PicoGRAM: Practical Garbled RAM from Decisional Diffie-Hellman

Tianyao Gu'?, Afonso Tinoco'?3, Sri Harish G Rajan', and Elaine Shi'-?

!Carnegie Mellon University
20blivious Labs, Inc.
3Instituto Superior Técnico

August 14, 2025

Abstract

Making 2-party computation scale up to big datasets is a long-cherished dream of our com-
munity. More than a decade ago, a line of work has implemented and optimized interactive
RAM-model 2-party computation (2PC), achieving somewhat reasonable concrete performance
on large datasets, but unfortunately suffering from 6(T) roundtrips for a T-time computation.
Garbled RAM promises to compress the number of roundtrips to 2, and encouragingly, a line
of recent work has designed concretely efficient Garbled RAM schemes whose asymptotic com-
munication and computation costs almost match the best known interactive RAM-model 2PC,
but still leaves (poly) loglog gaps.

We present PicoGRAM, a practical garbled RAM (GRAM) scheme that not only asymptoti-
cally matches the prior best RAM-model 2PC, but also achieves an order of magnitude concrete
improvement in online time relative to interactive RAM-model 2PC, on a dataset of size 8GB.
Moreover, our work also gives the first Garbled RAM whose total cost (including bandwidth
and computation) achieves an optimal dependency on the database size (up to an arbitrarily
small super-constant factor).

Our work shows that for high-value real-life applications such as Signal, blockchains, and
Meta that require oblivious accesses to large datasets, Garbled RAM is a promising direction
towards eventually removing the trusted hardware assumption that exists in production imple-
mentations today. Our open source code is available at https://github.com/picogramimpl/
picogram.


https://github.com/picogramimpl/picogram
https://github.com/picogramimpl/picogram
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1 Introduction

Garbled circuits, first introduced by Yao [Yao86], are a fundamental cryptographic tool for constant-
round secure two-party computation (2PC). Despite decades of optimizations that have made gar-
bled circuits practical [BMR90, NPS99, KS08, ZRE15, RR21, BHKR13, HEKM11, SHS*15], most
works focus on Boolean circuit computation and fail to efficiently capture the Random Access Ma-
chine (RAM) model, which is ubiquitous in real-world computation. A RAM with space N features
a constant number of registers and a memory of N cells, where each register or memory cell can
store a W-bit word. In every time step, the RAM performs a CPU instruction over the registers’
values, as well as a memory read and write operation.

While CPU instructions can be garbled efficiently as Boolean circuits, garbling memory accesses
presents greater challenges. The naive approach is to convert each memory read and write into a
circuit that linearly scans through memory, resulting in prohibitive overhead as the data size grows.

There are two main approaches to avoid this per-instruction linear scan overhead. First,
a line of work has shown how to achieve (interactive) RAM-model 2PC [GKK'12, GGH"13b,
WHC'14, ZWR 16, DS17, WCS15, LHS*14, LWN'15].  State-of-the-art constructions [WCS15,
LWNT15, Kel20] in this literature typically use Circuit ORAM [WCS15] to convert the RAM to
a sequence of interactive circuits, and then use a 2PC protocol (e.g., garbled circuits) to evalu-
ate them. When the word size W is at least Q(log? N), the resulting 2PC protocol achieves a
per-instruction communication cost of O(A - W -log N - w(1)), where w(1) is an arbitrarily small
super-constant function in the RAM’s space N, but suffers from O(T') rounds, where T is the
running time of the original RAM [WCS15]. The large round complexity makes this approach un-
suitable for deployments with high end-to-end latency (e.g., over a wide-area network), especially
when T is large.

The second approach is to use an efficient garbled RAM (GRAM) [LO13] scheme. Like gar-
bled circuits, a garbled RAM requires only two rounds when used in a semi-honest 2PC protocol.
However, unlike the naive approach of converting each memory access into a linear scan, garbled
RAM significantly reduces the per-instruction cost to polylogarithmic in N. A key challenge is
designing a concretely efficient garbled RAM scheme. Unfortunately, earlier works in this litera-
ture [LO13,GHL*14,GLO15,GLOS15,1.017] focused only on theoretical feasibility, without explic-
itly quantifying the poly factor in the poly log overhead. While recent works [HKO22,PL.523,HKO23]
have made encouraging progress in minimizing the poly log factor, their communication and com-
putation costs are still a (poly)loglog factor away from the prior best interactive RAM-model
2PC [WCS15,LWN*15].

1.1 Owur Theoretical Contribution

We propose a new garbled RAM construction called PicoGRAM. We reduce the extra poly loglog NV
factor in previous constructions [PLS23, HKO23] to an arbitrarily small super-constant factor, lever-
aging the Decisional Diffie-Hellman (DDH) assumption. For word size W = Q(log? N), PicoGRAM
achieves a per-instruction communication cost of O(A- W -log N - w(1)), where we abuse the w(1)
notation to mean an arbitrarily small super-constant function in N. In this sense, PicoGRAM
matches the communication cost of the best known RAM-model 2PC scheme [WCS15]!, but we
reduce the round complexity from 5(T ) to only two rounds.

1Since we care about concrete efficiency, we compare only with concretely efficient constructions. The line of work
on succinct garbled RAM [LP14, BGL"15, CHJV15, KLW15, CCHR16, CH16, CCC"16, ACC'16, AL18] is asymptot-
ically better but completely impractical due to their reliance on indistinguishability obfuscation [JLS20, GGH"13a].
See Section 1.4 for more discussion.



Table 1: Comparison of communication cost with prior works for semi-honest 2PC, where N is
the RAM’s space, T is the RAM’s runtime, and W is the word width. OWF stands for one-way
functions and CCRH stands for circular correlation robust hash. Interactive represents the RAM-
model 2PC construction in the work of Circuit ORAM [WCS15].

Comm. in bits per instruction Rounds Assumption
Interactive [WCS15] O (A- (W -log N - w(1) + log® N)) O(T -log N) OWF
EpiGRAM [HKO22] O (A- (W -log N +log® N) -log N) 2 CCRH
NanoGRAM [PLS23] O (A (W -log N +log® N) - (loglog N)?) 2 CCRH
Tri-State [HKO23]* O (A - (W -log N +log® N) - loglog N) 2 OWF
PicoGRAM O (X (W -log N -w(1) +log® N)) 2 DDH

* While tri-state GRAM [HKO23, Hea24] presents their results assuming N = T', we show in Section A.1 that this

assumption can be removed.

A more generalized version of our asymptotic result is stated in the following theorem, where
communication is measured in bits, and computation is measured in terms of group multiplications.

Theorem 1.1. Assume the Decisional Diffie-Hellman (DDH) assumption. There exists a garbled
RAM with an amortized communication and computation cost of O(X- (W -log N - w(1) +log® N))
per instruction, where N is the RAM’s space (counted in the number of words), W is the word
width, X\ is the security parameter, and w(1) is an arbitrarily small super-constant factor in N.

For both the RAM-model 2PC literature [WCS15, LWN 15, Kel20] and PicoGRAM, the extra
w(1) factor stems from the underlying ORAM construction [WCS15], and it is an open question
whether we can eliminate it while still preserving concrete efficiency. Even the more restricted
problem of devising a concretely efficient Oblivious RAM scheme (suitable for garbled RAM or
2PC) without the extra w(1) factor remains open.

We give a more detailed comparison with prior work in Table 1. Note that in PicoGRAM, the
security parameter A\ denotes the number of bits used to represent a group element, whereas in
other schemes A denotes the number of bits of a one-way function or a circular correlation robust
hash (CCRH) [KS08, CKKZ12].

1.2 Open-Source Implementation and Concrete Performance

Open-source implementation. Although Theorem 1.1 can be based solely on the DDH assump-
tion, for our practical implementation, we additionally adopt FreeXOR-style optimizations [KS08,
RR21] for better concrete performance. Therefore, our practical variant of PicoGRAM additionally
relies on the existence of a random oracle (RO) for these concrete optimizations to work. We
implemented this practical variant in C4++ and open-sourced the code at https://github.com/
picogramimpl/picogram.

For our current implementation, we store all the garbled circuitry in memory. For this reason,
in our evaluation results later, all results for up to N = 26 are from actual measurements, whereas
results for larger IV are extrapolated. Note that reported communication costs are exact regardless
of N, since communication costs can be calculated in “count mode” (i.e., a simulator that does
not actually execute the cryptography). With some extra engineering work, it is not too hard to
extend our current implementation with a better memory management scheme. Using appropriate
pipelining, we expect that the memory management should not incur noticeable slowdown, so our
extrapolated numbers for N > 216 should be quite accurate.


https://github.com/picogramimpl/picogram
https://github.com/picogramimpl/picogram

Table 2: Comparison of concrete costs with prior works for semi-honest 2PC, assuming a word width
of 64 bits, network bandwidth of 300 Mbps, and a round trip time of 100 ms. N is the RAM’s
space. Every column represents a different variant of each scheme optimized for the corresponding

metric. The results for N = 230 are extrapolated.
Communication | End-to-end Time Online Time
Scheme N - - -
MB Relative to Relative to Relative to
Interactive ms Interactive ms Interactive
) 216 [ 2,94 1x 378 1x 102 1x
Interactive [WOSI5] | oz0 | 15 4 1x 1365 1x 455 1x
Prior-best 216 [ 16.4 5.58 % 490 1.30x 30.9 0.30%
GRAM [PLS23] 230 | 120 9.16x 3565 2.61x 220 0.48x
PicoGRAM 216 [ 3.94 1.34x 156 0.41x 9.73  0.095x
(tuned for each metric) | 230 | 185 1.41x 600 0.44 % 41.0 0.090x

Concrete performance. We evaluated the concrete performance of PicoGRAM. In Table 2,
we compare PicoGRAM’s performance with two baselines: 1) state-of-the-art RAM-model 2-party
computation [WCS15, LWNT15] (also called the “interactive” baseline), and 2) state-of-the-art
Garbled RAM [PLS23|. The metrics we focus on include the communication cost, the end-to-end
time, and the online time. Note that when reporting each metric, we are using a different variant
of the scheme specifically optimized for the metric of concern.

Making RAM-model 2-party computation (2PC) practical for big data has been a long-cherished
dream of our community. Table 2 shows that excitingly, standing on the shoulders of recent
efforts [HKO22, PLS23, HKO23|, practical Garbled RAM can finally beat the interactive base-
line [WCS15, LWN*15] in terms of both overall time and online time! Specifically, relative to the
prior best interactive baseline, although PicoGRAM incurs 34% to 41% more communication, it
achieves roughly 2.3x and 11x improvement in overall time and online time, respectively. Com-
pellingly, since PicoGRAM compresses the round complexity to two, all the garbling and transmis-
sion of the garbled circuitry can be now performed offline. Therefore, in applications where the
online response time is critical, PicoGRAM has a significant advantage over the interactive baseline.

Relative to the prior best Garbled RAM, PicoGRAM achieves 4.2 - 6.5x improvement in
communication, 3.1 - 5.9x improvement in overall time, and 3.2 - 5.4x improvement in online
time. Note that we use NanoGRAM [PLS23] as the baseline here since its concrete performance is
better than tri-state [HKO23] and VISAs [YPHK23| (despite being asymptotically slightly worse
than tri-state).

Comparison with “ORAM + trusted hardware” and PIR. Today, real-life applications that
require privately accessing large datasets such as Signal’s private contact discovery [sig], oblivious
accesses to blockchain data [olab], and Meta [met] settle for an “trusted hardware + ORAM”
solution, not because people believe trusted hardware to be bullet-proof, but more as a near-term
compromise in exchange for its fast performance and the ability to support general computation.
However, many industry leaders want to remove the trusted hardware assumption, and are thus
eyeing a cryptography-based solution for the medium to longer term.

As a reality check, the state-of-the-art “trusted hardware + ORAM?” solution [olaa] can support
a single key-value look up in 20 — 50us for a database of N = 216 to N = 230 with 64-byte records.
A state-of-the-art Private Information Retrieval (PIR) scheme can achieve roughly 12ms online
computation and 100ms overall time for a database of size roughly 100GB [ZPSZ24] (assuming
about 60ms ping latency). Besides Garbled RAM, PIR is another promising approach for removing



the trusted hardware. However, although state-of-the-art PIR schemes [ZPSZ24] enjoy similar
online time as PicoGRAM, they suffer from the following drawbacks relative to PicoGRAM [Shi25]:

1. So far, practical PIR cannot support generic computation, which makes it difficult for software
maintenance and updates. The more general form that supports generic computation called
RAM-model FHE [LMW23] remains in theory land.

2. So far, practical PIR schemes are in the so-called client-preprocessing model [CHK22,ZPSZ24],
which makes it challenging to deploy in scenarios with fast-evolving databases.

Therefore, in summary, our work suggests that practical Garbled RAM is a promising direc-
tion towards eventually removing the trusted hardware in high-value applications such as Signal,
blockchains, and Meta, while retaining the generality and relative ease of software updates.

1.3 Technical Highlight

Inefficiencies in existing garbled RAM. First, there remains an asymptotic gap to optimal-
ity. Recent works [PLS23, HKO23], including NanoGRAM [PLS23] and tri-state GRAM [HKO23],
achieve a per-instruction communication cost of O (/\ - (W -log N + log® N ) - polyloglog N ) bits,
where N is the RAM’s space, W is the word width, and A is the security parameter. For
word size W = Q(log? N), the cost simplifies to O(X - W - log N - poly loglog N), which remains
a polyloglog N factor away from optimality in N due to known logarithmic Oblivious RAM lower
bounds [GO96,BN16,LN18, PLS23|.

Second, although known garbled RAM schemes reduce the round complexity to two, they fail to
match the best known RAM-model 2PC schemes [WCS15, Kel20] in terms of communication cost
(i.e., the number of bits transmitted). As mentioned, state-of-the-art RAM-model 2PC achieves a
per-instruction communication cost of O(A-W -log N-w(1)) for sufficiently large words, and the best
known garbled RAMs [PLS23, HKO23] are a poly log log factor worse. For example, for N = 229, tri-
state GRAM and NanoGRAM consume 14.9x and 6.8x more bandwidth, respectively, compared
to state-of-the-art interactive RAM-model 2PC [WCS15]. This bandwidth overhead demonstrates
the concrete performance penalty resulting from the extra poly loglog factors.

Last but not least, both NanoGRAM [HKO22, PLS23] and tri-state GRAM [HKO23] assess
concrete performance only via cost simulators, which are inadequate for evaluating the actual
running time of the garbler and evaluator. A full-fledged implementation remains essential for a
comprehensive understanding of practical performance.

In existing garbled RAM constructions [HKO22, PLS23, HKO23], a core building block is a
garbled stack, which over time receives an array of ¢ data elements, each of width W, marked with
a bit indicating whether the element is wanted. The stack then routes all desired elements to the
front of the output array, discarding the undesired ones. Prior works showed how to construct such
a garbled stack of size O(A- W -logt). Since the garbled stack is repeatedly used in the garbled
RAM construction, it becomes a performance bottleneck, both asymptotically and concretely.

Our novel techniques. We devise a new garbling technique that reduces the garbled stack size to
O(A(W+logt)). This improvement not only eliminates the extra poly log log factors asymptotically,
but also significantly improves the concrete cost of garbled RAM.

To achieve this, our key idea is to augment the tri-state circuit model proposed by Heath et
al. [HKO23] with SIMD gates, which can apply the same (routing) operations to the W bits of a
data element. We then devise a new technique, based on the DDH assumption, to garble SIMD
gates efficiently. We believe that our SIMD garbling technique can be of independent interest, for



example, in constructing customized garbled data structures and algorithms without relying on the
generic garbled RAM transformation.

1.4 Additional Related Work

We now review some additional related work.

Succinct Garbled RAM. A theoretical line of work on succinct Garbled RAM [LP14,BGL ™15,
CHJV15,KLW15,CCHR16,CH16,CCC*16, ACCT 16, AL18] showed that assuming the existence of
indistinguishability obfuscation (i0) [GGH'13a,JLS20], we can garble a RAM program such that
the size, space requirements, and runtime of the garbled program are the same as those of the input
program, up to polylogarithmic factors and a polynomial in the security parameter. While this line
of work is theoretically fascinating, it is completely impractical due to the use of i0. Also, the total
cost of these schemes (bandwidth + computation) are asymptotically worse than PicoGRAM— in
fact, this line of work never even bothered to spell out the “poly” term in the polylogarithmic
overhead.

Oblivious RAM. A Garbled RAM scheme can be viewed as a non-interactive version of Oblivious
RAM [GOY6]. Known Garbled RAM [LO13, GHL"14, GLO15,L0O15, HKO22, PLS23, HKO23] and
RAM-model 2PC [GKK™12, WCS15, LWN*15, Kel20] schemes are also built from an underlying
ORAM scheme. It is well known that an ORAM scheme must suffer from a logarithmic slowdown
relative to the original program [GO96,LN18]. In the computationally secure setting, recent work
has shown how to get an ORAM scheme that matches the logarithmic lower bound [PPRY18,
AKLT23, AKLS23], relying on the existence of pseudorandom functions (PRFs). In comparison,
the best known statistically secure ORAMs [SDST18, WCS15] are a logarithmic factor worse in
performance asymptotically.

Despite this, all known RAM-model 2PC as well as garbled RAM schemes adopt a statisti-
cally secure ORAM for two reasons: 1) the best known statistically secure constructions [SDS™ 18,
WCS15] are simple and enjoy small constants in the big-O; and 2) using a computationally secure
scheme would require garbling a PRF, which is concretely inefficient due to the non-blackbox use
of cryptography. For these reasons, we use 2PC atop Circuit ORAM [WCS15] as the interactive
baseline in our paper.

2 Roadmap

2.1 Background: Tri-State Circuits and Inefficient Strawman

From standard Boolean circuits to tri-state circuits. As mentioned, the main challenge is
due to the difficulty of efficiently expressing a memory access in a standard Boolean circuit. An
alternative way to view this problem is that the garbler cannot predict in advance which address
will be accessed at each time step. Thus, it cannot determine a priori which label will encode the
memory states or the outcome of memory fetches.

The elegant tri-state GRAM work [HKO23] proposed a solution to this problem. Instead of using
standard Boolean circuits as the underlying computation model, it introduces a new computation
model called tri-state circuits (TSC). The key differences between a standard Boolean circuit and
a TSC are as follows:

1. Order of evaluation. In a standard Boolean circuit, we can always evaluate the circuit by
populating the wires in some fixed topological order, regardless of the input values. In contrast,



a TSC allows gates to have control signals. Such a gate can be invoked only if its control signal
receives a certain input value (e.g., 0). Since the control signals eventually depend on the input
values, whether each gate can be invoked and the order in which the gates are invoked depend
on the input values.

2. Subset of active gates under partial input. As a direct consequence of the above, in a TSC, upon
receiving a partial input, the subset of gates that can be invoked depends on the input values.
In contrast, in a standard Boolean circuit, the subset is determined solely by which input wires
are populated, irrespective of their values.

Note that the second difference is relevant even if the RAM program always receives its input all
at once. This is because, from the perspective of the garbled gadgets underlying the garbled RAM,
inputs may still arrive gradually over time.

