AUCIL: An Inclusion List Design for Rational
Parties

Sarisht Wadhwa*, Julian Ma', Thomas ThieryT, Barnabé Monnot', Luca Zanolinif, Fan Zhangi and Kartik Nayak*
*Duke University
{sarisht.wadhwa@, kartik@cs.}duke.edu
TEthereum Research
{julian.ma, thomas.thiery, barnabe.monnot, luca.zanolini} @ethereum.org
tyale University
f.zhang @yale.edu

Abstract—The decentralized nature of blockchains is touted to
provide censorship resistance. However, in reality, the ability of
proposers to completely control the contents of a block makes
censorship resistance relatively fragile. Inclusion list mechanisms
have been informally discussed in blogs and forums as a means to
improve censorship resistance in blockchains. However, the only
formal previous design—FOCIL (Fork-choice enforced Inclusion
Lists)—lacks a rigorous incentive analysis of its committee-based
approach. This paper presents the first analysis of an inclusion
list design— AUCIL. Our inclusion list design leverages multiple
proposers to propose transactions and improve censorship resis-
tance. The design has two key components. The first component
is a utility-maximizing input list creation mechanism that allows
rational proposers to achieve a correlated equilibrium while pri-
oritizing high-value transactions. The second component, AUCIL
(auction-based inclusion list), is a mechanism for aggregating the
input lists from the proposers to output an inclusion list based
on the auctions. We prove that the resulting two-phase design
is resilient against censorship attacks and report on a prototype
implementation to verify the claims.

I. INTRODUCTION

Transaction censorship is the act of refusing to process
valid transactions. Centralized finance services are prone to
censorship because important intermediaries, such as banks
and exchanges, can heavily influence which transactions are
allowed. This power can be abused to suppress dissent, curb
protests, and harm freedom of speech [1], [2], [3], [4].

Blockchains are often touted as censorship-resistant, yet
block creators (e.g., proposers and builders in Ethereum)
can readily censor transactions because they control block
contents. Two factors typically drive censorship. First,
self-censorship because of regulation: for example, transaction
censorship on Ethereum surged after an OFAC sanction [5],
affecting all users regardless of jurisdiction. Second, financial
incentives: a malicious actor can bribe block creators to
exclude a target transaction by offering a bribe slightly more
than the transaction fee to be received by the block creator.
The rise of Decentralized Finance (DeFi) has created various
avenues where such bribed censorship is profitable [6], [7],
[8]. Moreover, sustaining censorship for an extended time is
feasible when the set of block creators is small, as in case of

Ethereum, where more than 90% of all blocks in the Ethereum
blockchain is built by only three dominant builders [9], [10].

Inclusion lists. To tackle this problem, the idea of Inclusion
Lists (ILs) has been proposed [11], [12], [13]. The high-
level idea is to introduce a new protocol to create so-called
inclusion list and modify the blockchain protocol so that a
block creator must include transactions in IL; otherwise, the
block is considered invalid. The key challenge, of course, is to
ensure that the protocol creating ILs has stronger censorship
resistance than the blockchain itself. Fox et al. [8] show
that using multiple parties for block creation can scale the
censorship resistance by the number of parties who include
that transaction. Building on this idea, proposals such as
COMIS [14] and FOCIL [15], [16] distribute the creation of
ILs to a set of parties, each outputting an inclusion list, and
the union of their lists forms the final inclusion list. When
properly designed, this can significantly increase the bribery
cost because the adversary must now bribe multiple parties.

Challenges to the design. We observe that these designs can
be problematic when composed with other validity constraints
of a blockchain protocol, in particular, the block size limit.
Most blockchains enforce a block size limit so that blocks can
be efficiently processed by the network. To be compatible with
block size limits, the above designs allow a block creator to
not have to include anything in the inclusion list if it creates a
full block. This allows for various ways to bypass the inclusion
list protocols. While full blocks are not common in Ethereum
(since its transaction fee mechanism targets half-empty blocks
in expectation [17]), other blockchains still suffer from such
a scenario being common instead.

To achieve stronger guarantees, we instead focus on un-
conditional inclusion lists [18], where all transactions in the
final inclusion list must be included. This requires that the
combined inclusion lists of all parties cannot exceed the block
size limit. Unconditional designs are attractive because once a
transaction is on the list, the only way to censor it is to forgo
the block reward entirely.

Two challenges arise in the design of unconditional in-
clusion lists. First, since parties creating individual inclusion

lists are rational and strategic, we need to ensure that the
equilibrium has ideal properties (e.g., robust to bribery). For
instance, in a design where parties independently select the
highest paying transactions, the outcome may not be an
equilibrium, so they can deviate to improve their own rewards,
leading to inefficient and potentially easy-to-censor outcomes.
Second, the aggregation process, where individual inclusion
lists are combined to form the final inclusion list, creates an
attack vector: e.g., in a design with a designated aggregator,
the aggregator may be bribed to censor transactions. Also, if
the designated aggregator crashes, the protocol loses liveness.

Introduction to the solution—AUCIL. We address these
challenges through two techniques. First, we use the solution
concept of correlated equilibrium [19] to govern the trans-
action selection process. Specifically, parties in our protocol,
called IL proposers, are given a suggested transaction selection
designed in a way that if all IL proposers follow the sugges-
tion, their utility is maximized, thus forming an equilibrium
where no party has an incentive to deviate unilaterally from
the suggestion. This mechanism ensures that parties prioritize
high-value transactions and avoid any strategic deviation that
might undermine censorship resistance.

Following the construction of individual inclusion lists, an
aggregator aggregates these lists, combining the IL proposers’
submissions into a final inclusion list. The aggregation process
is reinforced by an auction, in which IL proposers compete to
collect the maximum number of input lists to aggregate into a
bid. The value of this bid is proportional to the number of input
lists used in its construction. This bidding process ensures
that IL proposers are incentivized to aggregate inclusion lists.
For any adversary to exclude a broadcasted input list, it must
censor the bid of an IL proposer or bribe the IL proposers to
exclude the input from its bid an amount equal to the prize for
winning the auction; otherwise, any IL proposer might choose
to reject the bribe and win the auction instead, which it would
have likely lost if it accepted the bribe.

Summary of Results. The resulting two-phase design for
creating the inclusion list can be used as an add-on to any
existing blockchain network (like Ethereum) with minimal
changes to the consensus (requires only a change to add
verification of a proof to the validity condition of the blocks).
In summary, this paper:

1) provides the first formal definition for inclusion lists and
introduces formal properties required for inclusion lists.

2) proposes a new definition for censorship resistance based
on the amount of bribe required to censor each IL output.

3) proposes AUCIL, a novel inclusion list protocol combining
correlated equilibrium and auction-based aggregation.

4) presents a rigorous analysis and proves significant improve-
ment over the state-of-the-art (e.g., FOCIL [15]).

5) develop a simulation-based evaluation of the proposed
system to assess the security guarantees.

A. Paper Outline

Section II gives an overview of AUCIL and the properties
it achieves. Section III formalizes censorship resistance and
outlines the motivation for using an inclusion list to improve
censorship resistance for blockchain protocols. In Section IV,
we present the first phase of the design, where we propose
a greedy allocation of transactions to IL proposers to achieve
input lists that follow a correlated equilibrium. The second
phase is shown in Section V, where we use auctions to ensure
that maximum input lists get used while aggregating input lists
into inclusion lists. Analysis of adversarial censorship attack
is shown in Section VI. Section VII discusses various open
problems with the solution. Section VIII compares previous
related work, and discusses properties offered by various
previous related works.

II. DESIGN OVERVIEW

To reiterate from Section I, the two major problems when
constructing a censorship-resistant inclusion list design are the
games created due to the interplay of 1) block limits and
transaction selection, and 2) crash resistance and maximizing
the number of non-censored participants. Thus, any inclusion
list design must have the following two properties apart from
censorship resistance: 1) there exists an equilibrium in the
transaction selection strategy (formally introduced as Input
Selection Equilibrium), and 2) it tolerates crash faults (-
Crash Fault Tolerance). In designs involving multiple parties,
censorship can arise at three distinct stages: (i) transaction
selection by each party, (ii) aggregation of input lists into
a candidate inclusion list, and (iii) final selection of an
inclusion list by the block proposer. These motivate three
separate censorship resistance properties: /31 -Input Censorship
Resistance, [2-Aggregation Censorship Resistance, and Js-
Blockchain Censorship Resistance.

To satisfy our two required properties and maximize the
minimum of the three censorship resistance parameters, we
introduce AUCIL, an auction-based inclusion list protocol.
AUCIL employs a two-phase inclusion list design that max-
imizes utility for IL proposers while still ensuring strong
censorship resistance.

A. Phase I: Input Selection

The goal of this phase is to achieve a correlated equilib-
rium [20], in which IL proposer are incentivized to select trans-
actions according to the protocol’s recommendations. This
ensures that no IL proposer deviates from the recommendation
without reducing their utility.

The reason we choose to induce a correlated equilibrium is
as follows. If no predefined strategy were provided, a default
action for rational IL proposers is to choose transactions
probabilistically, which can be shown to be a mixed Nash equi-
librium. This makes bribing seemingly more costly, because
any transaction may be picked by any IL proposers, but it gives
rise to undesirable strategic actions as rational IL proposers
are incentivized to avoid choosing the same transactions as
others, which reduces their utility. For example, rational parties

Phase 1 Phase 2
Input List Aggregation
Selection
IL Proposers Input List
Mempool . l ﬁ/\
a7 ,
' *Inclusion List
L@ =N
—>a " Y} i= ,
: = q 1
® ® 8 — 5 9 .
' ' Candidate
' ' = * Inclusion Lists
\ . 2 O M I= + (Top §+1 vals)
A
Broadcast

@©
a
@

Transactions

Fig. 1: AUCIL outline: A two-phase inclusion list protocol.
(1 —Input CR is the cost for censorship before the end of Phase
1, Bo—Aggregation CR is the cost for censorship from the start
of Phase 2. 33—Blockchain CR is the cost of censorship during
enforcement of the inclusion list.

might prefer waiting for other parties to declare their selections
first, leading to latency games. Moreover, a coordination-based
attack is possible, where an adversary acts as a coordinator to
make suggestions that improve the utilities of IL proposers (by
helping avoid choosing the same transactions as others) while
censoring a target transaction.

These strategic actions can be avoided if the protocol
induced a correlated equilibrium approach where the protocol
plays the role of the coordinator and suggests a utility-
maximizing selection. To do so, we propose a two-step trans-
action selection algorithm, which first greedily chooses high-
utility transactions, and then allocates them to IL proposers
in a round-robin fashion. We will show in Section IV, that
the resulting allocation follows a correlated equilibrium. Note
that when the number of transactions exceeds the capacity
of the inclusion list, the lower-paying transactions will not
be selected and cannot be offered any censorship resistance,
fundamental in any design. Thus, AUCIL provides higher-
paying transactions with higher censorship resistance at the
input layer.

At the end of this phase, IL proposers broadcast their
inclusion lists, which serve as the input to the aggregation
phase. For this reason, we also call each IL proposer’s list an
input list. We now describe the next phase.

B. Phase II: Aggregation

In this phase, we introduce a novel auction-based ag-
gregation protocol to incentivize IL proposers to maximize
transaction inclusion.

We start with the following idea. All IL proposers produce
aggregations of input lists, and the number of input lists in
an aggregation is considered as its bid. The aggregation with
the highest bid is selected by the block producer (this is a
simplification; see below for details), and the IL proposer who
produces it is awarded a reward. Using auctions allows the
protocol to distinguish a crashed IL proposer from one whose

input list is censored by some aggregators, because censored
input lists will still be included by other rational aggregators.

To tolerate up to 0 crash faults (i.e., parties may not submit
a bid), we relax and allow the block producer to select any
bid that is larger than n — 6 — 1 other bids. By ensuring that
all of the top 6 + 1 bids include all the inputs they receive
from other parties, we maximize censorship resistance at the
aggregation layer in AUCIL.

However, the above design encourages IL proposers to with-
hold their input lists to get a bid higher than those who publicly
broadcast. To avoid this, the bidding process incorporates a
randomized bias factor generated using Verifiable Random
Functions (VRFs) [21]. Using randomness helps most bidders
identify that the probability with which they win the auction
(in the absence of censorship) is low, and thus broadcasting
their list to earn a fee from transactions yields a higher utility.
This ensures unpredictability in the auction outcome, making
it rational for most IL proposers to share their input lists.

Therefore, AUCIL ensures robustness through five key
properties. It is crash fault tolerant (Property 1), allowing
progress as long as at most 6 parties fail to participate.
The input selection phase achieves a correlated equilibrium
(Property 2), ensuring no proposer benefits from deviating
from their assigned transactions. At the input stage, censorship
is deterred (Property 3) since rational parties include high-fee
transactions to maximize utility. During aggregation, rational
bidders incorporate all known inputs to strengthen their bids,
preventing exclusion (Property 4). Finally, blockchain-level
censorship (Property 5) is constrained, as the block proposer
must choose from among the top n — 6 bids, all of which
include shared inputs—Ileaving full block omission as the only
censorship avenue.

III. PROBLEM STATEMENT

As illustrated in Figure 2, our setting involves two protocols.
The first protocol is a blockchain protocol, which realizes the
abstraction of a state machine replication system [22]. The
central building block of state machine replication is multi-
shot consensus, where a set of parties (a subset of which may
be faulty) agree on a dynamically growing sequence of log.
Such a protocol provides: (i) safety: non-faulty parties agree on
each log position, and (ii) liveness: every input that arrives at
all parties is eventually recorded in the log. Typically, the log
is referred to as a blockchain, and a log entry is referred to as
a block. Each block contains a set of transactions that external
clients submit to the parties. We refer to the transactions that
are not included in the log yet but received by the parties as
their mempool. In this paper, we assume a class of blockchain
protocols where there is a designated party that is responsible
for producing the block at a given position in the log; we refer
to these parties as proposers (or leaders).!

The second protocol is an inclusion list protocol, which
operates simultaneously with the blockchain protocol. This

'We make this assumption for concreteness. At a high level, our result is
more generally applicable.

Candidate
inclusion lists

Block
proposers

[] Blockchain
-
. . []
Inclusion .
: “* |Blockchain
List
Protocol protocol o
PE
Regular Inclusion
: transactions list

Fig. 2: The setting of an inclusion list with a blockchain
protocol. The inclusion list protocol outputs a set of inclusion
lists for each log position, and a block proposed in the
blockchain protocol must include one of these lists.

protocol is run among a set of parties (that may or may not
be the same as the ones running the blockchain protocol)
that receive transactions in their mempool, and the protocol
outputs a set of lists (of transactions). An inclusion list
protocol instance is synchronized with the blockchain protocol
execution (e.g., running the protocol instance for each position
of the log). The key requirement enforced on a blockchain
protocol augmented with an inclusion list is that, if an instance
for a position j outputs a set S of lists, then the proposer
of position j must include some s € S (s would be the
inclusion list, enforcement of transactions within s is based
on the inclusion list protocol design).

Motivation for using an inclusion list. The key motivation for
maintaining an inclusion list is censorship resistance. Observe
that if all of the parties in the blockchain are honest, then
the mempool effectively is an inclusion list. This is because
the next proposer will include the set of pending transactions
(modulo block size constraints). However, if the proposers are
Byzantine or rational, they may not be incentivized to include
all of the pending transactions.

The inclusion list is thus used as an enforcement mechanism
to ensure that proposers include a specific set of transactions;
looking ahead, the goal would be ensure that the inclusion list
protocol provides the desired censorship resistance property.

