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Abstract

Cryptographic protocols often make honesty assumptions—e.g., fewer than ¢ out of n partic-
ipants are adversarial. In practice, these assumptions can be hard to ensure, particularly given
monetary incentives for participants to collude and deviate from the protocol.

In this work, we explore combining techniques from cryptography and mechanism design to
discourage collusion. We formalize protocols in which colluders submit a cryptographic proof to
whistleblow against their co-conspirators, revealing the dishonest behavior publicly. We provide
general results on the cryptographic feasibility, and show how whistleblowing fits a number of
applications including secret sharing, randomness beacons, and anonymous credentials.

We also introduce smart collusion — a new model for players to collude. Analogous to
blockchain smart contracts, smart collusion allows colluding parties to arbitrarily coordinate and
impose penalties on defectors (e.g., those that blow the whistle). We show that unconditional
security is impossible against smart colluders even when whistleblowing is anonymous and can
identify all colluding players. On the positive side, we construct a whistleblowing protocol that
requires only a small deposit and can protect against smart collusion even with roughly ¢ times
larger deposit.

A preliminary version of this paper appears in the proceedings of ACM CCS 2025. This is the full version.

*The first two authors contributed equally to this work.
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1 Introduction

Cryptographic protocols often make honesty assumptions on how participants act. A common
assumption is that fewer than t (out of a total of n) players are corrupt, while all other players
execute the protocol honestly. This model is seen in many applications, including secret sharing [71],
threshold cryptography [35], multi-party computation [9, 51], and private information retrieval [26].

But in practice, it is often more realistic to consider nodes as rational with potential monetary
incentives to collude. As an example, in the context of secret sharing (where each player holds a
share of a secret s), a coalition of players might profit by colluding to recover s earlier than expected.
It is therefore important to design protocols to discourage rational players from colluding as they
seek to maximize their utility.

In this work, we explore a broad framework for integrating techniques from both mechanism
design and cryptography to establish feasibility and impossibility results for dealing with collusion.

Deterring collusion. Since we cannot make it impossible for players to collude, we will instead
focus on deterring collusion by e.g., making it unstable or unprofitable for rational players. One
promising approach is to provide a way for colluding players to whistleblow (or snitch) against
their co-conspirators for a reward. This was explored very recently for secret-sharing protocols
starting with Dziembowski et al. [40] and later in [17, 53] (works concurrent to ours). In this
context, [17, 40] consider only the cryptographic angle for whistleblowing while [53] also formalizes
how rewards should be set. A similar question on deterring collusion was also previously considered
in the context of PIR [52]. Separately, other works build cryptographic tools for accountability (i.e.,
detecting malicious parties) for various primitives (see Section 1.2 for related works).

In this work, we design a broad framework for whistleblowing protocols that captures several
applications. Abstractly, a whistleblowing protocol will consist of two components: (1) a crypto-
graphic tool that enables players to verifiably prove the existence of collusion and/or its members;
and (2) a game-theoretic mechanism to incentivize players to actually blow the whistle and impose
penalties on colluders. The cryptographic proof fits within the broad umbrella of proving failures
in the protocol’s original security model. But without understanding the incentives, it says nothing
about whether players will want to use it as opposed to staying silent.

We demonstrate how a strong yet natural form of collusion—which to the best of our knowledge
has not been considered by prior work—can be used to circumvent the positive results from [40, 53].
Our work considers whistleblowing protocols in the context of this new form of collusion, which we
will call smart collusion’.

To avoid additional trust assumptions on who verifies the correctness of the collusion proof, we
will require that our whistleblowing protocols not require trusted executors or private state. In
other words, the verification can itself be instantiated through a blockchain smart contract.

A new notion — smart collusion. The basic idea behind smart collusion is that colluders
have knowledge of the mechanism chosen by the protocol designer and can act accordingly in an
attempt to circumvent the mechanism.

As an illustration, consider the following scenario. Suppose that we have a cryptographic
protocol (e.g., secret sharing) that is susceptible to collusion. In an attempt to deter collusion,

The term smart collusion comes from its similarity to the usage of blockchain smart contracts by colluding players
to coordinate with each other in arbitrary ways.



the protocol contains a cryptographic way for players to prove the existence of a collusion, and
provides a reward R for submitting such a proof. But now, knowing the existence and details of
this whistleblowing mechanism, colluders can adapt. In particular, all colluders can first agree on
a contract C' that holds large deposits from each player in the collusion and retaliates if anyone
attempts to defect (from the collusion) by whistleblowing. As a simple example, retaliation might
mean burning the deposit of the whistleblower if the mechanism is not anonymized or burning all
deposits if it is. One potential way to instantiate C' is as a blockchain smart contract.

In general, we will allow players to collude in arbitrary ways—both cryptographically to pre-
vent the ability to whistleblow, and through designing threats of retaliation to deter players from
whistleblowing. In essence, we note that for smart collusion, the same tools available to the protocol
designer to protect against collusion will also be available to the colluders in their attempt to cir-
cumvent the protocol. Colluders in fact may have a last-mover advantage as the protocol designer
must generally commit to their mechanism first. To the best of our knowledge, this perspective is
missing from prior works on collusion in cryptographic protocols. Most recently, concurrent work
by Bormet et al. [17] allows colluders to use a trusted party (such a smart contract) in the secret
sharing context—this is however restricted only to one particular “retaliation strategy” as opposed
to the general form that our model permits.

Smart collusion can be thought of analogously to real-world retaliation and intimidation tactics
used to discourage defection from criminal enterprises. For example, mafia bosses might threaten to
harm or kill members (or their families) for violating the code of omerta (which mandates, among
other principles, a refusal to cooperate with law enforcement). In game-theoretic language, smart
collusion enables creating a “credible commitment” [64] to enforcing such penalties on defectors.

1.1 Owur Contributions and Results

We make contributions on whistleblowing protocols from both the cryptographic and the mechanism
design perspectives. We summarize our main results in this section.

Whistleblowing formalism (Section 3). We start by proposing a general design framework
for whistleblowing protocols in Section 3. Abstractly, whistleblowing protocols comprise of a cryp-
tographic tool to prove collusion, and a game-theoretic mechanism to incentivize players to submit
such proofs. On the cryptographic side, we define security through typical notions of completeness
(some player within the collusion can compute a collusion proof) and soundness (if there is no
collusion, no player can compute a collusion proof). On the game-theoretic side, we define security
in terms of incentivizing rational players to not collude. This requires ensuring that if players were
to collude, they would be incentivized to defect by whistleblowing (i.e., negating the benefits of
colluding). To capture this, we use the standard game-theoretic notion of a subgame-perfect pure
Nash equilibrium (SPPNE).

Whistleblowing settings (Sections 4 and 5). We formalize two settings that capture several
natural cryptographic applications and explore whistleblowing protocols for them.

1. Blockchain-assisted transparent services (Section /). We model a generic distributed cryp-
tographic service provided by a set S of servers. A key k is secret-shared among the servers. Any
client can provide an input x and learn the result of some (potentially randomized) function f(k, z)




computed by the servers in a threshold manner. We illustrate how this models natural blockchain-
based use cases such as threshold signing-as-a service, randomness beacons [74], and anonymous
credentials [38] (see Section 4.4).

For many applications, it can be important to provide transparency (i.e., keep a public record of
all answered queries) to prevent equivocation or enable auditability. As an example, for anonymous
credentials that need to be rate limited, we want to ensure that even a malicious server quorum
cannot provide extra credentials to a client. A natural first step is to use e.g., a blockchain, to log
all queries (potentially in a privacy-preserving way). As an orthogonal point, using the blockchain
for communication also provides natural censorship-resistance guarantees, similar to its use in [23,
27, 67).

However, even when queries are logged, notice that servers can still collude (individually or
together) with a client to provide their service out-of-band, i.e., without communicating through

the blockchain. A client may want to pay a premium for such out-of-band service that is not
recorded (e.g., to receive extra credentials).

Our goal is to disincentivize this out-of-band collusion through whistleblowing. We accomplish
this by ensuring that the client will be able to prove that it has received service out-of-band—
i.e., the client obtains a whistleblowing proof. We prove general feasibility results on when such
whistleblowing proofs can be (cryptographically) constructed, and how they can be incentivized.

2. General setting with collusion proofs (Section 5). Second, we model a general setting that
captures any protocol where proofs of collusion arise. That is, when players collude, some member
necessarily obtains information that allows it to prove the existence of the collusion. Further, we
even permit the collusion to decide the exact subset of colluding players who will receive such a
proof.

While we don’t have generic results for when cryptographic tools for proving collusion exist,
we show how this fits several existing protocols including secret sharing with snitching [40, 53],
threshold decryption with self-incriminating proofs [22], and BFT forensics [72].

The core reason for modeling this general setting is to show when such proofs of collusion are
actually effective. We apply our game-theoretic framework and results to highlight the challenge of
deterring collusion even given proofs of collusion (especially in light of our smart collusion notion).

Game-theoretic results (Sections 6, 7, 8, and 9). We formalize a general game-theoretic
framework (capturing all our settings) that models the incentives of whistleblowing protocols (Sec-
tion 6). More concretely, to deter collusion, we allow for designing a mechanism M" that takes
deposit D from each player, and executes appropriate penalties / rewards when whistleblowing
proofs are submitted. In turn, following our smart collusion notion, the colluders may themselves
effectively write a “retaliation” mechanism MR® that takes in deposit D’ from each colluding player,
and executes appropriate “counter-penalties” based on whether whistleblowing proofs were submit-
ted by defectors. For our game-theoretic analysis, we will abstract out the exact details of how
whistleblowing proofs are constructed cryptographically. Our highlight results are as follows:

o Impossibility of unconditional security. We prove the impossibility of unconditional protec-

tion against smart collusion. In other words, for any whistleblowing mechanism MY, there exists
a retaliation mechanism MR that takes in sufficiently high deposit from colluders and succeeds



in deterring them from blowing whistles. Perhaps surprisingly, we show this impossibility holds
even when (1) the whistleblowing is anonymous, i.e., prevents identification of who is blowing the
whistle; and (2) the whistleblowing is fully accountable, i.e., provably identifies all players in the
collusion.

This can be seen in contrast with the positive results in e.g., [53] where standard collusion (i.e.,
without a retaliation contract) can be deterred when all players are rational. We show a similar
feasibility for whistleblowing without retaliation in our broad framework.

Similarly, this impossibility highlights the challenge of accountable cryptography (e.g., [11, 12,
14, 15, 25, 54]) which often assumes trusted executors to identify malicious players. Our result may
be interpreted as an impossibility for accountability in settings where this executor is rational and
could collude with other players.

o Small whistleblowing deposits can prevent collusion based on much larger retaliation deposits.
On the positive side, we show a concrete whistleblowing mechanism (with anonymous proofs) which
requires a deposit D from each player and protects against any smart collusion with much larger
deposits—up to roughly (¢ —1)D from each colluder who has the ability to whistleblow. This result
has practical significance especially in settings where n (and therefore, t) are large.

e Lower bound on the whistleblowing deposit. Further, as a lower bound, we show that any
whistleblowing mechanism that collects a whistleblowing deposit D can be rendered ineffective by
some retaliation mechanism collecting a deposit (¢ — 1) D. This demonstrates that our mechanism
is near-optimal.

e Positive result in the transparent service setting. We find an interesting nuance that leads to
a positive result for natural applications of the transparent service setting. Specifically, our result
applies if the servers provide their service to clients on an ongoing basis.

Servers can be expected to let their whistleblowing deposit be held indefinitely (until a whistle
is blown), effectively as a cost of doing business. But now, we show that the only way to break this
whistleblowing mechanism is for the servers to force the client’s deposit in the retaliation contract
to also be held indefinitely. This would be a permanent cost to the client, which would intuitively
negate any benefit from colluding to obtain off-band service. In turn, this disincentivizes collusion.

Paper organization. The rest of the paper is organized as follows: Section 1.2 presents related
works. Section 2 gives relevant cryptography and mechanism design preliminaries. Section 3
introduces the broad framework for whistleblowing protocols; the cryptographic side is explored in
Sections 4 and 5, and the mechanism design side is explored in Sections 6, 7, 8, and 9.

1.2 Additional Related Works

Rational cryptography. A long line of work [5, 47, 56, 57] models the security of various
cryptographic protocols under rational adversaries. Here, rationality is modeled in one of two
ways: (i) either as a monolithic external attacker but with a budget (which is weaker than the
typical arbitrary malicious model), or (ii) as all players being individually rational. Collusion
amongst players is typically not considered. In our setting, we model individually rational players
who can also collude, and moreover do so in a new powerful way with smart collusion.



Accountable protocols. Accountability—i.e., identification of malicious players—is a recurring
theme in the cryptography literature. Accountable protocols have been put forth in a number of
different contexts—traitor tracing [25, 77], threshold signatures (see e.g., [11, 13] and references
therein), tracing for threshold decryption [12], detection of failures in trusted applications [3, 61],
secret sharing [14, 54], threshold VRFs [15], and BFT forensics [18, 72].

But, typically, these protocols require that a trusted party executes some “accountability pro-
cedure” to identify the culprits (except for accountable threshold signatures). Even in cases where
this executor does not require private state (such as a tracing key), if the executor is rational, it
would still need to be incentivized to run this accountability procedure. In other cases (such as
accountable signatures), similar to our whistleblowing design, individual parties or clients could
still be required to submit their proofs to a public verifier. Consequently, smart collusion (with
e.g., the executor) could prevent accountable protocols from working as desired.

Collusion in the mechanism design literature. A sequence of works [1, 7, 10, 42, 63] study
collusion-resistance in mechanism design. The literature broadly follows one of the following two
approaches. In the first, colluding players merge into a single entity and maximize the coalition’s
joint utility [21, 36, 50, 55, 68]. In the other, collusion only modifies the payoffs in the game, but
players continue to act individually to maximize their own utility [43, 46, 49, 66]. Our work aligns
more closely with the latter.

Geffner and Tennenholtz [49] propose to let players place “bets” on information learned about
others through collusion as a way to make collusion unstable. Schummer [70] considers bribes for
taking specific actions within a collusion, but makes the trust assumption that the briber does not
strategically misreport its preferences. In general, smart collusion is not captured since these works
do not allow colluders to extend their strategy space and respond strategically to such anti-collusion
mechanisms.

Another relevant thread is the literature on mechanisms with credible commitments [23, 37, 41,
44, 59]. These typically focus on commitments made by an auctioneer, but smart collusion instead
uses them to strengthen the collusion.

A recent line of work [28, 46, 68] explores blockchain transaction fee mechanisms (TFMs) which
aim to prevent collusion between the miner (auctioneer) and users. But results are largely negative
even with standard collusion, and feasibility results using cryptography [73] still require honest
majority. Credible commitments between colluders (similar to smart collusion) are not considered.

2 Preliminaries

2.1 Cryptographic Preliminaries

Definition 1 (NIZK-PoK). A non-interactive proof system (P,)) for a relation R is said to be
honest-verifier zero-knowledge proof-of-knowledge if it satisfies the following properties:
e Completeness. V (X,w) € R,

Pr[P(X,w) < V(X) = 1] > 1 —negl())
¢ r-Knowledge soundness. There exists an extractor £ that runs in expected polynomial
time, such that, for every PPT prover P* and every statement X,

Pr[(X,w) e R:w+«+s$E7(X)] > Pr[P*(X) & V(X)) = 1] — &



e Honest-verifier zero-knowledge, There exists an efficient simulator Sim such that
V (X, w) € R, {Sim(X)} =, {Viewy(P(X,w) < V(X))}

where Viewy is the verifier’s view in the protocol execution.

2.2 Mechanism Design Preliminaries

We will be modeling the games induced by whistleblowing mechanisms as extended form games.
Intuitively, an extended form game captures a multi-stage game, where each stage requires players
to play an action from some action space. The game proceeds differently to the next stages based
on different actions taken by the players in each stage of the game.

Definition 2 (Extended form game). An extended form game consists of a directed tree (H, F),
where H denotes the set of histories. For players 1,...,n, the game starts at the root with history
h = (). For any given history h, the actions available to player i is given by the action space A;(h).
For any actions (ai,...a,) € II;4;(h) taken by the n players at history h, the game transitions
from history h to b’ = T (h,as,...,ay,) for some (h,h') € E. The game terminates when the history
h reaches a terminal vertex (i.e, there exists no (h,h') € E). Player i then receives a utility u;(h)
at termination.

