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Abstract As cryptographic protocols transition to post-quantum security, most adopt hybrid solutions
combining classical and post-quantum assumptions. This shift often sacrifices efficiency, compactness,
or even security. One such property is deniability, which enables users to plausibly deny authorship of
potentially incriminating messages. While classical protocols like X3DH key agreement (used in Signal
and WhatsApp) provide deniability, post-quantum protocols like PQXDH and Apple’s iMessage with
PQ3 do not.
This work addresses this gap by investigating how to efficiently preserve deniability in post-quantum
protocols. Specifically, we propose two hybrid schemes for authenticated key encapsulation
mechanisms (AKEMs). The first is a black-box construction that preserves deniability when both
constituent AKEMs are deniable. The second is Shadowfax, a non-black-box AKEM that achieves
hybrid security, integrating a classical non-interactive key exchange, a post-quantum key
encapsulation mechanism, and a post-quantum ring signature. Shadowfax satisfies deniability in
both dishonest and honest receiver settings, relying on statistical security in the former and on a
single pre- or post-quantum assumption in the latter.
Finally, we provide several portable implementations of Shadowfax. When instantiated with
standardised components (ML–KEM and Falcon), Shadowfax yields ciphertexts of 1 728 bytes
and public keys of 2 036 bytes, with encapsulation and decapsulation costs of 1.8M and 0.7M cycles
on an Apple M1 Pro.
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1 Introduction

The global roll out of post-quantum cryptography (PQC) is a monumental challenge. While the multi-year
National Institute of Standards and Technology (NIST) standardisation [NIS16] has been a critical milestone,
it marks only the beginning of a much larger effort. With several algorithms selected for standardisation
(three standards have already been released [MLK24, MLD24, SLH24]), the next phase of implementation
and adaptation is now underway. Migrating countless systems to PQC will likely take decades5. Nevertheless,
significant progress has been made towards adapting widely deployed protocols for post-quantum security.
For instance, X3DH [MP16], which supports billions of WhatsApp and Messenger users, has been upgraded
to the post-quantum variant, PQXDH [KS24]. PQXDH is already deployed in Signal [KS24], and Apple’s
iMessage now uses PQ3 [App24]. However, these upgrades involve trade-offs: ciphertexts and keys grow larger,
and deniability is often lost. PQXDH, for example, sacrifices the deniability of its predecessor X3DH due to a
signature on the ephemeral key [FJ24]. Similarly, the analysis of Apple’s iMessage with PQ3 [Ste24, LSB24],
explicitly states that deniability is not a design goal. TLS [DA99, Res18] has also been updated for post-
quantum security by using key encapsulation mechanisms (KEMs) in multiple papers [BCNS15, PST20,
BBCT22] and real-world deployments [Lan16, Lan18, KV19, WR19].

A crucial aspect of all these adaptations is the hybrid approach, combining post-quantum algorithms
with classical cryptographic methods. Post-quantum solutions, despite their potential, lack the decades of
cryptographic analysis that traditional schemes like RSA and (EC)DH have undergone. Therefore, it is
prudent to adopt hybrid solutions. This strategy is widely endorsed by national security agencies. The
French National Agency for the Security of Information Systems (ANSSI) recommends a hybrid adoption of
PQC [ANS23], and the German Federal Office for Information Security (BSI) explicitly states that “post-
quantum cryptography should not be used in isolation if possible, but only in hybrid mode” for both key
agreement and authentication [BSI22]. The BSI has reiterated this need in their recent updated technical
guidelines, which “only recommends the hybrid use of quantum-safe methods in combination with classical
methods” [BSI24].

1.1 Combiners

A combiner, or more generally hybrid scheme, ensures security as long as at least one of its components
remains secure. For instance, if cryptographically relevant quantum computers (CRQCs) become available
rendering classical schemes insecure [Sho94], the hybrid scheme would still be secure as the post-quantum
component remains intact. Conversely, if advances in cryptanalysis or implementation issues break the
post-quantum scheme, the classical security of the hybrid scheme would still hold due to the hardness of
the classical problem. In fact, recent work demonstrated several classical attacks on post-quantum
schemes [Beu22, CD23, MMP+23, Rob23] underscoring the importance of hybrids. Additionally, since only
basic post-quantum primitives like KEMs and signatures have been standardised, many applications
necessarily need to rely on non-standard primitives, further supporting hybrid configurations. Finally, to
achieve “cryptographic agility” [OP19] in the long run, the permanent use of hybrid solutions may become
a common practice.

Generic Combiners. Combiners are typically defined relative to a primitive and security notion, where
security is binary – either the scheme is secure (Π) or insecure (¬Π). Generic combiners allow statements
like Π1 ∨Π2 =⇒ Π, meaning that as long as one of the schemes satisfies the security notion, the combined
scheme also satisfies it. For instance, consider the pseudorandomness of a PRG, or confidentiality of a KEM.
A generic combiner for the former is PRG(s1∥s2) := PRG1(s1) ⊕ PRG2(s2), and for the latter, KEM with
k = H(k1, k2, c1, c2), when H is modelled as a random oracle. Such combiners are the most powerful as they
are the most general.

5 Although it has been known for over twenty years that MD5 [Riv92] fails to provide collision resistance [WFLY04],
recent research continues to exploit this insecurity in new vulnerabilities [GHH+24] within prevalent protocols.
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PQC Migration. While generic combiners are sufficient for PQC migration, constructing them can be
challenging in some cases, and we argue they may be unnecessarily restrictive. To understand why, one
must consider the primary motivation for using combiners in PQC migration which is risk mitigation
against the failure of assumptions. Therefore, instead of reasoning about combiners for security notions,
one can relax this requirement to focus specifically on the underlying assumptions for PQC migration.
Specifically, we argue that it suffices to construct combiners of the form
Assumptionpre-Q ∨ Assumptionpost-Q =⇒ Π, where the security of the scheme holds as long as one of the
classical or post-quantum assumptions is not broken. We call such a scheme a hybrid. This relaxation
simplifies combiner design, enables constructions where generic approaches remain
elusive [FH25, GRSV25, HR25, LL25, Jan25] and better aligns with the primary motivation for adopting
hybrid solutions in PQC migration.

Additional related work on combiners and hybrids is further discussed in Appendix A.1.

1.2 AKEM

The integration of combiners for KEMs and signatures – ensuring confidentiality and authenticity – has
already begun in the context of PQC migration. An Authenticated Key Encapsulation Mechanism (AKEM)
shares the same interfaces as a standard KEM, with two key differences: encapsulation proves the sender’s
authenticity requiring their secret key, while decapsulation verifies the sender’s authenticity using their public
key. Therefore, the primitive includes both notions of confidentially and authenticity. Introduced in the HPKE
standard [BBLW22], an AKEM draws inspiration from the signcryption literature [DZ10] and generalises the
split-KEM primitive [BFG+20].6 An additional feature of several AKEM constructions [ABH+21, AJKL23,
CHN+24, GJK24b, JMOR25], and later formalised in [CHN+24, GJK24b] is deniability. This property allows
a sender to deny having sent a particular ciphertext.7 Beyond its application to HPKE, which is specified to
be used in the Message Layer Security (MLS) [BBR+23] protocol, AKEMs find applications in authenticated
key exchange and secure messaging [BS20, BFG+20], for instance in K-Waay [CHN+24].

Another related work discusses PQ deniable authenticated key exchange [HKKP22]. Unlike an AKEM
which is a one-shot primitive, the protocol from [HKKP22] is interactive. However, the core part of the
protocol could be viewed as an AKEM (with ephemeral AKEM keys). Similar to our scheme which we
will present later, the construction from [HKKP22] is based on a KEM and a ring signature which can be
efficiently instantiated from PQ primitives. A key difference to our approach is that we consider hybrid
security guarantees along with the associated challenges.

More generally, despite the existence of both classical [ABH+21, AJKL23] and post-quantum [AJKL23,
CHN+24, GJK24b, JMOR25, Nio25, HKKP22] constructions, there are no known hybrid AKEMs. This leads
to the natural question:

“Can hybrid AKEMs efficiently preserve deniability?”

1.3 Technical Overview

In this work, we answer the aforementioned question in the affirmative. The following section presents a
high-level summary of our technical contributions.

AKEM. The two main security properties are confidentiality and authenticity. Another desirable property
is (sender) deniability, allowing the sender to plausibly deny sending a ciphertext even though the receiver
can verify the sender’s identity. This is formalised by showing the existence of a simulator Sim, whose output
ciphertext c and key k are indistinguishable from those produced by the encapsulation algorithm Enc, to any
adversary A. The model of deniability varies depending on the scenario [GJK24b]. For a dishonest receiver,

6 In fact, a symmetric split-KEM [BFG+20, Def. 4] is equivalent to an AKEM [ABH+21, Def. 9].
7 To the best of our knowledge, combiners for deniability have not yet been studied. For background on deniability
we refer to Appendix A.
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Sim is given the receiver’s secret key, modelling a scenario where the receiver could forge a ciphertext c to
falsely attribute it to the sender. For honest receivers, the receiver is assumed to not simulate any values, so
Sim is not given the receiver’s secret key.

Black-Box Construction. A natural way to construct a hybrid AKEM would be to use the “parallel KEM
combiner”, where the ciphertext c := (c1, c2) and key k := H(k1, k2, pks, pkr, c). Here (ci, ki)

$← Enci(ski, pki)
for i ∈ {1, 2} and (sks = (sk1, sk2), pkr = (pk1, pk2)). Confidentiality is guaranteed as long as one of AKEM1

or AKEM2 provides confidentiality, akin to the KEM combiner from [GHP18]. However, we additionally
include the sender and receiver’s public keys in H to satisfy the strong notion of insider CCA security
(see Theorem 9). Similarly, for authenticity, we show that the resulting scheme inherits authenticity as long
as one of AKEM1 or AKEM2 satisfies authenticity (see Theorem 10).

For deniability, we were only able to prove that the resulting scheme satisfies deniability if both AKEM1

and AKEM2 provide deniability (see Theorems 11 and 12). This result is unsatisfactory, as it undermines the
purpose of the hybrid scheme. The challenge lies in constructing a simulator for the combined scheme without
having a simulator for either AKEM1 or AKEM2. Specifically, such a simulator needs to output a ciphertext
and key that are indistinguishable from those generated by the AKEM encapsulation. If one of the underlying
AKEMs is not deniable (whether for and honest or dishonest receiver), then a distinguisher exists for any
potential simulator. While the key can be simulated using known KEM combiner techniques, the problem
arises when trying to simulate both ciphertext components, as no simulator exists for one of the components.
That makes it hard to satisfy hybrid-like deniability that only relies on the security properties of one of
the AKEMs. Interestingly, an AKEM can be constructed satisfying statistical dishonest receiver deniability
from a ring signature scheme with information-theoretic anonymity. Although this is not true of schemes
like SMILE [LNS21] and Erebor [BLL24], Gandalf [GJK24b] does satisfy the necessary anonymity.
However, it appears unlikely that honest receiver deniability can be achieved information theoretically, as
prior techniques still require computational assumptions. For instance, in [GJK24b], the authors “boost” an
AKEM to satisfy honest receiver deniability by symmetrically encrypting the ring signature with a KEM key,
which, in turn, depends on a computational assumption. Therefore, instead of analysing security notions at
a black-box level, we consider the underlying computational hardness assumptions needed to achieve these
security properties. This requires examining AKEM constructions at a lower abstraction level.

Shadowfax. The Shadowfax construction consists of two parts: the post-quantum component and the
classical component. A high level overview of the construction is depicted in Figure 1.

The post-quantum component. The post-quantum part relies on a post-quantum KEM, a post-quantum ring
signature scheme, a symmetric encryption scheme, and a PRF used as a key derivation function (KDF). For
confidentiality, the receiver’s KEM public key kpkr is input to the encapsulation procedure, returning a KEM
ciphertext kct and KEM key kk. For authenticity, the KEM ciphertext kct is signed using a ring signature
scheme with the sender’s signing key ssks, where the signing ring consists of the sender’s public key spks
and the receiver’s public key spkr. The anonymity property of the ring signature implies dishonest receiver
deniability [GJK24b]. However, if the anonymity relies on computational assumptions as mentioned above,
deniability would be lost if those assumptions turn out to be flawed. To avoid this, the ring signature scheme
must provide statistical anonymity. However, this alone does not suffice for honest receiver deniability, since
the signature σ is publicly verifiable. If the signature is unforgeable, the ciphertext must have originated
from the sender or from the receiver, since only they can sign for the respective ring. However, since the
receiver is honest (captured by the simulator not given the receiver’s secret key), the adversary can deduce
that the signature was issued by the sender. Therefore, the signature is symmetrically encrypted using the
KEM key kk, ensuring that only the receiver can verify the signature. The symmetric ciphertext sct and
KEM ciphertext kct become the AKEM ciphertext c in the Shadowfax construction, while the key k is
derived from the KDF applied to sct and kk. This step is similar to the KEM combiner from [GHP18]. To
ensure strong confidentiality, specifically insider CCA security, the KDF also includes the public keys of both
the sender and the receiver. Up to this point, this construction mirrors the PQ-AKEM from [GJK24b].
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The classical component. To obtain a hybrid scheme we add the classical part of Shadowfax, that
integrates two non-interactive key exchanges (NIKEs), similar to the DH-AKEM construction
of [ABH+21], and intertwines them with the post-quantum component. During encapsulation, an
ephemeral NIKE key pair (nske, npke) is generated to provide confidentiality, with the NIKE public key
npke appended to the ciphertext. The ephemeral NIKE secret key nske is then used to compute a shared
NIKE key nke with the receiver’s NIKE public key npke and this key is fed into the KDF. That is,
Shadowfax provides confidentiality as long as one of the post-quantum KEM or the classical NIKE is
secure (see Theorem 14). For (implicit) authentication, the sender’s long-term NIKE secret key nsks is
used with the receiver’s NIKE public key npkr to derive a NIKE shared key nkℓ, which is also used as
input to the KDF. This ensures authenticity of Shadowfax as long as one of the post-quantum ring
signature is unforgeable, or the classical NIKE remains secure (see Theorem 15).

The dishonest receiver deniability of Shadowfax holds as long as the ring signature scheme is information
theoretically anonymous and the NIKE is correct (see Theorem 16). Finally, combining a KEM and ring
signature scheme with two NIKEs would not satisfy honest receiver deniability, as the signature is publicly
verifiable. Recall that we symmetrically encrypted the signature using the post-quantum KEM key. However,
if the CCA security is compromised, then honest receiver deniability would be lost. To mitigate this, both the
KEM key kk and the ephemeral NIKE shared key nke are run through another KDF before symmetrically
encrypting the signature σ. This ensures that also the honest receiver deniability of Shadowfax is satisfied
in a hybrid sense. Specifically, honest receiver deniability is preserved as long as one of the post-quantum
KEM is CPA secure or the classical NIKE remains secure (see Theorem 17).

kpkr

KEM.Enc

kct kk = kk1||kk2

npkr nsks

NIKE.Gen

nske npke

RSig.Sgn ρ = {spks, spkr}

ssks

NIKE.Sdk NIKE.Sdk

σ nk1||nk2 = nke nkℓ

Sym.Enc KDF

sct

ct

•

KDF

kct

Figure 1. High level overview of the Shadowfax construction.

1.4 Contributions

This work considers hybrid schemes that preserve deniability, an area previously unexplored. Specifically, we
focus on authenticated key encapsulation mechanisms (AKEMs) and present the following contributions.
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Black-Box Construction. At the highest level of abstraction, we present a black-box construction that
combines two AKEMs. We prove that deniability is preserved if both underlying schemes are deniable.
Moreover, confidentiality and authenticity are guaranteed as long as one of the AKEMs provides the desired
notion, aligning with the expected behaviour of a combiner.

Non-Black-Box Construction. At a lower level of abstraction, we introduce Shadowfax, a
non-black-box AKEM that achieves hybrid security, built from a classical NIKE, a post-quantum KEM,
and a post-quantum ring signature scheme. We show that Shadowfax achieves deniability in two distinct
settings. In the dishonest receiver setting, deniability relies on the correctness of the NIKE and the
(possibly statistical) anonymity of the ring signature. In the honest receiver setting, deniability holds under
one of two computational assumptions: the security of the ephemeral NIKE or the KEM.

Implementation. Our final contribution is a set of portable implementations designed for compactness,
reproducibility, and easy integration into existing cryptographic libraries. These include the first
implementations of the Gandalf ring signature scheme and post-quantum AKEM from [GJK24b], as well
as the hybrid AKEM Shadowfax.

Our Gandalf implementation with Falcon achieves 1.29× faster key generation and 1.63× faster
signing compared to concurrent work [KNTW25, Tab. 3]. When instantiated with standardised components,
such as Falcon and ML-KEM, Shadowfax achieves ciphertexts of 2 036 bytes and public keys of 1 728
bytes. With non-standard components, ciphertexts can be reduced to 1 781 bytes and public keys to 1 449
bytes (see Section 5).

For our instantiation with standardised components, encapsulation takes 1.8 million cycles, and
decapsulation takes about 675 000 cycles on a Firestorm core running at 3 GHz on an Apple M1 Pro.
Detailed parameters and benchmarks appear in Table 3, Table 4, and the project’s GitHub repository at
Shadowfax. 8

2 Preliminaries

We introduce some relevant definitions used throughout the paper. Further notions can be found
in Appendix B.

2.1 Notations

Sets and Algorithms. We write s $← S to denote the uniform sampling of s from the finite set S. For an
integer n, we define [n] := {1, . . . , n}. The notation JbK, where b is a boolean statement, evaluates to 1 if the
statement is true and 0 otherwise. We use uppercase letters A,B, . . . to denote algorithms. Unless otherwise
stated, algorithms are probabilistic, and we write (y1, . . .)

$← A(x1, . . .) to denote that A returns (y1, . . .)
when run on input (x1, . . .) and tA to denote the time of A. We write AB to denote that A has oracle
access to B during its execution. For a randomised algorithm A, we use the notation y ∈ A(x) to denote
that y is a possible output of A on input x. The support of a discrete random variable X is defined as
sup(X) := {x ∈ R | Pr[X = x] > 0}.

Security Games. We use standard code-based security games [BR06]. A Game G is a probability experiment
in which an adversary A interacts with an implicit challenger that answers oracle queries issued by A. The
game G has one main procedure and an arbitrary amount of additional oracle procedures which describe
how these oracle queries are answered. We denote the (binary) output b of game G between a challenger
and an adversary A as GA ⇒ b. A is said to win G if GA ⇒ 1, or shortly G ⇒ 1. Unless otherwise stated,
the randomness in the probability term Pr[GA ⇒ 1] is over all the random coins in game G. If a game is
aborted the output is either 0 or a random bit in case of an indistinguishability game, i.e. a game for which
the advantage of an adversary is defined as the absolute difference of winning the game to 1

2 . To provide a
cleaner description and avoid repetitions, we sometimes refer to procedures of different games. To call the

8 https://github.com/vincentvbh/shadowfax
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oracle procedure Oracle of game G on input x, we shortly write G.Oracle(x). Throughout the proofs we
rely on game hopping and the main difference lemma [BR06].

2.2 AKEM

Definition 1 (Authenticated Key Encapsulation Mechanism [ABH+21, Def. 9]). An
authenticated key encapsulation mechanism AKEM is defined as a tuple AKEM := (Gen,Enc,Dec) of the
following algorithms.

(sk, pk) $← Gen: The probabilistic generation algorithm Gen returns a secret key sk and a corresponding
public key pk. We implicitly assume that pk defines a shared key space K.

(c, k) $← Enc(sks, pkr): Given a sender’s secret key sks and a receiver’s public key pkr, the probabilistic
encapsulation algorithm Enc returns a ciphertext c and a shared key k ∈ K.

k ← Dec(pks, skr, c): Given a sender’s public key pks, a receiver’s secret key skr, and a ciphertext c, the
deterministic decapsulation algorithm Dec returns a shared key k ∈ K, or a failure symbol ⊥.

The correctness error δAKEM is defined as

δAKEM := Pr

Dec(pks, skr, c) ̸= k

∣∣∣∣∣∣
(sks, pks)

$← Gen
(skr, pkr)

$← Gen
(c, k) $← Enc(sks, pkr)

 ,

where the probability is over the randomness of Gen and Enc.

Without loss of generality we assume the existence of an efficiently computable function µ such that for
all (sk, pk) ∈ Gen it holds µ(sk) = pk.

Confidentiality. We consider the strongest notion of CCA security for an AKEM, in particular that of
insider security [ABH+21]. As a building block we will also need a weaker notion of CCA security, namely
outsider security [ABH+21]. We formalise the notion of ciphertext indistinguishability for an authenticated
key encapsulation mechanism AKEM via the games depicted in Figure 2 and Figure 3, respectively. The
advantage of adversary A is defined as

AdvQI-Ins-CCA
AKEM,A :=

∣∣∣∣Pr [QI -Ins-CCAAKEM(A)⇒ 1]− 1

2

∣∣∣∣,
AdvQO-Out-CCA

AKEM,A :=

∣∣∣∣Pr [QO-Out-CCAAKEM(A)⇒ 1]− 1

2

∣∣∣∣,
for QI = (n, QEnc, QDec, QChl), QO = (n, QEnc, QDec).

Authenticity. We consider outsider authenticity from [ABH+21], the strongest notion that is achievable when
also seeking deniability [GJK24b]. We formalise the notion via the game depicted in Figure 4 and define the
advantage of an adversary A as

AdvQ-Out-Aut
AKEM,A :=

∣∣Pr [Q-Out-AutAKEM(A)⇒ 1]− 1
2

∣∣,
for Q = (n, QEnc, QChl).

