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Abstract. An Authenticated Key Encapsulation Mechanism (AKEM) combines public-
key encryption and digital signatures to provide confidentiality and authenticity. AKEMs
build the core of Hybrid Public Key Encryption (RFC 9180) and serve as a useful
abstraction for messaging applications like the Messaging Layer Security (MLS) protocol
(RFC 9420) and Signal’s X3DH protocol. To date, most existing AKEM constructions
either rely on classical (non post-quantum) assumptions or on unoptimized black-box
approaches leading to suboptimal efficiency.

In this work, we choose a different abstraction level to combine KEMs and identification
schemes more efficiently by leveraging randomness reuse. We construct a generic scheme
and identify the necessary security requirements on the underlying KEM and identifica-
tion scheme when reusing parts of their randomness. This allows for a concrete instanti-
ation from isogenies based on the POKE KEM (EUROCRYPT’25) and the SQIsignHD
identification scheme (EUROCRYPT’24). To be used in our black-box construction, the
identification scheme requires the more advanced security property of response non-
malleability. Hence, we further show that a slight modification of SQIsignHD satisfies
this notion, which might be of independent interest.

Putting everything together, our final scheme yields the most compact AKEM from PQ
assumptions with public keys of 366 bytes and ciphertexts of 216 bytes while fulfilling
the strongest confidentiality and authenticity notions.
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1 Introduction

Authenticated public-key encryption (APKE) was formally introduced in [ABH"21] but the
concepts date back to the introduction of signcryption by Zheng [Zhe97]. The idea is to combine
two of the most fundamental cryptographic primitives, namely (public key) encryption and
signatures. Since it is usually easier to analyze the security of a key encapsulation mechanism
(KEM) compared to a public key encryption (PKE) scheme, the natural adaptation is to
consider an authenticated KEM (AKEM) as introduced in the RFC for Hybrid Public Key
Encryption (HPKE) [BBLW22].

As both, KEM/PKE and signatures, often occur in larger protocols together, it can be
beneficial to analyze their combination for two reasons. First, there can be more efficient
constructions of a combined primitive compared to executing both components on their own.
This was the main motivation in early literature, e.g., [Zhe97, ABF12,7Z198], which introduced
schemes more efficient in running time and size than the execution of separated primitives.
Second, modelling security is more subtle and complex since one of the primitives can influence
or compromise security of the other, see for example [AR10].

SECURITY NOTIONS FOR AKEMS. There are two main security properties for AKEMs: Con-
fidentiality and Authenticity. Both can be considered in two different settings. In the outsider
setting, adversaries do not take part in the communication between two honest parties. In
the insider setting, adversaries can corrupt one party taking part in the communication, and
security guarantees should still hold for the other honest party. In the following, we will focus
on the stronger insider setting. More explicitly, confidentiality in the insider setting means that
an adversary cannot learn any valuable information from a ciphertext sent to an honest party
even if they know the sender’s secret key.! Insider authenticity means that it should be hard
for an adversary to come up with a valid ciphertext which authenticates an honest party as
the sender, even if they know (or choose) the receiver’s secret key.

An additional property of AKEMs is sender deniability which means that a sender can
plausibly deny having sent a (potentially incriminating) message to a third party judge. Note
that the sender wants to authenticate themselves to the designated receiver at the same time.
In the honest receiver setting, we assume that the receiver does not fake any ciphertexts to
frame the sender and the judge is aware of this. Additionally, the judge does not know the
receiver’s secret keys but has knowledge about the sender’s secret key; for example, the sender
could be compelled by law enforcement.

APPLICATIONS. When introduced, AKEMs were used to model and prove two modes of HPKE
[BBLW22, ABH"21]. The RFC discusses several modes, e.g., the AuthPSK mode, analyzed
in [AJKL23], which is specified to be used in the Message Layer Security (MLS) proto-
col [BBR™23], a standard for secure group messaging. While the current RFCs implement
cryptography over prime-order groups, post-quantum (PQ) versions for MLS as well as for
HPKE are under consideration and not released yet. Even though the community has stan-
dardized PQ KEMs and signature schemes with thorough analyses, using these building blocks
in higher level protocols and more complex primitives can lead to the need of a more involved
analysis. Additionally, AKEMs occur implicitly in higher level protocols, making them an in-
teresting target to study. One example is the usage of signcryption in Apple’s iMessage protocol
which was identified and abstracted in a later step [BS20a]. Similarly, there is a connection
between AKEMs and (PQ variants of) Signal’s X3DH protocol [MP16], as observed and used
in [BFG*20, CHN*24,Nio25])2. The abstraction of a symmetric-key variant of signcryption has
further revealed security issues in group messaging applications [JKS24, JK25].

It is crucial to understand these components and implications to the higher level protocols’
security guarantees. Especially when moving to PQ security, this can ensure the secure replace-
ment of building blocks. However, this may come with a loss in efficiency; mostly in terms of

! The concrete notion is even stronger by allowing the adversary to choose the sender’s key arbitrarily.

2 Brendel et al. [BFG'20] introduced the notion of a split KEM to replace X3DH. AKEMs can be
seen as a generalization of split KEMs and in particular have the same syntax as symmetric split
KEMs.



communication cost due to increased sizes, sometimes also in terms of running time. Hence,
concrete optimized constructions have been considered both in the classical (DH) setting and
in the lattice setting. We will discuss and compare these as well as black-box constructions in
Section 1.2. To date, there is still no non-black-box construction for AKEMs from isogenies,
leveraging the full potential. We aim to fill this gap by applying randomness reuse techniques
to isogeny-based KEMs and signatures.

ISOGENIES. Isogeny-based cryptography is a branch of post-quantum cryptography that is
gradually attracting researchers’ interest for its very compact sizes. It can be divided in two
different (but connected) frameworks: oriented and non-oriented.

The oriented framework is based on the class group action on special subsets of elliptic
curves. The most prominent scheme in the oriented case is CSIDH [CLM 18], a NIKE that
allows for an easy abstraction in the language of group actions [ADMP20]. While it is by
far the most compact NIKE achieving post-quantum security, its main bottleneck remains
computational efficiency compared to other post-quantum KEMs [CCSC™24]. Moreover, there
exists a subexponential quantum attack on all oriented isogeny-based schemes [Kup05], and
their quantum security is still an open question [Pei20, BS20b, CSCJR22].

The non-oriented framework, on the other hand, does not suffer from the same quantum at-
tack. Furthermore, non-oriented constructions are typically much more efficient and compact.
One example is the signature scheme SQISign introduced in 2020 [DKL'20] and currently sub-
mitted to the NIST competition [Cal]. Another non-oriented scheme is the SIDH NIKE, which
was submitted to the first PQ NIST competition, but broken in 2022 during the fourth and last
round. The break-through attacks [CD23, MMP*23, Rob23] drastically changed isogeny-based
cryptography, introducing a new tool-box for isogeny-based constructions based on higher-
dimensional (HD) isogenies [Rob24]. One of the first and most prominent schemes leveraging
HD isogenies is SQISignHD [DLRW24], a successor of SQISign that improves on both efficiency
and compactness. Additionally, the POKE scheme in [BM25] represents the most recent PKE
proposal leveraging HD isogenies.

CONTRIBUTIONS. We summarize our contributions as follows:

— We give a generic AKEM construction called SnakeMackerel (short: SnakeM) from a split-
ciphertext KEM and an ID scheme, in which randomness is shared between (parts of) the
KEM ciphertext and the commitment of the ID scheme.

— We give new definitions for the underlying building blocks to achieve insider confidentiality
and authenticity for AKEMSs as well as honest receiver deniability. Our definitions are as
weak as possible, but we need to take into account challenges in isogeny-based cryptography
which are not present in the traditional Diffie-Hellman setting. (See technical overview for
more details.)

— We propose SQIsignHD ™, a modification of the SQIsignHD identification scheme that fea-
tures non-malleable response isogenies.

— We construct an efficient AKEM from isogenies by combining the POKE KEM and SQIsignHD™
identification scheme. This way, we get compact public keys and ciphertexts.

1.1 Technical Overview

Classical constructions are often used as a blueprint to construct PQ schemes. Our starting
point is (a variant of) the insider-secure AKEM from Zheng [Zhe97]. In contrast to [Zhe97],
we use an ElGamal KEM instead of a Diffie-Hellman NIKE for the sake of our exposition. The
idea is the same but it is more general and fits our later construction better.

RANDOMNESS REUSE. The main idea for an efficiency gain is to share the randomness for both
schemes, i.e., keep the randomness for the KEM and reuse it for the signature scheme. More
specifically, consider the encapsulation algorithm of an ElGamal KEM:

(ct = (g",pk" - k), k) < Encaps(pk; ),
where we make the randomness r explicit. Similarly, we write a Schnorr signature as

(com = ¢, rsp = r + sk - chl) < Sign(sk, m; 1),



where chl = H(com, m) for some hash function H. For a separate execution, the AKEM cipher-
text would consist of the KEM ciphertext and the signature. If we use the same randomness
r for both primitives, we can save one element since the first part of the KEM and the com-
mitment of the signature scheme have the same distribution. To enhance security, the two
primitives can be interleaved by signing the KEM key along with some context, i.e., computing
H(com, (k, ctxt)), where the context ctxt may include the KEM public key and other (public)
information, and the final AKEM key is derived via another random oracle H’(com, k, ctxt’),
where ctxt’ may now also include rsp.

While in the above construction reusing the randomness preserves security (under slightly
stronger assumptions, see also Appendix F), this is not generally true. Not only does it in-
crease the complexity of the analysis, it can also introduce security vulnerabilities. The idea of
reusing randomness for efficiency improvements also appears in other contexts, e.g., for multi-
recipient PKE schemes [BBS03,BF07]. However, reusing the randomness between two different
primitives, i.e., KEM and signatures, is generally expected to be more complex.

To see the concrete requirements for reusing the randomness, we provide a general construc-
tion based on a split-ciphertext KEM and a canonical identification (ID) scheme. Splitting the
encapsulation and the resulting ciphertexts of the KEM is inspired by the above construction
and opens the door for a reusability property. A similar approach was used in [ABF12,AGKS05].
Note that it is possible to interpret any KEM as having a split encapsulation and ciphertext;
some can be even split naturally, e.g. [BDKT18, BM25]. At this point, we want to highlight
one property that will be important for our abstraction, namely that in the above example the
second part of the ciphertext is deterministically computed from the randomness. This will not
be the case for us and will introduce additional challenges.

In the following, we will only use the notion of split-ciphertext KEMs and simply denote it
as a KEM. For the construction to work, the KEM and the ID scheme need to be compatible
in the sense that the first encapsulation of the KEM must be the same algorithm as the
computation of the commitment of the ID scheme. Assuming compatibility, we then show that
our construction SnakeM fulfills the following security notions in the random oracle model:

— Insider CCA: This is the strongest confidentiality notion for AKEMs and requires the
underlying KEM to be one-way secure in the presence of a plaintext checking oracle.

— Insider Authenticity: This is the strongest authenticity notion for AKEMs and requires
the underlying ID scheme to be secure against impersonation attacks, special soundness,
and non-malleability. While the two former notions are well established for ID schemes, we
introduce the latter one to catch an edge case that comes up for ID schemes that do not
have a unique response. For an ID scheme to be non-malleable it should be hard given a
valid transcript (com, chl, rsp) to find a new response rsp’ such that (com, chl, rsp’) verifies
as well. The notion can be seen as an ID equivalence of the gap between (plain) existential
unforgeability and strong existential unforgeability of a signature scheme. Further, we need
these notions in the presence of an encapsulation oracle.?

— Honest Receiver Deniability: This is the strongest notion of deniability when fulfilling
insider authenticity at the same time, and our construction only requires one-wayness of
the KEM. One of the main challenges is to handle the signature which is publicly verifiable
and thus can break deniability trivially due to its non-repudiation. One technique is to
encrypt the signature so that it can only be verified by the holder of the KEM secret key.
We show that in our construction a simpler approach suffices. Namely, we only need to
encrypt the response (of the underlying ID scheme) and, interestingly, we only require a
simple XOR~padding instead of a full encryption scheme.

The ElGamal KEM satisfies all these properties and thus yields a very efficient and strongly
secure AKEM scheme in the prime-order group setting. The two main reasons are that the
two primitives are using the same or very similar mathematical structure, i.e. the underlying
group, and that they are simple in the sense that the ciphertext/signature components are just

3 Similarities and differences to a transcript oracle are discussed in Section 3.1 and Appendix F.



(Pr, Q1) = ([ap)@skenc(Po), [aq]wskenc(Qo)) Py, Qo € Ey[2°)
)

(R1, S1) = ([ors]@skenc(Ro), [rs]@skenc (S0)) Ry, So € Eo[N]
(X1,Y1) = ([axy]pskenc(Xo0), [x v ]@skenc(Y0)) Xo, Yo € Eo[D]
Eenc (PskEnc Ey Psksig Egig
@<--—---l1 - _______ ° °
@éom Pcom Dchal
’
PskEnc Prsp
@< ———-- T @ - - mmm oo >0
ct Ecom Echal
(Ps,Q3) = ([BP]@com(P1); [Baleom(Q1)) U,V € Ecom[2°] (U, V") = (@p(U), rsp(V))

X2,Y2 € Ecom[D]
(P2, Q2) = ([Br]pcom (Po); [Be]@com(Q0))

Fig. 1. SnakeM instantiated with POKE (left) and SQIsignHD (right). Blue values are computed
deterministically, red values are secrets. Dashed lines represent HD isogenies. The shared key is
(X3,Y3) = A+ (0lom(X1), peom(Y1)) " = ([axv]puenc(X2), [axy]henc(Y3)) for some A € GL(2, D)
(cf. Section 4).

single group elements. However, for PQ secure schemes, the mathematical structures are more
complicated and the schemes are getting more involved.

In [ABF12], Arriaga, Barbosa and Farshim provide a similar composition with randomness
reuse for compatible PKE and signature schemes, instantiated over pairing groups. We want
to note that (1) their syntax is insufficient to capture our isogeny-based instantiation due to
extra randomness being required in the second ciphertext part of the KEM, (2) their security
notions for the two building blocks are quite strong (e.g., they imply CCA security and strong
unforgeability) and (3) they require a property called conditional injectivity (similar to non-
malleability) for both KEM and signature that we do not need for the KEM and that we can
relax for the signature (or, more specifically, ID) scheme.

RANDOMNESS REUSE WITH ISOGENIES. We instantiate our generic construction SnakeM with
POKE and (a modified version of) SQIsignHD, yielding the construction in Figure 1, which
we call SnakeM-Iso. Notably, the commitment isogeny ¢com and commitment curve Fcom is
shared amongst both schemes. In this case, leveraging randomness reuse presents itself with
several challenges. On the one hand, we need to ensure compatibility between POKE and
SQIsignHD. This mainly involves finding a suitable prime characteristic p that provides enough
accessible torsion for POKE and SQIsignHD. On the other hand, SQIlsignHD does not satisfy
the non-malleability property required for SnakeM’s strong authenticity guarantees, making a
modification necessary. We discuss these challenges and their solutions in the next paragraphs.

ACCESSING TWISTED TORSION. In order to unify the prime requirements of POKE and
SQIsignHD while also achieving more compact sizes, we make use of the technique introduced in
B-SIDH [Cos20]. The idea is that for each [F,2-rational curve E with accessible (p 4 1)-torsion,
there exists another curve E', called the quadratic twist, with accessible (p — 1)-torsion, such
that £ and E? are isomorphic only over the quadratic extension Fp4. Thus, one could extend
the base field and access torsion p? —1 = (p+1)(p—1) for efficient isogeny computations. For-
tunately, most of these computations are twist-agnostic, meaning that they can be performed
via z-only arithmetic over F,2. Therefore, one can use the accessible torsion of both E and E*
without extending the field.

NON-MALLEABLE RESPONSE ISOGENIES. In SQIsignHD the response is an isogeny ¢rp :
Ecom — FEcha between the commitment and challenge curve. Since the degree of ¢y is a
(potentially non-smooth) integer ¢, SQIsignHD represents ¢, via a 4-dimensional isogeny &,
eliminating any smoothness condition on ¢. The HD isogeny @ is then represented as the tuple
(¢, U', V"), where (U’, V') are the images of deterministically chosen points (U, V') under ¢ysp.



Table 1. Comparison of different AKEMs along with their security notions and whether they are
post-quantum secure (PQ). Deniability properties marked with a “+” have not been formally proven
in the respective work. { CSIDH parameters are chosen according to the most aggressive parameter
set found in [CCSC™24] and discussed in more detail in Section 1.2.

Size (in bytes)

Scheme (variant) Confidentiality ‘Authenticity Deniability‘PQ o ok

Group-based

DH-AKEM [ABHT21] [Ins-CCA [Out-Aut  [DR” [ X] 32 32
Zheng [Zhe97, BSZ02] [Ins-CCA [Ins-Aut |HR" | x| 64| 64
Lattice-based

ETSTH-AKEM (BAT + ANTRAG) [AJKL23] Tns-CCA Out-Aut — v 1119 1417
NIKE-AKEM (SwoosH) [AJKL23] Ins-CCA Out-Aut DR* v |>221184|> 221184
EANTH-AKEM (BAT + SwoosH)” Ins-CCA Out-Aut DR v 473|> 221 705
FRODOKEX+ [CHNT24] IND-1BatchCCA|UNF-1KCA DR v 72 21 300
SPARROW-KEM [Nio25] IND-1BatchCCA |UNF-1KCA |DR v 40 2592
DEN. AKEM (BAT + GANDALF) [GJK24] Ins-CCA Out-Aut HR & DR | vV 1749 1417
Isogeny-based

ETSTH-AKEM (POKE-4D + SQIsicNHD) [AJKL23]|[Ins-CCA Out-Aut — v 336 291
NIKE-AKEM (CSIDH) [AJKL23] Ins-CCA Out-Aut DR” v 2567 2567
EANTH-AKEM (POKE-4D + CSIDH)? Tns-CCA Out-Aut DR” v/ 230 483
DEN. AKEM (POKE-4D + EREBOR) [GJK24] Ins-CCA Out-Aut HR & DR | V/ 586 291
SnakeM-Iso (Section 6) Ins-CCA Ins-Aut HR v 216 366

However, it is possible to find d € N such that the tuple (d?q, [d]U’, [d]V") is still a valid repre-
sentation of an isogeny goﬁsp : Ecom — Echa having the same domain and codomain. Crucially,
the represented ¢y, is not cyclic anymore since it factors as ¢y, = @rspod]. Therefore, it would
be desirable to check the cyclicity of ¢, given its HD representation . Although a generic
cyclicity check is currently out of reach, we show that it is sufficient to check whether ¢,

factors through a small scalar multiplication with d? < logp, which requires minimal changes
to SQIsignHD.

