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Abstract. Hashing to elliptic curve groups is a fundamental operation used in many cryptographic applica-
tions, including multiset hashing and BLS signatures. With the recent rise of zero-knowledge applications,
they are increasingly used in constraint programming settings. For example, multiset hashing enables mem-
ory consistency checks in zkVMs, while BLS signatures are used in proof of stake protocols. In such cases,
it becomes critical for hash-to-elliptic-curve-group constructions to be constraint-friendly such that one can
efficiently generate succinct proofs of correctness. However, existing constructions rely on cryptographic hash
functions that are expensive to represent in arithmetic constraint systems, resulting in high proving costs.
We propose a constraint-efficient alternative: a map-to-elliptic-curve-group relation that bypasses the need
for cryptographic hash functions and can serve as a drop-in replacement for hash-to-curve constructions in
practical settings, including the aforementioned applications. Our relation naturally supports non-deterministic
map-to-curve choices making them more efficient in constraint programming frameworks and enabling efficient
integration into zero-knowledge proofs. We formally analyze the security of our approach in the elliptic curve
generic group model (EC-GGM).
Our implementation in Noir/Barretenberg demonstrates the efficiency of our construction in constraint
programming: it achieves over 23× fewer constraints than the best hash-to-elliptic-curve-group alternatives,
and, enables 50–100× faster proving times at scale.

Keywords: Zero-knowledge proofs, elliptic curve cryptography, constraint programming, zkVM, generic group
model, multiset hashing

1 Introduction

Hash-to-group functions map arbitrary messages to pseudorandom group elements and are important building
blocks in cryptographic protocols based on cyclic groups. Two canonical applications are multiset hashing and
BLS signatures.

Multiset hash functions extend collision-resistant hashing to unordered collections. They produce succinct
digests while also supporting efficient incremental updates: given the digests of two multisets, one can compute
the digest of their union via a simple algebraic operation on the digests. A widely adopted construction, introduced
by Clarke et al. [CDvD+03], builds multiset hashes from a hash-to-group function HashToGroup : M → G,
where M is the message space and G is a cryptographic group. The digest for a multiset S is computed as the
group sum:

Digest(S) =
∑
m∈S

HashToGroup(m).

Another prominent application of hash-to-group functions is BLS signatures [BLS04]. To sign a message m,
the signer first hashes it to a group element hm = HashToGroup(m), then computes the signature as σ = hskm,
where sk is the signing key.

Constraint Programming and Zero-Knowledge Applications. Recent advances in zero-knowledge (ZK) proof
systems have popularized the constraint programming model, where computations are encoded as sets of algebraic
constraints. In this paradigm, rather than detailing computation steps that output a result, one specifies a set of
constraints that the result, along with a set of auxiliary variables (called witnesses) must satisfy in order to be
correctly computed. The result is considered valid if some witness assignment to these variables satisfies each
constraint. This declarative programming approach is used by many modern zero-knowledge proof systems.
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As constraint programming becomes central to zero-knowledge applications, many cryptographic primitives
are being adapted to this framework. A concrete example is zero-knowledge virtual machines (zkVMs) such as
RISC Zero [RIS25], SP1 [Lab25], Jolt [AST24] and Nexus [ACG+25], where the virtual machine must gener-
ate proofs attesting to correct execution of a program in the VM. As part of this proof, they must demonstrate
memory read/write consistency across the entire execution trace. A common approach is offline memory checking
[BEG+91], wherein the zkVM emits read and write logs as multisets and enforces constraints to ensure: (1) each
memory access is properly recorded, and (2) the final read and write logs are equal as multisets. Crucially, as the
logs grow large over time, maintaining them explicitly becomes costly. To address this, multiset hash functions can
be used to compress each log into a succinct rolling digest, enabling efficient equality checks [SAGL18,Roy25].
Consequently, multiset hashing must itself be expressible within the constraint system.

Similarly, in zero-knowledge Proof-of-Stake (zkPoS) protocols, the prover must demonstrate knowledge of
many valid BLS signatures over a sequence of blocks. This requires programming BLS verification into a con-
straint system [Hyp23].

Importantly, in these applications, the proof generation time scales with the number of constraints, so it is
important for cryptographic primitives to be constraint-friendlyi.e., expressible using a minimal number of con-
straints with low overhead.

Hash-to-Group is not Constraint-Friendly. Given the importance of hash-to-group functions as a building block
of the aforementioned primitives, it is natural to ask whether they can be made constraint-friendly. Unfortunately,
standard constructions are poorly suited for constraint programming environments. These constructions typically
combine an inner cryptographic hash function (e.g., SHA-256) with an outer map-to-group function, which inter-
prets the hash output as a group element.

The inner hash function is especially problematic in this setting. General-purpose hashes such as SHA-256
induce thousands of constraints when compiled into arithmetic circuits, significantly inflating proof generation
costs. Constraint-friendly alternatives like MiMC [AGR+16] or Poseidon [GKR+21] reduce this burden and offer
better efficiency, but even these hash functions typically require hundreds of constraints per invocation. This
overhead becomes prohibitive when applied at scale, as in zkVM memory checks (which may involve hundreds
of thousands of invocations) or in batch BLS signature verification in zkPoS.

The inefficiency of such hash-to-group constructions motivates the question:

Can we design a hash-to-group replacement that avoids cryptographic hash functions altogether, while
preserving meaningful security and enabling constraint-friendly implementation in practical applications?

1.1 Our Contributions

In this paper, we answer the above question in the affirmative by developing a constraint-friendly alternative
grounded in the generic group model.

– No Reliance on Cryptographic Hash Functions: We show that with some restrictions on the message space,
in the Generic Group Model (GGM), a map-to-group function alone can achieve the same security guarantees
as any hash-to-group function. In the basic version we restrict the message sizes but we still capture many
practical applications, such as multiset hashing in zkVMs and BLS signatures.

– Defining Map-to-Group Relations: We then introduce the notion of a map-to-group relation as a constraint-
programming-compatible counterpart to standard map-to-group functions. Unlike deterministic functions, a
relation formulation allows for nondeterministic input (witnesses), which enables flexible, low-overhead in-
stantiation in constraint systems. We specifically focus on map-to-elliptic-curve-group relations, since elliptic
curves groups are widely used in practice due to their efficiency.

– Applications to Constraint Programming: We apply our map-to-elliptic-curve-group relation to efficiently
instantiate multiset hash and BLS signature in constraint systems. In both cases, we reformulate the primitives
as relations to align with the constraint programming paradigm, and we formally prove their security under
the elliptic curve generic group model.

– Implementation and Benchmarking: We implement our map-to-elliptic-curve-group relation and compare
it against standard hash-to-elliptic-curve-group constructions. Our evaluation shows that a single invocation
of our relation can be expressed in just 30 constraints. In contrast, hash-to-elliptic-curve-group constructions
incur significantly higher costs depending on the hash function used, ranging from approximately 350 con-
straints (using MiMC) to over 7,000 constraints (using SHA-256).
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These constraint savings translate directly into improved proving performance. For example, proving 215

instances of our map-to-curve relation takes approximately 7.6 seconds, while even the most efficient hash-
based baseline requires over 400 seconds.

1.2 Technical Overview

Our approach begins with the observation that, in the Generic Group Model (GGM) a group element encodes a
random field element, i.e., it has a random discrete logarithm. The encoding therefore plays a role analogous to a
cryptographic hash modeled as a random oracle. Specifically, in a cyclic group of prime order p, once a generator
is fixed, every group element can be uniquely identified by its discrete logarithm u ∈ Fp. From this viewpoint, we
will treat group elements interchangeably with their corresponding discrete logs. In the GGM, these discrete logs
are then abstractly “garbled” via a uniformly random bijection:

enc : Fp → Encodings,

which randomly assigns each discrete log u ∈ Fp to a unique encoding enc(u). Without direct access to the
underlying discrete logs, this encoding function obscures the algebraic structure of the group from the adversary.

Viewed through this lens, the standard construction of a hash-to-group function can be understood as a com-
position of three layers:

– an inner cryptographic hash that in the random oracle model maps some given message spaceM to uniformly
random hash values;

– a middle map-to-group which maps the hash values to elements in encoding domain Encodings;
– an outer encoding function (e.g., enc) that maps these encodings to uniformly random discrete logarithms in
Fp.

