Verifiable Aggregate Receipts with Applications to User Engagement Auditing

Ioannis Kaklamanis* Wenhao Wang*
Yale University, IC3

giannis.kaklamanis @yale.edu

Abstract—Accurate measurements of user engagement underpin
important decisions in various settings, such as determining
advertising fees based on viewership of online content, allocating
public funding based on a clinic’s reported patient volume, or
determining whether a group chat app disseminated a message
without censorship. While common, self-reporting is inherently
untrustworthy due to misaligned incentives (e.g., to inflate).

Motivated by this problem, we introduce the notion of
Verifiable Aggregate Receipts (VAR). A VAR system allows
an issuer to issue receipts to users and to verify the number
of receipts possessed by a prover, who is given receipts upon
serving users. An ideal VAR system should satisfy inflation
soundness (the prover cannot overstate the count), privacy
(the verifier learns only the count), and be performant for
large-scale applications involving millions of users.

We formalize VAR using an ideal functionality and present
two novel constructions. Our first protocol, S-VAR, leverages
bottom-up secret-sharing to enable tiered “fuzzy” audits, and
achieves constant-size receipts regardless of the number of
supported thresholds. Our second protocol, P-VAR, uses bilinear
pairings to aggregate receipts into a proof verifiable in constant
time, enables exact auditing, and can be extended to handle
a dynamic user set. We prove both constructions secure with
respect to our ideal functionality.

We implement and benchmark our VAR constructions. For
a million users, issuance takes less than 2 seconds for either
scheme, and for audit proving time, P-VAR requires less than
10 seconds and S-VAR requires less than 35 seconds. Compared
to our schemes, baseline and existing solutions are either at
least an order of magnitude slower in proving and verification
time, or they do not scale to one million users. Our benchmarks
demonstrate that our VAR protocols can be used to enable
verifiable and privacy-preserving user engagement auditing at
scale. Finally, we showcase how VAR can be integrated with
the aforementioned applications.

1. Introduction

Delegation is a common practice in modern economies:
individuals and institutions rely on specialized third parties
to perform services on their behalf. This spans from content

*. These authors contributed equally to this work.

Yale University, IC3
wenhao.wang @yale.edu

Harjasleen Malvai Fan Zhang
UIUC, IC3 Yale University, IC3
hmalvai2 @illinois.edu f-zhang @yale.edu

creators relying on social media platforms to reach follow-
ers, to corporate contracts outsourcing employee-benefits
administration to external providers. Across these settings,
a fundamental security problem is to verify service quality,
e.g., how many eligible users were reached or how many
employees were actually served. In practice, however, such
verifiability is often based on trust or is completely missing.
Consider the concrete example of company-sponsored
benefits, where a company C' partners with an external
provider P to offer subsidized benefits (such as wellness
counseling) to its employees. In practice, it’s common for C'
to reimburse P based on the self-reported number of visits.
However, self-reporting is prone to fraud because P has an
incentive to inflate the report, which often is only caught
afterwards, through costly auditing and lawsuits. Multiple
DOJ enforcement actions [1], [2], [3] document healthcare
providers inflating visit counts or billing for services not
rendered, causing fraud of tens of millions of dollars.
Similar verification is desired in advertising (e.g., verify-
ing impression claims), the creator economy (e.g., auditing
billing of paid boosts such as Boost Posts on Instagram,
Promote on TikTok, Promoted Posts in X), group chats (e.g.,
verifying censorship-free delivery of broadcast messages),
and any delegation setting where a principal needs to verify
an intermediary’s claims about the number of services
rendered to eligible users. In this paper, we formalize
this problem as user-engagement auditing, and study the
cryptographic solutions to it.
Verifiable Aggregate Receipts. Motivated by this problem,
we introduce the notion of Verifiable Aggregate Receipts
(VAR). We assume each party has a well-known public key.
A VAR protocol involves a principal who delegates services,
a set U of users who are supposed to receive services, and
a third-party service provider P that renders services. In our
model, the principal plays the role of both the issuer Z and
the verifier V. It first issues receipts to users, who access
certain services by “spending” a receipt at P. At any time,
the principal can request and verify a succinct cryptographic
proof for the number of receipts possessed by P.
Modeling after the above user-engagement auditing tasks,
VAR aims to achieve inflation soundness, meaning P cannot
overstate the count. Note that P is naturally disincentivized
to deflate — it only gets reimbursed less if it underreports.
In addition, the above example illustrates the need for
user privacy: employees do not wish to reveal whether/when

they use such services to their employer because this may
disclose sensitive medical information. Thus, VAR aims
to guarantee that) learns only the count, not individual
identities. However, hiding user identities from the service
provider is often infeasible (e.g., the service provider may
need user identities for verification). VAR instead aims for
what seems to be the second best guarantee — deniability
— that the protocol does not enable P or V to prove to a
third party that a given user has been serviced (e.g., viewed
a particular ad, downloaded a certain video, or visited a
specific clinic).

Finally, a VAR system should be performant to support
large-scale applications involving millions of users. Moreover,
we require that the audit cost of the principals and users
does not scale with the number of users. Since the P serves
users, it incurs a cost at least linear in the number of users.

Strawman solutions that do not work. It is informative
to explain why closely related primitives do not solve the
problem of VAR. Mostly related are aggregate signatures,
such as BLS [4]. One strawman idea is to ask users for
their signatures when receiving the service, and use the
aggregate signature (of constant size) as audit evidence.
However, this simple approach violates both privacy and
deniability. First, to verify an aggregate signature,) needs
to know the set of public keys used in the aggregation,
which violates privacy. Even though this can be mitigated
using zero-knowledge proof techniques [5], requiring users
to sign violates deniability, as user signatures are irrefutable
proof that they received a specific service. Later in §3.3, we
explain how other related primitives, such as ring signatures
and Aggregate MAC, do not meet performance or security
requirements.

1.1. Two Constructions

We present two constructions of VAR using different
techniques.

S-VAR: VAR from multi-secret sharing. The first con-
struction S-VAR is a novel use of a threshold secret sharing
scheme [6], or SS for short. This construction supports what
we call tiered auditing. The intuition can be conveyed with a
single-secret SS, though the challenges stem from reducing
the bandwidth and computation overhead with a suitable
multi-secret SS. To construct VAR, the key observation is
that in an (n,t)-SS scheme, the ability to reconstruct the
original secret implies the possession (or knowledge) of ¢
shares or more. In a strawman construction, V first determines
a series of count thresholds ¢q, - - - , t; that she would like to
use in future audits (e.g., t; = 2%). Then V samples k secret
values si,--- , S, and each user is issued signed shares of s;
for threshold ¢,, for all ¢ € [k]. When a user receives service
from P, she reveals all k secret shares. To audit, P identifies
the highest threshold for which she has enough shares for
reconstruction, say ¢;, then sends (tj,s;) to V, where s;-
is the secret reconstructed from users’ shares. Verification
simply requires checking that s} matches the original secret
with threshold ¢;.

Starting from this idea, we applied several optimizations.
First, in the above protocol, the receipt size for each user
grows with the number of tiers. In the optimized version
(see §4.3), we reduce this to a constant by giving each user
a seed that generates all of her shares, while still allowing
threshold reconstruction of all secrets using Bottom-Up
Secret Sharing [7]. Second, applying FFT to speed up secret
reconstruction can improve the performance drastically, but
direct implementation of FFT requires the entire set of user
secrets to be available, which does not work for threshold
reconstruction. To efficiently reconstruct from any subset, we
use the barycentric Lagrange formula [8] and compute the
necessary weights in near-linear time via a subproduct tree
and multi-point evaluation [9]. So far, a natural limitation
of S-VAR is that thresholds are fixed at issuance time and
cannot adapt to realized user spending. In §4.4, we propose
a minimal modification to the audit procedure in S-VAR,
which yields dynamic thresholds while leaving issuance and
spending unchanged.

Overall, S-VAR is a novel use of secret sharing, featuring
fast issuance and audit, as well as a constant receipt size.
Moreover, it does not depend on pairings (in contrast to the
next solution), which have only limited support in major
certification and evaluation frameworks (e.g., SOG-IS).

P-VAR: VAR from pairings. Our second construction
P-VAR removes the fixed tiers, allowing for “accurate”
auditing as opposed to fuzzy. P-VAR relies on a one-time
trusted setup, and has better performance than S-VAR during
auditing, but its security is shown in the AGM model.

To convey intuition, we present a simplified version of
P-VAR that only supports one-time audit, that is, V is limited
to invoke only one instance of the audit procedure for each
issuance. At a high level, receipts are signed field elements
from V. At audit time, the prover P proves that it counted a
hidden subset of receipts correctly while revealing only the
total count k& using pairing-based polynomial commitments
and proofs.

Setup. Let (G1,G2,Gr) be pairing-friendly groups with
a bilinear mapping ¢ : G; X G — Gp and an asso-
ciated scalar field F, and g1 € Gy and h,go € Go be
random generators. The setup process publishes powers-c)];-T
vectors g1 = (91,97, 91)> 92 = (92:93,---,95)
h = (h,h7,...,h™) for a secret trapdoor 7 <« F.
We pick N to be an integer larger than the number of
users such that an N-th primitive root of unity w exists.
Let Q@ = {1,w,...,w™N"!} be the set of N-th roots of
unity. These values form the public parameters of P-VAR
pp = (GhGQaGTaFae('? ')7gl7g27h7Q)'

Issuance. First, V samples a random value seed to derive
all receipts for the current protocol instance. For user U;,
V computes r; = PRF(seed;4) and issues a receipt rx; =
(r;,0;) where o; is a signature. Let r(x) be a polynomial of
degree (N — 1) with r(w'~1) = PRF(seed;1) for i € [N].
V computes the commitment cm,. := g"(7),

Spending. To spend her receipt, user U; submits rx; = (r;, 0;)
to P, who verifies the signature and stores (r,).

Audit. Suppose k users have spent their receipts. Then P
convinces V of the count k as follows.

e Receipt commitments: P commits to the collected receipts.

Let b = (b1,...,bn) be a bit vector with b; = 1 if P
has a receipt from user ;. P computes f = (fi,..., fn)
such that f; = r; if b; = 1, and f; = 0 otherwise. Then P
commits to (b, f) using KZG polynomial commitments

(§2), and let b(z), f(x) denote the committed polynomials.

o Seed reveal: V reveals seed to P, who computes all receipts
and interpolates () over £ with r(w’~!) = PRF(seed; 1)
for i € [N].

o Correctness proofs: P shows the correctness of the claimed
count k with the following proofs.

— First, P shows that f is consistent with r, i.e., f; = b;r;
for all ¢ € [N]. To do so, P computes ¢;(z) such that
b(x) - r(x) — f(x) = q1(x) - Z(x) and m = g,

— Second, P shows that b(z) evaluates to {0,1} over
with the proof m = ¢% where b(z)(1 — b(z)) =
Z(x)q2(x).

— Finally, P shows that there are exactly £ non-zero
elements among the b;s via univariate sumcheck [10].

