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Abstract. Transport Layer Security (TLS) is the backbone of the web, allowing clients to establish
secure and private channels with servers. DECO (CCS’20) and follow-up works proposed protocols that
enable proving the provenance of a TLS response, i.e., that a payload came from a particular server,
without needing server-side modifications. Unfortunately, these works are limited to proving Boolean
statements over the payload (e.g., age > 18) and cannot combine payloads from multiple clients.

We introduce TLShare, a framework that extracts authenticated data from a TLS connection and im-
ports it into secure multiparty computation (MPC) or fully homomorphic encryption (FHE), without
requiring server-side changes or exposing client credentials. Unlike prior work, TLShare allows the pay-
load itself, not just a predicate about it, to serve as private input to secure downstream computation.
TLShare supports combining verifiable inputs across multiple clients and servers, enabling new applica-
tions such as privacy-preserving financial risk assessment and collaborative analytics. We design three
protocols for TLShare: one for MPC using verifiable secret sharing, and two for FHE using interactive
and non-interactive zero-knowledge proofs, each ensuring input authenticity, integrity, and end-to-end
privacy. We evaluate all three protocols of TLShare over both LAN and WAN settings, comparing their
trade-offs and demonstrating their practicality.
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1 Introduction

Transport Layer Security (TLS) is the de facto standard for securing communication over the Internet, pro-
viding confidentiality, integrity, and authentication guarantees between clients and servers [28,76]. However,
reusing data transmitted over a TLS connection in a separate application context (e.g., proving a property
about the payload to a third party) poses significant challenges [97]. The TLS payload is cryptographically
bound to the session between the client and the server, and its authenticity is not easily verifiable outside
that context. One obvious solution is to modify the TLS server (e.g., a bank) to support cryptographic proofs
or attestation mechanisms; however, this is highly impractical, as organizations are unlikely to implement
and maintain custom TLS extensions for arbitrary downstream applications requested by their clients [16].
Conversely, simply handing over client credentials to a third-party application breaks the fundamental trust
model and compromises both security and privacy [60]. These limitations highlight the need for mechanisms
that allow clients to extract verifiable private data from TLS sessions without requiring server cooperation
or revealing sensitive credentials.

DECO [98] introduced the concept of a decentralized oracle, which partially addresses the problem of
reusing TLS payload in external applications. It enables a client to prove statements about data received over
a TLS connection in zero knowledge, without requiring any server modifications. DECO extracts authenti-
cated data from the TLS session and converts it into a zero-knowledge proof (ZKP) friendly form, allowing
clients to prove predicates on the payload (e.g., threshold conditions) [33]. However, DECO ultimately out-
puts only a Boolean value (i.e., whether the predicate holds), which limits expressiveness. Additionally, the
proofs are often published on-chain [15], revealing information about the data they certify (e.g., age > 18).
Finally, decentralized oracles [98,33,77,20,90,18,53] do not allow combining data from multiple clients as the
prover must possess all underlying secrets in the clear.



This motivates the need to extend beyond existing oracle paradigms and explore a new class of archi-
tectures that preserve both privacy and authenticity in a more expressive and composable way. We broadly
categorize existing oracles into public-to-public and private-to-public models. The former type exposes both
input and output data, limiting their applicability to non-sensitive domains [15,56]. Private-to-public oracles
[98,77,20,53], allow clients to keep their input data private while releasing a public zero-knowledge proof of a
predicate over that data. However, these oracles suffer from two severe limitations: a) they cannot combine
data across users without violating privacy, and b) they rely on simple ZKPs that reveal a single bit of
information instead of offering support for any private downstream computation.

Private-to-private oracle. To address these limitations, we introduce a new oracle model, called
private-to-private, which extracts private data from a TLS connection and imports it into private com-
putation servers for secure multiparty computation (MPC) or fully homomorphic computation (FHE) while
keeping the data private end-to-end and maintaining data provenance. This opens the door to new use cases
such as credit scoring for collateralized lending [45], or aggregate statistical analysis across individuals and
institutions [24,52,62,66,65] that maintain strict cryptographic trust without exposing any sensitive infor-
mation. To that end, we introduce a novel framework called TLShare,®> which is the first private-to-private
oracle for both MPC and FHE downstream computation. Contrary to approaches that require institutions
(e.g., banks, hospitals) to engage in private computation with each other, TLShare lowers the barrier by
introducing a user-driven approach. TLShare allows users to ensure which data points are used in what
computation, instead of a direct inter-institutional MPC/FHE where clients have little to no control over
their data [42,64,23,32]. Additionally, secure computation between institutions requires significant trust and
coordination, often hindered by regulatory or competitive concerns (e.g., competitive dynamics, GDPR, con-
straints, operational overhead). In contrast, with TLShare, clients connect to TLS endpoints that serve as
authentic and verifiable data sources without having to participate in any secure computation. Finally, in con-
trast to private-to-public oracles, where a ZKP proves a statement about only a single client’s data, TLShare
allows data from multiple clients to be combined under secure computation while proving provenance.

1.1 Ouwur Contribution

We propose TLShare, the first private-to-private oracle that allows private computation over authenticated
and private TLS payloads. The client facilitates the data-sharing process by extracting authenticated data
(e.g., financial information) from trusted sources (e.g., banks, credit bureaus) and inputting it into MPC
or FHE servers for downstream computation. For instance, after importing financial data from multiple
institutions, the downstream MPC/FHE can perform a financial risk assessment for the user without revealing
the raw data to lenders. TLShare minimizes adoption barriers for private computation, as institutions simply
handle a standard TLS connection (e.g., a client accessing their bank account) and remain completely
agnostic to the downstream MPC/FHE. This TLS connection is the foundation for clients to input their
response payload with provenance and MPC/FHE servers to verify its authenticity. To that end, in Section 6
we elaborate on two motivating applications for TLShare. Below, we outline the three novel protocols of
TLShare.

1.1.1 MPC mode. This protocol (Section 4) focuses on private downstream computation within an MPC
network. At a high level, the user and an attestor first perform a two-party computation and connect to a
TLS server. This 2PC is secure against malicious adversaries and ends up with commitments on each bit of
the TLS server’s response. Next, we use these commitments as the base commitments for verifiable secret
sharing, associating them with the randomness and the commitments produced during the TLS phase.
Finally, each MPC node verifies the correctness of its share against the original TLS commitment using
efficient consistency checks.

1.1.2 FHE mode with Non-Interactive ZK Proofs. Our second protocol (Section 5.1) begins similarly
to our first one, in that we start with commitments for each bit of the TLS response. Next, the client encrypts
the TLS response using a public key version of an FHE scheme based on the learning with errors problem. We

3 Pronounced “TLS Share”.



focus on the CGGI scheme [22], but our techniques can be generalized to other schemes. To prove that the
ciphertext is a valid encryption of the same message committed in the TLS phase, the client and the MPC
nodes run a non-interactive ZK (NIZK) proof. The client starts by constructing a binary vector encoding
the message bits, encryption randomness and noise, and commits to this vector using a pairing-based vector
commitment scheme (see Section 2.4). Finally, we introduce an NIZK argument of vector membership to show
that the value committed in each commitment corresponds to the message bits contained within the vector
commitment. This ensures that the ciphertext is well-formed and tied to the authenticated TLS response.

1.1.3 FHE mode with Interactive ZK Proofs. Last but not least, our third protocol (Section 5.2)
relies on information-theoretic message authentication codes (IT-MACs) using an interactive zero-knowledge
(IZK) [91] protocol to prove the validity of Regev [74] FHE encryptions. More specifically, the client proves
in zero knowledge to the attestor that the ciphertext is computed correctly using the response plaintext, a
binary randomness vector, and bounded noise terms. The attestor then signs the ciphertext, and finally, an
FHE server verifies that it corresponds to the original TLS response, without seeing the plaintext.

1.2 Related Work

Proving various properties of data obtained from TLS connections has been an increasingly popular area of
research. We classify these works as private-to-public oracles since private data from a TLS connection (e.g.,
age) results in a public proof (e.g., age > 18), usually used in smart contracts. Another crucial distinction
between private-to-public oracles and our work is that the ZKP in the former is quite limited (True/False
statements) compared to the capabilities of TLShare — see Section 6. This line of work is also referred to
as designated-commitment TLS (DCTLS) protocols and focuses on ensuring data authenticity and integrity
while providing privacy guarantees.

