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Abstract

Succinct zero-knowledge arguments (zk-SNARKs) enable a prover to convince a verifier of
the truth of a statement via a succinct and efficiently verifiable proof without revealing any
additional information about the secret witness. A barrier to practical deployment of zk-SNARKs
is their high proving cost. With this motivation, we study server-aided zk-SNARKs, where a
client/prover outsources most of its work to a single, untrusted server while the server learns
nothing about the witness or even the proof. We formalize this notion and show how to realize
server-aided proving for widely deployed zk-SNARKs, including Nova, Groth16, and Plonk.

The key building block underlying our designs is a new primitive, encrypted multi-scalar
multiplication (EMSM), that enables private delegation of multi-scalar multiplications (MSMs).
We construct an EMSM from variants of the learning parity with noise assumption in which the
client does O(1) group operations, while the server’s work matches that of the plaintext MSM.

We implement and evaluate our constructions. Compared to local proving, our techniques
lower the client’s computation by up to 20× and reduce the proving latency by up to 9×.

∗Portions of this work were done while at Google. Work done at the University of Maryland was supported in part
by NSF award CNS-2154705.
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1 Introduction
Succinct zero-knowledge non-interactive arguments of knowledge (zk-SNARKs) enable a prover to
convince a verifier that it knows a private witness for an NP relation. They have two properties
that enable broad applications. First, proofs are succinct and can be easily verified; i.e., the proof
size and verification time are sublinear in the size of the NP relation. Second, proofs are zero
knowledge and reveal no information about the witness. Recent years have seen many zk-SNARK
constructions [37, 47, 31, 41], applications [7, 50, 12, 58, 1], and real-world deployments [66, 49, 36].

Adoption of zk-SNARKs, however, is hindered by a key limitation: while proof verification is
fast, proof generation is expensive and thousands of times slower than directly checking the NP
relation [27]. This overhead typically stems from the need for the prover to execute a number of
costly cryptographic operations (e.g., elliptic-curve operations) that scale at least linearly with the
relation size. Applications such as private smart contracts [12], auditable key transparency [61], and
verifiable machine learning [1] remain limited to only small instances due to high proving costs.

One way to address this limitation is for provers to outsource proof generation to more-powerful
cloud servers [63, 44, 57], an idea being actively pursued by several startups [51, 60, 54, 29].
For applications in which privacy is critical—such as private transactions [7] and anonymous
credentials [58, 36]—the servers must learn no information about the witness, which may include
sensitive client data (e.g., private keys or user credentials). This challenge has motivated a recent
line of work on private delegation of zk-SNARKs [52, 21, 33, 35, 32], where clients outsource proving
to servers that remain oblivious to the client’s witness. As we discuss next, however, existing
schemes fall short of the efficiency, usability, and security required for real-world applications.

1.1 Prior Work

Prior work on private delegation of zk-SNARKs can be categorized into two groups: multi-server
protocols [21, 33] relying on secret sharing and single-server protocols [35] using fully homomorphic
encryption (FHE). We discuss each in turn. (See Table 1 for a summary comparison.)

Multi-server delegation. One solution to privately delegate zk-SNARK proving is for a client to
secret-share its witness with multiple servers, who then run a secure multi-party computation (MPC)
protocol to compute the proof. Boneh et al. [52] called this framework collaborative zk-SNARKs
and proposed concrete instantiations by applying standard MPC protocols to several zk-SNARKs,
including Marlin [20], Groth16 [37], and Plonk [31]. Chiesa et al. [21] (for Marlin) and Garg et
al. [33] (for Groth16, Plonk, and Marlin) advanced this approach and showed that when relying on
sufficiently many servers, it is even possible to reduce the latency of proof generation. Subsequent
works have improved the efficiency and security of this framework [64, 38, 46, 28, 34], though in
some cases only by modifying the underlying zk-SNARK.

The main limitation of this approach is the need to deploy multiple servers, with the client
having to trust that some threshold of them behave honestly. (If the number of corrupted servers
exceeds the threshold, the client’s witness is exposed.) Another limitation of these schemes is that,
although they keep the witness private, they reveal information about the statement and proof to
all the servers.1 This is unacceptable for applications where the client must remain unlinkable to
the proof as in, e.g., private transactions [7] or anonymous credentials [58].

1These protocols reveal hash-function inputs to the servers so they can compute Fiat–Shamir challenges; one could
avoid this using generic MPC, but this would incur a significant cost, since the hashes are evaluated inside the MPC.
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co-SNARKs [52] ≥ 2 ✗ ✗ ✓ Groth16; Marlin; Plonk; Fractal
EOS [21] ≥ 2 ✓ ✗ ✗ Marlin
ZKSaaS [33] ≥ 8 ✓ ✗ ✗ Groth16; Plonk; Marlin
DFS [38] ≥ 2 ✓ ✗ ✓ Marlin∗
Siniel [64] ≥ 2 ✓ ✗ ✓ Marlin
Liu et al. [46] ≥ 8 ✓ ✗ ✓ HyperPlonk
Fang et al. [28] ≥ 2 ✓ ✗ ✓ Plonk∗

Blind FRI [35, 32] 1 ✗ ✗ ✗ Fractal∗
This paper 1 ✓ ✓ ✓ Nova; Groth16; Plonk

∗ Delegation-specific adaptations.

Table 1: Private delegation schemes. Number of servers assumes the scheme tolerates at least one
corrupted server. Although EOS claims malicious security, an attack is known [38].

Single-server delegation. Alternatively, one can delegate proof generation to a single, untrusted
server; this avoids the need to deploy multiple servers and reduces the necessary trust assumptions.
While single-server private delegation can be generically realized using fully homomorphic encryption
(FHE), doing so directly will not yield a practical scheme due to the associated overhead [65]. Garg
et al. [35] reduce this overhead for FRI-based zk-SNARKs [6] by minimizing non-black-box use
of the underlying primitives. Follow-up work [2, 32] showed optimizations, but even in the best
existing schemes (i) the server computation is orders of magnitude slower than the native proving
time, thus increasing the latency of proof generation, and (ii) the client’s cost—though smaller than
native proving—is still fairly high.

Besides the overhead introduced by using FHE, existing single-server schemes have a number
of other drawbacks. Most prominent is that they change proof verification; that is, the proofs
they generate are not compatible with existing zk-SNARK verifiers, and in fact verification time
increases due to the need to verify FHE decryption. Moreover, existing single-server schemes only
support FRI-based zk-SNARKs (e.g., Fractal [22]) and not popular group-based zk-SNARKs such as
Groth16 or Plonk. As with multi-server schemes, existing single-server schemes reveal the statement
and the final proof to the server, and it would be prohibitive to prevent this (cf. footnote 1). Finally,
current single-server schemes consider only a semi-honest server, and a malicious server could use a
selective-failure attack to learn information about the witness based on whether the client aborts.

1.2 Our Contributions

We propose concretely efficient single-server private delegation schemes that match the best features
of prior work while addressing their limitations (see Table 1). In particular, our constructions
support group-based zk-SNARKs without any modifications; achieve unlinkability since they hide
the witness, statement, and final proof from the server; and are secure even against a malicious
server. Furthermore, our schemes are more efficient—for both client and server—than existing
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single-server solutions, and we improve latency compared to local computation by the client.
We focus on group-based zk-SNARKs [37, 31, 41] as they are among the most widely deployed

proof systems in practice (due to their minimal verification overhead), yet their proof generation
time is typically slower than in alternate schemes. The prover overhead in these zk-SNARKs is
dominated by elliptic-curve operations, which are expensive to realize in the circuits needed for
FHE; thus, single-server delegation for theze zk-SNARKs using FHE is impractical.

Our approach to single-server delegation for group-based zk-SNARKs begins with a basic
observation that the elliptic-curve operations in these proof systems are primarily in the form
of group multi-scalar multiplications (MSMs), which are linear operations with simple algebraic
structure. This motivates us to construct an efficient subroutine for outsourcing MSMs. That
protocol allows the most expensive portion of proving (i.e., group operations) to be offloaded, while
the cheaper parts (i.e., field operations) can be run locally. We show the following results:

• Encrypted multi-scalar multiplication. As a foundational building block, we introduce
encrypted MSM (EMSM), a new primitive of independent interest that allows a client to privately
delegate MSM computation to an untrusted server. We then propose an EMSM scheme based on
variants of the learning parity with noise (LPN) assumption. We optimize the efficiency of our
scheme by instantiating the LPN assumption with repeat-accumulate-accumulate (RAA) codes [17].
In our scheme, the server computation matches that of the native (plaintext) MSM, while the
client performs only a constant number of group operations. We also show how to achieve security
against a malicious server with only 2× overhead. Finally, we observe that our scheme supports
public linear maps applied to MSM inputs, which further reduces the cost in our applications.

• Delegating (polynomial) commitments. As an immediate application of EMSM, we show
how it can be used to outsource Pedersen and KZG commitments [40]. As KZG commitments
are a key building block in many zk-SNARKs and other applications [55, 20, 19, 30], we believe
that private outsourcing of KZG commitments is of independent interest.

• Server-aided zk-SNARKs. As our main contribution, we introduce and formalize the notion of
SAP-SNARKs—zk-SNARKs with server-aided proving—whereby a client generates a proof with
the help of an untrusted server who learns nothing about the client’s witness or the final proof.
We then show how to achieve server-aided proving for the widely-deployed Nova [41], Groth16 [37],
and Plonk [31] zk-SNARKs. In each case, the group operations done by the prover are in the
form of MSMs and can be privately delegated using our EMSM scheme. Moreover, we show that
some of the scalar operations performed by the client—which correspond to public linear maps
applied to MSM inputs—can also be offloaded, thereby further reducing latency and the client’s
workload. Our technique is broadly applicable to other group-based zk-SNARKs (e.g., Marlin [20]
or Hyperplonk [19]), as well as recursive arguments such as HyperNova [42] and KZH-fold [39].