Players are modeled as rational, i.e., each player selfishly tries to optimize its utility received
at the end of the game. It is also common knowledge that all players are utility-maximizing.

Intuitively, in the simplest case where the game consists of only a single round (i.e, the root
h = is also a terminal node), an action profile (aq,...,a,) € I;A;(0) is a Nash equilibrium if no
player ¢ can increase their utility by deviating from playing a;.

Definition 3 (Pure Nash equilibrium). In a single-round game with action space Ai,...A,,

an action profile (a1,...,a,) € IL;A; is a pure Nash equilibrium if for all players ¢ and ac-
tions a; # a; in A;, ¢’s utility u;(a;,a—;) is at least u;(al,a_;), where a_; is the action profile
(a1y...,Gi—1,0i11,...,a,) of the players other than 3.

In a multi-stage extended form game, player i’s strategy s; : H — |J;cpy Ai(h) denotes the
action it would take at any given point in history. A profile of strategies (s,...,sy,) is a subgame
perfect Nash equilibrium if no player ¢ can increase its utility by switching to a different strategy

/

S;-

Definition 4 (Subgame perfect pure Nash equilibrium, SPPNE). For a strategy profile § =
(S1,...,8n), let &), denote the strategy profile § restricted to the extended form game with h
as the root. Then, §is a subgame perfect pure Nash equilibrium if, for all histories h reached by
playing the strategy s, 5], is a pure Nash equilibrium.

We adopt SPPNE as the equilibrium concept for the games induced by the whistleblowing and
retaliation mechanisms — we will analyze the induced games for the existence of SPPNEs.

3 Whistleblowing Framework

In this section, we introduce the basic design of whistleblowing protocols. We aim only to provide
a general overview here; some details may be left under-specified and will be elaborated on in later
sections for our specific settings.



Whistleblowing protocols. As discussed earlier, abstractly, a whistleblowing protocol will con-
sist of two parts: (i) a cryptographic tool that allows a colluding party to prove existence of the
collusion and/or its participants to a verifier V; and (ii) a game-theoretic mechanism that is allowed
to take deposits from players, will essentially run the verifier V (to check valid proofs of collusion),
and can execute rewards / penalties based on submitted whistleblowing proofs (or just whistles).

Definition 5 below provides a general, (informal) definition for whistleblowing protocols, which
includes security goals for both the cryptographic and game-theoretic components.

We expand on the cryptographic part in Section 4 and the game-theoretic part in Section 6.

Definition 5 (Whistleblowing Protocol (Informal)). Consider a (ideal) functionality F among the
set P of n players and consider A C 27 (intuitively denoting “allowed” adversarial corruption sets).
An a-whistleblowing protocol for (F,A) is a tuple (IL, P, V, M) where II is a protocol, P <+ V is
a proof-system, and MW is a mechanism as follows.

(I. Cryptography) First, for the cryptographic properties, as is typical, we can model a
monolithic adversary A to define security.

e (Protocol validity or correctness). II emulates F in the presence of an adversary A that

controls a set of players P4 € A.

o (Whistleblowing completeness) If A controls players P4 ¢ A (e.g., A corrupted more players
than expected), then there are at least « distinct players (€ P4) that can convince V.

o (Whistleblowing soundness / unframability) If A controls players P4 € A, then no player
P € P can convince V.

Here, by “P convinces V”, we mean that the verification program V outputs 1 when interacting
with P. Note that V will be provided with the public setup parameters from II.

We say that the whistleblowing protocol is anonymous if V cannot distinguish which player
submitted a valid proof. Further, it is SB-identifiable if, as part of the proof to V, it can correctly
identify 8 players in P4 (without framing honest ones in P\ P4).

Further details are given in Sections 4 and 5.

(IT. Mechanism Design) Here, we will model each player as independent and rational. Each
player can can choose one of two actions, “collude” and “honest” (intuitively, if P plays “collude”,
from the cryptographic perspective, P will be considered part of the adversary A).

We allow the whistleblowing mechanism M"Y to take deposits from each player, view whistles
that were submitted, and execute rewards / penalties. Following our smart-collusion notion, col-
luders themselves will be allowed to collude using a mechanism M® of their choice. Now, security
is defined in the following sense:

o (Not colluding is rational) For all M® according to which collusion can take place, the
subgame-perfect pure Nash equilibrium for the game induced by (MW, MR) is where ev-
eryone plays “honest.”

Section 6 provides a more rigorous description.

Remark 1 (Processing rewards). Rewarding whistleblowing proofs, even when they are anonymous,
is straightforward with cryptocurrency. For example, submission of a whistle can be accompanied

with a fresh cryptocurrency wallet address (owned by the submitter) to which any reward from
MW will be sent.
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4 Transparent Service Model

We now describe a formal model for whistleblowing in our transparent service setting.

Basic model. We model three entities: a set of n service providers (or servers) Si,...,Sy, a user
(or client) U, and the logger £ (e.g., a blockchain). The servers {S;} collectively provide users with
a computational functionality for a (potentially randomized) function f such that the user can learn
f(x) on input x by interacting with any ¢ servers. For our formalism, since each user query is done
separately, it is sufficient to only model one user. The goal for £ is to (publicly) log all user queries
(potentially in a privacy-preserving way)—intuitively, this will happen by parties communicating
through £. However, since the servers {S;} can always communicate with users off-band (i.e.,
circumventing £), the goal is to make it incentive-compatible to use L. The cryptographic part of
this is to ensure that the user can whistleblow by proving that it received off-band service.

We start by formally defining a generic computational service provided by the servers {S;}.
This captures a broad range of applications, which we discuss in more detail in Section 4.4. In
Section 4.2, we present a formal definition of a whistleblowing protocol for off-band collusion. Later,
we characterize what functionalities admit whistleblowing, and present concrete protocols.

4.1 A Generic Computation Functionality

Definition 6 (Computation Functionality Syntax). Consider a (randomized) function f : I x X’ x
Rs — Y over key space K, input space X, randomness space Rg, and output space ). We write
(z,y) € f if there exists rg such that f(k,z,7rs) = y.
We focus on a threshold functionality, wherein the evaluation key is secret-shared among the n
servers such that the client can communicate with any ¢ servers to compute the function.
Formally, a computational functionality F between the servers {S;} and a user U for computing
f is a tuple (Gen, Query, Respond, Output, PartialVer, Ver) of algorithms as follows:

e F.Gen(1*,t,n) — (k1,...,kn,vk) is a (randomized) key generation algorithm run either by a
trusted party or by MPC between the servers {S;}. It generates a key pair (k,vk) € K x Ky
along with the secret shares {k;} of the key k that will be stored by the servers {S;}.

o F.Query(x;r®) — z* is a (randomized) algorithm run by the client that takes as input x € X
and randomness r. and outputs a leakage z* of the input. We will formalize the notion of
leakage later in this section.

e F.Respond(k;,xz*;r?) — (yf,m;) is a (randomized) algorithm run by the ith server S; that takes
as input the key share k;, the leakage x*, and randomness r; and outputs an intermediate
result ¥ and a proof ;.

o F.Output({(y;,,mir),-- - (Ui, mi,) };7¢) = (y, ) is a deterministic algorithm run by the client

that takes as input the intermediate results {y;“l, . ,y;-"t} and randomness 7., and computes
the final output y € Y along with a proof . If the result is self-verifiable, the proof might be
empty: ™ = (.

e F.PartialVer(vk,z*,y}, m;) — {0,1} is a deterministic verification algorithm which takes as
input vk, z*, y;, and a proof m; and outputs a single bit denoting whether the response of the
1th server was valid.

11



o F.Ver(vk,z,y,m) — {0,1} is a deterministic verification algorithm which takes as input vk,
x, y, and a proof m and outputs a single bit denoting whether y is indeed the correct function
evaluation at z, i.e. (x,y) € fi.

Leakage. Intuitively, 2,y capture the “leakage” of the function — i.e., the values recorded by L.
For input x and randomness ¢, we will use leak z(z;7¢) to denote the output z* of F.Query(z;7°).
We further use leak z(z) to denote the distribution {leakz(z;7¢)}r.cr. and leakz(X) to denote the
joint distribution of leakz(x) for all x € X. We often drop the subscript when F is clear from
context.

Of particular interest to us will be the three classes of leakage functions, which we now describe.

e Public. A public leakage function reveals x to § and £. Formally, z* = x and R¢ = L. This
captures functionalities such as signatures, VRFs, decryption, and Identity-based encryption (IBE)
enrollment (see Section 4.4 for details).

e Oblivious Leakage. Intuitively, oblivious means that the leakage function reveals nothing
about x. This holds even if the adversary A is allowed to see evaluations of the function at
arbitrary inputs of its choice. We formalize this as a standard indistinguishability game where A
chooses two inputs xg, z1, is given back leak(xp), and wins if it correctly guesses b (see Definition 7).

Definition 7. A functionality F has €(\)-bounded oblivious leakage if for all A € N and all
adversaries A (making poly(\) queries to F), the following expression is bounded by €(\):

b+s{0,1} 1
AdviE () = |Pr [<A<zb>:b'>=b “’f:;éé”] 5|
lp=leak(zp;r)

Applications such as anonymous credentials and blind signatures have oblivious leakage. Later
in this section, we will prove that unfortunately, it is impossible to whistleblow for such applications.

o One-way function leakage. This captures a weaker but still useful notion of privacy. In-
tuitively, the leakage function reveals some information about x, but not enough to recover x.
Concretely, for a random input z, given leak(x), it is difficult for any PPT adversary to compute z.
This is formalized in Definition 8.

Definition 8. A functionality F has one-way function leakage if, for all A € N and all PPT
adversaries A, the following advantage is negligible in A:

Advey ek (\)(A) = Pr [A(l) =1

z,r +$ XXRc
I=leak(z;r)

While we do not find applications that inherently have such leakage, in Section 4.3.3, we show
how we can support whistleblowing for applications (such as anonymous credentials) with oblivious
leakage by weakening the privacy guarantee to one-way leakage.

Security properties. Security of the functionality F can be formulated as natural correctness
and soundness properties.

Informally, correctness means that if all servers are honest, the client with input = will receive
the correct output f(z) and can verify this. Further, soundness requires that it should be hard for
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a client to compute the function at a new input &, even if it can corrupt up to ¢ — 1 servers, and has
oracle access to query other arbitrary inputs. This can be seen as a generalization of the typical
unforgeability definition for e.g., signatures.

Since the ways to formalize these properties use relatively standard techniques, and our focus
is instead on whistleblowing protocols for F, we defer the full formal definitions to Appendix A.

4.2 Whistleblowing Formalism

Recall that our goal is to prevent off-band collusion between any ¢ servers {S;} and a client. To
facilitate this, a first step is to allow the client to report off-band service provided by the servers
{S;}. In this section, we detail formalism for how such whistleblowing can take place. Intuitively, a
whistleblowing protocol will allow a user to convince the logger £ exactly when it possesses a valid
function evaluation (z,y) that was not recorded on £. This can be used as an indication that at
least t of the n servers are involved in providing off-band services. For simplicity, we focus on the
functionalities where there is no way to detect which ¢ out of n servers were responsible for providing
off-band service. This fits several applications like (non-accountable) threshold signatures, VRFs,
and IBE enrollment. Extending the formalism to identifiable whistleblowing (which applies to e.g.,
accountable threshold signatures) is straightforward (see Appendix A.)

Definition 9 (Whistleblowing for off-band service). Functionality F = (Gen, Query, Respond,
Output, Ver) cryptographically supports a whistleblowing protocol W if its proof system (P, V)
satisfies the following:

o Completeness. Intuitively, completeness means that a client with access to a valid function
evaluation (z,y) such that a previous query for any z* in leakr(z) was not logged by L (i.e.,
this was the result of off-band communication with S), should be able to convince the verifier
of this. More formally, for all (ki,...,k,,vk) < Gen(1*,t,n), L C leakz(X), x € X such that
Vre € Re, leakz(z;7¢) € L and y such that (x,y) € fi, the following holds:

Pr [P((L,vk), (z,y)) <> V(L,vk) = 1] =1
where the probability is taken over the randomness of IP.

o Unframability. Intuitively, unframeability guarantees that a client cannot falsely frame the
servers, even if it colludes with upto ¢ — 1 servers. Note that this is reasonable since it is hard for
the client to compute the function on any input if less than ¢ servers offer off-band service.

Definition 10. A whistleblowing protocol Wr for a functionality F is said to be unframeable if
the following is negligible in A for all PPT adversaries A:

Advipiram(A) = Pr[Gipram(A) = 1]
where G“Wn]f_fam is as defined in Figure 1.

We further say that Wr is anonymous if the following holds:
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Game G%}f:‘"‘m

1: (st,n,t,C) « A1)

2: (ki,...,kn,Vvk) <8 F.Gen(1*,t,n)
3: II* «s AEVQIO(‘)(st, {ki}icc,Vk)
return V(Q, vk, ITI*") = 1A |C| < ¢

W~

Oracle EvalO(i, z*)

1: 77 +$Rs

2: y!,m < F.Respond(k;,z*;r;)
3: Q<+ QU {z"}

4: returno

Figure 1: The unframability game for a whistleblowing protocol Wr and a functionality F.

e (Anonymity) For all (k,vk) + Gen(1}), L C leakz(X), 21 # x5 such that Vr¢ € R¢, leak(z1;7¢) &

L A leak(zo;7¢) € L, and y1,y2 such that (x1,y1) € fr and (z2,y2) € fk, the two ensembles are
computationally indistinguishable:

{Viewy(P((L,vk), (z1,11)) <> V(L,vk))}
~. {Viewy(P((L, vk), (z2,y2)) <> V(L,vk))}

where the distributions are over the randomness of the prover. Intuitively, anonymity implies that
servers {S;} learn nothing about which input was used for the whistleblowing.

4.3 Results on Whistleblowing Feasibility

We first look at whether whistleblowing is possible based on what is leaked (about the client query)
to the servers {S;} and the logger £ by the functionality F. Recall that leakz(z) denotes the
distribution of the output F.Query(x;r¢) over client randomness r°.

4.3.1 Oblivious Leakage does not permit Whistleblowing

We show a simple result that whistleblowing (whether anonymous or not) is not possible for func-
tionalities where the leakage is oblivious. Intuitively, this holds because oblivious leakage implies
that no adversary A can distinguish between leakz(zg) and leakz(z1). This implies that a user
should be able to whistleblow with both zp and z; regardless of whether leak(zp) or leak(z;) was
recorded on L. But this contradicts the soundness property.

Lemma 4.1. Consider any computational functionality F with leakage leak(-) that is e-oblivious
(where € = €(\) is a negligible function). Then, no whistleblowing protocol with (P,V) can be
e-sound.

The above lemma implies that it is impossible to support whistleblowing for functionalities like
blind signatures and anonymous credentials (and their applications), which have oblivious leakage.
A full proof is given in Appendix B. Nevertheless, in Section 4.3.3 we show how whistleblowing
can be supported for some applications by weakening their privacy guarantee to one-way function
leakage.
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4.3.2 Whistleblowing with other leakages

We now present a protocol which works for self-verifiable functionalities with public leakage, as well
as those with one-way leakage and small randomness space, i.e., |[R¢| is polynomial in .

At a high level, if the client has a valid evaluation (z,y) for an input z not logged on L,
then it can use a NIZK-PoK to prove this to the logger. More formally, let 0 <t < n € N and
(k1,...,kn,vk) <s Gen(1*,t,n). Let L be the set of input leakages that have been recorded on
the logger L so far. Suppose that a party is in possession of (z,y) such that Ver(vk,z,y) = 1 and
Vre € Re,leak(x;r¢) ¢ L. Note that the Ver algorithm does not take a proof m as input since
we are only considering self-verifiable functionalities wherein 7 = L (we explain why we need this
restriction in Remark 2). Now, to perform whistleblowing, the party computes a NIZK-PoK proof
for the following relation and sends it to the verifier:

R = {(vk, (x,y)) : Ver(z,y,vk) = 1 AVr € Re,leak(x;r) ¢ L}

For the above relation to be polynomial-sized, we require the size of the randomness space R¢
to be polynomial in the security parameter A. This is trivially true for any functionality with public
leakage, but this does restrict the functionalities with one-way leakage that we can support with the
above protocol. We defer the full proof that this protocol is secure and anonymous to Appendix B.