1.2 Performance and Comparison

In Table 1, we compare AKEMs from the literature to our construction SnakeM-Iso. We include
constructions based on elliptic curves as a baseline. We then list lattice-based and isogeny-based
AKEMs, their security guarantees and ciphertext and public key sizes. We instantiate black-box
constructions with the most compact schemes we are aware of, as denoted in the table.

BLACK-BOX CONSTRUCTIONS. There are several black-box constructions, e.g. [AJKL23,GJK24,
GHJ25, ADR02, AR10], that can be instantiated from PQ secure primitives. Namely, ETSTH-
AKEM, NIKE-AKEM, and EANTH-AKEM from Table 1. A more detailed discussion of the
schemes as well as a brief overview of early work in signcryption can be found in Appendix A.

LATTICE-BASED AKEMS. Concrete, i.e. non-black-box, constructions for AKEMs (or Split
KEMs?) were proposed from lattices [BFG*20, CHN'24, Nio25] as a building block for key
exchange, for example FRODOKEX+ [CHN'24] and SPARROW-KEM [Nio25]. This is par-
ticularly useful in the PQ setting due to the lack of secure and efficient non-interactive key
exchange (NIKE) schemes. Among the black-box constructions, sizes vary a lot and constitute
the main bottleneck. Hence, to the best of our knowledge, we choose the smallest instantia-
tions. For the KEM, we choose BAT [FKPY22|, for the signature FALCON [PFH™20] using
ANTRAG [ENST'23] trapdoor generation, for the NIKE we choose SwoosH [GAKQ™24], and
for the ring signature GANDALF [GJK24] based on ANTRAG.

[SOGENY-BASED AKEMS. The only isogeny-based AKEMs are based on existing black-box
constructions. Like in the lattice setting, we choose the most efficient instantiations found in the
literature for our comparison. Regarding the KEM, POKE outperforms other competitors like
FESTA [BMP23] and M(D)-SIDH [FMP23]. Compared to QFESTA [NO24], POKE offers
smaller ciphertexts but slightly larger public keys. Additionally, POKE is an order of magnitude

4 The construction EANTH, ENCAPSULATE-AND-NIKE-THEN-HASH, is briefly discussed in Ap-
pendix A.



faster than QFESTA. For the NIKE, CSIDH [CLM 18] is the only viable option as other
class group actions, such as SCALLOP [DFK™23|, take minutes to compute. Nevertheless,
due to the ongoing debate about CSIDH’s quantum security and the subsequent increase of
parameters, even an optimal implementation of CSIDH takes several seconds to compute as
well. Regarding signatures, SQISIGNHD is the most compact isogeny-based signature scheme.
In terms of efficiency it is, however, outperformed by the more recent SQISIGN2D-WEST
[BDD"24]. Lastly, for the ring signature we choose EREBOR [BLL24], which represents the
most compact PQ ring signature for ring sizes up to 31 users.

OUr AKEM SnakeM-Iso. Our new construction SnakeM-Iso represents one of the most efficient
PQ AKEMs to date. In terms of size of combined public key and ciphertext, it outperforms
all lattice based constructions by at least a factor of x4, and it is also more compact than all
other isogeny-based constructions. Compared to group-based constructions, SnakeM-Iso offers
PQ security but cannot match the high performance and compactness of any group-based
scheme — a trade-off that is common across all PQ constructions.

2 Preliminaries
2.1 Notation

SETS AND ALGORITHMS. Unless stated otherwise, we assume that elliptic curve points are
specified by their z-coordinate only. We write s < S to denote the uniform sampling of s from
the finite set S. For an integer n, we define [n] := {1,...,n}. Unless otherwise stated, algorithms
are probabilistic, and we write (y1,...) < A(z1,...) to denote that A returns (y1, . . .) when run
on input (z1,...). We write A8 to denote that A has oracle access to B during its execution and
by return we denote the termination of oracle B or any other subroutine. Moreover, output
denotes the termination of the main routine. For an algorithm A, we write x € A to denote
that z is in the support of A. By “log” we denote the logarithm of base 2, by “In” of base e.
For a Boolean statement B, the notation [B] refers to a bit that is 1 if the statement is true
and 0 otherwise.

GAMES AND NOTIONS. Throughout the paper we use code-based games [BR06], where Pr[G =
1] denotes the probability that the final output of game G is 1. We implicitly assume that all
primitives are defined over public parameters which are given to all its subroutines and with
respect to a random oracle space [BR93|. For every primitive we introduce, we denote by
derive(sk) the public key derivation algorithm, which takes as input a secret key sk and outputs
a (deterministic) public key pk. We may abuse notation and also allow tuples of secret keys as
input, that is (pky, pk;) = derive(skg, sk1).

2.2 Prime Numbers for Isogeny Computations

In this section we make some definitions regarding prime numbers. Further isogeny-related
preliminaries can be found in Appendix B.

We start by defining prime numbers that are particularly suitable for efficiently computing
rational isogenies of large degree.

Definition 2.1 (B-SIDH prime). Letp=2%—1 be a prime number. We call p a B-SIDH
prime if p> — 1 =2°ND for some smooth N € N.

The literature on how to compute B-SIDH primes is quite extensive [Cos20, Ste24, CMN21,
SEMR24a]. There exist many examples of such primes with various trade-offs between the
smoothness of N, the proportional size of 2* and the overall size of p.

Additionally, some isogeny computations internally rely on Cornacchia’s algorithm [Cor08]
to solve Diophantine equations. The following definition characterizes primes that allow for an
easy solution of those equations.

Definition 2.2. For some n € N an integer q is called 2"-good if 2™ — q is a prime congruent
1 modulo 4.



2.3 Authenticated KEMs
In this section, we introduce syntax and security of authenticated KEMs (AKEMs).

Definition 2.3 (Authenticated Key Encapsulation Mechanism). An authenticated
key encapsulation mechanism AKEM is defined as a tuple AKEM := (Gen, AEncaps, ADecaps)
of the following PPT algorithms.

(sk, pk) <& Gen: The probabilistic generation algorithm Gen returns a secret key sk and a cor-
responding public key pk. We implicitly assume the existence of a shared key space IC.

(ct, k) < AEncaps(sksnp, Pkrey): Given a (sender’s) secret key sksnp and a (receiver’s) public
key pkrey®, the probabilistic encapsulation algorithm AEncaps returns a ciphertext ct and
a shared key k € K.

k <— ADecaps(pksnps Skrev, ct): Given a (sender’s) public key pkenp, a (receiver’s) secret key
skrev, and a ciphertext ct, the deterministic decapsulation algorithm ADecaps returns a
shared key k € KC or a failure symbol L.

The correctness error dpkem s defined as the smallest value such that for all (sksnp, pPksnp ), (Skrev,
pkrcy) € Gen it holds that

Pr [ADecaps(pksnp, Skrev, ct) # k| (ct, k) <= AEncaps(sksnp, Pkrey) | < Sakem-

We now turn to defining security. As previous works, we consider confidentiality, authenticity
and deniability, which we will discuss in more detail below. In this work, we will focus on the
single-user and single-challenge setting. One can also define corresponding multi-user multi-
challenge notions analogously to the ones in [ABHT21, GJK24]. The single notions generically
imply the multi-user multi-challenge notions using a hybrid argument incurring a loss in the
number of users and the number of challenges.

CONFIDENTIALITY. We consider the strongest possible notion of CCA security for an AKEM,
in particular that of insider security [ABH"21]. In comparison to [ABHT21], we slightly
strengthen the notion by allowing the adversary to choose the challenge receiver to be also
the sender when issuing a challenge query; this corresponds to a ciphertext that a party en-
crypted to itself. Even though this is only a small technical change, it enables a direct and
tight proof showing that security in the insider setting implies security in the outsider setting
which matches intuition.

Definition 2.4 (Insider CCA). For an AKEM, Insider-CCA is defined via the game in
Figure 2. We define the advantage of an adversary A as

-Ins- 1
Ady (B ®=) I CA4) — P [(gene, gpec)-Ins-CCAakem (A) = 1] -3l

AUTHENTICITY. We also consider the strongest notions of authenticity, namely insider au-
thenticity similar to [GJK24] with the difference that we again allow for “encrypt-to-self”
challenges. An insider adversary can choose a receiver’s secret key by themselves which models
a scenario in which it should be hard to distinguish between a real and a random key even for
the designated receiver party. Due to our strengthened notion including the “encrypt-to-self”
case one can directly reduce outsider security to insider security which matches intuition.

Definition 2.5 (Insider Authenticity). For an AKEM, Insider-Authenticity is defined via
the game in Figure 3. We define the advantage of an adversary A as

Ins-Au 1
Advgqli’gl’\zn“) Ins-A t(A) = |Pr[(¢enc 9pec )-Ins-Autakem (A) = 1] — 3|

5 While we make sender and receiver explicit in the notation here, a secret /public key can be used
for sending and receiving.



Game (genc, goec)-Ins-CCAakem(A) Oracle Decps(pk, ct)

00 Lp« D 07 if 3k : (pk,ct, k) € Lp
01 (sk*,pk*) <& Gen 08 return k
02 80,1} 09 k <+ ADecaps(pk, sk*, ct)
03 Bl %AEMPS’DQCPS’Chau(pk*) 10 return k
04 return [ = f']
Oracle Chall(sk) \\ one query
Oracle Encps(pk) 11 if sk= \\ “encrypt-to-self”
05 (ct, k) <~ AEncaps(sk*, pk) 12 sk ¢ sk*
06 return (ct, k) 13 (ct, k) € AEncaps(sk, pk*)
wiff=1
15 k&K

16 Lp < Lp U {(derive(sk), ct, k)}
17 return (ct, k)

Fig. 2. Game defining Ins-CCA security for an authenticated key encapsulation mechanism AKEM =
(Gen, AEncaps, ADecaps) with adversary A making at most g queries to Encps and at most gpec
queries to Decps.

Game (genc, goec )-Ins-Autakem(A) Oracle Decps(pk, ct)
00 Lc+ 0 08 k <+ ADecaps(pk, sk*, ct)
01 (sk*,pk*) < Gen 09 return k
02 B¢ {0,1}
03 [ & AFncpsiDecps,Chall () ex) Oracle Chall(sk, ct) \\ one query
04 return [8 = 3] 10 if sk =% \\ “encrypt-to-self”
11 sk « sk*
Oracle Encps(pk) 12 if Jk: (pk*, derive(sk), ct, k) € Lc
05 (ct,k) < AEncaps(sk*, pk) 13 return k
06 Lc + Lc U {(pk*, pk,ct, k)} 14 k + ADecaps(pk*, sk, ct)
07 return (ct, k) 15 if B=1Ak# L
16 k&K
17 return k

Fig. 3. Game defining Ins-Aut security for an authenticated key encapsulation mechanism AKEM :=
(Gen, AEncaps, ADecaps) with adversary A making at most gec queries to Encps and at most gpec
queries to Decps.

DENIABILITY. We base our definition for deniability on [GJK24] but use a two-user setting to
allow for a simplified analysis. From there, one can get multi-user multi-challenge security by a
hybrid argument. Gajland et al. [GJK24] discuss two different settings for deniability; in one the
receiver is dishonest, in the other one the receiver is honest. Further they note that deniability
in the dishonest receiver setting and insider authenticity are mutually exclusive. Since we aim
for a scheme fulfilling insider authenticity, we focus on the honest receiver setting. In the honest
receiver setting, a sender can plausibly deny having sent a message to an honest sender in the
presence of a third party judge. This holds even if the sender’s keys leak but not the (honest)
receiver ones.%

Definition 2.6 (Deniability). For an AKEM and a simulator Sim, honest receiver denia-
bility is defined via the game in Figure 4. We define the advantage of an adversary A as

) 1
AdviRem sim (A) = |Pr[HR-Denakem,sim(A) = 1] — 3

2.4 Split-Ciphertext KEM

To leverage randomness reuse in our higher level scheme, we need to use a modification of
classical KEMs. We split the encapsulation procedure and the resulting ciphertext into two

5 The case were the receiver’s keys leak as well is not a meaningful security notion (see [DHM 20,
GJK24] for more details).
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Game HR—DenAKEM,s;m(A)

00 (ski,pk,) < Gen

01 (ska, pky) < Gen

02 (cto, ko) < AEncaps(ski, pksy)
03 (ct1, k1) < Sim(pky, pky)

04 B¢ {0,1}

05 B+ A(ski, pky, pke, cta, kg)
06 return [8 = 3]

Fig. 4. Game defining honest-receiver deniability for an AKEM AKEM := (Gen, AEncaps, ADecaps)
and a simulator Sim for adversary A.

parts and call this primitive a split-ciphertext KEM. Note that every KEM can be considered as
a split-ciphertext KEM. However, as discussed in the technical overview, for some constructions
there is a natural way how to split the ciphertext which makes these constructions particularly
useful for our main scheme. A similar design was introduced in [ABF12, AGKS05].

Definition 2.7 (Split-Ciphertext KEM). A split-ciphertext key encapsulation mecha-
nism KEM is defined as a tuple KEM = (Gen, Encaps,, Encaps,, Decaps) of the following PPT
algorithms.

(sk, pk) <& Gen: The probabilistic generation algorithm Gen returns a secret key sk and a cor-
responding public key pk. We implicitly assume the existence of a shared key space K and
partial randomness space R.

(cto, R) <~ Encaps, : The probabilistic first encapsulation algorithm Encaps, returns a first ci-
phertext part cty and a partial randomness R € R.

(cty, K) <& Encaps, (pk, R): Given a public key pk and partial randomness R € R, the proba-
bilistic” second encapsulation algorithm Encaps, returns a ciphertext ct; and a shared key
Kek.

K < Decaps(sk, ctg,ct1): Given a secret key sk and a first and second ciphertext cty and cty,
the deterministic decapsulation algorithm Decaps returns a shared key K € KC or a failure
symbol 1.

The correctness error dxem s defined as the smallest value such that for every (sk,pk) € Gen
it holds that

(cto, R) < Encaps

Pr | Decaps(sk, ctg, cty) # K (ct1, K) < Encaps, (pk, R)

< OKEM.

Further we define the spreadness of the second ciphertext part, denoted by ykem, as the smallest
value such that for every (sk, pk) € Gen, every R € R, and every ct*, it holds that

Pr [ct* = cty] (cty,-) < Encaps, (pk, R) | < vem-

Note that if the second encapsulation Encaps; is deterministic there is not spreadness and it
holds YKEM = 1.
We also recall two standard definitions, adapted to split-ciphertext KEMs.

Definition 2.8 (OW). For a split-ciphertext KEM KEM, one-wayness is defined via the game
in Figure 5. We define the advantage of an adversary A as

AdvRtin(A) = PrlOWyem(A) = 1].

Definition 2.9 (OW-KCA). For a split-ciphertext KEM KEM, one-wayness under key
checking attacks is defined via the game in Figure 5. We define the advantage of an adversary
A as

AdvieseOWKEA () . Prlgenec-OW-KCAkem (A) = 1].

" The algorithm is probabilistic even given R, i.e., there can be more randomness involved.
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Games OWkem (A)/theck-OW-KCAKgm(.A) CheCk(I{7 cto, Ct1) \ OW-KCA
00 (skiem, Pkiem) < Gen 05 K' «+ Decaps(skyem, (cto, ct1))

01 (ct§, R) < Encaps, 06 return [K = K']

02 (cti, K*) < Encaps,; (pkiem, R)

03 K & A™(pkiem, cth, cth)

04 return [K = K*]

Fig. 5. Games defining OW and OW-KCA security for a split-ciphertext KEM KEM = (Gen, Encaps,
Encaps, , Decaps) and an adversary A making at most gchecx queries to Check.

Game ¢rrans-Rsp-NMp (A) Oracle Trans

00 (sk,pk) < Gen 07 (com,st) <& Com

01 L+ 0 08 chl <~ ChlSet

02 (com, chl, rsp, rsp*) < A™2(pk) 09 rsp < Rsp(sk, com, chl, st)
03 if (com,chl,rsp) € £ and (com,chl,rsp*) ¢ £ 10 L+ LU {(com,chl,rsp)}
04 if Ver(pk,com,chl,rsp*) =1 11 return (com,chl, rsp)

05 return 1

06 return 0

Fig. 6. Game defining Rsp-NM for an ID scheme ID = (Gen, Com, Rsp, Ver) with challenge set ChlSet
and an adversary A making at most grrans queries to Trans.

2.5 Identification Scheme

We define standard identification (ID) schemes with a slight modification: The commitment
algorithm Com does not get the secret key as input. This is not a restriction for many ID
schemes since they do not use the secret key for the commitment anyway. Further standard
security notions for ID schemes like special soundness (SS) and impersonation against key-only
attacks (IMP-KOA) can be found in Appendix C.

Definition 2.10 (Identification Scheme). An identification scheme ID is defined as a tuple
ID := (Gen, Com, Rsp, Ver) of the following PPT algorithms:

(sk, pk) <& Gen: The probabilistic generation algorithm Gen returns a secret key sk and a cor-
responding public key pk. We implicitly assume the existence of a challenge set ChlSet.
(com, st) <~ Com: The probabilistic commitment algorithm Com returns a commitment com and
a state st.

rsp <= Rsp(sk,com, chl,st): Given a secret key sk, a commitment com, a challenge chl € ChlSet
and a state st, the response algorithm Rsp returns a response rsp.

