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Abstract

We consider constructions of succinct non-interactive arguments (SNARGs) for NP in the
standard model. Specifically, we revisit the seminal Micali transformation (applying Fiat–Shamir
to Kilian’s protocol), which has traditionally only been analyzed in the random oracle model.

We show that the Micali framework can be successfully instantiated in the standard model
by leveraging a new interaction between two primitives: a PCP satisfying a property we term
shadow soundness, and a vector commitment scheme satisfying function statistical binding.

We prove a general theorem stating that any language admitting a suitable shadow PCP
combined with a compatible vector commitment yields a secure SNARG. We instantiate this
paradigm using sub-exponential indistinguishability obfuscation (iO) and sub-exponential learning
with error (LWE) to obtain a SNARG for all of NP.

Our result serves as the first concrete validation of the Micali blueprint, and in particular of
the Fiat–Shamir transformation, in the standard model. As a corollary, we refute “universal”
attacks on the Micali framework by demonstrating that there exist concrete instantiations of the
underlying components for which the transformation is sound.
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1 Introduction

Succinct non-interactive arguments (SNARGs) for NP [Mic00] constitute a fundamental primitive in
modern cryptography. They allow a prover to convince a verifier of the validity of a statement with
a proof whose size is significantly smaller than the time required to verify the statement directly,
and ideally, much smaller than the witness itself. This “non-interactive” feature is particularly
crucial for real-world applications, enabling scenarios such as delegating computation to untrusted
servers, scaling blockchains via rollups, and constructing privacy-preserving cryptocurrencies.

Building on the seminal work of Kilian [Kil92], Micali [Mic00] provided the first construction
of a SNARG for NP in the random oracle model (ROM). Since then, there has been tremendous
progress in the design of efficient SNARGs. However, the vast majority of efficient constructions are
proven secure only within idealized models. Some of these works rely solely on the random oracle
model or the generic group model (GGM) to establish security (e.g., [Gro16; BCS16; CY21a; CY21b;
ACY23; AHIV17; BBHR18; ZCF24; ACFY24; ACFY25]). Others rely on the random oracle model
in addition to other specific cryptographic assumptions (e.g., [BBBPWM18; AGLMS23; AFLN24;
BC25]). While these models provide a heuristic rationale for security, they do not guarantee security
in the standard model, where the hash function or group is instantiated with concrete algorithms.

A parallel line of work has constructed SNARGs for NP in the common reference string (CRS)
model based on various non-falsifiable assumptions (e.g., knowledge of exponent assumptions) [Gro10;
BCCT12; DFH12; BCCT13; Lip13; GGPR13; BCIOP13; BCP13; BISW17; Bit+14; BISW18;
ACLMT23; CLM23]. In the CRS model, the prover and verifier rely on a trusted reference string
(or random string) generated during a setup phase.

SNARGs from falsifiable assumptions. Despite their practical significance and widespread
deployment, the theoretical foundations of SNARGs remain somewhat unsatisfactory. For a long time,
the existence of SNARGs based solely on falsifiable assumptions remained an open question. The
first construction of a SNARG for NP from (sub-exponentially) falsifiable assumptions was provided
by Sahai and Waters [SW14], who gave a (non-adaptive) construction based on indistinguishability
obfuscation (iO) and one-way functions.1

To get around this challenge, an alternative approach is to relax the target setting—either by
restricting the class of languages or by weakening the notion being achieved. Along these lines,
several works construct SNARGs from standard falsifiable assumptions for P [CJJ22; KVZ21;
HJKS22; CGJJZ23], P/poly [GZ21; WW23; WW15; BCFL23; WW24b; Wee25a; Wee25b], batch
NP [CJJ22; CJJ21; GSWW22; WW22; DGKV22; PP22; KLVW23; CGJJZ23; DWW24], monotone
policy batch NP [BBKLP23; NWW24; NWW25], and NP languages with propositional proofs of
non-membership [JKLM25].

Building adaptively-sound SNARGs for NP from falsifiable assumptions is a challenging problem,
as any such result must circumvent known black-box separations [GW11; CGKS23]. While recent
works have improved the Sahai-Waters construction to achieve adaptive soundness [WW24a; WZ24;
WW25], these results still necessitate the full power of iO. Although iO is a powerful primitive, it is
considered a heavy assumption, both in terms of the complexity of its construction and the concrete
efficiency of its instantiations. Consequently, constructing SNARGs from standard, well-studied
assumptions (such as the hardness of lattice problems) without relying on iO or idealized models

1Recall that iO alone does not imply one-way functions and must be supplemented with a cryptographic assumption
(e.g., one-way functions). However, this additional assumption can sometimes be replaced by a weaker worst-case
assumption [KMNPRY22].
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remains a major open problem in the field. Recently, Devadas et. al [DHKKLM26] constructed a
SNARG for NP based on LWE (or other standard assumptions), and a mathematical conjecture
about multivariate polynomials over the reals (low-norm Nullstellensatz hypothesis).

The challenge of Fiat–Shamir for arguments. If we allow interactions, the situation is much
better. In his seminal work, Kilian [Kil92] showed how to construct succinct interactive arguments
for NP assuming only the existence of collision-resistant hash functions (CRH); moreover, it was
later shown that even multi-collision resistant hash functions suffice [KNY18]. Kilian’s protocol
works by having the prover construct a PCP for the statement and commit to it using a vector
commitment scheme (typically instantiated via a Merkle tree). The verifier then queries specific
locations of the PCP, for which the prover provides openings to the commitment.

To remove interaction, Micali [Mic00] proposed applying the Fiat–Shamir transformation to
Kilian’s protocol. The idea is to replace the verifier’s random queries with the output of a
cryptographic hash function applied to the prover’s commitment. Micali proved that this construction
yields a secure SNARG in the ROM. Consequently, a natural approach to obtain a SNARG from
falsifiable assumptions is to instantiate this blueprint using a concrete hash function in the standard
model.

In recent years, there has been significant progress in instantiating the Fiat–Shamir heuristic in
the standard model. A line of work has successfully established hash functions that can securely
instantiate Fiat–Shamir for specific classes of interactive protocols based on standard assumptions
(e.g., [CCR16; KRR17; CCRR18; HL18; Can+19; PS19; BKM20; JJ21; HLR21; CJJ22; HJKS22;
KLV23]). However, a crucial limitation of these works is that they primarily apply to interactive
proofs (i.e., protocols with statistical soundness). Kilian’s protocol, however, is an interactive
argument (i.e., it has only computational soundness) due to its reliance on a succinct commitment
scheme.

Standard techniques for instantiating Fiat–Shamir generally fail when compiling argument
systems into non-interactive counterparts, rendering the instantiation of Micali’s construction in the
standard model a formidable challenge. Indeed, there is a line of work that highlight the risks of
replacing the random oracle with a concrete hash function in an argument scheme, regardless of
how the hash function is implemented [CGH04; Bar01; GK03; KRS25; AY25].

Furthermore, Bartusek et al. [BBHMR19] identified strong barriers specifically targeting Micali’s
blueprint. They constructed a specific CRH for which the Micali transformation results in an
unsound protocol for any concrete instantiation of the Fiat–Shamir hash function. This implies that
any successful instantiation of Micali’s construction cannot treat the CRH as a generic component.
Rather, it must leverage some specific structure of the underlying CRH.

1.1 Our results

We show that the Micali transformation can be successfully instantiated in the standard model under
standard assumptions. To achieve this, we rely on a new property of probabilistically checkable
proofs which we term shadow PCP . We show that for any language L admitting such a PCP, the
Micali blueprint yields a secure argument system.

Central to this concept is the shadow algorithm associated with the PCP. Our construction
uses a vector commitment scheme that satisfies function-statistical-binding for a specific family of
functions F . The construction is secure provided that F is sufficiently expressive to compute the
shadow algorithm.
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Theorem 1. Let F be a function family such that 3SAT has a shadow PCP with a shadow algorithm
in F , and there is a vector commitment scheme satisfying function-statistical-binding for F . Then,
under the sub-exponential hardness of LWE, there exists a non-adaptive SNARG for 3SAT.

We apply this general theorem as follows. We observe that strong assumptions such as indistin-
guishability obfuscation (iO) allow us to construct vector commitments with function-statistical-
binding for all P/poly. Then, we show that every language in NP has a shadow PCP with a shadow
algorithm in P/poly, which yields a valid SNARG under these assumptions. While SNARGs from
iO are already known, this result provides the first concrete instantiation of the Micali blueprint in
the standard model.

Theorem 2. The following holds:

1. Every language in NP has a shadow PCP with a shadow algorithm in P/poly.
2. Assuming iO and LWE, there is a vector commitment with function-statistical-binding for P/poly.
3. Using Theorem 1, the Micali blueprint can be instantiated in the plain model, yielding a SNARG

for all NP with argument size Õ(
√
n) · poly(λ).

1.2 Refuting universal attacks on the Micali framework

As discussed, a line of work has established “universal” impossibility results for the Fiat–Shamir
transformation, showing that for certain protocols, the compiled argument is insecure regardless
of the concrete hash function used [BBHMR19]. However, such impossibility results generally do
not apply to interactive proofs. This is because the existence of correlation intractable hash (CIH)
functions guarantees that, for a broad class of proofs, a secure instantiation of Fiat–Shamir does
exist. The mere existence of such a hash function, even if inefficient, serves as a counterexample
that rules out any universal attack.

Our work provides a parallel guarantee for the Kilian-Micali argument system. By constructing a
concrete, secure instantiation of the Micali transformation (via a specific PCP, a vector commitment,
and an LWE-based hash), we provide an existential proof that refutes the possibility of universal
attacks against this paradigm. Consequently, the Micali framework is not inherently unsound; any
successful attack on the transformation must necessarily rely on specific, contrived choices of the
underlying components rather than the structure itself.
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2 Techniques

We give a high-level overview of our techniques. As mentioned, the general blueprint of the SNARG
construction is the work of [Mic00] (see also [CY24]). That is, we use a PCP for NP in which the
prover first computes a PCP proof and then commits to it using a specialized vector commitment
scheme. The verifier’s PCP randomness is derived via a specialized Fiat–Shamir hash. Finally, the
prover provides all the answers to the PCP along with a proof of consistency. We will dive into each
of these components separately and describe how they interplay. For clarity of exposition, we focus
on achieving a sublinear proof size (i.e., o(n)), without optimizing for the precise bound stated in
our main theorem, and at end of the overview we give more details on how to achieve the precise
bound.

To motivate our specific design, we first recall how the Fiat–Shamir transformation is typically
instantiated in the standard model for statistically sound protocols. For 3-message interactive
proofs (protocols with statistical soundness), secure instantiation is achieved using a correlation
intractable hash (CIH) function [CCR16; KRR17; CCRR18; HL18; Can+19; PS19; BKM20; JJ21;
HLR21; CJJ22; HJKS22; KLV23]. This works because such protocols induce an underlying sparse
relation : for any false statement, the set of “bad” verifier challenges (those that lead to acceptance)
is negligibly small. A CIH hash function is simply defined to avoid outputting values within this
sparse set.