However, if the primary objective is simply to map messages to uniformly random discrete logs in Fp, without
requiring that group encodings themselves appear random, then the inner cryptographic hash function becomes
redundant particularly when the message spaceM can be directly mapped to Encodings via a map-to-group
function. A similar insight appears heuristically in Browns work [Bro08], which conjectures bypassing the inner
hash entirely in building Encrypted Elliptic Curve Hashes (EECH). We extend this observation to a broader setting,
observing that the security of many practical applicationssuch as aforementioned BLS signatures and multiset
hashrequire only that messages be mapped to uniformly random discrete logarithms.

Addressing collisions via restricting the message spaceM. We thus explore the possibility of replacing a hash-to-
group function with just the simpler map-to-group function, where security relies on GGM. However, to securely
make this replacement, we must ensure that the mapping from the message spaceM to discrete logarithms remains
randomeven in the presence of adversarial queries to the GGM oracle. Whereas for hash-to-group this property
is inherently guaranteed in the random oracle model, preserving it in the map-to-group setting under the GGM
requires more careful design and analysis.

In the GGM, adversaries interact with a group operation oracle that takes any adversary’s input encodings
enc(u) and enc(v) and returns encoding enc(u + v). We say a collision occurs for this query if there exists a
message m ∈ M which is mapped to the encoding enc(u+ v). A collision breaks the aforementioned guarantee
since the adversary may correlate the discrete log of m with a known relation.

To mitigate this risk, we observe that restricting the message spaceM can significantly reduce the probability
of collision. Since the encoding function enc in the GGM is modeled as a uniformly random bijection from discrete
logs Fp to encodings Encodings, as long as the map-to-group function is independent of enc, the probability
that an oracle output (e.g. enc(u+ v)) falls within the image of the map-to-group is approximately |M|/p. Thus,
for an adversary making q oracle queries, the overall probability of any such collision is bounded by:

Pr[collision] ≤ q · |M|
p

.

As a concrete example, in a group of order p = 2256, setting |M| = 2128 gives 128 bits of collision resistance.
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Map-to-elliptic-curve-group relation. Driven by real applications, from this point we focus on elliptic curve
groups for their practical efficiency. Informally, an elliptic curve over a finite field Fq is defined by a curve equation
over (x, y), where the set of solutions (x, y) ∈ F2

q , together with a special point at infinity forms a group E(Fq).
Cryptographic applications typically work with a prime-order cyclic subgroup G ⊆ E(Fq). Let p be the order of
G, then the value h such that |E(Fq)| = h · p is called the cofactor.

In the Generic Group Model for elliptic curves proposed by [GS22], each point (x, y) ∈ G is treated as an
abstract encoding of a unique discrete logarithm u ∈ Fp. To remain compatible with this abstraction, we seek
map-to-group constructions that do not rely on specific properties of the elliptic curve equation.

A natural candidate is the classical increment-and-check method, which makes no structural assumptions about
the curve and is therefore well-suited for modeling generic elliptic curve groups. Informally, given a message
m ∈M, the method interprets m as a candidate x-coordinate, checks whether there exists a corresponding y such
that (x = m, y) lies on the curve and encodes a valid group element, and if not, iteratively increments the input
(x = m+ 1,m+ 2, . . .) until such an encoding is found.

While conceptually simple, this method introduces two practical challenges. First, in traditional implementa-
tions, the number of iterations varies with the input, which can both incur a cost and potentially leak information.
In constraint programming, however, this issue is mitigated by treating the tweak value (i.e., the number of in-
crements) as part of the witness, effectively rendering the construction deterministic and constant-time from the
verifiers perspective. This motivates our formalization of a map-to-elliptic-curve-group relation, where non-
determinism is captured by witness variables.

Second, the efficiency of the increment-and-check method depends on the cofactor h: each trial succeeds with
probability approximately 1/(2h). Fortunately, as shown in Table 1, many widely used elliptic curves have small
cofactors, making the method efficient in practice.

In our applications, it is important for the map-to-elliptic-curve-group relation to satisfy injectivity and inverse
exclusion in order to prevent collisions and trivial attacks. For example, if the relation is not injective, then in BLS
signatures, two distinct messages can map to the same group element, enabling trivial forgeries. We define those
properties formally in section 3.3.

Applications in constraint programming. We demonstrate the utility of our map-to-elliptic-curve-group relation
for two core constraint programming applications:

– Multiset Hash. Following the blueprint of [CDvD+03], we construct a constraint-friendly multiset hash from
an injective and inverse-excluding map-to-elliptic-curve-group relation. This enables efficient enforcement of
memory consistency in zero-knowledge virtual machines (zkVMs).

– BLS Signature Verification. We construct a BLS signature scheme with constraint-friendly verification by
replacing its hash-to-elliptic-curve group function with an injective map-to-elliptic-curve-group relation. This
is particularly useful in zero-knowledge Proof of Stake (zkPoS) protocols, where succinct proofs are used to
attest to the validity of aggregate BLS signatures over many blocks.

1.3 Related Work

Map-to-elliptic-curve-group. The main primitive which we introduce in this work is a constraint-friendly map-
to-elliptic-curve group relation. There is already a body of literature on (non-)deterministic map-to-elliptic-curve
functions, described below, which map input values to curve points of elliptic curves. Those curve points can then
be mapped to elements in the elliptic curve group via a procedure called “clearing cofactor”, as described in Sec-
tion 4.1. It’s worth noting that all those functions are designed to be fast to execute, instead of being constraint-
friendly.

Non-deterministic Approach. The increment-and-check method, described by Boneh et al. [BLS04], is a Las Vegas
type probabilistic algorithm. It works by viewing the message as an integer and increments until a valid point on
the curve is found. More details can be found in section 4.1. This method is concretely efficient in practice and
works for any elliptic curve.

Deterministic Approach. Due to the number of iterations varying with the input, the increment-and-check method
can leak non-trivial input information. Thus a line of works aim at providing deterministic mappings with con-
stant runtime for elliptic curve groups. Icart [Ica09] proposed a different deterministic approach which is efficient
for ordinary elliptic curves over fields with characteristic p ≡ 2 mod 3. Farashahi et al. [FSV09] and Fouque
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and Tibouchi [FT10] further analyzed and generalized these results to Hessian curves and certain hyperelliptic
curves. Besides, to enable unique message recovery, Fouque et al. [FJT13] also considered injective mappings to
elliptic curves. Shallue and van de Woestijne [SvdW06] generalized and simplified previous constructions by Sk-
aba [Ska05] to provide deterministic mappings to any elliptic curves. However, their method does not work for all
field characteristics. Ulas [Ula07] further simplified the construction, but restricted its application to Weierstrass-
form elliptic curves, excluding curves with j-invariant 0 or 1728. This exclusion is significant because many
pairing-friendly curves, such as Barreto-Naehrig (BN) and Barreto-Lynn-Scott (BLS) curves, have j-invariants
of either 0 or 1728, limiting the applicability of the Ulas method for cryptographic protocols that rely on these
curves. To remedy this issue, Fasano et al. [WB19] present efficient and constant-time mapping for the BLS12-381
elliptic curve, extending the applicability of the [Ula07] map to |F| ≡ 1 mod 4 and even-order extension fields,
optimizing these mappings for performance and implementation.

More recently, Koshelev proposed new constructions tailored for highly 2-adic fields. In his first work [Kos23],
the construction is limited to elliptic curves admitting an Fq-isogeny of degree 3, achieving O(log q) complexity
but with restricted applicability. This was subsequently improved in follow-up work [Kos24], which removes
the isogeny constraint, covers all elliptic curves with j 6= 0, 1728, and leverages a constant-time variant of the
CipollaLehmerMller square-root algorithm to obtain both broader applicability and better performance in highly
2-adic settings.

Hash-to-elliptic-curve-group. As discussed previously, standard hash-to-elliptic-curve-group constructions typ-
ically combine an inner cryptographic hash function with an outer map-to-elliptic-curve-group function, which
interprets the hashed output as a group element on an elliptic curve. As a concrete example, Spice Hash [SAGL18]
builds a hash-to-elliptic-curve-group by composing an inner hash function (instantiated using the MiMC hash
function) with a map-to-group based on Elligator-2 construction [BHKL13].

Non-deterministic Approach. This approach is hinted by the aforementioned increment-and-check method. How-
ever, for security reasons, the increment procedure must be performed before the hash is taken. That is, we itera-
tively hash increments of the message until the result corresponds to a valid point on the curve. This method is the
most efficient and widely used in practice. For this reason, in our evaluation, we adopt this method as a baseline for
comparison. It’s worth pointing out that its non-determinism can be naturally handled in constraint programming
via witness variables, and does not pose security concerns for zero-knowledge applications.

