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Abstract

Secure coin-tossing is typically modeled as an input-less functionality, where parties with no
private inputs jointly generate a fair coin. In the dishonest majority setting, however, a strongly
fair coin-tossing protocol is impossible. To circumvent this barrier, recent work has adopted the
weaker notion of game-theoretic fairness, where adversaries are rational parties with preferences
for specific outcomes, seeking to bias the coin in their favor. Yet these preferences may encode
secret information, making prior protocols that assume preferences are public, fundamentally
incompatible with privacy.

We initiate a comprehensive study of privacy-preserving game-theoretically fair coin-tossing,
where the preferences of honest parties remain private. We propose a simulation-based security
framework and a new ideal functionality that reconciles both preference-privacy and game-
theoretic fairness. A key ingredient is a certifying authority that authenticates each party’s
preference and publishes only aggregate statistics, preventing misreporting while hiding parties’
preferences. The functionality guarantees that every honest party receives an output: either a
uniform coin; or, if an adversary deviates, a coin that strictly decreases the adversarial coalition’s
expected utility.

Within this framework, we construct a protocol realizing our ideal functionality under stan-
dard cryptographic assumptions that works for both binary and general m-sided coin-tossing.
Our schemes tolerate the same optimal (or nearly optimal) corruption thresholds as the best
known protocols with public preferences (Wu-Asharov-Shi, EUROCRYPT ’22; Thyagarajan-
Wu-Soni, CRYPTO ’24). Technically, our protocols combine authenticated preferences with an
anonymous communication layer that decouples identities from preference-dependent actions,
together with a deviation-penalty mechanism that enforces game-theoretic fairness.

Our work is the first to reconcile game-theoretic fairness with preference privacy, offering
new definitional tools and efficient protocols for rational multi-party computation in dishonest
majority settings.
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1 Introduction

Designing protocols for generating useful randomness in a distributed setting is fundamental to
both Cryptography and Distributed Computing. Consider three friends, Alice, Bob, and Charlie,
who want to toss a coin over a group call to decide on a cafe to meet. Each prefers one of the only
two cafes, but wants to appear neutral while keeping their preference private and trying to bias
the outcome towards their preference. This scenario involves two key requirements: (a) Fairness
stipulates that the chosen coin is uniform (i.e., is 0 with probability 0.5), and (b) preference-
privacy that requires that no coalition of malicious parties learns any additional information about
the honest participants’ preferences, beyond the chosen coin.

Coin-tossing is typically formalized as an input-less functionality (where parties have no input);
hence, all prior works focus exclusively on fairness. When the majority of the parties act honestly,
the above notion of fairness that the chosen coin must be uniform (generally referred to as strong
fairness) can indeed be achieved [Yao82,GMW87,BGW88,CCD88,RB89]. In fact, existing pro-
tocols that achieve strong fairness work independently of the parties’ preferences, hence vacuously
achieving preference-privacy.

However, the situation changes dramatically in the presence of a dishonest majority. In the two-
party setting, the celebrated result by Cleve [Cle86] rules out the existence of a strongly fair coin-
tossing protocol against a single corruption. Moreover, Cleve’s negative result can be strengthened
to rule out strong fairness in the presence of a dishonest majority for n ≥ 2 parties.

Fairness in the Dishonest Majority Setting. In light of this, the recent work of Chung, Guo,
Lin, Pass, and Shi [CGL+18a] (henceforth, CGLPS18) developed game-theoretic notion of fairness
that models adversaries as rational parties who are looking to increase their utilities. In particular,
they showed that for several settings where coin-tossing is used as a subroutine, each party has an
implicit game-theoretic notion of utility. For example, if P0 and P1 were running the coin-tossing
protocol to elect a leader amongst them, each party Pb would prefer that the sampled coin be b so
that they get elected. More formally, a party Pb gains utility 1 if the outcome matches its preference
b or utility 0 otherwise. Then, CGLPS18’s game-theoretic fairness requires that any party cannot
increase their expected utility by deviating from the protocol, compared to its utility in an honest
run.1

CGLPS18 observed that a variant of Blum’s two-party coin-tossing protocol [Blu81] already sat-
isfies this notion of game-theoretic fairness against single corruption, hence circumventing Cleve’s
impossibility. This led to subsequent works on the feasibility of multi -party sampling protocols that
achieve game-theoretic fairness against dishonest majority coalitions: for binary coin-toss [WAS21]
gave a complete characterization of tolerable corruption thresholds, for leader election (or n-sided
coin-toss) [CCWS21, KMSW22] explore round optimal protocols, and [TSW24] give a complete
characterization of tolerable corruption thresholds for the general case of sampling from any effi-
ciently sampleable distribution.

Public Preferences - A Privacy Concern. While coin-tossing is typically modeled as an
input-less functionality, in the context of game-theoretic fairness, each party actually holds indi-
vidual preferences as inputs. These preferences could encode information that, depending on the
application setting, parties may want to keep secret. Therefore, a truly secure coin-tossing protocol

1CGLPS18 refer to this notion as Cooperative-Strategy-Proofness (CSP)-fairness. Other notions of fairness such
as maximin fairness considered in the literature become infeasible in the strict dishonest majority setting (our focus),
hence considered beyond the scope of this work.
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must not only ensure fair coin sampling but also preserve the privacy of honest parties’ preferences,
akin to secure multi-party computation protocols.

Despite this, all prior works on designing game-theoretically fair protocols completely ignore
such privacy concerns. Moreover, the designed protocols inherently require the preferences of each
party to be known publicly. As an example, consider the binary coin-tossing protocol of [WAS21],
where the n parties are grouped according to which of the two outcomes they prefer, and these
groups act in different phases of the protocol. Consequently, while being part of a group is necessary
for the protocol specification, it inadvertently publicly reveals all parties’ preferences.

At a definitional level, game-theoretic fairness does require the parties to have pre-determined
preferences to make parties’ utility functions well-defined. Yet there is no inherent reason that
these preferences must be publicly known. This observation motivates the question:

Can we build n-party protocols for tossing an m-sided coin that satisfies both game-theoretic
fairness and preference-privacy against a dishonest majority?

1.1 Our Results

In this work, we answer the above question affirmatively. Surprisingly, even defining a meaningful
yet feasible security notion capturing both game-theoretic fairness and preference-privacy is quite
non-trivial. We propose a new definitional framework for authenticated-preference coin-tossing and
provide our new ideal coin-tossing functionality Fauth

toss that combines game-theoretic fairness and
preference-privacy. Below, we will describe our choice of definition and describe the protocols that
realize the ideal functionality Fauth

toss . Finally we conclude with some philosophical discussions on
the new definitional framework in Section 1.2.

1.1.1 The Need for Authenticated Preferences

Recall that in the public preference setting, coin-tossing protocols and fairness can be naturally
defined with respect to a preference profile. However, this is not the case for private prefer-
ence. CGLPS18 briefly explored the case of private preference. They considered universal n-party
private-preference coin-tossing protocols that is defined to work for every possible preference pro-
file. Unfortunately, CGLPS18 show that a universal protocol that satisfies game-theoretic fairness
against malicious adversaries becomes impossible. The obstacle lies in dynamic misreporting : in
any protocol where parties are free to declare preferences during execution, a malicious coalition
can report preferences that differ from their true ones, while still measuring utility against their
actual (hidden) preferences. This creates a definitional inconsistency: To evaluate fairness, one
must compare the adversary’s expected utility to its “honest baseline” utility. But if the coalition
can misreport its preferences, the honest baseline no longer reflects what the adversary truly values.
As a result, even if a protocol is fair with respect to declared preferences, a coalition can still bias
the outcome toward its true preference by strategic misreporting. CGLPS18 formalized this gap
and proved that fairness with private preferences is impossible in the malicious model. Feasibility
can only be recovered under weaker semi-malicious assumptions, where adversaries are forced to
commit to their true preferences.

To overcome this barrier, parties must be held accountable to their declared preferences. With-
out such accountability, the impossibility of CGLPS18 persists.

We address this by introducing authenticated preferences, inspired by prior works on authenti-
cated MPC [DGPS22]. Before joining the protocol, each party interacts with a certifying authority
that signs the party’s stated preference. A preference is considered authentic or certified only if it

2



carries a signature verifiable under the authority’s public verification key. Once certified, a party
is bound to this preference throughout the protocol execution, preventing adaptive “switching”.

In contrast to prior work on authenticated MPC, we require the authority to be stateful : after
processing all certification requests, it publishes an aggregate statistics of the reported preferences.
For example, in the binary coin-tossing case, the authority releases (n0, n1), where nb is the number
of parties that report preference b to the authority. While this assumption may appear strong at first
glance, we will explain why publishing aggregates is crucial to feasibility of both preference-privacy
and game-theoretic fairness (see Section 1.2).

Naturally, a malicious party may still misreport to the authority at the time of certification.
We do not attempt to prevent this entirely, but two factors mitigate its impact. First, in many
applications the authority (e.g., a regulator, membership registry, or government agency) can inde-
pendently validate preferences, making misreporting risky. Second, certification must be obtained
before the adversary learns honest parties’ preferences, therefore preventing adversaries from mis-
reporting strategically based on any information they learned about honest parties.

Thus, while authentication does not eliminate every form of dishonesty, it decisively rules out
the dynamic misreporting attack that underlies the impossibility result of CGLPS18. This enables
a meaningful definitional framework for game-theoretic fairness with private preferences. We em-
phasize that to the best of our knowledge, some form of setup or authority is unavoidable in this
setting (as dynamic misreporting makes purely distributed solutions impossible). Our model uses
a certifying authority in the weakest possible way – it is only involved in an initial setup phase and
never in the coin-tossing itself. We direct the reader to Section 1.2 for more discussions.

1.1.2 Defining Fairness and Preference-Privacy

A natural approach for capturing both security properties of fairness and preference-privacy would
be to define them independently. Particularly, for preference-privacy, we can adopt the simulation-
based definition commonly used in secure multi-party computation and zero-knowledge proofs [Yao82,
GMW87,Can01]. On the other hand, game-theoretic fairness is typically captured via a property-
based definition that guarantees the joint utility of the adversarial coalition must be negligibly close
to the coalition’s expected honest utility [CGL+18a].

In this work, we instead take a unified approach and propose a new simulation-based definition
that reconciles both game-theoretic fairness and privacy. Our definition follows the standard real-
and-ideal-world paradigm that is considered the gold standard notion for defining security for any
multi-party computation [Yao82,GMW87,Can01]. Specifically, we introduce an ideal coin-tossing
functionality Fauth

toss that appropriately models both game-theoretic fairness and preference-privacy.