Town Crier (TC) [97] was an early pioneer, relying on a trusted execution environment (TEE), specifically
Intel Software Guard Extensions (SGX), to act as a trusted bridge between smart contracts and external
websites. However, its reliance on SGX comes with a multitude of attacks [95,84,21]. Unlike TC, our approach
does not depend on hardware-based trust assumptions. The notable work of DECO [98] enables clients to
demonstrate data provenance and prove statements about it selectively or in zero-knowledge, all without
requiring any protocol modifications on the TLS server side. DECQO’s design is tailored for TLS 1.2, which
remains widely supported across many real-world systems.* Despite its utility, DECO is susceptible to attacks
during the multiplicative-to-additive (MtA) protocol [83,61,18]. Dido [20] builds upon DECO by introducing
a round-optimal three-party key exchange along with enhanced X25519-based protocols. TLSNotary [72]
further extends this model by separating the verifier into two roles: a verifier and a notary who co-signs
the client’s transcript, enabling auditability and trust separation. Recently, Garble-then-Prove (GtP) [90]
demonstrated substantial performance improvements over DECO by optimizing several two-party protocols
and transforming authenticated garbling bits into zkSNARK-friendly commitments. While all these protocols
focus largely on TLS 1.2, Janus [53] introduces performance enhancements and extends support to both 1.2
and 1.3. However, Janus requires clients to pre-select cipher suites, reducing negotiation flexibility and
increasing implementation complexity. Origo [33] focuses on TLS 1.3 and follows the GtP approach by
converting the commitment into a ZK-friendly one. It introduces a two-party computation (2PC)-free oracle
solution, effectively reducing 2PC overheads, but at the cost of requiring additional security assumptions,
such as resilience to a proxy that allows the client to perform man-in-the-middle attacks, a notably strong
assumption.

Several works explore private features over TLS connections, often requiring modifications on the server
side: TLS-N [77] introduces a mechanism for non-repudiation of origin, Oblivious TLS [2] enables a client
running a standard TLS endpoint to communicate securely with a set of MPC servers. An orthogonal ap-
proach, Compute but Verify [31], presents a method to execute an MPC protocol on authenticated inputs. As
these works rely on server-side extensions, the cooperation of servers in adopting their protocols is essential,

4 DECO has explored TLS 1.3 but has introduced vulnerabilities [18], largely attributable to the technical complex-
ities introduced by TLS 1.3’s revised handshake protocol and key derivation mechanisms.



and something we see as a significant lift. In contrast, TLShare offers a novel approach to authenticate MPC
inputs without requiring any changes to the server infrastructure.

PECO [80] and DiStefano [18] focus on providing an additional property: the client’s privacy. PECO offers
two modes: one that provides ZKP of valid signatures for authentication among a set of k verifier-approved
servers (k-anonymity), and another that verifies the validity of the server’s signature in zero-knowledge.
However, PECO uses a broken primitive [19] and lacks an implementation. DiStefano, on the contrary,
generates secure private commitments over TLS 1.3 data (relying on modified AES) and introduces a new
primitive called “zero-knowledge proofs of knowledge of valid signatures (ZKPVS)” that proves in zero-
knowledge that a signature is valid in relation to a set of public keys. This property essentially allows a client
using DiStefano to prove that they are connecting with the intended server without revealing the server’s
identity (which will reveal the client’s browsing history over time). ZKPVS is orthogonal to TLShare and
compatible with our approach.

All the aforementioned works implement private-to-public oracles, focusing on proving a property of the
TLS traffic in zero knowledge. In contrast, TLShare advances introduces the first private-to-private oracle,
supporting three distinct modes for secure downstream computation on private data.

MPCAuth [82] is a related work that enables a client to authenticate to multiple TLS servers indepen-
dently with the work of only one authentication. Although MPCAuth uses a similar technique of encrypting
the TLS channel within MPC, it solves a different problem than private-to-public oracles, that of authen-
tication. Likewise, zk-creds [78] focus on anonymous credentials such as proving properties from a passport
to anonymously access age-restricted videos. Lastly, zkLogin [4] leverages identity tokens to authenticate
blockchain transactions and ensure that the off-chain and on-chain identities of users remain hidden.

Finally, there exists a special class of ZKP systems over secret shared data where the servers can verify
some property of their shares without learning the underlying data [23,12,13,27,65]. These ZKPs have been
increasingly interesting in the realm of privacy-preserving statistics, such as histograms and heavy-hitters,
but they do not support any form of input authenticity from a third party.

2 Preliminaries

2.1 Multiparty Computation (MPC)

MPC enables multiple parties to compute a function f(z1,...,2,) over their inputs xi,...,x, without
revealing their private data [93,94]. MPC protocols provide different security guarantees: semi-honest security
assumes participants follow the protocol honestly but may try to infer additional information, while malicious
security accounts for participants who deviate from the protocol. We view these protocols in two categories:
garbled circuits [94,41,51,88,92] and secret-sharing protocols [26,50,49]. Garbled circuits focus on Boolean
circuits such as AES and SHA-256, comprising AND, XOR, etc. gates and encode the function f as the circuit
and evaluate an encrypted variant of it. Secret-sharing techniques focus on arithmetic circuits (consisting of
additions and multiplications) and split the inputs into seemingly random values, which are then distributed
between the parties.

One popular scheme is Shamir’s secret sharing [81] that constructs a random polynomial F'(z) = p+ajx+
asz?+- - -+a;_127 ! over a finite field Fg, where p is the secret message and T is the reconstruction threshold.
The share for party ¢ is a pair (¢, F'(i)), and any T of shares can recover u via Lagrange interpolation. We use
[x] to refer to shares of = and [«]; to the share of x owned by party i. In TLShare, we use Pedersen verifiable
secret sharing (PVSS) [70], where each share is also accompanied by a proof verifying its validity. In PVSS,
the dealer commits to the secret using Pedersen commitments [70] (i.e., g - A" for generators g and h and
random 7) and distributes Shamir shares ([u];,[r];) along with Pedersen commitments to the coefficients
of the corresponding Shamir polynomials. We provide more details about PVSS and its integration with
TLShare in Section 4.

2.2  Fully homomorphic encryption (FHE)

Fully homomorphic encryption (FHE) enables computation directly on encrypted data, supporting arbi-
trary encrypted additions and multiplications without the need to decrypt intermediate results [40,85,43].



Modern FHE constructions rely on the hardness of the Learning With Errors (LWE) problem [74] or its
ring-based variant, RLWE [59], which encrypt messages using noisy inner products. The LWE problem,
introduced by Regev [74], is based on the difficulty of recovering a secret s given samples of the form
b= A-s+e, where A € Z;*" is a public matrix, s € Zy is a secret vector, and e € Z™ is a small
noise vector. From the LWE assumption, one can construct a public-key encryption scheme consisting of
three algorithms (KeyGen, Enc, Dec) such that (pk,sk) < Gen and Dec(sk, Enc(pk, x)) = p. Furthermore,
an LWE-based FHE scheme supports both addition and multiplication over encrypted data. Specifically,
Enc(pk, 1) @ Enc(pk, 12) = Enc(pk, 1 + p2),  Enc(pk, p1) ® Enc(pk, pu2) = Enc(pk, p1 - pi2), where the oper-
ations @ and ® on ciphertexts correspond to plaintext addition and multiplication, respectively.

Regev Scheme. Choose the dimension of the secret-key n, the ciphertext modulus ¢, and a noise distribution
X (e.g., discrete Gaussian) based on a security parameter A. The Regev encryption scheme [74] is defined as
follows. The key generation algorithm KeyGen samples a secret key uniformly s <— Zy, a matrix A « Zg*™,
and noise e < \™, then sets y' = s" A + e'. The public key is (A,y) and the secret key is s. Here,
m = 2(nlogq). To encrypt a bit u € {0,1}, sample » < {0,1}™ and compute (a,b) = (Ar, y v+ |[u-q/2])
mod ¢. To decrypt, compute b — s'a mod ¢ and output 0 if the result is closer to 0 than to ¢/2, and 1
otherwise.

Subsequent work improved on Regev’s initial scheme by decreasing the size of the public key [48,59,57].
The LPR [59] scheme decreases the matrix A to an n x n matrix. This is achieved by adding noise to the
ciphertext components, i.e. (a,b) = (Ar +e, y'r +eo+ |1+ q/2]) mod ¢, where r, e + x™ and eg + Y.

CGGI Scheme. Encrypted operations result in noise growth, which eventually prevents decryption. To
allow for unlimited encrypted operations, a technique called bootstrapping resets ciphertext noise down to
minimal levels [30,22]. The schemes by Ducas—Micciancio (DM) [30] and Chillotti-Gama—Gentry-Izabachene
(CGGI) [22] (also known as TFHE) allow evaluating arbitrary univariate functions during bootstrapping,
further enhancing the capabilities of these schemes as it can be used to replace a series of additions and
multiplications [58,44]. Currently, CGGI [22] has the most efficient bootstrapping in terms of latency and is
thus the cryptosystem we use as one of our back-ends.

Let us now recall the CGGI scheme in more detail. For a modulus g € N, define the discretized torus
as T, = ¢~ 'Z/Z [47). The plaintext space is Z,, and the secret key space is {0,1}" C Z", where p | ¢ and
A = q/p. The CGGI secret key is defined as (s1,...,s,) € {0,1}". To encrypt a message p € Z, under
the secret key, one samples a random vector (ay,...,a,) € Ty uniformly and samples an error term e € Z
from a suitable distribution. The ciphertext is defined as (aq, ..., an,b) € Tg“, where: b = Z?:l sj-aj+p*
and p* = (A-p+e)/q € Ty. This encryption is additively homomorphic and supports bootstrapping to
maintain decryptability even after many homomorphic operations.