• Implementation and evaluation. We experimentally evaluate our EMSM scheme and its
applications to delegating commitments and server-aided proving for Nova and Groth16. We
show that when proving over 4 million constraints using Nova and delegating from a small AWS
instance (r6i.large) to a larger instance (c7i.24xlarge), our SAP-SNARK lowers the client’s
computation by up to 20× and reduces the proof-generation latency by up to 9×.
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1.3 Example Applications

SAP-SNARKs are useful in any scenario where a lightweight client wants to outsource proof
generation to a more-powerful entity. We give several real-world examples.
Private transactions and smart contracts. Generating even a simple private transaction
in Zcash can take several minutes on a mobile device [67]. It can be even slower in private
blockchains [12], where users prove correct execution of an arbitrary (private) smart contract.
SAP-SNARKs reduce clients’ work and the latency for generating transactions, enhancing overall
performance and user experience.
Verifiable and private machine learning. zk-SNARKs can enable verification of various
properties of machine-learning models, e.g., inference correctness [45] or model provenance and
integrity [1]. Circuits that arithmetize these properties are typically large and their size scales
with the size of the model and the dataset, which makes zk-SNARKs computationally intensive
for realistic deployments. Our SAP-SNARKs can accelerate proof generation without revealing
sensitive model parameters or datasets to the server.
Prover markets. Hardware acceleration can substantially boost the performance of zk-SNARK
provers [59, 24], yet such hardware may not be readily accessible to average users. Prover markets [60]
are networks of servers with specialized hardware (e.g., GPUs or FPGAs) to which clients can
delegate proof generation. Due to the prohibitive communication and/or computation costs of
existing private delegation schemes, most currently deployed prover markets operate only in a
non-private mode, limiting their applicability to real-world settings. SAP-SNARKs address this
problem and enable efficient use of servers’ resources.
Private identity verification. zk-SNARKs also have applications to private authentication and
anonymous credentials [58], with a prominent example of zkLogin [4]. In such scenarios, users
typically operate on lightweight devices such as smartphones, where proof generation is quite slow.
SAP-SNARKs would enable users to offload this work to more powerful servers without revealing
their credentials.
Image authentication. zk-SNARKs can be used to certify the provenance of images, even after
(an approved set of) edits have been applied [25]. Despite efforts to optimize zk-SNARKs for such
applications, proving time remains slow, often taking tens of minutes. SAP-SNARKs enable a client
to offload most of its workload to a server while keeping images/edits hidden.

2 Preliminaries
We use x := z for assignment and k ← K for uniform sampling from a set K. We define [n] =
{0, 1, . . . , n−1}. We use bold lowercase letters to denote column vectors (e.g., a) and bold uppercase
letters for matrices (e.g., A). We write ai for the ith element of a, and Ai,j for the element of A in
the ith row and jth column. We let Ai,∗ and A∗,j denote the ith row and the jth column of A,
respectively. We use wt(a) to denote the Hamming weight of a. We let λ be the computational
security parameter and let negl(λ) denote a negligible function in λ. An algorithm is efficient if its
running time is polynomial in λ and its input length.
Algebraic notation. We use Fq to denote the field of integers modulo a prime q, with F∗q = Fq \{0}.
We let G be a group of prime order q with generator g ∈ G, written additively. Multi-scalar
multiplication (MSM) of a ∈ Fm

q and g ∈ Gm is denoted by ⟨a, g⟩ =
∑

i∈[m] aigi.
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R1CS circuit format. A rank-1 constraint system (R1CS) is a representation of arithmetic
circuits used in many zk-SNARKs [37, 20]. An R1CS with n constraints is defined by matrices
A, B, C ∈ Fn×m

q , each with Θ(1) non-zero entries per row. An R1CS is satisfied by an instance
x ∈ Fℓ

q and witness w ∈ Fm−ℓ
q if (Az) ⊙ (Bz) = Cz, where z := x∥w and ⊙ is the element-wise

(Hadamard) product.

Universal composability framework. We use the universal composability (UC) framework [18]
to define and prove security of our protocols. We say protocol Π UC-realizes an ideal functionality F
if for any adversary A there is an efficient simulator Sim such that for any environment Z with
arbitrary auxiliary input z, the output of Z in the real-world execution (where the parties execute Π
and interact with A) is indistinguishable from the output of Z in the ideal-world execution (where
the parties interact with Sim and F). We also consider F-hybrid models, which means that the
parties running a protocol also have access to an auxiliary ideal functionality F .

2.1 zk-SNARKs

A non-interactive argument system for a relation R allows a prover P to convince a verifier V that
∃w : (x, w) ∈ R, where x is a public instance and w is a private witness. It has the following syntax:

• Setup(1λ)→ pp: a setup algorithm that, on security parameter λ, outputs public parameters pp.

• Prove(pp; x, w)→ π: a proving algorithm that, given public parameters pp, a public instance x,
and a private witness w, outputs a proof π.

• Verify(pp; x, π)→ {0, 1}: a verification algorithm that, given public parameters pp, an instance x,
and a proof π, outputs either 1 (accept) or 0 (reject).

A non-interactive argument system is complete if V(pp; x, Prove(pp; x, w)) = 1 for all pp output by
Setup and all (x, w) ∈ R. Informally, it satisfies soundness if no efficient P⋆ can output an accepting
proof for x if ∄w : (x, w) ∈ R. Knowledge soundness further ensures there is an efficient extractor
such that if an efficient P⋆ convinces V to accept, then the extractor can use P⋆ to compute a witness
w such that (x, w) ∈ R. Zero knowledge means there is an efficient simulator that, given only x,
outputs (pp, π) indistinguishable from the honestly generated outputs of Setup and P . Succinctness
means the proof size and verification time are sublinear in the size of the relation R. zk-SNARK
stands for (z)ero-(k)nowledge (S)uccinct (N)on-interactive (Ar)gument of (K)nowledge.

2.2 Commitment Schemes

A commitment scheme for a message space M consists of algorithms ⟨Setup, Commit⟩ as follows:

• Setup(1λ)→ pp: a setup algorithm that, on security parameter λ, outputs public parameters pp.

• Commit(pp; m; r)→ c: a commitment algorithm that, given the public parameters pp, a message
m ∈M, and randomness r, outputs a commitment c.

A commitment can be opened by sending m and r. A commitment scheme is hiding if no efficient
adversary can distinguish which of two messages corresponds to a given commitment. It is binding
if no efficient adversary can output a commitment that it can open to two distinct messages.
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Pedersen commitments. Pedersen commitments [53] for message space Fn
q use uniform group

generators (h, g0, g1, · · · , gn−1) ∈ Gn+1 as public parameters. The commitment to a ∈ Fn
q using

randomness r ∈ Fq is c := rh + ⟨a, g⟩, and so involves computing a single MSM.

Polynomial commitments. A polynomial commitment is a commitment for the message space
F<n

q [X] that enables proving evaluations of committed polynomials. Formally, it consists of:

• Setup(1λ)→ pp: a setup algorithm that, on security parameter λ, outputs public parameters pp.

• Commit(pp; f(X); r)→ c: a commitment algorithm that, given public parameters pp, a polynomial
f(X) ∈ F<n

q [X], and randomness r, outputs a commitment c.

• Open(pp; c, f(X), x; r) → (y, π): an opening algorithm that, given public parameters pp, the
commitment c, polynomial f(X), an evaluation point x, and randomness r, outputs the evaluation
y = f(x) and an opening proof π.

• Verify(pp; c, x, y, π) → {0, 1}: a verification algorithm that, given public parameters pp, some
commitment c, an evaluation pair (x, y), and a proof π, outputs 1 (accept) or 0 (reject).

A polynomial commitment is hiding if the commitment is hiding and the opening proof is a
zero-knowledge argument of correct evaluation. It is extractable if the commitment is binding and
the proof is a knowledge-sound argument of evaluation.

KZG commitments. Let G1,G2 be groups of prime order q with generators g1 ∈ G1 and g2 ∈ G2,
with an associated bilinear map e : G1 ×G2 → GT . KZG commitments [40] work as follows:

• Setup: output pp := (g1, τ · g1, . . . , τn−1 · g1, τ · g2), where τ ← Fq is a secret trapdoor.

• Commit: given a polynomial f(X) =
∑n−1

i=0 fiX
i, output c := f(τ) · g1 =

∑n−1
i=0 fi · (τ i · g1).

• Open: given x, output the evaluation y = f(x) and π := q(τ) · g1 =
∑n−2

i=0 qi · (τ i · g1), where
q(X) = f(X)−y

X−x .

• Verify: given c, x, y, and π, output accept if and only if e(π, τ · g2 − x · g2) = e(c− y · g1, g2).

This variant of KZG is binding, but not hiding; hiding is easy to add if needed. Note that Commit
and Open each involve only a single MSM.

2.3 Error-Correcting Codes

A linear error-correcting code C with block length N and dimension n < N is a set of codewords
{GT x | x ∈ Fn} ⊂ FN where G ∈ Fn×N is a generator matrix. The rate of C is R = n/N . The
distance of C is the minimum Hamming distance between two codewords; for a linear code, it equals
the minimum weight of a nonzero codeword. The relative distance of C is δ := minv∈C\{0N}wt(v)/N .

RAA codes. Repeat-accumulate-accumulate (RAA) codes are linear error-correcting codes with
linear encoding time [17]. For block length N , dimension n, and constant r = (N/n) ∈ N, we define
the following:

• Fr ∈ Fn×N is the repeat matrix that repeats each entry in the input vector r times; that is,
(Fr)i,j = 1 if ir ≤ j < (i + 1)r and (Fr)i,j = 0 otherwise.
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• A ∈ FN×N is the upper-triangular accumulator matrix with all nonzero entries equal to 1; that
is, (Ar)i,j = 1 if i ≤ j and (Ar)i,j = 0 otherwise.

• For σ : [N ]→ [N ] a permutation, Mσ ∈ FN×N denotes the corresponding permutation matrix;
that is, (Mσ)i,j = 1 if σ(j) = i and (Mσ)i,j = 0 otherwise.

Permutations σ1, σ2 : [N ]→ [N ] define a generator for the RAA code as Gσ1,σ2 := Fr ·Mσ1 ·A·Mσ2 ·A.

2.4 Learning Parity with Noise

At a high level, the learning parity with noise (LPN) problem [10] over a general field F states
that for a public matrix A ∈ FN×m, a uniform secret s ∈ Fm, and a sparse vector e ∈ FN from
some error distribution, (A, As + e) is computationally indistinguishable from (A, b) with b← FN

uniform. The dual-LPN assumption is an equivalent formulation [48, Lemma 4.9] stating that for
a public G ∈ Fn×N chosen from a distribution G and a sparse noise vector e ∈ FN chosen from a
distribution E , it holds that (G, Ge) is indistinguishable from (G, b) where b← Fn is uniform.

For dual-LPN, various choices for the distributions G and E have been considered. A standard
choice for the noise distribution E is the uniform distribution over vectors in FN of Hamming
weight t, where t = O(1); see [43] for a detailed security analysis. Recent work [13, 16, 14, 56, 8] has
instantiated G as the uniform distribution over generator matrices of linear codes with fast encoding.
It is widely believed that the dual-LPN assumption holds under such instantiations when certain
conditions hold, as we discuss next.

