
KZH-Fold:
Accountable Voting from Sublinear Accumulation

George Kadianakis1, Arantxa Zapico2, Hossein Hafezi3, and Benedikt Bünz4

1,2Ethereum Foundation
3,4New York University

Abstract

Accumulation schemes are powerful primitives that enable distributed and incre-
mental verifiable computation with less overhead than recursive SNARKs. However,
most existing schemes with constant-size accumulation verifiers suffer from linear-sized
accumulators and deciders, leading to unsuitable linear-sized proofs in distributed set-
tings such as accountable voting protocols. Our contributions are as follows:

• We introduce KZH, a novel multilinear polynomial commitment scheme (PCS) with
sublinear opening and KZH-fold, a polynomial accumulation (PA) scheme where the
verifier only does 3 group scalar multiplications and O(n1/2) accumulator size and
decider time. Our scheme generalizes to achieve accumulator and decider complexity
of O(k · n1/k) while a verifier complexity O(k).

• As an orthogonal contribution to KZH-fold, we build an IVC (PCD) scheme for
R1CS via Spartan+PA, in which instantiated with KZH-fold, i.e. Spartan+KZH-
fold results in a sublinear proof and decider. With the recipe of Spartan+PA, we
build non-uniform IVC and non-uniform PCD. Our non-uniform PCD is the first
approach in which the prover’s computation and communication at each step and
grow sublinearly with the combined circuit size of all instructions. This approach
can be instantiated with any PA and doesn’t depend on KZH-fold.

• We demonstrate the power of Spartan+KZH-fold by implementing an accountable
voting scheme using a novel signature aggregation protocol supporting millions of
participants, significantly reducing communication overhead and verifier time com-
pared to BLS-based aggregation. We implemented and benchmarked our protocols,
Spartan+KZH-fold achieves a 2000x reduction in communication and a 50x improve-
ment in decider time over Nova when proving 2000 Poseidon hashes, at the cost of
3x the prover time.

{asn, arantxa}@ethereum.org, {h.hafezi, bb}@nyu.edu
The order of authors is arbitrary.

1

Contents

1 Introduction 4
1.1 KZH multilinear polynomial commitment scheme 5
1.2 Sublinear accumulation schemes . 6
1.3 Signature aggregation in consensus . 8
1.4 Contributions . 10
1.5 Additional related work . 11

2 Technical Overview 11

3 Preliminaries 14
3.1 Notation . 14
3.2 Polynomial commitment schemes . 15
3.3 Accumulators . 16
3.4 Incrementally verifiable computation . 17
3.5 IVC from accumulators . 18

4 KZH: An efficiently aggregatable polynomial commitment 19
4.1 KZH-fold: Accumulator with sublinear size 21

5 PIOP+PA: IVC/PCD from Polynomial Accumulation 25
5.1 PIOP Accumulation: accumulating Spartan PIOP 25
5.2 Uniform IVC/PCD from polynomial accumulation 26
5.3 N-IVC and N-PCD from polynomial accumulation 28

6 PIOP for signature aggregation protocol 31

7 Implementation and efficiency 34
7.1 Efficiency of KZH . 35
7.2 Comparison with Halo Infinite . 35
7.3 Comparison with Nova . 36
7.4 Comparison with BLS aggregation . 37

A Deferred definitions 45
A.1 Signature schemes . 45

B Deferred proofs 46
B.1 Proof of theorem 3 . 46
B.2 Proof of theorem 4 . 49

2

C Higher dimension PCS for smaller deciders 54
C.1 KZH-k . 54
C.2 KZH-k accumulation . 59

D Non-Uniformity from Polynomial Accumulation 65

3

1 Introduction

Distributed verifiable computation (also known as proof-carrying-data or PCD) [CT10] is
a powerful primitive that allows a distributed set of parties to jointly perform a compu-
tation such that each intermediate step and the result can be efficiently verified. This is
useful for computations that are performed by distributed and distrusting parties. Each
party can perform a step of the computation and then forward their output, along with
a PCD proof that asserts the correctness of the computation up to this point. Examples
of these computations are map-reduce systems [DG08; CTV15], where nodes jointly com-
pute on large data sets, distributed rollups [Her24; KB23] where nodes compute joined
transaction blocks, and distributed voting, where participants jointly compute a quorum
certificate on a set of nodes. PCD can be built from recursive SNARKs; however, this ap-
proach has high overhead, requiring implementing the SNARK verifier inside of the proof
circuit [Ben+14]. A promising recent line of work [KST22; Bün+21; KS24; BC23] showed
how to construct PCD from so-called accumulation schemes. An accumulation scheme iter-
atively accumulates proofs into an accumulator. The accumulator is valid if and only if the
input proofs are all valid. Importantly, checking the validity of the accumulation is much
simpler than checking all the original proofs. PCD built from the most efficient accumula-
tion schemes [KST22; Bün+21; KS24; BC23] only requires proving a constant number of
group operations as overhead.

IVC/PCD built from linear-sized accumulation schemes face significant challenges in
distributed settings. To illustrate, the communication in distributed PCD is mainly dom-
inated by an accumulator, in which is the size of the computation step and requires sub-
stantial time to decidea by the receiving party. To demonstrate with numbers, assume we
are using Nova, a linear-sized accumulation scheme, with a step computation of 1 million
R1CS constraints. It results in a communication size of 80MB and a decider time of ≈5s
on a moderate laptop, for the receiving party to ensure the receiving accumulator is correct
before continuing the computation.

In this work, we present KZH, a multilinear polynomial commitment scheme with ef-
ficient opening times. KZH, like the famous KZG polynomial commitment [KZG10], is
secure in a pairing-friendly group, leverages a universal, upgradable structured reference
string, and is secure in the algebraic group model. We also design KZH-fold, an efficient
accumulation scheme for KZH. KZH-fold has a sublinear-sized accumulator that can be
efficiently verified while retaining the constant size and concretely efficient accumulation
verifier of prior works, such as Nova or Protostar. To illustrate sublinearity, if the original
polynomials are of degree n, the resulting accumulator has a size sublinear in n, e.g. O(n

1
2).

Concretely, we present an accumulation scheme where the accumulator for computations of
size n is O(n

1
2), compared to O(n) for Nova, and the accumulation verifier performs 3 group

aDecider algorithm for an accumulation scheme checks if an accumulator is valid which results in all the
accumulated proofs being valid, i.e. it is equivalent to IVC/PCD verifier in the context of IVC/PCD.

4

scalar multiplications to add a fresh proof to the accumulator (compared to 2 for Nova, 3 for
Protostar and 1 for HyperNova). The decider runtime is dominated by a pairing product of
size n

1
2 . We also generalize the scheme to KZH-k such that the accumulator and decider are

only O(k · n
1
k), with an O(k) accumulation verifier for an arbitrary constant k. Using the

compilers from [Bün+20; Bün+21; BC23], we construct an accumulation scheme for KZH.
Given the general recipe of accumulation of polynomial checks in a polynomial interactive
oracle proof (PIOP) or as we will refer to it as PIOP+PA, we build an accumulation scheme
for R1CS (and hence IVC/PCD), by combining a variant Spartan [Set20] with a PA, and
we refer to this as Spartan+PA. We then show that our scheme has significant benefits in
an important application: accountable voting for large-scale consensus.

1.1 KZH multilinear polynomial commitment scheme

Extending ideas from Hyrax, we design KZH (KZG + Hyrax) with the following appealing
features: Given a log n-variate multilinear polynomial, KZH has a linear-time commitment
phase, primarily dominated by an MSM of size n directly to the witness, resulting in fast
commitment when the witness consists of small field elements. The commitment is a single
G1 element. The opening and verification times are both O(n

1
2), and the proof size is also

O(n
1
2). The core idea of KZH is to represent polynomial evaluation as a matrix operation,

reducing it to matrix-vector multiplication. We extend this concept to tensors, where a
matrix is a tensor of dimension 2, and introduce KZH-k for a constant number k. KZH-k
has linear commitment time, and the opening time remains O(n

1
2) through preprocessing,

but the verifier time and proof size are both changed to O(k · n
1
k).

KZH-log(n) is of independent interest as a standalone commitment scheme. Like the
multivariate commitment scheme from [PST13], it has O(log(n)) group elements proof size,
and verifier time. Its key advantage is that computing an opening proof can be done us-
ing only n

1
2 group operations (not including polynomial evaluation). KZH-log(n) unlike

similar schemes like Dory [Lee21], the proof does not consist of target group elements
and subsequently the verifier does not do target group operations which limits its applica-
tion to smart contracts not supporting such operations. However, KZH-log n suffers from
quasilinear commitment time, which is acceptable for applications where the polynomial is
committed once and then opened frequently, as in index-efficient PIOPs, demonstrated in a
recent work [Cam+25]. This includes applications where the polynomial is part of the index
in a relation, such as committing to a table in a lookup relation. However, for applications
like committing to the polynomial witness in a PIOP, such as Spartan, where the prover
must commit to the polynomial and open it at a single point, KZH-k with a small constant
k (e.g., 3 or 4) is more efficient. That is because in practice a verifier time of O(4 ·n

1
4) does

not differ from O(log n) for reasonable polynomial degree n, and our evaluations confirm
this. We emphasize again that both the committing and opening algorithms of KZH and
KZH-k benefit from a witness consisting of small field elements. For example, it is very
efficient to commit and open a polynomial when the evaluation points are 0s and 1s, as is

5

the case in our demonstrated signature aggregation scheme. In Table 1, we compare various
polynomial commitment schemes with KZH and KZH-log(n).

Scheme Supports Opening time Proof size Verifier time
KZH Multilinear n

1
2 G1 2n

1
2G1 n

1
2 P + 2 · MSM(n

1
2)

KZH-log(n) Multilinear n
1
2 G1 2 log(n)G1 2 log(n) P

[PST13] Multivariate MSM(n) log(n)G1 log(n) P
[KZG10] Univariate MSM(n) 1G1 2 P
[Lee21] Multilinear n

1
2 P 3 log(n)GT log(n)GT , P

Table 1: Comparison for KZH, KZH-log(n), KZG, PST and Dory. For the multivariate
scheme log(n) is the number of variables, for KZG n is the degree. P stands for pairing
operations, G1 and GT for base and target group operations respectively. Commitment
time for all schemes is dominated by an MSM of size n.

1.2 Sublinear accumulation schemes

As our core technical contribution, we design KZH-fold, an accumulation schemeb with
a sublinear accumulator and decider (including the accumulator witness) and a constant-
sized accumulation verifier. Concretely, the accumulation verifier performs only 3 group
scalar multiplications and has an accumulator consisting of O(n

1
2) elements. In the same

manner as KZH polynomial commitment scheme, we generalize KZH-fold to KZH-k fold,
an accumulation scheme of KZH-k with an accumulator of size k · n

1
k and an accumulation

verifier of size O(k). Through the compilers of [Bün+21; KS23a], we get a PCD scheme
with minimal overhead and significantly smaller and faster to verify PCD proofs compared
to PCD from linear-sized accumulation schemes.

The accumulator witness in KZH-fold consists of n
1
2 group elements and 5 × n

1
2 field

elements and is thus significantly smaller than the original polynomial. Subsequently, the
decider runs in time O(n

1
2), dominated by a pairing-product of that size. We combine

KZH-fold with a PIOP [BFS20; Set20], to get an accumulation scheme for R1CS. This
R1CS accumulation scheme yields an IVC (PCD) scheme through the BCLMS [Bün+21]
and Cyclefold [KS23b] compilers. The accumulator size directly corresponds to the IVC
(PCD) proof size, and the decider to the IVC (PCD) verifier time.

The sublinear accumulator - which results in IVC/PCD with sublinear proofs - is advan-
tageous in distributed applications of PCD, such as prover networks or accountable voting,
as PCD proofs, which turn out to be accumulators, must be passed from node to node. For
this reason, most prior applications of accumulation-based PCD, which were based on linear

bTechnically, any SNARK yields an accumulation scheme. However, no SNARK exists where the verifi-
cation only requires a constant and small number of group operations.

6

accumulation schemes were mainly limited to single-prover scenarios. Nova [KST22], previ-
ously proposed compressing the proof via outsourcing the decider. However, computing this
proof has a 24xc prover overhead and a 2x decider overhead, compared to the accumulation
step without compression. Even in the compressed setting, the decider remains linear and
inefficient. Using Spartan+KZH-fold this additional compression step is unnecessary, as the
decider is already efficient. Concurrent work, MicroNova [ZSC24], modifies Nova’s compres-
sion phase to achieve sublinear decider time. However, this improvement comes at an even
higher prover cost than Nova’s compression phase, plus a trusted KZG setup (similar to
ours). The compressed proofs in Nova and MicroNova are no longer incrementally update-
able with an accumulation scheme. While this may be acceptable in a single-prover setting
for applications like rollups, it is problematic in distributed settings or applications with
an ongoing computation such as building light clients from IVC [Che+20], constant-sized
blockchains [Bon+20], verifiable key directories [Tya+21] or verifiable virtual machines (e.g.
zkVM).

KZH-fold retains many of the benefits of previous accumulation schemes, shown in
Table 2. It only requires a single commitment to the witness and can take advantage of
sparse and small-weight witnesses. The accumulation verifier only performs a small (3)
number of group scalar multiplications in group one of a pairing-friendly group. KZH-fold
requires a trusted setup, but that setup is universal and updatable. It is possible to reuse
a powers-of-τ [Gro+18] setup, commonly used for the KZG polynomial commitment. We
implement IVC circuits of Spartan+KZH2-fold and Spartan+KZH3-fold, and show that
even our unoptimized implementation has a 200-2000x times smaller accumulator than
Nova for reasonable computations.

Scheme Prover Time Recursive Overhead Decider |acc|
Nova MSM(n) 2 SM MSM(n) O(n)

Protostar MSM(w) 3 SM MSM(n) O(n)

HyperNova MSM(w) 1 SM MSM(n) O(n)

KZH2-fold 2MSM(w) 3 SM n1/2 P O(n1/2)

KZH-k fold 2MSM(w) k + 1 SM k · n1/k P O(k · n1/k)

Halo 2MSM(w) 2 log n SM MSM(n) O(log n)

BCMS (KZG) MSM(n) 5 SM 2 P O(1)

Table 2: Comparison of group-based accumulation schemes. SM refers to group scalar
multiplication, MSM(n) is a multi-scalar multiplication of size n, the length of the witness
vs. MSM(w), which refers to a multi-scalar multiplication of the weight of the witness. For
sparse or low-weight witnesses, this is significantly less. P is a pairing operation.

cWe inferred this from Nova, in Section 1.3 it is mentioned that “When |F | = 220 constraints, the
prover’s per-step cost to produce an IVC proof is ≈ 1µs/constraint. For the same F , the cost to produce a
compressed IVC proof is ≈ 24µs/constraint.”

7

1.3 Signature aggregation in consensus

Voting protocols, especially accountable open-ballot systems, require robust yet efficient
methods to aggregate and verify votes from a large participant base. These protocols de-
pend on mechanisms that ensure each participant’s vote is accurately recorded and that
the overall results remain transparent and verifiable. A prominent application of account-
able voting principles can be found in blockchain consensus protocols. In decentralized
networks like Ethereum, over 1 million validators must attest to each block by signing it,
collectively establishing consensus on network state changesd. With such a high volume of
participants, bandwidth efficiency becomes critical, not only due to the redundancy and
overhead inherent in decentralized P2P networking but also to support the participation of
low-end machines as validators.

In consensus protocols, a block is considered finalized when a supermajority of validators
vote for it, ensuring it cannot be reverted. Currently, Ethereum limits itself to aggregating
32,768 signatures per slot [Resb], which delays finality to 15 minutes. Reducing the cost
of signature aggregation could simultaneously improve finality time to just a few seconds,
which refers to the speed at which transactions become irreversible [Sin], while also enhanc-
ing Ethereum’s decentralization by enabling a higher validator count [But]. Furthermore,
efficient aggregation could facilitate the adoption of advanced consensus protocols, designed
explicitly for Ethereum [D’A+24b; DZ23; D’A+24a], which aim to provide faster finality,
strengthen protocol security [D’A+22], and improve resilience to MEV.

Current state-of-the-art consensus protocols, such as Ethereum, Chia, Algorand [Gil+17]
and Hotstuff [Yin+19] employ aggregatable signature schemes like BLS signatures [BLS04].
BLS signatures allow multiple validators to merge their signatures on the same message,
e.g. a block, into a single, compact, aggregated message, reducing both transmission and
verification overhead. To achieve accountability, Blockchain protocols [BDN18] pair BLS
aggregates with a bit vector indicating who has signed. This enables slashing validators
who sign conflicting proposals. To add redundancy and improve communication, consensus
protocols can use multiple layers of recursive aggregation, aggregating already aggregated
signatures into one. In proposed designs [Resa], the signatures are aggregated in multiple
layers, and each aggregation layer has between r = 16 and r = 32 aggregators. Figure 1
depicts such a tree-based aggregation mechanism.

Limitations of signature aggregation. In this work, we are interested in accountable
signature aggregation schemes with minimal communication and verification overhead. Re-
garding communication, an accountable aggregation scheme such as the one depicted in
Figure 1, requires nodes to transmit, at minimum, a compact bit vector (i.e. a bitfield)
indicating who signed. For verification, nodes must scan the bitfield to identify the signers
while ensuring that verification complexity remains independent of the number of signers.
BLS aggregation, while yielding a small aggregate signature, does not achieve this optimal

dhttps://beaconcha.in/charts/validators

8

https://beaconcha.in/charts/validators

K validators K validators

Aggregators Aggregators

Recursive
Aggregators

K validators K validators

Aggregators Aggregators

Recursive
Aggregators

Recusive
Aggregator

Block Proposer

Figure 1: A tree-based aggregation scheme with a single layer of recursive aggregation.

design in either dimension: Each recursive aggregation layer incurs an O(log r) communi-
cation overhead, where r is the total number of aggregators. This overhead arises because
aggregating bitfields with overlapping signers requires each aggregator to track multiplic-
ities, i.e. the number of times each signature appears across overlapping bitfields. If r
aggregators combine their bitfields then log(r) bits are necessary to indicate the multiplic-
ity for each signer. BLS aggregate verification is dominated by the computation of the
aggregate public key. This is done through a multi-scalar multiplication (MSM) between
the multiplicities and the list of public keys. For n signers the MSM has length n and
log(r)-bit scalars. For n = 2 million and r = 16 the verification time of a BLS aggregate
signature, is 0.7 seconds (See Table 6). Every validator incurs this cost before checking the
correctness of a consensus proposal and moving on to the next block.

Additionally, transmitting these multiplicity lists introduces a k · log r multiplicative
factor communication costs, where k is the number of aggregation layers. Even with a
single layer of recursion and r = 16, the multiplicities have a 1 MB representation. For
4 million validators, 4 levels of recursion and r = 32, the multiplicities require 10MB to
represent. Today, the average Ethereum block is less than 1MB, and is published every 12
seconds. This demonstrates how even the constant factor overhead of aggregate BLS can
become a significant bottleneck in consensus.

Signature aggregation using PCD. Our work examines the use of distributed veri-
fiable computing for signature aggregation, leveraging its expressiveness to union bitfields
directly within the proof. Unlike BLS, which requires multiplicities, SNARKs enable a
compact bitfield to represent validator participation, reducing communication overhead.
Effectively, the PCD proves that the signature was correctly aggregated and that the bit-
fields were correctly unioned. This approach offers a more bandwidth-efficient solution for
accountable voting in P2P protocols with a large number of participants.

9

1.4 Contributions

We make theoretical and systems contributions that advance the state of the art for dis-
tributed proving:

KZH polynomial commitment scheme. In Section 4, we introduce KZH, a multilinear
polynomial commitment scheme that has sublinear verification, sublinear proof size, and
efficient opening proof generation, and the commitment consists of a single group element.
KZH takes advantage of small witness size, e.g. to commit and open, the prover commits
to small field elements.

KZH-fold accumulation scheme. In Section 4.1, we design KZH-fold, an accumulation
scheme for the previously designed KZH polynomial commitment scheme. KZH-fold is an
accumulation scheme in which the verifier has a constant number of group operations while
the accumulator size and decider time are sublinear in the size of the original statement
(polynomial degree). In Appendix C we generalize KZH and KZH-fold to polynomial com-
mitments of dimension k.