However, this standard paradigm fails for Kilian’s protocol. Because Kilian’s protocol is an
interactive argument, relying on the computational binding of the vector commitment, there is
no underlying sparse relation. Since the committed string is only computationally binding and
hidden from the verifier, one cannot define a fixed sparse set of bad challenges in the standard
information-theoretic sense. Thus, one cannot directly apply the same CIH approach, and some
new ideas are necessary. In particular, we need to have some statistical property hiding under the
computational commitment.

In this overview, we describe how we “couple” PCPs with our vector commitment scheme to
induce a sparse relation, thereby enabling the use of a correlation-intractable hash function to
instantiate the Fiat–Shamir transformation for Kilian’s protocol. Our approach is inspired by
previous works that construct SNARGs for subsets of NP using somewhere statistically binding
hash [BBHMR19; CJJ21; CJJ22; PP22; DGKV22; KLVW23].

We present the PCP we need in Section 2.1, our VC scheme in Section 2.2, and the final SNARG
construction and analyses in Section 2.3.

2.1 PCP shadows

Consider the 3SAT language over n variables. The first component is an information-theoretic PCP
construction that satisfies a strong soundness notion we call shadow soundness. A shadow is a
digest or projection of a PCP string Π (either valid or malicious) into a short state (of size o(n)),
denoted by z. This compression is performed by a randomized algorithm denoted by F.

The shadow z is designed to predict the value of the verifier’s output VΠ̃(x, ρ). This is achieved
via a decider algorithm D that takes the shadow and the PCP randomness ρ as input and outputs
a decision bit. The correctness property asserts that for any fixed ρ, with high probability (over

the randomness of F), it holds that VΠ̃(x, ρ) = D(x, z, ρ). Note that the shadow loses the local
properties that the proof Π had. While correctness is the primary property, we additionally require
two auxiliary properties: sparsity, which implies that D accepts a sparse set of randomness for

6



instances not in the language; and consistency, which ensures that proof strings sharing a local view
produce consistent shadows. Formally, we provide the following definition.

Definition 1 (Shadow soundness). A PCP = (P,V) has shadow soundness if there exists a function
F (computable by a polynomial-size circuit) with randomness complexity rF and a deterministic
algorithm D (a decider) such that for every instance x /∈ L(R), the following holds:

1. Correctness. For any Π̃, and verifier randomness ρ ∈ {0, 1}r:

Pr

[
VΠ̃(x, ρ) ̸= D(x, z, ρ)

∣∣∣∣ γ ← {0, 1}rF
z := F(x, Π̃; γ)

]
≤ ϵc(x) .

2. Sparsity. There exists an efficiently computable set Z where Im(F(x, ·)) ⊆ Z such that for any
shadow state z ∈ Z:

Pr [D(x, z, ρ) = 1 | ρ← {0, 1}r] ≤ ϵs(x) .

3. Consistency. For every shadow randomness γ ∈ {0, 1}rF, verifier randomness ρ ∈ {0, 1}r, Π̃
and Π̃′ such that Π̃[Q] = Π̃′[Q], where Q is the query set of the PCP verifier VΠ̃(x; ρ):

D(x, z, ρ) = D(x, z′, ρ) ,

where z := F(x, Π̃; γ) and z′ := F(x, Π̃′; γ).

Moreover, we say that PCP has shadow state size sPCP if F outputs at most sPCP bits.

Remark: shadow soundness and ETH. The exponential time hypothesis (ETH) posits that
solving 3SAT on n variables requires time exponential in n. This implies that no PCP for 3SAT can
have a proof of size o(n), as this would allow solving the problem in 2o(n) time by iterating over
all proofs. Since our construction yields a shadow state of size o(n), it might appear to contradict
ETH (or its randomized variant) by using the shadow as a succinct witness.

However, this approach fails for two main reasons. First, the shadow computation F is randomized.
Even if the verifier supplies the randomness, the PCP definition provides no mechanism to ensure
the prover generates the shadow using that specific randomness rather than a maliciously chosen
one. Second, even if F were deterministic, we still cannot verify that the state we are iterating
over is a valid image of F(x; ·). Indeed, the image of F depends on whether the instance is in the
language. Thus, if the instance is not in the language, we risk enumerating a state that falsely
appears to be a valid witness.

How to use shadow PCPs. The main idea for leveraging shadow PCPs is to require the prover
to commit to the PCP string in a way that is statistically binding with respect to the shadow of
the PCP. To achieve this, we introduce a vector commitment (VC) scheme that satisfies a property
we call function statistical binding with respect to a family of functions F . While the commitment
scheme is succinct, and thus cannot be statistically binding on the message itself, the function
statistically binding property ensures that the commitment is statistically binding relative to a
specific function f ∈ F (provided f has a small output length). The function f will compute the
shadow from the PCP.

A crucial requirement for this approach is that the shadow randomness γ must remain hidden
from the prover: if the prover knows γ, it could tailor its proof to the specific shadow check. We
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achieve this by sampling γ as part of the CRS and requiring the VC scheme to satisfy function
hiding. Concretely, function hiding guarantees that the public parameters (which depend on γ)
do not leak any information about this randomness. As a result, the prover has to commit to the
shadow without knowing the underlying randomness, thereby preserving the probabilistic guarantees
of the shadow soundness. We elaborate more on our VC below in Section 2.2.

Constructing shadow PCPs. We provide a PCP construction whose shadow can be computed
by polynomial-size circuit. Let PCP = (P,V) be a PCP for 3SAT with randomness complexity r. We
design a compiler that converts PCP to a shadow PCP PCP′ = (P′,V′) when r is small. Specifically,
P′ behaves the same as P; V′ breaks the set of all original verifier randomness ρ ∈ {0, 1}r into
consecutive blocks of size 2r−1, samples a random block index b, and accepts if and only if the original
verifier V accepts all randomness in block b. Hence, the shadow circuit F can deterministically
compute the new verifier’s decision easily for every randomness and record them in a list of size
2r−1. We emphasize that this construction gives deterministic shadow function, which is stronger
than what shadow PCP requires. To provide full generality, we keep the rest of the discussion with
randomized shadow function.

2.2 Vector commitments with function binding

We construct a vector commitment (VC) scheme, called a function VC, that satisfies a specialized
function statistically binding property for a broad family of functions. We believe this construction
is of independent interest.

Function vector commitment schemes. Our function VC can be viewed as a programmable
somewhere statistically binding (SSB) hash ([HW15; OPWW15]) where the “binding index” is
replaced by a “binding function” (the tree algorithm). Recall that an SSB hash is initialized
with a secret index i hidden from the adversary; while the hash is compressing (and thus only
computationally binding globally), it guarantees that one can extract the i-th bit of the message,
i.e., it is statistical binding specifically for the i-th bit. Formally, a hash family H = {hk}k←H.Gen is
an SSB hash if there exists an efficient extractor H.Extract such that for any (unbounded) adversary
A and index i,

Pr

 H.Check(k, v, i, σ, pf) = 1
∧σ ̸= σ̃

∣∣∣∣∣∣
(k, td)← H.Gen(1λ, i)
(v, σ, pf)← A(k)
σ̃ := H.Extract(td, v)

 ≤ negl(λ) ,

where v is the hash output chosen by A, σ is the alleged value at the i-th position of the preimage
of v, and pf is an opening proof.

In our case, we initialize the VC with a hidden function f . Although the commitment is succinct,
it is statistically binding with respect to the evaluation of f . We formalize this via a property called
function statistically binding. Specifically, a function VC is a tuple of efficient algorithms

VC = (VC.Gen,VC.Commit,VC.Open,VC.Check,VC.Extract)

where (VC.Gen,VC.Commit,VC.Open,VC.Check) works similarly as a standard VC, and function
statistically binding is defined via VC.Extract:

8



Definition 2 (Informal). VC is function statistically binding if for every function f and
(unbounded) adversary AVC,

Pr

 VC.Check(pp, cm,Q, a, pf) = 1
∧∀ m̃ : (f(m̃) ̸= y ∨ m̃[Q] ̸= a)

∣∣∣∣∣∣
(pp, td)← VC.Gen(1λ, f)
(cm,Q, a, pf) := AVC(pp)
y := VC.Extract(td, cm)

 ≤ negl(λ) .

Moreover, we require a function VC to satisfy function hiding, which ensures that given f ̸= f ′,
no efficient adversary can distinguish the public parameters pp and pp′ computed using f and f ′,
respectively.

Construction from iO and LWE. We outline our construction of function VC for all polynomial-
size circuits using iO and LWE. In particular, we use the adaptively-sound SNARG in [WW25]
based on sub-exponential hardness of iO and one-way functions (OWFs). Note that using this
SNARG does not trivialize the problem as we mention in Section 1.2: this construction is the first
to securely instantiate the Fiat–Shamir transformation in the Micali blueprint in the plain model.
VC works as follows:

• VC.Gen samples an FHE key pair (pk, sk), computes the encryption of the given circuit ct, and
outputs the public parameter pp := (pk, ct) and the trapdoor td := sk.

• VC.Commit(pp,m) computes the evaluation of the circuit on input m under encryption.

• VC.Open uses the SNARG prover to prove that the commitment is correctly computed.

• VC.Check checks if the SNARG verifier accepts.

• VC.Extract decrypts the commitment using the FHE secret key.

Function hiding follows from the semantic security of the FHE. Function statistically binding follows
from the adaptive soundness of the SNARG. We leave the details of the proof in Section 5.2.

2.3 SNARG construction

Warm-up: designated verifier SNARG. To build intuition, we first describe how to construct a
designated verifier SNARG (dv-SNARG) using a shadow PCP and a functional vector commitment.
In this setting, the verifier holds a secret key—specifically, the trapdoor td of the vector commitment.
We then demonstrate how to modify the construction to be publicly verifiable.

The designated verifier construction is given as follows.

• P:
1. Compute the PCP proof Π.
2. Commit to Π using the function VC and obtain cm.
3. Sample a verifier randomness ρ and provide the local openings (Q, a, pf) corresponding to ρ.
4. Send (cm,Q, a, pf).

• V:
1. Use VC.Decode to extract the PCP shadow z underneath the commitment cm.
2. Sample verifier randomness ρ (not necessarily the same as the one sampled by the prover).
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3. Check the following:
(a) VC.Check(cm,Q, a, pf) = 1;
(b) D(x, z, ρ) = 1.

By the the function statistically binding property of the VC, we know that if VC.Check(cm,Q, a, pf) =
1, there exists a PCP proof Π such that F(Π) = z. Then the correctness of PCP shadow ensures
that the second check using D(z, ρ) is consistent with the PCP verifier check VΠ(x; ρ).

Consequently, our main challenge is how to convert this dv-SNARG to a publicly verifiable one.
The key idea is to use a correlation intractable hash family to “hide” the secret key of the verifier
into a sparse relation.

Correlation-intractable hash instead of secret key. We now describe how to modify the
construction to be publicly-verifier. The scheme follows the blueprint of Micali’s construction [Kil92;
Mic00]: On input an instance x and a witness w, the SNARG prover P computes the PCP proof Π
and commits to it using the VC scheme, obtaining a short commitment cm. It then derives the
PCP verifier’s randomness ρ via Fiat–Shamir, namely by computing ρ := h(x, cm) (where h is the
Fiat–Shamir hash function), and uses ρ to determine the PCP query locations. The prover outputs
cm together with the VC openings to the queried positions of Π. The verifier V recomputes ρ,
checks that all openings are valid with respect to cm, and then runs the PCP verifier on the opened
symbols.