Security against linear tests. For a distribution D over Fn and a nonzero vector v ∈ Fn, the
bias of D with respect to v is

biasv(D) := max
c∈F

∣∣∣ Pr
x←D

[vT · x = c]− 1
|F|

∣∣∣.
For a generator matrix G ∈ Fn×N and a noise distribution E over FN , let EG denote the distribution
of Ge ∈ Fn when e is sampled from E . All known attacks against LPN and its variants [5, 11, 62, 68]
involve finding a v ∈ Fn for which the bias of EG with respect to v is large. Thus, to thwart known
attacks, we must ensure that (with high probability) there does not exist such a v. Prior work [14]
shows that this can be done by ensuring that, for some δ, (i) the code defined by G has relative
distance at least δ and (ii) ϵ = maxwt(v)≥δN biasv(EG) is small. Since the noise distribution E we use
is uniform over vectors of Hamming weight t, we have ϵ < e−2δt [14]; thus, to achieve λ-bit security
of dual-LPN against known attacks we require

e−2δt ≤ 2−λ+log2 N ⇐⇒ δ ≥ ln 2 · (λ− log2 N)
2t

. (1)

We ensure that the code defined by G has relative distance δ with overwhelming probability over
choice of G sampled from G.

There are three scenarios that do not directly fit into the linear-test framework [14]: when the
code admits an efficient decoding algorithm, yielding a trivial attack on the dual-LPN problem;
when the noise is highly structured and the adversary is given sufficiently many samples for a given
noise pattern [3]; and when the field F has nontrivial subfields. We make sure to avoid these cases.

Instantiation with RAA codes. In this work, we instantiate G as a distribution over generators
of an RAA code (cf. Section 2.3), which has been conjectured to be safe for dual-LPN [8]. To
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provide further evidence, we analyze the minimum distance of RAA codes over arbitrary finite fields
(see Appendix A) and then use the linear-test framework to set parameters; further details are given
in Section 5.1.

3 Encrypted Multi-Scalar Multiplication
We first formalize the notion of encrypted multi-scalar multiplication (EMSM) and then propose a
construction based on the dual-LPN assumption. We then explore applications to the delegation of
commitment schemes.

3.1 Definition

Fix a public group basis g ∈ Gn. An EMSM scheme allows a client who holds a private input z ∈ Fn
q

to outsource the computation of ⟨z, g⟩ to a single, untrusted server. More formally, an EMSM
scheme has the following syntax:

• Setup(1λ, g)→ pp: a setup algorithm that, given λ and g ∈ Gn, outputs public parameters pp.

• Encrypt(pp, z) → (ct, st): an encryption algorithm that, given the public parameters pp and a
plaintext z ∈ Fm

q , outputs a ciphertext ct and a secret state st.

• Evaluate(pp, ct) → em: an evaluation algorithm that, given the public parameters pp and the
ciphertext ct, outputs an encrypted result em.

• Decrypt(pp, em, st) → dm: a decryption algorithm that, given the public parameters pp, an
encrypted result em, and the secret state st, outputs a result dm (possibly ⊥).

Let FMSM (cf. Figure 1) be the reactive two-party ideal functionality that is initialized with
a public g and, when given input z from the client, returns ⟨z, g⟩; reactive means that FMSM
can be queried multiple times after being initialized. A corrupted server can be either semi-
honest or malicious, giving two flavors of security for EMSM. A malicious server can abort the
functionality and thus prevent the client from receiving output. We say an EMSM scheme Π =
(Setup, Encrypt, Evaluate, Decrypt) is secure if the natural two-round protocol based on Π—in which
the client runs Encrypt and sends the ciphertext to the server, the server runs Evaluate and sends
back the result, and the client computes Decrypt—UC-realizes FMSM in the Setup-hybrid model.
This implies the following properties:

• Correctness: in an honest execution of Π, the client always outputs the correct result ⟨z, g⟩.

• Privacy: the server learns nothing about the input z.

• Malicious security: a malicious server cannot make the client output an incorrect value; the most
it can do is make the client abort and output ⊥. A malicious server learns no information about
z based on the client’s decision to abort (i.e., selective-failure attacks are ruled out).

Efficiency. The trivial EMSM scheme, where the client computes the MSM locally, is secure; we
are interested in EMSM schemes where the client’s work is less than this local computation.
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Functionality FMSM

Initialization: The client and the server initialize the functionality with g ∈ Gn.

Evaluation: Upon receiving (eval, z) from the client, send eval to the server. If the server
sends continue, send ⟨z, g⟩ to the client. If the server sends abort, send ⊥ to the client.

Figure 1: The multi-scalar multiplication ideal functionality.

Realizing the setup. At a high level, there are two ways the setup can be realized for an EMSM
scheme. First, each client could compute Setup by itself; this may be more expensive than computing
a single MSM locally, but the cost would be amortized over multiple MSM evaluations. The other
possibility is to have a semi-trusted entity who computes Setup once and for all, with the result
being used by multiple clients. While in general it may be undesirable to introduce an additional
trusted entity, in our EMSM scheme Setup is transparent, meaning there is no secret trapdoor that
needs to be deleted, and also verifiable, meaning that anyone can verify the correctness of the
setup—though this verification requires Θ(n) group operations. In particular, this means that for
our EMSM scheme the server itself could generate the requisite setup; a malicious server could
potentially generate an incorrect setup, but would risk being caught by doing so.

3.2 Construction

We present the framework for our EMSM scheme based on the dual-LPN assumption. Then, we
discuss a concretely efficient instantiation of our framework using RAA codes.

3.2.1 Protocol Design

MSM is a linear operation, i.e., ⟨z + r, g⟩ − ⟨r, g⟩ = ⟨z, g⟩. Thus, a natural idea is to have the
client choose a uniform r and send z + r to the server, which returns ⟨z + r, g⟩; the client outputs
⟨z + r, g⟩ − ⟨r, g⟩. In this naive approach the client computes ⟨r, g⟩, which costs the same as
computing the MSM. Our main insight is to mask z with some structured, pseudorandom r such that
⟨r, g⟩ can be computed using sublinear group operations. Specifically, let r = Ge where G ∈ Fn×N

is a generator matrix with N = O(n) and e ∈ FN is a secret weight-t noise vector chosen by the
client, with t = O(1). Note that r is pseudorandom if the dual-LPN assumption holds. Furthermore,

⟨r, g⟩ = ⟨
∑

i∈[N ]
ei ·G∗,i, g⟩ =

∑
i∈[N ],ei ̸=0

ei · ⟨G∗,i, g⟩,

where the {⟨G∗,i, g⟩}i∈[N ] are independent of the client’s input. Thus, once h = GT g (so that
hi = ⟨G∗,i, g⟩) is published, the client can then compute

⟨r, g⟩ =
∑

i∈[N ],ei ̸=0
ei · hi = ⟨e, h⟩

using only O(wt(e)) = O(t) = O(1) group operations.
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Note that, by a standard hybrid argument, dual-LPN holds even if the client uses the same
generator G to mask polynomially many inputs, as long as the client samples a fresh noise vector e
each time. Thus, if G is public and fixed, the corresponding {hi}i∈[N ] can be published once and
reused. Note that the setup algorithm is transparent (assuming G is generated using the output of
a random oracle), and the values {hi} can be verified by anyone.
Achieving malicious security. As described, the scheme is secure against a semi-honest server,
but a malicious server can violate correctness by causing the client to output an incorrect result.
(Note, however, that the protocol is not vulnerable to a selective-failure attack violating privacy.)
We show that our protocol can be adapted to achieve malicious security with only 2× overhead.
To do so, we have the client choose a uniform c← Fq and then run the semi-honest protocol twice
on inputs z and zck = c · z to get outputs dm, dmck. Then, if dmck = c · dm, the client outputs dm;
otherwise, it outputs ⊥. To see that this ensures security against a malicious server, let v, vck be
the vectors sent by the client to the server and assume the server responds with em = ⟨v, g⟩+ ϵ
and emck = ⟨vck, g⟩ + ϵck with ϵ ̸= 0. This causes the client to reconstruct dm = ⟨z, g⟩ + ϵ and
dmck = ⟨c · z, g⟩+ ϵck; thus, the client outputs ⊥ unless ϵck = c · ϵ. Since c is uniform and hidden
from the server, the client outputs ⊥ except with negligible probability 1/q.

Our EMSM scheme is specified in Figure 2 with components for malicious security in gray .
Theorem 3.1. Assume the dual-LPN holds for some generator distribution G and an error distribu-
tion E. Then the semi-honest (resp., malicious) EMSM of Figure 2 is secure against a semi-honest
(resp., malicious) server.
Proof. We focus on the malicious setting; the semi-honest setting follows by an analogous argument.

We show that the protocol obtained from the malicious version of ΠMSM (as described earlier)
UC-realizes FMSM in the Setup-hybrid model. Consider a simulator Sim that interacts with an
adversary A corrupting the server. In each execution, the simulator Sim chooses uniform v, vck and
sends these to the A; it then receives em, emck from A. If em = ⟨v, g⟩, emck = ⟨vck, g⟩, then Sim
sends continue to FMSM; otherwise, it sends abort to FMSM. Computational indistinguishability of
the adversary’s view in the ideal world and its view in the real world follows from the dual-LPN
assumption; correctness of the client’s output follows from the argument given above.

Supporting public linear maps. We observe that any EMSM scheme naturally supports the
application of a fixed (public) linear map to the client’s input before computing the MSM; that is,
we can delegate computing ⟨Hz, g⟩, where H is public and z is private. To do so, we use the fact
that ⟨Hz, g⟩ = ⟨z, HT g⟩; thus, we can run the setup on HT g, and the protocol proceeds as before.
One input, multiple MSMs. A client may need to outsource ⟨z, g1⟩, . . . , ⟨z, gℓ⟩ for multiple
bases g1, . . . , gℓ but the same input z. While this can be done using ℓ independent executions of
our EMSM scheme, it is possible to do better when it is acceptable to reveal to the server that the
same input is being used. First, for Setup, it suffices to fix a single generator matrix G (though ℓ
vectors h1 = GT g1, . . . , hℓ = GT gℓ are still needed). More significantly, the client only needs to
send a single ciphertext v. The server then returns {emi = ⟨v, gi⟩}, from which the client recovers
the outputs {dmi} as before. The same idea applies to the malicious version of the scheme.

3.3 Efficient Instantiation

We instantiate the EMSM scheme of Figure 2 with an error distribution E that is uniform over
weight-t vectors in FN , where t ∈ O(1) and N = O(n) (cf. Section 2.4). The client then performs
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ΠEMSM

Parameters: n the input length; N = O(n) block length; G a code generator distribution
over Fn×N

q ; E an error distribution over weight-t noise vectors in FN
q with t = O(1).

Setup(1λ, g):

• Sample G← G, and compute h := GT g.

• Return the public parameters pp := (G, h).

Encrypt(pp; z):

• Sample e← E and evaluate r := Ge.

• Sample eck ← E and evaluate rck := Geck.

• Sample a uniform random challenge c← Fq.

• Compute v := r + z , vck := rck + c · z .