Ideal Coin-tossing Functionality with Authenticated Preferences. In Section 3, we for-
mally describe our ideal functionality Fauth

toss [m,mvk, (n0, . . . , nm−1)] for m-sided coin-tossing. Our
ideal functionality is additionally parameterized by the verification key mvk of the certifying au-
thority and the aggregate information (n0, . . . , nm−1) that is published by the certifying authority,
where ni denotes the number of parties reporting preference i to the authority.2

For simplicity, let us consider tossing a binary coin and consider an adversary A that controls
a set K ⊆ [n] of at most t parties. Let H = [n] \ K be the set of honest parties. We assume that
all parties identities (e.g., public-keys) are publicly known. For such an A, the ideal functionality
Fauth
toss [2,mvk, (n0, n1)] works as follows:

2In fact, our ideal functionality only requires n0 and n− n0 where 0 is the least preferred outcome. We state all
aggregates here for simplicity.
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1. Reporting by Honest Parties. Parties i ∈ H sends their (prefi, σi) to the ideal functionality
which verifies the validity of σi as a signature on (i, prefi) under key mvk. If σi is invalid or
prefi /∈ {0, 1}, then set prefi = ⊥. For b ∈ {0, 1}, functionality computes hb as the number of
parties i ∈ H with prefi = b, and sets kb = nb − hb. It then sends (h0, h1) to A as leakage.3

2. Reporting by Corrupt Parties. Parties i ∈ K send their (prefi, σi) to the ideal functionality
which verifies the validity of σi as a signature on (i, prefi) under key mvk. If σ is invalid or
prefi /∈ {0, 1}, then set prefi = ⊥.

3. The functionality proceeds to compute a coin c′ ∈ {0, 1} that A does not prefer as follows: if
k0 > k1, then set c′ = 1. Otherwise, set c′ = 0.

4. Then, the ideal functionality samples a uniform random coin c
$←{0, 1} and sends it to A. If A

accepts the coin, the ideal functionality returns c to all honest parties. Otherwise, it sends the
coin c′ that A does not prefer to all honest parties.

Our functionality is reminiscent of the ideal coin-tossing functionality that captures simulation-
security with abort [Lin16], albeit for authenticated inputs. Specifically, the security with abort
notion allows A to prevent honest parties from learning the coin by “aborting” the ideal func-
tionality. In comparison, our ideal functionality always delivers an output to all honest parties,
irrespective of whether A choosing to abort. If A does not abort, the delivered coin is the uniformly
chosen coin c; whereas if A aborts, the ideal functionality delivers the coin c′ that necessarily re-
duces A’s utility. In addition, our ideal functionality enables embedding preference authentication
into the coin-tossing protocol, thus forcing adversaries to use authenticate preferences.

Our goal is to design a protocol that realizes Fauth
toss [2,mvk, (n0, n1)] in the presence of the certi-

fying authority. Philosophically, realizing Fauth
toss [2,mvk, (n0, n1)] ensures that no coalition controlled

by A can either increase its expected joint utility or learn any additional information about honest
parties’ preferences beyond what is revealed by (n0, n1) and the computed coin.

1.1.3 Binary Coin-Toss: Realizing Fauth
toss [2,mvk, (n0, n1)]

For a given set of n parties, we use P to denote the preference profile, a tuple mapping parties
with their reported preferences. Further, we assume the existence of authenticated pairwise private
channels and a broadcast channel. We assume that the parties have already requested for certifica-
tions on their preferences, and the aggregate information (n0, n1) was already published. Without
loss of generality, we assume that 0 is the least preferred outcome (i.e., n0 < n1).

With the above notation, we design a protocol Πn,2 that securely realizes Fauth
toss [2,mvk, (n0, n1)],

which allows us to toss a unbounded polynomial number of coins in sequence.

Theorem 1.1 (Binary coin-toss, informal). Let P be an arbitrary preference profile for n par-
ties where n0 < n1. Assuming bounded concurrent zero-knowledge arguments, semantically secure
public-key encryption and secure digital signature scheme, there exists a protocol Πn,2 that securely
realizes Fauth

toss [2,mvk, (n0, n1)] against t corruptions, where

t =

n−
⌊
3
2n0

⌋
, if n ≥ 7

2n0;⌊
2
3n−

5
6n0

⌋
+

⌈
1
2n0

⌉
, otherwise.

3At first glance, one might think that any adversary A controlling a coalition already knows hb, since it can
combine its own preferences with the publicly available aggregation nb. However, in the simulation-based setting
the real-world adversary need not reveal these preferences to the simulator. Although our simulator extracts the
coalition’s preferences, an adversary that aborts prematurely prevents the simulator from extracting all corrupted
parties preferences, leaving the simulator unable to determine the true value of hb needed to complete the simulation.
In our protocols, knowledge of hb is essential, as the simulator relies on it to set up the honest parties’ roles correctly.
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Semantically-secure PKE and digital signatures can be instantiated from a variety of concrete
algebraic assumptions. Moreover, bounded concurrent zero-knowledge proofs can be constructed
from enhanced trapdoor permutations and collision resistant hash functions in [Pas04].

1.1.4 General m-sided Coin-Toss: Realizing Fauth
toss [m, Leakagg(·)]

Following the technique of Thyagarajan, Wu, and Soni [TSW24], our protocol can be generalized to
multi-sided coin-tossing. Given an arbitrary preference profile P, without loss of generality, assume
that 0 is the least preferred outcome. Let n0 denote the number of players preferring outcome 0.

Theorem 1.2 (m-sided coin-toss, informal). Let P be an arbitrary preference profile for n parties
where 0 is the least preferred outcome. Assuming bounded concurrent zero-knowledge arguments,
semantically secure public-key encryption and secure digital signature scheme, there exists a protocol
Πn,m that securely realizes Fauth

toss [m,mvk, n0, n− n0] against t corruptions, where

t =


⌈
1
2n0

⌉
+ n−m · n0, if n ≥ 4m−1

2 n0⌈
1
2n0

⌉
+
⌊

m
2m−1n−

3m−1
2(2m−1)n0

⌋
, otherwise .

As a comparison, for binary coin-tossing, our protocol matches the corruption threshold of
[WAS22]; for m-sided coin-tossing, it matches that of [TSW24]. Unlike these prior works, which
require public knowledge of all parties’ preferences and proves game-theoretic fairness under a
property-based definition, our protocol achieves the same thresholds while simultaneously ensuring
preference-privacy and realizing a simulation-based notion of fairness, albeit under the assumption
of authenticated preferences.

Some Concrete Parameters. The above relation between t, n, n0 is arguably complex. Below,
we give some concrete parameters for better understanding the thresholds.

• When the number of players preferring each outcome is the same, i.e., n = m · n0, our protocol
Πn,m tolerates any ⌈n2 ⌉-sized coalition.

For binary coin-toss, our protocol Π2,m tolerates any ⌈n2 ⌉-sized coalition when n = 2n0.

• When n is much larger than m · n0, say n = 10 ·m · n0, our protocol tolerates any 0.9n-sized
coalitions.

For binary coin-toss, our protocol Π2,m tolerates any 0.85n-sized coalition when n ≥ 10n0.

• When n0 = 1, our protocol Πn,m tolerates (n−m)-sized coalition.

For binary coin-toss, our protocol Π2,m tolerates any (n− 1)-sized coalition.

1.2 Discussion on our Definition

Our definition introduces a certifying authority that both authenticates preferences and publishes
aggregate statistics. While these assumptions may appear strong, we view them as the minimal
and natural ingredients needed to overcome the impossibility of fairness with private preferences
(as shown by CGLPS18). Below we explain why each aspect of our model is necessary, how it
aligns with practice, and why it enables the strongest definitional guarantees currently achievable.

5



Authenticated preferences. Authentication is essential to rule out the dynamic misreporting
attack that underlies the malicious-case impossibility. Without being bound to a certified prefer-
ence, a coalition could declare different preferences opportunistically and bias the protocol toward
its true (hidden) desires, a strategy implicit in Cleve’s impossibility. For instance, consider five par-
ties where a coalition of size three has true preferences (0, 0, 1) (jointly preferring 0). The coalition
misreports (0, 1, 1) (jointly preferring 1) instead. While Cleve’s strategy indicates that the coalition
must be able to bias the outcome (towards some bit), game-theoretic fairness rule out all strategies
that bias towards 1 based on their reported preferences (0, 1, 1). Therefore, the coalition is able to
bias the outcome towards 0, their true joint preferences.

By contrast, authenticated preferences rules out this adaptation and ensures that once a party
has obtained a signature on its stated choice, it is committed to that choice throughout the pro-
tocol. Of course, parties may still misreport to the authority in the certification stage, but in
many applications (e.g., when the authority is a regulator or membership registry) the truthfulness
of preferences can be verified. More importantly, adversaries must commit before seeing others’
preferences, preventing them from tailoring lies strategically.

On Stateful Authority and Aggregate Information. The role of the authority extends
beyond authentication: it is also stateful and publish aggregate statistics (e.g., the number of
parties preferring 0 versus 1). If this information is not published, two challenges arise. First, many
fair-coin protocols, including ours, internally require aggregate preference information. Absent the
authority, the parties would need to compute this information themselves, which in the dishonest-
majority setting requires guaranteed output delivery MPC, known to be impossible. Second, one
might design protocols that ignore parties that fail to provide valid authenticated preferences (e.g.,
using commit-and-prove with identifiable abort), but such designs remain vulnerable: the coalition
could provide unauthenticated preferences for enough parties (in the coalition) such that the “alive”
portion of an adversarial coalition prefers a different value than the full coalition’s preference. This
“alive” coalition can then perform the Cleve’s strategy to bias the outcome towards the whole
coalition’s preference as described above. The publication of aggregate information prevents this
adaptation.

One might ask whether fairness could be achieved with only authentication from the authority,
but without requiring it to provide aggregate statistics. While this remains an open theoretical
possibility, we are unaware of any prior constructions, and we conjecture that some aggregate
information is inherent to any meaningful notion of fairness in this setting. Indeed, even defining a
coherent ideal functionality without (n0, n1) appears challenging, since the fairness condition must
be evaluated against the distribution of preferences.