The public-key version presented in [46] follows the method proposed by Rothblum [79], where the public
key encodes encryptions of the zero message under different randomness. In summary, it constructs a public
key matrix A € ’]I‘ZLX("H) by sampling m independent encryptions of 0 under s. The public key is A,
and the secret key is s. To encrypt a message u € T, sample a random vector r < {0,1}" and compute
(a,b) =r"A+(0,...,0,u) € T2 Joye [48] uses the LPR [59] approach to reduce the size of the public
key by adding small noise to the ciphertext.

2.3 Zero-Knowledge Proofs (ZKP)

A ZKP allows a prover P to convince a verifier V that some given statement is true, without revealing
any information beyond the fact that the statement is true [63,10,7,39,6,67,11]. Informally, ZKPs must
be: complete, meaning that valid proofs generated honestly are always accepted; sound, meaning that it
is infeasible to produce a convincing proof for a false statement; and zero-knowledge, meaning that the
proof reveals nothing about the underlying witness [63,54]. In the context of this work, we focus on two
specific ZKPs: a non-interactive zero-knowledge (NIZK) for proving correct encryptions, and an interactive
zero-knowledge (IZK) system called QuickSilver [91].



NIZK. We consider NIZK arguments as a tool for generating verifiable CGGI ciphertexts (Section 5.1). Let
{Rx} be a family of NP relations parameterized by the security parameter A [54]. A NIZK argument for
this family consists of the following three algorithms:

— NIZK.GenCRS(1%, Ipp) — (pp, T): generates a common reference string pp and a simulation trapdoor 7,
possibly using language-dependent parameters Ipp. The relation to be proven becomes Rpp.

— NIZK.Provey, (x, w) — 7: given a statement x and witness w such that (z,w) € Rpp, returns a proof .

— NIZK.Verify,,(x, m) — {0, 1}: checks whether 7 is a valid proof for 2 under pp.

In addition to the aforementioned ZKP algorithms, we include a commitment algorithm NIZK.Comy,(w) — V
allowing P to commit to the witness such that it can be linked to the proof.

IZK with QuickSilver. QuickSilver [91] is an IZK protocol [89,5] and leverages Information-Theoretic
Message Authentication Codes (IT-MACs) to authenticate Boolean and arithmetic circuits. IT-MACs are
also widely used in MPC [8,87,29]. QuickSilver involves a prover and a verifier where V holds a private
key A € Fyn and a local key K[z] € Fox, while P, holds a bit € {0,1} and a MAC tag of the form
Mz] = K[z] + z - A € Fox. In QuickSilver, the prover commits to a witness and to all wire values of the
circuit using IT-MACs and then evaluates the circuit interactively with V to obtain IT-MACs on output
values. We use {(z)) to refer to such verifiable shares with IT-MACs, where P holds z and M[z], and V holds
K[z] and A. QuickSilver proves circuit satisfiability and verifies correctness with batched checks [68,89] and
achieves constant-size communication.

2.4 Vector Commitments over Pairings

Vector commitments allow a sender to commit to an ordered sequence w = (wy,...,w,) € Z; and later
open the value at a specific position ¢ along with a proof that w; is indeed the committed message at that
index [17]. One of the key advantages of vector commitments is that the size of the commitment remains
constant, regardless of the size of the vector. In this work, we focus on the vector commitment scheme
from [54], which is based on bilinear pairings and includes the additional functionality of proving inner
product relations. Specifically, it enables the prover to demonstrate that a committed private vector w
satisfies a linear relation (w,t) = x, where t and z are public.

A bilinear map, or asymmetric pairing, is a function e : G x G — Gr defined over two source groups G
and G. We assume a structured common reference string (CRS) that defines the group elements (g, {g; =
9% Yiep2np\ fn+13) and (9, {g; = §* }1-,), for a hidden scalar o € Z,, [55,54]. This structure relies on the
assumed hardness of the (2n,n)-Discrete Logarithm problem, which assumes computing « from the CRS is
hard [54, Definition 1].

To commit to a vector w = (wi,...,w,) € Zjy, the sender samples s Z, and computes the vector
commitment:

] n ol
V=g L9 =g 2=, (1)
To open a specific position i in the committed vector, the sender provides a proof m; = 934—1—1"1_[?:1.3‘# g:il_iﬂ =

(V/g““‘“l)anﬂﬂ, which can be verified by checking the pairing equation e(V, gni1-i) = e(m, §) - (g1, gn)™",
confirming that w; is the message committed at index ¢ (with i € [1,n]).

The use of pairings also enables proving that the committed vector satisfies a linear relation of the form
(m,t) = x, for public t € Z,, and z € Z,. This is done by raising the verification equation to ¢; € Z, and

multiplying over all i € [1,n] as e (V, ]I gk 1_;), which equals e (TT/_, 7%, §) - e(g1, §n)2i=r wi'ts.
3 Overview of TLShare

3.1 Functionality & Threat Model

In this section, we present an overview of TLShare, a framework that enables the extraction of data from a
TLS session into secure computation techniques. TLShare operates as a private-to-private oracle, allowing



Ideal Functionality Frrshare

This functionality interacts with a server S, a client, an attestor, n > 1 Nodes N;, and an adversary.

— Public Parameters: A mode parameter mode € {fhe, mpc}. A query template Query for the server S (e.g.,
a GET request) and a threshold T for secret sharing.

— Server S: has no input (L) to the functionality but hosts and operates a public website.

— Client: has a private input (e.g., a password) Inp.

— Attestor: has no input (L).

— Node N; (for i € [1,n]): In case of mpc mode, the nodes have no input (L). In case of fhe mode, the nodes
have shares of the secret key of an FHE key pair ([skme];, PKge)-

TLS PHASE (HANDSHAKE, QUERY, AND RESPONSE):
1. On input (Init,sid, S, Inp, Query) from the client and (Init, sid) from the attestor:
(a) Compute Q < Query(Inp).
(b) Send (Init,sid, Q) to S.
2. Receive a response (Response, sid, R) from S:
(a) Store the tuple (sid, Q,R) and send (sid, R) to the client.
(b) Send (sid,|Q], |R|) to the adversary.

SHARE/ENCRYPTION PHASE:

1. On input (Share,sid, mode) from the client, retrieve (sid, Q,R) from memory.

2. If mode = fhe, then:
(a) Encrypt each bit R; of the response R to a ciphertext Encpig,, (Rj).
(b) Send (sid, Encpi,, (R;)) to Ni. Also, send (sid, Encpi,, (R;)) to the client.

3. If mode = mpc, then:
(a) For each bit R; of the response R, generate secret shares [R;], with threshold T for node N, where

i €[1,n].

(b) Send (sid, [R;];) to A for i € [1,n).

Fig. 1: Ideal Functionality Frrshare between a server S, a client, an attestor, and nodes N for i > n.

data transmitted over standard TLS connections to be consumed by secure multiparty computation (MPC)
or fully homomorphic encryption (FHE) systems without any changes from the TLS server. This enables
authenticated inputs in secure computation.

We present the ideal functionality of TLShare Frishare in Fig. 1, which defines the interactions between a
client, an attestor, a TLS server, and a set of private computation nodes N7,...,N,. We adopt the standard
assumption used in prior work [98,18,90], namely that the attestor does not collude with the client. The
functionality Frishare has two phases: 1) the TLS Phase and 2) the Share/Encryption Phase. The former
involves the TLS handshake, the client’s query to the TLS server, and the server’s response, while the
latter transforms the server’s response either to secret shares or to FHE ciphertexts along with a proof of
provenance. We introduce three novel protocols for TLShare and support two modes of operation (i.e., MPC
and FHE), with one protocol for MPC (Section 4) and two different protocols for FHE (Section 5). We
target two scenarios that combine data from multiple TLS servers, which is not feasible with any related
work [98,33,77,20,90,18,53]. We outline the two scenarios below and motivating applications in Section 6.

Single-client multiple-sources. In this case, a client aggregates data from various institutions (e.g., banks,
tax authorities) through TLS into secure computation (such as assessing their financial risk). We demonstrate
an overview of this scenario in Fig. 2.

Multiple-clients multiple-sources. In this case, multiple users contribute data from different sources
into a joint secure computation. Our motivating application for this scenario is the Boston Women’s Work-
force Council (BWWC) study that measured wage gaps across demographic groups (e.g., race and gender,
or inequality of opportunity for women and minority-owned small businesses) [24,52,62]. More details in
Section 6.2.
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Fig. 2: Overview. The client wants to: a) import their data from multiple TLS connections into MPC/FHE
nodes, b) prove to the nodes that the imported data is authentic and valid, and c¢) keep the data private. In
the depicted example, the MPC/FHE nodes assess the client’s financial risk by combining bank statements,
credit reports, pay stubs, tax reports, citizenship cards, etc, all from different sources while keeping all the
data private. Some applications may further require multiple provers to import their data into the same
MPC/FHE session, enabling computation over the joint data.