• Return ct := (v , vck ) and st := (e , eck, c ).

Evaluate(pp; ct):

• Return em∗ := (⟨v, g⟩ , ⟨vck, g⟩ ).

Decrypt(pp; em∗, st):

• Parse em∗ as em , emck .

• Compute dm := em− ⟨e, h⟩.

• Compute dmck := emck − ⟨eck, h⟩.

• If dmck ̸= c · dm, return ⊥; else return dm.

Figure 2: The encrypted multi-scalar multiplication protocol.

O(t) = O(1) group operations. For a uniform matrix G, however, the client might have to perform
up to n · t field multiplications2 and n · (t− 1) field additions to compute Ge; the same cost applies
to computing Geck. If we let G be a structured matrix for which dual-LPN still holds, we can
reduce this encoding cost.

Several such “LPN-friendly” choices of G have been studied in prior work [15, 14]. Here, we let
2For instance, with n = 220, N = 222, and G sampled uniformly from Fn×N , we require t ≥ 40 to achieve 100-bit

security [13].
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G be a generator for an RAA code (cf. Section 2.3) since such codes offer linear-time and concretely
efficient encoding. Recall this means G = FrMσ1AMσ2A, such that Fr is an r-repetition matrix
for r = N/n; Mσ1 and Mσ2 are permutation matrices corresponding to permutations σ1, σ2 over
[N ]; and A is the accumulation matrix. It is then possible to compute Ge using at most 3N field
additions: each A and Fr requires N − 1 additions, while applying Mσ1 and Mσ2 requires no field
operations. When N = 4n (see Section 5), this reduces the client’s work to 3N = 12n field additions.

Using RAA codes also makes the setup procedure more efficient. When G is arbitrary, computing
h requires Θ(nN) group multiplications, but when G is the generator matrix of an RAA code this
drops to 2N group multiplications as discussed above. Note that this also holds when delegating a
public linear map H, as long as H is a structured matrix that enables fast multiplication; i.e., even
if HT GT is not structured, we can use the structure of GT and HT by applying them sequentially.

We discuss concrete parameter choices and the resulting concrete security in Section 5.1. We also
note that several other families of error-correcting codes [26, 14] could also be used to instantiate
our framework. We leave a full exploration of the trade-offs for future work.

3.4 Outsourced KZG Commitments

An immediate application of EMSM is outsourcing the Pedersen and KZG commitment schemes.
Since KZG commitments are a key building block underlying many protocols, including zk-SNARKs,
we focus on the latter. (The application to Pedersen commitments is similar.)

Recall from Section 2.2 that the commitment and opening algorithms of the KZG each require
only a single MSM. In particular, for g = (τ i · g1)i∈[n], the commitment algorithm outputs ⟨f , g⟩,
where f is the coefficient vector of a polynomial f(X) ∈ F<n

q [X]; to prove that f(x) = y, the opening
algorithm computes q(X) = f(X)−y

X−x and outputs ⟨q, g⟩ where q is defined similarly. In both cases,
the dominant computation—the MSMs—can be outsourced via an EMSM. We refer to the result as
encrypted KZG (EKZG). For completeness, we present the ideal functionality for outsourced KZG
commitments in Figure 3, and an EKZG protocol ΠKZG in Figure 4. The following is immediate:

Theorem 3.2. If ΠEMSM is a secure semi-honest (resp., malicious) EMSM scheme, then ΠKZG
UC-realizes FKZG in the Setup-hybrid model for semi-honest (resp., malicious) adversaries.

4 zk-SNARKs with Server-Aided Proving
We formalize the notion of zk-SNARKs with server-aided proving (SAP-SNARKs) that enable a
client to (partially) outsource the work of proof generation for a zk-SNARK to a more powerful
server. We then propose server-aided proving protocols for Nova [41], Groth16 [37], and Plonk [31].

4.1 Definition

Let Σ = (Setup, Prove, Verify) be a zk-SNARK. A server-aided proving scheme for Σ consists of:

• Setup(ppΣ)→ pp: a setup algorithm that, given ppΣ := Σ.Setup, outputs public parameters pp.

• ⟨Prove.S(ppΣ, pp), Prove.C(ppΣ, pp, x, w)⟩ → π: an interactive protocol between a server S who
holds the public parameters ppΣ, pp and a client C that holds the public parameters ppΣ, pp, a
statement x, and a witness w. Finally, C outputs a proof π := Σ.Prove(ppΣ; x, w) (possibly ⊥).
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Functionality FKZG

Initialization: The client and the server initialize the functionality with g = (τ i · g1)i∈[n].

Commitment: Upon receiving (com, f(X)) from the client, where f ∈ F<n[X], send com to
the server and adversary. If the server sends continue, send c = ⟨f , g⟩ to the client, where f is
the coefficient vector of f(X) and store f(X). If the server sends abort, send ⊥ to the client.

Opening: Upon receiving (open, f(X), x) from the client, send open to the server and
adversary. If the server sends continue, send ⟨q, g⟩ to the client, where q is the coefficient
vector of the polynomial q(X) = f(X)−f(x)

X−x . Otherwise, if the server sends abort, then send ⊥
to the client.

Figure 3: Ideal functionality for KZG commitments.

Protocol ΠKZG

Parameters: g = (g1, τ · g1, . . . , τn−1 · g1, τ · g2) KZG public parameters; ΠEMSM an EMSM.

Setup: The EMSM setup ΠEMSM.Setup(1λ, g) is executed, giving the output ppΠEMSM .

Commitment: On input coefficient vector f , the client runs (ct, st)← Encrypt(ppΠEMSM ; f),
and sends ct to the server. The server then executes em← Evaluate(ppΠEMSM ; ct) and sends em
to the client. Finally, the client recovers the KZG commitment dm← Decrypt(ppΠEMSM ; em; st).

Opening: Given x, the client evaluates y = f(x) and computes the quotient q(X) = f(X)−y
X−x

with the coefficient vector q. The client then runs (ct, st)← Encrypt(ppΠEMSM ; q) and sends
ct to the server. The server executes em← Evaluate(ppΠEMSM ; ct) and sends em to the client.
Finally, the client recovers the KZG evaluation opening proof dm← Decrypt(ppΠEMSM ; em; st).

Figure 4: Outsourcing KZG commitments.

As in the case of EMSM, we define security via a reactive two-party functionality. Let FProve
(cf. Figure 5) be the ideal functionality corresponding to the proving algorithm of the zk-SNARK Σ.
The functionality is parameterized by the public parameters ppΣ generated by Σ.Setup, and
repeatedly evaluates Σ.Prove(pp; x, w) for inputs (x, w) provided by the client. The server does
not provide input or receive output; however, a malicious server may abort and prevent the client
from receiving the output. A server-aided proving scheme ΠΣ for the zk-SNARK Σ is secure if it
UC-realizes the ideal functionality FProve in the (Σ.Setup, Π.Setup)-hybrid model. As before, we
consider semi-honest or malicious servers. The definition implies the following properties:

• Correctness: In an honest execution between C and S, where C provides input (x, w) such that
(x, w) ∈ R, the proof π output by C satisfies Σ.Verify(pp; x, π) = 1.

• Witness privacy: A corrupted S learns nothing about the witness w, even if it later obtains the
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Functionality FProve

Initialization: The client and the server initialize the functionality with an NP relation R,
a zk-SNARK Σ = (Setup, Prove, Verify) for R, and its public parameters ppΣ ← Σ.Setup(1λ).

Proof generation: Upon receiving (prove, x, w) from the client, send prove to the server and
adversary. If the server responds with continue, then send the proof π ← Σ.Prove(ppΣ, x, w)
to the client. Otherwise, if the server responds with abort, then send ⊥ to the client.

Figure 5: The server-aided proving ideal functionality.

statement x and the proof π; this is due to the security of ΠΣ and the zero-knowledge of Σ.

• Unlinkability: A corrupted S learns no information about the statement, or the proof output
by C. This ensures that proofs cannot be linked to a particular execution of the protocol, even if
statements of proofs are later revealed to S. Note this property is independent of witness privacy;
in particular, existing work on private delegation achieve witness privacy but do not achieve
unlinkability since they reveals the statement/proof to the servers (see Table 1).

• Malicious security: A malicious S cannot cause C to output an incorrect proof π; the most it can
do is make the client output ⊥. The definition also rules out selective-failure attacks in which S
learns (information) about C’s inputs based on whether or not C outputs ⊥.

Efficiency. Any zk-SNARK Σ admits a trivial server-aided proving ΠΣ in which ΠΣ.Setup does
nothing and ΠΣ.Prove simply has C run Σ.Prove locally while S remains idle. We are thus interested
in schemes in which C’s work in ΠΣ.Prove is less than its work to compute Σ.Prove locally and, for
group-based schemes in particular, where the number of group operations required by the client is
sublinear in |R|.

4.2 Constructions

We now describe how to obtain server-aided proving for three zk-SNARKs: Nova [41], Groth16 [37],
and Plonk [31]. Here we provide only a high-level overview of how our EMSM scheme can be applied
to each zk-SNARK; more details are given in Appendix C. In general, zk-SNARK proving consists
of the following steps:

1. A witness w for (x, w) ∈ R is transformed into a witness for a constraint system, e.g., R1CS.

2. Cryptographic operations are used to generate an argument showing that the constraint system
is satisfiable.

The first step is relation-specific, non-cryptographic, and computationally inexpensive; hence, we
assume it can be performed by the client locally and focus only on outsourcing the second step.
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4.2.1 Server-Aided Proving for Nova

Nova is a recursive zk-SNARK designed for iterative computations. Its key component is a folding
scheme that merges two R1CS instances into one of the same size; if the folded instance is satisfiable,
then—except with negligible probability—both input instances are satisfiable. The Nova prover
derives the instances and witnesses for each iteration and combines them into one instance–witness
pair using the folding scheme. Finally, a generic zk-SNARK is applied to the last folded instance to
prove its satisfiability, which implies the satisfiability of the initial instances. The folding scheme
used by Nova commits to each instance/witness using a Pedersen commitment and merges the
commitments via a random linear combination. This works since Pedersen commitments are
additively homomorphic. Further details about the Nova protocol are provided in Appendix B.1.

The prover bottleneck in Nova is the Pedersen commitments, which can be computed using
MSMs. Our server-aided proving protocol for Nova has the client outsource commitment generation
using an EMSM scheme, while the other steps of the prover algorithm—consisting only of field
operations—are run by the client locally. Note that the overhead of the zk-SNARK on the last
folded instance (which is computed locally by the client) is proportional to the circuit size of a single
iteration, and is independent of the number of iterations; thus, it represents only a minor portion of
the overall proving cost. We give the full server-aided proving protocol for Nova in Appendix C.1.
Per-iteration efficiency. Let n denote the constraint size of an iteration. The prover’s computation
in Nova is dominated by two O(n)-sized MSMs. In our server-aided protocol for Nova, the client’s
computation is reduced to O(1) group operations, while the server’s computation is two O(n)-sized
MSMs in the semi-honest scheme (resp., four O(n)-sized MSMs in the malicious scheme). Moreover,
the scheme requires two rounds of interaction per iteration, with O(n) communication complexity.

