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Abstract

The shuffle model is a widely used abstraction for non-interactive anonymous communication. It
allows n parties holding private inputs x, ..., x, to simultaneously send messages to an evaluator, so
that the messages are received in a random order. The evaluator can then compute a joint function
f(x1,...,x,), ideally while learning nothing else about the private inputs. The model has become
increasingly popular both in cryptography, as an alternative to non-interactive secure computation in
trusted setup models, and even more so in differential privacy, as an intermediate between the high-
privacy, little-utility local model and the little-privacy, high-utility central curator model.

The main open question in this context is which functions f can be computed in the shuffle model
with statistical security. While general feasibility results were obtained using public-key cryptography,
the question of statistical security has remained elusive. The common conjecture has been that even
relatively simple functions cannot be computed with statistical security in the shuffle model.

We refute this conjecture, showing that all functions can be computed in the shuffle model with
statistical security. In particular, any differentially private mechanism in the central curator model can
also be realized in the shuffle model with essentially the same utility, and while the evaluator learns
nothing beyond the central model result.

This feasibility result is obtained by constructing a statistically secure additive randomized encoding
(ARE) for any function. An ARE randomly maps individual inputs to group elements whose sum only
reveals the function output. Similarly to other types of randomized encoding of functions, our statistical
ARE is efficient for functions in NC! or NL. Alternatively, we get computationally secure ARE for all
polynomial-time functions using a one-way function. More generally, we can convert any (information-
theoretic or computational) “garbling scheme” to an ARE with a constant-factor size overhead.

1 Introduction

For almost four decades, secure multi-party computation (MPC) [Yao86, GMW 19, BGW88, CCD88] has
been one of the most thoroughly studied areas in cryptography. As such, the feasibility of MPC in various
models is by now well understood. This is especially true in the information-theoretic setting where no
computational restrictions are considered.
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One notable exception is non-interactive MPC in the shuffle model [IKOS06], whose information-
theoretic feasibility is still open. In this model, n parties holding private inputs x, . . ., x, can independently
send (multiple) anonymous messages to a server. The server should then recover the result f(xy,...,x,) of
applying the prescribed function f, but should learn essentially nothing beyond the output. In particular,
no a-priori setup or correlation between the parties is required as in other models for non-interactive MPC
[FKN94, BGI*14, HIJ*17, AAP19]. Our focus is on the semi-honest model with no insiders; namely, the
parties follow the protocol and do not collude with the server (see discussion on the stronger robust model
in the related work section below).

The shuffle model has been considered in several cryptographic contexts, like private information re-
trieval and secure aggregation [IKOS06, GMPV20, BBGN20, IKL.M24, GIK*24], but perhaps gained the
most interest in the context of differential privacy (DP). In DP, the shuffle model is seen as an intermediate
between the local model where no trust is assumed and the central curator model where the curator aggre-
gating the data needs to be fully trusted by all parties. Several works have demonstrated that shuffle privacy
can often offer better utility than local privacy. In fact, while the common belief seems to be that the model
of shuffle privacy is weaker than that of central privacy, a general separation is not known. Separations have
only been shown under additional structural constraints (or for the stronger robust model further discussed
below) [BEM*17, BBGN19, CSU*19, BHNS20, Che21, GDDS21, KH*21, SCM22].

Additive Randomized Encodings. An intimately related notion to shuffle MPC is that of additive ran-
domized encodings (ARE) [HIKR23]. An ARE for a k-party function f(x,...,xx), allows each party i to
locally compute a randomized encoding X; of their input x; over an Abelian group G. The encodings are
then added together in G to yield a sum encoding w = X7 + - - - + X of the output w = f(x1,. .., xx).

A server, given the sum encoding w can decode the output w, but learns no additional information;
namely, the sum encoding can be simulated from the output w. ARE follow the general paradigm of random-
ized encodings of functions (RE) [Yao86, IK0O, AIK06], and their multi-party version (MPRE) [ABT21],
meant to reduce secure computation of potentially complex functions f to simpler ones. The relation to
shuffle MPC and DP stems from the fact that shuffling is sufficient for secure addition [IKOS06]." Hence
any function f that admits an ARE can be securely computed in the shuffle model.

Having introduced ARE in [HIKR23], the authors also gave several feasibility results, depending on
the ARE security (simulation accuracy): perfect, statistical, or computational. In the computational setting,
they showed that any efficient function has a computationally-secure ARE under a Diffie-Hellman type
assumption in bilinear groups. The assumption was then reduced to any public-key encryption scheme
in [BEG25]. In sharp contrast, for perfect security, ARE exist only for degenerate functions, essentially
OR/XOR plus local preprocessing/postprocessing [HIKR23, Hiw25].

At the same time, the question of statistical ARE has remained elusive. In [HIKR23] the authors strongly
conjecture that statistical ARE do not exist (even for simple functions as equality over small domains).
Indeed, their conjecture is implied by the conjecture that shuffle privacy is weaker than central privacy, and
accordingly was viewed as a possible stepping stone toward separating the two models. However, as in the
privacy case, separation attempts have only ruled out variants of ARE, such as £,-ARE [HIKR23, Hiw25].

UIn fact, a converse statement also holds. See Appendix A in [Che21].



1.1 This Work
We show that statistical ARE actually do exist for all functions.

Theorem 1.1. For any multi-party f : D — D over a finite domain DK and any error bound ¢ > 0, there
exists an ARE for f with statistical correctness and security errors at most e.