First efficient non-uniform PCD scheme. Orthogonal to KZH-fold and building on
the BCLMS compiler, we design Spartan+PA an IVC/PCD scheme for R1CS, built gener-
ically upon a polynomial accumulation scheme PA. Spartan+KZH-fold is an IVC (PCD)
scheme with a sublinear proof size and decider, as described in Section 5. In Section 5.3, we
propose new approaches to non-uniform IVC (N-IVC) [KS22] and non-uniform PCD (N-
PCD) [Zhe+23] respectively. Both schemes are generic over a PCS accumulation scheme.
Our N-PCD, is the first efficient N-PCD scheme, in the sense that the prover’s cost per step
is sublinear in the combined size of all instructions, and the decider requires a sublinear
number of group operations in the combined size of all instructions.

Signature aggregation protocol. We design and optimize an accountable signature
aggregation protocol in Section 6, using our IVC scheme, Spartan+KZH-fold. The protocol
supports unlimited aggregations with optimal communication and verification time. The
communication is dominated by a bitvector indicating the signers. The verification is
dominated by just one field multiplication per signer.

Implementation and evaluation. We implemente and evaluate Spartan+KZH2-fold
and Spartan+KZH3-fold and compare it against Nova in Section 7. Spartan+KZH3-fold at
the expense of only 3x prover cost, achieves a 2000x reduction in communication overhead
and a 50x slimmer verifier time. We also implement our accountable voting protocol using
Spartan+KZH3-fold, demonstrating its effectiveness and practical applicability. For four

ehttps://github.com/h-hafezi/kzh_fold

10

https://github.com/h-hafezi/kzh_fold

million signatures, our scheme reduces the communication cost by more than 10x and the
verifier time by 4x compared to an accountable voting protocol using BLS signatures.

1.5 Additional related work

Accumulation. The Halo protocol [BGH19] was the first accumulation protocol; it has
a succinct accumulator of O(log n) size and an accumulation verifier with O(log n) group
operations, but the decider runs in time O(n). In contrast, KZH-fold only has a constant-
size accumulation verifier, as well as an accumulator and decider of size O(k · n

1
k).

Distributed proving. Most prior works on distributed zkSNARKs [Wu+18; Liu+23;
Ros+24; Wan+24] rely on a coordinator that receives the circuit C, the public input x,
and the witness w, then distributes these to worker nodes and aggregates their outputs
into a single proof. This centralized approach introduces a significant vulnerability: the
coordinator represents a single point of failure and carries substantial responsibility, making
it unsuitable for fully decentralized systems. Another limitation is that aggregated proofs
cannot be further aggregated. An alternative approach involves using proof-carrying data
(PCD) [CT10], where each node performs a portion of the computation, and these partial
proofs are aggregated (accumulated) hierarchically in a tree-like structure. However, decen-
tralized PCD requires each aggregator to verify the validity of incoming partial proofs using
a decider, which cannot trust other nodes by default. In previous schemes, this verification
step was a bottleneck because the decider’s complexity is linear with respect to the original
statement. Additionally, the witness size also grows linearly with the statement, leading to
substantial peer-to-peer (P2P) communication overhead. Spartan+KZH-k fold addresses
these issues by reducing both communication complexity and witness size to O(k · n

1
k),

significantly enhancing the efficiency and scalability of decentralized proving systems.

Signature aggregation. Several works have studied signature aggregation for consen-
sus. Handel shows how to build aggregation structures, in the face of adversarial corrup-
tions [Bé+19]. Their work is largely orthogonal and should be compatible with arbitrary
aggregate signature schemes. [Kha+21; Aar+24] provide aggregation schemes for hash
and lattice-based signature schemes, respectively. However, their constructions only sup-
port one level of aggregation, whereas our construction is focused on aggregating already
aggregated signatures.

2 Technical Overview

Overview of Hyrax. At the core of our construction is KZH, a multilinear polynomial
commitment scheme, combining ideas from the Hyrax polynomial commitment [Wah+18]
and KZG [KZG10]. Similar to Hyrax, we are building a commitment for a matrix M ∈

11

Fm×n, such that we can open a bilinear vector matrix-vector product, for vectors a⃗ ∈ Fm

and b⃗ ∈ Fn, i.e. prove that y = a⃗T ×M × b⃗. This is general enough to construct both
univariate and multilinear polynomial commitments, i.e. a⃗ and b⃗ are extensions of the
evaluation point.

In Hyrax, each row of M is committed using a Pedersen commitment [Ped92]. The
resulting commitment vector, D⃗ = [D1, . . . ,Dm] ∈ Gm, consists of m group elements, with
each element corresponding to a row of M . Due to the homomorphic properties of the
commitment scheme, the verifier can validate an opening efficiently. To verify, the verifier
first computes C = ⟨⃗a, D⃗⟩. The prover then opens C to a vector r⃗ ∈ Fn and claims y = ⟨r⃗, b⃗⟩.
The verifier checks two conditions: C = Commit(r⃗), and y = ⟨r⃗, b⃗⟩. These checks involve
two inner products, one of size n and the other of size m. For a matrix with ℓ entries,
setting n = m = ℓ

1
2 yields a verification time of O(ℓ

1
2).

Moreover, efficient accumulation schemes for inner products are known [Bün+21; BC23],
suggesting that it may be feasible to construct an accumulation scheme for Hyrax. However,
Hyrax has a significant limitation: its commitment consists of m group elements, and
while the commitment is homomorphic, performing homomorphic operations requires m
group additions. The primary method for constructing accumulation schemes relies on
homomorphically combining commitments. In the case of Hyrax, this approach leads to an
accumulation verifier with size O(m) = O(ℓ

1
2), which is notably larger than the constant-

size accumulation verifiers achievable with other group-based constructions.
Our key insight is that we can modify Hyrax, such that the commitment only consists

of a single group element, and the homomorphism can be performed efficiently, using only a
single group addition. A strawman approach here, would be to commit to D⃗ ∈ Gm using a
structure-preserving commitment to group elements [Abe+16]. While these commitments,
preserve the homomorphism, the commitment to a vector of group elements will be a target
group element in a pairing-based group. Target group operations are significantly more
expensive, especially when implemented as an arithmetic circuit. A single target group
scalar multiplication takes tens of thousands of R1CS constraints.

KZH polynomial commitment scheme. We aim to design a commitment scheme where
the homomorphism only requires a single G1 operation, in a pairing-friendly group. To do
this, we utilize a common reference string, similar to KZG. Let G⃗ = (G1, . . . ,Gn) be the
generators for the Pedersen commitment. We now construct H⃗(i) = τ (i) × G⃗, for each
i ∈ [m] and a secret trapdoor τ (i). We first commit to the matrix M by computing the
commitment C =

∑
i∈[m],j∈[n]Mi,j × H

(i)
j , where C ∈ G1 is a single group element. Next,

we compute commitments to each individual row of the matrix using the vector G⃗, where
each row commitment is given by Di =

∑
j Mi,j×Gj . During the opening phase, the prover

sends [Di]
m
i=1, and the verifier ensures consistency between the Dis commitments and C

using a pairing-based check. Specifically, a generator V ∈ G2 is sampled, and the verifier
is given Vi = τ (i) × V for all i ∈ [m]. The correctness of the decomposition is verified

12

by checking the equality e(C,V) =
∑m

i=1 e(Di,Vi). Here, [Di]
m
i=1 corresponds exactly to

the Hyrax commitment, allowing us to reuse Hyrax’s opening algorithm with the added
decomposition check. Furthermore, C is a homomorphic commitment to both the Di values
and the matrix M , represented compactly as a single element in G1.

KZH-fold, a sublinear accumulation scheme for KZH. Next, we leverage the Pro-
tostar [BC23] compiler to design an efficient accumulation scheme for KZH, referred to as
KZH-fold. The verifier’s structure in KZH enables a highly efficient scheme. Specifically,
the Hyrax checks, namely multi-scalar multiplications (MSMs), can be efficiently accumu-
lated using existing techniques. Additionally, the KZH verifier validates a pairing product:
e(C,V) =

∑m
i=1 e(Di,Vi). Notably, one side of all pairings remains fixed. When combining

two equations, we derive: e(C+X×C′,V) =
∑m

i=1 e(Di+X×D′
i,Vi), with an overwhelming

probability for a random X ∈ F, if and only if the pairing check holds for both (C, [Di]
m
i=1)

and (C′, [D′
i]
m
i=1). The linearity of this check ensures no additional error terms (which would

belong to the target group GT) are introduced. The final accumulation verifier thus per-
forms only 3 G1 scalar multiplications when combining an accumulator with a fresh proof,
or 4 scalar multiplications when accumulating two accumulators. The accumulator size
matches the size of PCS proof, i.e. O(ℓ

1
2). The decider - equivalent to the PCS verifier - is

dominated by O(ℓ
1
2) pairings.

KZH-k, generalization of KZH to achieve smaller proofs. We generalize KZH to
KZH-k, to further improve the proof size and verifier efficiency, which yields KZH-k fold,
an accumulation scheme with a smaller accumulator and more efficient decider. The key
insight is that instead of committing to a two-dimensional matrix, we can commit to a
k-dimensional tensor. The matrix vector-matrix product turns into a k-dimensional tensor
product, between the tensor and k matrices of size n

1
k . We first commit to the entire tensor

using a structured reference string. Then we use the same technique to open commitments
to all k−1 dimensional slices of the tensor. If the full tensor has n entries, then there are n

1
k

such slices. We use a pairing check and the reference string to check the consistency between
the slices and the full commitment. Then we can evaluate the slices homomorphically with
the first of k vectors. This yields a single k− 1 dimensional commitment. At this point, we
proceed recursively, until we reach a one-dimensional vector that can be opened in O(n

1
k).

Since each dimension consists of n
1
k slices, and there are k slices, the overall proof size and

verification time is O(k ·n
1
k). The resulting accumulation verifier increases slightly to k+1

G1 scalar multiplication.

Accumulation scheme for NP from polynomial accumulation. To go from accu-
mulation of polynomials to accumulation for all of NP, we leverage the Spartan PIOP for
R1CS. Spartan translates an R1CS instance into a number of polynomial checks. Accu-
mulating Spartan checks requires accumulating a witness polynomial evaluation plus three

13

multilinear extensions of the R1CS matrices A, B and C. Accumulation of witness poly-
nomial can happen with any PA including KZH-fold and we observe that evaluations of
multilinear extensions of the R1CS matrices can be efficiently accumulated, requiring only
a logarithmic number of additional field operations for the accumulation verifier and prover.
We highlight that this approach works with any other PIOP based on multilinear polyno-
mials such as HyperPlonk [Che+23] and CCS [STW23], but we leave its details to future
work.

Distributed signature aggregation via PCD. To build a signature aggregation based
on IVC/PCD, communication size is crucial in such a P2P setting. We use Spartan+KZH-
fold with sublinear proofs to construct an aggregate accountable signature scheme. The IVC
aggregates the public key signatures and signer bitfields of a BLS accountable aggregate
signature. The key challenge is ensuring accountability by proving that the output bitfield
is equivalent to the or of the input bitfields. Let b⃗(1), b⃗(2) and c⃗ be three bitfields such that
c⃗ = b⃗(1) ∨ b⃗(2). Naively putting this statement into the circuit would make the IVC circuit
linear in the number of signers and possibly increase the verification cost. Instead at each
aggregation step, we define multilinear extensions of these vectors b̃1(X⃗), b̃2(X⃗), and c(X⃗)
and commit to them using a multilinear polynomial commitment. In order to prove that
c⃗ = b⃗(1) ∨ b⃗(2), we can show that b̃1(x⃗) + b̃2(x⃗)− b̃1(x⃗) · b̃2(x) = c̃(x⃗) ∀x⃗ ∈ {0, 1}µ. This is a
zerocheck and can be proven using a simple sumcheck protocol as in HyperPlonk [Che+23].
The sumcheck requires evaluating the polynomial commitments to b̃1, b̃2, c̃ at a random
point. We can instantiate the PCS with KZH and accumulate the opening proofs as part of
the IVC. One important consideration is that we are committing to a boolean vector of size
millions. Therefore, for efficiency reasons, it is crucial to leverage a PCS such as KZH that
takes advantage of the small size of the witness elements for both opening and committing.
We detail the scheme and further optimizations in Section 6.

3 Preliminaries

3.1 Notation

Let F be a finite field and G a group with scalars in F, with additive notation. For a ∈ F
and G ∈ G, the scalar multiplication of G by a is denoted as a × G. For an asymmetric
pairing group, we define it as a tuple (p, g1, g2,G1,G2,GT , e), where p is the order of groups
G1 and G2, and e is an efficiently computable, non-degenerate bilinear map. Let GGen be
a deterministic polynomial-time algorithm that takes as input a security parameter λ and
outputs a such a group description. A function f(x) is negligible if, for any polynomial
p(x), there exists a positive integer N such that for all x > N , we have f(x) < 1

p(x) .
When we say an event happens with overwhelming probability, we mean it occurs with a
probability of 1− ϵ(λ), where ϵ(λ) is a negligible function. We use ⟨⃗a, b⃗⟩ to denote the inner
product between two vectors a⃗, b⃗ ∈ Fn, and extend this notation for a⃗ ∈ Fn and G⃗ ∈ Gn

14

as ⟨⃗a, G⃗⟩ =
∑n

i=1 ai × Gi. Additionally, we use MLP(F, d) to denote the set of multilinear
polynomials with d variables over the field F, which we abbreviate as MLP(d) when F is
understood from the context. Any polynomial in MLP(F, d) can be expressed as:

P (X1, X2, . . . , Xd) =
∑
S⊆[d]

cS
∏
i∈S

Xi, where cS ∈ F.

Here, the sum is taken over all subsets S of the index set [d] = {1, 2, . . . , d}, and cS are
coefficients from F. Operator ∥ represents concatenation, e.g. x⃗∥y⃗ is the concatenation
of vectors x⃗ and y⃗. To indicate equality on vectors, we define eq(X⃗, Y⃗) as eq(X⃗, Y⃗) =∏k

i=1

(
(1 − Xi) · (1 − Yi) + Xi · Yi

)
, so that for x⃗, y⃗ ∈ {0, 1}k, eq(x⃗, y⃗) = 1 if and only if

x⃗ = y⃗. We denote a complete binary tree of depth n with node values in F as T (F, n). For
brevity, we will refer to complete binary trees simply as trees. Given a vector x⃗ ∈ Fk, the
equality tree EqTree(x⃗) is a tree of depth k. The root node is initialized with 1. At depth
i, the left child of a node v is v · (1− xi), and the right child is v · xi. The leaves of the tree
correspond to the equality function eq(x⃗, y⃗) for all y⃗ ∈ {0, 1}k. For any tree T , we denote
the set of its leaf nodes by T .leaves.

Cryptographic Assumptions. We prove security of our protocols in the Algebraic
Group Model (AGM) of Fuchsbauer et al. [FKL18], using the bilinear version of the q-
dlog assumption and quadratic CDH. In the AGM, adversaries are restricted to be algebraic
algorithms, namely, whenever A outputs a group element [y] in a cyclic group G of or-
der p, it also outputs its representation as a linear combination of all previously received
group elements. In other words, if [y]← A([x1], . . . , [xm]), A must also provide z⃗ such that
[y] =

∑m
j=1 zj [xj]. This definition generalizes naturally in asymmetric bilinear groups with

a pairing e : G1 ×G2 → GT , where for i ∈ 1, 2, the adversary must construct Gi elements
as linear combinations of received Gi elements.

We denote a random oracle using H that we assume is randomly sampled from the
random oracle space H and initialize it in practice using a secure hash function.

3.2 Polynomial commitment schemes

Definition 1. [Multilinear Polynomial Commitment Scheme] A Multilinear Polynomial
Commitment Scheme is a tuple of algorithms

(
SetupPC, CommitPC, OpenPC, VerifyPC

)
such

that:

• srsPC ← SetupPC
(
ppPC, k

)
: On input the system parameters and number of variables

k, it outputs a structured reference string.

• C← CommitPC
(
srsPC, p(X⃗)

)
: On input srsPC and a polynomial p(X⃗) ∈ MLP(F, k), it

outputs a commitment C.

15

• πPC ← OpenPC
(
srsPC, p(X⃗), x⃗

)
: On input srsPC, p(X⃗), k, and vector x⃗ ∈ Fk, outputs

an evaluation proof πPC that y = p(x⃗).

• 1/0 ← VerifyPC
(
srsPC,C, x⃗, πPC, y

)
: On input srsPC, the commitment C, k, vector of

evaluations x⃗, y ∈ F, and the proof of the correct evaluation, it outputs a bit indicating
acceptance or rejection.

and satisfies the following properties:

Completeness. It captures the fact that an honest prover will always convince the verifier.
Formally, for any efficient adversary A, we have:

Pr

 VerifyPC
(
srsPC,C, x⃗, πPC, y

)
= 1

∣∣∣∣∣∣∣∣∣
srsPC ← SetupPC

(
ppPC, k

)
p(X⃗)← A(srsPC)
C← Commit

(
srsPC, p(X⃗)

)
πPC ← Open

(
srsPC, p(X⃗), x⃗

)
 = 1

Extractability: Captures the fact that whenever the prover provides a valid opening, it
knows a valid pair (p(X⃗), y) ∈ F[X⃗]×F, where p(x⃗) = y. Formally, for all PPT adversaries
A there exists an efficient extractor E such that the probability of the following event is
negligible:

Pr

 VerifyPC
(
srsPC,C, x⃗, y, πPC

)
= 1

∧ p(x⃗) ̸= y

∣∣∣∣∣∣∣∣∣∣

srsPC ← SetupPC
(
ppPC, k

)
C← A

(
srsPC

)
p(X⃗)← E

(
srsPC,C, k

)
x⃗← A

(
srsPC,C

)
(y, πPC)← A

(
srsPC, p(X⃗), x⃗

)


3.3 Accumulators

Definition 2. [Accumulation Scheme] An accumulation scheme [Bün+21; BC23] for a
predicate ϕ : X → {0, 1} is a tuple of algorithms Πacc = (Setupacc,Pacc,Vacc,Dacc), all of
which have access to the same random oracle Oacc, such that:

Setupacc(1
λ)→ srsacc : On input the security parameter, outputs public parameters srsacc.

For simplicity, we assume that all functions implicitly take srsacc as input.

Pacc

(
st, π, acc1

)
→
(
acc, pf

)
: The accumulation prover implicitly given srsacc, statement st,

predicate inputs π = (π.x, π.w), and an accumulator acc1 = (acc1.x, acc1.w), outputs
a new accumulator acc and corrections terms pf.

Vacc

(
acc1.x, acc2.x, pf

)
→ acc.x: The accumulation verifier implicitly given srsacc, and on

input the instances of two accumulators, and the accumulation proof outputs a new
accumulator instance acc.x.

16

Dacc

(
acc
)
→ 1/0: The decider takes as input acc and accepts or rejects.

and satisfies completeness and soundness as defined below:

Completeness. For all fresh proofs π such that ϕ(π) = 1 and accumulator acc such that
Dacc(acc) = 1, the following holds:

Pr

[
Vacc

(
acc1.x, acc2.x, pf

)
= acc.x

∧ Dacc

(
acc
)
= 1

∣∣∣∣ srs← Setup(1λ)(
acc, pf

)
← Pacc

(
st, π, acc1

)] = 1

Knowledge-soundness. For every PT adversary A, there exists a polynomial-time ex-
tractor Ext such that the following probability is negligible:

Pr

 (Dacc(acc1) ̸= 1 ∨ Dacc(acc2) ̸= 1) ∧
Vacc

(
srs, acc1.x, acc2.x, pf

)
= acc.x

∧ Dacc

(
acc
)
= 1

∣∣∣∣∣∣
srs← Setup(1λ)

(acc, acc1.x, acc2.x, pf)← A(srs)
(acc1.w, acc2.w)← Ext(acc, acc1.x, acc2.x, pf)

 = 1

3.4 Incrementally verifiable computation

Definition 3. (IVC) An IVC scheme is a tuple of efficient algorithms (SetupIVC,PIVC,VIVC)
with the following interface:

• SetupIVC(λ, S)→ pp: Given a security parameter λ, a poly-size bound S ∈ N, outputs
public parameters pp.

• PIVC(pp, F, F.xi, F.wi, πi)→ πi+1: Given public parameters pp, a function F : {0, 1}a×
{0, 1}b → {0, 1}a computable by a circuit of size at most S, an initial state and claimed
output F.xi ∈ {0, 1}a, advice F.wi ∈ {0, 1}b, and an IVC proof πi, outputs a new IVC
proof πi+1.

