define local and global deniability as follows.

Definition 4 (Local deniability). Let N := [N] for N € N be the set of all users, H C N such that H # 0 be the set of
accused users, and C = N\H be the set of accusers. Let Q = poly(2) be an upper bound on the number of oracle queries
made by the distinguisher D.

A BAKE protocol is (u, 6)-locally deniable against honest-but-curious accusers with respect to leakage function Ljeax and
disclosure function Dy;sc with leak, disc € {low, med, high}, if there exists an efficient simulator Sim = (SimPreK, SimTrans,
SimSty, SimSt¢) such that for any efficient distinguisher D we have

Pr(Gameg% , . (1%, real) =0| < u(1,0) - Pr [Game'[g’f;;" Lon D (15510 = 0| +6(2),

local e ol :
where Gamep, , 5 isgivenin Alg. 1.

Definition 5 (Global deniability). We define global deniability identically to local deniability in Def. 4 except that the

.. . global .
distinguisher D plays the game GameD’(H’ Lo Daee 1D Alg. 1.

®Note that we do not require the other direction: Pr[D(7gim) = 0] < p’(A) - Pr[D(7trea) = 0] + 6’ (2). We only care that if some verdict was made
using a real evidence, then the same verdict could have been made on a simulated evidence.

7 As our definition implicitly captures outsider accusers, accusers will mean insider accusers in this section unless otherwise stated (cf. Sec. 2.2).

8put differently, we can ignore these simulators if leak € { low, med } or disc = low (cf. Sec. 2.3).

Algorithm 1 Games for local and global deniability with respect to leakage function Ljeak, and disclosure function Dyisc.

is only relevant to global deniability.

ATK (a

: function Gam 14, m
unction Ga eD,‘H,Lleak,Ddisc »mode)

1
22 C=N\H

3: | foruseru € N do

4 (iky, isky,) & BAKE.ldKeyGen(11)

5: countery, := 0> Track how many prekey bundles are used
6 if [u € H] then

7. (prek,,st,) < BAKE.PreKeyBundleGen(isk,)

8 | if [mode = real] then

9: for useru € C do

10: L(preku,stu) — BAKE.PreKeyBundleGen(isk,,)

11: stinit .= st

12: | else>mode = sim

13: > Simulate prekey bundles ()fuuuwd users H <
14 (prekiuen. (Prek)uec:Stsim) < SIMPreK (G e pr (iskiuec: (Prek) e

150 (preku)ue(H — (preku)ueﬂ

16: | stp & pOmk ((iky, prgku)ueN) > D obtains transcripts
17: | if [mode = sim] then

18: | | (sty, Sti,;‘it)uec & SimSt¢ (stsim) = Corrupted states
19: | leakp:= Lieak ((isku, Stu)ye#)

20: | discpi= Dyise ((iskys Stu, SN e)

21: auxp = (leakp, discp)

22: | b « D(stp,auxp) » D outputs a bit b € {0, 1}

23: | return b

24: function O a7k (s,)

25: | require [(s,r) e N XN As#r]| Al(s,r) ¢ CxC]
26: ’ if [ATK = Local] then require [(s,7) ¢ H x H]|

27: | counter, « counter, + 1

28: t == counter,

29: | if [+ > L] thent « L > Use lasi-resort prekey bundle
30: | if [mode = real]] then > Run real sender and receiver

31: (K, p) & BAKE. Send(isks, ik, prek,. ;)

32: (K, st) & BAKE. Receive(isk;, sty, iks, 7, p)

33: | else>mode = sim

34: if [(s,r) € H % C]] then > Simulate with receiver secrets
35: | (K, p,stsim) & SimTrans(isk;, Stgim, (s, 7, 1))

36: else > Honest receiver

37: if [(s.r) € C x H] then > Simulate with sender secrets
38: ‘ (K’, p, stsim) & SimTrans(isks, stgim, (s, 7,1))

39: else > (s5,7) € H x H = ATK = Global

40: LD Simulate \ur/muf any secrets <
41: (K K’, p, stgim) & SimTrans(L, stgim, (s, 7, 1))

42: st il SimStyy(isky-, st) » Update honest receiver state

43 | if [(s,r) € H x C] then return (K, p)
44: | elseif [(s,r) € C x H] then return (K’, p)

45: Jelse return (K,K’,p) > (s,r) € H x H = ATK = Global

10

Above, we allow the multiplicative slack u to depend on the number of queries D makes. This allows for tighter analysis
using a Falcon-based ring signature as Falcon also assumes an upper-bound on the number of signatures (i.e., Q = 26%).

Remark 1. For simplicity, our model does not explicitly capture asymmetric deniability, but can be extended to do so. For
instance, deniability for accused users who are always receivers can be modeled by restricting the distinguisher to query
Otk only on inputs (s, r), where r € H. This scenario applies when r never initiates conversations with unknown users. For
some protocols discussed in this work, we demonstrate stronger deniability guarantees for accused receivers.

3.3. Deniability Against Malicious Accusers

We define strong local and global deniability, that is deniability against malicious accusers, similarly as above except that we
explicitly consider an accuser algorithm A in the real world (cf. Alg. 2, Ln. 9, and Alg. 3, Ln. 11). Note that in Alg. 2, Ln. 9
we no longer assume prekey bundles are honestly generated. Moreover, the simulator Sim # can depend on the accuser A —
this is sufficient as an accused user can plea that an accuser was internally running Sim 4.

We also make a subtle yet crucial design choice. Specifically, we only consider deniability of successful BAKE executions.
If a malicious sender sends a handshake message p which is not accepted (i.e., the honest receiver outputs L), then we do not
require deniability (cf. Alg. 3, Lns. 19 to 24). This is because an accused user only needs to deny having sent a message to the
sender using the established session key; if no keys were established, there is no need to deny. This allows us to get around an
artificial theoretical obstacle in the proof: the simulator SimTrans # no longer needs to know if p output by the malicious
sender is accepted, which it cannot know without the receiver’s secret keys. Concretely, we allow SimTrans # to output a
simulated session key K'*, conditioned on the receiver accepting — if the receiver rejects, then K’* is simply discarded by the
game. Lastly, since SimSt¢, needs to simulate the honest receiver’s updated state, the game rolls back the updated state after
executing BAKE.Receive (cf. Alg. 3, Lns. 20 and 21).

We define strong local and global deniability as follows.

Definition 6 (Strong local deniability). Let N, H, C, Q be defined as in Def. 4. A BAKE protocol is (u, §)-strongly local
deniable against malicious accusers with respect to leakage function Ljeax With leak € {low, med, high}, if for any efficient
accuser A, there exists an efficient simulator Sim g = (SimPreK #, SimTrans 4, SimSty, SimSt.#) such that for any efficient
distinguisher D we have

-l | -l | .
Pr[Game®0%0%e (1, real) = o] < u(1,0) -Pr [Game;ﬁff’g?(ﬂ‘j‘jﬁk(ﬂ, sim) = 0| +5(1),

strong-local

where Gamey(,D,“H,&eak

is given in Alg. 2.

Algorithm 2 Games for strong local and global deniability with respect to a leakage function Ljea. Shaded boxes highlight
differences compared to standard deniability.

! z?ggf/;\»-l—-lf(leak (l/l, mOde)
2: | C=[N]\H

3: | foruseru € [N] do

4 | (iky,isky) < BAKE.ldKeyGen(1%)

5: counter,, := 0> Keep track of num prekey bundles used
6

7

8

9

: function Game

if [u € H] then
L(preku, sty,) & BAKE.PreKeyBundleGen(isk,,)
if [mode = real] then > Adversarial prekey bundles

- $. . -
L ((preky)yec»sta) < A((Ku)ue[n1- (iSKu)yec, (Preky) e q)
10: | if [mode = sim] then

> - S . . =
11 ((preky)ue > (Prek,uec Stsim) < SimPreK a4 ((iku)ye(nv» (iSKw) uecs (Preky) e q)

12: (pré)ku)ue(H — (prgk:;)ue,H > Simulate for accused H

13: =D ()$/)Iui/z.8' Irun.\'('1‘1'/)1.\;0.\‘('/mngm/ between users <
14: | stp e DOATK((ik,, prek,,), [n)) > of Alg. 3

15: | if [mode = sim] then

16: | | stg & SimSt 4 (stgim) > Simulate adversary state

17: | leakp:= Lieak ((isku, Stu)y e)

18: | auxp = (leakp, st#)

19: | » D outputs b € {0, 1} after obtaining leakage auxp <
20 b D(stp, auxp)

21: | return b

11

Definition 7 (Strong global deniability). We define strong global deniability identically to strong local deniability in Def. 6,

.. . strong-global .
except that the distinguisher D plays the game Game ADH. Ly Alg. 2.

Algorithm 3 The oracle for strong local and global deniability games used in Alg. 2. Shaded boxes highlight differences
compared to standard deniability. is only relevant to global deniability. In Ln. 21, “_" indicates that Stymp is
deleted and no longer used by the game.
1: function Oprk (s, r)
2: | require [(s,7) € [N]x [N]]JA[s#r] A(s,r) ¢ CxC]
3: | |if [ATK = Local] then require [(s,) ¢ H x]|
4 counter,. < counter, + 1
5. | t:=counter,
6: | if [t > L] thent « L > Use last-resort prekey bundle
7
8
9

if [mode = real] then

if [s € H] then > Run sender
‘ (K, p) — BAKE.Send(isks, ik, prek,. ,)
10: else > s € C, malicious sender
1| (p,sta) & Alisks, sta, (s,7,1))
12: if [r € H] then > Run receiver
13: | (K',sty) & BAKE.Receive(isk;, st,, (iks, 7, p))
14: | else>mode = sim
15: if [(s,r) € H X C] then > Simulate with receiver secrets
16: | (K, p,stsim) & SimTrans # (isky, Stgim, (5,7, 1))
17: else > Honest receiver
18: if [(s,r) € C X H] then > Simulate with sender secrets
19: (K"*, p, Stsim) & SimTrans # (isks, Stgim, (s, 7, 1))
20: Stimp = gtr > Copy state
21: (K’,_) < BAKE.Receive(isk;, Stimp, (iks, 7, p))
22: > Replace with simulated key if receiver accepts <
23: if [K” # L] then
24: LK « K"
25: else> (s,7) € H x H = ATK = Global
26: > Simulate without any secrets <
27: _(K,K’, p, stgim) & SimTrans # (stgim, (s, 7,1))
28: st « SimStyy(isk,, st,-) » Update honest receiver state

29: | if [(s,r) € H x C] then return (K, p)
30: | elseif [[(s,r) € C X H] then return (K’, p)

31: Jelse return (K,K’,p) > (s,r) € H x H = ATK = Global‘

4. Deniability of X3DH and PQXDH

X3DH is the original handshake protocol used by Signal [MP16], based on Triple Diffie—Hellman [KP05]. In 2023, Signal
rolled out a variant PQXDH [MP16], which adds a post-quantum KEM key exchange to X3DH, securing against harvest-now,
decrypt-later (HNDL) adversaries. In this section, we examine the deniability of X3DH and PQXDH.

4.1. The X3DH and PQXDH Protocols

In Alg. 4, we give the identity key generation algorithm and the algorithm that is used for prekey bundle generation in
X3DH and PQXDH as described by Hashimoto, Katsumata, and Wiggers [HKW25]. PQXDH is a strict extension to X3DH;

Diffie—Hellman (DH) with combinations of the sender and receiver’s long-term identity keys, the receiver’s prekey bundle’s
signed DH prekey, and, if not using a last-resort prekey bundle, one-time DH prekey, and an ephemeral DH key generated by
the sender (cf. Lns. 7 to 14). PQXDH simply adds a KEM key exchange to X3DH, as shown in Ln. 15.

The description of the Send and Receive algorithms for X8DH and PQXDH are given in Algs. 5 and 6, respectively, where

Section 4], which adds a confirmation tag in lieu of modeling the sending of an encrypted message as in Signal’s documentation.
In practice, Signal uses the Double Ratchet algorithm to send this message; internally, it contains a MAC that achieves the
same functionality. Hashimoto et al. write that Signal is considering similar changes to add better separation between the

12

Algorithm 4 X3DH and PQXDH‘ 1dent1ty key and prekey bundle generation algorithms [HKW25].

functlon\ PQX3DH.ldKeyGen(11)

1:

2: | isk & Zp ik = [isk]G

3 (vk, sk) e Sig.KeyGen (1)

4: return (ik = (ik, vk), isk := (isk, sk))

1: functioniPQK3DH.PreKeyBundleGen(isk,,)

2: | (isky, Sky) « isky

3t Dpreks Dp, = 0> Initialize empty lists

4: > (]()/1()/‘((1(3; what Signal calls the signed prekey <
5. | spksec, < Zp; spk,, = [spksec]G

6: | ospk, < Sig.Sign(sky, spk,,)

7: | » Create the L one-time prekey bundles <
8: | forr e [L] do

9: 08Kyt «— Zp; opku ; = [osky (]G

10: | (eku, - Gu0) < KEM.KeyGen (14)!

11: \Oek,; & Sig.Sign (sky., eky,z) :
12 prek, , = (spk,, Tspk, s opk,,, ,Jeik;;:o:eikii

13: Dprex [t] « (prek,, ;, (spksecu,osku,,tdl(z{)‘)

14: | > Set up the last- lcsml/m/\(\ bundle <
15: ‘(eku 1.dky 1) & KEM.KeyGen (14!

16: O'ek,u « Sig.Sign (sky, ek, 1) }

17: | prek, , = (spku,o-spk 1L éRJL:O:e;MT)

18: | Dprek[L + 1] « (prek,, , , (spksec,, J_‘dku 1))

19: | return (preku,stu = (Dpreks Dp,))

PQXDH and Double Ratchet protocols. For a detailed comparison between Alg. 5, the Signal documentation, and Signal’s
implementation, refer to [HKW25, Appendix C].

Algorithm 6 shows the algorithm used by receivers in X3DH and PQXDH. The key computation is analogous to that in
the Send algorithm given by Alg. 5; however, to prevent replay attacks, the Receive algorithm additionally records a list of
messages received. For details about this protection measure, refer to Hashimoto, Katsumata, and Wiggers [HKW?25, Sec. 4].

4.2. Summary: Deniability of X3DH & PQXDH

We summarize the levels of deniability satisfied by X3DH and PQXDH. See Tab. 1 for a complete overview, and recall that
the level of deniability can be sorted based on the leakage function Ljga and disclosure function Dyjsc, Wwhere (leak, disc)
dictates the amount of secret information given to the distinguisher (cf. Sec. 2.3). For the formal statements, see App. E.

Local deniability. Both protocols achieve the highest level of local deniability (i.e., (leak, disc) = (high, high)). For X3DH,
this matches our intuition since the sender and receiver hold a symmetric role in the generation of the session key K. This is
also the case for PQXDH: the honest sender remains deniable since KEM.Encaps can be run publicly; the honest receiver
remains deniable since, assuming an honest-but-curious accusing sender, (informally) the accuser knows the outcome of
KEM.Decaps. Importantly, we show that local deniability of PQXDH holds even if the accuser is classical but the distinguisher
is quantum (i.e., HNJL security).

Global deniability. Global deniability is more nuanced. If the accused users never deplete their one-time prekey bundles,
both protocols achieve the highest level of global deniability (i.e., (leak, disc) = (high, high)). However, if the accused user
used their last-resort prekey bundle, it can only support global deniability with (leak, disc) = (med, high), i.e., the accused
user cannot deny if its user state st,, leaks to the distinguisher.

At a high level, to argue X3DH is globally deniable, the session key and handshake message (K, p) must be simulatable
without relying on any secret of the sender and receiver. In case the sender’s one-time prekey bundle is used, this follows from
K being KDF-derived from a DH agreement between a one-time prekey opk,. and an ephemeral key epk (cf. Alg. 5, Ln. 14).
Namely, since the secrets of opk,. and epk are deleted from the receiver and sender states respectively, a distinguisher cannot
distinguish between a correctly generated K and a randomly sampled K by an outside accuser, assuming the hardness of DDH.
In contrast, when a last-resort prekey bundle is used, key K can be derived by a distinguisher holding both the receiver’s isk,

13

1: functioniPQK3DH.Send(isks, ik, prek,.)

—_ =
Eoal

- =
N W

-
° ®

_ =
TeY R RN R R

(is—ks,Sks) « isky; (&rstr) «— ik
> opk,. = L if prek,. is a last-resort key bundle

esk il Zp,epk = [esk]G
ss) = [isks Ispk,
ss, = [esk]ik,
ss3 = [esk]spk,
ss = sS[|ssa||ss3
if [opk, # L] then > One-rime prekey bundle
Lss‘; = [esk]opk,
ss = ssq[|ss [|ss3][ss4

= (epk,_CI,JTconf) > Handshake message
__return (K, p)

10:
11:
12:
13:
14:
15:
16:

17:

18:
19:
20:
21:
22:
23:

1
2
3
4:
5:
6
7
8
9

. function' PQX3DH.Receive(isk,, st,., KKy, 7, p)

(isky, sky) « iskps (s, vks) = iks

(Dprek> Dp,) < sty

if [z # L] then > One-time prekey bundle
require [Dprex (2] # L] = Check if unused.

(prek, ;. (spksec,., 0k 1, dKr ¢]) < Dprek [7]
else > Last-resort prekey bundle (i.e., t = 1)
require [[p ¢ Dpi]] > Check p is not replayed.
DPJ. A DPJ_ U {,0 }

(prek, ;, (spksec,., J-,:__dBC_,t__:)) — Dprexl?]

(epk,‘r_ég'fconf) —p

ss| = [spksec,]iky; ss; = [isk, |epk

ss3 = [spksec,.|epk; ss = ss|||sS3]|SS3

if [+ # L] then > One-time prekey bundle
LSS4 = [osk;,;]epk; ss = ss] ||532||SS3||SS4

K”T onf ______
require [7eonf = 7/ nf]]
> Delete prekey bundle if not last-resort
if [+ # L] then Dpei[f] « L
sty « (DprekaDpi)
. return (K, st;)

14

and st,., which includes spksec,. (see Alg. 6, Lns. 12 and 13). Hence, accused users can only leak their identity secret key
(i.e., leak = med).

Global deniability of PQXDH is shown quite differently and relies on the IND-CPA security of the KEM. This is because
against a quantum distinguisher, the argument used above fails; DDH is no longer hard.” We show deniability by the session
key K being KDF-derived from KEM key sskgm (cf. Alg. 5, Ln. 16). As long as the distinguisher cannot decrypt the ciphertext
ctincluded in p, K remains indistinguishable.

Strong local and global classical deniability. Unlike previous works relying on knowledge type assumptions, we rely on
the generic group model (GGM) [Sho97] to show strong (local and global) deniability. Knowledge assumptions assume the
existence of knowledge extractors, for which there exist no concrete constructions. The resulting simulators are hence not
efficiently implementable, which violates the requirements of [Pas03], requiring accusers the ability to show the existence of
such simulator to the judge in practice. While GGM is an idealized model, it allows to concretely write down a simulator
assuming a generic accuser, aligning better with the notion of deniability. Indeed, GGM has been used by Signal’s private
group system [CPZ20], giving us more confidence in generic accusers.

We can straightforwardly prove strong local and global deniability of X3DH in the GGM with the same level of information
leakage and disclosure considered by non-strong deniability. One limitation, however, is that GGM assumes a prime-order
group, whereas X3DH uses the non-prime-order X25519. We can get around this by either relying on a prime-order group
such as Ristretto, used by Signal’s private group system [CPZ20], or extending GGM to work over non-prime groups. We
leave these considerations for future work.

Similarly, we show strong local and global deniability of PQXDH against a classical accuser and a classical distinguisher.

Strong HNJL local and global deniability for receivers. For strong (local and global) HNJL deniability of PQXDH, we
are only able to prove deniability for the receiver; see the paragraph below for a discussion on why the deniability of the
sender breaks. In fact, we can only prove strong deniability for the receiver in the classical ROM, while still enabling quantum
capability to the distinguisher. In the classical ROM, the proof is quite natural using the observation in Sec. 3.3, that is, the
simulator need only simulate when the (honest) receiver accepts. Indeed, for the receiver to accept, the KDF, modeled as a
random oracle, must have output a key and a confirmation tag K||t¢ons, since the receiver must recompute the same tag Teons
as the sender to accept. If such a key K exists, the simulator simply outputs K. Unfortunately, it is unclear how to extend
our proof to work in the quantum ROM. Our proof hinges on the simulator observing the input/output of the random oracle,
however, in the QROM, such measurement may affect the malicious accuser’s quantum state, leading to a different behavior
from the real world. We leave it as an open problem to prove fully post-quantum receiver strong deniability.

Attack on strong HNJL deniability for senders. Interestingly, the situation changes when considering strong deniability
for senders. We observe that there is an attack on strong sender deniability if the distinguisher is quantum while the accuser
and simulator are classical, regardless of the classical or quantum ROM. Namely, a malicious receiver can craft a public key
spk,. in its prekey bundle, such that it can later prove that it does not know the associated secret key spksec,.. For instance, it
can hash to a random group element so that it does not know the associating secret exponent. This means that if a handshake
message contains a key K and tag tcont derived from inputs ssi, SSp, $S3, and ss4 (if the last resort prekey is not used), that
are correctly computed, then these must have been computed with the sender’s secrets. The key difference here compared to
deniability in the classical setting is in the distinguisher’s ability to tell that ss;, S5, SS3, and ss4 are correctly computed.
Indeed, a distinguisher with quantum capabilities can compute the secrets associated to sender and receiver public keys, and
simply recompute these values to check, and thereby decide whether the transcript was produced by the sender.

As explained above, a similar attack does not work if the malicious accuser is a sender, since without knowledge of the secret

keys, the sender cannot compute a tag 7¢ons that passes the receiver’s check on Alg. 6 Ln. 19.

Remark 2. In our BAKE model, all elements of a pre-key bundle run out simultaneously. However, in the actual specification
of PQXDH, last resort KEM keys may be used before one runs out of one time prekeys opkK,. , and vice versa. This does not
harm our deniability results for PQXDH. As this follows from the same argument as above, only with more case distinctions,
we refer the interested reader to App. E.O.

5. Deniability of RingXKEM

RingXKEM is a PQ Signal handshake protocol by Hashimoto, Katsumata, and Wiggers [HKW25], using ring signatures to
simultaneously ensure authentication and deniability. This is an optimized protocol based on [Bre+22; Has+21; Has+22]
where receiver bandwidth and storage requirements on the server are reduced by using Merkle trees for the authentication of
prekey bundles.

9 Against classical D, global deniability of PQXDH follows from X3DH.

15

Algorithm 7 Game for the deniability of RS.

. . Deny 1
1: function GameRs’b’ﬂ(l ,0)

for user u € [N] do (rvky, rsk,) < RS.KeyGen(1%)
q = 0> Number of queries made
return b < ARsse () ((rvky, 1Ky e v])
function ORSSign(Ms up, U)
require [(uo,u1) € [N] x [N]] A [[q < Q]
qg—qg+1 .
| return o < RS.Sign(rsky,,, M, { rvk,,, rvk,, })

A

5.1. Deniable Ring Signatures
We first recall the syntax of ring signatures. Standard notions of correctness and unforgeability are provided in App. A 4.

Definition 8 (Ring Signatures). A ring signature (RS) scheme consists of three PPT algorithms:

RS.KeyGen(14) R (rvk, rsk): On input the security parameter 14, it outputs a pair of keys (rvk, rsk).

RS.Sign(rsk, M, RL) BN sig: On input a secret key rsk, a message M, and a list of public keys equipped with some canonical
ordering, i.e., a ring, RL = {rvky, ..., rvky}, it outputs a signature sig.

RS.Verify(RL, M, sig) — 1/0: On input a ring RL = {rvky, ..., rvky}, a message M, and a signature sig, it outputs 1 if the
signature is valid and O otherwise.

Deniability: weakening anonymity. The standard notion of anonymity guarantees that signatures produced using two
secret keys are indistinguishable. While sufficient, we observe that, thanks to our new metric for measuring the deniability of
BAKEs in terms of the hockey-stick divergence, we can relax anonymity (cf. Sec. 3.1). Informally, we only care that signatures
remain deniable; the signatures do not provide hard evidence about which secret key was used to sign a message.

Definition 9 (Deniability). Let u : N x N — R* be a positive-valued function and Q = poly(1) an upper bound on the
number of signing queries. A ring signature scheme is (u, d)-deniable if for any N = poly(1), and efficient adversary A,

D D
Pr |[Gamepd™ (1,0) = 0| < u(1,0) - Pr [Gamepg ,(11,0) = 0| +6,

with 6 = negl(1), and where Gameggn}; 1s defined in Alg. 7.