To prove Theorem 1, we instantiate the above construction using a PCP with shadow soundness,
our function VC scheme, and a correlation-intractable hash family. We outline the soundness
analysis.

Consider x /∈ L(R). As mentioned at the beginning of this section, one challenge is that
interactive arguments only have computational soundness and do not induce sparse relations that
allow us to use CIH on. However, since our function VC satisfies function statistically binding,
we are able to leverage the statistical soundness of the underlying PCP. More formally, let F be
the tree-computable function that computes the PCP shadow and D be the decider. Assume that
the SNARG adversary P̃ successfully fools the SNARG verifier V, which means that P̃ outputs
(cm,Q, a, pf) such that

ρ = hCI(cm) and VC.Check(pp, cm,Q, a, pf) = 1 and V[Q,a](x; ρ) = 1 ,

where hCI is the CI hash function and V is the PCP verifier. By the function statistically binding of
the function VC, since VC.Check(pp, cm,Q, a, pf) = 1, we can find Π̃ such that

F(x, Π̃; γ) = VC.Extract(td, cm) and Π̃[Q] = a ,

which implies that

ρ = hCI(cm) and VΠ̃(x; ρ) = 1 .

This enables us to use PCP shadows to bound the SNARG soundness error.
Recall that in the definition of PCP shadows in Section 2.1, it is important that the shadow

randomness γ remains hidden from the PCP adversary, as otherwise it’s easy to choose some PCP
string Π̃ that fools the decider always. In the SNARG construction, the shadow randomness γ is
sampled at random and then encrypted with the FHE, and the SNARG adversary only has access
to its encryption. Intuitively, if the SNARG adversary were to guess γ, it has to break the FHE. On
the other hand, if the SNARG adversary does not know γ, the sparsity property of PCP shadows
induces a sparse relation that enables us to use CIH.
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To formalize the intuition above, we set z := F(x, Π̃; γ) and consider two cases: D(x, z, ρ) = 0
and D(x, z, ρ) = 1. Specifically, we argue that neither of the following events can happen with high
probability:  ρ = hCI(cm)

∧VΠ̃(x; ρ) = 1
∧D(x, z, ρ) = 0

 and

 ρ = hCI(cm)

∧VΠ̃(x; ρ) = 1
∧D(x, z, ρ) = 1

 .

The probability of the event on the left-hand side can be bounded by the correctness error of PCP
shadows (the first property in Definition 1), which ensures that for any PCP verifier randomness ρ,

the PCP verifier VΠ̃(x; ρ) and the shadow decider D(x, z, ρ) agree except with small probability

over shadow randomness γ. In other words, in order to find Π̃ and ρ such that VΠ̃(x; ρ) and
D(x, z, ρ) disagree with high probability, one has to know the secret randomness γ of the PCP
shadow function F. Therefore, if P̃ succeeds with high probability, we would be able to correctly
guess γ using P̃ with high probability, which violates the security of FHE. We note that in the
formal analysis in Section 6.2, we additionally rely on the consistency of PCP shadows (the third
property in Definition 1).

The other event can be analyzed using the CIH. By the sparsity of PCP shadows (the second
property in Definition 1), the following relation is sparse:

R
x,td := {(cm, ρ) : D(x, z, ρ) = 1 where z := VC.Extract(td, cm)} .

Therefore, ρ = hCI(cm) and D(x, z, ρ) = 1 can happen with probability at most the CI hash
error. CIH for all sparse relations is not known to follow from LWE alone: existing LWE-based
constructions either require the relation to be computable by a bounded-size circuit [PS19], or they
rely on relations with an inherent product structure [HLR21]. In our construction, we adopt the
latter approach of [HLR21], since the PCP shadow soundness guarantee can be amplified via parallel
repetition, which naturally induces a sparse product relation (see details in Sections 4 and 6).

Plugging in the shadow PCP constructed in Section 2.1 and the function VC for circuits in
Section 2.2, we can prove Theorem 2.

11



3 Preliminaries

Definition 3.1. For every function f : X → Y , the image of f , denoted as Im(f), is

Im(f) := {f(x) ∈ Y : x ∈ X} .

Definition 3.2. A relation R is a set of pairs (x,w) where x is an instance and w a witness.
The corresponding language L(R) is the set of instances x for which there exists a witness w such
that (x,w) ∈ R.

3.1 Correlation intractability

Definition 3.3. For every relation ensemble R = {Rϕ ⊆ Xϕ ×Wϕ}, we say that R is τ(·)-sparse
if for every ϕ and x ∈ Xϕ,

Pr [(x, y) ∈ Rϕ | y ←Wϕ] ≤ τ(ϕ) .

Definition 3.4. A hash family H = {Hλ}λ is correlation intractable wrt sparse relations if
for every security parameter λ, ϕ, τ -sparse relation Rϕ, tCI ∈ N and tCI-size adversary A,

Pr

(x, h(x)) ∈ Rϕ

∣∣∣∣∣∣
aux← A
h← Hλ

x← A(aux, h)

 ≤ ϵCI(ϕ, τ, tCI) .

Definition 3.5 (Product relation). A relation R ⊆ X ×Wt is a product relation if for every x, the
set Rx

:= {w : (x,w ∈ R)} is the Cartesian product of sets Sx,1, . . . , Sx,t:

Rx = Sx,1 × · · · × Sx,t .

Definition 3.6 (Efficient product verifiability). A product relation R is T -time product verifiable if
there exists a size-T circuit C such that for every x and its corresponding Sx,1, . . . , Sx,t, wi ∈ Sx,i
if and only if C(x,wi, i) = 1.

Definition 3.7 (Product sparsity). A product relation R ⊆ X ×Wt has sparsity τ if for every x
and its corresponding Sx,1, . . . , Sx,t, |Sx,i| ≤ τ |W|.

Theorem 3.8 ([HLR21]). Let R be the ensemble of all T -time verifiable product relation Rλ ⊆
X×Wtλ with product sparsity τ , where tλ > λ/(1−τ). There exists a hash family HCI = {H(λ)

CI : X →
Wtλ}λ∈N that is correlation intractable for R under the hardness of LWE. Moreover, HCI depends
only on X ,W, T, tλ, τ and can be evaluated in time poly(log |X | , tλ, T ).

3.2 Non-interactive arguments

A non-interactive argument for a relation R (in the common reference string model) is a tuple of
algorithms SNARG = (Setup,P,V) satisfying the following properties.

Definition 3.9. SNARG = (Setup,P,V) has perfect completeness if for every security parameter
λ ∈ N, instance size bound n ∈ N, public parameter pp ∈ G(1λ, n), and instance-witness pair
(x,w) ∈ R,

Pr [V(pp,x, π) = 1 | π ← P(pp,x,w)] = 1 .

12



Definition 3.10. SNARG = (Setup,P,V) has non-adaptive soundness error ϵSNARG if for every
security parameter λ ∈ N, instance x /∈ L(R), circuit size bound tSNARG ∈ N, and tSNARG-size circuit P̃,

Pr

[
V(pp,x, π) = 1

∣∣∣∣ pp← G(1λ, n)
π ← P̃(pp)

]
≤ ϵSNARG(λ,x, tARG) .

Definition 3.11. SNARG = (Setup,P,V) has adaptive soundness error ϵSNARG if for every
security parameter λ ∈ N, instance size bound n ∈ N, circuit size bound tSNARG ∈ N, and tSNARG-size
circuit P̃,

Pr

 |x| ≤ n
∧x /∈ L(R)
∧V(pp,x, π) = 1

∣∣∣∣∣∣ pp← G(1λ, n)
π ← P̃(pp)

 ≤ ϵSNARG(λ,x, tARG) .

Theorem 3.12 ([WW25]). Assume the existence of sub-exponential indistinguishability obfuscation
(iO) for Boolean circuits and sub-exponential one-way functions (OWF), there exists a SNARG for
any NP relation R that satisfies the following:

• proof size poly(λ);
• public parameter size poly(λ, |R|), where |R| is the size of the Boolean circuit computing R;
• perfect completeness;
• adaptive soundness error negl(λ).

3.3 Probabilistically checkable proofs

A probabilistically checkable proof (PCP) is an information-theoretic proof system where a proba-
bilistic verifier has oracle access to a proof string.

Definition 3.13 (Completeness). PCP = (P,V) for a relation R has perfect completeness if,
for every instance-witness pair (x,w) ∈ R,

Pr
[
VΠ(x) = 1

∣∣ Π← P(x,w)
]
= 1 .

Definition 3.14 (Soundness). PCP = (P,V) for a relation R has soundness error ϵPCP if, for
every instance x /∈ L(R) and (unbounded) circuit P̃PCP,

Pr
[
VΠ̃(x) = 1

∣∣∣ Π̃← P̃PCP

]
≤ ϵPCP(x) .

We consider several efficiency measures for a PCP:

• the proof alphabet Σ is the alphabet over which a PCP string is written;
• the proof length ℓ is the number of alphabet symbols in the PCP string;
• the query complexity q ∈ [ℓ] is the number of queries that the PCP verifier makes to the PCP
string (each query is an index in [ℓ] and is answered by the corresponding symbol in Σ in the
PCP string);

• the randomness complexity r is the number of random bits used by the PCP verifier.

An efficiency measure may be a function of the instance x (e.g., of its size |x|).

Theorem 3.15 ([BS05; Din07; BMVY25]). There is a PCP for 3SAT that satisfies the following:
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• perfect completeness;
• soundness error ϵPCP = 1/2;
• non-adaptive verifier;
• query complexity q = O(1);
• randomness complexity r = log n+O(log log n);
• proof length ℓ = n · polylogn;
• alphabet {0, 1}.

3.4 Merkle tree

We recall the construction of the Merkle vector commitment scheme, adapted from [CY24].

Definition 3.16. For ℓ ∈ N, Tℓ = (Vℓ, Eℓ) is the (perfect) binary tree graph of depth

d := log2 ℓ

where the vertex set Vℓ and edge set Eℓ are defined as follows:

Vℓ :=
{
(j, i) : j ∈ {0, 1, . . . , d}, i ∈ [2j ]

}
,

Eℓ :=
{(

(j − 1, i), (j, 2i− b)
)
: j ∈ {1, . . . , d}, i ∈ [2j−1], b ∈ {1, 0}

}
.

Definition 3.17. We make the following notational definitions:
• The root vertex of Tℓ is the vertex (0, 1).
• The leaf vertices of Tℓ are the vertices {(d, i)}i∈[ℓ].
• A vertex (j, i) is odd if i is odd and it is even if i is even.
• The sibling of a non-root vertex (j, i) (i.e., with j > 0) is (j, i+ 1) if (j, i) is odd and is (j, i− 1)
if (j, i) is even.

• The path from the i-th leaf vertex (d, i) to the root vertex is denoted by path(i); the vertex in
path(i) that is in layer j is denoted p(i, j) ∈ {j} × [2j ].

• The copath from the i-th leaf vertex (d, i) to the root vertex is denoted by copath(i), and is the
list of siblings of each vertex in path(i), except the root vertex (which has no siblings); the vertex
in copath(i) that is in layer j is denoted p̄(i, j) ∈ {j} × [2j ] (and is the sibling of p(i, j)).