Using a TSC to express Circuit ORAM. With TSCs, we can encode dynamic memory accesses
efficiently with the help of an Oblivious RAM (ORAM) algorithm. It is well-known that every
RAM program can be converted to an ORAM with only polylogarithmic blowup in its running
time. Specifically, we rely on Circuit ORAM [WCS15]. In Circuit ORAM — ignoring the recursion
for now — every memory access translates to accessing O(1) random paths in a binary tree of size
O(N), where each path goes from the root to some leaf node?. Further, which paths are invoked is
computed dynamically at evaluation time.

To gain intuition, it helps to focus on the following technical core of the problem, that is, routing
data along a tree path. Imagine that in each time step, the root receives some data (denoted data)
and an address (denoted addr) as input, and it needs to pass the data to a leaf node selected by
the address. This task can be efficiently expressed as a TSC — imagine that each node in the
tree is associated with some routing circuitry, and which nodes are invoked in each time step is
determined dynamically. As mentioned, this can be naturally expressed in a TSC by using control
wires to signal whether a gate can be invoked.

Heath et al. [HKO23] proposed an elegant approach for garbling such a TSC, as shown in
Figure 1. Specifically, one can imagine that each non-leaf node u is associated with two garbled
stacks, denoted StackL and StackR, used for routing to w’s left and right children, respectively.
Below we take StackL as an example since StackR is symmetric. The stack has nmax(u) input
wires for receiving up to nmax(u) inputs of the form (addr,data) — see Table 3 for the choices of
Nmax(t). Whenever it receives a new input, the stack examines a corresponding bit in the addr
field: if the bit is 1, no new output wire will be populated; else if the bit is 0, then the next group
of W = |addr| + |data| output wires will be populated with the value (addr, data), to be passed to
the left child. Further, when the output wires are populated, the tuple (addr, data) will be encoded
under the label that the left child expects. Specifically, for any node v, the 7-th time it is invoked,
it expects the inputs to be encoded using the label LY — earlier works also referred to 7 as node
v’s local clock [PLS23].

For simplicity, we consider the most important special case when T = N, meaning that the
RAM’s running time equals its space. Given this case, the other cases T'< N and T > N can be
easily handled using the analysis in Section A.1. In this setting, we know that a stack at the root
level (i.e., level 0) will be invoked exactly N times; a stack at level 1 will be invoked N/2 times in
expectation; a stack at level 2 will be invoked N/4 times in expectation; and so on. Finally, a stack
at level log(IN/B) (i.e., the last level of the ORAM tree) will be invoked B € log N - w(1) times
in expectation for some super-constant function w(1). Due to the Chernoff bound, it suffices to

2For best concrete efficiency, the read path is random while the eviction paths should be chosen based on a
deterministic reverse lexicographical ordering [WCS15]. However, this detail is not important at this point.
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Figure 1: Routing data in a tree using a SIMD tri-state circuit. The notation {{addr, data}} « means
that the tuple (addr,data) is encoded under the 7-th label associated with node uw. Each non-leaf
node u maintains two garbled stacks, StackL and StackR, for routing data to its children. Each
stack looks at a bit in addr to decide whether to route data to its left or right child, populating the
next unconsumed cable of either StackL or StackR. For example, (addrq, data) is eventually routed
to the leaf Nodejg, (addrg, datay) is eventually routed to the leaf Nodeyy, and so on.
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Table 3: Amortized communication costs from the stacks for routing along a path in a single ORAM
tree where B = log N - w(1). In the full ORAM, each recursion level will consume O(1) copies of
this routing circuitry, for the read and eviction operations, respectively.

ORAM Exp.# Max# Stack Comm. Bkt Comm.
Tree access access TSC Stack PicoGRAM Stack Both
QQQ N 2N O(AW log2N) OAW +1og2N)) O(AW log N)w(1)
N/2 N O(AMVlog N) OAW +1og N)) OA\W)
é% : é% 2B 4B O(AW log4B) O(MW +log4B)) O(A\W)
B 2B O(AMW log2B) OAW +1og2B)) O(AMWB)

Total OAW log? N)  O(A(Wlog N+log? N)) O(AW log N)w(1)

provision each level with a maximum number of invocations that is twice its expectation. Since we
stop the tree at level log(/N/B) with a super-logarithmic number of invocations in expectation, it
is not hard to see that the actual number of invocations does not exceed the provisioned maximum
except with negligible probability.

Inefficiency of tri-state GRAM. The cost of tri-state GRAM [HKO23] is dominated by garbling
the routing stacks in the ORAM tree. Specifically, tri-state GRAM showed how to garble a stack
achieving the following efficiency:

Fact 2.1 (Inefficient garbled stack of tri-state GRAM [HKO23]). Garbling a stack provisioned for
t accesses results in a garbled circuit of size O(X - W -logt) amortized.

As shown in Table 3, plugging in Fact 2.1 and summing over all garbled stacks in the entire
ORAM tree, the amortized communication cost comes to O(X - W - log? N).

To complete the analysis, we must also account for the fact that a full ORAM scheme has
O(log N) recursively constructed ORAM trees: one data tree that adopts a word size of W =
|data| + |addr|, and multiple metadata trees. The /-th metadata tree has 29) leaves and a word
size of O(¢). Therefore, the amortized cost for garbling the stacks across all recursion levels is

O(log N)
OA-W-log? N)+ > O\-L-£?) =0\ (W +1log” N) -log” N)
/=1

Remark 2.2. Table 3 shows an asymptotically slower variant of tri-state GRAM [HKO23]. To
achieve their asymptotics as claimed in Table 1, they need an additional “reset” trick similar to
Nanogram [PLS23]. Specifically, instead of provisioning for 2N, N, N/2, ... stack accesses at each
level of the ORAM tree, they create stacks provisioned for polylogarithmically many accesses at all
levels, but each level must initialize a new garbled stack every polylogarithmically many accesses.
Using the reset trick, each single ORAM tree in tri-state GRAM incurs O(A - W -log N - loglog N)
cost instead of O(X-W - log? N ) per access. Therefore, the total garbled stack cost over all recursion
levels is O(A - (W -log N + log® N) - loglog N). However, this reset trick does not further benefit
PicoGRAM, as we already get significant savings by reducing the multiplicative overhead to additive
— see Section 2.2 for more details.
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2.2  Our Blueprint: Extending Tri-State Circuits with SIMD Gates

From multiplicative to additive. Tri-State GRAM’s garbled stack incurs O(A- W - logt) cost
for supporting ¢ accesses, where the W and the logt factors accumulate multiplicatively. We devise
new techniques leading to a new garbled stack whose cost is only O(A - (W + logt)), where the W
and the logt factors are now additive.

Assuming we can achieve this, then, by Table 3 and the analysis shown in Section 2.1, we can
reduce the total garbled stack cost to O(\-(W -log N +log® N)), summing over all recursion levels of
the ORAM. At this point, the garbled stack cost is no longer dominating. Instead, PicoGRAM’s cost
is dominated by the data-read circuitry associated with the nodes in the ORAM tree. Specifically,
besides the routing circuitry (i.e., the stacks), each node in the ORAM tree also has additional
garbled circuitry that implements a Garbled Bucket, for reading and writing the memory words
stored in this node. In PicoGRAM, every node has a constant-sized Garbled Bucket, except the root
and the leaf levels, which have super-logarithmically sized Garbled Buckets. Moreover, the circuit
size for each access in Circuit ORAM is linear in the bucket size and the word width, assuming a
word-RAM model where the word width W € Q(log N). In Table 3, we also account for the cost of
the Garbled Buckets. For a single ORAM tree, this cost comes to O(AW log N)w(1). Since there
are logarithmically many trees, one with word size W, and the rest with word size W’ = O(log N),
the total cost across all recursion levels is

O\ - (W -log N +1log® N) - w(1))

With some additional algorithmic tricks, we can further reduce the above expression to O(A - (W -
log N - w(1) +1log® N)). We describe the details in Section A.2.

Introducing SIMD gates. We observe that the dominant cost of the garbled stack comes from
the routing circuitry that routes all W bits of the payload in a synchronized fashion. We refer to
such operations as SIMD (Single Instruction Multiple Data). Our key idea is to extend the original
tri-state circuit—designed to operate on individual bits—with new SIMD gates that process groups
of W bits in parallel. Furthermore, leveraging the DDH assumption, we propose an efficient method
for garbling these SIMD gates.

Henceforth, we use the term cable to denote a group of W wires, where each wire carries a single
bit. A wire that is not part of a cable is sometimes called an independent wire. A wire that is part
of a cable is called a subwire. We use boldface notation such as x" to denote a cable, whose i-th
wire is denoted as x;. Our enriched circuit model consists of the following types of gates:

e Boolean gate (z < f(x,y)): A Boolean gate takes two independent input wires z and y and
outputs an independent wire z. It defines an evaluation rule z + f(x,y), where f is a Boolean
function. The Boolean gate can be evaluated only when both x and y are set.

e Group gate y; &P i The Group gate converts an independent wire x into a subwire y; of a
cable. It defines the evaluation rule y; <+ x.

e Ungroup gate y B8P 0 The Ungroup gate converts a subwire z; back to an independent
wire y. It defines the evaluation rule y + x;.

e Switch gate (x"V _~ y"): A Switch gate connects two cables x"V and y" of equal width
and an independent control wire ¢ that determines whether the gate is active. If ¢ = 0, the
gate enforces equality between every pair of subwires x; and y;. In other words, the Switch gate
defines 2WW evaluation rules: ¢ = 0 = y; + x; and ¢ = 0 = x; « y; for i € [W]. The gate may
be evaluated partially even if some subwires are not set. Conceptually, our Switch gate has
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the same functionality as a collection of W Buffer gates sharing the same control wire in prior
works [HKO23, Hea24]. Moreover, we remove the Join gate from prior works [HKO23, Hea24]
for simplicity, and instead allow a subwire to be set by multiple gates.

Operational semantics. Unlike the standard Boolean circuit model, the SIMD tri-state circuit
allows a subwire to be set by multiple gates. In Figure 2, we show an example that employs this
behavior to achieve indirect addressing with a 1-bit address space. To avoid non-deterministic
behavior during evaluation, we say a SIMD tri-state circuit is well-formed only if every wire in
the circuit can be set to a unique value, regardless of the order of evaluation. For well-formed SIMD
tri-state circuits, we further define a stronger property called strictly well-formed, which enforces
a partial ordering on the wires. We formally describe our computational model in Section 3.

o gW — xW ozW = yW

(a) When s = 0, the Switch on the left is (b) When s = 1, the Switch on the right is
active and can set each i-th subwire of 2" active and can set each i-th subwire of z"
to the value of z;. to the value of y;.

Figure 2: A 1 x 2 multiplexer implemented with SIMD tri-state gates. Since the two Switches can

never be active at the same time, the value of each z; is uniquely determined when the inputs x",

yW, and s are fixed. Compared to Boolean circuit, the SIMD tri-state circuit allows z; to be set
in an eager manner. For instance, when s = 0, the value of z; can be set to x; without waiting for

the value of y; to be known.

2.3 Garbling SIMD Tri-State Circuits

In this work, we propose two garbling schemes for the SIMD tri-state circuit, both assuming
DDH. The first scheme achieves the asymptotic efficiency of GRAM and is proven secure in the
plain model, while the second scheme offers better concrete efficiency at the cost of relying on the
Random Oracle (RO) model. Additionally, the first scheme requires the SIMD tri-state circuit to
be strictly well-formed, whereas the second scheme only requires well-formedness, which further
helps to reduce the concrete circuit size of GRAM.

We focus on introducing the first scheme in the main body and defer the second scheme to
Section C.

Background: Yao’s Garbling for Boolean Gates [Yao86]. We use the standard Yao’s gar-
bling scheme [Yao86] to garble the Boolean gates in our SIMD tri-state circuit. For every inde-
pendent wire x, the garbler samples two random labels L,—¢ and L,—1 from {0,1}*, where X is the
security parameter. Assume that we have an encryption scheme that reveals whether the decryp-
tion key is correct with high probability. To garble a Boolean gate z < f(z,y), the garbler encrypts
the output label L._(, 5 with the labels of the input wires L;—, and L,—; for every a,b € {0,1},
and randomly shuffles the ciphertexts before sending them to the evaluator. The evaluator, in
turn, only learns the label corresponding to the runtime value of each wire, called the active label.
Initially, the evaluator only holds the active labels of the circuit’s input wires. If the evaluator
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learns the active labels of both z and y in the Boolean gate, they can decrypt the corresponding
ciphertext and obtain the active label of z.

Encoding of subwires. Next, we propose a novel technique to encode the subwires in the SIMD
tri-state circuit, enabling efficient garbling of Switch gates.

Conceptually, our garbling scheme encodes all cables in the circuit with two “orthogonal” sets
of keys. The first set of keys is global for all cables but unique for each subwire offset. The second
set of keys is local to each cable but shared among all subwires of that cable.

Let G4 be a prime-order group where the DDH assumption holds and g be a generator of G,.
The garbler samples 2 - Wiy global keys I'; j, from Z;, where i € [Whax], b € {0,1}, and Wyay is
the maximum width of any cable in the circuit. For each W-bit cable x"V', the garbler samples a
local key Ky from Z;.

We define the labels of the i-th subwire as

Kx'ri,O Kx'ri,l
5 .

As a sanity check, the evaluator should not be able to infer whether a subwire carries 0 or 1
from the labels. Consider t cables each of width W. Let k; be the local key of the 7-th cable.
Then, the subwire labels are a subset of the following ¢ x 2W matrix over Gg:

ki-T ki-T k1T k1T
g 1,0 ... gl W,0 gl 1,1 ... grriwa

M = : . :
k¢TI k¢ I k¢ I k¢TI
ghttio oo ghtlwo  ghelin oo ghelwa

It has been shown in the work of the BHHO cryptosystem [BHHOO0S8] that M is computationally
indistinguishable from a random matrix. Nonetheless, in Section 4, we prove more directly that all
the subwire labels can be replaced one by one with random group elements.

Garbling Switch gates. To garble a Switch gate x" s yW, the garbler encrypts the ratio
of the two cables’ local keys with the zero-label of the control wire c. Specifically, the garbler sends
Encr_, (K" - Ky)-

If the evaluator learns L.—g, the zero-label of the control wire, they can decrypt the ciphertext
and obtain K1 - Ky. If the evaluator also learns the active label of a subwire z;, they can compute
the active label of the corresponding subwire y; as follows:

T Kz1l.K
Ly,=p = g5 Ti0 = (Ly,mp) = ¥

Similarly, the evaluator can compute the modular inverse of K - Ky and obtain the active label
of x; from that of y;.

These properties match our evaluation rule for the Switch gate: the evaluator can propagate
values between each pair of subwires if and only if the control wire is 0.

The garbled Switch gate reveals the value of the control wire ¢, as the evaluator learns whether
the active label of the control wire is the correct decryption key. Previous works [HKO23, Hea24]
have shown that such leakage does not affect the security of the final Garbled RAM construction,
due to the randomness of the ORAM algorithms.

We set the prime order ¢ to be an O(A)-bit prime. The communication cost of our garbled Switch
gate is O(\) bits, independent of the width W of the cables. This is a significant improvement
over previous works [HKO23, Hea24|, which require O(W - X) bits of communication to garble an
equivalent Switch gate.
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Garbling Group and Ungroup gates. Finally, we garble Group and Ungroup gates using Yao’s
garbling [Yao86], similar to Boolean gates. Since each gate has only one input wire, the garbler
sends two ciphertexts Enc_,. _, (Lg,..=0) and Enc . _, (Lg,.=1) in random order, where zi, is the
input wire and oyt is the ollnltput wire. The communication cost of garbling a Group or Ungroup
gate is O(A) bits.

2.4 Efficient Garbled Stack

Applying SIMD gates to the stack. Recall that our goal is to eliminate the multiplicative factor
W from the communication cost of garbled stack constructions in prior work [HKO23]. To achieve
this, we store data words as cables within the stack and route them using our new Switch gates.
Although we need to convert independent wires into cables when pushing data into the stack, and
convert them back when popping data, the number of Group and Ungroup gates required depends
only on the number of input and output wires, not on the size of the stack circuit. As a result,
the total cost of the garbled stack is O(X - (W + logt)) bits, where ¢ is the maximum number of
accesses to the stack and W is the word width.

Optimizing stack circuitry. While our SIMD gates reduce the asymptotic cost of GRAM, we fur-
ther optimize the stack’s circuitry to improve PicoGRAM’s concrete performance. We observe that
it suffices to construct the garbled stack based on an oblivious stable compaction algorithm [Gool1],
which is much simpler and more efficient than the oblivious stack data structure [ZE13] used in
previous works [HKO22,PLS23, WCS15]. To adapt the original compaction algorithm [Gooll] into
a SIMD tri-state circuit, we devised a new method to compute the routing plan, ensuring that
the GRAM is strictly well-formed. This optimization alone reduces the communication cost of the
garbled stack by a factor of 4.1x for N = 2'6 and word width W = 64, even without using SIMD
gates. Combined with the SIMD garbling technique, we achieve a total of 24 x savings for the stack
at N =216 and 29x at N = 220,

3 Computational Model: SIMD Tri-State Circuits

In this section, we formally define SIMD tri-state circuits, which extend the original tri-state circuit
model [HKO23| with gates that support SIMD (Single Instruction, Multiple Data) operations.

3.1 Definitions

Wires and cables. As in the original tri-state circuit model [HKO23], we treat a circuit as a finite
state machine, where each wire holds a state of 0, 1, or Z, meaning the wire has not yet received
any signal.

In addition to wires that each carry a single bit, we introduce the concept of a cable, represent-
ing a group of W wires that act in a SIMD fashion. A wire is set if its state is not Z. A wire can
belong to at most one cable. Wires that do not belong to any cable are called independent wires.

We denote an independent wire with a lowercase letter, e.g., =, and a cable of W wires with a
boldfaced letter and a superscript, e.g., xV, where W is the width of the cable. The i-th wire of
x" is written as x;, where i € [W] is called the offset of the subwire.

Each wire or cable has a type: input, output, or internal. We may assume all cables are of
type internal, i.e., all input and output wires are independent wires. This is because we can always
introduce additional Group and Ungroup gates (defined below) to convert an independent wire to
a subwire of a cable and vice versa, without increasing the circuit size asymptotically.
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Evaluation rules. An evaluation rule specifies how to set a wire. We represent an evaluation rule
as P = x «+ S, where P is a precondition and S is an expression that computes the state of wire x.
To apply the evaluation rule, S must evaluate to either 0 or 1, and P must be true. If P is trivial,
we write the rule simply as z < S. The evaluation rule is allowed to change the state of a wire.