Deniability. As in [GJK24b], we consider deniability in two independent settings. For dishonest receiver
deniability, the receiver is potentially dishonest and capable of simulating ciphertexts. Therefore, the
simulator is also given the receiver’s secret key. In contrast, in the honest receiver setting, the receiver is
assumed to behave honestly, and the simulator only has access to public key material. For an authenticated
key encapsulation mechanism AKEM and a simulator Sim, we define deniability in the dishonest receiver
setting and honest receiver setting via the games depicted in Figure 5. The advantage of an adversary A is

then defined as

Adv
(n,QChl)-DR-Den
AKEM,A,Sim :=

∣∣∣∣Pr[(n, QChl)-DR-DenAKEM,Sim(A)⇒ 1]− 1

2

∣∣∣∣,
Adv

(n,QChl)-HR-Den
AKEM,A,Sim :=

∣∣∣∣Pr[(n, QChl)-HR-DenAKEM,Sim(A)⇒ 1]− 1

2

∣∣∣∣.
8



Game (n, QEnc, QDec, QChl)-Ins-CCAAKEM(A)

01 D := ∅
02 for i ∈ [n]
03 (ski, pki)

$← Gen
04 b $← {0, 1}
05 b′ ← AEncps,Decps,Chall(pk1, . . . , pkn)
06 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

07 (c, k) $← Enc(sks, pk)
08 return (c, k)

Oracle Decps(pk, r ∈ [n], c)

09 if ∃ k : (pk, pkr, c, k) ∈ D
10 return k
11 k ← Dec(pk, skr, c)
12 return k

Oracle Chall(sk, r ∈ [n])

13 (c, k) $← Enc(sk, pkr)
14 if b = 1
15 k $← K
16 D ← D ∪ {(µ(sk), pkr, c, k)}
17 return (c, k)

Figure 2. Game defining Ins-CCA for an authenticated key encapsulation mechanism AKEM := (Gen,Enc,Dec)
with adversary A making at most; QEnc queries to Encps, QDec queries to Decps, QCSK queries to CorSK, and QChl

queries to Chall.

Game (n, QEnc, QDec)-Out-CCAAKEM(A)

01 D := ∅
02 for i ∈ [n]
03 (ski, pki)

$← Gen
04 b $← {0, 1}
05 b′ ← AEncps,Decps(pk1, . . . , pkn)
06 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

07 (c, k) $← Enc(sks, pk)
08 if b = 1 ∧ pk ∈ {pk1, . . . , pkn}
09 k $← K
10 D ← D ∪ {(pks, pk, c, k)}
11 return (c, k)

Oracle Decps(pk, r ∈ [n], c)

12 if ∃ k : (pk, pkr, c, k) ∈ D
13 return k
14 k ← Dec(pk, skr, c)
15 return k

Figure 3. Game defining Out-CCA for an authenticated key encapsulation mechanism AKEM := (Gen,Enc,Dec)
with adversary A making at most; QEnc queries to Encps and QDec queries to Decps.

2.3 Pseudorandom Function

Definition 2 (Pseudorandom Function). A keyed function F with a finite key space K, and finite
output range R is a function F : K× {0, 1}∗ → R. We formalise the notion of pseudorandomess for a keyed
function F via the game (n,QEval)-PRF depicted in Figure 6 and define the advantage of adversary A as

Adv
(n,QEval)-PRF
F,A :=

∣∣∣∣Pr [(n,QEval)-PRFF (A)⇒ 1]− 1

2

∣∣∣∣.
Based on a PRF one can also define a dual-PRF [Bel06, Bel15] which means that the function can be

keyed on either the actual key or the (fixed-length) input. This was even further generalised as a split-key
PRF [GHP18]. To obtain a uniformly random key from an unpredictable input, a random oracle would be
needed. However, if the secrets are uniformly random, then a split-key PRF is sufficient. In particular, the
output of the sk-PRF will be pseudorandom. The idea is that adversary A can first choose the key that
is attacked (position j) and is then playing the normal PRF game where the remaining keys (for positions
ℓ ∈ [m] \ {j}) that were not chosen as the attacked key act as the input to the function. Note that a sk-PRF
can be generically instantiated by calling a dual-PRF multiple times sequentially.
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Games (n, QEnc, QChl)-Out-AutAKEM(A)

01 D := ∅
02 for i ∈ [n]
03 (ski, pki)

$← Gen
04 b $← {0, 1}
05 b′ $← AEncps,Chall(pk1, . . . , pkn)
06 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

07 (c, k) $← Enc(sks, pk)
08 D ← D ∪ {(pks, pk, c, k)}
09 return (c, k)

Oracle Chall(pk, r ∈ [n], c)

10 if ∃ k : (pk, pkr, c, k) ∈ D
11 return k
12 k ← Dec(pk, skr, c)
13 if b = 1 ∧ pk ∈ {pk1, . . . , pkn} ∧ k ̸= ⊥
14 k $← K
15 D ← D ∪ {(pk, pkr, c, k)}
16 return k

Figure 4. Game defining Out-Aut for an authenticated key encapsulation mechanism AKEM := (Gen,Enc,Dec) with
adversary A making at most QEnc queries to Encps and QChl queries to Chall.

Games (n, QChl)-DR-DenAKEM,Sim(A) and (n, QChl)-HR-DenAKEM,Sim(A)

01 R, C ← ∅
02 for i ∈ [n]
03 (ski, pki)

$← Gen
04 b $← {0, 1}
05 b′ ← ARev,Chall(pk1, . . . , pkn)
06 if R∩ C ̸= ∅ //HR-Den
07 abort //HR-Den
08 return Jb = b′K

Oracle Chall(s ∈ [n], r ∈ [n])

09 if s = r return ⊥
10 C ← C ∪ {r}
11 (c, k) $← Enc(sks, pkr)
12 if b = 1
13 (c, k) $← Sim(pks, pkr, skr) //DR-Den
14 (c, k) $← Sim(pks, pkr) //HR-Den
15 return (c, k)

Oracle Rev(i ∈ [n])

16 R← R∪ {i}
17 return ski

Figure 5. Games defining DR-Den and HR-Den for an AKEM AKEM and a simulator Sim for adversary A where
A makes at most QChl queries to Chall.

Game (n,QEval)-PRFF (A)

01 for i ∈ [n]
02 ki

$← K
03 fi

$← {f | f : {0, 1}∗ →R}
04 b $← {0, 1}
05 b′ ← AEval

06 return Jb = b′K

Oracle Eval(i ∈ [n], x)

07 if b = 0
08 return F (ki, x)
09 if b = 1
10 return fi(x)

Figure 6. Game defining PRF for a keyed function F with adversary A making at most QEval queries to Eval.

Definition 3 (Split-Key Pseudorandom Function). A multi-keyed function with m ∈ N inputs, input
space K1× . . .×Km, and output space R is a function Fm : K1× . . .×Km → R. We formalise the notion of
split-key pseudorandomess for a multi-keyed function Fm via the game (n,QEval)-PRF depicted in Figure 7
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and define the advantage of adversary A = (A1,A2) as

Adv
(n,QEval)-PRF
Fm,A :=

∣∣∣∣Pr [(n,QEval)-PRFFm
(A)⇒ 1]− 1

2

∣∣∣∣.
Game (n,QEval)-PRFFm(A)

01 j $← A1

02 K′ :=×ℓ∈[m]\{j}Kℓ

03 for i ∈ [n]
04 ki

$← Kj

05 fi
$← {f | f : K′ →R}

06 b $← {0, 1}
07 b′ ← AEval

2

08 return Jb = b′K

Oracle Eval(i ∈ [n], x)

09 if b = 0
10 parse x→ (x1, . . . , xj−1, xj+1, . . . , xm)
11 return F (x1, . . . , xj−1, ki, xj+1, . . . , xm)
12 if b = 1
13 return fi(x)

Figure 7. Game defining PRF for a multi-keyed function Fm with adversary A = (A1,A2) making at most QEval

queries to Eval.

2.4 Non-Interactive Key Exchange (NIKE)

Definition 4 ((Simplified) Non-Interactive Key Exchange [FHKP12, App. G]). A simplified non-
interactive key exchange NIKE is defined as a tuple NIKE := (Stp,Gen,Sdk) of the following algorithms.

par $← Stp: The probabilistic setup algorithm returns a set of system parameters par. We assume that par
implicitly defines a shared key space KNIKE and is implicitly accessed by all other algorithms.

(sk, pk) $← Gen: Given system parameters par, the probabilistic key generation algorithm Gen returns a
secret/public key pair (sk, pk).

k ← Sdk(sk, pk): Given a secret key sk and a public key pk, the deterministic shared key establishment
algorithm Sdk returns a shared key k ∈ KNIKE, or a failure symbol ⊥. We assume that Sdk always returns
⊥ if sk is the secret key corresponding to pk.

A NIKE is δNIKE correct if for all par ∈ Stp

Pr

[
Sdk(sk1, pk2) ̸= Sdk(sk2, pk1)

∣∣∣∣ (sk1, pk1) $← Gen
(sk2, pk2)

$← Gen

]
≤ δNIKE.

Security notions can be found in Appendix B.1.

2.5 Key Encapsulation Mechanism

Definition 5 (Key Encapsulation Mechanism). A key encapsulation mechanism KEM is defined as a
tuple KEM := (Gen,Enc,Dec) of the following algorithms.

(sk, pk) $← Gen: The probabilistic key generation algorithm Gen returns a key pair (sk, pk) implicitly defining
a shared key space KKEM.

(c, k) $← Enc(pk): The probabilistic encapsulation algorithm Enc takes as input a public key and returns a
ciphertext c and a shared key k ∈ KKEM.

k ← Dec(sk, c): The deterministic decapsulation algorithm Dec takes as input a secret key sk and a
ciphertext c and returns a shared key k ∈ KKEM or a failure symbol ⊥.

The correctness error δKEM is defined as

δKEM := Pr

[
Dec(sk, c) ̸= k

∣∣∣∣ (sk, pk) $← Gen
(c, k) $← Enc(pk)

]
.

Security notions can be found in Appendix B.2.
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2.6 Ring Signatures

Syntax. We recall syntax and standard security notions of ring signatures [RST01].

Definition 6 (Ring Signature). A ring signature scheme RSig is defined as a tuple (Stp,Gen,Sgn,Ver) of
the following algorithms.

par $← Stp(κ): Given an upper bound, κ, on the ring size the probabilistic setup algorithm Stp returns system
parameters par, where par defines a message spaceM. We assume that all algorithms are implicitly given
access to the system parameters par.

(sk, pk) $← Gen: The probabilistic key generation algorithm returns a secret key sk and a corresponding
public key pk.

σ $← Sgn(sk, ρ,m): Given a secret key sk, a ring ρ = {pk1, . . . , pkk} such that the public key pk corresponding
to sk satisfies pk ∈ ρ and k ≤ κ, and a message m ∈M, the probabilistic signing algorithm Sgn returns
a signature σ from a signature space S.

b← Ver(σ, ρ,m): Given a signature σ, a ring ρ, and a message m, the deterministic verification algorithm
Ver returns a bit b, such that b = 1 if and only if σ is a valid signature on m and b = 0 otherwise.

RSig is δ(κ)-correct or has correctness error δ(κ) if for all κ ∈ N, par $← Stp(κ), and {(ski, pki)}i∈[k] ∈
sup (Gen), and for any i ∈ [k] with k ≤ κ,

Pr [Ver(Sgn(ski, ρ,m), ρ,m) ̸= 1] ≤ δ(κ),

where ρ := {pk1, . . . , pkk}, and the probability is taken over the random choices of Stp, Gen and Sgn.
We assume (w.l.o.g.) that there is a mapping µ from the space of secret keys to the space of public keys

such that for all (sk, pk) ∈ sup(Gen) it holds µ(sk) = pk.
Security notions can be found in Appendix B.3.

2.7 Symmetric Encryption

Definition 7 (Symmetric Encryption). A symmetric encryption Sym is defined as a tuple Sym :=
(Enc,Dec) of the following algorithms and a key space KSym.

c← Enc(k,m): The deterministic encryption algorithm Enc takes as input a symmetric key k and a message
m and outputs a ciphertext c.

m← Dec(k, c): The deterministic decryption algorithm Dec takes as input a symmetric key k and a
ciphertext c and outputs a message m.

Sym is (perfectly) correct if for all k ∈ KSym and all messages m it holds m = Dec(k,Enc(k,m)).
The security notion can be found in Appendix B.4

3 Generic Construction

In this section, we present a generic construction for a deniable AKEM combiner derived from two deniable
AKEMs, AKEM1 and AKEM2, and a multi-keyed function H with five inputs which is illustrated in Figure 8.
This construction builds upon the natural approach proposed in [GHP18]. Regarding security, our results are
as follows: For confidentiality (see Theorem 9) and authenticity (see Theorem 10) the combiner requires only
one of the underlying AKEMs to ensure confidentiality or authenticity, aligning with the expected behaviour
of a combiner. However, for deniability, we prove that our generic black-box construction requires that both
schemes be deniable. Specifically, Theorem 11 shows that if both schemes are dishonest receiver deniable,
then the combiner inherits this property. Similarly, Theorem 12 establishes that the combiner maintains
deniability in the honest receiver setting if both underlying schemes are honest receiver deniable.
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Gen

01 (sk1, pk1)
$← AKEM1.Gen

02 (sk2, pk2)
$← AKEM2.Gen

03 sk := (sk1, sk2)
04 pk := (pk1, pk2)
05 return (sk, pk)

Enc(sks, pkr)

06 parse sks → (sk1, sk2)
07 parse pkr → (pk1, pk2)
08 (c1, k1)

$← AKEM1.Enc(sk1, pk1)
09 (c2, k2)

$← AKEM2.Enc(sk2, pk2)
10 c := (c1, c2)
11 k := H(k1, k2, (µ(sk1), µ(sk2)), (pk1, pk2), c)
12 return (c, k)

Dec(pks, skr, c)

13 parse pks → (pk1, pk2)
14 parse skr → (sk1, sk2)
15 parse c→ (c1, c2)
16 k1 ← AKEM1.Dec(pk1, sk1, c1)
17 k2 ← AKEM2.Dec(pk2, sk2, c2)
18 k := H(k1, k2, (pk1, pk2), (µ(sk1), µ(sk2)), c)
19 return k

Figure 8. Generic Construction of a deniable authenticated key encapsulation mechanism AKEM[AKEM1,AKEM2,H].

Lemma 8 (Correctness). If AKEM1 has correctness error δ1 and AKEM2 correctness error δ2, then
δAKEM[AKEM1,AKEM2,H] ≤ δ1 + δ2.

Theorem 9 (Confidentiality). For any Ins-CCA adversary A against Π := AKEM[AKEM1,AKEM2,H],
depicted in Figure 8, there exists an Ins-CCA adversary B1 against AKEM1, an Ins-CCA adversary B2
against AKEM2, and a PRF adversary C against H with tA ≈ tB1

≈ tB2
≈ tC such that

AdvQ-Ins-CCA
Π,A ≤ 2 ·min

{
AdvQ-Ins-CCA

AKEM1,B1
, AdvQ-Ins-CCA

AKEM2,B2

}
+ 2 ·AdvQH-PRF

H,C +QChl · δΠ

for Q = (n, QEnc, QDec, QChl), QH = (QChl, QDec +QChl).

Proof (Sketch). If AKEM1 or AKEM2 is Ins-CCA secure, one of the input keys to H is uniformly random.
With the PRF security of H, the key of the combiner is uniformly random too. The full proof can be found
in Appendix C. ■

Theorem 10 (Authenticity). For any Out-Aut adversary A against Π := AKEM[AKEM1,AKEM2,H],
as depicted in Figure 8, there exists an Out-Aut adversary B1 against AKEM1, an Out-Aut adversary B2
against AKEM2, an Out-CCA adversary C1 against AKEM1, an Out-CCA adversary C2 against AKEM2,
and a PRF adversary D against H with tA ≈ tB1

≈ tB2
≈ tC1

≈ tC2
≈ tD such that

AdvQ-Out-Aut
Π,A ≤2 ·min

{
AdvQ-Out-Aut

AKEM1,B1
+AdvQ-Out-CCA

AKEM1,C1
, AdvQ-Out-Aut

AKEM2,B2
+AdvQ-Out-CCA

AKEM2,C2

}
+ 2 ·AdvQH-PRF

H,D +QChl · δΠ

for Q = (n, QEnc, QChl), QH = (QEnc +QChl, QEnc +QChl).

Proof (Sketch). If AKEM1 or AKEM2 is Out-Aut secure, an adversary cannot construct a ciphertext for
which they can distinguish a real decapsulation from a uniformly random key. With the PRF security of
H, the key of the combiner should be uniformly random too. However, in contrast to the confidentiality
case these properties are not enough because an adversary could use the encapsulation oracle to produce a
ciphertext for which they know the key and then recycle one part of the ciphertext. To avoid this, we also
require confidentiality (Out-CCA) of AKEM1 or AKEM2. The full proof can be found in Appendix C. ■

Theorem 11 (Dishonest Deniability). For any DR-Den adversary A against
Π := AKEM[AKEM1,AKEM2,H], as depicted in Figure 8, any simulators Sim1,Sim2, and simulator
Sim[Sim1,Sim2] as defined in Figure 24 there exists a DR-Den adversary B1 against AKEM1 and a
DR-Den adversary B2 against AKEM2 with tA ≈ tB1 ≈ tB2 such that

AdvQ-DR-Den
Π,Sim,A ≤ 2 ·AdvQ-DR-Den

AKEM1,Sim1,B1
+ 2 ·AdvQ-DR-Den

AKEM2,Sim2,B2

for Q = (n, QChl).
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Proof (Sketch). The simulator of the combiner can be constructed by using the simulators of the underlying
schemes. For this reason the security relies on both the AKEM’s. The full proof can be found in Appendix C.

■

Theorem 12 (Honest Deniability). For any HR-Den adversary A against
Π := AKEM[AKEM1,AKEM2,H], as depicted in Figure 8, any simulators Sim1,Sim2, and simulator
Sim[Sim1,Sim2] as defined in Figure 24 there exists a HR-Den adversary B1 against AKEM1 and a
HR-Den adversary B2 against AKEM2 with tA ≈ tB1

≈ tB2
such that

AdvQ-HR-Den
Π,Sim,A ≤ 2 ·AdvQ-HR-Den

AKEM1,Sim1,B1
+ 2 ·AdvQ-HR-Den

AKEM2,Sim2,B2

for Q = (n, QChl).

Proof. The theorem can be proved analogously to Theorem 11. ■

4 Hybrid Construction: Shadowfax

In this section, we present a hybrid construction for a deniable AKEM based on a non-interactive key
exchange NIKE, a key encapsulation mechanism KEM, a ring signature scheme RSig, a symmetric
encryption scheme Sym, and two split-key PRFs H1 and H2 (H1 having two inputs and H2 having six
inputs), as shown in Figure 9. This approach leverages well-known cryptographic primitives that can be
instantiated from concrete schemes, providing a practical construction. Our security results are as follows:
For both confidentiality (see Theorem 14) and authenticity (see Theorem 15), the combiner requires only
one of the underlying AKEMs to ensure the respective property, consistent with the generic combiner.
Confidentiality is provided by the security of either the ephemeral NIKE or the KEM. Authenticity comes
from the static NIKE (providing implicit authentication) or the ring signature. For dishonest receiver
deniability (see Theorem 16) we only rely on security advantages that can be instantiated with statistical
security arguments, specifically the correctness property of the NIKE and the anonymity property of the
ring signature. Finally, we achieve honest receiver deniability (see Theorem 17) by relying on just one of
the underlying computational assumptions – specifically, the security of either the ephemeral NIKE or the
KEM – to ensure deniability for the combiner. The main challenge arises from the public verifiability of the
ring signature. [GJK24b] addresses this issue by symmetrically encrypting the ring signature using the
KEM key. We implement a similar solution but derive the key material from both the NIKE and the KEM.
This design mirrors our approach for confidentiality, ensuring that an adversary would need to compromise
both the NIKE and KEM in order to verify the signature. Additionally H1 is used twice in the construction
to simplify the instantiation and used with a tag "auth" for domain separation in the proof. The setup of
NIKE and RSig are implicitly done; for RSig by inputting maximum ring size 2.

Lemma 13 (Correctness). If NIKE has correctness error δNIKE, KEM correctness error δKEM, and RSig
correctness error δRSig and Sym is (perfectly) correct, then

δAKEM[NIKE,KEM,RSig,Sym,H1,H2] ≤ δNIKE + δKEM + δRSig.

Theorem 14 (Confidentiality). For any Ins-CCA adversary A against
Π := AKEM[NIKE,KEM,RSig,Sym,H1,H2], as depicted in Figure 9, there exists a CKS adversary B
against NIKE, a PRF adversary C against H1, an PRF adversary D against H2, and an IND-CCA
adversary E against KEM with tA ≈ tB ≈ tC ≈ tD ≈ tE such that

AdvQ-Ins-CCA
Π,A ≤ 2nQChl ·

(
min

{
AdvQNIKE-CKS

NIKE,B +Adv
(1,1)-PRF
H1,C ,Adv

(1,QDec,1)-IND-CCA
KEM,E

}
+ 2 ·Adv

(1,QDec+1)-PRF
H2,D + (QEnc +QDec) · ηNIKE · γKEM +QChl · δΠ

)
for Q = (n, QEncQDec, QChl), QNIKE = (QEnc + 2, 2QEnc + 2QDec, 2QEnc + 2QEnc + 1).
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Gen

01 (nsk, npk) $← NIKE.Gen
02 (ksk, kpk) $← KEM.Gen
03 (ssk, spk) $← RSig.Gen
04 sk := (nsk, ksk, ssk)
05 pk := (npk, kpk, spk)
06 return (sk, pk)

Enc(sks, pkr)

07 parse sks → (nsks, ksks, ssks)
08 parse pkr → (npkr, kpkr, spkr)
09 (nske, npke)

$← NIKE.Gen
10 nk′ ← NIKE.Sdk(nsks, npkr)
11 nk := H1(nk

′, "auth")
12 nk1∥nk2 ← NIKE.Sdk(nske, npkr)
13 (kct, kk1∥kk2) $← KEM.Enc(kpkr)
14 m← (kct, kpkr)
15 σ ← RSig.Sgn(ssks, {µ(ssks), spkr},m)
16 k′ := H1(nk1, kk1)
17 sct := Sym.Enc(k′, σ)
18 c := (npke, kct, sct)
19 k := H2(nk, nk2, kk2, c, µ(sks), pkr)
20 return (c, k)

Dec(pks, skr, c)

21 parse pks → (npks, kpks, spks)
22 parse skr → (nskr, kskr, sskr)
23 parse c→ (npke, kct, sct)
24 nk′ ← NIKE.Sdk(nskr, npks)
25 nk := H1(nk

′, "auth")
26 nk1∥nk2 ← NIKE.Sdk(nskr, npke)
27 kk1∥kk2 ← KEM.Dec(kskr, kct)
28 k′ := H1(nk1, kk1)
29 σ := Sym.Dec(k′, sct)
30 m← (kct, µ(kskr))
31 if RSig.Ver(σ, ρ = {spks, µ(sskr)},m) ̸= 1
32 return ⊥
33 k := H2(nk, nk2, kk2, c, pks, µ(skr))
34 return k

Figure 9. Concrete construction of a deniable AKEM AKEM[NIKE,KEM,RSig, Sym,H1,H2]. By “∥” we denote that
an output is split into two equal parts.