We turn to study the minimal size of an ARE for f, defined as the total bit-length of the encoded inputs.”
By applying a variant of amplification techniques from the literature [HIKNOS8, IKOS09], we establish a
close relation between the ARE size of f and its garbling size, captured by the notion of decomposable
randomized encoding (DRE).> A DRE for f : {0,1}* — D is a randomized function of the form g(x,r) =
(g1(x1,7), ..., gr(xk, r)) whose output is a randomized encoding of f(x).

Theorem 1.2 (From DRE to ARE, informal). Let f : ({0,1}")* — {0,1}™ be a k-party function family, for
polynomially bounded k = k(t),n = n(r), m = m(r). Assume that f, viewed as function over nk-bit strings,
has a DRE with statistical correctness and security errors at most ¢ = e(t), where each output g; is of size
¢ = c(7). Then the k-party f (over n-bit inputs) has an ARE of size O(cnk) (i.e., O(c) per input bit) and
statistical correctness and security errors at most € + 27",

The same holds if the DRE is computationally secure, in which case the ARE is computationally secure.

Using DRE constructions from the literature [Yao86, FKN94, IK97, BKN18], we obtain the following:

e Any f € NC° has an ARE of size O(m) and statistical correctness and security errors 2~™. In
particular, for any finite function f, there is such an ARE for m copies of f (on independent inputs).

2nk/2

* Any function f has an ARE of size sublinear in its truth table, -poly(7), and statistical correctness

and security errors 27 7.
* Any f € NL/poly has a poly(7)-efficient ARE with statistical correctness and security errors 27 7.

» Assuming one-way functions, any f € P/poly, has a poly(r)-efficient ARE with statistical correctness
error 277 and computational security. More concretely, if 7 is the seed length of a pseudorandom
generator, then any circuit of size S admits a computationally secure ARE of size O(7 - S).

Theorem 1.2 is essentially optimal in the sense that an ARE of size c for a function f : {0,1}¥ — {0,1}™
directly implies a DRE for f of size c. In particular, extending our efficient information-theoretic ARE for
NL/poly to capture all polynomial-time functions would require solving a long-standing open problem in
information-theoretic cryptography [FKN94]. We also note that the P/poly construction only makes black-
box use of one-way functions, which should be contrasted with the computational ARE from public-key
encryption [BEG25] that are non-black-box.

We turn to discuss several useful implications of the above results.

2To properly account for the communication cost of ARE in applications, if %; is always in a subgroup G;, its size is log |Gy
(see Definition 5.1). When the number of parties is constant, one can think of the size as simply log |G|.

3 A DRE is sometimes referred to in the literature as a multiparty private simultaneous messages (PSM) protocol [FKN94, IK97]
or as a garbling scheme [Yao86, BHR12].



Implication 1: Shuffle MPC and Shuffle Privacy. The main implication of the statistical ARE construc-
tion, when combined with shuffle addition [IKOSO06], is information-theoretic shuffle MPC for all functions.
This in particular yields a transformation from any differentially private algorithm in the central curator
model to one in the shuffle model, with essentially the same utility and privacy.

Implication 2: MPC in the Client-Server Model. Suppose that n clients, holding private inputs x1, . . ., Xp,
employ m servers to securely compute a function f of their private inputs. We aim to obtain a non-
interactive protocol in which each client sends a single message to each server who locally processes its
received messages and sends a single message to an evaluator, who after some local processing outputs the
result f(xi,...,x,). Here we assume that the evaluator may be corrupted and ask what is the tradeoff be-
tween the fraction of (semi-honestly) corrupted clients, corrupted servers, and the level of security. Previous
information-theoretic results focus on the setting in which a minority of servers are corrupted and aim to
maximize the fraction of allowed client corruptions [BIW 10, AIKP22].

Using ARE, we obtain a new feasibility for the extreme case where any strict subset of the servers can
be corrupted, but no clients are corrupted. To obtain this, the clients each use the ARE to locally encode
their input and additively secret-share their encodings among the servers. The servers locally add all the
shares, and send the sum to the evaluator.

Prior to our work, such client-server protocols were possible in the computational setting, making non-
black-box use of oblivious transfer (OT) [BL18, GS18, GIS18] or public-key encryption [BEG25]. (The
OT-based computational protocols also allow insiders, namely the evaluator may collude with input clients.
However, in the information-theoretic setting this is impossible and in fact necessitates OT.)

Implication 3: Visual Secure Computation. In visual secret sharing [NS95], an arbitrary image can be
split into two images that look totally random, but when combined using a bit-wise OR of their pixels (e.g.
using transparencies) yield the original picture.

Our ARE construction yields a conceptually similar notion of visual secure computation. Specifically,
our ARE construction implies a reduction from securely evaluating an arbitrary two-party function f(x, y)
to securely evaluating a sequence of bitwise two-party ORs (see details in the technical overview below).
For instance, imagine two distant parties A, B in outer space holding private inputs x, y would like to securely
and non-interactively communicate a joint function f(x, y) to a third distant party C. Then having C hold a
light sensor, A, B can each shoot a laser beam at C’s sensor depending on the encoded bit, the sensor detects
the existence of light but not its source (or number of sources). Performing this for every bit of the encoding,
C can then decode f(x,y) and nothing else.

1.2 Technical Overview

In a nutshell, our construction follows an approach taken in [BEG25] toward the construction of ARE:

1. Identify a relaxed notion of Leaky ARE (LARE) that allows some leakage on private inputs, and
which is relatively simple to construct.

2. Lift the LARE construction to a full-fledged (non-leaky) ARE.



In [BEG25], the authors identify such a notion (called one-sided ARE), which they obtain information
theoretically. Then they use public-key encryption to lift it to a full-fledged (computational) ARE.

In this work, we identify a stronger notion of LARE, which we are still able to construct information
theoretically. We then lift our stronger notion of LARE to full-fledged ARE, but this time, without relying
on any computational assumptions. Both steps are rather simple, and rely on elementary tools.