Coin-tossing in Presence of an Authority. Our model does not delegate coin-tossing itself to
the authority, despite its trusted role in setup. The reason is both scalability and practicality: we
envision the authority’s role as a one-time initialization step, after which parties can independently
toss an unbounded sequence of coins. This avoids requiring the authority’s continuous availability
while still preserving fairness and privacy. In this respect, our use of an authority parallels authen-
ticated MPC, where the authority ensures correct inputs but does not participate in the actual
computation.

On Composability. Our framework provides the first simulation-based formulation of game-
theoretic fairness with private preferences that enjoys composability. Previous property-based
notions lacked such guarantees, limiting their utility as subroutines in larger protocols. By aligning
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with the real/ideal paradigm familiar from secure computation, our definition ensures that fair
sampling protocols can be modularly embedded into higher-level tasks.

Taken together, these design choices reflect a deliberate balance: while our model imposes addi-
tional structure through a certifying authority, this structure appears indispensable for reconciling
fairness, privacy, and malicious security. In this sense, we view our framework as the strongest
currently feasible approach, and as a foundation for future refinements that may further reduce
assumptions.

1.3 Additional Related Work

Exploring the connection between game theory and multi-party computation is not new. A line of
work [HT04,KN08,ADGH06,OPRV09,AL11,ACH11] explored rational multi-party computation.
However, the utility they consider differs from the line of work on game-theoretic fairness. Specifi-
cally, they define the utility based on the assumption that players prefer to compute the function
correctly and learn others’ secrets while not leaking their secrets.

Recently, with the success of blockchains and digital payments, many works explored a no-
tion called financial fairness [BK14,KMS+16,ADMM16,KB14,KVV16,DEF18,ATM+22,CMST22]
based on the use of collaterals. Parties are required to put in collaterals beforehand and get
punished if they misbehave. Interestingly, our work and the previous work on game-theoretic
fairness [CGL+18b,WAS22,CCWS21,KMSW22,TSW24] guarantees incentive compatibility even
without the use of any collateral.

A complementary line of works focus on designing multi-party coin-tossing that achieve security
with abort in the dishonest majority setting. In such constructions, the emphasis is on building a
round optimal protocol in the plain model that tolerates n−1 corruptions. Yao’s [Yao82] proposed a
constant round protocol for securely computing any two-party functionality (including coin-tossing)
against semi-honest adversaries. The following work of [GMW87] then presented a general-purpose
compiler for lifting a semi-honest multi-party protocol to a malicious security, but incurs polynomial
rounds. Since this a long line of works [BMR90,Pas04,ACJ17,BHP17,IPS08,Wee10,Goy11,IKSS21]
(not exhaustively cited) has optimized the round complexity of coin-tossing (and more generally,
secure computation), culminating in round optimal protocols based on standard cryptographic
assumptions [BGJ+18,HHPV21,RCCG+20].

A line of work has studied how to enforce the integrity of parties’ inputs in secure computation
via authenticated inputs. Dutta et al. [DGPS22] give a general compiler that transforms any honest-
majority, linear-secret-sharing based MPC into one with authenticated inputs, achieving strong
security guarantees such as identifiable abort without costly, protocol-specific preprocessing. While
our focus differs, aiming to reconcile game-theoretic fairness with preference-privacy in dishonest
majority coin-tossing, our use of authenticated preferences follows the same insight: binding parties
to certified inputs is often essential to overcome fundamental impossibility results.

Organization. In Section 2, we illustrate the overview of the techniques used in our protocol.
The formal model is given in Section 3, and the coin-tossing protocol is presented in Section 4.

2 Technical Overview

In this section, we present a brief overview of our techniques. For a better understanding, we will
first explain how to construct a binary coin-tossing protocol that securely realizes the ideal func-
tionality against semi-malicious coalitions, who can program its randomness used in the protocol
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or abort early, but otherwise follows the protocol honestly. Then we explain how to upgrade to
malicious security and multi-sided coin-toss.

Recall that parties get their preference certified by an authority prior to the coin-tossing proto-
col. We call those who prefer outcome b ∈ {0, 1} as b-supporters. If the outcome of the coin-tossing
protocol matches the party’s authenticated preference, the party gets utility 1 and 0 otherwise.
The expected joint utility of a coalition is the sum of all coalition member’s expected utility.

Before presenting our protocol, we first outline the public preference protocol from previous
works and explain where the preference of each party is being leaked. Then we show how to hide
the parties’ preferences using anonymous broadcast. Jumping ahead, the anonymous broadcast
required in our protocol can be instantiated using only Shamir secret sharing [Sha79].

Why Previous Protocols Leak Preferences. Previous game-theoretic fair protocols [WAS22,
TSW24] assumes that each party’s preference is publicly known. They work in the following
framework: Let Gb denote the set of b-supporters, for b ∈ {0, 1}.
1. Each 0-supporters first interacts with other 0-supporters in group G0 to agree on a coin c0 using

Shamir’s secret sharing, during which G1 audits. Similarly, each 1-supporter interacts with other
1-supporters in G1 to decide a coin c1 using secret sharing.

2. Groups G0 reconstructs coin c0, and then group G1 reconstructs coin c1.
The outcome of the protocol is then defined based on c0 and c1.

In the above protocol, 0-supporters only interact with 0-supporters, while 1-supporters only
interact with 1-supporters via secret sharing. Clearly, protocols with such structure cannot protect
parties’ preferences: For each party to send messages, they need to know the recipients’ identities
and preferences. Otherwise, how would they know where to send the message?

Our Protocol: Intuition. In a nutshell, our protocol adds an anonymous network mechanism
on top of the previous framework to protect the identity of both the sender and the receiver of any
message being sent in the protocol, so that it is infeasible to link a party with its preference. Only
the aggregate information is revealed. Specifically, we need the following properties:
1. Anonymity: Neither the sender nor the receiver can identify each other’s real identity.
2. Privacy: For any message, its content, sender identity, and receiver identity remain hidden from

all other parties.
Property 1 above ensures that honest parties’ preferences are unlinkable via anonymous communi-
cation. Property 2 guarantees that all the private messages remain hidden from the adversary to
ensure game-theoretic fairness.

Why Natural Approaches Fail. A natural approach is to use an anonymous broadcast channel
such as DC-nets [Cha88] that hides the sender’s identity for any broadcast messages. A straw-man
attempt may instruct a party to send all messages via this anonymous broadcast channel. However,
broadcasting all messages directly compromises Property 2. Therefore, we need the senders to first
encrypt a message under the receiver’s public key for some pubic-key encryption scheme,4 and then
broadcast it through the anonymous broadcast channel. In this way, only the correct receiver can
decrypt the message, while no other parties learn the message content, thus achieving Property 2.

There is still one main challenge: how does a sender know who to send messages to? In the
previous public-preference protocols [WAS21,TSW24], b-supporters only interact with b-supporters.
Even with anonymous broadcast channel, the sender needs to know which public keys corresponds
to parties with the same preferences to encrypt the message. Thus, the sender needs to know

4This public key is different from the public key that represents parties’ identities. This public key is used to
encrypt the corresponding message and is independent from the public key representing a party’s identity.
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the public keys for those who have the same preferences, while honest parties’ preferences need to
remain hidden.

Our Approach: Masked Profile. To achieve this, we ask each party i to randomly generate
a virtual ID vIDi and submits (vIDi, prefi) to the certificate authority to get authentication. This
virtual ID will be used throughout the protocol as party i’s ID, and we need to hide the mapping
between parties’ real identities and their virtual identities.

At the beginning of the protocol, all n parties enter a commit phase by anonymously broad-
casting a tuple of their virtual IDs, an encryption key used to encrypt messages to party i, and
its preference (vIDi, pki, prefi). At the end of commit phase, parties agree on a “masked preference
profile” P = {(vID1, pk1, pref1), . . . , (vIDn, pkn, prefn)}, which itself is a multiset that hides the map-
ping between party i and its tuple (vIDi, pki, prefi). Some corrupted parties may fail to broadcast
a valid tuple and their preferences are set to ⊥. Therefore, each prefi ∈ {0, 1,⊥} in P.

With this masked preference profile, one can imagine a public-preference scenario where the pref-
erence of each virtual ID is publicly known, except that now some parties may have ⊥-preferences.
Parties can now interact with others using a similar framework as for public-preferences using
virtual IDs and anonymous broadcast channel, but adapt to also account for ⊥-preferences. For
example, if a 0-supporter with virtual ID vIDi wants to send a message to another 0-supporter with
virtual ID vIDj , party vIDi encrypts the message using pkj and broadcast it anonymously. This
achieves both desired properties.

Instantiating Anonymous Broadcast. When instantiating the protocol in the real world, we cannot
assume the availability of an ideal anonymous broadcast channel that always succeeds. In fact,
when defending against majority-sized coalitions, the anonymous broadcast may fail. To handle
this, we adopt the identifiable abort approach from [KMSW22]. Consider the following anony-
mous broadcast with identifiable abort functionality: either the anonymous broadcast succeeds or
all honest parties receive the identities of some misbehaving parties. The parties kick out those
misbehaved parties and retry the anonymous broadcast with the same message. This functionality
guarantees that anonymity is preserved, and the broadcast will eventually succeed, i.e., honest par-
ties’ messages will eventually be successfully broadcast. Such ideal functionality can be instantiated
using only secret sharing against semi-malicious coalitions.

Our Protocol Description. We now instantiate Fauth
toss using the masked profile and anonymous

broadcast with identifiable abort. The protocol proceeds in three phases and is parameterized with
two parameters t0 and t1. We will explain how to choose the parameters afterwards.

Each party i samples a virtual identifier vIDi
$←{0, 1}λ and a key pair (pki, ski) that will be used

solely for encryption. It obtains authi on (vIDi, prefi) from agg-auth. Here, the authority’s signature
binds the virtual identity to the certified preference.

1. Commit phase: Each party anonymously broadcasts a tuple (vIDi, prefi, pki). If fail, remove the
misbehaved parties and retry with the same message. At the end of this phase, all honest parties
agree on a masked profile

P = {(vIDi, pki, prefi)}i∈[n], prefi ∈ {0, 1,⊥},

This profile reveals only the aggregate information (n0, n1), and hides the link between parties’
real indentity and (vIDi, pki, prefi) by anonymity of the anonymous broadcast.
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2. Sharing phase: Let Gb = {vIDi : (vIDi, pki, prefi) ∈ P, prefi = b} for b ∈ {0, 1}. Those who have
⊥-preferences are treated as if they aborted at the beginning of the sharing phase. The protocol
now runs two group-toss sub-protocol, one for G0 and one for G1.