4.2.2 Server-Aided Proving for Groth16

The second zk-SNARK we consider is Groth16. Let A, B, C be matrices defining an R1CS relation
(cf. Section 2). Given a statement x, a witness w, and z := x∥w, let a = Az, b = Bz, and
c = Cz. The R1CS relation is satisfied when a ⊙ b = c. The Groth16 scheme also defines three
polynomials fa(X), fb(X), and fc(X) that, over a public evaluation domain D, interpolate to a, b,
and c, respectively. To prove the satisfiability of the R1CS instance, the prover shows that there
exists a quotient q(X) such that fa(X) · fb(X)− fc(X) = t(X) · q(X), where t(X) is the vanishing
polynomial over D. More details about the Groth16 protocol are provided in Appendix B.2.

The prover’s computation is dominated by five MSMs: three involving the statement–witness
z, one involving rz for a uniform r sampled by the prover, and one involving q, the coefficient
vector of q(X). The R1CS matrices A, B, and C are embedded in the MSM bases. We note that
computing q(X) additionally requires eight fast Fourier transforms (FFTs) over the field.

Our server-aided proving protocol for Groth16 outsources all five MSMs to the server using an
EMSM scheme, which requires the client to encrypt three vectors, z, rz, and q. We further observe
that four of the eight FFTs required to compute q(X) are applied directly to the MSM inputs (i.e.,
either z or q). Since our EMSM supports public linear maps (cf. Section 3.2) and FFTs are linear
operations, these can be reduced from the client’s work at the cost of an additional MSM by the
server; the extra MSM can be executed in parallel with the others. The remaining four FFTs are not
compatible with EMSM and are run locally by the client. Further details are given in Appendix C.2.
Efficiency. For an R1CS instance of size n, the proving overhead of Groth16 is dominated by
five O(n)-sized MSMs and eight O(n)-sized FFTs. Our scheme reduces the client’s work to O(1)
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group operations and four O(n)-sized FFTs. The server work is six O(n)-sized MSMs (twelve
in the malicious setting). Since Groth16 is non-interactive by design and does not rely on the
Fiat-Shamir heuristic, our scheme is also non-interactive (i.e., it has one communication round).
The communication cost is O(n), as the client runs the EMSM scheme on inputs z, rz, and q.

4.2.3 Server-Aided Proving for Plonk

Finally, we consider server-aided Plonk. Plonk is built on polynomial interactive oracle proofs [20]
(poly-IOPs), which are designed in an idealized model where the prover can construct “polynomial
oracles” that the verifier can query. A poly-IOP can be instantiated in the real world by replacing
these oracles with polynomial commitments; that is, first the prover commits to the polynomial, and
then when the verifier wants to query the oracle at a particular point x, the prover responds with
the evaluation of the polynomial at x along with a proof of correct evaluation. Plonk instantiates
the polynomial commitments with KZG. The protocol is made non-interactive via the Fiat-Shamir
heuristic, wherein verifier challenges are replaced with the output of a random oracle, which is
instantiated with a cryptographic hash function. More details about Plonk are given in Appendix B.3.

In our server-aided proving scheme for Plonk, we outsource the KZG polynomial commitments
(cf. Section 3.4), while the information-theoretic component (i.e., generating poly-IOP messages) is
executed locally by the client. We further show that the client can defer part of the field operations
required in the poly-IOP to the final steps of the protocol execution, thereby improving the proof
generation latency. We present more details as well as the formal protocol in Appendix C.3.

Efficiency. For a constraint system of size n, the prover in the Plonk protocol commits to nine
polynomials of degree O(n). Thus, each commitment and opening uses O(n)-sized MSMs, which is
the dominant cost of proving. Our scheme reduces these costs to O(1) group operations for the
client, while the server’s work is equivalent to the MSMs in Plonk (double in the malicious scheme).
Our server-aided proving scheme requires five rounds of interaction with O(n) communication cost.

5 Implementation and Evaluation
We built a Rust library implementing our EMSM scheme, EKZG scheme, and SAP-SNARKs for
Nova and Groth16. (We leave the implementation for Plonk as future work.) Our library builds
on arkworks [23], a collection of Rust libraries for zkSNARKs that provides interfaces for finite
fields, elliptic curves, and commitments; it also includes an implementation of Groth16. Our
implementation is publicly available at https://github.com/h-hafezi/server-aided-snarks.

Experimental setup. In our experiments, the client is an AWS r6i.large instance with 16 GB
of RAM and 2 Intel Xeon Platinum 8375C vCPUs running at 3.5 GHz in the us-west-1 region; it
costs $0.14/hr. The server is an AWS c7i.24xlarge instance with 192 GB of RAM and 96 Intel
Xeon Platinum 8488C vCPUs running at 3.2 GHz in the us-east-1 region; it costs $4.28/hr. The
network throughput between the instances is 3.85 Gbps. Our implementation is multi-threaded,
with field and group operations parallelized. Reported times are averaged over 10 runs.

5.1 Dual-LPN Parameters

As in prior work [13, 14], we employ the linear test framework to choose LPN parameters. (See
Section 2.4.) Specifically, we use Equation (1) to set parameters for λ-bit security.
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Table 2: Failure probability of RAA codes with rate R = 0.25 and relative distance δ = 0.05 as a
function of the dimension. The shaded region marks the extrapolation domain.

Dimension n 215 216 217 218 219 220 221 222 223 224

Noise weight t 589 582 575 568 561 554 547 540 533 526

Table 3: Noise weight t as a function of the dimension n to achieve 100-bit security when dual-LPN
is instantiated using RAA codes with rate R = 0.25 and relative distance δ = 0.05.

While prior work [17] provides a provable analysis of the distance of RAA codes, their approach
applies only to binary fields. Following recent work [14], we rely instead on a numerical analysis of
RAA codes over Fq for q ≥ 3. To minimize t and reduce the client’s work, we fix the code rate to
R = 1/4 (so N = 4n) and set the relative distance to δ = 0.05. We then employ a technique for
analyzing linear codes [9] to derive a combinatorial upper bound on the probability that the relative
distance of a random RAA code of a given dimension falls below 0.05; we refer to this as the failure
probability.3 (Further details about the upper bound derivation are given in Appendix A.) Since
calculating this bound for dimensions n of interest is infeasible, we evaluate it for n = 24, 25, . . . , 210

and extrapolate to larger dimensions using exponential regression. (See Figure 3.) Our numerical
analysis shows that, for our parameter choices, the failure probability is at most 2−21 for n ≥ 215.
Prior work [17] shows a procedure for sampling a generator of an RAA code that lowers the failure
probability exponentially in a parameter w in time O(Nw log(N)). We do not employ this procedure
in our analysis, but note that it could be used in our setting.

Given R = 1/4 and δ = 0.05 as above, we use Equation (1) to set t as a function of the
dimension n (determined by the length of the public basis g for the MSM we want to outsource)
and the desired security parameter λ. Here, we set λ = 100 to match the security provided by the
BN254 curve used in our zk-SNARK implementations, but as can be observed from Equation (1) the
value of t would not change much if instead we used λ = 128. We tabulate the results in Table 2.

5.2 EMSM and EKZG Schemes

We evaluate the performance of our EMSM scheme in both the semi-honest and malicious settings
for various instance sizes n. In Table 4, we tabulate microbenchmarks for each algorithm of the

3Even if a code with generator G fails to achieve distance δ, it may still have a pseudo-distance δ [14]; that is, no
efficient adversary can find an input message x such that wt(GT x) ≤ δN . Thus, security may hold even when the
relative distance exceeds δ.
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scheme; recall that encryption and decryption are run by the client, and evaluation is run by the
server. Interestingly, for small instances, decryption (dominated by the computation of a low-weight
MSM) is slower than encryption (dominated by the computation of Ge), but this reverses as the
instance size grows. We also see that, as expected, the running times of each algorithm increase by
roughly a factor of two when moving from the semi-honest setting to the malicious setting; note that
the evaluation time increases less, since the server has more cores and can exploit parallelization.

To quantify the benefits of our EMSM, we compare its execution to a local evaluation of an
MSM of the same size by the client. We then look at two factors: (i) the improvement in the local
running time of the client, used as a proxy for the computational work done by the client and
measured as the ratio of the local running time and the sum of the encryption/decryption times,
and (ii) the latency, measured by the ratio of the local running time at the client and the overall
EMSM time (which includes encryption, evaluation, decryption, and the round-trip communication
time). Our evaluations show that, in the semi-honest setting, our EMSM reduces the client’s work
by as much as 33× and improves the latency by up to 10×. Since the EMSM time in the malicious
setting doubles, the improvements change by roughly a factor of two in that setting.

Improvement
Size Enc. Dec. Eval. Local Runtime Latency

215 3.08 8.69 21.3 272 23× 8×
215 6.54 17.4 24.3 272 11× 5×
217 20.7 8.46 58.8 949 33× 10×
217 43.3 16.9 81.3 949 16× 6×
219 167 8.39 244 3740 21× 8×
219 277 16.6 315 3740 13× 6×
221 732 8.16 870 15115 20× 9×
221 1280 16.3 1060 15115 12× 6×
223 3160 8.00 3630 59496 19× 8×
223 5580 16.0 4410 59496 11× 5×

Table 4: EMSM encryption, decryption, and
evaluation times compared to local

computation of the MSM, in milliseconds.
Numbers for malicious EMSM are in gray .

Improvement
Size Wit. Client Server Local Runtime Latency

215 3.50 15.3 21.3 275 18× 7×
215 3.50 27.3 24.3 275 10× 5×
217 14.7 43.8 58.8 966 22× 9×
217 14.7 74.9 81.3 966 13× 6×
219 59.6 235 244 3830 16× 7×
219 59.6 353 315 3830 11× 5×
221 277 1017 870 15400 15× 8×
221 277 1570 1060 15400 10× 5×
223 1120 4280 3630 60500 14× 7×
223 1120 6720 4410 60500 9× 5×

Table 5: EKZG opening compared to local
computation of KZG opening, in milliseconds.
(Witness computation is run by the client.)
Numbers for malicious EKZG are in gray .

Setup. We measure the cost of EMSM setup when run on a machine as powerful as the server.
The setup of our EMSM scheme requires computing h = GT g, which can be done using 2N group
additions (each repetition and accumulation requires N group additions) and two permutations over
N elements. For instance sizes 215 and 223, setup requires 630 ms and 163 s, respectively.