As alluded to in Sec. 3.1, the main benefit of our new definition is that it provides justification to formally use “reasonably”
anonymous RSs. Indeed, we show that an RS based on the NIST-standardized Falcon [Pre+22] is deniable with a multiplicative
slack p = 1 +2727; if we used the standard notion of anonymity, this translates to a mere 27-bits of security. This indicates
that deniability is a more fine-grained notion than anonymity, allowing to split up the distinguishing probability danon of
anonymity into u and ¢ of deniability. What we uncover is that if §an0n can be “absorbed” into ¢, we can maintain a negligibly
small ¢, sufficient for deniability applications. We believe our new definition to be of an independent interest.

5.2. The RingXKEM protocol

The RingXKEM protocol, ignoring the Merkle tree optimization, can be summarized as a key exchange using an ephemeral
KEM key for forward secrecy, a long-term KEM identity key to authenticate the receiver, and an RS to authenticate the sender.
Each user generates a pair of RS keys (rvk, rsk) as part of their identity key. An RS verification key rvk is also added to the
prekey bundles, however the associated secret rsk is never used, and immediately disposed of after generation. In contrast to
other elements in the prekey bundle, rvk is not authenticated for deniability. The sender authenticates by signing the handshake
message for the ring of rvk; and r’v\k,.

Signing each prekey bundle for authentication would be costly, due to the size of PQ signatures. Hashimoto, Katsumata,
and Wiggers [HKW25] thus proposed an optimization, where a Merkle tree of KEM public keys aku, ¢ replaces individual
signatures with a path to the root and a single signature on the root. This amortizes storage costs across all prekey bundles
uploaded by a single call to PreKeyBundleGen. Note that although we include the Merkle tree path in our description of
prekey bundles, the server can recompute the path and tree root from uploaded bundles, eliminating the need to store them.

In Alg. 8 we show the details for the identity key generation and prekey bundle generation algorithms for RingXKEM. Any

functionality exclusive to either algorithm is marked bygnglfgy» dotted boxes %for RingXKEM and by plain dash-dotted boxes ifor

SignXKEM. The algorithms defining the RingXKEM Send and Re‘CéiVé“éﬂgorithms are given in Algs. 9 and 10.

16

Algorithm 8 lRI gS|g nXKEM'’s identity key and prekey bundle generation algorithms.

1:

2:

3: i

4 return (ik = (ek :rvk) isk := (dk,irsk))

5: function RINGSIGNXKEM.PreKeyBundleGen(isk,)
6: | (dky,irsk,) « isky

7: | Dyem»Dp, =0 Initialize empty lists

8: forre[L]U{L}do

9: | | (eku,,dky,) « KEM.KeyGen (14)

10: | > Create and sign Merkle tree

11: (rootu,treeu) — MerkIeTree((eku ,)tE L]U{L})
12: K }
13:

14: | forte [L] do > One-time prekey bundles
15: path, , < getMerklePath(tree,, t)

16: prek, ; = (eku ¢»path,, ;, rooty, oy, rootm? rvku)
17: Dyem|[t] « (prek,, ;, dku,t)

18: | > Last-resort prekey bundle t = L

19: | path, , < getMerklePath(tree,, L + 1)

20: | prek, , = (eku L,path, |, rooty,, oy, root: ,r

21: | Dyem[L +1] « (prek, ,, dku,L)

rek = (prek s
22: | return Préf P :"'i’"i){s[L]U{L}

require [RSSlgn Verlfytvkr, {rvkr

(ssr,cty) % KEM. Encaps(ekr)

(§8,,ct.) & KEM. Encaps(ekr ,)

: | context = ik ||ik, ||prek, ,||ctr||ctr

10: | K|[Kgke = KDF(ss,[|§5,.context)

11: | oy < RESign;Sign (fsky, context , { rvks, vk, })

5
12: | ctgke < SKE.Enc(Kgye, 0s) > Mask signature

13: | p = (ct,,cty, Clgke)
14: | return (K, p)

1
2
3
4:
S:
6 léekr» (7% root) = 1]]
7
8
9

17

1:
2
3
4: (cty, ctr, ctske) —p

5: | » Check t" prekey bundle was not deleted. <
6: | require [Dyem[f] # L]

7: | if [z = L] then

8 Lrequire [(ct,ct,) ¢ Dy, || » Prevent replays

9: Dy, ‘—Bm U{(cty,cty)}

10: | (prek, ;,dky t) < Dyem[?]

11: | ss, = KEM.Decaps(dky, cty)

12: | $8, = KEM.Decaps(dkr,,,Etr)

13: | content == ikS||ikr||prek,,,||ctr||(':\tr

14: | K||Kgke = KDF(ss,||$S;, content)

15: | o = SKE. DeC(KSke,Ctske) > Unmask signature

} ;content,os) =1]

17: | if [# J_]] then
18: | | Dyemlt] « L » Delete prekey bundle

19: | sty < (Dyem>!
20: | return (K, st;)

5.3. Summary: Deniability of RingXKEM

We summarize the level of deniability that RingXKEM satisfies. See Tab. 1 for a complete overview. The formal statements
are provided in App. G.

Local and global deniability. RingXKEM achieves the highest level of local deniability. This matches our intuition since,
due to the deniability of RS, the signature included in the senders’ handshake message, which authenticates the sender, does
not reveal which key (among rvk, and F\/T(r) was used to sign, so that either the sender or the receiver could have produced it.

We further have global deniability, thanks to the RS key rvk in the prekey bundle not being authenticated. Specifically,
the simulator, given prekey bundles of honest users, can substitute the verification key rT/T(with one for which it knows the
associated secret key. It can then easily compute the requlred ring signature and simulate the communication of two hc honest
users. However, note that the receiver’s state st := (Dyem, rvkr, D,) contains the (non-simulated) verification key rvkr, as
such, if the this state leaks, the distinguisher can easily tell apart real and simulated executions. Hence, global deniability
holds so long as the honest receiver’s state does not leak, i.e., for leak = med.

Both local and global deniability of RingXKEM hold even if both the accuser and the distinguisher are guantum, so long as
RS’s deniability holds against quantum adversaries.

Strong local and global deniability. The situation for strong (local and global) deniability is less clear. Firstly, we are only
able to prove deniability for the receiver; see App. G.3.1 for a discussion on why the deniability of the sender breaks (see
also Rem. 1). In fact, we can only prove strong deniability for the receiver in the classical ROM, while still enabling quantum
capability to the malicious accuser and distinguisher. In the classical ROM, the proof is quite natural using the observation
in Sec. 3.3, that is, the simulator need only simulate when the (honest) receiver accepts. Indeed, for the receiver to accept, the
KDF, modeled as a random oracle, must have output keys K||Kske for which the ciphertext Ctgye in the (possibly maliciously
generated) handshake message p decrypts correctly, yielding a valid signature of content for the ring {rvk, r’\ﬁ(r}. If such
keys exist, the simulator simply outputs K.

Unfortunately, it is unclear how to extend our proof to work in the guantum ROM. Our proof hinges on the simulator
observing the input/output of the random oracle, however, in the QROM, such measurement may affect the malicious accuser’s
quantum state, leading to a different behavior from the real world. We leave it as an open problem to prove fully post-quantum
receiver strong deniability.

5.4. Alternative BAKE from Plain Signatures

At the cost of a loss in deniability, one can use plain digital signatures instead of ring signatures. Such a scheme was suggested
in [Has+21], and benefits from being more efficient and simpler to implement. A description of the resulting scheme, which
we call SignXKEM, is given in Algs. 8 to 10. The key difference from RingXKEM is that a (plain) signature is used to
authenticate the sender. SignXKEM offers a limited notion of deniability, relying on the IND-CPA security of the KEM and

18

SKE schemes to hide the sender’s no-longer-deniable signature. The level of deniability is provided in Tab. 1, where the
formal statements are provided in App. H. It is worth noting that SignXKEM is the only protocol presented in this work where
one must restrict the information disclosed by accusers for deniability to hold, even in the (standard) local setting. Indeed, if
one cannot assume secure key erasure, this protocol may not be satisfactory. As such, this protocol may not provide deniability
if one is communicating with untrusted peers.

6. Ring Signatures from Falcon and MAYO

In this section, we introduce two novel 2-user ring signatures achieving our deniability notion from Sec. 5.1. The goal is
to design optimized 2-ring signatures based on NIST standards, for an increased potential of adoption. We identified two
strong candidate signature schemes: the standardized signature Falcon [Pre+22], and the additional signature candidate
MAYO [Beu+24]. Both of these schemes have short signatures, and thus great potential for compact ring signatures.

6.1. Falcon-Based Ring Signature

This section provides a high-level description for our Falcon-based ring signature, based on the generic lattice-based RS
design by [GJK24b] instantiated with Falcon-specific components. Formal definitions are given in App. L.1.

Falcon is a hash-and-sign signature scheme standardized by NIST. It is built over NTRU lattices, that is lattices generated
using a uniform-looking polynomial & = g - f~! where f, g are short polynomials in the ring Rq = Zg[x]/(x" +1). Key
generation calls an NTRU trapdoor sampler TpdGen() to obtain a public polynomial %, and a trapdoor basis B for the
corresponding NTRU lattice. Then, to sign a message M, one samples a salt salt, and computes a target ¢ = H(M, salt) from a
hash function. The trapdoor then allows for sampling a short preimage (#,v) = PreSmp(B, o, —¢) in the NTRU lattice of c,
i.e. such that 2 - u + v = c¢. The signature is (salt, u). Verification first recovers v = ¢ — k- u from ¢ = H(M, salt), and verifies
the shortness of (u, v), i.e. that ||(u, V)] < B.

6.1.1. Ring Signature Construction

We propose a ring signature FalconRS built from Falcon, and overcome theoretical limitations of previous works [GJK24b;
LAZ19b] as it seems impossible to prove standard anonymity when using Falcon components. We instead aim for our relaxed
deniability notion.

Our RS scheme samples a public polynomial 4; € R, and trapdoor B; for each ring user i € [N]. Signing is modified
to find a preimage of ¢ for an aggregation of the public keys: we sample v, (1;);c[n] such that ¢ = v + }; h; - u; knowing
only the trapdoor for a single 4;. This aggregation is inspired by ring trapdoor functions [BK10], although lattices allow
further optimization: we can reuse coordinate v for all signers and omit it in the final signature since it can be recovered from
¢ and the u;. This optimization was recently analyzed in [GJK24b], proposing a generic lattice-based RS construction called
Gandalf.'"

Cx(;)ncretely, when party i signs, it first samples the contribution for other parties as discrete Gaussia$ns of parameter o, i.e.,
uj « xy for j #i(x, is tailcut to [-7’, n’] for implementation purposes). It then samples (u;,v) < PreSmp(B;, o, —¢’),
where ¢’ = H(M,salt) — ¥, u; - hj, to complete the signature sig = (u;);e[n]. Leveraging the fact (u;,v) appears as
Gaussian distributed when ¢’ is uniform, we can show that the signature distribution is roughly independent of the signer,
ensuring deniability. To cover the larger number of elements in the ring signature, we introduce a new verification bound Ssig.
The construction is formalized in Alg. 11.

6.1.2. Security Analysis and Parameters

FalconRS uses the same base parameters as Falcon-512. The ring verification bound Ssig is set to 1.1 - ¥3no to bound the
norm of two user contributions.

Unforgeability. FalconRS can be proven unforgeable in an analogous manner to Falcon [GJK24a], reducing to the same
NTRU and RSIS assumptions, though the SIS bound is increased by a factor Vk + 1/ V2, and its preimage space is of dimension
k + 1 for rings of k users. This leads to a core-SVP security of 111 bits; a reasonable degradation over the 120 bits of Falcon.

Deniability. Proving anonymity appears unfeasible for an RS based on the Falcon parameters, as the distribution of signatures
is at a non-negligible distance from the ideal one. Instead, we show that FalconRS is deniable. We defer the formal statement
to App. I.1.2, and provide the intuition here.

The real signature distribution differs from the ideal one for two reasons: (i) the convolution of discrete Gaussians only
approximates a discrete Gaussian with larger parameters, and (ii) the use of approximations in internal computations (tail

10Note that [GIK24b] instantiates their generic construction Gandalf using a trapdoor sampler from Antrag [Esp+23] and a preimage sampler from
Mitaka [Esp+22]. Their concrete RS instantiation is also called Gandalf. Below, to avoid confusion, we always mean the concrete instantiation when referring
to Gandalf.

19

Algorithm 11 Falcon-based ring signature scheme

1: function FalconRS.KeyGen(11)

2: | h,B <« TpdGen() > Sample lattice generator h, and trapdoor
3: | return (rvk = h,rsk := B)

4: function FalconRS.Sign(rsk;, M, RL := {rvk;} ;)
5. B:= I;Ski;{hj}j = {I’ij}j

6: | salt « {0, 1}%; ¢= H(salt,RL,M) € R,

7

8

9

0

1

for j £idouj — xyu> yuis Don o tailcut to [=1",1"]
¢’ :=t_2j¢i]’lJ TUj

2| (uj,v) =PreSmp(B, o, —c") » Pre-image sampling

10: | if [lI((uj)j, v+) > Bsig]l then restart > Too large

11: | return sig := (salt, {u;} ;)

12: function FalconRS.Verify(RL = {rvk;} ;, M, sig)

13: | (salt, {u;};) = sig; {hi}; ={rvk; };

14: | ¢ = H(salt,RL,M) € R,

15: | vi=c—Y; hi -uj > Compute v such that ¢ = v + 3; hj - u;
16: | return [||((u;)i,)|l < Bsigl = Verify pre-image shortness

cuts, floating points, and polynomial approximations). The use of tail cuts translates to a statistical distance characterized
by the deniability term &. Falcon cuts tails with probability roughly 27, and we similarly select the tailcut parameter 7’
of . to ensure a negligible tailcut probability of 2770 (i.e. 17’ = [4/70 - 1og(2) - V2 - o] = 1633). This guarantees a small
term J. Interestingly, the other approximations introduce a relative error in the signature distribution, so that the probability
of sampling a given signature is multiplied by a factor close to 1. These are absorbed by the multiplicative slack y, which
exactly captures such factors between probabilities.

We formalize and evaluate the errors introduced by each approximation in App. I.1.3, obtaining that FalconRS is (u, §)-
deniable for u = 1 +2727 and § = 2757, We note that our analysis readily applies to Gandalf [GJK24b], which chooses a
different trapdoor generator and preimage sampler to instantiate the generic construction of [GJK24b]. While Gandalf initially
claimed an anonymity of 2770, an updated version acknowledged a proof flaw and an anonymity of only 273, Alternatively,
Gandalf can be proven deniable, with roughly the same u, ¢ as FalconRS.

6.2. MAYO-based Ring Signature

We provide a second RS construction based on MAYO, a candidate in NIST’s Call for Additional Signature Schemes. Viewing
MAYO as a hash-then-sign signature scheme, we can apply generic transformations from [AOS02] to obtain an efficient RS.
We analyze parameter sets proposed for standardization and provide alternative ones achieving higher deniability.

MAYO is designed over quadratic maps. At a high level, it chooses a map # : Fj — Fg' with trapdoor tp, as public and
secret keys respectively, from which is derived a larger map £* : IF’;" — F7'. To sign message M, one computes a target
t = H(M, salt) (where salt is a random value), and samples a preimage u such that £*(u) = t, leveraging the trapdoor tp. The
final signature is sig := (salt, u).

The transform by Abe, Ohkubo, and Suzuki [AOS02] allows us to generically turn MAYO into an RS. We defer the full
description to App. I.2. Analogously to FalconRS, the final MayoRS ring signature includes a pre-image u €]Ffln for each
ring user, as well as a seed generating a target. In the two-user setting, the signature size is thus roughly doubled over MAYO.

6.2.1. Security Analysis and Parameters

We here overview the unforgeability and deniability of MayoRS, deferring formal statements and proofs to App. 1.2.1.

Unforgeability. Using the generic transform of [AOS02], we reduce the unforgeability of MayoRS to that of MAYO. We
note that there is a loss in the reduction, linear in the number of random oracle queries made by the adversary. This does not,
we consider, lead to an improved attack.

Deniability. We prove deniability of MayoRS by observing that first sampling a target t then a pre-image u of t is roughly
equivalent to first sampling u «—]F,’;" and taking t = P*(u). A small portion B of the vectors u cannot be sampled in the first
scenario. Adjusting for the number of system participants N, this leads to deniability with (z = 1,6 = 2N - B), where 2N is a
tightness slack.

One could directly use the parameters from the MAYO specification, but MAYO; and MAYO, achieve rather low deniability,
so we provide three alternative parameter sets for NIST level I, with different trade-offs in size and deniability. We denote
them MAYO*, MAYO**, and MAYO*** and detail their parameters in App. [.2.2.

20

We compare the sizes and performance of FalconRS and MayoRS with the original schemes in Tabs. 2 and 3. Ring
signature sizes and computation times are all approximately doubled over the base scheme. We also include deniability
guarantees achieved by each scheme. We provide implementations'' and compare our RSs to prior works in Sec. 6.3. Our
constructions are as compact as the state-of-the-art, and built on more scrutinized schemes. Additionally, our implementations
largely outperform the state-of-the-art, by factors 32—-66x for signing, 146—1025x for verification.

Table 2: Sizes and deniability (u, §) of FalconRS and MayoRS depending on the base scheme, aiming for NIST level 1.

Base Scheme (u,0) PK Sig 2-RSig
Falcon-512 1427272757 897B 666B 1288B
MAYO, 1,2N-273¢ 1168B 321B 650B
MAYO, 1,2N-273¢ 5488B 180B 368B
MAYO* 1,2N-2752 1569B 335B 677B
MAYO** 1,2N-278 1591B 374B 756B
MAYO*** 1,2N .27 1771B 492B 992B

Table 3: Performance of normal and 2-ring versions of Falcon and MAYO. Experiments executed on a Ryzen Pro 7 5850U @
3GHz. Numbers are in Megacycles (Mc).

Scheme Keygen Sign Verify

normal 2-ring normal 2-ring

Falcon-512 6.2 Mc 0.26 Mc 0.74 Mc 0.02 Mc 0.04 Mc

MAYO;, 0.24Mc 0.88Mc 1.1 Mc 0.17Mc 0.28 Mc
MAYO, 0.65Mc 1.1 Mc 1.5 Mc 0.09Mc 0.16 Mc

6.3. Comparison with Previous Works on Ring Signatures

Several works introduced post-quantum ring signatures in the past. They provide different tradeoffs in terms of public key
size versus signature size. We consider the lattice-based ring signatures Falafl [BKP20], DualRing-LB [Yue+21], Raptor
[LAZ19b] and Gandalf [GJK24b]. We additionally consider the isogeny-based ring signature Calamari [BKP20], although
the comparison should be made cautiously as isogenies provide different tradeoffs than lattices (in the security assumption,
compactness, efficiency).

None of these schemes are based on a standardized scheme, except for Raptor which is based on Falcon. We also note that
Gandalf and Raptor only achieve a non-negligible anonymity of the order 273°, while they could be proven deniable as per
Def. 9 — further demonstrating the applicability of our notion.

Only some of these works provide publicly available and optimized C implementations: Raptor [LAZ19b], Calamari and
Falafl [BKP20]. DualRing-LB only provides a Python proof of concept'?, and Gandalf had no implementation at the time of
writing this article'?.

We provide concrete size and performance numbers in Tab. 5 and Tab. 6. These tables, together with Tab. 2, Tab. 3,
highlight that our proposals FalconRS and MayoRS are as compact as previous works based on non-standard schemes, and
that our implementations largely outperform all previous available post-quantum ring signature implementations.

7. Efficiency Comparison

Though RingXKEM has better deniability than SignXKEM, we need to consider the cost in terms of bandwidth and runtime.
In Sec. 6, we already discussed performance metrics for the proposed ring signatures. As they are well under typical network
latencies, we will conclude that all primitives considered are computationally efficient; though Hashimoto, Katsumata, and
Wiggers [HKW25, Sec. 6] also discussed bandwidth, they did not consider SignXKEM and only instantiated RingXKEM with
Gandalf [GJK24b].

I Available as an artifact through por 10.5281/zenodo. 15571694

12https ://github.com/thyuen/dualring.git

131t has since been implemented in [GHJ25], and their code is available at https://github.com/vincentvbh/shadowfax/blob/main/Gandalf/.
14https://github .com/zhenfeizhang/raptor/tree/37d78152bbca69b27b13a184347ceaec8£ffbd69f

21

https://doi.org/10.5281/zenodo.15571694
https://github.com/thyuen/dualring.git
https://github.com/vincentvbh/shadowfax/blob/main/Gandalf/
https://github.com/zhenfeizhang/raptor/tree/37d78152bbca69b27b13a184347ceaec8ffbd69f

Table 5: Sizes of concurrent ring signature schemes, and whether they achieve a negligible anonymity for concretely selected

parameters.

Scheme PK 2-RSig Negligible
anonymity

Gandalf 896B 1236B X

Raptor 900B 2532B X

Calamari 64B 3662B v

DualRing-LB 2496B 3877B v

Falafl 4096B 30016B v

Table 6: Performance of prior works on ring signatures, to compare with our instantiations from Tab. 3. Experiments executed
on a Ryzen Pro 7 5850U @ 3GHz. Numbers are in Megacycles (Mc).

Scheme Keygen Sign Verify
2-ring 2-ring
Raptor'* 27.1Mc 5Mc 2Mc
Calamari [BKP20] 119.5Mc 46581 Mc 41250Mc
Falafi [BKP20] 0.1Mc 163 Mc 76 Mc

Table 7 compares instantiations of RingXKEM and SignXKEM, as well as an overview of how far from (currently)
standardized cryptography the instantiations are. All schemes use a verification key as identity public key; RingXKEM and
SignXKEM additionally use a KEM public key. We show the sizes using Kyber-1024 following PQXDH, as well as with
Kyber-512 which matches the security of the (ring) signature scheme. The X3DH prekey bundle consists of two ECDH public
keys and a signature, PQXDH adds a KEM public key and a signature. For RingXKEM and SignXKEM, the prekey bundle is a
KEM public key, a Merkle tree authentication path, a signature on the root of this tree, and, for RingXKEM, an RS verification
key. The X3DH handshake message is an ECDH public key and an authentication tag; PQXDH adds a KEM ciphertext. For
RingXKEM and SignXKEM, this message is an encrypted (ring) signature and two ciphertexts.

We can clearly see in the table that the reduction in deniability by switching from RingXKEM to SignXKEM only leads to a
modest decrease in transmission sizes, typically less than 1 kB. Due to the Merkle tree optimization proposed in [HKW25], the
increase in server storage requirements for the prekey bundles is only about 1 kB in total. The RingXKEM instantiation based
on NIST standard Falcon [Pre+22] is also close in bandwidth requirements to the instantiation based on Gandalf [GJK24b]
relying on the trapdoor sampler of Antrag [Esp+23] and a preimage sampler of Mitaka [Esp+22].

Table 7: Practicality of deniable Signal handshake protocols. Batch size L = 100, sizes in bytes.

Protocol Fully PQ KEX Au:)he.tnt.i c.ation Ide{ltity Prekey bundle Handshake Underlying Crypto
rimitive public key 1,.4ividual L-key storage message

X3DH X X25519 XEd25519 [Perl6] 32 128 3296 64 Derived from X25519

PQXDH X DH+Kyber-1024 XEd25519 [Per16] 32 1696 166496 1632 Derived from X25519

RingXKEM v Kyber-512 Gandalf [GJK24b] 1696 2582 81526 2804 Based on Antrag and Mitaka

RingXKEM v Kyber-1024 Gandalf [GJK24b] 2464 3350 158326 4404 Based on Antrag and Mitaka

RingXKEM v Kyber-512 FalconRS 1697 2619 81563 2856 Based on Falcon

RingXKEM v Kyber-1024 FalconRS 2465 3387 158363 4456 Based on Falcon

RingXKEM v Kyber-512 MAYO* 2369 2960 81904 2245 Based on MAYO

RingXKEM v Kyber-1024 MAYO* 3137 3728 158704 3845 Based on MAYO

SignXKEM v Kyber-512 Falcon [Pre+22] 1697 1722 80 666 2202 NIST standard

SignXKEM v Kyber-1024 Falcon [Pre+22] 2465 2490 157466 3802 NIST standard

SignXKEM v Kyber-512 MAYO; [Beu+24] 1968 1377 80321 1857 NIST on-ramp R2

SignXKEM v Kyber-1024 MAYO; [Beu+24] 2736 2145 157121 3457 NIST on-ramp R2

SignXKEM v Kyber-512 MAYO; [Beu+24] 6288 1236 80180 1716 NIST on-ramp R2

SignXKEM v Kyber-1024 MAYO, [Beu+24] 7056 2004 156 980 3316 NIST on-ramp R2

22

Acknowledgments

This paper is partially based on results obtained from a project, JPNP24003, commissioned by the New Energy and Industrial
Technology Development Organization (NEDO). We thank the USENIX reviewers for valuable feedbacks on the definition of
strong deniability. We also thank Rune Fiedler for sharing his recent paper [FL25], leading us to notice that PQXDH is not
HNIL deniable against malicious receivers; as well as Vadim Lyubashevsky and Felix Giinther for pointing out an oversight in
our proof of global deniability for RingXKEM, leading us to downgrade the permitted leakage for this setting. Lastly, we
thank Phillip Gajland, Jonas Janneck, and Eike Kiltz for helping us better understand Gandalf.