• VIVC(pp, F, F.xi, πi) → 0/1: Given public parameters pp, a function F , a claimed
output F.xi, and an IVC proof πi, outputs 0 (reject) or 1 (accept).

An IVC scheme satisfies the following properties:

Completeness. For every poly-size bound S ∈ N, pp in the output space of SetupIVC(λ, S),
function F : {0, 1}a × {0, 1}b → {0, 1}a computable by a circuit within bound S, collection
of elements F.xi ∈ {0, 1}a, F.wi ∈ {0, 1}b and IVC proof πi, the following holds:

Pr

 VIVC(pp, F, F.xi, πi) = 1
⇓

VIVC(pp, F, F.xi+1, πi+1) = 1

∣∣∣∣∣∣ πi+1 ← PIVC(pp, F, F.xi, F.wi, πi),
F.xi+1 ← F (F.xi, F.wi)

 = 1

17

Knowledge soundness. Let S ∈ N be a poly-size bound and ℓ(λ) be a polynomial in
the security parameter. Let F be an efficient function sampling adversary that outputs a
function F : {0, 1}a × {0, 1}b → {0, 1}a computable by a circuit within the poly-size bound
S. We say that an IVC scheme is knowledge sound if there exists an efficient extractor Ext
such that for every efficient IVC prover P∗

IVC the probability of the following event is greater
than 1− negl(λ):

Pr


VIVC(pp, F, F.xi, πi) = 1∧
F.xi = F (F.xi−1, F.wi−1)∧
(i = 1 =⇒ F.xi−1 = F.x0)∧

(i > 1 =⇒ VIVC(pp, F, F.xi−1, πi−1) = 1)

∣∣∣∣∣∣∣∣∣∣
pp← SetupIVC(λ, S)

ρ← {0, 1}ℓ(λ)
F ← F(pp; ρ)

(F.xi, πi)← P∗
IVC(pp, ρ)

(F.xi−1, F.wi−1), πi−1 ← Ext(pp, ρ)


3.5 IVC from accumulators

Theorem 1. Let NARK be a non-interactive argument that is (T − t)-predicate-efficient
with respect to Φ. If (Φ,SetupNARK) has an accumulation scheme accΦ then NARK has an
accumulation scheme accNARK with the efficiency properties below:

• Pacc runs in time
∑n

i=1 T (N, |xi|) plus the time taken to run Pacc,Φ.

• Vacc runs in time
∑n

i=1 T (N, |xi|) plus the time taken to run Vacc,Φ

• Dacc takes time equal to Dacc,Φ

Theorem 2. There exists a polynomial time transformation T such that if NARK =
(SetupNARK,PNARK,VNARK) is a NARK for circuit satisfiability and AS is an accumulation
scheme for NARK, then IVC = (SetupIVC,PIVC,VIVC) = T (NARK,AS) is an IVC scheme
for constant-depth compliance predicates, provided ∃ϵ ∈ (0, 1) and a polynomial α s.t.
v∗(λ,m,N, ℓ) = O(N1−ϵ.α(λ,m, ℓ)). Moreover, if the size of the predicate Φ : F(m+2)ℓ → F
is f = ω(α(λ,m, ℓ)1/ϵ), then:

• The cost of running SetupIVC is the cost of running SetupNARK and Setupacc on an
index of size f + o(f).

• The cost of running PIVC is the cost of accumulating m instance-proof pairs using
Pacc, and running PNARK on an index of size f + o(f)and instance of size o(f).

• The cost of running VIVC is equal to the cost of running VNARK and Dacc on an index
of size f + o(f) and an instance of size o(f).

18

4 KZH: An efficiently aggregatable polynomial commitment

We present KZH in Figure 2. For a multilinear polynomial f(X⃗), where X⃗ ∈ Fk, which
interpolates a vector in F2k , we set ℓ = 2k = |f |. We can select any ν, µ such that k = ν+µ
and the following costs apply:

• Committing to f costs O(ℓ) group operations.

• Proof consists of 2ν G1 elements and 2µ field elements.

• Opening requires 2ν field operations.

• Verifier requires 2ν pairings, multi-exponentiations of size 2ν +2µ , and 2µ field oper-
ations.

We can set ν = µ = k
2 so 2ν = 2µ = 2

k
2 , or choose a trade-off between prover and verifier

work based on convenience. For example, when the verifier workload or proof size is more
critical, selecting a lower ν results in fewer pairings and smaller proof size, but at the expense
of more multi-exponentiations by the prover to open the commitment. The polynomial
commitment scheme has two key properties: The opening proof can be precomputed during
the commitment phase and is O(ℓ

1
2) in size. Secondly, it can be accumulated efficiently

using only G1 operation and has an O(ℓ
1
2) accumulator witness. More precisely, the prover

commits to the multilinear commitment f(X⃗, Y⃗) with X⃗ ∈ Fν and Y⃗ ∈ Fµ as a matrix
of evaluation points. During the opening at point (x⃗0, y⃗0), the prover decomposes the
matrix into row commitments. The correctness of this decomposition can be checked using
pairings. Intuitively, KZH is a proof of correct partial evaluation at point X⃗ = x⃗0. Once
the verifier is convinced about the correctness of f∗(Y⃗) = f(x⃗0, Y⃗), it can evaluate f∗(Y⃗)
at y0 on its own. We can then use the technique from Hyrax to evaluate the bivariate
commitment as a vector, matrix, or vector product. The technique extends to more variables
as presented in Appendix C (which reduces the verification cost). KZH is not inherently
hiding; however, by utilizing the general compiler described in [Bü+19] for homomorphic
polynomial commitments, it can be transformed to achieve hiding. However, the general
compiler requires committing to a fully random polynomial, which forces the prover to
perform a linear-sized MSM during the opening phase. Recent work, IronDict [Haf+25],
building on KZH, demonstrates that it suffices to use a sparse random polynomial with only√
|f | non-zero coefficients. They further generalize this result to k · k

√
|f | for the KZH-k

setting. In brief, IronDict builds a hiding version of KZH (zk-KZH) in which the opening
remains sublinear and hence efficient.

Below we state a theorem proving the security of KZH under the Dn-find-rep [DRZ20],
for a distribution Dn. We instantiate Dn with our setup SetupKZH algorithm. All the secret
trapdoors in our setup appear up to m times in exponents of G1 generators and once in
the exponent of an G2 generator. [DRZ20]’s proof suggests that this should be equivalent
to the m, 1-dlog assumption [BFL20]. We leave this reduction as an open problem.

19

SetupKZH(λ, k) :

• Choose µ, ν such that k = 2ν+µ. Let n = 2ν and m = 2µ and define the boolean cubes
as Bn = {0, 1}ν and Bm = {0, 1}µ.

• Sample {G(⃗i) ←$ G1}⃗i∈Bm
, V←$ G2 and sample trapdoor {τ (⃗j)}j⃗∈Bn

, α←$ F f.

• For i⃗ ∈ Bn, j⃗ ∈ Bm, define:

– H(⃗i, j⃗) ← τ (⃗i) × G(⃗j)

– H(⃗j) ← α× G(⃗j)

– V(⃗i) ← τ (⃗i) × V ∈ G2

– V′ ← α× V

• Let srs←
(
[G(⃗i),H(⃗i, j⃗),H(⃗j),V′,V(⃗i)]⃗i∈Bn ,⃗j∈Bm

)
.

• Output srs.

CommitKZH(srs, f(X⃗, Y⃗)): For f ∈ MLP(ν + µ) and X⃗ ∈ Fν , Y⃗ ∈ Fµ

• Output C←
∑

x⃗∈Bn

∑
y⃗∈Bm

f(x⃗, y⃗)× H(x⃗, y⃗).

• Let D(x⃗) ←
∑

y⃗∈Bm

f(x⃗, y⃗)× H(y⃗) ∀ x⃗ ∈ Bn.

• Output C and aux =
(
{D(x⃗)}x⃗∈Bn

)
as cache.

OpenKZH(srs, f(X⃗, Y⃗), x⃗0, y⃗0, aux):

• Let f∗(Y⃗)← f(x⃗0, Y⃗), f∗ ∈ MLP(F, µ).

• Let z0 ← f∗(y⃗0).

• Output π ←
(
f∗(Y⃗), aux = {D(x⃗)}x⃗∈Bn

)
, z0.

VerifyKZH(srs, C, x⃗0, y⃗0, π, z0): Accept if and only if all checks below pass:

1. e(C,V′) =
∑

x⃗∈Bn

e(D(x⃗),V(x⃗)),

2.
∑

y⃗∈Bm

f∗(y⃗)× H(y⃗) =
∑

x⃗∈Bn

eq(x⃗, x⃗0)× D(x⃗),

3. f∗(y⃗0) = z0.

Figure 2: KZH polynomial commitment scheme

20

Theorem 3. The protocol in Fig. 2 is a complete and knowledge-sound polynomial com-
mitment scheme as defined in Definition 1, in the AGM under the (q1, q2) − dlog and
Setup-find-rep assumptions.

The proof is deferred to Appendix B.1

Dual polynomials. A dual polynomial [GNS24] is a recent primitive that allows us to link
a witness committed to using a univariate polynomial commitment scheme with a witness
inside a multilinear polynomial commitment scheme. KZH, when the SRS is initialized
with the powers of τ , acts both as a univariate KZG commitment and as a multilinear KZH
commitment. To be more precise, in Figure 2, when G(⃗i) is initialized with τ i×m × g, and
τ (⃗j) is equal to τ j—i.e., we assume i and j are the decimal values corresponding to i⃗ and
j⃗—we observe that:

{H (⃗i,⃗j) : i⃗ ∈ Bn, j⃗ ∈ Bm} = {gτ
i
: i ∈ [n×m]}.

Since the commitment C in KZH is an MSM between {H (⃗i,⃗j)} and the values f(x⃗, y⃗) (i.e.,
the evaluations of the polynomial on the boolean hypercube), it follows that C is also a
KZG commitment to a univariate polynomial g(X) defined as:

g(X) =
∑

i∈[n], j∈[m]

f (⃗i, j⃗) ·Xi×m+j .

This duality with KZH comes for free; for example, the same group element serves as both
a KZG and KZH commitment. We defer the security proof of this modification of KZH to
future work.

Free opening on the boolean hypercube for KZH. As previously mentioned, KZH
takes advantage of the low-weight witness in both the commitment and opening phases.
However, in the special case of the opening function at points on the Boolean hypercube, it
is essentially free. Given boolean input vectors x⃗0 and y⃗0, let f∗(Y⃗) = f(x⃗0, Y⃗) denote the
restriction of f to a fixed x⃗0. This corresponds to a row in the matrix of evaluation points,
indexed by ⟨x⃗0⟩—i.e., the decimal value of x⃗0. Since this row is already stored, the prover
only needs to read it from the matrix. Next, the evaluation point z0 = f∗(y⃗0) lies on the
boolean hypercube and is already stored, so it does not require any additional computation.
We also extend this property to KZH-k for k > 2 in Appendix C.1.

4.1 KZH-fold: Accumulator with sublinear size

Applying the Protostar compiler, we build an accumulator for KZH, the polynomial com-
mitment scheme described in Section 4. For the polynomial evaluation predicate, we have
that the instance π.x and witness π.w are as follows:

π.x = {C, x⃗0, y⃗0, z0}, π.w = {D⃗ := [D(x⃗)]x⃗∈Bn , f
∗(Y⃗)}

21

where C is the commitment to f(X⃗, Y⃗), (x⃗0, y⃗0) ∈ Fν+µ is the opening value, z0 is claimed
to be z0 = f(x⃗0, y⃗0), and π.w is the output of OpenKZH. The accumulator instance and
witness are defined as follows, where the red elements only appear in the accumulator and
not in a proof:g

acc.x = {C, T , x⃗0, y⃗0, z0, E},

acc.w = {D⃗ := [D(x⃗)]x⃗∈Bn , f⃗
∗, T (x), T (y)}

for T ∈ G1, T (x) ∈ T (F, ν), T (y) ∈ T (F, µ), and f⃗∗ which is the vector of the evaluation of
f∗(Y⃗) on the boolean hypercube. We also define the function Dec to represent the checks
performed by VerifyKZH. This function computes the error term in the verifier equations,
which should evaluate to 0 when evaluated in a fresh proof. Given a tree T of depth n
and a vector x⃗ = (x1, x2, . . . , xn), the error tree EqTree(T , x⃗) is another tree of depth n
constructed as follows: The root node of the error tree is initialized to 0; for each node in
T at depth i with value t, having left and right children with values ℓ and r, respectively,
the corresponding nodes in the error tree have left and right child values ℓ − t × (1 − xi)
and r − t× xi, respectively. Now given the following values,

• T (error)
x ← EqTree(T (x), x⃗0)

• T (error)
y ← EqTree(T (y), y⃗0)

• e′′ ← ⟨f∗, T (y).leaves⟩ − z

• EG ← ⟨f⃗∗, (H(y⃗))y⃗∈Bn⟩ − ⟨T (x).leaves, D⃗⟩

Dec is defined as it follows:

Dec(x⃗0, y⃗0, z0,f⃗
∗, T (x), T (y), D⃗) = ⟨T (error)

x ||T (error)
y ||e′′, K⃗||K′⟩+ EG.

The algorithms Setupacc and Pacc are described in Figure 3 whereas Vacc and Dacc are in
Figure 4. In Figure 3, in fact challenge β is the random challenge coming from the verifier
in an interactive accumulation protocol, but we directly apply Fiat-Shamir heuristic to
make the protocol non-interactive, deriving the random challenge through a random oracle
initialized with a hash function. We present an overview of the efficiency of the accumulation
scheme below:

Communication. The size of the accumulation witness is O(n + m) = O(ℓ
1
2). The

accumulator instance is constant in size. The communication is significantly lower than
Nova, Halo Infinite, HyperNova and Protostar, where it is Θ(ℓ). Using the generalization
to multivariate polynomial commitments in Appendix C, we can reduce the communication
to O(k · ℓ

1
k)

gHere, proof refers to a fresh accumulator in the context of an accumulator.
hOptimized as E′′ ← E+ β × (E− E′) + (1− β)β × Q

22

Setupacc(1
λ, k):

• srsKZH ← SetupKZH(λ, k).

• Parse n,m from srsKZH and generate K⃗ = (K1, . . . ,K2·(n+m−1)) ∈ G2·(n+m−1)
1 and

K′ ← G1 (unknown DLOG from all other generators).

• Output srs =
(
srsKZH, K⃗,K

′).
Pacc(srs, st, (π.x, π.w), (acc1.x, acc1.w)):

• Build accumulator (acc2.x, acc2.w) from (π.x, π.w):

– Parse (C2, x⃗2, y⃗2, z2)← π.x and ({D(x⃗)
2 }x⃗∈Bn

, f∗
2 (Y⃗))← π.w

– Let T (x)
2 ← EqTree(x⃗2), T (y)

2 ← EqTree(y⃗2)
– Parse T (x)

2 ∈ F2n−1, T (y)
2 ∈ F2m−1 and compute T2 ← ⟨T (x)

2 ||T (y)
2 , K⃗⟩

– Output acc2.x = {C2, T2, x⃗2, y⃗2, z2, 0G}, acc2.w = ({D(x⃗)
2 }x⃗∈Bn

, f⃗∗
2 , T

(x)
2 , T (y)

2 }

• Compute proof pf:

– Parse (C1, T1, x⃗1, y⃗1, z1,E1)← acc1.x and ({D(x⃗)
1 }x⃗∈Bn

, f⃗∗
1 , T

(x)
1 , T (y)

1)← acc.w

– Set pf = Q for Q ∈ G1 such that,

Dec((1−X) · (x⃗1, y⃗1, z1, f⃗
∗
1 , T

(x)
1 , T (y)

1 , D⃗1) +X · (x⃗2, y⃗2, z2, f⃗
∗
2 , T

(x)
2 , T (y)

2 , D⃗2))
= (1−X)× E1 +X × E2 + (1−X) ·X × Q

• Accumulate (acc1.x, acc1.w) and (acc2.x, acc2.w) into (acc.x, acc.w):

– Generate challenge β ← H(acc1.x, acc2.x,Q) through Fiat-Shamir.

– Compute new error term

E← (1− β)× E1 + β × E2 + (1− β)β × Qh

– Compute the following linear combinations:

(C, T, x⃗, y⃗, z) = (1− β) · (C1, T1, x⃗1, y⃗1, z1) + β · (C2, T2, x⃗2, y⃗2, z2)

and set acc.x = (C, T, x⃗, y⃗, z,E)

– Compute the new accumulator witness

acc.w ← (1− β) · ({D(x⃗)
1 }x⃗∈Bn

, f⃗∗
1 , T

(x)
1 , T (y)

1) + β · ({D(x⃗)
2 }x⃗∈Bn

, f⃗∗
2 , T

(x)
2 , T (y)

2)

– Output (acc.x, acc.w, pf)

Figure 3: Setup and prover algorithms for KZH-fold

23

Vacc(srs, acc.x1, acc.x2, pf):

• Parse (C1, T1, x⃗1, y⃗1, z1,E1)← acc1.x and (C2, T2, x⃗2, y⃗2, z2,E2)← acc2.x
• Parse Q← pf
• Regenerate challenge β ← H(acc1.x, acc2.x,Q)
• Compute E← (1− β)× E1 + β × E2 + (1− β) · β × Q and

(C, T, x⃗, y⃗, z) = (1− β) · (C1, T1, x⃗1, y⃗1, z1) + β · (C2, T2, x⃗2, y⃗2, z2)

• Output acc.x = (C, T, x⃗, y⃗, z,E)

Dacc(srs, acc.x, acc.w):

• Parse (C, T, x⃗0, y⃗0, z0,E)← acc.x and ({D(x⃗)}x⃗∈Bn
, f⃗∗, T (x), T (y))← acc.w

• Output 1 if and only if all following checks pass, otherwise output 0.

(i)
∑

x⃗∈Bn

e(D(x⃗),V(x⃗))
?
= e(C,V′)

(ii) ⟨(T (x)||T (y)), K⃗⟩ ?
= T

(iii) Dec(x⃗0, y⃗0, z0, f⃗
∗, T (x), T (y), D⃗)

?
= E

Figure 4: Verifier and decider algorithms in KZH-fold

24

Decider complexity. The decider is essentially has the same characteristic of KZH ver-
ifier, and thus runs in time O(ℓ

1
2) or O(k · ℓ

1
k) in the generalized case.

Prover complexity. The accumulation prover performs O(n + m) = O(ℓ
1
2) operations

to combine the two witnesses and compute the cross-term Q. This contrasts with previous
approaches - namely Nova, Halo Infinite, and Protostar - which require a linear number of
operations.

Verifier complexity. The accumulation verifier performs 3−4 G1 exponentiations, along
with a constant number of field operations, which is consistent with schemes like Nova
(requiring 2− 3 G1 operations) and Protostar (requiring 3− 4 G1 operations).

Theorem 4. The protocol in Figures 3 and 4 is an accumulator scheme satisfying complete-
ness and knowledge soundness as in Definition 2, in the AGM under the dlog assumption.

The proof is deferred to Appendix B.2. Intuitively, correctness follows since Vacc and
Dacc together go through the same computations as Pacc, and thus the outputs are the same.
For soundness, note that if decider’s first check passes, since β is computed after the prover
outputs acc1 and acc2, it implies the first check of the KZH verifier is satisfied for C1, {D(x⃗)

1 }
and for C2, {D(x⃗)

2 }. For the other two KZH verifier checks, the decider computes the error
terms and verifies their consistency with the error term computed by Pacc. Again, since β
depends on the outputs of Pacc, the error terms of acc1 and acc2 are correctly computed
and thus the KZH checks are satisfied.