3.2 Modes of Operation

TLShare supports both MPC and FHE secure computation techniques through three cryptographic protocols.
Namely, TLShare supports MPC mode, FHE mode with non-interactive zero-knowledge proofs (NIZK), and
FHE mode with interactive zero-knowledge proofs (IZK). The different modes introduce different performance
tradeoffs, such as the presence or absence of preprocessing, which we explore in Section 7.4.

MPC Mode. In MPC mode, the client secret shares their authenticated TLS response among a network of
MPC nodes. In the TLS phase, the client obtains an authenticated response R by initiating a TLS session
with both the server and the attestor. To securely distribute R across a network of MPC nodes, the client
transforms it into an additively homomorphic commitment. We instantiate this using Pedersen commitments,
which are compatible with Pedersen verifiable secret sharing (PVSS). The Pedersen commitments of R serve
as the base commitments for PVSS, allowing the response to be secret-shared among the MPC nodes.
The attestor also signs the Pedersen commitment, enabling each MPC node to verify the authenticity of
the committed message. This ensures that the value under commitment is exactly the authenticated TLS
response generated in the protocol’s initial phase.

FHE Mode with Non-Interactive ZK Proofs (NIZK). In this mode, the client encrypts the authenti-
cated TLS response under a public FHE key and transmits the resulting ciphertext to a designated FHE node
Ni. The corresponding secret key is secret-shared among a set of nodes N;, enabling threshold decryption.
Without loss of generality, the secret key may also be held by an external analyst interested in learning the
final result of the computation. As in the MPC mode, the client first initiates a TLS session with the server
and an attestor. This process yields signed commitments to the server’s private response, which are shared
between the client and the attestor. Using these commitments, the client encrypts the TLS response under
the FHE public key and generates a non-interactive zero-knowledge (NIZK) argument that attests to the
validity of the ciphertext. Specifically, the proof establishes that the ciphertext is well-formed and that it
encrypts a value consistent with the previously committed TLS data. To achieve this, the client runs a novel
NIZK argument of vector membership, which links the encrypted plaintext to the committed value. This
proof guarantees that the ciphertext is a valid encryption of the committed response, thereby ensuring the
consistency and correctness of the encryption.

FHE Mode with Interactive ZK Proofs (IZK). This variant supports FHE encryption based on LWE
schemes over a prime modulus, with a correctness proof implemented using an interactive zero-knowledge
(IZK) protocol built on IT-MACs [91]. Compared with the previous two approaches, the TLS phase is modi-
fied to produce IT-MACs derived from the server’s private response. These act as authenticated witnesses in



the zero-knowledge circuit that proves the correctness and validity of the LWE-based encryption. The proof
circuit encodes the encryption process and links it directly to the TLS response obtained earlier. Finally, the
resulting ciphertext is signed by the attestor, enabling the FHE node to confirm that it encodes the original
TLS response.

Table 1: Feature comparison between the three proposed protocols during the Share/Encryption phase.

Protocol No Preprocessing No CRS Modulus Type
MPC v v Field
FHE with NIZK v X Field/Ring
FHE with 1ZK X v Field

Discussion. Table 1 shows a qualitative comparison between the proposed protocols. In MPC mode, the
client does not require preprocessing or trusted setup, and there is only a one-shot communication with the
MPC nodes during the share phase. The attestor is not involved after the TLS phase, leading to very low
latency and bandwidth overhead. Meanwhile, both MPC and FHE with NIZK require the client and attestor
to run a conversion protocol during the TLS phase to generate commitments of the response. In contrast, the
FHE with IZK avoids this step by performing an interactive ZKP of valid encryption directly on the TLS-
derived IT-MACs. During the share/encryption phase, the MPC and FHE with NIZK modes communicate
only once with the secure computation nodes N;. At the same time, the FHE IZK-based protocol requires
additional interaction with the attestor to generate the proof that ties the ciphertext to the TLS response.

Comparing the FHE mode protocols, the NIZK version protocol requires a single trusted setup and
enables a fully non-interactive execution between the client and the FHE node N7, shifting proof verification
entirely onto the FHE node and not involving the attestor after the TLS phase. In contrast, the FHE with
IZK protocol eliminates trusted setup but requires preprocessing between the client and attestor during the
encryption phase. Overall, the FHE with IZK achieves faster computation time during the encryption phase
but is limited to prime-field LWE schemes, whereas the FHE with NIZK method supports ring-based LWE
schemes.

4 MPC Mode Protocol

In TLShare’s MPC mode, our goal is to ensure that the authenticated response obtained from a TLS session
is not merely shared between the client and attestor but rather securely distributed as verifiable shares to a
network of MPC nodes. This distinction is important: while the client and attestor both share verified shares
of the TLS response, private computation over that data must be carried out by the MPC nodes, who must
receive a different set of shares of the same underlying TLS response.

Garble-then-Prove (GtP) [90] produces authenticated Pedersen commitments to the TLS response, which
are verified by the attestor and returned to the client. To enable the client to convince other parties of the
authenticity of a TLS payload, our attestor produces signed commitments. However, this is not enough to
allow a distributed MPC network to verify and consume the data securely for private computation. We unlock
this functionality in TLShare with a construction that transfers the commitments and the corresponding
secret shares directly to the MPC nodes in a way that maintains authenticity. We build on this insight
by composing two cryptographic tools that share a common foundation: 1) Pedersen commitments, which
provide authenticated commitments to the TLS response; and 2) Pedersen verifiable secret sharing (PVSS),
which supports verifiability of shares under Pedersen commitments. The full protocol is described in Fig. 3.

The protocol is divided into two phases: TLS phase and share/encryption phase. In the TLS phase, the
client and the attestor jointly execute the TLS handshake with the server and submit the query, resulting
in the server’s response committed with an additive homomorphic commitment scheme. These steps follow
the ITauthpata protocol from GtP, instantiated with Pedersen commitments. Both the client and attestor
hold commitments to each bit of the TLS response R and, as shown in step 2 of Fig. 3, the attestor signs
these commitments, thereby certifying their provenance and binding them to the TLS payload. The only



TLShare: MPC mode using PVSS

This protocol runs between a server S, a client, an attestor, and an MPC network of n nodes Ni,...,N,. The
server S behaves the same as in a standard TLS connection. C = ¢g" - h" is a Pedersen commitment to p for
generators g and h and random r [70].

— Public Parameters: a query template (Query) for the server S (e.g., a GET request) and a threshold T for
Shamir secret sharing.

— Server S: has a secret key (sks) for a signature scheme (e.g., ECDSA), a certificate certs, and hosts and
operates a public website.

— Client: has a private input Inp (e.g., a password).

— Attestor: owns a key pair (pka, ska) to a signature scheme (e.g., for ECDSA).

— MPC Node N; (for i € [1,n]): has no input.

TLS PHASE (HANDSHAKE, QUERY, AND RESPONSE):

1. The client, S, and the attestor run ITauthpata(Sks, certs, Inp, Query) instantiated with Pedersen commitments
over group G, i.e., converting the IT-MACs of [Q] and [R] to commitments over them. Let C; be a commitment
to the j™ bit of R with randomness ;. The client outputs (sid, [C1,...,C¢], Q,R) and the attestor outputs
(sid, [Ch,...,C¢]), where £ = |R|.

2. The attestor signs the committed response as o = Sign(sk4, [C1,...,C¢]) and sends it to the client.

SHARE/ENCRYPTION PHASE:
3. The client broadcasts (o, [C1,...,C¢]) to all nodes V.
4. The nodes verify the signature Verify(pk.a, [C1,...,C¢],o) and abort in case it fails.
5. For j € [1, /], take each bit of the response R;, its corresponding commitment C; with randomness r;, and run
the following:
(a) The client selects two random polynomials F'(z) and G(z) over Zq of degree at most T — 1 such that:

F(z)=R; + cux + asx® 4+ -4+ ar_1z' ' and G(z)=r; + fix+ ﬁgazQ 4.4 BTflefl,

where R; = F(0) and r; = G(0) are the secrets. Recall that R; is the message and r; is the randomness
used in the commitment Cj. For each node N; (i € [1,n]), the client computes the shares [R;], = F (i)
and [r;], = G(7).

(b) The client computes commitments to the coefficients as g® - h”t for I € {1,..., T — 1}, and broadcasts
them to all nodes.

(c) The client sends the pair ([R;],, [r;],) privately to each node N;.

)
(d) Each A; verifies the correctness of its share as gIfli - nIili = 05 x T2} (g% - hﬁl)(z ). Abort in case of
failure.