Gates. Each gate defines a set of evaluation rules applied to wires or cables. Our SIMD tri-state
circuit comprises the following types of gates:

e Boolean (z + f(x,y)): A Boolean gate sets an independent output wire z based on a public
Boolean function f : {0,1} x {0,1} — {0,1} and the values of two independent input wires =
and y.

e Group (y; &2 x): A Group gate sets a subwire of a cable y" to the value of an independent
wire x.

e Ungroup (y R il x;): An Ungroup gate sets an independent output wire y to the value of
W

a subwire of a cable x".

e Switch (x" S y"): A Switch gate connects two cables x" and y"V' of equal width and
an independent wire ¢, called the control wire. For each i € [IW], when ¢ = 0, the gate is
active and can either set the i-th subwire x; to the value of y; or set y; to the value of x;,
depending on which wire is set first. When ¢ = 1, the gate is inactive, meaning it cannot
set any wire.

Number of wire sources. As in the classic circuit model, we require each independent wire to
be either an input wire of the circuit or the output wire of a single gate. However, we do not apply
this restriction to cables, since the subwires of cables are meant to be set by one of multiple gates,
depending on the runtime state of the circuit. Also, we do not bound the circuit’s fan-out: each
wire can be input to any number of gates.

3.2 Operational Semantics

Evaluating a SIMD tri-state circuit. Unlike traditional Boolean circuits, in a (SIMD) tri-state
circuit, both the order in which gates are evaluated and the directions of evaluation may vary based
on the input values. Thanks to this new semantics, we can express RAM computations efficiently
in a (SIMD) tri-state circuit [HKO23].

The state of a SIMD tri-state circuit C refers to the combined states of all wires in C. Evaluating
the circuit C can thus be viewed as a sequence of state transitions.

o Initial state. Initially, every input wire receives a bit, and all other wires have the state Z.

e FBuvaluation. At each time step, look for a gate with an evaluation rule that can be invoked, and
execute the evaluation rule to populate a wire.

e Qutput. Eventually, output the values on the output wires.

The above evaluation algorithm exhibits non-determinism: a wire may be set by the evaluation
rules of multiple gates. If, under some evaluation state, multiple rules (associated with gates)
are invocable, the evaluator may break ties arbitrarily and select one of them. Despite this non-
deterministic behavior, we want a well-formed SIMD tri-state circuit to satisfy the following natural
property: given any valid input inp, every wire can be set, and moreover, that value must be unique.
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Table 4: Gate set of our SIMD tri-state circuit.

Type Notation Evaluation Rules
Boolean z + f(x,y) z + f(x,y)
Group Y 2 g Yi
Ungroup Y R g YT
. w C w c=0=y;, < x;
Switch | x" _~_y =0 — ﬂUZz - yz

More specifically, under any fixed input inp: 1) a wire should not take on two different values across
two evaluations; and 2) a wire should not acquire a value b € {0, 1} and then later switch to 1 — b
in the same evaluation. We introduce a sufficient condition, called dynamic well-formedness, to
formalize this notion.

Henceforth, we say that a state S of C is total if and only if no wire holds Z. A state S of C
is reachable from another state S’ of C if and only if S can be obtained from S’ by applying a
sequence of evaluation rules defined by the gates in C.

We often use inp to denote the input or the input wires to C and [inp| to represent the input
length.

Definition 3.1 (Well-formed). A SIMD tri-state circuit C is well-formed if and only if for any
input inp € {0, 1}“""', there is a unique total state S of C reachable from the initial state determined

by inp.

Efficient evaluation. As a direct implication of Definition 3.1, a well-formed SIMD tri-state
circuit C can be evaluated efficiently. Specifically, in the evaluation algorithm above, at each time
step, we always look for a rule that populates a previously unset wire. This way, the evaluation
algorithm completes in |C| steps, where |C| denotes the size of the circuit. We prove this formally
in Lemma 3.2. Note that the evaluation rules in Table 4 also specify a topological ordering for
evaluation that governs the order in which gates are invoked for a fixed input.

Lemma 3.2. Let C be a well-formed SIMD tri-state circuit. Then, the above evaluation algorithm
terminates within O(|C|) state transitions on any inp € {0, 1}l and reaches a total state at the
end, as long as in every time step, we always invoke a rule that populates an unset wire.

Proof. First, we show that during the evaluation, every wire must be set to the same value as in
the unique total state S reachable from the initial state given by inp. Suppose that a wire z is
the first wire set to a different value than in S, and let R be the evaluation rule applied. Then all
the rest of the wires used in R must have the same value as in § when the rule is applied, so R
can also be applied upon S and transition it to another total state where z is set differently. This
contradicts the uniqueness of total state.

Now, suppose that the evaluation algorithm reaches a state &’ which is not total but no wire
can be further set. Consider a state transition to the total state S, and let y be the first wire set
during the transition such that vy is not set in §’. Then the evaluation rule applied to set y must
be applicable to &', since all the other wires used in the rule are set in S’ and have the same value
as in S. This contradicts the assumption that no wire can be further set in §’. Therefore, the
evaluation must terminate within O(|C|) state transitions. O

Incremental evaluation of a tri-state circuit. If a SIMD tri-state circuit is well-formed, then
it is insensitive to the order in which the evaluation rules are invoked. A direct implication is
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that the circuit can be evaluated incrementally, accommodating inputs that arrive gradually rather
than all at once. This is important for defining the garbled gadgets underlying our Garbled RAM
scheme. For example, for the core building block stack, inputs do not arrive all at once. The
evaluator must eagerly and incrementally evaluate the stack over time as more input bits become
available. In fact, when the stack is integrated into a larger tri-state circuit (e.g., our Garbled
RAM), subsequent input bits to the stack can only be set once part of the output bits have been
evaluated.

In Section C, we propose a garbling scheme for well-formed SIMD tri-state circuits, which is
secure under the random-oracle model.

Strict well-formedness. To prove the security of the garbling scheme in the plain model, we
require the circuit to satisfy a stronger property called strict well-formedness, which imposes addi-
tional restrictions on the order in which wires can be set. First, we define the notion of dependency
between wires.

Definition 3.3 (Dependency). Let S be the total state of a well-formed SIMD tri-state circuit C.
We say a wire y in C depends on a wire z (or z is a dependency of y) with respect to S if any
of the following conditions holds:

e y is the output wire of a Boolean, Group, or Ungroup gate with input wire z.
e y is a subwire connected to a Switch gate whose control wire is x.

e y is a subwire connected to an active Switch gate under the state S, and z depends on x,
where z is the subwire with the same offset in the other cable connected to the Switch gate.

e y depends on another wire z, and z depends on x.

The dependency relationship defines the order in which we replace garbled gates with their
idealized counterparts when proving security through hybrid arguments. Now, we define the notion
of strict well-formedness.

Definition 3.4 (Strictly Well-formed). A well-formed SIMD tri-state circuit C is strictly well-
formed if for any input inp € {0, 1}|'“p|, there is an ordering to set all the wires in C such that
every wire is set after all its dependencies with respect to the unique total state determined by inp.

For a general (SIMD) tri-state circuit, there may not be an efficient algorithm to check well-
formedness or strict well-formedness. However, for all circuits we construct in this paper, we can
prove that they are strictly well-formed.

4 Garbling SIMD Tri-State Circuits

4.1 Definitions

Definition 4.1 (Garbling scheme). A garbling scheme, defined for some computation models (e.g.,
SIMD tri-state circuit, RAM), consists of a tuple of possibly randomized algorithms:

e sk < Gen(1*, params): upon receiving the security parameter 1* and parameters params specific
to the computation model of concern, output a secret key sk.

. ifrﬁ) < Encode(sk, inp): upon receiving the secret key sk and input inp, output a garbled version
of the input string denoted inp.
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o C + Garble(sk, C): upon receiving sk and a deterministic program C under the computation
model of concern, output a garbled version of the program denoted C.

e out <+ Eval((?, ian): upon receiving the garbled program C and garbled input ian, outputs the
evaluation outcome out.

Later, for a SIMD tri-state circuit, we only need to include the input length |inp| in params; for
a RAM, we include its maximum space requirement N and maximum runtime 7" in params.

Correctness. A garbling scheme (Gen, Encode, Garble, Eval) is correct if for polynomial-time
program C with parameters params, there exists a negligible function negl(-), such that for all A,
for any input inp, except with negl(-) probability, the following holds: let sk < Gen(1*, params),
inp < Encode(sk, inp), C < Garble(sk, C), then, it must be that Eval(C, inp) = C(inp) where C(inp)
denotes the outcome of executing the program C on the input inp in cleartext.

Security. Since we assume a semi-honest setup and a deterministic program C, the security
definition only requires simulating the evaluator’s view given the circuit’s output values and the
output of a leakage function leak.

Definition 4.2 (Security of garbling scheme). A garbling scheme (Gen, Encode, Garble, Eval) is
secure with respect to some (deterministic) leakage function leak, if and only if there exists a
probabilistic polynomial-time algorithm Sim such that for any program C with parameters params,
for any inp, the following experiments are computationally indistinguishable:

e Real: Run sk < Gen(1*, params), inp « Encode(sk, inp), C < Garble(sk, C), and output
(C, inp).

e Ideal: Output Sim(1*, C,leak(C, inp), C(inp)).
4.2 Our Construction from DDH

Labels. Similar to Yao’s garbled circuit [Yao86], we assign two labels to each wire in a SIMD
tri-state circuit, corresponding to the bits 0 and 1, respectively. Henceforth, we use the notation
L,—p to represent the label for the value b € {0,1} on the wire x.

We sometimes overload the notation x to also mean the value the wire x carries; in such cases,
we use the shorthand L, for the label of wire £ when it carries the value x.

Labels of an independent wire. The garbler samples two labels from {0,1}* for each indepen-
dent wire, as in Yao’s garbling scheme [Yao86].

Labels of a cable. We devise a new technique for computing labels of a cable. Let G, be a
public prime-order group of order ¢ where DDH is assumed to hold and g be a generator. Let
Wax be the maximum width of any cable in the system. The garbler draws 2W .« global keys
Fi0s Ti1, ooy T2y -0y T'igae,00 T'iinay,1 from Z7 and hides them from the evaluator.

For each cable x"', the garbler also samples a secret cable key Ky € Zy. Then the labels of the
i-th wire x; of the cable are defined as

Kx-I';
in:b — g x1i,b

Symmetric-key Encryption Scheme from DDH. Our garbling scheme assumes the existence
of a symmetric-key encryption scheme N = (Enc,Dec) that is IND-CPA secure under the DDH
assumption and the ciphertext’s length is O(|m| + A) where |m| is the length of the plaintext and
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Gen(1?, |inp|):
e Sample labels L,_, & {0,1}* for each input wire 2 and b € {0, 1}.

e Select a prime-order DDH group G, with security parameter A, and a generator g of the
group.

e Return sk = (L, Gy, g).

Encode(sk = (L, _,_),inp):

e Return i/nvp where mNp[z] < Lay—inp[y) for each i-th input wire z.

Garble(sk = (L, Gq, g), C):

e Sample L,—p & {0,1}* for every non-input independent wire z and b € {0,1}. Sample
Ky & Z for cach cable x"V. Sample I'; & Zy for every i € [Wiax] and b € {0, 1}, where
Wnax is the maximum width of any cable. Compute the labels L,,—, = g"<Tiv for every
subwire x; of every cable x"V and b € {0,1}.

e For each gate gid, compute the GC material E;_a\t;[gid] based on its gate type:
— Boolean z + f(z,y):

a;g[gid] — {Ench:a’Lyzb (Lz:f(a,b)) | a,b € {0, 1}}

T
— Group y; EP o

—_~—

Gates|[gid] < {Ency,_, (Ly,=¢) | a € {0,1}}
— Ungroup y SREP o
E;_a\tg[gid] — {Enchi:a (Ly=q) | a € {0, 1}}

— Switch xV _*~_ yW:

P

Gates[gid] < Enci,_, (K¢' - Ky)

X
e Let 6u/t[z] < Ency,_, (0) for each i-th output wire y.

e Return C = (C, Gy, aa\t_(;, 6/ut)

Figure 3: Our garbling scheme based on DDH (continued in Figure 4).
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EvaI(C~: <C, Gy, E;tg, b?c) , i/n\[/)):

e Let L, « 5;)[@] for each i-th input wire x. Evaluate every gate gid in the topological
order specified by the evaluation rules in Table 4:

— Boolean z + f(z,y):
For each entry R € Gates|gid], let m < Decr, , (R) and set L, <= m if m # L.
— Group y; EP g
For each entry R € Gates[gid], let m < Dec (R) and set L, < m if m # L.
— Ungroup y il T;:
For each entry R € Gates|gid], let m < Dec_, (R) and set Ly < m if m # L.
Switch xV _~_ yW.
Let m < Dec_ <Gates[gid]). Skip the gate if m = L. Otherwise, for each i € [W],

set Ly,  (Lg,)™ if Ly, is known, and set Ly, < (L, )™  if Ly, is known.!

e For each i-th output wire y, let m < Dec|, (OA/ut[z]) If m # L, set out[i] + 0; else set
out[i] « 1.

e Return out

t Instead of computing the exponentiation repeatedly, the evaluator can keep track of an exponent pending to be

applied, and perform modular multiplications on the erponent until reaching an Ungroup gate.

Figure 4: Our garbling scheme based on DDH (continued from Figure 3).

A is the security parameter. Moreover, we assume that Dec outputs | with overwhelmingly high
probability if the key is incorrect. Such an encryption scheme can be constructed directly from
ElGamal [EIG85] by

e using the private key in ElGamal as the symmetric key for I, and

e adding a A-bit nonce to the plaintext m, and let Dec output L if the decrypted nonce doesn’t
match.

In addition, we use the notation Ency, 1, (m) as a shorthand for the double encryption Ency, (Ency, (m)),
and Decy, 1, (c) as a shorthand for the following operations:

e If Decy, (¢) = L, then return L.

e Else return Decy, (Decy, (c)).
Full construction. We present our full garbling scheme in Figure 3 and Figure 4. Without loss
of generality, we assume that all the input wires are independent wires.

On a high level, the Boolean, Group, Ungroup gates are garbled similar to Yao’s garbled cir-

cuit [Yao86], except that we encode cables with our custom labels. For the Switch gates, we encrypt
the quotient of the two cable keys under the zero label of the control wire. If the control wire is
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zero, the evaluator can decrypt the quotient and hence learn the labels of one cable from the other,
which matches our evaluation rules for the Switch gates in Table 4. Otherwise, the decryption
fails, and the evaluator learns that the Switch gate is inactive. Since the circuit is well-formed, the
evaluator can eventually compute the label corresponding to the unique value of each wire.

4.3 Analysis

Efficiency. Each gate or output wire of C adds an O(1)-row garbled truth table to the garbled
circuit, with each row being an O(\)-bit ciphertext string. Therefore, each gate or output wire
incurs O(\) bits of communication, and the total communication cost of C is O(A - |C]) bits. In
comparison, prior works [HKO23, Hea24| require O(X - W) bits to garble a circuitry equivalent to
our Switch gate, where W is the width of the cables the Switch connects to.

Correctness. Given the input labels to each gate, the evaluator can identify the correct row
to decrypt in garbled truth table and learn the output wire’s label with overwhelmingly high
probability. It is straightforward to check that the truth tables agree to the evaluation rules in
Table 4 for each gate. By dynamic well-formedness (Definition 3.1), the evaluator learns a unique
label L, that matches the value of each wire x, and can decode the value of each i-th output wire
y by checking whether Out[i] can be decrypted successfully with the key L,,.

Security. We prove the security of the garbling scheme assuming DDH. First, we introduce a
simple lemma.

Lemma 4.3. Let g be a generator of a DDH group G4 with prime order q and security parameter
A, and k, v, M1 ﬁ Zy. Then, the ensemble of tuple T= (g, g, gn, gk, gk"yl) is computationally
indistinguishable from the ensemble T = (g, g7, g"*, Ry, R1), where Ry, Ry & Gyq.

Proof. By the DDH assumption, (g, g, g7, gk”) is computationally indistinguishable from (g, g, g7, R),
for uniformly random v and R. Therefore,

T " . i $ ok
{T}AEN = {<g7 g, g, 9’70)7 7 gk gL (gk ’Yo) > | vy & ZQ})\GN
o\ T $
70 Y)Y R ( kvo) Pl Z*)}
{(g, 9% 97 (97°)", Ro, (g v = Z3) g,
’YO ’Yl R , )}
{(9 g 0 AEN

97, g7 Ro, Ri)ben = {T'}
{(9, 97, 9", Ro, R1)}en en

I Qo

Qo

0

Now, we present the main theorem. At a high level, we follow the proof of Yao’s garbled
circuit [Yao86, LP09], replacing the labels of wires with random labels in the order of evaluation,
and apply additional techniques to handle Switch gates and subwire labels.

Theorem 4.4 (Security of the garbling scheme in the plain model). Assuming DDH, The con-
struction in Figure 8 and /4 is a secure garbling scheme for the family of strictly well-formed SIMD
tri-state circuit w.r.t. the leakage function controls(-,-) as defined below: given a well-formed SIMD
tri-state circuit C and input inp, controls(C,inp) outputs the values on all the control wires of the
Switch gates when evaluating C over inp.
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Sim(1?, ctrl, out, C):

e Select a prime-order DDH group G, with security parameter A, and a generator g of the
group, same as Gen.

e Sample L,, L) & {0,1}* for every independent wire z. Let inp[i] < Ly, for each i-th
input wire zj,.

e For every union of cables connected by active Switch gates, sample union-wise labels

Lu,, L’Ui & Gy for every offset i € [W], where W is the width of each cable in the union.

Kx

For every cable, sample Ky il Zy, and compute its subwires’ labels as L, = (Ly,)"™ and

Kx
e For each gate gid, compute the GC material a:a\tg[gid] based on its gate type:

— Boolean z + f(z,y):
Gates[gid] « {Ency, s, (L) | Lo € {Lo, L} 1 € {Ly, L})

— Group y; EP

Gates[gid]  {Enc; (Ly,) | 1 € {L, L}
— Ungroup y il ;e

Gates[gid] « {Enc; (L) | I € {Ly, L. }}
— Switch xV _*>_ yW:

If the value of ¢ is 0 in ctrl, then a;\tg[gid} < Enc, (K;1 -Ky)

Else, a\t_;[gid] < Encr (0)

e For each i-th output wire y, if its value is 0 in out, 6UJt[z] < Enci, (0), else, 6\u/t[z] —
EncL; (0)

e Return (C,Gq,a\tg, OAu/t> , i’nvp.

Figure 5: The simulator Sim for the ideal experiment.
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Proof. Since C is well-formed, every wire £ must be set to a unique value val, given the circuit’s
input in the Real experiment. From now on, we call L;—,,), the active label of wire x, and simply
denote it as L, and the other label the inactive label of x, denoted as L!. Moreover, we define
a union of cables to be a set of cables connected through active Switch gates. We construct a
simulator Sim that outputs the ideal view, as shown in Figure 5, and we construct the following
hybrids to show that the ideal view is computationally indistinguishable from the real view with
respect to the security parameter A:

Hyb,: We first perform a refactoring of the real view and obtain Hybrid Hyb,: For each union

of cables connected by active Switch gates, we sample a union-wise key Ky ﬁ Zg, and compute

union-wise labels Ly,—, = g%vTet for every i € [W] and b € {0,1}, where W is the width of each
cable in the union. For every cable x"' in the union, sample its key Ky ﬁ Zy, and compute its
subwires’ labels as L,,—, = (LUi:b)K". Furthermore, when garbling every inactive Switch gate, we
replace K1 - Ky with (Ky - Ky) ™' - (Ky - Ky), where U and V are the unions x" and y" belong
to respectively. Intuitively, the refactoring allows us to make the cable’s key public, while only
keeping the union-wise keys secret.