5 PIOP+PA: IVC/PCD from Polynomial Accumulation

5.1 PIOP Accumulation: accumulating Spartan PIOP

In the previous section, we designed a polynomial accumulation scheme (KZH-fold). Next,
using that, we aim to build an accumulation scheme for the NP-complete language of R1CS.
Our strategy is to translate R1CS via Spartan PIOP into polynomial checks and then
accumulate those polynomial evaluations with PA. Specifically, when we translate R1CS
with Spartan, we obtain an evaluation for the witness polynomial and three evaluation
for the multilinear extension of the R1CS matrices. Let A,B,C ∈ Fn×m be the R1CS
matrices and subsequently define µn = log2(n) and µm = log2(m). Further, let Ã(X,Y) ∈
F[X1, . . . , Xµn , Y1, . . . , Yµm] be the multilinear extension of A and similarly define B̃ and C̃.
In Spartan [Set20], the prover and verifier compute a random challenge r⃗ via Fiat-Shamir
and run a sumcheck protocol for the following equation∑

x⃗∈{0,1}µn
eq(r⃗, x⃗) ·

(
Ãz(x⃗) · B̃z(x⃗)− C̃z(x⃗)

)
= 0

25

in which Ãz(x⃗) =
∑

y⃗∈{0,1}µm Ã(x⃗, y⃗) · z̃(y⃗). Now to accumulate the equation above, we
need to accumulate the evaluations of Ã, B̃, C̃ and z̃ (witness polynomial). We can directly
accumulate the witness polynomial with an PA such as KZH-fold. However, the same
strategy cannot be applied to the multilinear extension of matrices since these polynomials
are sparse and interpolating them directly with KZH-fold will result in a large SRS, hence
we take a different strategy. For extension polynomials Ã, B̃ and C̃, note that we need
to accumulate the evaluations of the same multilinear polynomial at multiple evaluation
points, i.e. Ã(r

(1)
x , r

(1)
y) = z(1) and Ã(r

(2)
x , r

(2)
y) = z(2). This can be done easily using a

simple random linear combination. We present an accumulation scheme in Figure 5 for
relation RÃ, i.e. Ã ∈ MLP(F, µn + µm) as defined below:

RÃ = {(rx ∈ Fµn , ry ∈ Fµm , z ∈ F) : Ã(rx, ry) = z}

Given a polynomial accumulation scheme (e.g., KZH-fold) and the accumulation of sparse
matrix evaluations described in Figure 5, we can now accumulate the polynomial checks
produced by the Spartan PIOP. This enables us to construct an accumulation scheme for
R1CS, as we describe in detail in the next subsection.

5.2 Uniform IVC/PCD from polynomial accumulation

In the previous section, we introduced a polynomial commitment scheme and built an ac-
cumulation scheme for its verifier, i.e. the polynomial evaluation predicate in Section 4.1.
Notably, many modern NARK constructions have succinct verifiers when given oracle ac-
cess to a polynomial commitment scheme capable of proving polynomial evaluations. In
Subsection 5.1, we introduce a PIOP for R1CS inspired by Spartan with these character-
istics. Thus, from Theorem 1 in Section 3.5, an accumulation scheme for PCS (e.g. KZH)
implies an accumulation scheme for R1CS. Next, from Theorem 2 there exists an efficient
transformation that takes the NARK and its accumulation scheme and constructs an IVC
(PCD) scheme IVC = (SetupIVC,PIVC,VIVC) which we just refer to as Spartan+PA. Accord-
ing to Theorem 2, this IVC (PCD) scheme for a step function with size n (i.e. the step
function represented as R1CS has size n) has the following efficiency properties:

• PIVC time = the prover time of PA.

• VIVC time = the decider time of PA.

• Proof size of IVC = the accumulator size of PA.

For example when PA=KZH-fold, it implies the prover cost per step is O(n) while the
verifier time and proof size are O(n

1
2). This is in contrast with IVC schemes from Nova,

HyperNova and Protostar which have O(n) prover time, verifier time and proof size. An
overview of Spartan+PA’s step function initiated with KZH-fold can be seen in Figure 6.

26

PABC(Ã, (r
(1)
x , r

(1)
y , z(1)), (r

(2)
x , r

(2)
y , z(2))):

• Given two satisfying instances (r
(1)
x , r

(2)
y , z(1)), (r(2)x , r

(2)
y , z(2)) ∈ RÃ

• Prover computes q(X) in the following polynomial identity where q(x) is a poly-
nomial of degree µ+ ν − 2.

Ã((1−X) · rx +X · r′x, (1−X) · ry +X · r′y)
= (1−X) · z +X · z′ + (1−X) ·X · q(X)

Note q(X) can be computed directly through polynomial interpolation by evalu-
ating the identity above with different X values.

• Derive challenge

α← H((r(1)x , r(2)y , z(1)), (r(2)x , r(2)y , z(2)), q(X))

• Compute the accumulated instances as follows:

rx ← (1− α) · r(1)x + α · r(2)x ry ← (1− α) · r(1)y + α · r(2)y

z ← (1− α) · z(1) + α · z(2) + α · (1− α) · q(α)

• Output accumulated instance (rx, ry, z) along with accumulation proof q(x)

VABC((r
(1)
x , r

(1)
y , z(1)), (r

(2)
x , r

(2)
y , z(2)), q(X)):

• Derive challenge α← H((r
(1)
x , r

(2)
y , z(1)), (r

(2)
x , r

(2)
y , z(2)), q(X))

• Compute the accumulated instances as it follows:

rx ← (1− α) · r(1)x + α · r(2)x ry ← (1− α) · r(1)y + α · r(2)y

z ← (1− α) · z(1) + α · z(2) + α · (1− α) · q(α)

• Output accumulated instance (rx, ry, z)

DABC(Ã, (rx, ry, z)): Compute z′ ← Ã(rx, ry) and assert z
?
= z′

Figure 5: Matrix evaluation accumulation description

27

matrix

evaluations

witness

evaluation
F VKZH-fold VABC

Vspartan

zi acc
(KZH)
i acc

(ABC)
i

Spartan Proof

zi+1 acc
(KZH)
i+1 acc

(ABC)
i+1

Figure 6: Spartan+PA step (augmented) circuit initiated with KZH-fold

This construction works with any other PCS accumulation scheme too as long as the accu-
mulation verifier is sublinear. In the next section, we will use Spartan+KZH-fold to build
an efficient signature aggregation scheme. Our Spartan+PA construction is not zero knowl-
edge; however, we believe that one can use the techniques presented in HyperNova [KS23c]
to make our IVC scheme zero knowledge, we leave this to future work.

5.3 N-IVC and N-PCD from polynomial accumulation

Review on previous work. N-IVC [KS22] extends traditional IVC by allowing each
step to execute one of several predefined instructions F1, F2, . . . , Fk rather than a single
instruction F . Earlier implementations relied on a universal circuit that computes all in-
structions and selects the output based on the program counter, resulting in inefficiency as
the prover computes every instruction, even when only one is needed. SuperNova improves
this by maintaining a running accumulator for each instruction and using memory tech-
niques (e.g., Merkle trees) to select and accumulate only the relevant accumulator at each
step, reducing he per-step computation cost of the prover to align with the step circuit cost.
However, the witness size grows linearly with the combined sizes of all instruction witnesses.
Protostar [BC23] offers a similar improvement, leveraging the fact that committing to zeros
incurs no additional cost. While it also reduces the per-step computation cost of the prover
to the cost of the step circuit for N-IVC, like SuperNova, it still requires the prover to
manage a witness size that scales linearly with the sum of all instruction witnesses.

Similar to N-IVC, N-PCD [Zhe+23] extends the definition of PCD to support multiple
instruction circuits instead of a single instruction. Constructing N-PCD using previous
approaches results in both the prover’s computation and witness size being linear in the
combined size of all instructions. Intuitively, SuperNova maintains a set of running ac-

28

cumulator, one for each instruction. Accumulating this running accumulator with a fresh
accumulator can be done efficiently by selecting the correct running accumulator. However,
to construct N-PCD, it must accumulate two sets of running accumulators, leading to a
prover time that is linear in the combined size of all instruction circuits, along with the size
of the circuit growing linearly with k, i.e. the number of instructions. Protostar follows a
similar paradigm, building a universal circuit and maintaining a Pedersen commitment to
it. To execute one of the instruction circuits, the wires of the other instructions are set to
zero. Since these zeroed wires do not contribute to the commitment, the cost of committing
to the wires of this universal circuit to run a single instruction matches the step circuit cost.
However, accumulating two running accumulators requires computing a new commitment
that is linear in the size of the universal circuit. However, the circuit size remains constant,
since it requires taking a linear combination between two Pederson commitments.

KiloNova [Zhe+23] naively builds non-uniform PCD based on HyperNova and results
in the same issue as SuperNova. Their construction relies on the ability to efficiently fold
commitments to sparse CCS matrices, which is necessary for IVC/PCD. Unfortunately,
folding different sparse matrices does not necessarily preserve sparseness as demonstrated
in Appendix D and that is the reason, in this work we avoid folding sparse matrices with
different structures.

N-IVC and N-PCD from Spartan+PA. We propose an alternative approach to
achieve N-IVC and N-PCD via Spartan+PA with appealing efficiency and communica-
tion features. Our N-PCD is the first N-PCD scheme in which the prover is efficient, i.e.
the prover time is not linear in the combined size of all instructions and the decider algo-
rithm only requires group operations proportional to the maximum instruction size, while
it needs a linear number of field operations in the combined size of all instructions. This is
in contrast to SuperNova and Protostar, where the decider requires linear group operations
in the combined size of all circuits. Given that group scalar multiplication is 100x-1000x
more expensive than a field operationi, the decider’s cost in these schemes is dominated
by the number of group operations, making our decider far more efficient. Let F1, F2, ...,
Fk be the instruction circuits. An overview and comparison of our approach to N-IVC
and N-PICD can be seen in Tables 3 and 4 respectively. The high-level idea is to accu-
mulate polynomials corresponding to Fi rather than accumulating the circuit Fi (i.e. its
R1CS representation) directly. The key insight is that any polynomial of degree di < D
can be padded to become a polynomial of degree D, allowing it to be accumulated with
a running polynomial of degree D. To be more precise, to build N-IVC and N-PCD from
Spartan+PA, we maintain a running accumulator corresponding to a polynomial of degree
D and use it to accumulate PCS opening statements of degree di (e.g., opening a witness
commitment at a random point) required by the Spartan verifier. This strategy is compat-
ible with any polynomial accumulation scheme with a sublinear accumulation verifier. We

ihttps://zka.lc/

29

https://zka.lc/

defer its details to Appendix D.

Scheme Prover Time Verifier Time Witness Size
SuperNova O(|Fi|) O (

∑
i |Fi|)G O (

∑
i |Fi|)

Protostar O(|Fi|) O (
∑

i |Fi|)G O (
∑

i |Fi|)
Spartan+PA Pacc(maxi |Fi|) Dacc(maxi |Fi|) +O (

∑
i |Fi|)F O (|acc|+

∑
i log |Fi|)

Spartan+KZH-fold O(maxi |Fi|) O
(√

maxi |Fi|
)
+O (

∑
i |Fi|)F O

(√
maxi |Fi|+

∑
i log |Fi|

)
Table 3: Comparison of different N-IVC approaches based on prover/verifier time and
witness size. We assume SuperNova is working over Nova and Protostar is working over
Pedersen commitment, while we describe our approach as generic over a polynomial accu-
mulation scheme PA, where Pacc(maxi |Fi|) denotes the time for the accumulation prover
to accumulate two accumulators of size maxi |Fi|, which is O(maxi |Fi|) for KZH-fold. Simi-
larly, Dacc(maxi |Fi|) represents the decider time for an accumulator of size maxi |Fi|, given
by O(

√
maxi |Fi|) for KZH-fold.

Scheme Prover Time Verifier Time Witness Size
SuperNova O(

∑
|Fi|) O(

∑
|Fi|)G O(

∑
i |Fi|)

Protostar O(
∑
|Fi|) O(

∑
|Fi|)G O(

∑
i |Fi|)

KiloNova O(
∑
|Fi|) O(

∑
|Fi|)G O(

∑
i |Fi|)

Spartan+PA Pacc(maxi |Fi|) +
∑

i log |Fi| Dacc(maxi |Fi|) +O(
∑

i |Fi|)F O(|acc|+
∑

i log |Fi|)
Spartan+KZH-fold O(maxi |Fi|) +

∑
i log |Fi| O(

√
maxi |Fi|) +O(

∑
i |Fi|)F O(

√
maxi |Fi|+

∑
i log |Fi|)

Table 4: Comparison of different N-PCD approaches based on prover/verifier time and
witness size. We assume SuperNova is working over Nova and Protostar is working over
Pedersen commitment, while we describe our approach as generic over a polynomial accu-
mulation scheme PA where Pacc(maxi |Fi|) denotes the time for the accumulation prover to
accumulate two accumulators of size maxi |Fi|, which is O(maxi |Fi|) for KZH-fold. Simi-
larly, Dacc(maxi |Fi|) represents the decider time for an accumulator of size maxi |Fi|, given
by O(

√
maxi |Fi|) for KZH-fold.

30

6 PIOP for signature aggregation protocol

In Figure 7 and 8, we provide a protocol enabling bandwidth-efficient recursive aggre-
gation of accountable signatures. A distinctive feature of our protocol is that the cir-
cuit size remains independent of the number of signers, made possible by the homo-
morphic properties of our KZH commitment scheme. Our protocol uses - as building
blocks - an aggregate signature scheme (KGenss, Signss,Verifyss) (Definition 4), the IVC
scheme (SetupIVC,PIVC,VIVC) of Section 5, and our polynomial commitment scheme KZH =
(SetupKZH, CommitKZH, OpenKZH, VerifyKZH). Our scheme also uses the famous sumcheck
protocol (Psmck,Vsmck) [Lun+90]. We implement our signature aggregation protocol using
BLS as the signature scheme [BLS04], and present its efficiency, along with a comparison
to the state of the art, in Section 7. To track the signers, we use a bitvector: a vector b⃗
with a size equal to the number of validators such that bk = 1 if user k has signed, and 0
otherwise. Here ⟨k⟩ is the µ-bit binary representation of k. The circuit size of the scheme
is constant, independent of the number of validators, enabling the recursive aggregation of
signatures for millions of validators with minimal overhead. This is achieved via utilizing
the IVC scheme from Section 5. The scheme proves the union of the bitvector by relying on
the fact that b⃗1∨ b⃗2 = b⃗1+ b⃗2− b⃗1 ◦ b⃗2. In Figure 8, we build a simple sumcheck-based PIOP
for this statement. We compile this PIOP into a proof system using KZH, and accumulate
the resulting evaluation checks.

The Setup algorithm of the signature aggregation scheme initializes the IVC scheme.
Users use KGen to generate their public and signing key pair (sk, pk). Initalize initializes the
vector of all public keys from the users in the system. To sign, users run Signss. Next, user
k runs SigToAggSig to convert their signature into aggregated form. Aggregate is similar
to an accumulation scheme and is run by a prover and a verifier: it takes two aggregated
signatures as input and outputs a new one. The aggregated signature includes an IVC
proof πIVC for the function F , which is the KZH verifier. That is, πIVC.x consists of the
polynomial evaluation claims (including F and F.x) whereas πIVC.w is a proof that they
have been aggregated correctly. Finally, Verify (intuitively, the decider of the accumulation
scheme) is run to check the validity of aggregated signatures. We provide an overview of
the resulting IVC circuit in Figure 9.

Efficiency. The aggregate signature consists of the public key, the signature and a poly-
nomial that interpolates the bitvector of signers, as well as an IVC proof (which contains
PCS evaluation claims). Using Spartan+KZH-fold from Section 4.1, the IVC proof is O(ℓ

1
2)

in size. Thus the aggregate, accountable signature size is dominated by the bitvector of
signers c⃗, which contains at most ℓ bits. This is the minimal information that can be
transmitted for an accountable signature. The aggregator’s work consists of computing
and committing to c⃗ which takes at most ℓ group additions (not scalar multiplications as c⃗
consists of bits), as well as the work of running the sumcheck prover and the accumulation
prover. Both of these are linear prover time and do not require additional commitments.

31

Setup(1λ, n):

• Sample {(p, g1, g2,G1,G2,GT , e)} ←$ GGen(1λ)

• G←$ G1

• srsIVC ← SetupIVC(λ)

• Output srs = (srsIVC,G)

KGen(λ): (sk, pk)← KGenss(1
λ, n)

Intialize(srsPC, [pki]
n
i=1):

Compute vector commitment VC such that VC[k] = pkk.

Sign(pk,M ∈ {0, 1}∗) : σ ← Signss(sk,M)

SigToAggSig(k ∈ [n ·m], pkk, σk): user k prepares its signature to aggregate

• Set b⃗ = ⟨k⟩ ∈ {0, 1}µ

• Bk ← CommitKZH(srsKZH, b(X⃗))

• Set IVC proof π(k)
IVC = ⊥

• Output:

Ak = (pkk,Bk, πIVC,k.x, bk(X⃗), σk, π
(k)
IVC.w)

Verify(srs, Ak): Verify an aggregated signature

• Check B = CommitKZH(srsKZH, b(X⃗)).

• Check Vss(pk,M, σ) = 1

• Check VerifyIVC(srsIVC, F, F.x, πIVC) = 1

Figure 7: Signature aggregation protocol - 1

32

Aggregate(Ak1
, Ak2

):

Aggregate the signatures:

• Ak1
= (pkk1

,Bk1
, π

(k1)
IVC .x, σk1

, bk1
(X⃗), π

(k1)
IVC .w)

• Ak2 = (pkk2
,Bk2 , π

(k2)
IVC .x, σk2 , bk2(X⃗), π

(k2)
IVC .w)

• Set pk′ ← pkk1
+ pkk2

• Set σ′ ← σk1
+ σk2

Proof of well-formedness of new bitvector

• Compute c(X⃗) such that c(x⃗) = bk1
(x⃗) ∨ bk2

(x⃗) ∀x⃗ ∈ {0, 1}µ

• Send C← CommitKZH(srsKZH, c(X⃗))

• Verifier sends challenge r⃗ ← Fµ

• Define c(X⃗) = bk1
(X⃗) + bk2

(X⃗)− bk1
(X⃗) · bk2

(X⃗) and run the sumcheck to prove that∑
x⃗∈{0,1}µ

eq(x⃗, r⃗)(bk1
(x⃗) + bk2

(x⃗)− bk1
(x⃗) · bk2

(x⃗)− c(x⃗)) = 0

Output bk1
(ρ⃗), bk2

(ρ⃗), c⃗(ρ⃗) where ρ⃗ ∈ Fk is the vector of randomness sampled by the verifier
during the sumcheck.

• Verifier sends random challenges α1, α2 from F

• Prover computes the polynomial p(X⃗) = bk1
(X⃗) + α1bk2

(X⃗) + α2c(X⃗), runs (π, z0) ←
OpenKZH(srsKZH, p(X⃗), x⃗0, y⃗0, aux), for x⃗0||y⃗0 = ρ⃗

• Verifier adds evaluation claim (P = Bk1 + α1Bk2 + α2C, x⃗0, y⃗0, π, z0) to π′
IVC.x

New Aggregated Signature:

• π′
IVC ← PIVC(srsIVC, F, F.x, F.w, πIVC)

• Let A′ = (pk′, σ′,C, π′
IVC.x;σ

′, c(X⃗), π′
IVC.w)

• Output A′

Figure 8: Signature aggregation protocol - 2

33

matrix

evaluations

witness

evaluation
Signature Verifier 3-to-1 VKZH-fold VABC

Vspartan

(zi, acc
(KZH)
i, sc)

zi acc
(KZH)
i, sc

acc
(KZH)
i acc

(ABC)
i

Spartan Proof

(zi+1, acc
(KZH)
i+1, sc) acc

(KZH)
i+1 acc

(ABC)
i+1

Figure 9: Signature aggregation augmented circuit

The aggregation verifier, which is implemented as a recursive circuit in the IVC protocol,
consists of a constant number of group operations and log(ℓ) native field operations and
hashes. These are mostly used to verify the accumulation of PCS evaluation claims. The
recursive circuit for each leaf also needs to check that the signer polynomial b⃗ is instan-
tiated correctly and that the correct public key is being aggregated. This consists of a
single vector commitment check (can be outsourced using a PC) and an evaluation of two
Lagrange polynomials. Using the extension from Section C, the communication cost can be
lowered to O(k · ℓ

1
k)+ ℓ bits, however, the aggregator’s computation overhead is dominated

by opening a KZH-k polynomial commitment of size ℓ, which still costs O(ℓ
1
2) group scalar

multiplications.

7 Implementation and efficiency

We implement all our subprotocols in Rust, by leveraging the arkworks libraryj. Our
CycleFold [KS23a] module builds on the implementation from the Nexus zkVM projectk,
and our Spartan PIOP module builds on the original Spartan codebasel. We made our
implementation publicly available as an open-source librarym.