Ethic Considerations

The security and privacy properties of Signal’s handshake protocol is relied on by many. This makes it relevant and important
to understand and make comparisons between the deniability properties of (proposals for) Signal handshake protocols.

Risks and risk mitigation. As prior work has thoroughly investigated the security of X3DH and PQXDH, we deemed any
risk of finding previously unknown vulnerabilities exceedingly unlikely. If any significant issues had been found, we would
have coordinated with Signal developers on how to best protect Signal’s users, both of the Signal app itself, and other users of
Signal including Facebook Messenger, WhatsApp, and others, with responsible disclosure practices.

Benefits. Signal is transitioning towards full post-quantum security. We aim to contribute to this by providing new results
and a model for comparing relevant deniability properties.

Open Science

The deniability model for Bundled AKE protocols is documented in this paper. For the proposed Falcon- and MAYO-based Ring
signature schemes, we have experimental implementations made available in our artifact. It also includes prior ring signature
implementations [BKP20; LAZ19b] adapted with our benchmark code. There are no other datasets or implementations
relevant to this paper.

References

[ABN10] Michel Abdalla, Mihir Bellare, and Gregory Neven. “Robust Encryption.” In: TCC 2010. Ed. by Daniele
Micciancio. Vol. 5978. LNCS. Springer, Berlin, Heidelberg, Feb. 2010, pp. 480-497. po1: 10.1007/978-3-
642-11799-2_28 (cit. on p. 28).

[AHU19] Andris Ambainis, Mike Hamburg, and Dominique Unruh. “Quantum Security Proofs Using Semi-classical
Oracles.” In: CRYPTO 2019, Part II. Ed. by Alexandra Boldyreva and Daniele Micciancio. Vol. 11693. LNCS.
Springer, Cham, Aug. 2019, pp. 269-295. por: 10.1007/978-3-030-26951-7_10 (cit. on pp. 30, 34, 43, 44).

[AOS02] Masayuki Abe, Miyako Ohkubo, and Koutarou Suzuki. “1-out-of-n Signatures from a Variety of Keys.” In:
ASIACRYPT 2002. Ed. by Yuliang Zheng. Vol. 2501. LNCS. Springer, Berlin, Heidelberg, Dec. 2002, pp. 415-432.
por: 10.1007/3-540-36178-2_26 (cit. on pp. 20, 50).

[Bac+15] Michael Backes, Aniket Kate, Sebastian Meiser, and Tim Ruffing. “Secrecy Without Perfect Randomness:
Cryptography with (Bounded) Weak Sources.” In: ACNS 2015. Ed. by Tal Malkin, Vladimir Kolesnikov, Allison
Bishop Lewko, and Michalis Polychronakis. Vol. 9092. LNCS. Springer, Cham, June 2015, pp. 675-695. por:
10.1007/978-3-319-28166-7_33 (cit. on pp. 4, 8).

[Beu+24] Ward Beullens, Fabio Campos, Soffa Celi, Basil Hess, and Matthias J. Kannwischer. MAYO. Tech. rep. available
athttps://csrc.nist.gov/Projects/pqc-dig-sig/round-2-additional - signatures. National
Institute of Standards and Technology, 2024 (cit. on pp. 4, 19, 22, 50).

[BFO1] Dan Boneh and Matthew K. Franklin. “Identity-Based Encryption from the Weil Pairing.” In: CRYPTO 2001.
Ed. by Joe Kilian. Vol. 2139. LNCS. Springer, Berlin, Heidelberg, Aug. 2001, pp. 213-229. por: 10.1007/3-
540-44647-8_13 (cit. on p. 30).

[BGB04] Nikita Borisov, Ian Goldberg, and Eric Brewer. “Off-the-record communication, or, why not to use PGP.” In:
Proceedings of the 2004 ACM workshop on Privacy in the electronic society. CCS04: 11th ACM Conference on
Computer and Communications Security 2004 (Washington DC USA). New York, NY, USA: ACM, Oct. 28, 2004,
pp- 77-84. 1sBN: 9781581139686. por: 10.1145/1029179.1029200. urL: https://otr.cypherpunks.ca/
otr-wpes.pdf (cit. on p. 5).

23

https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-642-11799-2_28
https://doi.org/10.1007/978-3-030-26951-7_10
https://doi.org/10.1007/3-540-36178-2_26
https://doi.org/10.1007/978-3-319-28166-7_33
https://csrc.nist.gov/Projects/pqc-dig-sig/round-2-additional-signatures
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1145/1029179.1029200
https://otr.cypherpunks.ca/otr-wpes.pdf
https://otr.cypherpunks.ca/otr-wpes.pdf

[Bha+24]

[BK10]

[BKP20]

[Bre+20]

[Bre+22]

[CCH23]

[CF11]

[Col+24]

[CPZ20]

[Dag+13]

[DGKO6]

[DMS04]

[DNS98]

[DP15]

[Dwo+06]

[Esp+22]

Karthikeyan Bhargavan, Charlie Jacomme, Franziskus Kiefer, and Rolfe Schmidt. “Formal verification of the
PQXDH Post-Quantum key agreement protocol for end-to-end secure messaging.” In: USENIX Security 2024.
Ed. by Davide Balzarotti and Wenyuan Xu. USENIX Association, Aug. 2024. urL: https://www.usenix.
org/conference/usenixsecurity24/presentation/bhargavan (cit. on p. 5).

Zvika Brakerski and Yael Tauman Kalai. A Framework for Efficient Signatures, Ring Signatures and Identity
Based Encryption in the Standard Model. Cryptology ePrint Archive, Report 2010/086. 2010. UrL: https:
//eprint.iacr.org/2010/086 (cit. on p. 19).

Ward Beullens, Shuichi Katsumata, and Federico Pintore. “Calamari and Falafl: Logarithmic (Linkable) Ring
Signatures from Isogenies and Lattices.” In: ASIACRYPT 2020, Part II. Ed. by Shiho Moriai and Huaxiong Wang.
Vol. 12492. LNCS. Springer, Cham, Dec. 2020, pp. 464-492. por: 10.1007/978-3-030-64834-3_16 (cit. on
pp- 21-23, 29).

Jacqueline Brendel, Marc Fischlin, Felix Giinther, Christian Janson, and Douglas Stebila. “Towards Post-Quantum
Security for Signal’s X3DH Handshake.” In: SAC 2020. Ed. by Orr Dunkelman, Michael J. Jacobson Jr., and Colin
O’Flynn. Vol. 12804. LNCS. Springer, Cham, Oct. 2020, pp. 404—430. por: 10.1007/978-3-030-81652-0_16
(cit. on p. 5).

Jacqueline Brendel, Rune Fiedler, Felix Giinther, Christian Janson, and Douglas Stebila. “Post-quantum Asyn-
chronous Deniable Key Exchange and the Signal Handshake.” In: PKC 2022, Part I1. Ed. by Goichiro Hanaoka,
Junji Shikata, and Yohei Watanabe. Vol. 13178. LNCS. Springer, Cham, Mar. 2022, pp. 3-34. por: 10.1007/978-
3-030-97131-1_1 (cit. on pp. 3, 5, 6, 8, 15).

Daniel Collins, Simone Colombo, and Lois Huguenin-Dumittan. Real World Deniability in Messaging. Cryptology
ePrint Archive, Report 2023/403. 2023. urL: https://eprint.iacr.org/2023/403 (cit. on p. 7).

Cas Cremers and Michele Feltz. One-round Strongly Secure Key Exchange with Perfect Forward Secrecy and
Deniability. Cryptology ePrint Archive, Report 2011/300. 2011. urL: https://eprint.iacr.org/2011/300
(cit. on p. 3).

Daniel Collins, Lois Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, and Serge Vaudenay. “K-Waay:
Fast and Deniable Post-Quantum X3DH without Ring Signatures.” In: USENIX Security 2024. Ed. by Davide
Balzarotti and Wenyuan Xu. USENIX Association, Aug. 2024. urL: https://www.usenix.org/conference/
usenixsecurity24/presentation/collins (cit. on pp. 3, 5, 6, 8).

Melissa Chase, Trevor Perrin, and Greg Zaverucha. “The Signal Private Group System and Anonymous Credentials
Supporting Efficient Verifiable Encryption.” In: ACM CCS 2020. Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz,
and Giovanni Vigna. ACM Press, Nov. 2020, pp. 1445-1459. por: 10.1145/3372297.3417887 (cit. on p. 15).

Ozgijr Dagdelen, Marc Fischlin, Tommaso Gagliardoni, Giorgia Azzurra Marson, Arno Mittelbach, and Cristina
Onete. “A Cryptographic Analysis of OPACITY - (Extended Abstract).” In: ESORICS 2013. Ed. by Jason
Crampton, Sushil Jajodia, and Keith Mayes. Vol. 8134. LNCS. Springer, Berlin, Heidelberg, Sept. 2013, pp. 345—
362. por: 10.1007/978-3-642-40203-6_20 (cit. on p. 3).

Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. “Deniable authentication and key exchange.” In:
ACM CCS 2006. Ed. by Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati. ACM Press, Oct.
2006, pp. 400-409. por: 10.1145/1180405.1180454 (cit. on pp. 3, 5, 7, 8).

Roger Dingledine, Nick Mathewson, and Paul F. Syverson. “Tor: The Second-Generation Onion Router.” In:
USENIX Security 2004. Ed. by Matt Blaze. USENIX Association, Aug. 2004, pp. 303-320. por: 10.21236/
ada465464. urRL: http://www.usenix.org/publications/library/proceedings/sec04/tech/
dingledine.html (cit. on p. 6).

Cynthia Dwork, Moni Naor, and Amit Sahai. “Concurrent Zero-Knowledge.” In: 30th ACM STOC. ACM Press,
May 1998, pp. 409—418. por: 10.1145/276698.276853 (cit. on p. 8).

Léo Ducas and Thomas Prest. Fast Fourier Orthogonalization. Cryptology ePrint Archive, Report 2015/1014.
2015. urL: https://eprint.iacr.org/2015/1014 (cit. on p. 46).

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. “Calibrating Noise to Sensitivity in Private
Data Analysis.” In: TCC 2006. Ed. by Shai Halevi and Tal Rabin. Vol. 3876. LNCS. Springer, Berlin, Heidelberg,
Mar. 2006, pp. 265-284. por: 10.1007,/11681878_14 (cit. on pp. 4, 8).

Thomas Espitau, Pierre-Alain Fouque, Francois Gérard, Mélissa Rossi, Akira Takahashi, Mehdi Tibouchi,
Alexandre Wallet, and Yang Yu. “Mitaka: A Simpler, Parallelizable, Maskable Variant of Falcon.” In: EURO-
CRYPT 2022, Part I1I. Ed. by Orr Dunkelman and Stefan Dziembowski. Vol. 13277. LNCS. Springer, Cham,
May 2022, pp. 222-253. por: 10.1007/978-3-031-07082-2_9 (cit. on pp. 19, 22).

24

https://www.usenix.org/conference/usenixsecurity24/presentation/bhargavan
https://www.usenix.org/conference/usenixsecurity24/presentation/bhargavan
https://eprint.iacr.org/2010/086
https://eprint.iacr.org/2010/086
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-81652-0_16
https://doi.org/10.1007/978-3-030-97131-1_1
https://doi.org/10.1007/978-3-030-97131-1_1
https://eprint.iacr.org/2023/403
https://eprint.iacr.org/2011/300
https://www.usenix.org/conference/usenixsecurity24/presentation/collins
https://www.usenix.org/conference/usenixsecurity24/presentation/collins
https://doi.org/10.1145/3372297.3417887
https://doi.org/10.1007/978-3-642-40203-6_20
https://doi.org/10.1145/1180405.1180454
https://doi.org/10.21236/ada465464
https://doi.org/10.21236/ada465464
http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
http://www.usenix.org/publications/library/proceedings/sec04/tech/dingledine.html
https://doi.org/10.1145/276698.276853
https://eprint.iacr.org/2015/1014
https://doi.org/10.1007/11681878_14
https://doi.org/10.1007/978-3-031-07082-2_9

[Esp+23]

[FG25]

[FJ24]

[FL25]

[Gen+20]

[GHJ25]

[GJK24a]

[GIK24b]

[Go022]

[GPVO08]

[Has+21]

[Has+22]

[HKP22]

[HKW25]

[How+20]

[Ica09]

[Jia+22]

Thomas Espitau, Thi Thu Quyen Nguyen, Chao Sun, Mehdi Tibouchi, and Alexandre Wallet. “Antrag: Annular
NTRU Trapdoor Generation - Making Mitaka as Secure as Falcon.” In: ASTACRYPT 2023, Part VII. Ed. by
Jian Guo and Ron Steinfeld. Vol. 14444. LNCS. Springer, Singapore, Dec. 2023, pp. 3-36. por: 10.1007/978-
981-99-8739-9_1 (cit. on pp. 19, 22).

Rune Fiedler and Felix Giinther. “Security Analysis of Signal’s PQXDH Handshake.” In: PKC 2025, Part II. Ed.
by Tibor Jager and Jiaxin Pan. Vol. 15675. LNCS. Springer, Cham, May 2025, pp. 137-169. por: 10.1007/978-
3-031-91823-0_5 (cit. on p. 5).

Rune Fiedler and Christian Janson. “A Deniability Analysis of Signal’s Initial Handshake PQXDH.” In: Proceed-
ings on Privacy Enhancing Technologies 2024 (Oct. 2024), pp. 907-928. por: 10.56553/popets-2024-0148
(cit. on pp. 3, 5, 6, 8).

Rune Fiedler and Roman Langrehr. “On Deniable Authentication against Malicious Verifiers.” In: To appear in
proceedings of CRYPTO 2025: 45th Annual International Cryptology Conference, Santa Barbara, CA, USA.
Santa Barbara, CA, USA, 2025 (cit. on pp. 4, 5, 23).

Nicholas Genise, Daniele Micciancio, Chris Peikert, and Michael Walter. “Improved Discrete Gaussian and
Subgaussian Analysis for Lattice Cryptography.” In: PKC 2020, Part I. Ed. by Aggelos Kiayias, Markulf
Kohlweiss, Petros Wallden, and Vassilis Zikas. Vol. 12110. LNCS. Springer, Cham, May 2020, pp. 623-651.
por: 10.1007/978-3-030-45374-9_21 (cit. on p. 48).

Phillip Gajland, Vincent Hwang, and Jonas Janneck. Shadowfax: A Deniability-Preserving AKEM Combiner.
Cryptology ePrint Archive, Paper 2025/154. 2025. urL: https://eprint.iacr.org/2025/154 (cit. on
p. 21).

Phillip Gajland, Jonas Janneck, and Eike Kiltz. A Closer Look at Falcon. Cryptology ePrint Archive, Paper
2024/1769. 2024. urL: https://eprint.iacr.org/2024/1769 (cit. on pp. 19, 45, 49, 50).

Phillip Gajland, Jonas Janneck, and Eike Kiltz. “Ring Signatures for Deniable AKEM: Gandalf’s Fellowship.”
In: CRYPTO 2024, Part I. Ed. by Leonid Reyzin and Douglas Stebila. Vol. 14920. LNCS. Springer, Cham, Aug.
2024, pp. 305-338. por: 10.1007/978-3-031-68376-3_10 (cit. on pp. 4, 19-22).

Google. Messages End-to-End Encryption Overview. Technical paper. Feb. 2022. urL: https://www.gstatic.
com/messages/papers/messages_e2ee.pdf (cit. on p. 3).

Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. “Trapdoors for hard lattices and new cryptographic
constructions.” In: 40th ACM STOC. Ed. by Richard E. Ladner and Cynthia Dwork. ACM Press, May 2008,
pp- 197-206. por: 10.1145/1374376.1374407 (cit. on p. 50).

Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. “An Efficient and Generic
Construction for Signal’s Handshake (X3DH): Post-Quantum, State Leakage Secure, and Deniable.” In: PKC 2021,
Part II. Ed. by Juan Garay. Vol. 12711. LNCS. Springer, Cham, May 2021, pp. 410-440. por: 10.1007/978-3-
030-75248-4_15 (cit. on pp. 4, 6, 15, 18, 42).

Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. “An Efficient and Generic
Construction for Signal’s Handshake (X3DH): Post-quantum, State Leakage Secure, and Deniable.” In: Journal
of Cryptology 35.3 (July 2022), p. 17. por: 10.1007/s00145-022-09427-1 (cit. on pp. 3, 5, 6, 8, 15, 42).

Keitaro Hashimoto, Shuichi Katsumata, and Thomas Prest. “How to Hide MetaData in MLS-Like Secure Group
Messaging: Simple, Modular, and Post-Quantum.” In: ACM CCS 2022. Ed. by Heng Yin, Angelos Stavrou,
Cas Cremers, and Elaine Shi. ACM Press, Nov. 2022, pp. 1399-1412. por: 10.1145/3548606.3560679 (cit. on
p. 6).

Keitaro Hashimoto, Shuichi Katsumata, and Thom Wiggers. “Bundled Authenticated Key Exchange: A Concrete
Treatment of (Post-Quantum) Signal’s Handshake Protocol.” In: USENIX Security 2025. to appear. USENIX,
Jan. 13, 2025. urL: https://eprint.iacr.org/2025/040 (cit. on pp. 1, 3-6, 12—-16, 21, 22, 42).

James Howe, Thomas Prest, Thomas Ricosset, and Mélissa Rossi. “Isochronous Gaussian Sampling: From
Inception to Implementation.” In: Post-Quantum Cryptography - 11th International Conference, PQCrypto 2020.
Ed. by Jintai Ding and Jean-Pierre Tillich. Springer, Cham, Apr. 2020, pp. 53-71. por: 10.1007/978-3-030-
44223-1_4 (cit. on p. 47).

Thomas Icart. “How to Hash into Elliptic Curves.” In: CRYPTO 2009. Ed. by Shai Halevi. Vol. 5677. LNCS.
Springer, Berlin, Heidelberg, Aug. 2009, pp. 303-316. por: 10.1007/978-3-642-03356-8_18 (cit. on p. 30).

Shaoquan Jiang, Yeow Meng Chee, San Ling, Huaxiong Wang, and Chaoping Xing. “A new framework for
deniable secure key exchange.” In: Inf. Comput. 285.PB (May 2022). 1ssNn: 0890-5401. por: 10.1016/j.1ic.
2022.104866. UrRL: https://doi.org/10.1016/j.1ic.2022.104866 (cit. on p. 8).

25

https://doi.org/10.1007/978-981-99-8739-9_1
https://doi.org/10.1007/978-981-99-8739-9_1
https://doi.org/10.1007/978-3-031-91823-0_5
https://doi.org/10.1007/978-3-031-91823-0_5
https://doi.org/10.56553/popets-2024-0148
https://doi.org/10.1007/978-3-030-45374-9_21
https://eprint.iacr.org/2025/154
https://eprint.iacr.org/2024/1769
https://doi.org/10.1007/978-3-031-68376-3_10
https://www.gstatic.com/messages/papers/messages_e2ee.pdf
https://www.gstatic.com/messages/papers/messages_e2ee.pdf
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1007/978-3-030-75248-4_15
https://doi.org/10.1007/978-3-030-75248-4_15
https://doi.org/10.1007/s00145-022-09427-1
https://doi.org/10.1145/3548606.3560679
https://eprint.iacr.org/2025/040
https://doi.org/10.1007/978-3-030-44223-1_4
https://doi.org/10.1007/978-3-030-44223-1_4
https://doi.org/10.1007/978-3-642-03356-8_18
https://doi.org/10.1016/j.ic.2022.104866
https://doi.org/10.1016/j.ic.2022.104866
https://doi.org/10.1016/j.ic.2022.104866

[JSH24]

[KPOS5]

[KS23]

[LAZ19a]

[LAZ19b]

[LPS23]

[Lun18]

[Lyul2]

[Mad+22]

[Mer87]

[Met23]

[Mir+09]

[MP16]

[MRO4]

[Nik+19]

[Nio25]

[Pas03]

[Per16]

[PHI10]

Kee Jefferys, Maxim Shishmarev, and Simon Harman. Session: End-To-End Encrypted Conversations With
Minimal Metadata Leakage. Tech. rep. Session, July 2024 (cit. on p. 6).

Caroline Kudla and Kenneth G. Paterson. “Modular Security Proofs for Key Agreement Protocols.” In: ASI-
ACRYPT 2005. Ed. by Bimal K. Roy. Vol. 3788. LNCS. Springer, Berlin, Heidelberg, Dec. 2005, pp. 549-565.
por: 10.1007/11593447_30 (cit. on pp. 3, 12).

Ehren Kret and Rolfe Schmidt. The POXDH Key Agreement Protocol. Protocol documentation. Oct. 18, 2023.
URL: https://signal.org/docs/specifications/pgxdh/ (cit. on pp. 3, 5, 6).

Xingye Lu, Man Ho Au, and Zhenfei Zhang. (Linkable) Ring Signature from Hash-Then-One-Way Signature.
Cryptology ePrint Archive, Report 2019/567. 2019. urL: https://eprint.iacr.org/2019/567 (cit. on
p- 50).

Xingye Lu, Man Ho Au, and Zhenfei Zhang. “Raptor: A Practical Lattice-Based (Linkable) Ring Signature.” In:
ACNS 2019. Ed. by Robert H. Deng, Valérie Gauthier-Umaia, Martin Ochoa, and Moti Yung. Vol. 11464. LNCS.
Springer, Cham, June 2019, pp. 110-130. por: 10.1007/978-3-030-21568-2_6 (cit. on pp. 4, 19, 21, 23).

Helger Lipmaa, Roberto Parisella, and Janno Siim. “Algebraic Group Model with Oblivious Sampling.” In:
TCC 2023, Part IV. Ed. by Guy N. Rothblum and Hoeteck Wee. Vol. 14372. LNCS. Springer, Cham, Nov. 2023,
pp. 363-392. por: 10.1007/978-3-031-48624-1_14 (cit. on p. 30).

Joshua Lund. Technology preview: Sealed sender for Signal. Oct. 2018. urL: https://signal.org/blog/
sealed-sender/ (cit. on p. 6).

Vadim Lyubashevsky. “Lattice Signatures without Trapdoors.” In: EUROCRYPT 2012. Ed. by David Pointcheval
and Thomas Johansson. Vol. 7237. LNCS. Springer, Berlin, Heidelberg, Apr. 2012, pp. 738-755. por: 10.1007/
978-3-642-29011-4_43 (cit. on pp. 47, 48, 50).

Varun Madathil, Alessandra Scafuro, Istvan Andrds Seres, Omer Shlomovits, and Denis Varlakov. ‘“Private
Signaling.” In: USENIX Security 2022. Ed. by Kevin R. B. Butler and Kurt Thomas. USENIX Association, Aug.
2022, pp. 3309-3326. urRL: https://www.usenix.org/conference/usenixsecurity22/presentation/
madathil (cit. on p. 6).

Ralph C. Merkle. “A Digital Signature Based on a Conventional Encryption Function.” In: CRYPTO’87. Ed. by
Carl Pomerance. Vol. 293. LNCS. Springer, Berlin, Heidelberg, Aug. 1987, pp. 369-378. por: 10.1007/3-540-
48184-2_32 (cit. on p. 29).

Meta, Inc. Messenger End-to-End Encryption Overview. Technical white paper. Dec. 6, 2023. URL:
https : / / engineering . fb . com / wp - content / uploads / 2023 / 12 / MessengerEnd - to -
EndEncryptionOverview_12-6-2023.pdf (cit. on p. 3).

Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil P. Vadhan. “Computational Differential Privacy.” In:
CRYPTO 2009. Ed. by Shai Halevi. Vol. 5677. LNCS. Springer, Berlin, Heidelberg, Aug. 2009, pp. 126—142.
por: 10.1007/978-3-642-03356-8_8 (cit. on pp. 4, 8).

Moxie Marlinspike and Trevor Perrin. The X3DH Key Agreement Protocol. Protocol documentation. Nov. 4,
2016. urL: https://signal.org/docs/specifications/x3dh/ (cit. on pp. 3, 5, 6, 12).

Daniele Micciancio and Oded Regev. “Worst-Case to Average-Case Reductions Based on Gaussian Measures.”
In: 45¢th FOCS. IEEE Computer Society Press, Oct. 2004, pp. 372-381. por: 10.1109/F0CS.2004.72 (cit. on
p- 48).