EKZG scheme. For completeness, we also implement and evaluate the application of our EMSM
scheme to the outsourcing of KZG commitments, i.e., our EKZG scheme. Generating a KZG
commitment is exactly computing one MSM; thus, the performance of the commitment phase of the
EKZG scheme is identical to the performance of our EMSM scheme in Table 4. Opening a KZG
commitment, however, also involves witness computation (evaluating the committed polynomial and
computing the quotient) using field operations executed locally by the client. Our evaluation (see
Table 5) shows that these field operations account for only a minor fraction of the local computation
(less than 2%). Our results indicate that in the semi-honest setting, EKZG reduces the client’s
cost by up to 22× and improves the latency by up to 9×; in the malicious setting, these are 13×
and 6×, respectively.
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Figure 6: Evaluation results for our server-aided Nova.
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Figure 7: Evaluation results for our server-aided Groth16.

5.3 Server-Aided Proving for zk-SNARKs

We evaluate server-aided schemes for Nova and Groth16. Our implementation for Groth16 does
not include the FFT optimization; we estimate that doing so would further improve the runtime
and latency by 1.2×. We report the proof-generation latency in Figures 6(a) and 7(a), and plot
the improvement in the client’s running time in Figures 6(b) and 7(b). For Nova, our semi-honest
scheme reduces the client’s work by up to 20× and the latency by up to 9×; even in the malicious
setting, these are 14× and 6×, respectively. For Groth16, our scheme reduces the client’s work by
up to 10× and the latency by up to 6× in the semi-honest case; these are 8× and 5×, respectively,
in the malicious case.

Comparison to prior work. Prior work in the single-server setting [35] only applies to FRI-based
zk-SNARKs (e.g., Fractal [22]) and cannot be applied to the group-based schemes we consider;
hence, a direct comparison is not possible. Note, however, that this prior work actually increases
the latency of proof generation. In the multi-server setting, there exist schemes that support
(adaptations) of Marlin [21, 38, 64], Plonk [28], and HyperPlonk [46]. However, since we do
not implement SAP-SNARKs for those zk-SNARKs, a direct comparison is against not possible.
Collaborative zk-SNARKs [52] is not a delegation scheme; it neither implements a client role nor
improves proof-generation latency.
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ZKSaaS
S = 8 S = 16 S = 32 S = 64 S = 128 Our work

Latency (s) 934 520 271 143 81 320
Cost (USD) 132 92 64 51 50 38

Table 6: Latency and cost for generating 100 Groth16 proofs for a circuit of size |C| = 219 .

The only directly comparable work is ZKSaaS [35], which implements and evaluates private
outsourcing of Groth16 in a multi-server setting. Their scheme provides only semi-honest security,
and so we compare against our semi-honest variant. ZKSaaS uses two types of servers: a single
powerful server that performs most of the work, and many smaller servers that assist. We assume
the powerful server runs on an AWS r6i.large instance equivalent to the server in our scheme,
and the smaller servers run on AWS c7i.24xlarge instances like our client.

ZKSaaS is secure for at most S
4 − 1 corrupted servers; hence, they require S ≥ 8 servers to

tolerate a single corruption. The latency improvement in ZKSaaS scales with the number of servers;
for 219 constraints their improvement factor is lower than ours unless S > 25. In Table 6, we
compare the latency and financial cost of generating 100 Groth16 proofs for a relation with 219

constraints using ZKSaaS and our scheme. As shown, their cost decreases as n increases because
the cost of the largest server dominates and the reduction in latency lowers the overall deployment
cost. For a huge number of servers (S ≥ 222), their cost converges to ≈ $40. We do not report client
work for ZKSaaS as it was not benchmarked separately; however, in their scheme the client only
secret-shares the witnesses across the servers, so we expect lower client costs than in our scheme.

Server-aided Plonk. Our library does not currently support server-aided Plonk. Recall (cf. Ap-
pendix B.3) that Plonk is a five-round protocol in which the prover commits to nine polynomials—
with a degree bound equal to the constraint size— and performs field operations including partial
products and polynomial multiplication and division. Prior work [35, Figure 7] shows that for
constraint sizes n ∈ {215, 216, . . . , 221}, field operations account for 15–30% of the overall proving
computation. Based on this and our EKZG benchmarks (cf. Table 5), we estimate that our scheme
for Plonk would reduce the client’s work by up to 5× and latency by up to 4×; deferring FFTs to
the last round (cf. Appendix C.3) could reduce the latency by up to 5×.
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A Distance Analysis of RAA Codes
We bound the distance of an RAA code over arbitrary fields. Let G ∈ Fn×N be an RAA generator
with G = FrMσ1AMσ2A, where Fr is an r-repetition matrix for r = N/n; Mσ1 and Mσ2 are
permutation matrices for permutations σ1, σ2 over [N ]; and A is the accumulation matrix. Analyzing
the distance of the code for a fixed relative distance δ amounts to bounding the failure probability:
Pr[∃x ∈ Fn \ {0} : wt(GT x) ≤ δN ]. We recall the following two lemmas from a prior work [9].
Lemma A.1. For any x ∈ FN , wt(AT x) ≥ ⌈wt(x)/2⌉ .
Lemma A.2. For a uniform x ∈ FN with w = wt(x) ̸= 0 and any h ≥ ⌈w/2⌉, it holds that

Pr[wt(AT x) = h] ≤

∑w−1
i=0

( N−h

⌊w−i
2 ⌋
)( h−1
⌈w−i

2 ⌉−1
)(h−⌈w−i

2 ⌉
i

)
(N

w

) .

We then apply a union bound on the failure probability:

Pr[∃x ∈ Fn \ {0} : wt(GT x) ≤ δN ] ≤
n∑

w1=1

(
n

w1

)

·
N∑

w2=1
Pr[wt((FrMσ1A)T x) = w2|wt(x) = w1]

·
δN∑

w3=1
Pr[wt((Mσ2A)T y) = w3|wt(y) = w2].

Note that Mσ1 and Mσ2 are permutation matrices; thus, they keep the input and output weights
unchanged. For the repetition matrix, it holds that wt(FT

r x) = r · wt(x). Following Lemma A.1, we
know that w2 ≥ ⌈rw1/2⌉ and w3 ≥ ⌈w2/2⌉. With these, we can simplify the bound as

Pr[∃x ∈ Fn \ {0} : wt(GT x) ≤ δN ] ≤
n∑

w1=1

(
n

w1

)

·
2δN∑

w2=⌈rw1/2⌉
Pr[wt(AT h) = w2|wt(h) = rw1]

·
δN∑

w3=⌈w2/2⌉
Pr[wt(AT q) = w3|wt(q) = w2].

Then, we apply Lemma A.2 to obtain the following upper bound on the failure probability:

Pr[∃x ∈ Fn \ {0} : wt(GT x) ≤ δN ] ≤
n∑

w1=1
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·
2δN∑
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B Details of zk-SNARKs
We review the prover algorithms in Groth16 [37], Nova [41], and Plonk [31]. For n > 0, we say ω ∈ F∗q
is a primitive nth root of unity if ωn = 1, ωm ̸= 1 for 1 ≤ m < n. We let Dω := {ω0, ω1, . . . , ωn−1}.

Fast Fourier transform and polynomial operations. The Fast Fourier Transform (FFT)
enables the evaluation of a degree-n polynomial at O(n) points—typically the points over Dω

for a primitive nth root of unity ω—in time O(n log n). Its inverse operation, the inverse FFT
(iFFT), reconstructs the polynomial from its value at those points in time O(n log n). Note FFT
and iFFT are both linear operators. One application of these transforms is multiplication of two
degree-n polynomials in time O(n log n). In particular, given the coefficients of two polynomials,
the algorithm first applies an FFT to each polynomial to obtain their evaluations at 2n− 1 points,
multiplies the evaluations pointwise, and then applies an iFFT to recover the result. This extends
to polynomial division, since any polynomial division is reduced to two polynomial multiplications.

B.1 The Nova Protocol

The key building block in Nova is a folding scheme for the committed, relaxed R1CS. Relaxed R1CS
is a generalization of R1CS where, in addition to the matrices A, B, and C, the relation includes
a private error vector e ∈ Fn

q and a public scalar u ∈ Fq. Then, given z = x∥w, the relation is
satisfied if and only if (Az) ⊙ (Bz) = u · (Cz) + e. In committed, relaxed R1CS, the instance
includes commitments to vectors w and e. Given fixed matrices A, B, and C, consider two instances
(ē0, u0, w̄0, x0) and (ē1, u1, w̄1, x1) where, for each b ∈ {0, 1}, ēb and w̄b are Pedersen commitments
to eb and wb, respectively. Then, for folding the instances, the prover computes a cross term

t = (Az0)⊙ (Bz1) + (Az1)⊙ (Bz0)− u0 · (Cz1)− u1 · (Cz0),

and sends a Pedersen commitment to t—denoted by t̄—to the verifier. Then, given a random
challenge r ← Fq from the verifier, we define the folded instance (ē, u, w̄, x) as

u = u0 + r · u1, ē = ē0 + r · t̄ + r2 · ē1,
x = x0 + r · x1, w̄ = w̄0 + r · w̄1.

The prover also computes the updated witness (e, w) where e = e0 + r · t + r2 · e1 and
w = w0 + r ·w1. Folding is correct since the Pedersen commitment is additively homomorphic.
Moreover, it is sound since if either input instance is invalid, the folded instance will be unsatisfied
over the choice of r.

Let F be the function that computes each iteration, and F ′ be an augmented function that,
in addition to computing F , runs the folding verifier; i.e., given two instances and a cross-term
commitment, it folds the instances. Then, the setup and proving algorithms in Nova are as follows:

• Setup: it outputs the commitment scheme parameters.

• Prove: it proceeds in two steps: (i) first, for each invocation of F ′, it extracts the instance–witness
pair and incrementally folds them into a single instance–witness pair; and (ii) second, it applies a
general-purpose zk-SNARK to this final instance.

Note that the main prover cost is the first step, and the final zk-SNARK is invoked only once.
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B.2 The Groth16 Protocol

Let A, B, C be matrices defining an R1CS relation to a given relation (cf. Section 2). Let ω ∈ Fq

be a 2nth primitive root of unity and ω′ := ω2. We define fA,j(X), fB,j(X), fC,j(X) as follows:

fA,j(ω′i) := Ai,j , fB,j(ω′i) := Bi,j , fC,j(ω′i) := Ci,j ,

∀i ∈ [n], j ∈ [m]. R1CS with z := x∥w is satisfied iff:∑
j∈[m]

zjfA,j(ω′i) ·
∑

j∈[m]
zjfB,j(ω′i) =

∑
j∈[m]

zjfC,j(ω′i).