The accumulation verifier circuit for PCD (accumulating two accumulators) in KZH2-
fold and KZH3-fold schemes, respectively requires four and five scalar multiplications, imple-
mented using CycleFold and Ova [Ova]. The total circuit size for KZH2-fold and KZH3-fold
verifiers are approximately 60k and 73k constraints on the primary curve and 12k and 15k

jhttps://arkworks.rs
khttps://nexus-xyz.github.io/assets/nexus_whitepaper.pdf
lhttps://github.com/microsoft/Spartan

mhttps://github.com/h-hafezi/kzh_fold

34

https://arkworks.rs
https://nexus-xyz.github.io/assets/nexus_whitepaper.pdf
https://github.com/microsoft/Spartan
https://github.com/h-hafezi/kzh_fold

on the secondary curve, with about 40% of constraint on the primary curve dedicated to
hashing non-native field elements. Our implementation is not highly optimized. Inspired
by Nexus, we also implemented a Nova circuit for IVC, accumulating one fresh proof with
a running accumulation, resulting in a circuit size of 35k constraints on the primary curve
and 6k on the secondary curven. This comparison aligns with expectations, for example,
KZH2-fold verifier is naturally larger, requiring three to four group scalar multiplications
compared to two to three for Nova.

As part of our implementation, we built an augmented circuit for our signature aggrega-
tion protocol as seen in Figure 9, along with a smaller augmented circuit for our KZH-based
folding scheme for NP. We used the R1CS PIOP from Section 5.1 to prove our circuits.
We ran our benchmarks on a laptop with an Intel i7-1370 CPU and 32GB of RAM and
16 cores. We used the half-pairing cycles of BN254 and Grumpkin as our primary and
secondary curves. We present our results in the following sections.

7.1 Efficiency of KZH

In Figure 10, we provide benchmarks for our variants of KZH2, KZH3 and KZH4 polynomial
commitment schemes and compare them with the celebrated KZG scheme. KZG is efficient
and offers constant verification time, while KZH benefits from faster opening times and
supports a natural accumulation scheme.

7.2 Comparison with Halo Infinite

Halo Infinite [Bon+21] (HI) presents an accumulation scheme for arbitrary homomorphic
polynomial opening aggregation schemes. The prover aggregates n polynomial openings
taking the polynomials themselves as input. In this section, we compare the efficiency of
KZH2-fold, KZH3-fold and HI by implementing all three schemes in our codebase.

In Figure 11, we observe that KZH-fold’s prover is significantly faster than HI’s. For
large witness sizes, HI spends most of its time committing to the polynomial q(x). On
the other hand, we also see that HI’s accumulation verifier is significantly faster compared
to KZH-fold. Finally, we see how KZH-fold’s communication overhead scales far more
efficiently as the polynomial’s size increases, since in HI’s private aggregation scheme the
prover must transmit the entire polynomial to the aggregator.

nUnlike our implementation and Nexus, the original Nova implementation by Microsoft does not use
Arkworks. We believe a primary reason for our circuit’s inefficiency is likely due to inefficiencies in Arkworks’
implementation of group operations and non-native field arithmetic in R1CS. For example, a group scalar
multiplication by Nova reportedly takes 1k constraints while it takes 3k with Arkworks.

35

10 11 12 13 14 15 16 17 18 19 20
Polynomial Degree

101

102

103

104

Co
m

m
it

Ti
m

e
(m

s)

PCS Commit Time Comparison: KZG / KZH2 / KZH3 / KZH4
KZH2
KZH3
KZH4
KZG

10 11 12 13 14 15 16 17 18 19 20
Polynomial Degree

10 1

100

101

102

103

104

Op
en

in
g

Ti
m

e
(m

s)

PCS Opening Time Comparison: KZG vs KZH2 vs KZH3 vs KZH4
KZH2
KZH3
KZH4
KZG

10 11 12 13 14 15 16 17 18 19 20
Polynomial Degree

100

101

102

Ve
rif

y
Ti

m
e

(m
s)

PCS Verify Time Comparison: KZG / KZH2 / KZH3 / KZH4
KZH2
KZH3
KZH4
KZG

10 11 12 13 14 15 16 17 18 19 20
Polynomial Degree

102

103

104

105

Op
en

in
g

Si
ze

 (B
yt

e)

PCS Opening Size Comparison: KZH2 / KZH3 / KZH4
KZH2
KZH3
KZH4

Figure 10: KZH benchmarks and comparison with KZG. KZH polynomial degree n refers
to a multilinear polynomial with n variables and hence 2n size of evaluations over boolean
hypercube. The polynomial coefficients for KZG and evaluation points over the boolean
hypercube are selected randomly. i.e. not small field elements. When polynomial evaluation
points in KZH family are set to value < 1024, we realize a 10-20x improvement in the
commitment time.

7.3 Comparison with Nova

We have implemented our IVC schemes Spartan+KZH2-fold and Spartan+KZH3-fold and
compared it to our implementation of Novao using different-sized F circuits in Table 5. For
the purposes of IVC, we use a circuit F that iteratively computes Poseidon hashes, and
the first column contains the number of Poseidon invocations. At the end of the R1CS
PIOP protocol, the decider must evaluate the R1CS matrices A, B and C at a random
point. We outsource this computation by having the prover provide an opening proof. This
outsourcing is independent of the rest of the protocol, allowing any polynomial commitment
scheme to be used, e.g. SPARK compiler. The commitment to the matrices, which the
costly part, can be performed during the setup phase.

As expected, Spartan+KZH-fold prover is slower than Nova, with a factor of almost 3
for moderate computations. However, Spartan+KZH-fold accumulator size is more compact
and its verifier times are faster. Spartan+KZH-fold prover is slower for two reasons. First,
Nova’s prover cost is essentially two MSMs, whereas Spartan+KZH-fold prover uses KZH to
commit to the witness. Furthermore, Spartan+KZH-fold’s augmented circuit must partially

oPrimarily borrowed from Nexus zkVM project

36

210 211 212 213 214 215 216 217 218 219 220

Witness Size
100

101

102

103

104

Pr
ov

er
 T

im
e

(m
s)

Accumulation Prover Time Comparison: Halo Infinite / KZH2-Fold / KZH3-Fold
KZH2-Fold
KZH3-Fold
Halo Infinite

210 211 212 213 214 215 216 217 218 219 220

Witness Size
0.5

1.0

1.5

2.0

2.5

3.0

Ve
rif

ica
tio

n
Ti

m
e

(m
s)

Accumulation Verifier Time Comparison: Halo Infinite / KZH2-Fold / KZH3-Fold
KZH2-Fold
KZH3-Fold
Halo Infinite

210 211 212 213 214 215 216 217 218 219 220

Witness Size
103

104

105

106

107

108

Ac
cu

m
ul

at
or

 S
ize

 (B
yt

e)

Communication Cost Comparison: Halo Infinite / KZH2-Fold / KZH3-Fold
KZH2-Fold
KZH3-Fold
Halo Infinite

210 211 212 213 214 215 216 217 218 219 220

Witness Size
0

50

100

150

200

De
cid

er
 T

im
e

(m
s)

Accumulation Decider Time Comparison: KZH2-Fold / KZH3-Fold
KZH2-Fold
KZH3-Fold

Figure 11: KZH-fold performance and communication cost, along with a comparison with
Halo Infinite private aggregation

verify the Spartan proof’s sumcheck and the accumulation of the matrix evaluations (Section
5.1). We believe that a large part of the slowdown is due to unoptimized code, which can
be improved.

7.4 Comparison with BLS aggregation

We implemented our accountable signature aggregation scheme based on Spartan+KZH3-
fold from Figure 8 and compared it to the accountable BLS signature aggregation scheme
in Table 6. In the BLS scheme, communication cost scales with the size of the multiplicity
vector, which incurs a redundancy overhead of r · log d, where r is the number of recursive
aggregation layers and d is the number of aggregators per layer. For an aggregation scheme
with a single layer (r = 1) with 1 million validators, the multiplicity vector requires 128
kB multiplied by log d. With additional recursive layers, this cost increases linearly with
r, further exacerbating bandwidth requirements for larger validator sets. Verification in-
volves a multiscalar multiplication (MSM) to compute the aggregated public key, using the
multiplicity vector and validators’ public keys.

In contrast, approach based on Spartan+KZH3-fold, eliminates the need for multiplicity
vectors, making its communication cost independent of the number of recursive layers and
the number of aggregators. The communication cost of our scheme is dominated by the
participation bitfield, whereas the recursive proof itself is less than 40% of the overall size.
Our signature aggregation augmented circuit is described in approximately 219 constraints.

37

of H Scheme Prover Verifier |Acc| # Constraints

0
Spartan+KZH2-fold 1.1 s 103 ms 74 KB 217 ≈ 131k
Spartan+KZH3-fold 0.87 s 62 ms 16 KB 217 ≈ 131k

Nova 157 ms 250 ms 3.8 MB 35k

150
Spartan+KZH2-fold 4.0 s 133 ms 148 KB 219 ≈ 524k
Spartan+KZH3-fold 3.1 s 63 ms 25 KB 219 ≈ 524k

Nova 447 ms 704 ms 9.6 MB 165k

1000
Spartan+KZH2-fold 7.2 s 193 ms 197 KB 220 ≈ 1048k
Spartan+KZH3-fold 6.68 s 93 ms 31 KB 220 ≈ 1048k

Nova 2.0 s 3.8 s 42 MB 675k

2000
Spartan+KZH2-fold 23.1 s 256 ms 295 KB 221 ≈ 2097k
Spartan+KZH3-fold 16.5 s 135 ms 37 KB 221 ≈ 2097k

Nova 4.8 s 5.6 s 80.8 MB 1185k

Table 5: Comparison of IVC schemes Spartan+KZH2-fold, Spartan+KZH3-fold and Nova

of validators Scheme Communication Verifier

220

BLS (r = 1, d = 16) 512 kB 338 ms
BLS (r = 4, d = 16) 2 MB 340 ms
BLS (r = 4, d = 32) 4 MB 342 ms

Ours 205 kB 226 ms

221

BLS (r = 1, d = 16) 1 MB 669 ms
BLS (r = 4, d = 16) 4 MB 670 ms
BLS (r = 4, d = 32) 8 MB 673 ms

Ours 333 kB 276 ms

222

BLS (r = 1, d = 16) 2 MB 1.29 s
BLS (r = 4, d = 16) 8 MB 1.3 s
BLS (r = 4, d = 32) 16 MB 1.3 s

Ours 589 kB 322 ms

Table 6: Comparison of BLS and Spartan+KZH3-fold based accountable signature aggre-
gation schemes

We find that the witness for this circuit is low-weight (with about 33% of the entries being
zero or one). As a result, committing to this low-weight witness is significantly more efficient
compared to committing to a random vector of the same size. To exploit this property, we
pair KZH3-fold with the Spartan PIOP, which only requires computing a single commitment
to the witness vector. Table 6 highlights the communication and verification costs of both
schemes across different validator counts and recursive layers. Our approach maintains
consistent communication costs regardless of r, while BLS incurs significant growth due to
the r · log d multiplicative factor.

38

Acknowledgements

We would like to thank Alireza Shirzad and Yue Zhang for pointing out small mistakes
in a previous version. We would like to thank anonymous reviewers who helped us to
improve the paper. This work was supported by Chaincode, Alpen Labs, Google and the
Sui Foundation.

39

References

[CT10] Alessandro Chiesa and Eran Tromer. “Proof-Carrying Data and Hearsay Ar-
guments from Signature Cards”. In: 2010, pp. 310–331.

[DG08] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: simplified data processing
on large clusters”. In: Commun. ACM 51.1 (Jan. 2008), 107–113. issn: 0001-
0782. doi: 10.1145/1327452.1327492. url: https://doi.org/10.1145/
1327452.1327492.

[CTV15] Alessandro Chiesa, Eran Tromer, and Madars Virza. “Cluster Computing in
Zero Knowledge”. In: 2015, pp. 371–403. doi: 10.1007/978-3-662-46803-
6_13.

[Her24] Polygon Hermez. Polygon zkevm: Recursion, aggregation and composition of
proofs. https://github.com/0xPolygonHermez/zkevm- techdocs/blob/
main/docs/proof-recursion.pdf. Accessed: 2024-11-15. 2024. url: https:
/ / github . com / 0xPolygonHermez / zkevm - techdocs / blob / main / docs /
proof-recursion.pdf.

[KB23] Assimakis Kattis and Joseph Bonneau. “Proof of Necessary Work: Succinct
State Verification with Fairness Guarantees”. In: 2023, pp. 18–35. doi: 10.
1007/978-3-031-47751-5_2.

[Ben+14] Eli Ben-Sasson et al. “Scalable Zero Knowledge via Cycles of Elliptic Curves”.
In: 2014, pp. 276–294. doi: 10.1007/978-3-662-44381-1_16.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. “Nova: Recursive Zero-
Knowledge Arguments from Folding Schemes”. In: 2022, pp. 359–388. doi:
10.1007/978-3-031-15985-5_13.

[Bün+21] Benedikt Bünz et al. “Proof-Carrying Data Without Succinct Arguments”. In:
2021, pp. 681–710. doi: 10.1007/978-3-030-84242-0_24.

[KS24] Abhiram Kothapalli and Srinath T. V. Setty. “HyperNova: Recursive Ar-
guments for Customizable Constraint Systems”. In: 2024, pp. 345–379. doi:
10.1007/978-3-031-68403-6_11.

[BC23] Benedikt Bünz and Binyi Chen. “Protostar: Generic Efficient Accumulation/Folding
for Special-Sound Protocols”. In: 2023, pp. 77–110. doi: 10.1007/978-981-
99-8724-5_3.

[KZG10] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. “Constant-Size Com-
mitments to Polynomials and Their Applications”. In: 2010, pp. 177–194. doi:
10.1007/978-3-642-17373-8_11.

[Bün+20] Benedikt Bünz et al. “Recursive Proof Composition from Accumulation Schemes”.
In: 2020, pp. 1–18. doi: 10.1007/978-3-030-64378-2_1.

40

https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1007/978-3-662-46803-6_13
https://doi.org/10.1007/978-3-662-46803-6_13
https://github.com/0xPolygonHermez/zkevm-techdocs/blob/main/docs/proof-recursion.pdf
https://github.com/0xPolygonHermez/zkevm-techdocs/blob/main/docs/proof-recursion.pdf
https://github.com/0xPolygonHermez/zkevm-techdocs/blob/main/docs/proof-recursion.pdf
https://github.com/0xPolygonHermez/zkevm-techdocs/blob/main/docs/proof-recursion.pdf
https://github.com/0xPolygonHermez/zkevm-techdocs/blob/main/docs/proof-recursion.pdf
https://doi.org/10.1007/978-3-031-47751-5_2
https://doi.org/10.1007/978-3-031-47751-5_2
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1007/978-3-031-15985-5_13
https://doi.org/10.1007/978-3-030-84242-0_24
https://doi.org/10.1007/978-3-031-68403-6_11
https://doi.org/10.1007/978-981-99-8724-5_3
https://doi.org/10.1007/978-981-99-8724-5_3
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-030-64378-2_1

[Set20] Srinath Setty. “Spartan: Efficient and General-Purpose zkSNARKs Without
Trusted Setup”. In: 2020, pp. 704–737. doi: 10.1007/978-3-030-56877-1_25.

[PST13] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. “Signatures
of Correct Computation”. In: 2013, pp. 222–242. doi: 10.1007/978-3-642-
36594-2_13.

[Lee21] Jonathan Lee. “Dory: Efficient, Transparent Arguments for Generalised Inner
Products and Polynomial Commitments”. In: 2021, pp. 1–34. doi: 10.1007/
978-3-030-90453-1_1.

[Cam+25] Matteo Campanelli et al. On the Power of Polynomial Preprocessing: Proving
Computations in Sublinear Time, and More. Cryptology ePrint Archive, Paper
2025/238. 2025. url: https://eprint.iacr.org/2025/238.

[KS23a] Abhiram Kothapalli and Srinath Setty. CycleFold: Folding-scheme-based re-
cursive arguments over a cycle of elliptic curves. Cryptology ePrint Archive,
Report 2023/1192. 2023. url: https://eprint.iacr.org/2023/1192.

[BFS20] Benedikt Bünz, Ben Fisch, and Alan Szepieniec. “Transparent SNARKs from
DARK Compilers”. In: 2020, pp. 677–706. doi: 10.1007/978-3-030-45721-
1_24.

[KS23b] Abhiram Kothapalli and Srinath Setty. CycleFold: Folding-scheme-based re-
cursive arguments over a cycle of elliptic curves. Cryptology ePrint Archive,
Paper 2023/1192. 2023. url: https://eprint.iacr.org/2023/1192.

[ZSC24] Jiaxing Zhao, Srinath Setty, and Weidong Cui. MicroNova: Folding-based argu-
ments with efficient (on-chain) verification. Cryptology ePrint Archive, Paper
2024/2099. 2024. url: https://eprint.iacr.org/2024/2099.

[Che+20] Weikeng Chen et al. Reducing Participation Costs via Incremental Verification
for Ledger Systems. Cryptology ePrint Archive, Paper 2020/1522. 2020. url:
https://eprint.iacr.org/2020/1522.

[Bon+20] Joseph Bonneau et al. Coda: Decentralized Cryptocurrency at Scale. Cryptol-
ogy ePrint Archive, Paper 2020/352. 2020. url: https://eprint.iacr.org/
2020/352.

[Tya+21] Nirvan Tyagi et al. VeRSA: Verifiable Registries with Efficient Client Au-
dits from RSA Authenticated Dictionaries. Cryptology ePrint Archive, Paper
2021/627. 2021. doi: 10.1145/3548606.3560605. url: https://eprint.
iacr.org/2021/627.

[Gro+18] Jens Groth et al. “Updatable and Universal Common Reference Strings with
Applications to zk-SNARKs”. In: 2018, pp. 698–728. doi: 10.1007/978-3-
319-96878-0_24.

41

https://doi.org/10.1007/978-3-030-56877-1_25
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1007/978-3-642-36594-2_13
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-030-90453-1_1
https://eprint.iacr.org/2025/238
https://eprint.iacr.org/2023/1192
https://doi.org/10.1007/978-3-030-45721-1_24
https://doi.org/10.1007/978-3-030-45721-1_24
https://eprint.iacr.org/2023/1192
https://eprint.iacr.org/2024/2099
https://eprint.iacr.org/2020/1522
https://eprint.iacr.org/2020/352
https://eprint.iacr.org/2020/352
https://doi.org/10.1145/3548606.3560605
https://eprint.iacr.org/2021/627
https://eprint.iacr.org/2021/627
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-319-96878-0_24

[Resb] Ethereum Research. Sticking to 8192 Signatures per Slot Post-SSF: How and
Why. https://ethresear.ch/t/sticking- to- 8192- signatures- per-
slot-post-ssf-how-and-why/. Accessed: 2024-11-15.

[Sin] Single Slot Finality. https://ethereum.org/en/roadmap/single-slot-
finality/. Accessed: 2024-11-15.

[But] Vitalik Buterin. Possible futures of the Ethereum protocol, part 1: The Merge.
https://vitalik.eth.limo/general/2024/10/14/futures1.html. Ac-
cessed: 2024-11-15.

[D’A+24b] Francesco D’Amato et al. TOB-SVD: Total-Order Broadcast with Single-Vote
Decisions in the Sleepy Model. 2024. arXiv: 2310.11331 [cs.DC]. url: https:
//arxiv.org/abs/2310.11331.

[DZ23] Francesco D’Amato and Luca Zanolini. A Simple Single Slot Finality Proto-
col For Ethereum. Cryptology ePrint Archive, Report 2023/280. 2023. url:
https://eprint.iacr.org/2023/280.

[D’A+24a] Francesco D’Amato et al. 3-Slot-Finality Protocol for Ethereum. 2024. arXiv:
2411.00558 [cs.DC]. url: https://arxiv.org/abs/2411.00558.

[D’A+22] Francesco D’Amato et al. No More Attacks on Proof-of-Stake Ethereum? Cryp-
tology ePrint Archive, Report 2022/1171. 2022. url: https://eprint.iacr.
org/2022/1171.