We next explain the two steps in more detail. Throughout, we focus on the two-party setting. Indeed, as
we later discuss, any two-party can then be made multi-party DRE [HIKR23].

Our Notion of Leaky ARE. In a LARE the security requirement is relaxed so that in addition to the
function’s output f(x,y), the (sum) encoding X + y may also leak some additional information £(x,y).
Formally, x + y can be statistically simulated given f(x,y) and £(x, y). Our notion of LARE allows a rather
specific leakage function:

xif f(x,y) =1
tny) =y
Lif f(x,y) =0
namely, when the output is 1, the encoding may leak the input x (but nothing on y), and when the output is
0, nothing leaks.

We first explain why this notion is useful; that is, how it can be lifted to full-fledged ARE. Then we
explain how to construct LARE.

From LARE to ARE. Let f : [d] X [d] — {0,1} be a Boolean function where both inputs x,y are
taken from some finite domain, which is w.l.0.g represented by integers [d] = {1,...,d}. We show how to
construct an ARE for f given a LARE for the function g : F¢ x (F¢ x Fy)

(a,(b,1)) — (@, b) +r .

The first party, given input x € [d], represents x as a standard unit vector e, € ]Fg. The second party
considers the function f(-,y) that has its input y hardwired, and represents it as a vector f y € }Fg. In
particular, the inner product of the two vectors yields the function output <ex, f y> = f(x,y). The advantage
of this linear representation of the function is that its amenable to local secret sharing.

In what follows, let 7 be a parameter (that will govern statistical security). The first party samples ¢
random shares x1,...,x; € F‘zi such that e,, = x1+- - - +x,. The second party samples 7 shares ry, ..., r; € F,
of the bit 0 = r; + - + r,. They then run in parallel z LARE:s for the function g(x;, (fy, ri)) = <xi,fy> +r; to
compute:

<x1,fy> +7,. .., <x,,fy> +r; .

Decoding is then straightforward - by adding all the results the decoder obtains

<ixi,fy>+iri = <ex,fy>+0=f(x,y) )

To see why this is secure, observe that except with probability 272(7) gver the choice of random ry, . .., 7,1,
some of the outputs <xl~, f y> + r; equal 0, in which case nothing leaks (but the fact that the output is 0). At
the same time, whenever the output is 1, only x; leaks, and since this happens at most 7 — 1 times, these
shares are uniformly random and independent of the actual input x.



LARE by Reduction to ARE for OR. The construction of LARE for general functions (in particular, the
function g used above) starts from the basic fact that the two-party OR function has a simple (non-leaky)
ARE [HIKR23] over any group (G, +). Specifically, each party encodes 0 as the identity element Og and
encodes 1 as a random element r € G. The decoder maps Og to 0 and any other element g € G* to 1. It is
easy to see that this yields a perfectly-secure ARE for OR, with correctness error 1/|G.

Then we construct a LARE for any finite function f(x, y) by a reduction to bitwise OR of binary strings.
The construction is inspired by the construction of ARE for general functions from ARE for Equality in
[HIKR23]. Specifically, the first party considers the vector 1 — e,, which is 1 on all coordinates i # x and 0
on x. The second party considers the vector 1— f, which is 1 on all coordinates i such that f(i,y) = 0 and 0
on all coordinates such that f'(i,y) = 1. Observe that if f(x,y) = 0 then the bitwise OR of 1 —ey and 1 - f,
is the all ones vector 1, whereas if f(x,y) = 1, this bitwise OR is the vector 1 — e,, which only leaks x.

Efficient ARE Constructions. As shown in [HIKR23], to obtain efficient constructions of ARE, it suffices
to construct ARE for the finite bit OT function (b, b;), ¢ — b.. Then one can use DRE to get an ARE for
any function.* Specifically, recall that in a DRE, given a random secret key r, each input bit x; is individually
mapped into an encoding X;. The evaluator given the encoded inputs bits Xi, . . ., X; can decode the value of
the function f(xy,...,xx), and learns nothing beyond. To turn such a DRE to an ARE given ARE for OT,
we can have one party sample the randomness r and execute (string) OT ARE with every other party i, to
allow the ARE evaluator to obtain X;.

Using the above approach we can directly get an efficient ARE for all functions by choosing an (efficient)
group G of size ~ 27 and using the ARE described above. This already yields some version of Theorem 1.2,
but not an optimal one. In particular, running ¢ instances of this ARE OT would require communication
t - poly(7).

To get a constant rate version of the above we use amplification techniques from [HIKNOS8, IKOS09].
Whereas the polynomial-rate version of the theorem relies on quite elementary tools, the mentioned ampli-
fication techniques require more advanced machinery such as algebraic-geometric codes (or more generally
appropriate multiplication codes). See Section 5.4 for more details.

1.3 More Related Work

The abstract study of randomized encodings was initiated by Ishai and Kushilevitz [IK00], and has since led
to a substantial body of work (see surveys [Ish13, App17]). AREs can be understood as a restricted form
of multi-party randomized encodings (MPREs) [ABT21], where the emphasis is on simplifying the global
encoding function that aggregates local encodings. While general MPREs can tolerate corruptions of some
parties and still maintain security, AREs only provide security guarantees against an external observer (e.g.,
an untrusted server), and not against internal corruption.