0/1 < Ver(pk, com, chl rsp): Given a public key pk, a commitment com, a challenge chl, and a
response rsp, the deterministic verification algorithm Ver returns 0 (reject) or 1 (accept).

The correctness error dip is defined as the smallest value such that for all (sk,pk) € Gen it
holds that

$
Pr | Ver(pk, com, chl, rsp) # 1 (com, st) g ;om < dp.

rsp sp(sk,com, chl,st) | =
Further, we define commitment spreadness as
~p = max Pr[com* = com | (com,-) <* Com].
com*

We also define a non-malleability property for transcripts.

Definition 2.11 (Response Non-Malleability). Let ID be an identification scheme. Con-
sider the game @rrans-Rsp-NMp in Figure 6. We define the advantage of an adversary A
as

Adviizee=sRPNM( AY — Pr{gr,ane-Rsp-NMip (A) = 1].

Remark 2.12. Response non-malleability is weaker than the notion of Computational Unique
Response (CUR) in [DFPS23], meaning that we put additional restrictions on the output of
the adversary. In particular, in the response non-malleability game the transcript for which the
adversary computes a forgery must be honestly generated by the Trans oracle, which is not
required for CUR.
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SnakeM.Gen SnakeM.ADecaps(pksyp, Skrev, ct)

00 (skkem, Pkeem) <& KEM.Gen 18 parse pkenp = (-, Pkip)

01 (skip, pkip) <& 1D.Gen 19 parse skrcy = (skkewm, *S)

02 s < {0,1}" 20 parse ct = (com, cti, Ctrsp)

03 sk  (skkem, skip, s) 21 pkgey < derive(skrev)

04 pk + (pkkems PKip) 22 K + KEM.Decaps(skkem, com, ct1)

05 return (Sk7 pk) 23 if K =1 \\ Decaps may fail
24 K +s

SnakeM.AEncaps(sksnp, pkrey) 25 (chl, pad) < G(pkp, com, pkgcy, ct1, K)

06 parse sksnp = (-, skip, ) 26 rsp < Ctrsp @ pad

07 parse pkgcy = (Pkkem) *) 27 if ID.Ver(pkp, com, chl,rsp) =1 :

08 pkp « derive(skip) 28 k< H(K, com,cty, rsp, pkeyp, PKrev)

09 pkgyp < derive(sksnp) 29  return k

10 (com, R) <~ ID.Com \com=cto 30 return L

11 (ct1, K) <* KEM.Encaps, (pkyem, R)

12 (chl, pad) < G(pk,p, com, pkgcy; cti, K)

13 rsp < ID.Rsp(skip, com, chl, R)

14 ctesp — rsp @ pad

15 ct < (com, cty, Ctrsp)

16 k < H(K, com,cty, rsp, pksnps PKrey)

17 return (ct,k)

Fig. 7. Construction of SnakeM[KEM, ID, G, H].

3 SnakeMackerel (SnakeM)

We present a generic construction of an AKEM built from a split-ciphertext KEM and an
identification scheme. Since we want to reuse part of the randomness to increase concrete
efficiency, both underlying building blocks need to be compatible.

Definition 3.1 (Compatibility). A split-ciphertext KEM KEM = (Gen, Encaps;, Encaps;,
Decaps) and an identification scheme ID = (Gen, Com, Rsp) are compatible iff Encaps, = Com,
i.e., the algorithms are exactly the same.

Our construction SnakeMackerel (short: SnakeM) can be found in Figure 7. More specifi-
cally, SnakeM[KEM, ID, G, H] is constructed from a split-ciphertext KEM KEM, an identifi-
cation scheme ID, and two hash functions G and H where KEM and ID are compatible,
G : {0,1}* — ChlSet, and H : {0,1}* — K with K being the shared key space of the re-
sulting AKEM. We include a seed in the secret key which is used for implicit rejections of
KEM ciphertexts;® this not necessary to fulfill our security guarantees but allows for uniformly
random outputs in case of invalid KEM ciphertexts which can be helpful in higher level proto-
cols. We further use RspSpace to denote the response space of the ID scheme. In SnakeM, we
encrypt the responses by interpreting every element in RspSpace as a bit-string and XORing
them with a uniformly random padding value.

The correctness of SnakeM follows directly.

Lemma 3.2 (Correctness). It holds that dspakeMKEM,ID,G,H] < OKEM + JID-

Remark 3.8 (Public Key Reuse). One could further save space in the public key by using the
same key pair for both roles, namely as sender and receiver. We note that this may be applicable
to our final isogeny-based construction, although we would need a non-trivial notion of public-
key compatibility in addition to the current compatibility notion, since the signature public
key is only contained in (but not exactly distributed in the same way as) the encryption public
key. Also, we expect security notions to be more contrived, which is why we leave a formal
analysis for future work. Previously, public key reuse was also studied in [PSST11]. However,
they rely on identity-based encryption (IBE) instead of standard PKE/KEM, and we are not
aware of any isogeny-based IBE scheme.

8 The final AKEM does not fully implicitly reject ciphertexts, i.e., it does still explicitly reject if the
(partially encrypted) signature does not verify. Interestingly, it seems hard to even define authenticity
for fully implicitly rejecting AKEMs (in a black-box way) since, intuitively, every ciphertext will
yield some output unequal to L.
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Games (ggnc, gen1, Goneck )-IMP-Enckem,ip (A)/ Oracle Encps(pkggn)
(enc, geneck)-NM-Enckem,ip (A) 09 (com, R) <& ID.Com
00 Lip, Lcni, Lenc < 0 10 (cty, K) & KEM.Encaps, (pkkem, R)
01 (skip, pkip) < ID.Gen 11 Lene + Lenc U {(K, pkyem, com, ct)}
02 (com*,chl*, rsp*) (i AEncps,Chal,Check(pkrD) 12 Ch' & Chlset
03 if ID.Ver(pkjy, com™, chl*, rsp*) =1 13 rsp < ID.Rsp(skjpy, com, chl, R)
04 if (com*,chl*) € Lcn \IMP-Enc 14 Lip < Lip U {(com,chl,rsp)}
05  if (com*,chl*,.) € Lip and 15 return (ct = (com,cti, rsp), chl)
(com*, chl*, rsp*) ¢ Lip \NM-Enc
06 return 1 Oracle Chal(com) \ IMP-Enc
07 return 0 16 chl <& ChlSet
17 Leh + Lew U {(com, chl)}
Oracle Check(K, pkygy,com, cty) 18 return chl
08 return (K, pkggm,com,ct1) € Lenc

Fig. 8. Games defining IMP-Enc and NM-Enc for an adversary A making at most ggnc queries to Encps,
at most gen1 to Chal, and at most geneck to Check.

Game (geac, geneck)-SS-Enckem,ip (A) Oracle Encps(pkyen)
00 Lenc < 0 06 (com, R) <& ID.Com
01 (skib, pkip) <= ID.Gen 07 (ct1, K) <& KEM.Encaps, (pkyem; R)
02 (com*, chly, chla, rsp,, rsp,) <& AFps:Check(piiy 08 Lenc + Lenc U {(K, pkxgms com, ct1)}
03 if ID.Ver(pkjp, com*, chly, rsp;) = 1 and 09 chl <& ChiSet

ID.Ver(pkj, com*, chlz, rsp,) = 1 and 10 rsp <& ID.Rsp(skp, com, chl, R)

chly # chly 11 return (ct = (com,cty,rsp), chl)
04  return 1
05 return 0 Oracle Check(K, pkygy, com, cti)

12 return (K, pkygy,com,cty) € Lenc

Fig. 9. Game defining SS-Enc for an adversary A making at most ge.c queries to Encps and at most
Qcnecx queries to Check.

3.1 New Notions

We first introduce some additional notions we need for the following security proofs. They all
have in common that they define security for an ID scheme in the presence of an encapsulation
oracle and a (split-ciphertext) KEM. This encapsulation oracle can be seen as a strengthening
of a common transcript oracle for ID schemes alone. In addition to an ID transcript, it outputs
the second part of a KEM encapsulation using the same commitment randomness as the ID
commitment. We elaborate more on the necessity of this approach in Appendix F. Apart from
this change, we define impersonation security (IMP) and special soundness (SS) as usual.
Another property we need in our proofs is non-malleability (NM) of the response which is not
covered by the other notions. It says that it should be hard, given an ID transcript containing
commitment, challenge, and response, to come up with a different response such that the new
response verifies together with the given commitment and challenge.

Definition 3.4 (IMP-Enc). For a KEM KEM and an ID scheme ID, impersonation under
encapsulations is defined via the game in Figure 8. We define the advantage of an adversary

A as
(qEnc,9en1 ,geneck )-IMP-Enc - _ _
AdeEMJD (A) := Pr[(qgac, gon1; Geneck )-IMP-Enckem,ip (A) = 1].

Definition 3.5 (NM-Enc). For a« KEM KEM and an ID scheme ID, non-malleability under
encapsulations is defined via the game in Figure 8. We define the advantage of an adversary

A as
AdV&qEﬁ,(llgeCk)_NM_Enc(A) = Pr[(¢enc, gcnecx)-NM-Enckem,ip(A) = 1].

Definition 3.6 (SS-Enc). For a KEM KEM and an ID scheme ID, special soundness under
encapsulations is defined via the game in Figure 9. We define the advantage of an adversary

A as
Adv&%mﬁg‘“k)_ss{nc(A) = Pr[(qgnc, QCheck)—SS-EnCKEMJD(.A) = 1].
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3.2 Security

We now give theorem statements for confidentiality, authenticity and deniability, along with
proof sketches. The full proofs can be found in Appendices D.1 to D.3, respectively.

Theorem 3.7 (Insider CCA). For any adversary A against Ins-CCA security of SnakeM[KEM,
ID, G, H] making at most qg random oracle queries to G and at most gy random oracle queries
to H, there exists an adversary B against OW-KCA such that

(QencGpec)-Ins-CCA (ge+gn)-OW-KCA
Adeiake?\/l[KEMs,lD,QH] (A) < Adviigy ™ (B) + dsnakem-

The full proof can be found in Appendix D.1.

Proof (Sketch). The proof is essentially based on the reduction to OW-KCA of the underlying
KEM which embeds the one-wayness challenge in the AKEM challenge oracle and can recognize
the correct key in any random oracle query. To make the simulation of the challenge oracle
sound, the reduction can choose a random encryption of the response. This works because
an adversary can only decrypt if they query one random oracle on the challenge KEM key
which implies a success against the OW-KCA game. The check oracle from OW-KCA is further
needed to answer decapsulation queries in conjunction with programming the random oracles
appropriately. All other queries can be answered by the reduction since it can sample their own
ID key pair. a

Theorem 3.8 (Insider Authenticity). For any adversary A against Ins-Aut security of
SnakeM[KEM, ID, G, H] making at most qc random oracle queries to G and at most qu random
oracle queries to H, there exist an adversary B against IMP-Enc, an adversary C against SS-Enc,
and an adversary D against NM-Enc such that

(GEnc soec )-Ins-Aut (genc+96:96+gn)-IMP-Enc (GEnc,96+qu)-SS-Enc
Advg i mikemip,c,n (A) < AdviEyip (B) + Advien'in ()

Ad (gEnc 96,96 +q1)-NM-Enc D Qenc * 4G
+ AdVKEM 1D (D) 7|Ch|5et|

+ Genc * 0D + Genc (g6 + GH) - VD VKEM,
where ChlSet is the challenge space of 1D.

The full proof can be found in Appendix D.2.

Proof (Sketch). The proof is mainly based on three similar reductions. Each captures an attack
against the ID scheme; impersonation, special soundness, and non-malleability. If none of these
cases occurs in the challenge query (and no random oracle collision either), the adversary has
no significant advantage in winning the game. This is because the three properties together
with collision resistance of the random oracle cover all cases in which the challenge oracle would
output something meaningful (queries from a previous encapsulation query, for example, do
not help to guess the challenge bit). To simulate the complete experiment, the reductions need
to answer encapsulation queries which is possible due to their definition. Decapsulation queries
can be answered since the reduction can sample their own challenge KEM key pair. O

In the previous theorem, we showed that SnakeM fulfills insider authenticity. As mentioned
in [GJK24], dishonest receiver deniability cannot be achieved for such a strong authenticity
property. However, they leave it as an open question if one can achieve honest receiver deni-
ability together with the strongest notion of authenticity. In the remainder of the section, we
show that SnakeM actually fulfills the strongest possible variant of honest receiver deniability
based on rather weak assumptions.
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Theorem 3.9 (Honest Receiver Deniability). There exists a PPT simulator Sim such
that for any HR-Den adversary A against SnakeM[KEM, ID, G, H] making at most qc random
oracle queries to G and at most gy random oracle queries to H, there exists an adversary B
against OW security such that

Advgrfz_t?em[KEM,lD,G,H},Sim(-A) < (g6 + an) - Advgu (B).
The full proof can be found in Appendix D.3.

Proof (Sketch). We can construct a simulator which computes an honest KEM encapsulation.
Note that by the compatibility of KEM and ID scheme, the commitment algorithm is exactly
the same as the first part of the encapsulation which makes the first two parts of the ciphertext
perfectly correct. The last part of the ciphertext, which is the encryption of the response, can
be simulated easily since a random element of the response space is indistinguishable from a
real encryption if the adversary does not query the random oracle to get the corresponding
encryption padding. However, if this happens, the adversary is able to break OW security of
the underlying KEM because the random oracle input includes the KEM key. a

Remark 3.10. In the proof, we guess the random oracle query for which the reduction wins the
OW game. Note that a tighter bound can be achieved when reducing to OW-KCA security.

4 POKE as Split-Ciphertext KEM

In this section we adapt (the four dimensional variant of) the POKE KEM [BM25] to a suitable
split-ciphertext KEM as in Definition 2.7 that is compatible with the ID scheme underlying
SQIsignHD. We start by describing the public parameters of POKE.

Let p=2%-c— 1 be a B-SIDH prime with N | (p> — 1) its smooth factor. Let Eq/F,2 be
the supersingular elliptic curve with j(Ey) = 1728, (P, Qo) = Eo[2°], (Ro, So) = Eo[N] and
(X0, Yo) = Eo[D]. We require pairwise coprimality between 2, N and D. The public parameters
are described by the tuple (p, Eg, Py, Qo, Ro, So, Xo, Yo).”

Remark 4.1. The shape of the prime p varies slightly compared to [BM25], mainly to ensure
compatibility with the SQIsignHD identification scheme. In particular, we incorporate the B-
SIDH approach as part of the N-torsion is defined over F s [Cos20]. Such an approach was
already considered in [BM25] but not formally implemented.

In Figure 10 we describe how key generation, encapsulation and decapsulation are per-
formed. Compared to [BM25], the presented version uses no KDF for key derivation. Addi-
tionally, we incorporate a different notation to make this section consistent with the rest of
the paper (see also Figure 1). In particular, we rephrase POKE as a split-ciphertext KEM
(Definition 2.7).

SECURITY OF POKE. The IND-CPA security of (the hashed version of) POKE was proven
assuming the computational POKE (C-POKE) problem [BM25, Problem 7 in the ePrint ver-
sion] and in the random oracle model. To instantiate SnakeM we require a slightly stronger
assumption than this, namely OW-KCA security (Definition 2.9), which has an additional key
checking oracle. Note that this assumption is also sufficient to prove IND-CCA security of the
POKE KEM in the ROM (similar to the strong Diffie-Hellman assumption for hashed ElGamal
in prime-order groups [ABRO1]), which is why we get Insider-CCA security. We discuss the
assumption in more detail in Section 6.1 and Appendix E.

% Note that all components can be derived deterministically from p which is why we omit them when
defining advantage functions.
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POKE.Gen POKE.Encaps1 (pk, Tcom)

00 G4 Zo2a 15 @com  IsogenyFromKernel y (Eo, 7'com)

01 if ¢ not prime or ged(¢, ND) > 1 or ¢ not 16 prom < IsogenyFromKernel y (Eenc, R1, S1, Tcom)
22%_good 17 Compute codomain Ec; of @rom

02  go to Line 00 18 (Bp,Bq) & Zsa x Zja

03 Compute random isogeny @skenc : Fo — Eenc 19 (P2, Q2) + ([Br]pcom(Po), [Ba]¢com(Q0))
with deg PskEnc = q Via QFESTA [NOQZH 20 (P~57 Qd) — ([/BP]thl:om(Pl)r [ﬁQ}@éom(Ql))

04 (sz,aQ,aRs,axy) & Lo X Liza X Z}‘\/ X Z*D 21 (XZ,YZ) — Ecom[D]

05 (P1,Q1) < ([ap]pskenc(Po), [@q]@skenc(Qo)) 22 Compute A € GL(2, D) such that

06 (R1,51) < ([ars]@skenc(Ro), [@rs]@skenc(S0)) (X2,Y2) = A+ (Peom(X0), Peom(¥0)) "

07 (X1,Y1) + ([axy]eskenc(Xo), [axy]pskenc(Y0)) 23 cty < (Eet, P2,Q2, P3,Q3)

08 sk «+ (qa (XP,OZQ,O(XY) 24 K+ A- (‘p::om(Xl)7 Lpéom(yl))

09 pk < (Eenc, P1,Q1, Ry, S1,X1,Y1) 25 return (cty, K)

10 return (sk, pk)
POKE.Decaps(sk, cto, ct;)

POKEEncaps0 26 @ < Representlsogeny(Fcom, Ect, G, P2, Q2,
11 Tcom & Z}k\f [1/QP]P3’ [1/aQ}Q5)
12 peom < IsogenyFromKernel y (Eo, 'com) 27 if o # L
13 Compute codomain Ecom of ©com 28 if P([ap] P2, [0Q)Q2,00,00) = (P3,Q3, )
14 return (cto = Ecom, Tcom) 29 (X2,Y2) ¢ Ecom|D]
30 (X3,Y3,-,~) (—QS(X27Y27OO,OO)
31 return K = ([axy]|Xs, [axy]Ys)

32 return |

Fig. 10. The POKE scheme written as a split-ciphertext KEM.