Kirill Nikitin, Ludovic Barman, Wouter Lueks, Matthew Underwood, Jean-Pierre Hubaux, and Bryan Ford.

“Reducing Metadata Leakage from Encrypted Files and Communication with PURBs.” In: PoPETs 2019.4 (Oct.
2019), pp. 6-33. por: 10.2478/popets-2019-0056 (cit. on p. 6).

Guilhem Niot. Practical Deniable Post-Quantum X3DH: A Lightweight Split-KEM for K-Waay. Cryptology
ePrint Archive, Paper 2025/853. 2025. urL: https://eprint.iacr.org/2025/853 (cit. on p. 5).

Rafael Pass. “On Deniability in the Common Reference String and Random Oracle Model.” In: CRYPTO 2003.
Ed. by Dan Boneh. Vol. 2729. LNCS. Springer, Berlin, Heidelberg, Aug. 2003, pp. 316-337. por: 10.1007/978-
3-540-45146-4_19 (cit. on pp. 8, 15).

Trevor Perrin. The XEdDSA and VXEdDSA Signature Schemes. documentation. Oct. 20, 2016. urL: https:
//signal.org/docs/specifications/xeddsa/ (cit. on p. 22).

A Pfitzmann and Marit Hansen. “A terminology for talking about privacy by data minimization: Anonymity,
Unlinkability, Undetectability, Unobservability, Pseudonymity, and Identity Management.” In: 34 (Jan. 2010).
URL: http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v@ (cit. on p. 6).

26

https://doi.org/10.1007/11593447_30
https://signal.org/docs/specifications/pqxdh/
https://eprint.iacr.org/2019/567
https://doi.org/10.1007/978-3-030-21568-2_6
https://doi.org/10.1007/978-3-031-48624-1_14
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_43
https://www.usenix.org/conference/usenixsecurity22/presentation/madathil
https://www.usenix.org/conference/usenixsecurity22/presentation/madathil
https://doi.org/10.1007/3-540-48184-2_32
https://doi.org/10.1007/3-540-48184-2_32
https://engineering.fb.com/wp-content/uploads/2023/12/MessengerEnd-to-EndEncryptionOverview_12-6-2023.pdf
https://engineering.fb.com/wp-content/uploads/2023/12/MessengerEnd-to-EndEncryptionOverview_12-6-2023.pdf
https://doi.org/10.1007/978-3-642-03356-8_8
https://signal.org/docs/specifications/x3dh/
https://doi.org/10.1109/FOCS.2004.72
https://doi.org/10.2478/popets-2019-0056
https://eprint.iacr.org/2025/853
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1007/978-3-540-45146-4_19
https://signal.org/docs/specifications/xeddsa/
https://signal.org/docs/specifications/xeddsa/
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0

[PM16] Trevor Perrin and Moxie Marlinspike. The Double Ratchet Algorithm. Protocol documentation. Nov. 20, 2016.
URL: https://signal.org/docs/specifications/doubleratchet/ (cit. on p. 3).

[Prel5] Thomas Prest. “Gaussian sampling in lattice-based cryptography.” Theses. Ecole normale supérieure - ENS
PARIS, Dec. 2015. urL: https://theses.hal.science/tel-01245066 (cit. on pp. 46, 48).

[Prel7] Thomas Prest. “Sharper Bounds in Lattice-Based Cryptography Using the Rényi Divergence.” In: ASI-
ACRYPT 2017, Part I. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10624. LNCS. Springer, Cham, Dec.
2017, pp. 347-374. por: 10.1007/978-3-319-70694-8_13 (cit. on pp. 47, 48).

[Pre+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin,
Thomas Ricosset, Gregor Seiler, William Whyte, and Zhenfei Zhang. FALCON. Tech. rep. available at https:
//csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022. National
Institute of Standards and Technology, 2022 (cit. on pp. 4, 9, 16, 19, 22, 49).

[Sho97] Victor Shoup. “Lower Bounds for Discrete Logarithms and Related Problems.” In: EUROCRYPT’97. Ed. by
Walter Fumy. Vol. 1233. LNCS. Springer, Berlin, Heidelberg, May 1997, pp. 256-266. por: 10.1007/3-540-
69053-0_18 (cit. on pp. 15, 30).

[SV16] Igal Sason and Sergio Verdu. “f -Divergence Inequalities.” In: IEEE Transactions on Information Theory 62.11
(2016), pp. 5973-6006. por: 10.1109/TIT.2016.2603151 (cit. on pp. 4, 9).

[TWG24] Elkana Tovey, Jonathan Weiss, and Yossi Gilad. “Distributed PIR: Scaling Private Messaging via the Users’
Machines.” In: ACM CCS 2024. Ed. by Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda, and David Lie. ACM Press,
Oct. 2024, pp. 1967-1981. por: 10.1145/3658644.3670350 (cit. on p. 6).

[UG15] Nik Unger and Ian Goldberg. “Deniable Key Exchanges for Secure Messaging.” In: ACM CCS 2015. Ed. by
Indrajit Ray, Ninghui Li, and Christopher Kruegel. ACM Press, Oct. 2015, pp. 1211-1223. por: 10.1145/
2810103.2813616 (cit. on p. 3).

[UG18] Nik Unger and Ian Goldberg. “Improved Strongly Deniable Authenticated Key Exchanges for Secure Messaging.”
In: PoPETs 2018.1 (Jan. 2018), pp. 21-66. por: 10.1515/popets-2018-0003 (cit. on p. 3).

[Ung+15] Nik Unger, Sergej Dechand, Joseph Bonneau, Sascha Fahl, Henning Perl, lan Goldberg, and Matthew Smith.
“SoK: Secure Messaging.” In: 2015 IEEE Symposium on Security and Privacy. IEEE Computer Society Press,
May 2015, pp. 232-249. por: 10.1109/SP.2015.22 (cit. on pp. 6, 7).

[Vat+20] Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo Krawczyk. “On the Cryptographic Deniability
of the Signal Protocol.” In: ACNS 2020, Part 1. Ed. by Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and
Angelo Spognardi. Vol. 12147. LNCS. Springer, Cham, Oct. 2020, pp. 188-209. por: 10.1007/978-3-030-
57878-7_10 (cit. on pp. 3, 5-8).

[WB19] Riad S. Wahby and Dan Boneh. “Fast and simple constant-time hashing to the BLS12-381 elliptic curve.” In:
IACR TCHES 2019.4 (2019), pp. 154—179. 1ssN: 2569-2925. por: 10.13154/tches.v2019.1i4.154-179. URL:
https://tches.iacr.org/index.php/TCHES/article/view/8348 (cit. on p. 30).

[Wha23] WhatsApp. WhatsApp Encryption Overview. Technical white paper. Sept. 27, 2023. urL: https: //www .
whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf (cit. on p. 3).

[Yue+21] Tsz Hon Yuen, Muhammed F. Esgin, Joseph K. Liu, Man Ho Au, and Zhimin Ding. “DualRing: Generic
Construction of Ring Signatures with Efficient Instantiations.” In: CRYPTO 2021, Part I. Ed. by Tal Malkin and
Chris Peikert. Vol. 12825. LNCS. Virtual Event: Springer, Cham, Aug. 2021, pp. 251-281. por: 10.1007/978-
3-030-84242-0_10 (cit. on p. 21).

[Zha22] Mark Zhandry. “To Label, or Not To Label (in Generic Groups).” In: CRYPTO 2022, Part 111. Ed. by Yevgeniy
Dodis and Thomas Shrimpton. Vol. 13509. LNCS. Springer, Cham, Aug. 2022, pp. 66-96. por: 10.1007/978-
3-031-15982-4_3 (cit. on p. 30).

A. Basic Building Blocks
In this section, we provide definitions of basic cryptographic building blocks used to construct Signal handshake protocols.
A.1. Symmetric Key Encryption

We review the definition of symmetric key encryption (SKE).

Definition 10 (Symmetric Key Encryption). A symmetric key encryption scheme SKE with secret key space K is given by
two PPT algorithms SKE.Enc and SKE.Dec as follows:

27

https://signal.org/docs/specifications/doubleratchet/
https://theses.hal.science/tel-01245066
https://doi.org/10.1007/978-3-319-70694-8_13
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1109/TIT.2016.2603151
https://doi.org/10.1145/3658644.3670350
https://doi.org/10.1145/2810103.2813616
https://doi.org/10.1145/2810103.2813616
https://doi.org/10.1515/popets-2018-0003
https://doi.org/10.1109/SP.2015.22
https://doi.org/10.1007/978-3-030-57878-7_10
https://doi.org/10.1007/978-3-030-57878-7_10
https://doi.org/10.13154/tches.v2019.i4.154-179
https://tches.iacr.org/index.php/TCHES/article/view/8348
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://www.whatsapp.com/security/WhatsApp-Security-Whitepaper.pdf
https://doi.org/10.1007/978-3-030-84242-0_10
https://doi.org/10.1007/978-3-030-84242-0_10
https://doi.org/10.1007/978-3-031-15982-4_3
https://doi.org/10.1007/978-3-031-15982-4_3

SKE.Enc(K,m) — ct: On input a secret key K € K and a message m, outputs a ciphertext ct.
SKE.Dec(K,ct) — m/L: Oninput a secret key K and a ciphertext ct, outputs a message m or L indicating decryption failure.

Definition 11 (Correctness). An SKE is correct if for all K € K and messages m, we have SKE.Dec(K, SKE.Enc(K,m)) = m

Definition 12 (IND-CPA Security). We define the advantage of A against the IND-CPA security game as follows:

b Jo.1y
K <— K,
AdvEFA (1Y) = |Pr|b = b’ (mo,m1) S Ay, |-
ot & Esnc(K mp),
b" — A(ct)

1
51

An SKE is IND-CPA secure if the advantage is negligible for any efficient adversary A.

We also require an SKE to be robust [ABN10], i.e., no ciphertext should validly decrypt under two distinct secret keys
(even if the decryption results are distinct).

Definition 13 (Robustness). We define the advantage of A against the robustness game as follows:

K+K
AdvERe'%: (1) := Pr | A Dec(K,ct) # L |(ct, K, K") & Ay,
A Dec(K’,ct) # L

An SKE is robust if the advantage is negligible for any efficient adversary A.

A.2. Key Encapsulation Mechanisms
We review the definition of key encapsulation mechanism (KEM).

Definition 14 (KEM). A key encapsulation mechanism scheme KEM with session key space K consists of three PPT algorithms
(KEM.KeyGen, KEM Encaps, KEM.Decaps), where:

KEM. KeyGen(l’l) — (ek,dk): On input the security parameter 14, outputs a pair of keys (ek, dk).

KEM.Encaps(ek) — 5 (ss,ct): On input an encapsulation key ek, outputs a session key ss € K and a ciphertext ct.
KEM.Decaps(dk, ct) — ss: On input a decapsulation key dk and a ciphertext ct, outputs a session key ss € K.

Definition 15 (Correctness) A KEM is correct if for all A < N, it holds that Pr [KEM.Decaps(dk, ct) = ss] > 1 — negl(1),
where we have (ek, dk) & KEM. KeyGen(1%) and (ss, ct) & KEM. Encaps(ek).

Definition 16 (IND-ATK Security). For ATK € { CPA, CCA }, we define the advantage of A against the IND-ATK security
game as follows:
b & {0, 1},
(ek, dk) & KEM.KeyGen(1%),
AV (14) := [Pr | b = b" | (sso, ct) < KEM.Encaps(ek), | -
SS (— 7(
b & AONK (ek, ssp, ct)

| —

where

1 if ATK = CPA
Ontk = . :
KEM.Decaps(dk,-) if ATK = CCA

When ATK = CCA, A is not allowed to query the challenge ciphertext ct to Ogca. A KEM is IND-ATK secure if the advantage
is negligible for any efficient adversary A.

A.3. Signature Schemes

We review the definition of digital signatures.

Definition 17 (Signature Schemes). A signature scheme with message space M consists of the following three PPT algorithms
(Sig.KeyGen, Sig. Slgn Sig. Verify):

Sig. KeyGen(l’l) — (vk,sk): On input the security parameter 14, outputs a pair of keys (Vk, sk).

Sig.Sign(sk, M) % o1 On input a signing key sk and a message M € M, outputs a signature o.

Sig.Verify(vk, M, o) — {0, 1}: On input a verification key vk, a message M and a signature o, outputs a verification bit.

28

Definition 18 (Correctness) A signature scheme is correct if for all 1 € N and messages M € M, we have Sig.Verify (vk, M,
o) = 1, where (vk, sk) < Sig.KeyGen(14) and o <~ Sig.Sign (sk, M).

Definition 19 (EUF-CMA Security). We define the advantage of A against the EUF-CMA security game as follows:

Sig.Verify(vk, M, o) = 1] (vk, sk) <~ Sig.KeyGen(1%);

EUF-CMA ({0 ._
Adv (1*) =Pr AM ¢ L (M,) & AOsin(sk.) (vk)

SIG, A
where Osign () = Sig.Sign(sk, -) is the signing oracle and L is the set of messages that A submitted to Osign. A signature
scheme is EUF-CMA-secure if the advantage is negligible for any efficient adversary A.

A.4. Ring Signature Schemes

We recall standard correctness and unforgeability definitions for ring signatures.

Definition 20 (Correctness). A ring signature is correct if for all A € N, N = poly(1), j € [N], and message M, , We have
RS.Verify(RL, M, sig) = 1, where for i € [N], (rvk;, rsk;) & Rs. KeyGen(11), RL := {rvky,--- ,rvky }, and sig < RS.
Sign(rsk;, M, RL).

Definition 21 (Unforgeability). We define the advantage of A against the unforgeability game as a game played between A
and a challenger:
(i) The challenger generates key pairs (rvk;, rsk;) «
RS.KeyGen(1%) fori € [N]. It sets VK := (rvk;)ie[N1 initializes two empty sets SL and CL, and provides SL to A;
(i) A can make signing and corruption queries an arbitrary polynomial number of times:
* (sign,i,M,RL): The challenger checks if rvk; € RL, and if so, computes the signature with sig & Rs. Sign(
rsk;, M, RL). The challenger provides sig to A and adds (i, M, RL) to SL;
¢ (corrupt, i): The challenger adds rvk; to CL and returns rsk; to A.
(iii) A outputs (RL*, M*,sig*). If RL* € VK\CL, (-, M*,RL") ¢ SL, and RS.Verify(RL, M, sig) = 1, then we say the
adversary A wins.
The advantage of A is defined as Advggf’ ﬂ(l’l) = Pr[A wins]. A ring signature scheme RS is unforgeable if the advantage
is negligible for any N = poly(1) and efficient adversary A.

A.5. Merkle Trees

A Merkle tree [Mer87] allows to prove membership in a set by hashing a list of elements A = (ay, - - - , ay) into one hash
value root. At a later point, one can efficiently prove to a third party that an element a; was included in the list A. We rely on
a specific construction based on [BKP20] which allows us to hide the position in the list. Looking ahead, this allows us to
hide the prekey bundle index being used, that is, to hide how many times a prekey bundle has been used.

Definition 22. A Merkle tree consists of PPT algorithms (MerkleTree, getMerklePath, ReconstructRoot) with access to a
hash function Heoy : {0, 1}* — {0, 1}>4.

MerkleTree(A) — (root,tree): On input a list of (at most) 2X elements A = (ay, - - - , a,x), with k € N, it constructs a binary
tree of height k with { ¢; = Heon(ai) };c[2x) as its leaf nodes, and where every internal node 4 with children Ajert and
hyight equals the hash digest of (/ett, fright)lex, Where the subscript lex indicates the lexicographical order (or any other
total order on binary strings).'> It then outputs the root root of the Merkle tree, as well as a description of the entire tree
tree.

getMerklePath(tree, i) — path: On input the description of a Merkle tree tree and an index i € [2¥], it outputs the list path,
which contains the sibling of ¢;, as well as the sibling of any ancestor of ¢;, ordered by decreasing height.

ReconstructRoot(a, path) — root: On input an element a in the list of elements A = (ay, - -+ ,a,«) and path = (n,-- -,
ny), it outputs a reconstructed root root’” = hy, which is calculated by putting hg = Hcon(a) and defining h; fori € [k]
recursively as h; = Hoon(hi-1, 1;)lex)-

If the hash function Hco that is used in the Merkle tree is collision resistant, then we have that the Merkle tree construction
is binding. Formally, we have the following.

Lemma 1 (Binding). There is an efficient extractor algorithm that, given the description tree of a Merkle tree (having root root
and constructed using the list of elements A) and (b, path) such that b ¢ A and ReconstructRoot(b, path) = root, outputs a
collision for the hash function Heo).

Lastly, the use of the lexicographical order to concatenate two children nodes in the Merkle tree construction implies that
the output path of the algorithm getMerklePath hides the index i € [N] given as input. As we do not formally use this in our
work, we refer to [BKP20, Lemma 2.10] for more details.

I5While it is standard to consider the concatenation Ayeg| | Aright this slight modification allows to show index hiding (cf. [BKP20, Lemma 2.10]).

29

B. Cryptographic Models

In this section, we give some details on cryptographic models used in proofs, namely the generic group model and the quantum
random oracle model.

B.1. Generic Group Model with Oblivious Sampling

We recall the generic group model (GGM) by Shoup [Sho97] (i.e., random representation model) using the notations from
Zhandry [Zha22]. Moreover, we extend the GGM with oblivious sampling following [LPS23]. This allows us to model
adversaries that may sample group elements without knowing the corresponding discrete log.

Let S c {0, 1} be a set of strings of cardinality at least p € N. Let &' : Z,, — S be a random injective function called
the labeling function. Let D : Z,, — {0, 1} be an arbitrary efficiently sampleable distribution. All parties, including the
adversary, the challenger, and subalgorithms, are able to make the following queries:

Labeling queries On input x € Z, from a party, it outputs the string Z(x) € S.

Group operations On input (s, s2,a;,a2) € §? x Zf, from a party, it first checks if there exists xj,x, € Z, such that
Z(x1) =51 and E(xp) = so. If not it outputs L. Otherwise, it outputs Z(ajx; + axxy) € S.

- $ _
Oblivious sampling On invocation, it samples x < D and outputs Z(x) € S.

All queries are assumed to have unit costs. Above, = (x) represents g* in the real world, where g is a fixed generator
of the group. For instance, given s = Z(x), a party can compute the representation of g~ for some a € Z,, by querying
(s,s,a/2,a/2) to the group operation oracle. For simplicity, we sometimes simply write that a party performs a group
operation oracle query on input (s, a). Lastly, D allows us to model the party’s knowledge of the exponent for an obliviously
sampled group element. In this paper, for simplicity, we always assume D is the uniform distribution over Z,. However, in
general, we only require D to be some distribution over Z,, with sufficient min-entropy.

Admissible encodings are one approach to oblivious sampling. They are efficiently computable functions E from Z,, to
elliptic curve groups that are regular (small preimage sizes) and preimage sampleable (given an element in the image of E,
one can efficiently recover its whole preimage). Concrete constructions for admissible encodings are given in e.g. [BFO1;
Ica09; WB19].

B.2. Quantum Random Oracle Model

We recall the result by Ambainis, Hamburg, and Unruh [AHU19]. As in the classical setting, it allows us to argue that if a
reduction programs the (quantum) random oracle on a sufficiently random point, then an adversary learns nothing about the
programmed point.

Definition 23 (Punctured oracle). Let S ¢ X be aset. Let fs : X — {0, 1} be a predicate that returns 1 if and only if x € S.
A punctured oracle H\ S of H: X — Y runs as follows: on input x, computes whether x € S in an auxiliary qubit, measures
it, runs H(x), and returns the result. Let FIND denote the event that any of the measurement returns 1.

Lemma 2 (Semi-classical OW2H). Let G,H : X — Y be random functions, let 7 be a random value, and let S € X be
a random set such that Vx ¢ S,G(x) = H(x). (G,H, S, z) may have arbitrary joint distribution. Then, for all quantum
algorithms A on input 7 issuing at most q oracle queries, output either 0 or 1 with the following guarantee:

Pr[l & A% (2)] - Pr[1 & AM (2)] < 2 - \/q-Pr[F|ND|b<iy{IG\S>(z)]. (1)

In particular, if for each x € X, Pr[x € S| < € (conditioned on z, on other oracles ‘A has access to, and on other outputs of
H), then we have

Pr[FIND | b & AIS\S) (2)] < 4g - €.

C. Combinations of Leakage and Disclosure

Table 8 depicts the combinations of leakage and disclosure which we consider.

30

Table 8: Secret information available to the distinguishing judge. # and C denote the accused and (honest-but-curious)
accusing users, respectively.

Lleak Ddisc
for hin H for ¢ in C

leak disc The judge gets:

(L, 1) init ~ No information from accused users.
’ (iske,ste,st™) L high Al accuser secrets, including initial state.

(isky,, L) o Accused users identity secret key.
h- (iske, ste, st™) med high All accuser secrets, including initial state.

(isk. st) » Accused users identity secret key and state.
ho=Mh) (iske, ste, stM) high high All accuser secrets, including initial state.

(iskp, L) (iske, L, L) med low Identity secret key of all users.

(iskp,stp) (iske,ste, L) high med Identity secret key and states of all users.

D. Strong Implies Standard Deniability

In this section, we demonstrate that, as one would expect, deniability against malicious adversaries implies deniability against
honest but curious adversaries.

Lemma 3 (Strong Local Deniability = (Standard) Local Deniability). If a two-round bundled authenticated key exchange
protocol BAKE is strongly local deniable for accused users H C N against malicious accusers C = N \ H with respect to a
leakage function Lieqk with leak € {low, med, high}, then it is locally deniable for accused users H against honest-but-curious
accusers C for the same leakage function Lieax, and for any disclosure function Dyisc.

Proof. We will prove this by contradiction. The intuition of the proof is as follows: we show that we can construct an accuser
for the malicious security game that is equivalent to the local honest security game. If this accuser has negligible advantage,
no accuser can exist that has non-negligible advantage in the local honest security game.

We assume BAKE is nor (standard) local deniable for accused users H for some leakage function Ljeax with leak €
{low, med, high} and for any disclosure function Dgisc. That is, for any simulator Sim = (SimPreK, SimTrans), there exists
a distinguisher D for which Adv'lg’cqa{" o, (17) is non-negligible.

Let us now describe an accuser A for the strong deniability game. If mode = real, then, on input ((iky) ez (iSky)yecs
(prgku)ue(H, stg), A runs the honest prekey generation algorithm (prc:ku, st,) & BAKE.PreKeyBundleGen(isk,,) for all

u € C and outputs ((préku)uec,st A= (isky, st := st,)uec). When A is invoked within oracle Osyong-iocal (5,) for
(s,r) € N X H, it executes (K, p) «— BAKE.Send(iskg, ik,,prek,’,), where note that this is well-defined as we have
isky € stg. The accuser then outputs (p, St#).

For the sake of contradiction, let us assume an arbitrary simulator Sim # = (SimPreK 4, SimTrans #) for the malicious
deniability game, and that, for any distinguisher D’, Adv;t,mZ?'I:cal (14) is negligible. Due to the way we defined the accuser A
(namely to honestly execute the protocol), Sim# can be viewed as a simulator Sim against the local honest deniability game.
Moreover, the information leaked from accused users by Ljeak is the same in both games, while the information disclosed by
A to D’ in st contains (at least) the information output by Dyise for the corresponding disc € { low, med, high }.

Even in the most restricted leakage setting, the distinguisher D’ in the local malicious deniability game obtains st# =
(isk,, st™),,cc. Therefore, if any D’ has negligible advantage given the output of Ljeak, so does any D against the local honest
deniability game given the output of Ljeax. However, this contradicts our assumption made at start of the proof, completing
the proof. O

E. Proof of Deniability of X3DH and PQXDH

In this section, we provide the proofs of varying levels of deniability attained by the X3DH and PQXDH protocols.

E.1. Local Deniability of X3DH and PQXDH

We prove that X3DH is locally deniable against honest-but-curious accusers (i.e., those who follow the protocol description)
even if the distinguisher obtains all secret information of the users.

Lemma 4. The X3DH protocol is locally deniable with respect to leakage function Lign, and disclosure function Dpigh.

31

Proof. Let us first define the simulator Sim = (SimPreK, SimTrans, SimSty, SimStc):

SimPreK((iku)ue s (isKiucc (pr?aku)ueﬂ): For u € C, run (prek,,st,) < X3DH. PreKeyBundleGen(isk,), and out-

put ((prek,,), cqp ((prek,, st,))uec, Stsim) with stgim = ((iky, prek,,),c > (i8Ky, Sty)uec). Below, for simplicity, we
assume the simulator Sim always extracts the necessary public information from its state Stgjm.

SimTrans(isk, stsim, (s,7,1)): Here, recall isk is either isky, isk,, or L dependingon s € C,r € C, or (s,7) € H X H,
respectively.