• For I ⊆ [ℓ], path(I) := ∪i∈Ipath(i) and copath(I) := ∪i∈Icopath(i) (viewing lists as sets).

Using this notation we can write:

path(i) =
(
p(i, j)

)
j∈{0,1,...,d}

and copath(i) =
(
p̄(i, j)

)
j∈{1,...,d}

.

For every i ∈ [ℓ], p(i, 0) = (0, 1) is the root vertex and p(i, d) = (d, i) is the i-th leaf.

Construction 3.18. Given d+ 1 hash families H0, . . . ,Hd, we construct the Merkle commitment
scheme as follows:

• MT.Gen(1λ, ℓ, seed0, . . . , seedd):

1. For i ∈ {0, · · · , d}: Sample (hi, tdi)← Hi(seedi).
2. Set pp := (hi)i∈{0,...,d}.
3. Set td := (tdi)i∈{0,...,d}.
4. Output (pp, td).
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• MT.Commit(pp,m):

1. Parse pp as (hi)i∈{0,...,d}.
2. For each message location i = 1, . . . , ℓ: Compute c(d,i) := hd(i,m[i]). Note that in the leaf

level, we hash both the value at location i and the location itself.
3. For each layer j = d−1, . . . , 0 and for each i = 1, . . . , 2j : Compute c(j,i) := hj(c(j+1,2i−1), c(j+1,2i)).
4. Set the Merkle commitment cm := c(0,1).

5. Set the auxiliary information aux := ((c(j,i))i∈[2j ])
d
j=0, which we can visualize in the following

way:

aux =


c(0,1)
c(1,1) c(1,2)
c(2,1) c(2,2) c(2,3) c(2,4)
...

...
...

...
. . .

c(d,1) . . . . . . . . . . . . c(d,2d)

 .

6. Output (cm, aux).

• MT.Open(pp, aux,Q):
1. For every i ∈ Q, set the authentication path for location i:

authi := (cp̄(i,j))j∈{1,...,d} .

2. Output the opening proof pf := (authi)i∈Q.

• MT.Check(pp, cm,Q, ans, pf):
1. Parse pf as (authi)i∈Q.
2. For every i ∈ Q, check that authi authenticates the value ans[i] as the i-th opening relative to

the Merkle commitment cm by computing (cp(i,j))j∈{0,1,...,d}:
(a) Compute the commitment c(d,i) := hj(ans[i]);
(b) Compute the commitments (cp(i,j))j∈{0,1,...,d−1} as follows:

For each layer j = d− 1, . . . , 1, 0:
– If p(i, j + 1) is an odd vertex then set cL := cp(i,j+1) and cR := cp̄(i,j+1);
– If p(i, j + 1) is an even vertex then set cL := cp̄(i,j+1) and cR := cp(i,j+1);
– Compute the commitment cp(i,j) := hj(cL, cR).

(c) Check that cm = c(0,1).

In the construction above, each query i ∈ Q has a separate authentication path authi. We
introduce the operation Merge that takes in a list of authentication paths (authi)i∈Q as input and
works as follows:

Merge((authk)k∈Q):
1. For every vertex (j, i) in the tree:

(a) If there is no i ∈ Q such that (j, i) is included, set c(j,i) := ⊥.
(b) If (j, i) is included in some paths, and there is no inconsistency across paths, set c(j,i) to

be the corresponding value in the path.
(c) If (j, i) has inconsistency values across different paths, output ⊥.

2. Output (c(j,i))j∈d,i∈[2j ].
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Definition 3.19 (Collision resistant hash function). A hash family H = {Hλ}λ is collision
resistant if for every security parameter λ ∈ N, t ∈ N and t-size adversary A,

Pr

[
x ̸= x′

h(x) = h(x′)

∣∣∣∣ h← H(λ)
(x, x′)← A(h)

]
≤ ϵCRHF(λ, t) .

Lemma 3.20. Let H be a collision resistant hash family with error ϵCRHF. For every λ ∈ N, t ∈ N,
and t-size adversary A,

Pr

 MT.Check(pp, cm,Q, ans, pf) = 1
∧Merge((authi)i∈Q) = ⊥

∣∣∣∣∣∣∣∣
For i ∈ {0, . . . , d} :

hi ← H(λ)
pp := (hi)i∈{0,...,d}
(cm,Q, ans, pf := (authi)i∈Q)← A(pp)

 ≤ ϵCRHF(λ, t) .

Proof. It is easy to see that if A is able to find inconsistent authentication paths that are accepted
by MT.Check, it can find collisions in hCRHF.

3.5 Learning with errors

Definition 3.21 (LWE distribution). For any positive integers n, q ∈ N, vector s ∈ Zn, and error
distribution χ over Z, the learning with error (LWE) distribution As,χ is defined by uniformly
sampling a vector a ∈ Zn, sampling error e from χ, and outputting (a, ⟨a, s⟩+ e mod q) ∈ Zs

q × Zq.
χ is usually the discrete Gaussian of parameter α · q. The modulus-to-noise ratio is q

α·q = 1/α.

Definition 3.22 (Sub-exponential hardness of LWE). Fix the security parameter λ ∈ N. Consider
n, q and χ that depend on λ. In particular, let n = Θ(λ) be the LWE secret vector size. Let
q = poly(λ) be the LWE modulus. The sub-exponential LWE assumption LWEn,q,χ states that for

every c > 1, there exists c′ such that no non-uniform probabilistic 2λ
1/c

-size adversary can distinguish,

with probability more than 2−λ
1/c′

, between (i) the distribution As,χ for a random s ← Zn
q ; and

(ii) the uniform distribution over Zn
q × Zq.

3.6 Fully homomorphic encryption

A fully homomorphic encryption scheme with alphabet Σ, message size ℓ and cipher text size
n is a tuple of efficient algorithms FHE = (FHE.Gen,FHE.Enc,FHE.Dec,FHE.Eval) such that:

• FHE.Gen(1λ) is a randomized algorithm that takes as input the security parameter and outputs a
public key pk and a secret key sk.

• FHE.Enc(pk,m) is a randomized algorithm that takes as input the public key pk and a message
m and outputs a cipher text ct.

• FHE.Dec(sk, ct) is a deterministic algorithm that takes as input the secret key sk and a cipher
text ct and outputs a message m′.

• FHE.Eval(pk, f, ct1, . . . , ctk) is a deterministic algorithm that takes as input the public key pk, a
circuit f that takes in k inputs and output a string in Σℓ, and a vector of cipher texts (ct1, . . . , ctk)
and outputs another cipher text ct′.

We require the following properties for an FHE scheme:
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• Correctness: For every λ ∈ N and message m,

Pr
[
FHE.Dec(sk,FHE.Enc(pk,m)) = m

∣∣∣ (pk, sk)← FHE.Gen(1λ)
]
= 1 .

• Semantic security: For every λ ∈ N, adversary time bound tFHE ∈ N, and tFHE-time adversary A,∣∣∣∣∣∣∣∣Pr
b = 1

∣∣∣∣∣∣∣∣
(pk, sk)← FHE.Gen(1λ)
(m0,m1, aux)← A(pk)
ct← FHE.Enc(pk,m0)
b← A(aux, pk, ct)

− Pr

b = 1

∣∣∣∣∣∣∣∣
(pk, sk)← FHE.Gen(1λ)
(m0,m1, aux)← A(pk)
ct← FHE.Enc(pk,m1)
b← A(aux, pk, ct)


∣∣∣∣∣∣∣∣ ≤ ϵFHE(λ, tFHE) .

• eFHE-expansion: For every λ ∈ N, message m, and (pk, sk) ∈ Supp(FHE.Gen(1λ)),

|FHE.Enc(pk,m)| ≤ eFHE(λ, |m|) .

• cFHE-compactness: For every λ ∈ N, circuit f that takes in k inputs and output a string in Σℓ,
inputs (m1, . . . ,mk), (pk, sk) ∈ Supp(FHE.Gen(1λ)), cti ∈ Supp(FHE.Enc(pk,mi)) for every i ∈ [k],

|FHE.Eval(pk, f, (ct1, . . . , ctk))| ≤ cFHE(λ, |f(m1, . . . ,mk)|) .

• Perfect homomorphism: For every λ ∈ N, (pk, sk) ∈ Supp(FHE.Gen(1λ)), circuit f , and inputs
(m1, . . . ,mk), consider ni ∈ Supp(FHE.Enc(pk,mi)) for every i ∈ [k], it holds that

FHE.Dec(sk,FHE.Eval(pk, f, ct1, . . . , ctk)) = f(m1, . . . ,mk) .

There is a long line of work that constructs FHE using LWE. The theorem below states the
existence of FHE with parameters and security that we need in this paper.

Theorem 3.23 ([BGV12; Bra12; GSW13; BDGM19]). Assume the sub-exponential hardness of
LWE holds. Let λ ∈ N be the security parameter, there exists FHE for all circuits of depth poly(λ)
that satisfies the following:

• size of the secret key poly(λ);
• size of public key poly(λ);
• expansion eFHE(λ, ℓ) = ℓ · poly(λ);
• compactness cFHE(λ, ℓ) = ℓ · poly(λ);
• perfect correctness;
• sub-exponential semantic security: for every c > 1, there exists c′ such that if tFHE ≤ 2λ

1/c
, then

ϵFHE(λ, tFHE) ≤ 2−λ
1/c′

;
• perfect homomorphism.

The following lemma generalizes semantic security to hold for a list of n messages.

Lemma 3.24 (Multi-message semantic security). For every λ ∈ N, n ∈ N, adversary time bound
tFHE ∈ N, and tFHE-time adversary A,∣∣∣∣∣∣∣∣∣∣
Pr

b = 0

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← FHE.Gen(1λ)
((m0,i)i∈[n], (m1,i)i∈[n])← A(pk)
For i ∈ [n] :

cti ← FHE.Enc(pk,m0,i)
b← A(pk, (cti)i∈[n])

− Pr

b = 0

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← FHE.Gen(1λ)
((m0,i)i∈[n], (m1,i)i∈[n])← A(pk)
For i ∈ [n] :

cti ← FHE.Enc(pk,m1,i)
b← A(pk, (cti)i∈[n])


∣∣∣∣∣∣∣∣∣∣

≤ n · ϵFHE(λ, tFHE) .
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Proof. Let A be an adversary described in the lemma statement. We construct the following
adversary B for the semantic security of FHE:

• B(pk):
1. Compute ((m0,i)i∈[n], (m1,i)i∈[n])← A(pk).
2. Sample i← [n].
3. Output (aux := (i, ((m0,j)j∈[n], (m1,j)j∈[n])),m0,i,m1,i).

• B(aux, pk, ct):
1. Parse aux as (i, (i, ((m0,j)j∈[n], (m1,j)j∈[n]))).
2. For j < i: Compute ctj ← FHE.Enc(pk,m0,j).
3. For j > i: Compute ctj ← FHE.Enc(pk,m1,j).
4. Set cti := ct.
5. Compute b← A(pk, (ctj)j∈[n]).

We define pi as follows:

pi := Pr

b = 1

∣∣∣∣∣∣∣∣∣∣
(pk, sk)← FHE.Gen(1λ)
((m0,j)j∈[n], (m1,j)j∈[n])← A(pk)
For j ≤ i : ctj ← FHE.Enc(pk,m0,j)
For j > i : ctj ← FHE.Enc(pk,m1,j)
b← A(pk, (ctj)j∈[n])

 .