[Gil+17] Yossi Gilad et al. Algorand: Scaling Byzantine Agreements for Cryptocur-
rencies. Cryptology ePrint Archive, Report 2017/454. 2017. url: https://
eprint.iacr.org/2017/454.

[Yin+19] Maofan Yin et al. “HotStuff: BFT Consensus with Linearity and Responsive-
ness”. In: 2019, pp. 347–356. doi: 10.1145/3293611.3331591.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. “Short Signatures from the Weil
Pairing”. In: 17.4 (Sept. 2004), pp. 297–319. doi: 10.1007/s00145-004-0314-
9.

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. “Compact Multi-signatures
for Smaller Blockchains”. In: 2018, pp. 435–464. doi: 10.1007/978-3-030-
03329-3_15.

[Resa] Ethereum Research. Signature Merging for Large-Scale Consensus. https://
ethresear.ch/t/signature-merging-for-large-scale-consensus/17386.
Accessed: 2024-11-15.

[KS22] Abhiram Kothapalli and Srinath Setty. SuperNova: Proving universal ma-
chine executions without universal circuits. Cryptology ePrint Archive, Paper
2022/1758. 2022. url: https://eprint.iacr.org/2022/1758.

42

https://ethresear.ch/t/sticking-to-8192-signatures-per-slot-post-ssf-how-and-why/
https://ethresear.ch/t/sticking-to-8192-signatures-per-slot-post-ssf-how-and-why/
https://ethereum.org/en/roadmap/single-slot-finality/
https://ethereum.org/en/roadmap/single-slot-finality/
https://vitalik.eth.limo/general/2024/10/14/futures1.html
https://arxiv.org/abs/2310.11331
https://arxiv.org/abs/2310.11331
https://arxiv.org/abs/2310.11331
https://eprint.iacr.org/2023/280
https://arxiv.org/abs/2411.00558
https://arxiv.org/abs/2411.00558
https://eprint.iacr.org/2022/1171
https://eprint.iacr.org/2022/1171
https://eprint.iacr.org/2017/454
https://eprint.iacr.org/2017/454
https://doi.org/10.1145/3293611.3331591
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/s00145-004-0314-9
https://doi.org/10.1007/978-3-030-03329-3_15
https://doi.org/10.1007/978-3-030-03329-3_15
https://ethresear.ch/t/signature-merging-for-large-scale-consensus/17386
https://ethresear.ch/t/signature-merging-for-large-scale-consensus/17386
https://eprint.iacr.org/2022/1758

[Zhe+23] Tianyu Zheng et al. KiloNova: Non-Uniform PCD with Zero-Knowledge Prop-
erty from Generic Folding Schemes. Cryptology ePrint Archive, Paper 2023/1579.
2023. url: https://eprint.iacr.org/2023/1579.

[BGH19] Sean Bowe, Jack Grigg, and Daira Hopwood. Halo: Recursive Proof Composi-
tion without a Trusted Setup. Cryptology ePrint Archive, Report 2019/1021.
2019. url: https://eprint.iacr.org/2019/1021.

[Wu+18] Howard Wu et al. DIZK: A Distributed Zero Knowledge Proof System. Cryp-
tology ePrint Archive, Paper 2018/691. 2018. url: https://eprint.iacr.
org/2018/691.

[Liu+23] Tianyi Liu et al. Pianist: Scalable zkRollups via Fully Distributed Zero-Knowledge
Proofs. Cryptology ePrint Archive, Paper 2023/1271. 2023. url: https://
eprint.iacr.org/2023/1271.

[Ros+24] Michael Rosenberg et al. Hekaton: Horizontally-Scalable zkSNARKs via Proof
Aggregation. Cryptology ePrint Archive, Paper 2024/1208. 2024. url: https:
//eprint.iacr.org/2024/1208.

[Wan+24] Wenhao Wang et al. Cirrus: Performant and Accountable Distributed SNARK.
Cryptology ePrint Archive, Paper 2024/1873. 2024. url: https://eprint.
iacr.org/2024/1873.

[Bé+19] Olivier Bégassat et al. Handel: Practical Multi-Signature Aggregation for Large
Byzantine Committees. 2019. arXiv: 1906.05132 [cs.DC]. url: https://
arxiv.org/abs/1906.05132.

[Kha+21] Irakliy Khaburzaniya et al. Aggregating hash-based signatures using STARKs.
Cryptology ePrint Archive, Report 2021/1048. 2021. url: https://eprint.
iacr.org/2021/1048.

[Aar+24] Marius A. Aardal et al. “Aggregating Falcon Signatures with LaBRADOR”.
In: 2024, pp. 71–106. doi: 10.1007/978-3-031-68376-3_3.

[Wah+18] Riad S. Wahby et al. “Doubly-Efficient zkSNARKs Without Trusted Setup”.
In: 2018, pp. 926–943. doi: 10.1109/SP.2018.00060.

[Ped92] Torben P. Pedersen. “Non-Interactive and Information-Theoretic Secure Veri-
fiable Secret Sharing”. In: 1992, pp. 129–140. doi: 10.1007/3-540-46766-1_9.

[Abe+16] Masayuki Abe et al. “Structure-Preserving Signatures and Commitments to
Group Elements”. In: 29.2 (Apr. 2016), pp. 363–421. doi: 10.1007/s00145-
014-9196-7.

[Che+23] Binyi Chen et al. “HyperPlonk: Plonk with Linear-Time Prover and High-
Degree Custom Gates”. In: 2023, pp. 499–530. doi: 10.1007/978-3-031-
30617-4_17.

43

https://eprint.iacr.org/2023/1579
https://eprint.iacr.org/2019/1021
https://eprint.iacr.org/2018/691
https://eprint.iacr.org/2018/691
https://eprint.iacr.org/2023/1271
https://eprint.iacr.org/2023/1271
https://eprint.iacr.org/2024/1208
https://eprint.iacr.org/2024/1208
https://eprint.iacr.org/2024/1873
https://eprint.iacr.org/2024/1873
https://arxiv.org/abs/1906.05132
https://arxiv.org/abs/1906.05132
https://arxiv.org/abs/1906.05132
https://eprint.iacr.org/2021/1048
https://eprint.iacr.org/2021/1048
https://doi.org/10.1007/978-3-031-68376-3_3
https://doi.org/10.1109/SP.2018.00060
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/s00145-014-9196-7
https://doi.org/10.1007/s00145-014-9196-7
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1007/978-3-031-30617-4_17

[STW23] Srinath Setty, Justin Thaler, and Riad Wahby. Customizable constraint sys-
tems for succinct arguments. Cryptology ePrint Archive, Paper 2023/552.
2023. url: https://eprint.iacr.org/2023/552.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. “The Algebraic Group Model
and its Applications”. In: 2018, pp. 33–62. doi: 10.1007/978-3-319-96881-
0_2.

[Bü+19] Benedikt Bünz et al. Proofs for Inner Pairing Products and Applications. Cryp-
tology ePrint Archive, Paper 2019/1177. 2019. url: https://eprint.iacr.
org/2019/1177.

[Haf+25] Hossein Hafezi et al. IronDict: Transparent Dictionaries from Polynomial Com-
mitments. Cryptology ePrint Archive, Paper 2025/1580. 2025. url: https:
//eprint.iacr.org/2025/1580.

[DRZ20] Vanesa Daza, Carla Ràfols, and Alexandros Zacharakis. “Updateable Inner
Product Argument with Logarithmic Verifier and Applications”. In: 2020,
pp. 527–557. doi: 10.1007/978-3-030-45374-9_18.

[BFL20] Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. “A Classification of
Computational Assumptions in the Algebraic Group Model”. In: 2020, pp. 121–
151. doi: 10.1007/978-3-030-56880-1_5.

[GNS24] Chaya Ganesh, Vineet Nair, and Ashish Sharma. Dual Polynomial Commit-
ment Schemes and Applications to Commit-and-Prove SNARKs. Cryptology
ePrint Archive, Paper 2024/943. 2024. url: https://eprint.iacr.org/
2024/943.

[KS23c] Abhiram Kothapalli and Srinath Setty. HyperNova: Recursive arguments for
customizable constraint systems. Cryptology ePrint Archive, Paper 2023/573.
2023. url: https://eprint.iacr.org/2023/573.

[Lun+90] Carsten Lund et al. “Algebraic Methods for Interactive Proof Systems”. In:
1990, pp. 2–10. doi: 10.1109/FSCS.1990.89518.

[Ova] Ova: A slightly better Nova. https://hackmd.io/V4838nnlRKal9ZiTHiGYzw.
Accessed: 2024-11-15.

[Bon+21] Dan Boneh et al. “Halo Infinite: Proof-Carrying Data from Additive Polyno-
mial Commitments”. In: 2021, pp. 649–680. doi: 10.1007/978-3-030-84242-
0_23.

[Blu+91] M. Blum et al. “Checking the correctness of memories”. In: [1991] Proceedings
32nd Annual Symposium of Foundations of Computer Science. 1991, pp. 90–
99. doi: 10.1109/SFCS.1991.185352.

44

https://eprint.iacr.org/2023/552
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/978-3-319-96881-0_2
https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2019/1177
https://eprint.iacr.org/2025/1580
https://eprint.iacr.org/2025/1580
https://doi.org/10.1007/978-3-030-45374-9_18
https://doi.org/10.1007/978-3-030-56880-1_5
https://eprint.iacr.org/2024/943
https://eprint.iacr.org/2024/943
https://eprint.iacr.org/2023/573
https://doi.org/10.1109/FSCS.1990.89518
https://hackmd.io/V4838nnlRKal9ZiTHiGYzw
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1007/978-3-030-84242-0_23
https://doi.org/10.1109/SFCS.1991.185352

A Deferred definitions

A.1 Signature schemes

Definition 4. A signature scheme is parametrized by a message space M and consists on
a tuple of PPT algorithms (KGenss, Signss,Verifyss) such that:

• KGenss(n) → (sk, pk): On input security parameter n, outputs public parameters pp,
signing key pk and verification key pk.

• Signss(sk,m)→ σm: On input sk and m ∈M, outputs a signature σM on M .

• Verifyss(pk,m, σm)→ 0/1: takes as input pk, m and signature σm and produces a bit
expressing acceptance (1), or rejection (0);

That must satisfy correctness and unforgeability:

Correctness. For all m ∈M the following holds:

Pr

[
Verifyss(pk,m, σm) = 1

∣∣∣∣ (pk, sk)← KGenss(n)
σm ← Signss(sk,m)

]
= 1

Unforgeability. For all PPT adversaries A, the following probability is negligible:

Pr

 (pk, pk)← KGenss(n)
(m,σm) /∈ Q (m,σm)← AO(pk, sk)

Verifyss(pk,m, σm) = 1


where Q is a list of all the queries A makes to the signing oracle O.

45

B Deferred proofs

B.1 Proof of theorem 3

Proof.

Completeness. The commitment C to f(X⃗) is given by

C =
∑
x⃗∈Bn

∑
y⃗∈Bm

f(x⃗, y⃗)× H(x⃗,y⃗).

Since nm = k, this can be computed from the structured reference string (srs). The open-
ing proof π for (x⃗0, y⃗0) is defined as: π =

(
f∗(Y⃗), aux = {D(x⃗)}x⃗∈Bn

)
, where f∗(Y⃗) =

f(x⃗0, Y⃗), and D(x⃗) =
∑

y⃗∈Bm

f(x⃗, y⃗)× H(y⃗). We see that VerifyKZH(C, (x⃗0, y⃗0), π) = 1:

(I) Check that e(C,V′) =
∑

x⃗∈Bn

e(D(x⃗),V(x⃗)):

e(C,V′)
(1)
= e(

∑
x⃗∈Bn

∑
y⃗∈Bm

f(x⃗, y⃗)× H(x⃗, y⃗), α× V)

(2)
=
∑
x⃗∈Bn

e(
∑
y⃗∈Bm

f(x⃗, y⃗) · τ (x⃗) × G(y⃗), α× V)

(3)
=
∑
x⃗∈Bn

e(
∑
y⃗∈Bm

f(x⃗, y⃗) · α× G(y⃗), τ (x⃗) × V)

(4)
=
∑
x⃗∈Bn

e(
∑
y⃗∈Bm

f(x⃗, y⃗)× H(y⃗),V(x⃗))

(5)
=
∑
x⃗∈Bn

e(D(x⃗),V(x⃗))

(1) and (2) is exploding terms C,H(x⃗, y⃗), V′ and using the bilinearity property, (3) is using
property e(ga, gb) = e(gb, ga) by interchanging the exponents α and τ (x⃗). (4) is replaying
α× G(y⃗) with the equivalent value H(y⃗) and finally (5) follows from the definition of D(x⃗).

46

(II) Check that
∑

y⃗∈Bm

f∗(y⃗)× H(y⃗) =
∑

x⃗∈Bn

eq(x⃗, x⃗0)× D(x⃗).

∑
x⃗∈Bn

eq(x⃗, x⃗)× D(x⃗) (1)
=
∑
x⃗∈Bn

∑
y⃗∈Bm

eq(x⃗, x⃗0) · f(x⃗, y⃗)× H(y⃗)

(2)
=
∑
y⃗∈Bm

(∑
x⃗∈Bn

eq(x⃗, x⃗0) · f(x⃗, y⃗)
)
× H(y⃗)

(3)
=
∑
y⃗∈Bm

f∗(y⃗)× H(y⃗)

Finally, (III) checking that f∗(y⃗0) = z0, follows from the definition of z0.

Knowledge soundness. Let A be a PPT adversary that, on input srs outputs a commit-
ment C. We define an extractor E that outputs p(X⃗, Y⃗) such that, for any ((x⃗0, y⃗0), z0, π),
if the verifier accepts then p(x⃗0, y⃗0) = z0 with overwhelming probability. Given C and
{cx⃗,y⃗, ĉy⃗}x⃗∈Bn,y⃗∈Bm such that

C =
∑
x⃗∈Bn

∑
y⃗∈Bm

cx⃗,y⃗ × H(x⃗, y⃗) +
∑
y⃗∈Bm

ĉy⃗ × H(⃗y),

E outputs f(X⃗, Y⃗) =
∑

x⃗∈Bn

∑
y⃗∈Bm

cx⃗,y⃗X⃗
x⃗Y⃗ y⃗. Under the AGM, E does not abort. Simi-

larly, under the AGM we have that all the D(x⃗) are represented as a linear combination of
the srs elements, i.e.,

D(x⃗) =
∑
y⃗∈Bm

d
(x⃗)
y⃗ × H(y⃗) +

∑
x⃗∈Bn

∑
y⃗∈Bm

d̂
(x⃗)
x⃗,y⃗ × H(x⃗,y⃗)

The following conditions are satisfied:

(I) e(C,V′) =
∑

x⃗∈Bn

e(D(x⃗),V(x⃗)), we first consider each side separately:

e(C,V′) = e(
∑
x⃗∈Bn

∑
y⃗∈Bm

cx⃗,y⃗ × H(x⃗,y⃗) +
∑
y⃗∈Bm

ĉy⃗ × H(y⃗), α× V)

= e(
∑
x⃗∈Bn

∑
y⃗∈Bm

cx⃗,y⃗ × H(x⃗,y⃗), α× V) + e(
∑
y⃗∈Bm

ĉy⃗(y⃗)× H(y⃗), α× V)

= α
∑
x⃗∈Bn

∑
y⃗∈Bm

cx⃗,y⃗ · τ (x⃗) × e(G(y⃗),V) + α2 × e(
∑
y⃗∈Bm

ĉy⃗ × G(y⃗),V)

47

∑
x⃗∈Bn

e(D(x⃗),V(x⃗)) =
∑
x⃗∈Bn

e(
∑
y⃗∈Bm

d
(x⃗)
y⃗ × H(y⃗) +

∑
x⃗∈Bn

∑
y⃗∈Bm

d̂
(x⃗)
x⃗,y⃗ × H(x⃗,y⃗), τ (x⃗) × V)

=
∑
x⃗∈Bn

e(
∑
y⃗∈Bm

d
(x⃗)
y⃗ · α× G(y⃗) +

∑
x⃗∈Bn

∑
y⃗∈Bm

d̂
(x⃗)
x⃗,y⃗ · τ

(x⃗) × G(y⃗), τ (x⃗) × V)

=
∑
x⃗∈Bn

τ (x⃗) ·
(
α ·

∑
y⃗∈Bm

d
(x⃗)
y⃗ +

∑
x⃗∈Bn

∑
y⃗∈Bm

d̂
(x⃗)
x⃗,y⃗ · τ

(x⃗)
)
× e(G(y⃗),V)

Now the difference e(C,V′)−
∑

x⃗∈Bn
e(D(x⃗),V(x⃗)) can be seen as degree 2 polynomial of α,

then the coefficients of 1, α, α2 on the two terms are equal or we can break quadratic CDH,
which implies:

• Coefficient 1.∑
x⃗∈Bn

∑
y⃗∈Bm

d̂
(x⃗)
x⃗,y⃗ · τ

(x⃗) × e(G(y⃗),V) = 0 =⇒
∑
x⃗,y⃗

d̂
(x⃗)
x⃗,y⃗ × H(x⃗,y⃗) = 0

This implies d̂
(x⃗)
x⃗,y⃗ = 0 for all x⃗, y⃗, or we found a multivariate polynomial that vanishes at

H(x⃗,y⃗) and thus break the setup-find-rep assumption.

• Coefficient α.∑
x⃗∈Bn

∑
y⃗∈Bm

τ (x⃗) · cx⃗,y⃗ × e(G(y⃗),V) =
∑
x⃗∈Bn

τ (x⃗) ·
∑
y⃗∈Bm

d
(x⃗)
y⃗ × e(G(y⃗),V)

Then we have that cx⃗,y⃗ = d
(x⃗)
y⃗ for all x⃗, y⃗ or we can break the find-rep assumption as

above.

• Coefficient α2.
e(
∑
y⃗∈Bm

ĉy⃗ × G(y⃗),V) = 0 =⇒
∑
y⃗∈Bm

ĉy⃗ × G(y⃗) = 0

We then have:

C =
∑
x⃗∈Bn

∑
y⃗∈Bm

cx⃗,y⃗ × H(x⃗, y⃗), D(x⃗) =
∑
y⃗∈Bm

d
(x⃗)
y⃗ × H(y⃗)

(II)
∑

y⃗∈Bm

f∗(y⃗)× H(y⃗) =
∑

x⃗∈Bn

eq(x⃗, x⃗0)× D(x⃗), we have:

∑
y⃗∈Bm

f∗(y⃗)× H(y⃗) =
∑
x⃗∈Bn

eq(x⃗, x⃗0)× D(x⃗)

=
∑
x⃗∈Bn

eq(x⃗, x⃗0)×
∑
y⃗∈Bm

cx⃗,y⃗ × H(y⃗)

=
∑
y⃗∈Bm

cx⃗0,y⃗ × H(y⃗)

48

=⇒
∑
y⃗∈Bm

f∗(y⃗)× H(y⃗) =
∑
y⃗∈Bm

cx⃗0,y⃗ × H(y⃗)

Now note that:
f∗(y⃗) =

∑
y⃗∈Bm

cx⃗0,y⃗H
(x⃗0,y⃗) = f(x⃗0, Y⃗)

or we can break the (1, 1)− dlog assumption by finding the roots of

P (Y) =
∑
y⃗∈Bm

(f∗(y⃗)− cx⃗0,y⃗)× (Y × G(y⃗))

and give trapdoor α as output. Finally, the extractor outputs polynomial f(x⃗, y⃗). Since
f∗(y⃗0) = z0, and C commits to f(x⃗, y⃗), we have the construction is knowledge sound.

B.2 Proof of theorem 4

Proof.