If (s,r) € H x C: First sample esk & Z, and set epk = [esk]G. Then extract the signed prekey secret spksec,.
from st, € stgim, and compute

(sS1,SS2, S83,884) = ([spksecr]R, [esk]ik,, [esk]spk,., [esk]opkm),

where note that such st, exists as r € C. Finally, compute Alg. 5, Lns. 16 to 18 and output (K, p).
If (s,r) € C X H: Simply run (K, p) & X3DH.Send(isks, ik, prek, ,), and output (K, p).

SimStq,(isk,, st.): Parse (Dprex, Dy,) < st and delete the last unused one-time state, i.e., let # be the smallest index s.t.
Dprek [t] #* 1. Ift < L, let Dprek [t] «— 1. Output the updated Str.

SimSt¢ (stsim): For u € C, extract st, from Stsim, parse (Dprek, D,) < st,, and delete ephemeral secrets associated to used
prekeys, i.e., for t € [counter,], with t < L, let Dprex[t] < L. Output (st,)uec-

Recall that querying (s,r) € H X H is only allowed in the global deniability game (see App. E.2 for details), hence, it
remains to analyze the distinguishing advantage of D given as auxiliary information discp := ((isky),cc> (stint u eC) disclosed
by accusing users, and leakp = ((isky)uerts (St)uer) = Lhigh ((iKu) e aes (Stu)yeqr)- First, for the case (s,r) € H x C,
notice that ss;, SS3, SS4 are generated exactly as in the real world. Moreover, the simulated ss; = [Spksecr]ms has the same
distribution as the real world ss; = [is_ks]spkr. Hence, the output of SimTrans is identical to real world outputs from D’s
view, even given discp and leakp. Next, for the case (s,r) € C X H, notice that p output by SimTrans is computed exactly
by the real sender algorithm. Moreover, by correctness of the X3DH protocol, the real receiver algorithm outputs the same
key K output by SimTrans. Finally, it is straightforward to see that user states updated by SimSt¢, and SimSt¢ in simulated
executions are consistent with real executions. Hence, no D has any distinguishing advantage as desired. This completes the
proof. O

The only difference between PQXDH and X3DH is that PQXDH additionally has a KEM key sskgym in the key derivation.
As explained in Sec. 4.2, this does not affect local deniability of PQXDH.

Lemma 5. The PQXDH protocol is locally deniable with respect to leakage function Lign, and disclosure function Dpign,
under the correctness of the KEM scheme. Importantly, this holds even for classical accusers and quantum distinguishers.

Proof. The proof is almost identical to that given for X3DH (cf. Lemma 4). Indeed, SimPreK is the same as before. The only
difference is SimTrans, where we also take the KEM scheme into consideration. However, since KEM.Encaps can be run
publicly, the honest sender remains deniable and provides no distinguishing advantage to D. Moreover, by the correctness
of the KEM scheme, the simulator does not need to have the honest receiver’s decapsulation key to know the outcome of
KEM.Decaps. Specifically, adding a KEM to X3DH does not impact deniability. Since, assuming correctness of the underlying
primitives, the simulation is perfect in both cases ((s,r) € C X H, and (s,r) € H X C), deniability holds for both classical
and quantum distinguishers. This completes the proof. O

E.2. Global Deniability of X3DH

We prove that X3DH is globally deniable against honest-but-curious accusers. The protocol remains deniable even against
distinguishers obtaining all secret information of the user if the one-time prekeys are never depleted. Otherwise, if the
last-resort prekey bundle is used, then it remains deniable against distinguishers only obtaining the long-term identity secret
key of the accused (i.e., leak = med). It is worth mentioning that only the sessions between honest senders and receivers
using the last-resort prekey bundle become undeniable against full leakage — sessions using one-time prekey bundles remain
deniable as expected.

Lemma 6. Assume the key derivation function KDF is modeled as a random oracle and the DDH assumption holds. Then,
the X3DH protocol is globally deniable for honest users H C N against honest-but-curious accusers C := N\H with respect
to disclosure function Dnign, and leakage function Lieax for leak = high if the one-time prekey bundles are never depleted;
and for leak = med otherwise.

32

Proof. Let us first define the simulator Sim = (SimPreK, SimTrans, SimSt4,, SimSt¢). It is defined identically to that
of Lemma 4 with the only exception that we have to further specify the description of SimTrans on input (s,7) € H X H as
these cases were excluded in the local deniability game.

SimTrans(stgim, (s, r,1)): és explained above, we only describe the simulation for (s, r) € H X H. Simply sample a random
group element epk «— G, sample random K ||7gon¢ from the range of the KDF, compute Alg. 5, Ln. 18, and output
(K, K, p). Namely, skip computing the input to the KDF.

It remains to analyze the distinguishing advantage of the distinguisher D, where we consider two cases as in the lemma
statement. Since we proved (perfect) local deniability when leak = high, and disc = high in Lemma 4, we only focus on the
transcript indistinguishability when D queries (s,7) € H x H to its oracle.

Case 1. Let us first consider the case where the one-time prekey bundles are not depleted: we always have a one-time prekey
opk, , fort € [L] and the sender always computes the secret key K by including ss4 in the KDF. In this case, D is given
as auxiliary information discp := ((isky),c¢, (Sti™),) disclosed by accusing users, and leakp := ((isKy) > (Stu) yex)
= Lhigh ((isku)uE(H, (stu)uE,H). The main observation is that once the receiver r € H runs X3DH.Receive(isk,, st,, (iks, f,
p)), the one-time prekey secret osk, is deleted from its state st,. Namely, D does not have osk, ; nor esk to compute
ssy = [esk]opk, , = [osk, ,]epk after the session is established. We formalize this argument below.

For the sake of contradiction, assume D has a non-negligible advantage € and makes at most Qgjopal queries to the oracle
OGiobal- We first make a syntactical modification to the game when mode = real; recall that in this case, the game first ran
(K, p) & X3DH. Send(isks, (ik,, prek, ,)) and (K’, st,) & X3DH. Receive(isk,, st,, (iks, t, p)). We modify this so that the
game no longer runs X3DH.Receive but simply outputs K instead of K’ and an updated st,., where st, [t] « L ift # L. Due
to correctness, this does not alter the view of D. For the sake of explanation, we denote this artificial receive algorithm by
X3DH.Receive’ below. We also define a modified sender algorithm X3DH.Send’ defined identical to X3DH.Send except
that it samples ss4 randomly in G as opposed to computing it as [esk]opk, ,. Note that X3DH.Receive’ runs as expected on
the output of X3DH.Send’, while X3DH.Receive would output L with overwhelming probability.

Now, let us define Qgiopal + 1 hybrid games. We define Gamegy,,,,.+1 identical to the original global deniability game. The
i-th (i € [Qaiobal]) game Game; is defined identical to Game;,| except that when D queries Ogjopal for the Qgiopal — I + 1-th
time, if the input is (s,7) € H x H, and if mode = real, the game computes the real transcript by running X3DH.Send’
and X3DH.Receive’ as opposed to running the original functions X3DH.Send and X3DH.Receive. Namely, in Gamey,
X3DH.Send’ and X3DH.Receive’ are executed if mode = real and SimTrans is executed if mode = sim, when D queries
Ocgiobal On input (s,r) € H x H. Notice that by the definition of X3DH.Send, unless D queries the random oracle on input
ss1|ssz||ss3]|sS4, the views in mode = real and sim are identical. However, since ssy4 is sampled uniformly at random
from Z,, and hidden from D, this cannot occur with all but negligible probability. Hence, the advantage of D in Game; is
negligible. Then, by assumption, there must exist an index i* € [Qgiopal] such that the advantage of D changes by more than a
non-negligible fraction €/Qgjobal between Game;- and Game;-,;. It remains to construct a DDH solver exploiting this fact.

Let B be an adversary against the DDH problem, given as input (A sB C) = ([a]G, [p]G, [1G) 5Bwhere cisc =abif
bppy =0 and ¢ & Zy, if bppn = 1. B first samples a challenge bit b < {0, 1}, random (s, r",t*) < H X H x [L], and
prepares all the keys of the users as in Gamegg,,,+1 €xcept that it sets the ¢*-th one-time prekey opk,.. ,. of user r* as A. 8
then simulates Game;+4; up till the (Qgiobal — i*)-th query to Ogobal Using the keys it has prepared at the beginning of the
game. When D queries Ogjobal for the (Qgiobal — i* + 1)-th time on input (s, r), B checks if (s,r) = (s%,r") and the ¢*-th
one-time prekey bundle of the receiver r* is going to be used. If not, it aborts the game. Otherwise, if B sampled b = 0 as
the challenge bit, it first sets epk = B rather than sampling it on its own (see Alg. 5, Ln. 7). It then computes Ss|, SS;, $S3
using the keys it sampled at the beginning of the game, where note that 8 knows all the discrete logarithms except for those
of opk,. ,- and epk. Finally, it sets ss4 = C, computes Alg. 5, Lns. 16 to 18, and outputs (K, p). The rest of the game is
identical to Game;+1. When D outputs a guess bit b’, B outputs [b = b’] as its guess for bppy.

It remains to analyze the advantage of 8. With probability 1/N?L, the guess (s*,7*,*) made by B is correct. Moreover,
the above game simulated by $ is identical to Game;+,; if C = [ab]G and Game;- if C = [¢]G for a random ¢ & Zp,. From
our assumption, since the advantage D has against Game;- and Game;«, differs by a non-negligible amount €/Qgjobal, B
solves the DDH problem with a non-negligible advantage of at least €/ (2N 2LQG|oba|)- However, this contradicts the DDH
assumption, thus completing the proof.

Case 2. The second case is where a last-resort prekey bundle is used. Unlike in Case 1, we can no longer embed the DDH
problem into ss4 as opk,, , = L. To this end, we restrict the leakage given to D as leak = med in order to embed the DDH
problem into ss3 = [esk]spk, = [spksec,]epk instead. Following an almost identical hybrid argument as in Case 1, we can
prove that no distinguisher D can have non-negligible advantage in the global deniability game under the DDH assumption. O

E.3. Global Deniability of PQXDH

We prove two types of global deniability for PQXDH. While the accuser is always assumed to be classical, the distinguisher
may be classical or quantum, where the latter captures HNJL deniability.

33

Lemma 7. Assume the key derivation function KDF is modeled as a random oracle. Then, the PQXDH protocol is globally
deniable with respect to disclosure function Dyign, and leakage function Lieak, for:
¢ leak = high if one-time prekey bundles are never depleted; and leak = med otherwise, under the DDH assumption;
¢ leak = high if one-time prekey bundles are never depleted; and leak = med otherwise, under the correctness of the
KEM scheme and the existence of an efficient DL solver.
The latter case can handle deniability against a classical accuser and a quantum distinguisher.

Proof. The first (classical) part of the proof follows immediately from the proof of local deniability of the PQXDH protocol
(cf. Lemma 5) and the proof of global deniability of the X3DH protocol (cf. Lemma 6). Indeed, from Lemma 5, we only need
to specify the description of SimTrans on input (s,7) € H x H as these cases were excluded in the local deniability game.
An exact same proof following Lemma 6 suffices as deniability holds regardless of the KEM scheme, as anybody can produce
a valid ciphertext.

For the HNJL part of the proof, where the distinguisher is quantum, local deniability is immediate. Indeed, the simulator’s
output is exactly the output of a real execution, no computational assumptions are required for deniability to hold. Hence,
even a quantum D cannot distinguish real from simulated executions. For the case (s,r) € H x H, using the proof strategy
of Lemma 6, we need to argue that a quantum D cannot guess the input (ss ||SSkem , content) to the KDF (modeled as a
random oracle), with all but negligible probability. Observe that content is known to D; and a quantum D, who can compute
discrete logarithms, could efficiently compute inputs ssi, $S3, 883 (and ssy, if opk,. , # 1), and hence ss. However, so long
as the KEM is proven post-quantum secure, SSkepm is indistinguishable from random from D’s view, and can take any value in
the KEM’s session key space (which is exponentially large compared the number of oracle queries D can perform). Hence,
D cannot query the random oracle on input (Ss ||SSkem , content) with all but negligible probability. This holds both in
the classical setting, and in the QROM, by applying the OW2H lemma [AHU19]. Indeed, let us denote ¢ the maximum
number of (quantum) oracle queries made by D, k the size of the KEM’s session key space, and Spap the set of values
(ss ||sskem , content) for which D’s view differs in the real and simulated execution modes. Note that [Sgap| < ¢. Then for

t

any input x, Pr[x € Sgap] < =gl Now, by applying Lemma 2, we can upper bound the probability pring that D, given
access to the quantum random oracle, queries an element in Spap: piind < ki‘—'éil. This allows us to bound the probability
that D can tell appart real and simulated executions in the QROM by pgist < 4¢q k+q+1’ which is negligible in the security

parameter. O

E.4. Strong Local and Global Deniability of X3DH and PQXDH

Strong local deniability of X3DH and PQXDH almost directly follows from their global counterparts so we only provide their
security statement below. As explained in Sec. 4.2, we can only show PQXDH is classically strong local deniable.

Lemma 8. Assume the underlying group used by the X3DH and PQXDH protocols is a generic group of prime order p, and
the key derivation function KDF is modeled as a random oracle. Then, the two protocols are strongly local deniable for honest
users H C N against malicious accusers C .= N\H with respect to leakage function Lnigh. Importantly, the accusers and
distinguisher are classical.

Below, we prove that X3DH and PQXDH are (classically) strongly global deniable. The leakages supported are the same as
for standard (non-strong) global deniability (see Apps. E.2 and E.3).

Lemma 9. Assume the underlying group used by the X8DH and PQXDH protocols is a generic group of prime order p and
the key derivation function KDF is modeled as a random oracle. Then, the two protocols are strongly global deniable for
honest users H C N against malicious accusers C = N\H with respect to leakage function Lieak for leak = high if the
one-time prekeys are never depleted and for leak = med otherwise. Importantly, the accusers and distinguisher are classical.

Proof. We prove the statement in two parts: one proof for X3DH and another for PQXDH.

First half (X3DH). Let A be the malicious accuser. We first define the simulator Simg = (SimPreK 4, SimTrans 4,
SimStqy, SimSt). Recall in the GGM with oblivious sampling (see App. B.1), every party, including the simulator Sim #
and the distinguisher D have access to the GGM oracles.

At a high level, Sim # will internally execute the accuser A and when A queries the GGM and random oracles, Sim # will
simply relay them to its respective oracles. Assume the GGM oracle is queried a total of Q times by all parties, including the
challenger of the game. Since Sim # can observe all the oracle queries made by A, when A outputs a label s € § € {0, 1},
representing a group element G, Sim # can efficiently compute the unique labels (s;, 5});e[o’] for Q" < Q and non-zero
coefficients (a;, @))ic[o'] in Zp, such that Z~1(s) = Yie(or) (@i - E7(si) + @) - £7'(s])), where s; (resp. s/) is an output of
the GGM labeling (resp. oblivious sampling) oracle. Here, recall Z : Z, — S is the random injective function sampled
within the GGM. Below, given a label s € S from A, we call s a Goody, label if s does not contain any coefficients “:" and
call it a Bady, label otherwise. That is, if s contains labels output by the GGM oblivious sampling oracle, then we deem it a

34

Bad; label, (informally) indicating that neither Sim # nor A knows Z~!(s) € Z,,. Moreover, it is clear that for any Goodr,
label s € S, Sim# can efficiently compute the unique x € Z,, such that Z(x) = s. We will use these facts to describe the
simulator Sim # below.

SimPreKﬂ((iku)ueN,(isku)LlEC,(préku)uEﬂ): It first internally executes the adversary ((prgku)uec,sty() &

A((Ky) ye s (1K) yecs (Prek,) eq). It then outputs ((prek,), .4 (PreK,),cc,Sta, stsim) with stgim =
((iky, prek,,), c o> Star, @uxsim), where auxsim includes all the queries A has made to the GGM and random
oracles so far. Below, we assume auxgjm is updated every time the adversary or the simulator makes oracle queries.

SimTrans # (isk, stsim, (s, 7,1)): Here, recall isk is either iskg, isk,, or L dependingon s € C,r € C, or (s,r) € H X H,
respectively.

If (s5,r) € H x C: First retrieve the prekey bundle (spk,., ospk,, OPK,. ;) < prek, ; of the malicious receiver, sample
esk < Z, and query the GGM labelling oracle to receive epk := Z(esk) € S. Then check if spk, is a Goody, label
using auxsim € Stgim. If so, compute the unique signed prekey secret spksec,. € Z, such that Z(spksec,) = spk,.. Then
query the GGM group operation oracle on the tuples (iks, spksec,.), (ik,, esk), (spk,,esk), and (opk, ,,esk) € Z;, XS
to obtain labels (s1, 52, 53, 54) € S*. Set

(ssy, sS2, SS3,884) = (51, 52, 53, 54),

compute the remaining Alg. 5, Lns. 16 to 18, and output (K, p, stgim). Above, we note that if opk, , = L (i.e., the
last-resort prekey bundle), then the simulator simply ignores generation of sy4.

Otherwise, if spk,. is a Bady, label, Sample random (K||7cons) from the range of the KDF, compute Alg. 5, Lns. 17
and 18, and output (K, p, stsim). Namely, skip computing the input to the KDF.

If (s,r) € C x H: First execute the malicious sender internally (p, st) & Al(isks, sta, (s,7,1)) using the accuser’s
state st € stgim. Here, the simulator updates stgjy, by storing the updated st 4. Then parse (epk, Tconf) < p and
check if A ever made a random oracle query on input (ss, content), where content := ik, ||ik, ||prek, , |lepk, such that
K||tcont := KDF(ss, content) using auxsim € Stsim. If not, simply output (L, p, Stsim). Otherwise, retrieve the first
such tuple (ss, K) under any canonical ordering and output (K, p, stsim).

If (s,r) € H x H: First sample esk & Z, and query the GGM labelling oracle to receive epk := Z(esk) € S. Then
sample random (K||7cont) from the range of the KDF, compute Alg. 5, Lns. 17 and 18, and output (K, K, p). Namely,
skip computing the input to the KDF.

SimStq,(isk,, st.): Parse (Dprek, Dp,) < st and delete the last unused one-time state, i.e., let # be the smallest index s.t.
Dprek [t] #* 1. Ift < L, let Dprek [t] «— 1. Output the updated Str.

SimSt 4 (stsim): Extract st from stgim. Output st 4.

It remains to analyze the distinguishing advantage of D. Notice that there are only three cases in which the simulator
deviates from the algorithms executed in the real world.

Case (1): When (s,7) € H x C and spk,. is a Bad;, label. Since A (and hence D) does not know spksec,. or esk, the
Diffie-Hellman value ss3 remains hidden. Specifically, the output of the KDF remains indistinguishable from random.

Case (ii): When (s,r) € C X H and A makes several random oracle queries on input (ss, content) such that K||7conf :=
KDF(ss, content) for a given content := ik ||ik, [|prek, ,||epk. Note that if such an ss was never queried, the honest receiver
will not accept the handshake message p as the verification of Alg. 6, Ln. 19 will fail (with all but negligible probability). In
particular, the simulation becomes identical to the real world.

Case (iii): When (s,r) € H x H, A (and hence D) does not know esk. If the sender uses the last-resort prekey bundle,
then assuming the state of accused users is not leaked to D, the Diffie-Hellman value ss3 remains hidden. Note that this is the
only case where leaking honest users’ state will cause the simulation to fail, as it would allow D to recompute the input to the
KDF from p. It could then trivially see that the simulator sampled (K ||7conf) randomly (as opposed to using the KDF). Hence,
for global deniability, we can only simulate for leakage leak = med if the one-time prekeys are depleted.

More formally, the fact that Case (ii) cannot impact the distinguisher D’s advantage follows immediately from the fact that KDF is
arandom oracle. Indeed, if ss # ss’, and denoting that K || 7cons := KDF(ss, content), and that K’ ||7/_ . := KDF(ss’, content),
since KDF is a random oracle, it holds that Teons # Tc'onf with overwhelming probability. Moreover, if the honest receiver
accepts, then the malicious sender must have queried (ss, content) such that K || 7qont := KDF(ss, content). Indeed, due to the
randomness of the KDF, for any fixed value of content, the probability that A can find an ss and 1¢onf — Without querying

KDF (ss, content) — satisfying K*||7¢on := KDF(sS, content), for arbitrary K*, is negligible. Hence, the simulator can output

35

the same session key K that will be output by the honest receiver. Finally, if the honest receiver does not accept (i.e., K = 1),
then the output of the simulator is identical to that of the accuser A in the real world.

It remains to formally prove that Case (i) and Case (iii) also cannot impact the advantage of D. To this end, we construct
a reduction R that simulates the view of the distinguisher in the strong global deniability game. As typical with GGM
based proofs, the reduction R simulates the game by using indeterminates x instead of x € Z, and encodes the “polynomial”
X € Z,[X] instead of x. Moreover, rather than preparing a random injective labeling function = : Z,, — §, R samples a
uniformly random label s € S on-the-fly, conditioned on that it has never been sampled. Note that the indeterminates are
associated to the labels in S for which A and D do not know the corresponding discrete logarithm. Concretely, the reduction
R maintains a list L where each tuple consists of a polynomial over Z, and a label S. At the end of the game, R plugs in
random points in Z,, into the indeterminates and computes all the polynomials. As long as the distinct polynomials do not
compute to the same value, the simulation remains indistinguishable in the GGM. We finally prove that such a collision occurs
with negligible probability by relying on the Schwartz—Zippel lemma.

More formally, there are only three ways in which a new indeterminate is created by R.

1. When generating the one-time prekeys at the begingling of the game, R prepares, foru € H and t € [L], a new
indeterminate osk,, ;, samples a random label opk,, , < § not 1ncluded in the list L, and uses opk,, , instead. At the time
the distinguisher D receives auxp, the reduction R samples osk,, ; < Z,, and provides it to D if it has not been used yet
(i.e., if it is not erased from state). It then evaluates all the polynomials in the list L by plugging in osku,t =o0sk, . It
also prepares new indeterminates for the signed prekey spk,, and proceeds similarly.

2. When thse adversary makes a GGM oblivious sampling query, R prepares a new indeterminate x, samples a random
label s < S not included in the list L, and outputs s. It then updates the list L « L U (X, s). By definition, s is a Bad,
label.

. . . s .

3. When the simulator is required to sample esk « Z,, when (s,r) € H x C or H x H, R instead first prepares a new
indeterminate esk and samples a random label epk < S not included in the list L. We assume the simulator continues
its execution using esk and the reduction simulates the GGM group operation queries accordingly.

In addition, the reduction R slightly alters the behavior of the simulator when (s,r) € H X C and spk,. is a Bady, label,
and when (s, r) € H x H. Recall that in these cases, the original simulator simply skipped computing the input to the KDF
and sampled random (K||7cons) from the range of the KDF. This reflected the fact that the simulator could not compute some
of the Diffie-Hellman inputs to the KDF. In contrast, the reduction R will always compute this. For instance, whiit need_sto
compute the Diffie-Hellman tuple between two Bady, labels opk,. , and spk, it first computes the polynomial osk, ; - spkg,

samples a random label s & § not included in the list L, and uses s. It then updates the list L « L U (ﬁm . ﬁs, s). It
then runs the KDF on the computed labels. It is clear that unless the distinguisher D evaluates the KDF on the computed label,
the reduction R’s simulation is identical to the behavior of the simulator. This corresponds to the case where neither of Bady,
labels become Good, labels once giving auxp to the distinguisher D. In particular, this proves that Case (i) and Case (iii)
have negligible impact on D.

Lastly, at the end of the game, the reduction R samples random x & Z,, for all indeterminate X, respectively, and plugs it in
the polynomials in the list L. If any of the distinct polynomials in the hst L evaluate to the same value, then R aborts. It
can be checked that unless R aborts, it perfectly simulates the strong global deniability game. Moreover, noticing that all
the polynomials in the list L are of degree at most two, the probability R aborts is bounded by (20 # + Qp)?/p due to the
Schwartz-Zippel lemma, where Q # and Qp are the number of GGM oracle queries made by A and D, respectively. Since p
is exponentially large, the probability is upper bounded by a negligible function. This completes the proof for X3DH.

Second half (PQXDH). The proof for PQXDH is almost identical to above. Indeed, SimPreK, SimSt4; and SimSt 4 are the
same as before. The only difference is SimTrans, where we also take the KEM scheme into consideration. When the sender
is honest, i.e., s € H, we can rely on the same proof as in the X3DH case since KEM.Encaps can be run publicly. It is only
when the sender is malicious (i.e., s € C) that SimTrans performs an extra check. This stems from the fact that a malicious
sender may send a malformed ciphertext and the simulator must be able to simulate the honest receiver’s behavior without the
decapsulation key. While it is almost identical to the SimTrans constructed for the case of X8DH, we provide its description
for completeness.