Deterministic Approach. In contrast, deterministic constructions introduce further complexity. A core challenge
is that deterministic map-to-elliptic-curve-group functions often fail to cover the entire curve uniformly. For in-
stance, the Icart method [Ica09] deterministically maps field elements to points on an elliptic curve, covering
more than 5/8 of the curve but lacking injectivityeach point can have up to four preimages. Consequently, even
when composed with a random oracle, the resulting distribution over group elements deviates from uniformity,
undermining the security properties expected from an ideal hash-to-group.

To overcome this, a line of work has sought to construct hash-to-elliptic-curve-group functions that are in-
differentiable from a random oracle. This property ensures that the hash behaves as a random function from the
adversarys perspective.

Brier et al. [BCI+10] introduced the first general indifferentiability framework for hash-to-curve functions.
Their construction relies on two independent random oracles: the first maps the input to a field element which is
then passed through a map-to-curve function (e.g., Icart or Simplified SWU), while the second oracle maps the in-
put directly to a point. The outputs are then combined via group addition. This ensures that no single deterministic
mapping dominates the output distribution.

Farashahi et al. [FFS+13] extended this approach, showing that many deterministic map-to-curve functions
can be securely composed with such randomized techniques to yield indifferentiable hash-to-curve constructions.
Kim and Tibouchi [TK17] further refined this framework by offering tunable parameters that trade off performance
against tightness of security guarantees, resulting in the widely adopted Simplified SWU method.

Most recently, Chvez-Saab, Rodrguez-Henrquez, and Tibouchi introduced SwiftEC [CSRHT22], which re-
solves the long-standing open problem of achieving indifferentiable hashing to (almost all) elliptic curves at the
cost of a single field exponentiation. Building on this, Koshelev [Kos26] further generalized the SwiftEC paradigm,
giving compact universal formulas valid for all elliptic curves with 3 | q − 1, thereby unifying prior approaches
(including SwiftEC) into a single, simpler framework. Together, these results represent the current state of the art
in deterministic, indifferentiable hashing to elliptic curves.
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We refer the interested reader to RFC 9380 [FHSS+23] for a comprehensive survey of knowledge in this area,
capturing most previous research on mapping and hashing to elliptic curves, formal definitions, and standardized
protocols for elliptic curve hashing.

As stated earlier, all these constructions rely on cryptographic hash functions as a preprocessing step though,
which is costly when expressed in constraint systems. Our work bypasses this inner hash layer by leveraging
the encoding abstraction offered by the Generic Group Model, which offers a slightly weaker yet still meaning
security guarantee for our targeted applications.

2 Preliminaries

Notation: We denote the security parameter by λ, and let negl(λ) represent a negligible function. The notation
{0, 1}∗ refers to bit strings of arbitrary length, while {0, 1}k is the set of all k-bit strings. We denote by G a
cryptographic group with prime order p = O(2λ). Since the group is cyclic, any group element can be identified
with its unique discrete logarithm u ∈ Fp with respect to some fixed group generator. An algorithm is said to be
efficient if it runs in probabilistic polynomial time (PPT) with respect to the security parameter λ. The bit-security
level refers to the number of bits of computational effort required to break a cryptographic scheme. For instance,
128-bit security means that an adversary would need to perform 2128 operations on average to break the scheme.

2.1 Constraint Programming

Traditional programming typically involves providing explicit step-by-step instructions to solve a problem, using
control structures such as loops and conditionals to direct the flow of computation. In contrast, constraint pro-
gramming defines a problem by specifying a set of constraints that must be satisfied by the variables. Rather than
describing how to compute a solution, one describes what properties a valid solution must have. A solver is then
used to find a satisfying assignment, often aided by auxiliary values called a witness. This separates the prob-
lem specification from the computation process. A collection of widely used constraint programming paradigms
express all constraints as algebraic relations over finite fields:

Definition 1 (Constraint Satisfaction over Finite Fields). Constraint Programming (CP) over a finite field F
refers to solving constraint satisfaction problems (CSPs) where all variables range over F. A CSP is a tuple
(Xin/out, Xwit, C), where:

– Xin/out = {x1, x2, . . . , xk} is the set of input and output variables.
– Xwit = {w1, w2, . . . , w`} is the set of witness variables.
– C = {C1, . . . , Cm} is a set of algebraic constraints over the field F, each defined over a subset of variables

from Xin/out ∪Xwit.

A solution to the CSP is an assignment of values in F to the witness variables such that all constraints in C are
satisfied under the fixed input/output values.

Example 1 (Zero-Knowledge Circuits). A key application of constraint programming is the construction of zero-
knowledge (ZK) circuits, where a prover demonstrates knowledge of a witness that satisfies a given constraint sys-
tem, without revealing the witness itself. Modern proof systems-such as those built using the circom compiler-
specify these circuits as sets of arithmetic constraints over a finite field F. These constraints are then compiled into
a Rank-1 Constraint System (R1CS), a canonical format in which each constraint takes the form (a ·x)(b ·x) = c ·x
for fixed vectors a, b, c ∈ Fn and variable vector x ∈ Fn.

It is worth noting that due to algebraic restrictions imposed by proof systems, the choice of field F is limited in
practice. Common choices include the scalar field Fq of a pairing-friendly elliptic curve (as defined in definition 2),
or an FFT-friendly prime field such as the Goldilocks field F264−232+1. These fields enable efficient arithmetic and
are widely supported in ZK backends like Halo2 and Plonky3.

2.2 Elliptic Curve Group

Definition 2 (Elliptic Curve). Let Fq be a finite field of prime order q > 3. A typical elliptic curve E over Fq is
defined by some curve equation over (x, y). For example, a Weierstrass equation has the form:

y2 = f(x), where f(x) = x3 + ax+ b.

https://github.com/iden3/circom
https://github.com/Plonky3/Plonky3
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The set of points E(Fq) consists of all pairs (x, y) ∈ F2
q satisfying the equation above, together with a distin-

guished point at infinity O, form a finite Abelian group with O as the identity element. In particular, due to the
underlying geometry, the inverse of a point (x, y) is (x,−y).

Let n = |E(Fq)| denote the order of the curve. By Hasse’s theorem, we know:

|n− (q + 1)| ≤ 2
√
q.

In cryptographic applications, we typically focus on a cyclic subgroup G ⊆ E(Fq) of prime order p. The
order of the entire curve group satisfies n = h · p, where h is the cofactor. The cofactor varies significantly among
elliptic curves commonly used in cryptography, as summarized in Example 2.

Example 2 (Cofactors of Commonly Used Elliptic Curves). Table 1 provides the cofactors h for several elliptic
curves in Weierstrass form that are frequently used in cryptographic applications:

Curve Name Cofactor h
secp256k1 1
secp256r1 (P-256) 1
BN254 (G1) 1
Curve25519 8
JubJub 8
BLS12-381 (G1) ≈ 2128

Table 1: Cofactors of commonly used elliptic curves.

We observe that many widely adopted elliptic curves admit small cofactors. This is advantageous because most
curve points lie directly within the subgroup, simplifying subgroup membership checks and enabling compact
group-element representations.

However, curves supporting pairing operations, such as BLS12-381 and BN254, often exhibit large cofactors
in their secondary groups (e.g., G2).

2.3 Elliptic Curve Generic Group Model (EC-GGM)

A cryptographic group is a prime order group where given any generator of the group, every group element can
be identified with a unique discrete logarithm with respect to the generator that defines the algebraic structure of
the group. The Generic Group Model (GGM), introduced by Shoup [Sho97], provides a heuristic framework for
analyzing generic adversaries interacting with a cryptographic group by restricting adversaries to solely relying
on abstract interfaces of the group. Specifically, in the GGM, adversaries have no direct access to the underlying
group elements (discrete logarithms); instead, they can only observe some encodings of group elements. Notably,
the relation between those encodings and the actual group elements (discrete logs) will be entirely garbled by a
uniformly randomly sampled bijection unknown to the adversary. The adversary can then perform group opera-
tions through abstract interfaces, which takes those encodings as input, perform the operation on the underlying
discrete logs, and return the encoding of the resulting group elements. Security proofs in the GGM demonstrate
resistance to attacks exploiting only these generic operations, serving as necessary (though not always sufficient)
conditions for practical security.