Therefore, we remain to bound |pn − p1|. Notice that

Pr

b = 1

∣∣∣∣∣∣∣∣
(pk, sk)← FHE.Gen(1λ)
(m0,m1)← B(pk)
ct← FHE.Enc(pk,m0)
b← B(pk, (ctj)j∈[n])

 =
1

n
·

n∑
i=1

pi .

Moreover,

Pr

b = 1

∣∣∣∣∣∣∣∣
(pk, sk)← FHE.Gen(1λ)
(m0,m1)← B(pk)
ct← FHE.Enc(pk,m1)
b← B(pk, (ctj)j∈[n])

 =
1

n
·

n∑
i=1

pi−1 .

Hence,

ϵFHE(λ, tFHE) ≥

∣∣∣∣∣ 1n ·
n∑

i=1

pi −
1

n
·

n∑
i=1

pi−1

∣∣∣∣∣ = 1

n
|pn − p1| .

The lemma below reformulates the semantic security to hide the randomness of a function
under encryption. In particular, if we encrypt a randomized function with a uniformly sampled
randomness, no efficient adversary would be able to guess the randomness with high probability.
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Lemma 3.25 (Randomness hiding). Fix FHE = (FHE.Gen,FHE.Enc,FHE.Eval,FHE.Dec). For every
λ ∈ N, randomized function f , adversary running time t ∈ N, and t-time adversary A, the following
holds:

Pr

ρ′ = ρ

∣∣∣∣∣∣∣∣
ρ← {0, 1}ℓ
(sk, pk)← FHE.Gen(1λ)
ct← FHE.Enc(pk, fρ)
ρ′ ← A(pk, ct)

 ≤ 1

2ℓ
+ ϵFHE(λ, t) .

Proof. Assume for contradiction that there exists an adversary A such that the probability in the
lemma statement is greater than 1

2ℓ
+ ϵFHE(λ, t). We construct an adversary A′ that breaks the

semantic security of FHE. Let ρ be a randomly sampled element from {0, 1}ℓ. Let m0 := 0 and
m1 := fρ.

A′m0,m1
(pk, ct):

1. Run ρ′ ← A(pk, ct).
2. If ρ′ is such that fρ = fρ′ , output 1.
3. Otherwise, output 0.

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

b = 1

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← {0, 1}ℓ
m0 := 0
m1 := fρ
(pk, sk)← FHE.Gen(1λ)
ct← FHE.Enc(pk,m1)
b← A′m0,m1

(pk, ct)

− Pr

b = 1

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← {0, 1}ℓ
m0 := 0
m1 := fρ
(pk, sk)← FHE.Gen(1λ)
ct← FHE.Enc(pk,m0)
b← A′m0,m1

(pk, ct)



∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣
Pr

b = 1

∣∣∣∣∣∣∣∣∣∣∣∣

ρ← {0, 1}ℓ
m0 := 0
m1 := fρ
(pk, sk)← FHE.Gen(1λ)
ct← FHE.Enc(pk,m1)
b← A′m0,m1

(pk, ct)

−
1

2ℓ

∣∣∣∣∣∣∣∣∣∣∣∣
>

1

2ℓ
+ ϵFHE(λ, t)−

1

2ℓ

= ϵFHE(λ, t) ,

where the equality holds since when ct is an encryption of m0 it contains no information about
ρ, and thus the output ρ′ of A is independent from sampling ρ and thus ρ = ρ′ with probability
exactly 2−ℓ, and the inequality holds because of our assumption.

3.7 Non-interactive batch arguments

Definition 3.26 (Batched index relation). A batched index relation R is a set of tuples
(i, (x1, . . . ,xk), (w1, . . . ,wk)). The corresponding language L(R) is the set of tuples (i, (x1, . . . ,xk))
for which there exist witnesses (w1, . . . ,wk) such that (i, (x1, . . . ,xk), (w1, . . . ,wk)) ∈ R.

A non-interactive batch argument (BARG) is a tuple of algorithms BARG = (SetupBG,PBG,VBG)
with the following interface:
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• SetupBG(1
λ, k, 1m, i) → ppBG: On input the security parameter λ ∈ N, the number of instances

k ∈ N, the witness size m ∈ N, and an index i ∈ [k], SetupBG outputs a trapdoor public parameter
ppBG.

• PBG(ppBG, i, (x1, . . . ,xk), (w1, . . . ,wk)) → πBG: On input the public parameter ppBG, an index i,
and k instance-witness pairs (x1, . . . ,xk), (w1, . . . ,wk), PBG outputs a proof πBG.

• VBG(ppBG, i, (x1, . . . ,xk), πBG)→ b: On input the public parameter ppBG, an index i, k instances
(x1, . . . ,xk), and a proof πBG, VBG outputs a decision bit b ∈ {0, 1}.

Definition 3.27 (Completeness). BARG = (SetupBG,PBG,VBG) is perfectly complete if for every
λ ∈ N, k ∈ N, i ∈ [k], and (i, (x1, . . . ,xk), (w1, . . . ,wk)) ∈ R,

Pr

[
VBG(ppBG, i, (x1, . . . ,xk), πBG) = 1

∣∣∣∣ ppBG ← SetupBG(1
λ, k, 1m, i)

πBG ← PBG(ppBG, i, (x1, . . . ,xk), (w1, . . . ,wk))

]
= 1 .

Definition 3.28 (Index hiding). BARG = (SetupBG,PBG,VBG) has index hiding error ζBG if for every
λ ∈ N, k ∈ N, m ∈ N, indices i0 ̸= i1 ∈ [k], adversary size tBG ∈ N, and tBG-time adversary A,∣∣∣∣ Pr

[
A(ppBG) = 1

∣∣ ppBG ← SetupBG(1
λ, k, 1m, i0)

]
−Pr

[
A(ppBG) = 1

∣∣ ppBG ← SetupBG(1
λ, k, 1m, i1)

] ∣∣∣∣ ≤ ζBG(λ, k, tBG) .

Definition 3.29 (Semi-adaptive somewhere soundness). BARG = (SetupBG,PBG,VBG) has semi-
adaptive somewhere soundness error ϵBG if for every λ ∈ N, k ∈ N, m ∈ N, index i ∈ [k], adversary
size tBG ∈ N, and tBG-time adversary P̃BG,

Pr

[
VBG(ppBG, i, (x1, . . . ,xk), π̃BG) = 1
∧ (i,xi) /∈ L(R)

∣∣∣∣ ppBG ← SetupBG(1
λ, k, 1m, i)

(i, (x1, . . . ,xk), π̃BG)← P̃BG(ppBG)

]
≤ ϵBG(λ, k, tBG) .

Theorem 3.30 ([PP22; DGKV22]). Under the sub-exponential hardness of LWE, for every R ∈ NP
with witness size m, there exists a semi-adaptive somewhere sound BARG for k instances that
satisfies the following:

• perfect completeness;
• the public parameter ppBG is of size poly(λ, log k,m);
• the proof πBG is of size O(m+ λ10);2

• for every c > 1 and tBG ≤ 2λ
1/c

, there exists c′ such that the semi-adaptive somewhere soundness

error ϵBG(λ, tBG) ≤ 2−λ
1/c′

;

• for every c > 1 and tBG ≤ 2λ
1/c

, there exists c′ such that the index hiding error is at most

ζBG(λ, tBG) ≤ 2−λ
1/c′

.

2Constructions of rate-1 BARGs (e.g.,[PP22; DGKV22]) usually write proof size to be m+ poly(λ). We trace the
parameters in [PP22] and an obvious upper bound on the proof size is O(m+ λ10).
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4 PCP shadows

We define and construct PCPs with shadow soundness. Informally, this notion requires that, given
an instance x and a (malicious) PCP proof Π̃, there exists an efficiently computable shadow z that
succinctly represents the PCP verifier’s behavior with respect to its randomness: namely, there
exists a decider such that, given the instance x and the shadow z, it outputs the verifier’s decision
for any verifier randomness ρ with high probability. We then show that there exists a PCP for the
canonical NP-complete language 3SAT that satisfies shadow soundness, and whose shadow can be
computed by polynomial-size circuits.

Definition 4.1 (Shadow soundness). A PCP = (P,V) has shadow soundness if there exists a func-
tion F (computable by a polynomial-size circuit) with randomness complexity rF and a deterministic
algorithm D (a decider) such that for every instance x /∈ L(R), the following holds:

1. Correctness. For any Π̃, and verifier randomness ρ ∈ {0, 1}r:

Pr

[
VΠ̃(x, ρ) ̸= D(x, z, ρ)

∣∣∣∣ γ ← {0, 1}rF
z := F(x, Π̃; γ)

]
≤ ϵc(x) .

2. Sparsity. There exists an efficiently computable set Z where Im(F(x, ·)) ⊆ Z such that for any
shadow state z ∈ Z:

Pr [D(x, z, ρ) = 1 | ρ← {0, 1}r] ≤ ϵs(x) .

3. Consistency. For every shadow randomness γ ∈ {0, 1}rF, verifier randomness ρ ∈ {0, 1}r, Π̃
and Π̃′ such that Π̃[Q] = Π̃′[Q], where Q is the query set of the PCP verifier VΠ̃(x; ρ):

D(x, z, ρ) = D(x, z′, ρ) ,

where z := F(x, Π̃; γ) and z′ := F(x, Π̃′; γ).

Moreover, we say that PCP has shadow state size sPCP if F outputs at most sPCP bits. F has size at
most tF and D has size at most tD.

In our construction of SNARG (Section 6), we actually rely on a stronger sparsity property,
called the product sparsity.

Definition 4.2 (Product sparsity). We say PCP = (P,V) has shadow soundness with product
sparsity with product parameter t if there exists a deterministic algorithm D′ such that for every x,
z, and ρ = (ρ1, . . . , ρt) where ρi ∈ {0, 1}

r
t ,

D(x, z, ρ) =
∧
i∈[t]

D′(x, z, ρi) .

Moreover, there exists an efficiently computable set Z where Im(F(x, ·)) ⊆ Z such that for any state
z ∈ Z and i ∈ [t]:

Pr
[
D′(x, z, ρi) = 1

∣∣∣ (ρ1, . . . , ρt)← {0, 1}t· rt ] ≤ ϵs(x) .

Remark 4.3. PCP that satisfies product sparsity with error ϵs and product parameter t also satisfies
sparsity with error ϵts. We use product sparsity because in the SNARG construction in Section 6, we
use correlation intractable hash functions for sparse product relations (see Theorem 3.8). If there
exists correlation intractable hash functions for all sparse relations, it suffices to use plain sparsity.
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4.1 Shadow PCP for NP

The theorem below describe the PCP we build to construct the SNARG in Section 6.

Theorem 4.4. There is a PCP for 3SAT that satisfies the following:

• perfect completeness;
• soundness error ϵPCP = 2−(logn)

2
;

• non-adaptive verifier;
• query complexity q ≤ Õ(n

10
11 );

• randomness complexity r ≤ Õ((log n)3);
• proof length ℓ = Õ(n);
• alphabet {0, 1}O(1);
• shadow soundness with:
1. shadow state size sT = O(

√
n);

2. shadow circuit size tT = poly(n);
3. shadow randomness complexity rF = 0;
4. product sparsity error ϵs = 1/2 and product parameter t = 1;
5. correctness error ϵc = 0;

Proof. We start by describing the PCP construction, then we present and analyze the circuit that
computes its shadow.