To address this gap, Halevi et al. [HIKR23] introduced the notion of robust ARE which extends the
basic ARE model to handle corrupted parties (aka insiders). However, unlike MPRE where only the output
is leaked, in robust ARE a set C of corrupted parties may (inherently) learn the residual function f(xg,-)
where the honest parties’ H inputs are fixed. As shown in [HIKR23], such robust AREs are in fact equivalent
to obfuscation. They provide a heuristic construction of simulation-based robust AREs assuming ideal

4In [HIKR23] this is actually described with garbled circuits [Yao86] as a special case of DRE, typically referring to the
computational setting.



obfuscation. Follow-up work [BF24] presents a construction under indistinguishability obfuscation and
DDH/LWE.

Hiwatashi [Hiw25] investigates limitations of information-theoretic AREs. Extending techniques from
[HIKR23], they characterize which Boolean functions admit AREs where security and correctness are mea-
sured in the £,-norm (rather than £;).

As for MPC in the shuffle model, whereas the default setting (including the one in this paper) is non-
interactive, Beimel et al. showed that with interaction (even two rounds) the shuffle model regains the full
power of MPC protocols [BHNS20].

1.4 Open Questions
Our work leaves several interesting questions for future research.

» Perfect correctness. Does every f admit a perfectly correct and statistically secure ARE? For com-
putationally secure ARE, perfect correctness is possible [HIKR23, BEG25]. For ARE with statistical
security, we are only able to achieve a relaxed “Las Vegas” notion of correctness, where the evaluator
is never wrong but may declare failure with a small probability (see Appendix A).

* Robust ARE. Can the information-theoretic feasibility of ARE be extended to the robust notion
of ARE from [HIKR23] in the case of finite functions? (Recall that an efficient construction for
general functions implies obfuscation.) A positive answer, even for finite 3-party functions, would
settle the main open question about multi-party randomized encodings [ABT21]. A positive answer
for all finite functions would settle the main open question about best-possible information-theoretic
MPC [HIKR18].

* ARE vs. PSM. The tight relation between ARE and DRE shows that, in the context of private simul-
taneous messages (PSM) protocols [FKN94] with one-bit inputs, common secret randomness is not
much more powerful than an addition oracle. Is the same true for longer inputs? For example, does
any 2-party PSM for f : {0,1}" x {0,1}"* — {0, 1} imply an ARE for f with similar cost?

2 Preliminaries

For discrete probability distributions X and Y over support set A, their statistical distance (or total variation
distance) is A(X,Y) = % Daeca |[Pr[X = a] — Pr[Y = a]|. Throughout, we assume for simplicity all groups
G are efficient, namely, they have representation of size clog |G| and operations in time |G|° (for some
universal constant ¢). We denote by X ~s Y the fact that A(X,Y) < §. For an Abelian group (G, +) and
x € G we say that xy, ..., xx are (secret) shares of x if they are random in G conditioned on their sum being
x (for strings x € {0, 1}" we consider by default the group (Z7, ®)). For a positive integer n, we use [n] to
denote the set {1,...,n}. Foraset S, x « S denotes uniformly sampling from S. We next review the main
cryptographic primitives we use in this work.

2.1 Additive Randomized Encodings

Definition 2.1 (Additive Randomized Encoding [HIKR23]). Let f : ({0,1}*)* — {0,1}™ be a k-party
function. An ARE scheme for f over an Abelian group (G, +) consists of functions IT = (Enc, Dec) with the



following syntax:

* X; « Enc(x;, i) is a randomized encoding function that given an input x; € {0,1}" and an index
i € [k] outputs an encoding x; € G.

* w « Dec(w) is a deterministic decoding algorithm that given w € G outputs a value w.
We require the following properties:

* Correctness: II is e-correct if for all x1 ..., x; € {0,1}":

Pr

k
Dec (Z Enc(x;, 1)) = f(xy,. ..,xk)] >1—¢.
i=1
* Security: IT is d-secure if there exists a simulator function Sim such that for any xy, ..., xx € {0, 1}™
k
Z Enc(x;, 1) ~s Sim(f(x1, . .., xk)) .
=1

ARE Families. Depending on the context, we may view an ARE either as a finite object (as defined
above) or as an infinite family of such objects, parameterized by 7. In the latter case, we assume that
all computational costs, including group operations, are polynomially bounded in 7, and also use 7 as a
statistical or computational security parameter.

3 Leaky ARE

In this section we define and construct a relaxed notion of two-party ARE called leaky ARE. This notion
allows completely leaking the input of one of the parties when the corresponding function output is 1.

Definition 3.1 (Leaky ARE). A Leaky ARE (LARE) scheme IT = (Enc, Dec) for f : {0,1}" x {0,1}" —
{0, 1} has the same syntax and correctness requirement as a (plain) two-party ARE. The security requirement
is replaced with the following leaky security requirement:

» Leaky Security: II is §-leaky-secure if there exists a simulator function Sim such that for any x,y €
{0,1}™:

xif f(x,y) =1

Enc(x, 1) + Enc(y, 2) ~s Sim(f(x, 1), £(x, 1)) where £(x,y) = { Lif f(x,y) =0

Remark 3.2 (Relation to One-Sided ARE). The above notion of leaky ARE is a strengthening of the notion
of one-sided ARE defined in [BEG25] where £(x, y) = x (regardless of f(x, y)).



3.1 LARE for any Finite Function

In this section, we construct a LARE for any finite function. The construction can be seen as a generalization
of an ARE for a payload equality function from [HIKR23].

Throughout this section, we treat the complexity of the function as constant, and address efficiency,
correctness, and security in terms of the underlying group size.

Theorem 3.3. For any (efficient) group G, any Boolean function f : [d] x [d’] — {0,1} has a O(|G|™1)-
correct, 0-leaky-secure ARE over G°V. Encoding/decoding efficiency is polylog(|G|).

Proof. The construction is presented in Figure 1.