The Elliptic Curve Generic Group Model (EC-GGM), introduced by [GS22], refines the Generic Group Model
(GGM) to account for the algebraic structure of elliptic curves. As defined in definition 2, points on an elliptic
curve are of the form (x, y) ∈ F2

q , with a distinguished identity element O. The group law exhibits a natural
symmetry: each point (x, y) has an inverse (x,−y) satisfying (x, y) + (x,−y) = O. The EC-GGM explicitly
models this symmetry, ensuring that inversion behavior is preserved in the abstraction.

Definition 3 (Elliptic Curve Generic Group Model (EC-GGM)). Let G ⊆ E(Fq) be a cyclic elliptic curve
subgroup of prime order p, generated by a point G = (x1, y1). In the EC-GGM, each group element is identified
by its discrete logarithm u ∈ Fp and represented via a randomly sampled bijection

enc : Fp → G ⊆ E(Fq), u 7→ (xu, yu),



8

which satisfies the following properties:

enc(0) = O, enc(1) = (x1, y1), and if enc(u) = (xu, yu)

then enc(−u) = (xu, y−u) = (xu,−yu) ∀u ∈ Fp.

Adversaries are only permitted to interact with group elements through abstract interfaces that operate on
these encodings, thereby concealing the underlying discrete logarithmic structure. The interface includes:

Addition Oracle. An oracle addG that simulates group addition: given (xu, yu) = enc(u) and (xv, yv) =
enc(v), the oracle returns:

addG((xu, yu), (xv, yv)) := enc(u+ v) = (xu+v, yu+v).

EC-GGM Encoding Over Inversion Classes: We partition the space of group elements into equivalence classes
under inversion. This abstraction allows us to factor out the effect of elliptic curve symmetry (x, y) ≈ (x,−y),
yielding a cleaner characterization of the EC-GGM encoding function.

Definition 4 (Inversion Classes over Fp and G). Let G ⊆ E(Fq) be a cyclic subgroup of prime order p, and let
enc : Fp → G be the EC-GGM encoding function.

– Define an equivalence relation ∼ on Fp by u ∼ v if u = ±v. The set of equivalence classes is denoted
F±p := Fp/{±1}, with representatives [u] := {u,−u}.

– Define an equivalence relation≈ onG by (xu, yu) ≈ (xv, yv) if (xu, yu) = (xv,±yv). The corresponding set
of inversion classes is denotedG± := G/{±1}, with elements written as [(xu, yu)] := {(xu, yu), (xu,−yu)}.

Now, enc is a random bijection satisfying enc(−u) = (xu,−yu) whenever enc(u) = (xu, yu). Therefore, enc
is a random bijection which maps the inversion class [u] ∈ F±p to the group class [(xu, yu)] ∈ G±, making
enc([u]) := [(xu, yu)] well defined.

Proposition 1 (Induced-Encoding Over Inversion Classes). Let enc : Fp → G be the EC-GGM encoding
function. Then enc induces a random bijection

enc : F±p → G±, enc([u]) := [(xu, yu)].

Both sets have p+1
2 elements since 0 maps to O, which is its own inverse.

3 Map-to-Elliptic Curve Group Relations

In the constraint programming setting, it is often more natural to express verification problems as relations rather
than deterministic functions. Instead of requiring that an output be uniquely determined by the input, a relation
both allows for nondeterministic advice and removes uniqueness, providing more flexibility when associating
outputs to inputs.

Specifically, consider mapping some message space to a subgroup of an elliptic curve. Rather than treating the
mapping as a deterministic function, we describe it by a relation:

Definition 5 (Map-to-Elliptic-Curve Group Relation). LetM be a message space, G ⊆ E(Fq) a prime-order
elliptic curve subgroup modeled under the EC-GGM, and W a witness space. A map-to-elliptic-curve-group
relation is a relation

RM2G ⊆M×G×W,

where each tuple (m, (xum , yum), wm) ∈ RM2G consists of a message m ∈ M, a group element (xum , yum) ∈
G corresponding to some discrete logarithm um ∈ Fp, and a nondeterministic witness wm ∈ W certifying
membership inRM2G.
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3.1 Characterization of Map-to-Elliptic-Curve-Group Relations in EC-GGM

We now identify some key structural properties of map-to-elliptic-curve-group relations in the EC-GGM.

Theorem 1 (Uniformly Random Distribution of Discrete Log Classes). Let RM2G ⊆M×G×W be a map-
to-elliptic-curve-group relation that is independent of the EC-GGM encoding function enc : Fp → G. For each
message m ∈M, define its associated inversion class set:

S±m :=
{
[um] ∈ F±p

∣∣ (m, (xum , yum), wm) ∈ RM2G

}
.

Then, in the EC-GGM, the set S±m ⊆ F±p is distributed as a uniformly random subset of F±p .

Proof. Fix m ∈ M. Since RM2G is independent of the EC-GGM encoding function enc, the group elements
(xum , yum) appearing in the relation for this fixed m are determined independently of the encoding function.

By proposition 1, the EC-GGM encoding enc induces a uniformly random bijection enc : F±p → G±. This
means that for each group element (xum , yum) in the relation, its corresponding discrete logarithm class [um] ∈
F±p is sampled uniformly independently at random.

As a result, the set S±m, which contains all inversion classes [um], is uniformly distributed over all subsets of
F±p of corresponding size.

3.2 Efficient Constructibility

For the sake of witness generation in constraint programming, we are often interested in map-to-elliptic-curve-
group relations where it is possible to efficiently generate valid relation instances (m, (xum , yum), wm) ∈ RM2G

for a given message m ∈ M. Since guaranteeing success for all inputs may be too strict in practice, we allow for
a negligible failure probability.

Definition 6 (Efficient Constructibility). Let RM2G ⊆ M×G ×W be a map-to-elliptic-curve-group relation,
where G ⊆ E(Fq) is a prime-order elliptic curve subgroup, and let λ be a security parameter.

We say thatRM2G is efficiently constructible if there exists a deterministic polynomial-time algorithm

ConstructM2G :M→ G×W ∪ {⊥}

such that:

– For allm ∈M, the algorithm returns either⊥ or a pair ((xum , yum), wm) such that (m, (xum , yum), wm) ∈
RM2G.

– For all m ∈M, the probability of failure (over the random sampling ofRM2G) is

Pr [ConstructM2G(m) = ⊥] ≤ negl(λ).

3.3 Injectivity and Inverse Exclusion

We now formalize two structural properties of map-to-elliptic-curve-group relationsinjectivity and inverse exclu-
sionwhich will be crucial in our applications.

Definition 7 (Injective Relation). We say thatRM2G is injective if for any pair of tuples

(m1, (xum1
, yum1

), wm1
), (m2, (xum2

, yum2
), wm2

) ∈ RM2G

with distinct m1 6= m2, we also have (xum1
, yum1

) 6= (xum2
, yum2

).

Notice that ifRM2G is injective, then for any two distinct messages m1 6= m2 ∈M we have S±m1
∩ S±m2

= ∅.

Definition 8 (Inverse-Excluding Relation). We say thatRM2G is inverse excluding if for all tuples (m, (xum , yum), wm), (m′, (xum′ , yum′ ), wm′) ∈
RM2G (where we allow m = m′), it holds that:

(xum , yum) 6= (xum′ ,−yum′ ).

Equivalently, no two group elements occurring in RM2G belong to the same inversion class in G± as defined
in definition 4.



10

4 Efficiently Constructible Map-to-Elliptic-Curve-Group Relations

We now present a map-to-elliptic-curve-group relation that is efficiently constructible. As a starting point, let’s
first define what the constructor should look like. This construction is inspired by the classic increment-and-check
paradigm of Boneh et al. [BLS04].

4.1 Increment-and-Check Constructor

Let G ⊆ E(Fq) be an elliptic curve group with cofactor h. The classical increment-and-check method maps a
message u ∈ Fq deterministically to a point (x, y) on an elliptic curve E(Fq). The basic idea is to try successive
“tweaks” of the input and check whether they produce a valid point on the curve. Then a procedure called “clearing
cofactor” is applied, projecting this point as h · (x, y), which becomes an element in G.

In this paper, we slightly modify this approach so that instead of first mapping to points on an elliptic curve and
then clearing the cofactor, we aim to directly map to elements of an elliptic curve group G at a small cost of trying
a few more tweaks. Moreover, we make it deterministic by fixing an upper bound on its number of iterations. This
modified procedure, which assumes the cofactor to be small, is described in fig. 1.

