Pairing-Based SNARGs with Two Group Elements

Gal Arnon Jesko Dujmovic Eylon Yogev
galarnon42@gmail.com mail@ind-jesko.net eylon.yogev@biu.ac.il
Bocconi University Northeastern University Bar-Tlan University

November 27, 2025

Abstract

SNARGs are cryptographic primitives that allow a prover to demonstrate membership in
an NP language while sending a proof that is much smaller than the witness. In this work, we
focus on the succinctness of publicly-verifiable group-based SNARGs, analyzed in a model that
combines both a generic bilinear group (G; X Go — Gr) and a random oracle (the GGM +
ROM).

We construct the first publicly-verifiable SNARG in the GGM + ROM where the proof
consists of exactly 2 elements of G; and no additional bits, achieving the smallest proof size
among all known publicly verifiable group-based SNARGs. Our security analysis is tight, en-
suring that the construction incurs no hidden security losses. Concretely, when instantiated
with the BLS12-381 curve for 128-bit security, our scheme yields a proof size of 768 bits, nearly
a 2X improvement over the best known pairing-based SNARG. While our scheme is not yet
concretely efficient, it demonstrates the feasibility of ultra-short proofs and opens the door to
future practical instantiations.

Complementing this construction, we establish a new lower bound for group-based SNARGs.
We prove that under mild and natural restrictions on the verifier (which are satisfied by all known
schemes) no SNARG exists in the Maurer GGM + ROM with a proof that consists of a single
group element (assuming one-way functions). This substantially strengthens the lower bound
of Groth, which was more restrictive and did not extend to settings with a random oracle.

Keywords: succinct arguments; interactive proofs; generic group model; pairing-based cryptography

Contents

1 Introduction 1
1.1 Ourresults e 2
1.2 Related work e 4
1.3 Open problems e 4
2 Techniques 6
2.1 SNARGs with two group elements 6
2.2 Lower bound for SNARGs with one group element 11
3 Preliminaries 19
3.1 Idealized models e 19
3.2 Succinct non-interactive argumentso 20
4 Linear map commitments 21
5 SNARGs with two group elements 26
5.1 Linear PCPs e 26
5.2 SNARGs from PCPs with small acceptingset 29
5.3 Proof of Theorems 5.1and 5.2. 35
6 Lower bound for SNARGs with one group element 37
6.1 Removing the ROM from one group element SNARGs 38
6.2 Ruling out one group element SNARGs in the pure GGM 47
Acknowledgments 53

References 53

1 Introduction

Succinct non-interactive arguments (of knowledge), known as SNARGs (or SNARKSs) are cryp-
tographic primitives that enable a prover to demonstrate membership in an NP language while
sending only a small proof, much smaller than the witness itself. Their succinctness and efficiency
have made SNARGs a central tool in applications such as verifiable delegation of computation, zero-
knowledge proofs for privacy-preserving protocols, and scalability solutions in blockchain systems.
Recent years have witnessed substantial progress in the construction of SNARGs, leading to proof
systems with concretely short arguments and improved efficiency of both prover and verifier, which
are widely used and deployed in practice.

The focus of this work is the succinctness of publicly verifiable group-based SNARGs. This
class also captures pairing-based constructions and schemes that additionally rely on the random
oracle model. Group-based SNARGs are among the most succinct and practically efficient proof
systems known, and they are the ones most widely deployed in real-world applications. Our work
is motivated by the following fundamental question:

What is the smallest possible (publicly verifiable) group-based SNARG proof size?

The quest for minimal proofs. A long sequence of works, beginning with Groth’s construction
|Grol10|, has aimed to minimize the concrete proof size of SNARGs for NP. Most of these works
are built over pairing-friendly bilinear groups (G x Go — Gr), with soundness typically analyzed
in the generic group model [Sho97; Mau05; Nec94|. Groth’s initial construction achieved proofs
consisting of 42 bilinear group elements; this was later reduced to 39 elements by Lipmaa |Lip12].
Subsequently, Gennaro et al. |[GGPR13| constructed SNARGs with proofs of just 7 group elements.

Bitansky et al. [BCIOP13] introduced the notion of a linear PCP, where a verifier issues a small
number of inner-product queries to a proof vector, and described a general compiler from linear
PCPs to SNARGs using the notion of linear-only encryption. A similar compiler was implicit in
|GGPR13|, and both works followed the high-level blueprint introduced in [IKOO05; Grol0|. Later,
Danezis et al. [DFGK14| constructed succinct arguments with proofs consisting of just 4 bilinear
group elements.

Finally, Groth [Grol6| presented a construction with only 3 bilinear group elements (amounting

to just over 1000 bits in practice [SCI14|) and with highly efficient verification. The succinctness and
efficiency of this last scheme made it particularly appealing in practice, and it has since been widely
implemented and deployed. For a long time, it was not clear if one can construct bilinear-based
(publicly verifiable) SNARGs with fewer than 3 group elements.
Smaller proofs in the GGM 4+ ROM. Recently, two improvements have been made over the
construction of Groth |Grol6| by additionally leveraging a random oracle beyond the generic group
(which we will refer to as the GGM + ROM). Lipmaa leveraged this model |Lip24| to reduce the
proof size by designing a SNARG consisting of only three G; group elements (the typically smaller
group in a bilinear map) and one field element. This optimization roughly halves the proof length
compared to |Grol6| (for some parameter settings).

Subsequently, Dellepere, et al. [DMS24] introduced the “PARI” scheme, a SNARG that breaks
the three-group-element barrier (also in the GGM+ROM). PARI has a proof size of just two Gy
elements and two field elements, representing the smallest proof size achieved by any known publicly
verifiable SNARG.

Groth |Grol6| showed that there are no group-based SNARGs for NP with proofs consisting of
a single group element, as long as the verifier admits a certain structure. However, the lower bound

does not extend to the ROM model, a gap explicitly highlighted by Lipmaa [Lip24|. At present, no
lower bounds are known in this combined model for group-based SNARGs. It is also worth noting
that allowing a single round of interaction enables proofs of just one group element [BIOW20].

Designated verifiers. One approach to reducing proof size is to consider the relaxed designated-
verifier SNARG (dv-SNARG) model. In this setting, the verifier privately holds a verification
key generated during setup, and soundness is lost if this key is ever leaked. Such schemes are
considerably less applicable in practice compared to their publicly verifiable counterparts.

Barta et al. [BIOW20| constructed a dv-SNARG with proofs of just two group elements in
a pairing-free setting. However, their construction achieves only inverse-polynomial (rather than
negligible) soundness error. More recently, Arnon et al. [ADI25] presented a dv-SNARG consisting
of a single group element plus O(A) bits for A-bit security, achieving negligible soundness error.
However, their scheme is non-reusable: it can be used only once, after which the setup must be
repeated.

Non-group-based SNARGs. There are also several constructions of SNARGs that do not rely
on bilinear groups (or on groups at all). Perhaps the most prominent examples are hash-based
SNARGS, whose security is proven in the random oracle model without additional assumptions.
These schemes enjoy many desirable practical properties (and are post-quantum secure), but their
proofs are comparatively large. Moreover, there is strong evidence that such schemes cannot achieve
proofs significantly smaller than ©(\?) for A-bit security [HNY22].

If one is willing to rely on stronger cryptographic assumptions, such as general-purpose obfus-
cation, then it is possible to construct SNARGs with optimal proof length |[SW14; WW24; WZ24;
WW25|. However, today these schemes remain far from practical and, moreover, they satisfy the
stronger notion of knowledge soundness only in elaborate ideal models (e.g., [JLLW23|). Finally,
lattice-based proof systems, e.g., |[BISW17; BS23; SSEKYZ24; AFLN24|, are not currently compet-
itive with group-based systems in terms of concrete succinctness.

1.1 Our results

We make significant progress towards pinpointing the minimal proof size in group-based SNARGs
in terms of both new constructions and improved lower bounds.

The 2-element upper bound. We construct a pairing-based, publicly verifiable SNARG with
proofs consisting of exactly two G elements, achieving the smallest proof size among all known
publicly verifiable SNARGs and answering an open question raised in [DMS24|. Our analysis pro-
vides tight security guarantees in the combined generic group and random oracle models, ensuring
that the construction incurs no hidden security losses. We emphasize that our focus is not on
optimizing prover efficiency, and the scheme is therefore not intended to compete with concretely
efficient constructions. Nevertheless, our results demonstrate the feasibility of achieving publicly
verifiable SNARGs with proofs of just two group elements, opening the door to future practical
instantiations.

Theorem 1.1 (2G; SNARG; informal). Let X be a security parameter, and assume that A < log‘n
for some constant ¢, where n is the instance size. Let G1 X Go — G be a generic bilinear group (of
prime order p > 2). Every language in NP has a (publicly verifiable) SNARG with the following
properties:

e Proof size: 2 Gy elements;

e Soundness and knowledge error: poly(n) - s% - 272, against s-sized adversaries (in the GGM +
ROM);

o Completeness error: poly(n, \) - 272,

See Theorem 5.1 for a formal statement.

Instantiating the group with the widely used BLS12-381 curve (for 128-bit security) yields a
proof size of 2 - 384 = 768 bits—mnearly a 2x improvement over the best known pairing-based
SNARGs. This proof size also closely matches that of the best designated-verifier SNARG [ADI25|.
We provide a detailed comparison of our proof size against existing publicly verifiable group-based
SNARGsS in Section 1.1.

Scheme Model Proof Structure Size (Bits)
Grothl6 |Grol6] GGM 2G1 +1Go 1536
Lipmaa [Lip24| GGM + ROM 3G +1F ~ 1408
PARI [DMS24] GGM + ROM 2Gy + 2F ~ 1280
This Work GGM + ROM 2G, 768

Table 1: Comparison of proof sizes for publicly verifiable group-based SNARGs. Bit sizes are estimated
for the BLS12-381 curve (= 381-bit field), assuming point compression (|G1| =~ 384 bits, |Go| ~ 768
bits).

The theorem above (Theorem 1.1) guarantees A bits of security for the reasonable parameter
regime where A < log®n. For instance, in a typical setting with A = 100 and n = 22°, the assumption
already holds with ¢ = 2. As a more fundamental question, we also examine the general parameter
regime.

We obtain a two-group-element SNARG for NP (similarly to Theorem 1.1) that has negligible
soundness error also for the case of A = w(polylogn), but the construction additionally relies
on the unique games conjecture (UGC). The UGC, introduced by Khot |Kho02|, posits that it
is computationally hard to approximate certain constraint satisfaction problems known as unique
games. This conjecture has become a central assumption in computational complexity and hardness-
of-approximation results.

Theorem 1.2 (2G; UGC based SNARG; informal). Let X be a security parameter, and assume
the unique games conjecture holds. Let G; X Go — G be a generic bilinear group (of prime order
p > 2*). Every language in NP has a (publicly verifiable) SNARG with the following properties:

e Proof size: 2 Gy elements;
e Soundness and knowledge error: poly(n)-s2-27>, against s-sized adversaries (in the GGM-+ROM);
e Completeness error: poly(n, \) - 272,

See Theorem 5.2 for a formal statement.

The 1-element lower bound. As we have mentioned, there are no known group-based SNARGs
with a single group element. In |Grol6|, Groth gave strong limitations on the feasibility of pairing-
based SNARGs that consist of only a single group element. He ruled out a class of SNARGs, where
the verifier is a conjunction of pairing equation checks.

Complementing our construction, we give strong lower bounds for group-based SNARGs with
single-element proofs. First, we strengthen Groth’s lower bound by extending it to all SNARGs in
the Maurer [Mau05| generic group model (GGM). Next, we extend this bound to the setting where
the prover and verifier have access to both the generic group and a random oracle (GGM+ROM).
The domain and range of the oracle are flexible: they may consist of group elements, pure strings, or
a mixture of both. Our lower bound applies under the restriction that the verifier’s random-oracle
queries are the output of predefined pairing functions of the CRS and the proof (while the verifier
may still issue arbitrary GGM queries and is otherwise unrestricted). Notably, all known SNARG
constructions satisfy this restriction.

Theorem 1.3 (No 1G SNARG in the GGM+ROM; informal). If one-way functions exist (in the
plain model), there are no SNARGSs for NP in the (Maurer) Bilinear GGM with a random oracle,
with the following properties:

The proof consists of a single group element;

The completeness and soundness errors are negligible;

The verifier performs queries to the ROM that are non-adaptive! ;
The setup algorithm does not perform random oracle queries.

See Theorem 6.1 for a formal statement.

1.2 Related work

Pairing-free. There has been a line of work |[BCIOP13; BCCGP16; BBBPWM18; BIOW20;
BHIRW24| which constructs SNARGs using generic pairing-free groups, namely in the standard
GGM. The simpler structure gives hope for more conservative group instantiations with better
concrete parameters. Unlike pairing-based SNARGs, the most succinct GGM-based SNARGs apply
only in the designated-verifier setting.

Pure random oracle model. There is a long line of work constructing SNARGs that rely solely
on a random oracle (a.k.a., hash-based SNARGs). The best trait of these constructions is a fast
prover, since the prover performs only “symmetric key cryptography” operations (oracle calls, or
field operations), whereas group-based operations are typically heavier. At a technical level, these
SNARGSs combine the blueprint of Kilian [Kil92| and Micali [Mic00| with an interactive variant of
classical PCPs known as an IOP |[BCS16|. See |[CY24| for further details. However, even the most
succinct hash-based SNARGs [AHIV17; BBHR19; STW23; GLSTW23; ZCF24; BBHR18; ACY23;
ACFY24; ACFY25| have proofs with tens to hundreds of kilobytes in size. Moreover, there is
strong evidence that such schemes cannot achieve proofs significantly smaller than ©(\?) for A-bit
security [HNY22].

1.3 Open problems

While our work establishes tight bounds for publicly verifiable SNARGs in the combined GGM+ROM,
several intriguing problems remain open.

"More precisely, the verifier can be split into two parts; The first part does not do any pairing equation checks or
ROM calls but it produces the call to the ROM, the second part receives the responses to the ROM call but can not
do any further ROM calls.

Removing the Random Oracle. Our construction relies on the random oracle to compress the
proof down to two elements. In the standard Generic Group Model (without a random oracle),
the state-of-the-art remains the 3-element construction of Groth |Grol6|. Do publicly verifiable
SNARGSs with proofs of exactly two group elements exist in the standard GGM?

Perfect Completeness. Our scheme achieves negligible completeness error rather than perfect
completeness. This limitation stems from our use of single-query linear PCPs, which inherently
has imperfect completeness (e.g., [BHIRW24, Appendix A| and [BIOW20, Remark 4.9]). While
acceptable in theory, perfect completeness is a desirable property in practice. Can one construct
a group-based SNARG in the GGM~+ROM with two group elements and perfect completeness?

Single-Element Designated Verifiers. Our lower bound rules out single-element proofs for
publicly verifiable schemes. However, in the designated-verifier setting, Arnon et al. |ADI25]
recently constructed a SNARG consisting of a single group element plus a few auxiliary bits.
Do designated-verifier SNARGs with a proof consisting of exactly one group element exist in the

GGM+ROM?

Unrestricted Lower Bounds. Our impossibility result assumes a natural structural restriction
on the verifier (specifically, that ROM queries are non-adaptive). While this captures all known
group-based SNARGs, a fully general lower bound would be theoretically satisfying. Can we prove
a lower bound for single-element SNARGS in the GGM+ROM without any structural assumptions
on the verifier?

2 Techniques

We give a high-level overview of our techniques:
e In Section 2.1, we give an overview of our constructions (namely, Theorem 1.1 and Theorem 1.2).
e In Section 2.2, we give an overview of our lower bound (namely, Theorem 1.3).

2.1 SNARGs with two group elements

In this section we sketch the proofs of Theorems 1.1 and 1.2, describing the construction of a SNARG
in the bilinear generic group plus random oracle model with argument size of two group elements.

2.1.1 SNARGS from linear PCPs

The starting point of our construction is the work of Lai and Malovolta [LM19]| who built a SNARG
by combining a linear PCP with a linear map commitment. Before describing the construction, we
first give informal definitions of these two building blocks:

e A (non-adaptive) linear PCP (P, V) over a finite field F generalizes the standard notion of a PCP
by allowing the verifier to query linear functions of the proof, rather than individual coordinates
as in a standard PCP. In more detail, the prover generates a proof 7 € F¢, and the verifier, given
an instance x and randomness p, produces a matrix M € Ff*? (which we interpret as ¢ linear
queries). The verifier then receives as an answer the vector & = M7 € F4, and makes its decision.
Completeness and soundness are defined analogously to those in a standard PCP.

e A linear map commitment (Setup, Com, Open, Verify) is a commitment scheme with the following
properties. After a setup phase Setup that generates a common reference string crs, the sender
generates a commitment ¢ = Com(crs, 7) to a string m € F¢. Given a matrix M € F¢*4, the sender
can produce an answer and a decommitment proof (a, pf) = Open(crs, 7w, M) attesting to the fact
that the vector m committed to in ¢ satisfies &« = M, which is verified using Verify(crs, c, M, «, pf).

Lai and Malavolta [LM19| combine linear PCPs with linear map commitments and the Fiat-
Shamir transformation [FS86| to construct a SNARG (S, P, V) in the random oracle model, where
all parties are given access to a random function O. For a security parameter A, their scheme works
as follows:

e S(17,1*) : Generate reference string crs using Setup.

o P(crs,x,w):

1. Compute 7 = P(x,w) and a commitment ¢ = Com(crs, 7).

2. Query p = O(x,c) and use x and p to compute the PCP verifier query matrix M.
3. Compute («, pf) = Open(crs, m, M), a decommitment proof to the answer o« = M.
4. Output the proof IT = (c, a, pf).

o V(crs,x,II = (c, a, pf)):

1. Query p = O(x,c) and use x and p to compute the PCP verifier query matrix M.
2. Accept if and only if the PCP verifier accepts given x, randomness p, and answer «, and if
Verify(crs, ¢, M, a, pf) = 1.

The above scheme is a SNARG? with argument size |c| + |pf| + |a|, with completeness error a
and soundness error 3 = poly(A) - 8 + negl()\) against poly(\)-size adversaries, where o and 3 are
the completeness and soundness errors of the PCP respectively (as we will discuss later on in this
section, |[LM19]| do not do a tight security analysis for their scheme). Thus, in order to construct
SNARGs with short proof length using this paradigm, we need a linear map commitment with
small commitment and opening sizes, and a PCP with small answer size (which, since o € F9,
means working over a small field with small query complexity g).