Definition 1 (Inclusion List). An inclusion list, denoted as
IncL?, for a log position j is a set of lists of transaction
identifiers such that a proposer of log position j must prioritize
including transactions of one of the lists in a block within the
blockchain protocol.

In practice, the transaction identifiers could be the transac-
tion hash or a header containing some data that identifies the
transaction, like transaction nonce and a sender’s address. To
simplify, we will assume that the output would contain the
entire transaction. We state that transactions in one of the lists
are prioritized since the transactions can be dropped if the
block is full. A related definition is that of an unconditional
inclusion list, which requires the list to be smaller than the
block size.

Definition 2 (Unconditional Inclusion List). An unconditional
inclusion list IncL? for a log position j is a set of lists of

transaction identifiers such that a proposer of log position j
must include the entirety of one of the lists in the block, i.e.,
Ji @ IncL € IncL? such that all tx € IncL] are also in the
produced block.

Here each Inch is termed as a candidate inclusion list. This
paper mainly deals with creating an unconditional inclusion
list, and any references to an IL refer to an unconditional
inclusion list.

Model. All parties in the paper are assumed to be rational,
i.e., they try to maximize their utility. The parties’ utility is
defined as the amount of stake they earn via protocol rewards
and external bribes, subtracting protocol-level penalties like
slashing. To account for external bribes, we consider an
external adversary as a non-participating protocol member
with undefined utility from censoring a transaction in the
system. The adversary aims to censor a particular transaction
(zx; which we will refer to as a target transaction) while
minimizing the cost incurred. This cost is incurred when the
adversary bribes a rational party into an action that otherwise
reduces the said party’s utility. In practice, the adversary may
control some consensus parties, but to simplify the context,
we can assume the controlled nodes to be rational and bribed.
Throughout the paper, we assume that all parties are in sync,
i.e., all parties have the same mempool, and the network is
also synchronous.

Desired properties. Before discussing the desired properties
of an inclusion list protocol, we introduce some recurring
terms in the paper. Each party chosen to add transactions to a
candidate inclusion list (in the set of output lists) is referred to
as an IL Proposer. We refer to the input that each IL proposer
selects as an input list. We label the input list as InpL? for log
position j and IL proposer P;. These terms are illustrated in
Figure 1. Looking ahead, these lists will be aggregated with
other input lists from other IL proposers to create candidate
inclusion lists.

Previous works [14], [15] use the term Local Inclusion List
to refer to the inputs of IL proposers. We deviate from this
terminology since input lists for our protocol do not resemble
the output inclusion lists in many cases. Contrary to previous
work, since this paper deals with unconditional inclusion lists,
we restrict the size of each input list as &, such that n - k <
block size.

Next, we introduce the properties that an inclusion list
protocol must satisfy to improve the censorship resistance of
a blockchain. Our protocol achieves all these properties.

Crash fault tolerance: State Machine Replication systems
require some degree of crash fault tolerance. Since an inclusion
list protocol is an addendum to an SMR protocol, it should
tolerate crash faults without degrading the liveness guarantees
of the combined system. We assume that all parties assume
other parties to be online for analyzing the game. This is jus-
tified by the analysis that on the Ethereum chain consistently
more than 99% live validators [23].

Property 1 (-Crash Fault Tolerance). Let j denote the log
position, and let QQ; C N be the set of IL proposers that crash
during log position j (at any point of the protocol). We say
the protocol satisfies 8-Crash Fault Tolerance if, for any log
position j such that |Q;| < 0, the protocol is still live, i.e.,
the protocol produces at least one candidate inclusion list for
log position j.

In other words, the protocol continues to process transactions
as long as the number of crashed proposers per log position
does not exceed the threshold 6.

Input selection: The next property to consider would be to
determine which transactions IL proposers would choose to
add to their input list. Since we are dealing with rational
IL proposers, an equilibrium condition must be establihed.
To achieve this, we assume that each party has received the
same set of transactions from the network similar to [24].
This assumption, however, does not exclude any party from
including a transaction outside this set of transactions.

Property 2 (Input Selection Equilibrium). Let M be the set
of transactions visible to all parties at log position j, and
let N be the set of input list proposers. Each proposer P; €
N selects an input list _Ianf C M of size k, following a
strategy U,. Let U;(InpL!, InpL’) denote the utility obtained
by proposer i when submitting Iang while all others submit
InpL’ , = {InpL} } 4.

The protocol satisfies Input Selection Equilibrium if the
strategy profile {U;}_, forms an equilibrium. That is, for
all P; € N, and for all alternative input lists Iang/ C M of
size k, we have:

]Elanj;iN\I,ii Ui(lang,Ianj_i)}

> max E Ui(lang,,Ian];i) .

T ImpL’'CM InPLJ—iN\II*"‘ |:
Censorship resistance during input selection: This property
deals with the cost of censorship during the input selection
phase. This value is not just governed by the protocol being
built, but also by the transaction fee. For example, if a
transaction pays no fee, and the amount that an adversary
would need to censor it would only be € — 0%, regardless of
the protocol being built. Similarly, if only 10 transactions can
be accommodated by the protocol (due to block size limits),
then the lowest-paying transaction amongst 11 different trans-
actions will not have any censorship resistance, irrespective
of the chosen protocol. Thus, when discussing censorship
resistance, it is crucial to consider only transactions that are
included at equilibrium.

Property 3 (83;-Input Censorship Resistance). Let j denote
the log position, InpL! be the input of IL proposer P;. In the
absence of an adversary, suppose all IL proposers follow an
equilibrium strategy, i.e.,

VP € N, InpL] ~ ;.

Then, if a transaction (tx;) that pays a fee (f.) appears
in the input of an IL proposer at this equilibrium, then the
transaction appears in the input of the IL proposer even in
the presence of an adversary, that is

VP, € N, 1x, €InpL, = 1x, € InpL..

unless the adversary incurs a cost of at least 31(f.) to prevent
its inclusion in any of the inputs to the inclusion list.

Censorship resistance in aggregation: The next property we
aim to ensure is that each candidate inclusion list must include
every transaction that is declared by any party in their input
to the inclusion list construction process. In some cases, more
than one party would include this transaction; thus, the cost
of censorship would depend on this number.

Property 4 (52-Aggregation Censorship Resistance). Let j
denote the log position and let IncL’ be the set of candidate
inclusion lists. Let N be the set of all IL proposers, and for
each P; € N, let InpL! denote their input to the inclusion list
construction process. Define n; as the number of IL proposers
whose inputs include transaction tx, i.e.,

ng = ‘{PieN‘teran{}‘.

If ny > 1, then the tx must appear in all candidate inclusion
lists, i.e.,

VInCLg €ncl’, txe IncLz .

unless the adversary incurs a cost of at least B2(ny) to prevent
its inclusion in any of the candidate inclusion lists.

Censorship resistance in enforcement Lastly, this property
analyzes the cost to censor a transaction while enforcing the
inclusion list design. If a target transaction tx; is included in
all the candidate inclusion lists for the log position, it should
be included in the block proposed for that same log position.
If not, then the adversary must bribe the block proposer at
least B3 to remove the transaction fx..

Property 5 ((3-Blockchain Censorship Resistance). Let j
denote the log position and let IncL’ be the set of candidate
inclusion lists. Suppose a transaction tx satisfies:

VInch €lncl’, txe Inch .

Then tx must appear in the block for log position j, unless the
adversary incurs a cost of at least B3 to prevent its inclusion.

Note that throughout the paper, probabilistic attacks are not
considered, i.e, if an adversary wants to censor a transaction,
then the transaction should not be accepted on-chain with any
probability. A probabilistic equivalent of all these properties
could be considered, but is left for future work.

Theorem 1. All unconditional inclusion list designs have a
Bs-Blockchain Censorship Resistance of R (i.e., the reward
received for block production).

The proof follows from the fact that once a transaction is
included in the inclusion list, the only way to censor is to

drop the block, foregoing the reward that the block producer
receives. In Ethereum, the set of attesters can choose not to
vote for a block that includes the target transaction without any
consequences. However, any such manipulations by attesters
are hard to find and model, and therefore considered out of
the scope of this paper.

Censorship resistance. Informally, we define the censorship
resistance of an inclusion list protocol for a set of transactions
to be a list of bribe amounts (one for each transaction in the
input) that an adversary must spend to remove them from
sufficiently many parties’ output, as formalized below.

Definition 3 ((B, 0, T)-Censorship Resistance). Given an ad-
versary with an arbitrary bribing budget b, a protocol running
with a mempool M is said to be (B, 0,T)-censorship resistant
with a tolerance for bribes represented by B, for a set of target
transactions T'(M) if there exists a set of at least n—0 parties
such that for all i : t; € T(M),b; € B if b < b; all parties in
this set include the transaction t; in their output.

That is, given transactions in mempool M, a (B,0,T)-
Censorship Resistance protocol provides the following guar-
antee: for any transaction ¢; € T(M), the same set of
at least n — @ parties must include each transaction t; in
their respective outputs unless the bribe budget exceeds the
tolerance corresponding to the transaction b;. Note that 6 is
a knob to adjust crash tolerance (# = 0 means no crash fault
tolerance). T'(M) is a subset of transactions in the mempool
M for which the protocol can provide censorship resistance.

A transaction is said to be (B, 6, T)-Censorship Resistance
if at equilibrium based on strategy W (Property 2 value is
W,) the transactions included in the inclusion list is 7'. For
all transactions tx; € T which pays f;, b; is the minimum of
(81, B2, B3(fi)) (Properties 3 to 5) while tolerating crash faults
up to 6 nodes (Property 1).

Example 1. Consider the following examples for using the
above definition to describe censorship resistance guarantees.

Suppose there exist six transactions M =
{my, ma, m3, my, ms, Mg} paying a fee of {10,9,8,3,2,1
respectively. Suppose we don’t tolerate crash faults
(6 = 0) that can output at most, say, 4 transactions set
by an exogenous block size limit. Our protocol (to be
presented later) can guarantee censorship resistance with
B ={20,9,8} and T(M) = {m1, ma, ms}. There may exist
an alternative protocol that guarantees censorship resistance
with B = {10,9,8,3} and T(M) = {mi,mo, m3,my}.
Note that in this case, the censorship resistance of the two
protocols is not necessarily comparable.

IV. INPUT LIST BUILDING PROTOCOL
This section presents a protocol for how an IL proposer
should build an input list.
A. A Naive Approach

Consider that the only action an IL proposer can take to
increase its contribution score for a transaction is to include

it in the input list. Thus, given the required properties of
the contribution score, the only satisfying contribution score
mechanism would be if the fee is divided equally amongst all
parties that include the transaction in their input list, and the
input list is included in the set of final inclusion lists. Let
us consider IL proposers naively choosing the transactions
that pay the highest fee independent of what other IL pro-
posers might choose. This naive scheme of greedily picking
transactions without considering other parties’ actions is not a
Nash equilibrium. Given all other IL proposers’ input lists that
consist of greedily selected transactions, the rational choice for
an IL proposer may not be to construct its own input greedily.
The example in Table I confirms the stipulation.

Strategy ‘ Objects Picked ‘ Utility
Pick Top Paying mi,msa 7
Alternate ms,maq 15

TABLE I: Picking top-paying objects is not a Nash equilib-
rium. Consider three parties (n = 3), selecting two transactions
(k = 2) each from {mj,ma, mg, mg, ms, mg} with utilities
{11,10,9, 6,4, 3} respectively. Other parties are assumed to
follow the strategy of picking the top-paying transaction.

A natural equilibrium would be to consider mixed strategies
where neither party knows the prior of the other. In this,
each party would choose transactions such that a mixed Nash
Equilibrium (MNE) is achieved. In this case, an MNE would
be to choose each transaction with a probability f;/ > (f;) for
a transaction x; paying a fee f; (More details in Appendix A)
such that selecting transactions from outside the probability
distribution would result in lower expected revenue. However,
we cannot rely on a mixed Nash equilibrium as is (without
the use of commit and reveal primitives).

Primarily, two flaws exist in using a Mixed Nash Equilib-
rium strategy. The first is that the game is not coordinated.
This leads to a scenario where an adversary can coordinate
the game while censoring. Consider the following adversarial
strategy: Contact all parties and tell each IL proposer that
an external coordination has been reached, and choosing the
suggested list would yield a revenue greater than what the IL
proposer expects at Mixed Nash Equilibrium. To ensure that
the IL proposer believes it, the adversary offers a conditional
bribe in which if the IL proposer follows its list and receives a
revenue lower than expected, then it would make it whole by
paying the loss in revenue. This strategy is rational for each
individual IL proposer not only to accept, but also initiate even
in absence of an adversary.

A second flaw is that the IL proposers may engage in a
timing game. Each IL proposer can wait for others to broadcast
their input lists before creating their own. This creates a
complex game where actions are influenced by the time taken
to broadcast the input list.

B. Input List Building Protocol

As alluded to in the overview Section II, we use the notion
of correlated equilibrium where parties are suggested to take

a particular action. A third party usually does this, but in our
context, it will be a publicly known algorithm simulated by
each party that would suggest appropriate action to the party.
This action corresponds to the maximum utility that can be
received by such a party, given that all the other parties follow
the suggested action.

The idea behind using a correlated equilibrium is simple.
If you know what the other parties will do, there is no point
in waiting for them to produce and declare their input. Let
us define this game more formally. Consider a setting with m
objects (transactions) and n parties (IL proposers). Each party
can select a maximum of % distinct objects. Each object m; is
associated with a utility value w,,,, which is uniform across all
parties. When multiple parties select an object, the utility uyy,,
is shared (split) equally among the selecting parties. Further,
after allocation, with probability 1 — ~, the allocation for each
party is dropped (and given an empty set instead). The reason
for this probabilistic dropping will be clear in the next section
- since not all parties would want to broadcast their lists. The
objective for each party is to maximize its expected utility. We
assume that all IL proposers value transactions solely based
on the fees they offer, i.e., u,,, = fi.

Define n; as the number of parties selecting object m; and
N, as the set of parties that have chosen m; at the end of the
phase. The expected number of parties that select the object m;
(and don’t drop later) is yn;. Let L; denote the set of objects
allocated to party P;, and let L = {Li,...,L,} represent
an allocation satisfying the problem’s constraints. We define
U;(L;, L) as the utility derived by party P; from selecting
objects in L; given all other parties accept the allocation in
L.?

o (1)

Ui L)= > oo

m; ELj

Notice the denominator. For an external party viewing the
problem, the expected number of parties that select the object
is yn;. However, for the party choosing it, the expected
number of parties, apart from itself, would be ~(n; — 1).
When considering the utility it will receive from the object, it
will always include itself in the number of parties receiving
the object, and thus, the utility it receives would be the fee
distributed amongst y(n; — 1)+ 1 parties. For ease of notation,
let 72; represent the denominator (n; = 1 + y(n; — 1)).

We aim to find a strategy for the allocation of the objects,
such that the party selects all the objects in the allocation as
its action. The actions of all parties correspond to a correlated
equilibrium (i.e. no other choice of selection of objects by the
party could result in a higher utility, given all other players
follow the action suggested by the allocation). This subsection
aims to design an algorithm that is publicly known to all
parties such that simulating the algorithm leads to an allocation
that all parties would choose to accept as their selection. All
parties observe their own set of objects and the sets of all

2The true utility is given by ZTMEL,‘ Zf;gl (("ir_l))yr(l -

)il :Ii . The used function is a good estimate given vy ~ 1

other parties’ sets of objects as recommended by the algorithm.
Given this information, the party should have no incentive to
deviate from the recommended objects.