PCP construction. Let PCP = (P,V) be the PCP for 3SAT in Theorem 3.15. Fix B ∈ N. Set
t := 2r/B. We break {0, 1}r into t consecutive blocks of size B: R1, . . . , Rt. PCP

′ = (P′,V′) works
as follows:

• Generating the proof string: P′ runs P(x,w) to get the PCP proof Π and sends Π to V.

• Verifier’s checks:

1. Sample b← [t].
2. For every ρ ∈ Rb: Check if VΠ(x; ρ) = 1.

We claim that the soundness error of PCP′ is ϵPCP. Note that by soundness of PCP, there are
at most ϵPCP · 2r many accepting verifier randomness. Therefore, there are at most ϵPCP·2r

B = ϵPCP · t
many randomness blocks that contain only accepting verifier randomness. Therefore, V′ accepts
with probability at most ϵPCP. Hence, PCP

′ satisfies the following:

• non-adaptive verifier;
• perfect completeness;
• soundness error ϵPCP;
• proof length ℓ;
• randomness complexity log t;
• query complexity q ·B;
• alphabet Σ.

Shadow circuit construction. The following circuit F gives shadow soundness for 3SAT:

F(x, Π̃):

1. For every PCP verifier randomness ρ ∈ {0, 1}r: let bρ := VΠ̃(x; ρ).
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2. Initialize z := 0t.
3. For every randomness block b ∈ [t]: let z[b] :=

∧
ρ∈Rb

zρ.
4. Output z.

It’s easy to see that the circuit size of F is poly(n). Moreover, the shadow state size is
√
2r if we

choose B :=
√
2r.

Correctness. Fix Π̃ and PCP verifier randomness b. F computes exactly the new PCP verifier V′.

Sparsity. Since the soundness error of PCP′ is 1/2 and the correctness error for the shadow circuit
is 0, the sparsity error is 1/2.

Consistency. This follows directly from the structure of PCP′.

4.2 Amplification of shadow soundness

We prove a parallel repetition theorem for amplifying shadow soundness of PCP.

Theorem 4.5. Consider PCP that satisfies the following:

• perfect completeness;
• soundness error ϵPCP;
• proof length ℓ;
• randomness complexity r;
• query complexity q;
• alphabet Σ;
• shadow soundness with:
1. shadow state size sPCP;
2. shadow circuit size tF;
3. shadow randomness complexity rF;
4. sparsity error ϵs;
5. correctness error ϵc.

Let PCPt := PR[PCP, t] be the t-wise parallel repetition of PCP specified in Construction 4.7. PCPt

satisfies the following:

• perfect completeness;
• soundness error ϵtPCP;
• proof length ℓ;
• randomness complexity t · r;
• query complexity t · q;
• alphabet Σ;
• shadow soundness with:
1. shadow state size sPCP;
2. shadow circuit size tF;
3. shadow randomness complexity rF;
4. product sparsity error ϵs and product parameter t;
5. correctness error 2t · ϵc.

Corollary 4.6. There is a PCP for 3SAT that satisfies the following:
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• perfect completeness;
• soundness error ϵPCP = 2−(logn)

2
;

• non-adaptive verifier;
• query complexity q ≤ Õ(n

10
11 );

• randomness complexity r ≤ Õ((log n)3);
• proof length ℓ = Õ(n);
• alphabet {0, 1}O(1);
• shadow soundness with:
1. shadow state size sT = O(

√
n);

2. shadow circuit size tT = poly(n);
3. shadow randomness complexity rF = 0;
4. product sparsity error ϵs = 1/2 and product parameter t = (log n)2;
5. correctness error ϵc = 0;

Construction 4.7. Consider PCP = (P,V). We first recall how the t-wise parallel repetition
PCPt = (P⃗, V⃗) works:

• Generating the PCP proof : P⃗ computes Π← P(x,w) and sends Π to V⃗.
• Verifier’s checks:
1. V⃗ samples (ρ1, . . . , ρt)← {0, 1}t·r.
2. V⃗ accepts iff for every i ∈ [t], VΠ(x; ρi) = 1.

Soundness. We show that the soundness error of PCPt is ϵ
t
PCP. Let Π̃ be a malicious PCP proof

string. We bound the following probability:

Pr
[
V⃗Π̃(x; ρ1, . . . , ρt) = 1

∣∣∣ (ρ1, . . . , ρt)← {0, 1}t·r]
=

(
Pr

[
VΠ̃(x; ρ) = 1

∣∣∣ ρ← {0, 1}r])t

≤ ϵtPCP .

Tree algorithm. Let T be the tree algorithm for PCP and D be the decider. We construct Tt,Dt

for PCPt as follows:

• Tt(x,Π; γ): Output z := T(x,Π; γ).

• Dt(x, z, ρi): Output 1 iff D(x, z, ρi) = 1.

We first analyze the product sparsity. Fix z ∈ Im(Tt). For every i ∈ [t], we bound the following
probability:

Pr
[
Dt(x, z, ρi) = 1

∣∣ (ρ1, . . . , ρt)← {0, 1}t·r] ≤ ϵs .

Now we analyze correctness. Fix Π̃ and verifier randomness (ρ1, . . . , ρt)← {0, 1}t·r. We bound
the following probability:

Pr

V⃗Π̃(x; ρ1, . . . , ρt) ̸=
∧
i∈[t]

Dt(x, z, ρi)

∣∣∣∣∣∣ γ ← {0, 1}rT
z := Tt(x, Π̃; γ)


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= Pr

[
∀i ∈ [t],VΠ̃(x; ρi) = 1
∧∃i ∈ [t],D(x, z, ρi) = 0

∣∣∣∣∣ γ ← {0, 1}rT
z := T(x, Π̃; γ)

]

+ Pr

[
∃i ∈ [t],VΠ̃(x; ρi) = 0
∧∀i ∈ [t],D(x, z, ρi) = 1

∣∣∣∣∣ γ ← {0, 1}rT
z := T(x, Π̃; γ)

]
≤ 2t · ϵc .
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5 Function vector commitment scheme

We introduce a new notion of vector commitment schemes, called function vector commitment (VC)
scheme, that allow one to commit to a vector m relative a function f . Specifically, (statistical)
binding requires that for every m ̸= m′ such that f(m) ̸= f(m′), the corresponding commitments
cm and cm′ are distinct. In fact, we enforce a stronger property, called function statistically binding,
which requires that, given a trapdoor, a commitment and a set of accepting local openings, an
(inefficient) extractor can recover m that is consistent with both the commitment and the local
openings.

We begin by formally defining function VC in Section 5.1. Then, in Section 5.2, we construct a
function VC for polynomial-size circuits.

5.1 Definition

A function vector commitment (VC) scheme over alphabet Σ for a family of function F is a tuple of
algorithms

VC = (VC.Gen,VC.Commit,VC.Open,VC.Check,VC.Extract)

with the following syntax:

• VC.Gen(1λ, f)→ (pp, td): On input a security parameter λ ∈ N and description of a function f ,
VC.Gen samples public parameter pp and a corresponding trapdoor td.

• VC.Commit(pp,m)→ (cm, aux): On input a public parameter pp and a message m, VC.Commit
produces a commitment cm and the corresponding auxiliary state aux.

• VC.Open(pp, aux,Q)→ pf: On input a public parameter pp, an auxiliary state aux, and a query
set Q ⊆ [ℓ], VC.Open outputs an opening proof string pf attesting that m[Q] is a restriction of m
to Q.

• VC.Check(pp, cm,Q, a, pf)→ {0, 1}: On input a public parameter pp, a commitment cm, a query
set Q ⊆ [ℓ], an answer string a ∈ ΣQ, and an opening proof string pf, VC.Check determines if pf is
a valid proof for a ∈ ΣQ being a restriction of the message committed in cm to Q.

• VC.Extract(td, cm) → y: On input the trapdoor td and a commitment cm, VC.Extract outputs
deterministically a string y.

Moreover, VC has the following property.

Definition 5.1 (Completeness). VC has perfect completeness if for every security parameter
λ ∈ N, message m ∈ Σℓ, auxiliary function f ∈ F , and query set Q ⊆ [ℓ],

Pr

VC.Check(pp, cm,Q,m[Q], pf) = 1

∣∣∣∣∣∣
(pp, td)← VC.Gen(1λ, f)
(cm, aux)← VC.Commit(pp,m)
pf ← VC.Open(pp, aux,Q)

 = 1 .

Definition 5.2 (Function hiding). VC is functional-hiding if for every security parameter λ ∈ N,
auxiliary functions f, f ′ ∈ F , and tVC-size adversary AVC,∣∣∣Pr [AVC(pp) = 1

∣∣∣(pp, td)← VC.Gen(1λ, f)
]
− Pr

[
AVC(pp) = 1

∣∣∣(pp, td)← VC.Gen(1λ, f ′)
]∣∣∣

≤ zVC(λ, tVC) .
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Definition 5.3 (Function statistically binding). VC is function statistically binding if for every
security parameter λ ∈ N, auxiliary function f ∈ F , adversary size tVC ∈ N, and tVC-size adversary
AVC, the following holds:

Pr

 VC.Check(pp, cm,Q, a, pf) = 1
∧∀ m̃ : (m̃[Q] ̸= a ∨ f(m̃) ̸= y)

∣∣∣∣∣∣
(pp, td)← VC.Gen(1λ, f)
(cm,Q, a, pf) := AVC(pp)
y := VC.Extract(td, cm)

 ≤ κVC(λ, tVC) .

Similarly to the FHE randomness hiding property Lemma 3.25, the following lemma states that
no efficient adversary can guess the randomness of the function with high probability. This property
is useless in the analysis of SNARG soundness in Section 6.2.

Lemma 5.4 (Randomness hiding). Fix VC. For every λ ∈ N, randomized function f , adversary
size tVC ∈ N, and tVC-time adversary A, the following holds:

Pr

ρ′ = ρ

∣∣∣∣∣∣
ρ← {0, 1}r
(pp, td)← VC.Gen(1λ, fρ)
ρ′ ← A(pp)

 ≤ 1

2r
+ zVC(λ, tVC) .

Proof. Assume for contradiction that there exists an adversary A such that the probability in the
lemma statement is greater than 1

2r + zVC(λ, tVC). We construct an adversary A′ that breaks the
function hiding of VC. Let ρ be a randomly sampled element from {0, 1}r.

A′(pp):
1. Run ρ′ ← A(pp).
2. If ρ′ is such that fρ = fρ′ , output 1.
3. Otherwise, output 0.