Supporting multi-shot audit. Note that in the above
strawman,) reveals the seed, which enables P to generate
succinct correctness proofs but also arbitrarily inflate claims
in future proofs. This is why the protocol is only secure if
the audit is run only once for the issued receipts. In §5, we
show how to support multi-shot verification. The main idea
is to issue new receipts after each audit, yet prevent a user
from spending multiple receipts during an audit.

Supporting dynamic user sets. So far, we have assumed
a fixed upper bound n on the number of users chosen at
setup, and the audit cost scales with n. In many applications,
however, the user population is dynamic: the system starts

with a small set of users and new users may join over time.

Running the multi-shot audit procedure with a large n in
this setting is wasteful, since the first few audits may involve
only a tiny fraction of the eventual user base. In §5.3, we
show how to extend our construction to handle dynamic user
sets more efficiently, so that the prover and verifier costs
scale with the current active population (or newly added
users) instead of the worst-case bound fixed at setup.

1.2. Applications of VAR

To showcase the power of VAR, we discuss three socially
important applications in §6: auditing social media platforms,
preventing fraudulent reimbursement claims, and detecting

censorship in broadcast. We present a brief overview below.

Auditing social media platforms. Content creators depend
on social media platforms for their livelihood, but the lack
of transparency and verifiability in how these platforms rank,
deliver, and monetize content has led to well-documented

frustration and discontent [11], [12], [13], [14], [15], [16].

Recent regulatory efforts, such as the EU Digital Services
Act [17], highlight the need for greater scrutiny, and VAR
offers creators a means to cryptographically verify key

aspects of platform behavior, including the fulfillment of
paid boosts and the detection of stealth suppression.

Outcome-based reimbursement. Generalizing beyond
the example of company-sponsored benefits, this model of
outcome-based reimbursement also captures many public-
benefit programs that reimburse third-party providers based
on how many eligible users they serve, such as discounted
ride programs, job-training providers, or behavioral-health
clinics. Funders need trustworthy aggregates while users
expect privacy over their individual actions. VAR enables
providers to prove the number of distinct beneficiaries served
without exposing identities or usage histories.

Verifiable read receipts for broadcast messaging. In group
or broadcast channels, a malicious or coerced platform can
selectively suppress messages while showing inflated read
receipts to the sender. Such silent interference is difficult to
detect without independent verification. VAR enables senders
to verify how many group members actually received a
message while preserving the anonymity of broadcast.

1.3. Implementation and Evaluation

We implement both S-VAR and P-VAR in Rust, using
Ed25519 for signatures and SHA-256 for PRFs and hash
functions. For S-VAR, we use the BN254 scalar field and for
P-VAR, the pairing-friendly groups and the scalar field are
instantiated by BLS12-381. For comparison, we implement
two baselines: predicate aggregate signatures (PAS) [5] in
Rust and a generic SNARK baseline in Noir [18]. We
benchmark on two AWS configurations (“‘small” and “large”),
varying the number of users n € {21°,...,220}; for S-VAR,
we also vary the number of supported thresholds k£ and use a
geometric (i.e., powers-of-2) threshold schedule. We measure
issuance bandwidth and time, as well as audit proving and
verification time.

Issuance time and bandwidth in both S-VAR and P-VAR
scales approximately linearly in the number of users and
the number of supported audits. Concretely, on the large
VM and for 229 users, S-VAR’s issuance takes 0.89s for
k =1 and 1.88s for k = 20; in the same regime, P-VAR
(with 1 epoch) takes 1.52s. The issuance costs above are not
intended for direct comparison of the two schemes, because
they support different auditing styles; in §7.3.1 we propose
a comparison regime where both schemes support the same
number of audits; in this regime, S-VAR’s issuance time
outperforms that of P-VAR by an order of magnitude across
all values of n.

At audit, P-VAR yields lower proving time than S-VAR
beyond the small-n regime; concretely, on the large VM and
for 22° users, S-VAR’s proving time is 34s and P-VAR’s
proving time is 9.7s. Verification time is constant and
concretely small for both schemes — less than 100 us for
S-VAR and less than 19 ms for P-VAR. Both PAS and the
SNARK baseline are at least an order of magnitude slower
in proving and verification time compared to our solutions.

The key takeaway is that both proposed protocols are
concretely practical at million-user scale and significantly

outperform heavyweight baselines. Among the two protocols,
S-VAR achieves lower issuer time and bandwidth when
coarse, thresholded audits suffice; P-VAR trades higher
issuance cost for faster audits with exact counts. The choice
of which to deploy depends on the target audit granularity
and which entity (issuer vs. prover) is more powerful; large-
issuer/smaller-prover settings favor P-VAR, while lightweight
issuer or resource-constrained deployments favor S-VAR.

Contributions

In summary, this paper makes the following contributions:

« We introduce VAR, a new cryptographic primitive with
applications in user engagement auditing. We model the
security properties of VAR via an ideal functionality (§3).

o We propose two VAR constructions: S-VAR (§4) is a secret-
sharing-based protocol which supports tiered auditing, and
P-VAR (§5) is a pairing-based protocol which supports
exact auditing. We prove both protocols secure with respect
to our ideal functionality. We also propose an extension
to P-VAR to support dynamic user sets.

« We showcase three diverse applications of VAR (§6).

« We implement and benchmark our protocols. Our experi-
ments show orders of magnitude performance improvement
over baseline and existing solutions (§7).

2. Preliminaries

In this section, we go over notations and preliminaries.
We refer the reader to §A for additional preliminaries.

Notations. We use A for the security parameter. For any
n € N, we use [n] to denote the set {1,2,...,n}. We use
|S| to denote the cardinality of the set S. We use “PPT” to
denote “probabilistic polynomial time”. We use boldface to
denote vectors, i.e., = (T1,...,ZTp).

Digital signatures. A digital signature scheme is a tuple
of PPT algorithms DS = (Gen, Sign, Verify). We rely the
standard correctness and unforgeability definitions [19].
Pairing-friendly groups. Let (G1, Gz, Gr) be the pairing-
friendly groups with the pairing e : G; X Gy — Gr. Let
g1 € G1, g2, ho € Go be random and independent group
generators in G and Go.

KZG polynomial commitment scheme. In the KZG
polynomial scheme [20], the common reference string (CRS)
is (91,97, ... 7g{d) and (g2,97,. .. ,ggd) for some random 7
and maximum degree d, and g; € Gy, g2 € G4 are uniformly
sampled generators in G; and Go. The commitment of a
polynomial f(z) = Z;l:() fiztis ecmy = g{(T), which is
obtained by computing cm; = Hf:()(gf)f i. To show that
a polynomial Z(z) divides f(x) with g(x) as the quotient,
the succinct proof is 7 := ¢?("). The proof can be verified
via the pairing check e(cmy, go) = e(mr, g2 7).

Hash functions and random oracle model. We model
hash functions in the random oracle model (ROM) [21]. We
write H(z) to denote hash function H evaluated on input x.
The domain and range of H will always be clear when used.

Pseudo-random function. A family of polynomial-time
functions are pseudorandom functions (PRFs) if a randomly
selected function from the family cannot be distinguished
from a truly random function by a PPT adversary. We write
PRF(seed; x) to denote the evaluation of pseudorandom func-
tion PRF with seed seed on input z. We use SHA256(seed||z)
to instantiate PRFs [22, Section V.A].

Secret sharing. An (n, t)-single-secret sharing scheme [6]
is a protocol for the distribution of a secret s among n
parties such that the recovery of the secret is possible out
of ¢ shares where 1 < ¢t < n, while t — 1 shares give no
information on the secret s. In a ({1, ...,t;)-multi-secret
sharing scheme [23], [24], k£ independent secrets s1, ..., Sk
are distributed among n parties. Each secret s; can be
recovered only if at least ¢; parties combine their shares,
while any fewer than ¢; shares reveal nothing about s;.

3. Problem Statement

3.1. Problem: Verifiable Aggregate Receipts

Broadly, we investigate protocols for building “verifiable
aggregate receipts”, i.e., protocols that enable issuance of
receipts and their privacy-preserving aggregation into a
compact proof of count. The goal is to allow an issuer
7 to issue receipts to a set of users U, so that a prover P
can later prove to a verifier) that a certain number of users
from U have spent their receipts, keeping the identity of
those users secret. We focus on the setting where the issuer
7 and the verifier V are the same entity. We also focus on
guarding against inflation of the total count, i.e., we assume
that a malicious P’s only goal is to convince)V of a count
that is larger than the number of received receipts.

3.2. Models and Definitions

System model. A Verifiable Aggregate Receipts (VAR)

system involves three kinds of parties: a Verifier V, a Prover

P and a set of n users U = {U;}_;; in VAR, V also acts as

the issuer. We assume each party has a well-known public

key (i.e., we assume a PKI), so communication between
parties takes place in a secure channel. A VAR protocol
involves three procedures:

o Issue: V interacts with all users in U to issue them receipts.

« Spend: Once issuance is complete, any I/ € U can interact
with P to spend their receipt.

o Audit: At any point after issuance, } may interact with P
to ascertain how many &/ € U have spent their receipts.
At the end, V outputs either an integer k¥ < |U]| or L.

We model the essential properties of VAR using an ideal
functionality Fyar in Fig. 1. To separate different instances

of Fvar, all messages are tagged with a unique session id

denoted sid. We refer readers to the original proposal of the

Universal Composability (UC) framework [25] for details

on ideal protocol execution.

In Fvar, we allow V to specify a set T of allowed counts
in order to enable two kinds of VAR protocols: (1) “exact-
audit” protocols which enable P to prove the exact count of
spent receipts, and (2) “fuzzy/tiered-audit” protocols which
enable P to prove counts from a specific set of allowed
counts, capturing threshold-based solutions. Note that in
exact-audit protocols, V will set T := [|U]].

At issuance, V specifies an allowed-count set 7' C [|U]];
Fvar records T' and sends it to P. After issuance, the spend
and audit procedures may be invoked in any order and
may interleave. If an honest user sends a spend message
to Fvar, the functionality adds U to the set R who have
spent their receipts and notifies P. When ¥ makes an audit
request, Fyar computes spent = |R| (the true number of
spenders) and forwards the audit request to P. P replies
with a pair (b, claimed), where b € {0, 1} signals whether
the prover wishes to make a valid or bad audit claim. If
b = 1, claimed € T, and claimed < spent, Fyar sends
claimed to V; otherwise, it notifies V' of a bad audit claim.
During the audit procedure, Fyar allows a corrupted prover
to perform “extra” spending on behalf of corrupted users
who have not yet spent, before sending his claimed count.
This extra spending aims to emulate the real-world ability
of the adversary to use additional receipts (from corrupted
users) at audit time to inflate the claimed count.

Adverserial model. We consider a static, computationally
bounded adversary A. Corrupted parties (except for V) may
deviate arbitrarily from the protocol and reveal their states to
A. Concretely, P and any subset of users Us C U can
be malicious, but we assume that V is semi-honest. To
model corrupted users, at initialization, A fixes and sends
a corrupted user set Uc C U to Fyar, and Fyar records
R:= Uc.