5 SQIsignHD with Non-Malleability

In this section, we introduce a slightly modified version of the SQlsignHD identification scheme
[DLRW24] to make it compatible with POKE. To this end, we first give a description of our vari-
ant SQIsignHD™ in Section 5.1 and explain the differences between SQIsignHD and SQIsignHD™.
In Section 5.2 we prove that SQIsignHD™ transcripts are non-malleable.

5.1 The SQIsignHD™ Identification Scheme

Let p be a B-SIDH prime with N | (p? — 1) its smooth factor. The SQIsignHD ™ identification
scheme consists of the subroutines (SQI.Gen, SQI.Com, SQI.Rsp, SQI.Ver), which we present in
Figure 11. The challenge set is ChiSet = Z} and, for E € &/(FF,:), an element r € ChlSet
corresponds to the rational isogeny @cnal < IsogenyFromKernel(E, ). Compared to SQlsignHD,
there are a couple of changes that we address separately.

CHANCGING THE UNDERLYING PRIME. The original SQIsignHD uses a prime of the form p =
273/ ¢ — 1 with 2/ ~ 3" ~ 2%, meaning that any curve E/F,: has accessible 2/3/ -torsion.
The 27 -torsion is then used for the response computation, whereas the 37 "_torsion is essentially
used for the secret key, challenge and commitment. For security reasons, it is required that
deg psksig ~ deg Ycom ~ p and, since 3 &~ /D, some torsion point gymnastics are required
to achieve such large degrees. For SQIsignHD ™, we instead propose to use a B-SIDH prime
p = 2% —1 (as per Definition 2.1) such that N | (p? — 1) is a smooth factor of appropriate size.
This way, all curves E/F,. have accessible 2% N-torsion, where the N-torsion now serves the
same role as the 3/ -torsion in SQIsignHD. In particular, we can choose ¢com to be an isogeny
of degree N.

CHANCGING THE DEGREE OF THE CHALLENGE. In SQIsignHD the main requirement for the
challenge isogeny @chal is that the challenge space has A bits of entropy. This condition im-
plies deg @ehal ~ 2%, meaning that the 3/ "_torsion is sufficient for the challenge computation.
However, for SQIsignHD™ we are already using a B-SIDH prime, meaning that we can use (a
subgroup of) the rational N-torsion to compute @chal-

MAKING THE RESPONSE NON-MALLEABLE. In order to achieve strong authenticity guaran-
tees, we require some form of non-malleability from SQIsignHD™ transcripts. We achieve this
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SQI.Gen SQI.Com

00 sk = (psksig, Plksigs I, I') <& FastDoublePath(p) 21 Teom & Zi
01 pk = Esig < derive(sk) 22 @com < IsogenyFromKernel \ (Eo, Tcom)
02 return (sk, pk) 23 Compute codomain Ecom 0f ¢com

24 return (Ecom, r'com)
SQI.Rsp(sk, Ecom, T'chl; Tcom)

03 Let sk = (psksig, Peksigr 1, 1) SQI.Ver(pk, Ecom, T, ¢, U', V')

04 @echal < IsogenyFromKernel y (Esig, 7chi) 25 if ¢ not 2**-good or ged(q, N) # 1

05 @com < IsogenyFromKernel y (Eo, rcom) 26  return 0

06 Icom + lIsogenyToldeal(¢com) 27 pchal < IsogenyFromKernel y, ( Esig, Tchi)

07 Icn < IsogenyToldeal(¢chal, 1)7 28 Compute codomain Echai of @chal

08 J ¢ RandomEquivalentldeal(Teom - I' - Iow) 29 (“U, —V) < (U, V) !
09 Write J = Or(J)a+ Or(J)n(J) for « € Or(J) 30 ' return 0 !

|
10 J < J - ged(a, n(J)) |31 @ Representlsogeny (Ecom, Fchal, ¢, U, V')
11 §f n(J) < 2**/logp Lo32if o= 1

|

12 | Go to line 08 , 33 return0
77777777777777777777777777777777 r-—-—>""""~>"""">">">"=""“>""~>">"~>""*“">"~">"7>”"@7” =¥”=¥" =¥ =¥ 7”7” 7”7”7
13 ?fe n(J) o N 34 L [T prime rel2, [ vioapn ¢ !
14 if g not 2. -good or ged(g, N) # 1 35 Compute basis (Pr, Q1) of Ecom|[L] |
15 Go to line 08 § 36 (P}, Q},00,00) < ®(Pr,Qr,00,00) :
16 (U, V) < Ecom[2°] 37 if ord(P;) # L or ord(Q}) # L :
|

17 (U', V') = EvalTorsion(J, Peom, Pchal © Plsig: U, V) 35 1
L
18 3f (—U',—V') < (U, V') k
19 (U, V)« (=U,-V")
L
20 return (q,U’, V')

return 0

39 return 1

Fig. 11. The subroutines of the SQIsignHD™ identification scheme, including the necessary modification
(in dashed boxes) to achieve response non-malleability. These modifications are further explained in
Section 5.1.

non-malleability by making the response isogeny cyclic, effectively preventing an adversary
to compute another valid response from an honestly generated one. Additionally, we reject
response isogenies where the resulting degree is too small. We will now explain how these
computations are carried out (cf. Figure 11) and give the corresponding security proof in Sec-
tion 5.2.

In order to guarantee that the isogeny corresponding to the ideal J is cyclic, we need to
ensure that J Z nOr(J) for all n > 1. Writing J in terms of an Op-basis as J = Op(J)a +
Or(J)n(J) for some a € Or(J), it follows that J is cyclic if and only if o and n(J) have
no common factor. Thus, dividing out ged(a, n(J)) will result in an ideal representing a cyclic
isogeny. Lastly, we reject those ideals that have a norm below a certain rather arbitrarily chosen
bound (see also Remark 5.9). This is captured in the following lemma.

Lemma 5.1. The output isogeny @.sp of SQI.Rsp is cyclic and has degree at least 2%¢/ log p.

Furthermore, we include some additional checks during verification. Concretely, we first
check whether (U’,V’) is the lexicographically smaller tuple among (£U’, £V"’) (cf. Line 29).
Additionally, we would like to certify that the response isogeny s is cyclic. However, there
is currently no efficient way to check the cyclicity of an isogeny ¢ embedded into a higher-
dimensional isogeny ®. Fortunately, for our construction it is sufficient to check whether (s,
factors through a small scalar multiplication [¢] bounded by /log p. After fixing a basis (Pr, QL)
of Ecom[L] where L the product of all primes up to y/logp, this can be done efficiently by
checking whether the order of both the images of Py, and @y, is still L.

Remark 5.2. A valid concern might be that the rejection sampling in Line 11 leads to a longer
signing time. We implemented the check within the SQIsignHD reference implementation'® and
determined that within 3000 trials, Line 11 rejected only 3 times. We therefore conclude that
Line 11 does not lead to a significantly longer signing time. See also Remark 5.9. Furthermore,
it is conceivable to run the rejection sampling a constant number of times to achieve consistent
signing times.

10 nttps://github.com/Pierrick-Dartois/SQISignHD-1ib
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https://github.com/Pierrick-Dartois/SQISignHD-lib

SimTrans(pk, @hint) \pk = (Esig), ¢hine + H(Esig)
00 7ch & YAS

01 @chal < IsogenyFromKernel( Esig, 7chi) \ @echal * Esig = Echal
02 Sfl-'s\p <~ [Qpchall*@hint \ @rsp : Echal = Ecom
03 (com, chl) < (Ecom, Tchl)

04 q + deg Prep

05 Compute ¢rsp as the dual isogeny of Prsp

06 (U7 V) < FEcom [2a] \\ deterministic basis
07 (U, V') ¢ (prsp(U), prsp(V))

08 rsp + (¢, U’, V")

09 return (com,chl, rsp)

Fig. 12. The transcript simulator SimTrans.
5.2 Security

We now introduce the required hardness assumptions and models to prove the security of
SQIsignHD ™. We adapted the language slightly compared to [DLRW24] for an easier exposition.
In particular, some definitions are dedicated to B-SIDH primes as opposed to more general
primes, however this change has no impact on the hardness of the assumptions or the correctness
of the proofs. Furthermore, we apply the recent technique from [ABD*25] to SQlsignHD™,
removing the somewhat artificial RUGDIO oracle in the process.

First, we introduce the hardness assumption on which the special soundness of the SQIsignHD™
identification protocol relies. As in [ABD25] we require a hint assisted version of the One En-
domorphism Problem. To this end, let H(E) be the distribution that outputs a uniformly
random isogeny ¢ : E — E’ of 22%-good degree q > 22%/logp prime to N such that:

1. E' is uniformly random among all supersingular elliptic curves over [, and
2. The conditional distribution of ¢ given E’ is uniform among all cyclic isogenies ¢ : E — E’
of 22%-good degree q > 22?/log p prime to N.

Compared to [ABDT25] our definition of H includes a different distribution of isogenies.
More concretely, the isogeny is cyclic and of certain minimum length. This is motivated by
the fact that due to Lemma 5.1 the response isogenies output by SQIsignHD™ are of this form.
Furthermore, H only outputs a single isogeny as opposed to the two isogenies in [ABD*25]
since no auxiliary isogeny is required for the four-dimensional representation of the response
in SQIsignHD+.

Definition 5.3 (One Endomorphism Problem with Hints). Let F,2 be a finite field and
t € N. We define the advantage of an adversary A winning Hint-OneEnd as

_ E & &U(F,:)
AdvE OB (A) = Pr |7 € End(E)\ Z| ¢1,..., 0t & H(E)
T AE, p1,...,01)

Having access to hints now allows us to construct a transcript simulator for SQIsignHD™
(Figure 12). This simulator is not new and is implicitly contained in [DLRW24, Theorem
21]. To prove that the simulated transcripts are computationally indistinguishable from real
transcripts, we need the following notion.

Definition 5.4 (Hint Indistinguishability). Let p be a B-SIDH prime with N | p*> —1 and
fix a starting curve Ey. Consider the game HNT-IND in Figure 13 for hint distribution H.
We define the advantage of an adversary A winning the HN'T-IND game as

AdvEENT-IND () = |Pr[t-HNT-IND,, 3 (A) = 1] _% ,
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Game t-HNT-IND,, 4 (A)
00 b {0,1} 09 else
01 E; & &U(F,2) 10 ¢ <= H(EN)
02 for i € [t] 11 i [<Pz}*¢z \ i : E3; — Ea;
03 r&7Zy 12 Compute dual v; of ¥;
04 ; < lIsogenyFromKernel(E1,7)  \@i:E1 = Es; 13 b+ A(E1, 01, -, Pt P15 -+, %t)
05 ifb=0 14 return [b = b']
06 r & Iy
o7 } < IsogenyFromKernel(Eo, ') \ ¢} : Eo — Es;
08 Compute an efficient representation of a cyclic
isogeny t; : Fa; — Es3 4 of 227-good degree
q > 2%*/logp prime to N

Fig. 13. Game defining HNT-IND.

Remark 5.5. In [ABD'25] the authors argue that (their version of) HNT-IND reduces to dis-
tinguishing the distribution of the curves Es ;. Applied to our settings this amounts to distin-
guishing whether F5 ; is N-isogenous to Ey. This problem is information-theoretically hard if
N € 2(p?) [DLRW24, Proposition 29] and believed to be computationally hard for N € O(p).
Note that in our setting N € ©(p?/2) (cf. Section 6.2).

The following two statements are simple adaptations of the respective correctness and
security guarantees of SQIsignHD paired with the technique of [ABD*25], hence in the interest
of space we refer the reader to [DLRW24, ABD"25] for the corresponding proofs.

Proposition 5.6. The transcripts output by SimTrans (Figure 12) are valid transcripts with
respect to the public key pk. Furthermore, the transcripts are computationally indistinguishable
from honestly generated transcripts assuming the hardness of HNT-IND.

Proposition 5.7. The SQIsignHD™ identification scheme is correct and special sound under
the hardness of Hint-OneEnd. Furthermore, under the hardness of HNT-IND the SQlsignHD™
identification scheme satisfies the Honest-Verifier Zero-Knowledge property.

5.3 Non-Malleability of SQIsignHDT

We now prove that the SQIsignHD™ identification protocol satisfies response non-malleability
(Definition 2.11). In the particular case of SQIsignHD™, response non-malleability means that
for an honestly generated representation of a response isogeny ¢rsp : Fcom — Echal it should be
hard to construct a second, distinct representation of an isogeny cpﬁsp : Ecom — Echal having
the same domain and codomain.

We highlight that for the response non-malleability proof the verification does not need to
check that a response isogeny is cyclic (which would be a hard task). Instead, the verification
only checks whether the response isogeny contains a small scalar factor [¢], for some prime
¢ < y/log p (cf. Line 37). Indeed, this is sufficient since in the response non-malleability game the
forgery has to be with respect to an honestly generated transcript. Since for those transcripts
the response isogenies are cyclic by Lemma 5.1, the verification only needs to make sure that
the adversary did not append a scalar multiplication to an existing response.

Theorem 5.8 (SQIsignHD™ is non-malleable). For any adversary A against the response
non-malleability of the SQlsignHD™ identification scheme there exist adversaries B and C
against HNT-IND and Hint-OneEnd with

Grrans-Rsp-NM Grrans-HNT-IND GTrans -Hint-OneEnd
AdvEzer oM (1) < Adys (B) + Adv?s: (©).

Proof. We prove the statements via a sequence of games. Let Gy be the response non-mallea-
bility game grrans-RSP-NMsqisignnp+ With respect to the SQIsignHD™ identification scheme.
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Game Gi. This game is identical to Gy except that the Trans oracle is simulated via SimTrans
(Figure 12) and the provided hints from Hint-OneEnd. It easily follows from Proposition 5.6
that there exists an adversary B such that

|Pr[Go(A) = 1] — Pr[Gy(A) = 1]| < AdV;J)T’g{m.s—HNT—IND(B).

Final reduction. We construct a reduction C to Hint-OneEnd such that
Pr[G,(A) = 1] < Advg‘l:;;ns-Hint-OneEnd ©).

C gets as input a Hint-OneEnd challenge E as well as hints ¢1, . . ., @g,.... - It sets (sk, pk) = (L, E)
and sends pk to A. It then simulates the Trans oracle via the provided hints, which can be
done without having access to the secret key.

At some point the adversary A outputs a tuple (com, chl, rsp, rsp*) with (com, chl,rsp) € L
and (com, chl,rsp*) ¢ £ (which implies rsp # rsp*). In the particular case of SQIsignHD™, the
response is a tuple (Feom, ¢, U’, V') that represents an isogeny ¢ : Fcom — Fchal- Thus, adversary
A provides an alternative representation (Ecom,q*, U*, V™) for an isogeny ¢* : Ecom — Echal
having the same domain and codomain. Since C knows efficient representations for both ¢, ©*
it can compute the endomorphism 7 = ¢* o ¢ € End(Eal). As long as 7 is a non-trivial
endomorphism, this readily breaks the Hint-OneEnd problem for the curve Ec,a (which can
further be transformed into an endomorphism of Egg). Therefore the only thing left to prove
is that 7 is not a scalar.

Assume that 7 = [k] for some k € Z. Since ¢ is cyclic by the definition of the hints and
p*op = [k], necessarily ¢* = [m]p for some m € Z. (Note that the case p* = [—1]o¢p is excluded
because the signature must contain the lexicographically smaller tuple among (£U’, £V").) It
follows that

22% > deg ¢* > deg ¢ > 22*/logp,

which implies m < y/logp (note that the first inequality follows from ¢* being 22%-good).
This small scalar multiplication is however detected during verification (cf. Line 37) which
contradicts the fact that (com*, chl*, rsp*) is an accepting transcript. We conclude that 7 is a
non-scalar endomorphism of Fgp,).

Finally, reduction C returns w = @chal © T © Qchal, Where @cha is the isogeny contained in
chl. It now follows that w is a non-scalar endomorphism of E and thus a valid solution to
Hint-OneEnd, which proves the statement. Collecting all the probabilities yields the desired
advantage. ad

Remark 5.9. The condition deg s, > 22?/logp can be relaxed to 22?/B for some B €
O(log(p)) without compromising security. Indeed, the main criterion is that the check in Lines
34 to 37 still has to be efficient.

6 Instantiating SnakeM with POKE and SQIsignHD*

In this section we discuss various aspects of the concrete instantiation of SnakeM with POKE
and SQIsignHD™, which we call SnakeM-Iso.

We first highlight that POKE and SQIsignHD™ satisfy compatibility as defined in Defini-
tion 3.1. Indeed, both Encaps, and SQI.Com sample a uniform N-isogeny ¢com : Eo — FEcom
with kernel (Rp+[7com]So) and output the tuple (Ecom, Tcom)- Furthermore, both protocols were
adapted to be compatible with a B-SIDH prime p; the security requirements and the resulting
shape of p are discussed in Section 6.2. Subsequently, the public and secret key of SnakeM-Iso
are simply the concatenation of the corresponding POKE and SQIsignHD™ keys, together with
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a seed s:

sk = (SoskSigv <)OékSigv Iv I/v Z]vv ap,aQ,0xy, S)

SQlsignHD+ POKE
pk = (EsigyEenm Plv Q17R17 S17X17 Yi)
v 5
SQIsignHD ™t POKE

The ciphertext, on the other hand, is the tuple (com,cty, ctysp), Where ctysp corresponds to a
symmetric encryption of the SQIsignHD™ response rsp. Concretely for SnakeM-Iso, we thus have

com = Ecom, cty = (B, P2, Q2, P3,Q3), rsp = (¢, U, V").