Lai and Malavolta construct a linear map commitment in the bilinear generic group model
(G1 x Gg — Gr), where the groups have prime order p > 2*. Their commitment scheme satisfies
lc| = |pf| = 1G4, and the underlying field is F = Z,. Consequently, the resulting SNARG has size
2G1 4 ¢ - A bits and achieves at most \/2 bits of security, since discrete logarithm attacks run in
time proportional to the square root of the group size.

It seems that we have reached an impasse. Despite extensive research on improving the parame-
ters of linear PCPs (e.g., |[ALMSS98; IKO07; BCIOP13; BIOW20; BHIRW24|), even under a dream
scenario with a 1-query PCP defined over a field of size 2* (so as to achieve X\ bits of security),
the resulting proof would still consist of two group elements (one for the commitment and one for
the opening proof) plus A\ additional bits (for the answer «). Thus, our central goal of obtaining
SNARGs with exactly two group elements remains out of reach.

2.1.2 Reducing to two group elements

We realize the goal of only two group elements as follows. We have the prover not send the query
answer «; instead, the verifier computes « locally by itself! At first glance, this seems paradoxical:
how can a PCP be verified without receiving the query result? If the verifier can compute a by
itself, maybe it does not need the prover at all, rendering the language to be easily decidable. We
observe, however, that this is not a contradiction. Even if the verifier can predict o in advance, it
still “learns new information” by making the specified query; namely, that the prover has committed
to a string m such that M7 = a.

Another way to describe the property we require from the PCP is via its accepting set, which we
want to be minimal-specifically, of size 1. Formally, for an instance x and verifier randomness p,
the accepting set S , consists of all answers that would make the verifier accept. The accepting set
size s is defined as the maximum size of S, over all instances and randomness.® This parameter
provides a way to minimize communication: if the PCP has accepting set size s, only log s bits are
needed to encode the message sent to the verifier.* Pushing this idea to the extreme, if s = 1, then
no bits need to be communicated.

The above discussion motivates optimizing linear PCPs for accepting set size, rather than for
query complexity or field size—once the length of o no longer affects communication, these tradition-
ally important parameters become far less critical. This naturally leads to the following question:

Do linear PCPs with accepting set size 1 exist?

Linear PCPs with accepting set size 1. We answer this question in the affirmative. In partic-
ular, the linear PCP for the NP-complete language GapMWSP described in [BIOW20|—previously

2In fact, the transformation results in a SNARK if the PCP satisfies knowledge soundness.
3The value log s is sometimes called the “free bit complexity” of the PCP.
4This assumes an efficient mapping exists between the accepting set and the bit encoding.

used to construct 2-message laconic arguments—satisfies this property. We now sketch their PCP
and explain why its accepting set has size 1:

Lemma 1. There is a constant ¢ > 1 such that there exists a linear PCP for GapMWSP with
completeness error 1/logn, soundness error n= 18" 4+ 1/|F| and accepting set size s = 1.

Proof sketch. We first (informally) describe the GapMWSP language: given (A,b,d) € F>*™ x F! x N
decide whether (in the Yes case) there exists = such that Az = b and has Hamming weight at most
d, or (in the No case) every z with Az = b has Hamming weight at least d - polylog(n).

We now sketch the linear PCP (P, V) for this language, due to [BIOW20], and explain why its
accepting set size is 1. See |[BIOW20| for an analysis of completeness and soundness.

e P((A,b,d),x): let m = x be the proof string.

e V(A,b,d): Choose a random vector r and a sparse vector e, and make the query M = (r’ A+eT)
(in this case the matrix M is a vector). Given an answer o = Mz, accept if and only if a = r7'b.

Observe that the verifier accepts if and only if the answer « that it receives is equal to 77b, where
this target value 77b can be computed by the verifier given the input and its randomness. Thus,
the PCP has accepting set {rTb} of size 1. O

Our main scheme (Theorem 1.1) is obtained by instantiating the previously described construc-
tion with the PCP from Lemma 1. The resulting SNARG has soundness error poly(\)- (n~Polvlosn 4
1/|F|)4negl(\) for |F| =~ 2*, and thus it satisfies soundness negl(\) when A < polylogn. This suffices
for most realistic settings.

The Samorodnitsky and Trevisan PCP. Outside of this parameter regime, this PCP does not
suffice. Note that standard repetition of the PCP does help in this case: since the completeness
error of the PCP is nonzero, the amplified verifier’s decision will need to be equal to the majority
decision of each execution, which increases the accepting set size.

To fulfill Theorem 1.2, we turn to a second PCP. Samorodnitsky and Trevisan [ST06| describe a
PCP that, assuming the unique games conjecture (UGC),? for a parameter k satisfies: completeness
error 27% soundness error O(k/2¥), query complexity O(k), and accepting set size k. To reduce the
accepting set size from k to 1, we apply the following transformation: the verifier guesses a random
element in the accepting set and accepts only if the answer is equal to its guess. This converts
a PCP with accepting set size k and completeness error « into one with accepting set size 1 and
completeness error a + (1 — 1/k), while leaving soundness unchanged.

By instantiating this PCP with & = A, we obtain (assuming the UGC) a 2-group-element
SNARG with negligible soundness error in any parameter regime, thereby proving Theorem 1.2.
An interesting open problem is to construct linear PCPs with inverse exponential soundness error
and accepting set size 1, without relying on additional assumptions (we stress that the unique
games conjecture is used here for completeness rather than soundness, as it is a conjecture on NP
reductions rather than a security assumption).

Amplifying completeness. The SNARG resultant from the construction (roughly) preserves
the completeness and soundness errors of the PCP. While we have been careful to ensure that the
soundness errors of our PCPs are negligible, the completeness errors are highly inadequate: the

5See Section 1.1 for a brief description of the unique games conjecture.

[BIOW20| PCP has error 1/logn and the PCP derived from [STO06] has error 1 — ©(1/)). As
mentioned previously, standard repetition of the PCP cannot be used to decrease the completeness
error, as it increases the accepting set size.

We instead get around this issue by altering the SNARG construction rather than the PCP:
we have the honest prover “resample” the query matrix M until the verifier accepts. This must be
done without affecting the argument size. We describe the new prover for a parameter ¢, assuming
already that the PCP has accepting set size 1, and so the query answer is not sent:

e Plcrs,x,w):

1. Compute 7 = P(x, w).

2. Fori=1to t:
(a) Compute ¢; to the string m; = (7|]i).°
(b) Query p; = O(x,¢;) and use x and p; to compute the PCP verifier query matrix M.
(c) Check whether the PCP verifier accepts given answer a; = M;m.
(d) If the above check passes then compute pf, a decommitment proof to the answer a; = M;m

and output SNARG proof IT = (c;, pf).”

(e) Otherwise, go to the next iteration.

3. Output L.

The verifier is identical to the verifier described in the beginning of this section, except that it pads
the matrix M with zeroes so that it has the same number of rows as ;.

The key idea in the above construction is that, since each ¢; commits to a distinct vector, the
security of the commitment scheme guarantees (up to negligible probability) that all ¢; are unique
(as otherwise, one could break binding). The Fiat—Shamir hash (the random oracle O) applied to
unique commitments, yields a fresh uniformly random PCP randomness. This effectively allows the
prover to resample randomness for the PCP verifier, providing multiple independent attempts to
make the verifier accept. If the underlying PCP has completeness error «, then the completeness
error of the resulting SNARG is approximately af. As the verifier remains essentially unchanged,
this transformation boosts completeness without affecting the proof size or the soundness error
relative to the original scheme.

2.1.3 Tight analysis via multi-extraction

Our goal of precisely quantifying the security bits of our SNARG requires a tight analysis that
minimizes error losses. We describe how the analysis of [LM19| works, identify the sources of
security loss at each step, and explain how we modified the analysis to achieve tightness.

1. Prove function binding of the linear map commitment. Roughly, function binding means that for
a commitment c no efficient sender can supply (a1, My, pfy) and (ag, Ma, pfy) so that verification
passes on both using commitment ¢, but there exists no vector m such that simultaneously
Mim = a1 and Mam = ap. In |[LM19|, this analysis is done loosely, describing a negl()) error for
polynomial-time adversaries.

5For simplicity of this exposition we treat 4 an element in the field F of the linear PCP.
"Formally, since the commitment is to m;, the decommitment attests to a; = M/m; where M/ is M; padded with
Z€eroes.

We give a tight analysis in the GGM, showing that the linear map commitment has function
binding error ¢ = s?/p (up to small dependencies on the committed vector length) against s-size
adversaries where p is the order of the GGM group.

. Straightline extraction. The [LM19| scheme is the application of the Fiat-Shamir [FS86| trans-
formation on the interactive protocol where the prover sends c, the verifier chooses a uniformly
random challenge p, and the prover replies with («, pf). By function-binding of the linear map
commitment, there must be a single string 7 that is consistent with all valid answers. Lai and
Malovolta show that this interactive protocol is sound by running the prover up until it sends c,
and repeatedly generating matrix-answer pairs until an entire PCP proof 7w can be derived. This
reduces soundness to that of the PCP. Here, extracting m by repeatedly running the prover is
very costly.

We reduce this error by showing that the linear map commitment is straightline extractable.
Roughly speaking, the linear-map commitment is straightline extractable if the committed to
string can be extracted given only a commitment and the query-answer trace made by the
adversary to the GGM oracle. This bypasses the need to rewind the interactive protocol, as
m can be extracted given a single commitment. Using straightline extraction, it can be shown
that the interactive protocol derived from the scheme prior to Fiat—Shamir has tight soundness
error 3 = 8+ & where 3 is the soundness error of the PCP, and ¢ is the same binding error as
described above.

. Fiat-Shamir via multi-extraction. Lai and Malovolta apply the Fiat—Shamir transformation
generically to the interactive protocol above. Against s-size adversaries, incurs error (roughly)
s - . Intuitively, this is because the prover can try s different first messages (i.e., c), each of
which will generate verifier randomness, thus giving it another attempt to attack the PCP. Thus,
even if we use the tight analysis described above with straightline extraction, we would get an
error of s+ 3"~ s- 3+ s3/p. While the s- 3 term is to be expected and tight (since the prover
can try multiple PCPs), the term s3/p is not. Since the linear map commitment is secure in the
GGM, the random oracle calls do not grant the prover any power, and so we would expect to see
a factor of s?/p rather than s3/p.

To resolve this issue and get a tight bound, we strengthen the security of the linear map commit-
ment, showing that it is multi-extractable. At a high-level, multi-extraction considers the prover’s
success probability at breaking the commitment in a setting where it has many attempts at differ-
ent commitments (in our case, due to multiple Fiat—Shamir queries). An analog of this definition
for Merkle trees was given in |[CY24] in the context of standard PCPs.

We provide an informal yet detailed definition:

Definition 2.1 (Multi-extraction, informal). A linear map commitment scheme satisfies multi-
extraction with error € if there exists an efficient extractor such that the following holds for any
efficient multi-step adversary A = (Aq, ..., An, A'):

Com.Verify(crs, c, M, a, pf) = 1 crs + Com.Setup(1?)
AN Mz £« auxg == L
. (ci,aux;) < Aj;(crs,aux;_1) <e.
. Vi€ [n]: =
Fi1,i2 € [n]) i Ext(Ay,..., A crs)
Ciy = Ciy N\ Tiy # Tiy (i*, M, o) + A'(crs, aux,)

—~ <

10

We show that the |LM19| linear map commitment has (straightline) multi-extraction error
roughly € = s?/p against s-size adversaries, where p is the order of the GGM.

We show tight bounds for our SNARG construction assuming a linear map commitment with
multiextraction:

Lemma 2 (informal). Given a linear PCP with completeness error o and soundness error [3,
and a linear-map commitment with multiextraction error € against s-size adversaries, the SNARG
described in this section has completeness error o + € and soundness error s - 8 + € against s-size
adversaries.

See Lemma 5.11 for a formal statement.

Given all of the above, we prove that if the PCP has soundness error 5 and the GGM has order
p > 2%, then the SNARG has error (roughly) O(s - 8 + s2/2%), thus deriving the tight error bounds
of Theorem 1.1 and Theorem 1.2.

2.2 Lower bound for SNARGs with one group element

In this section, we outline the proof of Theorem 1.3, showing a lower-bound for pairing-based one
group element SNARGs in the GGM (G x G2 — Gr) + ROM (denoted by O) where (1) the setup
algorithm does not use the random oracle, and (2) the verifier performs only non-adaptive queries
to the random oracle prior to any GGM queries (i.e., no query depends on the answer of a different
query or, equivalently, all of the verifier’s queries are made at the same time, and this is prior to any
GGM equation checks). In this overview, we consider a simplified case compared to Theorem 1.3:

the SNARG proof is an element in Gy,

the random oracle receives a group element and outputs a bit (i.e., O: G; U G2 UG — {0,1}),
the common reference string includes the generators of G, G, G (this is without loss of gener-
ality), and

the verifier is deterministic.®

We stress that the full proof supports SNARGs where the (single) group element in the proof
an element of either of the groups G1, Go, Gr and where the random oracle receives any number of
group elements or bits and outputs bits and group elements (e.g., O: ({0,1} UG; U Gy U Gp)* —
{0,1} x G1 x G2 x Gr). Before giving a high-level description of our proof, we identify two different
types of ROM queries (in fact, these are types of group elements that the verifier has access to).

Types of ROM queries. Consider a SNARG in the GGM + ROM with the simplifications
described above. We observe that in the Maurer GGM, since the verifier cannot depend on the
description of group elements that it receives, the group element that the verifier uses to query the
random oracle can be described in terms of linear functions of the group elements in the common
reference string and the element sent as the SNARG proof II.

To explain in more detail, we first need some notation. Here, we use additive notation for the
group. Specifically, a G; element with discrete logarithm ¢ will be denoted by [g];. Similarly, [g]2
and [g]7 are group elements in Go and Gr, respectively. If it is not relevant which of the groups an
element is in we write [g].. In this notation the following operations are efficient:

8SNARG verifiers are sometimes considered to be deterministic. However, we can rule out SNARGs with a
randomized verifier. In fact, the transformations that we will see later on in this section will have the verifier end up
being randomized.

11

e For z € {1,2,T} and z,y € Z, two G, elements [al., [b], can be linearly combined
zlal, + y[bl; = [ra + ybl,
e A G element [a]; and a G2 element [b]2 can be multiplied [a]; - [b]2 = [ab]7.

We call the G1, G2 and Gp elements in the common reference string [crsi]1, [crsa]e, and [crs7] 7,
respectively. Observe that the common reference string includes the generators of Gy, Gg, and Gr,
and so these vectors all also have the value 1 € Z,,.

Consider a query [q], for z € {1,2,T} that the verifier makes to the random oracle. As we
are in the Maurer GGM, the only things that the verifier can do to generate group elements are
linear operations on existing group elements and pair G; with Go elements. We have three cases
depending on whether the query is a G, Ga, or Gt element:

e Gi: [gh = a- [T]1 + (b, [crsi]1)
o Gy: [g]2 = (b, [crsa)o)
o Gr: [qlr = [Hh (a, [crsa]2) + (b, [crsi]1 ® [crsa]2) + (c, [crsT|T)

Above, a € Z, and a, b and c are vectors of Z, elements.

We say that a query is proof-dependent if (1) it is a Gy element and a # 0, or (2) it is a
Gr element and (a, [crsa]2) # [0]2. Any query that is not proof-dependent (which includes all Go
element queries) is considered proof-independent.

Proof overview. The main idea of our proof is to first remove the random oracle, thereby trans-
forming the SNARG in the GGM + ROM to one simply in the GGM, and then showing that such
SNARGS do not exist. The next sections are as follows:

1. In Section 2.2.1 we show how to remove the ROM queries in the case where all of them are
proof-dependent.

2. In Section 2.2.2 we explain how to generalize this to the case where the verifier’s ROM queries
may be arbitrarily proof-dependent or independent.

3. In Section 2.2.3 we show that there do not exist one group element SNARGs in the GGM.

Put together, they conclude the proof of Theorem 1.3. See Section 6 for a full formal theorem
statement and proof.

2.2.1 Proof-dependent ROM query

We show how to transform a SNARG in the GGM + ROM, where all of the verifer’s queries are
proof-dependent, into one in the GGM without a random oracle. Our construction removes the
random oracle by having each party separately (and with no coordination) lazily sample a random
oracle. We first describe the transformation and then discuss further. Let (§9,P9©C V90) be a
SNARG in the GGM + ROM where all of the verifier’s ROM queries are proof-dependent. The
new SNARG is as follows:

e §'9(1™,1"): Compute crs + S9(1™,1*). Output crs.

o P'Y(crs,x, w): Compute []; + P9 OP(crs,x, w), where Op is a lazily sampled random oracle.
Output II.

12

e V'Y crs,x,w): Run V9O (crs,x), where Oy is a lazily sampled random oracle. Accept if and
only if V accepts.

By construction, the new SNARG does not rely on a random oracle. Furthermore, it is immediate
that soundness still holds as the original was sound even when the malicious prover had query access
to the random oracle seen by the verifier. However, it is not clear at all that the new protocol satisfies
completeness.

To thoroughly understand why the protocol remains complete, we first consider the case where
the verifier makes a single query to the random oracle (the prover may still make many queries). Let
p be the probability that the prover and verifier both make the same query to the random oracle.
We are in one of two cases:

1. The probability p is small: Since the probability that P and V make the same query is small,
their view (in the original SNARG) of the random oracle with significant probability is indistin-
guishable from two independent random oracles. Thus, in this case, our transformation changes
little, and completeness does not change when prover an verifier queries are distinct.

2. The probability p is large: In this case the prover makes the query [g]. with high probability. We
henceforth condition on the prover making the same query as the verifier. Let f(crs, [IT];) be
the function computing the verifier’s query [¢]. from the reference string and the proof. Then,
informally writing the verifier as receiving the query answer to make its decision, the verifier’s
acceptance probability can be written as:

[y < P9O (crs,x, w)
crfs’% V9(ers,x,a) = 1| [g]« = f([IT]1,crs)
’ a = 0((ql+)

For every i, let Pig ’O(crs,x,w) be the prover algorithm run up until it makes the i-th ROM
query, and let this query be its output. Let * be the random variable representing the index of
the prover ROM query that is equal to the verifier’s query, so that [g]. = Pig*’o(crs,x,w). We
will show below that f is a permutation with respect to [II];, so that there exists f~! where

f1([g],crs) = [IT];. Thus, we can rewrite the above probability as:

[q]« = Pig*’o(crs,x, w)
= CE% VY (crs, x, o) = 1 M)y = f~'([g]«, crs)
’ a = 0([q]+)

Observe that the verifier is oblivious to all of the ROM queries made by the prover up to index
i*. Moreover, the prover’s algorithm does not depend on the answer to the query [g].. Thus, we
can separate the single random oracle into two independent random oracles:

lq) = PO (ers, x, w)
= gro V9(crs,x,a) = 1| [I]; = f~2([q]« crs)
OOy o = O((g))

Now we can reverse the process we did before to bring back the prover running in full, but now
where the two parties run with independent oracles:

]y < PY.Or (crs, x, w)
= Pr Vg(crs,x,a) =1 [q]« = f([I}1))
e0p Oy o = Op((g))

13

which is precisely the SNARG following the transformation.