Proof (Sketch). If the NIKE is CKS secure and H1 a PRF, one of the keys for the split-key PRF H2 is
uniformly random and therefore the output of the hybrid AKEM construction. Analogously, the security can
be based on the IND-CCA security of the KEM. In this case, another input key of H2 is uniformly random
and thus the hybrid’s key. The full proof can be found in Appendix D. ■

Theorem 15 (Authenticity). For any Out-Aut adversary A against
Π := AKEM[NIKE,KEM,RSig,Sym,H1,H2], as depicted in Figure 9, there exists an CKS adversary B
against NIKE, a PRF adversary C against H1, an PRF adversary D against H2, a UF-CRA1 adversary
E against RSig, and an IND-CCA adversary F against KEM with tA ≈ tB ≈ tC ≈ tD ≈ tE ≈ tF such that

AdvQ-Out-Aut
Π,A ≤ min

{
2 ·AdvQNIKE-CKS

NIKE,B + 2 ·Adv(n
2,n2)-PRF

H1,C , Adv
(n,2,QEnc)-UF-CRA1
RSig,E + 2 ·AdvQ-IND-CCA

KEM,F + Q2
Enc · γKEM

}
+ 2 ·Adv(Q

′,Q′)-PRF
H2,D +QChl · δΠ +QEnc ·Q ′ · ηNIKE · γKEM

with Q = (n, QEnc, QChl), QNIKE = (QEnc + 2QChl, QEnc + 2QChl), Q
′ = QEnc +QChl.

Proof (Sketch). If the RSig is UF-CRA1 it is hard for an adversary to come up with a valid ciphertext
unless it was produced by the encapsulation oracle. This can be a valid attack since the adversary can
recycle one part of the encapsulation output and thus produce a fresh and valid ciperhetxt. Additionally
requiring the KEM to be IND-CCA prevents this attack. An analogous argument can be made if the NIKE
is CKS secure. Note that a NIKE is used for authenticity (analogue to the UF-CRA1 argument) and for
confidentiality (analogue to the IND-CCA argument). Applying the PRF security of H2 makes the hybrid
key uniformly random. The full proof can be found in Appendix D. ■

Theorem 16 (Dishonest Deniability). For any DR-Den adversary A against
Π := AKEM[NIKE,KEM,RSig,Sym,H1,H2], as depicted in Figure 9, and simulator Sim as defined in
Figure 33 there exists a MC-Ano adversary B against RSig with tA ≈ tB such that

Adv
(n,QChl)-DR-Den
Π,Sim,A ≤ Adv

(n,2,QChl)-MC-Ano
RSig,B +QChl · δNIKE.

Proof (Sketch). To achieve dishonest receiver deniability, the simulator must create an indistinguishable
NIKE and RSig part. For the NIKE, this reduces to the NIKE’s correctness since the simulator has access to
the receiver’s secret key. For the RSig, this reduces to MC-Ano. Note that both properties must be fulfilled
because distinguishing one part is sufficient for the adversary to win their game. The full proof can be found
in Appendix D. ■
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Theorem 17 (Honest Deniability). For any HR-Den adversary A against
Π := AKEM[NIKE,KEM,RSig,Sym,H1,H2], as depicted in Figure 9,and simulator Sim as defined in
Figure 35 there exists a CKS adversary B against NIKE, an IND-CPA adversary C against KEM, PRF
adversaries D and E against H1 and H2, and a IND-CPA adversary F against Sym with
tA ≈ tB ≈ tC ≈ tD ≈ tE ≈ tF such that

Adv
(n,QChl)-HR-Den
Π,Sim,A ≤ 4n2 ·QChl ·

(
min

{
Adv

(2,0,1)-CKS
NIKE,B ,Adv

(1,1)-IND-CPA
KEM,C

}
+ Adv

(1,1)-PRF
H1,D +Adv

(1,1)-PRF
H2,E +AdvIND-CPA

Sym,F

)
.

Proof (Sketch). Authenticity via a NIKE is not a problem for honest receiver deniability because
authentication is made implicit and there is no information about it in the AKEM ciphertext. This is
different from the ring signature which can be publicly verified which is why it is encrypted in the
construction. Hence, security can be reduced to said encryption. Since the symmetric encryption key is
derived from a NIKE key and a KEM key via a split-key PRF, we can reduce to CKS security of NIKE or
IND-CPA of the KEM. Applying the PRF property of H2 yields a uniformly random encryption key
which is used to apply Sym’s IND-CPA security. The full proof can be found in Appendix D. ■

5 Implementation

Table 1. Sizes (in bytes) of Gandalf ring signature instantiations, key-encapsulation mechanisms, the resulting
deniable AKEMs, and Shadowfax hybrid instantiations derived from the initial AKEM. Sizes are from our
implementation. Unless stated otherwise, “✓” denotes implementations provided in this work. The most compact
instantiation and the one based on NIST standards are highlighted.

RSig KEM (PQ-)AKEM NIKE Shadowfax

Scheme
Size

Impl. Scheme
Size

Impl.
Size

Impl. Scheme
Size

Impl.
Size

Impl.
pk σ pk c pk c pk pk c

Gandalf [Antrag, Mitaka ] 896 1 276 ✓

NTRU-A 768 768 ✗ 1 664 2 044 ✗

C
u
r
v
e
2
5
5
1
9

32

✓
[B

er
0
6
]

1 696 2 076 ✗

BAT 521 473 ✓ [FKPY22] 1 417 1 749 ✓ 1 449 1 781 ✓

ML–KEM 800 768 ✓ [SAB+20] 1 696 2 044 ✓ 1 728 2 076 ✓

Gandalf [Falcon, Falcon ] 896 1 276 ✓

NTRU-A 768 768 ✗ 1 664 2 044 ✗ 1 696 2 076 ✗

BAT 521 473 ✓ [FKPY22] 1 417 1 749 ✓ 1 449 1 781 ✓

ML–KEM 800 768 ✓ [SAB+20] 1 696 2 044 ✓ 1 728 2 076 ✓

In this paper, we instantiate the Gandalf ring signature scheme, the corresponding post-quantum
AKEM by [GJK24b], and the hybrid AKEM Shadowfax of this paper with several choices for the underlying
post-quantum KEM and trapdoor sampler.

Table 2. Parameter sets for BAT, ML–KEM, and Falcon in this paper.

Scheme BAT ML–KEM Falcon

Parameter set bat-257-512 mlkem-512 falcon-512

Optimisation Goals. We aim for portability, the compactness of public key and ciphertext sizes, and
compliance with standardised components in our instantiations of post-quantum and hybrid AKEMs. Since
the rapid development of Post-Quantum Cryptography Standardisation by the National Institute of
Standards and Technology (NIST), there are rich C reference implementations for several post-quantum
cryptosystems.9 We follow a similar paradigm and implement the AKEMs with the C programming

9 Additionally, standardised building blocks often provide deeper analyses [ABB+23, AOB+24, BDK+18, GJK24a]
providing more trust.
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language10. Since C is a high-level programming language, our instantiations are portable. When
compactness is the main optimisation goal, we choose BAT [FKPY22], Antrag [ENS+23], and
Mitaka [EFG+22] along with the latest NTRU solver by [Por23]. If standardised components are
preferred, we choose ML–KEM [MLK24] and the latest implementation of the fast Fourier sampler [DP16]
from Falcon [PFH+20, Por25]. Table 2 summarises the chosen parameter sets for BAT, ML–KEM, and
Falcon in this paper. Our instantiation is also modular and one can replace the post-quantum KEM and
the trapdoor sampler with other combinations after some wrapping for the API. Table 1 summarises the
schemes used to instantiate the Gandalf ring signature and the KEM, the implemented components, and
the resulting sizes of public keys, signatures, and ciphertexts. The signature size of one instantiation is 40
bytes larger than in the original proposal [GJK24b], due to different compression techniques. The authors
of [GJK24b] assumed the techniques of [ETWY22, EFG+22], but no implementations of those techniques
were available. We therefore use the compression from the round-3 Falcon submission, where the
signature has a fixed size of 666 bytes (including a 40-byte nonce). This results in a ring signature of 1 276
bytes with a 24-byte nonce for all Gandalf instantiations in this work. There is a concurrent work
instantiating Gandalf [KNTW25]. Due to a different compression and a different salt size, they achieve
slightly larger signatures of 1 288 bytes. All our source code is publicly available on the GitHub repository
Shadowfax. 11 A comparison in security and size with different AKEMs from the literature is shown in
Table 3.

5.1 Instantiation

Hash. Our instantiations use five distinct hash functions. BLAKE2b [SA15] which is shipped with BAT.
shake256 is used for converting the 32-byte shared key from ML–KEM to a 64-byte shared key. We use
shake128 [KjCP16] for hashing the message to a polynomial in the ring signature. Additionally, SHA3-512
is used in the Non-Interactive Key Exchange (NIKE) construction, while SHA3-256 is used for the hash
functions H1 and H2 in the concrete construction (see Figure 9). Specifically, H1 is implemented as the
hmac HMAC-SHA3-256 derived from SHA3-256. As for H2, we implement it with three HMAC-SHA3-256 calls
as follows: H2(nk, nk2, kk2, c, µ(sks), pkr) = HMAC-SHA3-256 (nknk2, [rest]kk2

) where{
nknk2 = HMAC-SHA3-256 (nk, nk2) ,

[rest]kk2 = HMAC-SHA3-256 (kk2, [rest]) ,

and [rest] is the concatenation of the rest of the inputs. Note that our instantiations of H1 and H2 align
with what we actually proved in Theorem 14. HMAC has been proven to be a dual-PRF [BBGS23] and the
consecutive calls as described above instantiate a split-key PRF.

Symmetric Encryption, NIKE and KEM. We choose the CTR mode of AES-128 for the symmetric
encryption. For the NIKE, we choose the Curve25519 Diffie-Hellman [Ber06] based on the ref10

implementation of crypto scalarmult/curve25519 from supercop-20240716 [DT24] and SHA3-512.
After computing the raw Diffie-Hellman shared secret, we pass it through SHA3-512 to derive the shared
key for the NIKE. For the post-quantum KEM, we consider two options: ML–KEM [MLK24] and
BAT [FKPY22]. For ML–KEM, we pass the 32-byte shared key to shake256 and expand it to a 64-byte
shared key. For BAT, we integrate the latest NTRU solver by [Por23], enforce the use of BLAKE2b in
encapsulation and decapsulation, and simplify the source code with the C preprocessor.

NTRU Solver. In BAT and Antrag, we have to solve for polynomials F,G ∈ Z[X]
/〈

XN + 1
〉
satisfying

the following NTRU equation: g ·F −f ·G = q mod
(
XN + 1

)
for a power-of-two N , a positive integer q, and

polynomials g, f ∈ Zq[X]
/〈

XN + 1
〉
with small coefficients. We integrate the latest NTRU solver by [Por23]

into BAT and Antrag.
10 The only exception is the reference implementation of Falcon: The latest source code by [Por25] comes with

built-in selection for platform-specific intrinsics and falls back to C with integer emulation for the floating-point
operations. On our platform, the source code automatically selects Armv8-A Neon intrinsics.

11 https://github.com/vincentvbh/shadowfax
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Table 3. Comparison of AKEMs, their security notions, and reliance on pre-quantum (pre-Q) or post-quantum
(post-Q) assumptions. Deniability notions marked with “†” are not formally proven in the original works. Entries
marked “⋆” indicate theoretically achievable sizes. The Swoosh [GdKQ+24] size refers to a passively secure NIKE;
achieving active security requires a NIZK, which must be added to the NIKE public key. DualRing [YEL+21, Tab. 3]
is included because the parameters of Gandalf would need to be slightly increased for stronger concrete anonymity
(see [GJK24b] for details).

Scheme Instantiation Confidentiality Authenticity Deniability
Assumption Size (in bytes)

pre-Q post-Q pk c

DH-AKEM [ABH+21, Lst. 10] X25519 Ins-CCA Out-Aut DR-Den† ✓ ✗ 32 32

EtStH-AKEM [AJKL23, Lst. 18]
BAT + Antrag

Ins-CCA Out-Aut ✗ ✗ ✓
1 417 1 119

ML–KEM + Falcon 1 697 1 434

NIKE-AKEM [AJKL23, Lst. 19] Swoosh [GdKQ+24] Ins-CCA Out-Aut DR-Den† ✗ ✓ > 221 184 > 221 184

EaNtH-AKEM [JMOR25] BAT + Swoosh [GdKQ+24] Ins-CCA Out-Aut DR-Den† ✗ ✓ > 221 705 473

FrodoKEX+ [CHN+24, Fig. 12] N/A IND-1BatchCCA UNF-1KCA DR-Den ✗ ✓ 21 300 72

Sparrow-KEM [Nio25, Fig. 7] N/A IND-1BatchCCA UNF-1KCA DR-Den ✗ ✓ 2 592 40

PQ-AKEM [GJK24b, Fig. 10]

NTRU-A + Gandalf [Antrag, Mitaka ]

Ins-CCA Out-Aut HR-Den & DR-Den ✗ ✓

1 664 2 004⋆/2 044

BAT + Gandalf [Antrag, Mitaka ] 1 417 1 709⋆/1 749

BAT + DualRing 3 361 4 953

Shadowfax
X25519 + BAT + Gandalf [Antrag, Mitaka ]

Ins-CCA Out-Aut HR-Den & DR-Den ✓ ✓
1 449 1 741⋆/1 781

X25519 + ML–KEM + Gandalf [Falcon,Falcon ] 1 728 2 076

Ring Signature. We choose Gandalf [GJK24b] for the ring signature. According to [GJK24b], Gandalf
achieves the smallest signature size for the ring of size 2, which suits well for constructing our AKEM. We
consider two options: (i) components from Falcon and (ii) Antrag with Mitaka. For (i), we reorganise the
construction of the signature generation and extract the trapdoor sampler. For (ii), we integrate the latest
NTRU solver by [Por23] to the Antrag trapdoor generation [ENS+23] and outline below the necessary
changes for achieving a compact signature size.

Modifications of Mitaka implementation. In the reference implementation of Mitaka released
in [EFG+22], the signatures are stored as double-precision floating-point numbers with non-zero fractional
parts, as opposed to integers. Therefore, existing compression techniques, which are defined over integers,
cannot be straightforwardly deployed. Furthermore, there is no implementation for the latest compression
technique [ETWY22] required by [EFG+22] and later used in [GJK24b]. Instead, we pull everything back
to integers whenever the remaining computation can be defined entirely over Z and plug in the signature
compression from the round 3 submission package of Falcon [PFH+20]. This results in a 40-byte increase of
signature size compared to the original Gandalf by [GJK24b]. In the reference implementation of
Mitaka, the program proceeds with double-precision floating-point arithmetic entirely, verifies the validity
of signatures with double-precision floating-point arithmetic, and skips the signature compression. Finally,
we also tweak the output of the sampler so it aligns with the definition of the trapdoor sampler. In the
description of the Mitaka sampler, the output of the trapdoor sampler is negated and cannot be used
directly in the ring signature scheme, as samples are supposed to be indistinguishable between parties.
Therefore, we negate the output of the sampler.

5.2 Performance

Benchmarking Environment. We benchmark our portable implementations on the Firestorm core of an
Apple M1 Pro with the operating system macOS Sonoma 14.6.1. Firestorm is the “big” core of the
“big.LITTLE” computing architecture prevalent in Arm-based architecture in personal computing devices.
It runs at the frequency of 3GHz and comes with a dedicated cryptographic extension. As we aim for
portable implementations, we do not use the cryptographic extension. All programs are compiled with GCC

13.3.0 with the optimisation flag -O3.

Cycle counts. Table 4 summarises the cycle counts of the C implementations of DH-AKEM, PQ-AKEM,
and Shadowfax. For the key generations PQ-AKEM and Shadowfax, the cycle count is dominated by the
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Table 4. Cycle counts (in thousands) of different authenticated key encapsulation mechanisms AKEM and ring
signature schemes RSig run on a Firestorm core of an Apple M1 Pro running at 3GHz.

RSig Unit Gen Sgn Ver

Raptor [LAZ19, Zha20]
kcc 71 420 7 980 505
ms 23.81 2.66 0.17

Gandalf [Falcon, Falcon ]∗ [KNTW25]
kcc - - -
ms 5.20 0.49 0.02

Gandalf [Falcon, Falcon ] (this work)
kcc 12 283 911 84
ms 4.04 0.30 0.03

Gandalf [Antrag, Mitaka ]
kcc 13 441 1 137 85
ms 4.45 0.38 0.03

AKEM Unit Gen Enc Dec

DH-AKEM [X25519]
kcc 227 679 457
ms 0.08 0.23 0.15

PQ-AKEM [BAT, Gandalf [Antrag, Mitaka ]]
kcc 25 496 1 310 346
ms 8.50 0.43 0.12

PQ-AKEM [ML–KEM, Gandalf [Falcon, Falcon ]]
kcc 13 483 1 337 233
ms 4.09 0.59 0.08

Shadowfax [X25519, BAT, Gandalf [Antrag, Mitaka ]]
kcc 25 876 2 12 795
ms 8.57 0.66 0.26

Shadowfax [X25519, ML–KEM, Gandalf [Falcon, Falcon ]]
kcc 12 569 1 792 674
ms 4.18 0.59 0.22

∗ Our benchmark. In [KNTW25], the authors accessed the timing counters through the
standard C library on our platform. We benchmark their implementation on our platform.
For other implementations, we access the cycle counters through the macOS API with a
fallback to assembly for cycle counters on other operating systems. As mentioned before,
the implementation of [KNTW25] leads to slightly larger signatures (1 288 bytes).

NTRU solver used in BAT,Mitaka, and Falcon. For the encapsulation, the cycle count is dominated by the
signing of Gandalf. As for the decapsulation, the cycle count is dominated by the NIKE in Shadowfax
and by ML–KEM/BAT in PQ-AKEM. We also give the cycle counts of our portable implementations
of the ring signature Gandalf, and benchmark the C implementations of Raptor by [LAZ19] and the
implementation by [KNTW25] on our platform. We stress that the C implementation of Raptor is based on
an earlier implementation of Falcon, which had been significantly refactored after the publication of [LAZ19].

Conclusion. The dominant cost in terms of ciphertext size arises from the post-quantum ring signature,
followed by the post-quantum KEM ciphertext. Public key sizes are less of a concern, and the overhead of
the pre-quantum AKEM is minimal. Notably, this implies that with a post-quantum deniable AKEM, the
cost of constructing a hybrid with strong security properties is virtually negligible. In conclusion, whenever
a post-quantum AKEM is needed (regardless of whether it needs to be deniable), incorporating a hybrid
should always be considered.
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A Additional Related Work

A.1 Combiners

Confidentiality. Hybrid KEMs have been explored as a means to achieve confidentiality in the post-quantum
era. For instance, [GHP18] demonstrated that the simple KEM combiner H(k1, k2) does not provide CCA
security, whereas incorporating the ciphertexts as H(k1, k2, c1, c2) resolves this issue. Furthermore, [HV21]
demonstrated a hybrid KEM combining the CPA-secure versions of HQC [AAB+22] and LAC [LLJ+19]
achieving IND-CCA security. Industry leaders have also explored hybrid approaches. In 2019 Cloudflare
and Google conducted experiments [KSL+19] to assess the performance of hybrid cryptographic solutions in
real-world scenarios. This work led to the adoption of hybrid cryptography in platforms such as Amazon’s
s2n and various forks of OpenSSL and OpenSSH [CPS19]. Further investigations into post-quantum hybrid
cryptography include benchmarks for its application in TLS [PST20], underscoring industry’s intent to
integrate these solutions. The European Telecommunications Standards Institute (ETSI) has also formalised
quantum-safe hybrid key exchanges [ETS20], while the TLS protocol is exploring hybrid key exchange designs
using concatenated key derivation functions [SFG24]. Additionally, the Internet Key Exchange (IKE) protocol
is evolving to incorporate hybrid post-quantum cryptographic methods [TTB+23]. A recent concrete hybrid
KEM, X-Wing [BCD+24], combines X25519 [LHT16] and ML-KEM-768, though it is a specific instantiation
rather than a generic combiner as in [GHP18]. The construction was later generalized in [CHH+25].

Authenticity. Hybrid solutions for authenticity, such as combining digital signature schemes have also been
explored [BHMS17, OGP+24, Jan25]. A natural way is to concatenate signatures, accepting the result as
valid only if all signatures are valid. This achieves existential unforgeability under a chosen message attack
(EUF-CMA) but not strong existential unforgeability. A hybrid solution for strong unforgeability was recently
presented in [Jan25]. The works of [BHMS17, OGP+24, Jan25] examined hybrid digital signatures within a
public key infrastructure. In particular, [BHMS17] introduced the concept of non-separability, ensuring that
a signature in a combined scheme cannot be split into valid signatures for either of its individual components.

Other Notions. A concurrent study on PAKE combiners leverages statistical password hiding to circumvent
the difficulty of constructing a generic combiner [HR25, LL25]. Another concurrent work explores obfuscated
KEMs and constructs combiners, similarly relying on statistical ciphertext uniformity [GRSV25].