Each party vIDi ∈ Gb randomly picks a secret si
$←{0, 1} and generates a (tb + 1)-out-of-nb

Shamir sharing {si,j}. Note that although Gb is the group of valid b-supporters, parties generate
nb number of shares using the true aggregation from the certified authority, each party will
only send shares to those in Gb. For every recipient vIDj ∈ Gb, encrypt the shares using
the corresponding receivers’ public keys and use anonymous broadcast with identifiable abort
to broadcast all encrypted shares. Retry until success. Denote G′

b as those who successfully
shared.

3. Reconstruction phase: Each vIDi ∈ Gb decrypts the incoming shares for itself, sums the decrypted
shares from parties in G′

b and anonymously broadcasts its reconstruction shares to reconstruct
cb = ⊕vIDi∈G′

b
si. Kick out misbehaving parties and retry the anonymous broadcast until succeed.

If the reconstruction of c0 fails, set c0 = 0; if the reconstruction of c1 fails, the protocol directly
outputs 0. Otherwise if both reconstruction succeed, output c0 ⊕ c1.

In a nutshell, the security follows from the anonymity that hides the mapping between all
messages and the senders, thus making the virtual IDs unlinkable from real identities. Only the
aggregation information is revealed. The protocol achieves game-theoretic fairness against any
coalition satisfying the following three constraints

1. The coalition cannot control both coins.

2. If the coalition can control coin c1, then the coalition cannot fail the reconstruction of coin c0.

3. If the coalition can fail the reconstruction of c1, then it must not prefer 0.

At a high level, Constraint 3 guarantees that a coalition is never incentivized to fail the recon-
struction of c1. Given that c1 is always successfully reconstructed, Constraints 1 and 2 guarantees
that the output is a uniformly random coin. The parameters t0 and t1 are chosen to maximize the
coalition tolerance.

Upgrade to Malicious Security. To achieve malicious security, we ask each party to prove the
validity of their computation in each phase using bounded concurrent zero-knowledge proofs [Pas04].
Specifically,
• In the commit phase, each party i proves that they have a valid certification from the authority
for their broadcast preference (vIDi, prefi).

• In the sharing and reconstruction phase, each party proves that the shares are correctly com-
puted.

Extension to m-Sided Coin-Toss. We adopt the standard two-group reduction [TSW24]: treat
0 as the least-preferred outcome and aggregate all other outcomes into oth. The protocol is identical
to the above, except that coins are produced byG0 andGoth and combined as (c0+coth) mod m. Our
ideal functionality Fauth

toss leaks only (h0, hoth); the same anonymity, privacy, and fairness arguments
apply, with thresholds chosen to satisfy the feasibility constraints in the main theorem.
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3 Model and Preliminary

Notations. We assume each party is a probabilistic polynomial time (PPT) Turing machine.
Throughout the paper, we may use A to denote the corrupted coalition and adversary controlling
the coalition interchangeably. We use λ to denote the security parameter. We call a function
negl : N → R negligible in n if for every k ∈ N, there exists n0 ∈ N s.t. for every n ≥ n0 it holds
that |negl(n)| ≤ n−k. In this work, [n] denotes the set of integers {1, . . . , n}.

We use Um to denote the uniform distribution over {0, ...,m − 1}. Given two distribution
ensembles {Xn}n and {Yn}n, we say that the two ensembles are computationally indistinguishable,
denoted as {Xn}n ≈ {Yn}n, iff there exists a negligible function negl(n) such that for any non-
uniform PPT adversary A, for any n, we have |Pr[x← Xn : A(x) = 1]−Pr[y ← Yn : A(y) = 1]| ≤
negl(n). We use ≡ to denote that two distributions are identical.

3.1 Coin-Tossing Protocol With Certified Authority

In an n-party coin-tossing protocol with a certified authority agg-auth, each of the n parties first
gets its preference certified by the certificate authority. Each party i has a preference prefi over
the outcomes in {0, . . . ,m − 1}. We use the set P = {(ID1, pref1), . . . , (IDn, prefn)} to denote the
preference profile of the parties, where prefi denotes party i’s preference. Without loss of generality,
we assume that 0 is the least preferred outcome, i.e., n0 ≤ nℓ for any ℓ ∈ {0, . . . ,m− 1}, where nℓ

denotes the number of ℓ-supporters in the preference profile. We also refer to those non-0-supporters
as oth-supporters and use noth = n− n0 to denote the number of oth-supporters.

In this work, we consider a certified authority parametrized with a digital signature scheme
ΠSig = (Gen, Sign,Ver), with which the authority signs parties’ inputs. The authority agg-auth
samples a pair of (msk,mvk) ← ΠSig.Gen(1

λ), receives (IDi, prefi) from party i and sends authi =
ΠSig.Sign(msk, (IDi, prefi)) to party i. It adds (IDi, prefi) into a set P and ignores any messages
with duplicate IDi already in P. At the end, it publishes (mvk, n0, noth) on some public bulletin
board, where n0 and noth denote the number of 0-preferences and non-0 preferences in P.

With certified preferences, the n parties communicate with each other through a pairwise pri-
vate channel and a public broadcast channel. We assume that the coin-tossing protocol proceeds
in rounds. All the communication channels are synchronous and authenticated, i.e., each message
carries the identity of the true sender. A coalition A, also referred to as the adversary for crypto-
graphic analysis, can perform rushing attacks: It waits for honest parties’ messages in any round r
and then decides what messages to send to the honest parties in round r. If a party sends ill-formed
messages, it is treated as abort.

We require public verifiability of the outcome: at the end of the protocol, the coin outcome is
a deterministic, polynomial-time computable function based on the public aggregate information
posted by the certified authority agg-auth and all messages posted in the broadcast channel.

Utility and Strategies. A party gets utility 1 if the outcome agrees with its certified preference
and 0 otherwise. A coalition’s utility is the sum of the utilities of all coalition members.

A malicious coalition can adopt a mix of the following strategies: 1) program its randomness
based on its current view, or 2) abort the protocol in some round r, or 3.) send arbitrary messages
in each round r.
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Ideal functionality Fauth
toss [m,mvk, n0, noth)]

// Let H be the set of honest parties and let K = [n] \ H.

1. Reporting of Honest Parties Preferences.

(a) Each honest party in H, sends (IDi, prefi, authi) to the ideal functionality. Ideal function-
ality verifies if authi is a valid signature of (IDi, prefi) under mvk. If not, set prefi = ⊥.
Let PH = {(IDi, prefi)}i∈H to be the preference profile of the honest parties. Let h0 and
h1 be the number of 0- and 1-supporters in PH.

(b) Ideal functionality sends Leak(PH) = (h0, hoth) to A.

2. Reporting of Adversarial Preferences. Each party in K, sends (IDi, prefi, authi) to the
ideal functionality. Ideal functionality verifies if authi is a valid signature under mvk of
(IDi, prefi). If not, set prefi = ⊥.
Let PK = {(IDi, prefi)}i∈K be the preference profile of the corrupted parties.

3. Coin Tossing. Ideal functionality computes two coins c and c′ as follows:

The first coin c
$←{0, 1, ...,m− 1} is computed uniformly at random.

The second coin c′ is set as the lexicalgraphically smallest coin that the coalition does not
like, i.e., coalition’s joint utility under c′ is no more than |A|

m , the honest expected utility.

4. Output Generation. Send c to A. If A sends ok, then c is send to all honest parties in
H, else if A sends fail, then c′ is sent to all honest parties.

Figure 1: Ideal functionality Fauth
toss for m-sided coin toss.

3.2 Coin-Tossing Ideal Functionality

We adopt a simulation-based definition to capture both game-theoretic fairness and preference
privacy. Consider the following ideal functionality Fauth

toss parametrized with a parameter m, the
number of sides of the coin to be tossed, the verification key for checking authentication from
agg-auth and the published aggregate information n0 and noth.

Let PH denote the preference profile of honest parties. In the case of the public preference
profile considered in previous works [CGL+18c,WAS22, TSW24], where every party’s preference
is public, one may think of an “all” leakage where Leakall(PH) = PH. For private preference, we
consider the following leakage in this work:

Leak(PH) = (h0, hoth),

where h0 and hoth denotes the number of 0- and oth-supporters in PH.
In Appendix B, we present the previous property-based definition of game-theoretic fairness

defined in [CGL+18a] and show that the above ideal functionality implies property-based game-
theoretic fairness.

Definition 3.1 (Instantiation of Fauth
toss ). Given anym ≥ 2. A protocol securely realizes Fauth

toss [m,mvk, n0, noth]
against any t-sized coalition, iff there exists an expected p.p.t. simulator Sim interacting with the
above ideal functionality Fauth

toss [m, Leak], such that for any non-uniform p.p.t. adversary A control-
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ling t or less number of parties, such that for any preference profile,

{ExecΠA(1λ,P)} ≈ {Exec
Fauth

toss [m,Leak]
Sim (1λ,P)},

where ExecΠA(1
λ,P) outputs the honest parties’ output as well as the A’s view when interacting in

coin toss protocol Π, and Exec
Fauth

toss [m,Leak]
Sim (1λ,P) outputs the honest parties’ output as well as the

Sim’s output.

3.3 Building Blocks

For a better understanding of our construction, we present the syntax of the building block and
informally state what kinds of security guarantees they provide. The security of these schemes will
be formally defined in Appendix A.

Shamir Secret Sharing. A k-out-of-n secret sharing scheme consists of two algorithms Share and
Reconstruct:

• (s1, . . . , sn)← Share(s): On input a secret s, outputs n shares s1, . . . , sn of the secret.
• s ← Reconstruct(I, (si)i∈I): The reconstruction algorithm takes (si)i∈I and computes the
secret only if |I| ≥ k. Else, it outputs fail.

Roughly speaking, the security of Shamir’s secret sharing guarantees that any k or more parties
can reconstruct the secret, while any less than k parties get no information about the secret. Our
construction will make use of the linearity of secret sharing: if every party gets a share of s and a
share of s′, then they can reconstruct s+ s′ using the sum of their shares.

Digital signature. A digital signature scheme ΠSig consist of three algorithms (Gen,Sign,Ver):
• Gen(1λ): takes in the security parameter λ and outputs a key pair (vk, sk) of verification key
vk and signing key sk.

• σ ← Sign(m, sk): takes in a message m and the signing key sk, produces a signature σ.
• b← Ver(vk, σ,m): takes in a message m, the signature σ, and the verification key vk, output
0 or 1 indicating reject or accept.