Fig. 3: TLShare protocol for mode = mpc.

communication in the share phase is between the client and the MPC nodes, as the attestor is no longer
involved. The client starts (Fig. 3 step 3) by distributing the signed commitments to all MPC nodes, allowing
them to verify the provenance of the committed data (step 4). Then, the Pedersen commitments generated
during the TLS phase are used as the commitments of the secrets in the PVSS scheme. We refer to these as the
base commitments. Specifically, treating each TLS bit commitment C; = g% - A3 as the base commitment,
the client creates Shamir secret-sharing polynomials F(-) and G(-) for both R; and its randomness r;,
respectively in steps 5.a) of Fig. 3. Then, at steps 5.b) and 5.c), the client generates and sends corresponding
commitments of the polynomial coefficients g* - h%* and shares ([R;];,[r;],) to the nodes. Finally, using
these commitments, each MPC node is able to locally verify its share by computing:

il
LA = Gy T (g 1)

where «; and f3; are the coefficients of the Shamir polynomials. This expression ensures that each share is
consistent with the attested commitment C;. Notably, authenticated broadcast channels are used to ensure
global consistency across nodes.
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TLShare: FHE mode with Non-Interactive Zero-Knowledge (NIZK) Proofs

This protocol runs between S, a client, an attestor, and FHE node N;. S behaves the same as in a standard TLS
connection. The protocol requires a common reference string (CRS) computed in a setup phase by a trusted third
party and accessible to both the client and Nj. V is a vector commitment as in Eq. (1), and C is a Pedersen
commitment [70], over the second source group G of pairing e : G x G — Gr.

— Public Parameters: a query template (Query) for the server S (e.g., a GET request).

— Server S: has a secret key (sks) for a signature scheme (e.g., ECDSA), a certificate certs, and hosts and
operates a public website.

— Client: has a private input Inp (e.g., a password).

— Attestor: owns a key pair (pka, ska) to a signature scheme (e.g., for ECDSA).

— FHE Node N; has no input.

TLS PHASE (HANDSHAKE, QUERY, AND RESPONSE):
1. The client, S, and attestor run ITauhpata(Sks, certs, Inp, Query) instantiated with Pedersen commitments over
group G, i.e., converting the IT-MACs of [Q] and [R] to commitments over them. Let C; be a commitment

to theAjth bit of R with randomness r;. The client outputs (sid, [C1,...,Ce],Q,R) and the attestor outputs
(sid, [C4, ..., C¢]), where £ := |R|. . .
2. The attestor signs the committed response as o := Sign(ska, [C1, ..., C/]) and sends it to the client.

SHARE/ENCRYPTION PHASE:
3. The client sends (o, [C1,...,Cy]) to Ni.
4. N verifies the signature Verify(pk.a, [C’l, R C’g}, o) and aborts in case it fails.
5. For each bit of the response R;, j € [1,4]:

(a) The client locally runs the CGGI proving algorithm to obtain (ccal, Vj,7;) < CGGI.Provey(R;).

(b) Then, the client locally sets com = (Cj, V;) € G? and the opening information aux = (r;,7;) € Z2. Finally,
the client locally runs mym < VM.Provep,(com, k, [, (R, w;, aux)) for index k, bitlength [, binary vector w;
containing the response R;, encryption randomness and noise, and mvm given by Eq. (2).

(c) The client sends the tuple (VJ7 mvM, TcGal, k, 1) to the FHE node N; for verification.

(d) N1 runs the verification algorithm CGGI. Verify,,, to check the validity of mcea; and finally runs the ver-
ification algorithm VM.Verify (com, k, 1, mym) by checking Eq. (3). A1 aborts if any of the above checks
fail.

Fig.4: TLShare protocol with mode = fhe with NIZK for the CGGI scheme.
Theorem 1. Under the decisional Diffie-Hellman (DDH) assumption, the MPC mode protocol from Fig. 3
securely realizes the functionality Frrshare (Fig. 1) in the stand-alone model in the Fauthpata-hybrid world.

Given a functionality Fauthpata for secure authenticated data [90], we show that the MPC mode protocol
realizes Frr,share for malicious adversaries as stated in Theorem 1 in Appendix A.

5 FHE Mode Protocols

In this section, we describe how to generate an FHE ciphertext of a payload originating from a TLS connection
in a verifiable and privacy-preserving manner. We present two solutions that can be instantiated with two
popular types of FHE schemes: CGGI [22] and the LPR-style variant of Regev’s scheme [74]. As in the MPC
mode, we leverage tools from the Garble-then-Prove (GtP) [90] to produce authenticated shares of the TLS
payload.

5.1 FHE Mode with Non-Interactive ZK Proofs (NIZK)

We present a protocol that generates an FHE ciphertext of a payload extracted from a TLS connection,
instantiated using the CGGI scheme [22]. We design the protocol to ensure two key security guarantees: 1)
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the validity of the CGGI resulting ciphertext, and 2) the consistency between the encrypted message and
the corresponding payload from the TLS response R, as authenticated by the TLS phase.

To achieve these goals, our TLShare FHE with NIZK protocol integrates pairing-based vector commit-
ments (see Section 2.4) as these can be used to prove that a tuple (ay,...,an,b) is a valid CGGI encryption
of a plaintext p under an encryption key [55,35,14]. This construction exploits the algebraic structure of
vector commitments to prove inner product relations between a secret vector (containing the message, en-
cryption randomness, and noise) and a public vector (containing the public key and output ciphertext).
Beyond proving the correctness of encryption, we also establish the consistency between the encrypted value
and the TLS payload R. To this end, both the client and the attestor receive Pedersen commitments to each
bit of R. However, this design introduces a technical challenge: the commitments used to encode the TLS
payload are not directly compatible with the vector commitment constructions (Eq. (1)) required to prove
encryption validity.

To bridge this gap, we introduce a novel cryptographic component that we call proof of vector membership.
This technique enables us to use Pedersen committed values with the NIZK proof of valid encryption, proving
end-to-end provenance for FHE. Specifically, we allow the client to prove that the binary plaintext p of a
CGGI ciphertext is the same as the response R committed using Pedersen commitments, without revealing
R or p. Next, we describe the novel construction of our vector membership proof.

NIZK Proof of Vector Membership (VM). To enable composability between our NIZK for vector
membership and the NIZK for CGGI encryption, the generators of Pedersen commitments are § and g1,
derived by the CRS, see Section 2.4. Consider a Pedersen commitment C = g" - g1 of a message u in the
second source group Gofa pairing, where p has a binary expansion given by u = (1, ..., pe). Additionally,
let w = (w1, ...,w,) be a binary vector containing p as a contiguous segment. More formally, for i € [1, /],
[ = W4, for some index k. Finally, let V be a vector commitment to the binary vector w as g7 - H?Zl g;"-f
from Eq. (1).

In our NIZK proof, the prover aims to convince the verifier that the binary representation of u (i.e.,
11, ..., ) corresponds to a contiguous segment within the binary vector w committed in the vector com-
mitment V', while keeping p and w private. In other words, the prover wants to convince the verifier that p
is a member of w, with C and V being their public commitments, respectively. More formally, we define the

vector membership (VM) relation as

RPP = {((éa V7 k> l)a (7",% Ma ’LU)) |

C=g"-g¢ N V=9 T8 A Vie[Ll, ji=wyr A u:zﬁzly‘*l.m}
where the public parameters pp denotes the CRS containing the commitment key (g, {g;}7;) and the pairing
groups (G, G, Gr). The NIZK argument for the above VM relation R, consists of the following algorithms:

— VM.GenCRS(1*,1™): on input a security parameter A\ and the maximal bit length n, proceed as fol-
lows. Choose asymmetric bilinear groups (G,G,Gr) of prime order p > 2¢(N) | for some polynomial

function £ : N — N, and sample g & G, g & G. The public parameters are defined as: pp =
((GvGa GT)) 9, 9s {gi}ie[l,Qn]\{n+1}v {gi}ié[l,n])'

— VM.Compy (1, (V,7y)): on input p € Z,, and V € G, the prover chooses a random r & Z,, and computes the
commitment C'= §"-§{' € G. Return com = (C, V) € G* and the opening information aux = (r,v) € Z2.
— VM.Provey,((com, k, 1), (1, w,aux)): given com = (C, V) € G2, indexes k and [, and witness information
(1, w, aux), where aux = (r,7) and p has binary expansion (1, ..., ;) and w is a binary vector, compute
the following proof =:
_r w; i—1—k
R | P AR Hje[l,n]\{i} 9n+1+j—z')2 ) (2)
where L ={k+1,...,k+1}.
— VM. Verify,,((com, k, 1), ): given com = (C, V) € G* and proof 7, return True if and only if

2i—17k

(et 9ns1-i-V)/elgn, C) = € (,3). (3)
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TLShare: FHE mode with Interactive Zero-Knowledge (IZK) Proofs

This protocol runs between a server S, a client, an attestor, and FHE node N;. S behaves the same as in a standard
TLS connection. We use {(x)) to denote authenticated shares (i.e., IT-MACs) of z, as defined in Section 2.3.

— Public Parameters: a query template (Query) for the server S (e.g., a GET request). An LPR-style Regev
public key (A, y) and a plaintext modulus p as defined in Section 2.2.