Below we discuss the correctness, security, and privacy
guarantees required of a VAR system, reflected by Fyar.

e Correctness. Given honest V, P, and U, a VAR protocol
should ensure that at the end of the Audit procedure, V is
convinced of the count claimed by P.

o Inflation soundness. At a high level, an honest)V wishes to
verify the number of issued receipts spent by users, even
if P and a subset of users are corrupted. Informally, if an
adversary has corrupted P and |Uc| users, and if ¢ honest
parties spend their receipts, then, V must only accept an
audit count up to ¢ + |Uc|. Since P is the only party that
interacts with users during the spend procedure, it may
always censor some of the receipts it receives; however,
recall that we deem deflation of receipt count out of scope.

o Privacy guarantee. Given an honest P, a semi-honest V),
let U’ C U be the set of honest users who engaged in
the spending procedure upon an audit request from V to
P. If V accepts the claimed audit count %, he should not
learn any other information besides the count k. Informally,
from the point of view of V, the set U’ is as likely to be
the set of honest spending users as any other |U’|-sized
subset of honest users.

Deniability. We focus our study on VAR constructions
that enable deniability on the user side. Specifically, we

require that at no point during a VAR protocol can any
party obtain publicly verifiable evidence linking a user to the
spending process (e.g., viewed a particular ad, downloaded
a particular video, or visited a specific clinic). For instance,
protocols which rely on each user sending a traditional digital
signature to P do not satisfy deniability, since the user
signature constitutes publicly verifiable evidence that U,
engaged in the spending process. Deniability and privacy
are related but incomparable properties (neither implies the
other). Indeed, the non-deniable solution above can still
ensure privacy, as long as P’s audit proof hides the identity
of the individual signers from V. For simplicity, we do not
model the deniability property in our functionality Fyar-

Efficiency. Broadly, we are interested in VAR protocols
that are efficient in terms of computation time and bandwidth
across all parties and procedures. In what follows, when we
say that a party’s running time or bandwidth is “constant”,
we mean it is independent of the number of users, the number
of users who spent, as well as the set of allowed counts; it
can still be polynomial in the security parameter \.

We focus on VAR protocols where users run in constant
time and use constant bandwidth during both issuance and
spending. Further, a VAR protocol should guarantee that V’s
issuance time is linear in the number of users, and that V’s
audit time and bandiwdth is sublinear, ideally constant.

Note that in most of the VAR applications in §6, P
is usually an entity with significantly more compute and
bandwidth resources compared to individual users and V.
As such, our focus is on minimizing the computation and
bandwidth usage of P and of each U € U; at the same
time, we wish to preserve P’s time and and bandwidth at
reasonable levels towards practical deployment at scale.

Accuracy. We also consider accuracy, which measures how
close claimed is to the actual number of received receipts.
We say that a VAR protocol is [-accurate if there exists
€ (0, 1] such that, for all honest provers and all successful
executions of the audit procedure, we have that % > .
For instance, if a VAR protocol enables the prover to prove
the exact number of spent receipts, then that protocol is
1-accurate. Note that a VAR protocol can satisfy inflation
soundness and at the same time not be l-accurate; that is,
inflation soundness and accuracy are different properties.

3.3. Strawman Solutions

In this section, we go over related primitives and explain
why they fail to solve the VAR problem.

Aggregate signatures. The simplest solution is to use
digital signatures that enable aggregation, such as BLS
signatures [4]. To spend, each user U; signs the session id
with their signing key, and sends their signature o; to P.
Upon an audit request, P aggregates the received signatures
into an aggregate signature ¢ and the corresponding public
keys pk; into an aggregate public key apk. First, having users
sign violates deniability. Second, to verify &, V needs to
know the set of public keys used to form apk, which violates
privacy. To mitigate this, P could employ a zk-SNARK

Ideal Functionality Fvar

Parties. Verifier V, prover P, user set U = {Ui}icins
adversary A.

State.

— sid: the unique identifier of the current session.

— T list of allowed counts to prove at audit (increasing order).

— emax: Maximum number of times a successful audit may
be run with unique spend values.

— Ug: set of corrupted users.

— e: the current epoch number.

— R: set of users who have spent receipts.

— U¢: set of corrupted users who have spent receipts.

Initialize (One-time)
On message (sid, INIT, Uc) from A, store (sid, Uc), and set
R:=0,U,:=10, and e = 0.

Issue (One-time)

On message (sid, [SSUE, T, emax) from V, if there ex-
ists record (sid, Uc), store (sid, V,T, emax). Send message
(sid, ISSUE, T', émax) to A, P, and to each U; € U.

After initialize and issue, parties can call the following two
procedures any number of times and in any order, and the
ideal functionality defines the output as follows.

Spend

On message (sid, SPEND) from U, if there exists record
(sid, V, T', emax):

- If U ¢ R, store and send (sid, SPEND, /) to P.

- Set R=RU{U}. If U € Ue, set Uz = Uz U{U}.

Audit

— On message (sid, AupIT) from V, if there
exists record (sid,V,T,emax): set spent = |R|,
store (sid, AUDIT, V,spent), and send message

(sid, AUDITREQ, V) to P.

— If e > emax, send (sid, AUDITBAD) to V.

— If P is corrupted: on message (sid, SPENDEXTRA, UY)
from A, if there exists record (sid, AUDIT, V, spent), check
that U7 U U, C Uc and U, N UZ = . If so, add each
U € U to R, and change the record (sid, AUDIT, V), spent)
to (sid, AUDIT, V, spent + |U¢|). Also, set Us = U, U U

— On message (sid, AUDITRESP, b, claimed) from P, and if
there exists (sid, AUDIT, V, spent), then:

- If b = 1, claimed € T, and claimed < spent, send
(sid, AUDITOK, claimed) to V.
— Otherwise, send (sid, AUDITBAD) to V.

Set e := e + 1 and purge (sid, AUDIT, V, spent).

Figure 1: Ideal Functionality for VAR with epochs.

to hide the spend set; however, generic SNARKSs do not
scale, and the deniability issue remains. We provide a short
background on zk-SNARKSs in §A.

The recent work of Qiu and Tang [5] introduces Predi-
cate Aggregate Signatures (PAS), a powerful generalization
of aggregate signatures that supports succinctness, signer
anonymity, and predicate-based verification. Nonetheless,
PAS does not satisfy deniability, nor does it scale to the
number of users VAR intend to support. (Looking ahead, we

report performance of these baseline protocols in §7.)

Ring signatures. An alternative approach is to use ring
signatures [26], [27], which at first glance seem to solve
both the privacy and deniability problem. However, most
practical ring signatures typically incur a cost linear in the
size of the anonymity set (the entire user set), as they include
the public keys of all users in the set; thus, the resultant
spending process would become highly inefficient in terms
of both time and bandwidth. Moreover, it is unclear how to
efficiently aggregate all these ring signatures at audit time
towards a sublinear audit proof and verification time.

Aggregate message authentication codes. Another ap-
proach towards deniability is to rely on message authentica-
tion code (MAC) schemes. In a MAC-based VAR protocol,
V shares a symmetric MAC key with each user; to spend, a
user produces a MAC tag on the session id and sends the
tag to P. Since MAC schemes are symmetric-key primitives,
user spending satisfies deniability. However, MAC cannot
be verified by P (which means a malicious user can corrupt
the entire aggregate), and moreover,)V needs to know the
user identities to verify MACs, violating privacy.

4. S-VAR: VAR Based on Secret Sharing

In this section, we propose the use of multi-secret sharing
to construct VAR with tiered auditing. By “tiered”, we
mean that the prover P can only produce audit proofs for
predetermined count values, which form tiers. In other words,
this VAR construction supports “fuzzy” auditing, rounded
to the closest pre-determined threshold.

The high-level idea is as follows. In multi-secret shar-
ing [23], multiple secrets are shared simultaneously, each
associated with its own threshold. To construct VAR from
multi-secret sharing, the verifier V chooses distinct thresholds,
each corresponding to a distinct audit tier. Then he issues
a share for each user, which holds enough information to
help towards reconstruction of all secrets. These shares serve
as the users’ receipts: a user spends their receipt simply
by sending their share to the prover P. During an audit, P
uses the received shares to reconstruct the secret associated
with the highest threshold that has been met. The ability to
reconstruct this secret serves as proof to V that the claimed
threshold of receipts was spent.

After introducing an abstraction for multi-secret sharing
in §4.1, we present a generic construction for S-VAR in §4.2.
In §4.3, we present S-VAR, our optimized instantiation based
on a bottom-up secret-sharing scheme. In §4.4, we discuss
the efficiency and accuracy implications of different threshold
schedules, and present a modification to S-VAR that enables
dynamic thresholds. Then in §4.5, we prove S-VAR secure
with respect to our ideal functionality.

4.1. Multi-Secret Sharing Abstraction

We consider two paradigms in single-secret sharing that
are relevant to our construction. In the traditional top-down
paradigm [6] with n users and a threshold ¢ < n, the

dealer usually samples a ¢-degree polynomial and distributes
its evaluations as user shares. In the more recent bottom-
up paradigm [7], instead, user shares are in some sense
pre-existing, i.e., they exist before the sharing occurs; the
dealer now interpolates an n-degree polynomial over the pre-
existing shares (and the secret) and publishes some auxiliary
data to support t-threshold reconstruction.

The choice of paradigm for multi-secret sharing yields
a clear tradeoff. Botfom-up can enable a single, fixed per-
user share that works across all thresholds, at the cost of
publishing auxiliary data to support reconstruction. Top-
down, by contrast, requires a different per-user share for
each threshold but needs no auxiliary data to reconstruct.

Generic multi-secret sharing (GMSS). To capture both
paradigms, we model multi-secret sharing as an abstract prim-
itive which we call Generic Multi-Secret Sharing (GMSS).
GMSS allows the Share algorithm to output user shares and
auxiliary data, and the Recon algorithm to take as input a
reconstruction set and the auxiliary data. Intuitively, GMSS
captures both paradigms by abstracting two design knobs:
the size of the per-user share and the use (or absence)
of the auxiliary data. Formally, an (n, k)-GMSS scheme
for n users and k thresholds is a tuple of algorithms
GMSS = (Share, Recon) with the following syntax:
o Share(t, s) — ({sh;};c}n), aux): Takes as input a tuple of
thresholds ¢ = (¢1,...,t;) and secrets s = (s1, ..., Sk),
and outputs shares {sh;};c[,) and auxiliary data aux.

e Recon(t, I, {sh;}icr, aux) — s: Takes as input a tuple
of thresholds ¢, a reconstruction set I C [n] such that
|I| =t € t, a set of shares {sh;};cs, and the auxiliary
data aux. It outputs a secret s or L.

An (n, k)-GMSS scheme should satisfy correctness and
security. Informally, correctness states that for any number
m < n, any m valid shares — together with the auxiliary
data aux — are sufficient to reconstruct every secret whose
threshold is at most m. Security states that for every j € [k],
any collection of fewer than ¢; shares together with aux
reveals no information about secret s;. Looking ahead, we
prove security of S-VAR by relying on the security of
single-secret sharing and hash functions (in the random
oracle model). As such, we do not present a formal security
definition of GMSS. For a formal treatment of closely related
primitives, we refer the reader to the work of Blundo [23]
on multi-secret sharing, as well as to the recent work of
Kate et al. [7] that formalizes bottom-up secret sharing.