Let us represent the constraints mathematically. The number
of times each object can be selected is limited by the total
number of parties.

Vm; € M :n; <n)
, and each party can be allocated at most k objects
VL; e L: ‘Ll| <k 3

The last constraint we want to represent is for achieving
correlated equilibrium. Suppose L is suggested to all parties.
Correlated equilibrium states that choosing any other set of
objects would lead to a utility less than or equal to the
utility from the set that the algorithm recommends. Formally,
let MI=Fl represent a subset of M = {my,...,m,,} with
cardinality less than or equal to k, we require

VLy = MISM L e L :Uy(L;, L) > Uy(Lyr, L) (4)

Let T(M) represent all the objects the protocol assigns
to at least one party 7' (M) = |J L;. Consider the following
constraint:

VYmg € T(M),mp € M :
Ji:(Li€ L, mg € Liymy & L;) = 20e > UYmo
Nq nb+’Y
5

In words, if there exists an object allocated to some party
P and another object not allocated to P, then for P, swapping
the objects cannot lead to a better utility. This is because
swapping would increase the expected number of times the
object appears by ~ from the perspective of the party.

Lemma 1. (Small Mempool) If the mempool contains fewer
than k transactions, i.e., |M| < k, then any utility maximizing
algorithm should assign every transaction to every proposer:
Li=M forall i € {1,...,n}.

Consider to the contrary, |L;| < |M]. In such a case, there
exists an object m; not in the allocation L;. Since L; is a
subset of M, |L;| < k, and thus the object L; can be added
to the allocation.

Lemma 2. (Correlated Equilibrium Reduction) If |M| > k,
then any algorithm that satisfies constraint (5) also satisfies
the constraint (4).

Proof. Since |M| > k, |L;| = k. This is because if |L;| < k,
then there exists an object in M, not in L;, which can be
added to increase the utility gained by the selection. Now
let’s assume, to the contrary, that constraint (5) holds but
constraint (4) does not. The negation of constraint (4) states

dL; € L,3dL; = M[Sk] : U7(Lz) < Uz(LZ/)

Let L;; # L; represent the allocation with the highest utility
(strictly greater than allocation L;). If multiple such allocations

exist with the highest utility, consider L. as the set that differs
in the least number of objects from L;. There exists an object
mg such that m, € L; but m, ¢ L;. (If no such object
exists, then L;; O L;. However since |L;/| < k = |L;|, this is
possible only if L; = L;/)

Consider |L;/| < k. Adding m, would only add to the
party’s utility; however, L;, was considered as the maximal
such allocation, and thus such an L;s can only exist if |L;/| =
k. Since both L;» and L; are of size k and there exists m, € L;
but m, ¢ L;, there must exist mp € L; but my ¢ Lj;.

Given all other selections L; # L; remain the same as
governed by the allocation, the number of times the object
my, is chosen increases by 1 in L;; compared to L;. From(1),

Ul(LZ) = Ui(Li \ma) + u:,ia

Ng
U
Ui Li/ = Ul Li/ my) + th
(L) = UilLo \ o) +

From constraint(5), in this case (where 3i : (L; € L,m, €
Li7 mp ¢ L’L))’

Uma _Umy

Na — Np+7

Consider the set L;» = (Ly \ {mp}) U{mqa}. |Liv| = | Ly
and thus satisfies M (=¥ property. The utility of this set is

)

Ui(Liu) = Ui(Li’ \mb) + uT'rL/\ria
a Uy

U,
= Ui(Li/) + = — =

Mg ny + 7y
> Ui(Ly)

This is a contradiction since L; was considered as the set with
the highest utility that differed in the least elements compared
to L;; however, we show the existence of another set with one
less element differing from L;, which has a utility greater than
or equal to L. O

The above set of constraints forms the basis of our problem.
Any solution that satisfies the above constraints can be used
as a third party that informs IL proposers of the input to pick.

C. A Greedy Algorithm

If we use the above constraints as invariants in a greedy,
step-by-step selection and then allocate selected objects in a
round-robin allocation, the final allocation would satisfy the
required constraints by default.

Algorithm 1 presents a greedy algorithm that chooses and
assigns the objects to parties while satisfying the invariants
defined in Eq (2), (3) and (5). To do so, we choose objects
one at a time, picking the object with the highest local utility
U © N, where © denotes element-wise division of the utility
by the number of times the object would have been picked
if selected now (in expectation). By picking the object, we
increase the number of times it is selected by the probability
that this selection of the object is broadcast. This updates N
such that U @ N represents the utility when the object is next
selected. Next, if the object has been selected n times (making

Algorithm 1 A 2-Step algorithm for transaction inclusion

Require: n >0, m>0,k>0,7v>0
> number of parties, transactions, input
list size, probability of broadcast
Ensure: L; arrays for all : € NV
> final inclusion arrays for each party

Step 1: Choose Objects

1 U+ [uml, .. ,umm] > Utility values for each transaction

20 Ne+[1,...,1] > Count array (corresponding to 7;),
initialized to 1 for each transaction

35+ {}

4: for __cltonx*xk do
S: Uewr < U © N, > Compute current utility by element-
wise division of utility by the number
of times the object has been selected

6: S < argmaX(UC,m) > Find the index of the maximum value

in Ucyrr
S+ Su{s}
if U[s] = —1 then break

> if the maximum utility for objects is
—1, then all objects have been se-
lected n times (Line 10 sets —1 for
objects selected n times)

9: N, [S] — NC[S] + 7 > Increment the expected number for the
next time this object is selected

10: if N.[s]+~v>nvy+1then Uls] + —1

> Set utility of object to —1 if it has
been allocated n times
Step 2: Allocate Objects

11: U 4= [tmyy ey Um,,

122 N« [1,...,n]

13: Vi€ N: L+ {}

> Reset utilities

> Array of party identifiers

> Inclusion sets for each party, initial-
ized to empty

14: Uf — Uy (NC e [’ﬂm) D> @ is element-wise safe division (re-

turns O if dividing by 0). This com-

putes utility for each selected object,

adjusting for the extra «y added for the

preparation of the next selection

15: A < sort(S,key = (—Uy[s] for s € S, s))

> Get indices of objects in
descending order of utilities
(U A[O], UF[AIL]),...] is in

descending order)
16: for j €1 to |A| do
17: L(] mod n)+1 — L(g mod n)+1 U {A[]]}
> Assign objects in round-robin fashion

18: return Vi € N : L; > Return the inclusion sets for all parties

Description: This algorithm iteratively selects objects with the highest
available utility. After all objects have been selected, they are assigned
to parties in a round-robin format, with the highest utility object being
assigned first. A follow-along example is shown in Appendix C.

NJi] = ny+ 1), the utility is set as negative. This ensures the
object is not picked again.

For each object, such that N[i] # 1, i.e., the number of times
it has been selected is at least one, the invariant in Eq (5) is
maintained. The constraint Eq (2) is satisfied by setting the
object’s utility to —1 after the object is selected n times and
ensuring it is never picked again.

Having chosen a list of objects and decided the number of
times they will be chosen, the second step is to assign/allocate
them to parties. Any allocation that assigns objects uniquely to
all parties and ensures that all parties receive the same number
of objects (at most k objects are assigned per Eq (3)) would
satisfy the correlated equilibrium since all the constraints are
satisfied. However, to allocate fairly, we use a round-robin
allocation, assigning the highest-valued object one at a time to
each party. The fairness guarantees are shown in Appendix D.

In the following theorem, we show that the above algorithm
gives a correlated equilibrium.

Theorem 2. (Correlated Equilibrium) Given the assignment
of input lists L = {Lq,...,L,} according to algorithm I,
then following the strategy ¥ = {Uq,..., U, }, where ¥; =
select L;, is a correlated equilibrium, i.e., for all parties P; €
N, P; cannot obtain a better utility from selecting any other
list than L; given every other party P; follows W; = select
L;.

To understand the proof of the above theorem, consider the
following. Let some object m; be picked for the last time
(i.e. the utility after this pick does not decrease for m;). For
this object, the utility to whichever party it is given to is
greater than all other candidate objects. Further, the utility
of other objects could decrease, but the utility for this object
does not decrease (since we are considering the last instance
of selection for the object). Thus, if after the assignment is
complete, any party tries to switch away from object m; to
any other object m;, the utility would be lower. This would
then satisfy constraint (5). By Lemma 2 , this would also imply
(4), proving that correlated equilibrium is established.

Proof. To prove the theorem statement, we first prove that
Eq(5) holds for Algorithm 1. Let U(m;,r) represent the
utility from object m; in round r of the selection. Let O(r)
represent the object chosen by the algorithm in round r. Let
R(m;) represent the last round in which m; was chosen (For
objects never chosen, this value is not defined). Let N.(m,)
represent the expected number of times object m; has been
selected by round r (considering that with probability 1 —
the object might be dropped)[This value is v less than the
corresponding N, value in the algorithm]. At the end of
round r = n -k, T(M) = S and utility from each O(r)
is U(O(r), R(O(r))), i.e., the utility value it had on its last
selection. Note that

r < ro — U(mi,rl) > U(mi,Tg) (6)

That is, the utility of an object can only decrease or remain
the same as the rounds progress.

Also, note that
U(mg,r) > U(mg,ra) 7
Rewriting Eq (5) in these new terms, we have
Vr,m; € M :35:(Lj € L, O(r) € Lj,m; ¢ Lj)

= U(O(r), R(O(r))) > Nc(mi,:-ik)ﬂw

We claim that no matter what the allocation rule is, after
the choice of the selection algorithm (Step 2), the resulting
allocation always satisfies this equation, as long as an object
is not allocated to the same party twice. In other words, we
will prove the following stronger statement

Vre{l,...,n -k}, m;e M:

Jj:m; ¢ Lj = U(O(r),R(O(r))) = No(mi,n-k)+~

U,

i

We prove this by contradiction. Let’s assume, to the contrary,
that for some m; and some O(r) # m;, such that 35 : m,; ¢
L

J»
U,

- ()

U(O(r), R(O(r))) < No(mi,n-k) +~

Since m; ¢ L; for at least some party, and we are assuming
that the same object is not allocated to the same party twice,
the number of times m; has been chosen must be less than n
implying that N.(m;,n - k) < ny + 1 — ~. This means that
line 10 never triggers for m;.

Case 1: For all m; # O(n - k), the R.H.S. of (8) corresponds
to the utility of object m; in round n - k, i.e., U(m;,n - k).
Thus, we are given,

U(O(r), R(O(r)) < U(m;,n - k)

For simplicity, let » = R(O(r)), i.e., r is the last round in
which the object O(r) is selected. Thus,

U(O(r),r) <U(mj,n-k)
By line 6,
VYm; : U(O(r),r) > U(my,r)
Thus,
U(m;,r) <UO(r),r) < U(mi,n- k)

which is a contradiction to (6) since for some r < n -k — 1,
U(mi,mi=7r) <U(mi,re =n-k)

Case 2: m; = O(n - k). Consider round ' such that for all
rounds {r' +1,...,n -k}, object m; is chosen. In this case,
the R.H.S. of the equation (8) is < U(m;,r’ + 1) since the
utility only reduces with further inclusions of m;. Following
steps similar to Case 1 and considering a round r which is the
last round for O(r) to be selected,

UO(r),r) < U(mg,r" +1)

By line 6,
Vm,; : U(O(r),r) > U(my,7)
Thus,
U(mi,r) <UO(r),r) < U(mg,r" +1)

which is a contradiction to (6) since for some r < 7/,
Ulmg,ri=7r) <U(mg,re =1"+1).

This proves that Algorithm 1 follows the constraint of Eq
(5), and since by Lemma 2, Eq (5) implies (4), a correlated
equilibrium is established.

O

Now that we have established an equilibrium for the input
selection, we move towards computing an aggregate for the
lists. Since all IL proposers should follow ¥, = Select L;,
we say that each party chooses its input list InpL, ~ ¥; and
InpL, = L;.

V. AGGREGATION PROTOCOL

In Section IV, we presented a protocol for IL proposers to
build their input list and achieve a correlated equilibrium. The
next step in the design is to aggregate these input lists into
inclusion lists, which would be used to constrain the builder.
In this section, we will present a protocol to aggregate the
input lists generated by parties such that the overall inclusion
list design outputs a set of candidate lists.

Key design challenges. There are two key challenges we
need to address. First, since the lists are being aggregated, the
adversary can censor a target transaction by somehow ensuring
that the input lists containing the target transaction are not
aggregated. This can be achieved, for example, by bribing a
party that aggregates.

Second, some of the parties in the protocol may crash, and
the protocol needs to tolerate a certain absence of input lists.
Suppose the aggregator is required to include all transactions.
In that case, even if one IL proposer goes offline or chooses not
to broadcast, an honest aggregator cannot create an inclusion
list by including all other input lists. Thus, our crash-tolerant
protocol would allow the aggregator to exclude a threshold 6 of
the input lists. However, in doing so, we allow the aggregator
to censor complete input lists willfully without any penalties.
To mitigate this, we introduce multiple aggregators, each
competing to become the aggregator for the block, and proving
that aggregating all input lists is the best strategy for all IL
proposers. We will show such a design in this section, and in
Section VI we will analyze the properties of the design under
the threat of censorship. To incentivize the parties to follow
the protocol, we describe a reward distribution mechanism that
maximizes the cost for the adversary to exclude a transaction
from the inclusion list (i.e., maximizes Property 4).

A. Outlining our Solution: AUCIL

The design we will discuss is inspired by a winner-take-all
game like an auction, where the bid submitted is the length of
the inclusion list. We name this design AUCIL.?> In AUCIL,

3AUCIL stands for Auction-based Inclusion List.

all parties work as aggregators. All IL proposers can aggregate
the input lists created and broadcasted by IL proposers. After
aggregation, each party declares their bids as the size (in terms
of the number of input lists included) of the inclusion list they
created. A natural way of collecting these bids is through the
block proposer of the next block in the blockchain. This block
proposer would accept all bids and add the inclusion list with
the highest bid.

Algorithm 2 AUCIL outline
Participants: All IL proposers P, P, . ..
Step 1: IL proposers broadcast input lists
1: for all P, do
2 P; —p all parties : InpL,

» P

Step 2: Parties aggregate input lists into an inclusion list
and broadcast it

3: for all P; do

: IncL; = J;_, InpL,;

5: P; —p all parties : (IncL;, ¢; = size(IncL;))
Step 3: Proposer selects the highest bid inclusion list

6: Proposer receives:

{(IncLy, ¢1), (IncLy, £5), ..., (IncL,, £,)}

7: Proposer selects the highest bid where ¢; denotes the bid

for P;.

Incentive Structure: IL Proposer of the selected bid receives uqgg

As described in Algorithm 2, the outline has three major
steps — (i) InpL broadcast, (ii) bid creation and broadcast, and
(iii) collection of bids. While the second step is a competition
between bidders and is thus incentivized by a reward for
winning (ua), the other two steps are not incentivized. For the
first step, what is the incentive for each IL proposer to share
its input list? Suppose all parties share the input lists and the
proposer picks the inclusion list with the highest bid. In that
case, it is strictly dominant for a party not to share its input
list since it could aggregate others’ input lists with its own
and create the largest-size inclusion list, and win the auction.
Thus, sharing the input list is not an equilibrium for such a
party. This highlights the first problem with the approach.