— Server S: has a secret key (sks) for a signature scheme (e.g., ECDSA), a certificate certs, and hosts and
operates a public website.

— Client: has a private input Inp (e.g., a password).

— Attestor: owns a key pair (pka, ska) to a signature scheme (e.g., for ECDSA).

— FHE Node N; has no input.

TLS PHASE (HANDSHAKE, QUERY, AND RESPONSE):

1. The client, S, and attestor run Iauhpata(sks, certs, Inp, Query) and retrieve the IT-MACs of the query and
response as ((Q)) and (R)) = [(R1)), ..., {Re))]. We denote by ¢, the length of the response, i.e., £ = |R|.

SHARE/ENCRYPTION PHASE:
2. For each bit of the response R;, j € [1,4]:

(a) The client locally generates a binary randomness vector, & {0,1}"; and noise samples e & x", €o & X
where x is a centered discrete Gaussian with standard deviation stdev over Z,.
(b) The client and the attestor generate IT-MACs of the secret inputs of the client as ((r)), {(e)), {(eo))-
(c) The client and the attestor run an IZK using QuickSilver with witness ({r)), (R;)), {(e)), {eo))) and the
LWE public key (A, y) as the ZKP public statement on the following circuit:
i. Check 0 < (R;)) < p and abort in case of failure.
ii. Vi € [1,n] compute ((r;)) - (1 — (r4))), reveal its value, and abort if not zero.
iii. Vi € [0,n] check that |((e;))| < 6 - stdev and abort in case of failure.
iv. Compute the ciphertext (a,b) as (A - (r) + (€N, y" - {(r) + {eo) + [(R;) - A]) mod g, following
Eq. (4).
v. Reveal the ciphertext (a,b) to both client and attestor.
) The attestor signs the ciphertext (a,b), i.e., Sign(ska, (a,b)) and sends the signature to the client.
) The client verifies the signature and sends it along with the ciphertext to node N7.
) The node N; verifies the signature using the attestor’s public key, pk.a.

Fig. 5: TLShare protocol with mode = fhe with 1ZK.

A detailed correctness proof of the VM NIZK definition can be found in Appendix B, and a security
argument for the vector membership construction is given in Appendix C.

TLShare for CGGI encryption. We now combine the NIZK proof of vector membership with the NIZK
proof of valid CGGI encryption [35,54,14], and the Pedersen commitments from the TLShare TLS phase.
As a result, we perform a verifiable FHE encryption of a plaintext that can be provably linked to a TLS
payload. We adopt the public-key NIZK argument for valid CGGI encryption as described by Bootland et
al. [14, Section 7.6.3]. Let (CGGI.Prove,,, CGGl.Verify, ) denote the proving and verification algorithms of
this NIZK proof. Our full TLShare protocol combining the VM and the CGGI NIZK proofs is summarized
in Fig. 4.

In the TLS phase, the server, client, and attestor jointly run ITayhpata from GtP [90] instantiated with
Pedersen commitments in step 1 of Fig. 4. This results in both the client and the attestor receiving Pedersen
commitments to the bits of the TLS payload R. To enable external verification of the CGGI encryption, the
attestor signs the committed response in a signature o and forwards it to the client in step 2. In step 3, the
client sends o along with the commitments [C’l, ceey Cg] to the node, who, in turn, verifies it in step 4.

The encryption phase involves only one-way communication from the client to the FHE node. At
this stage, the client locally generates the required proofs: the NIZK argument for valid CGGI encryp-
tion (step 5.a) and the NIZK argument of vector membership (step 5.b). Specifically, for each bit j of
the payload Rj, the client performs the following steps. It runs the CGGI proving algorithm to obtain
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(WCGGth,%) < CGGl.Provey,(R;) and takes the commitment C; corresponding to R; and the vector
commitment V] from the previous step. Then, the client uses them as the commitments com = (C’j, Vj)
from VM.Com and the randomness of the commitments as aux = (r;,7;). In other words, the NIZK argu-
ment for valid CGGI encryption [14] internally commits to the vector w through the value V during the
proof generation. Therefore, we reuse the vector commitment V as part of the NIZK argument for vector
membership. The client continues in step 5.b of Fig. 4 by generating the proof of vector membership via
mwm < VM.Prove,,(com, k, 1, (R, wj,aux)). In step 5.c), the client sends the tuple (Vj, VM, TcGal, K, 1) to the
FHE node for verification. Finally, in step 5.d), the FHE node locally runs the verification algorithms (i.e.,
CGGl.Verify and VM. Verify) for the proofs sent by the client.

We provide a security argument for the TLShare protocol with mode = fhe with NIZK for the CGGI
scheme in Appendix D.

5.2 FHE Mode with Interactive ZK Proofs (IZK)

In this section, we describe an interactive zero-knowledge (IZK) approach to securely encrypt a TLS payload
message R into an FHE ciphertext. We focus on an LPR-style variant of Regev’s LWE scheme [71] with
ciphertext and plaintext moduli ¢ and p, and public key encryption of a message u:

(a,b) = (Ar+ e,y ' r+eo+ |p-A]) mod g, (4)

under public key (A,y), where A = ¢/p is the scaling factor between plaintext and ciphertext spaces,
3 . . $ 3 . . .

r < {0,1}" is a binary randomness vector, e <— x", ep < X are noise samples, and x is a centered discrete

Gaussian with standard deviation stdev over Z,.

At a high level, our FHE mode with IZK protocol derives authenticated shares (i.e., IT-MACs) of the
server’s private response from the TLS phase. Then, we compose it with an IT-MAC-based IZK protocol to
prove the validity of an LWE encryption circuit. We use the efficient QuickSilver protocol [91] together with
the GtP framework to achieve a constant number of rounds and a communication overhead near one field
element per multiplication gate [91]. Our full IZK protocol is summarized in Fig. 5.

Recall, in the MPC mode and the FHE mode with NIZK, the ITauthpata [90, Figs. 17-18] in the TLS
phase outputs Pedersen commitments of the TLS payload R. These Pedersen commitments are computed
over IT-MAC shares of R through a conversion protocol [90, Fig. 19]. In our protocol, we avoid this conversion
and directly extract the IT-MACs of R (i.e., {R))) from GtP, as outlined in step 1 of Fig. 5. Next, we use
{(R)) as part of the private witness of a circuit that proves the validity of LWE encryption in zero-knowledge.

For each bit of the response message R, we proceed as follows. In step 2.a, the client locally generates any
randomness needed for Eq. (4), specifically, 7, e, and eg. Next, in 2.b, the client and the attestor generate
authenticated shares [91] of the aforementioned elements {(r)), {(€)), {(eo)). To prove the validity of encryption
(a,b) from Eq. (4), our circuit takes ({r)), (R;), {e)), {eo))) (generated in the two previous steps) as witness
and checks the following in step 2.c:

— {(R;) lies in the valid plaintext range [0, p).

— Each coordinate of {(r)) is binary. Notably, the expression {(r;))-(1— ((r;))) yields 0 if and only if r € {0, 1}.
— All noise terms e; satisfy |{(e;)| < 6 - stdev for ¢ = [0, n].

— The ciphertext (a,b) matches Eq. (4).

More formally, we show membership of (a,b) in the relation:
R={((a,b).(r.Rs.e.c0) [Rjez, A re{01}" A
Vi e [0,n], |e;] <6-stdev A a=Ar+emodq A b=y r+e+|R; A modq}.

Then, after verifying the validity of (a,b), the attestor signs the ciphertext and sends it to the client (step
2.d), which subsequently forwards it to the node A (step 2.e). Finally, the node verifies the signature, which
guarantees that the value under the ciphertext comes from a TLS connection that the attestor verified.

We provide a security argument for the TLShare protocol with mode = fhe with IZK in Appendix E.
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6 Applications

6.1 Single-client, multiple-sources: Financial Risk Assessments

We consider a use case in which an individual client wishes to utilize a third-party risk assessment service to
evaluate their financial circumstances by jointly analyzing data housed within multiple institutions, such as
banks, employers, and tax authorities. One major implementation challenge associated with secure compu-
tation workflows for assessing financial risk [1] is determining which parties are responsible for coordinating
interactions between the multiple institutions contributing data and the risk assessment service provider.
The institutions may find it prohibitively expensive (or in conflict with the fact that they are competitors)
to agree in advance to collaborate on such workflows. Even if these obstacles are not present, it is impractical
for each participating institution to integrate with the centralized risk assessment service provider.

As illustrated in Fig. 2, our approach addresses this obstacle by enabling the client to perform this
coordination independently, utilizing existing TLS servers from various institutions. With the help of an
attestor, the downstream computation can be assured of the accuracy of the client-provided data. The
analysis is then performed under MPC/FHE by combining the different encrypted inputs, comparing them
to thresholds, and even evaluating them with machine learning models [37,69].