4.2. VAR Based On GMSS

We now describe our generic VAR construction based
on GMSS; the formal protocol is specified in Fig. 2.

Setup. Given the security parameter A and the number
of users n, we fix a scalar field F with order at least
|F| > 2*. The protocol uses two building blocks: a multi-
secret sharing scheme GMSS = (Share, Recon) and a digital
signature scheme DS = (Gen,Sign, Verify). At setup, V
samples (sk,vk) < DS.Gen(1*) and sends vk to P.

Issuance. At issuance, V selects a number of tiers k,
chooses increasing thresholds t = (t;);e[), and sam-
ples one secret s; < I per tier j. He forms the tuple
s = (sj)jer and stores (t,s). Then V' computes
({shi}ie[n), aux) <= GMSS.Share(t, s), and sends the thresh-
olds t and the auxiliary data aux to P. For each i € [n], V
signs o; < DS.Sign(sk, i||sh;), forms receipt rx; = (sh;, o;),
and sends rx; to U;. On receiving (t,aux), P initializes an
empty set R of received shares.

Spending. To spend her receipt, user U; sends rx;
to P. On receiving rx; = (shi,07), P checks
DS.Verify(vk, i||sh;,04) = 1 and, if valid, adds sh; into
the set R of received shares.

Audit. When V requests an audit, PP identifies the largest
threshold ¢;- € t such that ¢;- < |R|. He then chooses a
tj+-sized reconstruction set I C [n] from R and reconstructs
s" = GMSS.Recon(t, I, {sh;};cr,aux). P sends (j*,t;-,s")
to V, who checks if ¢;- is one of the thresholds chosen at

. ?
issuance and whether s’ = s;-. If all checks pass, V accepts;
otherwise, he rejects.

Efficiency implications of GMSS for VAR. We explain
how GMSS costs cleanly factor into VAR. Each user receives,
holds, and spends exactly one receipt — their GMSS share —
so the user’s bandwidth and storage is |sh;|. As the number
of thresholds grows, |sh;| can grow as well depending on
how GMSS is instantiated. The issuance bandwidth for V is
laux|+ >, [sh;| = |aux|+n|sh;|, since he sends one share
to each of the n users, as well as the auxiliary data aux to P.
On P’s side, the storage is |aux| up front plus the number
of sh; that arrive during spending, for a worst-case total of
|aux| + n|sh;|. Based on the protocol description in Fig. 2,
V’s storage is O(k), since he has to store the k (threshold,
secret) pairs. To reduce V’s storage in to O(1), instead of
storing all k secrets, V' can instead store a single secret
seed and use it to derive all k£ secrets. This optimization is
orthogonal to how GMSS is instantiated, and thus V’s storage
overhead does not inform the choice of said instantiation.

4.3. S-VAR: VAR Based on Bottom-Up GMSS

We now present two instantiations of GMSS and discuss
the performance tradeoffs in the resultant VAR constructions.

A top-down instantiation of GMSS. GMSS can be instan-
tiated by running %k independent top-down (e.g., Shamir [6])
single-secret-sharing instances, one per threshold. Under this
instantiation, each GMSS share sh; consists of k& Shamir
shares (one per tier), so |sh;| = ©(k), and no auxiliary data
is required (Jaux| = 0). This yields simple mechanics but an
O(k) receipt per user.

Bottom-up secret sharing for O(1) user receipts. Ideally,
we would like users to have constant-sized shares, i.e.,
|sh;] = O(1) independent of k. The challenge is enabling re-
construction of different secrets at different thresholds while
keeping each user’s receipt fixed-size. The Bottom-Up Secret
Sharing (BUSS) [7] paradigm, which inverts the usual top-
down secret sharing process, can help toward this constant-
sized-receipt goal. In bottom-up secret sharing, rather than

Public Parameters

Security parameter A and number of users n = |U|
Scalar field I of order |F| > 2*.

Multi-Secret Sharing scheme GMSS = (Share, Recon).
— Signature scheme DS = (Gen, Sign, Verify).

Setup

1) V samples (sk,vk) < DS.Gen(1*) and sends vk to P,
and sets emax 1= 00.

Issue
1) To issue receipts, V proceeds as follows.

— Chooses a number k € [n] and thresholds {t;};c[x] such
that t; < tj41 for all j. Let ¢ := (tj)je[k]~

— Samples secrets s; <— F for j € [k]. Let s = (s5)eqx)-
— Computes ({sh;};c[n], aux) <= GMSS.Share(t, s).
— Signs o; «+ DS.Sign(sk, t||sh;) for each i € [n].
— Sends rx; := (sh;, 0;) to user U; for i € [n].
— Sends (t,aux) to P.
— Stores {t, s }.

2) On receiving (¢, aux) from V, P initializes the set R := ()
of received shares.

Spend

1) User U; sends rx; to P.

2) Onreceiving rx; = (z;, 0;) from user U;, P first checks that
(i,2") ¢ R for any 2’ and (', 2;) ¢ R for any ¢’. Then, if
DS.Verify(vk, i||z;, 0;) = 1, he updates R = RU{(4, z;) }.

Audit
1) V sends an audit request to P.
2) On receiving an audit request, P proceeds as follows:
— Sets j* = max{j € [k] | ¢t; <|R|} and chooses a set
I C [n] such that {(4,2;)}icr C R and |I]| = t;~.
Fetches {sh;}ier from {z; }icr.
— Computes s = GMSS.Recon(t, {sh; }ic1, aux).
— Sends (j*,t;+,s’) to V.
3) On receiving (j*,t;+,s’), V outputs (accept,t;-) if
tj+ € tand s = s;+; otherwise, he outputs reject.

Figure 2: VAR based on GMSS

sampling a fresh ¢-degree polynomial and distributing its
evaluations as user shares, the dealer uses an n-degree
polynomial whose evaluations are deterministically derived
from pre-existing user seeds and the secret. To achieve an
effective t-out-of-n threshold, the dealer reveals (n —t + 1)
additional public points (disjoint from user points), reducing
the reconstruction requirement from n to ¢.

S-VAR: Using bottom-up GMSS. We now present a
bottom-up instantiation of GMSS, resulting in our final
S-VAR construction. Each user’s GMSS share is a single seed
x; (reused across all tiers), and the GMSS auxiliary data aux
is the collection of BUSS public points for all tiers. To share,
for each tier j, the dealer fixes an n-degree polynomial f;
whose user evaluations are set to f;(i) = H(j, ;) and whose
constant term is the tier’s secret, where H is a hash function;
the dealer also publishes (n—t; +1) additional public points
of f; (disjoint from user points), which collectively form
aux. To reconstruct for tier j, one combines any t; user

evaluations H (j,z;) with the corresponding public points

from aux to interpolate f; and recover the secret.

More formally, let H : F2 — T be a hash function
modeled as a random oracle. The construction of an (n, k)-
GMSS scheme over a finite field ' works as follows:

o GMSS.Share(t, s): Parse t as (t;);cpr and s as (s;)je[k]-
For each i € [n], sample z; < F, and set sh; := ;. For
each j € [k], define a polynomial f; of degree n over IF
such that f;(0) = s; and for all i € [n]: f;(7) = H(j, z:).
Then compute ¢; = (fj(—1),...,fj(—=(n — t + 1))).
Output {sh;};c[,,) and aux := (@) je[i-

o GMSS.Recon(t, I, {sh;}icr,aux):

Parse t as (t;);eqx) and let j be such that ¢; = [I|. Parse
auxas (¢;) ek and ¢; as (f;(—1),..., fj(—=(n—t+1))).
Concatenate these (n — ¢ + 1) points with the following
|| = ¢; points: {(z, f;(¢)) = (¢, H(4,sh;)) }scr. Then use
Lagrange interpolation to compute the unique n-degree
polynomial f; that passes through those 7 points. Finally
output s; = £;(0).

Performance gain of the bottom-up paradigm. In top-

down GMSS, we have |sh;] = ©(k) and |aux| = 0. In

bottom-up GMSS, we have [sh;| = O(1) and |aux| =

Ele (n—t;+1), where the concrete value of |aux| depends

on the threshold schedule chosen by V. However, regardless

of the schedule, the sum |aux| 4+ n|sh;| is asymptotically the
same (O(nk)) under both top-down and bottom-up GMSS.

Therefore, bottom-up GMSS is overall superior to top-down

GMSS, and this is why S-VAR uses bottom-up GMSS.

Using bottom-up GMSS also saves the prover’s storage
in some cases. For instance, under an arithmetic threshold
schedule (see §4.4 below) with step size A, top-down
GMSS incurs a worst-case prover storage overhead of
|aux| 4+ n|sh;| = nk = ”KQ, while bottom-up GMSS incurs
laux| + n|sh;| ~ %”KQ + n, an approximately 2x saving for
large n. Therefore, bottom-up GMSS concretely reduces the
prover storage by a factor of 2. We note that bottom-up
GMSS always incurs the |aux|-sized upfront prover storage,
which is not the case for top-down GMSS.

Accuracy. S-VAR’s accuracy depends on the choice of
threshold schedule, discussed in §4.4. Under a geometric
schedule with accuracy parameter e, the resulting S-VAR
protocol is e-accurate, per the definition of accuracy in §3.

4.4. On Threshold Schedules

Choosing a threshold schedule. S-VAR leaves the threshold
schedule up to the V’s choice; in practice, this choice will be
application-specific. Nevertheless, the core tradeoff is simple:
adding more thresholds yields finer-grained auditing — i.e.,
the prover can prove a count closer to the true number of
spent receipts — but it also increases system overhead.

Two natural schedule choices are: arithmetic and geo-
metric. In an arithmetic schedule, thresholds are spaced by a
fixed increment, giving uniform resolution across the range.
In a geometric schedule, thresholds grow by a constant

multiplicative factor, which concentrates tiers near small
counts and becomes sparser at large counts.

Arithmetic schedule. Fix a step A € N and set k < [%].
Define t = (tj)cx) by t; = min{n, jA} forj € [K].
For example, for n = 10° users, one can choose A = 103
to yield £ = 1,000 thresholds at multiples of 1,000 up to n.
With an arithmetic schedule, there always exists a thresh-
old that is within (additive) distance A of the true number
of spent receipts, However, if A is much smaller than n,
then the number of thresholds k essentially grows with n. In
general, an arithmetic schedule is well-suited for applications
that either require high precision at the expense of k = ©(n)
thresholds, or for applications that can work with coarsely
chosen thresholds by using large A (e.g., A = O(n)).

Geometric schedule. Fix an accuracy parameter ¢ > 0 and
set k < [logy,.n| + 1. Define ¢ = (t;),epx by t1 = 1 and

tiv1 = min{n, [(1+¢)t;]} for j € [k].

For example, for n = 106 users, one can choose € = 1 to
yield log,(10°%) ~ 20 thresholds at powers of 2 up to n.