A.2 Deniability

Despite limited awareness of deniability’s benefits among non-experts [RMA+23, YGS23], recent work has
focused on improving the real-world deniability of protocols [RMA+23, RYAJ+24, CCH25, CCH23]
particularly in messaging systems. While screenshots of message transcripts have traditionally been used as
legal evidence, [CCH25, CCH23] proposed enabling message editing at the application level, enhancing
real-world deniability. However, such solutions still rely on underlying cryptographic deniability to be
effective. Many protocols, such as X3DH [MP16], provide deniability by design, while others, like certain
versions of the Hybrid Public Key Encryption (HPKE) [BBLW22] standard, have deniability accidentally
as a relic of using Diffie-Hellman for implicit authentication. As noted in [GJK24b], the authenticated
mode of HPKE [BBLW22] exhibits some deniability properties as an unintended consequence of this design
choice. Another example is OPTLS by Krawczyk and Wee [KW16], a proposal that eliminates the need for
handshake signatures in TLS. Such protocols typically use X25519 [LHT16] in practice, and can be
upgraded to the post-quantum setting with a post-quantum non-interactive key exchange (NIKE).
However, existing post-quantum NIKEs are limited by prohibitively large public keys [GdKQ+24] or slow
performance [BBC+21]. As a result, most protocols instead tend to rely on post-quantum KEMs and/or
standard post-quantum signature schemes. For example, KEMTLS [SSW20] eliminates the need for
handshake signatures like OPTLS, but it uses static KEM keys for authentication, which differs from the
ephemeral key approach of protocols like X3DH. This presents a dilemma: while post-quantum security is
achievable, many protocols lose additional security properties – such as deniability – provided by their
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classical counterparts. For instance, Signal’s new Post-Quantum Extended Diffie-Hellman (PQXDH)
protocol [KS24] combines classical and post-quantum cryptography. However, PQXDH does not satisfy the
same level of deniability as its predecessor, X3DH [MP16], due to the signature on the ephemeral
key [FJ24]. Similarly, the analysis of Apple’s iMessage with PQ3 [Ste24, LSB24], explicitly states that
deniability is not a design goal. We hypothesise that this omission stems from the cost of providing
deniability or the relative simplicity of omitting it in favour of other security priorities. Moreover, a likely
approach to migrating authenticated HPKE [BBLW22] to the post-quantum setting would likely involve
using a KEM and signatures for explicit authentication, which would eliminate the deniability properties
present in its pre-quantum counterpart.

B Additional Preliminaries

B.1 Non-Interactive Key Exchange (NIKE)

We formalise the notion of key indistinguishability with active security for a simplified non-interactive key
exchange NIKE, with respect to system parameters par ∈ sup(Stp) via the game (n, QRC, QT)-CKSNIKE,par(A)
depicted in Figure 10 and define the advantage of adversary A as

Adv
(n,QRC,QT)-CKS
NIKE,par (A) :=

∣∣Pr [(n, QRC, QT)-CKSNIKE,par(A)⇒ 1]− 1
2

∣∣.
Note that this is an abstraction of the model equivalent to the original CKS [CKS09] notion for simplified

NIKEs from [FHKP12, App. G]. We reduce the number of oracles to a minimum. Instead of the register
honest oracles, we provide the adversary with n honestly generated public keys in the beginning. Instead of
registering corrupted users and querying to a corrupt reveal oracle, we directly provide the corrupt reveal
oracle on an adversarially chosen (corrupted) public key. This matches the interface of notions for other
primitives much better and eases the presentation of the proofs.

Lemma 18. Definition CKS is equivalent to the original definition (CKS-Orig). In particular for any
adversary A against one of the notions there exists an adversary B against the other notion such that

Adv
(n,QRC,QT)-CKS
NIKE,par,A ≤ Adv

(n,QRC,QRC,QT)-CKS-Orig
NIKE,par,B ,

Adv
(QRHU,QRCU,QRC,QT)-CKS-Orig
NIKE,par,A ≤ Adv

(QRHU,QRC,QT)-CKS
NIKE,par,B .

Games (n, QRC, QT)-CKSNIKE,par(A)

01 for i ∈ [n]
02 (ski, pki)

$← Gen
03 b $← {0, 1}
04 D := ∅
05 b′ ← ARevCor,Test,Ext,RevHon(pk1, . . . , pkn)
06 return Jb = b′K

Oracle RevCor(i ∈ [n], pk /∈ {pk1, . . . , pkn})

07 k ← Sdk(ski, pk)
08 return k

Oracle Test(i ∈ [n], j ∈ [n])

09 if i = j return ⊥
10 if b = 0
11 k ← Sdk(ski, pkj)
12 if b = 1
13 if ∃ k′ : ({pki, pkj}, k′) ∈ D
14 k ← k′

15 else
16 k $← K
17 D ← D ∪ {({pki, pkj}, k)}
18 return k

Figure 10. Games defining CKS for a simplified non-interactive key exchange NIKE with adversary A making at
most QRC queries to RevCor and at most QT queries to Test.

Proof. The reduction for the first inequality is depicted in Figure 11, the reduction for the second in Figure 12.
■
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BRegHonUsrB,RegCorUsrB,RevCorB,TestB

01 for i ∈ [n]
02 pki

$← RegHonUsrB()
03 C := ∅
04 b′ ← ARevCor,Test(pk1, . . . , pkn)
05 return b′

Oracle RevCor(i ∈ [n], pk /∈ {pk1, . . . , pkn})

06 if pk /∈ C
07 RegCorUsrB(pk)
08 C := C ∪ {pk}
09 k $← RevCorB(pki, pk)
10 return k

Oracle Test(i ∈ [n], j ∈ [n])

11 if i = j return ⊥
12 k $← TestB(pki, pkj)
13 return k

Figure 11. Reduction for CKS-Orig⇒ CKS.

BRevCorB,TestB (pk1, . . . , pkn)

01 C := ∅
02 i := 0
03 b′ $← ARegHonUsr,RegCorUsr,RevCor,Test

04 return b′

Oracle RegHonUsr()

05 i := i+ 1
06 return pki

Oracle RegCorUsr(pk)

07 C := C ∪ {pk}

Oracle RevCor(pk, pk′)

08 if ∃ j : pk = pkj ∧ pk′ ∈ C
09 k $← RevCorB(j, pk

′)
10 return k
11 return ⊥

Oracle Test(pk, pk′)

12 if ∃ j, j′ : pk = pkj ∧ pk′ = pkj′

13 k $← TestB(j, j
′)

14 return k
15 return ⊥

Figure 12. Reduction for CKS⇒ CKS-Orig.

B.2 Key Encapsulation Mechanism

The γ-spreadness of a KEM is defined as

γKEM := max
(sk,pk)∈Gen

c∈C

Pr [Enc(pk) = (c, ·)] ,

where C denotes the ciphertext space.
We formalise the notion of ciphertext indistinguishability (IND-CCA and IND-CPA) for a key

encapsulation mechanism KEM via the game (n,QDec, QChl)-IND-CCAKEM(A) depicted in Figure 13 and
define the advantage of adversary A as

Adv
(n,QDec,QChl)-IND-CCA
KEM,A :=

∣∣∣∣Pr [(n,QDec, QChl)-IND-CCAKEM(A)⇒ 1]− 1

2

∣∣∣∣,
Adv

(n,QChl)-IND-CPA
KEM,A := Adv

(n,0,QChl)-IND-CCA
KEM,A .

B.3 Ring Signatures

Unforgeability. We consider the notion of one-per-message unforgeability under chosen ring attacks, where the
adversary is only allowed to make at most one signing query per message/ring pair (mi, ρi) from [GJK24b].
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Game (n,QDec, QChl)-IND-CCAKEM(A)

01 for i ∈ [n]
02 (ski, pki)

$← Gen
03 b $← {0, 1}
04 b′ ← ADec,Chall(pk1, . . . , pkn)
05 return Jb = b′K

Oracle Dec(r ∈ [n], c)

06 if ∃ k : (pkr, c, k) ∈ D
07 return k
08 k ← Dec(skr, c)
09 return k

Oracle Chl(r ∈ [n])

10 (c, k) $← Enc(pkr)
11 if b = 0
12 continue
13 if b = 1
14 k $← K
15 D ← D ∪ {(pkr, c, k)}
16 return (c, k)

Figure 13. Game defining IND-CCA for a key encapsulation mechanism KEM with adversary A making at most
QDec queries to Dec and at most QChl queries to Chl.

Game (n, κ,QSgn)-UF-CRA1RSig(A)

01 Q ← ∅
02 par $← Stp(κ)
03 for i ∈ [n]
04 (ski, pki)

$← Gen
05 (σ⋆, ρ⋆,m⋆) $← ASgn(par, pk1, . . . , pkn)
06 return Jρ⋆ ⊆ {pki}i∈[n] ∧ Ver(σ⋆, ρ⋆,m⋆) = 1 ∧
(ρ⋆,m⋆) /∈ QK

Oracle Sgn(i ∈ [n], ρ,m)

07 if pki /∈ ρ ∨ (ρ,m) ∈ Q
08 return ⊥
09 σ $← Sgn(ski, ρ,m)
10 Q ← Q∪ {(ρ,m)}
11 return σ

Figure 14. Game UF-CRA1 for a ring signature scheme RSig and adversary A.

The notion is formalised through the game (n, κ,QSgn)-UF-CRA1RSig(A) depicted in Figure 14, where n is
the number of users, κ the maximal ring size, and QSgn is an upper bound on the signing queries. We define
the advantage functions of adversary A as

Adv
(n,κ,QSgn)-UF-CRA1
RSig,A := Pr[(n, κ,QSgn)-UF-CRA1RSig(A)⇒ 1].

Anonymity. We consider multi-challenge anonymity under full key exposures of a ring signature RSig
from [BFG+22, GJK24b]. It is defined via the game (n, κ,QChl)-MC-AnoRSig(A) for an adversary A,
depicted in Figure 15. We define the advantage as

Adv
(n,κ,QChl)-MC-Ano
RSig,A :=

∣∣Pr[(n, κ,QChl)-MC-AnoRSig(A)⇒ 1]− 1
2

∣∣.

Game (n, κ,QChl)-MC-AnoRSig(A)

01 par $← Stp(κ)
02 for i ∈ [n]
03 (ski, pki)

$← Gen
04 b $← {0, 1}
05 b′ $← AChl(par, (sk1, pk1), . . . , (skn, pkn))
06 return Jb = b′K

Oracle Chl(i0 ∈ [n], i1 ∈ [n], ρ,m)

07 if (ρ ⊆ {pk1, . . . , pkn}) ∧ (pki0 ∈ ρ) ∧ (pki1 ∈
ρ)
08 σ $← Sgn(skib , ρ,m)
09 return σ
10 else
11 return ⊥

Figure 15. Game defining MC-Ano for a ring signature scheme RSig with adversary A making at most QChl queries
to Chl.
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B.4 Symmetric Encryption

We formalise the notion of ciphertext indistinguishability (IND-CPA) for a symmetric encryption scheme
Sym via the game IND-CPASym(A) depicted in Figure 16 and define the advantage of adversary A as

AdvIND-CPA
KEM,A :=

∣∣∣∣Pr [IND-CPASym(A)⇒ 1]− 1

2

∣∣∣∣.
Game IND-CPASym(A)

01 k $← KSym

02 b $← {0, 1}
03 b′ ← AChall

04 return Jb = b′K

Oracle Chl(m0,m1) // one query

05 c := Enc(k,mb)
06 return c

Figure 16. Game defining IND-CPA for a symmetric encryption scheme Sym with adversary A making at most
one query Chl.

C Proofs for Section 3 (Generic Construction)

Theorem 9 (Confidentiality). For any Ins-CCA adversary A against Π := AKEM[AKEM1,AKEM2,H],
depicted in Figure 8, there exists an Ins-CCA adversary B1 against AKEM1, an Ins-CCA adversary B2
against AKEM2, and a PRF adversary C against H with tA ≈ tB1 ≈ tB2 ≈ tC such that

AdvQ-Ins-CCA
Π,A ≤ 2 ·min

{
AdvQ-Ins-CCA

AKEM1,B1
, AdvQ-Ins-CCA

AKEM2,B2

}
+ 2 ·AdvQH-PRF

H,C +QChl · δΠ

for Q = (n, QEnc, QDec, QChl), QH = (QChl, QDec +QChl).

Proof. Consider the sequence of games depicted in Figure 17.

Game G0 This is the Ins-CCAAKEM(A) game for AKEM[AKEM1,AKEM2,H] so by definition∣∣∣∣Pr[GA
0 ⇒ 1]− 1

2

∣∣∣∣ = Adv
(n,QEncQDec,QChl)-Ins-CCA)-Ins-CCA
AKEM[AKEM1,AKEM2,H],A .

Game G1 Game G1 is the same as G0 except that in the challenge oracle an element is added to D independent
of challenge bit b. The changes can only be distinguished if the decapsulation is incorrect. For QChl queries
to the challenge oracle, we obtain∣∣Pr [GA

0 ⇒ 1
]
− Pr

[
GA
1 ⇒ 1

]∣∣ ≤ QChl · δAKEM[AKEM1,AKEM2,H].

Game G2 Game G2 is the same as G1 except that in the challenge oracle, the shared key of AKEM1 is
replaced by a uniformly random element of the key space K1 and stored together with ciphertext c1 in set
E1. Additionally, the decapsulation oracle is changed to check for a corresponding element in E1 and the
actual KEM key k1 is replaced by the one stored in E1.
Claim. There exists an adversary B1 against the Ins-CCA security of AKEM1, such that∣∣Pr [GA

1 ⇒ 1
]
− Pr

[
GA
2 ⇒ 1

]∣∣ ≤ 2 ·Adv
(n,QEncQDec,QChl)-Ins-CCA
AKEM1,B1

.

Proof. Adversary B1 is formally constructed in Figure 18. If B1 is in the real case, i.e. challenge bit b = 0,
they perfectly simulate G1 for adversary A. In case b = 1 they simulate Game G2 for adversary A. Hence,
the advantage of distinguishing between G1 and G2 is at most the advantage of B1.

■

31



G0 − G5

01 D, E1, E2 := ∅
02 for i ∈ [n]
03 (sk(1), pk(1)) $← AKEM1.Gen
04 (sk(2), pk(2)) $← AKEM2.Gen
05 ski := (sk(1), sk(2))
06 pki := (pk(1), pk(2))
07 b $← {0, 1}
08 b′ ← AEncps,Decps,Chall(pk1, . . . , pkn)
09 return Jb = b′K

Oracle Decps(pk, r ∈ [n], c)

10 if ∃ k : (pk, pkr, c, k) ∈ D
11 return k
12 parse pk → (pk(1), pk(2))
13 parse skr → (sk(1), sk(2))
14 parse c→ (c1, c2)
15 k1 ← AKEM1.Dec(pk

(1), sk(1), c1)
16 if ∃ k′

1 : (pk(1), µ(sk(1)), c1, k
′
1) ∈ E1

//G2,G3

17 k1 := k′
1 //G2,G3

18 k2 ← AKEM2.Dec(pk
(2), sk(2), c2)

19 if ∃ k′
2 : (pk, µ(sk), c2, k

′
2) ∈ E2 //G4,G5

20 k2 := k′
2 //G4,G5

21 k := H(k1, k2, pk, pkr, c)
22 return k

Oracle Encps(s ∈ [n], pk)

23 parse sks → (sk(1), sk(2))
24 parse pk → (pk(1), pk(2))
25 (c1, k1)

$← AKEM1.Enc(sk
(1), pk(1))

26 (c2, k2)
$← AKEM2.Enc(sk

(2), pk(2))
27 c := (c1, c2)
28 k := H(k1, k2, pks, pk, c)
29 return (c, k)

Oracle Chall(sk, r ∈ [n])

30 parse sk → (sk(1), sk(2))
31 parse pkr → (pk(1), pk(2))
32 (c1, k1)

$← AKEM1.Enc(sk
(1), pk(1))

33 k1
$← K1 //G2,G3

34 E1 := E1 ∪ {(µ(sk(1)), pk(1), c1, k1)}
//G2,G3

35 (c2, k2)
$← AKEM2.Enc(sk

(2), pk(2))
36 k2

$← K2 //G4,G5

37 E2 := E2 ∪ {(µ(sk(2)), pk(2), c2, k2)}
//G4,G5

38 c := (c1, c2)
39 k := H(k1, k2, µ(sk), pkr, c)
40 k $← K //G3,G5

41 if b = 1
42 k $← K
43 D ← D ∪ {(µ(sk), pkr, c, k)}
44 D ← D ∪ {(µ(sk), pkr, c, k)} //G1 − G5

45 return (c, k)

Figure 17. Games G0 − G5 for the proof of Theorem 9.
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BEncpsB,DecpsB,ChallB
1 (p̂k1, . . . ,

ˆpkn)

01 D, E1 := ∅
02 for i ∈ [n]
03 (sk(2), pk(2)) $← AKEM2.Gen
04 ski := (⊥, sk(2))
05 pki := (p̂ki, pk

(2))
06 b $← {0, 1}
07 b′ ← AEncps,Decps,Chall(pk1, . . . , pkn)
08 return Jb = b′K

Oracle Decps(pk, r ∈ [n], c)

09 if ∃ k : (pk, pkr, c, k) ∈ D
10 return k
11 parse pk → (pk(1), pk(2))
12 parse skr → (⊥, sk(2))
13 parse c→ (c1, c2)
14 k1 ← DecpsB(pk

(1), r, c1) // decaps
query
15 k2 ← AKEM2.Dec(pk

(2), sk(2), c2)
16 k := H(k1, k2, pk, pkr, c)
17 return k

Oracle Encps(s ∈ [n], pk)

18 parse sks → (⊥, sk(2))
19 parse pk → (pk(1), pk(2))
20 (c1, k1)

$← EncpsB(s, pk
(1)) // encaps query

21 (c2, k2)
$← AKEM2.Enc(sk

(2), pk(2))
22 c := (c1, c2)
23 k := H(k1, k2, pks, pk, c)
24 return (c, k)

Oracle Chall(sk, r ∈ [n])

25 parse sk → (sk(1), sk(2))
26 parse pkr → (pk(1), pk(2))
27 (c1, k1)

$← ChallB(sk
(1), r) // challenge query

28 (c2, k2)
$← AKEM2.Enc(sk

(2), pk(2))
29 c := (c1, c2)
30 k := H(k1, k2, µ(sk), pkr, c)
31 if b = 1
32 k $← K
33 D ← D ∪ {(µ(sk), pkr, c, k)}
34 D ← D ∪ {(µ(sk), pkr, c, k)}
35 return (c, k)

Figure 18. Adversary B1 against Ins-CCA security of AKEM1, having access to oracles EncpsB, DecpsB, ChallB,
and CorSKB, simulating Game G1/G2 for adversary A from the proof of Theorem 9.

Game G3 Game G3 is the same as G2 except that the output of the keyed function in the challenge oracle
is replaced by a uniformly random output of the output space K.

Claim. There exists an adversary C1 against the PRF security of H1, i.e. keyed on the first input, such that∣∣Pr [GA
2 ⇒ 1

]
− Pr

[
GA
3 ⇒ 1

]∣∣ ≤ 2 ·Adv
(QChl,QDec+QChl)-PRF
H1,C1

.

Proof. We formally construct adversary C1 in Figure 19. If C1 is in their own b = 0 case of the PRF game,
they simulate G2. In the case b = 1, they nearly simulate G3. Nearly refers to the following distinction: the
output of the evaluation oracle of the PRF game is the output of a random function in case b = 1 whereas
in G3 the output is randomly sampled from the output space. These two cases are the same if the random
function is never queried on the same input as in the challenge oracle again. This is the case in Game
G3 because in the challenge oracle a new PRF key is used and if there was a query to the same random
function in the decapsulation oracle, i.e. the same PRF key index ℓ, with the same input k2||pk||pkr||c, the
decapsulation would have returned in Line 12 already and never queried the PRF evaluation oracle. Further,
we can see that adversary C1 needs at most QChl instances and at most QDec +QChl evaluation queries.

■

Game G4 Game G4 is the same as G1 (note that we are not building on top of the last game) except that in
the challenge oracle, the shared key of AKEM2 is replaced by a uniformly random element of the key space
K2 and stored together with ciphertext c2 in set E2. Additionally, the decapsulation oracle is changed to
check for a corresponding element in E2 and the actual KEM key k2 is replaced by the one stored in E2.
Claim. There exists an adversary B2 against the Ins-CCA security of AKEM2, such that∣∣Pr [GA

1 ⇒ 1
]
− Pr

[
GA
4 ⇒ 1

]∣∣ ≤ 2 ·Adv
(n,QEncQDec,QChl)-Ins-CCA
AKEM2,B2

.

Proof. The proof is analogue to the one between G1 and G2 ■
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CEval1

01 D, E1 := ∅
02 ℓ := 0
03 for i ∈ [n]
04 (sk(1), pk(1)) $← AKEM1.Gen
05 (sk(2), pk(2)) $← AKEM2.Gen
06 ski := (sk(1), sk(2))
07 pki := (pk(1), pk(2))
08 b $← {0, 1}
09 b′ ← AEncps,Decps,Chall(pk1, . . . , pkn)
10 return Jb = b′K

Oracle Decps(pk, r ∈ [n], c)

11 if ∃ k : (pk, pkr, c, k) ∈ D
12 return k
13 parse pk → (pk(1), pk(2))
14 parse skr → (sk(1), sk(2))
15 parse c→ (c1, c2)
16 k1 ← AKEM1.Dec(pk

(1), sk(1), c1)
17 k2 ← AKEM2.Dec(pk

(2), sk(2), c2)
18 k := H(k1, k2, pk, pkr, c)
19 if ∃ ℓ′ : (pk(1), µ(sk(1)), c1, ℓ

′) ∈ E1
20 k $← Eval(ℓ′, k2||pk||pkr||c) // previous key
21 return k

Oracle Encps(s ∈ [n], pk)

22 return G2.Encps(s, pk)

Oracle Chall(sk, r ∈ [n])

23 parse sk → (sk(1), sk(2))
24 parse pkr → (pk(1), pk(2))
25 (c1, k1)

$← AKEM1.Enc(sk
(1), pk(1))

26 k1
$← K1

27 (c2, k2)
$← AKEM2.Enc(sk

(2), pk(2))
28 c := (c1, c2)
29 ℓ := ℓ+ 1 // new PRF key
30 k $← Eval(ℓ, k2||pks||pkr||c) // call Eval query
31 E1 := E1 ∪ {(µ(sk(1)), pk(1), c1, ℓ)}
32 if b = 1
33 k $← K
34 D ← D ∪ {(µ(sk), pkr, c, k)}
35 D ← D ∪ {(µ(sk), pkr, c, k)}
36 return (c, k)

Figure 19. Adversary C1 against PRF security of H1, having access to oracle Eval, simulating Game G2/G3 for
adversary A from the proof of Theorem 9.
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Game G5 Game G5 is the same as G4 except that the output of the keyed function in the challenge oracle
is replaced by a uniformly random output of the output space K.

Claim. There exists an adversary C2 against the PRF security of H2, i.e. keyed on the first input, such that∣∣Pr [GA
4 ⇒ 1

]
− Pr

[
GA
5 ⇒ 1

]∣∣ ≤ 2 ·Adv
(QChl,QDec+QChl)-PRF
H2,C2

.