6.2 Multiple-clients, multiple-sources: Wage Equity Reporting

We consider the Boston Women’s Workforce Council (BWWC) study that measures wage disparities across
demographic groups (including race, gender, and level of seniority) within a metropolitan region [52,62].
This study is accomplished by executing an aggregation workflow on input data (provided directly by a large
number of individual employer organizations) that contains wage information broken down by demographic
attributes; the aggregated output is then disclosed in public reports [24]. Traditional approaches, such as
centralized collection of the plaintext input data by a trusted third party, are not acceptable to data con-
tributors due to the inherent risks (to both employees and employers) of data exposure. Employing MPC to
minimize data exposure risks is viable [52] but involves manual data entry that may introduce errors without
careful interface design, costly user training [73], and does not inherently provide mechanisms for verifying
the accuracy of the data. These drawbacks limit the scale of such studies and can invite skepticism about
data accuracy.

Our approach can mitigate these drawbacks by leveraging multiple clients, each independently collecting
authenticated data in an automated and scalable manner from authoritative TLS endpoints (e.g., payroll
APIs, employer HR systems, municipal databases, and so on) by working with an attestor. Finally, the
sensitive data (e.g., reported compensation amounts, employment statuses, and demographic attributes) is
verifiably imported into a downstream secure computation. The downstream analysis can compute statistics
(e.g., histograms of compensation ranges broken down by demographic attributes or wage ratios between
demographic groups) [52], perform regressions, or even train federated models [36,38], all without revealing
any party’s individual records.

7 Experimental Evaluation

We implemented TLShare in C4++ and Rust, choosing libraries tailored to each protocol’s cryptographic
requirements. We modified the conversion protocol of GtP [90] and the RELIC [75] library to integrate both
the Ed25519 curve and the pairing-friendly BLS12-446 curve, required for both the MPC mode and FHE
mode with NIZK, respectively. We extended the TFHE-rs library [96] to include our vector membership
NIZK proofs for valid ciphertexts. For the FHE mode with IZK, we relied on the QuickSilver protocol
[91] and the EMP toolkit [86] to implement the circuit for proving the correctness of Regev encryption.
Lastly, our generated ciphertexts are compatible with the Primus FHE library [71] for the downstream FHE
computation, while for the downstream MPC, we used MP-SPDZ [49].

The experiments involve the following set of parties: the client, the attestor, and the secure computation
nodes. The client and the attestor are placed in two different c5.xlarge instances, each with 4 vCPUs and
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8 GBs of RAM. For the secure computation nodes, we used a c5.9xlarge instance with a total of 36 vCPUs
and 72 GBs of RAM, and dedicated 4 vCPUs per node. We conducted experiments over two settings: a LAN
with 1 Gbps bandwidth and near-zero latency, and a WAN with 100 Mbps bandwidth and 50 ms latency.

Table 2: Latency comparisons (in ms) between TLShare in MPC mode and Garble-Then-Prove over LAN
and WAN for different payload sizes (bytes). We focus on the conversion protocols of the TLS Phase for
both works.

Network LAN WAN
Protocol
Payload (B) 28 29 210 2! 28 29 210 2!
GtP [90] Client 10.1 18.5 35.2 69.7 317.2 330.9 357.3 414.9
Attestor 9.41 17.8 34.1 67.9 215.9 229.4 255.3 312.3
TLShare Client 12.0 20.5 37.5 71.6 318.5 332.8 358.8 413.7
Attestor 11.5 19.9 36.7 70.2 317.9 331.7 357.8 412.8

7.1 MPC Mode

In the MPC mode, the original GtP implementation uses OpenSSL’s NIST P-256 curve for Pedersen commit-
ments and lacks support for signing those commitments. We reimplemented the conversion protocol ITcony [90,
Fig. 20] on the Ed25519 curve, using the RELIC library. Ed25519 provides comparable 128-bit security to
P-256 while offering significantly faster operations and smaller point sizes [9]. We further integrated ECDSA
signatures directly into the conversion process, enabling authenticated commitments.

In Table 2, we compare the latency in milliseconds of the TLS phase of GtP and TLShare in the MPC
mode for different payload sizes, ranging from 256 to 2048 bytes. We batch the IT-MACs of the payload bits,
resulting in 9 and 66 batches for the 256 and 2048 byte payloads, respectively. Observe that under LAN,
for both frameworks, both the client and the attestor take almost the same time. Under WAN, however, the
client in GtP takes about 100 ms more than the attestor, while in TLShare, their runtime is the same. The
clients of both GtP and TLShare are also equivalent. This is because the additional cost of the attestor in the
TLShare over GtP (i.e., around 100ms under WAN) is introduced by signing the commitments. However, this
cost is negligible when viewed in the context of the full TLS exchange, as it unlocks the ability to perform
secure computation on authenticated data.

Table 3: Latency evaluations (in ms) for the share phase of TLShare in the MPC mode under LAN and
WAN for different numbers of parties n, thresholds T, and one batch.

Network LAN WAN

Party
(T,n) (2,3) (3,5) (4,7) (2,3) (3,5) (4,7)
Client Preprocessing 0.182 0.271 0.337 0.187 0.254 0.336
Secret Share 0.00052 0.00061 0.00079 0.00052 0.00049 0.0005
MPC Signature Ver. 0.432 0.442 0.494 0.538 1.012 0.880
Nodes Shares Ver. 0.212 0.248 0.325 0.215 0.267 0.451
All Computation 0.826 0.961 1.155 0.940 1.533 1.667
Total 1.245 1.501 1.730 101.62 102.57 102.47

During the Share phase, we use Pedersen verifiable secret sharing (PVSS) to distribute one secret at a
time across different configurations of Shamir shares [25,3]. Importantly, this phase excludes the attestor:
once the client has the signed commitments, it executes a single interaction with the MPC nodes. The client
first generates PVSS parameters, then computes the shares for each MPC node. On the MPC nodes side,
each party verifies the attestor’s signature on the base Pedersen commitments and checks its consistency.
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Fig. 6: Latency breakdown of total time (ms) per party (client and attestor) in LAN and WAN settings for
the Encryption phase of the FHE mode with IZK. “Residual” includes a check verifying that the randomness
of the encryption is a binary vector, an input range check asserting that the message 1 is within the plaintext
modulus, and the input conversion from binary to arithmetic (B2A).

We present a breakdown of these costs in Table 3, including preprocessing (PVSS parameter generation),
share generation time, and node-side verification for different settings of threshold T and number of nodes n.
The last row of Table 3 presents the end-to-end time, including network latency, while the row above it shows
the local timings combined (i.e., without the network latency). The latter leads to a share phase faster than
2 ms and a bandwidth of 0.2 KB across the board. While the running time under LAN is dominated by local
computation, the WAN results are primarily constrained by the network latency. Finally, the computation
timing is linearly dependent on the number of commitments generated and verified, which is directly related
to the threshold value T and not the number of nodes n.

Table 4: Latency evaluations (in ms) of the FHE mode of TLShare with NIZK over LAN and WAN between
the client (C), the attestor (A), and the FHE node (N7) for a single batch.

Network LAN WAN
Phase
Party C A M C A M
TLS Conversion 5.06 5.23 - 307.3 307.9 -

CGGI Proof 609 - 137 607 - 98.0

E VM Proof 18 - 13 18 - 12
ne. Sig. Verification - - 0.56 - - 0.56
Total 800 - 151 1103 - 157

7.2 FHE Mode with NIZK

The vector commitments in TFHE-rs’s NIZK proof of correct encryption [14, Section 7.6.3] are over the
second source group G of the BLS12-446 curve. For our vector membership proof, we reimplemented the GtP
conversion protocol over G to link the Pedersen commitments of the payload with these vector commitments
using the RELIC library.

In Table 4, we report the timings for converting and encrypting a batch under the FHE mode with NIZK.
Note that the NIZK-based protocol only interacts with the attestor during the TLS phase and with the FHE
node during the encryption phase. In the latter, the bulk of the computation occurs within the client-side
generation of the encryption correctness proof (i.e., CGGIl.Prove), which dominates the overall cost, while
the NIZK proof of vector membership (i.e., VM.Prove) adds minimal additional time. Indeed, the NIZK VM
proof is 33x faster than the NIZK proof of valid encryption for the client (i.e., the prover) and over 8x
faster for N7 (i.e., the verifier). The total bandwidth transferred between the client and the node is 92.4
KB. Finally, the last row in Table 4 shows the end-to-end time for the encryption phase between all parties,
including the network latency.
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7.3 FHE Mode with IZK

Last but not least, the FHE mode with IZK uses the Primus FHE parameter set [71]: dimension n = 2048,
ciphertext modulus ¢ = 261 — 1, message modulus p = 4, Gaussian noise with stdev = 3.19 x 27, and a
ternary secret key. The resulting circuit comprises approximately 148 million AND gates for binary checks
(including message and noise range validations) and an arithmetic part that performs scalar matrix—vector
multiplication and randomness checks. These checks require verifying, for each random component {(r;)) that
{(rs) - (1 = {(r4)) = 0 to confirm ((r;)) is binary.