With a geometric schedule, there always exists a threshold
that is within (multiplicative) distance ¢ of the true number
of spent receipts. Unlike the arithmetic schedule, the number
of thresholds k in this case grows with log; . n. However, as
the target accuracy € approaches 1, k can grow very large. For
instance, for n = 108 users and accuracy € = 0.01, we have
k ~ 1,400 thresholds. In general, a geomteric schedule is
well-suited for applications that wish to have few (O(logn))
thresholds (assuming ¢ is not too small) and are willing to
settle for multiplicative precision.

Hybrid schedule. Applications can also choose a hybrid
schedule; that is, they can use an arithmetic schedule up until
a threshold n’ < n, and then swifch to a geometric schedule
between n’ and n. Such a hybrid approach can be useful if
the application’s desired accuracy ¢ is small. Back to the
n = 10% and £ = 0.01 example, suppose we set the switching
threshold at n’ = 102, and use an arithmetic schedule with
A = 10 up until n’. Then this hybrid schedule will have
approximately 100 thresholds in [0, '] and 700 thresholds
in [n/,n], for a total of k ~ 800, which is significantly
less than the 1,400 thresholds used by a pure geometric
schedule. The reason behind this improvement is that out of
the 1,400 thresholds, approximately 700 were concentrated
between 0 and 1,000; these are precisely the thresholds that
the hybrid schedule gets rid of, and replaces them with only
100 arithmetic thresholds.

Toward dynamic thresholds. A natural limitation of
S-VAR is that thresholds are fixed at issuance time and cannot
adapt to realized user spending. This can be restrictive in
applications where V expects a fresh proof of count at regular
intervals; if user engagement is low during a given period, P
may be unable to produce an audit proof for the scheduled
threshold. In such cases, a smaller but still meaningful count
might have been attained, and it is desirable that 7P be able
to prove that smaller count.

We propose a minimal modification to the audit procedure
in S-VAR, which yields dynamic, downward-adjustable

thresholds while leaving issuance and spending unchanged.
At audit time, suppose P wishes to prove ¢;- as the next
threshold, but he only holds ;- — d user receipts for some
d > 0. To fix this, P can send the difference d to V, who
then sends back d additional evaluation points of f;-; these
d points are disjoint from the points already in aux and the
user points. If P can then reconstruct the target secret s,
V is convinced that at least t;- — d users spent their receipts.
Intuitively, the extra public points “stand in” for the missing
users, allowing V to relax thresholds on the fly depending
on user engagement, while preserving the soundness and
privacy guarantees of the base S-VAR protocol.

4.5. Security

In this section, we prove security of S-VAR. Concretely,
S-VAR ensures that a malicious prover cannot convince an
honest verifier of an audit count larger than the number
of received receipts, and the audit proof does not reveal
anything — beyond the count — to a semi-honest verifier.

Theorem 1. The S-VAR protocol presented in Fig. 2,
where GMSS is instantiated bottom-up as described in §4.3,
realizes the ideal functionality F\ar, under static corruptions,
a semi-honest verifier, and malicious prover and users.

Proof. Let A denote the adversary, and S denote the sim-
ulator. If all parties are honest, then S does not need to
simulate anything. On the other hand, if both P and V are
corrupted, then this case is out of scope per our adversarial
model (see §3.2). We thus consider three corruption cases,
disjoint from the two cases above. Let sid be the session
identifier and let Vs.yar denote the real-world verifier, who
follows the S-VAR protocol honestly.

Case 1. P and V are honest, but a set Ue of users are
corrupted. In this case, A (controlling Ug) is malicious. We
construct the simulator S as follows.

Initialize. First, S gets the public parameters pp from the
environment and gives pp to A. Then S simulates A to get the
set Uc of corrupted users and sends message (sid, INIT, Ue)
to Fvar. Then S samples (sk,vk) < DS.Gen(1*). Finally,
S initializes the set of received receipts R = ().

Issue. Upon receiving (sid, ISSUE, T, eax) from Fyag:

o Ssets k= |T| and (t;);epx) := T. Using the previously
sampled sk, S runs step 1 of the issue procedure to com-
pute secrets s = (s;);cx, receipts {rx; = (shy, ;) }ic[n]
and auxiliary data aux.

o Sends rx; to each U; € U (i.e., to A).

Spend. S handles spending from corrupted users. Upon
receiving receipt rx* = (sh*, o*) from U; € Ue (i.e., from A
on behalf of U;), first check that (i,-) ¢ R and (-, rx*) ¢ R.
Then check DS.Verify(vk,sh®,0*) = 1. If any of these
checks fails, do nothing. If all checks pass, send (sid, SPEND)
to Fvar as if it came from U; and update R = RU{(, rx*)}.

Audit. S does nothing during the audit procedure.

We argue indistinguishability between the two worlds.

Initialize. The public parameters pp are given by the environ-
ment, so they are distributed identically in the two worlds.
Whenever A initializes in the real world, S sends an initialize
message to Fyar in the ideal world which includes the same
set of corrupted users Ue. Also, the key pair (sk, vk) sampled
by S in the ideal world is distributed identically to the key
pair sampled by V in the real world.

Issue. The issue procedure is triggered by honest VV and thus
occurs at the same time in both worlds. In the ideal world, S
uses the same thresholds as Vs.yvar and then runs Vs.yar to
produce (s, {rx; }ic[n], aux), which are identically distributed
between the two worlds.

Spend. First, we prove statement (1): for all users U;, P

adds (i,rx*) to his set R in the real world if and only if

JFvar adds U; to R in the ideal world. If f; is honest, then

he spends (at most) once in both worlds; also, in the real

world, when spending, he spends his valid, issued receipt.

Thus the statement holds in this case. If U; is corrupted,

during issuance, U; receives an identically distributed receipt

in both worlds. Also, at spend time, S’s checks in the ideal
world are exactly the same as honest P’s checks in the real
world: (a) (i,-) ¢ R, (b) (-,rx*) ¢ R, and (c) the signature
in rx* verifies. Thus the statement holds in this case, too.
Second, we prove statement (2): in both worlds, if U;

spends a receipt rx* and is added to the spend set, then
rx* is among the issued receipts. It suffices to prove the
statement for the real world, since S performs the same
checks in the ideal world as honest P does in the real world.
If U; is honest, the statement holds since honest users only
spend their issued receipt. If Uf; is corrupted, then assume for
contradiction that rx* = (sh*,o*) is not equal to the receipt
rx; = (sh;,0;) issued by V to U;. Then we have o* # o or
sh™ # sh;; in either case, A is able to break unforgeability
of the DS scheme, which is a contradiction.

Audit. Consider one audit run, and let claimed = ;- be the

claimed count in the real world. Let s;- be the secret sampled

by honest V for threshold ¢;-. Given statement (2), honest

P uses exactly the shares issued by honest V and is able

to reconstruct the original secret s;-; therefore, V outputs

(accept, claimed). In the ideal world, given statement (1),

the count proven by P is also claimed (i.e., the same as in

the real world). Thus Fyar sends (sid, AUDITOK, claimed)
to V, who outputs (accept, claimed).

Case 2. V is honest, but P and a set Uz of users are

corrupted. In this case, A (controlling P and Uc) is malicious.

We construct the simulator S as follows.

Initialize. First, S gets the public parameters pp from the

environment and gives pp to .A. Then S simulates A to get the

set Uc of corrupted users and sends message (sid, INIT, Uc)
to Fvar. Then S samples (sk, vk) < DS.Gen(1*) and sends
vk to A, as if it came from V. Finally, S initializes the spend

sets R = () and U}, = 0.

Issue. Upon receiving (sid, ISSUE, T, eyax) from Fyag:

o Ssets k=|T|and t = (t;);cr = T. Using the previously
sampled sk, S runs step 1 of the issue procedure in the
real world to compute secrets s = (s;) ek, receipts {rx; =
(shi, i) }ic[n) and auxiliary data aux.

« Sends (t,aux) to A.
o Sends rx; to each U; € Ue (i.e., to A).

Spend. Upon receiving (sid, SPEND, ;) from Fyar where
U; ¢ Ue, S sends rx; to A as if it came from ;. Then S
updates R = RU {U; }.

Audit. Upon receiving (sid, AUDITREQ) from Fyagr, S sets
spent = |R| and sends an audit request to A as if it came
from V. Then S simulates the audit procedure between
Vs.var and A. Let claimed = t;- be the threshold value
output by A after step 2 of the audit procedure (see Fig. 2).
We consider two cases:

o Case (A): Vs.var outputs (accept, claimed). If claimed >
spent, S chooses an arbitrary set U C Ug such that
UgNU, = 0 and |UZ | = min{|Uc \ U{|, claimed —spent}.
Then S updates U, = U, UU}Y, R = RUU/, and sends
(sid, SPENDEXTRA, U/) to Fyar. If claimed < spent, S
does not simulate any extra spending. In either case, S
sends (sid, AUDITRESP, 1, claimed) to Fyag-

o Case (B): Vs.yar outputs (reject). In this case, S sends
(sid, AUDITRESP, 0, claimed) to Fyar.

We argue indistinguishability between the two worlds.

Initialize. The public parameters pp are given by the en-
vironment, so they are distributed identically in the two
worlds. Whenever A initializes in the real world, S sends an
initialize message to Fyar in the ideal world which includes
the same set of corrupted users Uc. Also, the verification
key vk sampled by S and sent to A is distributed identically
to the key in the real world.

Issue. The issue procedure occurs at the same time in
both worlds, since it is triggered by the honest V. In the
ideal world, S uses the same thresholds as Vs.yar and then
runs Vs.yar to produce (s, {rx;}ic[n], aux). Thus all secrets,
receipts and auxiliary data are identically distributed between
the two worlds, from the point of view of P and Ug.

Spend. Whenever an honest user spends in the real world,
S simulates this spending in the ideal world. Concretely, in
the ideal world, when Fyar notifies S of an honest user U;
spending, S sends rx; to A which is identically distributed
as the receipt he would have received in the real world. Note
that at this point, S does not simulate any corrupted user
spending; looking ahead, S will instead send extra spend
messages to Fyar as needed during the audit simulation.

Audit. We prove that V outputs (accept,claimed) in the
ideal world if and only if Vs yar outputs (accept, claimed)
during S&’s simulation of the audit procedure. For the “if”
direction, assume that Vs.yagr outputs (reject) at the end of
S’s simulation of the audit procedure between Vs yag and
A, on the claimed count claimed. Then S enters case (B),
sends (sid, AUDITRESP, 0, claimed) to Fyar, which in turn
sends (sid, AUDITBAD) to V. Thus V outputs (reject).

For the “only if” direction, assume Vsyar outputs
(accept, claimed). For the sake of contradiction, assume V
outputs (reject) in the ideal world. This means that Fyagr
sends (sid, AUDITBAD) to V, which happens if at least one
of (I) or (II) below has occured:

e (I): S sends (sid, AUDITRESP, 0, claimed) to Fyag.

o (II): Fvar’s check that claimed € T and claimed < spent
fails. Here spent is the cardinality of the R set after
potential invocations to SPENDEXTRA.