Increment-and-Check Constructor

Inputs:

– An elliptic curve E(Fq) of the form y2 = f(x).
– An elliptic curve group G ⊆ E(Fq).
– A message u ∈ Fq .
– A tweak bound T ∈ N.

Procedure:

1. Initialize tweak counter k ← 0.
2. While k < T :

(a) Let x← u+ k.
(b) Compute and check whether f(x) is a quadratic residue in Fq .

– If so, compute y ←
√
f(x) // deterministically pick one of the roots

– If (x, y) ∈ G, then output (x, y).
(c) Otherwise, increment k ← k + 1.

3. If no valid point is found after T iterations, declare failure.

Fig. 1: Deterministic increment-and-check constructor for map-to-elliptic-curve-group.

Failure Probability. We now show that the above constructor satisfies definition 6. To bound the failure probability,
we rely on a well-known heuristic assumption underlying [BLS04]. Informally, we assume that all possible x-
coordinates which correspond to points in G are randomly distributed within Fq . We will call those x-coordinates
“valid” coordinates.

Under this heuristic, the probability that any x ∈ Fq is valid is approximately 1
2h , where h is the cofactor of

G. (The factor 1/2 accounts for the necessity that f(x) must be a quadratic residue.) Thus, the probability that
none of the tweaks in T succeeds in finding a valid coordinate is approximately

(
1− 1

2h

)|T |
. In particular, for

small constant cofactor h and |T | = O(λ), the failure probability becomes negligible. It’s worth noting that most
commonly used elliptic curve groups admit small cofactors, as highlighted in example 2.

4.2 Map-to-Elliptic-Curve-Group Relation

We now define a map-to-elliptic-curve-group relation that can be efficiently constructed using the increment-and-
check procedure described in fig. 1. This relation is defined over the message spaceM and elliptic curve groupG,
and includes a bounded tweak k ∈ [0, T ) as part of the witness. Notice that in this construction, for each m ∈M,
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we have |S±m| ≤ T , where S±m is the set of discrete log inversion classes associated with message m, as previously
defined in theorem 1.

In many applications, it is desirable for the relation to satisfy the inverse-exclusion property, meaning that for
any x ∈ Fq , only one of (x, y) ∈ G or (x,−y) ∈ G will be included in the relation. To enforce inverse-exclusion
in such cases, we simply require a canonical method to select a representative from the pair {y,−y}. To this end,
notice that whenever q ≡ 3 (mod 4), at most one of ±y is a quadratic residue, which we will select as the unique
representative. This condition can be efficiently enforced in constraint programming by requiring the constraint
y = z2 for some additional witness z ∈ Fq .

Map-to-Elliptic-Curve-Group Relation

Parameters:

– A prime-order subgroup G ⊆ E(Fq) of an elliptic curve E(Fq), where q is a large prime with q ≡ 3 (mod 4).
– A message space M ⊆ Fq and tweak space [0, T ) such that M · T < q.

RelationRM2G ⊆M ×G×W:

– A triple (m, (x, y), w) where w = (k, z) belongs toRM2G if:
1. m ∈M , k ∈ [0, T ),
2. x := m · T + k,
3. y = z2,
4. (x, y) ∈ G.

Fig. 2: An efficiently constructible map-to-elliptic-curve-group relation with canonical y-selection via quadratic
residuosity.

Claim. The map-to-elliptic-curve-group relationRM2G defined in fig. 2 is both injective and inverse excluding.

Proof. First, we show that RM2G is inverse excluding. By construction, the relation only includes points (x, y)
such that y is the quadratic residue. Since exactly one of ±y can be a quadratic residue when q ≡ 3 (mod 4), the
relation must be inverse excluding.

Next, we show thatRM2G is injective. Suppose there exist two distinct messages m1 6= m2 and corresponding
valid triples (m1, (x1, y1), w1), (m2, (x2, y2), w2) ∈ RM2G such that x1 = x2. Let w1 = (k1, z1) and w2 =
(k2, z2). By construction, we have:

x1 = m1 · T + k1, x2 = m2 · T + k2.

WLOG assume m1 > m2 as integers. Subtracting, we obtain:

(m1 −m2) · T = k2 − k1 (mod q).

Since M · T < q, there is no wraparound modulo q. Therefore, the above congruence holds over Z as well.
However, since m1 6= m2, the left-hand side is at least T , while the right-hand side is strictly less than T because
k1, k2 ∈ [0, T ). This yields a contradiction.

5 Application: Constraint Programming for Multiset Hashing

5.1 Multiset Hashing and zkVM Memory Consistency

A multiset hash function MSH [CDvD+03] is a cryptographic primitive that maps a multiset S over some message
spaceM to a compact digest, satisfying the following key properties:

– Compression: Each multiset is mapped to a fixed-size digest.
– Incrementality: Given digests d1 and d2 corresponding to multisets S1 and S2, one can efficiently compute

the digest of their multiset union S1 ] S2.
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– Collision Resistance: It is computationally infeasible to find two distinct multisets S1 6= S2 such that
MSH(S1) = MSH(S2).

A widely used construction paradigm, introduced by Clarke et al. [CDvD+03], builds multiset hash functions
from any cryptographic group and a corresponding hash-to-group function.

MSH(S) =
∑
m∈S

HashToGroup(m).

This construction naturally supports incrementality, as the digest of an updated multiset is simply the sum of
the group elements representing the updated entries. Collision resistance can be proven under the random oracle
model and the discrete logarithm assumption [BM97]. Shepard et al. [MSTA17] refined this approach specifically
for elliptic curves and explored different hash-to-elliptic curve group functions.

Of particular relevance to our work, Brown [Bro08] proposed a heuristic approach that directly maps messages
into the group, and conjectured it to be secure:

MSH(S) =
∑
m∈S

MapToGroup(m).

Looking ahead, in section 5.3, we formalize this approach in the constraint programming context using our map-
to-elliptic-curve-group relations, and prove its security in the elliptic curve generic group model. But let us first
motivate our work in the context of zkVMs.

The zkVM Memory Consistency Problem. In zero-knowledge virtual machines (zkVMs)such as Jolt, RISC Zero,
SP1, or Nexusprograms execute inside a virtual machine while simultaneously generating a cryptographic proof
of correct execution. A critical component of this proof is memory consistency, which ensures that every read
operation retrieves the value from the most recent write to the same address.

A standard approach to enforcing this is the offline memory checking paradigm. During execution, the zkVM
emits two logs:

– a write-log recording every memory write, and
– a read-log recording every memory read.

Each log entry encodes a memory access record, typically including a memory address, a data value, a read/write
flag, and possibly additional metadata such as a timestamp. To verify memory consistency, at the end of VM
execution, we check that the read-log and write-log are equal as multisets. Informally, this enforces two sufficient
guarantees for memory consistency:

1. Every read matches a corresponding write with the same address and value.
2. Under timestamp ordering, every write is eventually usedi.e., matched by a readso no spurious writes are

introduced.

Multiset Hashing for Offline Memory Checking. Rather than bookkeeping the full logswhich is very expensive
to maintain throughout VM execution Spice [SAGL18] instead proposed to use a multiset hash function to incre-
mentally compress each log to a short, rolling digest. Thanks to incrementality, each new memory access record
can be quickly absorbed into the rolling digest. Eventually, the read-write logs are considered consistent if their
final digests match. Collision resistance ensures that no adversary can forge distinct read-write logs that ultimately
hash to the same value. Recent work by Succinct takes exactly this approach using a multiset hash function that
uses a Poseidon-based hash-to-group function [Roy25] for checking memory consistency in the SP1 zkVM.

5.2 Multiset Hash Relation

In the zkVM setting, every computation must be expressed as a system of constraints. In particular, when dealing
with memory checking, this involves constraint programming the use of a multiset hash function to incrementally
aggregate over digests of memory accesses. To better handle this situation, we generalize multiset hash functions
to a relational setting.
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Definition 9 (Multiset Hash Relation). Let M be a finite message space, Multiset(M) denote the space of
multisets overM, D a digest space, andW a witness space. A multiset hash relation is a ternary relation:

RMSH ⊆ Multiset(M)×D ×W

satisfying the following properties:

– Compression: Every digest d ∈ D has a fixed size.
– Incrementality: For any two valid instances (S1, d1, w1), (S2, d2, w2) ∈ RMSH, let d = d1 + d2. Then one

can efficiently compute some witness w such that

(S1 ] S2, d, w) ∈ RMSH,

where ] denotes multiset union and + is a constant-time operation in D.
– Multiset Collision Resistance: For any efficient adversary A,

Pr
[

(S1,S2,d,w1,w2)←A:
(S1,d,w1),(S2,d,w2)∈RMSH∧S1 6=S2

]
≤ negl(λ).