Let t(X) :=
∏

i∈[n](X − w′i). The above condition holds iff there is a quotient q(X) such that
q(X) · t(X) equals ∑

j∈[m]
zjfA,j(X) ·

∑
j∈[m]

zjfB,j(X)−
∑

j∈[m]
zjfC,j(X).

The prover shows that q(X) exists. The setup and proving algorithms of Groth16 are as follows:
• Setup: Let α, β, γ, δ, v ← Fq and fj := αfA,j + βfB,j + fC,j . Public parameters pp include

{α, β, δ, {vi}i∈[n], {γ−1fj(v)}j∈[ℓ], {δ−1fj(v)}m−1
j=ℓ , {δ−1vit(v)}j∈[n−1], {fA,j(v)}j∈[m],

{fB,j(v)}j∈[m]} · g1, {β, γ, δ, {vi}i∈[n], {fB,j(v)}j∈[m]} · g2, αβ · gT ,

where g1 ∈ G1, g2 ∈ G2, and gT ∈ GT are generators of the source and target groups.

• Prove: Consider the following polynomials:

fA(X) :=
∑

j∈[m]
zjfA,j(X),

fB(X) :=
∑

j∈[m]
zjfB,j(X), fC(X) :=

∑
j∈[m]

zjfC,j(X).

The prover can compute q(X) within the following steps:

1. Over the domain Dω′ , fA(X), fB(X), and fC(X) are evaluated to Az, Bz, and Cz, respectively.
The prover computes these evaluations in O(n) time, as the matrices A, B, and C are sparse.

2. Let D := Dω \Dω′ . The prover applies iFFT to get the coefficients of fA(X), fB(X), and
fC(X), and applies FFT to evaluate them over D. The prover also evaluates t(X) over D.

3. The prover evaluates q(X) over the domain D using the evaluations of fA(X), fB(X), fC(X),
and t(X), and then applies iFFT to obtain the coefficient representation of q(X).

Let q(X) =
∑

i∈[n−1] qiX
i. The prover samples r, s← Fq and outputs π := (πa, πb, πc) such that

πa := α · g1 + r · (δ · g1) +
∑

j∈[m]
zj · (fA,j(v) · g1),

πb := β · g2 + s · (δ · g2) +
∑

j∈[m]
zj · (fB,j(v) · g2),

πc := s · πa + r · (β · g1 +
∑

j∈[m]
zj · (fB,j(v) · g1))

+
∑

j∈[ℓ:m]
zj · (δ−1fj(v) · g1) +

∑
i∈[n−1]

qi · (δ−1vit(v) · g1).
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B.3 The Plonk Protocol

We recall the building blocks and the Plonk constraint system; then, we describe the Plonk prover.

The product-check protocol. The product-check protocol enables a prover to convince a verifier
that for a polynomial f(X),

∏n−1
i=0 f(ωi) = γ where ω is a primitive nth root of unity. Let t(X) be a

polynomial with t(ωs) =
∏

i∈[s−1] f(ωi) for all 1 ≤ s ≤ n. In the product-check protocol, the prover
sends t(X) as an oracle, and the verifier checks whether t(ωn−1) = γ. The prover shows that t(X)
is well-formed, i.e., t(ω · x)− t(x) · f(ω · x) = 0 for all x ∈ Dω. To do this, the prover computes a
quotient q(X) by dividing t(ω ·x)− t(x) · f(ω ·x) by Xn− 1 and sending it as an oracle. The verifier
opens the received polynomials at random points and checks their consistency. In practice, oracles
are instantiated with polynomial commitments. In summary, the prover’s work is to compute partial
products

∏
i∈[s−1] f(ωi), interpolate t(X), and then invoke polynomial divisions and commitments.

Plonk arithmetization. Unlike Groth16 and Nova, Plonk employs an arithmetization that differs
from R1CS. Given integers m, n ∈ N, the constraint system for some fan-in-two circuit with unlimited
fan-out, m wires, and n arithmetic gates is defined by tuples: (i) (a, b, c) ∈ [m]3n, where a, b, and c
denote the left, right, and output sequences, respectively; and (ii) (qL, qR, qO, qM , qC) ∈ F5n, where
qL, qR, qO, qC , qM , and qC denote the left, right, output, multiplication, and constant selector
vectors, respectively. Given an assignment z := (x∥w) ∈ Fm

q , the circuit is satisfied if, for all i ∈ [n]

(qL)i · zai + (qR)i · zbi
+ (qO)i · zci + (qM )i · (zaizbi

) + (qC)i = 0.

The wire values must be correctly ordered. Let v := (zai)i∈[n]∥(zbi
)i∈[n]∥(zci)i∈[n]. Plonk enforces

correct ordering via a permutation σ : [3n]→ [3n]; the prover shows that vi = vσ(i) for all i ∈ [3n].

Proving algorithm. We outline the setup and proving algorithms of the Plonk protocol.

• Setup: outputs the commitment scheme parameters.

• Prove: consists of five rounds, which we outline below:

1. The prover computes three polynomials a(X), b(X), and c(X), each of degree n − 1, corre-
sponding to the left, right, and output wire values, respectively. In particular, let ω be a
primitive n-th root of unity. Then, we have a(ωi) = zai , b(ωi) = zbi

, and c(ωi) = zci for all
i ∈ [n]. These polynomials are obtained by applying an iFFT to the corresponding wire values.
The prover sends KZG commitments (cf. Section 2.2) to a(X), b(X), and c(X).

2. Let κ, η ∈ F∗q with distinct domains Dω, Dκω, and Dηω. For random β, τ ∈ Fq, let

h(X) :=(a(X) + βX + τ)(b(X) + βκX + τ)
(c(X) + βηX + τ),

g(X) :=(a(X) + βσa(X) + τ)(b(X) + βκσb(X) + τ)
(c(X) + βησc(X) + τ),

where σa(X), σb(X), and σc(X) are defined as σa(wi) := wσ(i), σb(wi) := wσ(n+i), and
σc(wi) := wσ(2n+i) for all i ∈ [n]. Then, the wiring is consistent with the permutation σ iff

∏
j∈[n]

h(ωj)
g(ωj) =

∏
j∈[n]

f(ωj) = 1,
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which can be validated via a product-check protocol, i.e., the prover sends a KZG commitment
to a polynomial t(X) such that for all s ∈ [n], t(ws) =

∏
i∈[s]

h(ωi)
g(ωi) .

3. Define qL(X), qR(X), qO(X), qM (X), and qC(X) such that each evaluates to the corresponding
selector over the domain Dω. We let p0(X), p1(X), and p2(X) be as follows:

p0(X) = qL(X) · a(X) + qR(X) · b(X) + qO(X) · c(X) + qM (X) · a(X) · b(X) + qC(x),
p1(X) = t(ω ·X)− t(X) · f(X), p2(X) = ℓn(X) · (t(X)− 1),

where ℓn(X) denotes the nth Lagrange basis over Dω. All three polynomials must evaluate to
zero over the domain Dω. For random ρ, let the polynomial p(X) := p0(X)+ρp1(X)+ρ2p2(X).

4. The prover computes a quotient q(X) by dividing p(X) by Xn − 1 and sends a commitment
to q(X). Concretely, the prover decomposes q(X) into degree-n polynomials qlow(X), qmid(X),
and qhigh(X) with q(X) = qlow(X) + Xn · qmid(X) + X2n · qhigh(X), and commits to each.

5. Once all the commitments are received, the verifier queries the committed polynomials at
random points, and the prover provides KZG openings.

C Our Server-Aided Proving Protocols

C.1 The Server-Aided Nova Protocol

We describe a server-aided proving scheme for Nova. Recall the Nova protocol from Section B.1.
We observe that the prover cost is dominated by Pedersen commitments to t and w. Note that
when we extract an instance-witness for an iteration, e is always set to a zero vector, and thus
its commitment is fixed. During the folding steps, e changes based on the cross term. Since a
Pedersen commitment can be written as a single MSM, we use EMSM to delegate commitment
generation. The client then requires constant group operations and linear field operations to run
folding and update the instances and witnesses. In particular, in each folding invocation, the client
first computes the cross term t and delegates its commitment. Then, after decoding the commitment,
the client derives the Fiat-Shamir challenge, updates the current folded instance and witness, and
delegates the commitment to w.

We present the formal protocol in the FMSM-hybrid model in Figure 8, where FMSM can be
instantiated by our EMSM scheme. The following is immediate:

Theorem C.1. In the FMSM-hybrid model, ΠNova UC-realizes the functionality FProve for Nova.

We remark that while our presentation of Nova is simplified and a few minor steps are abstracted
(e.g., hashing inputs/outputs), our technique immediately extends to the full Nova protocol.

C.2 The Server-Aided Groth16 Protocol

We build an SAP-SNARK from Groth16. Recall the design of the prover algorithm from Section B.2.
The client holds a satisfiable assignment z = x∥w for the R1CS relation specified by the matrices
A, B, and C, and wishes to privately outsource the computation of the proof triple π = (πa, πb, πc).
Given q, which is the coefficient vector of q(X) and z, we have πa = α · g1 + r · (δ · g1) + ⟨z, ga⟩, πb =
β · g2 + s · (δ · g1) + ⟨z, gb⟩, πc = s · πa + r · β · g1 + ⟨r · z, gc,rz⟩+ ⟨z, gc,z⟩+ ⟨q, gc,q⟩. where ga, gb,

33



gc,rz, gc,z, and gc,q are included in pp. The client encrypts z and r · z with EMSM and delegates
⟨z, ga⟩, ⟨z, gb⟩, ⟨r · z, gc,rz⟩, and ⟨z, gc,z⟩.

The main remaining term is ⟨q, gc,q⟩. Computing the coefficients of q(X) is costly for the client,
as it involves multiple (i)FFT operations. We use FD to denote the matrix representation of the
FFT over the domain D. Recall that the client computes q = F−1

D · (h⊘ (FD · t)) such that
h :=

(
(FDF−1

Dω′ ·Az)⊙ (FDF−1
Dω′ ·Bz)− (FDF−1

Dω′ ·Cz)
)
,

where t denotes the coefficients of t(X), and ⊙ and ⊘ denote the element-wise multiplication and
division, respectively. This computation requires eight (i)FFTs, which can be reduced as follows:
1. Computing the final iFFT, i.e., F−1

D , is unnecessary as our EMSM supports public linear maps;
that is, the client can instead outsource ⟨y, (F−1

D )T gc,q⟩ given y = h⊘ (FD · t).

2. The polynomial t(X) is public and witness-independent; thus, FD · t can be precomputed, and
the client can instead outsource ⟨h, gc,h⟩ where gc,h := ((F−1

D )T gc,q)⊘ (FD · t).