Note that (I) cannot occur, since by case (A) of S’s audit
simulation, S sends (sid, AUDITRESP, 1, claimed) whenever
Vs.var outputs (accept, claimed). Thus (II) occurred; since
Vs.var already checks that claimed € T, we must have
claimed > spent. Let R’ and spent’ = |R’| denote the
spend set and its cardinality before S (potentially) invokes
SPENDEXTRA. Note that spent = spent’ + |U//|; this holds
even if SPENDEXTRA is not invoked, since in that case we
can set |U//| = 0. Since Vs.yar outputs (accept, claimed), we
are in case (A) of of the audit simulation, and in particular,
in the subcase where claimed > spent’ (if not, then S does
not simulate any extra spending, and spent’ = spent, which
would mean claimed < spent). Recall that S constructs
U{ such that |UJ| = min{|U¢ \ U/|, claimed — spent}. We
consider two cases:

1) |UfF| = claimed — spent’.

2) |UZ| = Uc \ Ugl.

In case (1), we have spent = spent’ 4 |Uf/| = claimed,
which contradicts the assumption that claimed > spent.

In case (2), since U NU} = 0, we have |Uc| = |U}| +
|Ul|. Then we can express

spent = |R| = [R'| + |U¢|
= [R'\ Uel +|Ue| + |U¢
= Ul + |Uel,

where U;, := {Ud € R | U ¢ Uc} is the set of honest
users who have spent. Since claimed > spent, we have
claimed > |Uy,| + |Uc|. Since A knows at most |Uc| shares
(from corrupted users) on top of the |U;, | shares from honest
users, and since Vs.yar outputs (accept, claimed), .4 must be
able to reconstruct the secret s~ for threshold ¢;- = claimed
with less than t;- shares. Thus 4 must can either derive
the missing shares, which violates the security of the hash
function in the random oracle model, or recover the n-degree
polynomial f; with less than (n —t;«) +¢;+ = n evaluation
points, which is information-theoretically impossible.

Case 3. P is honest, but V and a set Uy of users are
corrupted. Recall that our threat model assumes V is semi-
honest, thus, in this case, .4 (controlling V and Up) is semi-
honest. We construct the simulator S as follows.

Initialize. First, S gets the public parameters pp and gives
pp to A. Then S simulates A to get the set Ug of corrupted
users and the verification key vk meant for P. S stores vk
and sends message (sid, INIT,U¢) to Fyar-

Issue. S simulates 4 to get the issued receipts {rx; =
(shi, 0:)}icpn)» the allowed counts ¢ = (t;);ep). Then S
sends (sid, ISSUE, t, e;ax) to Fyar, as if it came from V.
S stores the receipts {rx; };c[,). Note that since A controls
VY and Ug, he can implicitly share rx; (and other receipts he
knows) with corrupted user ;.

Spend. Upon receiving rx; from U; € Ug, store rx; and send
(sid, SPEND) to Fyar as if it came from U;.

Audit. S simulates A4 and upon an audit request,
S sends (sid, AUDIT) to JFyar- Upon receiving
(sid, AUDITOK, claimed) from JFyar, S chooses an
arbitrary subset I C [n] of size |I| = claimed. Then S
runs audit step 2 in Fig. 2 with R = {sh; };c; to compute
(4*,tj+,s"), which it sends to A as if it came from P.

We argue indistinguishability between the two worlds.

Initialize. The public parameters pp are given by the environ-
ment, so they are distributed identically in the two worlds.
Whenever A initializes in the real world, S sends an initialize
message to Fyar in the ideal world which includes the same
set of corrupted users Ue. Also, the key pair (sk, vk) sampled
by S in the ideal world is identically distributed as the key
pair sampled by V in the real world.

Issue. Whenever A issues in the real world, Fyar sends an
ISSUE message to the prover and all users in the ideal world.
In the real world, before the issue procedure, an honest user
may not spend. After the issue procedure, if the environment
triggers an honest user U/ to spend, she may do so once. The
simulator causes the exact same behavior in the ideal world
by triggering issuance when A issues. Since A is semi-honest
in this case, S does not need to check the well-formedness
of the receipts issued by .A.

Spend. Whenever A spends on behalf of a corrupted user in
the real world, S simulates this spending in the ideal world.
Again, since A is semi-honest, S does not need to check the
well-formedness of the receipts spent by corrupted users.

Audit. In the ideal world, since P is honest, we
know that Fyagr will only ever send a message
(sid, AUDITOK, claimed) to V (i.e., no bad audits). We also
know claimed = ¢;+ where t;- is the threshold proven by
the honest P in the real world. In the real world, A performs
step 1 of the issue procedure (in Fig. 2) honestly. Thus,
any reconstruction subset I’ of size t;- can be used to
reconstruct the original secret s, which is precisely what
S does without knowing the spend set. Also, all secrets
and shares computed by S at issuance in the ideal world
are distributed identically to the ones computed by A in
the real world; the thresholds are in fact equal between
the two worlds. Thus, the tuple (j*,t;-,s’) computed by S
and received by A in the ideal world audit is distributed
identically to the tuple received by A in the real world audit.

O

5. P-VAR: VAR Based on Pairings

In this section, we present P-VAR, a pairing-based
construction for VAR. As a warm-up, one can build a
simple pairing-based protocol (as sketched in §1.1) directly
from prior work on polynomial commitments and inner-
product arguments [28], [29]. This construction, however,
fundamentally supports only one-shot verification: after a
run of the audit procedure, the verifier has revealed enough
information (e.g., seeds or committed randomness) that
the prover effectively learns all minted receipts, so any
subsequent audit would no longer be sound. This limits

the usefulness of the construction and falls short of our ideal
functionality, which allows the verifier to make audit requests
multiple times.

In §5.1, we present a construction that supports multi-
epoch auditing and realizes our ideal functionality. Beyond
the techniques of [28], [29], we introduce (i) audits with a
rolling accumulator across epochs and succinct disjointness
proofs to show that no users are counted twice, and (ii)
a consistency check that binds the counted users so that
a malicious prover cannot inflate the count. In §5.2, we
prove P-VAR secure with respect to our ideal functionality.
Then in §5.3, we present an optimization called “dynamic
user sets”, so that the overhead of the protocol only scales
with the actual number of receipts, instead of the maximum
number of users determined at setup time.

5.1. Protocol Details

At a high level, the protocol proceeds in epochs and each
run of the audit procedure advances the epoch number by one.
Let e denote the epoch number, which is set to be 1 initially
and has an upper bound e,,x. To issue receipts, }V samples
random field elements {r;} and sends each user Uf; the tuple
(r4,0;) where o; is the signature on r; under V’s key. When
users spend, the prover P verifies the signature and collects
the receipts. At audit time, it proves that it counted a hidden
subset of the receipts correctly while revealing only the total
count of collected receipts, denoted k, in this epoch, and
proves that no user is counted twice across epochs. After an
audit, both P and V increase the epoch number by 1.

This protocol realizes the ideal functionality Fyagr: it
enables an honest V to get the exact number of spent receipts,
and hides the exact users who spent the receipts from any
V), and only the count k is revealed. The main cryptographic
challenge is to guarantee that no user will be counted more
than once across all epochs, even if a malicious user submits
receipts across multiple epochs, in an attempt to inflate the
count. We achieve this by accumulating a commitment to
the bit vector and performing disjointness checks per epoch.

Setup. P-VAR requires a trusted setup to generate the
common reference string (CRS) for the KZG polynomial
commitment scheme. A trusted party runs the Setup algorithm
Setup(1*,n), where X is the security parameter and n
is the number of users. The algorithm produces public
parameters for the digital signature scheme DS and the
CRS for the KZG commitment scheme. It first samples
pairing-friendly groups (Gi, Gz, Gr) with a bilinear map
e : G1 x Go — Gp and an associated scalar field F. Fix
uniformly random generators g1 € Gy and h,go € Go.
Then it chooses a trapdoor T — F and publish powers-ygf-
7 vectors g1 := (91,91, 91)> 92 = (92,93,---, 95),
h := (h,h"™,...,h™ 7). The trapdoor T itself is not pub-
lished. The algorithm also outputs the n-th roots of unity
Q= {l,w,...,w" 1} C FX with vanishing polynomial
Z(x) = Za(r) = [[ocq(r —a) = 2" — 1. For a set of
elements A in a field F, the vanishing polynomial over A
is defined as Z4(z) := [],c 4(z — a). The public CRS is

Setup(1*,n) The input of setup is (1*,n) with X being the
security parameter and n being the number of users. Let
(G1,G2,Gr) be the pairing-friendly groups with bilinear
pairing e : G; x G2 — Gr with A bits of security, and
let IF be the corresponding scalar field. A trusted party other
than P and V computes CRS as follows:

1) Let g1 € G; be a uniformly random generator of G1; let

h, g2 € G2 be uniformly random generators of Go,

2) Sample 7 & .

3) Compute g1 = (91,9{,---,91), g2 =
(92,93,---,93), and h:= (h,h",...,h7).

4) Let Q = {1,w,...,w" '} be the n-th roots of unity of
.

The trusted party outputs public parameters pp :=

(G1,G2,Gr,F,e(--),g91,92,h,Q) to P and V. V samples

(sk,vk) < DS.Gen(1*) and publishes vk to P.

- P initializes a polynomial bo(x) := 0.

- V initializes a commitment cing := g¥, a total count k := 0,
and publishes his chosen maximum number of epochs emax-.

- P and V set epoch number e = 1.

Issue For each e € [emax], P and V run the following:
1) V samples seed. for this epoch. For each i € [n]:

a) V gets m; < PRF(seede;?) and computes o; <
DS.Sign(sk,i||r:|le).

b) V sends receipt rx; . = (ri,e,0;) to user U;. Note
that U/; discards rx; . if they have spent a receipt in
any previous epoch.

2) Let r.(z) be a degree-(n— 1) polynomial with r.(w'™") =

PRF (seed,; i) for i € [n]. V stores cm, := g}*(™).

3) P initializes the received receipt set Re := ().

Spend (epoch e)

1) U; sends rx; . to P.

2) P ignores receipts any epoch ¢ # t, and receipts from
users who have spent receipts in previous epochs.

3) On receiving a receipt rx;,e = (7, €, o) from U;, P checks
DS.Verify(vk, i||7i||e, 03) < 1 and updates R. := R. U
{(r4,4)} if the check passes.

Figure 3: Setup, Issue, and Spend procedures of P-VAR.

pp = (Gh GZ, GT, Fa 6('7 ')7 gdi1,92, h7 Q)a which is given
to both P and V. In addition, V runs DS key generation to
obtain (sk,vk) < DS.Gen(1*) and publishes vk.

P maintains a cumulative polynomial b,(z), whose
evaluation at w'~! denotes whether or not /; has spent
in epochs 1,...,e, ie., b.(w'™') = 1 if U; has spent a
valid receipt in epoch e or prior epochs and b.(w'~') =0
otherwise. } maintains a commitment to b, (), denoted cm,,
and a total count k, initialized to 0. by(x) is initialized to be
the 0 polynomial, and cimy is initialized to be g{. V chooses
and publishes the maximum number of epochs ey .y, and
the epoch number is initialized to be e = 1.