From the sake of witness generation, we further require that RMSH is efficiently constructible. That is, there
exists a deterministic polynomial-time algorithm ConstructRMSH : Multiset(M)→ D ×W satisfying:

– Correctness: For any multiset S, the output (d,w) = ConstructRMSH(S) satisfies (S, d, w) ∈ RMSH,
except with negligible failure probability.

– Homomorphic Composition: Due to incrementality of the relation, the constructor must be homomorphic
with respect to multiset union and digest addition. That is, for any two multisets S1,S2 ⊆M, if

(d1, . . . ) = ConstructRMSH(S1), (d2, . . . ) = ConstructRMSH(S2),

then
ConstructRMSH(S1 ] S2) = (d1 + d2, . . . ).

5.3 Construction of Multiset Hash Relation

We now construct a multiset hash relation RMSH which combines Brown’s [Bro08] idea with any map-to-group
relationRM2G ⊆M×G×W that is injective, inverse-excluding, and efficiently constructible.

Since the constructor ConstructRMSH must be homomorphic, in order to specify it, we just need to define its
behavior on the empty multiset and specify an incremental rule for extending the digest and witness with a new
element m ∈ M. These steps are summarized in fig. 3. Notice that the constructor inherits the negligible failure
probability from the constructor ofRM2G.

The corresponding multiset hash relation is described in fig. 4.

Incremental Constructor for the Multiset Hash RelationRMSH

Parameters: Let ConstructRM2G :M→ G×WG be the constructor of the map-to-group relationRM2G.
Base Case: For the empty multiset S = ∅:

– Digest: d∅ ← O ∈ G (infinity point of the group)
– Witness: w∅ ← ∅ (the empty multiset)

Incremental Step: Given (dS , wS) = ConstructRMSH(S) and new message m ∈M:

– Compute ((xum , yum), wm)← ConstructRM2G(m)
– Update digest: dS]{m} ← dS + (xum , yum)
– Update witness: wS]{m} ← wS ∪ {(m, (xum , yum), wm)}

Fig. 3: Constructor for the multiset hash relationRMSH.
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Multiset Hash RelationRMSH

Parameters:

– LetRM2G ⊆M×G×Wm2g be an injective and inverse-excluding map-to-elliptic-curve-group relation.
– Define digest space D := G, and witness spaceWmset := Multiset(M×G×Wm2g).

RelationRMSH ⊆ Multiset(M)×D ×Wmset:
A triple (S, d, w) belongs toRMSH if and only if:

1. If S = ∅, then assert d = O.
2. S = {m1, . . . ,mN} be a multiset of messages inM,
3. w = {(m1, (xum1

, yum1
), wm1), . . . , (mN , (xumN , yumN ), wmN )}, where each (mi, (xumi , yumi ), wmi) ∈ RM2G,

4. The digest d = (x, y) satisfies:
d = (xum1

, yum1
) + · · ·+ (xumN , yumN ).

Fig. 4: Description of the multiset hash relationRMSH.

Theorem 2. The multiset hash relation RMSH defined in fig. 4 satisfies the compression and incrementality
properties of definition 9.

Proof. By construction, each digest is a single elliptic curve group element. Now let (S1, d1, w1), (S2, d2, w2) ∈
RMSH, where

w1 = {(mi, (xumi , yumi ), wmi)}
n
i=1, w2 = {(mj , (xumj , yumj ), wmj )}

k
j=1.

Define d := d1 + d2 and w := w1 ∪ w2. It’s easy to see that (S1 ] S2, d, w) ∈ RMSH.

Theorem 3 (Multiset Collision Resistance in EC-GGM). LetRM2G ⊆M×G×W be a map-to-elliptic-curve-
group relation that satisfies being injective, inverse excluding, and independent of the EC-GGM encoding function
enc : Fp → G. LetRMSH be the multiset hash relation constructed in fig. 4.

Then for any probabilistic polynomial-time adversary A making at most Q queries to the EC-GGM addition
oracle, the probability that A finds a multiset collision is at most

2 ·
∑
m∈M |S±m| ·Q+ 2Q2

p
.

Proof. Suppose the adversary outputs a valid multiset collision:

(S1, d, w1), (S2, d, w2) ∈ RMSH, S1 6= S2.

LetH1 = {(xum,w , yum,w)}(m,(xum,w ,yum,w ),w)∈w1
be the multiset of group elements associated with witnessw1,

and define H2 similarly for w2. Define their multiset difference as H∆ = H1 ]H2, where H2 denotes H2 with
negated multiplicitiesi.e., each element g in H2 appears with count (−c) if it originally appeared c times. Since
S1 6= S2 andRM2G is injective, it follows that H∆ 6= ∅.

From the definition ofRMSH, we know:∑
(xum ,yum )∈H∆

c(xum ,yum ) · (xum , yum) = O,

where c(xum ,yum ) denotes the signed multiplicity in H∆. That is, the adversary finds a nontrivial linear com-
bination of group elements summing to zero (infinity point). Since each group element must be in RM2G and
corresponds to a discrete logarithm um ∈ Fp where [um] ∈ S±m for some m ∈M, this induces a non-trivial linear
relation over discrete logs: ∑

m∈M, [um]∈S±m, um∈[um]

βum · um = 0,

for some coefficients βum 6= 0. We now analyze the probability of this event.



15

Let the adversary make Q queries to the EC-GGM addition oracle. Without loss of generality, assume each
query outputs a group element (xuj , yuj ), corresponding to a discrete log of the form:

uj = β0 +
∑

mk∈M, [umk ]∈S
±
mk

, umk∈[umk ]

βumk · umk ,

with adversarially chosen coefficients β0, βumk ∈ Fp.

Event A: Outside Collision. An outside collision occurs if an oracle output has discrete log in a class [um∗ ] ∈ S±m∗
in a nontrivial way (i.e., not through trivial combinations like 3um∗−2um∗ ). Since each uj is a linear combination
over independent uniformly random [umk ], by theorem 1, the probability that uj ∈ [um∗ ] for any fixed m∗ is at
most 2/p. Taking a union bound over all Q queries and all classes [um∗ ] ∈ S±m∗ , we get:

Pr[Event A] ≤
2 ·
∑
m∈M |S±m| ·Q

p
.

Event B: Inside Collision. This occurs if two oracle outputs (xui , yui) and (xuj , yuj ) share the same inversion
class [ui] = [uj ]. By a similar argument, the probability that any two such queries collide is at most 2/p. There
are
(
Q
2

)
≤ Q2 such pairs, so:

Pr[Event B] ≤ 2Q2

p
.

Suppose neither event occurs. Then all discrete logs variables used inH∆ must have no non-trivial correlations
(except for the linear relations already known to the adversary) and thus are independently and uniformly random
over F±p by theorem 1. SinceRM2G is inverse excluding, there is at most one representative per class, and thus:

Pr
[∑

βum · um = 0
]
≤ Pr

[∑
β[um] · [um] = 0

]
≤ 2

p
.

We then conclude the proof by taking union bound over all above.

5.4 Concrete Parameters for zkVM Application

In our target applicationenforcing memory consistency in zkVMsthe multiset hash relation RMSH operates over
memory access records. Each message m ∈ M corresponds to a memory access log entry. For example, in a
32-bit RISC-V machine, a typical record includes:

– a 32-bit memory address,
– 32-bit data,
– a 1-bit read/write flag,
– optional metadata, such as a 32-bit timestamp.

These fields total approximately 97 bits, so the message space satisfies |M| ≤ 2100.
Concretely, we instantiate the multiset hash relation where the underlying map-to-elliptic-curve-group relation

is defined in fig. 2 with its constructor defined in fig. 1. We fix the tweak bound T = 256, which ensures that the
constructor fails with probability at most N ·2−256, where N denotes the total number of memory accesses (reads
and writes) in one zkVM execution.

Since each message m ∈ M is associated with at most one of T possible elliptic curve points, the number
of discrete log inversion classes satisfies |S±m| ≤ T = 28. Applying theorem 3, we retain well over 120 bits of
security against multiset collisions.