The following holds:∣∣∣∣∣∣Pr
b = 1

∣∣∣∣∣∣
ρ← {0, 1}r
(pp, td)← VC.Gen(1λ,0)
b← A′(pp)

− Pr

b = 1

∣∣∣∣∣∣
ρ← {0, 1}r
(pp, td)← VC.Gen(1λ, fρ)
b← A′(pp)

∣∣∣∣∣∣
=

∣∣∣∣∣∣Pr
b = 1

∣∣∣∣∣∣
ρ← {0, 1}r
(pp, td)← VC.Gen(1λ, fρ)
b← A′(pp)

− 1

2r

∣∣∣∣∣∣
>

1

2r
+ zVC(λ, tVC)−

1

2r

= zVC(λ, tVC) ,

where the equality holds since when pp is generated using 0, it contains no information about ρ, and
thus the output ρ′ of A′ is independent from sampling ρ and thus ρ = ρ′ with probability exactly
2−r, and the inequality holds because of our assumption.

5.2 Function VC for circuits

Theorem 5.5. Assume iO and LWE are the sub-exponentially secure. There exists VC for P/poly
with circuit size t and state size s such that for every security parameter λ ∈ N, λFHE = λFHE(λ), and
λSNARG = λSNARG(λ) VC satisfies the following:
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• perfect completeness;

• for every c > 1 and tVC ≤ 2λ
1/c
FHE, there exists c′ such that the function hiding error zVC(λ, tVC) ≤

d · 2−λ
1/c′
FHE ;

• for every c > 1 and tVC where tVC ≤ 2λ
1/c
SNARG, there exists c′ such that the function statistically

binding error is at most κVC(λ, tVC) ≤ negl(λSNARG);
• commitment size s · poly(λFHE);
• public parameter size poly(λ, λSNARG, λFHE, t);
• trapdoor size poly(λFHE);
• proof size poly(λSNARG).

Let FHE = (FHE.Gen,FHE.Enc,FHE.Eval,FHE.Dec) be the FHE in Theorem 3.23. For every
x, let Ux be the universal circuit such that on input a circuit description f , Ux(f) := f(x). Let
SNARG = (Setup,P,V) be the SNARG from Theorem 3.12 for the following language L in NP:

L := {(pp = (pk, ctf ), cm,Q, a) : ∃m,m[Q] = a,FHE.Eval(pk,Um, ctf ) = cm} .

We construct VC for circuits as follows:

• VC.Gen(1λ, f):

1. Compute (pk, sk)← FHE.Gen(1λFHE).
2. Compute ctf ← FHE.Enc(pk, f).
3. Compute ppSNARG ← Setup(1λSNARG).
4. Output (pp := (pk, ctf , ppSNARG), td := sk).

• VC.Commit(pp,m):

1. Parse pp as (pk, ctf , ppSNARG).
2. Compute cm := FHE.Eval(pk,Um, ctf ).
3. Output (cm, aux := (cm,m)).

• VC.Open(pp, aux,Q):

1. Parse pp as (pk, ctf , ppSNARG).
2. Set a := m[Q].
3. Output pf ← P(ppSNARG, cm,Q, a).

• VC.Check(pp, cm,Q, a, pf):

1. Parse pp as (pk, ctf , ppSNARG).
2. Output V((ppSNARG, cm,Q, a), pf).

• VC.Extract(td, cm):

1. Parse td as sk.
2. Output FHE.Dec(sk, cm).

Completeness. Completeness follows from completeness of SNARG.

Function hiding. zVC(λ,AVC) ≤ ϵFHE(λ,AVC) from semantic security of FHE.
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Function statistically binding. We bound the following probability:

Pr

 VC.Check(pp, cm,Q, a, pf) = 1
∧∀ m̃ : (m̃[Q] ̸= a ∨ f(m̃) ̸= y)

∣∣∣∣∣∣
((pk, ctf , ppSNARG), td)← VC.Gen(1λ, f)
(cm,Q, a, pf) := AVC(pp)
y := VC.Extract(td, cm)


= Pr

 V((ppSNARG, cm,Q, a), pf) = 1
∧∀ m̃ : (m̃[Q] ̸= a ∨ f(m̃) ̸= y)

∣∣∣∣∣∣
((pk, ctf , ppSNARG), td)← VC.Gen(1λ, f)
(cm,Q, a, pf) := AVC(pp)
y := VC.Extract(td, cm)


= Pr

 V((ppSNARG, cm,Q, a), pf) = 1
∧∀ m̃ : (m̃[Q] ̸= a ∨ f(m̃) ̸= y)
∧∃m : (m[Q] = a ∧ FHE.Eval(pk,Um, ctf ) = cm)

∣∣∣∣∣∣
((pk, ctf , ppSNARG), td)← VC.Gen(1λ, f)
(cm,Q, a, pf) := AVC(pp)
y := VC.Extract(td, cm)


+ Pr

 V((ppSNARG, cm,Q, a), pf) = 1
∧∀ m̃ : (m̃[Q] ̸= a ∨ f(m̃) ̸= y)
∧∀m : (m[Q] ̸= a ∨ FHE.Eval(pk,Um, ctf ) ̸= cm)

∣∣∣∣∣∣
(pp, td)← VC.Gen(1λ, f)
(cm,Q, a, pf) := AVC(pp)
y := VC.Extract(td, cm)


= 0 + ϵSNARG(λ,AVC) .
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6 SNARG from function VC and shadow PCP

Theorem 6.1. Fix a family of functions F . Let PCP be a shadow PCP for 3SAT with a shadow
function in F that satisfies the following:

• perfect completeness;
• query complexity q;
• shadow soundness with:
1. shadow state size sT;
2. shadow circuit size tT;
3. shadow randomness complexity rF;
4. product sparsity error ϵs and product parameter t;
5. correctness error ϵc.

Let VC be a function VC for F that satisfies the following:

• perfect completeness;
• the function hiding error zVC = zVC(λ, tVC);
• function statistically binding error κVC = κVC(λ, tVC);
• commitment size scm;
• public parameter size spp;
• proof size spf .

Let HCI be a correlation-intractable hash family for sparse product relations that satisfies the following:

• error ϵCI = ϵCI(λ, tCI);
• hash key size sCI.

Let SNARG be the argument constructed in Section 6.1. For every λ ∈ N, instance x /∈ L(R), and
circuit size bound tSNARG ∈ N, assume tSNARG = poly(n), the non-adaptive soundness error ϵSNARG of
SNARG satisfies:

ϵSNARG(λ, tSNARG) ≤ zVC(λ,O(tSNARG)) + κVC(λ,O(tSNARG)) + ϵCI(λ,O(tSNARG)) + ϵc + ϵc · 2rF · zVC(tVC) ,

where tVC = O(tSNARG + 2rF · sPCP + tD). The proof size as of SNARG satisfies:

as ≤ scm + q · log ℓ+ q · log |Σ|+ spf .

The public parameter size spp of SNARG satisfies:

spp ≤ spp + sCI .

Corollary 6.2. Assume iO and LWE are sub-exponentially hard. The Micali SNARG has non-
adaptive soundness error ϵSNARG = negl(λ), argument size Õ(

√
n) · poly(λ), and public parameter size

poly(λ, n).

Proof. We apply Theorem 6.1 with the PCP from Corollary 4.6, the VC from Theorem 5.5, and the
CIH from Theorem 3.8. Set λFHE := λ and λSNARG := λ.

Soundness error. Since tSNARG = poly(n) < 2λ
1/c
FHE for some c > 1, zVC(λ, tSNARG) = negl(n).

Similarly, κVC(λ, tSNARG) = negl(n). We know that ϵCI(λ, tSNARG) = negl(λ) because ϵs = 1/2 with
product parameter polylog(n). Also, ϵc = 0.

Proof size. We bound the size of cm, (Q, a), and pf separately.
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• Commitment size: Note that the PCP shadow has state size O(
√
n). According to Theorem 5.5,

the size of the commitment cm is
√
n · poly(λFHE) = O(

√
n) · poly(λ).

• Query and answer size: PCP has proof length ℓ = Õ(n), query complexity q ≤ O(
√
n), and

alphabet {0, 1}O(1). Hence, we need O(q · log ℓ) = Õ(
√
n) bits to represent Q and O(q) = O(

√
n)

bits to represent a. In total, |Q|+ |a| = Õ(
√
n).

• Opening proof size: According to Theorem 5.5, the size of pf is poly(λSNARG) = poly(log n, λ).

Therefore, the argument proof size is Õ(
√
n) · polyλ.

Public parameter size. It is obvious that the size of public parameter is dominated by the size
of public parameter of VC, which is poly(λ, n) by Theorem 5.5.

6.1 SNARG construction

We construct SNARG = (Setup,P,V) as follows:

• Setup(1λ):

1. Sample (pp, td)← VC.Gen(1λ, {0sT}).
2. Sample hCI ← HCI(λ).
3. Output pp := (pp, hCI).

• P(pp,x,w):

1. Parse pp as (pp, hCI).
2. Compute Π← P(x,w).
3. Compute (cm, aux) := VC.Commit(pp,Π).
4. Compute ρ := hCI(cm).
5. Compute the PCP verifier query set Q using x, ρ and Π.
6. Compute pf := VC.Open(pp, aux,Q) and a := Π[Q].
7. Output π := (cm,Q, a, pf).

• V(pp,x, π):
1. Parse pp as (pp, hCI).
2. Parse π as (cm,Q, a, pf).
3. Check the following:

– ρ = hCI(cm);
– VC.Check(pp, cm,Q, a, pf) = 1;
– V[Q,a](x; ρ) = 1.

4. If any of the above checks fail, output 0, otherwise, output 1.

6.2 SNARG soundness

Let F and D be the PCP function and decider, respectively. Let P̃ be an adversary for the SNARG
with running time tSNARG. Our goal is to bound the following probability:

Pr

V(pp,x, π, ρ) = 1

∣∣∣∣∣∣
pp← Setup(1λ)

π := P̃(pp)
ρ := hCI(cm)

 .
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By definition of the construction, the above can be written as

Pr

 VC.Check(pp, cm,Q, a, pf) = 1

∧V[Q,a](x, ρ) = 1

∣∣∣∣∣∣∣∣
(pp, td)← VC.Gen(1λ, {0sT})
hCI ← HCI(λ)

(cm,Q, a, pf) := P̃(pp, hCI)
ρ := hCI(cm)

 .

Consider the following adversary AVC for function hiding of VC:

AVC(pp):
1. Sample hCI ← HCI(λ).
2. Compute (cm,Q, a, pf) := P̃(pp, hCI).
3. Compute ρ := hCI(cm).
4. Output 1 iff the following checks pass:

(a) VC.Check(pp, cm,Q, a, pf) = 1;
(b) V[Q,a](x; ρ) = 1.

The running time of AVC is O(tSNARG). By function hiding of VC, the following holds:

Pr

 VC.Check(pp, cm,Q, a, pf) = 1

∧V[Q,a](x; ρ) = 1

∣∣∣∣∣∣∣∣
(pp, td)← VC.Gen(1λ, {0sT})
hCI ← HCI(λ)

(cm,Q, a, pf) := P̃(pp, hCI)
ρ := hCI(cm)


= Pr

[
AVC(pp) = 1

∣∣ (pp, td)← VC.Gen(1λ, {0sT})
]

≤ Pr
[
AVC(pp) = 1

∣∣ (pp, td)← VC.Gen(1λ, ℓ,F(x, ·))
]
+ zVC(λ,O(tSNARG))

= Pr

 VC.Check(pp, cm,Q, a, pf) = 1

∧V[Q,a](x; ρ) = 1

∣∣∣∣∣∣∣∣
(pp, td)← VC.Gen(1λ, ℓ,F(x, ·))
hCI ← HCI(λ)

(cm,Q, a, pf) := P̃(pp, hCI)
ρ := hCI(cm)

+ zVC(λ,O(tSNARG)) .