Moreover, even if all parties declare their input lists, the auc-
tions also suffer from censorship problems, as also highlighted
in [8]. The next block proposer could ignore the competitive
bids in favor of an adversarial bid, which bribes the proposer to
exclude other bids. However, distinct from on-chain auctions,
this off-chain auction has the essential property of having a
fixed number of bidders, all of which have a positive utility
to bid. While some parties could crash - or choose to feign
a crash as an adversarial action - at least a threshold n — 6
would broadcast (or have the option to broadcast) their bid, and
the block proposer is required to prove that the bid included is
greatest amongst n — 6 bids. If the proposer cannot create such
a proof, then the block generated would be invalid, and the
block proposer would be slashed. This proof would be verified
on-chain (by the consensus as a part of the validity condition
or by using fraud proofs[25]). We label each bid that has a

valid proof of having a value larger than n — 6§ — 1 other bids
is labeled as a candidate inclusion list. Thus, by construction
f-Crash Fault Tolerance (Property 1) is 8 for our design.

Given this threshold, 6, of parties whose bids are not
required to create an inclusion list, the adversary could censor
some bids that include the target transaction after the bids
have been sent. To incentivize the bids to be as high as
possible, despite the censorship, the reward distribution for
aggregation (,g,) Would take place some blocks after the
block for which the inclusion list is being designed. The
bids would continue to be collected in the next round(s). The
rewards would be distributed as (uas/2) for the highest bid
(observed across multiple blocks) and the rest (va/2) for the
winning bid (observed during the block for the creation of the
inclusion list). This reward distribution separates incentives
for two targets - place bid as soon as possible (such that the
protocol remains live) and place bid as high as possible (to
ensure that even if the bid is censored in the slot, it still wins
a partial reward in future slots). This distribution of rewards is
arbitrarily chosen, and other reward distributions could exist.

To solve the first problem, let’s consider the other extreme
situation. If no party shares its input list, it is dominant for
most IL proposers to share it. This is because it would not
be able to create a winning bid; if the tie is broken randomly,
there is a 1/n probability of winning. Releasing its input list
thus allows the winning bid to include this input list and thus
give a transaction fee reward as described in Section IV. This
proves that the Nash equilibrium for the above game is mixed
and probabilistically lies somewhere between sharing the input
list and not sharing the input list. The exact equilibrium would
depend on the probability of the IL proposer winning the game
by not sharing the input list.

To discourage proposers from hiding their input lists, we in-
troduce a simple form of randomness into the bidding process.
Each IL proposer generates a bias b value using a verifiable
random function (VRF) [26]. This bias is drawn uniformly
from the range [0, by,,) and is added to the IL proposer’s
bid (the bid is the length of the inclusion list). A small bias
(0 < b < bygy — 1) means the proposer’s adjusted bid is likely
to be low compared to others. In that case, the proposer has
little chance of winning the auction outright. Instead, the best
strategy is to broadcast its input list so that other proposers
can include those transactions, allowing it to earn inclusion
fees from them. A large bias b > b,, — 1 increases the
adjusted bid and the chance of winning, so the proposer might
consider withholding its list to keep an advantage. However,
because biases are unpredictable, the expected outcome is
that only proposers with the highest biases will contemplate
withholding; the rest will find it optimal to publish their lists.
This mechanism makes sharing the default behaviour for most
IL proposers, and for those with high bias values, AUCIL
encourages them not to broadcast their input lists.

In order to separate the notion of broadcasting the input
list and others adding it to their bid, we introduce a metadata
value associated with the input list, which we label as flag
F. If F is set to 1, then the input list is available to all

parties and increases the bid size by 1 when included in the
bid. If F is set to 0, then even if the input list is included
in a bid, it would not increase the bid size. In return, only
those input lists that have F set to 1 would receive their share
of transaction inclusion rewards as described in the previous
section. In a rational world, setting the flag to 1 is equivalent
to broadcasting, and 0 is the same as withholding its input list.
In further sections, an input list is considered available if it
has been broadcast and F is set to 1.

B. Analysis

Algorithm 3 AUCIL for log position pos

Participants: All IL proposers Pi, P, ..., P,
Step 0: IL proposers generate their auction bias

1: for all P, do

2: P, : (b;,m;) < VRFg, (pos) scaled to a range of
[Oa bmm]

> Generate the random bias (uniform dist.)
between 0 and b,y to add to the bid
Step 1: IL proposers broadcast input lists
3: for all P, do
: P; : F; + checkAuvailable(b;)
> Check whether P; should make its input
list available
5: P; —p all parties : InpL,, F;
> Parties broadcast their InpL while choos-
ing to make it available or not

Step 2: Aggregate inputs into inclusion list and broadcast
6: for all P; do
7. IncLj,y; = Ui, InpL,, > 1 | F;
> If some IL Proposer’s value is missing
take {},0 as InpL and F
8: P; —p all parties : (IncL;, ¢; = (y; + b))
D> Parties declare their bid with added bias
Step 3: Block proposer selects highest bid inclusion list
9: Proposer receives:
{(IncLq, ¢1), (IncLa, £2), ..., (IncL,, £,)}
10: Proposer selects the highest bid and adds it to the block
(IncL, ?).
11: Proposer verifies ;, includes proof for the bid being
greater than n — 6 bids.
- Block is considered verified if the proof is valid.

Description: Algorithm for aggregating input lists into an inclusion list.
The basis of AUCIL is an auction design, where all parties try to compete
with the largest size inclusion list. Even after next block is created, the
bids are still collected in case a bid higher than the winning bid is found.

Incentive Structure: IL Proposer of selected bid receives 0.5uqgq. 1L
Proposer of highest bid across multiple slots receives 0.5uqgg.

In this section, we will analyze the utility of IL proposers
in the absence of adversarial censorship. In such a case, the
proposer will select the highest bid amongst all the bids.
The first thing to observe is that not all parties may have an
incentive to broadcast, so let’s assume that 7 (At equilibrium,
~v = n/n) InpLs are publicly available. Consider that the IL
proposer includes all the input lists it receives and its own.

The IL proposer has two options: make its InpL available (F
= 1) or withhold it (F' = 0). If the IL proposer makes its input
list available, then the following lemma holds.

Lemma 3. Given an IL proposer P with a utility u; for
inclusion of its input list and g, for winning the auction for
aggregation. Given 1 input lists are available (except its own),
and the total number of IL proposers is n. Given P generates
a bias b < 1. If P chooses to make its InpL available, its
expected utility is u; + negl(n).

Proof. The bid generated by P is calculated as 4+ 1+ b. All
other IL proposers also receive the input list of P. There exist
two classes of other IL proposers: 1) those that made their
input list available (there exist 1 such IL proposers) and those
that did not (n — n — 1). Let b; represent the bias generated
through VRF for IL proposer P;.

The bid for each IL proposer who did not make its input
list available is 7+ 2+ b; (n+ 1 from publicly available lists,
and 1 private). Similarly, the bid for each IL proposer who
chose to make its input list available is 1 + 1 + b; (Its list is
included in the publicly available lists).

The probability that P wins the auction is the same as the
bid generated by P being greater than all other bids.

n
P(P wins) = [[Pr+1+b>n+1+b)
1=0

()fnfT{Mb§DP@21+mw§1)

+Pb>1PBH>1+bb>1)}

n n—n—1
:(éL)- I ®e>1PO—1>bip>1))
i=0

If b < 1, the probability of winning the auction is 0, unless
all parties (7 = n — 1) make their input lists available.

The utility in this case is given by wu;;. If all parties make
their list available, then the utility would increase by (b,,l:ﬂ)
Uqgg, Which is negligible in n.

Lemma 4. Given an IL proposer P with a utility u; for
inclusion of its input list and g, for winning the auction for
aggregation. Given 1 input lists are available (except its own),
and the total number of IL proposers is n. Given P generates
a bias b > 1. If the IL proposer chooses to make its InpL avail-

n n—m—1
able, then its expected utility is u;+ (bi) . (b*—l) Uggg

max biax

Proof. From (9), the probability of winning the auction is

b \" [(b—1\""T""
P(P wins) = [— | -
(WlnS) (bmax) < bmax >

If P wins the auction, then it will receive both input list
inclusion and aggregation rewards, while if it loses the auction,
then the reward earned is only the input list inclusion reward.

up = P(P wins)(tgge + ui) + (1 — P(P wins)) uy

b\ (b—1\"T""
() ()

Lemma 5. Given an IL proposer P with a utility u; for
inclusion of its input list and ugeg for winning the auction
for aggregation. Given n input lists are available (except its
own), and the total number of IL proposers is n. Given P
generates a bias b < by, — 1. If the IL proposer chooses
not to make its InpL available, then its expected utility is

b1\” p \" 1!
(bm) (bu) (ttagg +uit)

Proof. The bid generated by P is n + 1 + b. All other IL
proposers can not extend their bid with the input list of P.
There exist two classes of other IL proposers - those that made
their input lists available (there exist 7 such IL proposers) and
those that did not (n—n—1). Let b; represent the bias generated
through VRF for IL proposer P;.

The bid for each IL proposer who made their input list
available is 7 + b;. Similarly, the bid for each IL proposer
who did not is n + 1 + b;.

The probability that P wins the auction is the same as the
bid generated by P being greater than all other bids.

(10)

O

P(P wins) = | |[P(n+14+b>n+b;)

' 3
< I/
3

i
-1

P(n+1+b>n+1+b)

=0

n—n—1
P(b+1>b)- [] POb>b)
0 1=0

[
.:d

3

Po+1>b;) =P < byax —
+P(b > bpax —

DP(b+ 1> bilb < byax — 1)
DP(b+1 > bilb > byar — 1)

If b > byur — 1, then b+ 1 is always > b;. Thus,

+P(b > byar — 1) (11)

Since b < by — 1,

P(b+1>b;) =P(b+ 1> bilb < byax — 1)
(b+1
B bmax

P(b>b;) = —

bmux

Similarly,

Thus, given b < by —
auction is

b \""N b1\
P(P wins) = (— :
(P wins) (bmax) < -)

If P wins the auction, then it will receive both input list
inclusion and aggregation rewards, while if it loses the auction,
then no reward is earned since the input list was not available
to others.

1, the probability of winning the

up = P(P wins)(tage + wi1)

b1\ b \"TT!
() () e

O

Lemma 6. Given an IL proposer P with a utility u; for
inclusion of its input list and uue, for winning the auction
for aggregation. Given n input lists are available (except its
own), and the total number of IL proposers is n. Given P
generates a bias b > by — 1. If the IL proposer chooses
not to make its InpL available, then its expected utility is

b n—nm—1
() (e +)

Proof. Equation (11) still holds for the analysis of this Lemma.
Given b > by — 1, we get

P(b+1>b) =1

b n—nm—1
P(P wins) = (b)

up = P(P wins)(ugge + wi1)

b n—nm—1

Thus,

O

Theorem 3. Given an IL proposer P with a utility u; for
inclusion of its input list and g, for winning the auction for
aggregation. Given 1 input lists are available (except its own),
biax > 2 and the total number of IL proposers is n.

1) Given P generates a bias b < 1. Except with a negligible
probability, making its input list available is the dominant
action for P.

2) Given P generates a bias 1 < b < by, — 1. Except with
a negligible probability, making its input list available is
the dominant action for P. Consequently (from parts 1 and
2 of the theorem), at least b’”b“-‘;l of the parties broadcast
their input list in expectation.”m

3) Given P generates a bias b > by, — 1. The Nash
equilibrium for the game would be a mixed strategy, i.e.,
make its input list available with some probability and
withhold with some probability.

Proof. 1) From Lemma 3, the utility from making its input
list available is u;;. From Lemma 5, the utility from making
its input list available is

ba1\" b \"TT!
) ()
max max

Since b, > 2 and b < 1, this utility tends to 0. Thus, the
utility from making its input list available (u;;) is greater
than that of not making its input list available (0). Thus,
all such parties would make their input list available.

2) From Lemma 4, the utility from making its input list
available is

b \" [(b—1\""T""
UilJF(b) ' Uagg

From Lemma 5, the utility of not making its input list
available is

b+1\" / b\t
b \p (uagg +)

Consider the difference between the utilities.

b \" [b—1\""""
U + (b) : (b) Uagg
b+1\"7 [/ b \"T"!
3 “\p (Uagg + wit)
b+1 n—1
= (1 - (b))
b n—1 b+1 n—1
Tl \)
b+1 n—1 b+1 n—1
>uil<]~_(b) >_uagg<b)
Ugy b4+ 1\""
=1 (1 52) (52)
Ul bmax

To ensure this is > 0, we require

(b+1)"_1 w;y
< S —
bmwc u; + Uqagg

The probability for this is given by

) 1/n —1
P— bmax <uil1$;agg> -1
bmax -1

which is approximately 1 if n is large. Thus, parties with
b < bpax — 1 are incentivized to make their input list
available. This occurs with a probability of %:1, which
implies that in expectation, at least b”g*;l -n parties would
make their input lists available. "

3) From Lemma 4, we know that the utility from making its
input list available is

b \" [(b—1\""T""
(o) (i)

Probability of broadcasting with flag F=0

1.0 2
0.8 128
— 256
o 0.6
=
~ 0.4
0.2 1 /
0.0
0 1 2 3 4 5 6

Bias

Fig. 3: An example for the probability of withholding input list
with the bias generated for IL Proposers. Example parameters:
n = 36, bygy = 6,u;; ~ 32. The input list reward (u;;) comes
from running algorithm 1 on transactions chosen from a Beta
distribution, with parameters (1,5) and scaled by a factor of
30. The individual lines represent the additional reward (u,qg)
from winning the auction from Algorithm 3.

From Lemma 6, the utility of not making its input list

available is
b n—n—1
() (Uagg + wit)

mel)C

From Part 2, we know that 7 is in expectation more than

bue—lp, - Substituting in Lemma 6, we get

b\ Bt
() (Uagg + i)

bmax

As b approaches b,,,,, the difference in utility is

n bax — b
(177 + 0— <1 — (bmax — 1) (%)) (Uagg + Uil)
n bypax — b
= (i =1) (57)) s 00 =

which is negative since the first term approaches 0.
Thus, at least some parties are incentivized not to make
their input list available, and a mixed Nash equilibrium
follows.

O

The chart in Figure 3 shows the (simulated) probability
with which the IL Proposer would withhold its input list at
equilibrium versus the bias drawn through the VRF (not make
it available to other IL Proposers) *.

Note that we establish a Mixed Nash Equilibrium here. A
coordination of the game is not feasible since all parties are
competing for a single reward and thus there is no opportunity
for coordination.

4Simulation code repo: https://anonymous.4open.science/r/Implementation-
4CFo/

VI. CENSORSHIP RESISTANCE

Combining the protocols in Sections IV and V, we get our
complete end-to-end design for an inclusion list creation as
follows:

o All IL proposers create an input list (InpL) each from a set
of transactions as determined by Algorithm 1. (InpL, ~ ¥,
where U, is selecting list L; from Algorithm 1)

o All IL proposers create and broadcast inclusion lists trying
to maximize the number of available input lists as described
in Algorithm 3.

The above-described scheme works well in the absence of
any external incentives. However, an adversary trying to censor
a transaction can manipulate the incentives of the IL proposers
with the following actions (for the rest of the paper, we would
refer to the transaction the adversary wants to exclude as a
target transaction my;, and the utility IL proposers get from
including the transaction is u,,,, which is suggested to a set
of parties Ny, where |Ny| = ny):

1) Add transactions in the mempool to naturally manipulate
the number of parties that are suggested to include m;.

2) Bribe IL proposers to exclude the target transaction from
the suggested input list.

3) Bribe IL proposers to exclude all input lists that contain
the target transaction from the generated bid.

4) Exclude a bid containing at least one input list with the
target transaction by crashing the party creating the bid.