Issuance. For each e € [emax|, V samples a new ran-
dom seed seed.. For each user i € [n], V computes
r; < PRF(seed,;?) and issues a receipt rx; . = (r;, e,0;) to
U; where o; = DS.Sign(sk, r;|le). Let r.(x) be a polynomial

Audit (epoch e)

1) V sends an audit request to P for epoch e. If e > emax,
P and V halt.

2) Receipt commitments. Define (b;)j—; where b; = 1 if
(rs,4) € R for some r;, otherwise b; = 0. Also define
(fi)iz, where f; = r; if (r;,4) € R for some r;, otherwise
fi = 0. P interpolates fc(x) and b.(z) over 2 with
fe(™™) = fi and be(w™') = b;. Then P samples
Pbes Pfe & IF, and defines.
b (@) = b () + s, Z(a),

~

fe(@) = fe(@)+ps. Z ().
P sends cmp, 1 = ¢ emy, 0 = gb ™, emy, =
g7, and the claimed count k. := > bito V.
3) Seed reveal. V sends seed. to P. P interpolates 7. (x) over
2 such that 7 (w'™') = PRF(seed,; i) for i € [n].
4) Correctness proofs.
o (C1) Consistency: P computes gi,c(z) such that
be(z)re(z) = fe(x) + qi,e(x)Z(x). Then P sends
Mie = glln’e " to V. R
« (C2) Bitness: P computes g2 .(x) such that b.(z)(1 —
be(x)) = Z(2)ga,c(x). Then P sends w0 := o2
to V.
« (C3) Cardinality: P computes ¢3,(z),qs,(x) with
deg(qs.e) < n — 2 such that be(z) = gs.e(z)Z(z) +
3,

q,e(z)x + ke - n7*. Then P sends 73, := g; "),

Mae 1= git e, s o 1= h3e (),
5) Disjointness proof.
o (D) Disjointness: P computes gp. such that

be(2)be—1(x) = Z(x)gp,c(x). Then P sends mp e :=
ap,e(T

g1 ' to V.

6) Verifier checks. V accepts the claimed count k. in this
epoch if and only if the following checks pass:

« (C1) Consistency: €(7r1,e7QQZ<T>) - e(emy,, g2) Z

re(T)
e(cmbe,1792)
.
« (C2) Bitness: e(cmy, 1, g2/cmp, 2) = e(mae,g2™)
?
and e(cme, 1, 92) = e(g1,cmy, 2).
« (C3) Cardinality: (3., 927)
=1 ?
e(gr™ g2) =
6(71—4167 h) = e(gh 7T5»€)'
s . Z(r)y 2 -
« (D) Disjointness: e(mp,c,g5 ") = e(cmyp,,cMe_1)
7) Updates. P updates be () := be—1(x) + be (x). V updates
CcMme := cMme—_1 - cmyp, and k := k + k.. They both update
the epoch number e := e + 1.

6(71-4767 g;)
e(cmbe,l,gg), and

Figure 4: Audit procedure of P-VAR.

of degree (n— 1) with r.(w’~!) = PRF(seed,;) for i € [n].
V computes cm,, = g;° ™) € G,, and P initializes the set
of received receipts for this epoch to be R, := ().

Deployment note. For simplicity of exposition, the spec-
ification above generates all epoch receipts up front (e.g.,
distributing {rx; ¢ }icin], ccfema,] at Onboarding). In practice,
the same security and privacy guarantees hold if receipts are
streamed on demand: at the start of epoch e, V sends the
epoch’s receipt batch to P, who relays receipts only to users

who have not yet submitted in prior epochs. This reduces user
storage and issuance bandwidth without changing any audit
proofs or verification checks. This optimization is suitable
for applications where users receive receipts from the service
provider (e.g., see §6.1). We discuss streaming delivery of
receipts in §9.

Spending. Before spending, user /; interacts with P to
learn the current epoch number e. To spend for this epoch,
U; submits her receipt rx; . = (r;,e,0;) to P, who in turn
checks if DS.Verify(vk, i||r| e, o) Z 1. If the check passes,
P adds the receipt (r;,4) to R.. P ignores all receipts that
are not from epoch e, and receipts from users who have
spent in previous epochs.

Audit. To audit the total number of spent receipts in epoch
e, V first sends an audit request to P. If the current epoch
number e > ey, both P and V halt. Otherwise, P and V
proceed as follows.

Receipt commitments. First, P commits to the receipts
it actually received. Let by,...,by € {0,1} be the bits
indicating whether user U;’s receipt has been received in
this epoch, i.e., b; = 1 if and only if (r;,7) € Re. Define
f17...,fN such at fz = r; if (’I"i,i) € R, and fz =0
otherwise. P interpolates f.(z) and b.(x) over Q with
fe(w™1) = f; and be(w*™!) = b;. Then P commits blindly
to be(z), fe(x) by sampling the blinding factors py, , py, EF

= O, amy g 1= G
cmy, = g{e(T) where be(z) = be(z) + pp,Z(x) and
fe(z) == fe(x) + py. Z(x). That is, cmy, 1,cmp, 2, cmy,
are blinded commitments to b.(x) and f.(x) respectively.
Then P computes the received receipt count k := > . b;
and sends (cmy 1,cmp o, cmy, k) to V.

and computing cmy,_ 1 , and

Seed reveal. The verifier stores the received commitments
locally and then reveals seed. to P. From the seed, P inter-
polates the polynomial 7 () with r.(w?~1) = PRF(seed.;1)
for i € [n].

Correctness proofs. P computes the following proofs

(T1,e, T2,e, T3¢, ™D,), and sends them to V.

« (C1) Consistency of f.(z) with b.(x) and r.(x). First, P
needs to show that f is consistent with r, i.e., f; = b;-r; for
all i € [n]. This is implied by the existance of a polynomial
q1,e(x) such that be(z) - re(x) — fe(z) = q1.e(x) - Z(x).

P sends the proof 71 . = g{*“'"’ to V, who verifies by
re(‘r))

e(ﬂ-l,eagQZ(T)) ' G(Cmfe,gg) ; e(cmbe,laQQ
e (C2) Bitness of b.(x). Second, P shows that b.(x)

evaluates to {0, 1} over © with the proof m. = %>\,

where be(z)(1 — be(z)) = Z(x)g2,(x). The proof is ver-

ified by checking e(cmy, 1, g2/cmyp, 2) z e(7r276,gQZ(T))

and e(cmp, 1,92) . e(g1,cmy, 2). This ensures that
b; € {0,1} and that cm; 1, cmy 2 are consistent.

e (C3) Cardinality. Next, P shows that there are exactly
k. non-zero elements among the b;s via univariate sum-
check [10]. P constructs polynolnials g3, and g4, with
deg(qae) < m — 2, such that b.(z) = g3.(x)Z(z) +

2qse(x) + ke - n~'. P sends the proofs w3, =

g‘f“m, Moo =g 15 . = h®e() 10V, who verifies
?

by checking e(mac,g; ")) - (e, g3) - e(gf ™ g2) =
e(cmp, 1,92) and e(mye, h) L e(g1,7s,e). The first
equation binds b.(z) to k. through univariate sumcheck;
the second certifies that deg(gs) < mn — 2.

« (D) Disjointness proof. To make sure no users who
have already been counted in previous epochs are double-
counted in this epoch, P computes a disjointness proof
showing that b, is not overlapping with b._1(z) when
evaluated over (2. Specifically, P computes gp (z) such
that b1 (2)be(z) = Z(2)qp.c(x). The prover sends the

proof mp. = gi”°"’ to V, which is verified with
? - .
e(wD,gQZ(T)) = e(cmyp,, cm._1). If there exists a user U;

who is counted twice by P in epoch e and in previous
epochs, we have b._1(w'™") =1 and b.(w'"') =1, and
be—1(x)be(z) is not divisible by Z(x).

Verification and updates. V accepts the count k if all of the
above checks pass. Then, P and V update their recorded
values accordingly: P updates b.(z) := be_1(z) + be(z),
and V updates cm, := cm_j - cmy, and k := k + k., and
the protocol enters the next epoch.

Efficiency. To issue receipts, the total computation of V is
O(emaxnlogn) field operations and O(n) group operations.
To run an audit each epoch, P performs O(nlogn) field
operations and O(n) group operations, and V runs O(1)
bilinear pairings and group operations to verify proofs.

Accuracy. P-VAR enables the prover to prove the exact
number of spent receipts. Therefore, P-VAR is 1-accurate,
per the definition of accuracy in §3.

5.2. Security

In this section, we prove security of P-VAR. Concretely,
P-VAR ensures that a malicious prover cannot convince an
honest verifier of an audit count larger than the number
of received receipts, and the audit proof does not reveal
anything — beyond the count — to a semi-honest verifier.

Theorem 2. The P-VAR protocol presented in Figs. 3 and 4
realizes the ideal functionality Fyar, under static corruptions,
a semi-honest verifier and malicious prover and users.

Proof. Let A denote the adversary, and S denote the sim-
ulator. If all parties are honest, then S does not need to
simulate anything. On the other hand, if both P and V are
corrupted, then this case is out of scope per our adversarial
model (see §3.2). We thus consider three corruption cases,
disjoint from the two cases above. Let sid be the session
identifier.

Case 1. P and V are honest, but a set Uz of users are
corrupted. In this case, A (controlling Ue) is malicious. We
construct the simulator S as follows.

Initialize. First, S gets the public parameters pp from the
environment and gives pp to .A. Then S simulates A to get the

set Ue of corrupted users and sends message (sid, INIT, Ue)
to Fyar. Then S samples (sk,vk) < DS.Gen(1*). S
initializes a set of corrupted users who have spent their
receipts, 1.

Issue. During the issue procedure, for all ; € Ue, S sends
r; := PRF(seed.;%) and the corresponding signature o;
under vk to A for all e € [emax]-

Spend. During the spend procedure, for all i € U¢, S verifies
the spent receipt (if any). If the receipt verifies and U ¢ R, S
sends (sid, SPEND,) to Fyar and updates R’ := R’ U {U}.

Audit. S does nothing during the audit procedure.

We argue that the receipt verifies if and only if the r;
and o; are exactly what S distributes to a malicious user
U;. This is because o; = DS.Sign(sk,i||r;|le), and by the
unforgeability of the DS scheme, o; will verify if and only
if (r;,0;) is what is sent by S to U;. Therefore, R is the
same in the ideal world and in the real world. Since P and
V are honest, we have that the output of honest parties is
the same in both worlds. Finally, since S exactly performs
the issuance procedure of P-VAR, and using the security of
PRFs, the view of A is the same in both worlds for the 7;
and o; that each corrupted user receives.

Case 2. V is honest, but P and a set Uz of users are
corrupted. In this case, A (controlling P and U¢) is malicious.
We construct the simulator S as follows.