SimTrans 4 (isk, stsim, (s,r,1)): As explained above, we only focus on (s,r) € C x H. For this case, the simulation first
executes the malicious sender internally (p, st#) & A(isks, sta, (s,r,1)) using the accuser’s state st 4 € stgim. Here,
the simulator updates stsjm by storing the updated st 4. It then parses (epk, ct, 7conf) «— p and checks if A ever made a
random oracle query on input (ss||sskewm, content) where content := ik, ||ik; ||prek, , |lepk]lct, such that it computed
K||tcont := KDF(ss||sskem, content) using auxgim € Stsim. If not, it simply outputs (L, p, stsim). Otherwise, it retrieves
the first such tuple (ss||sskem, K) under any canonical ordering and outputs (K, p, Stgim).

36

Following a similar argument to before, we can check that the above simulation cannot alter the advantage of the distinguisher
D with all but a negligible probability. In particular, if the honest receiver accepts the handshake message p, then the
malicious sender must have queried (ss||sskem, content) such that K ||7cont := KDF(ss||sskem, content). Indeed, due to the
randomness of the KDF, for any fixed content, the probability that A can find an ss||sskem and 7gonf — without querying
KDF(ss||sskem, content) — that satisfy the computation K*||t¢ons := KDF(SS||sSkem, content), for arbitrary K*, is negligible.
Hence, the simulator can output the same session key K that will be output by the honest receiver. Note that the simulation
does not (and can not, as it does not know the receiver secrets) check that, denoting SST(EM := KEM.Decaps(dk; , ct), it
holds that ssy,, = sskem. However, observe that if ssy¢,, # Sskewm, then, denoting K*||7; . = KDF(ss||sskem, content),

KEM conf °

with all but negligible probability, we will have Tc*onf # Teonf, and therefore the honest receiver would not accept (i.e., K = L1).
Finally, if the honest receiver does not accept, then the output of the simulator is identical to the accuser A in the real world

(due to Alg. 2, Lns. 21 and 24). This completes the second half of the proof. O

E.5. Strong HNJL Deniability of PQXDH for Accused Receivers

We here prove the strong HNJL deniability of the protocol PQXDH. Since the leakage functions supported in the strong local
and global settings are the same, we only focus on strong global deniability.

Lemma 10. Assume the key derivation function KDF used by the PQXDH protocol is modeled as a random oracle, and the
KEM scheme is correct. Then, the PQXDH protocol is strongly deniable for accused receivers, against malicious accusers,
restricted to be classical senders, with respect to quantum distinguishers given access to leakage function Lnigh, under the
assumption that the accuser only accesses the random oracle classically, and where:
 For local deniability, leak = high;
* For global deniability, leak = high if one-time prekey bundles are never depleted; and leak = med otherwise, under
the correctness of the KEM scheme.

Proof. Let A be the malicious accuser. We first define the simulator Sim # = (SimPreK 4, SimTrans 4, SimSt¢,, SimSt #).
At a high level, Sim # will internally execute the accuser A and when A queries the random oracle, Sim # will simply relay
the query to its respective oracle. We describe Sim 4 below.

SimPreKﬂ((iku)ueN,(iSku)uec,(prgku)ue,H): First internally execute the adversary ((préku)uec,stgq) &

A((Ky) ye s (1K) yecr (Prek,,) e) - Finally, output ((prek,),cq (Prek,),cc-Sta, stsim) with stgim =
((iky, prek,,),c o» St @UXsim), where auxsim includes all the queries A has made to the random oracle so
far. Below, we assume auXgjy is updated every time the adversary or the simulator makes oracle queries.

SimTrans # (isk, stsim, (s, 7,7)): Here, isk is either isk, or L, since we only consider the case r € H.

If (s,7) € C x H: First execute the malicious sender internally (p, st) & A(iskg, sta, (s,r,t)) using the accuser’s
state st € stgim. Here, the simulator updates stgj, by storing the updated st#. Then parse (epk, ct, Tcont) < p and
check if A ever made a random oracle query on input (Ss||Sskem, content), where content = ik ||ik, || prek,. ||epk]|ct,
such that K||t¢ont = KDF(ss||sskem, content) using auxsim € Stsim. If not, simply output (L, p, Stgim). Otherwise,
under any canonical ordering, retrieve the first such tuple (ss||sskem, K, Tcont), and output (K, p, stgim)-

If (s,r) € H x H: Since both users are honest, we can use the same simulation (and indistinguishability proof) here
as in standard HNJL global deniability (see Lemma 7).

SimStq,(isk,, st.): Parse (Dprek, Dp,) < st and delete the last unused one-time state, i.e., let ¢ be the smallest index s.t.
Dyprex[t] # L. If t < L,let Dprex[t] < L. Output the updated st,..

SimSt 4 (stsim): Extract st 4 from stgjm. Output st 4.

It remains to analyze the distinguishing advantage of D. Regarding the simulation of prekeys, prekey bundles output by
SimPreK # have exactly the same distribution as those output in the real world. It is also straightforward to see that the outputs
of SimSty; and SimSt 4 in simulated executions are consistent with user states in real executions.

Regarding SimTrans 4, for (s,7) € H x H, we can use the same analysis as in Lemma 7. Then there is only one other
situation in which the simulator deviates from the algorithms executed in the real world. This is when (s,r) € C X H and
A makes a random oracle query on input (ss||Sskem, content) such that K||7cont = KDF(ss||sskem, content) for a given
content := iky||ik, ||prek, ||epk||ct, and where Tcons is equal to that output by A in p. Note that if such an input was never
queried, the honest receiver will not accept the handshake message p as the equality check on Alg. 6, Ln. 19 will fail (with all
but negligible probability). In particular, the simulation becomes identical to the real world.

The formal proof that the above simulation cannot alter the advantage of the distinguisher D with all but a negligible
probability is almost identical to that given for X3DH (cf. Lemma 9), and hence we here omit the details of the proof. O

37

E.6. PQXDH Modelling Gap

In our proposed BAKE model, all elements of a prekey bundle run out simultaneously. However, the actual specification of
PQXDH is slightly different, as the last resort KEM key ek, , may be used before one runs out of one time prekeys opk,. ,,
and conversely, one may run out of opk,, ,’s but still have one time prekeys ek, ; available. Furthermore, a sender which
receives ek has no way of knowing if it is a last resort ek, ; or a one-time ek, ;. We here clarify our simplification in the
model does not harm the deniability results for PQXDH.

PQXDH’s global deniability against classical distinguishers is only affected if both one-time keys opk,. , run out, and the
last-resort ek, ; is used. Otherwise, even with full leakage from the accused user, the input to the KDF cannot be predicted by
the distinguisher, and the session key is indistinguishable from a random key. If both one-time components of the prekey
bundle run out, global deniability holds if leak = med, since st, contains the decapsulation key dk, ;, and the DH secret
spksec, (which is the secret leveraged in the DDH assumption when one runs out of keys opk,. ;). This holds for both standard
and strong deniability against classical distinguishers.

On the other hand, deniability against guantum distinguishers only relies on the distinguishers’ inability to decapsulate the
KEM. If the last resort KEM encapsulation key ek, ; is used then HNJL deniability only holds if leak = med, since the client
state contains the decapsulation key dk;. ;. Running out of opk, , keys does not affect HNJL deniability.

Finally, we discuss the consequences of the sender not knowing if the receiver’s ek is a last-resort key. Note that local
deniability holds for the sender even if an accusing receiver purposefully uses their last resort key, as only the global deniability
of PQXDH is affected by prekeys running out, i.e., when both the sender and the receiver are accused. In this context, one
would expect that both parties, where possible, regularly upload fresh prekey bundles, and delete old states, to guarantee
deniability.

F. Single to Multi-Challenge Deniability for Ring Signatures

In the following lemma we show that (1, §)-deniability against adversaries making Q challenge queries follows from (u, 6)-
deniability where the adversary is limited to a single challenge query.

Lemma 11 (Single to Multi-Challenge Deniability). If a ring signature scheme RS is (u, 5)-deniable against adversaries
performing a single signing query, then RS is (1, 8)-deniable against adversaries performing Q queries, where i = u2, and
§<6-Q-puo

Consequently, for deniability to hold in practice, using the NIST’s recommended upper-bound ¢, = 2% on the maximal
number of signatures which may be queried from a single signer, it should hold that # < 1+ ¢, so that u9s < 2. Note that it
is intuitively natural that the adversary’s success probability increases as it is allowed more queries, effectively extending its
runtime. This does not diminish the "bit-security" of the scheme, which is generally understood as log(g), where T is the
adversary’s runtime and € its success probability. Intuitively, the multiplicative factor u bounds the additional advantage
gained from increased queries, ensuring that the scheme’s overall security level remains consistent.

The proof of Lemma 11 is given below.

Proof. Let us consider the deniability game for ring signatures Gamegg’%’ al 11, Q), where the adversary can adaptively make

Q queries to the challenge oracle, and thus get Q signatures signed with rsk. For j € {0, ..., Q} we define the hybrid game
Hybrid ;, in which the adversary queries its signing oracle Q times and, for 0 < i < Q — j, the i-th query is signed using rsko;

whereas fori > Q — j + 1, the i-th query is signed using rsk;. Namely, Hybrid, is identical to Gamegg%ﬂ(l”, Q) whereas
Deny

Hybrid, is identical to GameRS 1. ﬂ(l’l Q). Let 8B be an adversary against the single-query deniability of RS, and let A
denote an adversary for the Q query deniability game. We first show that, under the single-query deniability of RS, A cannot
distinguish whether it is in Hybrid; or in Hybrid ;. Algorithm B receives as input a set of RS keypairs (rvky, rsku)ue[n1s
which it forwards to A. Fori € [Q], consider the i-th query made by A to its signing oracle (simulated by 8). If i < Q — j
then B signs with identity key of index 0; if i > Q — j then B signs with identity key of index 1; and for the Q — j-th query, B
simply forwards the query to its own challenger, and sends the obtained signature back to A.

Now if A outputs O (resp. 1), then B guesses that the RS signing key of index O (resp. of index 1) was used to sign its
challenge signature, and outputs b’ := 0 (resp. b’ := 1). It follows that the probability B outputs 0 when its challenge bit was
0 (resp. 1) is exactly the probability that A outputs 0 in Hybrid;; (resp. HyPrld ;+1)- Hence, by the (u, 6)-deniability of RS in
the single query setting, it holds that Pr[0 S | Hybrid;] < p - Pr[0 « A | Hybrid;,] + 6. By a simple recursion, we
obtain: s .

Pr[0 « A | Hybridy] < u@ - Pr[0 « A | Hybridy] +6 - Q - 27"

Hence, RS is (42,6 - Q - u2~')-deniable against adversaries performing Q signing queries. O

38

G. Proofs of Deniability for RingXKEM

In this section, we provide the proofs of varying levels of deniability attained by the RingXKEM protocol.

G.1. Standard Local Deniability of RingXKEM
We here prove the standard local deniability of RingXKEM.

Lemma 12. If the underlying ring signature scheme RS is (u, §)-deniable, then the RIngXKEM protocol is (u, §)-local
deniable with respect to leakage function Lign, and disclosure function Dyigh.

Proof. Let us first define the simulator Sim:

SimPreK (('ku)ueN» (isky)uec (prek)ueﬂ) For u € C, run the PreKeyBundleGen algorithm, with the only difference that

on Ln. 13 of the algorithm, the simulator does not discard the ring signature secret key, i.e., it computes (rvku, rsku) &
RS.KeyGen(11). Note that this is the only BAKE protocol considered in this article for which we use the fact that
SimPreK deviates from the description of PreKeyBundleGen. This being said, the resulting prekey bundles and user
state are still computed exactly as in a real execution:

(pr_ék = (preky,)re[L1u{ 1 }> Stu = (Dkem, r/V\kuv Dm)) ‘

Finally, output ((pr_éku)uew, (pl%ku, stu),cc» Stsim) with the latter value stgim := ((iky, pr%kll)ueN, (isky, sty)uec,
(rvky, rsky,)uec). Below, for simplicity, we assume the simulator Sim always extracts the necessary public information
from its state Stgjm.

SimTrans(isk, stsim, (s, 7,¢)): Here, recall isk is either isky or isk, depending on s € C or r € C, respectively.

If (s,r) € H x C: The simulator extracts isk, := (dk,, rsk;) and (r’\ﬁ(r, rsk,) from Stgjy,. It runs Alg. 9, Lns. 7 to 10
as per the real sender algorlthm (these steps do not require any sender secrets) It then uses the receiver’s prekey
ring signature secret key rsk, to compute the ring signature o & RS. Slgn(rskr, content, { rvks, rvk, }). Finally, it
computes Alg. 9, Lns. 12 and 13, as per the real sender algorithm, and outputs (K, p).

If (s,r) € C x H: The simulator extracts isk from stgjy. It then simply runs (K, p) < Send(iskg, ik, prekr’,) and
outputs (K, p).

SimSty(isk,, st,): Parse (Dkem, r’v\kr, D,) < st, and delete the last unused one-time state, i.e., let ¢ be the smallest index
S.t. Dyem[t] # L. If t < L, let Dyem[t] < L. Output the updated st,.

SimSt¢ (stsim): For u € C, extract st,, from stgim, parse (Dkem, r’v\ku, D,) « st, and delete ephemeral secrets associated
to used prekeys, i.e., for ¢ € [counter,,], with t < L, let Dgem|[t] < L. Output (st,),cc-

It remains to analyze the distinguishing advantage of the distinguisher D. Regarding the simulation of prekeys, it is easy to
see that prekey bundles output by SimPreK have exactly the same distribution as those output by the real PreKeyBundleGen
algorithm. The only difference is that the simulator stores ring signing keys (@u)uec in its state stgjm, for future use. Since
D does not have access to stsim, a real execution of PreKeyBundleGen is perfectly indistinguishable from the simulator’s
execution of SimPreK from D’s view.

It is also straightforward to see that the outputs of SimSty, and SimSt in simulated executions are consistent with states
updated in real executions.

Let us now consider the simulation of transactions. Since leak = high and disc = high, D is given as auxiliary inputs
discp := (isky, st™),cc disclosed by accusing users, and leakp := (isky, Stu)uecr = Lhigh ((18Ku)yerrs (Stu)wes)-

If (s,r) € C x H: Notice that p output by SimTrans is computed by the real sender algorithm. Moreover, by correctness of
the RingXKEM protocol, with all but negligible probability, the real receiver algorithm outputs the same key K output by
SimTrans. Hence, the output of SimTrans is identical to the real world from D’s view, even given discp and leakp.

If (s,r) € H X C: Observe that the only difference with a real execution of the protocol is that the simulator uses the receiver’s

key IET(, instead of the sender’s rsk to compute the ring signature o-. However — in both real and simulated executions —
the signature is for the ring { rvkg, rvk, }, i.e. the verification keys associated to rsk and rsk,.. Hence, by deniability of RS,
this difference cannot be detected by D except with negligible probability. Let us formalize this argument.

Let B be an adversary against the (u(4, Q), 6(1))-deniability of RS, and let D denote an algorithm attempting to distinguish

Gamegfj;‘{"&eak(l’l, real) from Gameg’?j‘_'{’&eak(l’l, sim). B samples a set of RS keypairs ((rvky, rsky), (F\IT(], Fqu), e

39

(rvky, rsky), (r’\-/R . sk ~N)), and a challenge bit mode & {real, sim}. It then prepares the identity keys and prekeys of all
users as per Alg. 8, using the aforementioned ring signature keys (and storing the secret keys {rsk; };e[n])-

For i € [Q], consider the i-th query made by D to Ogca. We denote the corresponding input to OLoca| as (s,r,t). If
(s,r) € H x C, then B computes (ss,, ct,) & KEM. Encaps(ek,); ($s;, ,,ct, ‘) & KEM. Encaps(ek, ¢); and content =
iksllik, l|prek,. , Ilct, ||ctr ¢. Let us denote idy and id; the 1dent1tles associated to rvky and rvk, respectively. B then sends
(content, idy, idy, {rvks, rvkr}) to its challenger, and receives o* & RS.Sign(rskiq, , content, {rvks, rvk, }) for some randomly
sampled challenge bit b € {0, 1}.

local (1/1

Observe that if B’s challenge bit b is 0 (resp. 1), then D’s view is exactly that of Gamep~, Loign ,real) (resp.

Game't‘)’,cqa{'imgh(l’l, sim)). Finally, 8 outputs b’ := 0if D outputsmode’ = real, and 1 ifmode’ = sim. Hence, Pr[b’ =0 | b =

1] = Pr[mode’ = real | Game%, ngh(1’1, sim)] and Pr[’ = 0 | b = 0] = Pr[mode’ = real | Game[S% Lhigh(l’l,real)].
By the (u, §)-deniability of RS, we can conclude the proof, since, for 8 € {0, 1}:

Pr[b' =0 b=0] < u(1,Q) -Pr[b =0]b=1]+5()

& Pr[mode’ = real | mode = real] < u(4,Q) - Prlmode” = real | mode = sim] + §(1).

G.2. Standard Global Deniability of RingXKEM

We here prove the standard global deniability of RingXKEM.

Lemma 13. [f the ring signature scheme RS is (u, §)-deniable, then the RingXKEM protocol is (u, §)-global deniable with
respect to leakage function Lmed, and disclosure function Dhigh.

Proof. For global deniability we simulate prekey bundles of all users, so that the simulator knows the secret keys for the RS
verification keys in prekey bundles. Let us first define the simulator Sim = (SimPreK, SimTrans, SimSt¢,, SimSt¢). We
only need to consider the case (s,r) € H x H, since local deniability was proven in the previous section.

SimPreK ((iku)ueN’ (isky)uec (pr_éku)uew): We treat each user u different depending on their role.

For u € C: Run the RingXKEM. PreKeyBundleGen algorithm, with the only difference that on Ln. 13 of the algorithm,
the simulator does not discard the ring signature secret key, i.e., it computes (rvk,, rsk,,) & RS.KeyGen(11). The
resulting prekey bundle (prek,, = (prek,, ;)rc[rju{L}>Stu = (Dkems 'VKy, Dy,)) is thus computed exactly as in a real
execution.

For u € H: Parse the prekey bundle as (ER,“, path,, ,, root,, o roots rl\-/l\(u),e[uuu} — pr_éku. Sample (rvk rsk) &

u,t>

RS.KeyGen(14), and replace rvk, with rT/T(Z, i.e. setrvky, := r/vT(Z

Finally, output ((prek,,),c4 (Prek,,, stu), ¢, Stsim) with stgim = ((iky, prek,,),c o> (iSKy, St)uec, (PVKy, rsky)uev)-
Below, for simplicity, we assume the simulator Sim always extracts the necessary public information from its state stgjm.

SlmTrans(stslm, (s,r,1)): We only consider (s,r) € H x H, hence the simulator has no user secrets. It first extracts
(rvk,, rsk) from stgjm, and runs Alg. 9, Lns. 7 to 10 as per the real sender algorlthm (these steps do not require
any sender secrets). It uses the receiver’s prekey ring signature secret key rsk to compute the ring signature o &
RS.Sign(r’ST(,, content, { rvkg, r/\ﬁ(r }). Finally, it computes Alg. 9, Lns. 12 and 13, as per the real sender algorithm,
and outputs (K, p).

It remains to analyze the distinguishing advantage of D when (s,7) € H X H.

Regarding the simulation of prekeys, we first observe that, since the honest receiver’s state st, := (Dyem, ﬁ/\kr, D,) contains
the original (non-simulated) verification key r’v\kr, if the accused receiver’s state leaks, the distinguisher can easily distinguish
real and simulated executions. Hence, we restrict the leakage function to Lneq, thereby ensuring that prekey bundles output
by SimPreK have exactly the same distribution as those output by the real RingXKEM. PreKeyBundleGen algorithm. The
only difference is that, via this simulation, the simulator is able to store the secret ring signing keys (FfsT(u)L,E A in its state Stgjm
for future use. Since D does not have access to stgm, to it, a real execution of RingXKEM. PreKeyBundleGen is perfectly
indistinguishable from the simulator’s execution of SimPreK.

Let us now consider the simulation of transactions. Since leak = med and disc = high, D is given as auxiliary inputs
discp := (isky, st"),cc disclosed by accusing users, and leakp := (isky), e = Lmed ((isku)ue,H, (Stu)yeqr). We only need
to consider the case (s,r) € H x H. Observe that the only difference with a real execution of the protocol is that the simulator
uses the receiver’s key rsk, instead of the sender’s rsks to compute the ring signature . However, — in both real and
simulated executions — the signature is for the ring { rvkg, rT/T(, }, i.e. the verification keys associated to rsk; and r/sT(,. By
the deniability of RS, this difference cannot be detected by D except with negligible probability. The formal proof for this is
essentially identical to that of local deniability when s € H, we thus omit the details of the proof here. O

40

G.3. Strong Local and Global Deniability of RingXKEM for Accused Receivers
We here prove the strong local and global deniability of the protocol RingXKEM.

Lemma 14. Assume the key derivation function KDF used by the RingXKEM protocol is modeled as a random oracle, the
KEM scheme is correct, and the SKE scheme is correct and robust. Then, the RIngXKEM protocol is strongly local (resp.
strongly global) deniable for accused receivers, against malicious accusers, restricted to be senders, with respect to leakage
Sfunction Lnign (resp. Lmed), under the assumption that the accuser only accesses the random oracle classically.

Proof. Let A be the malicious accuser. We first define the simulator Sim 4 = (SimPreK 4, SimTrans 4, SimStqy, SimSt).
At a high level, Sim # will internally execute the accuser A and when A queries the random oracle, Sim # will simply relay
the query to its respective oracle. We describe Sim 4 below.

SimPreK # ((iky) e > (iSKu) ye s (prgku)ue(H): First internally execute the adversary ((préku)uec, stg) &
A((Ku) e ns (8K e (Preky,),c40)- Then, for u € H, parse (ek,;, path,, ,, root,, oy root, rVKy)re[Ljug L) < prek,.
If proving global deniability: Foru e . sample (vk,,, rsk,) < RS.KeyGen(1%), and replace rvk,, with rvk,, i.e.
rvk, :=rvk,. Let rsk, :=rsk,,.
Else (local): For u € H, let rsk,, = L.
End if.

Finally, output ((prek,),c4 (Prek,) cc» Sta, Stsim) with stgim = ((iky, prek,,),c o> Sta, (rvKy, rsky,) e, @uXsim),
where auxsjm includes all the queries A has made to the random oracle so far. Below, we assume auxgi, is updated
every time the adversary or the simulator makes oracle queries.

SimTrans # (isk, stsim, (s, 7,7)): Here, isk is either isk, or L, since we only consider the case r € H.

If (s,7) € C X H: First execute the malicious sender internally (p, st#) & A(iskg, sta, (s, r,t)) using the accuser’s

state st 4 € stgim. Here, the simulator updates stgjm by storing the updated st4. Then parse (ct,, Et,, Ctske) < p and
check if A ever made a random oracle query on input (ss,||SS,, content), where content := ik ||ik ||prek, ||ct, llct,.,
such that K||Kske = KDF(ss,||SS,,content) using auxsim € Stsim. If not, simply output (L, p, Stgim). Oth-
erwise, under any canonical ordering, retrieve the first such tuple (ss,, sAsr,,, K, Kske), for which, denoting o =
SKE.Dec(Kgke, Ctske), it holds that [[RS.Verify ({rvk;, r/v\k,}, content, o) = 1]. If none of the queried tuples satisfy
this condition, then simply output (L, p, Stsim). Otherwise, output (K, p, Stsim).

If (s,r) € H X H: Since both users are honest, we can use the same simulation (and indistinguishability proof) here
as in standard global deniability.

SimSty (isk;, st;-): Parse (Dkem, r’\ﬁ(r, D,) < st, and delete the last unused one-time state, i.e., let # be the smallest index
s.t. Dyem|[t] # L. If t < L, let Dyem[2] < L. Output the updated st,..

SimSt # (stsim): Extract st 4 from stgjm. Output st 4.

It remains to analyze the distinguishing advantage of D. Regarding the simulation of prekeys, for strong /ocal deniability,
prekey bundles output by SimPreK # have exactly the same distribution as those output in the real world. For strong global
deniability, this holds so long as honest receiver states do not leak (as was the case for standard global deniability), i.e.,
leak = med. The only difference is that the simulator is able to store the secret keys (r/sT(u)ueq.{ in its state stgjm, for future
use. Since D does not have access to stsm, a real execution of RingXKEM. PreKeyBundleGen is perfectly indistinguishable
from the simulator’s execution of SimPreK # from D’s view. It is also straightforward to see that the outputs of SimSt¢, and
SimSt 4 in simulated executions are consistent with user states in real executions.

Regarding SimTrans 4, notice that there are only two cases in which the simulator deviates from the algorithms executed in
the real world.