Proof. The proof is analogue to the one between G2 and G3. ■

Game G3 as well as Game G5 are independent of the challenge bit b. Hence, we obtain

Pr[GA
3 ⇒ 1] = Pr[GA

5 ⇒ 1] =
1

2
.

■

Theorem 10 (Authenticity). For any Out-Aut adversary A against Π := AKEM[AKEM1,AKEM2,H],
as depicted in Figure 8, there exists an Out-Aut adversary B1 against AKEM1, an Out-Aut adversary B2
against AKEM2, an Out-CCA adversary C1 against AKEM1, an Out-CCA adversary C2 against AKEM2,
and a PRF adversary D against H with tA ≈ tB1

≈ tB2
≈ tC1

≈ tC2
≈ tD such that

AdvQ-Out-Aut
Π,A ≤2 ·min

{
AdvQ-Out-Aut

AKEM1,B1
+AdvQ-Out-CCA

AKEM1,C1
, AdvQ-Out-Aut

AKEM2,B2
+AdvQ-Out-CCA

AKEM2,C2

}
+ 2 ·AdvQH-PRF

H,D +QChl · δΠ

for Q = (n, QEnc, QChl), QH = (QEnc +QChl, QEnc +QChl).

Proof. Consider the sequence of games depicted in Figure 20.

Game G0 This is the Out-Aut game for AKEM[AKEM1,AKEM2,H] so by definition∣∣∣∣Pr[GA
0 ⇒ 1]− 1

2

∣∣∣∣ = Adv
(n,QEnc,QChl)-Out-Aut
AKEM[AKEM1,AKEM2,H],A.

Game G1 Game G1 is the same as G0 except that in the challenge oracle set D is filled in case b = 0 as
well. If the scheme is perfectly correct, the change cannot be distinguished since the difference is that D
stores either tuples from encapsulations or from correct decapsulations. Hence, the difference is at most the
correctness error per query to the challenge oracle:∣∣Pr [GA

0 ⇒ 1
]
− Pr

[
GA
1 ⇒ 1

]∣∣ ≤ QChl · δAKEM[AKEM1,AKEM2,H].

Game G2 Game G2 is the same as G1 except that the output of the AKEM1 decapsulation, k1, is replaced
by a uniformly random sample from the key space K1 if the first receiver public key, pk(1), is honest and the
shared key is not ⊥ (Line 33) and the result is stored together with the sender’s and receiver’s public key for
AKEM1 as well as the first ciphertext c1 in set E1 (Line 34). For consistent outputs, an element of this form
is also added to E1 in an encapsulation query (Line 15) and if there already exists a matching element in E1
the decapsulation output is replaced by this element instead of randomly choosing a new one (Line 31).

Claim. There exists an adversary B1 against the Out-Aut security of AKEM1, such that∣∣Pr [GA
1 ⇒ 1

]
− Pr

[
GA
2 ⇒ 1

]∣∣ ≤ 2 ·Adv
(n,QEnc,QChl)-Out-Aut
AKEM1,B1

.

Proof. Adversary B1 is formally constructed in Figure 21. If they are in case b = 0, they simulate Game G1.
In case b = 1, they simulate G2. Further, the number of queries to EncpsB and ChallB is the same as for
adversary A.

■
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G0 − G4

01 D, E1, E2 := ∅
02 for i ∈ [n]
03 (sk(1), pk(1)) $← AKEM1.Gen
04 (sk(2), pk(2)) $← AKEM2.Gen
05 ski := (sk(1), sk(2))
06 pki := (pk(1), pk(2))
07 b $← {0, 1}
08 b′ $← AEncps,Chall(pk1, . . . , pkn)
09 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

10 parse sks → (sk(1), sk(2))
11 parse pk → (pk(1), pk(2))
12 (c1, k1)

$← AKEM1.Enc(sk
(1), pk(1))

13 if pk(1) ∈ {pk(1)
1 , . . . , pk

(1)
n } //G3 − G4

14 k1
$← K1 //G3 − G4

15 E1 := E1∪{(µ(sk(1)), pk(1), c1, k1)} //G2−
G4

16 (c2, k2)
$← AKEM2.Enc(sk

(2), pk(2))
17 c := (c1, c2)
18 k := H(k1, k2, pks, pk, c)

19 if pk(1) ∈ {pk(1)
1 , . . . , pk

(1)
n } //G4

20 k $← K //G4

21 D ← D ∪ {(pks, pk, c, k)}
22 return (c, k)

Oracle Chall(pk, r ∈ [n], c)

23 if ∃ k : (pk, pkr, c, k) ∈ D
24 return k
25 parse pk → (pk(1), pk(2))
26 parse skr → (sk(1), sk(2))
27 parse c→ (c1, c2)
28 k1 ← AKEM1.Dec(pk

(1), sk(1), c1)
29 k2 ← AKEM2.Dec(pk

(2), sk(2), c2)
30 if ∃ k′

1 : (pk(1), µ(sk(1)), c1, k
′
1) ∈ E1

31 k1 := k′
1

32 elseif (pk(1), ·) ∈ {pk1, . . . , pkn} ∧ k1 ̸= ⊥
//G2 − G4

33 k1
$← K1 //G2 − G4

34 E1 := E1 ∪ {(pk(1), µ(sk(1)), c1, k1)} //G2 −
G4

35 k := H(k1, k2, pk, pkr, c)
36 if (pk(1), ·) ∈ {pk1, . . . , pkn} ∧ k1 ̸= ⊥ //G4

37 k $← K //G4

38 if b = 1 ∧ pk ∈ {pk1, . . . , pkn} ∧ k ̸= ⊥
39 k $← K
40 D ← D ∪ {(pk, pkr, c, k)}
41 D ← D ∪ {(pk, pkr, c, k)} //G1 − G4

42 return k

Figure 20. Games for the proof of Theorem 10.

Game G3 Game G3 is the same as G2 except that the KEM key of AKEM1 in Encps is replaced by a uniformly
random value of the key space K1.

Claim. There exists an adversary C1 against the Out-CCA security of AKEM1, such that∣∣Pr [GA
2 ⇒ 1

]
− Pr

[
GA
3 ⇒ 1

]∣∣ ≤ 2 ·Adv
(n,QEnc,QChl)-Out-CCA
AKEM1,C1

.

Proof. Adversary C1 is constructed in Figure 22. In G2, the encapsulation is the real encapsulation of AKEM1,
thus querying the oracle EncpsC simulates Game G2 for adversary A. In the Out-CCA case b = 1, the
encapsulation oracle EncpsC returns a uniformly random key of the key space K1 which perfectly simulates
G3. Note that in Game G3, the key is randomly chosen for honest receivers only. The number of encapsulation
and decapsulation queries of C equals exactly the ones of A.

■

Game G4 Game G4 is the same as G3 except that the output of keyed function H in the challenge oracle is
replaced by a uniformly random output in case the first public key, pk(1), is honest and the KEM key k1
is not ⊥. Further, the output of keyed function H is also replaced by a random value in the encapsulation
oracle if the receiver is honest.

Claim. There exists an adversary D1 against the PRF security of H1, such that∣∣Pr [GA
3 ⇒ 1

]
− Pr

[
GA
4 ⇒ 1

]∣∣ ≤ 2 ·Adv
(QEnc+QChl,QEnc+QChl)-PRF
H1,D1

.
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BEncpsB,ChallB
1 (pk

(1)
1 , . . . , pk

(1)
n )

01 D := ∅
02 for i ∈ [n]
03 (sk(2), pk(2)) $← AKEM2.Gen
04 ski := (⊥, sk(2))

05 pki := (pk
(1)
i , pk(2))

06 b $← {0, 1}
07 b′ $← AEncps,Chall(pk1, . . . , pkn)
08 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

09 parse sks → (⊥, sk(2))
10 parse pk → (pk(1), pk(2))
11 (c1, k1)

$← EncpsB(s, pk
(1)) // encaps query

12 (c2, k2)
$← AKEM2.Enc(sk

(2), pk(2))
13 c := (c1, c2)
14 k := H(k1, k2, pks, pk, c)
15 D ← D ∪ {(pks, pk, c, k)}
16 return (c, k)

Oracle Chall(pk, r ∈ [n], c)

17 if ∃ k : (pk, pkr, c, k) ∈ D
18 return k
19 parse pk → (pk(1), pk(2))
20 parse skr → (⊥, sk(2))
21 parse c→ (c1, c2)
22 k1 ← ChallB(pk

(1), r, c1) // challenge query
23 k2 ← AKEM2.Dec(pk

(2), sk(2), c2)
24 k := H(k1, k2, pk, pkr, c)
25 if b = 1 ∧ pk ∈ {pk1, . . . , pkn} ∧ k ̸= ⊥
26 k $← K
27 D ← D ∪ {(pk, pkr, c, k)}
28 D ← D ∪ {(pk, pkr, c, k)}
29 return k

Figure 21. Adversary B1 against Out-Aut security of AKEM2, having access to oracles EncpsB and ChallB,
simulating Game G1/G2 for adversary A from the proof of Theorem 10.

CEncpsC ,DecpsC (pk
(1)
1 , . . . , pk

(1)
n )

01 D, E1, E2 := ∅
02 for i ∈ [n]
03 (sk(2), pk(2)) $← AKEM2.Gen
04 ski := (⊥, sk(2))

05 pki := (pk
(1)
i , pk(2))

06 b $← {0, 1}
07 b′ $← AEncps,Chall(pk1, . . . , pkn)
08 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

09 parse sks → (⊥, sk(2))
10 parse pk → (pk(1), pk(2))
11 (c1, k1)

$← EncpsC(s, pk
(1)) // encaps query

12 E1 := E1 ∪ {pk(1)
s , pk(1), c1, k1)}

13 (c2, k2)
$← AKEM2.Enc(sk

(2), pk(2))
14 c := (c1, c2)
15 k := H(k1, k2, pks, pk, c)
16 D ← D ∪ {(pks, pk, c, k)}
17 return (c, k)

Oracle Chall(pk, r ∈ [n], c)

18 if ∃ k : (pk, pkr, c, k) ∈ D
19 return k
20 parse pk → (pk(1), pk(2))
21 parse skr → (⊥, sk(2))
22 parse c→ (c1, c2)
23 k1 ← DecpsC(pk

(1), r, c1) // decaps query
24 k2 ← AKEM2.Dec(pk

(2), sk(2), c2)

25 if ∃ k′
1 : (pk(1), pk

(1)
r , c1, k

′
1) ∈ E1

26 k1 := k′
1

27 elseif (pk(1), ·) ∈ {pk1, . . . , pkn} ∧ k1 ̸= ⊥
28 k1

$← K1

29 E1 := E1 ∪ {(pk(1), pk
(1)
r , c1, k1)}

30 k := H(k1, k2, pk, pkr, c)
31 if b = 1 ∧ pk ∈ {pk1, . . . , pkn} ∧ k ̸= ⊥
32 k $← K
33 D ← D ∪ {(pk, pkr, c, k)}
34 return k

Figure 22. Adversary C1 against Out-CCA security of AKEM2, having access to oracles EncpsB and DecpsB,
simulating Game G2/G3 for adversary A from the proof of Theorem 10.

Proof. Adversary D1 is formally constructed in Figure 23.
If D1 is in their own b = 0 case of the PRF game, they simulate G3. In the case b = 1, they nearly simulate

G4. Nearly refers to the following distinction: the output of the evaluation oracle of the PRF game is the
output of a random function in case b = 1 whereas in G4 the output is randomly sampled from the output
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space. With the same argument as in Game 3 of the proof of Theorem 9, we obtain a perfect simulation.
The maximal number of different PRF keys is the same as maximal evaluation queries and amounts to
QEnc +QChl.

DEval
1

01 ℓ := 0
02 D, E1, E2 := ∅
03 for i ∈ [n]
04 (sk(1), pk(1)) $← AKEM1.Gen
05 (sk(2), pk(2)) $← AKEM2.Gen
06 ski := (sk(1), sk(2))
07 pki := (pk(1), pk(2))
08 b $← {0, 1}
09 b′ $← AEncps,Chall(pk1, . . . , pkn)
10 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

11 parse sks → (sk(1), sk(2))
12 parse pk → (pk(1), pk(2))
13 (c1, k1)

$← AKEM1.Enc(sk
(1), pk(1))

14 if pk(1) ∈ {pk(1)
1 , . . . , pk

(1)
n }

15 ℓ := ℓ+ 1 // new key
16 E1 := E1 ∪ {(µ(sk(1)), pk(1), c1, ℓ)} // store
key
17 (c2, k2)

$← AKEM2.Enc(sk
(2), pk(2))

18 c := (c1, c2)
19 k := H(k1, k2, pks, pk, c)

20 if pk(1) ∈ {pk(1)
1 , . . . , pk

(1)
n }

21 k1
$← Eval(ℓ, k2∥pks∥pk∥c) // eval query

22 D ← D ∪ {(pks, pk, c, k)}
23 return (c, k)

Oracle Chall(pk, r ∈ [n], c)

24 if ∃ k : (pk, pkr, c, k) ∈ D
25 return k
26 parse pk → (pk(1), pk(2))
27 parse skr → (sk(1), sk(2))
28 parse c→ (c1, c2)
29 k1 ← AKEM1.Dec(pk

(1), sk(1), c1)
30 k2 ← AKEM2.Dec(pk

(2), sk(2), c2)
31 if ∃ ℓ′ : (pk(1), µ(sk(1)), c1, ℓ

′) ∈ E1
32 k $← Eval(ℓ′, k2∥pk∥pkr∥c) // eval query
33 elseif (pk(1), ·) ∈ {pk1, . . . , pkn} ∧ k1 ̸= ⊥
34 ℓ := ℓ+ 1 // new key
35 E1 := E1 ∪ {(pk(1), µ(sk(1)), c1, ℓ)} // store key
36 k $← Eval(ℓ, k2∥pk∥pkr∥c) // eval query
37 else
38 k := H(k1, k2, pk, pkr, c)
39 if b = 1 ∧ pk ∈ {pk1, . . . , pkn} ∧ k ̸= ⊥
40 k $← K
41 D ← D ∪ {(pk, pkr, c, k)}
42 return k

Figure 23. Adversary D1 against PRF security of H1, having access to oracle Eval, simulating Game G3/G4 for
adversary A from the proof of Theorem 10.

■

We can see that G4 is independent of the challenge bit b since the shared key in case b = 0 is uniformly
random under condition pk ∈ {pk1, . . . , pkn} ∧ k ̸= ⊥ which is the same output as in case b = 1. Thus, we
obtain

Pr[GA
4 ⇒ 1] =

1

2
.

Game G5 Game G5 is the same as G1 (not the previous game) except that the same changes from G2 − G4

are applied to AKEM2 instead of AKEM1. Note that we did not show these games in Figure 20 to sustain
readability.

Claim. There exist an adversaries B2 against the Out-Aut security of AKEM2, C2 against the Out-CCA
security of AKEM2, and D2 against the PRF security of H2, such that∣∣Pr [GA

1 ⇒ 1
]
− Pr

[
GA
5 ⇒ 1

]∣∣ ≤ 2 ·Adv
(n,QEnc,QChl)-Out-Aut
AKEM2,B2

+ 2 ·Adv
(n,QEnc,QChl)-Out-CCA
AKEM2,C2

+ 2 ·Adv
(QEnc+QChl,QEnc+QChl)-PRF
H2,D2

.
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The claim can be proved analogously to hybrids G2 − G4. Further, it also holds

Pr[GA
5 ⇒ 1] =

1

2
.

Combining the differences, we obtain the theorem statement.

■

Theorem 11 (Dishonest Deniability). For any DR-Den adversary A against
Π := AKEM[AKEM1,AKEM2,H], as depicted in Figure 8, any simulators Sim1,Sim2, and simulator
Sim[Sim1,Sim2] as defined in Figure 24 there exists a DR-Den adversary B1 against AKEM1 and a
DR-Den adversary B2 against AKEM2 with tA ≈ tB1 ≈ tB2 such that

AdvQ-DR-Den
Π,Sim,A ≤ 2 ·AdvQ-DR-Den

AKEM1,Sim1,B1
+ 2 ·AdvQ-DR-Den

AKEM2,Sim2,B2

for Q = (n, QChl).

Proof. Consider the sequence of games depicted in Figure 24.

Game G0 This is the DR-Den game for AKEM[AKEM1,AKEM2,H] and simulator Sim = Sim[Sim1,Sim2] as
defined in Figure 24. By definition, it holds∣∣∣∣Pr[GA

0 ⇒ 1]− 1

2

∣∣∣∣ = Adv
(n,QChl)-DR-Den
AKEM[AKEM1,AKEM2,H],Sim,A.

Unlike the definition, the adversary is given all the secret keys in the beginning. However, since there is
no restriction on the reveal oracle calls in the dishonest deniability setting, G0 is equivalent to the original
definition. Let Sim1 and Sim2 be the simulators for AKEM1 and AKEM2, respectively. The simulator Sim is
then defined in terms of Sim1 and Sim2.

G0 − G2

01 for i ∈ [n]
02 (ski, pki)

$← Gen
03 b $← {0, 1}
04 b′ ← AChall((sk1, pk1), . . . , (skn, pkn))
05 return Jb = b′K

Sim(pks, pkr, skr)

06 parse pks → (pk
(1)
s , pk

(2)
s )

07 parse pkr → (pk
(1)
r , pk

(2)
r )

08 parse skr → (sk
(1)
r , sk

(2)
r )

09 (c1, k1)
$← Sim1(pk

(1)
s , pk

(1)
r , sk

(1)
r )

10 (c2, k2)
$← Sim2(pk

(2)
s , pk

(2)
r , sk

(2)
r )

11 c := (c1, c2)
12 k := H(k1, k2, pks, pkr, c)
13 return (c, k)

Oracle Chall(s ∈ [n], r ∈ [n])

14 if s = r return ⊥
15 parse sks → (sk(1), sk(2))
16 parse pkr → (pk(1), pk(2))

17 parse pks → (pk
(1)
s , pk

(2)
s )

18 parse skr → (sk
(1)
r , sk

(2)
r )

19 (c1, k1)
$← AKEM1.Enc(sk

(1), pk(1))

20 (c1, k1)
$← Sim1(pk

(1)
s , pk(1), sk

(1)
r ) //G0 − G1

21 (c2, k2)
$← AKEM2.Enc(sk

(2), pk(2))

22 (c2, k2)
$← Sim2(pk

(2)
s , pk(2), sk

(2)
r ) //G0 − G2

23 c := (c1, c2)
24 k := H(k1, k2, (µ(sk

(1)), µ(sk(2))), pkr, c)
25 if b = 1
26 (c, k) $← Sim(pks, pkr, skr)
27 return (c, k)

Figure 24. Games for the proof of Theorem 11 and definition of simulator Sim = Sim[Sim1,Sim2].
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Game G1 This is the same as G0 except that the output of the encapsulation of AKEM1 is replaced by the
output of simulator Sim1.

Claim. There exists an adversary B1 and a simulator Sim1 such that∣∣Pr [GA
0 ⇒ 1

]
− Pr

[
GA
1 ⇒ 1

]∣∣ ≤ 2 ·Adv
(n,QChl)-DR-Den
AKEM1,Sim1,B1

.

Proof. Adversary B1 can be constructed by simulating the game forA and querying their own challenge oracle
to get (c1, k1). If they are in the real game b = 0, they are simulating G0, otherwise they are simulating
G1. ■

Game G2 This is the same as G1 except that the output of the encapsulation of AKEM1 is replaced by the
output of simulator Sim2.

Claim. There exists an adversary B2 and a simulator Sim2 such that∣∣Pr [GA
1 ⇒ 1

]
− Pr

[
GA
2 ⇒ 1

]∣∣ ≤ 2 ·Adv
(n,QChl)-DR-Den
AKEM2,Sim2,B2

.

Proof. The proof can be done analogously to the one of the previous game. ■

The resulting game behaves exactly the same in case b = 0 and b = 1, thus we have

Pr[GA
2 ⇒ 1] =

1

2
.

■

D Proofs for Section 4 (Concrete Construction)

Theorem 14 (Confidentiality). For any Ins-CCA adversary A against
Π := AKEM[NIKE,KEM,RSig,Sym,H1,H2], as depicted in Figure 9, there exists a CKS adversary B
against NIKE, a PRF adversary C against H1, an PRF adversary D against H2, and an IND-CCA
adversary E against KEM with tA ≈ tB ≈ tC ≈ tD ≈ tE such that

AdvQ-Ins-CCA
Π,A ≤ 2nQChl ·

(
min

{
AdvQNIKE-CKS

NIKE,B +Adv
(1,1)-PRF
H1,C ,Adv

(1,QDec,1)-IND-CCA
KEM,E

}
+ 2 ·Adv

(1,QDec+1)-PRF
H2,D + (QEnc +QDec) · ηNIKE · γKEM +QChl · δΠ

)
for Q = (n, QEncQDec, QChl), QNIKE = (QEnc + 2, 2QEnc + 2QDec, 2QEnc + 2QEnc + 1).

Proof. Consider the sequence of games depicted in Figure 25.