6 Application: Constraint Programming for BLS Signing

6.1 Proof of Stake and zkPoS

Proof of Stake (PoS) protocols such as Ethereum PoS rely on cryptographic signatures for validating blocks and
aggregating attestations. In such contexts, [BLS04] (BLS) signatures are widely used due to their algebraic nature,
which allows multiple signatures over the same block to be efficiently aggregated into a single one.
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Zero-Knowledge Proof of Stake (zkPoS) [Hyp23] refers to a cryptographic framework where the consensus
mechanism of a PoS blockchain is proven in zero knowledge. Rather than trusting honest majority assumptions
or relying on full nodes, a verifier (e.g., a light client or smart contract) can check succinct zero-knowledge proofs
that attest to the validity of many PoS consensus steps. In particular, this includes verifying that many different
blocks were signed by a sufficient quorum of validators, which incurs zero-knowledge verification of multiple
BLS signatures.

6.2 Relational Signature Scheme

In the constraint programming paradigm, we adopt a relational view of signature schemes. Instead of representing
verification as a deterministic algorithm, we observe that signature validity can be naturally expressed as a relation
between the message, signature, and verification key. This motivates the notion of a relational signature scheme,
where verification is defined by a relation rather than a deterministic function.

Definition 10 (Relational Signature Scheme). A relational signature scheme consists of:

– (sk, vk)← KeyGen(1λ): A probabilistic algorithm that outputs a secret and verification key.
– (σm, wm)← Sign(sk,m): An algorithm that produces a signature σm as well as some auxiliary witness info

on message m.
– RSig ⊆ VK×M×Σ×W: A relation which decides whether a tuple (vk,m, σm) is valid, which may leverage

some auxiliary witness wm.

A relational signature scheme must satisfy the following properties:

– Correctness:

Pr

(vk,m, σm, wm) ∈ RSig

∣∣∣∣∣∣
(sk, vk)← KeyGen(1λ),
m←M,
(σm, wm)← Sign(sk,m)

 ≥ 1− negl(λ).

– Unforgeability (EUF-CMA): For all probabilistic polynomial-time adversariesA, the probability thatA wins
the following game is negligible in λ:
1. The challenger runs (sk, vk)← KeyGen(1λ).
2. The adversary A is given vk and access to a signing oracle Sign(sk, ·).
3. For each query m, the oracle returns (σm, wm)← Sign(sk,m).
4. Eventually, A outputs a forgery (m∗, σm∗ , wm∗).
5. A wins if:
• m∗ was never queried to the signing oracle, and
• (vk,m∗, σm∗ , wm∗) ∈ RSig.

6.3 Relational BLS Signature from Map-to-Elliptic-Curve-Group Relation

We describe a constraint-friendly relational signature scheme based on BLS signature scheme. The high level idea
is to replace its hash-to-group function with our map-to-elliptic-curve-group relation. The full description of the
scheme is shown as in fig. 5.

Theorem 4 (Correctness). Let RM2G ⊆ M × G1 × W be the map-to-elliptic-curve-group relation, and let
Construct :M → G1 ×W ∪ {⊥} be the associated constructor. The relational BLS signature scheme in fig. 5
satisfies correctness.

Proof. By efficient constructibility of RM2G, the constructor Construct(m) succeeds with probability at least
1 − negl(λ), returning (hm, whm) such that (m,hm, whm) ∈ RM2G. In such case, due to correctness of BLS
signature, the resulting signature must be in the relation RSig. Thus, the overall success probability is at least
1− negl(λ).

Since this application uses elliptic curve groups equipped with a bilinear map, to prove unforgeability, we will
work with an extended generic group model called the semi-generic group model (SGGM) introduced by Jager
and Ruprai [JR10], which models the two source groups G1, G2 as generic groups, with an explicit bilinear map
oracle which maps G1, G2 to a standard model of GT . The high-level structure of our unforgeability proof in
SGGM parallels that of theorem 3, relying on bounding the probabilities of inside and outside collisions. Due to
space limits, the full proof is deferred to the extended version of this paper.
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Relational BLS Signature Scheme

Parameters:

– A bilinear group (G1, G2, GT ) of prime order p, with pairing e : G1 ×G2 → GT .
– A map-to-elliptic-curve-group relationRM2G ⊆M×G1 ×W and its associated constructor ConstructM2G :M →
G1 ×W ∪ {⊥}.

KeyGen(1λ) :

– Sample sk← Zp, then set vk := sk · g2 ∈ G2, where g2 = (x′1, y
′
1) is a fixed generator of G2

Sign(sk,m) :

– Run ConstructM2G(m) = (hm, whm) where hm denotes the element (xum , yum) ∈ G1.

– If (hm, whm) 6= ⊥ then output wm = (hm, whm) and σm := sk · hm ∈ G1.

RSig:

– A tuple (vk,m, σm, wm), where wm = (hm, whm), belongs toRSig if and only if:

(m,hm, whm) ∈ RM2G and e(σm, g2) = e(hm, vk).

Fig. 5: Relational BLS signature scheme using a map-to-elliptic-curve-group relation

Theorem 5 (Unforgeability in SGGM). Let RM2G ⊆ M× G1 ×W be a map-to-elliptic-curve-group relation
that is injective and independent of the SGGM encoding function. Then for any probabilistic polynomial-time
adversary A making Q1 signing queries and Q2 addition oracle and bilinear map oracle queries in SGGM, the
probability that A wins the unforgeability game is at most

4 ·
∑
m∈M |S±m| · (Q1 +Q2) + (Q1 +Q2)

2

p
.

6.4 Concrete Parameters for zkPoS Application

We instantiate the relational BLS signature scheme using our map-to-elliptic-curve-group relation and its con-
structor described in figs. 1 and 2. By setting the tweak bound T = 128, we ensure that for any message m,
the constructor succeeds with all but probability less than 2−128. Thus, the relation-based signature scheme can
produce valid signatures for all messages except with negligible failure.

Applying theorem 5, we obtain unforgeability guarantees in the EC-GGM model. In particular, if each message
can be specified with less than 120-bits, the resulting scheme achieves at least 120-bit security in the unforgeability
game.

However, in zkPoS applications, the messages to be signed (e.g., full blocks) may be substantially larger. For
example, an Ethereum block may be several kilobytes in size, far exceeding the allowable domain size for our
relation.

To support signing arbitrary larger messages M ∈ {0, 1}∗, we proceed as follows. First, decompose M into
` chunks (m1, . . . ,m`), where each chunk is less than 120 bits and thus can be embedded into some prime field
Fpmsg of size around 2120. In the constraint programming setting, this is enforced by chunk-wise decomposition
and range constraints ensuring each mi < pmsg.

Next, we define a compressed message representative using a random curve combination. Specifically, we
introduce a constraint that expresses:

m̃ := m1 + r ·m2 + · · ·+ r`−1 ·m` ∈ Fpmsg ,

where r ∈ Fpmsg is a random verifier challenge sampled after the prover commits to (m1, . . . ,m`). In the setting
of zkPoS, this randomness can be introduced using FiatShamir over any commit-and-prove scheme. It’s easy to
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check that if M0 = (m0
1, . . . ,m

0
`) and M1 = (m1

1, . . . ,m
1
`) are two different messages, then their respective

representatives (m̃0, m̃1) collide with probability ≤ `/pmsg over the randomness of r. Concretely, any two 4KB-
size full blocks collide with probability ≤ 2−110.

Finally, the constraint system will verify that the relational signature constraints are satisfied with respect to
the compressed representative m̃.

7 Evaluation

In this section, we aim to concretely evaluate the performance of our proposed map-to-elliptic-curve-group rela-
tion, as a constraint-friendly replacement for traditional hash-to-elliptic-curve-group functions.

In particular, we focus on the task of memory consistency checking in zkVMs, as described in section 5, where
multiset hashing must be repeatedly applied to large read and write logs. Our goal is to compare the performance
and constraint cost of proving, within a constraint programming framework, the correctness of multiset hash
digests constructed using either:

1. Our map-to-elliptic-curve-group relation as described in fig. 2. When instantiated within constraint program-
ming, it yields the multiset hash relation shown in fig. 4.

2. A hash-to-elliptic-curve-group function using the increment-and-check methodthe most efficient non-deterministic
approach in practice, as discussed in section 1.3. The corresponding multiset hash relation can be defined anal-
ogously, using a canonical hash-to-elliptic-curve-group relationRH2G in place ofRM2G in item 3 of fig. 4.