Hyb,,...,Hyb,,: We construct a series of hybrids Hyb,, - --, Hyb,,,, where n is the number of
wires in C. By Definition 3.4, there is an ordering of all the wires such that each wire is set after
all its dependencies. Let x denote the 7-th wire in the ordering. Then each hybrid differs from the
previous hybrid as follows:

e Hyb,. , — Hyb,_ _;: Suppose that z is a subwire at offset i of the cable x"V, and U is the
union containing x"W. Then, we randomly sample the union-wise label Ly;,—¢ and Ly, —1, rather
than computing them from ¢KkvTi0o and gKvTi1, Note that the labels of the i-th subwire of
every cable in the union will change correspondingly.

e Hyb, ; — Hyb,,.: For each Boolean, Group, Ungroup gate with input wire =, and each
row in the garbled gate encrypted under the inactive label L., we replace the row’s plaintext
(i.e., the inactive label of the output wire y) with the active label L, of the output wire.
Moreover, for each inactive Switch gate with control wire x, we replace the garbled material
with Encp/ (OA).

Next, we show that each view is computationally indistinguishable from the previous one.

Hyb, = Real. Compared to Real, in Hyb, we divide the key Ky of every cable x" by a union-
wise key. Notice that for each active Switch gate, the quotient of its two cables’ keys do not change,
as the two cables belong to the same union. Thus, the distribution of all the labels and garbled
materials remain the same.

Hyb,. , ~ Hyb,, ;. We only consider the case when z is a subwire and the union-wise labels
Ly,—o and Ly,—1 have not yet been replaced with a random group element, since otherwise the
views are the same.

By Lemma 4.3, the tuple (g, gk, g0, g, gk"yo,gk'“) is computationally indistinguishable from

(g,gk,gw,g"“,Ro,Rl), where k., 9,71 ﬁ ZZ and Ry, Ry ﬁ G4. We construct a P.P.T algorithm
Be.r; that takes one of these tuples as input, and we show that the algorithm’s output distribution
is identical to Hyb,,_, if the input is (g, gF, g0, g, gk, gk"“) and identical to Hyb,,_; if the
input is (g,gk,g%,gW,Ro,Rl).
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Be.ri(g, 9%, 97, 9™, R, RY):
1. Sample the global keys I';;, for every j # i and b € {0, 1}.
2. Sample the union-wise key Ky for every union V # U.

3. For each union V' and pair (j,b) € [Wiax] x {0,1}, if the union-wise label Ly,—; is not
already replaced with a random group element in Hyby._,

Ry if V=Uand j =1
(¢*)"* itV = Uand j #i
(g'Yb)KV if V#Uand j=1
g"vliv if V £ Uand j # i

then set Ly, —p

4. Run the simulator of Hyb,,_, using the union-wise keys and labels in steps 2 and 3.

A crucial observation is that B¢ ,; does not sample the union-wise key K7, and we show that
indeed Ky is not needed for simulating Hyb,,._o or Hyb,_ ;. First, we prove that = depends on
the control wire ¢ of an inactive Switch gate if the gate is connected to a cable in U, where U is
the union that contains x"V.

Let ygV be an alias of x", and let y!” be the cable in U connected to the inactive Switch.

There must exist a chain of active Switch gates

c1 () Cm,
V=Y ey, v Yy v 2y

By Definition 3.3, every subwire of y" depends on the control wire ¢ of the inactive Switch
gate, and moreover, for every ¢t € [m], if the i-th subwire of yXV depends on ¢, then the i-th subwire
of y}l 1 also depends on c. By transitivity, we conclude that = depends on c.

As a result, the control wire c¢ is ordered before x, which means we must have replaced the
garbled material of the inactive Switch with an encryption of zero in a previous hybrid. Since the
only place where union-wise keys may be used is the inactive Switches connected to a cable in the
union, we conclude that Ky is not needed.

Now, it is straightforward to check that (1) If Rj = g" and R} = ¢g¥", then the output
distribution of Be -, is identical to Hyb,,._,, and (2) If R, = Ry and R} = Ry, then the output
distribution is identical to Hyb,__;. Notice that the hidden exponent k£ corresponds to the union-
wise key K, the hidden exponents 7y and 7; correspond to the global keys I'; g and I'; 1, and R{, and

R corresponds to the labels of . By the DDH assumption, we conclude that Hyb,_, ~ Hyb,, ;.

Hyb,, ~ Hyb,,. To obtain Hyb,_, we need to update the garbled truth table rows encrypted
under wire s inactive label L/, and we show that the new hybrid remains computationally indis-
tinguishable.

Note that in Hyb,,_;, the inactive label L) is sampled independently. Moreover, we show

that it is used only as encryption keys when generating the view. First, L’ does not appear in inp
because it is the inactive label. Second, suppose that L/, is in the plaintext encrypted in a Boolean,
Group, or Ungroup gate. Then x must be the gate’s output wire and hence ordered after all the
gate’s input wire(s) by our dependency definition. Furthermore, since we are using Yao’s garbling,
the inactive label L/, must be encrypted under the inactive label of at least one of the input wires.
This means we must have replaced L/, with the active label L, in a previous hybrid, which leads to
a contradiction.
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As shown in the proof of the standard Yao’s garbled circuit [Yao86,L.P09], the double encryption
ensures that the updated garbled truth table rows remain computationally indistinguishable from
the original. In addition, all the other parts of the view are identical in both hybrids. Therefore,
we conclude that Hyb,, _; ~ Hyb,, .

Ideal = Hyb,,,. At this stage, we have removed all the usage of union-wise keys and made all the
union-wise labels independently sampled. Moreover, the zero and one labels become symmetric for
every wire except the control and output wires. Therefore, the simulator Sim only needs to know
the values of the output and the control wires, and Ideal is equivalent to Hyb,,,.

By the chain of hybrids, we have shown that the real view is computationally indistinguishable
from the ideal view, and the garbling scheme is secure. ([l

5 From Garbled SIMD Tri-State Circuit to Garbled RAM

Heath et al. [HKO23] showed how to construct a garbling scheme for RAM from a garbling scheme
for tri-state circuits. At a high level, given a RAM program, we first convert it to an oblivious
SIMD tri-state circuit that computes the same function as the RAM, where obliviousness will be
defined shortly. We then garble the resulting oblivious SIMD tri-state circuit.

We will use the same transformation as Heath et al. [HKO23] to get our final result for garbled
RAM, except that we replace the SIMD operations in the tri-state circuit with SIMD gates, and
garble them using our new SIMD garbling techniques. For completeness, in this section, we review
how to eventually get a garbled RAM given a garbling scheme for SIMD tri-state circuits.

5.1 Oblivious Simulation of RAM in SIMD Tri-State Circuit

Controls. Henceforth, let controls(C,inp) be the function that outputs the values on all control
wires for SIMD Switch gates when evaluating a well-formed SIMD tri-state circuit C on input inp.

Definition 5.1 (Oblivious simulation of RAM in SIMD tri-state circuit). Given a deterministic
RAM program P : {0,1}"Pl — {0,1}*, we say that P is é-obliviously simulated by a well-formed
SIMD tri-state circuit C if there exists an efficient simulator Simg, such that for any inp, the
following two distributions have statistical distance at most d:

e Real: Sample rinp & {0,1}*, and output C(inp||rinp), controls(C, inp||rinp).?
e Ideal: Output P(inp), Simet,1();

Theorem 5.2 (Oblivious tri-state circuit simulation of RAM [HKO23]). Let negl(-) be a suitable
negligible function. For any RAM program P with mazimum space requirement N, maximum
runtime T = poly(N), and word size W, there exists a (SIMD) tri-state circuit that negl(N)-
obliviously simulates* P. Furthermore, the circuit consists of:

1. Data stacks: O(T/N - 2F) stacks each supporting N/2% accesses on data items of size
O(W +1logN) for L =0,1,...,log N;

3In the original tri-state circuits [HKO23], rinp is sampled from a distribution D which contains multiplication
triples for emulating AND gates. Since we already have Boolean gates in the model, we can simply sample rinp from
the uniform distribution.

4Without loss of generality, we may assume that N > X since we are studying the asymptotic behavior as N goes
to infinity. In this case, negligibly small in N implies negligibly small in the security parameter A.
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2. Metadata stacks: O(T/N - 2% -log N) stacks each supporting N/2% accesses on data items
of size log N for L =0,1,...,log N,

3. All other gates: O(T - (W -log N + log® N) - w(1)) number of Boolean gates.

5.2 Garbled RAM Construction
Given a garbling scheme denoted (TSC.Gen, TSC.Encode, TSC.Garble, TSC.Eval) for SIMD tri-state

circuits, we construct a garbled RAM scheme as follows:

e RAM.Gen(1*, params = (N, T)): compute |rinp| as a function of N and T, let sk < TSC.Gen (1%, |inp|+
[rinp|), and output sk.

¢ RAM.Encode(sk,inp): output TSC.Encode(sk, inp).
e RAM.Garble(sk, P):

1. Let C be a SIMD tri-state circuit that obliviously simulates P with input length [inp|+- |rinp],
and let C < TSC.Garble(sk,C).

2. Sample rinp uniformly randomly, and let ;r\{) & TSC.Encode(sk, rinp).
3. Output P := (C~', %B)

e RAM.Eval(P,inp): Output TSC.Eval(C,inp|rinp).
Heath et al. [HKO23] proved the following theorem.

Theorem 5.3 (Security of Garbled RAM [HKO23]). Suppose that (TSC.Gen, TSC.Encode, TSC.Garble,
TSC.Eval) is a secure garbling scheme for tri-state circuits w.r.t. the leakage function controls(-,-).
Then, the above garbled RAM construction is secure.

5.3 GRAM Cost Analysis

We now calculate the per-instruction cost of PicoGRAM assuming 7' = N. In Section A.1, we
generalize the result to both T"< N and T' > N.

Data stacks. By Theorem 5.2 and Theorem B.18, the total cost of data stacks is

log N
> 2k O(N/2" - (W +1og N +1log(N/2"))) = O(W -log N +log® N)
£=0

Metadata stacks. Similarly, by Theorem 5.2 and Theorem B.18, the total cost of metadata stacks

is
log N
> 28 log N - O(N/2" - (log N +log(N/2"))) = O(log® N)
=0

All other gates. By Theorem 5.2, the total cost of all other gates is
O\~ N - (W -log N +log® N) - w(1))

Summing up the results, we get the following theorem:
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Theorem 5.4. Assume the hardness of DDH. There exists a garbled RAM scheme with an amor-
tized communication cost of O(X- (W -log N +log® N) - w(1)) bits per instruction, where N is the
RAM’s space, W is the word width, X is the security parameter, and w(1l) is an arbitrarily small
super-constant factor in N.

We can slightly improve the cost in Theorem 5.4 to match that of Theorem 1.1 with some extra
tricks, as is described in Section A.2.

6 Concretely Efficient Stack

Since the stack is a repeatedly used building block in the SIMD tri-state circuit that obliviously
simulates a RAM, it is also the performance bottleneck of the garbled RAM. In this section, we show
how to realize a concretely efficient stack in the SIMD tri-state circuit model. For N = 229, our
new stack achieves a 29-fold reduction in bandwidth relative to prior stack constructions [PLS23,
HKO23,Hea23] with the use of our new SIMD garbling, and a 4-fold reduction even without using
our SIMD techniques.

6.1 Syntax: Compaction Stack and Distribution Stack

In both the tri-state GRAM [HKO23] and our PicoGRAM, the stack needs to support two-way
communication between parent and child nodes. We refer to the component that passes data from
the parent to the child as the “compaction stack,” and its counterpart as the “distribution stack”
(also called the “co-stack” and “stack” in prior work [HKO23]).

Definition 6.1 (Compaction stack and distribution stack). A compaction stack takes as input ¢
control wires c1,¢cz,...,¢; and t - W data wires zr; for 7 € [t] and i € [W]. Let ¢/ =t — > jcr
The compaction stack outputs t' - W data wires y,; for 7/ € [t'] and i € [W], and implements the
following state transitions:

T—1
ety G #F Zand ¢r =0 = yp; < 27 where 7' =17 — E cj
=1

A distribution stack has the same interface as the compaction stack, except that it treats y,/ ; as
input and z,; as output. Namely, the distribution stack implements the following state transitions:

T—1
c1y.-serm1# Zand e, =0 = xp; « Yy where 7' =7 — E c;j
Jj=1

As mentioned in Section 3.2, any well-formed SIMD tri-state circuit supports incremental eval-
uation when inputs arrive gradually rather than all at once. The above syntax implies that once
T < t steps of inputs have arrived, the compaction stack can be eagerly evaluated, compacting all
data elements that have arrived with flag 0. A similar observation applies to the distribution stack.

6.2 Stack Constructions from Oblivious Compaction
Intuition. Our stack construction builds on an oblivious compaction algorithm by Goodrich [Gooll].

The algorithm processes an array of ¢ inputs (either real or filler) and compacts all the real ele-
ments to the front of the array via a compaction network (Figure 6a) of depth d = logt¢. Consider
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a real element e at input position 7. The goal is to route e to position 7 — S; in the output array,
where S; is the number of input fillers preceding e. To achieve this, the algorithm shifts e forward
by be - 2671 at each level ¢, where by is the ¢-th bit of S, counting from the least significant bit.
Goodrich [Gooll] showed that this routing scheme ensures no collisions in the network.

In our setting, real elements represent real stack calls and fillers represent fake calls. Since
ORAM already masks the call types, we do not need to hide which calls are real. Meanwhile, we aim
for incremental execution: each input element should be routed through the compaction network
before the next input arrives. Goodrich’s compaction network [Gooll] satisfies this requirement,
as the routing schedule for each element depends only on the number of fillers preceding it.

F|lR| F| F| R| R| F| Ry
000 001 001 010 011 011 011 100

g
Ri| F| F|R| Rs| F| F| Ry ((
000 001 001 010 011 011 011 100
b

000 001 UUl 010 011 011 011 100

T

$

Ry| Ro| R3| Ry| F | F | F | F
000 [ 001 | 001 | 010 | 011 | 011 | 011 | 100

,{

(a) Goodrich’s compaction network (b) Adapted tri-state circuit

Figure 6: Goodrich’s compaction algorithm routes elements through a compaction network (Fig-
ure 6a). An element at level £ can be routed either directly downward or to the left by 2¢~1 offsets,
depending on the ¢-th bit in the binary representation of S;, where S; is the number of fillers
among the first 7 — 1 input elements. In Figure 6b, we adapt the compaction network to a tri-state
circuit, using Switch gates to control the routing directions. For clarity, we omit the control wires
of the Switch gates.

To adapt the compaction algorithm to a SIMD tri-state circuit, we replace each cell with a cable
and each edge with a Switch gate. The Switch controls which cable on the next level receives the
data. A graphical illustration is provided in Figure 6b.

SIMD stack for data efficient routing. Next, we formally construct a core building block called
SIMD stack, which assumes that the data wires are already grouped as cables. Assuming that the
FagerPrefixSum circuit correctly sets the control wires, the SIMD stack implements bidirectional
routing of data through the oblivious compaction network [Gooll]. Figure 8 illustrates our SIMD
stack when t = 4. We defer formal analysis of the SIMD stack to Section B.3.

Eager evaluation of control wires. The remaining challenge is how to set the control wires
for the Switch gates. A naive approach is to run a counter that outputs the binary representation
S1, 84, of S = Zz;% cr at every timestep 7. While this approach yields a stack that is both
correct and strictly well-formed in a standalone setting, when the stack is plugged into the SIMD
tristate circuit that implements the RAM, this bigger circuit does not satisfy strict well-formedness.
This is because when the stack is part of the RAM’s SIMD tristate circuit, its inputs do not arrive
all at the same time — later inputs to the stack can depend on the earlier outputs of the stack,
thus creating circular dependencies. Specifically, to achieve strict well-formedness, any wire set
at timestep 7 cannot depend on the input wire at timestep 7/ > 7. Consider the example of
Figure 8. Suppose that the stack receives a real element at timestep 7 = 1. Since 511 = 812 = 0,
every subwire of u‘ffl, ug[’/l, ug‘ﬁ depends on the control wire —s3 3 by our definition of dependency.
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SIMD Stack

. c1, . Ct

Notation: X¥V, ey XZV — y}/v, cey yfv
SIMD stack

Parameter requirement: ¢ = 2%,

Construction:

Define cables u}”_ for ¢ € [d + 1]. Let u‘ﬂ/T and ug_/H . be aliases of x!V and y!.

51,1 51,7
: « EagerPrefixSum (cy,...,¢;)
Sd,1 Sd,r
wo T w
uZ,T - u€+177_ WAS [d], T € [t]
—Se,r
uZVT - qu,T—ﬂ*l Veeld], e (2741

Figure 7: The SIMD stack circuit implements Goodrich’s compaction network [Gooll], and calls

the eager-prefix-sum building block to generate the routing schedule.

/— S1,1 81,2 fo S1,2 81,3 [0 S1,3 81,4 foS1,4

Uz U39 Us 3 Us 4

w w w

usz us o us’3 Uug 4
w w w w
Y1 Y2 Y3 Yi

Figure 8: An example of SIMD stack in Figure 7 for ¢ = 4. When ¢, = 0, the cable x!V is

T—1

dynamically connected to cable yZ‘,/, where 7/ =7 -3 =1

wire of Boolean gate NAND(s, s).
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Eager-Prefix-Sum
S1,1 cr S1t
Notation: : .. 1t | < EagerPrefixSum (cy,...,¢)
Sd1 cc Sdgt
Parameter requirements: t is a power of two, and d = logt.
Construction:
21+ is an alias of ¢, VT € [t]
0740 Ve e [d], T e [2¢71]
Spr4at-1 < XOR (207, s¢,r) Ve [d],T et -2
agr < OR (207, So.7) Veeld-1],7€t— 24_1]
ber < OR (Z£77.+2£71, —\8&7__,_2171) Veeld—1],T €|t — 26_1]
Y1e 0 Veeld—1],7 et -2
Z04+1,7 }l bgﬂ- Ve e [d — 1], T € [t — 2671]

Figure 9: The eager-prefix-sum construction. We overload the symbol x s y to denote three

gates connected in series: wu; &P z, ul _ vl y P vi, where u! and v! are cables of
width 1. Additionally, we introduce a constant wire 0 that always carries 0. Intuitively, z,, is 0
iff there is a real element routed through the cable uE’T in the SIMD stack, ay, is zero iff there
is an element routed directly downward from cable uZVT to uEVKLT, and by, is zero iff there is an
element routed leftward from cable uZVT 4or1 tO uXLT. The last two lines essentially computes

zg41,r = AND(ar 7, be ), but the use of Switch gates allows zy11, to be set to 0 eagerly when

agr =0, i.e., when UK_LT receives a real element from u}’f’T.