Showing that f is a permutation. The only thing we are missing is to show that f is a
permutation. To see this, let us consider how ¢ is computed. We describe the case of the query
being a G element, where the Gr case will be analogous, when replacing a with (a,crsg) and
(b,crs1) with (b, crs; ® crse) + (c, crsy).

g=a-II+ (b,crsy) .

Recall that we are under the assumption that [g]« is proof-dependent, meaning that a # 0. Thus,
we can rewrite the above as b
— (b, crs
i 4= bersy
a

In other words, the proof string IT is uniquely defined by [¢]. and by the common reference string,
and so f is a permutation. Observe that it is in the final step, where we claim that II is uniquely
defined by [¢]., that we crucially use the fact that the proof contains a single group element, as
otherwise the proof could not be uniquely defined by one dependent query.

Handling multiple queries. Extending the analysis from a single ROM query to multiple queries
follows a similar high-level structure, but requires more technical work for controlling the intersection
between the prover’s and verifier’s queries. We show that, despite this complication, the core ideas
carry over and suffice to establish the complete proof for the general case.

Furthermore, extending to a ROM that accepts multiple group elements as inputs adds com-
plexity to the proof, but the same general ideas still apply, and we give a formal proof for this
general case as well.

2.2.2 Handling any type of ROM query

In the previous section, we showed how to transform one group element SNARGs in the GGM +
ROM with only proof-dependent queries into SNARGs in the pure GGM. However, this transfor-
mation fails when the verifier makes proof-independent queries. In this section, we describe how
to remove all proof-independent queries without affecting the proof-dependent ones. Thus, the full
transformation is:

e Transform (S9, P99, V99) into a new SNARG scheme (§9, P90 1'99) in the GGM + ROM
where, for any common reference string and for any proof in the image of the prover, the verifier
only makes proof-dependent queries to the random oracle.

e Transform (S'9,P'9© V'99) into a new SNARG scheme (5”9, P"9,1"9) in the GGM (without
the random oracle).

The high-level idea of our transformation to get rid of proof-independent queries is that, since
a ROM query is independent of the proof, it is essentially fixed once the common reference string
and the instance are fixed. Thus, the answer is also fixed and outside the prover’s control. Thus,
there is no difference between it being chosen as the output of a random oracle and it being written
down as part of the common reference string.

We begin by describing the transformation in the case that all queries are proof-independent,
and then explain how the construction must change if, as in the general case, the queries can be
either proof-dependent or proof-independent.

14

All queries are proof-independent. Consider a SNARG (59, P90, V99) where the verifier
makes ¢ ROM queries, all of which are proof-independent. We construct a new SNARG where all
of these queries are removed (in fact, since these are all of the verifier’s ROM queries, the random
oracle is completely removed):

o S9(17,17):
1. Let crs « S9(17,17).

2. For i € [t] sample r; < {0, 1} uniformly at random.
3. Output crs’ = (crs, 1, ..., 7).

o PY(crs' = (crs,r1,...,7¢),X, W):

1. Let [IT']; be an arbitrary G; element (for concreteness we can pick the generator of G.)

2. Run V(crs, x, [II'];) where, on its i-th ROM query [g;]., answer with r;.

3. Run [IT]; = P99 (crs, x, w), where O returns r; on query [g;], and is a lazily sampled random
oracle at all other points.

4. Output [I1];.

o V'9(crs' = (crs,r1,...,7),x, [I1]1):

1. Simulate V(crs, x, [II]1), answering the i-th random oracle query [g;]« with answer r;.
2. Accept if and only if V accepts.

Completeness and soundness of this new scheme follow by construction since all of the verifier’s
queries are proof-independent, putting the query answers into the reference string grants all parties
an identical view of the verifier’s query/answer pairs as in the ROM. Moreover, since these queries
are independent of the proof, the prover gets the same queries when running the verifier with [IT'];
as are made with the real proof [II];.

Handling mixed query types. Recall our assumption that the verifier is non-adaptive with
respect to the random oracle. This means that, without loss of generality, it can be thought of as
making all queries at once (i.e., both proof-dependent and proof-independent ones). However, as
the argument above fails for proof-dependent queries, we can only replace the proof-independent
ones with randomness from the common reference string. However, which query is proof-dependent
and which is proof-independent may depend on crs and x, and so we cannot tell “at design time”
which query is which. This initially seems difficult, as proof dependence is a property that depends
on the (possibly hidden) exponent of the group elements that comprise the queries.

However, upon closer inspection, both the verifier (and therefore also the prover) can recognize
whether a query is proof-dependent or not. Recall that all Gy queries are proof-independent. Any
G1 query is of the form

[g} = a- [+ (b, [ersi]1) ,

where proof dependence means that a # 0. It is easy to check whether a # 0.
Finally, in the G case, the query has the form

[g]r = [I]1 - (&, [crsa]2) + (b, [crsi]1 @ [ersa)a) + (¢, [ersTT) |

and proof-dependence means that (a,crsg) # 0. This test is equivalent to checking (a, [crsa]2) # [0]2,
which can be done without having to compute any discrete logarithms.

15

2.2.3 One group element SNARGs do not exist

At this point, following all of the previous sections, we have completely removed the random or-
acle from the SNARG, and we are left with one group element SNARG in the GGM. We show
Theorem 1.3: assuming one-way functions in the standard model, there are no one group element
SNARGsS in the Maurer GGM. More specifically, letting G be a PRG, we show that a one group ele-
ment SNARG for the relation R = {(G(s), s)} can be used to distinguish between the distributions
Dy, which is a uniformly random string, and Dg, which is the output of the PRG with a uniformly
random seed. We note that in order to give a more intuitive explanation, the high-level overview
described in this section differs slightly from that of the formal proof in the main body of the paper
(see proof of Lemma 6.11).

This proof can be viewed as an extension to Groth’s lower bound |Grol6|, who proves a similar
theorem under the restriction that the verifier is a conjunction of pairing-equality checks.” We do
not rely on the verifier being a conjunction. However, as we show below, we prove that any verifier
must have a weaker structure that is sufficient for ruling out such SNARGs.

On the structure of the verifier. In the Maurer GGM, the verifier’'s only way of obtaining
useful information is through GGM zero-test queries (equivalently, equality tests). Concretely, given
a group element [g],, the verifier may query an oracle to determine whether ¢ is zero. To analyze
the structure of the verifier’s algorithm, we once again use the notion of proof-dependent queries,
previously applied to characterize queries to the ROM, and here adapted to capture zero-test oracle
queries.

Recall that a proof-dependent query has one of the following two structures, depending on which
group it belongs to:

e Gi: [q)1 = a-[I]; + (b, [crs1]1) where a # 0
o Gr: [¢lr = [IT]1 - (a, [crsa]2) + (b, [crsi]1 ® [crsa]2) + (c, [crsy]7) where (a, crsa) # 0.

Observe that in both cases there is a single and unique proof II so that ¢ = 0 and the zero-test
returns 1 (e.g., in the Gy case [II]; = @)

Using these observations, we show that in order for the verifier to accept an instance sampled
from Dg, there must be a proof-dependent zero-check that passes. As we will see later, this is

enough structure to distinguish Dy from Dg.

Claim 2.2 (informal). For x <— Dg and crs sampled as in the SNARG, if there exists [I1]1 so that
V(ers,x, [II]1) = 1 then (except with negligible probability) there exists a proof-dependent zero-test
query for which the answer is 1.

Proof sketch. We show that for almost every x in the support of Dy (i.e., instances x ¢ L(R))
the verifier rejects if all proof-dependent queries evaluate to 0 with overwhelming probability. The
claim follows as it is hard to distinguish Dy and Dg.'Y

Fix x ¢ L(R) and some common reference string crs consider what it means for the verifier to
accept when all of the proof-dependent queries evaluate to 0. Every proof-dependent query [g;]«

9 Actually, Groth shows that there do not exist SNARGs of any length with such verifiers in the case where the
entire proof is comprised of elements of the same group (e.g., the proof is only G1 elements). This, in particular,
rules out the one group element case.

10Observe that the view of the verifier of [IT]; is only in the proof-dependent queries, so we can efficiently simulate
this behaviour without knowing [II1];. Thus, showing that the PRG fools this efficient algorithm implies the same
behavior for any [IT]; that induces the same verifier view.

16

returns 1 for exactly one group element [II;];. Since the verifier accepts if all these queries return
0, a malicious prover will cause the verifier to accept if it sends [II]; that is different from all of the
elements [II;];. Since the verifier makes at most poly(X) queries, a prover that chooses a random
group element for [II]; causes the verifier to accept with probability = 1 — negl()).

Since the SNARG is sound, we conclude that the verifier accepts when all proof-dependent
queries evaluate to 0 with negligible probability.

For x' < Dg, too, the verifier accepts when all proof-dependent queries evaluate to 0 with
negligible probability. That is because x <— Dy and x’ +— Dg are computationally indistinguishable.
If the verifier acted significantly different on x’ then the PRG distinguisher can simulate the SNARG
and detect the difference. O

Ruling out one group element SNARGs. Having established some structural understanding
of the SNARG verifier, we now leverage this insight to construct a distinguisher against the PRG. To
this end, we introduce a polynomial-time subroutine Ay, which takes as input a common reference
string crs, an instance x, and a function f as a polynomial with one of the following forms (matching
to the relevant group):

o Gi: f([]y,[crs1]1) = a- [I]; + (b, [crsi]1) where a # 0
o Gr: f([I]y, [crsi]1, [crsz]g, [crsT]T) [IT]; - (a, [crso)2) + (b, [crsi]1 ® [crsa]2) + (c, [crsr]r) where
(a, [crso]2) # [0]2.

The algorithm Ay (crs,x, f) outputs a group element [IT]; that passes the zero-test if plugged in to
a query of the form of f, i.e., in the G; case, such that f([II]y, [crsi]1) = 0.

In the case where f is a query made by the verifier and x is sampled from Dg, such an algorithm
can be derived using ideas similar to those used in Groth’s lower-bound |Grol6|. The algorithm
essentially uses the fact that the verifier’s queries form a linear subspace to progressively learn which
answers will cause this query to pass. In the full proof (see Lemma 6.11) we give full details, but
we note that they don’t have the same high-level of abstraction as in this overview.

We now have all the tools we need in order to break the PRG:

Lemma 2.3. If there exists a one group element SNARG in the Maurer GGM, then there exists an
efficient distinguisher between Dy and Dg.

Proof sketch. We describe the distinguisher D. Suppose that the verifier makes at most ¢ queries.
Given an instance x the distinguisher D runs as follows:

1. Sample crs as in the SNARG.
2. For every ¢ =1 to t:

(a) Run the verifier up to the i-th query (recall that we have established in prior sections that
proof-dependent queries can be recognized), answering all previous proof-dependent queries
with 0.

(b) Compute [II;]1 = Ay(crs,x, f;) where f; is the structure of the i-th query (which can be
efficiently derived by tracking all of the verifier’s GGM queries).

3. If there exists ¢ such that V(crs, x, [II;];) = 1 then output 1. Otherwise, output 0.

We show that D distinguishes between the distributions by showing that, for instances sampled
from Dy, the distinguisher outputs the bit b with overwhelming probability.

17

Consider x < Dg. By completeness, there must be [II]; that causes the verifier to accept. As
shown in Claim 2.2, in order for this to be the case, it must be that [II]; satisfies one of the proof-
dependent zero-test queries. Let i* be the index of the first proof-dependent zero test that passes.
Since this element is unique, for i = ¢* the distinguisher will get from Ay, the output [II;<]; = [II];,
and so V will accept on [II;+];. Thus, in this case D will output 1.

Now consider x < Dy. Since D is efficient and, after generating the common reference string,
makes no further use of its randomness, it can be simulated by a malicious SNARG prover. By
soundness of the SNARG, the verifier must therefore reject all candidate proofs [II;]; produced by
D. We conclude that the distinguisher outputs 0 for such instances. O

18

3 Preliminaries

3.1 Idealized models

The SNARGS in this paper are proved secure in the generic group model with an additional random
oracle. We describe these oracles:

Definition 3.1 (Maurer’s generic group). Maurer’s generic group model introduces a new unit of
information, a group element. In the setting of a group with asymmetric pairings, we have that a
group element can be from one of three prime-p order groups G1, Ga, or Gp. We define a generator
for each group g1, go, and gr, which every party implicitly receives. In this model, every algorithm
can only interact with these group elements by using one of these three oracles:

1. G takes as input two group elements g = gi,h = gll-’ from the same group G; with i € {1,2,T}
and a,b € Z,, and outputs gf‘“’ in Gy,

2. G, takes as input two group elements g = g¢ € Gy, h = g4 € Gy for a,b € Zy, and outputs g%'b in
GT;

3. G takes as input one group elements g = g* for some a € Z, from the group G; withi € {1,2,T}
and outputs 1 if a = 0 and outputs 0 otherwise.

We denote the combination of G, G, and G. as G.

Notice that the group elements do not have a bit representation. This way the only way an
algorithm can learn bits from a group element is by querying G..

Definition 3.2 (Random oracle). We let RO be the set of all functions O: {0,1}* — {0,1}. A
construction in the “random oracle model” is a construction where all parties have oracle access to
a uniformly random O + RO.

When simulating a random oracle, we use the notation “Lazily sample a random oracle SO”
and we then use SO in oracle algorithms. What that means in actuality is that first, we initiate
an empty dictionary SO. Then, whenever an oracle algorithm queries the oracle on some input X,
check whether there is already an entry for X in SO .If not we sample a uniformly random Y and
add X — Y to the dictionary SO.

We also define the generic group model and the random oracle model in the following way:

Definition 3.3 (GGM+ROM). Maurer’s generic group model, combined with the random oracle
model, also has the unit of information, a group element. In the setting of a group with asymmetric
pairings we have that a group element can be from one of three prime-p order groups G1, Go, or Gp.
We define a generator for each group g1, g2, and gp which every party implicitly receives. We let
RO be the set of all functions O: ({0,1} UG UG2UGr)* — ({0,1} x G1 X G2 X Gr). In this model,
we sample O < RO and every algorithm can only interact with these group elements by using one
of these four oracles:

1. G takes as input two group elements g = gi',h = gi? from the same group G; with i € {1,2,T}

and a,b € Z;,, and outputs gf“’ in Gy,

2. G, takes as input two group elements g = g € Gy, h = g4 € Gy for a,b € Zy, and outputs g%'b in
GT7

19

3. G takes as input one group elements g = g* for some a € Z, from the group G; withi € {1,2,T}
and outputs 1 if a = 0 and outputs 0 otherwise,

4. O takes as input an arbitrary amount of group elements and bits and outputs an arbitrary one
of those, too.

We denote the combination of G, G, and G. as G.

Remark 3.4. We sometimes consider the random oracle as outputting many outputs. This can
either be realized directly by a many-output ROM (matching a real-world hash function) or by
adding further inputs and domain-separation as appropriate.

3.2 Succinct non-interactive arguments

Definition 3.5. A succinct non-interactive argument (SNARG) for a relation R = {(x,w)} is
defined by a triple (S, P, V) as follows:

e Syntax.

— The setup algorithm S receives an input size parameter 1™ and a security parameter 1. It
outputs a common reference string crs.

— The (honest) prover algorithm P receives as input a common reference string crs, instance
x € {0,1}", and witness w € {0,1}™. It outputs a proof II.
— The verifier algorithm V receives as an instance x € {0,1}", and a proof II. It outputs a bit
be{0,1}.
e Completeness. A SNARG has completeness error « if for all (x,w) € R and A € N:

crs < S(1 1)

br [V(X’ m =1 IT < P(crs,x, w)

] >1—a(h, Jx)).

e Soundness. A SNARG has (adaptive) soundness with error [if for every A € N, n € N, and
s-size prover P’:

x| <n
Pr x ¢ L(R)
AV(st,x,II) =1

crs + S(17,1%)

(x,) < P’(crs) < B(A\n,s).

e Succinctness. For every large enough X\, (x,w) € R and crs in the image of S(1¥, 1Y), we have
III| = o(w) for Il = P(crs, x, w).

A SNARG with the following additional knowledge property is known as a SNARK:

e Knowledge soundness. A SNARG has (adaptive) knowledge soundness (in which case we refer to
it as a SNARK) with knowledge & if there exists an expected polynomial time PPT extractor £
so that for every A € N, n € N, and s-size prover P’,

Ix| <n crs + S(17, 1)
Pr (x,w) &R (x,II) <= P'(crs) | < k(A n,s).
AV(st,x,II) =1 | w <+ E(P,crs)

20

4 Linear map commitments

In this section we define linear map commitments, describe a construction in the generic group
model due to Lai and Malovolta [LM19| and give a tight analysis of the errors in their linear map
commitment. In fact, we prove a stronger security notion than the one proven i [LM19]; we prove
multi-extraction.

We begin by defining linear map commitments:

Definition 4.1. A linear map commitment over a finite field F is a tuple of algorithms
(Com.Setup, Com.Commit, Com.Open, Com.Verify) ,

with the following properties:

e Correctness. The linear map commitment has (perfect) correctness if for every X\, ¢, q € N, vector
z € F* and matrizc M € F¥4:

crs + Com.Setup(1*, 4, q)
(c,aux) < Com.Commit(crs, x)
pf <— Com.Open(crs, c,aux, M)
a=Mz

Pr | Com.Verify(crs,c, M, o, pf) = 1 =1.

e Multi-extraction. The linear map commitment has multi-extraction error € if there exists an
extractor for every A\, €, q,n,s € N, there exists a polynomial-time extractor Ext such that for any
s-size n + 1-stage adversary A= (A, ..., Ap, A'):

< Com.Verify(crs,c, M, o, pf) = 1 > crs <= Com.Setup(14, 4, q)

A Mz # a auxg = L
Priv. vi e [n] (ciyaux;) < Ai(crs,aUXi_1)> <e(\4,q,n,s).
< Jiy,i0 € [n] : > x; Ext(Ay,..., A, crs)
Ciy = Ciy N\ Tiy # Tiy (i, M,) «+ A’(crs, auxy,)

Remark 4.2. The linear map commitment that we use will be secure in the generic group model.
In this case, we refer to errors as a function of the number of queries made by the adversary rather
than its circuit size.