In the following subsections, we will look at each of
these actions. Initially, assume that Actions 1, 2 affect the
input list building scheme (their values determine [;-Input
Censorship Resistance) and Actions 3, 4 affect the aggregation
scheme (their values determine [2-Aggregation Censorship
Resistance). The two pairs of actions are exclusive and do
not affect each other; later, after looking at the results, we
will defend why this assumption is justified. As mentioned in
Theorem 1, the [3-Blockchain Censorship Resistance of the
unconditional inclusion list design remains R.

A. Censorship Resistance for Input-List building

We would first analyze Action 2 and then look at Action 1
and the interplay between the two. The first thing to note is
that since some parties choose not to make their input lists
available, this reduces the number of expected parties from
the number of actual parties suggested to include in the target
transaction; the adversary does not know which parties would
not broadcast. Thus, when considering the parties to bribe,
the adversary would consider all parties in the set |Ny| as
opposed to the expected number of parties that broadcast (V]
in algorithm 1).

However, we need to consider the expected number of
broadcast input lists when considering the utility that the IL
proposers receive from transactions. Let n; be the number of
input lists suggested to include the transaction (n; = |N¢|), Tz
as the expected number of broadcast input lists that contain
the target transaction (n; = n; - 7, where + is the probability
that an IL proposer broadcasts), n; = 1+~(n; — 1) represents

https://anonymous.4open.science/r/Implementation-4CF6/
https://anonymous.4open.science/r/Implementation-4CF6/

the denominator as specified in Eq (5) and n; represents the
actual number of input lists that broadcast the transaction.
The expected utility for each IL proposer from including the
target transaction is ur’L"f and excluding it and adding another
transaction mg gives some utility — ’"" . If my is available in
the global mempool, then ;—’4_7 § unl:t , otherwise the cost
Uy, would be an additional cost to the adversary (and ns; =
0). Also, consider the utility for including the input list as
suggested, but without the target transaction to be u;, which is
the sum of the utility that each transaction in the list provides.
The strategies that each IL proposer follows, given it receives

some bribe from the adversary, are shown in Lemma 7.

Lemma 7. Given all IL proposers follow strategy ¥ as
described in Algorithm 1 in absence of adversary, and a set
N; (|N¢| = nyt) of IL proposers who are suggested to include
the target transaction my (i.e., L; = my U L). Consider a
bribe (br) from the adversary to IL proposers in the set N, to
censor the target transaction (action 2) and replace it with a
replacement transaction ms.

i) If br < = oyt the IL proposer would reject the
bribe and propose the suggested input list.
i) If % — FZLJWTSW < br < Um, — ff"s , the IL proposers
would reject the bribe with some non zero probability.
iii) Ifbr > up,, — ™ + , the IL proposer would always accept
the bribe and ignore the transaction.

Umy Umg

Proof. The utility received by following the equilibrium strat-
egy (or rejecting the bribe) is U, = wu; + %, where

u; = TU(L1 ,_) is the utility received from selecting list L,
and n; = ny, if all IL proposers include the transactions as
suggested. If some IL proposers accept the bribe and exclude
the transaction from their input list, then 7y < 7n;. The utility

received for accepting the bribe is U, = u; + s"ﬁy + br.
Um ums o

Thus, U, Ua _u ﬁ?t e br. Since 1 < ntug g, WE

have that “™t sy —br<Up = Uy < um, — 755 — br.

We now prove each Sart of the lemma separately.

i) Ifbr < um’ - #’17, U,—U, > 0. Since the utility gained
by the IL proposer from accepting the bribe is less than
rejecting the bribe, the IL proposer would always reject
the bribe.

ii) If bribe 7:“'_:_ < br < Uy, — ﬁ , then the
bribe is higher than the individual utility galned by the
IL proposer if all other IL proposers choose to include the
transaction (i.e., reject the bribe, n; = n;). However, if all
IL proposers choose to accept the bribe, then the utility
received from rejecting the bribe and being the only IL
proposer to include the target transaction is u,,,. Thus,
it is not rational for all IL proposers to accept or reject
the bribe. A mixed Nash equilibrium would exist since
both pure strategies are not an equilibrium, implying a
non-zero probability of rejecting the bribe.

i) If br > up,, — nﬂjﬂ, U, — U, < 0. Since the bribe
available is greater than the utility that the IL proposer
could receive, even if any other party does not include

u7nf

the transaction, the IL proposer always chooses to accept
the bribe.

O

Lemma 8. Given all IL proposers follow strategy ¥ as
described in Algorithm 1 in the absence of an adversary, the
adversary must pay at least un,, - (ny — 1) to ensure (with
probability = 1) that the target transaction does not appear
in any input lists.

Proof. From Lemma 7, if the adversary bribes the IL pro-
posers in the set NV; in such a way that the IL proposers
always censor the transaction, then the bribe has to be at least
U, — : g Now, if m is a public transaction, i.e., available
in mempool, then u.,, — :”; > U, — le’i’ > U, — u:’.
Since at least n; parties receive this bribe, the total cost to
the adversary is at least u,,, - (n; — 1) to bribe all the IL
proposers in set N;. However, if the transaction is private,
then the cost to the adversary is ,, +br = u,,. This amount
must be given to all n, parties, and thus the total cost would
be U, Mt > U, - (e — 1) O

If the adversary chooses a strategy to bribe IL proposers to
exclude the target transaction (Action 2), it must pay a cost
of at least w,,, - (n, — 1) as shown in Lemma 8.

Consider Action 1. The adversary may choose to add spam
transactions in such a way that the target transaction does not
appear in any input list, or it may choose to reduce the number
of n;, and then follow up with Action 2.

Before we proceed with the analysis of this action, we
need to observe the dependence of n; on the fee paid by
the transaction u,,, and the fee paid by other transactions.
Let T'(M) represent all the transactions the input list-building
mechanism chooses. From Eq (5) for a correlated equilibrium,
we know that,

Since n; > 0 for all m; € T'(M), we have
Vm; € T(M) : U, (T +7) > U, 7

Taking the sum over all m; € T(M), and noting that =2t >
Uy
ety

Z U, (Mt +77) > U, Z i

i€T(M) i€T(M)
Z U, (Mg +77) > U, -1k -y
i€T(M)

Let o represent > Up,. Also, ny = 1+ y(ns — 1). Thus,

i€T (M)
14 yny >’y~n'k%
o
1

u
nt>n.kﬂ_,
g Y

(12)

Using Action 1, the adversary can censor the target transac-
tion by adding transactions to the mempool. If more transac-
tions are to be chosen, then the algorithm would suggest the
transaction to fewer parties. If we view these extra transactions
as a sequential addition of transactions to the mempool, we
will reach a point where the target transaction is suggested to
only one IL proposer. In other words, the Lemma 9 compares
using Action 1 to censor completely and a hybrid of Action 1
and Action 2 to first reduce the number of IL proposers and
then bribe the rest. The lemma prooves that the latter is a
dominant action.

Lemma 9. Given all IL proposers follow strategy ¥ as
described in Algorithm 1 in absence of adversary, if the
adversary reduces the number of times the transaction is
suggested to ny = 1 (Action 1), then after reaching this
state, the cost incurred to an adversary in bribing the IL
proposer (Action 2) is lower than adding further transactions
to reduce the number of parties that are suggested to include
the transaction (Action 1).

Proof. To displace the target transaction, the adversary would
have to displace all selections of the transactions after the
target transaction is chosen for the first time in Algorithm 1
since each of the transactions that are selected after the target
transaction gave lower utility than the first selection of the
target transaction. Thus, in the worst case for n, = 1, the
target transaction is the last transaction chosen in Step 1
of Algorithm 1 such that there are no other transactions to
displace. To displace the last chosen object (which in this
case is my), the adversary would need to add a transaction m,,
such that %’”’—fv > “nL’:t. Since n; = 1, n; = 1, this implies
U, > Um,. Thus, Action 1 costs at least un,,.

If the adversary instead chooses to bribe the IL proposer,
then from Lemma 7 the minimum bribe it would have to pay
the IL proposers i Um, — Um, < Um, < Um,, Where U,
represents the utility of some replacement transaction that the
IL proposer could include. Thus, Action 2 costs at most Uy, .

Thus, bribing the IL proposer dominates the action of dis-
placing the transaction through added adversarial transactions
when the target transaction appears only once. O

Lemma 10. Given all IL proposers follow strategy U as
described in Algorithm 1 in absence of adversary, if the
adversary adds adversarial transactions (Action 1) with a
total fee of u,, and pays a bribe bry to all the IL proposers
which are suggested to add the target transaction (Action 2).
If up, < \/% then the cost incurred by the adversary is

greater than wy,, (n - k*2t — 1 —)

Proof. If the adversary does not add any adversarial transac-
tion, then the cost to the adversary by only bribing is given
from Lemma 8 and Eq.(12). This cost is represented by

u 1
me _ 1 _ 7)
o Y
Since no additional transactions are added, the cost to the
adversary is only the bribe. Thus, bry 4+ u,,, > C in this case.

C=tnp,(n-k

If the adversary adds some transactions to reduce the
number of times the target transaction appears in algorithm 1,
and then censors the rest (hybrid of action 1 and action 2) then
the cost to the adversary is given by the fees paid plus the bribe
cost to remove the target transaction from the reduced number
of input lists.

Ci = U, + bry
From Lemma 8 and Eq.(12), we have

bry > U, (n — 1)

U 1

/> k- M -

E S)t tum,
O+ Upm, ¥

, where 3 (u;) represents the sum of any transactions removed.
Thus,

U
C1 > um, + U, (n-k m

t 7177)

. U+uma Y

The difference in this cost to the adversary and the minimum
cost we claim is given by

1 1
Cl —-C > Um, — Um, (nkumt) . <0' a O'J'_uma>
U
o ok . TMa
> U, — Nk, (U(g+uma))
ag 2 02
If Umf, S \/ﬁ’ then umt S nk" ThllS,

CL—C >y, —0? [—) >0
(0 + tm,)

Thus, ¢y > C and the minimum cost that the adversary

: Uy 1
must pay is tm, (n- k=5t —1— 7).

O

Theorem 4. Given all IL proposers follow strategy ¥ as
described in Algorithm 1 in absence of adversary, AUCIL has
1

fB1-Input Censorship Resistance value of tp,, (n-k==t —1— ;)

The proof follows from Lemma 10 where the adversary uses
a hybrid of Actions 1 and 2 to exclude a transaction that exists
in the input lists at equilibrium.

B. Censorship Resistance for Aggregation Step

The next set of actions that an attacker can take to censor
a transaction is to target the aggregation algorithm and ensure
the aggregated list does not contain the target transaction in
any of the input lists. We first give the adversary the advantage
that any input list that is broadcast but not made available (i.e.,
F is set to 0), then the cost to remove such a list from the bid is
0. Let 72; be the number of input lists made available with the
target transaction, m;. This could be less than the number of
parties suggested to include the target transaction in the input
list due to the effect of Actions 1 and 2 by the adversary.
To censor the transaction in Algorithm 3, the adversary must
ensure that the highest bid selected by the block proposer

excludes all the input lists containing the target transaction.
Let’s parameterize the blockchain’s requirement to include a
proof that the bid is greater than n — 6 — 1 other bids. We give
the adversary absolute control over which bids are dropped
due to threshold requirements. In other words, the adversary
must ensure that at least one of the bids within the top 6 + 1
bids does not contain any input lists with the target transaction.

Verifiable Random Functions (VRFs) guarantee the privacy
of the bias generated by each IL proposer. Thus, we assume
that the adversary would not know the bias generated by the
IL proposer. This does not prevent the adversary from bribing
the IL proposer to get this information. The first thing to note
here is that the adversary can infer from Theorem 3 that if a
proposer has not made its input list available, then the bias for
such a party must be larger than one less than the maximum
bias, i.e., b > b, — 1. However, it cannot tell that if an
IL proposer made its input list available that the bias for the
party is < bpue — 1, since an IL proposer may still choose
to make its input list available even if the bias for it is >
bmax — 1 (since it is a mixed Nash equilibrium). Next, we also
note that Action 4 cannot censor the target transaction since,
under honest conditions, each bid would contain all input lists,
including those containing the target transaction; excluding 6
of them would not censor the target. Thus, we would look at
Action 4 as a sub-routine within Action 3.

Lemma 11. Given all IL proposers follow strategy ¥ as de-
scribed in Algorithm 1 in absence of adversary, given 1 is the
number of input lists that contain the target transaction, m;.
Given an IL proposer P which generates a bias b > by, — 1.
If br < ugge/2, then P would reject the bribe with some non-
zero probability. If br > uag,/2, then P would accept the
bribe.

Proof. In order to remove the target transaction my, the
adversary requires the IL proposers to exclude all n; input
lists that contain it. This would reduce the bid the IL proposer
can send by 7;. Let’s consider the case where br < g, /2.
At equilibrium, let the probability with which the bribe is
rejected be p.Consider the case of p = 0. If all IL proposers
decide to accept the bribe, then if P rejects the bribe, the
adversary would drop its bid amongst the 6 crash faults
tolerated. However, in subsequent blocks, this bid would be
included with proof that the bid was higher than the winning
bid. (There is no incentive for the adversary to censor it in
later rounds). This yields a utility of “as/2 for P. Thus, the
incentive from rejecting the bribe is at least az/2. If the bribe
is less than v /2, then all parties would have an incentive to
reject the bribe with some non-zero probability.

For the case that br > w,,/2, if the IL proposer rejects the
bribe, the maximum utility it can get is by winning the highest
bid reward of u,,/2 (While it would also have to pay a fee to
get its bid included in the later round). Thus, it would always
accept the bribe if br > u,g,/2. O

As a consequence of Lemma 11, if the bribe offered is
< Uggg/2, then the number of bids submitted by IL proposers

that do not accept bribes is (with some probability) greater
than 6. Thus, the bribery fails with some probability.

Lemma 12. Given all IL proposers follow strategy ¥ as
described in Algorithm 1 in absence of adversary, given
is the number of input lists that contain the target transaction,
and n is the total number of input lists available. If an
adversary wants to censor the target transaction (with 100%
probability) by bribing during the aggregation phase, then the
total cost incurred by the adversary is at least (n—0) - Uggqe /2.

Proof. From Lemma 11, the minimum bribe required to bribe
an IL proposer who draws a bias > by, — 7 Would be w444/2.
However, the adversary does not know which parties draw
such a bias. The adversary can identify that each IL proposer
that did not broadcast the input list would have (with a high
probability) a bias greater than b,,,, — 1; however, this does
not give any information about an IL proposer drawing a bias
less than b,,,, — n;. This implies that the adversary would
have to bribe all but 8 IL proposers regardless of the value of
bias drawn. Thus, the total bribe the adversary has to pay is
(n—0) - Uggg/2. O

From Lemma 12, we observe that any bribery for parties
in the aggregation phase (hybrids of Actions 3 and 4 is
independent of the number of times the target transaction
appears in the input lists. Thus, a reduction of the number of
times the target transaction appears in input lists by Actions 1
and 2 has no reduction in the cost to an adversary when it takes
Actions 3 and 4. Thus, the two sets of actions are independent.

Theorem 5. Given all IL proposers follow strategy ¥ as
described in Algorithm 1 in absence of adversary such that
ny is the expected number of IL proposers that would include
tx, then AUCIL has a B2-Aggregation Censorship Resistance

of (n —0) - Uage/2.

The proof follows from Lemma 12.