6.1 Security Analysis

We now analyse the concrete hardness of various computational and statistical terms that
appear in the bounds of Theorems 3.7 to 3.9.

The most fundamental hardness assumption in isogeny-based cryptography is the Isogeny
Path Problem (IsoPath), which asks to find any isogeny between two elliptic curves E, E’ €
&U(F,2). The best known algorithms that solve IsoPath have complexity O(p!/2) [DG16], there-
fore we may assume Adv|p5°Path (A) = p~1/2 for any efficient adversary A. Furthermore, IsoPath
is tightly equivalent to OneEnd [PW24], and in [ABD*25] it is argued that Hint-OneEnd is as
hard as OneEnd, therefore we can assume Adv;"';{'"t'oneE"d (A) = p~1/? as well.

CONFIDENTIALITY AND DENIABILITY. The only notion required for both confidentiality and
deniability is OW-KCA for POKE (cf. Theorems 3.7 and 3.9). More specifically, this corresponds
to the C-POKE problem in [BM25] with an additional key checking oracle Check, as defined in
Definition 2.9. In [BM25], the authors argue that the currently best strategy to solve C-POKE
involves either breaking IsoPath or guessing the shared key. The latter essentially consists of
guessing three scalars in Z%,, resulting in a complexity of O(D?3). We furthermore conjecture
that the additional Check oracle does not offer any significant advantage to an adversary as
adaptive attacks are effectively avoided (cf. Appendix E.3).

AUTHENTICITY. For the authenticity proof we require that SQIsignHD ™ satisfies SS-Enc, IMP-Enc
and NM-Enc (cf. Theorem 3.8). Apart from the additional Encps oracle, these notions corre-
spond to SS, IMP-KOA and Rsp-NM. In [DLRW24] it is proved that SS reduces tightly to
OneEnd. Furthermore, IMP-KOA security directly follows from SS security as shown, for in-
stance, in [KMP16]. Unfortunately, this generic reduction has a square root loss due to the
inherent rewinding step (see also Remark C.4). However, as shown in [AABNO02] the quadratic
loss can be accounted for by increasing the commitment entropy. Hence, for implicitly we as-
sume that IMP-KOA and SS have the same bit security. Additionally, in Theorem 5.8 we prove
that Rsp-NM reduces to Hint-OneEnd and HNT-IND. For the bit security of HNT-IND we re-
fer to Remark 5.5, which leads us to assume that HNT-IND does not lower the bit security
of SQIsignHD™. Lastly, in Appendix E we argue that the additional Encps oracle present in
SS-Enc, IMP-Enc and NM-Enc does not help an adversary in any significant way.

STATISTICAL TERMS. In Theorem 3.8 there are some statistical terms to consider. We first ob-
serve that |ChlSet| = |Z}/| > p using the well-known approximation of the Euler totient func-
tion [HWO08, Theorem 326] and the definition of a B-SIDH prime. Since SQIsignHD™ is perfectly
correct, we also have that the corresponding correctness error dsqusignnp+ = 0. Lastly, we bound
the spreadness of SQIsignHD and POKE by Ysqusignnp+ < 1 and ypore < (IT,(4 + 1)6?_1)71,
where N =[], £5. The latter corresponds to the number of outgoing N-isogenies from Ej and,
under the assumption that only few N-isogenies lead to the same codomain, the number of
possible curves F;.

6.2 The Prime Characteristic

Both SQIsignHD™ and POKE are designed to be compatible with a B-SIDH prime p where
(p?2 — 1) = 2N D. Nevertheless, there are some constraints regarding the shape of the prime
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to ensure correctness. In the case of SQIsignHD™, we require that 2% > ,/deg ¢rsp tO ensure
that we can always represent the response isogeny ¢rsp as a 4-dimensional 2%-isogeny using the
meet-in-the-middle strategy from [Rob24, Appendix B.2]. Since deg ¢rsp < +/8p/m we get that
2¢ > /p is sufficient. Furthermore, we require that N is smooth in order to efficiently compute
isogenies of degree N. Lastly, for point compression we mandate that D is smooth enough so
that computing discrete logarithms in E[D] is feasible, see also Section 6.3.

Regarding security, the discussion in Section 6.1 implies p € 2(22*) to ensure that Hint-OneEnd
has \ bits of classical security. Furthermore, from Appendix E we gather that N € ©(23}) in
order to argue the hardness of SS-Enc, IMP-Enc and NM-Enc. Additionally, we require that
D € O(2*3) as argued in [BM25] to ensure the hardness of OW-KCA for POKE. Lastly, all
statistical terms are in the order of 272,

Despite the numerous requirements, the 255-bit prime

p=275.358.2332.8572.2837% - 28463 — 1

satisfies all these constraints for A = 128. For higher security levels, the requirement that
(p? —1) is essentially completely smooth might be harder to satisfy for low smoothness bounds.
However, by increasing the size of p slightly (e.g. logp = 2.4)), the required shape of the prime
is very close to a classical SQIsign v1.0 prime. Indeed, a SQIsign v1.0 prime satisfies 24T | p*—1
where T' is a smooth factor of size T' ~ p°/%. Since p ~ 224* this yields a smooth factor T
of size 23*, matching the requirements mentioned above. The requirement that D is smooth
enough for point compression is also easier to satisfy as (p? — 1)/(2¢N) is now of size 212},
which is likely to contain a smooth enough part of size 2*/3. For instance, the slightly larger
286-bit prime

p=27.3%.11%2.13%2.29%.31%2.79%.151% - 6132 - 11877 - 9491% — 1

also satisfies all constraints for the A = 128 bit security level while also featuring a lower
smoothness bound for N. Therefore, finding suitable primes either for higher security levels
or with better size/smoothness trade-offs can be done by adapting well-known methods for
finding SQIsign v1.0 primes [BSCT23, SEMR24b].

6.3 Compactness

The public key of SnakeM-Iso consists of the two curves Fe,c and Es as well as the torsion
points P1, Q1 € FEenc[2%], R1,S1 € Eenc[N] and X1,Y] € Fenc[D]. Each curve is represented
by its j-invariant with 2logp bits. After choosing a deterministic basis (Cy, Cy) for Eenc[2%],
the points Pj,Q; are represented by 4log(2%) bits encoding the scalars «, 8,7,5 € Zsa such
that P = aCy + C; and Q1 = vCo + dC1. Similarly, the other pairs of torsion points can
be represented with 4log N and 4log D bits, respectively. The 2%-torsion points can be further
compressed using the Weil pairing, provided we require ap = aél deg(¢skenc) "+ modulo 2°.
This way, we can compute the pairing of P; and @ as

e2a (P1, Q1) = €2 (Py, Qo) o8 $se)arae = ¢,0 (P, Qo).
Thus, after computing k € Z3. such that esa (P, Qo) = e24(Cp, C1)*, we obtain the relation
ad — By =k mod 2%,

from which it is possible to recover one of the four scalars describing P; and @7 in the deter-
ministic basis.

In conclusion, since p € 2(22), 2¢ € O(2"2), N € 6(2*}) and D € O(2*/3) by the
definition of a B-SIDH prime, we get

137
Ipk| = 4logp + 31log(2*) + 4log N + 4log D = ?)\.
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On the other hand, the ciphertext consists of the curves FEcom, Fet, the torsion points
Py,Q2 € Ecom[2?], P3,Q3 € E«[2%], X2,Y2 € Ecom[D], U, V' € Eca[2?] and the degree
q < +/8p/m. First, by fixing a deterministic basis of the D-torsion on Eom, it is possible to
omit the points X5 and Y3, as in this way the change of basis matrix becomes implicitly defined.
The two curves require 2logp bits each and the rest of the torsion points can be compressed
by using the Weil pairing. Eventually, we get

27
|ct] = 4log p 4+ 9log(2%) + log(q) = ?)\.
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A Further Related Work

A.1 APKE

Early literature mainly focuses on APKE instead of its KEM counterpart. The most fun-
damental generic constructions are Encrypt-and-Sign (EaS), Encrypt-then-Sign (EtS), and
Sign-then-Encrypt (StE) [AR10, ADR02]. While EaS does not achieve security in any setting,
for the two others it depends on considering outsider or insider security. The security of the
first component, i.e., encrypt in EtS or sign in StE, can be enhanced by the last component
when considering outsider security. In the insider setting, on the other hand, security of the
first component might even not be preserved. For example, in EtS the underlying PKE can
be CCA secure but in the insider setting an adversary can compute a new signature and can
easily break the CCA security of the APKE. Hence we can neither hope for Ins-CCA security
of EtS nor for Ins-Aut security of StE. While StE (fulfilling Ins-CCA and Out-Aut) could
keep up with most of the other schemes in Table 1 from a security point of view, the problem
is that it cannot be translated to the AKEM setting since it is unclear what to sign, as we do
not have a message. Since there is a large efficiency gain by relying on hybrid encryption rather
than direct (A)PKEs, we do not list this option in the table. We further do not add EtS due
to the lack of Ins-CCA; however, we list the hashed adaption ETSTH.

A.2 AKEM

Alwen et al. [AJKL23] proposed two constructions, denoted by ETSTH-AKEM and NIKE-
AKEM. The former, Encapsulate-then-Sign-then-Hash, is very similar to our construction,
while the latter follows the construction paradigm of DH-AKEM [ABH™*21] utilizing two
NIKEs, one for confidentiality and one for (implicit) authentication. However, there is an-
other black-box construction combining ideas of both which we think is worth mentioning and
including in the comparison: Namely, one can rely on the KEM for confidentiality as in ETSTH,
but then use a NIKE for authentication. We denote the construction by ENCAPSULATE-AND-
NIKE-THEN-HASH, or short EANTH. In the prime-order group setting, there is no advantage
in such a construction because the NIKE-AKEM construction is strictly better. Computation
time and ciphertext sizes are at least as good as for EANTH but the public key of EANTH is
double the size; it would consist of the public key of the KEM and of the NIKE, whereas the
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NIKE-AKEM only needs one NIKE public key. In the PQ secure constructions, however, the
situation is different. On the one hand, we only have very large lattice-based NIKEs and replac-
ing one NIKE with a KEM improves the size significantly. On the other hand, we have compact
isogeny-based NIKEs with the disadvantage of a high computational overhead [CCSC™24].

B Isogeny Preliminaries

B.1 Isogenies and the Deuring Correspondence

In this section, we recall some preliminaries about isogenies and their relation to quaternion
algebras through the Deuring correspondence. For a general introduction to either topic we
refer the reader to Silverman [Sil09] and Voight [Voi2l1], respectively.

ISOGENIES. Let ¢ be a prime power and E be an elliptic curve defined over IF,. We denote
the point at infinity with cog. For an extension field K O IF, we denote the set of K-rational
points by E(K). For an integer n we denote the multiplication-by-n map by [n]. Its kernel is
the n-torsion subgroup E[n] = {P € E : [n]P = ocog} and we call an elliptic curve supersingular
if E[p] = {ocog}. The set of all supersingular elliptic curves is denoted by &/(F,,).

An isogeny is a morphism ¢ : E — E’ between elliptic curves E, E’ such that ¢(cog) =
oopr. The degree of ¢ is its degree as a morphism and we call ¢ separable if ged(p, deg ) = 1.
In this work, we will only consider separable isogenies. We call two elliptic curves isogenous if
there exists an isogeny between them. An isogeny is an isomorphism of elliptic curves if it has
an inverse (which may be defined over the algebraic closure of F,). In that case, the inverse
is again an isogeny. Isomorphic curves have the same j-invariant, which is a simple algebraic
expression in the coefficients of the curve equation. Thus, one can check whether two elliptic
curves are isomorphic by comparing their j-invariant.

An isogeny from E to itself is called endomorphism. The set End(F) of endomorphisms
of E (defined over the algebraic closure of the base field) forms a ring under addition and
composition and it is thus called the endomorphism ring. The multiplication-by-n map [n] is
always an endomorphism of F, hence Z always embeds in End(F). Any isogeny ¢ : E — E’ is
also a group homomorphism from FE to E’ with finite kernel. In the case where ¢ is separable we
have deg ¢ = | ker ¢|. Conversely, any finite subgroup G C F corresponds to a separable isogeny
¢ : E — E’' with kernel ker ¢ = GG, where ¢ and E’ are unique up to post-composition with an
isomorphism. Since E’ is essentially uniquely determined by ker ¢, we will write £/ = E/G.
One can compute ¢ and E/G via Vélu’s formula [VéI71], which can be evaluated in polynomial
time in the size of the kernel.

QUATERNION ALGEBRAS. For a prime p, let B, o, be the unique (up to isomorphism) quater-
nion algebra ramified at p and co. If p =3 mod 4, we have B, o = Q +iQ + jQ + kQ, where
i2 = —1, j2 = —p and k = ij = —ji. Every quaternion algebra has a canonical involution that
sends a = a + bi + ¢j + dk to its conjugate & = a — bi — ¢j — dk. We further define the reduced
norm and reduced trace as nrd(a) = a@ and tr(«) = a + &, respectively.

A fractional ideal I is a Z-lattice of full rank in B, .. The norm n(I) of I is defined as
the generator of the ideal {nrd(a) : o € I}. An order O is a subring of B, » that is also
an ideal. We call O a mazimal order if it is not properly contained in any other order. The
left order of a fractional ideal I is defined as Or(I) = {a € Bpo : o C I} and similar for
the right order Or(I). A fractional ideal is integral if its contained in its left (or right) order.
Any integral ideal can be written as I = Or(I)n(I) + O (I)a, for some o € O (I) such that
ged(nrd(a), n(I)?) = n(I). An (integral) ideal I is called an OO’ -connecting ideal if Or,(I) = O
and Or(I) = O'.

For two ideals I,.J with Op(J) = Or(I) we define their product I.J as the product of all
pairs in I x J. The ideal norm then satisfies n(IJ) = n(I)n(J). An ideal is invertible if there
exists an ideal I~! such that I1=! = O () and I~'I = Or(I). We define the conjugate I as the
ideal containing all the conjugates of elements in I, which furthermore satisfies 11 = n(1)Or ()
and IT = n(I)Og(I) when I is invertible. Lastly, two ideals I,.J are called equivalent if there
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exists 8 € B ., such that I = J3. This yields an equivalence class of left O-ideals and the set
of such equivalence classes is denote by cl(O).

DEURING CORRESPONDENCE. In [Deu41], Deuring proved that the endomorphism ring End(E)
of a supersingular elliptic curve over [z is isomorphic to a maximal order O in the quaternion
algebra B, .. Moreover, this correspondence is a category equivalence, for which an isogeny
¢ : E — E’ corresponds to an OO’-connecting ideal I, with O = End(F) and O’ = End(E").
Furthermore, composition of isogenies corresponds to ideal multiplication, the dual isogeny
corresponds to the conjugate ideal and n(I,) = deg ;.

B.2 Isogeny Representations

Recently, new ways of representing an isogeny have emerged. This leads to the notion of an
efficient isogeny representation. We present the definition found in [BDD*24].

Definition B.1 (Efficient Isogeny Representation). Let V,E be two algorithms. Further-
more, let ¢ : E — E' be an isogeny of degree d defined over F,. An efficient representation of
@ (with respect to V and &) is a bit string D, € {0,1}* of length O(poly log(dq)) such that:

- V(E,E',d,D,) returns in time O(polylog(dg)) whether D, is a valid encoding of a d-
isogeny between E and E’, and

— E(E,FE',d,Dy, P) returns in time O(poly(klog(dq))) the image ¢(P) of a point P €
E(F ).

In this paper, we use three specific instances of an isogeny representation: the kernel generator
representation, the ideal representation and the High-Dimensional (HD) representation (as
defined by Robert [Rob24]). The latter representation is universal, meaning that any other
efficient representation can be transformed into the HD representation. We informally introduce
these representations and refer the reader to [Rob24] for further details. In all cases, let ¢ :
E — E’ be an isogeny of degree d.

— Kernel Generator Representation: The isogeny ¢ is represented by two points P, Q €
E (which might be defined over a field extension) such that ker p = (P, Q). If ¢ is cyclic
then @ = oo and it follows that ord(P) = d.

— Ideal Representation: Let O = End(F) be the endomorphism ring of E. The isogeny
© is represented as an (integral) left ideal I C O that has right order O’ = End(E’) and
norm n(Il) = d.

— HD Representation: The isogeny ¢ is represented as the tuple (E’,d,U’, V') where
(U’,V}: (p(U),p(V)) for a deterministically chosen basis (U,V) of E[2%] such that
2% > +/d.

Each representation comes with its own set of advantages and disadvantages. Most impor-
tantly, the kernel generator representation is only efficient for smooth d. On the other hand, if
End(FE) is unknown it is currently the only representation that allows randomly sampling an
isogeny with domain E. In addition, computing an HD representation for ¢ currently requires
knowledge of End(E), whereas evaluating ¢ (and thus also verifying the encoding) can be done
efficiently without End(F) once the representation is known.

B.3 Isogeny Subroutines

In this section we introduce some subroutines that carry out isogeny computations required
for SQIsignHD and POKE, many of which were introduced in earlier works [DLRW24,CSDT23,
BM25]. We will only informally describe these subroutines and refer to [DLRW24, CSDT23,
BM25] for further details on their implementation.

— IsogenyFromKernel  (E, P, Q, d): Takes as input an elliptic curve F, two points P,Q € E[N]
and an integer d € Z%; and outputs an efficient representation of the isogeny ¢ : E — E/G
with kernel G = (P + [d]Q). If P,Q correspond to a deterministic basis of E[N] they may
be omitted from the input.
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Game IMP-KOA|D(.A) Oracle Chal(com) \ max one query

00 (sk, pk) < Gen 04 C+1
01 rsp + A®(pk) 05 chl <& ChlSet
02 if C# 1 return 0 06 return chl

03 return Ver(pk,com, chl, rsp)

Fig. 14. Game defining IMP-KOA for an ID scheme ID = (Gen, Com, Rsp, Ver) with challenge set ChlSet.