However, —sy 3 also depends on cz due to the Boolean circuit of the counter, which is input at
timestep 7 = 2, resulting in a circular dependency.

To fix this circularity issue, we observe that it is possible to “predict” certain bits in future prefix
sums. In the above example, since the first input control is ¢; = 0, we have S3 = Zzzl cr <1,
and hence s3 3 must equal 0. More generally, let 2, denote whether there is a real element routed
through the cable u}fVT, where 2y » = 0 means there is a real element routed through the cable. Then,
as we show in Section B, spr19t-1 can be set eagerly as the XOR of zy, and sy .. We designed
a SIMD tri-state circuit called eager-prefiz-sum (Figure 9) that implements such eager evaluation
behavior, and prove that it allows each subwire of a cable to be set only after all the control wires
it depends on are set.

Compaction and distribution stacks. Finally, we obtain compaction and distribution stacks
by encapsulating the SIMD stack with Group and Ungroup gates. To ensure well-formedness, we
add t extra Switch gates in the compaction stack to filter dummy inputs, and pad the unused ports
of the SIMD stack with constant input cables 0" that carries zero.
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Compaction and Distribution Stack

Parameter requirements: ¢ is a power of two, and ' =t — Zre[t] Cr.

Construction:
Define u‘l/V, e ufv, V¥V, e ,vf,v, and a cable 0" carrying zero values. Let
w W, Gt w W QW w
u; o, ..., W vi,...,vy,07,...,0

- 7
SIMD stack

e For compaction stack where . ; are inputs and y,; are outputs:

-

r = uV' for 7 € [t]
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Yy i P vy, for 7 € [t],i € (W]
e For distribution stack where y,; are inputs and z,; are outputs:
Vg &P y. i for 7' € [t'],i € [W]

Tri EP 4y for T € [t],i € [W]

)

Figure 10: Construction of Compaction and Distribution stacks (Definition 6.1).

7 Evaluation

We implemented PicoGRAM in C++ and evaluated both its communication and computation costs.
The implementation is open-sourced at https://github.com/picogramimpl/picogram. We com-
pare PicoGRAM against four baselines, with a word width of 64-bit, an equivalent computational
security parameter of approximately 128 bits, and a target statistical failure probability o = 2740
throughout. We set the RAM’s runtime 7' equal to its space N in the evaluation, and ignore the
costs from the CPU circuitry of the RAM.

Our evaluation compares the following approaches.

e Linear scan naively scans the entire memory space for each access using state-of-the-art
garbled circuit construction [RR21].

e TSC simulates the tri-state GRAM following the pseudocode in the paper [HKO23]. While
AND gates are emulated with the tri-state gates in the original work [HKO23], we replace
them with the state-of-the-art construction [RR21] to match our scheme.

e NanoGRAM runs the cost simulator of NanoGRAM [PLS23], a concretely efficient GRAM,
despite its asymptotically higher communication than TSC [HKO23].

e Interactive captures state-of-the-art RAM-model 2PC [WCS15, LWN'15 RR21] perfor-
mance. Specifically, we implemented the interactive baseline by removing the stacks in
PicoGRAM and instead allowing interactions between the garbler and evaluator. This way,
each access to a non-recursive ORAM tree incurs one round trip, and we assume a WAN
setup with 100 ms round trip time (RTT).
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Figure 11: Amortized communication cost of PicoGRAM compared to previous GRAM construc-
tions. Since our PicoGRAM (online opt.) variant does not use SIMD garbling, it also shows a
breakdown of the contribution from our two main techniques.

e PicoGRAM is our scheme. The evaluation considers three different variants of PicoGRAM
optimized for different metrics.

1. “PicoGRAM (comm. opt.)” is a variant optimized for communication overhead using the
SIMD gates and DDH.

2. “PicoGRAM (online opt.)” is a variant optimized for online computation. This variant
is more suited in scenarios where the offline garbling overhead and the transmission of
the garbled circuits is not on the critical path, and only the evaluation time is on the
critical path. Therefore, this variant does not use the SIMD optimizations and the DDH
assumption.

3. “PicoGRAM?” is a variant optimized for the end-to-end time, including garbling time,
network transmission time, and evaluation time. Depending on the system configuration
(e.g., network bandwidth available, ping latency, and CPU clock rate), we auto-tune the
parameters as described in Section D.4.

For our end-to-end runtime evaluation, we use 8 cores at 2.2 GHz on an Intel Xeon Platinum
8352S CPU. Our communication cost results are platform-independent. Further details on the
implementation and concrete performance of the baselines are provided in Section E.

Communication cost. Figure 11 compares the communication cost of PicoGRAM (comm. opt.)
to other constant-round baselines. For RAM spaces ranging from 20 to 224, PicoGRAM reduces
communication by 5.3 ~ 12.6x over TSC [HKO23], and by 2.8 ~ 5.8x over NanoGRAM [PLS23].
A breakdown of the cost is shown in Figure 11b. At N = 26, we reduce the communication cost
from stacks by 23.7x, with 5.7x of this improvement attributed to our SIMD garbling.

End-to-end runtime for 2PC. Due to the use of elliptic curves, PicoGRAM incurs higher com-
putational costs than prior state-of-the-art GRAMs [HKO23, PLS23]. For example, on our test
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Figure 12: (a) Amortized end-to-end time for 2PC at N = 2! excluding OT, simulated under
varying network bandwidths, where the garbler’s computation is assumed to be pipelined with
communication. (b) Amortized computation time of PicoGRAM’s garbler and evaluator when op-
timized for different metrics.

platform, OpenSSL’s P-256 elliptic curve [CMR 23, 0om24] requires approximately 1.2 x 10> CPU
cycles per scalar multiplication, whereas a 128-bit hash using fixed-key AES [BHKR13]| takes only
about 40 cycles.

Nevertheless, in a two-party computation (2PC) setting®, our auto-tuned PicoGRAM achieves
a 6.28x speedup in end-to-end time over tri-state GRAM [HKO23] and a 3.15x speedup over
NanoGRAM [PLS23] at a bandwidth of 300 Mbps and for N = 216, As bandwidth increases, com-
putation becomes the bottleneck and the speedup decreases; despite this, at 2,000 Mbps, PicorGRAM
remains 3.62x faster than tri-state [HKO23] and 2.01x faster than NanoGRAM [PLS23]. Con-
versely, as bandwidth decreases, the interactive baseline becomes more competitive, since round-trip
latency is less dominant. Our simulation shows that PicoGRAM is 2.46 x faster than the interactive
baseline at 300 Mbps, and remains faster until the bandwidth drops to 34 Mbps.

As our current implementation requires the garbled circuit stored in memory, we are not able
to measure the runtime of larger experiments. With additional engineering, however, it would
be feasible to store most of the garbled circuit on disk and load the required parts into memory
with minimal overhead through pipelined pre-fetching. We leave this optimization for future work.
Based on extrapolation, we estimate the amortized end-to-end runtime to be approximately 381 ms
for N = 224 and 600 ms for N = 230 at a bandwidth of 300 Mbps. In comparison, the interactive
baseline is estimated to take 919 ms for N = 224 and 1,365 ms for N = 230 under the same
bandwidth conditions.

Online time. As an advantage over the interactive protocols, GRAMs can be deployed efficiently
in a preprocessing setting, where the online phase is dominated by the evaluator’s computation
time (see Section E.3 for more discussions). Similar to the high-bandwidth scenario above, by

"We do not take into account the cost of oblivious transfers (OT), which depends on the program’s input size.
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tuning the parameters, we manage to reduce the evaluator’s computation time to less than 10 ms
per access for N < 216 as shown in Figure 12b. In comparison, the interactive baseline requires at
least 100 to 300 ms online time per access due to the round trips. For N = 2?* and N = 23°, we
estimate our online time to increase to 25 ms and 41 ms per access, respectively. In comparison,
the interactive baseline is estimated to take 316 ms and 455 ms per access, even if it is also tuned
to minimize the online time.
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A Deferred Cost Analysis

In this section, we provide a detailed cost analysis of PicoGRAM, including additional optimizations
to achieve our claimed bounds in Theorem 1.1. At a high level, we adopt the same garbled RAM
construction as Heath et al. [HKO23], except that: 1) we replace the tri-state circuit stack with our
optimized stack based on SIMD gates; 2) we generalize the GRAM to handle both cases ' > N
and T' < N; and 3) we perform additional optimizations to reduce the bucket sizes of the root and
leaf nodes. We have discussed part 1) in Section 5.3, and next we explain how to achieve 2) and
3).

A.1 Handling Cases "> N and T'< N

In our previous analysis (Section 2.2), we assumed, as in prior work [HKO23], that the RAM’s
runtime T equals its space N. Here, we show that this assumption can be removed. Namely, we
can construct a GRAM with amortized communication cost O ()\ . (W log N +log® N ) : w(l)) for
any T

Case T' < N: We provision O(T) leaves in both the main ORAM tree and each of the recursive
position maps, since there can be at most O(T") elements inserted into each tree. The main ORAM
tree thus has amortized communication cost O(A(W 4+ logT')logT - w(1)), and each position map
has cost O(Mog? T - w(1)). Since the RAM space is N, we still need log N position maps. As
T < N, the total amortized cost is bounded by O ()\ . (W -log N + log? N) . w(l)).

Case T > N: We construct [T/N| GRAMs and connect them in series. Each GRAM is capable
of handling 3N accesses: the first N accesses are for initializing the memory, the last N accesses
are for extracting the data to initialize the next GRAM, and the remaining N accesses are for the
actual memory operations. Asymptotically, the amortized communication cost remains the same
as in the case T'= N.

A.2 TImproving Dependence on the w(1) Factor

Next, we describe techniques that further improve the asymptotic performance of PicoGRAM to
match our claimed results in Theorem 1.1. Specifically, we reduce the amortized communication
cost from

O\ (W -log N +1log® N) - w(1)) to O (A (W -log N - w(1) + log® N)).

In other words, we eliminate the w(1) factor for the case W € o(log? N).

In our previous analysis (Section 2.2 and Table 3), the w(1) factor arises from both the root
buckets and the leaf buckets, as they are super-logarithmic in size. Below, we present two additional
optimizations to remove the w(1) factor from the leaf buckets and the root buckets, respectively.

Reducing leaf bucket size via better load balancing In Table 3, we cut off the ORAM tree
at level log(/N/B) and hope that no leaf node is invoked more than 2B times. To ensure that the
tree can still store N elements, we have to set the leaf bucket size to O(B). Moreover, we need
B € log N - w(1) to achieve negligible failure probability, which leads to our first w(1) inefficiency.5

Ideally, we want to avoid the cutoff and keep all bucket sizes constant except for the root, which
means we need to ensure that each leaf is invoked only O(1) times. While the tri-state circuit

5Tn interactive RAM-model 2PC, this is not an issue because the circuits can be generated on the fly. In Garbled
RAM, however, the garbler has to provision sufficient circuitry for the worst case.
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work [HKO23] assumes this property in their construction and cost analysis, they did not explain
how to achieve it in practice.

Our key idea is to improve load balancing using a random permutation. Observe that during
each access, the path traversed in the ORAM tree is determined by the leaf position previously
assigned to the element. Consider an ORAM tree with capacity N and T = N accesses; for
simplicity, let the tree have 2N leaves indexed by positions 1,2,...,2N. We need to assign N
random positions initially and N new random positions after each access. Instead of choosing
these positions uniformly at random, we assign them according to a random permutation 7 of
[2N]. Specifically, we set the initial positions to w[l],n[2],...,7[/N] and the new positions to
w[N+1],7[N+2],...,m[2N]. This guarantees that each leaf is accessed at most once during the N
accesses. While Circuit ORAM also requires performing eviction on two paths after every access,
the eviction paths follow a reverse lexicographical order of the positions [WCS15], which only adds
one more access to each leaf.

This approach preserves the security of the ORAM, as the positions of the accessed leaves (i.e.,
the leakage) can be simulated by sampling N elements without replacement from 2N. Since we
assume a semi-honest setting, we can let the garbler sample the random permutation, leveraging
the fact that the garbler does not know which path is accessed at runtime.”

This optimization has been integrated into our implementation of PicoGRAM, as it also improves
concrete performance. When comparing with the tri-state GRAM baseline in Section 7, we assume
that they adopt the same optimization.

Reducing root size by merging stash. Chan et al. [HCS17] observed that the root buckets of all
recursive position maps can be merged into a single stash of size O(log V) - w(1) while maintaining
negligible failure probability. This optimization ensures that only the main ORAM tree incurs
the w(1) factor, not the recursive trees (see Section 10 in their online full version). The same
optimization can be applied to PicoGRAM.

During each GRAM access, oblivious routing is performed on the stash to distribute entries to
each of the recursive trees [HCS17]. Since the stash size is O(log N) - w(1), the oblivious routing
can be implemented with a circuit of size O(log2 N - polyloglog N), as each position map has a
word size of O(log N).

It remains an open question whether the w(1) factor can also be eliminated from the main
ORAM tree. For Circuit ORAM [WCS15], the failure probability is bounded by exp(—c- R), where
R is the stash size and c is a constant, so R must be set to be super-logarithmic to achieve negligible
failure probability.

A.3 Final Cost Analysis

Finally, we combine the optimizations above and obtain the following theorem on the communica-
tion cost of PicoGRAM.

Theorem A.1 (Communication cost of PicoGRAM (restatement of Theorem 1.1)). PicoGRAM
achieves an amortized communication cost of O(X- (W -log N -w(1) +1log® N)) bits per instruction,
where N is the RAM’s space, W is the word width, X is the security parameter, and w(1) is an
arbitrarily small super-constant factor in N.

Proof. In Section A.1, we showed that it suffices to consider the case T' = N.

"In practice, it may also be desirable to periodically reveal to the garbler the timestep of each node at runtime, so
that the circuit can be garbled and sent on demand. In such scenarios, the garbler and evaluator can jointly compute
and secret share the random permutation.
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As established in Section 5.3, the communication cost from stacks sums to O(\-(W-+log? N) log N)
bits per access.

Next, consider the costs from the Circuit ORAM buckets. With the first optimization in
Section A.2, every bucket except the root bucket has constant size. Since the circuit size for
each read and eviction operation is linear in the bucket size and word width in Circuit ORAM,
the communication costs from all non-root buckets sum to O(\ - W -log? N). The root bucket
of the main ORAM tree costs O(\ - W - log N - w(1)) bits per access, and, applying the second
optimization in Section A.2, the root bucket (i.e., the unified stash) of all recursive position maps
costs O(X\- W -log? N - polyloglog N). Therefore, the overall communication cost from the Circuit
ORAM buckets is O(X - (W -log N - w(1) + log® N)) bits per access.

Summing the costs from both parts yields the claimed result. (]

Remarks on computation cost. In prior works on practical garbled RAM [HKO23, PL.S23],
only communication cost is measured, as it typically dominates computation in most practical
scenarios. However, since PicoGRAM significantly reduces communication cost while introducing
more expensive DDH group operations, we also analyze the asymptotic computation cost in terms
of the number of multiplications in Gy.

As shown in our garbling scheme (Figure 3 and 4), exponentiation operations are required
only when the garbler invokes a Group or Ungroup gate, or when the evaluator invokes an Un-
group gate. For each Switch gate, the evaluator performs a single modular multiplication or di-
vision in the exponent, deferring the actual heavy-weight exponentiations to the Ungroup gates.
Each Group and Ungroup gate involves O(1) exponentiations, or equivalently, O(\) multiplica-
tions in G4. Therefore, both the garbler’s and evaluator’s computation costs are upper-bounded
by O ()\ (W log N +1log® N )) multiplications per instruction.

Furthermore, since the garbler only needs to exponentiate the generator g, we can leverage pre-
computation as described in Section D.2 to reduce the garbler’s computation cost to O(X - (W +
log? N)) multiplications per instruction.

B Deferred Analysis of Improved Stack Circuitry

B.1 Preliminaries

First, we review some properties of Goodrich’s compaction network [Gooll] that will facilitate our
analysis of the stack circuitry.

Definition B.1 (Goodrich’s Compaction Network [Gool1]). In Goodrich’s compaction network [Gooll],
elements are routed through a (d 4+ 1) x t grid of cells from level 1 to level d + 1, where d = log .

A cell is used if an element is routed through it, and unused otherwise. Let e be a real element
input to the 7-th cell at level 1, and let S; be the number of unused cells before e at level 1. Then,

the network routes e to the 7-th cell at level ¢ € [2,d + 1], where 7y = 7 — (ST mod 24_1).

Lemma B.2. Goodrich’s compaction network [Gooll] preserves the order of the elements at every
level.

Proof. Let e and e’ be real elements input at cells 7 and 7/, respectively, at level 1, with 7/ < 7.
Let S; and S be the number of unused cells before e and €' at level 1. By Definition B.1,
e and €' are routed to the 7y-th and 7/-th cells at level ¢, where 7 = 7 — (S; mod 2=1) and
7) =7 — (S mod 2°~1). Observe that

(Spmod 26°Y) — (S, mod 281 < S — S, <7 — 7' — 1.
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Therefore, 7; + 1 < 7y, which shows that the order of the elements is preserved at every level. [

Corollary B.3. Let e be a real element input to the T-th cell at level 1 of Goodrich’s compaction
network [Gooll], and S; be the number of unused cells before e at level 1. Then, the number of
unused cells at level £ before e is

Stm = |Sr/271| 21,

Proof. By Lemma B.2, the number of used cells before e remains 7 — 1 — S; at every level. The
compaction network routes e to the 74-th cell at level £, where 7, = 7 — (S, mod 2¢~1). Thus, the
number of unused cells before e at level £ is

Ser,=(e—1)—(r1—1-25;)
= S; — (S; mod 2£_1)
= |82 2

B.2 Analysis of Eager-Prefix-Sum

We first show that the eager-prefix-sum building block (Figure 9) is well-formed; that is, every wire
in the circuit can be set to a unique value given the input values cy,...,c.

Lemma B.4. Fager-prefiz-sum (Figure 9) is strictly well-formed.

T —ay -
Proof. Note that only one of the Switches in zy;1 - 22 0and 20417 T ber can be active and
set zp41,-. The rest of the construction consists of Boolean circuits, which uniquely set each wire. It
is straightforward to check that every wire is set after all its dependencies are set, since the circuit

is mostly Boolean, and we can always set a,, and —ay ; before setting the subwires converted from
0 and by ;. O

Next, we show that eager-prefix-sum correctly outputs the routing schedule for Goodrich’s
compaction network [Gooll].

Lemma B.5. Given the values of c1,..., ¢, eager-prefiz-sum (Figure 9) sets
St = {57/24_1 mod 2 (1)

for every € € [d] and T € [t], where S; = 3.7 ¢; and 7y =T — (S; mod 271).
Proof. We prove the lemma by induction on ¢, together with an additional induction hypothesis:

e In Goodrich’s compaction network (Definition B.1), with an input element at every timestep
7 € [t] such that ¢, = 0, the wire z;,; can be set to 0 if and only if there is an element routed
through the 7-th cell at level £.