Remark 2 (Generalizing to functionalities with verification proofs). The above whistleblowing pro-
tocol works only for self-verifiable functionalities, i.e., where the proof 7 is empty, and it is possible
to directly verify the evaluation pair (z,y) by just running the Ver algorithm. The reason is that
there is a simple impossibility result against whistleblowing for functionalities where a special non-
empty 7 is required. Specifically, the servers can choose to only provide the intermediate results y;
off-band, with either no proof, or just a designated verifier proof. This allows the client to compute
the evaluation y, but not the evaluation proof. As a consequence, there is no efficient way for the
client to prove to the logger £ that y is indeed the correct evaluation at z.

4.3.3 Supporting whistleblowing for anonymous credentials by weakening privacy

In Section 4.3.1, we showed that it is impossible for functionalities with oblivious leakage to support
whistleblowing. Nevertheless, we observe that for certain functionalities, it is possible to weaken the
privacy guarantee to one-way leakage, without breaking the application. Specifically, our technique
works for self-verifiable functionalities like blind signatures, if the input comes from a high-entropy
space. This weakening, though not ideal, allows us to circumvent the impossibility result for blind
signatures, which are used in anonymous credentials as well as privacy pass.

Specifically, we modify the functionality as follows. If the input has high entropy, we require the
client to send a one-way function z = owf(z) of its input x in addition to the query z* € leak(z),
along with a zero-knowledge proof of knowledge that it knows x, ¢ used to generate x* and z. More
formally, it sends a NIZK-PoK of the following relation:

. reX,r°eREA
Ry = {((z,x ), (2,7%) : x* = leak(z;7°) A z = owf(x) }

Note that the servers only learn a one-way function of the client’s input (and a zero-knowledge
proof), and since we are considering an input space with high entropy, this functionality now has
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one-way leakage. Next, whenever the client wants to use the functionality output (z,y) (which is
a blind signature in our example), it cannot simply reveal the tuple (z,y), because the servers can
then trivially link this = back to one of the past queries by comparing owf(z) with the z values
of past queries. We get around this by modifying how the clients use their functionality output
(z,y). Specifically, instead of directly revealing (x,y), the client can provide a non-interactive zero-
knowledge proof of knowledge (NIZK-PoK) of such a tuple. This can also be extended to scenarios
where the tuple (z,y) must be used only once (e.g. single-use tokens in privacy pass) by requiring
the client to provide a different one-way function owfs(x) of x when using the functionality output
(z,y).

Lastly, the logger £ will store the list L, of {z = owf(z)} for all the inputs queried by the client,
and the whistleblowing protocol can be run with respect to L, as described in Section 4.3.2.

If the input comes from a lower entropy space, then we can replace owf(x) (and owfy(z)) in
the above technique to owf(z,r) (and owfs(x,r)), where r comes from a poly-sized space R (this
is important for the efficiency of the whistleblowing protocol given in Section 4.3.2). This can be
used to provide concrete security guarantees, in cases where it is possible to brute force the space
of inputs X and randomness R separately, but not together (i.e., X x R is infeasible to brute force).

Note that this would not work for some applications of anonymous credentials such as PAKE
and PSI, because leaking any one-way function of the inputs would trivially break the applications.
We expand more on this in Appendix A.

4.4 Applications

We will now outline a number of natural applications that can benefit from whistleblowing to detect
off-band collusion. While we describe them as distributed applications, note that clients will obtain
similar collusion-proofs even with a single service provider.

We consider whistleblowing feasibility only from a cryptographic lens here. For deployment,
additional constraints (e.g., estimating collusion utility) may come up. We defer discussion to Sec-
tion 9.

Threshold signatures and variants. A threshold signature scheme allows n servers to sign
a message only if at least ¢ of them participate in the signing process. Signature validity can be
directly verified by the client, with efficient schemes featuring constant signature size even as n
increases.

Our framework can model a use-case where servers are supposed to provide a public signing
service (e.g., a notary) via a blockchain. Here, off-band communication could allow the notary to
equivocate on e.g., conflicting documents. Through whistleblowing, a client can easily submit an
anonymous whistleblowing proof by showing that it knows a signature on a message that was not
logged.

This setting can be applied to all signature varieties. For instance, a private threshold signature
reveals nothing about the threshold ¢ or the quorum of ¢ parties that generated the signature.
These have applicability when there is a need to hide the inner-workings of an organization (e.g.,
to avoid leaking exactly what an attacker needs to compromise). On the other hand, accountable
signatures [13, 54] identify the exact quorum of servers that generated the signature. These have
wide applicability in finance and blockchain (e.g.,the Bitcoin multisig [4]) where accountability is
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essential. It can also apply to weighted threshold signatures [48], in which a non-uniform number
of servers can sign so long as their cumulative weight is above a threshold.
For the above, our whistleblowing protocol from Section 4.3.2 (with public leakage) will directly

apply.

Verifiable random functions (VRFs) and distributed randomness beacons (DRBs). A
VRF [62] is a pseudorandom function? whose output can be publicly verified. In a threshold VRF,
the function evaluation key is secret shared among n parties, and a quorum of ¢ parties is needed to
evaluate the VRF. VRFs can also be viewed as private threshold signatures with a unique signature
for every message. VRFs are used broadly in transparency systems to support privacy by obscuring
e.g., user names or domain names while ensuring they are uniquely mapped to a pseudorandom
identifier.

For our purpose, we can consider a threshold VRF used to construct a distributed randomness
beacon [24], as deployed in practice by Drand [74]. Here, a committee evaluates the VRF to generate
verifiable randomness for downstream applications to use. For applications to function correctly, it
is crucial that this randomness is not leaked through e.g., off-band collusion. Our whistleblowing
protocol (for public leakage) can be directly used here. Note however, that some VRFs are not
self-verifiable (for example [15, 33]). Hence, our techniques only apply to DRBs based on certain
VRFs [58, 74]. Further details on this application are given in Section 9.2.2.

Threshold Blind signatures and anonymous credentials. A threshold blind signature scheme
is an interactive protocol involving a client and n servers with shares of a signing key, wherein the
client can get a message signed by any t servers, but without revealing the contents of the mes-
sage or signature to the servers. Blind signatures were originally proposed for anonymous digital
cash [20] and have since been proposed for many other applications (see [45]), but we focus on the
use case of servers issuing anonymous credentials [38]. Such systems allow users to obtain creden-
tials privately, and later prove possession of credentials without revealing any other information
about themselves.

Often, applications can necessitate that this issuance is somehow rate-limited (e.g., for Privacy
Pass [34]). For this, it is important to ensure that servers do not collude with the client off-band to
issue it extra credentials. Our whistleblowing framework would apply here. However, as the name
might suggest, blind signatures (and in turn, anonymous credentials) have oblivious leakage—i.e.,
leak no information to the servers about the message being signed. Fortunately, we can use the
technique described in Section 4.3.3 to support whistleblowing by weakening the privacy guarantee
to one-way leakage instead of obliviousness.

Oblivious PRFs. Oblivious PRFs (OPRFs) [19] are similar to blind signatures, except the
output is the PRF evaluation of the input instead of a signature. Unlike signatures, PRFs do
not necessarily support efficient proofs of correct evaluation. OPRFs are useful anywhere a hash
function is used that should be rate-limited, for example in password-based encryption or for contact
discovery in messaging applications via private set intersection (PSI). While OPRFs have oblivious
leakage, we can support whistleblowing for self-verifiable OPRF as a service by relaxing the privacy

2There is also the closely related notion of a verifiable unpredictable function (VUF) whose output is not necessarily
pseudorandom but cannot be predicted completely.
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to one-way leakage as before. However, for many applications that use OPRFs—such as private
set intersection or password authenticated key exchange—this weakening of privacy could result
in trivial breaks. This makes it challenging for practical applications based on OPRF's to support
whistleblowing. We highlight an example in Appendix A.

5 General n-party Model

We now describe our second model, which applies to general n-party protocols with whistleblowing
support. Specifically, we model a set of n parties 71,...,7, running a protocol II (e.g., secret
sharing or threshold decryption), wherein (i) security of the protocol holds as long as less than ¢
parties collude; and (ii) if > ¢ parties collude, some of them get access to a publicly verifiable proof
of the existence of collusion. Abstractly, we can divide II into three sub-protocols:

o I1.Gen(1*,t,n) — (ki,...,kn,vk,F) is a randomized protocol run between a trusted dealer
and all the parties. A distributed procedure could also be used. The output of the proto-
col includes secret shares {k;} of a secret value k to be stored by the parties {7;}, along
with a public verification key vk which will be used to verify collusion proofs and F, which
characterizes the set of functions with the key k as input, that the parties are allowed to
compute.

o II.Output(f, kiy,...,ki,) = y is a (potentially randomized) protocol executed between any ¢
parties, that takes as input a function description f € F, and outputs f(k) where k is the
value secret-shared among the parties.

o II.Ver(vk,m) — {0,1} is a deterministic algorithm that takes as input a proof of collusion T,
and outputs a bit denoting its validity. Note that this collusion proof is publicly verifiable,
and hence can be checked by a public smart contract.

Security properties (informal). In this model, a protocol with whistleblowing support, anal-
ogous to our description in Definition 5, will satisfy three properties: correctness, whistleblowing
completeness, and unframability. We provide only informal descriptions below. These are rela-
tively straightforward generalizations of properties from [40] to arbitrary protocols. Our focus in
this paper is instead to highlight how other applications also fit this whistleblowing framework.

Correctness states that if all the parties are honest, then the Output protocol outputs the correct
value, i.e. f(k).

Whistleblowing completeness guarantees that if a set of atleast ¢ parties collude to learn some
information about the secret k, then, at least one of the colluding parties can generate a publicly
verifiable proof to either prove the existence of a collusion, or implicate another colluding party.
This generalizes the punishability notion in [40].

Unframability can be formalized in two ways. The first applies to protocols wherein there is no
way to detect which parties took part in the collusion. For such protocols, unframability requires
that even if upto ¢ — 1 parties collude, they should not be able to produce a valid proof of collusion.
The second notion applies to protocols where the collusion proof identifies atleast one colluding
party. In this scenario, unframability states that even if upto n — 1 parties collude with the trusted
dealer (if any), they cannot blame any honest party for collusion. The formal definition for both
notions are direct extensions of the unframability notion defined in Section 4.
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5.1 Applications

We highlight several protocols that adhere to the above model. Our goal is to unify these different
applications under our umbrella of whistleblowing, enabling the application of our game-theoretic
insights to all of them (see Sections 6 and 9 for further details).

Secret sharing with snitching. A secret sharing scheme allows storing sensitive information
among n parties such that any ¢ of them can reconstruct the secret. Secret sharing is widely used
for storage, MPC, as well as threshold cryptography. In all of these applications, any ¢ parties can
collude to learn something about the secret. Recently, there has been work on developing secret
sharing schemes with whistleblowing capabilities [40, 53], such that at least one of the colluders
learns a publicly verifiable proof implicating a colluding party. This is directly captured by our
model, with the function space F containing just the identity function f(x) = x.

Threshold decryption. A threshold decryption scheme shares a decryption key among n parties
such that any ¢ of them can decrypt a ciphertext. It has applications in voting [30], auctions [69]
and more recently, encrypted mempools in several blockchain projects [8, 65, 75] to protect against
frontrunning MEV attacks [32]. But these protections are lost if ¢ or more decrypting parties
collude. While standard threshold decryption has no way to identify or prove that a collusion
occurred, there has been recent work [22] on building threshold decryption schemes wherein if any
t parties collude to illegally decrypt a ciphertext, at least one of them learns a proof of collusion.
Collusion here is different from secret sharing, since the colluders only learn the decryption of a
ciphertext, and not the full secret key. Our framework can be used to model this, with the function
space F being the decryption for any ciphertext.

BFT forensics. Byzantine fault tolerant (BFT) consensus is a core primitive in the distributed
systems literature. Intuitively, consensus protocols ensure that a distributed set of n servers agree
on the same execution state. Typically, in asynchronous networks, these protocols require that the
adversary corrupts upto t’ < n/3 servers. Sheng et al. [72] show how some consensus protocols [2,
76] can support strong forensics—even if the adversary corrupts more than ¢’ (but upto 2t’) servers,
the transcript of a single server can be used to detect adversarial servers. A similar model is also
explored in [18] for permissionless protocols. In our context, such a transcript can function as a
whistleblowing proof of collusion. Note that the adversarial coalition may employ smart collusion
to prevent servers from revealing their transcript to the forensics procedure.

6 Game-Theoretic Model

We formally model the incentives associated with collusion and whistleblowing in this section. We
consider a set of n players 1,...,n participating in a generic functionality where the players can
receive an additional utility of V per player through collusion. Our core model in this section
formalizes (n,n)-collusion — all n out of the n players need to collude in order to earn the reward
nV. Section 8 extends the model to (¢,n)-collusion (where it suffices that ¢ players collude) and
the transparent service setting.
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Our goal is to design whistleblowing mechanisms that deter players from colluding and forming
coalitions. Formally, we want to ensure that all subgame perfect pure Nash equilibria in the
whistleblowing model involves players not colluding.

Model and game progression. We describe three (increasingly layered) models to arrive at
the final model induced by the whistleblowing mechanism and smartly-colluding players.

1. The base game B considers only the incentives from colluding in the absence of whistleblowing
— either all players collude and receive a utility V' per player or some player remains honest, in
which case, each player receives a zero utility.

2. The whistleblowing game W models collusion in two stages when the protocol designer im-
plements a whistleblowing mechanism M"Y to counteract collusion — players decide whether to
collude or not in the first stage, and whether to snitch on each other and submit whistleblowing
proofs (aka blow whistles) to MW in the second stage. This would result in slashing the players
for colluding and rewarding the whistleblowers.

3. The retaliation game R extends W by letting the players agree upon a retaliation mechanism
MR that could penalize players for ratting each other out to M"Y and could also redistribute the
whistleblowing rewards amongst them in case some player submits a whistleblowing proof. This is
our final model for smart collusion.

Remark 3 (Modeling choices). For concreteness of our game-theoretic results, when building our
model, we made several design choices which we thought best represent a practical setting. Inter-
estingly, we found that the alternate path in many of our choices to identical qualitative results. We
encourage the reader to also look at our exploration into alternate collusion models in Section 7.3
and Appendix D.

Results. Before delving into the details of the three layers, we provide a brief overview of our
results. We argue that no whistleblowing mechanism MY can provide unconditional economic
security — there always exists some retaliation mechanism MR such that players can reach a
subgame perfect pure Nash equilibrium by colluding in the first stage. Intuitively, M® could
collect a deposit D® orders of magnitude larger than the whistleblowing rewards and the gains V'
from colluding and threaten to burn all of them even if a single whistle is blown in MYW. This would
nudge players to collude, but not blow any whistles since they would end up with an extremely
negative utility otherwise. However, such a retaliation mechanism would require an extremely
large deposit to be collected from the players upfront. We investigate the natural goal of designing
whistleblowing mechanisms that are resilient to retaliation mechanisms that collect a deposit of up
to DR per player.
We formally describe the three layers next.

6.1 Base game B

First, we consider the simple single-shot game B with no whistleblowing protocol in place, where
players choose either to collude or to remain honest. If all players choose to collude, then each of
them receives a utility V. Otherwise, everybody receives zero utility.
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Formally, each player i plays an action b; € {collude, honest} for 1 < i < n. Player i’s utility
function is then given by

UE(by, ...

by) V by =---=1b, = collude,
T 0 otherwise.

Note that all players colluding is a pure Nash equilibrium in the base game B — changing their
action from collude to honest will only decrease their utility from V' to 0. Further, it is also the
utility-maximizing outcome for the n players.

6.2 Whistleblowing game W

Next, we consider the game W induced by the protocol designer implementing a whistleblowing
mechanism M"Y to deter collusion. Players cannot deploy smart collusion contracts here. We
discuss W as a warm up for the general game R that models smart collusion.

When the n players collude in the base game, suppose that some k of them learn a whistleblowing
proof 7. These k players can submit the whistleblowing proofs to MW (i.e., blow whistles) for a
reward. To disincentivize players from colluding, the whistleblowing mechanism M"Y should slash
the n players upon receiving whistles. However, the rewards and slashes should be designed so
that players are not discouraged to submit whistles in the first place, which could happen if the
disutility from the slash far outweighs the utility from the reward. Note that retaliatory measures
taken by the players to deter whistleblowing is not considered in the whistleblowing game W.