Using Definition 5.3, the following upper bounds the probability above:

Pr

 V[Q,a](x; ρ) = 1

∧∃ Π̃ : Π̃[Q] = a ∧ F(x, Π̃; γ) = z

∣∣∣∣∣∣∣∣∣∣

(pp, td)← VC.Gen(1λ, ℓ,F(x, ·))
hCI ← HCI(λ)

(cm,Q, a, pf) := P̃(pp, hCI)
ρ := hCI(cm)
z := VC.Extract(td, cm)

+ κVC(λ,O(tSNARG)) .

Let us define the experiment above as Exp. Formally, we have:

Exp :=


(pp, td)← VC.Gen(1λ, ℓ,F(x, ·))
hCI ← HCI(λ)

(cm,Q, a, pf) := P̃(pp, hCI)
ρ = (ρ1, . . . , ρt) := hCI(cm)
z := VC.Extract(td, cm)

 .

By the law of total probability, the above probability is equal to:

Pr
Exp

 V[Q,a](x, ρ) = 1

∧∃ Π̃ : Π̃[Q] = a ∧ F(x, Π̃) = z
∧D(x, z, ρ) = 1

+ Pr
Exp

 V[Q,a](x, ρ) = 1

∧∃ Π̃ : Π̃[Q] = a ∧ F(x, Π̃) = z
∧D(x, z, ρ) = 0

 .
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We use the security of the CIH and the function VC to bound the above probabilities, respectively.

6.2.1 Security from CIH

Claim 6.3. Let ϵCI be the error for the CI hash family HCI, the following holds:

Pr
Exp

 V[Q,a](x, ρ) = 1

∧∃ Π̃ : Π̃[Q] = a ∧ F(x, Π̃) = z
∧D(x, z, ρ) = 1

 ≤ ϵCI(λ,O(tSNARG)) .

Proof. Using the product sparsity of PCP shadow soundness (Definition 4.2), there exists a deter-
ministic algorithm D′ such that for every x, z, and ρ = (ρ1, . . . , ρt) ∈ {0, 1}t·

r
t ,

D(x, z, ρ) =
∧
i∈[t]

D′(x, z, ρi) .

For every trapdoor td sampled by VC.Gen, we define a sparse relation R
x,td:

R
x,td :=

(cm, ρ) :
z := VC.Extract(td, cm)
z ∈ Z
∀i ∈ [t],D′(x, z, ρi) = 1

 .

We show that for any x /∈ L(R), the relation R
x,td is a ϵs-sparse product relation. For any

cm ∈ L(R
x,td), (i.e., VC.Extract(td, cm) ∈ Z), its witness set can be written as follows:

{ρ = (ρ1, . . . , ρt) ∈ {0, 1}r : ∀i ∈ [t],D′(x, z, ρi) = 1} = St ,

where S := {ρ ∈ {0, 1}r/t : D(x, z, ρ) = 1}. Moreover, by the product sparsity of the shadow
soundness of PCP,

Pr
[
(cm, ρi) ∈ S

∣∣∣ ρi ← {0, 1}r/t]
=Pr

[
D′(x, z, ρi) = 1

∣∣∣∣ z := VC.Extract(td, cm)

ρi ← {0, 1}r/t
]

≤ϵs .

We construct an adversary Ax against the CIH hash using the relation R
x,td as follows:

• Ax:

1. Sample γ ← {0, 1}rF .
2. Sample (pp, td)← VC.Gen(1λ,F(x, ·; γ)).
3. Output aux := (pp, td).

• Ax(aux, hCI):

1. Parse aux as (pp, td).
2. Compute (cm,Q, a, pf) := P̃(pp, hCI).
3. Output cm.
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We can conclude that:

Pr
Exp

 V[Q,a](x, ρ) = 1

∧∃ Π̃ : Π̃[Q] = a ∧ F(x, Π̃; γ) = z
∧D(x, z, ρ) = 1



≤ Pr

(cm, ρ) ∈ R
x,td

∣∣∣∣∣∣∣∣
(pp, td)← Ax
hCI ← HCI(λ)
cm := Ax((pp, td), hCI)
ρ := hCI(cm)


= Pr

(cm, hCI(cm)) ∈ R
x,td

∣∣∣∣∣∣
(pp, td)← Ax
hCI ← HCI(λ)
cm := Ax((pp, td), hCI)


≤ ϵCI(λ, ϵs, O(tSNARG)) .

6.2.2 Security from FVC

Claim 6.4. Let zVC be the function hiding error of VC, the following holds:

Pr
Exp

 V[Q,a](x, ρ) = 1

∧∃ Π̃ : Π̃[Q] = a ∧ F(x, Π̃; γ) = z
∧D(x, z, ρ) = 0

 ≤ ϵc + ϵc · 2rF · zVC(tVC) ,

where tVC = O(tSNARG + 2rF · sPCP + tD).

Proof. According to PCP shadow consistency Definition 4.1, the following holds:

Pr
Exp

 V[Q,a](x, ρ) = 1

∧∃ Π̃ : Π̃[Q] = a ∧ F(x, Π̃; γ) = z
∧D(x, z, ρ) = 0



= Pr


V[Q,a](x, ρ) = 1

∧∃ Π̃ : Π̃[Q] = a ∧ F(x, Π̃; γ) = z
∧D(x, z, ρ) = 0

∣∣∣∣∣∣∣∣∣∣∣∣

γ ← {0, 1}rF
(pp, td)← VC.Gen(1λ, ℓ,F(x, ·; γ))
hCI ← HCI(λ)

(cm,Q, a, pf) := P̃(pp, hCI)
ρ := hCI(cm)
z := VC.Extract(td, cm)



≤ Pr



V[Q,a](x, ρ) = 1

∧∃ Π̃ : Π̃[Q] = a ∧ F(x, Π̃; γ) = z
∧D(x, z, ρ) = 0
∧D(x, z′, ρ) = 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ ← {0, 1}rF
(pp, td)← VC.Gen(1λ, ℓ,F(x, ·; γ))
hCI ← HCI(λ)

(cm,Q, a, pf) := P̃(pp, hCI)
ρ := hCI(cm)
z := VC.Extract(td, cm)

Π̃′ := σℓ

Π̃′[Q] := a

z′ := F(x, Π̃′; γ)


.
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We define the last experiment above as Exp′.
First note that

Pr
Exp′


V[Q,a](x, ρ) = 1

∧∃ Π̃ : Π̃[Q] = a ∧ F(x, Π̃; γ) = z
∧D(x, z, ρ) = 0
∧D(x, z′, ρ) = 0

 ≤ Pr
Exp′

[
V[Q,a](x, ρ) = 1
∧D(x, z′, ρ) = 0

]
.

For every x, ρ, and Π̃, we define the set

S
x,ρ,Π̃

:= {γ ∈ {0, 1}rF : D(x,F(x, Π̃; γ), ρ) = 0} .

By correctness of PCP shadow soundness (Definition 4.1), we know that for every x /∈ L(R), Π̃ and

every ρ such that VΠ̃(x; ρ) = 1,

Pr

[
D(x, z, ρ) = 0

∣∣∣∣ γ ← {0, 1}rT
z := F(x, Π̃; γ)

]
≤ ϵc(x) .

Therefore, ∣∣∣S
x,ρ,Π̃

∣∣∣ ≤ ϵc(x) · 2rF .

We can deduce that,

Pr
Exp′

[
V[Q,a](x, ρ) = 1
∧D(x, z′, ρ) = 0

]
≤ Pr

Exp′

[
VΠ̃′

(x; ρ) = 1
∧ γ ∈ S

x,ρ,Π̃′

]
≤ Pr

Exp′

[ ∣∣∣S
x,ρ,Π̃′

∣∣∣ ≤ ϵc(x) · 2rF

∧ γ ∈ S
x,ρ,Π̃′

]
.

By definition of conditional probability, we can deduce that

Pr
Exp′

[ ∣∣∣S
x,ρ,Π̃′

∣∣∣ ≤ ϵc(x) · 2rF

∧ γ ∈ S
x,ρ,Π̃′

]

= Pr
Exp′

γ⋆←S
x,ρ,Π̃′

 γ⋆ = γ

∧
∣∣∣S
x,ρ,Π̃′

∣∣∣ ≤ ϵc(x) · 2rF

∧ γ ∈ S
x,ρ,Π̃′


 Pr

Exp′

γ⋆←S
x,ρ,Π̃′


γ⋆ = γ
conditioned on∣∣∣S
x,ρ,Π̃′

∣∣∣ ≤ ϵc(x) · 2rF

∧ γ ∈ S
x,ρ,Π̃′



−1

≤ Pr
Exp′

γ⋆←S
x,ρ,Π̃′

[γ⋆ = γ]

 Pr
Exp′

γ⋆←S
x,ρ,Π̃′


γ⋆ = γ
conditioned on∣∣∣S
x,ρ,Π̃′

∣∣∣ ≤ ϵc(x) · 2rF

∧ γ ∈ S
x,ρ,Π̃′



−1

≤ Pr
Exp′

γ⋆←S
x,ρ,Π̃′

[γ⋆ = γ] · ϵc(x) · 2rF ,

where the last inequality follows because

Pr
Exp′

γ⋆←S
x,ρ,Π̃′


γ⋆ = γ
conditioned on∣∣∣S
x,ρ,Π̃′

∣∣∣ ≤ ϵc(x) · 2rF

∧ γ ∈ S
x,ρ,Π̃′

 ≥ 1

ϵc(x) · 2rF
.
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We proceed to bound the remaining probability above.
Consider the following function VC adversary AVC:

AVC(pp):
1. Run (cm,Q, a, pf) := P̃(pp, hCI).
2. Initialize Π̃′ := (σ)ℓ, where σ is an arbitrary element in Σ.
3. Set Π̃′[Q] := a.
4. Sample uniformly at random γ⋆ ← S

x,ρ,Π̃′ .
5. Output γ⋆.

Notice that Step 4 in AVC can be implemented as follows:

1. Initialize an empty set S := ∅.
2. For every γ ∈ {0, 1}rT :

• Compute z := F(x, Π̃′; γ).
• If D(x, z, ρ) = 0 then add γ to S.

3. Sample uniformly at random γ⋆ ← S.
4. Output γ⋆.

Hence, the running time of AVC is tVC = O(tSNARG + 2rF · sPCP + tD).
From Lemma 5.4 and construction of AVC,

Pr
Exp′

γ⋆←S
x,ρ,Π̃′

[γ⋆ = γ] = Pr
Exp′

γ⋆←AVC(ppVC)

[γ⋆ = γ] ≤ 1

2rF
+ zVC(λ, tVC) .

Hence,

Pr
Exp′


V[Q,a](x, ρ) = 1

∧∃ Π̃ : Π̃[Q] = a ∧ F(x, Π̃; γ) = z
∧D(x, z, ρ) = 0
∧D(x, z′, ρ) = 0

 ≤ (
1

2rF
+ zVC(λ, tVC)

)
· ϵc(x) · 2rF

= ϵc(x) + ϵc(x) · 2rF · zVC(λ, tVC) .
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