Base case: when ¢ = 1, we indeed have 21, = ¢, is set to 0 if and only if there is an element
routed through the 7-th cell at level 1. Moreover, the recurrence relations s; = 0 and s1 41 <
XOR(z1,7, $1,+) imply

T—1 T—1
S1,r = Z z1,; mod 2 = ch- mod 2 = LST/Ql_lJ mod 2 (2)
i=1 i=1
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Inductive step from ¢ to ¢+ 1: Notice that there is an element routed through the 7-th cell at
level £ 4 1 if and only if either of the following cases hold:

e 2,0 =0and sy, = 0. Namely, there is an element reaching the 7-th cell on level ¢ and routed
directly downward to level £ + 1.

® 2,y =0and s, o1 = 1. Namely, there is an element reaching the (T + 24_1)—th cell on
level ¢, and the element is routed leftward to level £ + 1.

This matches the circuitry for computing 2,4 in the eager-prefix-sum construction. Therefore,
the additional induction hypothesis holds for level £ + 1.
Next, we show that Equation (1) also holds for level £ + 1. In the proof below, we define the

shorthand notation .
Zip1r = {(Z Z£+1,z'> /ZEJ ; (3)
i=1

and our first goal is to show that
S¢+1,r = Zg+1,- mod 2. (4)

Intuitively, Corollary B.3 shows that the number of unused cells between every two consecutive
used cells is always a multiple of 2¢ at level £ + 1, so we can pack the unused cells into chunks of
length 2¢, and Z+1,7 counts the number of full chunks before timestep 7.

When 7 < 2¢, Equation (4) trivially holds, since Zyy; ; can only be 0, and s;y; , is set to 0
by definition. Therefore, we can prove the equality inductively for every 7 € [t] if the following
recurrence relation holds:

Se+1,7 = Z€+1,T mod 2 = Sf+1,‘r+2£ = Zg+177.+28 mod 2. (5)
Since sy 19t = Se41,7 D 20417, Equation (5) holds if
Z€+1,7—+22 = Ziy1,r + Ze41,5 (6)
To prove Equation (6), we discuss both the case 211, = 0 and 21, = 1.
e Case zyy1, = 0: then there is an element routed through the 7-th cell on level £ + 1 by

the additional induction hypothesis. Moreover, by Corollary B.3, the number of unused cells
before the 7-th cell at level £ + 1 is a multiple of 2¢. Therefore, we can rewrite Equation (3)

as 1
Zoyr,r = <Z Zl—i-l,i) /2 (7)

=1

Thus, we have

T+26-1 T—1 T+2f-1
Z 2041, = (Z ZE—}—l,i) +0+ Z 241 | € Zopar 204201 (8)

i=1 i=1 i=T+1
Hence, Z,, ;4 o¢ is bounded by

Zppar 204201
2

Zop1,r < Zpigppot < { J = Zes1,7 )
and Zyyq 400 = Zot1r + 2e41, When 2z, = 0.
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e Case 2,41, = 1: First, by Equation (3), we have the upper-bound

T+20-1

T—1
Z£-+-l,~r-|-21Z = {(Z zf+17i> /QeJ + Z Ze41,i /22 =Zi1r+1 (10)
=1 =T

It remains to show the lower-bound Z, ;| . o¢ > Zy11 - + 1. Again, we consider two cases:

- If Z(+177—+1 == Z€+1’7_+2£_1 = 1, then
T+26-1 T—1
‘
S =)z | +2 (11)
=1 i=1

Wthh 1mphes ZZ+1’T+2Z = Z@+1,T =+ 1

— If there exists 7/ € [r + 1,7 4+ 2¢ — 1] such that Zg+1,~ = 0, then by Corollary B.3, the
number of unused cells before the 7/-th cell at level £ + 1 is a multiple of 2¢. Therefore,

T'—1 /=1
o142t 2 {(Z Ze+1,i> /QKJ = (Z Ze+1,i> /2° (12)
i=1 i=1

Furthermore, since zp11, = 1,

-1 T—1
(Z Zz+1,i> /2" > (Z Z€+1,i> /28> Zpg s (13)
=1 i=1

Combining Equation (12) and (13), we get Zy, ;49¢ > Zgi1,7- Since both Z,,; .o and
Zyy1,r ave integers, we have Zy y ;o0 > Zyy1, + 1. Therefore, Equation (6) also holds
when zp4q, = 1.

This concludes the proof of Equation (4).
By the additional induction hypothesis, the number of unused cells before the 7y, 1-th cell at
level £ + 1 can be expressed as

e
S€+1,Te+1 = Z 2L (14)
=1

Combining Equation (4), Equation (14), and Corollary B.3, we get our lemma’s claim for level
{+1:

Tg+171

14
Sé+1a7—6+1 = Z Ze-f—l,i /2 mod 2
=1

= | Stt1me, /2ZJ mod 2

- ST/QZJ mod 2 (15)
Thus, we have shown both induction hypotheses, which imply the lemma. ]

Finally, we show that eager-prefix-sum can indeed set the output wires eagerly, resolving the
circular dependency problem in the RAM circuit.
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Lemma B.6. For 7 <t, ifc1,...,c; are set, then eager-prefiz-sum (Figure 9) can further set
o cvery wire g for £ € [d] and 7' < 7, and
o if ¢; =0, also every wire s, ., qe-1 for £ € [d], where 7y = 7 — (S; mod 2671).
Moreover, the wires in eager-prefix-sum are set following the dependency order in Definition 3.3.

Proof. We first show that s, ,» can be set for every ¢ € [d] and 7/ < 7. We prove this by induction on
£, together with an extra induction hypothesis that Zg - can be set for every £ € [d] and 7, < T—20-1,

For ¢ = 1, this is trivial: z11,..., 21, are set to the input values, sy is set to constant 0, and
51,2,-..,51,r can be set by the XOR gates.

If the invariant holds for level ¢, then we can set both Al and bgﬂ.l{+1 for every 7, | <7 — 2t
which further lets us set z, +1,7),, using the Switch gates. Using the XOR gates, we can then set
Se41, for every 7/ < 7, completing the induction.

Now, for the eager evaluation property: by Lemma B.5, we have

T = Te41 = (ST mod QZ) — (ST mod 25_1)

- (LST/%”J mod 2) L9t
=S0r 2t=1, (16)

We prove by induction that 2z, ,, can be set to 0 for every ¢ € [d].
For{ =1, 217, = ¢, =0.
If the induction hypothesis holds for ¢ € [d — 1], then we discuss the following two cases on the

value of s;,, (we have shown that sy, can be set since 7, < 7):

e If s, = 0, then ay,, can be set to 0, and 7941 = 7. Therefore, 2041741 = Z0+1,7, CaN be set
to 0 using the Switch gate.

o If sy, =1, then 7y = 7 — 2¢=1 Since 2y = T80r, = 0, we can set byr, , = by, _ge-1 =0

2¢=1 we have shown that both

using the OR gate. Moreover, since 7y, = 75 — 2071 < 7 —
20, and sg 5, can be set. Therefore, agr,,, can be set. No matter a;,, , takes 0 or 1, we

can hence set 27417, = 0 using one of the Switch gates.

This concludes the induction that z,,, can be set to 0. Thus, with the XOR gates, we can set
807,420 for every £ € [d].
Finally, as shown in Lemma B.4, each wire is set after all its dependencies are set. O

B.3 Analysis of SIMD Stack

Since the eager-prefix-sum circuit is well-formed, each wire s, > in the SIMD stack is set to a unique
value, which in turn uniquely determines whether each Switch in the SIMD stack is active. This
allows us to abstract the runtime state of the SIMD stack as a graph, simplifying the analysis.

Definition B.7 (Meta-graph of SIMD Stack). The meta-graph of a SIMD Stack (Figure 7) with
respect to input controls ¢y, ..., ¢ is an undirected graph (V, E'), where the vertices V are all the
cables uth and there is an edge between two vertices (cables) if they are connected by an active
Switch gzite.

We now establish several properties of the meta-graph of the SIMD stack, which will be used
in subsequent proofs.
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Lemma B.8. In the meta-graph of the SIMD stack with respect to input controls cy,...,c, the
verter u‘fE/T is connected to uZ‘fw, where ) =T — (Z;_ll ¢; mod QZ_l) , for every £ € [d + 1].

Proof. By the construction of SIMD stack (Figure 7), u%@ is connected to uﬁlﬂ if sy -, =0, and

uE-/H,Te—%*l if s;;, = 1. By Equation (16), ugf/n/ is connected to uxlﬂﬂ for every ¢ € [d], and
hence u‘f‘g is connected to uXVTZ for every £ € [d + 1].

O

Lemma B.9. In the meta-graph of the SIMD stack with respect to input controls ci,...,c, the
vertex uZZ_LT(l) s not connected to u?—/&—l,r@) for any 7 #£ 72,

Proof. First, we show that the meta-graph always has t - d edges. Note that the number of edges
equals the number of control wires with value 0. Since s, = 0 for 7 € [26_1], we can treat —sy ,
as a control wire for 7 € [2¢71] in Figure 7, which does not affect the count. Then, there are 2td
control wires, half of which are 0, so the number of edges is td.

Meanwhile, the meta-graph has ¢(d + 1) vertices, so there are at least t connected components.
Since there is always one active Switch connecting each cable at level ¢ € [d] with a cable on the
next level, every vertex is connected to a vertex on the last level. Thus, no pair of vertices on the
last level can be connected, or there would be fewer than ¢ connected components. O

Corollary B.10. In the meta-graph of the SIMD stack with respect to input controls cy,...,c,

W ; w
every vertex u,’ s connected to a unique vertex ug\ g 0N the last level.

Proof. As shown in Lemma B.9, every vertex uZVT is connected to at least one vertex on the last
level, which must also be unique since there cannot be two vertices on the last level both connected
to uZVT. ([l
Lemma B.11. In the meta-graph of the SIMD stack with respect to input controls cq,...,c, the
verter uZVT(l) is not connected to u?{r@) for any 0 < 7 — 72 < 261 yhere ¢ € [d+ 1] and

W 7@ ¢ [1].

w
0,71
both vertices must be connected to a unique last-level vertex u?il .. However, by the topology of

; w ; w w
the compaction network, each vertex u; can only connect to either ujl, ~or w’, ., , on the

next level, so we have 7)) = 7/ = 7@ mod 271, which contradicts 0 < 7(1) — 7(2) < 961,

Proof. Suppose that u,”,, and u%(z) are connected. Then, by Corollary B.10 and Lemma B.9,

O

Lemma B.12. In the meta-graph of the SIMD stack with respect to input controls cy,...,c:, for
each vertex yIT/I,/ with 7/ <t =1t— Zizl ¢y, there exists a unique T such that ¢, = 0 and x%V is
connected to yZ[,/.

Proof. Define U, = {x} | ¢, =0} and U, = {y)/ | 7/ € [t']}. By Corollary B.10, every vertex in
U, is connected to a unique vertex in U,. Now we prove every vertex in U, is also connected to at
most one vertex in U,. It suffices to show that XKI(/U and XZ[(/Q) are not connected to the same vertex

in U, if (M £ 7(2) and c.a) = ¢ 2y = 0. By Lemma B.8, we need to show:

(1 (21
7'(1) < 7(2) and c,ny=c.2=0 = 7_(1) - Z ci # 7'(2) - Z Ci (17)
i=1 i=1
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And Equation (17) holds because 7(2) — 7(1) > ZT<2)_1 ZZST)(:} Ci-

i=r) 41 G =
Finally, we prove that each vertex in U, is connected to at least one vertex in U,. Suppose that
there exists a vertex in U, that is not connected to any vertex in U,. Then, since |U,| = |U,| and

each vertex in Uy is connected to at most one vertex in Uy, there must exist a vertex in U, that is
not connected to any vertex in U, by the pigeonhole principle. This contradicts the fact that each
vertex in U, is connected to a vertex in Uj,. ]

Lemma B.13. In the meta-graph of the SIMD stack with respect to input controls ci,...,ct, if

c¢r = 0, then the vertex u‘l/{/T is not connected to quTé if p > 7 — 271 and 1) # 74, where £ € [d]

and Tp =T — (ST mod 26_1).
Proof. Let’s split the vertices into four disjoint sets:

o U= {UZ:_, | '€ [0, 7 — 26_1]};

We want to prove that uI{I,/T is connected to vertices only in U; and Us.

By Lemma B.S8, uI{I,/T is connected to every vertex in Us, and by Lemma B.11, vertices in Us are
not connected to vertices in Us. Therefore, it suffices to show that Us and Uy are disconnected.

Since 7p— 7141 < 271, by the topology of the compaction network, there can be no edge between
U; and Uy, so it only remains to show that there is no edge between Uz and Uy.

Suppose that there is an edge between Us and Uy. Then, by the topology of the compaction
network, the edge can only match one of the following two cases:

e Case vertical: The edge is between ugVTZ € Uz and u%l € Ul

W

e Case diagonal: The edge is between ugzlﬂ+1 € Us and u, a1 € Uy.

For the vertical case, since uXLTé ¢ Us, we have 7,41 # 74. By Equation (16), we have sy, =1,

w
2

For the diagonal case, since ugflruﬁﬂ* ¢ Us, we have 7y # 7741 + 271, By Equation (16), we

which means the Switch between u;”_ and UZL -, is inactive, so the edge cannot exist.

_ _ . . W W .

have sy, = 0 and thus —sy,, = 1, which means the Switch between Wiy, and Wy oe1 18
inactive, so the edge cannot exist.

To conclude, U, is disconnected to Us, and Uy U Us is disconnected to Uy. Therefore, Us U Uy

is disconnected to Us. O

B.4 Analysis of Compaction and Distribution Stack

Now we are ready to analyze our construction of the compaction and distribution stacks. We first
prove their correctness in Theorem B.14.

Theorem B.14. The compaction and distribution stack constructions in Figure 10 correctly im-
plement the state transitions defined in Definition 6.1.
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Proof. When ¢; = 0, 'V is connected to u’¥ by an active Switch gate. Furthermore, by Lemma B.8,
the cables u!V and VZI,/ are connected in the SIMD stack’s meta-graph, where 7/ = 7911 = 7 —
Z;;% ¢;j. Finally, by Lemma B.6, the control wires of all the active Switches on the path can be
set when c1,...,c; are set. Therefore, if either x,; or y,+; is set, we can set the other to the same

value using Group, Ungroup, and active Switch gates. ]

Next, we show that our compaction and distribution stacks can be used to build a strictly well-
formed ORAM circuit. We adopt the ORAM construction as described in prior work [HKO23].
Since the ORAM buckets can be implemented purely as Boolean circuits, it suffices to show that
the stack constructions can achieve the state transitions as defined in Definition 6.1 by setting every
wire following the dependency order.®

Theorem B.15. If Zizl c =t —t', the compaction stack construction in Figure 10 is strictly
well-formed, and moreover, during the state transitions of the compaction stack, each wire can be
set after all its dependencies are set.

Proof. First, we show that the compaction stack is well-formed. By Lemma B.12, every cable V‘T/‘// in
the compaction stack is connected to a unique cable rZV through a chain of active Switch gates for
7’ € [¢']. Moreover, by Lemma B.11, VZI,/ is not connected to the constant zero cables. Therefore,
every subwire v,/ ; is set to a unique value. Since the cables v are mutually disconnected for
T € [t], every cable u},f/T in the SIMD stack is connected to a unique cable v/, and hence every
subwire can also be set uniquely. Finally, since the eager-prefix-sum circuit is well-formed, every
wire in the compaction stack can be set.

Next, we show that each wire can be set after all its dependencies are set during the state
transitions of the compaction stack. In the rest of the proof, when we say a wire can be set, we
mean the wire can be set after all its dependencies. Crucially, we need to show that the Group gate
can set each subwire of r'" in the compaction stack. If ¢, = 1, then r/¥ is not connected to other
cables by active Switch gates, so its subwire only depends on c¢; and the input wire z,;. If ¢; =0,
then by Lemma B.13, r‘T/V is not connected to any cable in Uy and Uy (as defined in the proof of

Lemma B.13) through a chain of active Switch gates. By the SIMD stack construction,

e If sy .+ or sy is the control wire of a Switch connected to any cable in U;, then we have
T < T — 202 <

o If sy, or —sy ;s is the control wire of a Switch connected to any cable in Us, then we have
either 7/ = 7, < 7, or 7/ = 74 + 2¢=1. Since ¢, = 0.

For either case, by Lemma B.6, we can set sy - and —sy » once we obtain c1,...,c,.

Therefore, the Group gate can set each subwire of r/V in the compaction stack after all its
dependencies are set. Once we set ', we can further set every subwire in the cable connected
to it through the active Switch gates, and achieve the state transition as defined in Definition 6.1.
Finally, we can set the subwires of cable 0" and other cables connected to it through active Switch
gates, since all the control wires are set.

By Lemma B.4, every internal wire in the eager-prefix-sum circuit can be set as well. Therefore,

the compaction stack is also strictly well-formed. ]

8 A minor technicality is that we cannot directly use Boolean circuits to merge the outputs of the distribution
stacks from different child nodes, since the state transition rule of the distribution stack ensures z,; is set only if
¢ = 0. However, we can convert z,; back to cables and use Switch gates to select the output from the distribution
stack with ¢; = 0. For better concrete efficiency, we can also avoid this back-and-forth conversion between subwires
and independent wires.
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Theorem B.16. If Zizl cr =t —t', the distribution stack construction in Figure 10 is strictly
well-formed, and moreover, during the state transitions of the distribution stack, each wire can be
set after all its dependencies are set.

Proof. By Corollary B.10, every cable uXVT in the SIMD stack is connected to a unique cable yr,/
through a chain of active Switch gates, and hence can be set to a unique value.

The rest of the proof is similar to that of Theorem B.15. The Group gate can set each subwire
of yZ‘f ifc,; =0and 7/ =7 — Zzzll ¢;, since all the control wires the subwire depends on are set.
The rest of the subwires can be set through the active Switch gates. Finally, since eager-prefix-sum
is strictly well-formed, the distribution stack is also strictly well-formed. O

Using the following lemma, we can show that the RAM construction in Theorem 5.2 is also
strictly well-formed.

Lemma B.17 (Strict well-formedness of RAM). The SIMD tri-state circuit C that negl(N)-obliviously
simulates P, as stated in Theorem 5.2, is strictly well-formed if both its compaction and distribution
stacks are strictly well-formed, and moreover, if each wire is set after all its dependencies during
the state tramsitions defined in Definition 6.1.

Proof. Heath et al. [HKO23] have shown that every wire in C can be set uniquely following the eval-
uation rules, assuming the stack and distribution stacks implement the declared state transitions.
We further show that during this evaluation process, every wire is set after all its dependencies
are set. Note that except for the stacks, the rest parts of C are simply Boolean circuits. For each
Boolean gate, the evaluation rule guarantees that the output wire of the gate can be set only after
both the input wires are set, which means all the dependencies of the output wire have been set.
Since every wire of the stacks can also be set after all their dependencies during the evaluation, we
conclude that every wire in C is set after all its dependencies are set. ]

Finally, we analyze the cost of our compaction and distribution stacks.