The whistleblowing mechanism. We begin by discussing the whistleblowing mechanism MW
before describing the game it induces. Formally, M" = (P% SW): NuU {0} — R2, is a map from
the number w of whistles blown to the reward (or the payout) PV (w) disbursed per whistle and
the slash S¥(w) per player.

We model MY to have anonymous and simultaneous whistleblowing. Anonymity implies that
the whistleblowing rewards and slashes cannot depend on the identities of the whistleblowers.?
Simultaneity ensures that players decide on their actions at the same time—e.g., they decide the
number of whistles to submit without knowing the decisions of the rest (see Remark 5). Note
that anonymous whistleblowing implies that multiple whistles per player must be supported since
the mechanism cannot distinguish between e.g., a single player submitting two whistles, and two
players each submitting one whistle.

The reward PW(w) and slash S¥(w) must satisfy the following natural conditions. To begin,
whistleblowers cannot be penalized for submitting whistles — since whistles can be submitted from
pseudonymous identities (e.g., fresh blockchain addresses), whistleblowers cannot be forced to pay
any penalties enforced by MW.

We also require MW to satisfy budget balance — the total slash collected should cover the
rewards disbursed to whistleblowers. In other words, wP"(w) < nSYW(w) for all w € N U {0}.

3 Anonymity does not rule out the rewards and slashes depending on the order in which the whistleblowing
mechanism receives the whistles. However, for simplicity, we assume that all n players have similar computational
power and network connectivity, and thus, all possible orders of the whistles reaching M¥ are equally likely. Then,
P7(w) can be thought of the expected reward per whistle (expectation taken over the randomness in network
conditions) upon w whistles getting blown.
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Note that this implies SV (w) > 0. Indeed, M" should neither reward nor slash anyone when no
whistles are blown, and thus P¥(0) = SV (0) = 0.

To ensure that the players pay the slash charged to them, the whistleblowing mechanism collects
a deposit DW upfront from all the players. The deposit must be large enough to cover the slash
irrespective of the number of whistles blown, and thus, DV = SUp,, SW(w). Our goal is to design
“effective” whistleblowing mechanisms that collect as little deposit as possible.

Definition 11 (Whistleblowing Mechanism M™). A whistleblowing mechanism MW is given by
the pair (PY,SW) : NU {0} — R2, such that upon receiving w whistles, the perpetuator of each
whistle is awarded PW(w) and all players are slashed S (w), satisfying wP" (w) < nS"(w) and
PY(0) = SW(0) = 0. DV = sup,, SW(w) is said to be the deposit of the mechanism M™Y.

Remark 4 (MW is public). We model MW to be public, i.e., it reveals the total number of whistles
w that were blown (although whistleblower identities can still be hidden). This is reflective of M"W
being instantiated as a (public) smart contract, and will only make it easier for colluders, later on,
in the retaliation context.

Remark 5 (Simultaneity). While we model players decisions on whistleblowing as simultaneous, if
MW is deployed as a smart contract, there may be concern of strategy leakage through the public
mempool. Observe first simultaneity comes for free with encrypted mempools where transaction
contents are hidden. A similar guarantee can be achieved by using an off-chain TEE that ac-
cepts whistles and posts them to the on-chain whistleblowing contract after the conclusion of the
whistleblowing period.

Even without this, time-lock encryption or commit-reveal schemes can be used instead. A
similar modeling choice is made in [53]. There are several ways to achieve this but we provide one
approach that also permits anonymous whistleblowing. As an illustration, M"Y will only accept
time-lock encrypted messages, with decryption possible only after the whistleblowing period ends.
The encryption can either be of a valid whistleblowing proof 7, or of a garbage message (e.g., 0).
Further, if no encrypted messages are submitted, M" will slash all players. Now, notice that no
player can distinguish if a valid 7 has been submitted when it chooses its action. In other words,
it is as if players need to move simultaneously.

Number of whistles. For a given number k£ of players that learn the whistleblowing proof,
there is some natural upper bound on the number of whistles that they can blow within the time
frame of the whistleblowing mechanism M"W.* Reflecting this, we consider r-whistle mechanisms,
that rewards nothing and slashes the entire deposit DW upon receiving r + 1 whistles or more.
Essentially, the players would receive a net utility —D" from blowing  + 1 or more whistles, which
is at most the utility that they would receive from blowing r whistles or less. Thus, the players
would choose to blow at most r whistles even if they could submit more.

Definition 12 (r-whistle mechanism). An r-whistle mechanism MY = (PW, SW) is a whistleblow-
ing mechanism where P%(w) = 0 and SW(w) = DY for all w > 7.

4Even if the players create many pseudonymous identities to blow whistles, this is not truly costless and would
consume non-zero time (and in practice, non-zero transaction fee). This upper bounds the number of whistles that
each player can submit within the time frame in which M" is eliciting whistles.
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The extended form game. We now describe the extended-form two-round whistleblowing game
W that models a whistleblowing protocol as seen by the n players. Prior to the start of the two
rounds, players learn the utility V' from colluding. The protocol designer then announces the
whistleblowing mechanism MY and collects the whistleblowing deposit DY from all players.

1. The first round of W is identical to the base game B. Player ¢ plays an action b; €
{collude, honest}, to receive a utility

U’(W’l)(bla e ,bn) = UgB(bl’ te ’bn)

)

The game proceeds to the second round if all n players collude and terminates immediately after
the first round otherwise.

2. In the second stage of W, the whistleblowing mechanism M"Y elicits whistles from the k
players that know the whistleblowing proof (for convenience, re-index players so that these k players
are labelled 1,... k). For 1 <i <k, player i’s action space in the second round consists of blowing
w; € NU {0} whistles. Players k + 1,...,n each blow w; = 0 whistles. Then, when w =Y ;" ; w;
whistles are blown, player i receives a whistleblowing reward equal to w;P"(w) and is slashed
SW(w) for a total second stage utility

W,2
U™ (wy, .. w,) = wiPY (w) — 8V (w).

Across the two stages, player i earns a net utility U" (by, ..., b, wy,...,wy,) given by the sum
of the utilities in the two stages.

For notational convenience, we denote the SPPNE (collude, . . ., collude), @ by 2.

Subgame perfect pure Nash equilibrium in W. The protocol designer would want to ensure
that all SPPNESs of the whistleblowing game W consist of some player ¢ playing b; = honest in the
first stage, while the coalition would want to play an equilibrium where all players collude (if one
exists). We will begin our analysis of the players’ incentives in W by characterizing all SPPNEs.

A typical approach to computing all SPPNEs is through a bottom-up dynamic program. The
players can be expected to play a pure Nash equilibrium @ = (w1, ..., wy) in the second round of W,
since W terminates at the end of the round irrespective of their actions. Then, for a given second-
stage equilibrium 1, the utilities from playing 1? = (collude, ..., collude), % and from playing honest
can be compared. 1?2 is a SPPNE if and only if all players i receive a utility U," (1?) at least zero,
the utility from deviating and playing honest in the first stage (which causes the game to terminate
immediately in the first round).

For @ to be a second-stage equilibrium, no player ¢ should be able to achieve a larger utility
UZ-(W’Q) from deviating and blowing w} whistles instead of w; for all 1 <4 < k. Formally, & is a pure
Nash equilibrium in stage two if and only if

wPY (Y wy) =8V (D wj)
i i
> wiP" (w] + Y wy) — S (wi + Y wj)
i i

for all players 1 < ¢ < k and w, € NU {0}.
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For some second-round equilibrium @, to verify whether (collude, ..., collude), & is a SPPNE,
we will first calculate the cumulative utility UlW (collude, . .., collude, W) received by each player i.

UV (@2) = UMY (collude, . .. , collude) + U2 ()

7 (3 (2

=V+ wiPW(Z wj) - SW(Z wj).
J J

For 152 to be a SPPNE, each player i should receive a non-negative utility. Otherwise, player i will
guarantee itself a zero utility by being honest in the first stage. In other words, for all 1 <1¢ < n,

V+ wiPW(Z wj) — SW(Z w;) = 0. (2)
J J

In summary, to ensure that all SPPNE of W involve some player being honest, the whistleblowing
mechanism M"Y must ensure that either Equation (1) is violated for some 1 < i < k or Equation (2)
is violated for some 1 < i < n for all possible strategy profiles w of the players in the second round.

Example. We will construct the “l-whistle skeleton” mechanism M"Y and argue that all SPPNE
involve some player playing honest.
At a high level, for a collusion reward of V' per player, the 1-whistle skeleton collects a deposit

V + =5 from each player and slashes all of it even if a single whistle is blown.” The whistleblower

is rewarded V +¢ > V + =5 if exactly a single whistle is blown, but disburses no reward if two or

more whistles are submitted to M™W.

OPW(w): V+e ifw=1,
0 otherwise.

. SV (w) = 0 1fw:F],
V + =5 otherwise.

Theorem 6.1. For any 1 < k < n, the 1-whistle skeleton mechanism M"Y described above deters
collusion, i.e, all subgame perfect pure Nash equilibria in the whistleblowing game W involves some
player playing honest in round one.

Proof. We will calculate the bottom-up dynamic program by first spotting all second-stage pure
Nash equilibria @ (so that Equation (1) holds for all 1 <i < k) and arguing that some player ends
up with a negative utility for all such @ (i.e, Equation (2) is violated for some player 7).

We will argue that @ = (0, ..., 0) does not satisfy Equation (1) for any of the k players that can
blow a whistle. Indeed, by blowing no whistles, Ui(W’Q) (0,...,0) =0, but by deviating and blowing
a whistle, player 7 increases its utility to

3

1xPY1)-sY1)=(V+4+e) - (V+ ) > 0.

n—1

Next, we will argue that for any @ # (0, ...,0), Equation (2) cannot be simultaneously satisfied
for all n players, and thus, someone would want to deviate and play honest in the first stage.

5Think of ¢ as any small positive constant—orders of magnitude smaller than other discussed quantities. We only
use it to clean up our analysis by breaking ties between the utilities of different actions taken by the players.
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Consider some player ¢ that receives no whistleblowing reward in the second stage. Such a player
always exists — if exactly one whistle is blown, consider some player other than the whistleblower
and if more than one whistle is blown, no player receives a whistleblowing reward. Ui(W’Q) (W) =
—(V + -£9) and thus, V — (V + -£5) < 0, violating Equation (2).

Thus, all SPPNE in the whistleblowing game W induced by the 1-skeleton mechanism involve
some player playing honest in the first round. O

Note that if the deposit D" collected by MW is less than V, the n players may choose to collude
without concern of the second-stage outcome of W, since they are slashed at most V' in (W, 2).
Hence, collecting a whistleblowing deposit V' from each player can be a natural baseline to have in
mind for all the discussions to follow.°

6.3 Retaliation Game R

In the two-round whistleblowing game W, the protocol designer had to announce the whistleblowing
mechanism before the start of the first round. This gives the players an opportunity to smartly
collude by launching their own retaliation mechanism MR to break the whistleblowing mechanism
MW — the retaliation mechanism looks to modify the payoffs of the second stage so that blowing
(w1, ..., wy) whistles is both, a second stage equilibrium and leaves every player with a positive
net utility across the two rounds.

In particular, note that the second-stage equilibrium need not prevent every playing from blow-
ing any whistles. The retaliation mechanism can choose to induce a different equilibrium as long
as each player profits from colluding. For example, MR could actually ask colluders to whistleblow
and then redistribute rewards so that the utility from colluding is larger than not-colluding for each
player 1 <17 <n.

The retaliation mechanism. We describe the retaliation mechanism before formally setting up
the retaliation game. The retaliation mechanism M=% = (MF, ..., ME) where M¥ : NU {0} - R
maps the number w of whistles submitted to the whistleblowing mechanism to the penalty charged
to player ¢ by the retaliation mechanism. We use the term “penalty” quite loosely here — apart from
penalizing players for not playing according to the coalition’s strategy, the retaliation mechanism
also serves the dual purpose of redistributing the whistleblowing rewards received by players 1, ...,k
to k+1,...,n, who cannot blow a whistle. Thus, without loss of generality, we can assume that the
players k+1,...,n are charged a negative penalty M (w) < 0 (i.e, rewarded by M®), irrespective
of the number w of whistles blown. Otherwise, such a player is strictly better off by being honest
than colluding.

Similar to the whistleblowing mechanism, we require MR to satisfy budget balance. The retalia-
tion mechanism is only a means to penalize players and to redistribute rewards amongst themselves.
Thus, we assert Y. M®(w) > 0 for all w € NU{0}. Additionally, to ensure player i pays the penalty
charged to it, it will have to submit a retaliation deposit equal to the largest penalty charged to ¢ by
MR Indeed, if a player is never penalized but is only rewarded by the retaliation mechanism, they
do not have to submit a deposit. Formally, the retaliation deposit DX = max{sup,, M5 (w),0}.

50ur lower bounds do not rule out a whistleblowing mechanism with a deposit smaller than V that deters collusion.
Even though all players might be better off colluding in the first stage irrespective of the outcome in the second,
there might not exist a pure Nash equilibrium in (W, 2). We defer a more detailed discussion to Appendix C.
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Definition 13 (Retaliation mechanism). The retaliation mechanism M® : NU {0} — R" takes
as input the total number of whistles w submitted by the players 1,...,k to the whistleblowing
mechanism M" and outputs the penalty imposed on each of the n players satisfying Sy M]ZR(w) >
0 and MF(w) < 0 for all i > k. The deposit of the retaliation mechanism MR is given by
DE = max{sup,, M¥(w), 0}.

Unlike the whistleblowing mechanism, the retaliation mechanism need not be anonymous. M=
can suggest different players to submit a different number of whistles to M"Y, and can penalize
them differently if the number of whistles that are blown are not as recommended by M~.

Remark 6 (Executing M®). We model the retaliation mechanism M® to be “self-executing” in
the sense that it can observe the public output of M" and execute appropriate penalties without
requiring external intervention. The reader might observe here that a smart-contract instantiation
of MR would require a transaction to trigger it—this “relays” the public information about MW
to MK,

Even in such a scenario, the retaliation mechanism can be made to be effectively self-executing.
In particular, by offering a small reward to anyone in the world (not restricted to the n players)
who relays this public information from MY to MR, it can be guaranteed that the penalties in
MR will execute.

We further show that even without self-executing retaliation, our results stay the same. As one
example, a different M® can be used to break any whistleblowing mechanism. We provide details
in Section 7.3.

The extended-form game. The retaliation game R proceeds similar to W, except that players
receive an additional penalty MX(w) in the second stage from blowing w whistles.

Apart from learning the collusion utility V', hearing about the whistleblowing mechanism M™W
and locking in the whistleblowing deposit DY before the first round commences, the players
also agree upon a retaliation mechanism MR and put down the necessary retaliation deposits
DY, ..., DE.

Similar to W, the retaliation game R also occurs over two stages.

1. The first round consists of the base game B, where players can play actions by,...,b, €
{collude, honest} to receive a utility

R
UEY by, .. by) = UB®y,... by).
The retaliation game R proceeds to the second stage if and only if all n players collude in the first
stage.

2. As with the whistleblowing game, the second-round action space for players 1 < i < k
consists of submitting w; whistles to M"W, while the remaining players blow w; = 0 whistles. The
whistleblowing mechanism then awards each player i with a utility w,P" (>, w;) — SV (3, w).
Additionally, they are also charged a penalty — M (3", w;) by the retaliation mechanism, to receive
a total utility equal to

U (wy,.. . w,) = wP™ (w) — S¥ (w) — MF(w)

in the second stage, where w = > | w;.
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The total utility UX (b, ..., by, w1, ..., w,) received by player i equals the sum of utilities from
the two stages.
Similar to the whistleblowing game W, we will denote the SPPNE (collude, ..., collude), (w1,

o wy) by (wi, ..., wy)2.

Subgame perfect pure Nash equilibria in R. As with the whistleblowing game W, we locate
all SPPNEs of R by a bottom-up dynamic program. When % is a SPPNE, @ played by 1,...,k
must be a second-stage equilibrium, which implies

wiPW(Z wj) — SW(Z wj) — M?(Z w;)

> wiP" (w] + > wy) — SV (w] + > wy) = MF(wi + > w;)
J#i J#i J#i

3)

for all w; € NU {0} and 1 < i < k. Further, w? is a subgame perfect pure Nash equilibrium if and
only if each player ¢ is better off than deviating and playing honest in the first stage.