LAREf
Enc(x,1):
e Sample ry,...,rg «— G.
eSetx= Y ri-e; € G% wheree; € {0,1}¢ is the i-th standard basis vector and r;e; is
ie[d]\{x}
interpreted as a vector in G? in the natural way.
Enc(y, 2):
» Sample sy, ...,sq4 «— G.

e Set gZ Z S;i - €.
i:f (i,y)=0

Dec(w) :
* Parse the (sum) encoding w as a vector (wy, ..., Wq).

o If for all i, w; # 0, output 0, else output 1.

Figure 1: LARE for f

The efficiency of encoding/decoding follows readily. We prove that the scheme satisfies the two claimed
correctness and security properties.

Correctness:
Recall that the sum encodings w are computed additively as X + 7.
* When f(x,y) = 1, w, = 0 and decoding outputs 1.

* When f(x,y) =0, forall i € [d], w; is uniformly random in |G|, and hence all are non-zero, except
with probability at most d/|G|, and decoding outputs 0.



Leaky Security:

e When f(x,y) = 1, Sim(1, x) randomly samples w; < G for all i # x and sets w, = 0. This perfectly

emulates the encoding >, (ri+s;) -e; + D ri-e;.
if (i,y)=0 i#xf (i,y)=1

* When f(x,y) = 0, Sim(0, L) randomly samples w; « G for all j € [d]. This perfectly emulates the

encoding syey + > (ri+si)-ei+ 2 ri-e.
izx:f (i,y)=0 if(i,y)=1

O
Remark 3.4 (Las-Vegas Correctness). The above construction has a O(|G|™!) correctness error, which will
lead to a similar error in our final construction of ARE. In Appendix A, we show how to obtain Las Vegas
correctness; namely, with probability 1 — O(|G|™!) decoding is correct, and otherwise outputs L. Obtaining
perfect correctness, remains an open question, and for now is only known under computational assumptions
[HIKR23, BEG25].

If we settle for computational security, we can get perfect correctness generically in the random string
model (or with non-uniformity) [DNRO4], or under derandomization assumptions [BOV03, BV17].

4 ARE from LARE

In this section, we show how to transform LARE to ARE for general functions. We start from the case
of finite functions (Section 4.1) and then address the case of general functions and asymptotic efficiency
(Section 5).

4.1 Finite Functions

Throughout this subsection, we treat the complexity of the function as constant, and address efficiency,
correctness, and security in terms of the underlying group size and an additional parameter 7.

Theorem 4.1. For any (efficient) group G and parameter v € N, any Boolean function f : [d] X [d] — {0, 1}
has a O(t/|G|)-correct, 2~ ™' -secure ARE over G°\7). Encoding/decoding efficiency is T - polylog(|G]).

The theorem is derived from the following lemma together with Theorem 3.3.

Lemma 4.2. Let v € N be a parameter and let f : [d] X [d] — {0,1} be a Boolean function. Then any -
correct, 8-leaky-secure LARE, for inner product in IF‘ZIH, over a group G, can be converted into a et-correct
(6t + 27™1)-secure ARE for f, over G*. The ARE for f has the same encoding/decoding efficiency as t
applications of the underlying LARE.

Proof of Lemma 4.2.

Construction 4.3 (Statistical ARE for General Functions).
* Consider the function g : Fg X (P‘zi X Fy) — Fa:

g(a, (b,r)) ={(a,b) +r .

10



AREf

Enc(x, 1):
* Lete, € {0,1}7 be the standard unit vector corresponding to x.
* Sample additive secret shares x1, ..., x; € {0, 1}4 of ey.
* Sample X; = LARE,.Enc(x;, 1) for every i € [7].

 Output (x1,...x7).

Enc(y, 2):
* Letf, € {0, 1} be the vector corresponding to f(-, y); namely fylx] = f(x, y).
* Sample additive secret shares ry, ..., r; of 0.
* Sample z; = LARE,.Enc(z; = (fyri),2) forevery i € [z].

e Output (z1,...,7z;).

Dec( 14, w)

* Parse the (sum) encoding W as a vector (Wy, ..., w;).

T
* Output Y, LARE;.Dec(w;) mod 2.
i=1

Figure 2: ARE for f

* Let LARE, be an e-correct, -leaky-secure LARE scheme (definition 3.1) for g
Proposition 4.4. The scheme ARE is te-correct.
Proof. From the e-correctness of LARE,, except with probability at most ¢, it holds that for every i € [7]
LARE,.Dec(w;) = g(xi, (f,,11)) = <x,«, fy> +ri
In this case,

ARE;.Dec(W) = 3 ((x1f,) +r1) = < > xi,fy> + 3 ri={enf,) +0=f,lx] = fx.y) .

ie[r] ie[r] ie[r]

O

SNote that a LARE for g can be emulated from LARE for inner product over ]Fg” (as stated in Lemma 4.2), but using g will be
easier to parse.
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Proposition 4.5. The scheme ARE is (67 +277*")- secure.
Proof. We start by defining the simulator ARE ¢.Sim(f (x,y)):
» Sample additive secret shares vy, ...,v; of f(x,y).
o IfVi € [7],v; = 1, output L.
» For i such that v; = 0, sample w; < LARE,.Sim(0, 1).
« For i such that v; = 1, sample x; € {0, 1} uniformly at random and sample w; « LARE,.Sim(1, x;).
* Output Wy, ..., W;.
To bound the statistical distance between the real and simulated (sum) encodings, we consider several hy-

brids.

Hybrid 0 (real encodings). Here the parties compute their encodings w; = X; + z; according to Construc-
tion 4.3.

Hybrid 1. Here instead of using the encoding functions, we simulate the encodings. Specifically, if
g(xi, (fy, ri)) = 1, we sample w; < LARE.Sim(1, x;), and if g(x;, (fy, r;)) =0, w; «— LARE.Sim(0, 1).