3. The client can delegate FDF−1
Dω′ ·C to the server. In particular, we can decompose ⟨h, gc,h⟩ as

⟨(FDF−1
Dω′ ·Az)⊙ (FDF−1

Dω′ ·Bz), gc,h⟩ − ⟨FDF−1
Dω′ ·Cz, gc,h⟩,

where the client can outsource ⟨z, (FDF−1
Dω′ ·C)T gc,h⟩.

These optimizations reduce the number of (i)FFTs performed by the client to four. Note that
(FDF−1

Dω′ ·Az)⊙ (FDF−1
Dω′ ·Bz) is a quadratic term; hence, we cannot delegate it via EMSM.

We provide the formal description of the scheme in the FMSM-hybrid model in Figure 9.
Theorem C.2. In the FMSM-hybrid model, ΠGroth UC-realizes the functionality FProve for Groth16.
Remark C.1. Ciphertexts in our EMSM scheme are independent of the basis. As discussed in
Section 3.2, a single ciphertext suffices to outsource multiple MSMs with the same input vector.
Thus, in practice, one ciphertext suffices for outsourcing all four MSMs with input the vector z.

C.3 The Server-Aided Plonk Protocol

We present server-aided Plonk. Recall from Section B.3 that the core subroutine of the Plonk prover
is the KZG commitment scheme, which can be outsourced using EKZG, as discussed in Section 3.4.

Unlike Groth16, Plonk does not allow for outsourcing FFTs. However, we observe that the client
can defer all FFTs to the final rounds of the protocol, which reduces latency. Recall that in rounds
1-3 of the Plonk proving algorithms, the prover computes the evaluations of polynomials a(X), b(X),
c(X), t(X), and p(X), and then applies (i)FFTs to transform these evaluations into coefficients,
which can be committed to by the KZG scheme. Since each KZG commitment is simply an MSM,
we can equivalently apply (i)FFTs to the MSM basis, and the client can instead send encryptions
of the evaluations. To open each commitment, the client needs coefficients and must run (i)FFTs;
however, since all these occur in rounds 4 and 5, (i)FFTs can be deferred until that point.

We provide a more formal description of server-aided Plonk in the FMSM-hybrid model in
Figure 10.
Theorem C.3. In the FMSM-hybrid model, ΠPlonk UC-realizes the functionality FProve for Plonk.

Our presentation of Plonk is simplified, and certain parameters to achieve zero knowledge are
abstracted. Nevertheless, our technique immediately extends to the full Plonk, since we only delegate
KZG commitments, and the poly-IOP component remains unchanged.
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ΠNova

Let ppNova be the public parameters of Nova—including an MSM basis g ∈ Gn—and let
F be an iteration function with the corresponding augmented function F ′—defined below.
Let R′ be a committed, relaxed R1CS relation corresponding to F ′, defined over instances
(ē, u, w̄, x) and witnesses (e, w). Let (ēf , uf , w̄f , xf ) and (ē0, u0, w̄0, x0) be initialized by
trivially satisfying instances with corresponding witnesses (ef , wf ) and (e0, w0), respectively.
Then, given a zk-SNARK for R′, ΠSNARK = ⟨Setup, Prove, Verify⟩, the MSM functionality
FMSM, and initial input z0, server-aided Nova works as follows:

• The client and the server initialize FMSM with g ∈ Gn.

• For each i-th iteration of the computation, proceed as follows:

1. C computes t := (Azf )⊙ (Bzi−1) + (Azi−1)⊙ (Bzf )− uf · (Czi−1)− ui−1 · (Czf ).
2. C and S send (eval, t) to Fg

MSM; C receives t̄ := ⟨t, g⟩ from Fg
MSM.

3. C runs F ′(i− 1, z0, zi−1, (ēf , uf , w̄f , xf ), (ēi−1, ui−1, w̄i−1, xi−1), t̄, wi−1) as below:
(a) Evaluate zi := F (zi−1, wi−1).
(b) For Fiat-Shamir Challenge r, update ēf , uf , w̄f , xf such that:

uf := uf + r · ui−1, ēf := ēf + r · t̄ + r2 · ēi−1,
xf := xf + r · xi−1, w̄f := w̄f + r · w̄i−1.

(c) Output (i, z0, zi, (ēf , uf , w̄f , xf )).
4. C sets ef := ef + r · t + r2 · ei−1, wf := wf + r ·wi−1 and extracts the instance-witness

(xi, wi) for the execution of F ′ in Step 3. C sets ei := 0n, ēi := Commit(0n), ui := 1.
5. C and S send (eval, wi) to Fg

MSM; C receives w̄i := ⟨wi, g⟩.
6. If it is the final iteration, repeat Steps 1 to 5 except for Step 3.a.

• C outputs (i, z0, zi), (ēi, ui, w̄i, xi), (ēf , uf , w̄f , xf ), πf , and πi such that:

πf := ΠSNARK.Prove(ppSNARK; (ēf , uf , w̄f , xf ), (ef , wf )),
πi := ΠSNARK.Prove(ppSNARK; (ēi, ui, w̄i, xi), (ei, wi)).

Figure 8: The server-aided proving scheme for Nova.
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ΠGroth

Let R be an R1CS relation over instance-witness (x, w), specified by A, B, C ∈ Fn×m
q . Let

ω denote a primitive 2n-th root of unity, and ω′ := ω2. Let D := Dω \ Dω′ . Let fA,j(X),
fB,j(X), and fC,j(X) be such that for all i ∈ [n], j ∈ [m], fA,j(ω′i) := Ai,j , fB,j(ω′i) := Bi,j ,
and fC,j(ω′i) := Ci,j . Let ppGroth be the public parameters of Groth16 for R, including

ga := (fA,j)j∈[m] · g1, gb := (fB,j)j∈[m] · g2,
gc,z := (δ−1fj)j∈[ℓ:m] · g1, gc,rz := (fB,j)j∈[m] · g1, gc,q := (δ−1vit(v))i∈[n−1] · g1,
αβ · gT , {α, β, δ, {vi}i∈[n], {γ−1fj(x)}j∈[ℓ]}} · g1, {β, γ, δ, {vi}i∈[n]} · g2.

Let gL
c,h := ((F−1

D )T gc,q) ⊘ (FD · t) and gR
c,h := (FDF−1

Dω′ ·C)T gL
c,h such that t denotes the

coefficient vector of the vanishing polynomial t(X) =
∏

w∈Dω′ (X − w).

• The client and the server initialize FMSM with ga, gb, gc,z, gc,rz, gL
c,h, and gR

c,h.

• C samples a random r ∈ F.

• Let z = x∥w. C computes zab := (FDF−1
Dω′ ·Az)⊙ (FDF−1

Dω′ ·Bz).

• C and S send (eval, z) to Fga

MSM, Fgb
MSM, Fgc,z

MSM, F
gR

c,h
MSM, (eval, r · z) to Fgc,rz

MSM, and (eval, zab)

to F
gL

c,h
MSM; C receives ⟨z, ga⟩, ⟨z, gb⟩, ⟨z, gc,z⟩, ⟨r · z, gc,rz⟩, ⟨z, gR

c,h⟩, and ⟨zab, gL
c,h⟩.

• C outputs the proof π := (πa, πb, πc) such that

πa = α · g1 + r · (δ · g1) + ⟨z, ga⟩, πb = β · g2 + s · (δ · g1) + ⟨z, gb⟩,
πc = s · πa + r · β · g1 + ⟨r · z, gc,rz⟩+ ⟨z, gc,z⟩+ ⟨q, gc,q⟩.

Figure 9: The server-aided proving scheme for Groth16.
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ΠPlonk

For a circuit C, let (a, b, c) ∈ [m]3n be the left, right, and output sequences, respectively, and
(qL, qR, qO, qM , qC) ∈ F5n be the left, right, output, multiplication, and constant selector
vectors, respectively. Let σ : [3n] → [3n] be the wiring permutation. Consider the circuit
satisfiability relation as C(w) = x for a private input w and a public output x. Let ω denote
a primitive n-th root of unity. Let ppPlonk denote the public parameters of Plonk, which
include an MSM basis g ∈ Gn used for KZG commitments. Let gs := g and gi := (F−1

Dω
)T g.

• The client and the server initialize FMSM with gs and gi.

• Let z = x∥w, za := (zai)i∈[n], zb := (zbi
)i∈[n], and zc := (zci)i∈[n]. Then, C and S send

(eval, za), (eval, zb), and (eval, zc) to Fgi
MSM; C receives ⟨za, gi⟩, ⟨zb, gi⟩, and ⟨zc, gi⟩.

• Given the Fiat-Shamir challenge β, η, C computes zh and zg as follows. Let zt := zh ⊘ zg.

zh := ((zai + βωi + τ)(zbi
+ βκωi + τ)(zci + βηωi + τ))i∈[n]

zg := ((zai + βωσ(i) + τ)(zbi
+ βκωσ(n+i) + τ)(zci + βηωσ(2n+i) + τ))i∈[n].

• C and S send (eval, zt) to Fgi
MSM; C receives ⟨zt, gi⟩.

• For the Fiat-Shamir challenge ρ, C computes zp as follows.

zp := ((qL)izai + (qR)izbi
+ (qO)izci + (qM )izaizbi

+ (qC)i

+ρ((zt)i+1 − ((zt)i(zh)i)/(zg)i) + ρ2(ℓn(ωi)((zt)i − 1)))i∈[n].

• C and S send (eval, zp) to Fgi
MSM; C receives ⟨zp, gi⟩.

• C computes p = F−1
Dω

zp. Let p(X) =
∑

i piX
i. C computes a quotient p(X)/(Xn − 1) and

decomposes q(X) into ql(X), qm(X), qh(X), where q(X) = ql(X)+Xn ·qm(X)+X2n ·qh(X).
Let ql, qm, and qh be the coefficient vectors of ql(X), qm(X), and qh(X), respectively.

• C and S send (eval, ql), (eval, qm), (eval, qh) to Fgs

MSM; C receives ⟨ql, gs⟩, ⟨qm, gs⟩, ⟨qh, gs⟩.

• C computes a = F−1
Dω

za, b = F−1
Dω

zb, c = F−1
Dω

zc, t = F−1
Dω

zt. Let a(X) =
∑

i aiX
i,

b(X) =
∑

i biX
i, c(X) =

∑
i ciX

i, t(X) =
∑

i tiX
i. Then, for each r(X) ∈ {a(X), b(X),

c(X), t(X), p(X), ql(X), qm(X), qh(X)} and a point (x, y), C computes u(X) = r(X)−y
X−x .

• C and S send (eval, u) to Fgs

MSM for all u; C receives ⟨u, gs⟩, which is a KZG opening.

• C outputs all the KZG commitments and openings (i.e., all the decrypted MSMs).

Figure 10: The server-aided proving scheme for Plonk.
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