C. Overall Censorship Resistance

Consider the following parameterization of the protocol.
binax = /1, Ugge = /1~ ;. The sum of rewards for the input
list across all parties is the same as the sum of fees paid by all
transactions in the inclusion list, i.e., Y5, yuj; = > fi =

i€T (M)
0. And thus, the expected u;; for each party is o /n. Also, by
Theorem 7 in Appendix D, the reward distribution is roughly
the same across all parties, and thus, we can say that the reward
for each party does not deviate from the expected reward by
much. For this protocol, we claim the following:

Theorem 6. Given n parties running the protocol, M repre-
sents the transactions available to all parties in the mempool,
f; represents the fee paid by a transaction m; € M,
0 — 1 represent the number of crash faults tolerated, and
T represent the union of all lists L; when Algorithm 1 is

run on M. Consider B = {bry,...,bripp)} such that

. i n—~eO
brj = min((n - ki—’ -1- %)fj, ('im)
satisfies (B, 0,T)-censorship resistance.

o, R). The protocol

Proof. Consider an adversary with a bribery budget of br.
From Lemma 10, we know that if the adversary attempts to
censor a transaction m; from the input list, the least amount
of bribe it must pay is

1
;)f j
Note that here, £ - f; < o and f; < \/% If the adversary

attempts to censor the transaction in the aggregation phase,
then the total cost, as governed by Lemma 12 is

(n — 0)tgge = (n — O)v/nuy > (n—0)y/no/n
(n—9)
>
= \/ﬁ g
Now, let br; = max((n - k%’ -1- %)fj, (71/_779) o, R).

If br < br;, then at least # parties will output the inclusion
list, which includes the transaction m;, implying that the pro-
poser will select the inclusion list with transaction m; at least
once. Thus, the protocol is (B, 6, T)—censorship resistant. [

f;
(n-k;j—l—

Figure 4 shows the bribes required when simulated over
chosen mempools. The simulation matches the results in the
theorem.

VII. DISCUSSION

On unconditional inclusion lists. An essential property for
inclusion lists we consider is that all transactions in the list
must be included in the next block. This limits the maximum
size of the inclusion list to be less than the block size. Since
each party can choose to propose transactions with no overlap,
the maximum size of the input list needs to be restricted to
the size of the block divided by the number of parties in the
system. We consider the notion of unconditional inclusion lists
since if there is a way for a proposer to exclude the transactions
in the inclusion list, then it creates a single point of failure
that the adversary can exploit. If the number of transactions
available in the inclusion list is greater than the size of the
block, then in such cases, the cost to censor the transaction is
just the difference in the fee paid by the target transaction to
the proposer and that for its replacement (which may not be
from the IL).

Inclusion lists with EIP 1559. In Ethereum, due to the
presence of the EIP-1559 fee mechanism [17], in expectation,
block sizes fluctuate around half of the limit. This counters the
previous discussion point since, in most cases, there would
be enough space for transactions in the block. Suppose the
adversary adds spam transactions to fill the leftover block
space. In that case, the adversary will incur an additional cost
corresponding to the transaction fee (base fee in EIP 1559) of
half the block size limit. However, in doing so, the adversary
would also increase the base fee for the next block, which may
lead to censorship by raising the base fee above the fee. In the
absence of these, the input list-building algorithm used could
be replaced with a much simpler rule to include all transactions
(or capped to block limit to prevent spamming, like in [16]).

This does not affect the second part of the design - AUCIL,
where inclusion lists are formed by aggregation of input lists.
Compared to prior designs such as FOCIL [15], in AUCIL,
we do not rely on the honesty of the attestors to collect and
aggregate the list locally. Compared to FOCIL, where attesters
need to receive all local inclusion lists and compute a running
aggregate locally, AUCIL only requires a simple verification of
proof. If they do not correctly verify, they could be slashed for
incorrectly voting on the progress of the block. In an alternate
design where fraud-proofs [25] is used, the proposer who adds
the incorrect proof would be slashed. In this case, the attestors
are not involved in verifying the validity of the proof either.

Common mempool assumption. In our protocol for input
list building algorithm 1, we assume that all parties have
the same view of transactions. We note that transactions
that pay a fee for obtaining censorship resistance guarantees
would necessarily be transmitted through public channels (as
opposed to transactions sent as private order flows to only
some providers). Hence, any transaction received by one
party will be received by all parties soon enough. There
may still be minor differences in the mempool of parties due
to the time required to transmit transactions to others. This
assumption is supported by similar assumptions in previous
and parallel works like [24], [27] which build fee structure for
multiple leader protocols. Accounting for these differences in
the protocol design is an important future work.

Practical considerations. Compared to other inclusion list
designs [14], [15], AUCIL has a lower overhead largely in part
due to the restricted size of data that each party has to share.
However, being a 2-step protocol where the first input lists
are broadcast and then the inclusion lists are created as bids,
the number of communication rounds increases. Extrapolating
numbers from EIP-7805 [16] for inclusion lists in Ethereum,
the limits on the size of the input list could be set to k = 5
average-sized transactions (or 3 kB of data), and the number of
parties in the committee is n = 32. This would, on average,
imply an inclusion list containing 160 transactions (not an
upper bound, just a parameter chosen for practicality).

To be robust against bribery, AUCIL introduces a new fee
for each transaction and a reward for aggregating lists. Such
a fee can replace the tip paid by the user in case an inclusion
list route is taken, or could be introduced in addition to the
tip paid. Similarly, the aggregation reward is currently treated
as an out-of-protocol reward, i.e., the protocol would generate
rewards. However, this could be replaced such that the reward
for aggregation is extracted from the user’s fee. This design
is left as future work.

Commit reveal scheme with a mixed Nash Equilibrium
for input list building. As an alternative to using a correlated
equilibrium scheme as described in algorithm 1, we could
use a commit reveal scheme that avoids the timing games.
This potentially could lead to better censorship resistance.
However, one of the major properties of the inclusion list-
building scheme is that no consensus needs to be reached,

Fee vs. Bribe Tolerated

Fee vs. Bribe Tolerated

Fee vs. Bribe Tolerated

500

— My=20
M, =30
— My =40

400 4

300 A

200 -

1009

Adversarial Bribe Tolerated

3 Co=24 = — Ky=3
= =32 = K =4
g g
22001 — C:=40 22001 — K2=5
© ©
2 e
A A
E 1001 E 100 {

04 04

0 10 20 30 0 10

Fee Paid

(a) Committee size varied

Fig. 4: Bribe tolerated vs. user fee under varying parameters.

(b) Input List size varied

20 30

Fee Paid

20 30 0 10
Fee Paid

(c) scaling factor of transaction fee varied
(Average fee is 4, 6, 8 respectively).

Default parameters: committee size of 32, input list size of 5,

and 200 transactions. Transaction fees are chosen from a beta distribution with parameters (1,4), scaled by a factor of 30.

and without consensus, committing to a bid before revealing
it is infeasible.

Secret ordering of IL proposers. In Section VI for algo-
rithm 1, we assume that the adversary knows the ordering
of IL proposers, i.e., if it simulates the algorithm, it would
know exactly which party would include the target transaction
in its input list. However, in a design where this information
is unknown to the adversary, it would have to bribe all the
parties to ensure that none of the parties include the target
transaction. Making this order secret has its challenges. All
IL proposers would need to know their exact position but
not have any information about the position of others IL
proposers to avoid single-party bribery, revealing the entire
sequence. This does not have to be verifiable since no party has
incentives to switch its position (due to the proven correlated
equilibrium). A secret ordering mechanism would thus ensure
the theoretically maximum censorship resistance (linear in the
number of parties) while also ensuring the maximum utility
for each party.

VIII. RELATED WORK

Bribery-based censorship attacks. Blockchains are vulnera-
ble to bribery-based censorship attacks [28], [29], [7]. These
attacks have been known to affect the security of various ap-
plications like AMMs [30], [31], atomic swaps [7], [32], [33],
[34], and auctions [8]. Censorship resistance was formally
studied in [8], where they show the extent of the problem,
modeling censorship into the consensus can bring for financial
applications like an auction.

Inclusion list designs. To our knowledge, this paper is the first
to introduce an inclusion list formally designed to combat cen-
sorship in literature. However, there are some ideas presented
in research posts specific to particular blockchains [12], [14],
[15], [35]. In forward Inclusion List designs [12], inclusion list
is published by the previous block’s proposer. All transactions
in the list must be considered in the next block if block space
remains unused. This forces builders to fill blocks, making
censorship costly, as any unused block space must be used to
include transactions in the inclusion list. However, owing to a

single proposer-based proposal, this faces major bribery-based
censorship issues in which an adversary can bribe the proposer
to remove the transaction from the inclusion list.

Multi-party designs like COMIS [14] and FOCIL [15]
address the low cost of bribery by relying on a committee to
create the inclusion list. Intuitively, they argue that if more par-
ties include the transaction in their inclusion lists, the amount
of bribes the adversary pays increases. A practical version of
this design-FOCIL has been pushed as EIP-7805 [16], which
limits the size of each input; however, the total size limit is still
greater than the capacity of the block and could thus overflow.
However, such designs fail to account for how these committee
members will create their inputs to the inclusion list, with a
basic assumption that the highest paying transactions would be
chosen, and, thus, fail to provide guarantees when the network
is busy, i.e., there are enough transactions to fill the block.

To introduce incentives in the FOCIL inclusion list design,
[36] and [37] have been proposed. IncluderSelect [36] attempts
to use auctions for includers (IL Proposers) as well; however,
it opens the auction to all users, and since each user has an
incentive to participate in the auction (to get its transaction ac-
cepted). FOCILR [37] attempts to quantify what the proposer
must do in case the inclusion list overflows the block size. It
also reallocates the burnt base fee as a part of EIP-1559 [17]
as rewards for the includers. Table II represents the various
properties of previously known inclusion list schemes.

In Flashbots report [35], inclusion lists protocols are studied
for censorship resistance in blockchains, albeit under an honest
and Byzantine model, where a known threshold of parties can
be Byzantine, and the rest are considered honest. The defini-
tion of censorship resistance used differs from our definition.
They consider the time required to include a transaction in the
chain as a parameter for censorship and try to reduce it with
various protocols. They analyze leader-based protocols with
inclusion lists and note that using a data availability layer or
reliable broadcast can help reduce censorship in their design.
While they mention the number of parties that need to be
bribed in a world where all parties are rational, they do not
show what amount of bribes is required or a formal analysis
of why the number of bribes cannot be reduced.

Multi-proposer based designs. In [8], in addition to model-
ing bribery in auctions, they propose mitigating censorship by
adding multiple proposers to produce a block simultaneously.
While doing so, they propose a dual fee structure in which
if the transaction is proposed only once, the tip paid to the
party that includes it is higher. This would increase the cost
of censorship for the adversary to be proportional to the higher
tip (which is rarely paid by the user) instead of the general
tip. However, in doing so, they inadvertently prioritize solo
inclusion of transactions, reducing the number of times the
transaction would be repeated in case more transactions are
pending than the size of the block and not all proposers can
add all transactions in their local block.

In Flashbots report [35], they also introduce a multi-
proposer system called Partially Ordered Dataset (POD) to
partially order the available set of transactions. Unlike tradi-
tional consensus mechanisms that impose a strict transaction
order, POD assigns timestamps that loosely order transactions
across replicas. Transactions can be submitted to any replica.
They will be recorded as long as they reach a quorum of honest
replicas, making it difficult for any single entity to block or
censor them entirely. Additionally, POD includes mechanisms
for detecting and documenting censorship attempts, creating
accountability for malicious behavior. By supporting high
throughput and rapid transaction propagation, POD reduces
the window in which censorship could occur.

A. Further Details of Inclusion List Designs

In this subsection, we will look at individual protocols
that have a (semi-formal) design for the inclusion list. We
will compare the 5 major properties described earlier in the
model section. We will also clarify what assumptions each
of the protocols makes. In all designs, assume there exists a
transaction tx,, which pays a transaction fee f? to the proposer
(For EIP-1559-like mechanisms [17], this is just the tip paid),
and an inclusion fee f, for the inclusion.

Base Blockchain with Proposer Builder Separation. In cur-
rent Ethereum design, block building is auctioned to a builder
that provides the highest return to the proposer. Due to private
order flows [38], the ethereum builder market has become
heavily centralized with 95% of all blocks being built by two
builders. In such a system, censorship resistance guarantees
are minimal. Since there is no inclusion list in the current
design and the block is built by a single proposer, aggregation
censorship Property 4, input equilibrium Property 2 and input
censorship Property 3 are not applicable in the system. Since
there is only one party proposer (and builder is selected from
a live auction), 6-Crash Fault Tolerance (Property 1) should
be 0. In order to exclude a transaction from the block, an
external adversary would need to bribe the builder br > f2.
This would be the value for $3-Blockchain Censorship Resis-
tance (Property 5). However, going forward we would assume
both these values as the base i.e. that the proposer is always
live, and the bribe paid to builder to remove the transaction is
0 (unless otherwise constrained).

Single Proposer Forward Inclusion List. To compare the
single proposer forward inclusion list design, we will specifi-
cally look at EIP-7547[13]. Proposer publishes an inclusion list
(IL) each slot, listing transactions that must be included by the
builder in the next slot (or its own slot). The protocol assumes
that the proposer honestly follows the prescribed protocol, and
adds all transactions not included in their own current slot in
the inclusion list of the next slot. Attesters enforce inclusion
list compliance via fork-choice (they will reject a block if
the builder leaves space while eligible IL transactions exist).
Since this system is still a single-proposer model, the value
of #-Crash Fault Tolerance (Property 1) remains the same
as the base blockchain. If the transaction is included in the
inclusion list, then the cost of excluding the transaction is
either letting go of the block itself (R), or completely filling
the block space (due to the conditional nature of the inclusion
list). In EIP-1559[17] based blockchains, in expectation, the
block is half full and thus the remaining half needs to be
filled. The cost of doing so is claimed to be less than r - s,
where 7 is the base fee of the block and s is half the
size of the block. Thus, value of [3-Blockchain Censorship
Resistance (Property 5) is min(R,r - s). Since the protocol
involves only a single proposer creating an inclusion list, there
is no equilibrium or aggregation phase. Thus [>-Aggregation
Censorship Resistance and Input Selection Equilibrium are
not applicable. Lastly, if an adversary wants to censor the
transaction from the inclusion list, then it would need to pay
fr to the proposer of the previous block, along with the base
bribe to the builder. Thus, [;-Input Censorship Resistance
(Property 3) value is f;.

Single-Proposer Unconditional Inclusion Lists To compare
this design, we assume an unconditional [18] variant of EIP-
7547[13]. In such a case, if the transaction makes it to the
inclusion list, then there is no way of removing the transaction
from the block except for foregoing the block itself, and
thus incurring a cost of R. Thus, value of [3-Blockchain
Censorship Resistance (Property 5) is R. The rest of the values
remain the same as its conditional variant.