A secure digital signature is unforgeable: the adversary, without the knowledge of the signing key,
cannot forge a valid signature on some new messages.

Semantically-Secure Public-Key Encryption. Public-key encryption consists of three algo-
rithms:

• Gen(1λ) takes in the security parameter λ and outputs a key pair (pk, sk).
• ct← Enc(pk,msg): take in the public key and a message msg, outputs a ciphertext ct.
• msg← Dec(sk, ct): take in a ciphertext ct and the secret key sk, output msg.

A semantically secure public-key encryption hides the encrypted message from the adversary.

4 Instantiating Fauth
toss [m,mvk, n0, noth]

In this section, we present an m-sided coin-toss protocol that realizes Fauth
toss [m,mvk, n0, noth] (Fig-

ure 1).
At a high level, our protocol follows a structure similar to the public-preference coin-toss protocol

against semi-malicious adversaries described in [TSW24]: Parties are partitioned into two groups:
the set G0 of 0-supporters and the set Goth of all other supporters, denoted as oth-supporter. Each
b-supporter will run the Shamir secret sharing among its own group Gb to jointly decide a coin cb
for b ∈ {0, oth}. The final output is then defined based on c0 and coth.

To achieve privacy and simulation security, we make the following modifications:
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• Masked preference: To hide parties’ preferences, each party i will sample a “virtual ID” vIDi

for themselves and use this virtual ID to communicate anonymously. The privacy of the pref-
erence is achieved by hiding the mapping between the real identities i of a party and its vir-
tual ID vIDi throughout the protocol. Players first computes a “masked” preference profile
P = {(vIDi, pki, prefi)}i∈[n] and interact with other virtual IDs based on the masked preference
profile. The pki here is only used for encrypting messages and is independent from a party’s real
identity.

• Support undefined preference: We make the protocol to work even when some corrupted parties’
preferences are ⊥, whereas previous protocol only works when every party’s preference is publicly
known in clear. This ⊥-preference accounts for corrupted players’ misbehavior when reporting
their preferences.

• Anonymous communication: Wemake all the messages public by encrypting the private messages
using the receiver’s public key for encryption. This allows parties to send all messages using
anonymous broadcast and therefore protects the mapping between the real identities i and the
corresponding virtual ID vIDi.

4.1 Building Blocks

Bounded Concurrent Zero-Knowledge Proofs. To achieve malicious security, we require the
parties to prove validity of their behaviors in each step. We will describe the protocol in a IdealZK-
hybrid model, where parties have access to an ideal zero-knowledge proof functionality IdealZK
given below. The functionality IdealZK either sends success to everyone indicating that the proof
is correct, or the identity of the prover/verifier who leads to the failure of the proof. Formally,

Ideal Zero-knowledge Functionality IdealZK[x,L, i, j]
The functionality involves n parties 1, . . . , n, and is parametrized with a statement x, the

language L, the prover’s identity i and the verifier’s identity j.

1. If both the prover i and the verifier j are corrupted, receive a bit b from the prover i. If
b = 1, send (success, i, j) to everyone.

2. Receive ok or ⊥ from the verifier j.

3. If received ⊥ from the verifier, send (fail, j) to everyone.

4. Receive w or ⊥ from the prover.

5. If R(x,w) = 1, send (success, i, j) to everyone. Otherwise send (fail, i) to everyone.

In an n-party IdealZK-hybrid protocol, parties invoke IdealZK[x,L, i, j] between every pair of prover
and verifier for some NP language L. Th result of the proof, either succeed, or who leads to the
failure of the proof, is broadcast to every party. Given an n-party IdealZK-hybrid protocol, IdealZK
can be instantiated using the elegant techniques suggested by Pass [Pas04].

Theorem 4.1. (Constant-round, bounded concurrent secure computation [Pas04]). Assume the
existence of enhanced trapdoor permutations and collision-resistant hash functions. Then, given
an n-party IdealZK-hybrid protocol Π∗, in which the number of concurrent calls of IdealZK is upper
bounded by a-priori known bound poly(λ), there exists a real-world protocol Π such that the following
hold:
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For every real-world non-uniform p.p.t. adversary A controlling an arbitrary subset of up to
n− 1 players in Π, there exists a non-uniform p.p.t. adversary A∗ in the protocol Π∗, such that for
any input (x1, . . . , xn), every auxiliary string z ∈ {0, 1}∗,

ExecΠA(1
λ, x1, . . . , xn, z) ≡c Exec

Π∗
A∗(1λ, x1, . . . , xn, z).

In the above, the notation ExecΠA (or ExecΠ
∗

A∗) outputs each honest players’ outputs as well as the
corrupt players’ (arbitrary) outputs. Moreover, The round complexity of Π is at most a constant
factor worse than that of Π∗.

This real-world protocol is fulfilled by replacing the IdealZK instance with the bounded con-
current zero-knowledge proofs. All the zero-knowledge proof messages are posted to the broadcast
channel.

Anonymous Broadcast Channel with Identifiable Abort. Throughout the protocol, we
need to hide the mapping between virtual IDs and the real identity of parties via anonymous
broadcast. However, ideal anonymous broadcast is impossible against corrupted majority. There-
fore, parties interact with the following FO,t

anon ideal functionality to anonymously broadcast a mes-
sage. The ideal functionality FO,t

anon receives messages from the senders and broadcasts a multiset
containing all messages it receives, revealing no information about the sender’s identity. If the
broadcast fails, parties kick out the misbehaving parties and retry.

FO,t
anon: Anonymous broadcast with t-identifiable abort

• Parameters: Let O be the set of remaining parties, initialized as the set of all parties.
• Input: Every party i sends mi or ⊥ to FO,t

anon.
• Output: FO,t

anoncomputes a multiset Out = {mi}i∈O. Send Out to the adversary A.
If A sends ok, FO,t

anon sends Out to every honest party; otherwise, it receives a set D of at
least t number of corrupted IDs.

Figure 2: Anonymous broadcast ideal functionality FO,t
anon

Lemma 4.2 (Theorem 6.2 in [KMSW22]). Assuming perfectly binding and computationally hiding
commitments. there is a protocol that securely realizes FO,t

anon in the IdealZK-hybrid model against
|O| − t corruptions.

In our protocol, parties will need to invoke IdealZK[∗, ∗, vIDi, vIDj ] using provers’ and verifiers’
virtual identities vIDi and vIDj . Therefore, when instantiating the protocol, all the zero-knowledge

proof messages will be routed using FO,t
anon, which itself can be instantiated using IdealZK[∗, ∗, i, j]

over real identities for provers i and verifiers j.

4.2 Protocol Description

At the beginning of the protocol, each party i holds its preference prefi, its authentication authi
and the aggregate information (mvk, n0, noth) from the certificate authority. Recall that we assume
0 is the least preferred outcome. Our protocol contains three phases:
1. Commit phase: parties randomly samples a virtual ID vID and commit to their authenticated

preference. At the end of the commit phase, parties agree on a masked preference profile
P = {(vIDi, pki, prefi)}i∈[n] where each prefi ∈ {0, oth,⊥} and all the virtual IDs are unique.
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2. Sharing phase: Given the masked preference profile, parties with non-⊥ preferences are parti-
tioned into the group of 0-supporters G0 and the group of oth-supporters Goth. Each group Gb

for b ∈ {0, oth} separately run a sub-protocol to jointly determine a coin cb.
3. Reconstruction phase: Each group Gb reconstruct the coin cb and the reconstruction outcome

determines the final output.

4.2.1 Group Toss Sub-Protocol.

We first describe the sub-protocol for each group Gb for b ∈ {0, oth}, i.e., how each party acts during
the sharing and reconstruction phase, given a masked preference profile P. Recall that at the end of
the commit phase, parties agree on a masked preference profile P = {(vIDi, pki, prefi)}i∈[n], where
prefi ∈ {0, oth,⊥}. Here, we do not distinguish preferences 1, ...,m−1, they are all denoted by oth.

Let G0 be the set of virtual IDs whose preference is 0 and Goth be the set of virtual IDs whose
preference is oth. Formally,

G0 = {vIDi : (vIDi, ∗, 0) ∈ P}, Goth = {vIDi : (vIDi, ∗, oth) ∈ P}, (1)

where ∗ stands for wildcards.

NP Languages. We specify the following NP languages that will be used in our protocol. Specif-
ically, parties invoke IdealZK for LS in the sharing phase, and IdealZK for LR in the reconstruction
phase to prove correctness of computation.

Language LS
Given a statement xi = (Out, {(vIDj , s̃i,j)}vIDj∈Gb

,P = {(vIDi, pki, prefi)}i∈[n], Gb, tb), we
say xi ∈ LS if there exists a witness wi = (si, {si,j}j∈[nb], ski) such that
• (vIDi, {(vIDj , s̃i,j)}vIDj∈Gb

) is an entry in Out.
• (pki, ski) is a valid key pair, (vIDi, pki, prefi) ∈ P, and vIDi ∈ Gb.
• For each vIDj ∈ Gb, the ciphertext s̃i,j is correctly computed using pkj .
• {si,j}j∈[nb] forms a valid (tb + 1)-out-of-nb secret sharing of si.

Language LR

Given a statement x′i = (Out′,P, Gb, ISb , vi,Outs), where P = {(vIDi, pki, prefi)}i∈[n] and
Outs = {(vIDi, s̃j,i)}vIDi∈Gb,vIDj∈Gb\IS

b
, we say x′i ∈ LR if there exists w′

i = ({sj,i}vIDj∈Gb\IS
b
, ski)

such that
• (vIDi, vi) is an entry in Out′.
• (pki, ski) is a valid key pair, (vIDi, pki, prefi) ∈ P, and vIDi ∈ Gb.
• For each vIDj ∈ Gb \ ISb , the sj,i = Dec(ski, s̃j,i) is the correct decryption of s̃j,i, and
(vIDi, s̃j,i) is in xj .

• vi =
∑

j∈Gb\IS
b
sj,i.

Throughout the protocol, we use two sets ISb to keep track of the parties who misbehaved in
the committing and sharing phases and and IRb for those misbehaved in the reconstruction phase.
The sub-protocols are parametrized with parameters t0 and toth to be specified later.

Sub-protocol GroupTossb[m, tb,P]
Ingredients: A public-key encryption scheme ΠEnc = (Gen,Enc,Dec).
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Inputs: Each party i holds its preference prefi, authentication authi, and the aggregate infor-
mation (mvk, n0, noth) from the certificate authority.