— Representlsogeny(E1, Ea, q,U, V,U’, V'): Takes as input two elliptic curves E1, Fs, a positive
integer ¢ and four points U,V € E1[2%], U', V' € Ey where (U, V') = (p(U), ¢(V)) for a
g-isogeny ¢ : By — Es. It outputs a 4-dimensional 22%isogeny @ : E? x E3 — E? x E?
such that ¢ = mo®or, where v : P € Ey — (P, 00,00,00) € E? x E3 and 7 is the projection
(P, Py, P3,P)) € E2 x E? — P; € Ey. If the input is not a valid representation for such
an isogeny, it outputs L. If U, V' correspond to a deterministic basis of E;[2%] they may be
omitted from the input.

— FastDoublePath(p): Takes as input a prime p (thus defining the endomorphism ring End(Fy)
of the curve Ey/F,2 with j(Ey) = 1728) and outputs two cyclic isogenies ¢, ¢’ : Ey — E;
of degree dividing 22% and N? respectively as well as their corresponding ideals I, I’.

— IsogenyToldeal(p, I): Takes as input an isogeny ¢ : F1 — FE5 of smooth degree given in
kernel representation as well as an ideal I with left order Oy, right order O; = End(E;)
and norm coprime to deg . It outputs the ideal I, C O; corresponding to ¢. If Ey = Ey
then the second input can be left empty.

— RandomEquivalentldeal(I): Takes as input a O-left ideal I and outputs an equivalent ideal
J ~ I that is uniformly distributed amongst all equivalent O-left ideals of norm less than
24,

— EvalTorsion(1, ¢, 1, U, V'): Takes as input an ideal I corresponding to an isogeny ¢y : Fq —
Es5 of non-smooth degree, a basis (U, V) of E1[2%] and two smooth isogenies ¢ : Ey — Fy,
¥ : Fg — FE3 of degree coprime to 2 and outputs (¢ (U), pr(V)).

C Further Security Notions for ID Schemes

For completeness, we introduce the following standard security notions for identification schemes.

Definition C.1 (Special Soundness (SS)). Let ID be an identification scheme. We define
the advantage of an adversary A as

Ver(pk, com, chl, rsp) =
Adv;S(A) := Pr | AVer(pk, com, chl’, rsp’)
Achl # chl’

_11 (pk,sk) <& Gen
= 7| (com, chl, chl’, rsp, rsp’) < A(pk)

Definition C.2 (Impersonation against Key Only Attack (IMP-KOA)). Let ID be an
identification scheme with challenge set ChlSet. Consider the game IMP-KOA p in Figure 1.
We define the advantage of an adversary A as

AdviMP-KOA(4) .= PrIMP-KOAp(A) = 1] .

Both security notions are related via the following theorem.

Theorem C.3 (SS = IMP-KOA [KMP16]). Let ID be an identification scheme with chal-
lenge set ChlSet. For any adversary A against IMP-KOA there exists an adversary B against
SS such that

. ; 1
AdviS (B) > AdvNFKOA(4) <Adv:g”'° KOA(4) — |ChISet|> .
Remark C.4. Theorem C.3 implies a square-root loss when bounding the advantage of an
adversary against IMP-KOA via the advantage of an adversary against SS.
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Game Gy — Gy Oracle Chall(sk) \\ one query
00 ED, Ly, Le, Lyal < 0 35 if sk =% \\ “encrypt-to-self”
01 (skiem, Pkiem) <& KEM.Gen 36 sk < sk*
02 (skip, pkiy) < ID.Gen 37 parse sk = (skkem, skip, *)
03 s* & {0,1}" 38 pkyem ¢ derive(skkem)
04 sk* < (skxem, skip,s™) 39 pkp < derive(skip)
05 pk* <= (pkiem, PKip) 40 (com*, R) < ID.Com
06 B+ {0,1} 41 (ct}, K) < KEM.Encaps, (pkgem: R)
07 B’ + ABncps:Decps,Chall,GH () ) 42 (chl, pad) + G(pkp, com*, pk*, ct, K) \ Go-Gs
08 return [ = ] 43 (chl, pad) <& ChiSet x RspSpace \ Ga
44 rsp < ID.Rsp(skip, com*, chl, R)
Oracle Encps(pk) 45 ctysp 4= rsp @ pad
09 return SnakeM.AEncaps(sk*, pk) 46 k « H(K,com™*, ct], rsp, (Pkxem, PKip), PK™) \ Go-Gs
47 kEK \ G4
Oracle Decps(pk, ct) 48 ct « (com*, ct, Ctrsp)
10 if 3k : (pk,ct, k) € Lp 49 if =1
11 return k 50 k&K
12 parse pk = (-, pkpp) 51 Lo < Lo U {((pkkem; Pkip), ct, k)}
13 parse ct = (com, cty, Ctrsp) 52 Lp + Lo U {((pkkem, Pkip), ct, k) } \ G1-Ga
14 K + KEM.Decaps(skggm,com, cti) \Go-G2 53 return (ct, k)
15 if K= 1 \\ Go-Ga
16 K<+ s* \Go-G: Random Oracle G(pk,y, com, pk, ct1, K)
17 if 3K’ : (com,ct1, K') € Lva 54 if 3(chl, pad) : (pkp, com, pk, ct1, K, (chl, pad)) € Lg
18 K+ K’ \G2-Gs 55  return (chl, pad)
19 (chl, pad) < G(pk,p, com, pk*, cty, K) 56 (chl, pad) <& ChiSet x RspSpace
20 rsp < ctysp P pad 57 parse pk = (pkygm,*)
21 if ID.Ver(pkp, com, chl, rsp) = 1 58 K’ <+ KEM.Decaps(skjgm,com, ct1)
22 k < H(K, com, cty, rsp, pk, pk*) 59 if pkxem = Pkkem \ G2-Gy
23 return k 60 if (com,ct;) = (com*,ct}) and K' = K \ Gy
24 else 61 bad + true; abort \ G4
25 (chl, pad) + G(pkp, com, pk*, ct1, K) \Go-G2 62 if (K'=K or (K’ =1 and K =s*)) and
26 (chl, pad) <> ChiSet x RspSpace \G3-Ga 3(chl’, pad’) : (pkp, com, pk, ct1, L, (chl’, pad’)) € L¢
27 L+ Egu{(pk|D,COm7pk*,Ct17L, (Ch|,pad))} \\ G3-G4 \ G3-Gy4
28 rsp 4= Ctrsp @ pad 63 (chl, pad) < (chl’, pad’) \ G3-G4
29 if ID.Ver(pkp, com, chl,rsp) = 1 64 Lya < Lya U {(com,cti, K)} \ G2-Gy
30 ke H(K, com, cty, rsp, pk, pk”) \60C2 65 £« L6 U {(pkip, com, pk, ctr, K, (chl, pad)) }
31 ke K \Gs-Gi g5 return (chl, pad)
32 Ly + Ly U{(L,com,cti,rsp, pk, pk*, k)} \\ G3-Ga
83 return k Random Oracle H(K, com, cti, rsp, pkenp: PKrev)
34 return 1 67 if 3k : (K, com, cty, rsp, pksnp, PKreys K) € Lu
68  return k
69 k<& K
70 parse pkpey = (Pkkem; )
71 K' < KEM.Decaps(skggm, com, ct1)
72 if pkyem = Pkiem \ G2-Gy
73 if (com,ct1) = (com*,ct}) and K' = K \ G4
74 bad < true; abort \ Gs
75 if (K=K or (K'=1 and K =s*)) and
3k’ : (L, com, cty, rsp, pk, pk*, k') € Ly \ G3-G4
76 k « K \ G3-Ga
7 Lyval < Lya U {(com, cty, K)} \\ G2-G4
78 Ly < Ln U {(K, com, cty, rsp, pksnp, Pkreys k)
79 return k

Fig. 15. Games for the proof of Theorem 3.7.

D Omitted Proofs

D.1 Proof of Theorem 3.7

Theorem 3.7 (Insider CCA). For any adversary A against Ins-CCA security of SnakeM[KEM,
ID, G, H] making at most q¢ random oracle queries to G and at most gy random oracle queries
to H, there exists an adversary B against OW-KCA such that

EncsQpec )-Ins-CCA +qn)-OW-KCA
Advé?'lake(ll\ll[l()EM,lD,G,H] (‘A) < Advl((qlgM ) (B) + 5SnakeM~

Proof. Let A be an adversary in the (ggac, gpec)-Ins-CCAgnakem game. We consider the sequence
of games in Figure 15.
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Game Gg. We start with the original Ins-CCA game for SnakeM.

Adv(qEnquDec)'lnS'CCA (A) _

A
SnakeM[KEM,ID,G,H] Pr[Gft = 1] - 5.

2

|

Game Gp. In the challenge oracle, we add an element to set Lp not only in case = 1 but also
in case 8 = 0. This change is only distinguishable if the scheme is not correct, hence we have

Pr [G64 = 1] =Pr [G{1 = 1] < OsnakeM-

Game Gz. We introduce list Ly, which stores valid KEM tuples for pkigy that are queried to
G and H. Note that this includes those tuples created during Encps queries. If there already
exists a matching tuple in the list, we take the corresponding KEM key K in the execution of
a decapsulation query. The changes are only conceptual:

Pr[Gf‘:l]:Pr[Gf:l].

Game Gs. In this game we prepare for our final reduction and simulate Decps queries without
using the secret key skxgy. To this end, the game needs to handle decapsulation queries without
an entry in Ly,. If there is no corresponding element in Ly,|, random oracles G and H were not
queried on the required inputs. Hence, the game can choose an arbitrary output (chl, pad) of
G randomly and proceed with the decapsulation oracle without knowledge of K. The output
is stored together with the known parts of the input, i.e. everything except K, to potentially
patch the RO later (Line 27). If the ID tuple verifies, we also need to choose an output for RO
H and store it for later use (Line 32). Note that this is sound since H was not queried as well as
argued before. Later on, the game might have to patch the random oracles if the corresponding
input is queried together with the correct K which can be checked by decapsulating the KEM
ciphertext (Line 62 and 75). We also have to consider invalid KEM ciphertexts, i.e. ciphertexts
where the decapsulation yields L. In these cases, the ROs check if the input K equals s* which
represents the correct behavior in an honest decapsulation. Since the change can be perfectly
simulated it holds that
Pr[Gs' = 1] =Pr[G' =1].

Game G4. In the final game, we raise bad and abort if the random oracle is queried on the
correct chellenge KEM key. Further, we sample the challenge key k at random without querying
the random oracle H, independent of the challenge bit 8. Also, we do not explicitly query
random oracle G, but sample challenge and padding (chl, pad) at random. Note that adversary
A never sees the random oracle outputs corresponding to the challenge due to the aborts which
makes the simulation of the challenge oracle perfect. The two games G3 and G, are identical
until bad is set to true, hence

|Pr [G5' = 1] — Pr [Gf' = 1]| < Prlbad] .
Observe that )
Pr[Gy = 1] = 3

Final reduction. To bound event bad, we construct a reduction B to OW-KCA such that
Pr[bad] < AdVE(qEGJ‘IH)-OW—KCA(B).

Adversary B is formalized in Figure 16. The challenge oracle can be simulated by using inputs
com* and ct} from B and ctyp is chosen uniformly random which is a correct simulation because
without having the output of G, pad is uniformly random and thus cty, is too. Note that the
adversary never sees the output of G or H corresponding to the challenge because the game
aborts in these cases and reduction 5 is winning the OW-KCA game. Finally, the abort condition
is deployed via queries to the reduction’s check oracle Check. a
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Game B®°* (pkjgy,, com*, ct?) Random Oracle G(pk,y, com, pk, cty, K)
00 Lp,Lu,Lg, Lva < O 24 if 3(chl, pad) : (pk,p, com, pk, ct1, K, (chl, pad)) € Lg
01 (skip, pkip) < ID.Gen 25  return (chl, pad)
02 s* <& {0,1}" 26 (chl, pad) < ChiSet x RspSpace
03 sk* < (L,skjp,s") 27 Parse pk = (pkkgm, )
04 pk* < (pkkems PKib) 28 if pkxem = Pkikem
05 B <& {0,1} 29  if (com,cty) = (com*,ct]) and Check(K, com,ct;)
06 ﬂ/ — AEncps,Decps,Chall,G,H(pk*) 30 output K \ win
07 return [3 =] 31 if (Check(K,com,cti) or (Check(Ll,com,ct;) and
K =5s")) and
Oracle Encps(pk) 3(chl’, pad’) : (pkp, com, pk, cti, L, (chl’, pad”)) € L¢
08 return Gjs.Encps(pk) 32 (chl, pad) < (chl’, pad”)
33 Lval < Lva U {(com, ct1, K)}
Oracle Decps(pk, ct) 34 Lg + L U{(pkp,com, pk,cti, K, (chl,pad))}
09 return Gj.Decps(pk, ct) 35 return (chl, pad)
Oracle Chall(sk) \\one query Random Oracle H(K, com, cti, rsp, pksyp, Pkrcy)
10 if sk =% 36 if 3k : (K, com, cty, rsp, pkenps PKrey, K) € L
11 pkeem < PKKem 37  return k
12 pkp + pkip 38 k& K
13 else 39 Parse pkgey = (Pkyems *)
14  parse sk = (skkem, skip, *) 40 if pkxem = PKiem
15 pkygy < derive(skkem) 41 if (com,ct;) = (com*,ct]) and Check(K,com,ct;)
16 pkyp < derive(skip) 42 output K \ win
17 ctrsp ¢ RspSpace  \\random encryption of rsp 43 if (Check(J,com,ct;) or (Check(L,com,ct;) and
18 k&K K =s")) and 3k’ : (L, com,cty, rsp, pk, pk*, k') € Ly
19 ct ¢ (com™, cty, Ctrsp) 44 k < k'
20 if E = ’1C 45 Lyal < Lvar U {(com, cty, K)}
21 A 46 Ly < Ly U{(K,com,cty,rsp, pkenps PKreys K
22 Lo + Lo U {((pkkem- Pkip), ct, k)} 47 r:turnT( i 1275 Phsno: Phcy. )}
23 return (ct, k)

Fig. 16. Adversary B against OW-KCA of KEM having access to oracles Check and simulating Gs/Ga
for adversary A.

D.2 Proof of Theorem 3.8

Theorem 3.8 (Insider Authenticity). For any adversary A against Ins-Aut security of
SnakeM[KEM, ID, G, H] making at most qc random oracle queries to G and at most gy random
oracle queries to H, there exist an adversary BB against IMP-Enc, an adversary C against SS-Enc,
and an adversary D against NM-Enc such that

(GEnc ,Gpec)-Ins-Aut (genc,96,96+gn)-IMP-Enc (QEnc,q6+qH)-SS-Enc
Aden?kel\?l[KEM,lD,G,H] (A) < AdeE“MJD (B) + AdVKEM,ID ©)

Ad (QEnc»96,96+qH)-NM-Enc D GEnc * 4G
+ AdVkem D (D) + [ChiSet|

+ Genc * OID + Genc (g6 + GH) - NIDVKEM,
where ChlSet is the challenge space of 1D.

Proof. We prove the theorem by a sequence of games depicted in Figure 17.

Game Gg. We start with the original Ins-Aut game for SnakeM.

(QEnc »gpec )-Ins-Aut _
AdVg,\okeMIKEM.ID, G, H] (A) =

1
Pr[Gyl = 1] — 2‘.

Game G;p. This is the same as the last game except that it aborts in the encapsulation oracle
if RO G or H were queried before on the same commitment and ciphertext; com and ct;. For
at most ¢g queries to G and gy queries to H, by the spreadness of commitment and ciphertext
it follows that

|Pr [Gg' = 1] - Pr[Gf = 1] | < Genc (g6 + aH) - VD VKEM-
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Games Gy — Gg Oracle Chall(sk, ct) \\ one query
00 Lc,Le, Ln, L+ 0 25 if sk = *
01 (skiem, Pkiem) <& KEM.Gen 26 sk < sk*
02 (skip, pki) <= 1D.Gen 27 if 3k : (derive(sk), ct, k) € Lc
03 s* <& {0,1}" 28  return k
04 sk* + (skikem, skip,s™) 29 Parse sk = (skkem, -, )
05 pk*™ < (pkkem, Pkip) 30 pk < derive(sk)
06 B+<{0,1} 31 Parse ct = (com, cty, Ctrsp)
07 B’ & APBncps:Decps,Chall,G.H () x) 32 K <+ KEM.Decaps(skkem, (com, ct1))
08 return [8 = '] 3BiIfFK=1
34 K+
Oracle Encps(pk) 35 k<« L
09 Parse pk = (pkygms ) 36 (chl, pad) « G(pkjp, com, pk, ct1, K)
10 (com, R) <* ID.Com 37 rsp < ctysp @ pad
11 (ct1, K) <~ KEM.Encaps, (pkgewm, R) 38 if ID.Ver(pkjy, com, chl, rsp) =1
12 if (-,com,-,ct1,-) € Lg or 39 k<« H(K,com,cty,rsp, pk*, pk)
(-,com,cty,-,-,-) € Ln \Gi-Gs 40  if (com,chl,rsp) € L or
13 abort \ G1-Ge J(com’,chl,-) € L : com’ # com \ G3-Gg
14 (chl, pad) + G(pkjp, com, pk, cty, K) 41 abort \\ G3-Ge
15 rsp < ID.Rsp(sky, com, chl, R) 42 if (com,chl,-) ¢ £ | GaGo
16 ctrsp ¢ rsp @ pad 43 abort \\ Ga-Ge
17 if ID.Ver(pk;p, com, chl,rsp) # 1 \G2-Gs 44 if 3(com, chl’,-) € £ : chl’ % chl \ Gs-Ge
18  abort \Ga-Gs 45 abort \ Gs-Ge
19 ct += (com, cty, ctisp) 46 if 3(com,chl,”) € £ \Ge
20 k < H(K, com,cty, rsp, pk*, pk) 47 abort \Ge
21 Lc + LcU{(pk,ct,k)} 48 B=1AKk# L
22 L+ LU {(com,chl, rsp)} \G-Go 49 K&K
23 return (Ct, k) 50 £C — £C U {(pk,ct, k)}
51 return k
Oracle Decps(pk, ct)
24 return SnakeM.ADecaps(sk*, pk, ct) Random Oracle G(pk,p, com, pk, cti, K)
52 if J(chl, pad) : (pkp, com, pk, ct1, K, (chl, pad)) €
Lg
53  return (chl, pad)
54 (chl, pad) <& ChISet x RspSpace
55 Lg < Lc U {(pkp,com, pk,cti, K, (chl, pad))}
56 return (chl, pad)
Random Oracle H(K, com, cty, rsp, pkeyp, PKrey)
57 if 3k : (K, com,cty, rsp, pkenp, PKrey, K) € Ln
58  return k
59 k& K
60 Ly < Ly U {(K,com,cty, rsp, pksnps PKrey, k)
61 return k

Fig. 17. Games Go — Gg for the proof of Theorem 3.8.