By the -leaky-security of LARE,, the resulting encodings are rd-statistically-close to those in the pre-
vious hybrid.

Hybrid 2. Here, in case it holds that for all i € [z], g(x;, (f,,7:)) = <xl~,fy> +r; =1, we output L.

Since ry,...,r;—1 are uniformly random and independent of the values <xi, f y>, this event occurs with

probability at most 277*1, and hence the encodings in this hybrid are 2~7*!-statistically-close to those in the
previous hybrid.

Hybrid 3 (simulated encodings). Here the encodings are distributed according to the above described
simulator ARE¢.Sim.

The encodings in this hybrid are identically distributed to those in the previous hybrid. Indeed, the values
<x1, f y> +r, ..., <xr, f y> + r; are uniformly random conditioned on their sum being ;.. <xl~, f y> = f(x,y)

just like the simulated secret shares vy, ...,v,. Furthermore, whenever (x,-, fl.) + r; = 0 for some i, the
resulting encodings are independent of x;, and depend (at most) on xi,...,X;—-1, Xi+1, . . -, X, Which are
uniformly random and independent as in the simulation. Finally if <x,-, f l-) +r; = 1 for all i, both distributions
are L. m]

m|
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5 ARE from DRE

In this section, we draw a tight connection between ARE and decomposable randomized encodings (DRE).
In particular, we discuss how our ARE for finite two-party functions can be leveraged to obtain ARE for
general multi-party functions f with comparable communication complexity to corresponding DRE for f.
We start by discussing and defining the notion of size for multi-party ARE.

5.1 ARE Size

A standard cost measure of randomized encodings is their size, typically defined as the bit-length of the
encoded output. In the context of ARE, this is just log |G|, the bit-length of a single group element. While
this measure is good enough for the two-party case (which already captures the main contributions of this
work), the multi-party case calls for a more refined measure. In particular, note that the log |G| measure can
be smaller than the communication complexity of f. To better capture the cost of ARE applications and the
relation between ARE and the related notion of DRE, we define ARE size as Y~ |%;|, where the size of
each encoded input takes into account the size of an associated subgroup.

Definition 5.1 (ARE Size). We say that a k-party ARE over a group G has size (at most) ¢ if:
1. G=Gy x--- X Gy for some (explicit and efficient) groups G;.

2. For any party i € [k], there is a set S; C [t] such that the party’s encodings x; are supported on
Gs, x {O}sﬁ- Namely, each party encodes into a subset of coordinates (when G is viewed as a product).

3. Yierk) log|Gs,| == 2icky jes; log |G;| < c.

We note that the above fine-grained notion of size will mainly be of interest when considering k-party
ARE for growing k. In the two-party case for instance, we will focus on the (representation) size of the
ARE group log |G| which is an upper bound on the size of the ARE up to a factor of 2. In fact, our main
construction of k-party ARE for k > 2 simulates k — 1 parallel instances of 2-party ARE, where the above
notion of size adds up their sizes.

The above notion of size aims to better capture the actual communication cost of ARE in applications.
For example, when using ARE to obtain an MPC protocol in the client-server model, each client only needs
to secret-share its input over the corresponding subgroup. Consequently, the ARE size is the total size of all
messages received by each server. A qualitatively similar relation between ARE size and communication
complexity holds also for the shuffle model. See [GMPV20, BBGN20, GIK*24] for the best known bounds
on the communication cost of secure addition in the shuffle model.

ARE vs. DRE size. Recall that a DRE for a Boolean function f : {0, 1}* — D is defined similarly to an
ARE, except that the encoded output is of the form g(x,r) = (g1(x1,7), ..., gk (xk,r)). The size of the DRE
is the bit-length of the output.® The above notion of ARE size ensures that if f has an ARE of size c, then it
also has a DRE of size c. We show that the converse also holds up to a constant factor; see Section 5.4 for
discussion.

6See [BHI20] for known upper and lower bounds on DRE complexity.
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5.2 From DRE and OT-ARE to ARE

Our starting point is the work of [HIKR23], showing that efficient multi-party ARE for general functions is
implied by any ARE for the finite bit oblivious transfer (OT) function:

(b(), bl),C | — bc .

This is done using Yao’s garbled circuit construction [Yao86]. Here we restate this reduction to OT more
generally, in the language of DRE.

Theorem 5.2 (From DRE and OT to ARE [HIKR23]). Let n(7), k(t), m(t) be polynomially bounded func-
tions and let f : ({0,1}")k — {0, 1}™ be a k-party function (family).

» Assume that f, viewed as a function over nk bits, has a DRE of size ¢’ = ¢’ () per party and statistical
correctness and security errors at most € = e(1).

* Assume an ARE for c¢’n instances of bit OT of size ¢ = c(r) and statistical correctness and security
errors at most § = 5(1).

Then the k-party f (over n-bit inputs) has an ARE of size O(ck) and statistical correctness and security
errors at most € + 0. If the DRE and OT ARE parties run in (uniform) time poly(r) so do the final ARE
parties.

An analogous theorem holds if the DRE/OT is computationally secure (in which case t is viewed as a
computational security parameter). Here the final ARE is also computationally secure.

We next discuss two ways of instantiating OT ARE based on Theorem 4.1 and resulting corollaries
when combined with DREs from the literature. The first is a direct one yielding polynomial rate OT, and the
second uses more advanced tools to obtain constant rate OT.

We consider throughout function (families) f : ({0, 1}")* — {0, 1}’ parameteized by r where n = n(7), m =
m(t), k = k(r) are polynomially bounded functions.