Completeness. Consider the following two satisfying accumulators:

• acc.x1 = {C1, T1,E1, x⃗1, y⃗1, z1}

• acc.w1 = {[D(⃗i)
1]⃗i∈Bn

, f⃗∗
1 , Tx(1), Ty(1)}

• acc.x2 = {C2, T2,E2, x⃗2, y⃗2, z2}

• acc.w2 = {[D(⃗i)
2]⃗i∈Bn

, f⃗∗
2 , Tx(2), Ty(2)}

As they are valid accumulators, the following hold:

• –
n∑

i=0
e(D

(i)
1 ,Vi) = e(C1,V)

– ⟨(T (1)
x ||T (1)

y), K⃗⟩ = T1

– E1 = Dec(x⃗1, y⃗1, z1, f⃗∗
1 , T

(1)
x , T (1)

y , D⃗1)

• –
n∑

i=0
e(D

(i)
2 ,Vi) = e(C2,V)

– ⟨(T (2)
x ||T (2)

y), K⃗⟩ = T2

– E2 = Dec(x⃗2, y⃗2, z2, f⃗∗
2 , T

(2)
x , T (2)

y , D⃗2)

49

Now let acc.x, acc.w be the accumulated instance/witness computed as follows.

acc.x← ((1− β) · [C1, T1, x⃗1, y⃗1, z1] + β · [C2, T2, , x⃗2, y⃗2, z2]), E

acc.w ← (1− β) · [D⃗1, f⃗∗
1 , T

(1)
x , T (1)

y] + β · [D⃗2, f⃗∗
2 , T

(2)
x , T (2)

y], E

where E ← (1− β)× E1 + β × E2 + (1− β)β × Q. Below, we show acc is also a satisfying
accumulator:

• First condition
n∑

i=0

e(D(i),Vi)
(1)
=

n∑
i=0

e
(
(1− β)× D

(i)
1 + β × D

(i)
2 ,Vi

)
(2)
= (1− β)×

n∑
i=0

e(D
(i)
1 ,Vi) + β ×

n∑
i=0

e(D
(i)
2 ,Vi)

(3)
= (1− β)× e(C1,V) + β × e(C2,V)

(4)
= e

(
(1− β)× C1 + β × C2,V

)
(5)
= e(C,V)

Where (1) holds by expanding D(i) terms, (2), (4) because of bilinearity property, (3)
holds because the first condition was satisfied for the underlying instances, and finally
(5) holds because of the definition of C.

• Second condition.

⟨(Tx||Ty), K⃗⟩
(1)
=
〈
(1− β) · (T (1)

x ||T (1)
y) + β · (T (2)

x ||T (2)
y), K⃗

〉
(2)
= (1− β) ·

〈
T (1)
x ||T (1)

y , K⃗
〉
+ β ·

〈
T (2)
x ||T (2)

y , K⃗
〉

(3)
= (1− β)× T2 + β × T2

(4)
= T

(1) holds by definition, whereas (2) is implied by bilinearity of the inner product. (3)
and (4) follow by definition.

• Third condition.

Dec(x⃗, y⃗, z, f⃗∗, Tx, Ty, D⃗)
(1)
= Dec((1− β) · [x⃗1, y⃗1, z1, f⃗∗

1 , T
(1)
x , T (1)

y , D⃗1]

+ β · [x⃗2, y⃗2, z2, f⃗∗
2 , T

(2)
x , T (2)

y , D⃗2])

(2)
= (1− β)× E1 + β × E2 + (1− β) · β × Q

(3)
= E

50

by definition of E.

Knowledge soundness. Consider an adversary A that outputs π̂ = (π.x, π.w), ˆacc =
(acc.x, acc.w), p̂f ∈ G1 and acc1.x, acc2.x. We build an extractor Extacc that if Vacc and Dacc

accept, extracts valid witnesses acc1.w, acc2.w for acc1.x, acc2.x. Since acc.w is an equation
of degree one, given two accepting transcripts for different challenges β1, β2, Extacc can use
the Vandermonde matrix to extract

acc1.w = ({D(x⃗)
1 }x⃗∈Bn , f⃗

∗
1 , T

(x)
1 , T (y)

1),

acc2.w = ({D(x⃗)
2 }x⃗∈Bn , f⃗

∗
2 , T

(x)
2 , T (y)

2).

We now prove that the extracted witnesses are valid. First, note that since the verifier
accepts, E = (1− β)× E1 + β × E2 + (1− β) · β × Q and

(C, T, x⃗, y⃗, z) = (1− β) · (C1, T1, x⃗1, y⃗1, z1) + β · (C2, T2, x⃗2, y⃗2, z2)

The left side of Eq.(i) of the decider is:∑
x⃗∈Bn

e(D(x⃗),V(x⃗)) =
∑

x⃗∈Bn

e
(
(1− β)× D

(x⃗)
1 + β × D

(x⃗)
2 ,V(x⃗)

)
= (1− β)×

∑
x⃗∈Bn

e(D
(x⃗)
1 ,V(x⃗)) + β ×

∑
x⃗∈Bn

e(D
(x⃗)
2 ,V(x⃗))

Whereas the right side equals

e(C,V) = e
(
(1− β)× C1 + β × C2,V

)
= (1− β)× e(C1,V) + β × e(C2,V)

Since β is computed as a hash of acc1.x and acc2.x, except with negligible probability∑
x⃗∈Bn

e(D
(x⃗)
1 ,V(x⃗)) = e(C1,V) and∑

x⃗∈Bn
e(D

(x⃗)
2 ,V(x⃗)) = e(C2,V). Similarly, Eq.(ii) holds if and only if〈(

(1− β)T (x)
1 + βT (x)

2

∥∥ (1− β)T (y)
1 + βT (y)

2

)
, K⃗
〉

= (1− β)
〈(
T (x)
1

∥∥ T (y)
1

)
, K⃗
〉
+ β

〈(
T (x)
2

∥∥ T (y)
2

)
, K⃗
〉

= (1− β)T1 + βT2

= T.

Thus the equation holds for acc1.w and acc2.w. Finally, replacing the accumulation witness
by the extracted ones, we have that Eq.(iii) is

Dec((1− β)x⃗1 + βx⃗2, (1− β)y⃗1 + βy⃗2, (1− β)z1 + βz2, (1− β)f⃗∗
1 + βf⃗∗

2 ,

(1− β)Tx,1 + βTx,2, (1− β)Ty,1 + βTy,2, (1− β)D⃗1 + βD⃗2)

= (1− β)× E1 + β × E2 + (1− β)β × Q

51

The left side of the equation equals〈
T (err)
x ||T (err)

y ||⟨f⃗∗, T (y)
leaves⟩ − z, K⃗||K′

〉
+ ⟨f⃗∗, (H(y⃗))y⃗∈Bn⟩ − ⟨T

(x)
leaves, D⃗⟩.

such that:

T (err)
x := (1− β)T (error)

x1 + βT (error)
x2 , T (err)

y := (1− β)T (error)
y1 + βT (error)

y2 ,

f⃗∗ := (1− β)f⃗∗
1 + βf⃗∗

2 , T (y)
leaves := (1− β)T (y1).leaves + βT (y2).leaves,

z := (1− β)z1 + βz2, T (x)
leaves := (1− β)T (x1).leaves + βT (x2).leaves,

D⃗ := (1− β)D⃗1 + βD⃗2.

Term β contains equation (iii) of the Decider for acc1, whereas term β(1− β) contains the
one for acc2. Cross terms are in the coefficient of β(1 − β). Then, except with negligible
probability, Dacc(acc1) = Dacc(acc2) = 1 and the extractor succeeds. We now prove that
if E1 = 0, we can extract a valid opening to C⃗1. That is, (acc1.x, acc1.w) is a valid pair
for the predicate Φ. From term (1 − β) in the equation above we have that, except with
negligible probability, Dec(x⃗1, y⃗1, z1, f⃗∗

1 , T (x1)i., T (x2), D⃗) = 0. That is,

0 = ⟨T (error)
x ||T (error)

y ||⟨f⃗∗
1 , T (y).leaves⟩ − z1, K⃗||K′⟩+

⟨f⃗∗
1 , (H

(y⃗))y⃗∈Bn⟩ − ⟨T (x).leaves, D⃗1⟩

Claim: D⃗1 is base (H(y⃗))y⃗∈Bn We first show that in the algebraic group model, we can
write D⃗1 base H(y⃗). Consider the following check:∑

x⃗∈Bn

e(D
(x⃗)
1 ,V(x⃗)) = e(C1,V

′)

Note that, V(x⃗) contains a factor of τ (x⃗). The only elements that contain this factor in G1

are the H((⃗i),(⃗j)) generators. Thus, C1 can only be written base H(⃗i,⃗j). Otherwise, we can
break the discrete logarithm assumption. Conversely, this implies that each D

(x⃗)
1 must be

written base H(⃗i), i.e. D
(x⃗)
1 = ⟨f⃗ (x), (H(⃗i))⃗i∈Bn

⟩. This proves the claim. Given this, we can
write

⟨T (x).leaves, D⃗1⟩ =
∑

x⃗∈Bn
T (x).leaves · ⟨f⃗ (x), (H(⃗i))⃗i∈Bn

⟩
= ⟨
∑

x⃗∈Bn
T (x).leaves · f⃗ (x), (H(⃗i))⃗i∈Bn

⟩

0 = ⟨T (error)
x ||T (error)

y ||⟨f⃗∗
1 , T (y).leaves⟩ − z1, K⃗||K′⟩+

⟨f⃗∗
1 −

∑
x⃗∈Bn

T (x).leaves · f⃗ (x), (H(⃗i))⃗i∈Bn
⟩

52

We can split this equation into

⟨T (error)
x ||T (error)

y ||⟨f⃗∗
1 , T (y).leaves⟩ − z1, K⃗||K′⟩ = 0

and
⟨f⃗∗

1 −
∑
x⃗∈Bn

T (x).leaves · f⃗ (x), (H(⃗i))⃗i∈Bn
⟩ = 0

or we can break the U-find-rep assumption as the left side of the product is a polynomial
that vanishes at the logarithms of the group elements in K⃗. Then, we have that that
Eq.(3) in Fig. 2 is satisfied since f∗(y⃗1) = ⟨f⃗∗

1 , T (y1).leaves⟩ = z1. Also, ⟨f⃗∗
1 , (H

(y⃗))y⃗∈Bn⟩ =
⟨T (x).leaves, D⃗1⟩ = 0, representing Eq.(2) in Figure 2. Finally, from above we have that
Eq.(1) is also satisfied. Then, it is enough for Extacc to run ExtKZH.

53

C Higher dimension PCS for smaller deciders

We extend KZH-2 to a higher dimensional polynomial commitment which has a more effi-
cient verifier and smaller proof size. This results in a smaller accumulator and a more ef-
ficient decider. In particular, we generalize the 2-dimensional KZH-2, which can be viewed
as a vector-matrix-vector product, to higher-dimensional tensor products. This reduces
the PC verifier from

√
n to n1/k. Note that in order to build efficient accumulation for a

multilinear PCS, we need to expand a short evaluation point x⃗ into long vectors, which
correspond to eq(x⃗, b⃗) for b⃗ ∈ H ⊂ F. This transformation is equivalent to the one in
KZH-2, and we omit it here for ease of presentation.

C.1 KZH-k

Notation. We denote the space of n dimensional tensors with dimensions (d1, d2, . . . , dn)
on field F with Fd1×d2×···×dn . For T ∈ Fd1×d2×···×dk and x⃗1 ∈ Fd1 , we denote tensor inner
product as

⟨T, x⃗1⟩ = ⟨T1, x⃗1⟩ ⊗T2 ⊗ . . .⊗Tk.

Note that the result is a tensor in Fd2×···×dk . Similarly for x⃗1 ∈ Fd1 and x⃗2 ∈ Fd2 , ⟨T, x⃗1 ⊗
x⃗2⟩ = ⟨⟨T, x⃗1⟩, x⃗2⟩ ∈ Fd3×···×dk .

Protocol description. We construct a commitment scheme for such tensors, where T
represents the polynomial that can be opened at evaluation point (x⃗1, . . . , x⃗k) for x⃗j ∈ Fdj

as:
⟨⟨⟨⟨T, x⃗1⟩, x⃗2⟩, . . . , x⃗k−1⟩, x⃗k⟩ = y ∈ F.

The scheme admits an efficient accumulation scheme and is general enough to support
multilinear and univariate polynomial commitments. Compared to two-dimensional KZH,
the tradeoff is that the accumulator instance and verifier are of size k, but the accumulation
witness is of size n

1
k . The core insight is that we commit to C = ⟨T, µ⃗1 ⊗ µ⃗2 · · · ⊗ µ⃗k⟩ × G,

for secret elements µ⃗1, . . . , µ⃗k and group generator G, and open [Ci]
k
i=1, commitments to all

k − 1 dimensional slices of T. The verifier can check that these slices are correct using a
pairing with µ⃗1 and compute C′ = ⟨(C1, . . . ,Ck), x⃗1, ⟩. C′ is now a commitment to the k−1
dimensional tensor T1 = ⟨T, x⃗1⟩ and we can recursively apply the scheme. We present the
full protocol for degree [d]k := (d, d, . . . , d) tensor in Figure 12.

Efficiency. The commitment size is a single G1 element. The commitment time is domi-
nated by an MSM of size n for tensors of size n. Part of the opening can be preprocessed,
as with KZH-2, reducing the opening time to the tensor product plus O(n1/2) group opera-
tions. Concretely, the prover will compute commitments to f(X⃗, b⃗) for all b⃗ ∈ {0, 1}log(n)/2.
Using these the first log(n)/2 steps of the opening proof can be computed in time O(

√
n).

The second half of the opening proof can also be computed efficiently using f(α⃗, X⃗) for the

54

partial evaluation point α⃗ ∈ Flog(n)/2. The proof size is (k − 1) · n1/k G1 elements, as well
as n1/k field elements. The verification time is O(k · n1/k) and dominated by k − 1 pairing
products of size n1/k.

Preprocessing for free Boolean openings. As in KZH-2, we can preprocess so that
openings at Boolean points are essentially free: the opening reduces to retrieving a precom-
puted commitment. Let

Tx⃗1,...,x⃗i
:= ⟨. . . ⟨T, x⃗1⟩, x⃗2⟩, . . . , x⃗i⟩

denote the sequential multilinear evaluation of T at Boolean points x⃗1, . . . , x⃗i. During
setup, for each 1 ≤ i < k, we precompute all commitments of the form

∀ x⃗1 ∈ {0, 1}d1 , . . . , x⃗i ∈ {0, 1}di : ⟨Tx⃗1,...,x⃗i
, Hj+1⟩.

For each i, this takes O(n) time, so the total preprocessing cost is O(nk). Once preprocess-
ing is done, any Boolean opening (x⃗1, . . . , x⃗k) can be resolved without extra computation. In
the online phase, the usual computation Dj [i]← ⟨⟨i⟩⊗Tj , Hj+1⟩, where Tj = Tx⃗1,...,x⃗j−1

, is
already precomputed, since all the points x⃗t and ⟨i⟩ are Boolean points. Thus, the opening
step reduces to simply selecting the corresponding precomputed commitment.

55

KZH(k).Setup(λ, d, k):

• Sample G←$ G1,V←$ G2 and [[µi,j]
d
i=1]

k
j=1 ←$ F

• H1 = {Hi1,...,ik ← (
k∏

j=1

µis,j)× G : ∀i1, . . . , ik ∈ [d]}

• H2 = {Hi2,...,ik ← (
k∏

j=2

µij ,j)× G : ∀i2, . . . , ik ∈ [d]}

• . . .

• Hk = {Hik ← µik,k × G : ∀ik ∈ [d]}
• V = {Vi,j ← µi,j × V : ∀i ∈ [d], j ∈ [k]}
• Output (G,V,H1,H2, . . . ,Hk,V)

KZH(k).Commit(srs,T): For T ∈ Fd×d×···×d, compute the commitment as it follows:

• Output C← ⟨T,H1⟩ =
∑

(i1,i2,...,ik)∈[d]k Ti1,i2,...,ik × Hi1,i2,...,ik

KZH(k).Open(srs,C,T, x⃗1, . . . , x⃗k): Given commitment C ∈ G1, tensor T ∈ Fd×d×···×d and
inputs x⃗j ∈ Fd, compute opening as it follows:

• Let T1 = T

• For j = 1, . . . , k − 1:

– Set Tj+1 ← ⟨Tj , x⃗j⟩
– Compute vector D⃗j e.g. Dj [i] ← ⟨⟨i⟩ ⊗ Tj , Hj+1⟩ for all i ∈ [d], where ⟨i⟩

represents decomposition of i into d bits.

• Output π ← {[D⃗j]j∈[k−1], Tk}

KZH(k).Verify(srs,C, [x⃗j]j∈[k], y, π): Given commitment C ∈ G1, inputs x⃗j ∈ Fd, output y ∈ F
and opening proof π, does as it follows:

• Parse {[D⃗j]j∈[k−1], Tk} ← π

• Set C0 = C

• For j ∈ 1, . . . , k − 1

1. Check that e(Cj−1,V) =
∑d

i=0 e(Dj [i],Vi,j)

2. Compute Cj ← ⟨x⃗j , D⃗j⟩
• Check that Ck−1 = ⟨Tk,Hk⟩
• Check that ⟨Tk, x⃗k⟩ = y

Figure 12: KZH-k description

56

Theorem 5. The protocol in Figure 12 is a complete and knowledge-sound polynomial
commitment scheme in the AGM under (q1, q2)-dlog and Setup-find-rep assumption in the
algebraic group model.

Proof.

Completeness. Consider honestly generated C, [Cj]
k
j=1. For the first check, note that

e(C0,V) = e(⟨T,H1⟩,V) by construction of C. On the other hand,

d∑
i=0

e(D1[i],Vi,1) =
d∑

i=0
e(⟨⟨i⟩ ⊗T1,H2⟩, µi,1 × V) =

d∑
i=0

e(⟨⟨i⟩ ⊗T1, µi,1 ×H2⟩,V)

= e(⟨T1,H1⟩,V)

and since T1 = T, the verifier accepts. For the general case,

e(Cj−1,V) = e(⟨D⃗j−1, x⃗j−1⟩,V) = e(
d∑

i=1
D⃗j−1[i]x⃗j−1[i],V)

= e(
d∑

i=1
⟨⟨i⟩ ⊗Tj−1, Hj⟩x⃗j−1[i],V) = e(

d∑
i=1
⟨⟨x⃗j−1,Tj−1⟩, Hj⟩,V)

= e(⟨Tj , Hj⟩,V) =
d∑

i=1
e(⟨Tj , Hj+1⟩,Vi,j)

=
d∑

i=1
e(Dj [i],Vi,j).

In the second verification equation we have:

Ck−1 = ⟨x⃗k−1, D⃗k−1⟩ =
d∑

i=1
D⃗k−1[i]x⃗k−1[i]

=
d∑

i=1
⟨⟨i⟩ ⊗Tk−1, Hk⟩x⃗k−1[i] =

d∑
i=1
⟨⟨Tk−1, x⃗k−1⟩, Hk⟩

= ⟨Tk,Hk⟩.

And since the third check follows directly, we have that the verifier accepts.

Knowledge soundness. Let A be a PPT adversary that on input srs outputs a com-
mitment C. We define an extractor E that outputs p(X⃗1, . . . , X⃗k) such that, for any tuple
((x⃗1, . . . , x⃗k), y, π), accepted by the verifier, p(x⃗1, . . . , x⃗k) = y with overwhelming probabil-
ity. Under the AGM, we assume A is algebraic and thus A outputs C along with {c⃗r}kr=1

such that:

C =

k∑
r=1

⟨c⃗r,Hr⟩

57

E outputs p(X⃗1, . . . , X⃗k) = (c⃗1, . . . , c⃗k)⊗ (X⃗1, . . . , X⃗k). Under the AGM, E does not abort.
Similarly, under the AGM we have that there exist [d⃗ri,j]

k
r=1 such that for all i, j:

Dj [i] =

k∑
r=1

⟨d⃗ri,j ,Hr⟩

Because the verifier accepts, we have that all their checks are satisfied. In particular, for C
and all [D1[i]]

d
i=0:

e(C,V) =
d∑

i=1

e(D1[i],Vi,1)

Replacing by the extracted C,D1[i] and the form of Vi,1, we have

e

(
k∑

r=1

⟨c⃗r,Hr⟩,V

)
=

d∑
i=1

e

(
k∑

r=1

⟨d⃗ri,1,Hr⟩, µi,1 × V

)
Then,

(1) It must be the case that c⃗r = 0 for all r ̸= 1 or we can calculate the discrete logarithm
relation between H2, . . . ,Hk and [Vi,1]

d
i=1, breaking the dlog assumption. Similarly,

we have d⃗ri,1 = 0 for all r > 2 or we can find the discrete log relation between H2 and
H3, . . . ,Hk.

(2) Also, d⃗1i,1 = 0 or we can extract (µ2
i,1

∏
j ̸=1 µi,j)× G, breaking CDH.