Parameters: The masked profile P = {(vIDi, pki, prefi)}i∈[n] where prefi ∈ {0, oth,⊥} and tb is

a threshold parameter. Every party initializes IRb and ISb as empty sets at the beginning of
the protocol.

Protocol: If |Gb| ≤ tb, every party outputs fail. Otherwise, proceeds as follows.

Sharing phase:

• Every vIDi ∈ Gb randomly chooses a secret si
$←{0, . . . ,m − 1} and computes the shares

{si,j}j∈[nb] using (tb + 1)-out-of-nb secret sharing. Without loss of generality, let the first
|Gb| shares be {si,j}vIDj∈Gb

. Let s̃i,j = Enc(pkj , si,j) for vIDj ∈ Gb.

• Initialize O = [n]. Repeat the following until succeed:

Each vIDi ∈ Gb sets Mi = (vIDi, {(vIDj , s̃i,j)}vIDj∈Gb
) and all other parties vIDj /∈ Gb sets

Mj = 0 as dummy message. Every party vIDi sends Mi to FO,t
anon. If fails, receive a set D

from FO,t
anon, set O = O \ D and retry.

Let Out be the set of non-dummy messages successfully broadcast.

• Each party vIDi invokes IdealZK[xi,LS , vIDi, vIDj ] for each vIDj in P, with statement xi =
(Out, {(vIDj , s̃i,j)}vIDj∈Gb

,P, Gb, tb) and the witness wi = (si, {si,j}j∈[nb], ski) to prove that
xi ∈ LS .
For any vIDi ∈ Gb, if there exists a vIDj such that IdealZK[xi,LS , vIDi, vIDj ] outputs
(fail, vIDi), i.e., the prover fails to prove the statement, add vIDi to ISb .
Let Outs be the set of entries (vIDi, {(vIDj , s̃i,j)}vIDj∈Gb

) for vIDi ∈ Gb \ ISb successfully
broadcast with valid proofs in Out.

Reconstruction phase:

• Parse each entry in Outs as (vIDj , {s̃i,j)}vIDj∈Gb
. Each vIDi ∈ Gb computes sj,i = Dec(ski, s̃j,i)

and the sum of decrypted shares: vi =
∑

j∈Gb\IS
b
sj,i.

• Reset O = [n].a Parties repeat the following until succeed:

Every vIDi ∈ Gb sets M
′
i = (vIDi, vi) and all other parties vIDj /∈ Gb sets M

′
j = 0 as dummy

message. Every party vIDi sends M ′
i to FO,t

anon. If fails, receive a set D from FO,t
anon, set

O = O \ D and retry.

Let Out′ be the set of non-dummy messages successfully broadcast.

• Each party vIDi invokes IdealZK[xi,LR, vIDi, vIDj ] for each vIDj in P, with statement x′i =
(Out′,P, Gb, ISb , vi,Outs) and witness w′

i = ({sj,i}vIDj∈Gb\IS
b
, ski) to prove that x′i ∈ LR.

For any vIDi ∈ Gb, if there exists a vIDj such that IdealZK[xi,LR, vIDi, vIDj ] outputs
(fail, vIDi), i.e., the prover fails to prove the statement, add vIDi to IRb .

• If |IRb | > nb− tb, everyone outputs fail. Otherwise, parse each entry in Out′ as (vIDi, vi) and
use the shares {vi}i∈Gb\IR

b
to reconstruct the secret cb :=

∑
i∈Gb\IS

b
si.

aParties can also continue with the O stored from the sharing phase. We reset here for simplicity.

While each b-supporter only shares its secret with other b-supporters, it proves the correctness of
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its behavior to all parties, including non-b-supporters, by broadcasting the proof. Note that in the
above protocol, all messages are broadcast through FO,t

anon (Figure 2). Based on the description of
the ideal functionality, the sets ISb and IRb can be uniquely determined from broadcast messages.
These two sets are also publicly verifiable, and all honest parties hold the same ISb and IRb .

4.2.2 Full Protocol Description

NP Language: We specify the following NP language Lcom used in the commit phase: Given a
statement x̃i = (Õut, vIDi, pki, prefi,mvk) where prefi ∈ {0, oth}, we say x̃i ∈ Lcom if (vIDi, pki, prefi) ∈
Õut and

• For prefi = 0, there exists a witness (authi, ski) such that authi is a valid signature of message
(vIDi, 0) under verification key mvk, and ski is the valid secret key of pki;

• For prefi = oth, there exists a witness (authi, ski) such that authi is a valid signature of message
(vIDi, ℓ) for ℓ ∈ {1, ...,m− 1} under verification key mvk, and ski is the valid secret key of pki;

Protocol Πn,m[t0, toth]

Authentication: Each party i samples vIDi
$←{0, 1}λ and sends (vIDi, p̃refi) to agg-auth and

gets authi, where party i’s preference p̃refi ∈ {0, ...,m− 1}.
Inputs: If p̃refi = 0, set prefi = 0; otherwise, set prefi = oth. Each party holds (vIDi, prefi, authi)
and aggregate information (mvk, n0, noth) from agg-auth.

Commit phase:

1. Each party i samples a pair of (pki, ski)← ΠEnc.Gen(1
λ).

2. Initialize O = [n]. Repeat the following until the broadcast succeed:

Every party sends (vIDi, pki, prefi) to F
O,t
anon. If fails, receive a set D from FO,t

anon, set O = O\D
and retry.

Let Õut be the set of successfully broadcast messages.

3. Each party i invokes IdealZK[x̃i,Lcom, vIDi, j] for each j in [n], with x̃i = (Õut, vIDi, prefi, pki,mvk)
and witness w̃i = (authi, ski).

For any vIDi appeared in Õut, if there exists a j such that IdealZK[x̃i,Lcom, vIDi, j] outputs
(fail, vIDi), i.e., the prover fails to prove the statement, add vIDi to IC .

4. Let PO be the preferences with a valid proof in Õut:

PO = {(vIDi, pki, prefi) ∈ Õut : vIDi /∈ IC}.

5. Let n′ = |PO|. Let PA = {vID′
k,⊥,⊥}k∈[n−n′], where vID′

k is the (λ+1)-bits presentation of
k. Let P = PO ∪ PA, and G0 and Goth as defined in Equation (1).

Sharing phase:

1. Share-0: Group G0 runs the sharing phase of GroupToss0[m, t0,P].

2. Share-oth: Group Goth runs the sharing phase of GroupTossoth[m, toth,P].
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Reconstruction phase:

1. Recon-0: Group G0 runs the reconstruction phase of GroupToss0[m, t0,P]. If the sub-
protocol outputs fail, set c0 = 0.

2. Share-oth: Group Goth runs the reconstruction phase of GroupTossoth[m, toth,P]. If the
sub-protocol outputs fail, the protocol outputs 0. Otherwise, output (c0 + coth) mod m.

Below we use k0 and koth to denote the number of corrupted 0- and oth-supporters, respectively.

Constraints 4.3. The threshold k0 and koth, and the number of corrupted parties k = k0 + koth
the protocol can tolerate is chosen such that the following three constraints are satisfied.

(C1) The corrupted coalition cannot control both coins: k0 + koth ≤ t0 + toth + 1.

(C2) If the coalition can control coin coth, then the coalition cannot fail the reconstruction of coin
c0. Equivalently, if koth ≥ toth + 1, then k0 < n0 − t0.

(C3) If the coalition can fail the reconstruction of coth, then it must not prefer 0. That is, if
koth ≥ noth − toth, then k0 ≤ k0+koth

m .

Theorem 4.4. If the encryption scheme ΠEnc is semantically secure, then the above Πn,m[t0, toth]

securely realizes Fauth
toss [m,mvk, n0, noth] in the (FO,t

anon, IdealZK)-hybrid world as long as the thresholds
t0, toth, and the number of corrupted parties k = k0 + koth satisfy Constraints 4.3.

Proof. We will show that for any non-uniform PPT A that controls k0 number of 0-supporter and
koth number of oth-supporter interacting with Πtoss, where k0 and koth satisfy Constraints 4.3, there
exists an adversary Sim interacting with Fauth

toss [m,mvk, n0, noth] such that A’s view in an execution
with Πtoss is computationally indistinguishable from its view simulated by Sim.

Commit phase: Simulator receives Leak(PH) = (h0, hoth) from Fauth
toss . Emulate honest parties

i ∈ H as follows:

• Sample vIDi
$←{0, 1}λ and key pair (pki, ski) for each honest party. If there exist duplicate virtual

IDs for honest parties, the simulator aborts.

Let H be the set of honest virtual IDs. Set prefi = 0 for the first h0 number of honest parties
and prefi = oth for the remaining honest parties. Let PH = {(vIDi, pki, prefi)}vIDi∈H.

• Initialize O as [n] and emulate FO,t
anon until it succeeds as follows:

Receive PK = {(vIDi, pki, prefi)} from A. Send a multiset PH ∪ PK to A. If received a set D of
size at least t, update O = O \ D and retry.

Let Õut be the set of messages that are successfully broadcast.

• Emulate the IdealZK[∗,Lcom, ∗, ∗] as follows:
– For honest prover vIDi and honest verifier i′, send (success, vIDi, i

′) to A;
– For honest prover vIDi and corrupted verifier j: If received ⊥ from a corrupted verifier, send

(fail, j) to A; otherwise, send (success, vIDi, j) to A;
– For corrupt prover vIDj and honest verifier i, send ok to IdealZK for the honest verifier, and

forward ⊥ or witness w̃j received from A to IdealZK. Send the output of IdealZK to A.
– For corrupted prover vIDj and corrupted verifier j′, receive a bit from A and send the output

of IdealZK.
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For any vIDi appeared in Õut, if there exists a j such that IdealZK[x̃i,Lcom, vIDi, j] outputs
(fail, vIDi), i.e., the prover fails to prove the statement, add vIDi to IC .
Let K be the set of corrupted virtual IDs in PK but not in IC . At this moment, for any corrupted
vIDj ∈ K, the simulator receives a valid witness w̃j = (authj , skj). If K∩H ̸= ∅, i.e., a corrupted
virtual ID collides with an honest virtual ID, the simulator aborts.

• Let P ′
K be the corrupted preferences with a valid proof in Õut: P ′

K = {(vIDi, pki, prefi) ∈ PK :
vIDi ∈ K}. Let n′ = |PH ∪ P ′

K|. Let PA = {vID′
k,⊥,⊥}k∈[n−n′], where vID′

k is the (λ + 1)-bits
presentation of k. Let P = PH ∪ P ′

K ∪ PA, and G0 and Goth as defined in Equation (1).