Case (i) When (s,7) € C X H and A makes several random oracle queries on input (ss,||SS, ;, content) such that K || Kske =

KDF(ss,||Ss, ., content) for a given content := ik ||k, ||prek, ||ct, llct,. Note that if such an input was never queried, the
honest receiver will not accept the handshake message p as, by robustness of the SKE, the decryption of Alg. 10, Ln. 15 will
fail (with all but negligible probability). In particular, the simulation becomes identical to the real world.

Case (ii)) When (s,r) € H x H, since neither of the parties is in C, they both follow the protocol description, and the same
arguments as for standard global deniability allow arguing indistinguishability of real and simulated executions.

The formal proof that the above simulation cannot alter the advantage of the distinguisher D with all but a negligible probability
is almost identical to that given for X3DH (cf. Lemma 9), and hence we here omit the details of the proof. O

41

G.3.1. Attack on Strong Sender Deniability

Hashimoto et al. noticed that there are plausible attacks on strong sender deniability [Has+22, Remark 7.11]. Namely, a
malicious receiver accuser can craft a malicious RS verification key r’\ﬁq such that it can later prove that it does not know
the signing key. This means that if a sender produces a ring signature os on the ring { rvks, rvk, }, the receiver can later
convince a judge that it could not have generated o-s, thus breaking deniability. While it may be possible to thwart such attacks
by including a proof of signing key possession in the prekey bundle, we do not consider them in our work due to the high
overhead of such proofs.

Note that this attack does not extend to X3DH or PQXDH. Indeed, in X3DH and PQXDH, if the malicious receiver provides
a pre-key for which it does not know the associated secret key, then it is not able to compute the input ss to the KDF, from
which keys are derived. This means that the accuser cannot exchange encrypted messages with the accused sender, and that
the distinguisher cannot distinguish a session key honestly generated by the sender from a randomly sampled session key.
Conversely, in RingXKEM, the malicious receiver can generate its prekeys with honest KEM keys, but an RS public key for
which the secret is unknown. The KEM decapsulation key allows for decryption of the input for the KDF, so not knowing
the RS signing key does not prevent the judge from recomputing the session key output by the KDF, whereas it prevents the
sender from denying the ring signature.

H. Deniability of SignXKEM

At PKC 2021, Hashimoto et al. proposed a post-quantum, signed Signal handshake protocol. As signatures typically provide
the opposite of deniability (namely, non-repudiation), they suggested encrypting the signature to hide it from accusers [Has+21;
Has+22]. In this section, we build on their proposal and develop the SignXKEM protocol. We add the Merkle Tree optimization
described in [HKW25, Section 5.1]. We will first instantiate SignXKEM as a BAKE protocol using the syntax from Def. 1,
after which we will discuss its deniability.

H.1. The SignXKEM protocol

SighXKEM uses a KEM KEM and a (plain) signature scheme Sig for its identity keys and prekeys. Additionally, it uses a
symmetric encryption scheme SKE and a Merkle Tree. The functions SignXKEM.IdKeyGen, SignXKEM.PreKeyBundleGen,
SignXKEM.Send, and SignXKEM.Receive are given by the Algs. 8 to 10 respectively.

The basic functionality of the SignXKEM protocol, ignoring the Merkle tree optimization, can be summarized as a key
exchange using an ephemeral KEM key for forward secrecy, a long-term KEM identity key to authenticate the receiver, and a
signature to authenticate the sender. The signature is encrypted using the derived encryption key, which allows us to obtain
deniability as described in App. H.2.

To authenticate the prekey bundle, one could simply sign it; however, as post-quantum signature schemes typically have
large signatures, this leads to significant storage requirements. The Merkle tree optimization was first proposed for RingXKEM
(discussed in Sec. 5) by Hashimoto, Katsumata, and Wiggers [HKW25]. By constructing a Merkle tree from all KEM public
keys HRM,,, we can replace prekey bundles’ individual signatures by the path to the root and a single signature on the root of the
tree. This amortizes the storage cost of post-quantum signatures over all prekey bundles that are uploaded by a single call to
SignXKEM.ldKeyGen. Note that although we include the Merkle tree path in our description of prekey bundles prek,, ,, this
path and the tree’s root can be recomputed by the server from the uploaded prekey bundles (and thus do not need to be stored).

H.2. Summary: Deniability of SignXKEM

We summarize the level of deniability that SignXKEM satisfies. See Tab. 1 for a complete overview. The formal statements
are provided in Apps. H.3 and H.4.

Local and global deniability. For SignXKEM, the permitted levels of leakage and disclosure allowing to achieve local and
global deniability depend on whether the last resort prekey is used. In particular, standard local and global deniability hold for
(leak, disc) = (high, med) if one-time prekeys never run out; otherwise, one must restrict to (leak, disc) = (med, low).

This is because, to ensure that the signature authenticating the sender remains hidden from the distinguisher D, we once
again rely on the fact that the input to the KDF, modelled as a random oracle, cannot be guessed by D. If this holds, then D
cannot recompute the key Kgke allowing to decrypt the SKE ciphertext and recover the signature. However, for SignXKEM, if
D knows the receiver’s initial state, it can easily recompute the inputs to the KDF, whereas if D only gets the updated states,
and only one-time prekey bundles are used — whose states are deleted after use — then D cannot guess the KDF input with
all but negligible probability. Hence, so long as one-time prekeys are not depleted, and the distinguisher only gets updated
states, (i.e., (leak, disc) = (high, med)) local and global deniability hold. On the other hand, if the last-resort prekey is used,
the associated state is not deleted, and hence even the receiver’s updated state would allow D to compute the KDF’s input. In
this case, deniability holds for (leak, disc) = (med, low).

42

Both local and global deniability of SignXKEM hold even if both the accuser and the distinguisher are quantum, so long as
KEM is PQ secure.

Strong local and global deniability. As was the case for RingXKEM, for strong (local and global) deniability, we are only
able to prove deniability for the receiver; this holds with respect to the leakage function Lgak for leak = high if the one-time
prekey bundles are never depleted, and leak = med otherwise. Again, as for RingXKEM, we can only prove strong deniability
for the receiver in the classical ROM, while the malicious accuser and distinguisher may be quantum. The proof strategy is
similar to that of strong deniability for PQXDH.

H.3. Local and Global Deniability of SignXKEM

We prove that SignXKEM is local and global deniable for weak disclosure functions (where the initial state of accusing users
is not revealed). Since the disclosure and leakage functions supported in the local and global settings are the same, we only
focus on global deniability. The non-trivial part of the proof is when the sender is honest. In this case, we must argue that the
sender’s signature implicitly included in the handshake message p cannot be later recovered by the distinguisher, as otherwise,
deniability cannot hold. To this end, we use the fact that for weak disclosure functions (i.e., Dgisc With disc € {low, med})
the distinguisher only obtains the accuser’s updated states. Specifically, once the (honest-but-curious) receiver deletes the
decapsulation key included in the one-time prekey bundle, the handshake message from the honest sender should look random.
This is why SignXKEM does not satisfy deniability for disclosure function Dnign: given high, the distinguisher can decrypt
the encrypted signatures.

Below, we rely on the OW2H lemma [AHU19] (see App. B.2 for definition) to formally prove this against a quantum
accuser and distinguisher in the QROM.

Lemma 15. Assume the key derivation function KDF is modeled as a random oracle and the KEM scheme is correct and
IND-CPA secure, and the SKE scheme is correct, IND-CPA secure, and robust. Then, the SIgnXKEM protocol is globally
deniable with respect to leakage function Lieak and disclosure function Dqigc for leak = high and disc = med if the one-time
prekey bundles are never depleted; and for leak = med and disc = low otherwise.

Proof. Let us first define the simulator Sim = (SimPreK, SimTrans, SimSt, SimSt¢).

SimPreK ((iku)ueN, (isky)uec, (préku)uE,H): For u € C, run (préku, st,) « SignXKEM. PreKeyBundleGen(isk,). Then

simply output ((prgku)ue(H, (prgku, sty)uec, Stsim) with stsim = ((ik,,, préku)ueN, (isky, sty)uec)- Below, for simplic-
ity, we assume the simulator Sim always extracts the necessary public information from its state Stgjn.

SimTrans(isk, stsim, (s, 7,1)): Here, recall isk is either isk, isk,, or L dependingon s € C,r € C,or (s,r) € H X H.

If s € H: Itfirstruns (ss,,ct,) & KEM.Encaps(ek,) and (ss, ;, Ct; ;) & KEM.Encaps(ek; ;), and samples random
keys (K, Kske) fronslg the range of the KDF. It then samples a random message M having the same length as a signature
o and runs ctgke — SKE.Enc(Kske, M). Lastly, it outputs (K, p = (ct,, ct, ;, Ctske)). Note that even if r € C, the
simulator does not require isk;-.

If (s,r) € C X H: It simply runs (K, p) s SignXKEM Send(isk, ik, prek, ,), and outputs (K, p).

SimStq,(isk,, st.): Parse (Dkem,D,,) < st, and delete the last unused one-time state, i.e., let # be the smallest index s.t.
Dyem[t] # L. If t < L, let Dgem[t] < L. Output the updated st,..

SimStc (stsim): For u € C, extract st,, from Stgim, parse (Dyem, Dp,) < st, and delete ephemeral secrets associated to used
prekeys, i.e., for t € [counter,], with t < L, let Dyem[t] < L. Output (st,),cc-

It remains to analyze the distinguishing advantage of the distinguisher D, where we consider two cases as in the lemma
statement.

Case 1. Let us first consider the case where the one-time prekey bundles are not depleted: we always have a one-time prekey
prek, , for € [L]. In this case, D is given as auxiliary information discp := ((isky),cc» (Stu),cc) disclosed by accusing

users, and leakp := ((isKy) e (Stu)yer) = Lnigh ((18Kw) yers (St)wesn)-

If (s,r) € C x H: notice that p output by SimTrans is computed by the real sender algorithm. Moreover, by correctness
of the SignXKEM protocol, the real receiver algorithm outputs the same key K output by SimTrans with all but negligible
probability. Hence, the output of SimTrans is identical to the real world to a distinguisher D even given discp and leakp.

If s € H: the main observation is that for disclosure function Dneq, D only obtains the accuser’s updated states. Specifically,
whether r be in C or in H, once the (honest-but-curious / honest) receiver runs SignXKEMReceive(isk,, st,, (iks, 7, p)),
the one-time prekey secret dk, ; is deleted from its state st.. Namely, D does not have dk,, to compute Ss,; =
KEM.Decaps(dk, ,, ct, ;) after the session is established. We formalize this argument below.

43

For the sake of contradiction, assume D has a non-negligible advantage € and makes at most Qgobal queries to the oracle
Ogloba- We first make a syntactical modification to the game when mode = real. In this mode, the game ran (K, p) «
SignXKEMSend(isk, (ik,, prek, ,)) and (K’, st,) & SignXKEM Receive(isk,, st,, (iks, 7, p)). We modify this so that the
game no longer runs SlanKEMRecelve but simply outputs K instead of K’ and an updated st,, where st [f] «— L if
t # 1. Due to the correctness of SignXKEM, the view of D is identical with all but negligible probability. We denote this
artificial receive algorithm by SignXKEM Receive’. We also define a modlﬁed sender algorithm SignXKEM Send’ defined
identical to SignXKEM Send except that, after computlng (sSr»Ctryt) & KEM. Encaps(ek;), it samples ss;. , randomly
over KEM’s session key space and overwrites ss,. ; with ss;. ,. Note that SignXKEM Receive’ runs as expected on the output
of SignXKEM Send’, while SignXKEM Receive would output L with overwhelming probability.

Now, let us define Qgiopal + 1 hybrid games, where Gamegy,,.,+1 is defined identical to the original global deniability
game. The i-th (i € [Qglobal]) game Game; is defined identical to Game;,; except that when D queries Ogopal for the
QOgiobal — [+ 1-th time, if s € H and mode = real, the game computes the real transcript by running SignXKEM Send’ and
SignXKEM Receive’ as opposed to running SignXKEM Send and SignXKEM Receive. Namely, in Game;, SignXKEM Send’
and SignXKEM Receive’ are executed if mode = real and SimTrans is executed if mode = sim, when D queries Ogjobal ON
input a sender s € H.

Notice that by the definition of SignXKEM Send’, unless D queries the random oracle on input ss, ||ss, ;, context, the views
inmode = real and sim are identical. Indeed, assuming no such query to the random oracle is made by D, in both modes
the keys (K, Kske) are random in the range of the KDF. It follows that, from D’s view, Kgke can take any value in the SKE
key space. Furthermore, the robustness of SKE ensures that ctge can only be decrypted using the same key Kgke as was
used for encryption. Hence, D has negligible probability of guessing Kske Which would allow decrypting Ctgye, and, from the
IND-CPA security of SKE, D has negligible advantage in distinguishing Ctske as computed when mode = real and when
mode = sim. Now, since SS, ; is sampled uniformly at random from KEM’s session key space (which is exponentially large
compared to ¢ and the number of oracle queries made by D) and hidden from D, D cannot query the random oracle on input
ss,||ss, ¢, context with all but negligible probability. This holds both in the classical setting, and in the QROM, by applying
the OW2H lemma [AHU19].

Indeed, let us denote g the maximum number of (quantum) oracle queries made by D, k the size of the KEM’s session key
space, and Spap the set of values ss,||ss,;, context for which D’s view differs in the real and simulated execution modes.

Note that |[Spap| < t. Then for any input x, Pr[x € Spap| < =77 q — - Now, by applying Lemma 2, we can upper bound the

probability piing that D, given access to the quantum random oracle, queries an element in Spap: pPfing < k4 . This allows

us to bound the probability that D can distinguish real and simulated executions in the QROM by pgist < 4q which is

g
negligible in the security parameter.

Hence, the advantage of D in Game is negligible. Then, by assumption, there must exist an index i* € [Qgjopal] such that
the advantage of D changes by more than a non-negligible fraction €/Qgobal between Game;- and Game;-,. It remains to
construct an adversary breaking KEM’s IND-CPA security exploiting this fact.

Let 8 be an adversary agalnst the IND-CPA security of KEM, given as input (ek”, (ss cty)), where (ek”,dk") &
KEM.KeyGen (1%); (ss*, ct’ o) & KEM Encaps (ek™) if the challenge bit bKEM =0andss* & K if brem = 1.

8 first samples a challenge bit mode & {real, sim}, random (s*, r*, t*) & H XN % [L], and prepares all the keys of the
users as in Gamegg,,..+1 except that it sets the #*-th one-time prekey ek, ,+ of user r* as ek™. B then simulates Game;+,; up
till the (Qglobal — i*)-th query to Ogjobar using the keys it has prepared at the beginning of the game. When D queries Ogjoba for
the (Qgilobal — i + 1)-th time on input (s, r), B checks if (s,r) = (s*, r*) and the t*-th one-time prekey bundle of the receiver
r* is going to be used. If not, it aborts the game. Otherwise, if 8 sampled mode = real, it sets (SS,+ s+, Cty+ ;+) := (88", Cty)
rather than using the KEM.Encaps algorithm, computes Alg. 9, Lns. 7 and 9 to 14, and outputs (K, p). The rest of the game
is identical to Game;+,;. When D outputs a guess bit mode’, B outputs [mode = mode’] as its guess for bxew.

It remains to analyze the advantage of 8. With probability 1/N?L, the guess (s*, r*,t*) made by B is correct. Moreover the
above game simulated by 8 is identical to Game;-41 if (ssg, ct;) & KEM. Encaps (ek”), and Game;: if ss] & K. From
our assumption, since the advantage that D has against Gamel and Game;+, differs by a non-negligible amount €/Qailobals
B’s advantage in the IND-CPA security game of the KEM is at least €/(2N?LQgiopal), Which is non-negligible. However,
this contradicts the assumption that KEM is IND-CPA secure, thus completing the proof for the case where one-time prekey
bundles are not depleted.

Case 2. Let us now consider the case where the last resort prekey bundle is used. Since the last resort prekey secret dk,_; is
not deleted from r’s state after having been used, if D were to obtain r’s state st,, it would be able to decapsulate the KEM
keys and distinguish real and simulated executions. Consequently, if the last resort prekey bundle is used, global deniability is
only proven to hold for leakage function Lmeq and disclosure function Djoy. Indeed, these do not reveal any user states, so
dk,., remains unknown to D, and the same proof methodology as in Case I can be applied.

This completes the proof. O

44

H.4. Strong Local and Global Deniability of SignXKEM for Accused Receivers

Since the leakage functions supported in the strong local and global settings are the same, we focus on global deniability.

It is clear that SignXKEM does not satisfy strong deniability since it is not even (standard) deniable if an accusing receiver’s
initial state is revealed to the distinguisher. However, it does satisfy some level of strong deniability for honest users that are
receivers, that is, the accuser A is the sender (see Rem. 1). Thus, if one is using SignXKEM only as a receiver, then their
deniability is guaranteed.

The proof for receiver deniability follows almost immediately from the proof given for strong local and global deniability
of RingXKEM in App. G.3. To prove receiver deniability, the simulator must process the (possibly maliciously generated)
handshake message p = (ct,, ct, ;, Ctske) Without the receiver’s KEM decapsulation keys. The robustness of the SKE scheme
guarantees that there is only one SKE key Ksye that properly decrypts Ctgke. Since the KDF is modeled as a random oracle, the
simulator searches for any input with output K || Kgke. If s, it outputs K, so that the same K¢ is used by the sender and the
receiver. Since the proof is almost identical to that of RingXKEM, we omit the proof of the following lemma statement. We
note that similarly to RingXKEM, we limit the quantum accuser to only access the random oracle classically (see discussion at
the end of Sec. 5.3).

Lemma 16. Assume the key derivation function KDF is modeled as a quantum random oracle, the KEM scheme is correct, and
the SKE scheme is correct and robust. Then, the SIgnXKEM protocol is strongly global deniable against malicious accusers,
restricted to be senders, with respect to the leakage function Ligax for leak = high if the one-time prekey bundles are never
depleted, and leak = med otherwise, under the assumption that the accuser only accesses the random oracle classically.

I. Omitted Details for Ring Signature Constructions

In this section, we include omitted details in the constructions of FalconRS and MayoRS.

I.1. Falcon-based Ring Signature

In order to formalize the deniability of FalconRS, we introduce more thoroughly the different components underlying Falcon,
and recall useful preliminaries for lattices.

1.1.1. Lattices

In this section, we recall useful definitions and lemmas for instanciating Falcon. We follow notations from [GJK24a].

Max-log distance. We will make use of the max log distance between distributions through this section.

Definition 24 (Max-log distance). Let £, Q two distributions over the same countable support Supp(#). The max log
distance between P and Q is
AL (P,Q) = max |logP(x) —logQ(x)|
x€Supp(P)
Linear algebra. We use lower (resp. upper) case bold fonts v (resp. M) for vectors (resp. matrices). The vectors are in the
column form and we use v; (resp. my;) to indicate the i-th entry (resp. column) of v (resp. M).
For v € Z", we note ||v||, its euclidean norm. For M € Z"™*™, we note ||M||gs the maximal 2-norm of the Gram-Schmidt
orthogonalization of the column vectors of M.
Throughout this work, for a fixed power-of-two n, we consider the polynomial ring R = Z,[x]/(x" + 1). We also note
up
R, = R/(qR). For a vectoru € R., u € 2" = .| the coefficient embedding of u. We define the norm of u € Rg as
Unt

llall = [[al]2.

Definition 25 (Anticirculant matrix). For a polynomial u € R, the anticirculant matrix of u is defined as

23] us R Un

—Up 73] /e |
Au) =

—Uuy —uz ... ui

45

Lattice. A lattice in m-dimension Euclidean space R™ is a discrete set

A(by,....by) = {inbi | x; € Z}

i=1
of all integral combinations of » linearly independent vectors by, ..., b,, € R™.

We are specifically interested in NTRU lattices, that underly Falcon. They are defined over R*" by polynomials f, g € R,
and h = g - f~! as the coefficient embedings of the module

Ap={(u,v) € R* st.u-h+v=0modq}

Equivalently, Aj, is generated by the columns of a matrix By, = [ﬂlgh) q(I)] A trapdoor for this lattice is a short basis
n
A(f) A(F) . ,
B = where the polynomials f, g, F,G € R are relatively shortand f -G — g - F = 0 mod g.
Ale) AG) poly /8 y ! 8 q

Falcon relies on a trapdoor sampler, that generates a short matrix B.

Definition 26 (NTRU trapdoor generation). An NTRU trapdoor generation algorithm TpdGen() samples a public key
h € R,\{0}, and a trapdoor (f, g, F,G) € R* such that Bj, and B generate the same matrix and IBfnllas < @ -+/3q.
We assume the ring R, a target quality @ > 1, and a modulus ¢ are provided as public parameters.

—llzll2
202

deviation o over a lattice A, centered in ¢, is defined by its probability distribution function Dy ¢(2) =
z € A. We may omit ¢ when it is 0.

Falcon’s security hinges on the sampling of Gaussian vectors over the public lattice generated by By, by leveraging the
trapdoor B.

). The discrete Gaussian distribution of standard

Po(2—¢)
2ot enPo (2 =€)

Gaussian sampling. For a positive real o, let p,(z) = exp(—
for

Falcon’s Gaussian sampler. Falcon relies on the FFT Gaussian sampler [DP15; Pre15], and adapts it to cope with real-world
constraints, by tail-cutting internal variables, using floating-point arithmetic, and introducing a polynomial approximation.
Looking forward, while these approximations introduce some bias, we will prove the deniability of our scheme by bounding
the bias of tail cuts with statical arguments, and operation approximations with relative errors.

I.1.2. Formal Security Analysis

The proof of deniability of our scheme requires analyzing in depth the preimage sampler of Falcon, and notably the impact of
tail cuts, floating points, and polynomial approximations.

We wish to prove that FalconRS is deniable for one signature (Q = 1), and rely on Lemma 11 to prove deniability for
Q signatures. We will show for this that tail cuts create a small discrepancy between the support of the concrete preimage
sampler and the arbitrary elements sampled in Ln. 7 that translates into a small term 6. The remaining biases introduced by
floating point and approximations can then be analyzed with relative errors on distributions, and translate into the term u of
our deniability notion.

Before moving to a formal statement, we introduce notations for the preimage sampler, corresponding to the successive
introduction of optimizations. We note PreSmp the concrete preimage of Falcon, with tail cuts, floating-point, polynomial
approximation; PreSmp! where only tail cuts are introduced; and finally PreSmp®®? the idealized preimage sampler, with
no practical optimization.

Theorem 1 (Deniability of FalconRS). FalconRS is (u, §)-deniable for Q = 1, assuming that H is a random oracle, where
o= exp(Af)zc - exp(Arro) %€ - (llf—‘z)zc and § =274+ (1 +) - 6y, where
« Noting pre; := maxg Pr{ || (1), v +ll > B 1 — Yus
(ug,v) « PreSmp(B, o, —c), ¢ & R,] and take C as the smallest integer verifying (C - 27% +prej)c <274
* Ay = maxgp, o AuL(PreSmp(B, o, ¢),PreSmp' (B, c))
* Arro = maxg, o, AmL(PreSmp @ (B, o, ¢), Das), o)
o 6y = s+ o(s?) where

7]/2

__n
- 5=2C- (2207 +2n-2¢ *ma 1+8/(2">)

T—£/(2n)
— 1,1 are the bounds used for the tail cuts performed in FalconRS respectfully for y, and within PreSmp
* g €[0,1) is such that o > a+\/q - ne(Z2M).
Proof. We proceed with a series of hybrids starting from the game Gamegg%" ﬂ(l”, 0=1).

46

Deny
RS,0,A

Hybrid,. In this hybrid, we constrain the number of restarts during signiglg to be at most C. Let us note
Prej = maxg Pr[|[(u;);,v+c|l > Biz1 < xu, (uo,v) < PreSmp(B,o,—c),c < R,] and take C as the smallest inte-

Hybrid,. This is the original deniability game from Alg. 7 Game (11, Q), where the first signer signs the message.

ger verifying (C - 27% +prej)c <271,
We can bound the probability of restart conditionned on previous restarts. After i restarts, the probability of starting again
is bounded by:

» Sampling again a salt that was previously sampled: this happens with probability less than i - 2%.

* When the salt is fresh, then c is sampled independently of the previous rejects and we can bound the probability of
reject by pre;.

The probability of performing more than C restarts can thus be bounded by I—[ic:(_)1 (i-2+ prej) < (C-2"+ prej)c.
By definition of C, the probability of performing more than C restarts is thus bounded by 2=+ and we deduce:

Hybrid,
A

Hybrid,

-A
<2

Adv — Adv
Hybrid;. In this hybrid, we remove the use of floating-points and polynomial approximation in the sampler, i.e. we replace
the use of PreSmp with PreSmp!.