Theorem B.18. The compaction and distribution stack constructions in Figure 10 include O(t -
(W +logt)) gates.

Proof. The eager-prefix-sum circuit consists of d = logt levels, each with O(t) Boolean, Switch,
Group, and Ungroup gates. The SIMD stack additionally includes O(d - t) Switch gates. The
compaction and distribution stacks further include O(t) Switch gates and O(d - ¢t) Group and
Ungroup gates. Summing these, we obtain the theorem statement. ([l

C Garbling SIMD Tri-State Circuits in Random Oracle Model

In this section, we present a concretely more efficient garbling scheme and prove its security under
the Decisional Diffie-Hellman (DDH) assumption in the random oracle (RO) model. Our scheme in-
corporates several concrete optimizations [KS08, NPS99, BMR90] and leverages the state-of-the-art
half-gate technique [RR21] for garbling Boolean gates. Furthermore, the circular security provided
by the random oracle allows us to relax the requirement from strictly well-formed circuits to merely
well-formed circuits. This relaxation enables further simplification of the stack construction and
improves concrete performance.
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C.1 Our Construction from DDH and Random Oracle

Labels of an independent wire. As in prior works that use the Free-XOR optimization [KS08,
ZRE15,RR21,HKO23, Hea24|, we set the zero and one labels of each independent wire = so that
Ly—o @ Ly—1 = A, where @ denotes bit-wise XOR and A is a global key held by the garbler. Each
label is A 4+ 1 bits, where A is the security parameter, and the least significant bit is called the
permutation bit. We ensure the zero and one labels of each wire have different permutation bits
by setting the least significant bit of A to 1. This allows the garbler to reveal the value of an
independent wire to the evaluator by sending only the permutation bit of the wire’s zero label.

Labels of a cable. For cables, we assign the label of each subwire to be an element of a prime-order
DDH group G, with security parameter A\. Let Wax be the maximum width of any cable in the
circuit. The garbler samples Wiax global keys I'y, ..., T'w,,.. € Z;. For each cable x| the garbler
also holds a secret key Kx € Z7, and defines the labels of the i-th subwire as Ly, = g @ith) for
b € {0,1}, where g is a public generator of the group.’

Next, we explain how our garbling scheme with random oracle improves concretely over the

construction in Section 4.

Optimizing Boolean gates. Since Yao’s original garbled circuit [Yao86], a series of works [BMR90,
NPS99,KS08,ZRE15, RR21] have improved the concrete efficiency of garbled Boolean circuits. We
adopt the state-of-the-art scheme by Rosulek and Roy [RR21], where XOR gates are free and each
AND gate incurs only 1.5\ + 5 bits of communication.

Optimizing Group and Ungroup gates. Group and Ungroup gates are essentially two-row
garbled truth tables, and can be optimized using standard techniques. Specifically, we apply the
Point-and-Permute technique [BMR90] to Group gates, leveraging the permutation bit in the labels
of independent wires. For Ungroup gates, we apply the GRR3 row reduction technique [NPS99],
since the output labels of Ungroup gates can be freely chosen.

Optimizing Switch. To further reduce the cost, we apply a similar row reduction technique to

the Switch gates. Specifically, for a Switch x" s yW, if the cable keys of x"V and y" satisfy
Ky = Hz (Lc—o,gid) - Ky, then the evaluator can convert between the labels of x" and yW given
the zero label of the control wire, and the garbler only needs to send a single bit to reveal the
value of the control wire. However, since each cable may be connected to multiple Switch gates, we
can only apply this optimization to a subset of Switch gates, which we call the spanning Switch
gates. The remaining Switch gates are garbled using the standard technique, where we leverage
the random oracle to encrypt the ratio of Ky and Ky.10

Definition C.1 (Root Cables and Spanning Switch Gates). For a SIMD tri-state circuit C, let G
be the undirected graph where each cable in C maps to a vertex, and each Switch gate maps to an
edge between the two cables (i.e., vertices) it connects to. We select a subset of cables in C as root
cables following the rules below:

e A cable is a root cable if it has a subwire input to an Ungroup gate.

e For each connected component in G without a root cable, we select an arbitrary cable in the
component as the root cable.

9Compared to the construction in Section 4, here we further correlate the zero and one labels of subwires. This
enables “free” addition across the subwires of the same cable, as detailed in Section D.1.

0Fxcept for the SIMD optimizations, our spanning Switch gates are similar to the Buffer gates in the original
work of tri-state circuits [HKO23], and the non-spanning Switch gates each combine a Buffer and a Join gate as
in [HKO23].
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Moreover, we define the spanning Switch gates of C to be a maximum subset of Switch gates so
that the induced sub-graph of G is acyclic and disconnects all the root cables with each other.

Full construction. The definition above provides the garbler with a topological ordering to
compute all the cable keys and labels of independent wires. The garbler can first sample the cable
keys of all the root cables, which lets her compute the labels of the output wire of every Ungroup
gate. Then, combining these labels with the labels of the circuit’s input wires, the garbler can
compute the labels of every independent wire in the circuit using a garbling scheme for Boolean
circuits. Finally, with the labels of all the control wires, the garbler can compute the cable keys of
the remaining non-root cables according to the constraints imposed by the spanning Switch gates.

The evaluator, on the other hand, still evaluates the circuit following the topological ordering
specified by the gates’ evaluation rules. By well-formedness, the evaluator is guaranteed to obtain
a unique active label of each wire corresponding to the wire’s value. Finally, we let the garbler
reveal the value of each output wire to the evaluator by sending the permutation bit of the wire’s
zero label. We present the full garbling scheme in Figure 13 and Figure 14.

C.2 Analysis

Efficiency. Each Boolean gate incurs 1.5\ +5 bits of communication, as shown in [RR21], where A
is the bit-length of the CCRH. Each Group gate incurs 2 - A\ppy bits, where Appg is the bit-length
of a DDH group element. Each Ungroup gate incurs 2\ 4+ 2 bits. Each Switch gate incurs either 1
bit (if it is a spanning Switch) or [log¢| + 1 bits (if not), where ¢ is the order of the DDH group.
In our implementation, we instantiate CCRH using 128-bit fixed-key AES [BHKR13] and use the
P-256 elliptic curve with compressed points for the DDH group. Thus, we set A = 127, Appn = 257,
and [log q] = 256.

Correctness. We first verify that the garbler can indeed garble all gates. Every Ungroup gate
can be garbled because its input wire always belongs to a root cable, whose key is independently
sampled. Consequently, the garbler also obtains the labels of all output wires of Ungroup gates.
Next, the garbler can garble all Boolean gates and obtain the labels of every independent wire.
Since Boolean gates are garbled and evaluated in the same order, if a gate could not be garbled,
the evaluator would not be able to evaluate it and obtain the output wire, which would contradict
the well-formedness requirement. As all control wires are independent, the garbler can compute
Hy (L.—o, gid) for each Switch gate with control wire c¢. By Definition C.1, every cable is connected
to a root cable through a unique chain of spanning Switch gates, so the garbler can compute the
cable keys and labels for all cables in the circuit. Finally, the garbler can compute all remaining
gate materials using these keys and labels.

We can now check that Eval correctly recovers the label for each wire corresponding to the
wire’s value, given the correctness of [RR21]. Unlike the construction in Section 4, the evaluator
now learns the values of each control and output wire via the permutation bit. By well-formedness,
the evaluator can obtain the label of every wire and thus learn the correct output of the circuit.

Security. We prove the security of the garbling scheme, as formalized in Theorem C.4. At a high
level, we first define a set of oracles that embed the garbler’s secret keys, and show that, without
additional knowledge of these keys, the outputs of the oracles are computationally indistinguishable
from random functions. We then construct a hybrid simulator that uses these oracles to generate
a garbled circuit with a distribution identical to the real one, where the simulator is also given
the wire values from the real-world circuit evaluation. Finally, we obtain the ideal simulator by
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Gen(1%, linp|):

Sample the global key A € {0, 1}**! where the least significant bit is set to 1.

Sample the zero label L;—g & {0,1}*1 for each input wire .
Select a prime-order DDH group G, with security parameter A, and a generator g of the group.

Return sk = (A, L, Gy, 9).

Encode(sk = (A, L, _,_),inp):

Return inp where inpli] < Ly—o @ inp[i] - A for each i-th input wire z.

Garble(sk = (A, L, Gy, 9), C):

Sample the global keys T'; & Zy for i € [Winax]-

Sample the cable key Ky & Zy for each root cable xV.

For each Ungroup gate y LB set the gate’s garbled material
Gates[gid] < (ho @ hy ® A, 1)

and the output wire’s zero label
Ly—o < hg® 8- A

where 8 <& {0,1}, hy « H(Ly.—p, gid||“h”), and gy < H (Ly,—p, gid|| “1”).

Garble all the Boolean gates z < f(x,y) following the Garble scheme in [RR21], and store the
zero label L,—q of every independent wire x.

Solve the keys of the remaining cables so that for each spanning Switch gate x"V _ y"W, the
equation Ky = Hz(L.=o, gid) - K¢ holds.

For every Switch gate xV __~_ yW_ if it is a spanning Switch gate, set its garbled material
Gates|gid] + LSB(Lo—o)
where LSB(-) is the least significant bit of the input; otherwise

Gates[gid] < (LSB(Le—o), Hz(Le—o, gid) - Ky - K; )

For each Group gate y; < x, set the gate’s garbled material as

Gates[gid] — ((Ly,=)"" . (Lyi=9)""")
where 8 + LSB(L,—o) and hy < Hz(L,—p, gid).

Let (/)\u/t[z] + LSB(Ly=0) for each i-th output wire y.

Return C = (C, @ﬁa“t& 6?’:)

Figure 13: Our garbling scheme based on DDH and random oracle (continued in Figure 14).
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Eval(C = (C,Gq,@?e/s, oNut) , inp):

o Let L, < inpli] for each i-th input wire .

e Compute the labels of the rest of the wires following the order defined by the evaluation rules
and using the garbled material of the gates:

— Boolean z < f(z,y): Compute L, from L, and L, following the Eval scheme in [RR21].

— Group y; &2 1: Parse a;\tg[gid] as (eg, e1), and set

L, < (es)" " where 8 « LSB(L,) and h « Hy(L,, gid)

—_~—

— Ungroup y <—2 .: Parse Gates[gid] as (K, p).
If p=H(Ly,,gid||“n"), Ly < H(Ls,, gid|“h”)
Else L, < H(L,,,gid||“h”) & K
— Switch xV /C;LW: If it is a spanning Switch, set 8 E;t_e/s[gid] and R <+ Hz (L., gid);
otherwise, parse Gates[gid] as (3, R).

If 8 # LSB(L.), skip the gate. Otherwise, for each i € [W], set L, < (Lwi)R if L,, is known,
-1
and set L,, (Lyi)R if Ly, is known.T

e For each i-th output wire y, set out[i] < LSB(L,) @ C/)ECM

e Return out

1 The exponentiation can be computed lazily, same as in Figure 4.

Figure 14: Our garbling scheme based on DDH and random oracle (continued from Figure 13).

replacing oracle calls with random sampling, and show that the ideal simulator only needs access
to the values of the output and control wires.

Lemma C.2. Let g be a public generator of a DDH group G4 with prime order q with respect to
security parameter \. Let W,t € poly\ be positive integers, and b € {0, 1}WXt be a W x t matriz of
binary values. Then,

{M'y’k’b [ & (ZZ)W’ k& (ZZ)t}A ~ Uniform (GZVX’“>>\

where

gkl'(71+b1,1) ke-(y1+b1,t)

9

My g =

gkl'(vw+bw,1) gkt-(WWH)W,t)

and ~ denotes computational indistinguishability.
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Proof. We first show that

gkl"yl ... gkt’71
— : . : $ W 8t Lo (W+1)xt
Dy = . gl | v (Z3)"  k «— (Z3) ~ Uniform ((Gq ))\
g™ gt \

By DDH, the tuple (g, gk, gm, gkl"“) is computationally indistinguishable from (g, g*, 971731,1)
where R;; is a random group element. Moreover, given g, gF1, and ¢, an algorithm can sample
ko,..., ks and I'a, ..., 'y, and compute the rest of the matrix efficiently. This shows that

Ri gk2'71 .. gkt'%
gkz-% gk2-72 .. gkt"Yl
c $ $ 3
Dy = : : : | v < Ry < G, (Z0)V k< (Z2)
gk’l"YW gkz-’yw o gkt-'YW
gkt gk gk \

Following the same arguments, we can replace the matrix’s entries one by one with random group
elements, and hence

Ry Ry
DyE{| iR E W K E @y
q q
Rw1 Ry
g gk \
Ry Ry,
= IREGW, r Lt
Rw1 R
1 Tt 2

Therefore,

$ * $ *
(Moo 17 & @)™ ok & (z5)' )

A
b171 bl,t
Riq-7) oo Rygery
c $ $ .
~ | R < G};V”, r < G) » = Uniform (GZV”))\
bw 1 bw,¢
Ry, -7 o Rwy-r R

O

Lemma C.3 (DDH-based circular correlation robustness). Assume that H is a random oracle that
outputs a A+ 1 bils string and Hz, is a random oracle that outputs an element of Zj. Consider a
prime-order group G, with generator g. Let sk € {0,1}}, T' € (Z;)Wma", and k € (Z:;)t be secret
keys sampled uniformly at random, and A = sk || 1. Define two sets of oracles as follows,

ATk _ A Ak AT AAT Tk
o = {Ofvo1> Oaitens Oerp » Oungrp, Ogay b where

o O (X,v,L)=H(X®A, v)®L(A) where X is a A+ 1 bits string, v is a nonce, and L € L
is a linear function from {0,131 to {0, 1} 1.1
1 [RR21] sets the output length of the oracle to be A/2 bits due to their slicing technique. We use a longer output

for simplicity, since one can always pad the extra bits with 0 in the linear function L and truncate them when using
the output of the oracle.
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Ok (X,v,71,72) = Hp(X ® A, v) - (kry - k;t) where X is a A+ 1 bits string, v is a nonce,

switch

and b € {0,1}.

OgAri)F(X, vi,r) = Hz(X @ A, v) - (1+T; 1), where X is a A+ 1 bits string, v is a nonce,
and r € {—1,1}.

Ofn’grp(X,i,T, v, b) = H(X(H‘Fi_l)r,l/) ®b- A where X € Gy, r € {—1,1}, and b € {0, 1}.

Ogé];(za T, b) — gk‘r'(ri"‘b) where 1 € [Wmax], T E [t], and b € {0, 1}

R = {Rboola stitchv Rgrpa 7zungrpa Rddh} where

Rswiteh (X, v, 71, 72) and Rgrp(X, v,4,7) are truly random functions to Zy.
Ribool (X, 1,7,1,b) and Rungrp(X,4,7,v,b) are truly random functions to {0, 1A+

Raan s a truly random function to G.

A sequence of queries to the oracles in O™ is legal if the same nonce v is never called twice across
the oracles, and moreover, each pair (i,7) is never queried with different values of b to Og(’j];. If
the decisional Diffie-Hellman assumption holds in G, with security parameter X, then no poly-time
adversary A issuing legal queries can distinguish O~TF and R except with negligible probability.

Le.:

‘PTA,F,k {AH’ Hy, O (1A> = 1} — Prg {AH’ Hz, R <1A) = 1” < negl(\)

Proof. We prove the lemma by constructing the following sequence of hybrids:

Next,

Real: The adversary interacts with H, Hz, and O~

Hyb;: Compared to Real, Hyb; adds a check on the first argument of each query to oracles
H, Hy, (’)bAOOI, oAk OgArg, and (’)fr{grp. Hyb; aborts if the first argument is X & A or

switch?
XD for ¢ = +1, where X is the first argument of a previous query to any oracle.

Ak AT

Hyby: We replace the output of O ;¢ 1, Oap , Ofn’grp in Hyb; with the output of Rgwitch,

Rerp, and Rungrp respectively.
Hybs: We replace the output of Ogc’l]fl in Hybo with the output of Rqqn.

Ideal: Finally, we remove the check on the first argument of the queries, and get the ideal
world view where the adversary interacts with H, Hz, and R.

we prove the indistinguishability of hybrids in a reverse order.

Ideal =~ Hybs: Since Hybs does not involve any secret key A or I', the probability that a
poly-time adversary input X @& A or XI+T )" for r = +1 is negligible. Therefore, Hybs
aborts with negligible probability.

Hybs =~ Hybs: By Lemma C.2, Ogé]; is computationally indistinguishable from Rqqp-
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e Hyby, ~ Hyb;: First, consider the replacement of (’)bAOOl with Rpoor. If X & A is input
as the first argument and X is queried before, both Hyb; and Hybs abort, and are hence
indistinguishable. Otherwise, H(X @ A, v) is identical to a random function, and moreover,
serves as a one-time pad for L(A), since the nonce v can only be queried once. Through
the same argument, we can replace OSA“;Q o, and OgAriDF . Similarly, for Ofr{grp, if XA+ for
r = %1 is input as the first parameter, both Hyb; and Hybs abort. Otherwise, Hz (X A+ 1)T)
is indistinguishable from a random function and serves as a one time pad for Ofn’grp.

e Hyb; ~ Real: So far, we have shown Hyb; & Ideal. Therefore, the probability that Hyb;
aborts must be negligible. Since the only difference between Hyb; and Real is that Hyb; may
abort on certain inputs, Hyb; ~ Real.

0

Theorem C.4 (Security of the garbling scheme from RO). Assuming DDH and Random Oracles,
the construction in Figure 13 and 14 is a secure garbling scheme for the family of SIMD tri-state
circuits that are well-formed, w.r.t. the leakage function controls(-,-) as defined below: given a well-
formed SIMD tri-state circuit C and input inp, controls(C,inp) outputs the values on all the control
wires of the Switch gates when evaluating C over inp.

Proof. We construct the following experiments:

e Real: The real experiment outputs the garbled circuit C and the active labels of the input
wires inp, as defined in Definition 4.2.

e Hyb: The Hyb experiment simulates C and i/r;;) with the hybrid simulator Simyyy, (Figure 15).
Simyyy, is given G4 in the real experiment and can access the oracle OATE a5 defined in
Lemma C.3, where A and T" are the global secret keys used by Garble in the real experiment,
and k = [ki,..., k] is randomly sampled from (Z;)t, with ¢ being the total number of
cables. Moreover, we let Simpy1, access the value val, of each wire in the real experiment. By
Definition 3.1, val, is uniquely determined by the circuit’s input. Our Simpy1, simulator calls
the Hybridl simulator in the prior work [RR21] to generate the garbled circuit materials of
all the boolean gates, as well as the active labels of the gates’ output wires.

e Ideal: The ideal experiment replaces Simgyt, with the ideal simulator Sim (Figure 16). Specif-
ically, we replace all the oracle calls to O*T"* in with random sampling. The replacement
also reduces the Hybridl simulator in [RR21] to their privacy simulator Spyiyv. At this stage,
Sim only uses the values of the output wires and the control wires, so we replace val with out
and ctrl in the simulator’s input.

We now show that the real and the ideal views are computationally indistinguishable.