UR(w?) = UZ-(R’l)(collude7 ..., collude) + yR2) ()

=V +wiP" (3 wj) = 8"} wj) - MEQ_wy) (4)
>0

forall1 <i<n.

The coalition aims to induce some SPPNE ? in R where all players collude in the first stage.
In such a case, we say that the retaliation mechanism MR and the SPPNE @2 breaks the whistle-
blowing mechanism MW,

Breaking any whistleblowing mechanism through retaliation. For a given whistleblowing
deposit DV, we will argue that any whistleblowing mechanism M™ can be broken by a retaliation
mechanism MR with a sufficiently large deposit DR. Intuitively, if the retaliation mechanism
collects a deposit much larger than the utility from collusion and the whistleblowing rewards, M®
can threaten to burn the entire DY for every player i even if a single whistle is blown. Players
are better off receiving zero utility in the second stage from blowing no whistles than incurring the
massive retaliation penalty from blowing whistles.

Theorem 6.2. For any whistleblowing mechanism MY, there exists a retaliation mechanism MR
with a sufficiently high deposit D® > (n — 1) - DV such that M® and (0,...,0)? breaks M™.

Proof. Consider the retaliation mechanism M® that collects a deposit DY = (n — 1) x DV from

each player ¢ given by
0 ifw=20
MR (w) =
i (W) {D]R otherwise.
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We will argue that (0, ...,0)% is a SPPNE of R. To see Equation (3) is satisfied for all 1 < i < k,
observe that for w > 1

wiP"(w) = 8% (w) — M (w)

< wP"(w) = S (w) — M7 (w)

< nS"(w) — 87 (w) — M (w)
<(n-1)xDV—(n-1)x DV <o.

The third line follows from budget balance of M"W. Thus, the players are all better off not blowing
any whistles in the second stage. Indeed, Equation (4) is trivially satisfied. All players receive a
net utility equal to V across the two stages playing (0,...,0)2, which is strictly better than the
utility from being honest. Thus, (0,...,0)? is a SPPNE of R and M® and (0,...,0)2 breaks M".

O

This suggests that whistleblowing mechanisms cannot provide unconditional economic security
against retaliation-enabled smart-collusion. For a fixed whistleblowing deposit DY, a natural ob-
jective for the protocol designer would then be to maximize the retaliation deposit required to
break M"W.

We propose that the economic security of a whistleblowing mechanism MW is characterized
by the maximum retaliation deposit submitted by any player in the optimal retaliation mechanism
that breaks M™W. This best captures the largest “financial stress” placed by M® on the n players
in their attempt to break MW. In a sense, the collusion is only as strong as its weakest member,
who if this financial stress is too large would not take part, resulting in the collusion itself not
forming. Accordingly, we define the economic security of MW as min y . ;& preaks M (maxi D%R).

Remark 7 (Borrowing money). One might ask if players could borrow money (with an under-
collateralized loan) from an external source to put as deposit in MW (or M®). Note that in
practice, this doesn’t change our results. While it may seem like such a player would care less
about losing their deposit, note that an under-collateralized loan puts the risk squarely on the
lender, who in an efficient market would be unwilling to lend in the first place. In general, any
lender-player coalition would not profit from such a strategy.

7 Effective Whistleblowing

7.1 The 1-Whistle Mechanism M’

We extend our 1-whistle skeleton to be resilient against retaliation mechanisms with deposit up to
DR = (n —1)~ for v > 0.

We propose the 1-whistle (n — 1)v-secure mechanism M}", which collects a whistleblowing
deposit DW =V + ~ + —=1 from each player and transfers the entire collected deposits to the
whistleblower if a single whistle is blown. If two or more whistles are blown, then the entire deposit
is slashed and none of the whistleblowers receive any reward. Formally, our mechanism is given by

1PV () = {nV—Fn’y—i—E ifw=1,

0 otherwise,
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0 if w=20
2. 8% (w) = nw=s
V +v+ ;5 otherwise.

We argue that M}" cannot be broken by any retaliation mechanism that collects a retaliation
deposit of up to (n — 1)+. Intuitively, when a single whistle is blown, M}" transfers greater than
V' + 7 units of money from all the players to the whistleblower. The (n — 1) players other than the
whistleblower need to be paid strictly greater than + per player for their net utility across the two
rounds to be non-negative (they receive V' from collusion in the first round and are slashed greater
than V + v in the second). However, the retaliation deposit is at most (n — 1)y, and thus, the
whistleblower cannot be forced to redistribute more than (n — 1)« units of cash. As a consequence,
there exists some player that receives a negative utility from colluding, and therefore, MK cannot
be broken with a retaliation deposit at most (n — 1) .

Theorem 7.1. MYX cannot be broken by any retaliation mechanism that collects a deposit of at
most (n — 1)~ from each of its players, irrespective of the number of players k that learn the
whistleblowing proof.

We defer a formal proof to Appendix E.1.

Observe that the retaliation deposit needed to break M’ scales linearly with the number of
players. To paint a picture, for n = 1000, an additional $1000 deposit from each player on top of
the baseline deposit V' will result in Mﬁ being resilient to retaliation mechanisms with deposits of
up to roughly a million dollars!

In Theorem 6.2, we argued that any whistleblowing mechanism that collects a deposit V' + ~
can be broken by a retaliation mechanism with a deposit (n —1)(V 4 ). We explore tighter lower
bounds in the next section.

7.2 Lower Bounds

We first argue that the M} is optimal when k = 1, i.e, only a single player knows the whistleblowing
secret (proof in Appendix E.2).

Theorem 7.2. Any whistleblowing mechanism that collects a whistleblowing deposit of at most
V + 7 can be broken by a retaliation mechanism with a retaliation deposit of at most (n — 1)~ and
some strategy profile w* when k = 1.

We also argue that MY" is optimal for & > 1 amongst all mechanisms that (a) have a pure Nash
equilibrium in the second stage and (b) the pure Nash equilibrium is such that the joint utility of
the coalition across the two rounds is non-negative. A formal analysis is given in Appendix E.3.

We motivate assuming the existence of a second-stage pure Nash equilibrium satisfying the
condition on net positive utility for the coalition in Appendix C.

7.3 Alternative Collusion Models

In Appendix D, we consider other interesting models of collusion. We summarize our exploration
below.
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Jointly controlled accounts (Appendix D.1). We consider models where colluders can set
up and blow whistles from jointly controlled accounts. Jointly controlled accounts can simplify
collusion by making sure no player can collect whistleblowing rewards in their private accounts and
“abscond” without sharing with the other players. We find that our results do not change even
when colluders can instantiate joint accounts.

As an extension, we also allow we joint accounts that can automatically blow whistles—an
extremely strong power given to colluders. Here, the players cannot deviate to stop the automated
whistles that are blown, but can only blow additional whistles from their private accounts. We find
that our results continue to hold in the automated whistleblowing model with little modifications.

Interestingly, if desired, the whistleblowing mechanism could prevent joint accounts altogether
using recent cryptographic techniques [39, 60] that allow proving individual ownership of keys.

Non-anonymous whistleblowing (Appendix D.2). Here, we restrict the mechanism designer
such that M"W no longer supports anonoymous whistleblowing. Here, we show that our results
continue to hold except in the case that the whistleblowing deposit can be held indefinitely. One
example of this is the client-setting with transient clients (see Section 8.2) which requires anonymity
for our positive result.

Non-automatic retaliation (Appendix D.3) Here, we restrict the power of colluders by not
allowing them to deploy retaliation contracts that automatically trigger penalties after observing
the output of M". We find that this does not change our results.

8 Beyond (n,n)-Collusion

In this section, we discuss designing whistleblowing mechanisms beyond (n,n)-collusion. Specifi-
cally, we discuss details for (¢,n)-collusion and the transparent service setting.

8.1 (t,n)-Collusion

We find that from the game-theoretic perspective, (¢,n)-collusion is surprisingly similar to (n,n)-
collusion.

(t,n)-collusion generalizes the (n, n)-collusion environment as follows — it suffices for a coalition
to contain any t out of the n players to successfully collude and derive a utility of V' per player in the
coalition. For a given coalition of players 1,...,t, we discuss designing whistleblowing mechanisms
to deter smart-collusion.

Observe that the whistleblowing and retaliation games of (¢,n)-collusion are identical to that
of (t,t)-collusion, except for the budget balance constraint. Rather than using the whistleblowing
slashes from just the ¢ colluders to disburse whistleblowing rewards, the whistleblowing mechanism
can also rely on the slashes collected from the n — ¢ players that are not part of the coalition.
Thus, budget balance in the (¢,n)-collusion environment requires that wP W (w) < nSW(w) for all
w e NU{0}.

It is fairly straightforward to see that MY' (from Section 7.1) continues to remain resilient
against retaliation mechanisms that collect a deposit of up to (¢t —1)~.
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Proposition 8.1. The Mﬁ mechanism cannot be broken by any retaliation mechanism with a
retaliation deposit of at most (t — 1)~ in the (t,n)-environment, irrespective of the number of
players 1 < k <t that learn the whistleblowing proof.

Lower bounds in the (¢, n)-collusion setting can also be derived analogously. We defer the details
to Appendix E.4.

Identifying colluders. While some cryptographic whistleblowing proofs can identify a subset of
the t players that choose to collude, we note that our impossibility result on unconditional economic
security continues to hold. In fact, it holds even if the whistleblowing mechanism exactly knows
which t out of the n players collude.

To see why, observe that even with (n,n)-collusion where the protocol designer knows that all
n players have to collude in order to receive the collusion reward V (i.e., the whistleblowing proof
“identifies” all colluders), no mechanism could be resilient against retaliation mechanisms with a
sufficiently large retaliation deposit.

Remark 8 (Adaptive (t,n)-collusion). An interesting extension is to model adaptive corruption,
where parties may be corrupted at any time during execution instead of just on initialization.
First, note that the underlying cryptography primitive for generating whistleblowing proof must
be adaptively secure. Without this, whistleblowing would not work as intended even without con-
sidering incentives. Building adaptively secure cryptographic primitives is an orthogonal question.
From a definitional standpoint, observe that our definitions of unframability can be readily
extended to support adaptive corruptions. Moreover, our whistleblowing constructions should
directly inherit adaptive security from the underlying threshold primitive. For example, if the
threshold VRF underlying a distributed randomness beacon service is secure against adaptive
corruptions, then our whistleblowing protocol from Section 4.3.2 also achieves unframability against
adaptive corruptions. We do note that achieving adaptive security for threshold cryptographic
primitives can be challenging for some primitives (e.g., see [31] for adaptive threshold signatures).
Now, given an adaptively secure underlying cryptographic primitive, note that from the game-
theoretic side, our analysis begins given a t-sized collusion and does not care about the details on
how it formed. In turn, our game-theoretic results will not change even if the collusion resulted
from adaptive corruption. Still, it is interesting to study this “collusion formation phase” that
precedes the game we model. Intuitively, the goal here will be to understand how players propose
coalitions, join or leave them, or even form sub-coalitions. We leave the details to future work.

8.2 Transparent Service Setting

In this section, we design whistleblowing mechanisms for the transparent service provider model
(with n servers and a client) from Section 4. The induced whistleblowing and retaliation games
will mirror our analysis from earlier. We discuss some differences below.

We focus on collusion forming between ¢ servers and the client. The client receives a whistle-
blowing proof upon receiving off-band service. A subset of the servers might or might not receive
the whistleblowing proof too. The transient service model differs from (¢, n)-collusion in that the
whistleblowing mechanism can only collect deposits from servers and not from client.

A very similar proof to Theorem 7.1 will show that an appropriate adaptation of MYX continues
to remain resilient against any retaliation mechanism that collects a retaliation deposit of up to nvy
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from the client and the servers (for n = 1000 and v = 1000, imagine a commercial service asking
its client to lock in roughly a million dollars to use its service). Similarly, it is also not hard to see
that our result on the impossibility of unconditional economic security carries over.

Nevertheless, we find an interesting positive result for unconditional security by leveraging a
characteristic specific to this setting.

Unconditional economic guarantees for long term services with transient clients. A
natural application of the transparent service setting is one where servers provide their functionality
as a long term service, while clients are transient and only appear when they wish to submit a query.
This provides an interesting tool to the whistleblowing protocol designer—deposits from servers can
be held indefinitely (essentially as a “cost of doing business” ), or until there is a whistleblowing proof
submitted. In turn, to break this mechanism and successfully provide off-band service to a client,
the servers would also have to hold a retaliation deposit from the client indefinitely. Otherwise, the
client could simply wait until its deposit is returned before whistleblowing.

However, it is likely that no client will want to have its retaliation deposit be held indefinitely
in order to collude off-band. As a consequence, in our formalism, this translates precisely to the
setting with D® = 0 (i.e., whistleblowing without a retaliation contract). This allows us to provide
unconditional economic security.

Proposition 8.2. There exist whistleblowing mechanisms that collect a deposit D® = V + =5
that cannot be broken by any retaliation mechanism in the transparent service model with long term
service and transient clients.

9 Estimating Collusion Utility

So far, we have assumed that the utility V that each player gains through collusion is known to the
whistleblowing mechanism designer in advance. This allows setting the deposit D required from
each player. In this section, we use illustrative examples to explore the practicality and limitations
of estimating collusion utility.

Unconditional security result is unchanged. First, observe that our headline negative result—
the impossibility of unconditional security in the presence of smart-collusion—continues to hold
regardless of the application or whether V' is known. In particular, the impossibility result holds
even when the protocol can exactly learn the collusion utility, and application specific constraints
will only make the impossibility stronger. Our discussion in this section therefore focuses on our
positive results.

Section structure. First, in Section 9.1, we discuss several natural applications where V is
easy to estimate (or upper bound). As one illustrative example, we detail an application where a
custodial wallet service is used to store cryptocurrency funds.

Next, Section 9.2 considers settings where it is difficult for the mechanism designer to know V.
Here, we offer a new perspective on V based on insurance. Abstractly, the client herself will be
asked to provide the value W for which she would like to be protected. For any loss suffered due
to the collusion, the whistleblowing mechanism will ensure that the client is made whole up to W.
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We show how this perspective unlocks new settings for our framework by detailing an illustrative
application with randomness beacons.

Finally, in Section 9.3, we discuss limitations for applying our framework in the context of
estimating collusion utility, and discuss potential directions for further analysis.

9.1 Settings that Permit Estimation of Utility

We begin with a representative example on custodial wallets in Section 9.1.1 to show estimation of
collusion utility. Section 9.1.2 describes additional applications that are similar in nature.

9.1.1 Custodial Wallets

Imagine a custodial wallet service for users to hold their long-term funds. Such a service is useful for
users not wanting to worry about storing wallet keys themselves. Note that existing exchanges like
Coinbase and Binance already provide such a service (of course, in addition to other functionalities).
Further, it is increasingly common to expect that the key is stored in a distributed fashion using
secret sharing (see e.g., [29]).

Now, in this setting, it is natural for a user Alice to still want protection against a malicious
committee that could collude to steal her funds. Existing deployments do not account for this; we
note that our whistleblowing framework could be applied here.

Concrete specification. We begin by describing the cryptographic components to implement
custodial wallets with whistleblowing. In more detail, committee {Py,...,P,} will, on Alice’s
behalf, jointly store a key sk for a wallet with value W. The funds are fully custodied by the
committee (i.e., Alice does not know the underlying sk). To enable whistleblowing, the key will be
split amongst the committee using secret-sharing with snitching (SSS) [40]. SSS extends regular
secret-sharing with the additional guarantee that if the committee colludes to learn sk, then some
member will be able to individually learn sk. Importantly, with SSS, unlike regular secret sharing,
the committee cannot use MPC to sign transactions with sk without first leaking sk to some member.
Now, knowledge of the secret sk effectively serves as a whistleblowing proof of collusion.

Observe here that the utility from collusion is known apriori. In particular, for a wallet worth
W and (t,n)-collusion, V' can be set to be W/t to ensure that Alice’s assets are protected. Now, if
a whistle is blown, instead of burning all committee deposits, the mechanism will first compensate
W to Alice. For this, intuitively, we will need to hold an additional deposit (roughly 2ltT_”V) from
each committee member to obtain the same quantitative security guaranty.