• For any vIDj ∈ K, send (vIDj , pkj , prefj , authj) to Fauth
toss ; for other corrupted parties, send

(vID′
j ,⊥,⊥,⊥) to Fauth

toss .

The simulator gets a coin c from the ideal functionality. At this point, the simulator has a preference
profile P of size n where each prefi ∈ {0, oth,⊥}. For all corrupted parties with non-bot preferences,
the simulator gets the corresponding secret key skj from the extraction algorithm.

Let H0 be the set of first h0 number of honest parties whose preferences are 0 and Hoth be the
set of remaining honest parties whose preferences are oth. Let Kb to denote the set of honest and
corrupted b-supporters for b ∈ {0, oth} whose preference is b in P, respectively. At a high-level,
those who have ⊥-preferences are treated as if they aborted at the beginning of the sharing phase.

Sharing phase: The simulator computes kb = nb − hb for b ∈ {0, oth}, where hb is the number
of honest b-supporters in PH. Recall that ISb and IRb records the misbehaved b-supporters in the
sharing phase and the reconstruction phase, respectively, for b ∈ {0, oth}.
Share-b: Emulate honest parties to simulate execution of the sharing phase in sub-protocol
GroupTossb[m, tb,P]. If |Gb| ≤ tb, outputs fail for GroupToss

b[m, tb,P].
If GroupToss0[m, t0,P] outputs fail, set c0 = 0 and proceed to simulate Share-oth step; if

GroupTossoth[m, toth] outputs fail, send no to Fauth
toss . Outputs whatever the adversary A outputs.

Otherwise, proceeds as follows:

• Sharing: If kb < tb + 1, for any j ∈ Kb, uniformly randomly choose si,j ; for any vIDi′ ∈ Hb,
set si,i′ = 0. Otherwise, chooses a random coin si and compute the shares {si,j}j∈[nb] using
(tb + 1)-out-of-nb Shamir secret sharing.

For vIDj ∈ Gb, compute s̃i,j = Enc(pkj , si,j).

• Broadcast: Emulate FO,t
anon until it succeeds as follows:

For honest party vIDi, set Mi = (vIDi, {(vIDj , s̃i,j)}vIDj∈Gb
) for vIDi ∈ Hb and Mi = 0 for

vIDi ∈ H \ Hb. Let multiset MH = {Mi}vIDi∈H. Receive MK = {Mj} from A for corrupted
parties. Send the multisetMH ∪MK to A. If received a set D from A, update O = O \D and
retry.

• Validation: Emulate the IdealZK[∗,LS , ∗, ∗] as follows:
– For honest prover vIDi and honest verifier vIDi′ , send (success, vIDi, vIDi′) to A;
– For honest prover vIDi and corrupted verifier vIDj : If received ⊥ from a corrupted verifier,

send (fail, vIDj) to A; otherwise, send (success, vIDi, vIDj) to A;
– For corrupt prover vIDj and honest verifier vIDi, send ok to IdealZK for the honest verifier,

and forward ⊥ or witness w̃j received from A to IdealZK. Send the output of IdealZK to A.
– For corrupted prover vIDj and corrupted verifier vIDj′ , receive a bit from A and send the

output of IdealZK.
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For any vIDi ∈ Gb, if there exists a vIDj such that IdealZK[xi,LS , vIDi, vIDj ] outputs (fail, vIDi),
i.e., the prover fails to prove the statement, add vIDi to ISb .

Reconstruction phase: At this point, for any vIDj ∈ Kb \ ISb for b ∈ {0, oth}, the simulator
receives a witness from emulating IdealZK, including the secret sj and shares for honest parties
{sj,i}i∈Hb

.

Recon-0: Emulate honest parties for the reconstruction phase in sub-protocol GroupToss0[m, t0,P]:

1. Summation: The simulator computes the reconstruction share for the honest parties vIDi ∈ H0

as follows:

• If k0 ≥ t0 + 1: simulator has the shares sj,i for all j ∈ G0 \ IS0 and i ∈ H0 from the sharing
phase. It computes vi =

∑
j∈G0\IS

0
sj,i.

• Otherwise if k0 < t0 + 1 and koth ≥ toth + 1: simulator has the secret sj for all j ∈ (G0 ∪
Goth) \ (IS ∪H0). The simulator chooses {si}i∈H0 such that

∑
i∈(G0∪Goth)\IS si = c mod m.

For every i ∈ H0, compute a (t0 + 1)-out-of-n0 secret sharing {yi,j} of si such that for any
j ∈ K0, the share yi,j = si,j . Set vi =

∑
j∈K0\IS

0
sj,i +

∑
j∈H0

yj,i.

• Otherwise if k0 < t0 + 1 and koth < koth + 1: Choose a uniformly random si for each i ∈ H0

and compute a (t0 + 1)-out-of-n0 secret sharing {yi,j} of each si such that for any j ∈ K0,
the share yi,j = si,j . Set vi =

∑
j∈K0\IS

0
sj,i +

∑
j∈H0

yj,i.

2. Broadcast: Emulate FO,t
anon until it succeeds as follows:

Set M ′
i = (vIDi, vi) for vIDi ∈ H0 and M ′

i = 0 for vIDi ∈ Hoth. LetM′
H = {M ′

i}vIDi∈H. Receive
M′

K = {M ′
j)0} from A for corrupted parties. Send the multisetM′

K ∪M′
H to A. If received a

set D from A, update O = O \ D and retry.

3. Validation: Emulate the IdealZK[∗,LR, ∗, ∗] as follows:
• For honest prover vIDi and honest verifier vIDi′ , send (success, vIDi, vIDi′) to A;
• For honest prover vIDi and corrupted verifier vIDj : If received ⊥ from a corrupted verifier,
send (fail, vIDj) to A; otherwise, send (success, vIDi, vIDj) to A;

• For corrupt prover vIDj and honest verifier vIDi, send ok to IdealZK for the honest verifier,
and forward ⊥ or witness w̃j received from A to IdealZK. Send the output of IdealZK to A.

• For corrupted prover vIDj and corrupted verifier vIDj′ , receive a bit from A and send the
output of IdealZK.

For any vIDi ∈ G0, if there exists a vIDj such that IdealZK[xi,LR, vIDi, vIDj ] outputs (fail, vIDi),
i.e., the prover fails to prove the statement, add vIDi to IR0 .

4. Reconstruction: Reconstruct c0 using {vi}i∈G0\IR
0
. If fails, set c0 = 0; otherwise, record the value

of c0.

Recon-oth: Emulate honest parties to simulate execution of the reconstruction phase in sub-
protocol GroupTossoth[m, toth,P]:

1. Summation: The simulator computes the reconstruction share for the honest parties:

• If koth ≥ toth+1: then it must be that k0 < t0+1 according to Constraints 4.3. The simulator
Sim would have sj,i for all j ∈ Goth \ ISoth, and it is guaranteed that

∑
i∈(G0∪Goth)\IS si = c

mod m. It computes vi =
∑

j∈Goth\IS
oth

sj,i.
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• Otherwise, choose si for each i ∈ Hoth such that c0+(
∑

i∈Goth\IS
oth

si) = c mod m. Compute a

(toth+1)-out-of-noth secret sharing {yi,j} of si such that for any j ∈ Koth, the share yi,j = si,j .
Set vi =

∑
j∈Koth\IS

oth
sj,i +

∑
j∈Hoth

yj,i.

2. Broadcast: Emulate FO,t
anon until it succeeds as follows:

Set M ′
i = (vIDi, vi) for vIDi ∈ H0 and M ′

i = 0 for vIDi ∈ Hoth. LetM′
H = {M ′

i}vIDi∈H. Receive
M′

K = {M ′
j)0} from A for corrupted parties. Send the multisetM′

K ∪M′
H to A. If received a

set D from A, update O = O \ D and retry.

3. Validation: Emulate the IdealZK[∗,LR, ∗, ∗] as follows:
• For honest prover vIDi and honest verifier vIDi′ , send (success, vIDi, vIDi′) to A;
• For honest prover vIDi and corrupted verifier vIDj : If received ⊥ from a corrupted verifier,
send (fail, vIDj) to A; otherwise, send (success, vIDi, vIDj) to A;

• For corrupt prover vIDj and honest verifier vIDi, send ok to IdealZK for the honest verifier,
and forward ⊥ or witness w̃j received from A to IdealZK. Send the output of IdealZK to A.

• For corrupted prover vIDj and corrupted verifier vIDj′ , receive a bit from A and send the
output of IdealZK.

For any vIDi ∈ Goth, if there exists a vIDj such that IdealZK[xi,LR, vIDi, vIDj ] outputs (fail, vIDi),
i.e., the prover fails to prove the statement, add vIDi to IRoth.

4. Reconstruction: For those corrupted parties vIDj that failed to broadcast a valid proof, add vIDj

to IRoth. Reconstruct coth using {vi}i∈Goth\IR
oth
. If reconstruction succeeds, send yes to Fauth

toss .

Otherwise, send no to Fauth
toss .

Output whatever A outputs.

We first show that the probability that the simulator aborts is negligible.

Claim 4.5. There exists a negligible function negl(·), such that the probability that the simulator S
aborts is at most negl(λ).

Proof. The simulator aborts if either 1.) It samples duplicate virtual IDs for honest parties; 2.)
If any corrupted virtual ID vIDj conflicts with an honest virtual ID, i.e., if K ∩ H ̸= ∅. We now
compute the probability of these three two separately.

The probability that the simulator samples duplicate virtual ID is 1 −
(
2λ

h

)
· h!/2λ·h, which is

negligible.
In the rest of the proof, we focus on proving that the second event happens with a negligible

probability. Let Kid be the set of corrupted virtual IDs signed by the certificate authority. Observe
that Pr[H∩Kid ̸= ∅] is negligible. We only need to show that conditioned on H∩Kid = ∅, for any
non-uniform PPT A, the probability that K ∩H ̸= ∅ is negligible.

Suppose for the sake of contradiction that there exists a non-uniform A with a non-negligible
probability resulting in some vID∗ ∈ K ∩ H, conditioned on H ∩ Kid = ∅. This implies that the
adversary is able to produce a valid authi for (vID∗, ∗) for vID∗ /∈ Kid to send to IdealZK, which
breaks the existential unforgeability of signature scheme. Putting together,

Pr[H ∩K ̸= ∅]
=Pr[H ∩K ̸= ∅ | H ∩ Kid = ∅] · Pr[H ∩Kid = ∅] + Pr[H ∩K ̸= ∅ | H ∩ Kid ̸= ∅] · Pr[H ∩Kid ̸= ∅]
=negl(λ).