Previous works [How+20; Pre17] noted that using polynomial approximations and floating-point simply introduced a small
relative error compared to the original sampler.

For each of the C uses of the sampler, we note we have Ay = maxg . AuL(PreSmp(B, o, c), PreSmp“(B, o,c)), and

we obtain
Hybrid;

AV < exp(Af)€ - AV
Hybrid,. In this hybrid, we remove the tail cuts performed in the signing procedure, and replace the tailcut distributions by
ideal ones. In particular, we replace PreSmp" with the idealized PreSmp'®?'.

Tail cuts are performed in two places: (i) in the sampling of the u; at Ln. 7, and (ii) within the preimage sampler PreSmp“.

The tail cuts used in Falcon’s preimage sampler are all within a sub-primitive called SamplerZ, that samples a Gaussian
over Z, for which we recall the ideal functionality in Alg. 12. In order to sample a preimage from Dy), for a target c, the
FFO sampler calls twice SamplerZ for each leaf of a secret tree. SamplerZ takes as input a standard deviation ¢ and a center
1 and should return an element sampled from Dz, - ,,. For concrete implementation, the half-Gaussian y is implemented
using a CDT table that is tailcut. Let us note SamplerZ'® the sampler where y is tailcut to an interval [0, 7]. Equivalently, it
implies that SamplerZ'® samples elements from the distribution Dz, -, tailcut to x| + [-n, 7+ 1].

Algorithm 12 Falcon Gaussian sampler for Dz .,

1: function SamplerZideal(u, ') > Assume that o’ € [0 i, Omax
2 rep—ul

3: | CCS «— Opmin/o’

4: | while true do

5: 20 ? X > Half-Gaussian distribution of parameter omax

6: b« {0,1}

7: z=b+(2b-1)-z

g -r? _ %

20/2 20—1"]213X

9 if Bcssexp(fx) = 1 then
0 | return z + | y]

X =

—_

We rely on a lemma allowing to bound the statistical distance between Dz -, and its tailcut version.

Lemma 17 (Adapted from Lemma 4.3 and 4.4 of [Lyul2]). For any vectorv e R™ u e R™ andr > 0,0 > n.(Z™), we have

2 1+¢
Pr[[(z — p, V)| 2 r;2 « Dzm o] < 2e 2P . 1%
-&
As a special case form = 1,v = 1, we get:
_2 1+
Prllz—ul 271z« Dz 5] <2 207 - N £
—-&

If u = 0, These formulas hold for & = 0.

47

Proof. Looking at the proof of Lemma 4.3 in [Lyul2], we can see that it straightforwardly adapts to the case of non-centered
P (Z™)
Po(ZM—p)*

Additionally, 222~ < 1+2 by [MR04, Lemma 4.4]. o

Gaussians up to an additional factor

We can bound the probability of the tail cuts occuring in our scheme.
n'2
* First, the tailcut of y,, has a probability bounded by 2e_277, and note that this distribution is sampled at most C times.

2

__n
« The tail cuts in SamplerZ have a probability bounded by 2¢ *"mn2 - ll%i, noticing that omax > Omin = 0/(a+/q) >

n¢(Z*") > 2n - n4(Z), and these distributions are sampled at most C - 2n times.

We deduce a bound on Adeﬂybrid”:

Hybrid
Adv 4
! Hybrid
= n’2 _i ° Advﬂ 4
-2 e 2
Hybrid
< AdV; "Mt s+ o(s?)

1

1,2 _L
with s = C - |2¢7207 +2n -2 w2 - IO <,

Hybrids. In this hybrid, we replace the preimage output of PreSmp'®@ (B, o, —¢’) with D (,).0r.—c’-

We note that the FFO sampler used within Falcon does not perfectly sample from D (g,), -, - for a target ¢’. Indeed, the
use of discrete Gaussians internally slightly bias the sampler, due to their slighly varying mass depending on their center. We
recall Lemma 18 bounding this difference for the Klein sampler, and argue by analogy that the FFO sampler distribution is
close to DaBy), o, —c’-

Lemma 18 (Relative error of Klein sampler [Prel5; Prel7]). Let n a positive integer, and € € (0, 1/4). Then, the relative
error of the Klein sampler KleinSmp(B, o, ¢) for any basis B € Z™*", standard deviation o > n-(Z") - ||B||gs, and arbitrary
syndrome ¢ € Z'™ is bounded by

1
ApL(KleinSmp(B, o, ¢), Dp (), o,c) < 1 - log (* 8/'1) X

1-¢/n
We obtain:

Hybrids

Hybrid
Advg "% < exp(Arro)€ Adv g,

where we have that

Arro = [nax Aw(PreSmp®@ (B, o, c), Das).orc)-
,o,C

Hybridg. In this hybrid, we exchange the roles of the users #g and u1, i.e. instead of running the preimage sampler for user
uo, we sample a Gaussian from Dzn - for user uy and run Dp(B,), o, (c=hozo) -

Concretely, we need to show that the signature distribution is close in these two cases, that is that the two distributions
below are at a close distance:

* (20,21, v+ (¢ = hozo)) where 2o « Dzn &, (21,V) < DAB,), 0, (c—hozo)
* (20,21,v + (¢ = h1z1)) where 21 < Dzn &, (20, V) < DABy), 0, (c—h1z1)
We rely on Theorem 4.1 from [Gen+20].

Lemma 19 (Adapted from Theorem 4.1 of [Gen+20]). For any € € [0, 1), a full-rank lattice A, and o > 1.(\), and matrix
T, any c in R", the max-log distance between the distributions

* (x0,x1) where x| <= Dgn o and x; < T - x0+ D, 5 c—T-xo

* (x0,x1) & Dpr.o.c where A" = {(x0,T - x0 +x1);x0 € Z",x1 € A}

l+&
1-&°

is bounded by log

48

We conclude by applying twice Lemma 19 successively with the lattice of user 0 and then of user 1, and T successively
being equal to A(—h;) and A(—hp). We conclude by noticing that the lattice A” in Lemma 19 is equal in both cases:

{(z0,z1,v — hozo) s.t. hizi +v =0mod ¢}
= {(z0, 21, V) s.t. Z hizi +v =0mod ¢}
i

= {(z0,21,v — h1z1) s.t. hozo +v =0 mod g}

The max-log distance between the two signature distributions is then 2 log llf—i

Finally, by the properties of the max-log distance:

Hybrid 1+£*¢ Hybrid
ybrids ybri
Advﬂ S < (:) 'Adel 6

Hybrid,. From this point, hybrids consist in re-establishing the concrete signing for user #;. This hybrid replaces the
distribution D (,), - by PreSmp(By, o, —c’).
As for Hybrids, we obtain a bound
AV < exp(Arro)€ - AV

Hybridg. This hybrid re-introduces the tail cuts.
Similarly to the analysis in Hybrid,, we bound the probability of the tails that are cut. Then, by expressing the tailcut
distribution as following the ideal distribution conditioned on a smaller support, we obtain

)) , 72 _ 1]2
AdvYPY < AgyOids o (0,7507 400 20 i 1+/Cn) .
7 7 1=/ (2n)

Hybridg. This hybrid reintroduces floating-point and polynomial approximations.

As in Hybrid;, we get
Hybrid,

Hybrid C
Adv " <exp(Ap)~ - Adv g

Hybrid;o. We finally remove the constraint on the number of rejection restarts. The advantage of the adversary can only be
increased by this change:
Hybridg Hybrid
Adv 4 < Adv 4

Deny

rs.1.a(14, Q = 1) and we obtain the theorem statement by collecting all the bounds.

Hybrid, is exactly the Game
1.1.3. Concrete Parameters
We rely on the same ring, key generation, and preimage sampler as Falcon-512:

* the degree of the polynomial ring is n = 512, and modulo is g = 12289.

¢ the key quality is @ = 1.17.

» the signing standard deviation is o~ = 165.736617183 (corresponding to & ~ 273 [GJK24a]).
* the salt are sampled from {0, 1}* with x = 320.

* The preimage sampler uses as implementation constants oy, = 1.277 833697, omax = 1.8205. For the internal
randomness tailcut, 7 = 18.

For a ring of two users, we select the check bound as 8 = 1.1 - V3no. We also pick the new tailcut parameter 7’ =
[\/70 -10g(2) - V2 - o] ~ 1633. We then evaluate the security of our scheme with the lattice-estimator.
As for the deniability of our scheme, we evaluate the different elements of Theorem 1,

* Following the analysis of [Pre+22, Section 2.5.2], the use of floating points and polynomial approximations introduces
a small error: exp(Ay) < 1+ 2731

+ By analogy with the Klein sampler, the bias of the FFO sampler is of the order exp(Arro) < 1 +2& ~ 1 +27343,

* The probability of rejection can be evaluated with Theorem 1 to pyej ~ 27214 Then, it is sufficient to take C = 6 to
ensure (C -27% + prej)c < 27128 in Theorem 1.

49

l+&

Lemma 20. With the same notations as Theorem I, prej < exp(Ay) - exp(Arro) - (122

Pr(l1(z);.vIl > B: (20.21.v) — Dzan o |-
Remark that pg can be bounded by k3. exp(%"(l — k?)) where k = B/(N3no) using [Lyul2, Lemma 4.4].

) - pg + 0 where we define pg =

Proof. As in the proof of Theorem 1, we can bound the effect of floating point, polynomial approximation, tail cuts, and the
bias of the FFO sampler: prej < Ay - Arro - (llf—i) : p'rg?a' + & where we define p'r‘é?a' = maxg Pr[|[(z;);,v+cll > Brz1 «
DZ",(T’ (ZO’ v+ C) — DA(B),O’,—C’ C Rq]

Now, we rely on a lemma showing that the syndrome ¢ = hj - z1 + v is close to uniform when (z1, v) are Gaussians of

parameter o, to remove the conditioning on ¢ in pir‘lfa'

Lemma 21 (Adapted from Lemma 5.2 [GPVO08], Cor. 2 [GJK24a]). For e € (0, %) o > 1:(Ayp), consider the distributions
P = U(Ry) and Q the distribution of u - h + v, where u,v < Dg . Then,

1+
AML(P,Q) <log 1 _(Z

Applying the above lemma, we deduce that pir‘él?a' < llf—‘; - pg, which concludes the proof. |
Following the above analysis of the terms of Theorem 1, we deduce that FalconRS is deniable with concrete terms:

s u=1+27%

e 5=27

I.2. MAYO-based Ring Signature

We now formally introduce our ring signature based on MAYO. We reuse the same parameter names as the original MAYO
specification [Beu+24]. Viewing MAYO as a hash-then-sign signature scheme, we can apply generic transformations from
[AOSO02] to obtain an efficient ring signature.

Recall that MAYO is designed over quadratic maps. It first chooses a map # : Fj — Fg' with trapdoor tp as public key,
from which is derived a larger map £~ : F’;" — Fg'. To sign message M we compute a target t = H (M, salt) (where saltis a
random value), and then we sample a preimage u such that £*(u) = t, leveraging the trapdoor tp.

For the matter of abstraction and re-use within a ring signature, we proceed as for FalconRS and denote PreSmp(ip,t) — u
the random procedure of MAYO sampling a pre-image u given a target t, that is sampling u such that £*(u) = t.

We finally describe in Alg. 13 the ring signature MayoRS obtained from MAYO using Abe, Ohkubo, and Suzuki transform.

1.2.1. Security Analysis

Theorem 2 (Unforgeability of MayoRS). MayoRS is unforgeable assuming the unforgeability of MAYO.

Formally, let A be an adversary against the unforgeability of MayoRS making at most Q calls to the signing oracle, at
most Qg random oracle queries, and with at most N generated keypairs. Then, there exists an adversary B against the
unforgeability of MAYO, running in time T (B) =~ T (A), such that

AdVZ T < N-Qp - Advig +27% -0, - (s +Qm) +272 - O

Proof. We proceed with a series of hybrids. Our proof roughly follows ideas presented in [LAZ19a], but improves the security
loss by a factor Qi by guessing only one random oracle query, and then programming all subsequent ones, instead of guessing
a pair. Additionally, we cover the introduction of a seed used for compressing the signatures when preimages are comparatively
larger than seeds.

Hybrid,. This is the original unforgeability game for a ring signature.

Hybrid,. In this hybrid, we create a MAYO signing oracle OSign; for each keypair (sk;, pk;);e[n], and we reexpress the
signing oracle of MayoRS as a function of the individual OSign;. We assume the existence of separate random oracles H;
used within OSign;, and only accessible by the challenger.

First, we fix an arbitrary message u*.

Then, whenever the ring signature signing oracle is called on input (i, RL, M), we sample random elements u;; & Fg forj #1,
(salt’,u;) « OSign; (u*), as well as ¢y & ', and we sequentially compute €41 moa = H(j+1 mod N,RL, M, ¢c;+P;(u;))
for j € [N -1].

Finally, we compute the seed seed = H(0, RL,M,en_1 + Pn-1(un_1)), sample a salt salt « {0, 1}*, and program the
random oracle H (0, seed, salt) = c.

50

Algorithm 13 MAYO-based ring signature scheme
1: function$MayoRS.KeyGen(l’I)
2: | P,tp « TpdGen()
3: | return (rvk := P, rsk = tp)

4: function MayoRS.Sign(rsk;, M, RL := {rvk;};)

5. tp; ::srski; {Pi}; = {rvk;};

6: | salt « {0,1}K;t<—FZ‘

7: | ctx = (i+1 mod N,RL,M,t)

8: | if [i + 1 mod N = 0] then

9: | | seed:= H(0,RL,M,t) € {0, 1}*; ctx := (0, seed, salt)
10: | €j41 mod N = H(ctx) € FY

11: forj§i+1,...,N—1,0,...,i—1d0

122 | uj «FA"

13: ctx = (j + 1 mod N,RL,M, ¢; +P;.‘(uj))

14: if [/ + 1 mod N = 0] then

15: | seed = H(ctx) € {0, 1}21; ctx := (0, seed, salt)
16: Cj+lmod N = H(ctx) € Frq"

17: | w; == PreSmp(tp;,t — ¢;)

18: | return sig = (salt, seed, {u;} ;)

19: function MayoRS.Verify(RL := {rvk;} ;, M, sig)

20: | (salt,seed, {u;};) = sig; {P;}; = {rvk; };

21: | ¢ = H(0, seed, salt) € F/

22: | for j=0,..,N—-2do

23: tcﬁ] mod N = H(j+1modN,RL,M,cj+PJ’f(uj))eIF‘Z”
24: | return [[seed = H(0,RL,M,cy_; + Pj’f(uN_l))]]

The view of the adversary is identical unless the random oracle H has been queried on (0, seed, salt) before it is programmed,
which happens with probability bounded by 27% - Q;Q, or in case the same salt’ is provided twice by OSign;, which happens
with probability bounded by 27¥Q2.

Hence,

AdvIY — AV < 27K 00 (04 +)

Hybrid;. In this hybrid, we assert that if H(0, seed, salt) is queried for some seed, then seed cannot be returned later by
the random oracle.

The advantage loss is related to the preimage resistance of the hash-function H. Given that seed is sampled in {0, 1}>4, the
probability to find a preimage for a seed is less than Qp - 27>, As the adversary can query up to Qy seeds, we obtain:

Hybrid, AdVHybrid3

Adv A A

<224, Q%—I

Hyg)rid4. In this hybrid, we guess the index of the hash in the adversary’s forgery that was queried first. We start by sampling
u «— [Qpg]. We abort the game in case the index u does not correspond to the hash used in the forgery that was queried first
to the random oracle.

This hybrid inccurs a loss Qg
A dVHﬂybrid3 <O -A dvl—gbrim

We assert that the first hash used in a forgery will be of the form H (i*, RL*, M*, €*). Indeed, the previous hybrid ensured
that the only hash taking a input with a different form (i.e. taking as input seed) cannot be the first one called by the adversary.

Looking forward, observe that a forged ring signature is composed of vectors u; € Fy such that for any i € [N], we have
P;(u;) = e; —¢;, where ¢; is a hash of the form H(i — 1 mod N, -), and e; is used as input of a hash of the form H (i, RL, M, ¢;).
By guessing the value of e; before the corresponding ¢; is defined, we will then be able to program the random oracle to
choose ¢; so as to target any value for e; — ¢;.

Hybrid,. In this hybrid, we additionally guess the value of i* € [N].
This reduces the adversary’s advantage by an additional factor N:

Hybrid, Hybrid,
Adv 4 < N-Adv,

51

Hybrids. In this hybrid, after e* is defined, we program all the calls to the random oracle so that the values e* — ¢; is equal to
a target of the underlying signature for user i*. Concretely, whenever the random oracle is called on some input X and has to
output a uniform ¢ € F', we take an arbitrary message u, different from p* and any other message previously chosen. We
also choose an arbitrary salt. We then program H(X) = e* — H;(u, salt).

As H; is a random oracle only accessible to the challenger, the view of the adversary is identically distributed in this game:

Adeﬂ}/br|d4 _ AdVHﬂ},b“ds
Conclusion. Finally, we observe that when A wins the game Hybrid,, they output a signature verifying P; (u;+) = e* —¢; =
H;(u, salt) for some y, salt that were sampled in Hybrids, i.e. a forgery for the i*-th keypair.

We can hence reduce the probability of the adversary winning this game to the unforgeability of MAYO by replacing the
i*-th keypair by the one given by the unforgeability challenger against MAYO, and by aborting in case the corruption oracle is
called on index i*.

Formally, there exists an adversary B against the unforgeability of MAYO, running in time 7 (A) ~ 7 (8B), such that:
Hybrid UF
Adv 7 < Advg
i

k—(n-o0) m-ko

Tt assuming one challenge

Theorem 3 (Deniability of MayoRS). MayoRS is (1,2N - B)-deniable where B = 1
query is allowed.

Proof. In order to prove the deniability of MayoRS, we will show that we can replace the uniform sampling of non-signers,
by the preimage sampling function of MAYO to make the signature procedure independent of the actual signer.

Looking in more detail at the preimage sampler of MAYO, we can see that given a target t, it samples signatures of the
form (V + XO', X), where V € FSXM*O) is uniformly distributed, under the condition that an associated matrix A € FZ"X’“’
(derived from V and the keypair pk, sk) is full-rank, and X is uniformly sampled among the possible preimages of t of the
form (V + XO', X).

It can be seen that when t is uniformly distributed and obtaining V, X with the preimage sampler, then the joint distribution
of (pk, sk, V, X, t) is identical to first sampling (pk, sk, V) such that the associated matrix A is full-rank, uniformly sampling
X, and taking t to be the evaluation of on (V + XO’, X).

Formally, we will introduce a series of hybrids to prove deniability, starting from the game where the signer b is signing.

Hybrid,. In this hybrid, we sample a matrix V; for each user uniformly at random. When the signing oracle is called for the
ring (i, j) and signer i, we replace the random sampling of u; by (V; + XO;, X), where X is uniformly sampled.

As we only allow one signing query, this change does not change the distribution of the view of the adversary, and there is
no advantage loss as the preimage for user j is still uniformly sampled.

D Hybrid
Pr GameRZ'j(’;’ﬂ(l’l, Q) =0| =Adv, "
Hybrid;. In this hybrid, we replace the matrices V; and individual keypairs and instead sample them such that each keypair

and V; has an associated matrix A; that is full-rank.
Let us note E the event that all the matrices A ; are full-rank. Then, we can reexpress the adversary’s advantage in Hybrid,:

Pr [Hybrid, (A) = 0] = Pr [Hybrid,(A) =0 | E] - Pr [E]

=Pr [Hybrid; (A)=0]
+ Pr [Hybrid; (A) =0 | =E] - Pr [-E]
We deduce an upper bound on the advantage loss between the Hybrid, and Hybrid;:
|Pr [Hybrid, (A) = 0] — Pr [Hybrid;(A) = 0]| < Pr[-E] < N - B

k—(n-o) quk

q i q_io is the probability that a given A is full-rank, and the factor N appears by union-bound.

where B =

Hybrid,. In this hybrid, when user i is signing for the ring (7, j), we replace the use of the matrix V; with MAYO’s preimage
sampler, i.e., we first sample a random target t; for (u;) and then sample u; using MAYO’s preimage sampler.

We show that this change does not affect the distribution of the view of the adversary.

First, the distribution of (pk;,sk;, V;) is identical to the distribution of (pk;, sk;, V) where V is the matrix used by
MAYO'’s preimage sampler. Indeed, we can see that V is also sampled such that A; is full-rank, conditionning on the value of
(pk;, sk;).

Then, as observed in the introduction of this proof, it is equivalent to first sample X uniformly, then compute the corresponding
t, or to instead sample t uniformly first, and then compute X ;. We thus conclude that (X, t) follow the same distribution in
Hybrid; and Hybrid,.

Hybrids
A

Hybrid,

Adv A

= Adv

52

Hybrids. In this hybrid, when the signing oracle is called on user i for the ring (i, j), we instead sign with user j.

It is easy to see at this point that when t, t; are uniformly distributed, then (t — H(H(t) +t;), t;), is identically distributed
to (t — H(t;),t; — H(t)), which is itself identically distributed to (t,t; — H(H(t;) +t)), i.e. we can inverse the sampling of
the contributions of 7 and j.

Thus, this hybrid has no advantage loss:
Hybrid, _ Hybrid;
Adv Tt =Adv,
Conclusion. Observe that Hybrids is the exact counterpart of Hybrid, by changing the user who signed. We can then reapply

the hybrids Hybrid;, Hybrid,, Hybrid; in reverse order to obtain that:

Hybrid Deny P _
AV — pr [Gamepe™y (14, 1) =0|| < N - B

We finally conclude the proof by collecting all the bounds.

1.2.2. Alternative Parameter Sets for MayoRS

As observed in Tab. 2, MAYO parameter sets proposed for standardization offer a rather low deniability, and we provide in this
section alternative parameter sets that achieve higher deniability guarantees at the cost of larger public key and signature sizes.

Interestingly, we can rapidly increase the deniability of MAYO by increasing its parameter k. After adapting the parameters
to balance the security loss and still achieve NIST security level I, we propose three new parameter sets MAYO*, MAYO™
and MAYO™*. We provide concrete values for the parameters (n, m, 0, k, g) in Tab. 9.

Table 9: Alternative parameter sets for MAYO with higher deniability guarantees, aiming for NIST security level 1. Recall
that the parameter B translates into (u = 1,6 = 2 - N - B)-deniability. Sizes are given in Tab. 2.

Scheme (n,m, 0,k, q) Parameter B
MAYO* (69,69,9,9,16) 2752
MAYO** (70,70,9, 10, 16) 2783
MAYO*™* (78,78,9,12,16) 2-124

53

	Introduction
	Contributions
	Related Work

	Modeling Signal Handshake Protocols and Problem Setting
	Modeling Signal Handshake Protocols with Bundled AKEs
	Deniability: Entities and Roles
	Distinguisher Capabilities
	Scopes of Deniability
	Modeling Choices and Simplifications

	Defining Deniable Bundled AKE Protocols
	Overview of Our Deniability Definition
	Deniability Against Honest-but-Curious Accusers
	Deniability Against Malicious Accusers

	Deniability of X3DH and PQXDH
	The X3DH and PQXDH Protocols
	Summary: Deniability of X3DH & PQXDH

	Deniability of RingXKEM
	Deniable Ring Signatures
	The RingXKEM protocol
	Summary: Deniability of RingXKEM
	Alternative BAKE from Plain Signatures

	Ring Signatures from Falcon and MAYO
	Falcon-Based Ring Signature
	MAYO-based Ring Signature
	Comparison with Previous Works on Ring Signatures

	Efficiency Comparison
	Basic Building Blocks
	Symmetric Key Encryption
	Key Encapsulation Mechanisms
	Signature Schemes
	Ring Signature Schemes
	Merkle Trees

	Cryptographic Models
	 Generic Group Model with Oblivious Sampling
	Quantum Random Oracle Model

	Combinations of Leakage and Disclosure
	Strong Implies Standard Deniability
	Proof of Deniability of X3DH and PQXDH
	Local Deniability of X3DH and PQXDH
	Global Deniability of X3DH
	Global Deniability of PQXDH
	Strong Local and Global Deniability of X3DH and PQXDH
	Strong HNJL Deniability of PQXDH for Accused Receivers
	PQXDH Modelling Gap

	Single to Multi-Challenge Deniability for Ring Signatures
	Proofs of Deniability for RingXKEM
	Standard Local Deniability of RingXKEM
	Standard Global Deniability of RingXKEM
	Strong Local and Global Deniability of RingXKEM for Accused Receivers

	Deniability of SignXKEM
	The SignXKEM protocol
	Summary: Deniability of SignXKEM
	Local and Global Deniability of SignXKEM
	 Strong Local and Global Deniability of SignXKEM for Accused Receivers

	Omitted Details for Ring Signature Constructions
	Falcon-based Ring Signature
	MAYO-based Ring Signature