We now show that the |[LM19] linear map commitment has the above properties and give a tight
analysis of security:

Theorem 4.3. There is a linear map commitment in the bilinear GGM with prime order p with
p > 2* over the field F = Ly, with multi-extraction error 45‘;2 against s-query adversaries (as long as
s > 200%¢?). The commitment and opening sizes are both 1 element of G. The committing time is ¢
source group operations, the opening time is gf*> source group operations, and the verification entails

3 pairing operations and £(q+ 1) additional group operations. The extraction time is text(s) = O(s).

Proof. We begin by describing the construction:

Construction 4.4 ([LM19]). The linear map commitment is as follows. We assume all algorithms
have access to a GGM oracle G with known prime order p, and all those that receive crs parse it as

crs = ({G}je: {Hij bielq) jel2ane1y)-

21

e Com.Setup? (1,7, q):
1. B, 21, .., 2q < ZLp.
2. For all j € [{] set G; —91 .
3. For all i € [¢] and j € [2(] set H; ; —gg’ﬂj.
4. Output crs = ({G }36 [{H ,J}ze[q ,]G[ZZ}\{K—H})'
e Com.Commit¥(crs, z): Return (c,aux) = (Hjem Gj-:j,a:).
° Com.Openg(crs,c, aux, M): Parse aux = z and return pf defined as follows:
=TI IT #as
z€+1+J =J’
i€lq] jelf] 5 €ld\{s}
e Com.Verify9(crs,c, M, o, pf): Accept if and only if:
H H ZZ—I—I—] =€ G17 H HZZ glvpf)
i€lq) jell i€[q]
We show that the scheme above has extractable function binding. We describe an extractor Ext
such that:
i _ G < GGM(1*) i
< Com.Verify(crs,c, M, a, pf) = 1 > crs Com.Setupg(lA,ﬁ, q)
A Maz; # a auxp == L 40s® 4ls?
Pr| v .

< —<
¢, aux;) < AY (crs, aux;_ = =
Jiy, iz € [n] : Vi€ [n]: () G i 1 p
Ci, =Ciy N Ty F T x; < Ext (Al,...,AZ‘,CrS)
i1 — Cig i1 19 . G
(1, M, o) < A’ (crs)

We describe the extractor ExtY on inputs Aj,...,.4; and crs = ({Gj}iem {Hi}j}z‘e[q]7j6[2£]\{£+1}):11

1.

Initialize lists A1, A9, and Ap. These lists will hold entries of the form (g, f) where for a €
{1,2,T}, g € G, and f is a polynomial over formal variables to be defined in the following item.
Ay is initiated as {(g1,1)}, A2 is initiated as {(g2, 1)}, and Ap is initially empty.

. Let X, Z1,...,Z, be formal variables. For every j € [¢] add (G, X7) to Ay, and for every i € [g]

and j € [2¢] add (H”,Z X7) to As.

Run A%(crs) up to Aig (crs) in order, passing the auxiliary values between algorithms appropri-
ately. Keep track of queries to the generic group as follows:

e For a product query hy - he where hy, he € G, search A, for entries (hy, f1) and (he, f2). If no
such entries exist, output L. If they exist and there is no entry of the form (h/, fi + f2) then
add (h1 - he, fi + f2) to Aq.

1Ext only needs the trace of oracle calls made by Ai, ..., A:, and not additional access to the GGM oracle, but

we write it in this way for simplicity.

22

e For a pairing query e(hq, hy) where (h1, hy) € Gy X Go, search A an entry (hy, f1) and Ay for
an entry (hg, f2). If no such entries exist, output L. If they exist and there is no entry in Ap
of the form (A/, f1 - f2) then add (e(h1, h2), f1 - f2) to Ar.

The adversary A; eventually outputs ¢;. If there is no entry (c;, f) in Ay then output L. Oth-
erwise, due to how we are adding elements A, the polynomial f is over the variable X and has
the form:

FX) =0+ > v X7,

JE]

where v9,71,...,7 € Z.

. Output z; = (7],...,7)) € Zf; where 7} = 7; mod p.

We additionally consider the following oracle G’ which has an identical interface to the standard

GGM oracle, except that it keeps lists of polynomials over formal variables in exactly the same way
as done by Ext, and generates a fresh label whenever a polynomial appears which has not been seen
before.

1.

adversary up to a probability of

Initialize lists Ay, Ag, and Ap. These lists will hold entries of the form (g, f) where for a €
{1,2,T}, g € G, and f is a polynomial over formal variables to be defined in the following item.

. Choose a random label g; and add (g1, 1) to A;. Similarly, add (g2,1) to Ag for a random label

g2.

Let X, Z1,...,Z, be formal variables For every j € [¢] add (G, X7) to A; where G, is a random
label not previously used, and for every i € [q] and j € [2(] add (H; ;, Z; - X7) to Ay where H; ;
is a random label not previously used. When Com.Setup initiates crs, answer with the G; and
H; ; labels as appropriate.

For any query made by A = (A1, ..., A,, A’), Com.Verify, or Ext, answer the query as follows:

e For a product query hj - hg where hi, he € G, search A, for entries (hy, f1) and (he, f2). If no
such entries exist, output L. If they exist and there is no entry of the form (h’, f1 + f2) then
choose a random unused label A" and add (1, f1 + f2) to A,.

e For a pairing query e(hq, hy) where (hy, hy) € Gy X Go, search Ay an entry (hy, f1) and Ao for
an entry (hg, f2). If no such entries exist, output L. If they exist and there is no entry in Ap
of the form (A/, f1 - f2) then generate a random unused label A’ and add (R, f1 - f2) to Ap.

We in show in Claim 4.5 that using G’ in place of G yields the same success probability for the
2
465" “and, in Claim 4.6, we show that when using G’ the adversary

will never succeed in the experiment. Together these proving multi-extraction of the scheme.

23

Claim 4.5.

i GGM(1* T
Com.Verify9(crs,c, M, a, pf) = 1 G« (%) Grix
crs « Com.Setup” (14,4, q)
ANMz; # «)
auxp = 1
briv (ci,aux;) + AY(crs, aux;_1)
Jiq,i0 € [n] : ViE[n]: < v ? g i) i—1 >
i, =Ciy A i, £ Ti x; + Ext¥(Ay, ..., A crs)
i 11 12 11 12 (i,M, a) <—.A,g(CFS)]
[Com.Verify¥ (crs, c, M, a, pf) = 1 crs < Com.Setup? (1%, £, q)
AMz; # auxg = L
—Pr| v . (¢, aux;) + A9 (crs, aux;_1)
.. M S : ’ ;o ’
< iy, ig € [n] : > i€l z; — ExtY (Ag,..., A crs)
|\ G = Cip N Tjy F Tiy (i, M, o) « A9 (crs)]
40s?
< —.

p

Proof. The view of all parties in the experiments only differs if there exist two polynomials f, f’
added by G’ to the list such that f and f’ are not equivalent, and yet G gives them the same label.

Fix some f, f’ in the lists of G’. Since f, f’ represent the values in G up to plugging in of the
variables, this occurs only if

f(ﬁazla'--,zq):f,(ﬁ,zl,...

which, by the polynomial identity lemma, occurs with probability max{deg(f),deg(f’)}/p, where
deg denotes the total degree of the polynomial.

Observe that polynomials in A1 have degree at most ¢, polynomials in Ay have degree at most
2¢ + 1, and polynomials in A7 have degree at most 3¢ + 1. Thus, for f, f’, this probability is at
most 3¢ + 1.

Finally, the number of equality queries done to G’ is bounded as follows: £+ ¢ - (2 — 1) by the
setup algorithm, s queries made by .4, none made by Ext (as it only makes the same queries as
the stages in A), and one the verification test. Together, the total number of queries is bound by
3ql 4+ s. Thus, the probability that there exists a pair of polynomials whose description differs in
G’ but is the same for G is bounded by

7zq)7

3¢0+s\ 30+1 27083¢% +90%¢% 180%qs + 6lqs 4ls® + s2
: < + +
2 p 2p 2p 2p
1503¢%2 100%qs 30s?
< - +
p p p
2003¢%s 30s?
< R
p p
(s? 30s2 4052
< —+ = .
p p p

The inequalities above hold since 20¢%¢® < s, and using the mild assumption that ¢ > 3.

Finally, we show that the event E’ can never occur:

24

Claim 4.6.

[Com.Verify¥ (crs, ¢, M, o, pf) = 1 crs « Com.Setup? (1%, 4, q) |
A Mz; # a auxg == L /
Pr| v) (¢, aux;) .Aig (crs,aux;—1) =0.
o Vi € [n] : ,
< Jiy, iz € [n] : > z; < ExtY (Ag,..., A, crs)
|\ G =Gy A miy # T (i, M, a) < A9 (crs)]

Proof. We consider each part in the event separately and show that they both cannot hold when
interacting with G’:

. “Com.Verifyg/(crs, ci, M,a,pf) = 1 A Mx; # o Counsider (i*, M, «, pf) chosen by A" and the
matching commitment ¢;«. Let f be the polynomial matching the label ¢;» and h be the polynomial
matching the label pf. Suppose that Com.Verifyg/(crs, ¢, M,c,pf) = 1. This implies that the
following two polynomials Fi, F5 get the same label:

F(X, 20, Zg) = (X, Zay o Zg) - > Y M- ZiX T
i€lq] j€ll]
Fo(X, 20, Zg) =Y i ZiX T 4 WX, 21,0).
i€[q]

By construction, the only way that F; and F5 can share a label is if F; = F5, and so we assume
this to be the case.

Observe that by construction, any polynomial in Ay (which includes ¢;+) is of degree £ in X, and
any polynomial in Ay has monomials only of the form Z; X7 for i € [q] and j € [2¢] \ {£ + 1}. As
a result, f and h have the following forms:

l
FX) =m0+) vXx and WX, 2y, Zg) =0+ > Y. 0 ZiXT,
jeld iclg] jE20\{¢+1}

for some integers v;, o and, o; ;.

Thus, for every i € [q], the coefficient of Z;X‘*! is > jee Mijv; for Fi and «; for Fy. Since
) = F5, we get that Zjeé M; jv; = a; mod p, or, in other words, the vector zj+ = (71, ...,7))
where 7/ = v¢ mod p has Mz;- = a. Finally, we observe that Ext and G’ both have exactly the
same definitions and view of Aj, Ay, Ar, and so Ext will derive the same vector z;x.

e “Jiy,isg € [n] : ¢y =¢iy N Ty # x,”: by construction, there is a single polynomial f for every
c such that (c, f) € A1 (in both the extractor and G’). Thus, for any i,is with ¢;; = ¢;,, the
extractor will choose the same polynomial f from which to derive z;, and x;,. Thus, x;, = x;,.

25

5 SNARGs with two group elements

In this section we show that there exist SNARGs for NP in the GGM + ROM with only two
group elements by combining linear PCPs with a linear map commitment scheme. We present two
different SNARGs based on two different PCPs, where the main difference between the SNARGs is
the soundness error.

Our first SNARG has error roughly O(s/nPo¥1°8™ 4 poly(n, 5)/2*), and so is negligible in A when
A < polylogn:

Theorem 5.1. Let ¢ > 0 be a constant. The NP-complete problem GapMWSP,,, for m = log“™2n
has a SNARK in the bilinear generic group model with size 2* with the following parameters for
inputs (A,b,d) € F>¥" x Ff x N:

Argument size: 2 Gq.

. 24n5)\2
Completeness error: X loglog(n)?

Soundness/knowledge errors: nf;gcln + 5’2“382 with extraction time O(n+s) against s-size adversaries.
Reference string length: n G1 4+ 2n — 1 Go.

Running times: proving O(¢n + n? + Xloglog(n)?), verification O(¢n).

The above error bounds hold for n > 170 and s > 20n>.

The following theorem improves upon the soundness error of Theorem 5.1 but requires the
additional assumption of the unique games conjecture:

Theorem 5.2. Assume the unique games conjecture. There is a SNARG for NP with in the bilinear
generic group model with size 2* with the following parameters for inputs of size n:

o Argument size: 2 Gy.

4
e Completeness error: %&ym).
2
e Soundness error: L&y(n),
e Reference string length: poly(n) Gi and Gy elements.
e Running times: proving poly(n,\), verification poly(n).

The above error bounds hold for n > 671, s > 20n? and, ns > 8(25 + \).

This section is organized as follows: (1) in Section 5.1 we define linear PCPs and describe the
PCPs used in this paper, as well as a generic way to transform PCPs with a large accepting set
into one with a small accepting set, (2) in Section 5.2 we show how to combine a linear PCP with a
linear map commitment to construct a SNARK, and (3) in Section 5.3 we put these tools together
to prove Theorems 5.1 and 5.2.

5.1 Linear PCPs

In this section we define linear PCPs. We define them in a slightly non-standard way as we will
specifically refer to the accepting set of the PCP verifier.

Definition 5.3. A (non-adaptive) linear PCP over a finite field F for a relation R is a tuple of
algorithms (P, V) where the prover outputs a string ™ € F’, and the verifier outputs a matriz
M € F™>9 and a set S C F9 (for which membership is efficiently decidable) such that the following
properties hold:

26

e Completeness. The PCP has completeness error o if for every (x,w) € R,

m=P(x,w)
Pr |(Mnm) e S p—{0,1}" | >1—a.
(M, S) «+ V(x,p)

e Soundness. The PCP has soundness error (3 if for every x ¢ L(R) and 7 € F*:

Pr [(MW) es (M, S)p<—<_\;’[(();7x,1;});] <g.

e Knowledge soundness. The PCP has knowledge soundness error k with extractor running time et
if there exists a et-time extractor Ext such that for every instance x and proof w, if

Pr [(Mw) es (M, S)’:_‘;&}g; } > K,

then (x,Ext(x, 7)) € R.

The proving time pt is the time to run 7 = P(x, w), and the verification time vt is the combined
time to generate M, S and to test membership in S. We say that the accepting set size of the PCP is
s if for every x and p: |S| < s. In this paper we consider PCPs with an injective map ¢g: S — [|S]].
We let t, be the time to compute ¢g and gpgl.

The following claim shows that any PCP can be transformed into one with small accepting set
size at a high cost to the completeness error:

Claim 5.4. Suppose R has a linear PCP with completeness error «, randomness complexity r,
and accepting set size s. Then R has a linear PCP with completeness error o + %, randommness
complexity r +log s, and accepting set size 1. The soundness error, knowledge soundness error, and
length of the PCP are preserved, and the running times are preserved up to an additive factor of

O(log s).

Proof. Let (P, V) be the PCP for R. We construct a new PCP verifier V' that interacts with the
same honest prover P. The new verifier V', given (x, (p, z)) where z € [s] computes (M,S) «
V(x, p), and outputs M and accepting set S’ = {pg'(2)}.

If x is in the relation, then the verifier rejects either when it rejects in the original PCP (with
probability at most «/) or if it chooses an incorrect answer from S, which happens with probability
8;31. Thus, the completeness error is o + % Soundness does not degrade as M comes from the
exact same distribution in V and V' and since S’ C S. O

5.1.1 PCP and linear PCP constructions

We describe the PCPs used to derive Theorems 5.1 and 5.2. We begin by defining an NP-complete
language:

Definition 5.5. Fix a finite field F. For an approximation factor m, and instance of GapMWSP,,

over I is a triple (A,b,d) where A € F**" b e F', and d € N such that:

e (A,b,d) is a YES instance if there exists x € F™ such that Az = b and x has Hamming weight at
most d.

27

e (A b,d) is a NO instance if every solution x € F"™ where Ax = b has Hamming weight at least
m-d.

It is known that for certain values of m, the problem GapMWSP,, is NP-hard:

Lemma 5.6 ([BIOW20|, Lemma 4.2). For any constant ¢ > 0, m = logn and finite field F where
|F| = poly(n) there exists a Karp—Levin reduction*? from SAT to GapMWSP,,,,
algorithm takes a target field F as an explicit input and outputs and instance (A, b, d) over F in time

poly(n, log [F|).
[BIOW20| further construct a PCP for GapMWSP,,, with accepting size 1:

where the reduction

Theorem 5.7 (|[BIOW20|, Corollary 4.6 reformulated). Let o > 0 be a completeness parameter and
m > 0 be an approximation parameter. There is a 1-query linear PCP for the GapMWSP,, problem
with accepting set size s = 1,2 completeness error a and soundness error 1/|F|+e~*™. The prover
time is O(n) and the verifier time is O(nf).

In order to get better parameters, we also use a PCP that is proven under the unique games
conjecture. A unique game is a tuple (V,E,Z,f(x,y)eE) where V C ¥, E C V x V, and for every
(x,y) € E, fry: X — X is a permutation. The value of assignment A: V' — ¥ is the fraction of
pairs (z,y) € E where A(y) = foy(A(x)), and the value of the unique game is the value of the
optimum assignment. The unique games conjecture is as follows:

Conjecture 5.8. For every v > 0 there is 0 = o(7) such that it is NP-hard to distinguish unique
games of value > 1 — v from unique games of value v, even when restricted to instances where
|X| < o and where the constraint graph is bipartite.

We can now state the PCP in question:

Theorem 5.9 (|ST06|, Theorem 29). Assuming the unique games conjecture, for every k > 2
there exists a PCP for NP with completeness error 2*216, soundness error (2F + 2)/22k, proof length
poly(n), query complexity 28 — 1, and accepting set size 2F.

Proof. Theorem 29 of [ST06| states that if the unique games conjecture holds then for every § > 0
and k > 2 we have there exists a PCP for NP with completeness error 9§, soundness error (2k +
1)/22k + 8, proof length poly(n), and query complexity 2¥ — 1. We use 6 = 272" and observe that
the accepting set is of size 2F.