More specifically, we begin by recalling the (¢ — 1)v-secure mechanism discussed in Section 7.1
and 8.1. If exactly one whistle is received, the mechanism effectively fully slashes the deposits D of
all committee members and rewards the whistleblower ¢tD — €’ (for some € > 0). If an additional tV
is required to compensate Alice, then we would need the total payment 2tD — € to be smaller than
the total deposit nD. Concretely, a deposit larger than %V + v+ =57 per player will be sufficient
to protect against smart-collusion with deposit (¢ — 1)y. Note that when ¢t < n/2, no additional
deposit is necessary; additionally, a maximum of V' extra deposit is sufficient which happens in the
(n,n) collusion setting.

Time-varying utility. In case additional funds are added to the wallet, MW can ask the com-
mittee to add a higher deposit to protect the wallet’s increased value. Alternatively, the same
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deposit can be maintained, but the user’s guarantee will be degraded to protection only against
the original value.

Wallet custody vs backup. One subtlety to note here is the difference between wallet custody
and wallet backup and the challenge in the latter setting since Alice knows the key herself and could
falsely whistleblow.

In particular, in the backup setting, the whistleblowing proof can no longer just be knowledge
of sk—the protocol must prevent Alice from blowing the whistle herself and claiming committee
collusion. One approach is to ensure that only committee members can whistleblow by using e.g.,
identities or credentials. However, we observe that this does not suffice either—Alice could collude
with one member P, give P the secret key sk so that it can whistleblow, and split the profits.

We leave an exploration of whistleblowing for this key backup setting to future work.

9.1.2 Similar Settings

We briefly mention additional applications where collusion utility can similarly be estimated.

For BFT blockchain protocols that support whistleblowing through forensics, the maximum
possible gain W from colluding can be thought of as the total value locked TVL on-chain. The
mechanism can now use the bound V' < W/t on the per player utility.

As another example, consider accountable threshold decryption used specifically in the context
of encrypted mempools. Here, the maximum gain W from colluding is essentially the maximum
extractable value (MEV) [6, 32]. In turn, historic MEV data (e.g., payments made by MEV
searchers and builders to validators) could be used to find a reasonable upper tail bound on V.

9.2 Settings with Difficult Ex-Ante Estimation

We now describe applications where it is difficult for the mechanism to know the collusion utility in
advance. But, by asking the client herself to supply the maximum loss W = tV that she can suffer,
the mechanism can essentially insure her against that amount. We describe this new insurance-
based perspective in Section 9.2.1 using our custodial wallet example. Then, in Section 9.2.2, we
detail a new setting for a randomness beacons service that uses this perspective.

9.2.1 The Insurance Perspective

As alluded to earlier, the core idea is to view V in terms of how much loss protection the client
desires.

Basic example. A natural starting point is to revisit the custodial wallet application, but in a
setting where the cryptocurrency is privacy-preserving. Here, the mechanism will not know the
value of the wallet to appropriately set deposits. However, imagine that the client Alice herself
provides the value W she wishes to be protected or insured against. The mechanism can now
proceed as if each player’s utility V' = W/t from collusion is known.

As before, if a whistle is blown, the mechanism will first give W to Alice (to make her whole).
Effectively, Alice will never lose her money, even if the committee colludes to recover her private
key.
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Client-committee collusion. There is an important new subtlety to account for here. We need
to ensure that the client Alice has no incentive to “cheat” the mechanism by colluding with the
committee. Broadly, we now need to capture two forms of collusion.

First, when Alice is not part of the colluding coalition, the coalition is exogenously specified
the value V by Alice, making the resulting game identical to the standard retaliation game R.

Now, for client-committee collusion, the concern is that Alice attempts “insurance fraud”—
that is, she exaggerates the value of her wallet so as to receive a higher payout, which she then
redistributes amongst the coalition. A crucial observation we make here is that due to budget
balance of MY, the joint utility of Alice and the coalition is non-positive. This is because any
payment from MW to Alice comes from slashing the committee, while the utility gained by colluding
committee members through learning the secret key comes directly at the expense of Alice. As
a result, the total utility of any coalition containing Alice cannot be positive and therefore, Alice
cannot profit by exaggerating the value of her assets.

Insurance pricing. To prevent abuse in practical deployment, we must also ensure that the
client Alice does not request unnecessary insurance. The concern is that Alice does this, not to
profit but rather to force the committee members to lock up larger deposits. Therefore, it may
make sense for Alice to be required to pay an insurance premium, calculated as a function of the
value W she requests insurance for. The pricing of such insurance is an interesting market design
question in itself but out of scope for this paper. However, note that pricing insurance can be done
independent of the whistleblowing mechanism, as once the value V' from colluding is exogenously
set, the game proceeds exactly the same way independent of the mechanism used to arrive at V.

9.2.2 Randomness Beacon Service

Consider a distributed randomness beacon (DRB) service where a committee generates verifiable
randomness for applications to use. Recall that this setting permits whistleblowing proofs of col-
lusion when a self-verifiable threshold VRF is used to build the DRB (see Section 4.4).

Suppose now that a third-party application like a casino subscribes to the DRB service to run
games for its own users. Note here that the casino is “a client” for the DRB service. Now, as a
natural goal, the casino would like to ensure that it does not lose money because of collusion to
learn the randomness before hand.

However, the DRB service should not ex-ante be expected to know the value attackers might
be able to gain from each individual application that subscribes to use its randomness. Instead,
following our insurance modeling, the casino application itself will self-report the value W it would
like to be insured against based on what it stands to lose. The casino will pay the DRB com-
mittee an insurance premium to have each member lock up an additional W/t deposit. In case of
whistleblowing, the casino will be reimbursed up to W.

Further, at any point, the casino may purchase additional insurance if e.g., the amount it stands
to lose from collusion increases.

Multiple clients. Observe that the insurance perspective can also model e.g., multiple different
applications using the same DRB service and still be protected against loss from a collusion attack.
Here, the committee members will need to lock up deposits corresponding to the sum of insurance
requested by the applications.
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9.3 Limitations for Estimating Utility

Infeasible restrictions. In some settings, obtaining bounds on collusion utility may be infeasible
without heavy restrictions. As an example, consider our public signing service (i.e., notary) appli-
cation. In the generic case, collusion to obtain signatures on conflicting documents could provide
arbitrarily large utility. Moreover, the client also might not know this utility making it hard to
deploy an insurance-style mechanism. It is unclear what document restrictions would need to be
placed in order to bound V.

Similarly, for accountable threshold decryption, in the generic case, the value of a collusion to
recover the plaintext could be arbitrarily large. Only in specific deployments (such as encrypted
mempools described earlier) can a suitable bound be obtained.

Dynamic utility changes. An orthogonal concern, especially in applications being run for ex-
tended periods of time, is whether the utility of collusion can change. Sometimes, as illustrated
through our example applications, changes in utility are easy to observe.

In other cases, a reasonable estimate of how V' changes is feasible. For instance, V may be
affected by currency exchange rates if e.g., V' was realized in Bitcoin but interoperability reasons
necessitated deposits in USDC. Here, an assumption that the price of Bitcoin does not rise by e.g.,
20% in the whistleblowing period, along with an analogously larger USDC deposit can be used.

On the other hand, sharp or sudden changes in V' could substantially change the incentives
of collusion. We posit that in such cases, it may be impossible to build good whistleblowing
mechanisms. We leave further explorations to future work.

Conclusion

We have introduced a broad framework for whistleblowing with the goal of deterring collusion in
cryptographic protocols. Whistleblowing protocols combine cryptographic tools for colluders to
defect by ratting on each other, with mechanism design techniques to incentivize such defection.

We presented the new notion of smart collusion (i.e., collusion using blockchain smart contracts)
and showed how it significantly boosts the colluders power. We showed generic cryptographic and
game-theoretic results on the feasibility of whistleblowing.

Finally, we showed several existing and new cryptographic applications that can be captured in
our whistleblowing framework, and would benefit from our analysis.
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Figure 2: The soundness game G%“nd for a functionality F.

A Deferred Cryptography Details

Security properties for the computation functionality F. Correctness requires that if all
the servers are honest, then the output passes verification. More formally, for all 0 < ¢t < n € N,
(k1,. .., kn,Vk) < F.Gen(1*,t,n), all inputs x € X, all randomness ¢ € R¢, all subsets J C [n] of
size t, and all randomness r] € Rg for all < € J, the following holds:

x* < F.Query(z;r°)
FNer(vk,z,y,m) =1AVie T : VieJ:
F.PartialVer(vk, 2*,y*,m;) =0 | (yf,m) < F.Respond(k;, z*;r?)
(y, ) < F.Output({y; }icr,7c)

Further, soundness requires that it should be hard for a client to compute the function at a
new input . This should hold even if it can see function evaluations at arbitrary inputs of its
choice, and upto t — 1 servers are corrupt. We formalize the notion of a ‘new’ input based on the
leakage—the adversary is not allowed to query partial function evaluations on any input whose
leakage belongs in leakz(£)”. This definition can be seen as a generalization of the unforgeability
definition for signatures to arbitrary functionalities. We formalize this requirement using a game-
based definition, which is presented in Figure 2 and Definition 14.

Pr

Definition 14. A functionality F is sound if, for all A\ € N and all PPT adversaries A, the following
advantage is negligible in A:

Adv2™(X)(A) = Pr[GR"(A) = 1]

Formalism for identifiable whistleblowing. We now describe how our model from Section 4
can be extended to capture applications such as accountable threshold signatures (e.g. multi-

"Note that this definition is meaningful only in the context of public or one-way function leakages. For oblivious
leakage, one could define a variant of soundness similar to the one-more unforgeability property of blind signatures.
However, we do not explore this definition in this paper, as our focus is on non-oblivious leakages.
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signatures) where it is indeed possible to identify at least one server in the quorum offering off-band
service:
e The F.Gen algorithm outputs another verification key vk’ which can be used to verify proofs
that blame certain servers.

e The F.Output algorithm now also outputs a set 7 of parties being blamed, along with a proof
/

.

e We define a new algorithm F.VerBlame that takes as input vk/, the input-output pair (z,y),
the set of servers being blamed 7 and the proof 7/, and outputs a single bit denoting whether
all servers in J were indeed responsible for generating this output.

e We can define a strong unframability property for both the functionality F and the whistle-
blowing protocol Wx, which says that even if n — 1 parties collude, they should not be able
to produce a valid proof 7’ that blames a set J* containing an honest party. This can be
seen as a generalization of the unforgeability property for multisignatures (see [16] and the
references therein).

Example attack if OPRF privacy is relaxed to one-way leakage. OPRFs are widely used
in applications such as keyword search, private set intersection, private information retrieval, and
password-authenticated key-exchange. As the name suggests, these applications have oblivious
leakage. Unfortunately, weakening this to one-way leakage would trivially break these applications.
For example, consider Private set intersection (PSI), wherein two parties have sets S1 and Sg, and
the second party P, want to compute the intersection S7 N Se without revealing anything about
its set to the first party P;. Let us assume that the first party has a OPRF key k. It starts with
sending the OPRF evaluations £ = {u;};cg, at all elements in its set S; to the second party Ps.
P, and P; then run the OPRF protocol with P, querying P; for the evaluation v; at all points
Jj € S2. Then, for any j € S, if vj is in E, then P, adds j to its output. It is easy to see that P
output is equal to S; N Sy. Unfortunately, if P, is required to reveal owf(j) for its OPRF queries
to Pj, then P; can learn a lot about Se. Specifically, it can learn S; N Se by comparing ow f(5)
to the values owf(i) for all elements 7 in its set S7. A similar attack can be mounted on other
applications of OPRFs as well. To conclude, whistleblowing is impossible for such applications,
based on Section 4.3.1.

B Deferred Cryptography Proofs

B.1 Impossibility of Whistleblowing for Oblivious Leakage (Lemma 4.1)

Proof. Suppose that there is a functionality F (for a function f) with a whistleblowing protocol
(P, V) that is e-sound.

We will now show that the leakage cannot be e-oblivious by constructing a distinguisher D. Let
G, denote the oblivious leakage game. D starts with sampling 0 < ¢t <n € Nand (ky, ..., kp, vk) <
F.Gen(1*,t,n). It then samples zg,z; +$ X, sends them to its challenger, and gets back z*.
Additionally, D runs the Query, Respond and Output functions to get a function evaluation at xg,
which we denote by yo. In other words, (z,y) € fi.
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To distinguish whether z* came from leak(zg) or leak(z1), D simply runs the whistleblowing
prover for (vk, L = {z*}) with the witness (2o, yo). More formally, it runs IT <-s P(({z*}, vk), (0, %0)).
If V({z*}, vk, II) outputs 1, then D guesses 1 (i.e., that 2* came from leak(z1)); otherwise it guesses
0 (i.e., that * came from leak(zy)).

To compute the advantage of D, let Eg and E; denote the cases b = 0 and b = 1 respectively,
where b is the bit sampled by the challenger in the oblivious leakage game. First, by completeness
of the whistleblowing protocol, we have that for all L; C leak(z1):

Pr [P((L1,vk), (z0,%0)) <> V(L1,vk) = 1] = 1.

This implies that D will always output one if b = 1, because {z*} is a subset of leak(z1) in that
case. More formally, Pr[G,,(D) = 1|E;] = 1.

Next, to analyse the b = 0 case, we claim that we can use D to construct an adversary A
that breaks unframability with advantage equal to Pr[G,(D) = 1|Eg]. Specifically, A samples
0 <t<né€eN, sends t,n,C = L to its challenger, and receives vk. It then samples xg,x1,
and z* < leak(zp). It queries its unframability challenger for ¢ partial evaluations on x*, for an
arbitrary subset of ¢ servers, and combines the outputs to compute yy. Note that at this point, the
leakage set stored by the unframability challenger only includes z*. Then, similar to D, A runs the
honest prover of the whistleblowing protocol, to get IT* < P(({z*},vk), (z0,%0)), and sends IT* to
its challenger.

Now, observe that the distribution of vk, xg, z1, *, yo and II* in the above unframability game is
identical to that in the oblivious leakage game when b = 0. Hence, the probability that A wins the
unframability game is equal to the probability that the verifier V accepts IT*, which is Pr[G (D) =
1|Ep]. Since the whistleblowing protocol is e-unframeable, this means that Pr[G.,(D) = 1|Ey] is
less than e.

Finally, we compute the advantage of D:

AL K(D) = | (PrIGup(D) = 11E1] + PrlGs(P) = OfE) - §
> E-(l—kl—e)—;
> (1 ; €) 5)

This proves that if the whistleblowing protocol is e-unframable, then there exists a distinguisher
that breaks oblivious leakage with non-negligible advantage. O

B.2 Whistleblowing Protocol for other Leakages

We complete the proof deferred from Section 4.3.2.

Completeness. This follows directly from the completeness of the NIZK-PoK system.

Anonymity. This also follows trivially from the honest-verifier zero-knowledge property of the
NIZK-PoK system.

Unframability. Theorem B.1 below proves unframability of the above whistleblowing protocol by
relying on the knowledge-soundness of the NIZK-PoK proof and the soundness of the functionality
F.
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Theorem B.1. For every PPT adversary A that breaks unframability of the whistleblowing protocol,
there exist another PPT adversary B such that,

Advipiram (A) < AdvR™(N) + &
where Kk is the knowledge soundness error of the whistleblowing protocol.

Proof. Given an adversary A for the unframability game, we will use it to construct an adversary
B for the soundness of the functionality F. Let E. denote the event that A corrupts less than ¢
servers, i.e. |C| < t. Note that A can win its game only if this event occurs. This implies,

Advipiem (A) = Pr[Gipr*™(A) = 1|E]

In other words, we only need to focus on adversaries that corrupt less than ¢ servers.
We now describe how B works:
e Receive (n,t,C) from A. Send these to the soundness challenger.

e Receive vk, {k;}icc from the challenger, and forward to .A.

e For every EvalO oracle query, simply forward it to its challenger, and return its response to
A.
Eventually, A returns a proof II. Note that A can be seen as a NIZK-PoK prover for the statement
(vk, Q), which returns a valid proof with probability Pr[G%ﬁ "M (A) = 1|E.]. Hence, B runs the
extractor £ on A to extract the witness (Z,7y). B simply outputs (z,y). (Note that there is no 7
since we are only considering self-verifiable functionalities.)

Let E. be the event that the extractor succeeds. Observe that, if this event occurs, then, (Z,7)
must be a valid witness, which means, F.Ver(vk,Z,9) = 1, and the list Q does not contain any
leakage for z, i.e. Vr¢ € R¢, leak(Z;7¢) € Q. This is exactly the winning condition of B. Formally,
this means that,

Advie®d(B) > Pr[E.].