The preprocessing in QuickSilver needed for our encryption circuit requires approximately 131 thousand
edaBits [34]. We measured the performance of a single batch of 1.6 million edaBits, which takes about 40
seconds over a LAN and 118 seconds over a WAN, transferring approximately 122 MB of data. This step fully
accounts for the offline work required by the IZK approach for the encryption phase. The performance of
the online part of the encryption phase (see Fig. 6) is dominated by the matrix-scalar multiplication (orange
bar), noise range checks (blue), and conversions from binary to arithmetic form (green). This multiplication
is between the public key (a matrix) and the secret randomness binary vector r. As a result, it does not
require any communication, as experimentally verified in Fig. 6 since the LAN and WAN orange bars are
the same. The total communication is around 204 KB, resulting in a slight discrepancy between the LAN
and WAN end-to-end timings.

7.4 Discussion & Applications

The three TLShare protocols presented above provide different trade-offs across performance, interaction,
and trust assumptions. Notably, all protocols begin by generating IT-MACs of the TLS response, taking
roughly 0.46 seconds under LAN and 3.19 seconds under WAN for a payload of 256 bytes. Next, during
the TLS phase, the client and the attestor in the MPC and FHE with NIZK protocols, run our conversion
protocol based on Pedersen commitments with the Ed25519 and BLS12-446 curves, respectively. In contrast,
the IZK protocol bypasses this conversion with an interactive ZKP performed over IT-MACs with the attestor
directly.

Table 5: TLShare total end-to-end time (sec) containing both the TLS phase and the share/encryption phase
under LAN and WAN for a payload of 28 bytes.

Network MPC Mode FHE with NIZK FHE with IZK
LAN 0.477 1.127 0.618
WAN 3.615 4.601 3.361

An important difference between the protocols is in the bandwidth and the elliptic curve group repre-
sentation. Our MPC mode uses Ed25519 curve elements at 256 bits during the conversion step in the TLS
phase, while the FHE with NIZK operates with elements in the second source group G of the pairing-friendly
BLS12-446 of size 892 bits. This results in roughly a 4x increase in bandwidth during the conversion pro-
tocol. This cost is also reflected empirically: in the WAN setting, the conversion of a single batch under
FHE with NIZK (307 ms from Table 4) takes around as much as a conversion of a payload of size 28 (i.e.,
9 batches) under MPC (318 ms from Table 2). In contrast, the FHE with IZK avoids the TLS conversion
cost altogether, yet still requires interaction during encryption proof generation between the client and the
attestor.

When comparing FHE with NIZK and FHE with IZK in terms of end-to-end time, IZK outperforms
NIZK as shown in Table 5. More specifically, under LAN, IZK takes 0.6 seconds compared to 1.1 seconds,
while in the WAN setting, IZK takes 3.4 seconds as compared to 4.6 seconds for NIZK. This is attributed to
the expensive CGGI NIZK. However, this advantage comes at the cost of a required preprocessing phase to
generate approximately 131 thousand edaBits, taking around 3.3 seconds in LAN and 9.6 seconds in WAN.
Furthermore, the FHE mode with IZK is limited to prime-field LWE schemes and lacks support for a ring
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structure, not making it compatible with TFHE-rs [96]. Conversely, the FHE mode with NIZK relies on a
trusted setup, requiring stronger trust assumptions.

Finally, to present the capabilities of TLShare, we evaluated the application presented in Section 6.2 using
the malicious Shamir secret sharing protocol [25,3]. We grouped records over five industries (e.g., healthcare,
finance, etc.) and five job categories (e.g., executive, administrative, etc.), and computed the wage gaps
between genders for different demographics. We evaluated this application for 102 up to 10° records under
both LAN and WAN, with the LAN experiments taking 0.01, 0.1, 1.3, 13.1 seconds, respectively, and WAN
experiments requiring 0.6, 2.07, 15.4, 146.7 seconds, respectively. The total communication scaled linearly
from 0.4 MB for 1000 records, all the way up to approximately 400 MB for 1 million records.

8 Concluding Remarks

We presented TLShare, a framework that bridges the gap between authenticated web data and privacy-
preserving computation. TLShare enables clients to verifiably extract TLS payloads and input them into
secure downstream MPC or FHE computations, without requiring any server-side modifications. Unlike
prior work restricted to Boolean predicates and single client proofs, TLShare supports arbitrary secure
computation over verifiable payloads from multiple clients and servers, enabling new applications such as
privacy-preserving financial risk assessment and collaborative analytics. We introduced three protocols for
TLShare: one for MPC using verifiable secret sharing, and two for FHE using interactive and non-interactive
zero-knowledge proofs, each ensuring input authenticity, integrity, and end-to-end privacy.
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A Security of MPC mode protocol

Recall Theorem 1. We now prove that the protocol in Fig. 3 securely realizes Frishare-

Proof. Assuming up to T — 1 MPC nodes are corrupted by the adversary, PVSS [70] ensures perfect secrecy
of the shared secret (i.e., response R). Therefore, the adversary’s view is independent of the secret, so a
simulator can draw a random “dummy” secret.

When the client is corrupted, it may attempt to convince nodes that the submitted shares correspond to
the value committed in the signed base commitment, when a different is provided. However, because MPC
nodes verify the consistency of the polynomial coefficient commitments, PVSS scheme [70] guarantees that
any subset of T MPC nodes finds a pair (Rj, r;) such that C; = gRi - h"i. This property enforces binding: the
client cannot distribute shares ([z], [r;]) that do not correspond to the signed base commitment C;. Since
no interaction is needed from nodes back to the client, the simulator simply runs the protocol to produce an
indistinguishable view.

B Correctness of Proof of Membership

Recall from [54] that the commitments C' and V satisfy the following:

e(gnt1-i, C) = 6(9:{4.1_1 ) H;L 1g:;}i1+j —is g) - e(g1,Gn)"
e(gns V) = (g5, ) - (91, 9n)" ()
Proof. To check the correctness of the proof, we need to guarantee that Eq. (3) holds. Observe that:
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C Security of NIZK of Vector Membership

Recall that, as described in Section 5.1, the verifier only receives V, C and 7 which do not reveal any
information about the witness w as its value is hidden in the exponent and masked by randomness r and ~.
This guarantees the zero-knowledge property.

Let us explore why 7 guarantees the soundness property of the proof. Assume that C is a commitment

C=q- g; to some other element z different from w. Then, the relation e(g,,V) = e(g;,,9) - e(91,9n)*

becomes e(g,, C) = e(gh, §) - e(g1, gn)?. Now, the verification step of the verifier yields,

Qifl—k

e(HieL gn—l—l—i ’ V)/e(gnv é) = e(ﬂ-’ g) : 6(917 gn)w_z-

Therefore, the membership verification Eq. (3) is only valid in the case w = z.

D Security of TLShare FHE Mode with NIZK Proofs

We begin by observing that the vector-membership proof Provey, presupposes that the vector commitment
V indeed binds to a binary vector w. This is ensured by the CGGI.Provey, algorithm, which outputs both 1%
and a proof component within mcgg that certifies each coordinate of w is in {0, 1}.

The security of our TLShare protocol in mode = fhe, follows from the composable security of its individual
components: ITauthpata (GtP) is UC-secure [90]; vector membership NIZK (VM.Prove,,, VM. Verify ) ensures
correctness and consistency between the committed w and the committed value u; and the public-key CGGI
encryption NIZK (CGGI.Prove,,, CGGI.Verify ;) guarantees the validity of the ciphertext of the same w used
in the membership proof [14].

E Security of TLShare FHE Mode with IZK Proofs

As outlined in the protocol, after the GtP phase, data is secretly shared under the QuickSilver (QS) protocol.
Specifically, the client and the attestor each hold the IT-MAC. The subsequent proof of a valid FHE ciphertext
statement is a natural extension of QuickSilver. The security of this phase directly follows from the security
guarantees of both the GtP and QS protocols. In other words, TLShare securely realizes the intended ideal
functionality if the relation

R={((a,b),(r,u,e7eo))!ueZp A ref0,1}" A
Vi e [0,n], le;]] <6-stdev. A a=Ar+emodq

A b=y rtet|p-A modq}.

defines a valid ciphertext.
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Indeed, the relation characterizes a valid LPR-style variant of Regev’s LWE encryption of plaintext p
encrypted under randomness r and noise elements (e, eg), as it enforces the standard encryption equations
(a=Ar+emodgand b=1y'r+ey+ [i-A] mod q) and bounds on errors (Vi € [0,n], |e;| < 6 - stdev),
thus proving encryption validity. This relation is enforced in zero-knowledge by QS through its corresponding
circuit. Moreover, GtP uses information-theoretic MACs on the TLS response bits, which are carried forward
into the QS protocol. By directly using these MACs inside QS, one guarantees that the plaintext p encrypted
under randomness r and noise elements (e, ep) is exactly the same message present in the attested TLS
connection.
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