Therefore, the probability that the simulator aborts is negligible.
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We now show that the joint distribution of honest parties’ output and the adversary’s view is
indistinguishable in the ideal execution when interacting with Sim (denoted as ExptIdealA ) is identical
to the joint distribution of the output of honest parties and the view of the adversary in a real
execution (denoted as ExptRealA ), conditioned on the simulator not abort. Consider the following
hybrids:

Hybrid Hyb1: This is an execution of Πn,m[t0, toth], where the simulator acts on behalf of all honest
parties and interact with the adversary. Moreover, the simulator emulates all the IdealZK instances
for the adversary as follows:
• For honest prover i and honest verifier i′, send (success, i, i′) to A;
• For honest prover i and corrupted verifier j: If received ⊥ from a corrupted verifier, send (fail, j)
to A; otherwise, send (success, i, j) to A;

• For corrupt prover j and honest verifier i, send ok to IdealZK for the honest verifier, and forward
⊥ or witness w̃j received from A to IdealZK. Send the output of IdealZK to A.

• For corrupted prover j and corrupted verifier j′, receive a bit from A and send the output of
IdealZK.

We have ExptRealA ≡ Hyb1 by definition.

Hybrid Hyb2: The simulator behaves almost the same as in Hyb1, except that now the simulator
receives leakage Leak = (h0, hoth) from the ideal functionality and randomly sample virtual IDs for
each honest parties. We have Hyb2 ≡ Hyb1.

Hybrid Hyb3: The simulator behaves almost the same as in Hyb4 except the following: In Share-b
step, the simulator computes the shares for honest parties vIDi ∈ Hb as in Hyb4, but the encryptions
{s̃i,j}vIDj∈Gb

are computed differently. For b ∈ {0, oth},

• For honest vIDi ∈ Hb and corrupted vIDj ∈ Kb, let s̃i,j = Enc(pkj , si,j).

• For honest vIDi ∈ Hb and vIDi′ ∈ Hb, let s̃i,j = Enc(pkj , 0).

We have Hyb3 ≈ Hyb2 by semantic security of public-key encryption scheme.
Next, we show that Hyb3 ≡ ExptIdealA , which concludes the proof. By security of Shamir’s secret

sharing, the adversary’s view in both experiments are identical. We only need to show that for any
fixed adversary’s view, honest parties’ outputs are also identical in both experiments.

By constraint (C3), if the reconstruction of coth fails, and Sim sends no to Fauth
toss . Then Fauth

toss

uses k0 = n0 − h0 and koth = noth − hoth to determine the lexicographically smallest outcome that
the coalition does not like, which is 0. Therefore, if the reconstruction of coth fails, honest parties’
output will be 0 in both experiments.

In the following, we will only focus on proving that if the reconstruction of coth succeeds, the
honest parties’ output in both worlds will be c, the coin generated by Fauth

toss . There are two cases:

• If toth ≥ koth + 1, by constraints (C1) and (C2), it must be the case that t0 < k0 + 1 and c0
must be successfully reconstructed. Therefore, by the description of Recon-0 step, {si}i∈H0

are chosen such that (
∑

i∈(Goth∪G0)\IS si) mod m = c. Therefore, if both c0 and coth are
successfully reconstructed, honest parties’ output should be c.

• If toth < koth + 1, by the description of the Recon-oth step, {si}i∈Hoth
are chosen such that

(c0 +
∑

j∈Goth\IS
oth

sj) mod m = c. If the reconstruction of coth succeeds, the honest parties

will output c in both experiments.

Therefore, by hybrid argument, ExptIdealA ≈ ExptRealA .
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Previous work [TSW24] presented the optimal solutions of t0, toth and k that satisfies Con-
straints 4.3. The optimal parameters are given in the table below. For m = 2, the coalition
tolerance matches the optimal tolerance in [WAS22].

Case k0 toth t

If noth ≥ 4m−3
2 n0

⌊
n0
2

⌋
noth − (m− 1)n0

⌈
n0
2

⌉
+ noth − (m− 1)n0

Otherwise
⌊
n0
2

⌋ ⌊
m

2m−1noth − m−1
2(2m−1)n0

⌋ ⌈
n0
2

⌉
+
⌊

m
2m−1noth − m−1

2(2m−1)n0

⌋
Table 1: Optimal parameter choice for m-sided coin-toss Π instantiating Fauth

toss . Here, nb denotes
the number of b-supporters for b ∈ {0, oth} receiving certification from the certified authority.
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Supplementary Materials

A Preliminary

A.1 Shamir Secret Sharing.

A k-out-of-n secret sharing scheme consists of two algorithms Share and Reconstruct

• (s1, . . . , sn)← Share(s): On input a secret s, outputs n shares s1, . . . , sn of the secret.

• s ← Reconstruct(I, (si)i∈I): The reconstruction algorithm takes (si)i∈I and reconstructs the
secret only if |I| ≥ k. Otherwise, the reconstruction fails and output fail.

A k-out-of-n Shamir secret sharing scheme satisfies the following properties:

• Correctness: For any secret s and any sets I ⊂ {1, . . . , n} such that |I| ≥ k,

Pr[(s1, . . . , sn)← Share(s) : Reconstruct(I, (si)i∈I) = s] = 1.

• Security: For any secrets s and s′, for any sets I such that I ⊂ {1, . . . , n}, and |I| ≤ k − 1,

{(s1, . . . , sn)← Share(s) : (si)i∈I} ≈ {(s′1, . . . , s′n)← Share(s′) : (s′i)i∈I}.

Informally, this means that if a coalition has only k−1 shares, then they learn no information
about the secret.

• Linearity: For any secrets s and s′, for any sets I ⊂ {1, . . . , n} such that |I| ≥ k, the
following holds:

Pr

[
(s1, . . . , sn)← Share(s),
(s′1, . . . , s

′
n)← Share(s′)

: Reconstruct(I, (si + s′i)i∈I) = s+ s′
]
= 1.

Roughly speaking, this means that one can reconstruct s+ s′ using the sum of the shares of
s and s′.

In this work, we consider Shamir’s secret sharing on a finite field Fq for some prime q. Specifically,
we will consider a finite field of size q > n ·m in out m-sided coin-toss protocol among n parties.
The sharing algorithm randomly chooses a degree k − 1 polynomial p(·) such that p(0) = s. The
reconstruction algorithm takes in k or more number of shares and interpolates the polynomial to
recover s.

A.2 Secure Public-Key Encryption.

A public-key encryption consists of three algorithms:

• Gen(1λ) takes in the security parameter λ and outputs a key pair (pk, sk).

• ct← Enc(pk,msg): take in the public key and a message msg, outputs a ciphertext ct.

• msg← Dec(sk, ct): take in a ciphertext ct and the secret key sk, output msg.

A semantically secure public-key encryption satisfies the following properties:

• Correctness: Pr[(pk, sk)← Gen(1λ) : Dec(sk,Enc(pk,msg)) = msg] = 1.
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• Security: We say that the encryption scheme is semantically secure iff

∣∣∣∣Pr
 (pk, sk)← Gen(1λ)

(msg0,msg1)← A(1λ, pk)
ct← Enc(pk,msg0)

: A(1λ, ct) = 1


−Pr

 (pk, sk)← Gen(1λ)
(msg0,msg1)← A(1λ, pk)

ct← Enc(pk,msg1)
: A(1λ, ct) = 1

 ∣∣∣∣ ≤ negl(n)

A.3 Digital Signature Scheme

A digital signature scheme ΠSig consists of the following algorithms:

• (vk, sk) ← Gen(1λ): takes in the security parameter λ and outputs a key pair (vk, sk) of
verification key vk and signing key sk.

• σ ← Sign(m, sk): takes in a message m and the signing key sk, produces a signature σ.

• b← Ver(vk, σ,m): takes in a message m, the signature σ, and the verification key vk, output
0 or 1 indicating reject or accept.

A secure digital scheme satisfies the following properties

• Correctness: Except with negligible probability over (vk, sk)← Gen(1λ), it must be that for
any message m, Ver(vk,m,Sign(sk,m)) = 1.

• Security: A digital scheme is existentially unforgeable under chosen-message attack iff

Pr

[
(vk, sk)← Gen(1λ)

(m∗, σ)← ASignsk(·)(1λ, vk)
: Ver(vk,m∗, σ) = 1

]
≤ negl(n)

B Fauth
toss Implies CSP Fairness and Preference Privacy

CSP-fairness. CSP-fairness was first introduced in [CGL+18a]. It states that no coalition
can increase its own expected utility except for a negligible term, no matter how it deviates
from the protocol. For a coin-toss protocol Π with trusted setup Setup and a coalition A, let
Π(SA,H−A)(pp, sk1, . . . , skn) denote an execution of protocol Π when every party holds public param-
eter pp, each party holds ski as private parameter, the coalition A adopts strategy SA and other par-
ties behave honestly. Each trace tr sampled from the random execution Π(SA,H−A)(pp, sk1, . . . , skn)
assigned a joint utility utilA(tr) of coalition A. We use utilA(SA, H−A) to denote the expected
utility of the coalition:

utilA(SA, H−A)

:=E
[
(pp, sk1, . . . , skn)← Setup(1λ,P), tr ← Π(SA,H−A)(pp, sk1, . . . , skn) : utilA(tr)

]
.

Definition B.1 (Property-based definition, CSP fairness [CGL+18c]). An m-sided coin-toss pro-
tocol Π with trusted setup Setup for a preference profile P is cooperative-strategy-proofness (CSP-
fairness) against any t-sized coalition iff for any coalition A of size no more than t, for any
non-uniform PPT strategy SA that A adopts, there exists a negligible function negl(·), such that
utilA(SA, H−A) ≤ utilA(HA, H−A) + negl(λ), where HA denotes the honest strategy of A.
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Remark B.2 (Fauth
toss (Figure 1) implies Definition B.1). The ideal functionality Fauth

toss guarantees
Definition B.1. The outcome is either a uniformly random coin chosen by the ideal functionality,
or a coin is such that the corrupted coalition’s joint utility is at most |A|

m . Clearly, in the ideal
world where parties have access to Fauth

toss , the corrupted coalition has no strategy to increase its
joint utility. Therefore, if a real-world protocol securely instantiates this ideal functionality, it also
satisfies Definition B.1.
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