COMIS: Committee-enforced Inclusion Sets [14]° Instead
of a single proposer, a committee of multiple validators jointly
constructs an inclusion set (IS) for each slot. Every slot pos, a
committee of size n is randomly chosen; each member picks
transactions from the mempool for their local set. These are
combined into a global inclusion set I.Spe. If 1.5y is available
in time, the block in slot pos (or pos 4+ 1) must commit to
1Sp0s (e.g. include a summary on-chain), and the next block
must include all transactions required by ISpes (subject to
conditions). They introduce the concept of Inclusion Threshold
(IT) to avoid spam transactions. They require that for a
transaction to be in IS, it needs to be included by at least
(1 = IT) - n parties. While the incentives in COMIS were
not clearly defined, it relies on distributing the reward for

SMany of the protocol choices are not defined concretely, like the incentive
structure, crash tolerance, etc. We make the best we could think of fixes to
each of these.

inclusion based on the contribution that each party makes.
For our analysis, we will assume that the reward distributed is
equal to the inclusion fee f. for the transaction. COMIS can
tolerate up to I7T parties crashing; however, in such a case,
censorship resistance for a transaction would be 0. In their
model, they assume the existence of an aggregator (which
can be the block proposer, and for the numbers here, we
assume this to be the case). Let’s look at COMIS, which
can tolerate up to 6 crashes, and requires [Tx = (1 — IT)
fraction of includes to include a transaction to be valid. The
value of A-Crash Fault Tolerance (Property 1) is thus 6. If a
transaction is included in the inclusion list by the aggregator,
then depending on whether COMIS is considered to be an
unconditional inclusion list or not, the cost of censorship is
R and min(R,r - s) respectively (83-Blockchain Censorship
Resistance, Property 5). Since the aggregator is a single party
collecting all inputs, and this aggregation is not rewarded, the
cost to bribe the aggregator to exclude a transaction that is in
the input of a single party would be ¢ — 0. In order to avoid
this, each transaction must be included in 6 + [Tz different
includers’ list. If so, the aggregator would not be able to censor
the transaction, given that COMIS implementation requires
proof of n — @ inputs. Thus the value of [,-Aggregation
Censorship Resistance (Property 4) is 0 if ny < 0 + ITx
and oo otherwise.

Since the inclusion committee is assumed to consist of an
honest majority of includers, no equilibrium is established in
the game. However, if all members are considered rational,
then an equilibrium would be reached in which all parties
maximize their revenue. Assuming that an optimal revenue is
reached, the members would receive at most IfTTI revenue from
a transaction. With n; < n and using the reference [Tx =
n/5, then in order to bribe all the parties from excluding the
transaction from the input, an adversary would require < 5 f;
(B1-Input Censorship Resistance, Property 3). The actual cost
is far lower than this, since the adversary can use an aggregator
to threaten the exclusion of the includer’s inputs if it includes
a particular transaction. This leads to an equilibrium, where
includers would choose not to include the transaction for a
small bribe of € — 0.

The cost for the unconditional variant of COMIS is much
lower, since n; at equilibrium would be close to I'T'x (Since
censorship is not expected during the equilibrium calculation).
At this value of n;, [P3-Aggregation Censorship Resistance
would be 0 for most transactions.

FOCIL: Fork Choice enabled Inclusion List [15],[16]
FOCIL mostly follows the basic design underlined by COMIS.
They use an Inclusion List committee to declare inputs that
need to be included in the Inclusion List. They fix the
aggregator as the block producer (Builder in the post-PBS[39],
[40] world, or the block proposer). They remove the inclusion
threshold (i.e., set ITx = 1). To verify the validity of the
inclusion list, they rely on attesters to locally compute the
list 3 seconds before the block producer creates the inclusion
list, allowing enough time for the block producer to receive the

inputs from all IL proposers. However, this relies on an honest
majority of attesters, which differs from Ethereum’s general
fork choice, where a single honest attester is sufficient to
prove correctness. FOCIL does not have any incentives defined
for the IL proposers. For analysis, we use the double fee
mechanism and assume that all parties that include transaction
tx, share f. equally.

Here, it is tricky to assume any 6-Crash Fault Tolerance.
They rely on attesters to justify whether a party was actually
crashed and did not broadcast an inclusion list, or whether
the aggregator censored the input it submitted. This reliance
is justified when assuming that the attesters behave honestly.
However, there is no proof that the aggregation was honest.
If enough attesters agree with a censored inclusion list, then
there is no proof of censorship. Thus, if all parties are
considered rational, then no crash can be tolerated, i.e., 0-
Crash Fault Tolerance has a value n — 1. Under this condition,
FOCIL achieves 31-Input Censorship Resistance (Property 3)
of n - f,. This is because, being a conditional inclusion
list, the equilibrium for input selection involves all parties
choosing all valid transactions in the mempool (Input Selection
Equilibrium, Property 2 is Select M). Like all conditional
inclusion lists, since EIP-1559 targets a half full block, the
value for [3-Blockchain Censorship Resistance (Property 5)
is less than r - s, where r is the base fee of the block and s is
half the size of the block.

Also note that a recent parallel work analyzing a transaction
fee mechanism design for FOCIL [27] shows that even when
all parties are considered rational, it is an equilibrium for the
users to distribute the fee such that f, = 0, f? = f, where
f is the maximum fee that the user pays. This implies that
under rationality of all IL proposers, the overall censorship
resistance is still bounded by f. This result is a derivative
of an interesting method to spam the mempool, such that the
target transaction is excluded by the block proposer and the
includers, without incurring the fee for spamming.

Available: https://notes.ethereum.org/s3JToe ApTx6CKLIJt8 AbhFQ#Hy
brid-PBS-can-we-use-proposers-only-for-inclusion- of-last-resort

— [\ ') < el
2 iy 2 iy z
ot Yt = Yt Yt
)) |5}) 1)
= = o = —
° ° ° ° e
Protocol Name Comments ~ [aw [a® 2w [aw
| Base Ethereum Low CR for multi-block | - P | - | - |
Single-Proposer Forward | Each block has indepen- - M min(R,r - s) - fr
IL dent CR
Single-Proposer Uncondi- - top k R - fr
tional
COMIS Forward IL ny <0+ ITx 0 M | min(R,7s) 0 oz
ny >0+ ITx 0 M min(R,7 - 8) 00 ?7]:;
COMIS Unconditional ny <0+ ITx 0 MNE R 0 =
nr >0+ 1Tz 0 MNE R 0 ~
FOCIL Any-honest ~ committee, | n — M min(R,r - s) 00 -
Majority honest attesters
| FOCIL | Rational parties | 0 | M | min(R,r-s) | ~0 | n fr |
AUCIL (w/o input selec- 0 MNE R (n — 0)(tage/2) ~
tion)
AUCIL (with input selec- 0 Alg. 1 R (n — 0)(uage/2) | O(f2-n/o)
tion)
TABLE II: Comparison to previous protocols °
REFERENCES [12] Francesco. [Online]. Available: https://notes.ethereum.org/ @ fradamt/fo
rward-inclusion-lists
JP— s » . . 13] Michael, Vitalik, Francesco, Terence, potuz, and Manav, “Eip-7547:

[1] M. Holden, “WikiLeaks says “blockade” threatens its existence | [. o X . . .

Reuters.” [Online]. Available: https://www.reuters.com/article/us-brita Ir/lgll;fé(/m hs7tss;‘700t 2023. [Online]. Available: https:/eips.cthereum.or
in-wikileaks/wikileaks-says-blockade-threatens-its-existence-idUSTRE g C1p- .

79N46K20111024/feed Type=RSS&feedName=topNews [14] Thomas, Francesco, and Barnabe, “The more, the less censored:
« » . . Introducing committee-enforced inclusion sets (comis) on ethereum,”

[2] “Canada convoy protest,” Sep. 2024, page Version ID: 1243947900. . I 3 o)
[Online]. Available: https://en.wikipedia.org/w/index.php?title=Canada_ Feb. 2024. '[Onhne].. Av‘uldblf:‘ https:/, /ethre'sedr.cl}/ t/the—more—}he—les
convoy_protest&oldid=1243947900 s-censored-introducing-committee-enforced-inclusion-sets-comis-on-e

[3] Robinhood, “Keeping Customers Informed Through Market Volatility,” ‘t‘hereurr1/12.3835 . . o . .

Jan. 2021. [Online]. Available: https:/newsroom.aboutrobinhood.com/ [15] “Fork choice enforced inclusion lists,” Jun. 2024. [Online]. Available:
keeping-customers-informed- through-market-volatility/ https://ethresear.ch/t/fork-choice-enforced-inclusion-lists-focil-a-simpl

[4] A. Robertson, “Robinhood is facing dozens of lawsuits over e—commlttee—bassdj1nc1u510n—llst—p rop 0sal/19870)) .)
GameStop stock freeze” Feb. 2021. [Online]. Available: https: [16] E. I. Proposals, E1p—780§: Fork—ghmce enforcecl inclusion lists (focil)
/lwww.theverge.com/2021/2/1/22254656/robinhood- gamestop-stonks-t [draft],” Nov. 2024. [Online]. Available: https://eips.ethereum.org/EIPS
rade-freeze-class-action-lawsuits /e}p—.7805)) s .

[S] US. Department of the Treasury, “OFAC Specially Designated [17] Vitalik, EI‘I'C, Rlck,.Matthew, Ian,. and Abdelhamid, Elp—1559, Apr
Nationals Data,” 2022. [Online]. Available: https://www.treasury.gov/o 2019. [Online]. Available: https://eips.ethereum.org/EIPS/eip-1559
fac/downloads [18] “Unconditional inclusion lists,” Jan. 2024. [Online]. Available:

[6] A. Wahrstitter, J. Ernstberger, A. Yaish, L. Zhou, K. Qin, T. Tsuchiya https://ethresear.ch/t/unconditional-inclusion-lists/18500
S. Steinhorst, D. Svetinovic, N. Christin, M. Barczentewicz, and [19] R.J. Aumann, “Subjectivity and correlation in randomized strategies,”
A. Gervais, “Blockchain Censorship,” Jun. 2023, arXiv:2305.18545 Journal of mathematical Economics, vol. 1, no. 1, pp. 67-96, 1974.
[cs]. [Online]. Available: http:/arxiv.org/abs/2305.18545 [20] ——, “Subjectivity and correlation in randomized strategies,” Journal

[71 F. Winzer, B. Herd, and S. Faust, “Temporary censorship attacks in the of mathematical Economics, vol. 1, no. 1, pp. 67-96, 1974.
presence of rational miners,” in 2019 IEEE European Symposium on [21] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
Security and Privacy Workshops (EuroS&PW). 1EEE, 2019, pp. 357— 40th annual symposium on foundations of computer science (cat. No.
366. 99CB37039). 1EEE, 1999, pp. 120-130.

[8] E. Fox, M. Pai, and M. Resnick, “Censorship resistance in on-chain [22] F. B. Schneider, “Implementing fault-tolerant services using the state
auctions,” 2023. [Online]. Available: https:/arxiv.org/abs/2301.13321 machine approach: a tutorial,” ACM Comput. Surv., vol. 22, no. 4, p.

[9] “Builder landscape — ethereum mainnet,” 2025. [Online]. Available: 299-319, Dec. 1990. [Online]. Available: https://doi.org/10.1145/9816
https://explorer.rated .network/builders ?network=mainnet 3.98167

[10] S. Yang, K. Nayak, and F. Zhang, “Decentralization of Ethereum’s [23] [Online]. Available: https://beaconscan.com/stat/networkparticipation
Builder Market,” in 2025 IEEE Symposium on Security and Privacy [24] P. Garimidi, L. Heimbach, and T. Roughgarden, “Transaction fee
(SP). IEEE Computer Society, May 2025, pp. 1512-1530. mechanism design for leaderless blockchain protocols,” arXiv preprint

[11] V. Buterin, “State of research: increasing censorship resistance of arXiv:2505.17885, 2025.
transactions under proposer/builder separation (pbs),” 2021. [Online]. [25] M. Al-Bassam, A. Sonnino, and V. Buterin, “Fraud proofs: Maximising

light client security and scaling blockchains with dishonest majorities,”
arXiv preprint arXiv:1809.09044, vol. 160, 2018.

https://www.reuters.com/article/us-britain-wikileaks/wikileaks-says-blockade-threatens-its-existence-idUSTRE79N46K20111024/?feedType=RSS&feedName=topNews
https://www.reuters.com/article/us-britain-wikileaks/wikileaks-says-blockade-threatens-its-existence-idUSTRE79N46K20111024/?feedType=RSS&feedName=topNews
https://www.reuters.com/article/us-britain-wikileaks/wikileaks-says-blockade-threatens-its-existence-idUSTRE79N46K20111024/?feedType=RSS&feedName=topNews
https://en.wikipedia.org/w/index.php?title=Canada_convoy_protest&oldid=1243947900
https://en.wikipedia.org/w/index.php?title=Canada_convoy_protest&oldid=1243947900
https://newsroom.aboutrobinhood.com/keeping-customers-informed-through-market-volatility/
https://newsroom.aboutrobinhood.com/keeping-customers-informed-through-market-volatility/
https://www.theverge.com/2021/2/1/22254656/robinhood-gamestop-stonks-trade-freeze-class-action-lawsuits
https://www.theverge.com/2021/2/1/22254656/robinhood-gamestop-stonks-trade-freeze-class-action-lawsuits
https://www.theverge.com/2021/2/1/22254656/robinhood-gamestop-stonks-trade-freeze-class-action-lawsuits
https://www.treasury.gov/ofac/downloads
https://www.treasury.gov/ofac/downloads
http://arxiv.org/abs/2305.18545
https://arxiv.org/abs/2301.13321
https://explorer.rated.network/builders?network=mainnet
https://notes.ethereum.org/s3JToeApTx6CKLJt8AbhFQ#Hybrid-PBS-can-we-use-proposers-only-for-inclusion-of-last-resort
https://notes.ethereum.org/s3JToeApTx6CKLJt8AbhFQ#Hybrid-PBS-can-we-use-proposers-only-for-inclusion-of-last-resort
https://notes.ethereum.org/@fradamt/forward-inclusion-lists
https://notes.ethereum.org/@fradamt/forward-inclusion-lists
https://eips.ethereum.org/EIPS/eip-7547
https://eips.ethereum.org/EIPS/eip-7547
https://ethresear.ch/t/the-more-the-less-censored-introducing-committee-enforced-inclusion-sets-comis-on-ethereum/18835
https://ethresear.ch/t/the-more-the-less-censored-introducing-committee-enforced-inclusion-sets-comis-on-ethereum/18835
https://ethresear.ch/t/the-more-the-less-censored-introducing-committee-enforced-inclusion-sets-comis-on-ethereum/18835
https://ethresear.ch/t/fork-choice-enforced-inclusion-lists-focil-a-simple-committee-based-inclusion-list-proposal/19870
https://ethresear.ch/t/fork-choice-enforced-inclusion-lists-focil-a-simple-committee-based-inclusion-list-proposal/19870
https://eips.ethereum.org/EIPS/eip-7805
https://eips.ethereum.org/EIPS/eip-7805
https://eips.ethereum.org/EIPS/eip-1559
https://ethresear.ch/t/unconditional-inclusion-lists/18500
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167
https://beaconscan.com/stat/networkparticipation

[26] S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,” in
40th annual symposium on foundations of computer science (cat. No.
99CB37039). IEEE, 1999, pp. 120-130.

A.-P. Stouka, J. Ma, and T. Thiery, “Multiple proposer transaction fee
mechanism design: Robust incentives against censorship and bribery.”
[Online]. Available: http://arxiv.org/abs/2505.13751

[28] J. Bonneau, “Why buy when you can rent? bribery attacks on bitcoin-
style consensus,” in International Conference on Financial Cryptogra-
phy and Data Security. Springer, 2016, pp. 19-26.

P. McCorry, A. Hicks, and S. Meiklejohn, “Smart contracts for brib-
ing miners,” in Financial Cryptography and Data Security: FC 2018
International Workshops, BITCOIN, VOTING, and WTSC, Nieuwpoort,
Curagao, March 2, 2018, Revised Selected Papers 22. Springer, 2019,
pp. 3-18.

P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, 1. Bentov, L. Breidenbach,
and A. Juels, “Flash boys 2.0: Frontrunning, transaction reordering,
and consensus instability in decentralized exchanges,” arXiv preprint
arXiv:1904.05234, 2019.