(3) Finally, we have that each D1[i] is base [Hii3...ik]i3,...,ik∈[d], i.e., D1[i] = ⟨d⃗2i,1, µi,2×H3⟩,
or we can find the discrete log relation between µi,1 × µs,2 ×H3 and H1 for s ̸= i.
This implies (d⃗2i,1)s = 0 for all s ̸= i.

The equation then is

e
(
⟨c⃗1,H1⟩,V

)
=

d∑
i=1

e
(
⟨d⃗2i,1,H2,i⟩, µi,1 × V

)
which implies c⃗1 =

∑d
i=1 d⃗

2
i,1. Indeed, if there exists s ∈ [k] such that cs ̸= d2s,1, µs,1 is a

root of the polynomial csX − d2s,1X and we can find it, breaking dlog. In the general case,
for every j = 2, . . . , k we have:

e (Cj ,V) =
d∑

i=0

e (Dj+1[i], µi,j+1 × V)

58

for Cj = ⟨x⃗j , D⃗j⟩. Then, if Dj = ⟨d⃗j ,Hj⟩, it must be the case that Dj+1 = ⟨d⃗j+1,Hj+1⟩,
with d⃗j+1

s = 0 fro all s ̸= j + 1 or we break dlog as in item (1) and (3), and CDH as in (2)
above. By induction, we have Dj = ⟨d⃗j ,Hj⟩ for all j = 1, . . . , k., Finally, we have

e
(
⟨x⃗j , D⃗j⟩,V

)
=

d∑
i=0

e
(
⟨d⃗j+1

i ,Hj+1⟩, µi,j+1 × V
)

And thus

⟨x⃗j , ⟨d⃗j ,Hj⟩⟩ = ⟨
d∑

i=0

d⃗j+1
i ,Hj+1⟩

So
∑d

i=0 d⃗
j+1
i = x⃗j ⊗ d⃗j , This implies Tk = x⃗k−1 ⊗ . . . ⊗ x⃗1 ⊗ c⃗ and thus y = x⃗k ⊗ Tk

implies y = p(x⃗1, . . . , x⃗k) for the polynomial p(X⃗1, . . . , X⃗k) encoded in C and we conclude
the proof.

C.2 KZH-k accumulation

We now construct an accumulation scheme for KZH-k. In particular, we focus on the case
where the tensor T is a multilinear polynomial. At a high level, the KZH-k verifier is still
low degree and algebraic, and therefore, we can apply the same accumulation strategy as
in the two-dimensional case. Importantly, the accumulator size and the decider time are
reduced to O(k · n

1
k). The accumulation verifier performs O(k) G1 operations. For a k · d-

linear polynomial, the accumulator instance and witness can be described as it follows: (red
terms only appear in accumulators not proofs)

acc.x = {C, C1, . . . ,Ck−1 ∈ G, x⃗1, . . . , x⃗k ∈ Fd, y ∈ F, EG ∈ G, eF ∈ F}

acc.w = {[Di,j]j∈[k−1], i∈[0,d],Tk ∈ Fd}

The accumulation prover, verifier and decider of KZH-k are respectively defined in Figures
13 and 14.

Efficiency. The accumulator consists of the PCS proof and is of size O(k · n1/k). The
accumulation decider runs the PCS verifier and is dominated by k−1 n1/k pairing products
and the accumulation verifier is dominated by k + 1 G1 operations.

59

Pacc(srs, (acc.x, acc.w), (acc
′.x, acc′.w)):

• Parse acc.x, acc.w and acc′.x, acc′.w as below:

– {C,C1, . . . ,Ck−1, (x⃗1, . . . , x⃗k, y), (EG, eF)} ← acc.x

– {{[Di,j]j∈[k−1], i∈[0,d], Tk} ← acc.w

– {C′,C′
1, . . . ,C

′
k−1, (x⃗

′
1, . . . , x⃗

′
k, y

′), (E′
G, e

′
F)} ← acc′.x

– {{[D′
i,j]j∈[k−1], i∈[0,d],T

′
k} ← acc′.w

• Let DecG and DecF be the verification checks as defined in Figure ??. Compute
Q ∈ G such that:

DecG
(
(1−X) · (x⃗j ,Cj , [Di,j]

d
i=0) +X · (x⃗′

j ,C
′
j , [D

′
i,j]

dj

i=0)
)

= (1−X)× Ej +X × E′
j + (1−X) ·X ×Q.

and q ∈ F such that

DecF
(
(1−X) · (Tk, x⃗k, y) +X · (T′

k, x⃗
′
k, y

′)
)

= (1−X) · eF +X · e′F + (1−X) ·X · q.

• Derive challenge α← H(acc.x, acc′.x,Q, q) through Fiat-Shamir.

• Compute

– C′′ ← (1− α)× C+ α× C′

– x⃗i
′′ ← (1− α) · x⃗i + α · x⃗i

′ for i ∈ [k]

– y′′ ← (1− α) · y + α · y′

– C′′
j ← (1− α)× Cj + α× C′

j for j ∈ [1, k − 1]

– D′′
i,j ← (1− α)× Di,j + α× D′

i,j for each j, i for i ∈ [k] and j ∈ [k − 1]

– E′′
G ← (1− α)× EG + α× E′

G + (1− α) · α×Q

– e′′F ← (1− α) · eF + α · e′F + (1− α) · α · q
– T′′

k ← (1− α)×Tk + α×T′
k

• Output the new accumulator acc′′ = (acc′′.x, acc′′.w) and pf = {Q, q} as the accu-
mulation proof.

acc′′.x = {C′′, [C′′
j]j∈[k−1], [x⃗

′′
i]i∈[k], y

′′, [E′′
G, eF}

acc′′.w = {{[D′′
i,j]j∈[k−1], i∈[0,dj],T

′′
k}

Figure 13: KZH-k accumulation prover

60

Vacc(srs, acc.x, acc
′.x, pf = {Q ∈ G, q ∈ F}):

• Input acc.x, acc′.x and pf = {Q, q}.
• Regenerate challenge α← H(A.X,A′.X, pf)

• Compute

– C′′ ← (1− α)× C+ α× C′

– x⃗i
′′ ← (1− α) · x⃗i + α · x⃗i

′ for i ∈ [k]

– y′′ ← (1− α) · y + α · y′

– C′′
j ← (1− α)× Cj + α× C′

j for j ∈ [1, k − 1]

– E′′
G ← (1− α)× EG + α× E′

G + (1− α) · α×Q

– e′′F ← (1− α) · eF + α · e′F + (1− α) · α× q

• Output the new accumulator instance acc′′.x.

acc′′.x = {C′′, [C′′
j]j∈[k−1], [x⃗

′′
i]i∈[k], y

′′, E′′
G, e

′′
F}

Dacc(srs, acc.x, acc.w):

• Parse instance and witness as it follows:

– {C, (C1, . . . ,Ck−1), (x⃗1, . . . , x⃗k, y), EG, eF} ← acc.x

– {[D⃗j = [Di,j]i∈[0,d]]
k−1
j=1 , Tk} ← acc.w

• Set C0 ← C

• For each j ∈ [1, k − 1] check that

e(Cj−1,V)−
d∑

i=0

e(Di,j ,Vi,j) = 0

• Check that DecG([x⃗i]
k
i=1C, [Ci]

k−1
i=1 , [D⃗j ∈ Gd]k−1

j=1) =
∑k−1

j=1 (Cj − ⟨x⃗j , D⃗j⟩) = EG

• Check that ⟨Tk,Hk⟩ = Ck−1

• Check that DecF(x⃗k,Tk, y) = ⟨Tk, x⃗k⟩ − y = eF

Figure 14: KZH-k accumulation verifier and decider

Theorem 6. KZH-k-fold is a secure accumulation scheme, also under the dlog-assumption
in the algebraic group model.

Proof.

Completeness. Consider the following two satisfying accumulator instances:

• acc.x = {C,C1, . . . ,Ck−1, (x⃗1, . . . , x⃗k, y), (EG, eF)}

61

• acc.w = {{[Di,j]j∈[k−1], i∈[0,d], Tk}

• acc′.x = {C′,C′
1, . . . ,C

′
k−1, (x⃗

′
1, . . . , x⃗

′
k, y

′), (E′
G, e

′
F)}

• acc′.w = {{[D′
i,j]j∈[k−1], i∈[0,d],T

′
k}

It is straightforward to see that honest Pacc and Vacc output the same acc′′.x as they follow
the same instructions. Then it is left to see that on input (acc′′.x, acc′′.w) computed by an
honest prover, Dacc always accepts. For each j ∈ [1, k − 1]:

e(C′′
j−1,V) = e

(
(1− α)× Cj−1 + α× C′

j−1,V
)
= (1− α)× e (Cj−1,V) + α× e

(
C′
j−1,V

)
= (1− α)×

∑d
i=0 e (Di,j ,Vi,j) + α×

d∑
i=0

e
(
D′
i,j ,Vi,j

)
=

d∑
i=0

e
(
(1− α)× Di,j + α× D′

i,j ,Vi,j

)
=

d∑
i=0

e
(
D′′
i,j ,Vi,j

)
so the first equation holds. For the second check, we have:

DecG([x⃗i]
k
i=1,C

′′, [C′′
i]

k−1
i=1 , [D⃗

′′
j]

k−1
j=1)

= DecG([x⃗i]
k
i=1, (1− α)× C+ α× C′, [(1− α)× Ci + α× C′

i]
k−1
i=1 , [(1− α)× D⃗j + α× D⃗′

j]
k−1
j=1)

= (1− α)× EG + α× E′
G + (1− α)α× Q = E′′

G

by construction of Q. The third equation verifies as

⟨T′′
k,Hk⟩ = ⟨(1− α)×Tk + α×T′

k,Hk⟩ = (1− α)× ⟨Tk,Hk⟩+ α× ⟨T′
k,Hk⟩

= (1− α)× Ck−1 + α× C′
k−1 = C′′

k−1.

Finally, by definition of e′′F

DecF(x⃗
′′
k,T

′′
k, y

′′) = ⟨T′′
k, x⃗

′′
k⟩ − y′′

= ⟨(1− α)eF + αe′F + (1− α) + (1− α)αq

= e′′F,

and Dacc outputs 1, concluding the proof of completeness.

62

Knowledge soundness. Consider an adversary A that outputs π̂ = (π.x, π.w), ˆacc′′ =
(acc′′.x, acc′′.w), p̂f ∈ G1 × F and acc.x, acc′.x. We build an extractor Extacc such that if
Vacc and Dacc accept, extracts valid witnesses acc.w, acc′.w for acc.x, acc′.x. Since acc′′.w
is an equation of degree one, given two accepting transcripts for different challenges α1, α2,
Extacc can use the Vandermonde matrix to extract

acc.w = {{[Di,j]j∈[k−1], i∈[0,d], Tk}, acc′.w = {{[D′
i,j]j∈[k−1], i∈[0,d],T

′
k}.

Since Dacc(acc
′′.x, acc′′.w) accepts, we have the first check passes, i.e.,

e(C′′
j−1,V) =

d∑
i=0

e
(
D′′
i,j ,Vi,j

)
.

We analyze each side of the equation independently:

e(C′′
j−1,V) = e

(
(1− α)× Cj−1 + α× C′

j−1,V
)

= (1− α)× e (Cj−1,V) + α× e
(
C′
j−1,V

)
d∑

i=0
e
(
D′′
i,j ,Vi,j

)
=

d∑
i=0

e
(
(1− α)× Di,j + α× D′

i,j ,Vi,j

)
= (1− α)×

d∑
i=0

e (Di,j ,Vi,j) + α×
d∑

i=0
e
(
D′
i,j ,V

′
i,j

)
Since α is computed as a hash of acc.x and acc′.x, except with negligible probability
e (Cj−1,V) −

∑d
i=0 e (Di,j ,Vi,j) = 0 and e(C′

j−1,V) −
∑d

i=0 e(D
′
i,j ,V

′
i,j) = 0. Similarly,

replacing the accumulation witness by the extracted ones, we have that Eq.(ii)’s left side is

∑k−1
j=1(C

′′
j − ⟨x⃗′′j , D⃗′′

j ⟩) =
∑k−1

j=1((1− α)Cj + αC′
k − ⟨(1− α)x⃗j + αx⃗′j , (1− α)D⃗j + αD⃗′

j⟩)

whereas from the verifier’s output we have that the right side equals (1−α)×EG+α×E′
G+

(1− α) · α× Q. Because α is computed as a hash of acc.x and acc′.x we have that except
with negligible probability the equation hold for any X and, in particular, when X = 1
we got

∑k−1
j=1 Cj − ⟨x⃗j , D⃗j⟩ = EG and for X = 0,

∑k−1
j=1 C

′
j − ⟨x⃗′j , D⃗′

j⟩ = E′
G. With identical

reasoning, we have that ⟨Tk, x⃗k⟩ − y = eF and ⟨T′
k, x⃗

′
k⟩ − y′ = e′F. Finally,

⟨T′′
k,Hk⟩ = ⟨(1− α)Tk + αTk,Hk⟩ = (1− α)⟨Tk,Hk⟩+ α⟨T′

k,Hk⟩

C′′
k−1 = (1− α)Ck−1 + αC′

k−1

which, as above, implies Ck−1 = ⟨Tk,Hk⟩, and C′
k−1 = ⟨T′

k,H
′
k⟩ except with negligible

probability. We conclude the extracted acc.w and acc′.w are valid witnesses. We now

63

prove that if EG = eF = 0, we can extract a valid opening to c⃗. That is, (acc.x, acc.w)
is a valid pair for the predicate Φ. Note that the first check by the decider is the same
as KZH′s verifier first check. Following above, from the second check we can extract that∑k−1

j=1 Cj − ⟨x⃗j ,Dj⟩ = EG = 0. Since Dj is base Hj , we have that Cj − ⟨x⃗j ,Dj⟩ = 0 for
all j ∈ [k]. Finally, the last check is ⟨Tk, x⃗k⟩ = y, and we have extracted satisfying KZH
verifier checks, and thus can extract p(X⃗1, . . . , X⃗k) such that p(x⃗1, . . . , x⃗k) = y.

64

D Non-Uniformity from Polynomial Accumulation

Background. Non-uniform IVC (N-IVC) [KS22] extends the definition of IVC by allow-
ing each step to execute one of several predefined instructions F1, F2, . . . , Fk instead of a
single instruction F . Previously, non-uniform IVC was implemented using a universal cir-
cuit that contains subcircuits for all instructions Fi. This circuit evaluates all subcircuits
and selects the correct output based on the program counter. However, this approach is
inefficient because the prover must perform computations for every instruction, even though
only one instruction is needed at each step, and the witness size of the universal circuit
scales linearly with the sum of the witness sizes of all instructions, making it non-ideal both
computation-wise and memory-wise. Non-uniform PCD (N-PCD) [Zhe+23] is a similar
work which extends the definition of PCD to support multiple instructions in the leaves
instead of a single instruction.

Previous work on non-uniform IVC. SuperNova [KS22] introduced a more efficient
method for N-IVC where the step circuit maintains a running accumulator Ui (a relaxed
committed R1CS instance) for each instruction Fi. When receiving a new, fresh accumulator
instance ui, the prover uses memory techniques (e.g. a Merkle tree or offline memory
techniques [Blu+91]) to select the appropriate running accumulator Ui. Next, the prover
accumulates Ui with ui. This approach ensures the computational effort corresponds only
to the selected instruction, but the witness size grows linearly with the sum of the witness
sizes for all instructions Fi.

Protostar [BC23] offers a similar improvement to construct N-IVC, leveraging the fact
that committing to zeros with Pederson commitment incurs no additional cost. While it also
reduces computational overhead, like SuperNova, it still requires the prover to manage a
witness size that scales linearly with the sum of all instruction witnesses. Another drawback,
Protostar’s approach, unlike SuperNova, is dependent on Pederson being homomorphic and
may not be compatible with hash-based polynomial commitment schemes.

N-IVC and N-PCD from PA. We observe that polynomial accumulation offers more
flexibility than circuit-specific accumulation. For example, each polynomial of degree
d < D, can be seen as a polynomial of degree D by simply assuming the coefficients of
xd+1, xd+2, . . . , xD are zero. As a result, given an accumulation scheme for a polynomial of
degree D, different polynomials of degree di < D can be accumulated by considering them
as degree D. Supernova directly translates each circuit as an R1CS instance and since
two different R1CS instances cannot be accumulated, the prover must keep one running
accumulator for each instruction Fi. However, similar to IVC from Spartan+PA in Section
5, we leverage Spartan PIOP to translate each instruction Fi as polynomials. Recalling
Section 5.1, to accumulate circuit Fi, we need to accumulate polynomial ωi(·) correspond-
ing to the R1CS witness and matrix evaluations of Ai, Bi and Ci, corresponding to the

65

R1CS construction of Fi. Similar to Section 5, we take two different strategies to handle the
accumulation of witness polynomial ωi(·) and matrices evaluations. For each Fi, assume
its witness polynomial is of degree di. We consider a running polynomial of degree di < D,
and in each step accumulate ωi(·) with this running PCS accumulator. However, the same
strategy cannot be applied to matrix evaluations. Accumulating different Ai, Bi, and Ci

evaluations via PCS accumulation is impractical because the resulting accumulated matri-
ces may not be sparse. This would lead to matrices with O(kn) non-zero elements instead
of O(n), where k is the number of instructions. To address this, we adopt an approach
similar to SuperNova’s to handle matrix evaluations efficiently. To elaborate further, the
prover maintains a separate running accumulator for each matrix evaluation. Using mem-
ory techniques, the prover dynamically selects the appropriate running accumulator at each
step and updates it with fresh matrix evaluations. Notably, these matrix evaluations scale
logarithmically with the size of the original circuit, which is a key factor in the efficiency of
our N-IVC and N-PCD schemes compared to SuperNova.

Our N-PCD approach, apart from witness size and decider time, also improves the
prover’s time. As previously mentioned in Section 5.3, both SuperNova and Protostar
approaches fail to work for N-PCD since accumulating two sets of running accumulators
takes linear time in the combined size of all instructions. However, this is not the case
for us, a running accumulator in our N-PCD approach based on Spartan+PA, similar to
N-IVC, consists of a single PCS accumulator and k instances of the matrix evaluation
accumulator, i.e. one per instruction. Accumulating two running accumulators requires
accumulating the two corresponding PCS accumulators, plus accumulating each instance of
the matrix evaluation accumulator with its corresponding instance. The initial task requires
Pacc(maxi |Fi|) computation and the latter takes

∑
i log |Fi|. To conclude, each step of our

N-PCD prover costs Pacc(maxi |Fi|) +
∑

i log |Fi|. For example, when instantiated with a
linear prover time accumulator such as KZH-fold, the prover time is maxi |Fi|+

∑
i log |Fi|,

which is much smaller than
∑

i |Fi| compared to the previous approaches of building N-
PCD. The decider algorithm for both N-IVC and N-PCD requires running the decider
algorithm for the PCS accumulator, plus evaluating all polynomial extensions of A, B and
C matrices. The former requires running Dacc on a polynomial of degree maxi |Fi| and
the latter requires O(

∑
i |Fi|) field operations. Given that field operations are much less

expensive than group operations, we expect the cost of the decider to be dominated by
Dacc and hence our scheme has a much faster decider time than SuperNova and Protostar,
which requires a linear number of scalar multiplications in the combined size of all circuits.
We leave formalization and proofs to future work.

66

	Introduction
	KZH multilinear polynomial commitment scheme
	Sublinear accumulation schemes
	Signature aggregation in consensus
	Contributions
	Additional related work

	Technical Overview
	Preliminaries
	Notation
	Polynomial commitment schemes
	Accumulators
	Incrementally verifiable computation
	IVC from accumulators

	KZH: An efficiently aggregatable polynomial commitment
	KZH-fold: Accumulator with sublinear size

	PIOP+PA: IVC/PCD from Polynomial Accumulation
	PIOP Accumulation: accumulating Spartan PIOP
	Uniform IVC/PCD from polynomial accumulation
	N-IVC and N-PCD from polynomial accumulation

	PIOP for signature aggregation protocol
	Implementation and efficiency
	Efficiency of KZH
	Comparison with Halo Infinite
	Comparison with Nova
	Comparison with BLS aggregation

	Deferred definitions
	Signature schemes

	Deferred proofs
	Proof of theorem 1
	Proof of theorem 2

	Higher dimension PCS for smaller deciders
	KZH-k
	KZH-k accumulation

	Non-Uniformity from Polynomial Accumulation