All queries their verifier does are in the context of a §-noisy hypergraph test (see Definition 26
of [ST06|). This hypergraph test receives 2¥ — 1 functions (¢(*) : {0,1}" — {0, 1})scir),s20- The
verifier samples uniform k bitstrings x1,...,2, and 2¥ — 1 sparse bitstrings (n(s))sc[k},s;é@- The
verifier queries g(*)(n®) + 3", ;). The verifier accepts if and only if for all () # s C [k] we have

Z g({i})(xi + n({i})) = ¢ (n(S) + Z ;).
1€S €S
Notice, that on the right-hand side of the equation is just response to one term and the left-hand

side of these equantions are only ever terms g({i})(aﬁi + n({i})) for i € [k]. Therefore, the respone to
these k uniquely identify one accepting response and the accepting set is size < 2F. O

12Here, by Karp-Levin reduction from R to R, we mean that there exist a pair of efficiently computable functions
f, g so that if (x,w) € R then (f(x),g(x,w)) € R’, and if x ¢ L(R) then f(x) ¢ L(R').
13BIOW20| do not explicitly say that their PCP has accepting set size 1, but this follows by their construction.

28

By applying Claim 5.4 to Theorem 5.9 and setting A = 2* we get the following PCP with
negligible soundness error and accepting set size 1:

Corollary 5.10. Assuming the unique games conjecture, for every A > 8, there exists a PCP for NP
with completeness error 1 —1/2\, soundness error (A\+2)/2*, proof length poly(n), query complexity
A — 1, and accepting set size 1.

5.2 SNARGs from PCPs with small accepting set

Given a linear PCP (ideally with small accepting set) and a linear map commitment, we construct
a SNARG. This construction is similar to those in [LM19; CGKY25|, except that we save in proof
length by considering the accepting set size, and that we provide a technique for reducing complete-
ness error at no runtime costs to the verifier.

Lemma 5.11. Let F be a finite field and t € N be a completeness error amplification parameter.
Consider the following:

o A linear PCP for a relation R over F with completeness error o, soundness error [3, knowledge
soundness error k, accepting set size s, mapping time t,, proving time pt and verifier time vt,
and extraction time et.

o A linear map commitment over F with multi-extraction €, committing time tec, opening time teo,
verification time tey, and extraction time te.

Then there is SNARK in the ROM for R with:

Argument size: sc + sps +log s

Completeness error: o +1%- (X 0,1,1,0(pt + tec + teo)

Soundness error: (s +1)-B+e(\ ', q,s+1,s+vt+t,) against s-size adversaries

Knowledge error: (s+1)-k+e(\ 0, q,s+1,s+vt+1t,) against s-size adversaries with extraction
time O(pt + et + tex(s))

e Random oracle queries: 1

e Proving time O(pt +t, + ¢ - (tec + Vt) + teo)

o Verification time: O(vt + t, + tey)

Above, ' = L + [logp t].

Remark 5.12. When using a standard PCP (i.e., a linear PCP where the verifier makes only
point queries), the linear map commitment in the above theorem can be relaxed to a subvector
commitment scheme.

Remark 5.13. If, as is the case in this paper, the linear map commitment is secure in the generic
group model, and the multi-extraction error is a function of GGM queries rather than circuit size
(see Remark 4.2), then the errors in Theorem 5.1 can be improved as follows:

e Completeness error: af +t2-e(\, £, 1,1,2 - tec + teo)

e Soundness error: (s+1)-8+e(\l,q,s+ 1,5+ tey)

e Knowledge error: (s+1)-xk+e(\l,q,s+ 1,5+ tey)

This follows from the fact that all of the reductions of adversaries made by our proofs do not make
any GGM queries unless they explicitly call one of the algorithms of the commitment scheme.

Proof. Let ' = { + [logp t]. For simplicity, we assume that the linear PCP verifier receiver A
bits of randomness. The scheme can be easily adapted if this is not the case by the random oracle
outputting the appropriate number of bits. We begin by describing the construction:

29

Construction 5.14. The SNARG (S,P,V) is as follows:
e S(1™,1"): Output crs « Com.Setup(1*, ¢, q).

o PO(crs, x, w):

1. ™+ P(x,w).
2. Fort=1tot:
(a) Set 7' = (7|i) (where we treat i as [logy ¢] field elements).

(b) (c,aux) < Com.Commit(crs, 7).
(c) p <+ Ofx,c).

(@ (3,) Visp)

(e) If (M7) € S then:

i. Let M' € F*? be defined as M'[j, k] = {M[j’k] ‘7 €l
0 j>7
ii. (a,pf) + Com.Open(crs,c,aux, M').
ili. z = @g(a).
iv. Output II = (c, z, pf)
3. If this point has been reached, output “FAILED”.

e VO(crs,x, I = (c, z,pf)):

1. Compute p + O(x,c).

2. Let (M,S) « V(x,p), let @ = ¢g'(2), and set M’ € F*4 is defined as in the honest prover
algorithm.

3. Accept if @ € S and Com.Verify(crs,c, M', o, pf) = 1 and reject otherwise.

We first show completeness and then soundness and knowledge soundness.

Claim 5.15. The SNARK has completeness error at most ol +t2 - (A, £/, 1,1, 0(pt + tec + teo))-

Proof. Fix (x,w) € R and m = P(x, w). For iteration 7, we denote (c;, aux;) = Com.Commit(crs, (7]|7)),
pi + O(x,¢;), and (M;, S;) < V(x, p;). Observe that p; and p; are independently distributed uni-
formly random strings whenever ¢; # c;. Thus, by completeness of the linear PCP and correctness
of the linear map commitment, if for every i € [t], ¢; is unique, the verifier rejects with probability
at most a!. In other words:

Pr [Verifier Rejects]

. ., crs <— Com.Setup(1*, ¢/, q) ‘
< . =
< Pr [HZ’] €l i#F i Aci=g Vi € [t], (c;,aux;) = Com.Commit(crs, (7]|i)) ta
All that remains is to show that:
. . ' crs < Com.Setup(1*, ¢/, q)
Pr [HZ"Y €l iz ne= Vi € [t], (ci,aux;) = Com.Commit(crs, (7|]7)) <€

We show that this holds by the function binding property of the linear map commitment. Consider
the following PPT adversary A = (A1, A’) to function binding of the LMC. Let Ext be the extractor
of the commitment scheme:

o Aj(crs,aux = L1):

30

1. Compute m = P(x, w).

2. Choose (i,j) < (%]).

3. For a € {i,j}, let my = (7|la) (where we treat a as [logp t] field elements) and compute
(Ca,auxy) = Com.Commit(crs, 7g).

4. If ¢; = ¢; then output (c;, aux’ = (4, j, ¢;, aux;, aux;)). Otherwise output L.

o Al(crs,aux’ = (4, J, ¢, aux;, aux;)):

1. Choose a < {i,j} uniformly at random.

2. Let k € [¢'] be such that m;[k] # m;[k]. One such k exists since the last [logy] symbols in ;
and 7; encode i and j respectively, and i # j.

3. Let M € F“*! be the matrix that is equal to 0 everywhere, except the k-th row, which is equal
to 1.

4. Compute pf = Com.Open(crs, ¢c,, auxq, M).

5. Output (M, «, pf) = (M, m,[k], pf)).

By function binding of the LMC,

crs < Com.Setup(1*, 7, q)
Com.Verify(crs,c, M, a, pf) = 1, | (c,aux) < Aj(crs)
(Mz) # « x < Ext(Ay,crs) -
(M, o, pf) < A'(crs, aux)

Pr

Observe that, by construction, whenever there is ¢; = ¢;, and we guess these ndices correctly, it is al-
ways the case that: (1) by completeness of the linear map commitment, Com.Verify(crs, c, M, a, pf) =
1, and (2) with probability 1/ (5) for at least one choice of a it holds that (Mz) # Mmr, for
x + A'(crs,aux). Therefore we conclude that:

o |ers e Com.Setup(1*, ¢/, q)
T Vi € [t], (ci,aux;) = Com.Commit(crs, (r||i))

crs < Com.Setup(1*, ¢, q)
<t> p Com.Verify(crs, ¢, M, v, pf) = 1, | (c,aux) < A (crs)

Pr[ai,je[t},z';éj A ¢ =

= 2 (Mz) # « x < Ext(Aj, crs)

(M, «, pf) « A'(crs, aux)
<t e(\,1,1,0(pt + tec + teo)) -

O

Claim 5.16. The SNARK has soundness error at most (s +1) - f+e(\, ¢',q,s + 1,5 + vt + t,)
and knowledge error at most (s+1)-k+e(X\, ¥, q, s+ 1,5 +vt+1t,) against s-size adversaries. The
extraction time is O(pt + et + text(s)).

Proof. We argue knowledge soundness. Soundness follows by an identical argument while removing
the need for extraction. For an m-query prover P (so that m < s), let ¢; be its i-th to the random
oracle query and aux; be its state immediately prior to making the ¢-th query. We use the notation
P=(Py,...,Py11,P) as follows:

e For i € [m]: P; is the algorithm that, on input crs, aux;_1, and a query answer p;_1 uses this
information (by continuing to run P) to output (g;, aux;).

31

e P, is the algorithm that, on input crs, aux,,, p, runs keeps running P until it outputs (x,II =
(c, z,pf)) and outputs ¢,,+1 = ¢ and auxiliary state aux,,+1 = (x, z, pf).
e P’ receives crs and aux,,+1 = (x, z, pf), computes (M, S) + V(x, O(x, c)) and outputs (i, M, gogl(z), pf)

We can now present the SNARK extractor &:

Construction 5.17. Let Ext be the extractor of the linear map commitment. Then £° on inputs
P =(Py,...,P,11,P’) and crs and runs as follows:

1. Run (x,1I = (c, 2, pf)) + P(crs) and let i* be the query index where P© queries (x,c), and
1" = m+ 1 if the query was not made.

2. Compute 7+ Ext(PS{, ..., P9, crs) € F¥. Let 7 be the first £ symbols of 7/,

Derive w < E(x, 7).

4. Output w.

@

Using our notation and the above extractor:

O + RO(1")

crs «+ SO(17, 1Y)
(x,II) « P9 (crs)
w +— E9(P, crs)

- O « RO(1)]
crs < Com.Setup(1*, 7, q)

auxg == L

x| <7, poi= &

(x,w) ¢ R,

Com . Verify(crs, c, M’, a, pf) = 1,
aesS (v, pf) < PO (crs, aux,, 1)
(c,x) = g~

(M, S) + V(x, pi~)

w + E(P,crs)

x| < n,
Pr| (x,w) ¢ R,
Vi(x,¢p,(2,pf) =1

=Pr

Vie[m+1]: (gi,aux;) < Pi(CI’S,aUXZ’_l)>

pi = O(qi)

We add to the experiment an extractor for every query that the prover makes. So far we have only

M Formally, since Ext does not expect to receive an oracle circuit, by P? we mean the circuit that has the random
oracle answers hard-coded. Observe that £ can construct this circuit as it can collect all of the random oracle queries
when it runs P®. Furthermore, P? outputs a query g;, which, in the case that we care about is equal to (x;,c;) and
not just a commitment as Ext expects. For simplicity of notation we ignore this discrepancy as the correct mapping
is clear from context.

32

added it to the experiment, so the probability is equal:

r O + RO(1%) T
crs < Com.Setup(1*, 7, q)
auxg = L
po = J_
’(X’ S)”% » (gi,aux;) < P;(crs,aux;_1)
- X, w) . . O (@]
=Pr Com.Verify(crs, ¢, M, v, pf) = 1, Vie[m+1]: | 7+ Ext(PY,..., Py crs)
a€e S pi = O(q;)
(ar, pf) <= P'O(crs, aux,,11)
() = q;*
(M, S) < V(x, pi=)
L w < E(P,crs)]

Opening up the extractor £ and noting that it computes m;» exactly as the way already computed
in the experiment during the main loop, the above is equal to:

I O + RO(1%) 1
crs <— Com.Setup(1*, ¢/, q)
auxg = L
po =L
’(X| S)”;é » (gi,aux;) < P;(crs,aux;_1)
_ X, w) . . / (@] (@]
=Pr Com.Verify(crs, ¢, M, v, pf) = 1, Vie[m+1]: | m + Ext(PY,..., Py, crs)
acsS pi = O(q:)
(ar, pf) <= P'©(crs, aux,, 1)
(c,x) = gir
(Mv S) — V(X7pl*)
L w < E(x, m+) i

By multi-extraction of the linear map commitment scheme, « in the above check that o € S can be

replaced with Mm;+ up to an added error of € so that the above is bounded by:

O « RO(1%) 1
crs « Com.Setup(1*, ¢, q)
auxg == L
x| < n, po=
(X W) ¢ R (qi, auxi) < Pi(crs, auxi,l)
<Pr ’ e , Vie [m+1]: | 7« Ext(P?Y,...,PY, crs)
Com.Verify(crs,c, M', a, pf) = ¢ g
pi = O(q;)

(]\[71’2*) es

pf) <+
= g

w < BE(x, m+)

— PO(crs, aux,i1)

(v,
(c,x) =
(M, S) + V(x, pi+)

+e\,gm+1, s+ vt+t,)

We can now remove the verification of the commitment scheme. This, in turn, allows us to remove

33

P’ from the experiment as its outputs are not used anymore:

x| < n,
(x,w) ¢ R,
(M?TZ‘*) es

O + RO(1")

crs <— Com.Setup(1*, ¢, q)
auxg = L

po =L

(gi,aux;) < P;(crs,aux;—1)
7w Ext(PY, ..

Vie[m+1]:

(C7 X) = Q5
(M, S) < V(x, pir)
w < E(x, m+)

/
1
.,P?,crs) +e(M\ 0 gm+1,s+vt+t,)

pi = O(q:)

Observe now that we only need to run P up to the i*-th query (recall that i* is not efficiently
computable, and so we are not done yet):

= Pr

x| < n,
(x,w) ¢ R,
(M?TZ'*) es

O + RO(1*)
crs <+ Com.Setup(1*, 7, q)
auxg == L

(gi,aux;) < P;(crs,aux;_1)

po = J_

Vie [i*—1]: | 7« Ext(PY, ...
(G, aux;+) < Py« (crs, aux;=_1)
mh + Ext(PY,..., P9 crs)

(CJ X) = Qgi*

pi- = O(qi+)

(M, S) — V(X, pi*)
w <+ E(x, m;+)

pi = O(q;)

, P9 crs)
+e(\ Ll gm+1,s+vt+ty,)

We now sample j < [m + 1] instead of using *, getting j = ¢* with probability 1/(m + 1). Thus,
the above is bounded by:

< (m+1)-Pr

(M’ S) — V(X’ Pj)
w — E(x, 7))

34

I O + RO(1%) 1

j < [m+1]
crs «— Com.Setup(1*, ¢, q)
auxp = L
po =L

x| <n (gi,aux;) < P;(crs,aux;_1)

= 9 . . /
(x,w) ¢ R, Vie[j—1]: | nf « Ext(PY,.. .,P?(/,)((:rs; (M £ gom L, svidt,)
. pi = U4;

(MTFZ) €9 (q]', auxj) < Pj(crs, auxj,l)
i« Ext(P?, ..., PY, crs)
(Ca X) =gy
pj = O(g5)

We now notice that, as O(g;) is queried only once (since P does not make the same query twice),
we can sample it uniformly at random rather than from the random oracle:

O + RO(1%)
jelm+1]
crs < Com.Setup(1*, ¢, q)
auxp = L
po =L
(gi,aux;) < P;(crs,aux;_1)

<
x| <n, Vielj—1]: wgeExt(P?,---,P?aCfs)

< (m+1)-Pr | (x,w) ¢ R,

(Mm;) € S pi = O(a:)
(q]', auxj) (*OP]'(CFS, Ez/;JXjfl)
T < Ext(PY,...,PY crs)
(C,X) =4qj
p; < {0,1}*

(M7 S) — V(Xa Pj)
w — E(x, 7))

Finally, by constructing a prover that runs the algorithms in in the experiment above up to the
sampling of p; (while emulating O with uniformly random answers) and outputting x and 7, and
by knowledge soundness of the PCP, the above is bounded by (m+1)-k+e(X, ¢, ¢, m+1, s+vt+t,)
which is, in turn, bounded by (s +1) -k +¢e(X\, ¢, ¢, s + 1,5+ vt +t,). O

O

5.3 Proof of Theorems 5.1 and 5.2

In this section, we prove Theorem 5.1 and Theorem 5.2 by putting together a linear PCP and the lin-
ear map commitment described in Theorem 4.3 and deriving appropriate bounds from Lemma 5.11.
Note that for both theorems, when analyzing the completeness error we will use the tighter multi-
extraction bound of (X, ¢, q,n,s) = w
orem 4.3).

for the linear map commitment (see proof of The-

e Theorem 5.1: we use the PCP for GapMWSP,,, of Theorem 5.7. Letting ¢ = A\/loglogn in
Lemma 5.11, we have the following:

— Completeness error:

ol 12 e(\n+1,1,1,n% +2(n+ 1))

+e(\, 0, g, m+1, s+vt+t,)

logn 22
24n> \?

< oSN g2
2* loglog(n)?

loglog n

where the final inequality holds since n > 170.

35

_< 1 >13+(A >2‘(20(n+1)3((n+1)2+2(n+1))+3(n+1)((n+1)2+2(n+1))2

)

— Soundness/knowledge error:

(s+1)-B+e(A\n+1,1,s+1,s+3(n+1))
s+1 s+1+4(n+1)-(s+3(n+1))2

= elogc+1 n 2)\ 2)\
s+ 1 4ns® +36n° + 24n?s + 108n? + 48ns + 108n + 4s? + 255 + 37
B elogf"'1 n 22

s+1 b5ns?

)

— plog‘n + 2A
where the final inequality follows from s > 20n? and n > 170.

e Theorem 5.2: we ue the PCP of Corollary 5.10. Letting t = 2A? in Lemma 5.11, we have the

following error bounds:
— Completeness error:

ol 12 e\ n+1,1,1,n% +2(n+ 1))
_ <1 B 1>2)\2 o <20(n+1)3((n+1)2+2(n+1))+3(n+1)((n+1)2+2(n+1))2>

2 A
1 20+ 13 ((n+1)2+2(n+1 3n+D((n+1)2+2(n+1))32
§2/\+4/\4,<(+)((+)+(+))2‘/\F(+)((+)+(+))>
93n°\?
A 7

where the final inequality holds since n > 671.

— Soundness error:

(s+1)-B+e(A\n+1,1,s+1,s+3(n+1))

s+ 1)A+2) | 4(n+1)-(s+3(n+1))?

N 22 + 22

_ 4ns® +36n3 + 24n%s + 108n? + 48ns + 108n + 4s? + (26 + \)s + A + 38
— 2

5n.s?
< o
Where the final inequality follows from s > 20n2, ns > 8(25 + A) and n > 671.