¢ Real = Hyb: First, the active labels of the input wires sampled by Simpyy, is indistinguish-
able from Real, since each active label in inp is masked by an independently sampled zero

label. Then, we show that Gates are also indistinguishable in the Real and Hyb for each type
of gates.

For the Boolean gates, we utilize the hybrid simulator Hybridl in [RR21] to generate the
garbled materials and the active labels of the output wires with identical joint distribution
as in Real. This is feasible because our simulator Simpy;, has access to the values of all the

wires, and moreover, the oracle ObAOOl needed by Hybrid1.
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For each Group gate, we call the oracle OgArg to compute the inactive row of the gate’s garbled
truth table, and we permute the two rows according the least significant bit of the active input
label. It is straightforward to check that the rows are correctly permuted for both the case
val, = 0 and val, = 1.

For each Ungroup gate y il xi, we similarly query the oracle (’)ﬁ{grp to compute hy_yal,, &
A and M1 -val,, in the real experiment. Additionally, the hybrid simulator samples ' to
substitute 8 @ val,,. After the substitution, we can check that both the garbled material and
the output wire’s label are computed identically to the real experiments.

Finally, we need to simulate the labels of each subwire and the garbled material of the Switch
gates. A main challenge here is that we cannot directly reveal the cable keys to the simulator
as they will undermine the pseudo-randomness of the active subwire labels. On the other
hand, the non-spanning Switch gates cannot be garbled merely with the subwire labels, since
this would require discrete logarithm in G,.

To resolve this dilemma, we factorize each cable key into two parts: Kx = k. - K'x, where
k.. is called the union-wise key and K' is called the relative key of cable x"V'. We require
that two cables connected by active Switch gates share the same union-wise key. In other
words, the cables are assigned to unions such that cables connected by active Switch gates
are grouped into the same union, and we let 7 denote the index of the union that contains
the cable x"'. The simulator directly possesses the relative keys, but the union-wise keys are
only embedded in the oracles (’)SAW’ikt o, and Ogé];'

Note that given the relative label and the oracle (’)g(ﬁl, the simulator can compute the active
label of a subwire z; as

KI’
_ K (Titb) _ kg K (Ti+b) _ [ oLk ; *
Ly, =9 itd) — ¢ (Titb) — ((’)ddh (T, 1, valxi)> i

The simulator first samples the relative key K’y for each root cable x"', which serves as

a one time pad and ensures that the simulated cable keys have the same distribution as
in Real. Then, the simulator solves the relative keys of the remaining cables using the

constraints of the spanning Switch gates. If a spanning Switch gate x" s y"W is active,
then x"V and y" share the same union-wise labels, and val, = 0. Therefore, the constraint
Ky = Hz(Lc=o, gid) - Kx can be simply rewritten as K'y = Hz(L, gid) - K'x. If the spanning
Switch gate is inactive, then we instead have the constraint

K'y Ky k

K T Ky Ry M08 80 40 = Ol 847 )

Yy y

With all the relative labels, the simulator can then compute the garbled material of the Switch
gates. For each spanning Switch gate, we only need to simulate the permutation bit of the
zero label of the control wire, that is, LSB(L.) & val..

For the non-spanning Switch gates, we also need to simulate the second term R = Hy(L.—, gid)-
Ky - (Ky) ™', Tf the Switch gate is active, then R = Hy(L,, gid) - K'x - (K'y) ™. Otherwise, we
have

K'x k- K"« .
X = O~k (L, gid, 7x, Ty).

R:HZ(LCeBA7 g|d> ’ - " Yswitc
Kry kry  Kry - owiteh

Finally, Out can be simulated the same way as the spanning Switch gates. Namely, (/)\u/t[z] —
LSB(L,) @ val, for each i-th output wire y.
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e Hyb ~ Sim: First, the queries to O~1T*

since

in Figure 15 are legal as defined in Lemma C.3

1. The nonce v always relates to the unique identifier of the gate and is never repeated,
and

2. By well-formedness, if two cables x"V and y" are in the same union, then for every
offset 7, we have val,, = val,,. Otherwise, we can apply the evaluation rules of the active
Switch gates to alter the value of either x; or y;, which contradicts the requirement of
unique total state. Therefore, the simulator never queries Og(’ilfl(i,T, b) with the same
pair (i,7) but different values of b.

By Lemma C.3, the oracles are computationally indistinguishable from the random functions,
so we can substitute the oracles with random sampling in Figure 15, which also get rids of all
the access to wire values except for the output and control wires. Hence, we obtain the ideal
simulator Sim in Figure 16 that produces indistinguishable views from Simpyy,.

Combining the above hybrid arguments, we conclude that the real and ideal views are computa-
tionally indistinguishable, and therefore the garbling scheme is secure. O

D Additional Concrete Optimizations

In our implementation of PicoGRAM, we incorporate several optimizations to enhance concrete
performance beyond the theoretical asymptotics. These refinements are detailed below.

D.1 Optimizing Cryptographic Primitives

We refine the cryptographic primitives in our garbling scheme to minimize both communication
and computation overhead.

Half gates. While we employ the techniques from [RR21] to reduce the communication to 1.5A+5
bits per AND gate, when either the garbler or evaluator knows one input wire’s value, we can further
use the half-gate technique from [ZRE15] to reduce the cost to A bits.

Homomorphic addition of subwires. We observe that the labels of two subwires within the
same cable can be added homomorphically, similar to the Free-XOR technique [KS08]:

Ka-(vit7;+(a+b))

x(ita) | K r4h) g '

L:ci:a : szzb = gK
Since the addition is performed in Z,, we need to ensure that the sum a + b remains small enough
so that the wire can be decoded efficiently.

In PicoGRAM, we apply this technique to aggregate the return values from different levels of the
ORAM tree during each access. Specifically, at each tree level, we skip Ungrouping the output from
the child node, and instead directly add it with the data element read out from the current level
in cable form. Since only one of the levels contains the data element, the value of each subwire is
always bounded in {0, 1}. This optimization reduces both the communication cost and the garbler’s
computational overhead associated with the Ungroup gate.
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Simuyn (17, C, val, O~ TF):

e For each input wire x of C, sample the active label L, & {0,137,
e Assign cables to unions such that cables connected by active Switch gates are in the same union.
Let 75 denote the index of the union containing x".

o For each root cable x"', sample a “relative” key K'yx & Zy. Let the active label of each subwire z;

be
K

Ly, < (O(I;é}fl (T, 1, valmi))
e For cach Ungroup gate y ¢ ;. sample 3’ & {0,1} and let

h < H(Ly,,gid|[“h"), ' < Ok (Le,, 4, (1) gid||“h7, 1),

ungrp

p= H(Lo, gid|[“u”), 1’ 4 Ofigep (Layy i, (—1)"1 gid]| “u”, 0).

ungrp
If §' =0, Gates[gid] « (h@ b/, p1), L, < I
Else, Gateslgid] < (h@® b/, j/), L, « I

e Garble all the Boolean gates z < f(x,y) with the oracle Opoo following the Hybridl scheme
in [RR21]. Store the active label L, of every independent wire .

e Solve the relative keys of the remaining cables so that for each spanning Switch gate x" s y"W:

If val, = 0, then K"y = Hz(L,, gid) - K'«x. Else, K'y = oAk (Le, gid, 7, 7y) - K'x

switch

e Set the gate material of each Switch gate x" _ y"W:
If it is a spanning Switch gate, aa\tg[gid] + LSB(L.) ¢ vale.
If not, Gates|gid] ¢ (LSB(LC) Dvale, h- Ky - (Kfy)‘l)

where h < H(L,, gid) if val. = 0, and h + (’)SAw’ftch(Lc, gid, 7x, Ty) otherwise.
e For each Group gate y; &P x, let

’

h < Hy(Ly, gid), b <+ O5F (L, gid, i, (—1)"') | e L))", e = (L,)" .

grp
If LSB(L,) = 0, Gates|gid] < (e, ¢/); Else, Gates|gid] < (¢/, ).

o Let Out[i] « LSB(L,) & val, for each i-th output wire y.
e Return C = (C, Gy, E;a\t_e/s7 6\ult>

Figure 15: The hybrid simulator Simyyy, has access to the oracle OATkE and the plaintext value of
every wire in the unique total state given by the input. gid is a unique nonce of the gate being
discussed.
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Sim(1*, C, out, ctrl): // Select a prime-order group G, with security parameter A

e For each input wire x of C, sample the active label L, & {0, 1321,
e Assign cables to unions such that cables connected by active Switch gates are in the same union.
Let 7« denote the index of the union containing x".

tX Wmax

e For each root cable x"V, sample a “relative” key Ky & Zy. Sample U & (Gy) and let the

active label of each subwire x; be )
Lm,; — (UT,i)K *

e For each Ungroup gate y ¢—=2 z,;, sample /3’ & {0,1} and let
h H(Ly,,gid|[“h”), h' & {0, 1},

e H(Ly, gid]“07), 1 & {0,111,

It B =0, Gates[gid] « (h @ k', pi), Ly h
Else, Gateslgid] < (h@® I/, y/), L, « I

e Garble all the Boolean gates z < f(z,y) using the simulator Sp.iv in [RR21]. Store the active label
L, of every independent wire x.

e Solve the relative keys of the remaining cables so that for each spanning Switch gate x"V s y"W:

If ctrl, = 0, then K"y, = Hyz(L., gid) - K'x. Else, K'y = R-K'x where R & Z;.

e Set the gate material of each Switch gate x"V _ yW:
If it is a spanning Switch gate, E;\tg[gid] « LSB(L.) ® val..
If not, Gates|gid] ¢ (LSB(LC) Svale, h-K'y - (K'y)_l)

where h « H(L,, gid) if val. = 0, and h & Z; otherwise.

e For each Group gate y; &P x, let
h Hy(Ly, gid), ' & 2%, e (L))", ¢ « (L))"
If LSB(L,) = 0, Gates|gid] « (e, ¢/); Else, Gates|gid] + (¢, ).

e Let Outli] « LSB(L,) & val, for each i-th output wire y.
e Return C = (C7 Gy, &;7 6?:)

Figure 16: The simulator Sim of our garbling scheme based on random oracle. gid is a unique
nonce of the gate being discussed. Compared to Simpyy,, we replace the oracles OATF with random
sampling due to Lemma C.3.
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D.2 Optimizing and Parallelizing Group Operations
We apply several techniques to further reduce the computation time of group operations.

Precomputation. We optimize exponentiation on the generator using window-based meth-
ods [Coh05], which reduce the number of multiplications required by precomputing a table of
values for small exponents and then combining them to obtain larger powers. This optimization
also improves the computational complexity of the garbler asymptotically by an O(log N) fac-
tor. Specifically, the garbler can precompute a table for all exponents x - NY on the generator for
x € [N—1] and y € [llsgg]%]. When garbling the circuit, the garbler can compute a generator’s
power more efficiently by first converting the exponent to base N and then multiplying O(log‘N)
corresponding entries in the precomputed table. Unfortunately, the evaluator cannot benefit from
this precomputation because exponentiation is always performed on random group elements. In our
implementation, we use the OpenSSL library for elliptic curve operations, which already employs
optimized precomputation.

Faster modular operations. We accelerate multiplication in Z; using the Montgomery method [Mon85],
which transforms numbers into a representation that allows for faster modular multiplication. In

our garbled stacks, exponents remain in the Montgomery domain and are converted back to the
standard domain only when processing an Ungroup gate. For modular inversion, we apply the
Montgomery batch inversion technique [MS04], which replaces n individual inversions with a single
inversion and 3n — 3 multiplications. As a result, the garbler computes only one inversion to garble

the stack, and the evaluator performs one inversion per stack access, regardless of word width.

Parallelization. Finally, our implementation parallelizes elliptic curve (EC) operations in the
Group and Ungroup gates to accelerate computation. On our test platform, a scalar multiplication
on a 256-bit curve requires approximately 120,000 cycles. Since each task is large enough, we can
efficiently distribute the work across multiple cores. It is difficult to achieve similar optimization
in previous practical GRAM constructions [HKO22, PLS23, HKO23], as those schemes rely only
on symmetric key cryptography, which is already extremely fast on modern CPUs—for example,
computing a 128-bit hash with fixed-key AES takes only about 40 CPU cycles on our platform.
While the garbler’s computation is highly parallelizable, the evaluator’s operations are mostly
sequential, so they must rely on parallel ORAM constructions [HCS17, AKLS23], which introduces
additional overhead to both communication and computation costs.

D.3 Circuit-level Optimizations
We also perform several optimizations to reduce the number of gates in the ORAM circuit.

Simplifying computation of controls. Since our garbling scheme based on the random ora-
cle only requires the circuit to be well-formed (rather than strictly well-formed), we replace the
eager-prefix-sum circuit in Section 6 with a naive prefix-sum circuit in our concretely efficient
implementation.

Sharing gates across stacks. When instantiating stacks to connect a parent node with its child
nodes, we can reuse the same set of Group and Ungroup gates at the parent’s end. Rather than
sharing the independent wires x,; in Figure 10 as inputs and outputs to multiple stacks, we convert
the wires into cables with a single set of Group and Ungroup gates, and then reuse the cables for
multiple stacks. Moreover, each pair of compaction and distribution stacks can also share the same
internal SIMD stack, since they receive the same control inputs ci,...,c;, and our Switch gates
support bidirectional partial evaluation.
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Optimizing bucket circuitry. We merge the “read” and “evict” sub-circuits in each Circuit
ORAM bucket [WCS15]. The optimized circuit only needs to perform a single conditional swap for
each element stored in the bucket at every timestep.

Efficient eviction on the read path. In addition to the deterministic evictions after every access
to the Circuit ORAM [WCS15], we also perform an eviction on the read path. This eviction is
slightly weaker than the regular eviction for two reasons:

1. The read path is random, and eviction on random paths has been shown to be slightly less
effective than eviction in reverse-lexicographic order [WCS15];

2. No element is further evicted from a bucket if the bucket contains the element to be read
during the access.

Nonetheless, we are able to implement this additional eviction with little extra communication cost,
and it allows us to use smaller buckets and stashes while maintaining the same empirical failure
probability.

D.4 Parameter Tuning.

Avoid SIMD garbling for small stacks. When a garbled stack is provisioned for a relatively
small number of accesses, we utilize standard tri-state gates [HKO23] to construct the stack, thereby
avoiding the computational overhead associated with Group and Ungroup gates. By adjusting
a threshold on the number of accesses, we can balance communication and computation costs
effectively.

Flattening the ORAM tree. We increase the fan-out of the Circuit ORAM tree from 2 to 4,
so each parent node directly connects to 4 children through stacks. We maintain the same success
probability by also increasing the bucket size. As the ORAM tree becomes shallower, we reduce
the number of Group and Ungroup gates by half (assuming the previous optimization has been
applied).

E Remarks on Concrete Performance of Baselines

E.1 Comparing NanoGRAM and TSC

Although Tri-state [HKO23] is asymptotically more efficient than NanoGRAM [PLS23], it incurs
about twice the communication cost in our concrete evaluation. Below, we analyze the reasons for
this discrepancy.

Both NanoGRAM and Tri-state GRAM operate in two phases: read and eviction. In the read
phase, both schemes access O(log V) buckets and use stacks for routing. In Tri-state GRAM, the
bucket size is constant, while NanoGRAM reads from buckets of size O(log N) (and an additional
stash of size w(log N)). However, since neither work provides an efficient stack instantiation, the
performance difference is masked by the cost of the stack. Specifically, NanoGRAM is only 1.6x
slower than Tri-state in the read phase at N = 216,

In the eviction phase, Tri-state evicts along two paths and requires additional stacks for routing,
whereas NanoGRAM evicts buckets only at the end of their life cycle, avoiding the need for stacks.
This makes NanoGRAM 10.2x faster in the eviction phase.

Two additional factors contribute to this performance gap. First, in Tri-state, a bucket can be
invoked due to either a read or an eviction, so both circuits must be provisioned for the bucket at
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every timestep. Since read and eviction require routing data along different directions, the stack
must also be provisioned for both directions, resulting in a 2x overhead. NanoGRAM avoids this
inefficiency since eviction only occurs at the end of the bucket’s life cycle. Second, NanoGRAM
offers more tunable parameters to balance the bucket and stack costs, whereas Tri-state cannot
fully benefit from such balancing, partly because its bucket size is already constant.

Meanwhile, as our work significantly reduces the cost from garbled stacks, it becomes concretely
more efficient to build PicoGRAM based on Tri-state, as NanoGRAM suffers higher communication
from its Bucket ORAM circuitry [FNRT15, PLS23].

E.2 EpiGRAM and VISAs

EpiGRAM [HKO22] is another practical GRAM construction and has been implemented in the
VISAs framework [YPHK23]. However, it has been both concretely and asymptotically outper-
formed by the subsequent NanoGRAM [PLS23], so we did not include it in our evaluation section.

Below, we list the amortized communication cost of each scheme under the largest benchmark
presented in VISAs [YPHK23] (i.e., W =32, N = 8192, T' = 23001):

EpiGRAM (VISAs) 7.70 MB
NanoGRAM 6.71 MB
Tri-state 9.65 MB
Interactive (ORAM atop GC) 1.61 MB
PicoGRAM 2.00 MB

E.3 Additional Comparison with Interactive RAM-model 2PC

Impact of different parameters. Compared to PicoGRAM, the RAM-model 2PC baseline [WCS15,
LWNT15] uses interactive protocols to achieve dynamic label translation, rather than garbled stack.
This approach requires less communication (in bytes) and computation. However, it incurs a round-
trip time (RTT) for each ORAM tree access. As shown in Section 7, PicoGRAM outperforms the
interactive RAM-model 2PC construction by a factor of 2.93x when the RAM space is N = 216,
the RTT is 100 ms, and the bandwidth is 200 Mbps. The speedup increases as RTT, bandwidth, or
computational power increase. Conversely, the speedup decreases as the RAM space N grows, since
the additional communication and computation of PicoGRAM scale with the ORAM tree depth,
while the round-trip time for RAM-model 2PC remains constant.

Online versus offline. A key advantage of Garbled RAM over the interactive RAM-model 2PC is
that both garbling and communication can be performed in a preprocessing phase, before the input
is known. As a result, the online runtime depends only on the computation time of the evaluation
algorithm. PicoGRAM remains secure under the standard semi-honest 2PC definition [Can01],
where the adversary cannot adaptively choose inputs based on the garbled circuit. As shown in
Section 7, we can reduce online time by replacing the SIMD gates with standard tri-state gates from
prior works [HKO23,Hea24]. In this setting, we may also adopt the garbling scheme from [BHKO23],
which is proven adaptively secure for tri-state circuits.

In contrast, interactive protocols allow circuits to be garbled on the fly, greatly reducing both
initialization time and storage overhead for the parties. As a result, interactive protocols may be
preferable for applications where inputs arrive incrementally in a streaming fashion. Additionally,
if the RAM is pre-filled and the number of accesses T < N, only a small subset of ORAM tree
paths are accessed. In such cases, interactive protocols can significantly outperform garbled RAM
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schemes like PicoGRAM, as they do not require the garbler to provision the entire ORAM tree in
advance.
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