5.3 A Direct OT Instantiation

Applying theorem 4.1 with a group G of size ~ 2°(Y), we obtain a poly(r)-efficient ARE for OT with
correctness/security errors 27 7. We then get the following corollaries using DREs from the literature.

* Perfect DRE [FKN94, IK97]: Any function f € NL/poly, has a poly(7)-efficient ARE with statisti-
cal correctness and security errors 27 7. More generally, any mod-p counting branching program can
be compiled in polynomial time into such an ARE.

» Computational Garbling [Yao86]: Assuming one-way functions, any function f € P/poly, has
a poly(r)-efficient ARE with statistical correctness error 2~7 and computational security against
poly(7)-distinguishers. More generally, any Boolean circuit of size S can be efficiently transformed
into such an ARE of size poly(7) - S.
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* Best Known DRE for General Functions [BKN18]:” Any function f has an ARE of size 2"%/2 .
poly(7), and statistical correctness and security errors 27°.

The ARE OT instantiated in the above approach generally has polynomial size blowup. That is, ¢
instances of bit OT require ¢ - poly(7) communication for soundness 277. We next discuss a more efficient
approach, based on more advanced tools, which achieves constant rate, and its implications.

5.4 Constant-Rate ARE for Batch-OT

In a constant-rate ARE for batch-OT, one party holds a batch of ¢ pairs (s1,0,$1,1)s- - -» (S£.0, Sz,1), While the
other party holds ¢ choice bits cy,...,c;. Our goal is for the evaluator to learn s.,,...,s;, and we aim to
have encoding size O(t) with soundness and correctness errors 2-(*). Note that Theorem 4.1 gives us
a single OT ARE of constant encoding size, but with (arbitrarily) small constant correctness and security
errors €. Our goal is therefore reduced to emulating ¢ OT instances with negligible errors, given access to
O(t) e-erroneous instances.

An analogous amplification problem is solved in the context of MPC. Indeed, the work of [IKOS09]
leverages algebraic-geometric codes to achieve a similar goal of obtaining a protocol realizing t instances
of OT with negligible errors invoking O(t) instances of a protocol with constant communication and errors.
We cannot quite invoke their amplification theorem as is. First, our adversarial model is different, we wish
to defend against an external evaluator, whereas in the MPC context we defend against a corrupted party
(holding either the pairs (s;, 5;,1) or the choices c¢;. Second, their solution involves interaction. Nevertheless,
a variant of their amplification technique also works in the context of ARE. We next sketch the construction
and the argument behind its correctness and security.

Amplifiers from Combiners. The construction follows a common paradigm for amplification in the sta-
tistical setting (c.f. [MPRO7, IKO*11, LM20]): to construct an amplifier, it is sufficient to construct an
appropriate combiner. Restricting attention to our setting, we aim to construct an (n, «, §)-combiner for
batch-OT ARE for some constants «, § < 1. Such a combiner is given as input n single-OT ARE schemes
and combines them into a single ARE for a batch of fn OT instances. The guarantee is that as long as at
least (1 — a)n schemes (out of the n schemes) are perfectly secure and at least (1 — a)n are perfectly correct,
the resulting scheme is perfectly (or almost perfectly) correct and secure. Once such a combiner is achieved,
it can be shown that for some small enough constant ¢ = ¢(«) if we instantiate each of the n schemes with
an e-erroneous single-OT ARE, we get a 27°(") secure and correct ARE for fn instances (see for instance
[LM?20, Corollary 1]).

A Combiner Based on Multiplication Codes. In the setting of MPC analogous constant-rate batch-OT
combiners are known starting from [HIKNOS]. In our context of ARE, we sketch a relatively simple com-
biner that is a variant of an OT combiner from [IKOS09] and is based on multiplication codes. A multipli-
cation code C C F" is a linear code with the property that the pointwise product ¢; ® c; of two codewords
c1,¢2 € Cis a codeword in a related code C* C F". We require several properties from the code:

"The result of [BKN18] is stated in the language of multi-party private simultaneousness message protocols, which are equiva-
lent to DRE when restricting attention to single bit inputs.
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* Both C, C* are of constant rate: for some constant size F and constant p < 1, we can encode words in
FP™ in either C,C* C F".

 Both C, C* have constant dual distance: for some §+ < 1, any word in their dual codes C*+, (C*)* has
hamming weight at least §*n.

* C* has constant distance and efficient decoding: for some § < 1, inducing at most én errors to a word
in C*, we can efficiently recover the codeword.

Such efficiently constructible codes follow from the algebraic-geometric codes of [GS96], and starting from
[CCO6] were used in various contexts in cryptography, and in particular for multiplicative secret sharing.
Specifically, given multiplication codes as above there exist constants < J,y < 1 such that we can ran-
domly encode words x € FP" in the last (1 — B)n coordinates of codewords in C,C*, with the guaran-
tee that any yn entries reveal no information about x. We will denote the corresponding secret shares as
SSc(x), SSex (x) € E1-An,

Oblivious Linear Evaluation. To take advantage of the structure of multiplication codes, we consider a
combiner for an algebraic generalization of OT known as oblivious linear evaluation (OLE), which is the
two-party function:

(w,v),c —> uc+o , foru,u,c € F.

Indeed, the OLE functionality in particular allows implementing the bit-OT functionality by thinking of ¢ as
the choice bit, v = s, and u = s; — .

Our combiner will obtain an ARE for fn OLE instances with perfect security and correctness given
(1 — p)n instances, such that at least 1 — y (fraction) are perfectly secure, and at least 1 — § + f are perfectly
correct. Then for a < y, (§ — ), we get the desired (n, «, f)-combiner. The combiner works as follows:

« The first party, with inputs u, v € FP", samples shares # « SSc(u),? « SSc+(v).
* The second party, with input ¢ € FA", samples shares ¢ « SS¢(c)
* The parties then run (1 — f)n OLE AREs for each coordinate i € [(1 — f)n] with inputs (u;,v;), ¢;.