36

6 Lower bound for SNARGs with one group element

In previous sections, we showed the existence of two group element SNARGs in the generic group
model with random oracles. In this section, we established a lower bound matching our construc-
tions. With some caveats, we prove that in Maurer’s generic group model |[Mau05| for asymmetric
pairing groups with a random oracle, there does not exist a SNARG.

These caveats are that the setup algorithm does not have access to the random oracle and that
the verifier queries are non-adaptive!'® All group-based publicly verifiable SNARGs we are aware of
fall into the model covered by our lower bound.

Theorem 6.1. If one-way functions exist (in the plain model) then there does not exist a SNARG

for NP in the Maurer bilinear GGM (G x Go — Gr) + ROM with the following properties:

e The proof consists of a single group element (of either G1,Go, or Gr);

o The completeness and soundness errors are negligible in A;

e The verifier makes only non-adaptive ROM queries of the form (G; U Gg U Gp U {0,1})* —
{0,1} x G1 X G2 x G x {0,1} where ROM queries are done prior to any GGM equality checks
(or, equivalently, do not depend on them);

o The setup algorithm does not make random oracle queries.

Proof. Follows from the upcoming Lemmas 6.4, 6.7, 6.9 and 6.11. O

Remark 6.2 (Comparisson to |Grol6|). Groth |Grol6|, proved a limitation on the structure of
SNARGS: in the asymmetric pairing setting there are no SNARGs where

1. The proof only consists of (possibly multiple) G; group elements; and
2. The output of the verifier is a conjunction of predefined pairing equation checks.

This result is incomparable to Theorem 6.1 as it also rules out SNARGs with multiple Gy elements,
while we rule out SNARGs with much more expressive verifiers. Indeed, a variety of modern
SNARGS (e.g., [GWC19; Lip24; DMS24|) have verifiers that follow a structure not covered by the
lower bound in |Grol6| because they utilise a random oracle. As shown in these works, by using a
random oracle (and thus bypassing the structure required by Groth) it is possible where the proof
consists only of G; elements.

Remark 6.3. The proof in this section focuses on the prover’s message Il being a G; element. By
symmetry the proof is identical if it is a Go element. If IT is a G element then small changes are
required due to the difference in ways that the prover can generate a G element compared to a Gy
element, but the proof remains essentially the same.

Matching of upper bound. The SNARG construction in [SW14|, together with our results
characterize the tightness of our lower bound. We rule out SNARGs with < 1 group elements plus
O(log \) bits'®. Feasibility of a construction requires either relaxing the overhead to > 1 group
elements (our constructions) or allowing w(log \) extra bits (as in [SW14]).

5With non-adaptive, we mean that the verifier circuit V(crs, x, IT) can be split into two parts Vi and Va. Vi (crs, x, IT)
does not do any equality check GGM calls or ROM calls outputs a state State and queries (¢;);cq. Va2 receives State
and ROM response to these queries (O(gi));e[q and accepts or rejects. Vs is allowed equality check GGM calls but
no further ROM calls.

16We can handle these extra bits by having the verifier check all 20(ogA) possibilities, which only reduces soundness
polynomially.

37

Roadmap. To prove Theorem 6.1 we first prove in Section 6.1 that the random oracle does not
help to build one group element SNARGs. We do this by compiling every one group element
SNARG in Maurer’s model with non-adaptive random oracle calls to a one group element SNARG
in Maurer’s model without the random oracle. Then, in Section 6.2, we prove that a one group
element SNARG in Maurer’s generic group model does not exist if one-way functions exist (in the
plain model).

Notation 1. In this section we use additive notation for the cryptographic group. For example [u];
are a vector of group elements in G and u is the vector of the discrete logarithms of [u];. Similarly,
[v]2 and [w]r are vectors of group elements in G2 and Gr, respectively. If the specific group of an
element with discrete logarithm u is not relevant we will denote it by [u]..

6.1 Removing the ROM from one group element SNARGs

In this section, we show how to remove the random oracle from any one group element SNARG
with non-adaptive random oracle calls. We achieve this in two steps. In the first step, we remove
all the verifier calls to the random oracle which do not depend on the SNARG proof II. Then, in
a second step, we remove all the other calls to the random oracle. We discuss what it means for a
group element to depend on the proof later in this section.

6.1.1 Making the verifier deterministic

To remove random oracle queries, we will need it to be the case that the verifier is deterministic
(except for the responses of the random oracle). Here we argue that this holds without loss of
generality. We amplify the completeness and soundness over the randomness of the verifier and
then we fix a randomness that preserves completeness and soundness using an averaging argument.

Lemma 6.4. Let (S',P', V') be a SNARG for relation R with completeness error a(\) where a <
1 —1/poly(A) and (non-adaptive) soundness error 3(X). Then there exists a SNARG for R with a
determanistic verifier with completeness error o+ 2~ and (non-adaptive) soundness error 48/(1 —
a) + 27, The argument size is preserved and all other parameters are polynomially related.

Remark 6.5. While described for SNARGs in the standard model, the proof of Lemma 6.4 rela-
tivizes with respect to oracles, and so it also holds for SNARG constructions relative to oracles.

Proof. Let (S',P',V') be the SNARG with randomized verifier and denote by |crs'| its common
12 log(e)()\+|crs’\+|l'[|)
=

reference string size and |II| its argument string size. Let ¢ = be a repetition
parameter, and observe that ¢ is polynomial in A\. We construct the followmg SNARG (S,P,V)
with deterministic verifier:

o S(17):

1. Let crs’ < S'(17).
2. For ¢ € t sample verifier randomness r; uniformly at random.
3. Output crs := (crs’, (r;)icp)

e P(crs,x,w): Output IT < P’(crs, x, w).
e V(crs,x, II):

38

1. Let counter < 0.
2. For i € [t]: Let counter < counter + V' (crs, x, IT; r;).
3. If counter > % output 1 otherwise output 0.

Completeness. Fix an (x,w) € R. For a common reference string crs’, let
/ /
Pers = P%'[crs’ (Xv crs’ (X7 W); rV') = 1]
4

Fix a common reference string crs’ with pos > 1 — a. Letting X; be the 0/1 random variable where

Xi =1 <— V(,:rs’(x77)/ (X7W)ﬂ ri) = 17

crs’

so that X ¢ = Zle X has E[counter] = (1—«)-t, and applying the multiplicative Chernoff bound,
we have that (when crs’ is chosen),

Py [Xm, < (1 —2a) 't] < 9-(-a)tlog(e)/s < 9=A
Observe that, by completeness of the original SNARG, Preg[pes > (1 — «)] > 1 — a. Since V
accepts if and only if counter > (1 — a)t/2, which is equivalent to requiring that crs’ is chosen such
that X¢¢ > (1 — a)t/2, we have that V rejects with probability at most

(1—a)-t‘

Pr[pas <1—a]+Pr [Xcrs/ < Derst > 1 — a} <a+4277,

where above the probabilities are over the randomness of crs (which is the only randomness in the
new SNARG).

Soundness. Fix an instance x ¢ L and a malicious prover P. For a common reference string crs’
and proof string II let
Pers! 1T = Pr[V(crs, x, IL; ry) = 1].
ry

Fix crs’ and II with pes 1 < (1 — @)/4 and let X; be the 0/1 random variable where
Xi=1 < V. J(x,Plg(xw);r) =1,

Then Xero 11 = Zzzl X; has expectation E[X¢s 1] < (1 — «) - t/4. By the multiplicative Chernoff
bound,
(1—a)-t

Pr |:Xcrs’ o> < 9—4(1—a)-log(e)-/3 < 27(/\+|crs’|+\1'[|).

S PPN 47

By taking a union bound over all crs’ and II, we have that

(L—a)-t] _ox

Pr {Elcrs’,ﬂ Pas 1 < (1 —a) - t/4N Xeg 11 > 5 <

M1yt

Finally, observe that by soundness of the SNARG:
8> fr’vr[V/(crs’,x,ﬁ(crs’); ry) =1] = Zé . £§[pcrs/,75(cr5’) = §]
é

> (1 - Oé)/4 ’ Esl;[pcrs’,']s(crs’) Z (1 - Oé)/4],

39

and so Pree [pcrs,’ﬁ(crs,) >(1—w)/4] <4B/(1 — a).

Since V accepts if and only if counter > (1 —«)t/2, which is equivalent to requiring that crs’ and
IT = P(crs’) is chosen such that X_ Plers) = (1 — a)t/2, we have that V accepts with probability
at most

(1—a)-t

Pr[pcrs’,ﬁ(crs’) z (1 o a)/4] + Pr Xcrs/,75(crs’) = 2 ‘ pcrs’,ﬁ(crs’

crs’ crs’ ri,...re

)S(l_a)'t/4 3

which is bounded by 48/(1 — a) + 27, O

6.1.2 Defining proof-dependent and independent queries

In the generic group model for asymmetric pairing groups, any group element that an algorithm
produces can be thought of as a polynomial in the algorithm’s inputs. In our setting, for example,
any group element the verifier receives can be thought of as a polynomial f in the formal variables
I1, cbsy, ctsy, and cbsp. These formal variables represent the proof II, and the vector of Gy, Go, and
Gr elements in the common reference string crs.

We consider the case where the proof is an element in G1. By symmetry between G and Go
this suffices also for the case that the proof is in Go. The proof for G is similar while accounting
to the different structure of the possible ways the prover can generate a G proof. As the proof is
otherwise identical, we focus on Gj.

To indicate that the proof is in G;, we write [II]; from here on.

Then in the verifier all elements in G can be expressed by a polynomial all + (b, crs1) where
a € Zyp, and b is a vector over Z, because [II]; and the elements in [crsi]; are in G;. Similarly, all
elements in Gy can be expressed by a polynomial (b, cfsy) because [II]; can not be moved to Ga
and all Gt elements can be represented by <a, II- c?52> + (b, cts; ® crsa) + (c, crsr).

These properties allow us to define a function IsIndependent which determines whether the output
of such a polynomial is independent of the proof [II];. Essentially, it is independent if all coefficients
in monomials containing IT are 0. More precisely,

Isindependent,, (f (II, csy, ctsy, cisy)): where I, cisy, cisy, and cisy are formal variables respresent-
ing the proof and the G, Ga, G elements in the common reference string, respectively. We
abuse notation and say that f outputs a G1, Gy or G element, meaning that the output of
f represents the discrete logarithm of an element of that group. Whenever Isindependent is
called, it will be clear which group this is referring to, and so we do not specify this as an
input, but leave it implicit.

1. If f outputs a G element:

(a) f has the form R
all + (b, cts;)

where a € Z,, and b is a vector over Z,.
(b) If @ = 0 then output 1.
(c) If a # 0 then output 0.
2. If f outputs a Gg element then output 1.
3. If f outputs a G element:

40

(a) f has the form

I1- (a, ctsy) + (b, cts; @ cisy) + (c, cisp)
where a, b, ¢ are vectors over Zj,.
(b) If (a,[crs2]2) = [0]2 then output 1.
(c) If (a,[crsa]2) # [0]2 then output 0.

Crucial observation: Our proof relies on the fact that any algorithm that has access to crs
and the structure of f can compute IsIndependent, on their own. For G2 elements this is trivial.
For Gy elements this requires only knowing a, which is fixed in f. For Gr elements, since a is
known, it is possible to compute the group element whose exponent is (a, [crsg]2), and then check
whether this exponent is 0 or not via a GGM equality check.

Claim 6.6. Let f a function such that Isindependent(f) = 0. Then for every crs there exists a
function f3l such that f31(f(1L,crs)) = 11

Proof. The function f~! will be different depending on to which group the output of the query that
f matches. For a common reference string crs, let [crs;]1, [crsa]a, and [crsy]r be the elements in G,
Gog, and G respectively.

f outputs a G; element: then f has the form all + (b, cts1) where a € Z, is non-zero, and b is
a vector over Zj,. Then

Y — (b, crs;)
—

fad (V) =

f outputs a G2 element: this cannot hold as IsIndependent(f) = 1 whenever f outputs a Go
element.

f outputs a Gr element: then f has the form
<a, Il - c?52> + (b, cts; ® crsa) + (c, crsp)

where a, b, ¢ are vectors over Z,, and (a, [crsa|2) # 0. Then

Y — (b, crs; ® crsy) — (c, crsy)

fc_rsl(Y) = <a’ CI’SQ>

6.1.3 Removing proof-independent queries

Lemma 6.7. Let (89, P'9C V'99) be a single element SNARG for relation R in the Maurer
Bilinear GGM (Gy x Gy — Gr) with a random oracle with a deterministic verifier that makes non-
adaptive ROM G?I,ZT} — {0,1} x Gy x Gy x Gp. Then there exists a single element SNARG for
relation R in the Maurer Bilinear GGM with a random oracle with o deterministic verifier where for
every crs in the image of the setup algorithm the polynomial f describing any verifier ROM query
has Isindependent,(f) = 1. Completeness and soundness are preserved, and all other parameters
are polynomially related.

41

Remark 6.8. Notice, the random oracle may take multiple group elements as input and outputs
a bit and one group element from each group. This setting covers all possible ways of calling a
random oracle. If an algorithm wants to hash bits, it can first encode them into group elements and
then query the ROM with those group elements. With the proper domain separation, this does not
cause any complications.

Proof. Given a SNARG (89, P'9© V'99) in the Maurer Bilinear GGM with a random oracle. Let
T, be a bound on the running time of V (which also bounds its query complexity) and n be an upper
bound on the number of group elements that are used as input to the random oracle in a single

query (observe that both parameters are polynomial in the instance size and security parameter).
We design a SNARG (S, P, V) where all verifier ROM queries are proof-dependent:

o S9(17):
1. Sample crs’ + S'9(1%).
2. For i € [T] sample r; < {0, 1} uniformly at random.
3. Fori e [T)], j € {1,2,T} sample s; j < Z;, uniformly at random.
4. Output Crs := (CFS/7 (ri)iE[Ty}7 ([Si,j]j)iG[Tv},jE{l,Q,T})

o P9 (crs, x, w):

1. Let [crsq]q (resp. [crsz]2 and [crsp|r) be the group elements in crs’ which are G; elements (resp.
G2 and Gr).

2. Simulate V'9©(crs, x, [[]; := [1];). For each query i € [T},] and group element in that query
j € [n] there is a polynomial fz-,j(f[,c?'s') outputting a group element from either Gy, Gg, or
Gr.

3. Initialize a lazily sampled random oracle SO.

4. For each i € [Ty] if for all j € [n] it holds that Isindependent(f; ;(IT, cis')) = 1 then program

SO to output (r;, [si1]1, [si2]2, [si7]7) on input the group element f; ;([II}; := [1]1,crs).
5. Output [[]; := P95 (crs,x, w) where for a query X not programmed into SO we respond
with O(X).

e V99 (crs, x, [I]1):

1. Let [crsq]q (resp. [crsz]2 and [crsp|r) be the group elements in crs’ which are G elements (resp.
G2 and Gr).

2. Simulate V'9©(crs, x, [I]; := [1];). For each query i € [T},] and group element in that query
j € [n] there is a polynomial fi,j(f[,c?'s') outputting a group element from either Gy, Gg, or
Gr.

3. For each i € [Ty)] if for all j € [n] it holds that IsIndependentcrs(fm(fI, cts’)) = 1 then program
SO to output (r;, [si1]1,[si2]2, [si7]T) on input the group element f; ;([IT]; := [1]1, crs’).

4. Output b := V959 (crs, x, w) where for a query [X]. not programmed into SO we respond
with O([X].).

First, note that since T), is polynomial, the CRS length and all other efficiency parameters
remain polynomial (the proof length remains identical).

Recall that V' is non-adaptive with respect to the random oracle queries, meaning that the
executions V99 (crs, x, [1]1) and V959 (crs, x, [[I]1) yield the same polynomials f; ; that produce the
queries to the random oracle. Because V' is deterministic and IsIndependent is efficiently computable

42

P and V will agree on which responses to retrieve from crs. Further, (r;, [s;1]1,[si2]2, [si7]T) follow
the same distribution as if drawn from a random oracle. Therefore, this transformation preserves
completeness.

Soundness of (S§',P', V') follows from the fact any adversary A’ against its non-adaptive secu-
rity can transformed into an attack against (S,P,V) by sampling (r;, [si 1)1, [Si,2]2, [si,7]7) from the
random oracle at which the verifier is going to make proof independent queries. O

6.1.4 Removing proof-dependent queries

In the next step, we remove all the queries that depend on the proof. We use the fact that any
query that both prover and verifier have in common uniquely defines the proof because the query
is a degree 1 polynomial in the proof.

Lemma 6.9. Let (89, P90 V'90) be a single element SNARG for a relation R in the Maurer
Bilinear GGM (G x Go — Gr) with a random oracle, completeness error «, soundness error (3, and
non-adaptive ROM G?LZT} — {0,1} x Gy x Gg x G queries by the deterministic verifier where for
every crs in the image of the setup algorithm the polynomial f describing any verifier ROM query
has Isindependent.(f) = 1. Then, there exists a single element SNARG for R (S9,P9,V9) in the
Maurer GGM (without a random oracle), with completeness error a + 1 — 1/poly(\), soundness
error 3, and randomzied verifier.

Proof. Given a SNARG (S'9, P90 V'9:0) in the Maurer GGM with ROM we prove that the fol-
lowing protocol in the Maurer GGM without ROM is also a SNARG.
o S9(17):

1. Output crs «+ S"9(17).

o PY(crs,x, w):
1. Lazily sample a random oracle SOp.
2. Output [[]; < P99 (crs, x, w).

o VY(crs, x, [Ty):

1. Lazily sample a random oracle SOy,.
2. If V9SOV (crs, x, [IT]1) = 1 then output 1.
3. Otherwise, output 0.

The fact that soundness is preserved follows immediately from the verifier having the exact same
distribution as in (8’,P’,V’). Further, any adversary can not predict the response to a simulated
random oralce query the verifier does because they are randomly sampled on the spot. We thus
turn to proving completeness:

Claim 6.10. (S,P,V) has completeness error at most o +1 — 1/poly(A).