Game Gy. This is the same as the last game except that it aborts if the ID transcript com-
puted in the encapsulation oracle does not verify. The difference for one query is at most the
correctness error of the scheme since the transcript is honestly computed. Hence it holds that

’Pr [Gf‘ = 1] —Pr [Gf‘ = 1” < QEnc * OID-

Game Ggz. This is identical to the last game except that we introduce list £ which is filled in
the encapsulation oracle with the transcript of ID, i.e. with tuples (com, rsp, chl). Further, the
game aborts if the transcript computed in the challenge oracle verifies and already exists in
list £ or if there exists a transcript in £ for which chl is the same but com is not (Line 41).
Claim 1: P

Pr(Gs = 1] —Pr[Gf = 1]| < 2=

[Pr{Gs = 1] & ”_|ChISet|
Proof (Claim). Assume the game aborts in Line 41. We first consider the case that there exists
the same transcript (com, chl, rsp) in £ already. This means that there must also exist an element
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(pk’,ct’, k') in C such that ct’ = (com,ct],ct/). It must hold (pk’,ct},ctl,) # (pk,cty, Ctrsp),
because otherwise the challenge oracle would return in Line 28.

Case: ctﬁSP # ctysp: This case implies pad’ # pad where pad’ is the encryption padding from
the encapsulation oracle because the response rsp is the same by assumption. This in turn
means that the input to RO G must have been different. However, since chl is the same, we
found a partial collision in G; in particular, a collision in the first output part which has size
|ChiSet]|.

Case: (pk’,ct}) # (pk,cty): Since both, pk and cty, are input to RO G and the challenge chl
is the same by assumption, we found a collision in the first output part of G again.

In the second abort condition, we have the same chl but a different com, we can apply the
same argument as in the previous case directly since com is input to G which implies a collision
again.

Overall, any case can be reduced to the probability of a collision between a chl component
in £ and the first part of a query to G. Further, we have |£| < ¢z and at most gg queries to

G which yields the claim. ad

Game G4. This is the same as the last game except that it aborts if for the commitment com
and challenge chl computed in the challenge oracle there exists no element (com,chl,-) in £
and the transcript verifies.

Claim 2: There exists and adversary B against IMP-Enc such that

|Pr [GgA = 1] — Pr [Gf = 1” < AdV&qéT\Z’}B’QG—WH)_IMP'EnC(B),

Proof (Claim). We formally construct adversary B in Figure 18. The encapsulation oracle
can be simulated by their own encapsulation oracle Encpsyg. Receiving the response rsp, the
reduction can now simulate an encrypted response by choosing the ciphertext uniformly ran-
dom, computing the encryption padding by pad < ct,, @ rsp and store it together with the
challenge to be able to patch the RO later. Due to the changes in G; this simulation is sound
because G was not queried on the respective values. To answer RO queries to G and H, the
outputs need to be consistent with Encps which means that the reduction has to recognize
inputs corresponding to previous encapsulation queries. This is resolved by using the check
oracle Check to recognize KEM shared keys corresponding to encapsulation queries such that
the query can be answered using the stored values. If the input to G does not correspond to an
Encps query, B uses their challenge oracle Chalp to sample a new challenge chl and samples a
random padding pad on their own. Eventually, if the condition in Line 50 is fulfilled, adversary
B can output the challenge transcript. The condition (com,chl,-) ¢ £ implies that chl was
output of a Chalp query (in G) and is thus a valid output for the IMP-Enc game.

O

Game Gs. This is the same as the last game except that it aborts if for the commitment com
and challenge chl computed in the challenge oracle there already exists a tuple in £ with the
same com and a different chl and the complete challenge transcript verifies.

Claim 3: There exists and adversary C against SS-Enc such that

|Pr[Gf = 1] — Pr [GA = 1] < Adviiey; atm)SSEn o),

Proof (Claim). Adversary C is formally constructed in Figure 19. The simulation of encapsu-
lation oracle and random oracles works similar to the previous reduction. The only difference
is that there is no challenge oracle for adversary C and challenges are sampled directly from
ChlSet. Outputting two transcripts in Line 52 yields a valid solution since the challenges are
different and the transcripts in £ are verifying due to the changes in Game Gs.

O
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Adversary BEDCPSB’ChSIB’CheCk(pkrD) Oracle Chall(sk, Ct) \\ one query

00 Lc, L6, Ln, L+ 0 33 if sk =«

01 (skiem, Pkiem) <& KEM.Gen 34 sk« sk*

02 s* & {0,1}" 35 if 3k : (derive(sk),ct, k) € Lc

03 sk* «+ (skxgm, L,s*) 36  return k

04 pk* < (pkykems Pkib) 37 Parse sk = (skkem, -, S)

05 B < {0,1} 38 pk < derive(sk)

06 3/ < APBncps:Decps,Chall,GH () x) 39 Parse ct = (com, cti, Ctrsp)

07 return [8 = f'] 40 K + KEM.Decaps(skkem, (com, ct1))
41 if K= 1

Oracle Encps(pk) 42 K <+s

08 Parse pk = (pkygn, *) 43 k+ L

09 ((com,cty, rsp), chl) < Encpsz(pkyem) 44 (chl, pad) < G(pk/p, com, pk, cty, K)

10 ctrsp < RspSpace \\ randomly choose ciphertext 45 rsp ¢— Ctysp @ pad

11 pad < ctysp @ rsp \\ compute encryption padding 46 if ID.Ver(pk/,com,chl, rsp) =1

12 if (-,com,-,cty,+) € Lg or (-,com,cty,-, -, ") € Ly 47 k< H(K, com,cty, rsp, pk*, pk)

13 abort 48 if (com,chl,rsp) € L or

14 L + LcU{(pkjp, com, pk,cti, L, (chl, L))} \ store RO output J(com’, chl, ) € L : com’ # com

15 if ID.Ver(pkjy, com,chl, rsp) # 1 49 abort

16 2b0rt 50  if (com,chl,-) ¢ L

17 kK . 51 output (com, chl, rsp) \ win

18 Lu « L U{(L, com,ct1,rsp, pk*, pk,k)}  \store RO output 5 ;¢ B=1Ak#L

19 ct  (com, cty, Ctysp) 53 k&K

20 ﬁc(—ﬁcu{(pk,ct, k)} 54 Lc %ﬁcU{(Pk,Ct, k)}

21 L <+ LU {(com,chl,rsp)} 55 return k

22 return (ct, k)

Random Oracle H(K, com, cti, rsp, pksnp, PKrev)

w 56 if Jk : (K, com, cty, rsp, pksnp, PKreys k) € Ln
23 return Gs.Decps(pk,ct) 57  return k
58 k< K
Random Oracle G(pkp, com, pk, ct1, K) 59 Parse pk = (pkxgms *)
24 if 3(chl, pad) : (pkip, com, pk, ct1, K, (chl, pad)) € Lg 60 if 3K’ : (L, com, ct1, rsp, pkenp, Pkrcy, k') € Ln
25 re;:urn (chl, pad) and Check(K, pkggy, com,cty) =1
26 chl (—3; Chalg (Com) \\fresh challenge 61 k + k' \\ program consistently with Encps
27 pad <= RspSpace 62 Ly + Ly U{(K,com,cti, rsp, pksnp, Pkrevs K) }
28 Parse pk = (pkxgu; *) 63 return k

29 if 3(chl’,pad’) : (pkp, com, pk,cti, L, (chl’, pad’)) € Ls and
Check(K, pkygm, com,ct1) =1

30 (Ch|7 pad) (C|‘1|/7 pad') \\ program consistently with Encps

31 Lg <+ L U {(pkp,com, pk,cti, K, (chl, pad))}

32 return (chl, pad)

Fig. 18. Adversary B against IMP-Enc having access to oracles Encpsy, Chalp, Check and simulating
G5/G4 for A

Game Gg. This is the same as the last game except that it aborts if for the commitment com
and challenge chl computed in the challenge oracle there already exists a tuple in £ with the
same com and chl and the complete challenge transcript verifies.

Claim 4: There exists and adversary D against NM-Enc such that
Pr[GZ' = 1] — Pr [Gg' = 1]| < Advidsg ig et @) NEe Dy,

Proof (Claim). Adversary D is formally constructed in Figure 20. The simulation of the game
is similar to the reduction for IMP-Enc and the winning condition for adversary D is fulfilled
by construction.

O

Claim 5:
1

Proof (Claim). Game Gg aborts in the challenge oracle in any case if the ID transcript verifies:
the tuple (com,chl) can either occur in £, not appear, or appear partially, i.e. either com or
chl, and all cases occur in the abort conditions. Hence, the game only continues for invalid
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Adversary (CEnepsc Check (pkl*D) Oracle Chall (Sk, Ct) \\ one query

00 Lc, L6, Ln, L+ 0 32 if sk =«

01 (skiem, Pkiem) <& KEM.Gen 33 sk « sk*

02 s* & {0,1}" 34 if 3k : (derive(sk), ct, k) € Lc

03 sk* «+ (skxgm, L,s*) 35 return k

04 pk* < (pkykems Pkib) 36 Parse sk = (skkewm, -, S)

05 B < {0,1} 37 pk < derive(sk)

06 3/ < APBncps:Decps,Chall,GH () x) 38 Parse ct = (com, cti, Ctrsp)

07 return [8 = f'] 39 K <+ KEM.Decaps(skkem, (com, ct1))
40 if K =1

Oracle Encps(pk) 41 K <+s

08 Parse pk = (pkygn, *) 42 k+ L

09 ((com,cty, rsp), chl) < Encps (pkkem) 43 (chl, pad) < G(pk/p, com, pk, cty, K)

10 ctrsp < RspSpace \\ randomly choose ciphertext 44 rsp ¢— Ctysp @ pad

11 pad < ctysp @ rsp \\ compute encryption padding 45 if ID.Ver(pk/y,com,chl,rsp) =1

12 if (-,com,-,cty,+) € Lg or (-,com,cty,-,-,") € Ly 46 k < H(K, com,cty, rsp, pk*, pk)

13 abort 47 if (com,chl,rsp) € L or

14 L + LcU{(pkjp, com, pk,cti, L, (chl, L))} \ store RO output J(com’, chl, ) € L : com’ # com

15 if ID.Ver(pkjy, com,chl, rsp) # 1 48 abort

16 2b0rt 49 if (com,chl,-) ¢ L

T ke . 50 abort

18 Ly « Ln U {(L, com,cty, rsp, pk*, pk,k)}  \store RO output 51 if 3(com,chl’,rsp’) € £ : chl’ # chl

19 ct «= (com, cty, Ctrsp) 52 output (com,chl, rsp, chl’; rsp’) \ win

20 Lc + Lc U {(pk,ct,k)} 53 if B=1Ak#L

21 L <+ LU {(com,chl,rsp)} 54 KEK

22 return (ct, k) 55 Lc <« LcU{(pk,ct,k)}

56 return k
Oracle Decps(pk, ct)

23 return Gs.Decps(pk, ct) Random Oracle H(K, com, cty, rsp, pkenp, PKrev)

57 if Jk: (K, com,cty, rsp, pksnps PKrey, k) € £
Random Oracle G(pkp, com, pk,cty, K) 58 retu(rn K 1 75P Phswo: Py k) :

24 if 3(chl, pad) : (pk,p, com, pk, ct1, K, (chl, pad)) € Lg 59 k& K
25  return (chl, pad)

26 (chl, pad) <& ChISet x RspSpace
27 Parse pk = (pkkgm: )

60 Parse pk = (pkkgwm: )

61 if 3k’ : (L, com, ct1, rsp, pkgnp, Pkreys K') € Ln

. p ; , , and Check(K, pkygy,com,cty) =1

28 if 3(chl’, pad’) : (pk,p, com, pk,cti, L, (chl’,pad’)) € L and 62 Kk K \ program consistently with Encps
Check(K, pkkewm, CO/mA,Ct}) =1 ) . 63 Ln « Ln U {(K, com,cty, rsp, pkenp, PKrevs K) }

29 (Ch|, pad) « (Ch| , pad ) \\ program consistently with Encps 64 return k

30 Lg + L U {(pkp,com, pk,cti, K, (chl, pad))}

31 return (chl, pad)

Fig. 19. Adversary C against SS-Enc having access to oracles Encps,, Check and simulating G4/Gs for
A.

transcripts and thus always outputs k = | in the challenge oracle which is independent of

challenge bit 3. O

O

D.3 Proof of Theorem 3.9

Theorem 3.9 (Honest Receiver Deniability). There exists a PPT simulator Sim such
that for any HR-Den adversary A against SnakeM[KEM, ID, G, H] making at most qc random
oracle queries to G and at most qq random oracle queries to H, there exists an adversary B
against OW security such that

AdV?rE_LZW[KEMJD,G,H],Sim(-A) < (g6 + an) - Adveeu(B).

Proof. We prove the theorem by a sequence of games depicted in Figure 21.

Game Ggy. We start with the original HR-Den game for SnakeM and a simulator Sim as defined
in Figure 21.

-Den 1
AdvgrszeM[KEM,lD,G,H],Sim(“4) = Pr[GoA = 1] - 2‘ :
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Adversary DEeepep Chalpheck (pl iy Oracle Chall(sk, ct) \\one query
00 Lc,Lg, L, L+ 33 if sk = *
01 (skiem, Pkiem) <& KEM.Gen 34 sk« sk*
02 s* & {0,1}" 35 if 3k : (derive(sk), ct, k) € Lc
03 sk* «+ (skxgm, L,s*) 36 return k
04 pk* < (pkkems Pkib) 37 Parse sk = (skkem;, -, s)
05 B < {0,1} 38 pk < derive(sk)
06 ' <& APBncps:Decps,Chall,GH )+ 39 Parse ct = (com, cti, Ctrsp)
07 return [8 = f'] 40 K + KEM.Decaps(skkem, (com,ct1))
41 if K= 1
Oracle Encps(pk) 42 K <+s
08 Parse pk = (pkygn, *) 43 k+ L
09 ((com,cty, rsp), chl) < Encpsp (pkyem) 44 (chl, pad) < G(pk|p, com, pk, cty, K)
10 ctrsp & RspSpace \\ randomly choose ciphertext 45 rsp ¢— Ctysp @ pad
11 pad < ctrsp @ rsp \\ compute encryption padding 46 if ID.Ver(pk/y,com,chl, rsp) =1
12 if (-,com,-,cty,+) € Lg or (-,com,cty,-, -, ") € Ly 47 k< H(K, com,cty, rsp, pk*, pk)
13 abort 48 if (com,chl,rsp) € L or
14 L + LcU{(pkjp, com, pk,cti, L, (chl, L))} \ store RO output J(com’, chl, ) € L : com’ # com
15 if ID.Ver(pk{y, com,chl, rsp) # 1 49 abort
16 2b0rt 50  if (com,chl,-) ¢ L
17 k&K 51 abort
18 Lu « Ly U{(L,com,cty,rsp, pk*, pk,k)}  \store RO output o ip 3(com, chl’,-) € £ : chl’ # chl
19 ct  (com, cty, Ctysp) 53 abort ’
20 Le + LcU{(pk,ct,k)} 54 if 3(com,chl,rsp) € £
21 £« LU {(com, chl, rsp)} 55 output (com, chl, rsp) \ win
22 return (ct, k) 56 ifB=1AkKk# L
57 k&K
Oracle Decps(pk, ct) 58 Lo+ LcU{(pk,ct,k)}
23 return Gs.Decps(pk, ct) 59 return k
Rar.ldom Oracle G(pkp, com, pk, cti, K) Random Oracle H(K, com, cty, rsp, pkenp, PKrey)
24 if 3(chl, pad) : (pk,p, com, pk, ct1, K, (chl, pad)) € Lg 50 if 3k : (K, com, cts, rsp, pkenps PKrcys K) € L
25  return (chl, pad) 61  return k
26 chl < Chalp(com) \\ fresh challenge 62 k& KC
27 pad < RspSpace 63 Parse pk = (pkxey, -)
28 Parse pk = (pkyem, ) 64 if 3K’ : (L, com, cty, rsp, pkenp, Pkrcys k') € L
29 if J(chl’, pad’) : (pkyp, com, pk,ct1, L, (chl’, pad’)) € Lc and and Check(K, pkygy, com, ct1) = 1
CheCk(K’ pkKEN“ Co/m" Cti) =1 . . 65 k < K \\ program consistently with Encps
2(1) [/G(ihgz(b) {Tpl((cm(;‘f:]d )k \\Ip(rogr;;n co;nslstently with Encps 5 Ly — Ly U {(K, com, ct1, rsp, Pksnp, PRrey s k)}
D> Pk, cti, K, (chl, pad)) } 67 return k
32 return (chl, pad)

Fig. 20. Adversary D against NM-Enc having access to oracles Encpsp,,Chalp, Check and simulating
G5/G6 for A

Game Gi. This game is the same as the previous one except that it aborts if the challenge
KEM ciphertext and key, i.e. com*, ct], and K*, are part of the query to random oracle G
or H. Note that if the game does not abort and hence there does not exist a query with the
corresponding components, this is equivalent to replacing the RO outputs for the challenges
by uniformly random values (see Line 13 and 18).