Game G0 We start with the Ins-CCAAKEM(A) game for AKEM[NIKE,KEM,RSig,Sym,H1,H2] for one user
where the adversary is restricted to one challenge query. Another change which does not influence the
winning probability is that we sample all the NIKE keys needed for the game in advance and assign them
when needed. More specifically, we need QEnc + 2 keys: one for the challenge user key, npk⋆, one for the
ephemeral key in the challenge, npk⋆e , and QEnc many ephemeral keys to answer the encapsulation queries.
By definition it holds ∣∣∣∣Pr[GA

0 ⇒ 1]− 1

2

∣∣∣∣ = Adv
(1,QEncQDec,1)-Ins-CCA)
AKEM[NIKE,KEM,RSig,Sym,H1,H2],A.
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G0 − G7

01 D,H := ∅
02 kct⋆, kk⋆ := ⊥
03 for ℓ ∈ [QEnc + 2]
04 (nskℓ, npkℓ)

$← NIKE.Gen
05 (nsk⋆, npk⋆) := (nsk1, npk1)
06 (nsk⋆

e , npk
⋆
e) := (nsk2, npk2)

07 for i ∈ [QEnc + 2] //G3 − G5

08 kii := ⊥ //G3 − G5

09 for j ∈ [i+ 1, QEnc + 2] //G3 − G5

10 kij := kji
$← KNIKE //G3 − G5

11 k⋆ := k12 //G3 − G5

12 kH1
$← KH1 //G4 − G5

13 ℓ := 2
14 (ksk⋆, kpk⋆) $← KEM.Gen
15 (ssk⋆, spk⋆) $← RSig.Gen
16 (sk⋆, pk⋆) := ((nsk⋆, ksk⋆, ssk⋆), (npk⋆, kpk⋆, spk⋆))
17 b $← {0, 1}
18 b′ ← AEncps,Decps,Chall(pk⋆)
19 return Jb = b′K

Oracle Decps(pk, c)

20 if ∃ k : (pk, c, k) ∈ D
21 return k
22 parse pk → (npk, kpk, spk)
23 parse c→ (npke, kct, sct)
24 nk′ ← NIKE.Sdk(nsk⋆, npk)
25 if npk = npk⋆

e //G3 − G5

26 nk′ := k⋆ //G3 − G5

27 elseif ∃ i : npk = npki //G3 − G5

28 nk′ := k1i //G3 − G5

29 nk := H1(k
′
1, "auth")

30 if npk = npk⋆
e //G4 − G5

31 nk := kH1 //G4 − G5

32 nk1∥nk2 ← NIKE.Sdk(nsk⋆, npke)
33 if npke = npk⋆

e //G3 − G5

34 nk1∥nk2 := k⋆ //G3 − G5

35 elseif ∃ i : npke = npki //G3 − G5

36 nk1∥nk2 := k1i //G3 − G5

37 kk1∥kk2 ← KEM.Dec(ksk⋆, kct)
38 if kct = kct⋆ //G6 − G7

39 kk1∥kk2 := kk⋆ //G6 − G7

40 k′ := H1(nk1, kk1)
41 σ := Sym.Dec(k′, sct)
42 m← (kct, kpk⋆)
43 if RSig.Ver(σ, ρ = {spk, spk⋆},m) ̸= 1
44 return ⊥
45 k := H2(nk, nk2, kk2, c, pk, pk

⋆)
46 if ∃ k′ : (k′, nk, nk2, kk2, c, pk, pk

⋆) ∈ H //G5,G7

47 k := k′ //G5,G7

48 elseif npke = npk⋆
e //G5

49 k $← K //G5

50 elseif kct = kct⋆ //G7

51 k $← K //G7

52 H := H ∪ {(k, nk, nk2, kk2, c, pk, pk⋆)} //G1 − G7

53 return k

Oracle Encps(pk)

54 ℓ := ℓ+ 1
55 parse pk → (npk, kpk, spk)
56 (nske, npke) := (nskℓ, npkℓ)
57 nk′ ← NIKE.Sdk(nsk⋆, npk)
58 nk1∥nk2 ← NIKE.Sdk(nske, npk)
59 if npk = npk⋆

e //G3 − G5

60 nk′ := k⋆ //G3 − G5

61 nk1∥nk2 := kℓ2 //G3 − G5

62 elseif ∃ i : npk = npki //G3 − G5

63 nk′ := k1i //G3 − G5

64 nk1∥nk2 := kℓi //G3 − G5

65 nk := H1(k
′
1, "auth")

66 if npk = npk⋆
e //G4 − G5

67 nk := kH1 //G4 − G5

68 (kct, kk1∥kk2) $← KEM.Enc(kpk)
69 m← (kct, kpk)
70 σ ← RSig.Sgn(ssk⋆, {spk⋆, spk},m)
71 k′ := H1(nk1, kk1)
72 sct := Sym.Enc(k′, σ)
73 c := (npke, kct, sct)
74 k := H2(nk, nk2, kk2, c, pk

⋆, pk)
75 H := H ∪ {(k, nk, nk2, kk2, c, pk⋆, pk)} //G1 − G7

76 return (c, k)

Oracle Chall(sk) // one query

77 parse sk → (nsk, ksk, ssk)
78 (nske, npke) := (nsk⋆

e , npk
⋆
e)

79 nk′ ← NIKE.Sdk(nsk, npk⋆)
80 nk := H1(k

′
1, "auth")

81 nk1∥nk2 ← NIKE.Sdk(nske, npk
⋆)

82 nk1∥nk2 := k⋆ //G3 − G5

83 (kct, kk1∥kk2) $← KEM.Enc(kpk⋆)
84 kk1∥kk2 $← KKEM //G6 − G7

85 (kct⋆, kk⋆) := (kct, kk1∥kk2)
86 m← (kct, kpk⋆)
87 σ ← RSig.Sgn(ssk, {µ(ssk), spk⋆},m)
88 k′ := H1(nk1, kk2)
89 sct := Sym.Enc(k′, σ)
90 c := (npke, kct, sct)
91 if ∃ k′ : (k′, nk, nk2, kk2, c, µ(sk), pk

⋆) ∈ H //G2 − G7

92 abort //G2 − G7

93 k := H2(nk, nk2, kk2, c, µ(sk), pk
⋆)

94 k $← K //G5,G7

95 H := H ∪ {(k, nk, nk2, kk2, c, µ(sk), pk⋆)} //G1 − G7

96 if b = 1
97 k $← K
98 D ← D ∪ {(µ(sk), c, k)}
99 D ← D ∪ {(µ(sk), c, k)} //G1 − G7

100 return (c, k)

Figure 25. Games G0 − G7 for the proof of Theorem 14.

Game G1 Game G1 is the same as G0 except that in the challenge oracle an element is added to D independent
of challenge bit b. Additionally, all inputs to keyed function H2 are stored together with their output in set
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H. If the scheme is correct, these changes are indistinguishable∣∣Pr [GA
0 ⇒ 1

]
− Pr

[
GA
1 ⇒ 1

]∣∣ ≤ QChl · δAKEM[NIKE,KEM,RSig,Sym,H1,H2].

Game G2 This game is the same as G1 except that the game aborts in the challenge oracle if there already
exists an element in set H with the same inputs.

Claim. ∣∣Pr [GA
1 ⇒ 1

]
− Pr

[
GA
2 ⇒ 1

]∣∣ ≤ (QEnc +QDec) · ηNIKE · γKEM.

Proof. If there was a previous query to H2 on the same inputs, this includes ciphertext c. Part of the
ciphertext is the ephemeral NIKE key pk⋆e chosen in the challenge and the KEM ciphertext kct⋆. For one
element in H, the probability that these two values are the same is at most ηNIKE ·γNIKE. Since for each query
to Encps and Decps an element is added to H, we obtain the bound in the claim. ■

Game G3 Game G3 is the same as G2 except that several NIKE shared keys are replaced by a uniformly
random value from the NIKE key space KNIKE. In the challenge oracle, the second NIKE shared key, nk1∥nk2,
is replaced (Line 82). In the encapsulation oracle, both shared keys, nk′ and nk1∥nk2, are replaced if the input
NIKE key npk is a public key which was originally created in the beginning of the game. In the decapsulation
oracle, the first shared key, nk′, is replaced if the input public npk is a public key which was originally created
in the beginning of the game and the second shared key, nk1∥nk2, if this holds for the ephemeral key ke
being part of the input ciphertext. If the same NIKE key is queried again (or in reverse order of the input
keys), the previous result is used to keep consistency. To simplify the depiction of consistent assignments,
all possible key combinations are sampled in the beginning of the game (Line 07 - Line 11) and the keys are
assigned accordingly when the events trigger.

Claim. There exists an adversary B against the CKS security of NIKE such that∣∣Pr [GA
2 ⇒ 1

]
− Pr

[
GA
3 ⇒ 1

]∣∣ ≤ 2 ·Adv
(QEnc+2,2QEnc+2QDec,2QEnc+2QEnc+1)-CKS
NIKE,B .

Proof. Adversary B is formally constructed in Figure 26. They obtain public keys npk1, . . . , npkQEnc+2 of
honest users of the CKS game. The first key is given to adversary A as part of the AKEM public key. The
second key is assigned to the ephemeral key in the challenge query. Encapsulation and decapsulation queries
can be simulated by using the test or the reveal corrupt oracle depending on the input to the oracle being
one of the honest keys or an adversarially chosen (corrupted) one. The challenge oracle is simulated with
a test query to the first and second honest public keys. In case b = 0 of the CKS game, reduction B is
simulating Game G2, in case b = 1 it is exactly Game G3. Counting the queries yields the stated bound.

■

Game G4 Game G4 is the same as G3 except that the output of H1 is replaced in the encapsulation or
decapsulation oracle by a uniformly random value of the output space KH1

if the input NIKE public key,
npk equals the ephemeral challenge key npk⋆e .

Claim. There exists an adversary C against the PRF security of H1 such that∣∣Pr [GA
3 ⇒ 1

]
− Pr

[
GA
4 ⇒ 1

]∣∣ ≤ 2 ·Adv
(1,1)-PRF
H1,C .

Proof. In case condition npk = npk⋆e holds, the first shared key, nk′, always equals k⋆. Since this is a
uniformly random value, we can reduce to the PRF security of H1 with only one PRF key. Hence, adversary
C can simulate the whole game and querying their own Eval oracle once on "auth". This value can then be
used to answer encapsulation and decapsulation queries for which the condition holds. Note that this only
requires one evaluation query because the input to the query, "auth", is fixed. ■
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BRevCor,Test(npk1, . . . , npkQEnc+2)

01 D := ∅
02 (ksk⋆, kpk⋆) $← KEM.Gen
03 (ssk⋆, spk⋆) $← RSig.Gen
04 sk⋆ := (⊥, ksk⋆, ssk⋆)
05 pk⋆ := (npk1, kpk

⋆, spk⋆) // use first key for user key
06 npk⋆ := npk1
07 npk⋆

e := npk2 // use second key for ephemeral challenge key
08 ℓ := 2
09 b $← {0, 1}
10 b′ ← AEncps,Decps,Chall(pk⋆)
11 return Jb = b′K

Oracle Encps(pk)

12 ℓ := ℓ+ 1
13 parse pk → (npk, kpk, spk)
14 npke := npkℓ // use next honest key
15 if npk = npk⋆

e

16 nk′ ← Test(1, 2) //Test query
17 nk1∥nk2 ← Test(ℓ, 2) //Test query
18 elseif ∃ i : npk = npki
19 nk′ ← Test(1, i)
20 nk1∥nk2 ← Test(ℓ, i)
21 else
22 nk′ $← RevCor(1, npk) //RevCor query
23 nk1∥nk2 $← RevCor(ℓ, npk) //RevCor query
24 nk := H1(nk

′, "auth")
25 (kct, kk1∥kk2) $← KEM.Enc(kpk)
26 m← (kct, kpk)
27 σ ← RSig.Sgn(ssk⋆, {spk⋆, spk},m)
28 k′ := H1(nk1, kk1)
29 sct := Sym.Enc(k′, σ)
30 c := (npke, kct, sct)
31 k := H2(nk, nk2, kk2, c, pk

⋆, pk)
32 return (c, k)

Oracle Decps(pk, c)

33 if ∃ k : (pk, c, k) ∈ D
34 return k
35 parse pk → (npk, kpk, spk)
36 parse c→ (npke, kct, sct)
37 if npk = npk⋆

e

38 nk′ ← Test(1, 2) //Test query
39 elseif ∃ i : npk = npki
40 nk′ ← Test(1, i) //Test query
41 else
42 nk′ ← RevCor(1, npk) //RevCor query
43 nk := H1(k

′
1, "auth")

44 if npke = npk⋆
e

45 nk1∥nk2 ← Test(1, 2) //Test query
46 elseif ∃ i : npke = npki
47 nk1∥nk2 ← Test(1, i) //Test query
48 else
49 nk1∥nk2 ← RevCor(1, npke) //RevCor query
50 kk1∥kk2 ← KEM.Dec(ksk⋆, kct)
51 k′ := H1(nk1, kk1)
52 σ := Sym.Dec(k′, sct)
53 m← (kct, kpk⋆)
54 if RSig.Ver(σ, ρ = {spk, spk⋆},m) ̸= 1
55 return ⊥
56 k := H2(nk, nk2, kk2, c, pk, pk

⋆)
57 return k

Oracle Chall(sk) // one query

58 parse sk → (nsk, ksk, ssk)
59 npke := npk⋆

e // use second honest key
60 nk′ ← NIKE.Sdk(nsk, npk⋆)
61 nk := H1(nk

′, "auth")
62 nk1∥nk2 $← Test(2, 1) //Test query for (npk⋆

e , npk
⋆)

63 (kct, kk1∥kk2) $← KEM.Enc(kpk⋆)
64 m← (kct, kpk⋆)
65 σ ← RSig.Sgn(ssk, {µ(ssk), spk⋆},m)
66 k′ := H1(nk1, kk1)
67 sct := Sym.Enc(k′, σ)
68 c := (npke, kct, sct)
69 k := H2(nk, nk2, kk2, c, µ(sk), pk

⋆)
70 if b = 1
71 k $← K
72 D ← D ∪ {(µ(sk), c, k)}
73 return (c, k)

Figure 26. Adversary B against CKS security of NIKE, having access to oracles RevCor and Test, simulating Game
G2/G3 for adversary A from the proof of Theorem 14.

Game G5 Game G5 is the same as G4 except that the output of keyed function H2 in the challenge oracle is
replaced by a uniformly sampled element of the output space. The same holds for the output of H2 in the
decapsulation oracle in case npke = npk⋆e .

Claim. There exists an adversary D1 against the PRF security of H2 such that∣∣Pr [GA
4 ⇒ 1

]
− Pr

[
GA
5 ⇒ 1

]∣∣ ≤ 2 ·Adv
(1,QDec+1)-PRF
H2,D1

.

Proof. Adversary D1 is constructed in Figure 27 and keys function H2 on nk2. They need one PRF key
for the challenge query which is k⋆2 . Note that even though k⋆2 is used possibly several times during the
experiment, the game can still be simulated due to the changes in the previous game. There might be the
need of multiple evaluation queries since the same key can be queried again in the decapsulation oracle.
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Note that the queries always need the same PRF key which is also guaranteed by condition npke = npk⋆e
in the decapsulation oracle. In case b = 0 of the PRF game, adversary D1 obviously simulates Game G4 for
adversary A. The simulation of Game G5 in case b = 1 is sound if the evaluation oracle is not queried twice
on the same input. For two queries from the decapsulation oracle this is not a problem because G5 checks
if there already was such a query and assigns the previous input and this case. The case that a query from
the challenge and one from the decapsulation oracle have the same inputs cannot happen as well because a
decapsulation query would not reach the PRF evaluation query for the same input again because it would
return in Line 44 due to the fact that same inputs to H2 implies the existence of an element in set D.

■

Game G6 Game G6 is the same as G2 (note that this is not build upon the previous game) except that
the output of the KEM encapsulation in the challenge oracle is replaced by a uniformly random KEM key
of the key space KKEM. Further, if the decapsulation oracle is queried on a ciphertext for which the KEM
component, kct, is the same as the one output by the challenge oracle, the same KEM key kk⋆ is assigned.

Claim. There exists an adversary E against the IND-CCA security of KEM such that∣∣Pr [GA
2 ⇒ 1

]
− Pr

[
GA
6 ⇒ 1

]∣∣ ≤ 2 ·Adv
(1,QDec,1)-IND-CCA
KEM,E .

Proof. The reduction queries their own challenge oracle to simulate the AKEM challenge oracle. To answer
decapsulation queries, they can use their own KEM decapsulation oracle. Thus, E simulates G2 if they are in
their own real game, i.e. b = 0, because they output the real encapsulation in the challenge oracle. In their
case b = 1, they simulate Game G6 because their own challenge is a uniformly random sample.

■

Game G7 Game G7 is the same as G6 except that the output of keyed function H2 in the challenge oracle is
replaced by a uniformly sampled element of the output space.

Claim. There exists an adversary D2 against the PRF security of H2 such that∣∣Pr [GA
6 ⇒ 1

]
− Pr

[
GA
7 ⇒ 1

]∣∣ ≤ 2 ·Adv
(1,QDec+1)-PRF
H2,D2

.

Proof. The claim can be proved analogously to the one for G5 but choosing kk2 as the PRF key instead. ■

We can see that the output distribution of the challenge oracle in Game G5 and Game G7 is the same for
b = 0 and b = 1, thus we obtain

Pr[GA
5 ⇒ 1] = Pr[GA

7 ⇒ 1] =
1

2
.

Collecting the bounds for Games G0 − G5 and Games G0 − G2,G6 − G7 gives an upper bound on the single-
user-single-challenge Ins-CCA game. Using a generic result from [ABH+21], we obtain the stated bound
for the multi-user-multi-challenge setting.

■

Theorem 15 (Authenticity). For any Out-Aut adversary A against
Π := AKEM[NIKE,KEM,RSig,Sym,H1,H2], as depicted in Figure 9, there exists an CKS adversary B
against NIKE, a PRF adversary C against H1, an PRF adversary D against H2, a UF-CRA1 adversary
E against RSig, and an IND-CCA adversary F against KEM with tA ≈ tB ≈ tC ≈ tD ≈ tE ≈ tF such that

AdvQ-Out-Aut
Π,A ≤ min

{
2 ·AdvQNIKE-CKS

NIKE,B + 2 ·Adv(n
2,n2)-PRF

H1,C , Adv
(n,2,QEnc)-UF-CRA1
RSig,E + 2 ·AdvQ-IND-CCA

KEM,F + Q2
Enc · γKEM

}
+ 2 ·Adv(Q

′,Q′)-PRF
H2,D +QChl · δΠ +QEnc ·Q ′ · ηNIKE · γKEM

with Q = (n, QEnc, QChl), QNIKE = (QEnc + 2QChl, QEnc + 2QChl), Q
′ = QEnc +QChl.

Proof. Consider the sequence of games depicted in Figure 28 and Figure 29.
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DEval

01 D,H := ∅
02 kct⋆, kk⋆ := ⊥
03 for ℓ ∈ [QEnc + 2]
04 (nskℓ, npkℓ)

$← NIKE.Gen
05 (nsk⋆, npk⋆) := (nsk1, npk1)
06 (nsk⋆

e , npk
⋆
e) := (nsk2, npk2)

07 for i ∈ [QEnc + 2]
08 kii := ⊥
09 for j ∈ [i+ 1, QEnc + 2]
10 kij := kji

$← KNIKE

11 k⋆ := k12
12 kH1

$← KH1

13 ℓ := 2
14 (ksk⋆, kpk⋆) $← KEM.Gen
15 (ssk⋆, spk⋆) $← RSig.Gen
16 sk⋆ := (nsk⋆, ksk⋆, ssk⋆)
17 pk⋆ := (npk⋆, kpk⋆, spk⋆)
18 b $← {0, 1}
19 b′ ← AEncps,Decps,Chall(pk⋆)
20 return Jb = b′K

Oracle Chall(sk) // one query

21 parse sk → (nsk, ksk, ssk)
22 (nske, npke) := (nsk⋆

e , npk
⋆
e)

23 nk′ ← NIKE.Sdk(nsk, npk⋆)
24 nk := H1(nk

′, "auth")
25 nk1∥nk2 ← NIKE.Sdk(nske, npk

⋆)
26 nk2 := ⋆ // key unknown
27 (kct, kk1∥kk2) $← KEM.Enc(kpk⋆)
28 (kct⋆, kk⋆) := (kct, kk1∥kk2)
29 m← (kct, kpk⋆)
30 σ ← RSig.Sgn(ssk, {µ(ssk), spk⋆},m)
31 k′ := H1(nk1, kk1)
32 sct := Sym.Enc(k′, σ)
33 c := (npke, kct, sct)
34 if ∃ k′ : (k′, nk, nk2, kk2, c, µ(sk), pk

⋆) ∈ H
35 abort
36 k $← Eval(1, nk∥kk2∥c∥µ(sk)∥pk⋆) // eval query
37 H := H ∪ {(k, nk, nk2, kk2, c, µ(sk), pk⋆)}
38 if b = 1
39 k $← K
40 D ← D ∪ {(µ(sk), c, k)}
41 D ← D ∪ {(µ(sk), c, k)}
42 return (c, k)

Oracle Decps(pk, c)

43 if ∃ k : (pk, c, k) ∈ D
44 return k
45 parse pk → (npk, kpk, spk)
46 parse c→ (npke, kct, sct)
47 nk′ ← NIKE.Sdk(nsk⋆, npk)
48 if npk = npk⋆

e

49 nk′ := ⊥ // key unknown
50 elseif ∃ i : npk = npki
51 nk′ := k1i
52 nk := H1(nk

′, "auth")
53 if npk = npk⋆

e

54 nk := kH1 // key can be simulated
55 nk1∥nk2 ← NIKE.Sdk(nsk⋆, npke)
56 if npke = npk⋆

e

57 nk2 := ⋆ // key unknown
58 elseif ∃ i : npke = npki
59 nk1∥nk2 := k1i
60 kk1∥kk2 ← KEM.Dec(ksk⋆, kct)
61 k′ := H1(nk1, kk1)
62 σ := Sym.Dec(k′, sct)
63 m← (kct, kpk⋆)
64 if RSig.Ver(σ, ρ = {spk, spk⋆},m) ̸= 1
65 return ⊥
66 k := H2(nk, nk2, kk2, c, pk, pk

⋆)
67 if npke = npk⋆

e

68 k $← Eval(1, nk∥kk2∥c∥pk∥pk⋆) // eval query
69 H := H ∪ {(k, nk, nk2, kk2, c, pk, pk⋆)}
70 return k

Oracle Encps(pk)

71 return G4.Encps(pk)

Figure 27. Adversary C1 against PRF security of H2 queried on the second input, having access to oracle Eval,
simulating Game G4/G5 for adversary A from the proof of Theorem 14.