43

Proof. Fix an instance x and a witness w. We prove that

Gr1A
B G) L] ars = 8¥(11),
€= rffp Vo (ers,x, [y ry) =1 [T1]; < PY(crs, x, w;rp)

Crs <— Slg<1)\)7
= Pr_ |b=1| [} « P9SOP (crs, x, w)
S0y, S0p b+ V95OV (crs, x, [IT],)

> 1/poly(})
We define p.q to be the probability of prover and verifier having a common query.

crs «+ S'9(1Y),
[Xp]e N [A] # O] [TT]1 < P'9SOP (crs, x, w) with SOp-queries [Xp]..
VI9SO0v (crs, x, []1) with SOy-queries [A)]..
crs «+ S'9(1%),
=Pr |[Xp)« N [XY]s # 0] [[]; + P99 (crs, x, w) with SO-queries [Xp]..
SO 1G,SO . .
V%2 (cers, x, [II]1) with SO-queries [Xy]..

= Pr
Pea = 500505

This follows from the verifier only making non-adaptive queries, which means that the queries [Xp].
and [Xy]. only depend on SOp.

First, we look at the case that it is probable that prover and verifier do not share queries.
Specifically, if pcq < 1/2 we get that

crs «+ S'9(1%),

Pr b=1| [II]; + P'95OP (crs, x, w)
5Ov.80p i b+ V950V (crs, x, []1)
i b1 crs «+ S'9(1Y),
> Pr Lo [M1]; < P'9SOP (crs,x, w) with SOp-queries [AXp]s.

sovsop | [Fpl N V] =0 b+ V'9SOV (crs, x, [MT]1) with SOy-queries [Xy]s.

crs + S'9(1%),
[TT]; < P'9SOP (crs,x, w) with SOp-queries [AXp],.

:Sof,gop =1 b+ V959V (crs, x, [IT]) with SOy-queries [X)].. (1= Peq)
L [XP]* N [XV]* =10
I crs + 89 (1),
[I]; <« P'950 (crs, x, w) with SO-queries [Xp]..
> - . J—
- 5(5 b=1 b+ V959 (crs, x, [I];) with SO-queries [A)].. (1~ Peq) (1)

(Xl O[], = 0
crs + S'9(1%),
B [T]; < P'959 (crs, x, w) with SO-queries [Xp]s.
50 i (APl 0 [*). =0 b+ V95O (crs, x, [M];) with SO-queries [AXy]..

>1—a—pcgq (2)
> 1/4 > 1/poly(\) — «

=Pr b7 0,

44

Equality 1 follows from the fact that if prover and verifier queries are distinct then the SOp and SOy,
offer a consistent view of a random oracle. Inequality 2 follows by union bound over completeness
of (§',P',V") and the event that [Xp]. N [Ay]. = 0.

For the rest of the proof we consider the case that pcq > 1/2. With T (respective T),) being
the number of ROM queries of the prover (respective verifier) there exist an i* € [T and j* € [T}]
such that

Di* j* (3)
crs « S'9(1Y),
[T]; < P9SOP (crs, x, w)

where [Xp ;] is the i-th SOp-query.
b+ V9SOV (crs, x, []1)

where [Xy ;). is the j-th SOy-query.
crs «+ S9(1%),

1G,SO

_pp | el =Xy [H}vih;g) [j(»](Cr's’ﬁiwzth SO-
= P.il« is the i query. (4)

SO | Vici jeimy] ¢ [Xpiile # [Xv,jl« b V950 (crs, x, [TT]1)

where [Xy ;] is the j-th SO-query.

> 1/2T5T,,. (5)

_opp | il =1Xvl
505,50y | Vici+,j € [IV] : [Xpil« # [Xv]«

Equality 4 follows from the verifier only making non-adaptive queries, which means that the queries
Xp,; and Xy ; only depend on SOp. Inequality 5 follows from an averaging argument and Xp N Ay
being equivalent to the statement 3i*, 7% : Xp + = Xy j» and Viei,j € [T] : Xp i # Xy ;.

Let n be the upper bound on how many elements a ROM query by the verifier takes as input.
Each of query j of the T, queries is defined by n polynomials over crs and II. We call these
polynomials (f; (I, crs)) je[ry) keln]- For each j € [Ty] and k € [n] with Isindependent(f; (11, cis)) =

0 we let fj_k1 ors be the function derived by Claim 6.6 (i.e., such that for every crs it holds that

f]?lcl,crs(fjvk(ﬂv CI’S)) = H)
We use these functions in the following analysis of the accepting probability. With the rules of

45

probability we get

crs + S9(1%),
Pr [b=1| [d]; + P'95OP (crs, x, w),

S0y,80p I b+ V'9-SOv (crs, x, [I]1)
i crs + S'9(1%),
b=1,]y < P'9SOP (crs, x, w)
> Pr [(Xpi]s = [Xv j* s, where [Xp]« is the i-th SOp-query,
SOv.S80p

Vici je[Ty)] : [(Xp,il« # [Xp]« | b+ V19-SOv (crs, x, [I]1)
where [Xy ;] is the j-th SOy-query

i crs + S9(1%), 1
[I]; « P'95OP (crs, x, w)

where [Xp ;] is the i-th SOp-query,
b=1| b+ V9SO (crs, x, []) (1 = pie)

where [Xy ;] is the j-th SOy-query,
[Xp,is]x = [Xv,j+]x,
Vicinjelmy] © [Xpilx # [Xv]« 1

= Pr
S0, 80

We introduce some notation. By st < P'9SOP0:4) (crs, x, w) we mean run P'9°0P (crs, x, w) until
its i*-th SOp-query and let st be the state of computation it is in before receiving the response
to the i*-th SOp-query. Similarly, we define P'9-SOP["TP](crs x, w,st) is the continuation of the
above mentioned execution until the end.

For st < P'9SOP04%) (crs, x, w) we have P'9SOPI"TPl(crs, x, w,st) = II = j:,lk*,crs(XV,j* [k*])
and Xy j« = Xp ;. Therefore, we can also compute II from g:,lcrs(XP,i* [£*]).
crs «+ S'9(1%),
Run P'9SOP[03%) (crs, x, w) where [Xp]« is the i-th SOp-query,
Let k* be the smallest index s.t. IsIndependent(fj y-) = 1,
b=1] Il + f]:}k*,crs(X'P,i* [k;*])) : (1 - pz*,]*)
b+ V9SOV (crs, x, [[I]1) where [Xy ;] is the j-th SOy-query,
[Xp,i*]* = [XV,j*]*)
Vicir jelry] * [Xpls # [Xv,«

= Pr
SO,,,80p

Now, we have that the queries on SOy, and SOp are entirely distinct. Therefore, if V' uses SOp
the probabilities are identical.

crs « S'9(1Y),

Run st < P'9S0P04) (¢rs, x, w) where [Xp i« is the i-th SOp-query,
Let k* be the smallest index s.t. IsIndependent(fj« <) = 1,

:SE(’QI;) b=1| II « fg:,lk(*jcrs(XP,i* [k*]), | | (1 = pi j+)
b+ V'9SOP (crs, x, [I];) where [XV jl« is the j-th SOp-query,
[Xp,ix] = [Xvj+]s,

Vicir jelmy] ¢ [XPilx # [Xvjl

We undo a previous step and compute IT using P'9-°0» [i*’TP](Crs,x, w,st). We can do this because

46

we have that [Xy <]« = [Xp]+

crs « S'9(1%),
[I1]; + P'959 (crs, x, w) where [Xp], is the i-th SO-query,
=Pr [b=1] b+« V9% crs, x, [[I]1) where [Xy], is the j-th SO-query, | - (1 — ps ;=)
SO
[(Xpir]e = [Xv e,
Vi<i*,je[Tv} D[Xpils £ [XVJ]*

We use equality 4 to combine the probabilities.

crs «+ S'9(1%),
b#0, [TT]; < P'95O (crs, x, w)
:g(g [Xpix e = [Xy j*]s, where [Xp]« is the i-th SO-query.
Vicir jefry)] [Xpile # [Xv]e | b4 V95O (ers, x, 1)
where [Xy ;]« is the j-th SO-query.

>1—a—(1-1/2T:T5)
=1/poly(A) — a

These follow by union bound over completeness of (S’,P’,V’) and the event that [Xp <]« = [Xp j«]«A
Vicir jeny] © [Xpils # [XV]s. s
[l

6.2 Ruling out one group element SNARGSs in the pure GGM

In this section, we prove that if one-way functions exist, a one-group element SNARG in Maurer’s
generic group model does not exist. The proof is a refinement of Groth’s lower bound |Grol6|. He
proved that if one-way functions exist, then there does not exist a SNARG where the proof consists
of only G1 group elements, and the verifier has a particular structure. We focus on the setting where
the proof is just one group element. This change in focus allows us to cover arbitrary verifiers in
Maurer’s generic group model.

Lemma 6.11. If one-way functions exist (in the plain model) then there is no SNARG for NP in the
Maurer Bilinear GGM with argument size one group element, completeness error « = 1—1/poly(}),
and soundness error 3 = negl(\).

Proof. We prove the statement by contraposition. Assume (S,P,V) is a SNARG in the Maurer
Bilinear GGM as in the lemma statement for the NP relation R = {(G(s),s)} where G: {0,1}* —
{0,1}?} is a PRG. Let L be the language derived from R.

In this proof we will assume that the proof is in G, however proving the lemma for Go and Gp
is analagous, the only changes accounting to the slightly different structure of G and G elements.
Since the proof is a G; element, the prover will output some group element [IT]; that is computed
as some function f(cts;) = (I, cts;) where IT is a vector of Z, elements. This means each verifier
pairing equation check can be written as

(d; - [I) - <a§, [cr52]2> + (bj, [crs1]1 ® [ersa]2) + (¢4, [ersr]r) = [0]
<[] - (ay, [crse)2) + (b, [crs1]1 @ [crse)2) + (¢, [ersp]|r) = [0]7

47

for some Z,, vectors a;, a}, b;, ¢;, and Z, elements d;.
Using this proof system we show how to break the security game of the PRG: i.e., we construct
a distinguisher A for the distributions

s+ {0, 1}
x < G(s)

DG = {X

}, Dy = {x]| x + {0,1}** }.

Note that Dg always outputs x € L and that this happens only with negligible probability for Dy;.
We describe first an algorithm SolutionFinder, and then use it to specify the distinguisher .A:

e Solution Finderg(crs, a,b,c):

1. Let [crsy];1 (resp. [crsa]2 and [crsz]7) be the group elements in crs which are G; elements (resp.
G2 and Grp).
2. Let counter < 0.

w

Let B « 0.

4. While counter < A\/(1 — «):

()
(b)

()
(d)

(2)

o A(x*):

Sample s + {0,1}* uniformly at random.

Run [II]; + PY(crs,x = G(s),w := s) where II is the Z,-vector the prover uses to
compute [II]; < (IT, [crsi]1).

Let Z « (.

Run V9 (crs, x := G(s), [I1];) where for i € [T,] we have a/, b/, and ¢, are the Z, vectors
such that the i-th query of the verifier checks the equation

2

[H]l . <a§, [CI’SQ]2> + <b;, [crsl]l & [cr52}2> + <C;, [CFST]T> = [O]T.

If the equations holds let Z «— Z U {i}.
For ¢ e Z:
i. Let
II®al
V b/
/

C;

ii. If v & span(B) let B <~ BU{v} and counter < 0.
Let counter <— counter + 1.
II®a
If there exists a IT such that b € span(B) then output such a uniformly random
c
IT otherwise output L.

1. Simulate a generic group under the name of G.
2. Sample crs + SY(1*).
3. Simulate b* + V9(x*, [[I]; := [1]) on the i-th pairing equation check respond as follows:

(a)

Let the ¢-th pairing equation check be

?

[I]; - (ay, [crsa]a) + (by, [crs1]1 @ [crse]2) + (c;, [ersp|r) = [0]7.

48

(b) If (ay,[crsg]2) = [0]2 respond with 1 if (b;, [crsi]1 ® [crsa]2) + (ci, [crsr|r) = [0]7 and O
otherwise.
(¢) Let IT* + SolutionFinderY (crs, (a;, b;, ¢;)).
(d) If V9(x, (I1, [crs1]1)) = 1 then A outputs 1. Otherwise respond to the query with 0.
4. Output 0.

First, we argue that the adversary terminates in polynomial time. Because the dimension of
II®a;
b; is polynomial in the security parameter, counter can only be reset to 0 a polynomial
C;
number of times and the loop in SolutionFinder is run 2)\/(1 — &) = poly(\) many times.
For each i we define a linear space S := {(TI ® a) | IT € Fl11} and an affine space

X
B:=<z||b]| €span(B)
c

A II meets all the conditions if and only if IT € S N B. Therefore it is sufficient to compute said
intersection and sample from it.

We analyse how the adversary’s output behaves on samples from the PRG versus uniformly
random samples:

Claim 6.12. Ifx & L the adversary A outputs O with probability 1 — negl(\).
Proof. We define a new adversary, this time for the SNARG:
Ag(crs,x):

1. Simulate b* < V9(x, [IT]; := [1]) on the i-th pairing equation check respond as follows:
(a) Let the i-th pairing equation check be

2

[H]l . (ai, [cr52]2> + (bi, [crsl]l (= [Cr52]2> + <Ci7 [CI’ST]T> = [O}T.

(b) If (ay, [crsa]2) = [0]2 respond with 1 if (b;, [crs1]1 ® [crsa]2) + (¢4, [ersp]r) = [0]7 and O
otherwise.
(¢) Let IT* + SolutionFinder9 (crs, (a;, b;, c;)).
(d) If V9(x, (I, [crs1]1)) = 1 then Ag outputs (IT, [crs;]1). Otherwise respond to the query
with 0.
2. Output 0.

Observe that Ag is identical to A except that it doesn’t sample crs and it has access to a real oracle
G rather than simulating it by itself. However crs in the SNARG soundness experiment is sampled
as in A, and G is exactly the same as well. Thus, if A outputs 1 then Ag outputs a proof [II];
such that V(x, [IT];) = 1. By soundness we get the probability that Ag outputs a proof [II]; with
V(x, (IL, [crsi]1)) = 1 is B = negl(A). It follows the probability that A(x) outputs 1 is negl(\). O

49

Claim 6.13. For x < Dg, the following occurs with negligible probability (over the choice of x, crs
and the verifier randomness): given x and crs, ¥V accepts all proofs [II]; where every pairing equation
checks)

[H]l . <a1-, [CI’SQ]2> + <bi, [crsl]l & [cr52]2> + <Ci, [CI’ST}T> =
with (a;, [crsa]2) # [0]2 in V9(crs, x, [I]1) are answered by 0.

0] 7

Proof. We begin by moving from instances x sampled from Dg to ones sampled from Dy. Consider
the following algorithm :

o Ag(x):
1. Simulate a generic group under the name of G.

2. Sample crs + SY(1%).
3. Simulate b < V9 (x, [IT]; := [1]) where on the i-th pairing equation check respond as follows:

(a) Let the i-th pairing equation check be

2

[IT]1 - (ay, [crsa]2) + (b, [crs1]1 @ [erse]2) + (¢, [ersr]r) = [0]7.

(b) If (ay,[crsa]2) = [0]2 respond with 1 if (b;, [crsi]1 ® [crsa]2) + (c;, [crsr|r) = [0]r and O
otherwise.
(c) Otherwise respond to the query with 0.
4. Output b.

As we are in the Maurer GGM, without loss of generality, the view of V of the proof [II]; is only
in the pairing equation checks where (a;, [crso]o) # [0]2 (if it makes an equality check in G; then
we can translate it into one in Gr). Any the verifier’s view when given [II]; for which all of the
are answered by 0 is identical to its view in Ag(x). Thus the probability that V accepts all claims
where the pariring equations output 0 is equal to the probability of Ag ouptutting 1 for x < Dg.

By indistinguishability between Dg and Dy and the fact that Ag is efficient, we have that
Ag(x) = 1 with the same probability up to a negl()) factor when x < Dg as x < Dy.

We now show that Ag(x) = 1 with negligible probability when x <+ Dy, thus completing the
proof. First, note that when sampled from this distribution, x ¢ L with overwhelming probability.
Thus we henceforth consider some fixed x ¢ L. Suppose towards contradiction that Ag(x) outputs 1
with noticeable probability p > 1/poly(\). We show that this contradicts soundness of the SNARG
by defining an adversary:

o AY(crs,x): For i € [Ty, + 1] if V9(crs, x, [M]; := [i]1) = 1 output [i];.

We show that A will win the soundness experiment with probability p. Consider a crs such that
Ag outputs 1, meaning that)V accepts a proof [II]; where all the relevant pairing equation checks
in V9 (crs, x, [I1]1) return 0.

Each pairing equation check is a degree 1 polynomial in the proof [II];. Therefore, by polynomial
identity lemma, for every check there exists at most one [II]; such that the pairing equation check
outputs 1. Because the number of pairing equation checks the verifier is 7T}, it can reject at most
T, distinct group elements. Ag tests Ty, + 1 distinct group elements and at most T}, elements
can be rejected by the verifier, and whenever crs and the verifier randomness are chosen so that
this happens, Ay will win. This happens with probability p > 1/poly(A) which contradicts the
assumption that the protocol has negligible soundness error. O

50

Claim 6.14. Ifx < Dg, then A(x) outputs 1 with probability > 1/poly(\).

Proof. Let GoodCRS be the event that crs is such that

Pr

(',w')Dg

[Vg(crs,x’, [T']y) = 1|[IT']; « Pg(crs,x’,wl)] >1-—aq,

where by (x',w’) + Dg we mean that w’ is the preimage of the PRG. By completeness of the
SNARG, Pres[GoodCRS] > 1 — a. For the rest of the proof we assume GoodCRS holds.

We define another event, GoodlInstance, representing when for the challenge x* we have V(crs, x*, [I1];) =
1 for [M]; « PY(crs,x*, w*). By definition, Pr[GoodInstance|GoodCRS] > 1 — a.

Let TI* be the vector that PY(crs,x*, w*) uses to compute [II]; < (IT*, [crs;]1). For notational
convenience, we abuse notation and write ([I];, IT*) < PY(crs, x*, w*). By Claim 6.13 for x + Dg
with probability 1 — negl(\) there exists a query i such that (a;, [crsa]2) # 0 and [II]; - (ay, [crsa]o) +
(bi, [crsi]1 ® [ersa]2) + (ci, [crsr]r) = [0]7. Let i* be the random variable representing the smallest
of these indeces.

We now argue about the behavior of SolutionFinder. It will eventually use a basis B to check
whether

IT* ® a;-
b

Ci*

€ span(B).

Let B; be B after adding the j-th vector to it. Before SolutionFinder uses this as its final basis it
samples 2\ /(1 —) many independent x and w. If for a fixed j

Ji.