C. F Torres, R. Camino, and R. State, “Frontrunner jones and the
raiders of the dark forest: An empirical study of frontrunning on the
ethereum blockchain,” in 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, Aug. 2021, pp. 1343-1359.
[Online]. Available: https://www.usenix.org/conference/usenixsecurity
21/presentation/torres

S. Wadhwa, J. Stoeter, F. Zhang, and K. Nayak, “He-htlc: Revisiting
incentives in htlc,” Cryptology ePrint Archive, 2022.

H. Chung, E. Masserova, E. Shi, and S. A. Thyagarajan, “Rapidash:
Foundations of side-contract-resilient fair exchange,” Cryptology ePrint
Archive, 2022.

I. Tsabary, M. Yechieli, A. Manuskin, and I. Eyal, “Mad-htlc: because
htlc is crazy-cheap to attack,” in 2021 IEEE Symposium on Security and
Privacy (SP). 1EEE, 2021, pp. 1230-1248.

0. Alpos, B. David, N. Kamarinakis, and D. Zindros, “Flashbots report:
System requirements, existing and new solutions, and their efficiency.”
Flashbots Report, 2024.

[36] J. Ma. [Online]. Available: https://mirror.xyz/julianma.eth/G15Gs2TG
fnU93t8R7fuyFjTmZGIwwhRFhNhH_MO0dgGE

A. Elowsson, Feb. 2025. [Online]. Available: https://ethresear.ch/t/rainb
ow-roles-incentives-abps-focilr-as/21826

S. Wang, Y. Huang, W. Zhang, Y. Huang, X. Wang, and J. Tang,
“Private order flows and builder bidding dynamics: The road to
monopoly in ethereum’s block building market,” 2024. [Online].
Available: https://arxiv.org/abs/2410.12352

“Proposer/block builder separation-friendly fee market designs -
Economics,” Jun. 2021, section: Economics. [Online]. Available:
https://ethresear.ch/t/proposer-block-builder-separation-friendly- fee-m
arket-designs/9725

L. Heimbach, L. Kiffer, C. Ferreira Torres, and R. Wattenhofer,
“Ethereum’s proposer-builder separation: Promises and realities,” in
Proceedings of the 2023 ACM on Internet Measurement Conference,
2023, pp. 406—420.

E. Budish, “The combinatorial assignment problem: Approximate com-
petitive equilibrium from equal incomes,” Journal of Political Economy,
vol. 119, no. 6, pp. 1061-1103, 2011.

1. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and
J. Wang, “The unreasonable fairness of maximum nash welfare,” ACM
Transactions on Economics and Computation (TEAC), vol. 7, no. 3, pp.
1-32, 2019.

[27]

[29]

[30]

[31]

[32]

[33]
[34]

[35]

[37]

[38]

[39]

[40]

[41]

[42]

APPENDIX A
NASH EQUILIBRIUM

To compute the Nash Equilibrium for the input list-building
scheme (with v = 1), consider the following:

Let p; represent the probability of choosing object m; in
a Nash equilibrium. In a Nash equilibrium, all parties follow
the same probability distribution of choosing the object. Given
this information, let party n; be the decision-making party
when picking objects and try to deviate from the given Nash
Equilibrium Probability. For this party, let x,, represent the

probability of choosing an object m;. The utility for such a
party is given by

m n—1 m—1
()(pz) (1 Di
=1 k=0
m n ln 1 n—1 i k
= @ fil =) Zk+1 k 1—p;
=1

)nfkfl

Let c = —ﬁipi
n—1 k
n—1\ c
przfz pz)n ! <)
2\ Kk Jk+1
m n—1
1 n—1\ cFt!
— 'il_in_l'f' -

Now, from the integral of binomial expansion of (1+¢)"~!(by
parts from O to c)

S n—1) "t (140" -1
ko)Jk+1 n

k=0

From this and substituting ¢ = (157;),

uj = prlfz —)" 1 L <(1+C)n_1>
fz - (2 -1)
—Z - (-

We can ignore the higher-order term for any 0 < p; < 1 (As
long as p; is greater than O(1/n)). Thus,

xpz
n- pz

i X
Uj = Z pifz

For the Nash equilibrium to exist at values x,, = p;, Vi € m,
all terms should be individually equal (so that multiplying by
Zp, yields the same value across all m terms). Thus, Z’:— %.
Since each party selects k objects, we have Y p; = k, this
gives us

i = kfi
However, some p; can also be 0. For this to be the case, we
require that the utility term corresponding to % should be less

13)

than the utility of all other utility terms. Thus, f; < Ji for

npj
all § such that p; # 0. This implies if f; < Zgj

Some p; can exceed 1 as well, given the calculation needed
to find the value. In such a case, the probability will be capped
at 1, and all parties will choose that object.

The expected utility for the input list proposer would be less

fi
i:p; 70
n

then p; = 0.

than or equal to (in cases where due to randomness,

http://arxiv.org/abs/2505.13751
https://www.usenix.org/conference/usenixsecurity21/presentation/torres
https://www.usenix.org/conference/usenixsecurity21/presentation/torres
https://mirror.xyz/julianma.eth/G15Gs2TGfnU93t8R7fuyFjTmZGIwwhRFhNhH_M0dgGE
https://mirror.xyz/julianma.eth/G15Gs2TGfnU93t8R7fuyFjTmZGIwwhRFhNhH_M0dgGE
https://ethresear.ch/t/rainbow-roles-incentives-abps-focilr-as/21826
https://ethresear.ch/t/rainbow-roles-incentives-abps-focilr-as/21826
https://arxiv.org/abs/2410.12352
https://ethresear.ch/t/proposer-block-builder-separation-friendly-fee-market-designs/9725
https://ethresear.ch/t/proposer-block-builder-separation-friendly-fee-market-designs/9725

one or more m; with p; > 0 did not get selected). As an
example, if there exist two objects with values 3 each, and
two parties select one object each. In this case, if both parties
select the same object (occurs with probability 0.5), the utility
for both parties is 1.5. In this case, the expected utility for
both parties is 2.25, which is < 3.

APPENDIX B
ALLOCATION EXAMPLES

To look at various allocations, consider the following ex-
ample: 15 transactions exist with utilities 15, 14, 13, 11, 6, 5,
4,3,2,1,1, 1, 1, 1, 1. Let there be 5 IL proposers, choosing
three transactions each.

Let’s consider 5 different allocations as shown in Table III.
Al, A2, A3, and A4 represent the correlated equilibrium at
various

Party Index Utility
U100 Uro Uso Uo
Party 1 [0, 5, 10] 21 21 21 21
Party 2 [1, 6, 11] 19 19 19 19
AO | Party 3 2,7, 12] 17 17 17 17
Party 4 | [3, 8, 13] 14 14 14 14
Party 5 4,9, 14] 8 8 8 8
Party 1 [1, 4, 6] 14.6667 15.8333 17 24
Party 2 [0, 1, 3] 13.9167 17.1426 | 20.3333 40
Al Party 3 [0, 2, 3] 13.5833 16.726 19.8333 39
Party 4 [0, 2, 5] 13.0833 15.2554 17.5 33
Party 5 [0, 1, 2] 12.75 16.0887 19.5 42
Party 1 [0, 2, 4] 14.0833 16.2554 18.5 34
Party 2 [0, 1, 2] 12.75 16.0887 19.5 42
A2 | Party 3 [1, 3, 5] 13.3333 15.4167 17.5 30
Party 4 [0, 1, 3] 12.0833 15.2554 18.5 40
Party 5 [0, 2, 3] 11.75 14.8387 18 39
Party 1 [0, 1, 2] 11.5833 14.7715 18.1 42
Party 2 [0, 1, 2] 11.5833 14.7715 18.1 42
A3 | Party3 | [2.3, 4] 14 16 18 30
Party 4 [0, 1, 3] 10.9167 13.9382 17.1 40
Party 5 [0, 1, 3] 10.9167 13.9382 17.1 40
Party 1 [0, 1, 2] 8.4 11.0526 14 42
Party 2 [0, 1, 2] 8.4 11.0526 14 42
A4 Party 3 [0, 1, 2] 8.4 11.0526 14 42
Party 4 [0, 1, 2] 8.4 11.0526 14 42
Party 5 [0, 1, 2] 8.4 11.0526 14 42

TABLE III: Utility Received by Each Party for Different
Allocations. U, represents the utility of broadcasting the list
if the probability of broadcasting is p%

APPENDIX C
EXAMPLE FOR ALGORITHM 1

This example demonstrates the operation of algorithm 1
with n = 3 parties, m = 5 objects, k = 2 size of inclusion
list and U = [8,6,5, 3, 1] utility values of the objects.

60 is the sum of all fees paid by transactions in the Inclusion list, uagq
is the issuance reward for the aggregator. The analysis of these protocols is

based on our best knowledge. There is no formal analysis available for any
previous work.

In Step 1, the algorithm iteratively selects the highest-value
objects from U, dynamically adjusting selection counts in V.
This process continues until n - k selections are made or all
objects are fully allocated.

In Step 2, the algorithm distributes the selected objects
among the players. The objects are allocated based on their
adjusted utilities Uy and assigned in decreasing order of Uy.
Each round assigns objects in order, updating the players’
inclusion arrays L,. Step 2 starts with U = [8,6,5,3,1,
N=1[2,2,1,1,0], Uf = [4,3,5,3,0], and A =[2,0,1,3,4]

APPENDIX D
FAIRNESS OF ALGORITHM 1

Randomness has its limitations. On-chain randomness is
prone to grinding attacks and thus is not enough to guarantee
that the rewards from the input list-building scheme are equally
distributed. Thus, we prove that the round-robin allocation
of objects through algorithm 1 with v = 1 follows multiple
definitions of fairness known in the literature. The definition
as proposed by [41]

Lemma 13. (EF[-Fairness) The allocation achieved in algo-
rithm 1 is I1-Envy Free.

Proof. The proof for the algorithm is simple. During Step 2,
objects are allocated in a round-robin after sorting. Let o] be
allocated to party ¢ in round r. The following two properties
hold due to sorted allocation.

U(0f) < U(oj) Vryi < j
U(0}) < U(0f) Yisk <

Uor
where, U(0]) = %
n.r

%;

Let party j envy party ¢. If j < ¢, then in each round,
the utility gained by party j is greater than party ¢, and thus,
there is no envy. For 5 > ¢, let’s remove the first object party
1 received. Thus, for each object received by party ¢ in round
r, there exists an object in round r — 1 that party j receives.
Since the utility gained from an earlier round is always more
than that gained in the previous round, the utility of party j is
greater than that of party ¢ if the last object allocated to party
7 is removed. O

However, the property of EF1 does not determine any bound
on the difference in utilities for all parties. In our allocation,
since a correlated equilibrium is maintained while choosing
the objects, we can also prove an absolute bound on the utility
difference between parties.

Lemma 14. (Bounded Envy) In Algorithm 1, the utility for
each party is at least half the utility of all other parties.

Proof. We maintain the following invariant while selecting
objects in algorithm 1, except when n; = n.
ui U

nifnj—i—l

Loop | Uecurr | s | N | U after update |
1 [8, 6,5, 3, 1] 0| [1,0,0,0,0] [8, 6,5, 3, 1]
2 [4, 6,5, 3, 1] 1 [1, 1,0, 0, 0] [8, 6,5, 3, 1]
3 [4, 3,5, 3, 1] 2 | [1,1,1,0,0] [8, 6,5, 3, 1]
4 4, 3, 2.5, 3, 1] 0| [21,1,0,0] [8, 6,5, 3, 1]
5 [2.66, 3, 2.5, 3, 1] 1 [2,2,1,0,0] [8, 6,5, 3, 1]
6 [2.66, 1.5, 2.5, 3, 1] 3 [2,2,1, 1, 0] [8, 6,5, 3, 1]

Round | Description | Variable State

1 Assign A[0] once, | L =1[[0, 0, 1,0, 0], [1, 0, 0, 0, 0],
Al1] twice [1,0,0,0,0]]

2 Assign A[2] twice, | L=1[0, 1, 1, 0, 0], [1, 1, 0, 0, 0],
A[3] once [1,0,0,1,0]]

If n; = n, then the object would be allocated to all n parties
since all parties are allocated an object only once. Let’s say
some party that picks object o; in the last round envies the

party that picked o; in the first round.
Uo, > Uo,
T N, + 1

No,

i

> Yo
T Ny,

i

Yoj
Mo,

In the proof for Lemma 13, we have that utility for a party
with object o; is lower than the utility for a party with object

o; if both o0; and o; are removed.

U(Li \{oi}) = U(L; \ {0;})

The difference for the party with object o; who envies the
party with object o; is given by,

U(L;) — U(L;)
uoj Uo,
U(Lj \{oj}) + = = U(Li \ {oi}) — nfo
]uoj ' U,
SO\ (o) + 22 (N fo) - 2
CUo Mo U, o Yo U(L,)
T No, Moy +1 T Mg (N, +1) Tong 27 2

O

Now that we have bounded the envy, can we do better? In
another definition of Envy Freeness in [42], we have

Lemma 15. (EFx-Fairness) The allocation achieved in Algo-
rithm 1 is EFx Fair.

Proof. Consider party j envies party 4, i.e. U(L;) > U(L;).
Let u,, be the utility from r*" object allocated to party p €
{i,j}. We know that

ur u”
— > % Vr
n; — nj
wrt ool o
1 > = Vp,p' € {i, 4}, Vr
Np np/
Consider all objects allocated to party 7 in rounds 2, ..., k—1.
’Uf_l ur
J
> - Vref{2,...,k-1}
n. n;
7 3
u”; ul
J 7
DR DR (14)
re{l,..,k=2} 7 re{2,..k—1}
Further,
ni — nf
k 1 1
By W oo
E = 1 =51
n; n; +1 7 2n,
k—1 k 1
uj Ui o Yy
k—1 2 k B nt
nj nj n;
k—1 k 1
J J 7
s i (15)
J J g
Adding (14) and (15),
’U/T ur
J 7
D = D (16)
re{lk} J re{l k—1} ¢

Which implies U(L;) > U(L; \ of) where of is the lowest
utility item in L;, and thus proving the algorithm satisfies EFx
Fairness. O

Thus, we achieve the following fairness definition.

Theorem 7. (Fairness) Algorithm 1 achieves an EFx fair
allocation with the utility of each party being at least half
of any other party participating in the allocation.

The proof follows from Lemma 14 and Lemma 15.

| Allocation | Bribery Budgets
Fee tx 5 [1 | 13 [11 | 6 [5 | & [3aLLLLLT|
A0 8 6.5 5.5 3.5 0 0 0 0
Al 46.583 | 32.083 | 28.833 | 15.25 | 2.333 | 1.333 | 0.333 0
A2 46.25 31.75 28.5 22.25 2 1 0 0
A3 44.75 40.75 27 20.75 1 0 0 0
A4 49 44 39 0 0 0 0 0

TABLE IV: Censorship Resistance provided by each allocation.

	Introduction
	Paper Outline

	Design Overview
	Phase I: Input Selection
	Phase II: Aggregation

	Problem Statement
	Input List Building Protocol
	A Naïve Approach
	Input List Building Protocol
	A Greedy Algorithm

	Aggregation Protocol
	Outlining our Solution: AUCIL
	Analysis

	Censorship Resistance
	Censorship Resistance for Input-List building
	Censorship Resistance for Aggregation Step
	Overall Censorship Resistance

	Discussion
	Related Work
	Further Details of Inclusion List Designs

	References
	Appendix A: Nash Equilibrium
	Appendix B: Allocation Examples
	Appendix C: Example for Algorithm 1
	Appendix D: Fairness of Algorithm 1