Claim 6: There exists an adversary B against OW such that

|Pr[Gg' = 1] = Pr [G{' = 1]| < (g6 + u) - AdviRen (B).

Proof (Claim). We define a sequence of intermediate games such that Gy, ¢ € [0, ¢ + qu],
is the same as Gy except that the game aborts if one of the random oracles is queried on the
challenge ciphertext (com*,ct}) together with the challenge KEM key K* not later than in
the i-th query to any of the random oracles. Note that we count the overall queries to both
random oracles, G and H. Further it holds Go.oc = G and G ¢g+q, = G1.

In Figure 22, we define adversary B; against OW such that

[Pr[Ggl;_y = 1] — Pr[Gp'; = 1]| < Advigm(Bi).

Iterating over i € [1, g + gu] yields the claim. O
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Games Go — G2 Simulator Sim(pk,, pks)

00 (skkem,1, Pkkem.1) <& KEM.Gen 24 Parse pky = (pkxems PKip)

01 (skip,1, pkip.1) < 1D.Gen 25 (com, R) < KEM.Encaps,

02 s1 <~ {0,1}" 26 (ct1, K) < KEM.Encaps, (pkxem, R)

03 ski < (skrem,1,skip,1,51) 27 ctysp <& RspSpace

04 pky < (pkxew,15 Pkipl)) 28 k&K

05 (skkem,2, PkKEM,z) & KEM.Gen 29 ct < (com,cty, Ctrsp)

06 (skip,2, pkip o) = ID.Gen 30 return (ct, k)

07 s2 & {0,1}"

08 sk + (skkem,2, skip,2, s2) Random Oracle G(pkp, com, pk, cty, K)

09 pky + (Pkkem,2) PKip,2) 31 if J(chl, pad) : (pkp, com, pk, ct1, K, (chl, pad)) € Lg
10 (com, R) < ID.Com 32 return (chl, pad)

11 (ct1, K) < KEM.Encaps, (pkygy 2» R) 33 (chl, pad) <% ChISet x RspSpace

12 (chl, pad) < G(pkp ,, com, pky, ct1, K) 34 Lg + L U {(pkyp, com, pk, ct1, K, (chl, pad))}

13 (chl, pad) <& ChiSet x RspSpace \Gi-Gs 35 return (chl, pad)
14 rsp <~ ID.Rsp(skip,1, com, chl, R)

15 Ctrsp — rsp & pad Random Oracle H(K, com, cty, rsp, pkeyp, PKrey)
16 ctrsp <& RspSpace \G2 36 if Jk: (K, com,cti, rsp, pkenp, Pkreys K) € Ln
17 ko <+ H(K, com, cty, rsp, pky, pks) 37  return k

18 ko & K \G1-Gy 38 k& K

19 ¢o + (com,cty, Ctrsp) 39 Ly 4+ Ly U {(K,com,cty, rsp, pksnp, PKrey, k)
20 (c1, ki) <& Sim(pk,, pky) 40 return k

21 & {0,1}

22 B« A% (skq, pky, pky, cg, ks)
23 return [8 = ']

Fig. 21. Games Go — G2 for the proof of Theorem 3.9.

Game Gy. This game is the same as the previous one except that the encryption of the response,
Ctrsp is replaced by a uniformly random value from the response space RspSpace (Line 16).
Since pad is uniformly random and not used anywhere else, cty, is information-theoretically
indistinguishable from a uniformly random value. Hence it holds

Pr[Gi4 =1] = Pr[Gé4 = 1].

Note that in Gg, the distribution of c¢g and kg is the same as for the output of the simulator.
Hence, an adversary A does not have a better chance of winning the game than guessing the
challenge bit and we have

1
Pr[Gy' = 1] = 5

E Detailed Security Analysis of SnakeM-Iso

In this section we discuss various attack strategies against SnakeM-Iso (translating to attacks
against the underlying assumptions) and show that they do not apply, thus underpinning the
overall security of SnakeM-Iso.

E.1 Attacking SnakeM-lIso Using Malicious POKE Public Keys

Attack Idea: Recover the commitment randomness via malformed POKE public keys.
Target: {IMP,SS, NM}-Enc
Prevention: Choose 2% < v/N.

One possible way to attack SnakeM-Iso is by using maliciously generated POKE public keys. If
an honest party encrypts towards such a public key, the attacker is able to efficiently recover
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Adversary B;(pkyggm, com®, cty) Random Oracle G(pk,y, com, pk, ct1, K)
00 ent + 0 22 if 3(chl, pad) : (pk,p,com, pk, ct1, K, (chl, pad)) € L¢
01 (skiem,1, Pkxem,1) <= KEM.Gen 23 return (chl, pad)
02 (skip,1,pkip 1) < ID.Gen 24 cnt +cnt + 1
03 s1 ¢ {0,1}" 25 if (com,cti, K) = (com*,ct], K*)
04 sky (S|(KE|\/|,1,S|(|D,17 51) 26 if ent <
05 pky <= (Pkkewm,1, Pkip 1)) 27 abort
06 (skip,2, pkip 5) < ID.Gen 28  if ent =1
07 sy & {07 1}77 29 output K \\ potentially solve OW challenge
08 skg + (L,skip,2,s2) 30 (chl, pad) < ChiSet x RspSpace
09 pky < (Pkikem, kaD,2) \\embed challenge pk 31 Lg < LcU {(pk”), com, pk, cty, K, (chl, pad))}
10 (com*, R) <& ID.Com 32 return (chl, pad)
11 (cti, K*) < KEM.Encaps, (pkygm 2, R)
12 (chl, pad) < G(pkp ;,com*, pky,cti, K*) Random Oracle H(K, com, cty, rsp, pkeyp, PKrey)
13 rsp <& ID.Rsp(skip,1,com*, chl, R) 33 if 3k : (K, com, cty, rsp, pkenps PRrevs k) € Lh
14 ctysp — rsp @ pad 34 return k
15 ko < H(K™, com™, cty, rsp, pky, pky) 35 ent <—cent + 1
16 co + (com™, cty, Ctysp) \\ embed challenge 36 if (com,cti, K) = (com*,cty, K*)

ciphertext 37 if ent <
17 (e1,k1) € Sim(pk,, pky) 38 abort
18 & {0,1} 39 if ent =14
19 B« .AG’H(SLQ7 pky, pky, s, kg) 40 output K \\ potentially solve OW challenge
20 return [8 = '] 41 k&K

42 Ly + Ly U {(K, com,cty, rsp, pksnps Phrevs K)

Simulator Sim(pk,, pk,) 43 return k
21 return Go.Sim(pk,, pk,)

Fig. 22. Adversary B; against OW simulating games Go.;—1/Go.; for adversary A from the proof of
Theorem 3.9.

the commitment randomness ¢com, which combined with the signature yields the SQIsignHD™
secret key of the honest party.

Concretely, the attack targets the {IMP,SS,NM}-Enc assumption. In these assumptions,
the adversary A has access to an Encps oracle that takes as input (essentially) a POKE public
key pk and outputs a SnakeM-Iso ciphertext which was generated w.r.t. pk. In particular, the
ciphertext contains a POKE ciphertext w.r.t. pk as well as a SQIsignHD™ signature using the
encryption randomness as commitment randomness. Let in the following (skjp, pkjp) be the
SQIsignHD™ key pair in the (say) IMP-Enc game.

Instead of choosing an honest POKE public key as described in Section 4, adversary A
chooses a random f-isogeny @skenc : Fo — Fenc for some small enough ¢ € N. Since ¢ is small,
ker ogcenc is defined over a small field extension of IF,> and can hence be considered accessible.
It then chooses a random basis (PO, QO) of Ey[2] under the condition that Po, Qo, Py and Qg
generate pairwise distinct subgroups. A then computes (Pl, Ql) (%kEnc(Po) sOskEnc(Qo)) and
(R1,51) = (@skenc(Ro), ©skenc(S0))- Lastly, it chooses and a random X1,Y] € Egn[D] and sets
the POKE pubhc key to pk = (Eenm Pl, Ql; Rl, Sl,Xl, Yl)

Next, the adversary queries the Encps oracle on pk, receiving a ciphertext ct = (com, cty, rsp)
and a challenge chl. In the particular case of POKE and SQIsignHD™, the ciphertext ct and
challenge chl consist of the following information:

— com = Em, the codomain of some N-isogeny @com,

—ct; = (Ect,PQ,QQ,ﬁg,ég) where in particular E is the codomain of the push-forward
Prom = [‘PskEnC] Pcoms (12, Q2) = ([Bp]Pcom(F0); [Bqlpcom(Qo)) and (PB’ Q3) ([5P]90com(P1)
[B@)¢kom(@1));

chl corresponds to an isogeny @chal : Esig — Echal, and

rsp yields an HD-representation of an isogeny ¢rsp : Ecom — Echal-

From the commutativity of the POKE square, E¢ is the unique codomain of ¢l g . = [Pcom]+PskEnc-
However, because yskenc is a rational isogeny of small-ish degree ¢, the adversary can simply
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brute-force the push-forward ¢ g,.. Subsequently, A can compute

P = [/BP]@com(PO) - M_l]@skEnc(ﬁS)a and
Q2 = [B)com(Qo) = [~ Beknc(Q3)-

Since P, Qo,ﬁo, @0 generate pairwise distinct subgroups, A can recover Sp and B¢ from the
pairing equation

6(1507P0)Nﬁ"23 =¢(Py, P,) and e(éo,Qo)Nﬁé = ¢(Q2,Q2).

Hence A recovers the images peom(Po) and peom(Qo), that is, the image of the 2%-torsion under
the N-isogeny pcom. If now 2% > V/N then A successfully recovers an efficient representation
of pcom, allowing him to recover skjp from the knowledge of @com,@chal and ¢rsp. However,
SnakeM-lso uses 2% ~ 2*/2 and N ~ 23}, hence the attack is not applicable.

E.2 Attacking SnakeM-Iso via a Guessing Strategy

Attack Idea: Recover the commitment randomness by guessing 1/3 of ¢com and recover the
remaining 2/3 via meet-in-the-middle.

Target: {IMP,SS,NM}-Enc

Prevention: Choose N =~ 23X,

The next attack again targets the {IMP,SS,NM}-Enc assumption and proceeds similarly to
the adaptive attack outlined in [GPST16]. To this end, the adversary A guesses a constant
fraction 1/k of ¢.,,,. Subsequently, A chooses the points (R1,.57) in his public key pk in such
a way that if an honest party encrypts towards pk, then the resulting ciphertext is well-formed
(i.e. decryptable) if and only if the guess was correct. A can then brute-force the remain-
ing (k — 1)/k fraction of @com via meet-in-the-middle, resulting in an overall complexity of
max{N'/* N&=1/261 Here, the optimal trade-off is for x = 3.

Concretely, let (pk,sk) be a POKE key pair with pk = (Eenc, P1, Q1, Ry, S1,X1,Y1) and
@skenc : Fo — Fenc the corresponding secret key isogeny. Furthermore, let N = [[, ¢’ and
recall that ker ¢’ ., = (R1 + [reom|S1) for some reom € Z%. Furthermore, let j € N be such
that n = HKj 0~ N5 and let p € Z be a guess for reom mod n. By extending the idea
in [GPST16, Remark 2] it is possible to choose (Rl, 51) € Eenc[N] such that

1. <R1 + [rcom]51> = <}:€1 + [Tcom]s_’l> if P = Tcom mod 7,
2. <]~%1 ‘t [TCOm]Sl> 7é <R1 + [Tcom]Sl> if P i—é Tcom mod n, and
3. (R1,51) is a basis of Egnc[N], implying that both points have order N.

Therefore, if the guess p was correct, we have that @[ ., stays invariant under the change
(Ry,51) — (Rl, 51) In particular, we still have ¢, ., = [PskEnc]«Pcom and the POKE diagram
commutes. Therefore, it is still possible to compute gongnc = [(com]+PskEnc-

However, if the guess p was incorrect, the isogeny with kernel (R; + [reom]S1) is distinct
from [pskEnc|«Pcom- Furthermore, the POKE diagram does not commute anymore, making it
impossible to compute @l r. = [Pcom)PskEnc-

To summarize, the adversary A first chooses an honest POKE key pair (pk,sk) with pk =
(Eenc, P1,Q1, Ry, S1, X1,Y1). He then makes a guess p and replaces (R1,~5'1) with the corre-
sponding (Ry,S), yielding the public key pk. He then queries Encps on pk, receiving (among
other things) a POKE ciphertext ct that was created using some secret randomness 7rcom. Now
A is able to decrypt ct if and only if the guess p for reom mod n was correct. If the guess was
incorrect, A proceeds to query Encps on p~k until the chosen rem, coincides with his guess p.
After an expected N'/* queries, he will succeed and thus knows a 1 /k fraction of reom (or
equivalently ¢com). The remaining (k — 1)/k fraction of ¢eom can be recovered via meet-in-the-
middle, resulting in a runtime of N(#=1/25 Once @eom is recovered, the adversary can recover
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the SQIsignHD™ secret key as outlined in the previous attack, thus successfully breaking the
assumption.

The attack is prevented by choosing N large enough such that N1/3 e 6(2*), which matches
our proposed parameters since there N > 23},

Remark E.1. We highlight that the above attack corresponds to a “one-shot” version of [GPST16].
Indeed, [GPST16] uses the above idea to recover a secret isogeny step-by-step, yielding a
polynomial-time attack. However, in their setting the secret isogeny is static, which is not
the case in SnakeM-Iso since pom changes in each encapsulation. Hence, the exponential-time
“one-shot” version above seems to be optimal.

E.3 Attacking OW-KCA

One may wonder if a GPST/MOXZ-style attack [GPST16,MOXZ24] can be mounted against
YskEnc instead of ¢eom, since the former is indeed static in the OW-KCA game. However, such
an attack seems out of reach for two reasons:

— The degree of pgkenc is unknown and prime, hence there does not seem to be a natural way
to split @senc into a 1/k fraction.

— We include an additional check in Figure 10, Line 28 that checks whether the provided
torsion points are actual faithful images under ¢ g, .

F ElGamal-Schnorr AKEM

We first recall the AKEM constructed from ElGamal and Schnorr as described in the technical
overview (cf. Section 1.1). For a group (G, p, g) of prime order p and generator g, an ElGamal
public key pkyxgpm and a Schnorr secret key sksig, we write the encapsulation algorithm as

(ct = (9", pkiem - k), k) < Encaps(pkkgm; ),
and the signing algorithm as
(com = g",rsp = r + sksg - chl) <* Sign(sksig, m;T),

where chl = G(com, m) and G is modeled as a random oracle. In the SnakeM construction we
combine the two by signing m = (k, ctxt) and deriving the AKEM key has H(k, ctxt), where H
is another random oracle and ctxt contains (parts of) the transcript and public keys.

COMPATIBILITY, CORRECTNESS, AND SPREADNESS. When viewing the generation of the first
ElGamal ciphertext component as Encapsy, it is easy to see that it is compatible with the com-
mitment generation of the underlying Schnorr ID scheme. Further, both schemes are perfectly
correct. The commitment spreadness is yp = 1/p and the KEM spreadness is ykgem = 1 since
the second ciphertext component does not introduce any new randomness.

SECURITY. For our composition theorems Theorems 3.7 to 3.9, we need to show that ElGamal
is OW-KCA secure and that Schnorr is IMP-Enc, NM-Enc, SS-Enc secure, that is, even in the
presence of a transcript oracle that also outputs the second part of the ElGamal ciphertext. The
former holds under the Strong Computational Diffie-Hellman assumption. The latter notions
are more interesting.

WHY (ALMOST) STANDARD ID NOTIONS ARE SUFFICIENT HERE. We first look at IMP-Enc
security. We would like to show that IMP-KOA security of Schnorr implies IMP-Enc for Schnorr
and ElGamal. For this we need to show that we can simulate the Encps and Check oracle.
We first look at the former. We want to construct a reduction B against IMP-KOA that gets
an (honestly generated) Schnorr public key pkgc = ¢* as input. It simulates Encps queries
for a (possibly adversarially generated) ElGamal public key pkxgy = ¢¥ using perfect honest-
verifier zero-knowledge, i.e., it computes com, chl, rsp by first picking rsp, chl <> Z, and then
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computing com = g"P . pk;cchl. It then picks ct; <& G. Since k is randomly sampled, ct; is
correctly distributed. More concretely, we can express it as ct; = com? - k = g(rsP—z-<hy .|
However, B also need to simulate Check. Since the adversary can choose pkyxgy such that it
knows y, it can decrypt com,ct; to obtain k. Hence, B needs to recognize Check queries of
the correct form (k, pkxgm,com, cty). Therefore, standard IMP-KOA security is not sufficient,
but we need to provide the reduction with an additional DDH, (-, ) oracle which on input Y, Z
outputs whether Z = Y*. While this is stronger than standard IMP-KOA security, it does not
rely on the ElGamal KEM directly. A similar argument holds for special soundness (cf. also
Theorem C.3). Further, we achieve non-malleability since Schnorr has unique responses and
therefore perfect non-malleability.

NECESSITY OF ENC-ORACLE FOR OUR CONSTRUCTION. The above implication highly relies
on the structure of prime-order groups and perfect HVZK. For non-oriented isogenies, and also
in general, an analogue to the DDH oracle may not exist and one rather needs a “key-checking”
oracle for adversarially generated public keys. Similarly, HVZK may not be perfect, as is the
case for SQIsignHD™ due to current limitations regarding randomly sampling HD isogenies. For
the same reason, it may not be possibly to sample the second ciphertext component perfectly,
as is the case for POKE. Hence, it is hard to separate the two primitives from each other and
our notions are more involved.
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