* The evaluator obtains Z € F('=A)" treats it as a noisy codeword in C*, and decodes to obtain uGc+v €
Fhn,

The perfect correctness follows from the fact that all but (6 — f)n OLE ARE instances are perfectly
correct, fn (first) code symbols were erased, whereas C* can decode given dn errors. For security, it can be
shown that u ® ¢ + v is distributed as a random secret sharing SSc+ (u © ¢ + v). Furthermore, since all but
yn ARE instances are perfectly secure, from each u, v, ¢ we leak at most yn symbols. Accordingly, we can
perfectly simulate the evaluator view given only the result u © ¢ + v € FA™.

Corollary 1: Constant-Rate ARE. Combining the above batch OT with any DRE we can obtain a
constant-rate ARE for (many copies of) any finite function. More generally, any f € NC° with m out-
put bits has an ARE with total encoding size O(m) and statistical correctness and security errors 272"
This applies in particular to string-OT of length m, which can be used to implement Yao’s garbled circuit
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construction in the ARE model with constant communication overhead. That is, every Boolean circuit of
size S admits a computationally secure ARE of size O(r - S), making a black-box use of a pseudorandom
genreator with a 7-bit seed.

Corollary 2: Equivalence of ARE and DRE for Boolean Functions. Considering k-party functions with
Boolean inputs f : {0, 1}¥ — {0, 1}, we obtain a tight connection between the size of ARE (per Definition
5.1) and that of DRE. Specifically, assume f has a DRE of (total) encoding size k¢ and security/correctness
error 5. Then f has an ARE of size O(k(c + loge™!)) with security/correctness error § + & - 27¢,

This result is essentially optimal in the sense that any ARE of size s for f implies a DRE of the same
size and with the same security. To see this, recall that in a size-s ARE over G = G; X - - - X Gy, the encodings
of party i are supported on Gs, X {0}5- for some S; C [t], and s = X (¢ log |G, |-

In the constructed DRE, the correlated randomness includes for any j € [¢] a secret sharing {g j,i}i:j es; S
G, of 0, among all i such that j € S;. Then to encode input x;, we first compute the encoding x; € Gs, and
add to the coordinate of any j such that j € S; the share g;;. Accordingly, the size of the DRE encoding of
each party i is log |Gs,|. For security, note that the DRE encodings can be perfectly simulated from the ARE
sum encoding xj + - - - + X € G, hence security follows from the ARE.
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A Las-Vegas Correctness

Recall that our LARE (Theorem 3.3) has a correctness error (vanishing with |G|) that propagates throughout
our constructions. In this appendix, we observe that

1. Our LARE in fact has a stronger form of ¢-one-sided correctness, meaning that whenever the output
of the function f is 1, the construction is correct, but when the output is 0, the construction may output
1 with probability at most ¢. In our case, ¢ = O(|G|™1).

2. A LARE with one-sided correctness can be used to boost the correctness of any ARE to Las-Vegas
correctness, where the ARE does not error, but does declare failure (outputs L) with small probability.

Lemma A.1. Let f : DXD — D be a finite function and assume it has ¢’-correct and &' -secure ARE scheme
ARE ¢ where the parties use randomness from domain R. Then there exists a function g : (DXR) X (DXR) —
{0, 1}, any e-one-sided-correct and 5-secure LARE scheme LARE, for g implies an ARE scheme LVARE ¢ for
f with (e + €)-las-vegas-correctness and (6 + &' + €') security.

Corollary A.2 (of Theorems 3.3,4.1 and Lemma A.1). For any (efficient) group G and parameter T € N,
any finite function f : D X D — D has a O(t/|G|)-las-vegas-correct, O(@ +27%)-secure ARE over GO(7),
Encoding/decoding efficiency is t - polylog(|Gl).
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Proof of Lemma A.1. We define the function g((x, rx), (y,ry)) as the function that tests whether the random-
ness is faulty:

g((x,rx), (y,ry)) = 1iff AREf.Dec(X +9) # f(x,9) ,
where X, i are encodings of x and y by the two parties using randomness r, and r,,. .

Our Las Vegas scheme LVARE ¢ operates by running ARE; and LARE, simultaneously, where in LARE, the
parties include as part of their inputs the randomness ry, r,, they used in the instance of ARE¢. The decoder
for LVAREf outputs L if LARE, decoder outputs 1; otherwise, it outputs the decoded result of ARE.

Correctness:

e If AREf provides an incorrect output (occurring with probability at most €”), the function g outputs 1,
and consequently, due to the one-sided correctness of LARE,, it always decodes to 1. Hence, LVARE ¢
always outputs L and identifies the error correctly.

* If ARE correctly decodes, then LVARE ¢ outputs the correct answer, unless LARE, falsely decodes to
0, which happens with probability at most ¢, and in which case LVARE ¢ outputs L.

Overall, the probability of outputting L is bounded by ¢ + ¢’, and otherwise decoding is correct.

Security: The simulator Sim(f(x, y)) outputs the result of the two underlying simulators
ARE;.Sim(f(x,y)), LARE;.Sim(0, 1) .

When g((x,7x), (y,ry)) = 0, due to the LARE and ARE security the statistical error of at most § + §’. At the
same time, by the ¢’-correctness of ARE the probability that g((x, rx), (y,ry)) = 1, over ry, ry, is at most €’.
Overall, the security error is at most § + &’ + ¢’. O
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