By knowledge soundness of the whistleblowing protocol, we know that
Pr[Ec] > Pr[Gyr™(A) = 1|El] — .

This proves the theorem. ]

C Existence of a “Reasonable” Second-Stage Pure Nash Equilib-
rium

In this section, we motivate the assumption in Theorem E.1 on the existence of a second-stage pure
Nash equilibria that leaves the coalition with a joint positive utility across the two stages.

All the whistle-blowing mechanisms discussed thus far have a second-stage pure Nash equi-
librium. In other words, there exists some second-stage pure Nash equilibrium that the players
can coordinate on if they choose to collude, but rather choose to remain honest since some player
receives a negative utility from colluding. The lower bound in Theorem E.1 considers only such
mechanisms with a second-stage pure Nash equilibrium.
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On the other hand, we can also construct whistleblowing mechanisms that do not have a second-
stage pure Nash equilibrium (Example 1). In such mechanisms, all SPPNE will involve players
playing honest in the first stage purely because no second-stage pure Nash equilibrium exists when
all players play collude. In other words, the onus of “creating a second-stage pure Nash equilibrium”
lies on the retaliation mechanism.

Even though whistleblowing mechanisms with no second-stage pure Nash equilibria deter col-
lusion, from a modelling perspective, such mechanisms should be considered “different” to whistle-
blowing mechanisms that have a second-stage pure Nash equilibrium.

Example 1. Consider the whistleblowing mechanism M"Y given by

81/90 if w = 90,

1 PV (w) = 1 %f w = 100,
0 if w = 110,
0 otherwise

and,

0 if w=0,
1 if w = 90,

2. SW(w)=<152 if w = 100,
5 if w = 110,
15.241/2% otherwise.

Proposition C.1. The whistle-blowing game induced by M™W does not have a pure Nash equilibrium
when the number of players k that know the whistleblowing proof equals 2.

Proof. 1t is not hard to see that the two players jointly blowing w whistles for w # 90,100,110
whistles is not an equilibrium. If w = 0, then, one of the players is better off by blowing a 100
whistles. If w ¢ {0,90,100,110}, then, each player is better off blowing 111 more whistles, which
reduces the whistleblowing slash without changing the whistleblowing reward.

We now have to rule out equilibria where the players jointly blow 90, 100 or 110 whistles. First,
assume player 1 blows all w whistles. If w = 90, then player 1 is better off blowing 100 whistles
instead. If w = 100, player 2 is better off blowing 10 additional whistles to get slashed 5 instead
of getting slashed 15.2 from blowing no whistles. If w = 110, player 1 is better off blowing 10 less
whistles.

Now, consider players 1 and 2 blowing w; and ws whistles respectively such that w = w; + ws.
Without loss of generality, assume wy > ws.

If w = 90, consider player 1 blowing 10 additional whistles. By blowing w; whistles, player 1
receives a utility %wl —1, but by blowing w; 4+ 10 whistles, it receives a utility 1 x (wq+10)—15.2 =
wy — 4.8. Note that w; — 4.8 > %wl — 1 whenever wy > 38. Since, w1 + wo = 90 and wy > ws, wy
is at least 45, and therefore, player 1 benefits from deviating and blowing 10 additional whistles.

IF w = 100, consider player 2 blowing 10 less whistles (we will consider the case where wy < 10
later). By blowing wy whistles, player 2 gets a utility 1 x wy — 15.2, while by blowing wy — 10
whistles, it receives a utility %(wg —10)—-1= %wg — 10. The latter is greater than the former
whenever wy < 52. Indeed, wy + we = 100 and we < w1, and thus, wy < 52. Therefore, player 2 is
better off deviating and blowing 10 less whistles.
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If w =100 and wy < 10, then player 2 is better off blowing 10 more whistles. By blowing wo
whistles, it receives a utility wy —15.2 < 10 —15.2 = —5.2. By blowing 10 more whistles, it receives
a utility 0 — 5 = —5, which is strictly better.

Finally, if w = 110, player 1 is better of blowing 10 less whistles to receive a reward (w; — 10) —
15.2 > —5, the reward from blowing 110 whistles in total.

Thus, W does not have a pure Nash equilibrium. O

It might also be the case that all pure Nash equilibria induced by MW can be extremely
“unrealistic.” For example, in r-whistle mechanisms, every player blowing n x r whistles is a pure
Nash equilibria for any k& > 2. FEven if some player deviates and blows a different number of
whistles, the total number of whistles blown is strictly greater than r and thus, all players receive a
zero reward from the whistleblowing mechanism and are slashed their entire deposit. However, one
can claim that whistleblowing mechanisms with such “unrealistic” equilibria should “spiritually”
be considered similarly as whistleblowing mechanisms with no second-stage pure Nash equilibria.
Assuming that the coalition gets a positive joint utility in the pure Nash equilibrium across the
two stages necessarily ensures that the equilibrium is “interesting.”

Theorem E.1 argues that the 1-whistle (n — 1)~y-secure mechanism is optimal amongst all
whistleblowing mechanisms that support a second stage pure Nash equilibrium where the coalition
earns a net positive utility across the two stages of W.

However, there can also exist whistleblowing mechanisms with “interesting” second stage equi-
libria that results in the joint net utility of the coalition in W being negative.

Example 2. Consider the 2-whistle mechanism M"Y given by

V4ny+e ifw=1,

1. PY(w)=<¢ if w=2,
0 otherwise
and,
0 if w=20
2. 8% (w) = Be=
V +~+ 35 otherwise.

Note that blowing 0 or 1 whistle is not an equilibrium when k& > 2. Any of the &k players blowing
zero whistles is incentivized to blow a whistle in both cases. Further, note that 2 players blowing a
whistle each is an equilibrium. Neither of the whistleblowers will want to blow a different number
of whistles (the whistleblowing slash remains the same, but the reward decreases from ¢ to zero if
they blow a different number of whistles), while the other players are indifferent between blowing
no whistles and blowing some number of whistles.

The joint utility of the coalition across the two stages, given by nV' —n x (V + v+ 5) + 2¢ is
strictly negative. However, the Nash equilibrium where two players blow a whistle each is certainly
“interesting,” unlike the equilibrium where every player blows much more than r whistles in a
r-whistle mechanism.

We leave the problem of classifying all whistleblowing mechanisms with “interesting” pure Nash
equilibria and finding the optimal whistleblowing mechanism (i.e, the mechanism M" with a given
whistleblowing deposit D" that requires the largest retaliation deposit to be broken) open.
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D Alternate Models for the Whistleblowing and Retaliation Games

In this section, we explore various other models for the whistleblowing and retaliation games that
could arise naturally in applications.

D.1 Whistleblowing through Jointly-Controlled Accounts

In the discussions thus far, we have implicitly assumed that the players blow whistles from pri-
vately controlled accounts to which the whistleblowing rewards are transferred (the private accounts
model). Thus, the deposit collected by the retaliation mechanism must also be large enough so
that the whistleblowers do not “abscond” after getting rewarded by the whistleblowing mechanism
without sharing it with the remainder of the players. We can also consider alternate collusion
models, where the players collude by blowing whistles through jointly controlled wallets. Since
the whistleblowing rewards are transferred to the joint wallets, the retaliation mechanism is not
responsible to prevent the whistleblowers from absconding. We present two possible models for
whistleblowing and retaliation from joint accounts. In the first model, some player will still have to
submit a whistleblowing proof on behalf of the joint account, while in the second, blowing whistles
from joint accounts is fully automated.

Retaliation with jointly controlled wallets but non-automated whistleblowing. We
start by describing the model with jointly controlled accounts where the players still have to blow
whistles on behalf of the account — we call this the non-automated joint accounts model. While
the first round is identical to the private accounts model, the action-space for the players 1,...,k
in the second round consists of (u;,v;) € (NU {0})2. u; denotes the number of whistles blown by
player ¢ from its private accounts while v; denotes the number of whistles it blows on behalf of joint
accounts.

Each player then derives a utility w;P" (3", u; +v;) — SV (32, u; + v;) from the whistleblowing
mechanism and an additional utility equal to R;(>", u;+v;) from the retaliation mechanism.® Since
the retaliation mechanism collects some of the whistleblowing rewards and distributes it back to
the players, budget balance for R would now require >, R(v) < vP%W(v) for all v € NU {0}. In
other words, the net reward distributed by R cannot be larger than the total money it receives from
the whistleblowing mechanism. The non-automated joint accounts model is otherwise identical to
the private accounts model.

It should generally be possible to stop players from blowing whistles from jointly controlled
accounts. Using such joint accounts effectively amounts to whistleblowing through smart contract
addresses instead of fresh privately-owned addresses (e.g., EOAs on Ethereum). However, since it
is typically visible if the calling entity is an EOA or a smart contract, a whistleblowing mechanism
may choose to only allow EOAs to blow whistles.

Further, even if joint accounts arise through private means (e.g., a trusted hardware that controls
the key), we note that if desired, the whistleblowing protocol designer could prevent joint accounts
through recent cryptographic techniques [39, 60] that allow proving individual ownership of keys.
This also prevents automated whistleblowing from joint wallets.

8To be precise, the retaliation mechanism R; should take as input the total number of whistles > S Ui v blown
by the players (which can be learnt by R since MW publishes this information anyways) and the joint accounts which
received a reward from MY . However, for notational cleanliness, we do not explicitly mention the joint accounts as
input to R, but they can be deduced from the pair (u;,v;) played by player .
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Even if the protocol designer cannot contain coalitions from using joint accounts, we will argue
that breaking a whistleblowing mechanism is equally difficult with purely private accounts and with
jointly controlled accounts as long as whistleblowing cannot be automated.

Theorem D.1. A whistleblowing mechanism MY can be broken by a retaliation mechanism MR
with retaliation deposit D® and some SPPNE %% in the private accounts model if and only if
there exists a retaliation mechanism R in the non-automated joint accounts model with the same
retaliation deposit D® such that R and some SPPNE ((u1,v1),. .., (un,vn))? breaks MW,

Proof. Proving the “only if” direction is easy — if there exists a retaliation mechanism M= and
wW? that breaks MY purely with private accounts, then MR and @? also breaks MY in the non-
automated joint accounts model. Formally, R;(w) = —ME(w).

We use the following intuition to prove the “if” direction. While the retaliation mechanism gets
direct control of the funds flowing into the jointly controlled accounts, instead of blowing whistles
from the joint accounts of the coalition, players can potentially blow whistles from their private
accounts and then abscond with all the whistleblowing rewards without sharing them. For instance,
if the coalition strategically decides that player ¢« must blow u; whistles from private accounts and
v; whistles from joint accounts, player ¢ might instead blow w; = u; + v; whistles from its private
accounts and pocket all of the whistleblowing rewards that would have otherwise flown into the joint
accounts. We will argue that stopping the above “redirection” attack requires as much collateral
as stopping the player from absconding in the private accounts model.

Consider a retaliation mechanism R and SPPNE ((u1,v1), ..., (un,v,))? that breaks MW in
the joint accounts model. We will show a reduction to construct a retaliation mechanism MR in
the private accounts model that also breaks MW, Instead of first handing over the whistleblowing
rewards to the coalition and then receiving some share of the rewards via R, we will construct MR
such that each player directly receives the rewards from M"Y and then forwards the money to be
redistributed. Define M® to be

MES ) = {mgw(ijj)—Ri(ijj) i Y wj = Y+ 0y,
(2 ‘ ] D

otherwise.

We argue that (ws,...,w,)% is a SPPNE in the retaliation game R where w; = u; + v; for all
1< <n.
To this extent, we will begin by showing that (wy,...,w,) is a second-stage Nash equilibrium

in the private accounts model. Further, when all players j # i blow w; whistles, we argue that
player ’s utility from blowing w; whistles under the retaliation mechanism M® equals the utility
from blowing wu; private whistles and v; whistles from joint accounts under R. Player ¢’s utility
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from blowing w; whistles equals
() =5 () M
= (u; + v;)P ZUJH;J Zufrvj M +vy)
= u; PV ( Zu]—f—vj Zu3+vj ]
j Zu]+v] RzujJrvj
= uwPY () uj+vy) - ZujJrv] +R; Zuva,

J

which equals the utility from blowing wu; private whistles and v; whistles on behalf of joint accounts.
On the other hand, by deviating and blowing w} # w; whistles in the private accounts model, player
1 receives a second-stage utility

wiPW (w] + ij) — SsW(w] + ij) — DF

J# J#i
< wiP"V(w] + Zuj +v;) — SW(w] + Zuj + v;)
J# J#i
Ri(w) + ZUj +vj)
J#
< w PV (u; 4+ v; + Zu]' + ;) — SW(u; +v; + ZU]' + vj)
J#i J#
+Ri(ui +vi + Yy +v5)
J#
PY (w; + ij) — SW(w; + ij) — M (w; + ij)
J#i JF J#

The second line follows since R cannot penalize player i more than D®. The third line follows
since blowing u; private whistles and v; whistles from joint accounts is a Nash equilibrium in the
non-automated joint accounts model — the left hand side is the utility from blowing w) private
whistles while the right hand side is the equilibrium utility. The final equality follows from the
definition of MR,

To conclude the proof, we need to argue that (w, . .., w,)? satisfies Equation (4) for all players i
(i.e, each player earns a net positive utility across the two rounds) and is therefore, a SPPNE. How-
ever, it immediately follows since the players receive a utility identical to ((u1,v1), ..., (tun, vn))%,
which satisfies Equation (4). Thus, (ws,...,wy,)? is indeed a SPPNE and hence, M® breaks
MW O

Retaliation with jointly controlled wallets and automated whistleblowing. The reduc-
tion in Theorem D.1 crucially uses the fact that players can deviate from the coalition’s strategy to
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not blow whistles on behalf of the joint accounts, but rather blow whistles from accounts that are
their own. To circumvent such deviations by the players, the coalition can look to automate whistle-
blowing from joint accounts (call this the automated joint accounts model). In the automated joint
accounts model, players are still free to blow whistles from their private accounts. However, they
will not be able to stop whistles from getting submitted on behalf of the accounts jointly controlled
by the coalition (if the coalition decides to submit one).

Formally, automated whistleblowing modifies the retaliation game as follows. The first round
is identical to the two models discussed thus far — players either collude to receive a utility V'
each or remain honest. In the second round however, the coalition submits v whistles from jointly
controlled accounts for some v determined before the start of the first round (thus, the players
cannot tamper with these v whistles). Player i’s action in the second round, as in the private
accounts model, consists of blowing w; € NU {0} whistles from its privately owned accounts. For
a retaliation mechanism R, player i receives a utility wiPW(Zj wj +v) — SW(Zj wj + v) from
the whistleblowing mechanism and RZ(ZJ w; + v) from the retaliation mechanism. The model is
otherwise identical to the non-automated joint accounts model.

We will denote the second-stage actions taken by the players and the coalition in the retaliation
game R by ((wi,...,wy),v). Similar to the private accounts model, the strategy profile (collude,
..., collude), (w1, ..., wy,),v) will then be denoted by ((w1,...,wy),v)%.

We argue that it is strictly harder to prevent players from colluding in the automated joint
accounts model than in the private accounts model (and therefore, the non-automated joint accounts
model). In particular, we will sketch a retaliation mechanism that does not collect any deposit
from the players, but still breaks the 1-whistle skeleton mechanism which was sufficient to prevent
collusion in the private accounts model.

Proposition D.2. There exists a retaliation mechanism R that collects no deposits such that R
and ((0,...,0),1)% breaks the 1-whistle skeleton mechanism.

Proof. Recall that the 1-whistle skeleton disburses a reward V +¢ in the case of a sole whistleblower,
but never rewards whistleblowers otherwise. It penalizes all players V + even if a single whistle
is blown.

Consider the retaliation mechanism that sets up exactly 1 joint account and blows a whistle on
behalf of this account. Further, it distributes % to each of the n players if and only if no other
whistle is blown.