Game G0 We start with the Out-Aut game for AKEM[NIKE,KEM,RSig,Sym,H1,H2].∣∣∣∣Pr[GA
0 ⇒ 1]− 1

2

∣∣∣∣ = Adv
(n,QEnc,QChl)-Out-Aut
AKEM[NIKE,KEM,RSig,Sym,H1,H2],A.
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Games G0 − G6

01 D,D1,H,H′ := ∅
02 BAD1 := false
03 for i ∈ [n]
04 (nski, npki)

$← NIKE.Gen
05 (kski, kpki)

$← KEM.Gen
06 (sski, spki)

$← RSig.Gen
07 ski := (nski, kski, sski)
08 pki := (npki, kpki, spki)
09 b $← {0, 1}
10 b′ $← AEncps,Chall(pk1, . . . , pkn)
11 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

12 parse pk → (npk, kpk, spk)
13 (nske, npke)

$← NIKE.Gen
14 nk′ ← NIKE.Sdk(nsks, npk)
15 nk1∥nk2 ← NIKE.Sdk(nske, npk)
16 (kct, kk1∥kk2) $← KEM.Enc(kpk)
17 m← (kct, kpk)
18 σ ← RSig.Sgn(ssks, {spks, spk},m)
19 k′ := H1(nk1, kk1)
20 sct := Sym.Enc(k′, σ)
21 c := (npke, kct, sct)
22 if ∃ n̂k : (n̂k, {npks, npk}) ∈ D1 //G4 − G6

23 nk′ := n̂k //G4 − G6

24 elseif npk ∈ {npk1, . . . , npkn} //G4 − G6

25 nk′ $← KNIKE //G4 − G6

26 D1 := D1 ∪ {(nk′, {npks, npk})} //G4 − G6

27 nk := H1(nk
′, "auth")

28 if ∃ n̂k : (n̂k, {npks, npk}) ∈ H′ //G5 − G6

29 nk := n̂k //G5 − G6

30 elseif npk ∈ {npk1, . . . , npkn} //G5 − G6

31 nk $← KH1 //G5 − G6

32 H′ := H′ ∪ {(nk, {npks, npk})} //G5 − G6

33 if ∃ k : (k, ·, ·, ·, c, pks, pk) ∈ H //G2 − G6

34 BAD1;abort //G2 − G6

35 k := H2(nk, nk2, kk2, c, pks, pk)
36 if npk ∈ {npk1, . . . , npkn}
37 k $← K //G6

38 H := H ∪ {(k, nk, nk2, kk2, c, pks, pk)} //G1 − G6

39 D ← D ∪ {(pks, pk, c, k)}
40 return (c, k)

Oracle Chall(pk, r ∈ [n], c)

41 if ∃ k : (pk, pkr, c, k) ∈ D
42 return k
43 parse pk → (npk, kpk, spk)
44 parse c→ (npke, kct, sct)
45 nk′ ← NIKE.Sdk(nskr, npk)
46 nk := H1(k

′
1, "auth")

47 nk1∥nk2 ← NIKE.Sdk(nskr, npke)
48 if ∃ n̂k : (n̂k, {npkr, npke}) ∈ D1 //G4 − G6

49 nk1∥nk2 := n̂k //G4 − G6

50 elseif npke ∈ {npk1, . . . , npkn} //G4 − G6

51 nk1∥nk2 $← KNIKE //G4 − G6

52 kk1∥kk2 ← KEM.Dec(kskr, kct)
53 k′ := H1(nk1, kk1)
54 σ := Sym.Dec(k′, sct)
55 m← (kct, kpkr)
56 if RSig.Ver(σ, {spk, spkr},m) ̸= 1
57 return ⊥
58 if ∃ n̂k : (n̂k, {npks, npk}) ∈ D1 //G4 − G6

59 nk′ := n̂k //G4 − G6

60 elseif npk ∈ {npk1, . . . , npkn} //G4 − G6

61 nk′ $← KNIKE //G4 − G6

62 D1 := D1 ∪ {(nk′, {npk, npkr})} //G4 − G6

63 nk := H1(nk
′, "auth")

64 if ∃ n̂k : (n̂k, {npk, npkr}) ∈ H′ //G5 − G6

65 nk := n̂k //G5 − G6

66 elseif npk ∈ {npk1, . . . , npkn} //G5 − G6

67 nk $← KH1 //G5 − G6

68 H′ := H′ ∪ {(nk, {npk, npkr})} //G5 − G6

69 if ∃ k : (k, ·, ·, ·, c, pk, pkr) ∈ H //G3 − G6

70 abort //G3 − G6

71 k := H2(nk, nk2, kk2, c, pk, pkr)
72 if npk ∈ {npk1, . . . , npkn}
73 k $← K //G6

74 H := H ∪ {(k, nk, nk2, kk2, c, pk, pkr)} //G1 − G6

75 if b = 1 ∧ pk ∈ {pk1, . . . , pkn} ∧ k ̸= ⊥
76 k $← K
77 D ← D ∪ {(pk, pkr, c, k)}
78 D ← D ∪ {(pk, pkr, c, k)} //G1 − G6

79 return k

Figure 28. Games G0 − G6 for the proof of Theorem 15.

Game G1 This is the same as G0 except that in the challenge oracle an element is added to D independent
of challenge bit b. Further, we introduce a set H to store the output as well as all the inputs for every query
on H2. If the scheme is perfectly correct, the changes cannot be distinguished since the difference is that D
stores either tuples from encapsulations or from correct decapsulations. Hence, the difference is at most the
correctness error per query to the challenge oracle:∣∣Pr [GA

0 ⇒ 1
]
− Pr

[
GA
1 ⇒ 1

]∣∣ ≤ QChl · δAKEM[NIKE,KEM,RSig,Sym,H1,H2].
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Games G3,G7 − G10

01 D,D2H,Q := ∅
02 BAD2, BAD3 := false
03 for i ∈ [n]
04 (nski, npki)

$← NIKE.Gen
05 (kski, kpki)

$← KEM.Gen
06 (sski, spki)

$← RSig.Gen
07 ski := (nski, kski, sski)
08 pki := (npki, kpki, spki)
09 b $← {0, 1}
10 b′ $← AEncps,Chall(pk1, . . . , pkn)
11 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

12 parse pk → (npk, kpk, spk)
13 (nske, npke)

$← NIKE.Gen
14 k′

1 ← NIKE.Sdk(nsks, npk)
15 k1 := H1(k

′
1, "auth")

16 k′
2 ← NIKE.Sdk(nske, npk)

17 (kct, kk) $← KEM.Enc(kpk)
18 if kpk ∈ {kpk1, . . . , kpkn} //G9 − G10

19 kk $← KKEM //G9 − G10

20 D2 := D2 ∪ {(kpk, kct, kk)} //G9 − G10

21 m← (kct, kpk)
22 if ({spks, spk},m, ·) ∈ Q //G7 − G10

23 BAD2 := true;abort //G7 − G10

24 σ ← RSig.Sgn(ssks, {µ(ssks), spk},m)
25 Q := Q∪ {({spks, spk},m, σ)} //G7 − G10

26 k′ := H1(k2, kk)
27 sct := Sym.Enc(k′, σ)
28 c := (npke, kct, sct)
29 if ∃ k : (k, ·, ·, ·, c, pk, pkr) ∈ H
30 abort
31 k := H2(k1, k2, kk, c, pks, pk)
32 if kpk ∈ {kpk1, . . . , kpkn} //G10

33 k $← K //G10

34 H := H ∪ {(k, k1, k2, kk, c, pks, pk)}
35 D ← D ∪ {(pks, pk, c, k)}
36 return (c, k)

Oracle Chall(pk, r ∈ [n], c)

37 if ∃ k : (pk, pkr, c, k) ∈ D
38 return k
39 parse pk → (npk, kpk, spk)
40 parse c→ (npke, kct, sct)
41 k′

1 ← NIKE.Sdk(nskr, npk)
42 k1 := H1(k

′
1, "auth")

43 k′
2 ← NIKE.Sdk(nskr, npke)

44 kk ← KEM.Dec(kskr, kct)
45 if ∃ kk′ : (kpkr, kct, kk

′) ∈ D2 //G9 − G10

46 kk := kk′ //G9 − G10

47 k′ := H1(k2, kk)
48 σ := Sym.Dec(k′, sct)
49 m← (kct, kpkr)
50 k := H2(k1, k2, kk, c, pk, pkr)
51 if RSig.Ver(σ, {spk, spkr},m) ̸= 1
52 return ⊥
53 elseif ∃ i : spk = spki ∧ ({spk, spkr},m, ·) /∈ Q //G8 − G10

54 BAD3 := true;abort //G8 − G10

55 if ∃ k : (k, ·, ·, ·, c, pk, pkr) ∈ H
56 abort
57 if spk ∈ {spk1, . . . , spkn} ∧ k ̸= ⊥ //G10

58 k $← K //G10

59 H := H ∪ {(k, k1, k2, kk, c, pk, pkr)}
60 if b = 1 ∧ pk ∈ {pk1, . . . , pkn} ∧ k ̸= ⊥
61 k $← K
62 D ← D ∪ {(pk, pkr, c, k)}
63 return k

Figure 29. Games G3,G7 − G10 for the proof of Theorem 15.

Game G2 This game is the same as G1 except that the game aborts in the encapsulation oracle if there
already exists an element in set H with the same inputs.

Claim. ∣∣Pr [GA
1 ⇒ 1

]
− Pr

[
GA
2 ⇒ 1

]∣∣ ≤ QEnc · (QEnc +QChl) · ηNIKE · γKEM.

Proof. If there was a previous query to H2 on the same inputs, this includes ciphertext c. Part of the ciphertext
is the ephemeral NIKE key npke and the KEM ciphertext kct. For one element in H, the probability that
these two values are the same is at most ηNIKE · γKEM. Since for each query to Encps and Chall at most one
element is added to H, we obtain the claimed bound. ■

Game G3 This game is the same as G2 except that the game aborts in the challenge oracle if there already
exists an element in set H with the same inputs.
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Claim.
Pr[GA

2 ⇒ 1] = Pr[GA
3 ⇒ 1].

Proof. If there was a previous query to H2 on the same inputs, this includes ciphertext c and the public
keys pk and pkr which must be the same in the previous query. However, this implies that there is also a
corresponding element in D and the challenge oracle would have aborted in Line 38. ■

Game G4 This is the same as G3 except that NIKE shared key nk′ is replaced by a uniformly random
value of the key space KNIKE and stored together with the two corresponding public keys in set D1. For an
encapsulation query this is only done in the case of an honest receiver. In case the shared key between two
parties was already computed before, it is taken from set D1.

Claim. There exists an adversary B against the CKS security of NIKE such that∣∣Pr [GA
3 ⇒ 1

]
− Pr

[
GA
4 ⇒ 1

]∣∣ ≤ 2 ·Adv
(QEnc+2QChl,QEnc+2QChl)-CKS
NIKE,B .

Proof. Adversary B is formally constructed in Figure 30. The encapsulation oracle can be simulated by
either making a test or a corrupt reveal query depending on the receiver key pk being honest (test query)
or dishonest (corrupt reveal query). The same needs to be done in the challenge oracle but we need an
additional test or reveal corrupt query for the second NIKE key, nk1∥nk2, since the adversary can input
honest NIKE keys as part of the ciphertext. Depending on the challenge bit of the NIKE adversary B, they
simulate either Game G3 or Game G4. There is at most one test or corrupt reveal per query to Encps and
at most two test or reveal corrupt queries per query to QChl.

■

Game G5 This game is the same as G4 except that the output of keyed function H1 in the encapsulation
oracle (challenge oracle resp.) is replaced by a uniformly sampled value from the domain KH1 if the NIKE
public of the receiver (sender resp.) is honest (Line 31, Line 31 resp.). If there was a query on the same
inputs before, this value is taken instead.

Claim. There exists an adversary C against the PRF security of H1 such that∣∣Pr [GA
4 ⇒ 1

]
− Pr

[
GA
5 ⇒ 1

]∣∣ ≤ 2 ·Adv
(n2,n2)-PRF
H1,C .

Proof. Due to the changes in the previous game, the first NIKE shared key, nk′, is uniformly random for
honest public keys. Note that in the case where we take a stored shared key, we also have an element in
H′ and also take a previously stored output because the parameters are matching. This ensures that PRF
evaluation queries to the same PRF key and input correctly simulate the games. There are up to QEnc+QChl

many keys and evaluation queries. However, there is at most one query per key since the input is always the
same and there at most

(
n
2

)
≤ n2 many keys since the derivation of a shared NIKE key is deterministic. ■

Game G6 This game is the same as G5 except that the output of the keyed function H2 in the encapsulation
oracle (challenge oracle resp.) is replaced by a uniformly sampled value from the domain K if the NIKE
public of the receiver (sender resp.) is honest (Line 37, Line 73 resp.).

Claim. There exists an adversary D1 against the PRF security of H2 such that∣∣Pr [GA
5 ⇒ 1

]
− Pr

[
GA
6 ⇒ 1

]∣∣ ≤ 2 ·Adv
(QEnc+QChl,QEnc+QChl)-PRF
H2,D1

.

Proof. Adversary D1 is formally constructed in Figure 31 choosing the first component as their PRF key.
The reduction needs at most one PRF key per encapsulation and challenge query. The same holds for the
evaluation queries. In case b = 0 of the PRF game, adversary D1 simulates Game G5 for adversary A. In case
b = 1 of the PRF game, they simulate Game G6. Since the evaluation oracle is never queried on the same
input twice (since the game aborts otherwise), the simulation of Game G6 (outputting uniformly random
values in each query) is sound.

■

48



BRevCor,Test(npk1, . . . , npkn)

01 D,D1,H := ∅
02 for i ∈ [n]
03 (kski, kpki)

$← KEM.Gen
04 (sski, spki)

$← RSig.Gen
05 ski := (⊥, kski, sski)
06 pki := (npki, kpki, spki)
07 b $← {0, 1}
08 b′ $← AEncps,Chall(pk1, . . . , pkn)
09 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

10 parse pk → (npk, kpk, spk)
11 (nske, npke)

$← NIKE.Gen
12 nk1∥nk2 ← NIKE.Sdk(nske, npk)
13 (kct, kk1∥kk2) $← KEM.Enc(kpk)
14 m← (kct, kpk)
15 σ ← RSig.Sgn(ssks, {µ(ssks), spk},m)
16 k′ := H1(nk1, kk1)
17 sct := Sym.Enc(k′, σ)
18 c := (npke, kct, sct)
19 if ∃ n̂k : (n̂k, {npks, npk}) ∈ D1

20 nk′ := n̂k
21 elseif ∃ r : npk = npkr
22 nk′ $← Test(s, r) // test query
23 D1 := D1 ∪ {(nk′, {npks, npk})}
24 else
25 nk′ $← RevCor(s, npk) // corrupt reveal query
26 nk := H1(nk

′, "auth")
27 k := H2(nk, nk2, kk2, c, pks, pk)
28 H := H ∪ {(k, nk, nk2, kk2, c, pks, pk)}
29 D ← D ∪ {(pks, pk, c, k)}
30 return (c, k)

Oracle Chall(pk, r ∈ [n], c)

31 if ∃ k : (pk, pkr, c, k) ∈ D
32 return k
33 parse pk → (npk, kpk, spk)
34 parse c→ (npke, kct, sct)
35 if ∃ i : npke = npki
36 nk1∥nk2 $← Test(r, i) // test query
37 else
38 nk1∥nk2 $← RevCor(r, npke) // corrupt reveal query
39 kk1∥kk2 ← KEM.Dec(kskr, kct)
40 k′ := H1(nk1, kk1)
41 σ := Sym.Dec(k′, sct)
42 m← (kct, kpkr)
43 if RSig.Ver(σ, {spk, spkr},m) ̸= 1
44 return ⊥
45 if ∃ n̂k : (n̂k, {npk, npkr}) ∈ D1

46 nk′ := n̂k
47 elseif ∃ s : npk = npks
48 nk′ $← Test(r, s) // test query
49 else
50 nk′ $← RevCor(r, pk) // corrupt reveal query
51 nk := H1(nk

′, "auth")
52 k := H2(nk, nk2, kk2, c, pk, pkr)
53 H := H ∪ {(k, nk, nk2, kk2, c, pk, pkr)}
54 if b = 1 ∧ pk ∈ {pk1, . . . , pkn} ∧ k ̸= ⊥
55 k $← K
56 D ← D ∪ {(pk, pkr, c, k)}
57 return k

Figure 30. Adversary B against CKS security of NIKE, having access to oracles RevCor and Test, simulating Game
G3/G4 for adversary A from the proof of Theorem 15.

Game G7 This is the same as G3 (note that this does not build upon the previous game) except that flag
BAD2 is set to true and the game aborts if the same message m is signed twice. To keep track of the signing
queries, we introduce set Q storing the ring, the message, and the output signature.

Claim. ∣∣Pr [GA
3 ⇒ 1

]
− Pr

[
GA
7 ⇒ 1

]∣∣ ≤ Q2
Enc · γKEM.

Proof. The message being signed in the encapsulation oracle consists of several components where one of
them is the KEM ciphertext kct. Hence, BAD2 is only set to true if there is a collision in KEM ciphertexts.
For one query and one element in set Q the probability is at most γKEM. Since there are at most QEnc queries
to the encapsulation oracle and at most the same number of elements in set Q, it holds

Pr[BAD2 = true] ≤ Q2
Enc · γKEM.

■

Game G8 This game is the same as G7 except that flag BAD3 is set to true and the game aborts if the
signature in the challenge oracle verifies, the sender signature public key is honest, and the ring/message
was not input to a signing query before.
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DEval
1

01 ℓ := 0
02 D,D1,H,H′ := ∅
03 for i ∈ [n]
04 (nski, npki)

$← NIKE.Gen
05 (kski, kpki)

$← KEM.Gen
06 (sski, spki)

$← RSig.Gen
07 ski := (nski, kski, sski)
08 pki := (npki, kpki, spki)
09 b $← {0, 1}
10 b′ $← AEncps,Chall(pk1, . . . , pkn)
11 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

12 ℓ′ := 0
13 parse pk → (npk, kpk, spk)
14 (nske, npke)

$← NIKE.Gen
15 nk′ ← NIKE.Sdk(nsks, npk)
16 nk1∥nk2 ← NIKE.Sdk(nske, npk)
17 (kct, kk1∥kk2) $← KEM.Enc(kpk)
18 m← (kct, kpk)
19 σ ← RSig.Sgn(ssks, {spks, spk},m)
20 k′ := H1(nk1, kk1)
21 sct := Sym.Enc(k′, σ)
22 c := (npke, kct, sct)
23 if ∃ n̂k : (n̂k, {npks, npk}) ∈ D1

24 nk′ := n̂k
25 elseif npk ∈ {npk1, . . . , npkn}
26 nk′ $← KNIKE

27 D1 := D1 ∪ {(nk′, {npks, npk})}
28 nk := H1(nk

′, "auth")
29 if ∃ ℓ̂ : (ℓ̂, {npks, npk}) ∈ H′

30 ℓ := ℓ̂ // previous key
31 elseif npk ∈ {npk1, . . . , npkn}
32 ℓ := ℓ+ 1 // new key
33 ℓ′ := ℓ
34 H′ := H′ ∪ {(ℓ, {npks, npk})}
35 if ∃ k : (k, ·, ·, ·, c, pks, pk) ∈ H
36 BAD1;abort
37 k := H2(nk, nk2, kk2, c, pks, pk)
38 if npk ∈ {npk1, . . . , npkn}
39 k $← Eval(ℓ′, nk2∥kk2∥c∥pks∥pk) // eval query
40 H := H ∪ {(k, nk, nk2, kk2, c, pks, pk)}
41 D ← D ∪ {(pks, pk, c, k)}
42 return (c, k)

Oracle Chall(pk, r ∈ [n], c)

43 ℓ′ := 0
44 if ∃ k : (pk, pkr, c, k) ∈ D
45 return k
46 parse pk → (npk, kpk, spk)
47 parse c→ (npke, kct, sct)
48 nk′ ← NIKE.Sdk(nskr, npk)
49 nk := H1(nk

′, "auth")
50 nk1∥nk2 ← NIKE.Sdk(nskr, npke)
51 if ∃ n̂k : (n̂k, {npkr, npke}) ∈ D1

52 nk1∥nk2 := n̂k
53 elseif npke ∈ {npk1, . . . , npkn}
54 nk1∥nk2 $← KNIKE

55 kk1∥kk2 ← KEM.Dec(kskr, kct)
56 k′ := H1(nk1, kk1)
57 σ := Sym.Dec(k′, sct)
58 m← (kct, kpkr)
59 if RSig.Ver(σ, {spk, spkr},m) ̸= 1
60 return ⊥
61 if ∃ n̂k : (n̂k, {npks, npk}) ∈ D1

62 nk′ := n̂k
63 elseif npk ∈ {npk1, . . . , npkn}
64 nk′ $← KNIKE

65 D1 := D1 ∪ {(nk′, {npk, npkr})}
66 nk := H1(nk

′, "auth")
67 if ∃ ℓ̂ : (ℓ̂, {npk, npkr}) ∈ H′

68 ℓ′ := ℓ̂ // previous key
69 elseif npk ∈ {npk1, . . . , npkn}
70 ℓ := ℓ+ 1 // new key
71 ℓ′ := ℓ
72 H′ := H′ ∪ {(ℓ, {npk, npkr})}
73 if ∃ k : (k, ·, ·, ·, c, pk, pkr) ∈ H
74 abort
75 k := H2(nk, nk2, kk2, c, pk, pkr)
76 if npk ∈ {npk1, . . . , npkn}
77 k $← Eval(ℓ′, nk2∥kk2∥c∥pk∥pkr) // eval query
78 H := H ∪ {(k, nk, nk2, kk2, c, pk, pkr)}
79 if b = 1 ∧ pk ∈ {pk1, . . . , pkn} ∧ k ̸= ⊥
80 k $← K
81 D ← D ∪ {(pk, pkr, c, k)}
82 return k

Figure 31. Adversary D1 against PRF security of H2, having access to oracle Eval, simulating Game G5/G6 for
adversary A from the proof of Theorem 15.

Claim. There exists an adversary E against the UF-CRA1 security of RSig such that∣∣Pr [GA
7 ⇒ 1

]
− Pr

[
GA
8 ⇒ 1

]∣∣ ≤ Adv
(n,2,QEnc)-UF-CRA1
RSig,E .

Proof. Adversary E is formally constructed in Figure 32. The encapsulation oracle can be completely
simulated since the game aborts if there was a signing query on the same message again and one of the
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public keys in the ring is honest, namely spks. Further, adversary E wins the game if they return
(σ, {spki, spkr},m) in the challenge oracle: the output is valid (check in Line 42), was not subject to a
signing query before (check in Line 44), and the challenge ring contains only honest users.