To better isolate and compare the cost of the hash/map-to-elliptic-curve-group step in this application, we
benchmark only the portion of the multiset hash relation responsible for mapping or hashing each message in the
multiset to a group element (x, y) ∈ G. In particular, we do not measure the cost of the final group addition over
all mapped points, as this step is identical across both approaches and does not impact the relative comparison.

Parameters. We instantiate our map-to-elliptic-curve-group relation using the configuration described in sec-
tion 5.4, where the message space M corresponds to 100-bit memory access records. We fix the tweak bound
to T = 256, which ensures a negligible failure probability across all invocations. Combined with injectivity and
inverse-exclusion properties, this yields over 120 bits of security against multiset collisions, as shown in theorem 3.

For our hash-to-elliptic-curve-group baseline, we benchmark three widely used cryptographic hash functions
to assess their constraint costs:

– SHA-256: The NIST-standardized hash function with well-established security, but high constraint complex-
ity due to its bit-oriented structure.

– MiMC: A non-standard but constraint-friendly hash function designed for zero-knowledge proof systems,
configured with exponent 5 and 110 rounds.

– Poseidon: Another non-standard constraint-friendly hash, instantiated with state width t = 3, rate r = 2, 8
full rounds, and 57 partial rounds.

These configurations are selected to achieve approximately 128-bit security and serve as fair baselines for our
experiment.

Choice of Elliptic Curve and Field for Constraint Programming. Throughout our evaluation, we fix the elliptic
curve group to be BN254, a pairing-friendly curve widely used in zkSNARK applications. As discussed in ex-
ample 1, constraint systems are defined over a fixed finite field F, which is often dictated by the backend proving
system. This introduces a key implementation decision when expressing the underlying elliptic-curve-group oper-
ations in constraints: whether to perform arithmetic directly over the elliptic curves scalar field (i.e., a native field
instantiation), or to emulate it within a different field (i.e., a non-native field setting). For comprehensiveness, we
evaluate both approaches in our benchmarks.

In the native setting, the elliptic curve group and the constraint field share the same base field. For our bench-
marks, we adopt the default configuration of Noir and its backend Barretenberg, where circuits are compiled
over the Grumpkin fielda 254-bit prime field that also serves as the scalar field of BN254. This alignment ensures
that elliptic curve operations and constraint logic remain within a unified algebraic environment, avoiding costly
field emulation and enabling efficient circuit synthesis.
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In the non-native setting, we emulate the BN254G1 group operation within Noir by representing each elliptic
curve point as an array of eight 32-bit field elements. This effectively decomposes 256-bit coordinates into limbs
compatible with smaller prime fields, such as the FFT-friendly Goldilocks field F264−232+1 used in proof systems
like Plonky3.

For hash functions, we note that MiMC and Poseidon are field-agnostic and can be implemented directly over
any prime field. In contrast, SHA-256 is inherently tied to F232 , so we use the standard non-native implementation
and convert the resulting digest into a field element by interpreting the output as a little-endian byte array.

7.1 Experimental Setup

Proof system pipeline We conduct our experiments using the Noir zero-knowledge proof programming frame-
work, whose nargo CLI parses, type-checks, and compiles high-level .nr programs into an Abstract Circuit
Intermediate Representation (ACIR), and can execute the circuit to emit both the ACIR JSON and a compressed
witness file. ACIR is backend-agnostic: although Noir defaults to Aztecs Barretenberg, the same IR can be further
compiled for other PLONK- or R1CS-based provers (e.g., Arkworks Marlin) without modifying source code sig-
nificantly. Proving backendsinstalled separately (e.g., via the tool bbup)handle CRS generation, proof creation,
verification, and verifier export. We used Aztec’s Barretenberg backend at version 0.76.0 and the nargo CLI at
version 1.0.0-beta.3, which implements the PLONK prover by default.

Tooling limitations Barretenberg supports up to 223 constraints, so we omit any measurements beyond that. Po-
seidon and MiMC exceed this limit at 216 iterations, which is why Figures 6 and 7 are truncated at 215. SHA-256
stops at 211 iterations, since 4096 runs already require 16.7 million constraints.

Environment All experiments ran on an AWS c5.18xlarge VM (Intel Xeon Platinum, 36 physical cores/72 vCPUs,
144 GiB RAM, 32 GiB EBS NVMe SSD, Amazon Linux 2023.7.20250428). For each parameter set, we perform
an untimed warm-up and then ten timed iterations. We call Pythons time.time ns() immediately before and
after each stage (witness execution, proof generation, verification), compute elapsed seconds, and report the mean
steady-state latency.

7.2 Performance

In this section, we consider the performance of the native map-/hash-to-elliptic-curve-group implementations,
under the default pipeline using Noir with backend Barretenberg. We also consider the constraint costs of both
native and non-native instantiations.

Execution time (Noir witness generation) Figure 6 plots the time taken by nargo execute as we vary the
number of iterations of our map-to-curve primitive in the circuit. As the workload scales, we see that all hash-based
constructions require higher execution time than map-to-curve. However, while SHA-256 is the worst performing
hash function in terms of constraint costs, due to its performance on CPU, the CPU-native witness generation code
runs much more efficiently for SHA-256, than for the arithmetic hash functions we tested. We were able to obtain a
larger range of results for map-to-curve, due to its constraint-friendliness, and the execution time of map-to-curve
for over 250k iterations was about 19s, orders of magnitude better than arithmetic hash-to-elliptic-curve-group for
1/8th the number of iterations.

Proving time Figure 7 illustrates the proving time of each of our map-/hash-to-elliptic-curve-group instantiations
at the number of constraints grow. Unlike in the case of execution time, SHA-256 performs significantly worse
on proving time due to its high arithmetic circuit constraint cost. The proving time of 218, i.e. more than 250k
iterations of map-to-curve averages to about 47s, again, performing more than an order of magnitude better than
any other hash function at its highest tested number of iterations.

Verification time We omit a detailed graph of verification times, since the growth in verification times is rela-
tively slow. For instance, the verification time for the SHA-256-based construction is ≈ 0.098s when proving 2
executions of hash-to-elliptic-curve-group and 0.101 when proving 2048. At the proof of 215 iterations, Poseidon,
which is the worst construction we measured at this size takes 0.121s to verify.

https://github.com/Plonky3/Plonky3
https://noir-lang.org
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Fig. 6: Noirlang’s execution time to compile and build the witnesses for different instantiations of hash or map-to-
elliptic-curve-group as the number of iterations of this operation increases.

Constraint costs In table 2, we present the PLONK constraints for native and non-native implementations, as
obtained by compiling the Noir program for checking the provided witnesses and using Barretenberg’s bb gates
command to obtain the number of PLONK constraints. For each setting (map-to-elliptic-curve-group and hash-to-
elliptic-curve-group for each of our hash functions), we provide the constraints for a single iteration of hash/map-
to-elliptic-curve-group. We also provide the number of constraints for 210 iterations in the native case and 28

iterations in the non-native case.

Instantiation Native impl.: #
constraints for 1

iteration

Native impl.: #
constraints for 210

iterations

Non-native
impl.: #

constraints for 1
iteration

Non-native impl.:
# constraints for
28 iterations

Map-to-group
relation

21+9∗ 5,136+9,216∗∗=
14,352

57,943+9∗ 14,130,372+2,304∗∗

MiMC
hash-to-group

351 343,056 58,273 14,214,852

Poseidon
hash-to-group

948 954,384 58,870 14,367,684

SHA-256
hash-to-group

7,095 4,196,023 62,276 15,177,591

Table 2: PLONK constraint costs of the map-to-elliptic-curve-group relation and hash-to-elliptic-curve-group us-
ing different hash functions, for both native and non-native implementations. Note that due to the large constraint
size non-native iterations of map and hash-to-elliptic-curve-group and the expected linear growth in circuit size,
we capped our tests for non-native constraint costs at 28 iterations. ∗This is the number of PLONK (addition and
non-constant-multiplication) constraints for an 8 bit range check. Noirlang requires certain typecasting, which
leads to a blowup in the number of constraints for range checking, hence we only report the range checking
numbers analytically. ∗∗The 9,216 constraints are added by 210 range checks and 2, 304 by 28 range checks.
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Fig. 7: Barretenberg’s proving time for different instantiations of hash or map-to-elliptic-curve-group as the num-
ber of iterations of this operation increases. Note that this operation uses as input the circuit description and
witnesses provided by the Noirlang execution from fig. 6.
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