In the second round, observe that none of the players are incentivized to blow any whistles
— on top of the V + =5 slashed by the whistleblowing mechanism, the players receive %
from blowing no whistles, but a zero utility from blowing a non-zero number of whistles. Thus,
((0,...,0),1) is a second-stage equilibrium. We can quickly verify that each player receives a utility
% — s(ﬁ — %) > 0 across the two stages of R by playing ((0,...,0),1)%, which is better than
the utility from staying honest. Thus, ((0,...,0),1)? is a SPPNE and the retaliation mechanism
discussed above and ((0,...,0),1)% breaks the 1-whistle skeleton mechanism. O

€
n—1

However, the 1-whistle (n — 1) 7y-secure mechanism Mﬁ can be modified to collect a slightly
larger deposit to be secure against retaliation mechanisms with D® < (n — 1) v that use automated
whistles. Consider the following “aggressive” 1-whistle (n — 1) y-secure mechanism:
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S V4ny+e ifw=1,

1. PY(w) = .
0 otherwise
for some small € > 0, and,
0 if w=0,
2.sW(w)={n e
5V +9+ = otherwise.

Note that MW collects a deposit DV = 5V Ayt S

n—1"

Proposition D.3. The aggressive 1-whistle (n — 1) y-secure mechanism cannot be broken by any
retaliation mechanism that collects a deposit of at most (n—1)~ from each of its players, irrespective
of the number of players k that learn the whistleblowing proof.

Unlike the proof approach sketched in Section 6.3, we run a top-down dynamic program to
argue Proposition D.3. We start by arguing that no SPPNE consists of one or more whistles
getting blown. We then rule out a second-stage Nash equilibrium with no whistles.

Proof. Assume for contradiction that w? is a SPPNE in the retaliation game R induced by some
retaliation mechanism R, where @ is a pure Nash equilibrium consisting of one or more whistles
blown. We will argue that the coalition jointly receives a negative utility, and thus, some player
receives a negative utility from colluding in the first stage and will deviate to play honest.

If one or more whistles are blown in the second phase, each player is slashed 5V + v + =

n—1

for a total slash of n"—_QlV +ny + ;%5¢. The whistleblowers, on the other hand, are rewarded at

most "5V +nvy + ¢ in total. Thus, the net utility of the coalition across the two rounds can be
upper bounded by

2
nV+(LV+n7+6)—< n V+ny+ n z—:><0.
n—1 n—1 n—1

The first term (nV') is the collusion utility from the first round. Thus, the coalition achieves a
negative utility by colluding and blowing one or more whistles.

Finally, we will argue that blowing no whistles cannot be a second-stage equilibrium for any
retaliation mechanism R with D® < (n — 1)~y. If no whistles are blown, some player i strictly
profits by deviating and blowing a whistle.

1xPY(1) —sY(1) +Ri(1)
n n g
> (— e - ) = _
_(n_1V+n’y+€> (n_1V+’y+n_1) (n—1)v
> 0.

Thus, blowing no whistles cannot be a second-stage equilibrium.
Hence, no retaliation mechanism with a deposit (n — 1)+ can break the aggressive 1-whistle
(n — 1) v-secure mechanism in the joint accounts model with automated whistleblowing. O
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D.2 Anonymous vs Non-Anonymous Whistleblowing Models

We have assumed anonymous whistleblowing in all the models considered so far — i.e, the identities
of the whistleblowers remain unknown to both the whistleblowing mechanism and the retaliation
mechanism. In this section, we consider a relaxed non-anonymous model of whistleblowing where
the coalition learns exactly how many whistles were blown by each player. In other words, the
retaliation mechanism can depend on the number of whistles blown by each of the n players.

We will argue that non-anonymity will not help coalitions in designing better retaliation mech-
anisms — for a given whistleblowing mechanism M"Y, if there exists a retaliation mechanism and a
SPPNE that breaks M" in the non-anonymous model, then, there exists a retaliation mechanism
with the same deposit that breaks M" in the anonymous model.

Theorem D.4. Suppose MY is broken by a retaliation mechanism MR that learns the number
of whistles blown by each player and a SPPNE (w1, ..., w,)%. Then, there exists an anonymous
retaliation mechanism MR that collects the same retaliation deposit as M® such that M® and

(wi, ..., wy)? breaks MY,

Proof. At a high level, the retaliation mechanism expects the players to coordinate on the second-
stage equilibrium (w1, ..., wy,) and thus, expects >, w; whistles to be blown in total. If a different
number of whistles are submitted to M", then the retaliation mechanism does not have to inves-
tigate which player i deviated from blowing w; whistles — it can penalize everybody.

Construct M® as follows.

MR(w) _ {M]ZR(wl, o wy) ifw =) w,

DR otherwise.

It is not hard to see that MR does not need access to the exact number of whistles blown by each
of the n players. It only needs the aggregate number of whistles w blown to execute, which is
published by M™Y. Further, it also requires only the same retaliation deposit as MX.

We begin by arguing that (wi,...,w,) is a second-stage equilibrium (Equation (3)) in the
retaliation game induced by M? Observe that

w PV (w; + Z w;j) — S (w; + ij) — M®(w; + Z w;)

i i i

= w; PV (w; + ij) — SW(w; + ij) — MB(wy, ... w,)
J#i J#i

> WP (W) + > wy) — 87 (wi + > wy) — M*(w,w;)
J#i J#i

> w PV (w! + ij) — sW(w! + ij) — DR
i i

= wiP" (w] + ij) —sW(w! + ij) — MB(w] + ij).
i i i

Here (w;, w_;) is the vector obtained by replacing w; by w; in . The inequality in the third line
follows since @ is a second-stage equilibrium in R induced by M&. The fourth line follows since
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ME(.) < DR, The final equality follows from the construction of M®. Thus, (wy,...,wy) is a
second-stage equilibrium in the retaliation game induced by ME,

We can immediately conclude that @? is a SPPNE is the retaliation game induced by MR,
When each player ¢ blows w; whistles, their net utility across the two rounds is identical between
the two retaliation mechanisms M® and MR, Thus, if all players receive a positive utility under
MR (since @ is a SPPNE under M®), then, all players also receive a net positive utility under
ME. Thus, w? is a SPPNE.

We have therefore proved that MR and @2 breaks MW. O

D.3 Non-automatic Retaliation

Our core model considers “self-executing” retaliation mechanisms. That is, M® can observe the
public output of MY (e.g., the number of whistles blown) and directly trigger any retaliation
penalties. While Remark 6 shows how MR can easily be made self-executing, here we also show
that our results do not change even otherwise.

Specifically, we now consider a model where a player has to manually trigger the retaliation
mechanism. The intuition is that this weakens the collusion’s MR since even if a whistle is blown,
no player would want to trigger a “burn everything” retaliation mechanism since it would also cause
them to incur penalties.

We observe however that a different retaliation mechanism will achieve the collusion’s goal of
preventing players from whistleblowing. As long as some player receives a positive utility from the
retaliation mechanism irrespective of the number of whistles blown, then the two models — with
automatic and manually-triggered retaliation mechanisms — become equivalent. Such a player is
then incentivized to trigger the retaliation mechanism.

More specifically, when k < n, any retaliation mechanism M® can be modified to always yield
some player a positive utility. Suppose M]ZR(w) < 0 for all k£ players that have access to the
whistleblowing proof. Then, modify M® to redirect the retaliation penalties as rewards to the
n — k players that do not know the whistleblowing proof. The intuition is that this incentivizes
colluding players who cannot whistleblow themselves to retaliate if they see another party blowing
the whistle. A SPPNE in the retaliation game R induced by MR will remain an equilibrium even
for the modified protocol M®. The payoffs for the n—k players that don’t know the whistleblowing
proof only increases, and thus, they will want to continue colluding in the first stage of R (and
they don’t have any actions in the second). On the other hand, the payoffs for the k potential
whistleblowers remain identical under MR and //\/IVR, and they would not prefer to change their
actions. Thus, when k < n, the automatic and manually-triggered retaliation models are equivalent
and all our results carry over to the manual retaliation model mutatis mutandis.

When k = n, to incentivize colluders to relay information about whistles, instead of slashing
the retaliation deposits of all colluders, MR will function as follows: If only one player submits
a retaliation, M® will provide that player a reward (and slash others). But if more than one
retaliation is submitted, M® will slash all retaliation deposits. Observe that is similar in spirit
to how we designed our whistleblowing mechanism M'—except now, the colluders use the same
strategy for their retaliation contract.

Intuitively, this creates a classic “prisoner’s dilemma” situation. All colluding players will be
incentivized to submit a retaliation if they observe any whistleblowing on MW, But if they do
so, they will all be slashed. In turn, such a retaliation contract MR (with suitably large D®) will
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incentivize colluders to not whistleblow to MY, showing the impossibility of unconditional security.
We note that our standard 1-whistle (n — 1) y-secure mechanism M continues to deter collusion
up to a maximum retaliation deposit of (n —1)~.

E Deferred Game-Theoretic Proofs

E.1 Proof of Theorem 7.1

Consider any retaliation mechanism MR with a retaliation deposit DR < (n—1)~. We will calculate
the bottom-up dynamic program described in Section 6.3 to calculate all SPPNE of the induced
retaliation game R.

First, observe that any pure Nash equilibria in the second round consists of some player blowing
at least one whistle. Indeed, if nobody blows any whistles, player ¢ receives a zero second-round
utility. On the other hand, if i deviates and blows a whistle, it is rewarded nV + nvy + ¢, slashed
V+7+ 5 by MW and is penalized at most (n — 1)y by MR, which yields a utility at least
(n—1)V + (1 = -15) e > 0. Thus, blowing no whistles is not a second-stage equilibrium.

Next, we observe that if some whistle is blown, then, there exists some player who is better off
playing honest in the first round than colluding. If two or more whistles are blown, then, every
player is slashed at least V ++ and is not rewarded at all by M". Even with the collusion reward
V', all of them end up with a negative net utility. On the other hand, suppose that exactly one
whistle is blown. We show that the (n — 1) players that did not blow the whistle will end up with
a negative joint utility, and thus, at least one of them must receive a negative utility across the
two rounds. The (n — 1) players together receive a collusion reward equal to (n — 1)V in the first
stage and are slashed (n — 1) (V + v+ —£7) in the second by the whistleblowing mechanism. They
are awarded at most (n — 1)« by the retaliation mechanism, leaving them with a joint utility of at
most —e < 0, as required.

Thus, no retaliation mechanism with a deposit at most (n—1) -y can break the 1-whistle (n—1) ~-

secure mechanism.

E.2 Proof of Theorem 7.2

We will argue that the retaliation mechanism MR described below and some w? will break any
whistleblowing mechanism with deposit up to V' +~. MP® penalizes player 1 nothing if no whistles
are blown, and collects (n — 1)+ from player 1 and distributes 7 each to the remaining (n — 1)
players even if a single whistle is blown.

0 ifw=0,
(n—1)7 otherwise.

1. M (w) = {

0 ifw=0,

—~ otherwise,

2. MR(w) =
for i # 1.

We will analyze two separate cases — the largest utility max,, wP"(w) — SW(w) that player
1 can derive from the whistleblowing mechanism is (a) smaller than (n — 1)~ and (b) larger than

(n—1).
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In the former case, MR will disincentivize player 1 from blowing any whistles. The whistleblow-
ing reward it receives is smaller than the retaliation penalty. Formally, suppose that wS%W(w) —
SW(w) <0=0xPW(0)—SY(0) for all w € N. Then, blowing zero whistles is a second-stage Nash
equilibrium. Indeed, all of the n players will receive a net utility V across the two stages. Thus,
both Equation (3) and Equation (4) are satisfied for all 1 < i < n, and (0,...,0)? is a subgame
perfect Nash equilibrium.

In the latter case, player 1 will blow whistles to optimize its second-stage utility and share
(n—1) 7 of the whistleblowing rewards with the other (n—1) players. Suppose that w = arg max w
PV () —SY(w) and wP"W(w) —SW(w) > (n—1)~. Then, blowing w whistles is a second-stage pure
Nash equilibrium (Equation (3) is satisfied for player 1). To verify that Equation (4) is satisfied,
note that all players i # 1 are slashed SV (w) < V + ~ by the whistleblowing mechanism and are
allocated v by the retaliation mechanism. Thus, their net utility across both the rounds

UR((w,0...,0)%) =V — S"(w) + MF(w)
SV —(V+49)+7y
=0.

Player 1 on the other hand receives a utility wP"(w) — SW(w) > (n — 1)v from MW and is
charged (n — 1)~ by the retaliation mechanism. Thus, it receives a positive second-stage utility
and therefore a positive utility across the two stages.

Thus, MR® breaks any whistleblowing mechanism that collects a deposit at most V +~ for some
strategy profile 2.

E.3 Optimality of M’

Theorem E.1. Let MY be a whistleblowing mechanism with a second-stage pure Nash equilibrium
@ = (wi,...,wy) such that the joint utility 3, UF((w1,...,wn)?) = >, (V + wiPW(Zj wj) —

SW(Z]- wj)) of the n players across the two rounds is strictly positive. If M™ collects a whistle-

blowing deposit V + v, then there exists MR that collects a deposit (n — 1)~ such that M® and
(w1, ..., wy)? breaks MY,

Proof. At a high level, we will consider a retaliation mechanism MR that reallocates utility from
each player that receives a positive utility in the equilibrium @ = (w1, ..., w,) (call them receivers)
to the remaining players (call them defaulters) irrespective of the number of whistles blown. Since
the utilities of the players are shifted by the same constant irrespective of their second-round
actions, W remains an equilibrium. We have to ensure that the redistribution occurs so that each
player ends up with a positive net utility UZR(U_)Q) across the two stages.

Consider the retaliation mechanism that collects min{(n—1), wiPW(Zj wj) —SW(ZJ- w;)+V}
from each receiver ¢ and distributes maX{SW(Zj wj) — wi/PW(Zj w;) — V,0} to each defaulter 4/,
irrespective of the number of whistles blown.

It is fairly straightforward to argue that w? satisfies Equation (3) and Equation (4) for all
players i. Fach receiver is penalized at most an additional V' on top of their whistleblowing reward
w; PV (Y jwi) — sW(so ;wj), and thus combined with the collusion reward V' in the first round,
their net utility across the rounds is non-negative. Similarly, each defaulter is compensated at
least V' less than what they lose in the whistleblowing mechanism, and thus, they receive a net
non-negative utility combined with the collusion reward V. Hence, w? is a SPPNE in R.
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It is easy to verify that MR collects a deposit at most (n — 1) . Indeed, only the receivers are
charged a positive penalty by MR and are charged at most (n — 1)v. Thus, D® < (n —1)4.

It only remains to verify budget balance of MR, i.e, that the net penalty charged by MR is
non-negative. We consider two cases for the same — (a) all receivers are charged w; PV (> jwj) —
sW(yo jw;) +V and (b) some receiver is charged a penalty (n —1)v. In the first case, the total
penalty charged by MR from both receivers and defaulters is bounded below by

3 (wiPW(Z wy) = 873 wy) + v) > 0.

1

The inequality follows since the left hand side is the joint net utility of the coalition across the two
stages in the whistleblowing game W for the SPPNE %, which is larger than zero, as assumed in
the proposition statement. In the second case when some receiver i is penalized (n— 1) v, note that
no defaulter is rewarded more than v by MXE,

M (w) <SV(Y wi) —wy PV (Y wy) =V
j j
<8Y(Q w) -V
j
SV4+y)-V<a

The last line follows since the whistleblowing deposit DV < V 4 ~. It immediately follows that
the (n — 1)~ penalty collected from receiver i is sufficient to cover the compensations rolled out by
MPE to all the defaulters. Thus, MR satisfies budget balance as required.

To summarize, M® with D® < (n — 1)~ and w? breaks the whistleblowing mechanism M"Y
with DW <V ++. O

E.4 Deferred details for (¢,n)-collusion

Below, we state the lower bound result for whistleblowing in the (¢, n)-setting. The proof proceeds
analogously to the lower bound proofs in the (n,n) setting.

Proposition E.2. 1. For any whistleblowing mechanism MY in the (t,n)-collusion environ-
ment which collects a deposit DY, there exists a retaliation mechanism MR with a retaliation
deposit D® = (n — 1) x DY such that M® and some SPPNE w?* breaks M".

2. Further, if the number of players k that know the whistleblowing proof equals 1, then any
whistleblowing mechanism MW with a whistleblowing deposit DY =V + ~ can be broken by
some retaliation mechanism M® and a SPPNE w2, where D® = (t — 1) ~.

3. Finally, if there exists a second-stage Nash equilibrium in the whistleblowing game W induced
by MW with DY =V +~ such that the joint utility of the coalition of t players across the two
stages is positive, then, there exists a retaliation mechanism MR with deposit DR = (t — 1)~y
and some SPPNE that breaks M™Y.
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