ESgn(par, spk1, . . . , spkn)

01 D,H,Q := ∅
02 for i ∈ [n]
03 (nski, npki)

$← NIKE.Gen
04 (kski, kpki)

$← KEM.Gen
05 ski := (nski, kski,⊥)
06 pki := (npki, kpki, spki)
07 b $← {0, 1}
08 b′ $← AEncps,Chall(pk1, . . . , pkn)
09 return Jb = b′K

Oracle Encps(s ∈ [n], pk)

10 parse pk → (npk, kpk, spk)
11 (nske, npke)

$← NIKE.Gen
12 nk′ ← NIKE.Sdk(nsks, npk)
13 nk := H1(nk

′, "auth")
14 nk1∥nk2 ← NIKE.Sdk(nske, npk)
15 (kct, kk1∥kk2) $← KEM.Enc(kpk)
16 m← (kct, kpk)
17 if ({spks, spk},m, ·) ∈ Q
18 abort
19 σ ← Sgn(s, {spks, spk},m) // signing query
20 Q := Q∪ {({spks, spk},m, σ)}
21 k′ := H1(nk1, kk1)
22 sct := Sym.Enc(k′, σ)
23 c := (npke, kct, sct)
24 if ∃ k : (k, ·, ·, ·, c, pks, pk) ∈ H
25 abort
26 k := H2(nk, nk2, kk2, c, pks, pk)
27 H := H ∪ {(k, nk, nk2, kk2, c, pks, pk)}
28 D ← D ∪ {(pks, pk, c, k)}
29 return (c, k)

Oracle Chall(pk, r ∈ [n], c)

30 if ∃ k : (pk, pkr, c, k) ∈ D
31 return k
32 parse pk → (npk, kpk, spk)
33 parse c→ (npke, kct, sct)
34 nk′ ← NIKE.Sdk(nskr, npk)
35 nk := H1(nk

′, "auth")
36 nk1∥nk2 ← NIKE.Sdk(nskr, npke)
37 kk1∥kk2 ← KEM.Dec(kskr, kct)
38 k′ := H1(nk1, kk1)
39 σ := Sym.Dec(k′, sct)
40 m← (kct, kpkr)
41 k := H2(nk, nk2, kk2, c, pk, pkr)
42 if RSig.Ver(σ, {spk, spkr},m) ̸= 1
43 return ⊥
44 elseif ∃ i : spk = spki ∧ ({spk, spkr},m, ·) /∈ Q
45 return (σ, {spki, spkr},m) // return forgery
46 if ∃ k : (k, ·, ·, ·, c, pk, pkr) ∈ H
47 abort
48 H := H ∪ {(k, nk, nk2, kk2, c, pk, pkr)}
49 if b = 1 ∧ pk ∈ {pk1, . . . , pkn} ∧ k ̸= ⊥
50 k $← K
51 D ← D ∪ {(pk, pkr, c, k)}
52 return k

Figure 32. Adversary E against UF-CRA1 security of RSig, having access to oracle Sgn, simulating Game G7/G8

for adversary A from the proof of Theorem 15.

■

Game G9 This is the same as G8 except that KEM key in the encapsulation oracle is replaced by a uniformly
random output for honest receivers. The result is stored together with public key and ciphertext in set D1

to answer decapsulation calls in the challenge oracle consistently.

Claim. There exists an adversary F against the IND-CCA security of KEM such that∣∣Pr [GA
8 ⇒ 1

]
− Pr

[
GA
9 ⇒ 1

]∣∣ ≤ 2 ·Adv
(n,QEnc,QChl)-IND-CCA
KEM,F .

Proof. Adversary F can simulate the encapsulation oracle oracle by querying their own challenge oracle for
honest receiver keys. The challenge oracle can be simulated by a query to their own decapsulation oracle.
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Thus, F simulates G8 if they are in their own real game, i.e. b = 0, because they output the real encapsulation
in the Encps oracle. In their case b = 1, they simulate Game G9 because their own challenge is a uniformly
random sample.

■

Game G10 This game is the same as G9 except that the output of keyed function H2 in the encapsulation
and challenge oracle is replaced by a uniformly sampled value from the domain K. For the encapsulation
oracle this is only done if the KEM key of the receiver is honest and in the challenge oracle if the signature
verification key of the sender, spk, is honest and the shared key k is not ⊥.

Claim. There exists an adversary D2 against the PRF security of H2 such that∣∣Pr [GA
9 ⇒ 1

]
− Pr

[
GA
10 ⇒ 1

]∣∣ ≤ 2 ·Adv
(QEnc+QChl,QEnc+QChl)-PRF
H2,D2

.

Proof. The claim can be proved analogously to the one from G6 except that the reduction chooses the third
element, kk2, to be the PRF key. For the encapsulation oracle, the reduction is sound since a new KEM key
is sampled uniformly for each query. It functions as the PRF key for the reduction and an index for that key
can be stored in set D2. For the challenge oracle, this key can be reused and the PRF can be queried on the
stored index. Note that the condition spk ∈ {spk1, . . . , spkn} implies that a random key from set D2 was
taken: if Line 57 is reached, the game did not set flag BAD3 to true and abort. This means that the sender
verification is dishonest or there existing a matching element in Q, i.e. the message/public keys pair was
signed before. Checking for honest sender verification key, leaves us with the second possibility. However, if
there is a matching element in Q there must have been a corresponding query to Encps because Q is only
filed there. Further, this query must have added an element to D2 because the receiver KEM key of such a
query was honest because the challenge oracle can only be queried on honest receivers. It is also not possible
to change the order of sender and receiver (which would yield at least the same ring) since the message being
signed contains the KEM key of the receiver kpk/kpkr. ■

We now analyse the winning probability of Games G6 and G10:

Claim.

Pr[GA
6 ⇒ 1] = Pr[GA

10 ⇒ 1] =
1

2
.

Proof. For Game G6, the shared key output by the challenge oracle is uniformly random in the case b = 0 if
the sender NIKE key is honest. Case b = 1 only triggers for honest sender keys (and decapsulations ̸= ⊥).
Since honest sender keys imply an honest sender NIKE key, the output distribution is the same for case
b = 0 and b = 1 and thus independent of the challenge bit.

For Game G10 and b = 0, there are two things that can happen in the challenge oracle. First, the signature
is not valid then the oracle returns ⊥ in Line 52 which happens independent of the challenge bit. Second, for
a valid signature the game either aborts or the oracle outputs a uniformly random key if spk is honest and
k ̸= ⊥ (Line 57). These conditions are implied by the conditions which are necessary to trigger case b = 1
and are therefore true whenever case b = 1 could occur. Hence, the output distribution for case b = 0 and
b = 1 does not differ and the game is independent of the challenge bit. ■

We conclude the proof by combining the bounds.
■

Theorem 16 (Dishonest Deniability). For any DR-Den adversary A against
Π := AKEM[NIKE,KEM,RSig,Sym,H1,H2], as depicted in Figure 9, and simulator Sim as defined in
Figure 33 there exists a MC-Ano adversary B against RSig with tA ≈ tB such that

Adv
(n,QChl)-DR-Den
Π,Sim,A ≤ Adv

(n,2,QChl)-MC-Ano
RSig,B +QChl · δNIKE.

Proof. Consider the sequence of games depicted in Figure 33 as well as the construction of a simulator Sim.
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G0 − G2

01 for i ∈ [n]
02 (nski, npki)

$← NIKE.Gen
03 (kski, kpki)

$← KEM.Gen
04 (sski, spki)

$← RSig.Gen
05 ski := (nski, kski, sski)
06 pki := (npki, kpki, spki)
07 b $← {0, 1}
08 b′ ← AChall((sk1, pk1), . . . , (skn, pkn))
09 return Jb = b′K

Oracle Chall(s ∈ [n], r ∈ [n])

10 if s = r return ⊥
11 (nske, npke)

$← NIKE.Gen
12 nk′ ← NIKE.Sdk(nsks, npkr)
13 nk′ ← NIKE.Sdk(nskr, npks) //G1 − G2

14 nk := H1(nk
′, "auth")

15 nk1∥nk2 ← NIKE.Sdk(nske, npkr)
16 (kct, kk1∥kk2) $← KEM.Enc(kpkr)
17 m← (kct, kpkr)
18 σ ← RSig.Sgn(ssks, {spks, spkr},m)
19 σ ← RSig.Sgn(sskr, {spks, spkr},m) //G2

20 k′ := H1(nk1, kk1)
21 sct := Sym.Enc(k′, σ)
22 c := (npke, kct, sct)
23 k := H2(nk, nk2, kk2, c, pks, pkr)
24 if b = 1
25 (c, k) $← Sim(pks, pkr, skr)
26 return (c, k)

Sim(pks, pkr, skr)

27 parse pks → (npks, kpks, spks)
28 parse pkr → (npkr, kpkr, spkr)
29 parse skr → (nskr, kskr, sskr)
30 (nske, npke)

$← NIKE.Gen
31 nk′ ← NIKE.Sdk(nskr, npks)
32 nk := H1(nk

′, "auth")
33 nk1∥nk2 ← NIKE.Sdk(nske, npkr)
34 (kct, kk1∥kk2) $← KEM.Enc(kpkr)
35 m← (kct, kpkr)
36 σ ← RSig.Sgn(sskr, {spks, spkr},m)
37 k′ := H1(nk1, kk1)
38 sct := Sym.Enc(k′, σ)
39 c := (npke, kct, sct)
40 k := H2(nk, nk2, kk2, c, pks, pkr)
41 return (c, k)

Figure 33. Games G0 − G2 for the proof of Theorem 16.
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Game G0 We start with the dishonest receiver deniability game for AKEM[NIKE,KEM,RSig,Sym,H1,H2].
Compared to the original definition in Figure 5, we remove the reveal oracle and directly provide the adversary
with all the secret keys of the game since there is no restriction on revealing secret keys and thus these games
are equivalent. Hence, it holds∣∣∣∣Pr[GA

0 ⇒ 1]− 1

2

∣∣∣∣ = Adv
(n,QChl)-DR-Den
AKEM[NIKE,KEM,RSig,Sym,H1,H2],Sim,A.

Game G1 Game G1 is the same as G0 except that the first NIKE shared key in the challenge oracle, nk′, is
computed between receiver and sender instead of sender and receiver.

Claim. ∣∣Pr [GA
0 ⇒ 1

]
− Pr

[
GA
1 ⇒ 1

]∣∣ ≤ QChl · δNIKE.

Proof. Since both the sender and receiver keys are honestly generated, the change in one query is exactly
the definition of the correctness error. Applying the change for every query to Chall proves the claim. ■

Game G2 Game G2 is the same as G1 except that the ring signature is computed with the receiver’s signing
key instead of the sender’s signing key.

Claim. There exists an adversary B against MC-Ano security of RSig such that∣∣Pr [GA
1 ⇒ 1

]
− Pr

[
GA
2 ⇒ 1

]∣∣ ≤ Adv
(n,2,QChl)-MC-Ano
RSig,B .

Proof. Adversary B is formally constructed in Figure 33. To compute the signature in the challenge oracle,
B can query their own challenge oracle. In case b = 0, they simulate Game G1, otherwise they simulate
G2. The number of challenge queries for the anonymity game equals the number for the deniability game of
adversary A.

■

Game G2 is independent of challenge bit b since syntactically the same operations are executed in case
b = 0 and b = 1:

Pr[GA
2 ⇒ 1] =

1

2
.

■

Theorem 17 (Honest Deniability). For any HR-Den adversary A against
Π := AKEM[NIKE,KEM,RSig,Sym,H1,H2], as depicted in Figure 9,and simulator Sim as defined in
Figure 35 there exists a CKS adversary B against NIKE, an IND-CPA adversary C against KEM, PRF
adversaries D and E against H1 and H2, and a IND-CPA adversary F against Sym with
tA ≈ tB ≈ tC ≈ tD ≈ tE ≈ tF such that

Adv
(n,QChl)-HR-Den
Π,Sim,A ≤ 4n2 ·QChl ·

(
min

{
Adv

(2,0,1)-CKS
NIKE,B ,Adv

(1,1)-IND-CPA
KEM,C

}
+ Adv

(1,1)-PRF
H1,D +Adv

(1,1)-PRF
H2,E +AdvIND-CPA

Sym,F

)
.

Proof. Consider the sequence of games depicted in Figure 35 as well as the construction of a simulator Sim.

Game G0 We start with a simplified game for honest receiver deniability for
AKEM[NIKE,KEM,RSig,Sym,H1,H2] considering only one challenge query and two users. Hence, it holds∣∣∣∣Pr[GA

0 ⇒ 1]− 1

2

∣∣∣∣ = Adv
(2,1)-HR-Den
AKEM[NIKE,KEM,RSig,Sym,H1,H2],Sim,A.
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BChlRSig(par, (ssk1, spk1), . . . , (sskn, spkn))

01 for i ∈ [n]
02 (nski, npki)

$← NIKE.Gen
03 (kski, kpki)

$← KEM.Gen
04 ski := (nski, kski, sski)
05 pki := (npki, kpki, spki)
06 b $← {0, 1}
07 b′ ← AChall((sk1, pk1), . . . , (skn, pkn))
08 return Jb = b′K

Oracle Chall(s ∈ [n], r ∈ [n])

09 (nske, npke)
$← NIKE.Gen

10 nk′ ← NIKE.Sdk(nskr, npks)
11 nk := H1(nk

′, "auth")
12 nk1∥nk2 ← NIKE.Sdk(nske, npkr)
13 (kct, kk1∥kk2) $← KEM.Enc(kpkr)
14 m← (kct, kpkr)
15 σ $← ChlRSig(s, r, {spks, spkr},m) // challenge
query
16 k′ := H1(nk1, kk1)
17 sct := Sym.Enc(k′, σ)
18 c := (npke, kct, sct)
19 k := H2(nk, nk2, kk2, c, pks, pkr)
20 if b = 1
21 (c, k) $← Sim(pks, pkr, skr)
22 return (c, k)

Figure 34. Adversary B against MC-Ano security of RSig, having access to oracle ChlRSig, simulating Game G1/G2

for adversary A from the proof of Theorem 16.

G0 − G5

01 i⋆ $← {0, 1} //G1 − G5

02 R, C ← ∅
03 for i ∈ {0, 1}
04 (nski, npki)

$← NIKE.Gen
05 (kski, kpki)

$← KEM.Gen
06 (sski, spki)

$← RSig.Gen
07 ski := (nski, kski, sski)
08 pki := (npki, kpki, spki)
09 b $← {0, 1}
10 b′ ← ARev,Chall(pk0, pk1)
11 if R∩ C ̸= ∅
12 abort
13 return Jb = b′K

Rev(i ∈ {0, 1})

14 if i = i⋆ //G1 − G5

15 abort //G1 − G5

16 R← R∪ {i}
17 return ski

Sim(pks, pkr)

18 (nske, npke)
$← NIKE.Gen

19 (kct, kk) $← KEM.Enc(kpkr)
20 k′ $← KH1

21 sct := Sym.Enc(k′, 0)
22 c := (npke, kct, sct)
23 k $← KH2

24 return (c, k)

Oracle Chall(s ∈ {0, 1}, r ∈ {0, 1}) // one query

25 if s = r return ⊥
26 if r ̸= i⋆ //G1 − G5

27 abort //G1 − G5

28 C ← C ∪ {r}
29 (nske, npke)

$← NIKE.Gen
30 nk′ ← NIKE.Sdk(nsks, npkr)
31 nk := H1(nk

′, "auth")
32 nk1∥nk2 ← NIKE.Sdk(nske, npkr)
33 nk1∥nk2 $← KNIKE //G2.1 − G5

34 (kct, kk1∥kk2) $← KEM.Enc(kpkr)
35 kk1∥kk2 $← KKEM //G2.2 − G5

36 m← (kct, kpkr)
37 σ ← RSig.Sgn(ssks, {spks, spkr},m)
38 k′ := H1(nk1, kk1)
39 k′ $← KH1 //G3 − G5

40 σ := 0 //G5

41 sct := Sym.Enc(k′, σ)
42 c := (npke, kct, sct)
43 k := H2(nk, nk2, kk2, c, pks, pkr)
44 k $← KH2 //G4 − G5

45 if b = 1
46 (c, k) $← Sim(pks, pkr)
47 return (c, k)

Figure 35. Games G0 − G5 for the proof of Theorem 17.
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Game G1 This game is the same as G0 except that the experiment chooses a random user in the beginning
of the game and aborts if the reveal oracle is queried for that user or the challenge oracle is queried for that
user as a receiver.

Claim. ∣∣∣∣Pr[GA
0 ⇒ 1]− 1

2

∣∣∣∣ ≤ 2 ·
∣∣∣∣Pr[GA

1 ⇒ 1]− 1

2

∣∣∣∣.
Proof. An adversary with a non-zero advantage has to query the challenge oracle because otherwise there is
no strategy in outputting the correct bit that is better than guessing. For querying the challenge oracle and
still fulfilling the winning condition (R∩ C ≠ ∅), the receiver’s key cannot be revealed. The probability that
the challenged receiver is guessed correctly is 1

2 . ■

Remark. We define the following two hybrids (G2.1 and G2.2) in parallel which means that we fork the
sequence and indicate the parallel hybrids via a sub index. After the fork we can apply the same proof to
obtain a common hybrid again (G3). This allows us to obtain a minimum when collecting the overall bound
in the end without presenting two separate proofs.

Game G2.1 This game is the same as G1 except that the second NIKE shared key, nk1∥nk2, is replaced by
a uniformly random value from the NIKE key space.

Claim. There exists an adversary B against CKS security of NIKE such that∣∣Pr [GA
1 ⇒ 1

]
− Pr

[
GA
2.1 ⇒ 1

]∣∣ ≤ 2 ·Adv
(2,0,1)-CKS
NIKE,B .

Proof. Adversary B is formally constructed in Figure 36. Note that the shared key nk′ in the challenge
oracle can be computed by the experiment itself since the sender key is known. Further, there is no need for
reveal corrupt queries which allows for a weaker security requirement for the underlying NIKE, namely CKS
security with honest key registration or passive secure NIKE. If B in their real game, they simulate G1, in
their random game they simulate G2.1. Hence, if A can distinguish the cases, B can win their game.

■

Game G2.2 This game is the same as G1 except that the KEM key, kk1∥kk2, is replaced by a uniformly
random value from the KEM key space.

Claim. There exists an adversary C against IND-CPA security of KEM such that∣∣Pr [GA
1 ⇒ 1

]
− Pr

[
GA
2.2 ⇒ 1

]∣∣ ≤ 2 ·Adv
(1,1)-IND-CPA
KEM,C .

Proof. The claim can be proved straightforwardly by querying the challenge oracle of the KEM for each call
to the AKEM challenge oracle Chall. ■

Game G3 This game is the same as G2.1/G2.2 except that the output of H1 is replaced by a uniformly random
value of the output range KH1 .

Claim. There exists an adversary D against PRF security of H1 such that for i ∈ {1, 2}∣∣Pr [GA
2.i ⇒ 1

]
− Pr

[
GA
3 ⇒ 1

]∣∣ ≤ 2 ·Adv
(1,1)-PRF
H1,D .

Proof. The proof can be done straightforwardly by first proving the result for keying H1 on the first input
and then with the same strategy for the second input. Since we only allow for one challenge query, we need
one PRF key and one evaluation query. ■
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BRevCor,Test(npk⋆
1 , npk

⋆
2)

01 i⋆ $← {0, 1}
02 R, C ← ∅
03 npki⋆ := npk⋆

1

04 nski⋆ := ⊥
05 (nsk1−i⋆ , npk1−i⋆)

$← NIKE.Gen
06 for i ∈ {0, 1}
07 (kski, kpki)

$← KEM.Gen
08 (sski, spki)

$← RSig.Gen
09 ski := (nski, kski, sski)
10 pki := (npki, kpki, spki)
11 b $← {0, 1}
12 b′ ← ARev,Chall(pk0, pk1)
13 if R∩ C ̸= ∅
14 abort
15 return Jb = b′K

Rev(i ∈ {0, 1})

16 if i = i⋆

17 abort
18 R← R∪ {i}
19 return ski

Oracle Chall(s ∈ {0, 1}, r ∈ {0, 1}) // one query

20 if r ̸= i⋆

21 abort
22 C ← C ∪ {r}
23 npke := npk⋆

2 // embed second honest key
24 nk′ ← NIKE.Sdk(nsk1−i⋆ , npki⋆) // simulateable due to
abort
25 nk := H1(nk

′, "auth")
26 nk1∥nk2 $← Test(2, 1) // test query
27 (kct, kk1∥kk2) $← KEM.Enc(kpkr)
28 m← (kct, kpkr)
29 σ ← RSig.Sgn(ssks, {spks, spkr},m)
30 k′ := H1(nk1, kk1)
31 sct := Sym.Enc(k′, σ)
32 c := (npke, kct, sct)
33 k := H2(nk, nk2, kk2, c, pks, pkr)
34 if b = 1
35 (c, k) $← Sim(pks, pkr) // as defined in Figure 35
36 return (c, k)

Figure 36. Adversary B against CKS security of NIKE, having access to oracles RevCor and Test, simulating Game
G1/G2.1 for adversary A from the proof of Theorem 17.

Game G4 This game is the same as G3 (based on its possible two predecessors) except that the output of
H2 is replaced by a uniformly random value of the output range K.

Claim. There exists an adversary E against PRF security of H2 such that∣∣Pr [GA
3 ⇒ 1

]
− Pr

[
GA
4 ⇒ 1

]∣∣ ≤ 2 ·Adv
(1,1)-PRF
H2,E .

Proof. The claim can be proved in the same way as for the previous game. ■

Game G5 This game is the same as G4 except that the signature σ is replaced by 0.

Claim. There exists an adversary F against IND-CPA security of Sym such that∣∣Pr [GA
4 ⇒ 1

]
− Pr

[
GA
5 ⇒ 1

]∣∣ ≤ 2 ·AdvIND-CPA
Sym,F .

Proof. Adversary F can simulate the whole game by generating the secret keys themselves. Due to the
changes in G3 the symmetric key is uniformly chosen and independent of the rest of the game. Hence, the
reduction can query their own IND-CPA challenge oracle on the original σ and 0. In case b = 0, F simulates
G4; otherwise they simulate G5. Since there is only one challenge query, the claim follows. ■

Since the output distribution of the challenge oracle in case b = 0 is the same as for the simulator the
resulting game is independent of the challenge bit and thus it holds

Pr[GA
5 ⇒ 1] =

1

2
.
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To obtain a security for the multi-user multi-challenge setting we can apply a hybrid argument which
yields the following upper bound and thus the theorem statement.

Adv
(n,QChl)-HR-Den
AKEM,Sim,A ≤ n2 ·QChl ·Adv

(2,1)-HR-Den
AKEM,Sim,A′ .

■
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