[IT]; - (ay, [crsa]2) + (b, [crs1]1 ® [crsa]2)
+ <Ci, [CFST]T> = [O]T,

([TT]1, IT*) + PY(crs, x, w)
VY (crs, x, w) makes

(X,Wl:))f—RL IT* ® a; paring equality checks
b; ¢ B; (ai, bi, ¢i)icpy
L Ci d
> (1—aw)/2,

then SolutionFinder will use it in the final computation with probability (1 — (1 — a)/2)?"/(1=),
Because in the SolutionFinder there are only polynomially many B; we have that the final state of
B has the property

Pr

(x,w)<Rp

with probability
BadBasis.

=
[IT]; - (ay, [crsa]2) + (b, [crs1]1 & [crsa]2)
+ (ci, [ersr]r) = [0]7,

IT* ® a;
b; ¢ B
L Ci
> (1= a)/2,
< negl(A). We call this event BadBasis.

51

([M]y, IT*) < PY (crs, x, w)
VY (crs, x, w) makes
paring equality checks
(ai, bi, ¢i)icpg

For the rest of the proof we assume

II ® a;-
In this case, SolutionFinder outputs some vector IT such that (b;+) € span(B) with prob-
C;*

[crsi]1 @ [crsg]
ability > 1 — (1 — «)/2. Because every vector v € B is such that <V, ([crslh ® [crsa]2 > = [0]p

[crsp|r
we get that

I ® a;: [crs1]1 @ [crsa]o IT" ® a;» [crsi]1 ® [crsa]a
< b;+ o | [ersi]i @ [ersa]o > = [0]p = < b;+ o | [ersi]i ® [ersa]a > &
Cjx [crsT] T Ci [crsT]T

<H Q a;*, [cr51]1 X [CrSQ]Q =II"®a ag-, [cr51]1 (= [CI’SQ]2> =

(IT, [crs1]1) = (IT*, [crs1]1)
= [
Therefore, A outputs 1 with probability
i].__[® ai*
> Pr | GoodCRS A BadBasis A GoodlInstance A b € span(B)
I Cir

II®a;
> Pr | BadBasis A Goodlnstance A (b) € span(B) GoodCRS] (1—a)

Cj*

II®a;:
! GoodCRS,
> Pr | GoodlInstance A (IZZ) € span(B) BadBasis] (1 —a)(1 —negl(N))

>(1l—a—(1-a)/2)(1—a)(1—negl(N))
> (1= a)/2)(1 — a)(1 — negl(A))
> 1/poly()).

Lemma 6.11 follows from Claim 6.14 and Claim 6.12.

52

Acknowledgments

Gal Arnon is supported by the European Research Council (ERC) under the EU’s Horizon 2020 re-
search and innovation programme (Grant agreement No. 101019547), and Stellar Foundation Grant.
This work was done in part while Gal Arnon was a research fellow at the Simons Institute for the
Theory of Computing. This work was done in part while Jesko Dujmovic was at CISPA Helmholtz-
Center for Information Security. Jesko Dujmovic was supported by the European Reasearch Union
(ERC, LACONIC, 101041207). Eylon Yogev is supported by the Israel Science Foundation (Grant
No. 2302/22), and European Research Union (ERC, CRYPTOPROOF, 101164375). Views and
opinions expressed are however those of the author(s) only and do not necessarily reflect those
of the European Union or the European Research Council. Neither the European Union nor the
granting authority can be held responsible for them.

References

[ACFY24] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. “STIR: Reed—Solomon
Proximity Testing with Fewer Queries”. In: Proceedings of the J4th Annual International
Cryptology Conference. CRYPTO ’24. 2024, pp. 380—413.

[ACFY25] Gal Arnon, Alessandro Chiesa, Giacomo Fenzi, and Eylon Yogev. “WHIR: Reed-Solomon
Proximity Testing with Super-Fast Verification”. In: Advances in Cryptology - EURO-
CRYPT 2025 - 44th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Madrid, Spain, May 4-8, 2025, Proceedings, Part IV. Ed.
by Serge Fehr and Pierre-Alain Fouque. Vol. 15604. Lecture Notes in Computer Science.
Springer, 2025, pp. 214-243.

[ACY23] Gal Arnon, Alessandro Chiesa, and Eylon Yogev. “IOPs with Inverse Polynomial Soundness
Error”. In: 64th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2023,
Santa Cruz, CA, USA, November 6-9, 2023. IEEE, 2023, pp. 752-761.

[ADI25] Gal Arnon, Jesko Dujmovic, and Yuval Ishai. “Designated-verifier SNARGs with one group
element”. In: Annual International Cryptology Conference. Springer. 2025, pp. 192-224.
[AFLN24] Martin R. Albrecht, Giacomo Fenzi, Oleksandra Lapiha, and Ngoc Khanh Nguyen. “SLAP:

Succinct Lattice-Based Polynomial Commitments from Standard Assumptions”. In: Ad-
vances in Cryptology - EUROCRYPT 2024 - 43rd Annual International Conference on the
Theory and Applications of Cryptographic Techniques. Ed. by Marc Joye and Gregor Lean-
der. Vol. 14656. Lecture Notes in Computer Science. Springer, 2024, pp. 90-119.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam.
“Ligero: Lightweight Sublinear Arguments Without a Trusted Setup”. In: Proceedings of
the 24th ACM Conference on Computer and Communications Security. CCS ’17. 2017,
pp- 2087-2104.

[ALMSS98| Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. “Proof
verification and the hardness of approximation problems”. In: Journal of the ACM 45.3
(1998). Preliminary version in FOCS ’92., pp. 501-555.

[BBBPWM18] Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg
Maxwell. “Bulletproofs: Short Proofs for Confidential Transactions and More”. In: Proceed-
ings of the 39th IEEE Symposium on Security and Privacy. S&P ’18. 2018, pp. 315-334.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Fast Reed—Solomon
Interactive Oracle Proofs of Proximity”. In: Proceedings of the 45th International Colloquium
on Automata, Languages and Programming. ICALP ’18. 2018, 14:1-14:17.

53

[BBHR19]

[BCCGP16]

[BCIOP13]

[BCS16]

[BHIRW?24]|

[BIOW20]

[BISW17]

[BS23]

[CGKY?25]

[CY24]

[DFGK14]

[DMS24|

[FSS6]

Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Scalable Zero Knowl-
edge with No Trusted Setup”. In: Proceedings of the 39th Annual International Cryptology
Conference. CRYPTO ’19. 2019, pp. 733-764.

Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. “Ef-
ficient Zero-Knowledge Arguments for Arithmetic Circuits in the Discrete Log Setting”.
In: Proceedings of the 35th Annual International Conference on Theory and Application of
Cryptographic Techniques. EUROCRYPT ’16. 2016, pp. 327-357.

Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer Paneth. “Suc-
cinct Non-Interactive Arguments via Linear Interactive Proofs”. In: Proceedings of the 10th
Theory of Cryptography Conference. TCC ’13. 2013, pp. 315-333.

Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. “Interactive Oracle Proofs”. In:
Proceedings of the 14th Theory of Cryptography Conference. TCC '16-B. 2016, pp. 31-60.

Nir Bitansky, Prahladh Harsha, Yuval Ishai, Ron D Rothblum, and David J Wu. “Dot-
product proofs and their applications”. In: 2024 IEEE 65th Annual Symposium on Founda-
tions of Computer Science (FOCS). IEEE. 2024, pp. 806-825.

Ohad Barta, Yuval Ishai, Rafail Ostrovsky, and David J Wu. “On succinct arguments and
witness encryption from groups”. In: Annual International Cryptology Conference. Springer.
2020, pp. 776-806.

Dan Boneh, Yuval Ishai, Amit Sahai, and David J. Wu. “Lattice-Based SNARGs and Their
Application to More Efficient Obfuscation”. In: Proceedings of the 36th Annual International
Conference on Theory and Applications of Cryptographic Techniques. EUROCRYPT ’17.
2017, pp. 247-277.

Ward Beullens and Gregor Seiler. “LaBRADOR: Compact Proofs for R1CS from Module-
SIS”. In: Advances in Cryptology - CRYPTO 2028 - 43rd Annual International Cryptology
Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023, Proceedings,
Part V. Ed. by Helena Handschuh and Anna Lysyanskaya. Vol. 14085. Lecture Notes in
Computer Science. Springer, 2023, pp. 518-548.

Alessandro Chiesa, Ziyi Guan, Christian Knabenhans, and Zihan Yu. “On the Fiat-Shamir
Security of Succinct Arguments from Functional Commitments”. In: TJACR Cryptol. ePrint
Arch. (2025), p. 902. URL: https://eprint.iacr.org/2025/902.

Alessandro Chiesa and Eylon Yogev. Building Cryptographic Proofs from Hash Functions.
2024. URL: https://github.com/hash-based-snargs-book.

George Danezis, Cedric Fournet, Jens Groth, and Markulf Kohlweiss. “Square Span Pro-
grams with Applications to Succinct NIZK Arguments”. In: Proceedings of the 20th Interna-
tional Conference on the Theory and Application of Cryptology and Information Security.
ASTACRYPT ’14. 2014, pp. 532-550.

Michel Dellepere, Pratyush Mishra, and Alireza Shirzad. “Garuda and Pari: Faster and
Smaller SNARKs via Equifficient Polynomial Commitments”. In: TACR Cryptol. ePrint
Arch. (2024), p. 1245.

Amos Fiat and Adi Shamir. “How to prove yourself: practical solutions to identification and
signature problems”. In: Proceedings of the 6th Annual International Cryptology Conference.
CRYPTO ’86. 1986, pp. 186-194.

54

https://eprint.iacr.org/2025/902
https://github.com/hash-based-snargs-book

[GGPR13]

[GLSTW23]

[GWC19]

[Gro10]

[Gro16]

[ANY22]

[IKOO5]

[IKOO7]

[JLLW23]

[Kho02]

[Kil92]

[LM19]

[Lip12]

Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. “Quadratic Span
Programs and Succinct NIZKs without PCPs”. In: Advances in Cryptology - EUROCRYPT
2013, 32nd Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Athens, Greece, May 26-30, 2013. Proceedings. Ed. by Thomas Johans-
son and Phong Q. Nguyen. Vol. 7881. Lecture Notes in Computer Science. Springer, 2013,
pp. 626-645.

Alexander Golovnev, Jonathan Lee, Srinath T. V. Setty, Justin Thaler, and Riad S. Wahby.
“Brakedown: Linear-time and field-agnostic SNARKs for R1CS”. In: Proceedings of the 43rd
Annual International Cryptology Conference. CRYPTO ’23. 2023.

Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK: Permutations over
Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryptology ePrint
Archive, Report 2019/953. 2019.

Jens Groth. “Short Pairing-Based Non-interactive Zero-Knowledge Arguments”. In: Pro-
ceedings of the 16th International Conference on the Theory and Application of Cryptology
and Information Security. ASTACRYPT ’10. 2010, pp. 321-340.

Jens Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: Proceedings of
the 85th Annual International Conference on Theory and Applications of Cryptographic
Techniques. EUROCRYPT ’16. 2016, pp. 305-326.

Iftach Haitner, Daniel Nukrai, and Eylon Yogev. “Lower Bound on SNARGs in the Random
Oracle Model”. In: Advances in Cryptology - CRYPTO 2022 - 42nd Annual International
Cryptology Conference, CRYPTO 2022, Santa Barbara, CA, USA, August 15-18, 2022,
Proceedings, Part I1I. Ed. by Yevgeniy Dodis and Thomas Shrimpton. Vol. 13509. Lecture
Notes in Computer Science. Springer, 2022, pp. 97-127.

Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. “Sufficient Conditions for Collision-
Resistant Hashing”. In: Proceedings of the 2nd Theory of Cryptography Conference. TCC ’05.
2005, pp. 445-456.

Yuval Ishai, Eyal Kushilevitz, and Rafail Ostrovsky. “Efficient Arguments without Short
PCPs”. In: Proceedings of the Twenty-Second Annual IEEE Conference on Computational
Complezity. CCC ’07. 2007, pp. 278-291.

Aayush Jain, Huijia Lin, Ji Luo, and Daniel Wichs. “The Pseudorandom Oracle Model and
Ideal Obfuscation”. In: Advances in Cryptology - CRYPTO 2028 - 43rd Annual International
Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August 20-24, 2023,
Proceedings, Part IV. Ed. by Helena Handschuh and Anna Lysyanskaya. Vol. 14084. Lecture
Notes in Computer Science. Springer, 2023, pp. 233-262.

Subhash Khot. “On the Power of Unique 2-Prover 1-Round Games”. In: Proceedings of the
17th Annual IEEE Conference on Computational Complezity, Montréal, Québec, Canada,
May 21-24, 2002. IEEE Computer Society, 2002, p. 25.

Joe Kilian. “A note on efficient zero-knowledge proofs and arguments”. In: Proceedings of
the 24th Annual ACM Symposium on Theory of Computing. STOC ’92. 1992, pp. 723-732.

Russell WF Lai and Giulio Malavolta. “Subvector commitments with application to suc-
cinct arguments”. In: Advances in Cryptology—-CRYPTO 2019: 39th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 1822, 2019, Proceedings, Part I
39. Springer. 2019, pp. 530-560.

Helger Lipmaa. “Progression-Free Sets and Sublinear Pairing-Based Non-Interactive Zero-
Knowledge Arguments”. In: Proceedings of the 9th Theory of Cryptography Conference on
Theory of Cryptography. TCC ’12. 2012, pp. 169-189.

95

[Lip24] Helger Lipmaa. “Polymath: Groth16 Is Not the Limit”. In: Advances in Cryptology - CRYPTO
2024 - 44th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2024, Proceedings, Part X. Ed. by Leonid Reyzin and Douglas Stebila. Vol. 14929.
Lecture Notes in Computer Science. Springer, 2024, pp. 170-206.

[Mau05] Ueli Maurer. “Abstract models of computation in cryptography”. In: Cryptography and
Coding: 10th IMA International Conference, Cirencester, UK, December 19-21, 2005. Pro-
ceedings 10. Springer. 2005, pp. 1-12.

[Mic00] Silvio Micali. “Computationally Sound Proofs”. In: STAM Journal on Computing 30.4 (2000).
Preliminary version appeared in FOCS ’94., pp. 1253-1298.

[Nec94] Vassiliy Ilyich Nechaev. “Complexity of a determinate algorithm for the discrete logarithm”.
In: Mathematical Notes 55 (2 1994), pp. 165-172.
[SCI14] SCIPR Lab. libsnark: a C++ library for zkSNARK proofs. 2014. URL: https://github.

com/scipr-lab/libsnark.

[SSEKY7Z24] Ron Steinfeld, Amin Sakzad, Muhammed F. Esgin, Veronika Kuchta, Mert Yassi, and Ray-
mond K. Zhao. “LUNA: Quasi-Optimally Succinct Designated-Verifier Zero-Knowledge Ar-
guments from Lattices”. In: Proceedings of the 2024 on ACM SIGSAC Conference on Com-
puter and Communications Security, CCS 2024, Salt Lake City, UT, USA, October 14-18,
2024. Ed. by Bo Luo, Xiaojing Liao, Jun Xu, Engin Kirda, and David Lie. ACM, 2024,
pp. 3167-3181.

[ST06] Alex Samorodnitsky and Luca Trevisan. “Gowers uniformity, influence of variables, and
PCPs”. In: Proceedings of the thirty-eighth annual ACM symposium on Theory of Comput-
wng. 2006, pp. 11-20.

[STW23| Srinath Setty, Justin Thaler, and Riad Wahby. “Customizable constraint systems for suc-
cinct arguments”. In: JACR Cryptol. ePrint Arch. (2023), p. 552.

[SW14] Amit Sahai and Brent Waters. “How to use indistinguishability obfuscation: deniable en-
cryption, and more”. In: STOC. 2014.

[Sho97] Victor Shoup. “Lower bounds for discrete logarithms and related problems”. In: Proceed-

ings of the 16th International Conference on the Theory and Application of Cryptographic
Techniques. EUROCRYPT ’97. 1997, pp. 256—266.

[WW24] Brent Waters and David J. Wu. “Adaptively-Sound Succinct Arguments for NP from In-
distinguishability Obfuscation”. In: Proceedings of the 56th Annual ACM Symposium on
Theory of Computing, STOC 2024, Vancouver, BC, Canada, June 24-28, 2024. Ed. by
Bojan Mohar, Igor Shinkar, and Ryan O’Donnell. ACM, 2024, pp. 387-398.

[WW25] Brent Waters and David J. Wu. “A Pure Indistinguishability Obfuscation Approach to
Adaptively-Sound SNARGs for sfNP”. In: Proceedings of the 45th Annual International
Cryptology Conference. Ed. by Yael Tauman Kalai and Seny F. Kamara. Vol. 16006. CRYPTO ’25.
Springer, 2025, pp. 292-326.

[WZ24] Brent Waters and Mark Zhandry. “Adaptive Security in SNARGs via iO and Lossy Func-
tions”. In: Advances in Cryptology - CRYPTO 2024 - 44th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 18-22, 2024, Proceedings, Part X. Ed. by
Leonid Reyzin and Douglas Stebila. Vol. 14929. Lecture Notes in Computer Science. 2024,
pp. 72-104.

[ZCF24] Hadas Zeilberger, Binyi Chen, and Ben Fisch. “BaseFold: Efficient Field-Agnostic Poly-
nomial Commitment Schemes from Foldable Codes”. In: Proceedings of the 44th Annual
International Cryptology Conference. Vol. 14929. CRYPTO ’24. 2024, pp. 138-169.

[Zha22] Mark Zhandry. “To label, or not to label (in generic groups)”. In: Annual International
Cryptology Conference. Springer. 2022, pp. 66-96.

56

https://github.com/scipr-lab/libsnark
https://github.com/scipr-lab/libsnark

	Abstract
	Contents
	1 Introduction
	1.1 Our results
	1.2 Related work
	1.3 Open problems

	2 Techniques
	2.1 SNARGs with two group elements
	2.2 Lower bound for SNARGs with one group element

	3 Preliminaries
	3.1 Idealized models
	3.2 Succinct non-interactive arguments

	4 Linear map commitments
	5 SNARGs with two group elements
	5.1 Linear PCPs
	5.2 SNARGs from PCPs with small accepting set
	5.3 Proof of thm:upper-bound-main,thm:upper-bound-main-unique-games

	6 Lower bound for SNARGs with one group element
	6.1 Removing the ROM from one group element SNARGs
	6.2 Ruling out one group element SNARGs in the pure GGM

	Acknowledgments
	References