Initialize. First, S gets the public parameters pp from the
environment and gives pp to .A. Then S simulates A to get the
set Uc of corrupted users and sends message (sid, INIT, Ue)
to Fvar. Then S samples (sk, vk) < DS.Gen(1*) and sends
vk to A, as if it came from V. S initializes a set of honest
users who spent their receipts Ry = {J, and a set of corrupted
users who spent their receipts R’ = (). Finally, S initializes
a variable e = 1, denoting the current epoch.

Issue. Upon receiving (sid, ISSUE, T, emayx) from Fyag, for
each e € [emax], S samples a random seed seed, and stores
it, and for all U; € Ug, S sends r; := PRF(seed.;4) and the
corresponding signature o; under vk to A.

Spend. Upon receiving (sid, SPEND, ;) from Fyar, S com-
putes r; = PRF(seed,;%) and o; = DS.Sign(sky,i||r|e),
and sends (r;,0;) to A as if it came from U;. S updates
Ry =Ry U {U,}

Audit. Upon receiving message (sid, AUDITREQ) from Fyag,
S sends an audit request to A as if it came from V. S runs
the audit procedure as the verifier with A. If e < e, and
the verification passes, and k. is output of the simulated
verifier, S updates k := k+ k. sends (sid, AUDITRESP, 1, k)
to Fvar; otherwise, S sends (sid, AUDITRESP, 0, k) to Fyar,
where k is whatever message A sends in step 2 in Fig. 4 (0 if
no message/invalid message is received). If the proof verifies,
we discuss two cases. In the first case, if k > |Ry|+|R/|, S
selects k — (|Ry| + |R'|) users in Ue \ R’ as R”. For each
of such U; € R”, S sends (sid, SPENDEXTRA, ;) to Fyar-
Then S updates R’ := R’ U R”. In the second case, i.e.,
k <|Ry|+ |R'|, S does nothing. At the end, S increments
e by 1, and updates cm, accordingly.

Now we argue that the view of A is the same in the
ideal world and in the real world. During Issue, for each
U; € Ug, using security of PRFs and DS, the view of A of
the corrupted users is the same in both worlds for r; and o;.
During Spend, using security of PRFs and DS, the view of
A is the same in both worlds for r; and o; of the received
receipts from honest users by the corrupted P. During Audit,
since seed is uniformly randomly sampled, the view of A is
the same in both worlds.

Finally, we argue that the output of V is the same in the
real world and in the ideal world. In the ideal world, the
output of V is (sid, AUDITOK, k) if and only if the output
count k. of P in this epoch is not greater than the total
number of remaining corrupted users and the number of
honest users who spent their receipts in this epoch, and
b = 1. It suffices to show that in no case can A interact with
S such that S outputs (sid, AUDITRESP, 1, k) and violates
this predicate. Assuming the hardness of q-SDH, in the AGM
model, by Theorem 5.1 in the work of Das et al. [28], if
V accepts the proof, except with negligible probability we
must have (1) be(z)(1 — be(2)) = Z(z) - g2,e(z) for some
polynomial g2c(z), (2) fe(x) + q1e(x)Z () = be(2)re()
for some polynomial ¢; (z), 3) be(x) = g3.(x)Z(z) +
que(r)r + ke - n~1 for some polynomial ¢3.(z) and
24,8(33), (4) the degree of g4, is at most n — 2, and (5)
be—1(2)be(x) = Z(2)qp,e(z) for some polynomial gp, ().
(3) and (4) imply that) _,b(a) = k. according to the
correctness of the univariate sumcheck [10]. (1) implies that
the vector b := (by,...,b,) has all entries being 0 or 1.
Then (2) implies that the vector f := (fi,..., f,) satisfies
bof=r.:=(r,...,ry). Since r; are sampled from F,
only with negligible probability .A can have f; = r; without
receiving a receipt from Uf; from S. Therefore, we must have
except with negligible probability that A cannot interact with
S such that S outputs (sid, AUDITRESP, 1, k) with k > |R|.

Case 3. P is honest, but V and a set Ug of users are
corrupted. Recall that our threat model assumes V is semi-
honest, thus, in this case, A (controlling V and Ug) is semi-
honest. We construct the simulator S as follows.

Initialize. First, S gets the public parameters pp and gives pp
to A. Then S simulates A to get the set U of corrupted users
and the verification key vk meant for P. S stores vk and
sends message (sid, INIT, Ug, emax) to Fyar. S initializes a
set of users who spent their receipts R = (), and an epoch
number e = 1. § keeps track of sj, initialized to be 0.

Issue. Upon message (sid, ISSUE, T, emax) from Fyar, S
gets from A the seed seed, for all e € [eax]-

Spend. For U € Ue, S verifies the spent receipt (if any). If
the receipt verifies, S sends (sid, SPEND,) to Fyag.

Audit. Upon message (sid, AUDITOK, k) from Fyar, S
simulates the audit procedure. If e > ep,,x, S does nothing
and halts. Otherwise, S gets k., the claimed count in this
epoch. S selects a set of random users U, of size k. that
does not overlap with the previous epoch’s simulated users,
and proceeds with the audit protocol with A as the prover.

Define the masked scalars s, := be(7),te = fo(7).
Since the verifier controlled by A is semi-honest, the
outputs of honest parties are the same in the ideal world
and in the real world. We now argue that the view of
A is the same in both worlds. Because p,. and pg.
are uniform and Z(7) # 0, both s.,t. are uniform in F
and independent of the underlying witness (b, f.). The
commitments (cmy, 1,Cmy, 2,cmy,) are therefore distributed
as (¢3¢, g5°, i), independent of the support of b,.

Moreover, each quotient proof is a commitment to
a polynomial whose evaluation at 7 is a deterministic
function of (sc,%.) and public values (and of the ac-
cumulator value b._1(7) for disjointness). More specifi-
cally, (C1) enforces b.(7)r.(7) — fe(7) = q1,e(7)Z(7),
SO q1,(7) is determined by (se,tc) and public 7(7);
(C2) enforces be(7)(1 — be(T)) = qo,e(T)Z(T), 80 ga,e(T)
is determined by s.; (C3) and the low-degree certificate
constrain (gs.¢(7), ga(7)) only through the linear relation
Se = q3,e(T) Z(T)+qua,c(T)T+ken™1; since s, is uniform, the
resulting group elements leak no additional information about
be’s support; (D) depends on b._1(7), which is uniform by
induction because b._1(7) is a sum of independent uniforms
s; from earlier epochs. Therefore, the joint distribution of
all prover messages in epoch e depends only on (k.,seed.)
and fresh uniform masks, not on which indices are selected.

O

5.3. Supporting Dynamic User Sets

In §5.1, the runtime of P and V depends on the number
of users determined at setup, instead of the actual number
of possible users during audits, which could be way smaller.
This is unnecessarily wasteful since in many applications,
the number of spent receipts grows gradually. It would be
ideal if the efficiency of the audit procedure depended on
the number of actual users. We call this feature “dynamic
user sets”.

Dynamic user model. At the start of epoch e, an active
user set U, is decided by V according to application-specific
eligibility rules. We assume both parties know U.. We
assume monotone growth U._1; C U, with a global cap
N. Let N, := |U,| be the number of active users in epoch
e. Each user U; is associated with an interpolation point w;
for all epochs. The goal is to perform all operations using
polynomials of degree N., rather than N, while preserving
the same soundness and privacy guarantees. For example, if
the system is provisioned for N = 10° users but early epochs
have only 1,000 active users, auditing using 1,000-degree
polynomials yields roughly a 103 x reduction in computation.

Nested interpolation domains. The key requirement is that
for each epoch e, the set of interpolation points for users in
e form an FFT-friendly interpolation domain, while at the
same time, users are not required to be re-associated with a
new interpolation point across epochs. This requires a series
of growing sets of FFT-friendly interpolation domains for
each epoch that form a nested structure, so that each user
is assigned a fixed interpolation point in all epochs. That

is, we need a sequence of points (wl, ...,wy) CFanda
series of {N ()} such that prefixes Q") = {wl, e WG >§»
of length N® form a multlphcatlve subgroup of size NU
In epoch e, we use the smallest Q) with size larger than
N, to perform all polynomial operations. Another property
that follows from the nested structure is that if a user Uf;
(assigned to interpolation point w;) is counted in any epoch,
her point w; is included in the domains of all future epochs.

We show one way to construct such sets. For instance,
with BLS12-381, a pairing-friendly elliptic curve, the scalar
field is F,, with p being a 255-bit prime, and 23?|p — 1, so
a 232-th primitive root of unity w exists. We can therefore
c Q62 with N = 2¢ as follows:
0@ = (1,02}, Q® = Q@ U {2 32"}, QW =
QD U{w?”, w3’ w2 w72}, and so on. Each user U;
is associated with the z -th interpolation point (e.g., user 1
with 1, user 2 with w?" , and so on.) With this nested subset
structure, when the system migrates to a bigger set of users,
the existing users do not need to be re-associated with a
different interpolation point.

Now we are ready to present the protocol.

construct QM) < ...

Setup. We fix a hierarchy of domains as above. Concretely,
choose (w1, ...,wy) C F so that for each i € [¢] the set
Q0 = {w, ... ,wNm} is a multiplicative subgroup of size
NG and Q) ¢ QU+ This ensures the cardinality identity
in (C3) holds over Zg (z) and enables FFT interpolation
on every Q%))

In addition to the standard KZG SRS vectors in Gy
and G for degree N, the CRS publishes, for each i € [],

) , , , (-
a short G, vector h(¥) := (h(’), (R, ,(h(l))TN 2)

with h() & Gy, to certify degree bounds relative to Q(*)
when needed in the audit procedure. Similar to the Setup
procedure in Fig. 3, P initializes by(z) := 0, V initializes
cmg := ¢?, and both P and V set epoch number e = 1.

b}

Issuance. When a new epoch with epoch number e starts, V
issues new receipts to the users in set U.. The interpolation
domain to use is Q. := Q") where i* = min{i : N >
N.}. Let N, := || denote the size of 2. If the domain
grew, we set A, := Q. \ Q._1, which is known to both
parties.

V samples a new random seed seed.. For each ¢ €
[Ne], V computes 7; < PRF(seed,;) and issues a receipt
rXi.e = (74, €,0;) to U; where o; = DS.Sign(sk, i||r;||e). Let
re(x) be a polynomial of degree (N, — 1) with r.(w;—1) =
PRF(seed.; i) for i € [N.]. V computes cm,, = g}*") €
Gy. P initializes the received receipt set for this epoch to
be R, :=

Spending. Identical to the one in §5.1.

Audit. The audit procedure for epoch e starts when 1 sends
an audit request to P. P computes b.(x), be(x), and f.(z)
with R, in the same way as step 2 in Fig. 4, with the interpo-
lation set . replacing €2, and sends (cmp, 1,cmy, 2,cmy,)
and the number of received receipts k. to). After receiving
seed, from V, P also produces correctness proofs (C1-C3)
as step 4 in Fig. 4, which are verified in the same way.

Setup(1*, N') Runs all Setup steps in Fig. 3, except for the
following changes to the CRS:

- Let RV, R |

Computes a sequence of elements (w1, ...,wn) in F such
that Q@) .= {w1,..., Wy} is a multiplicative subgroup
of Fand N < NG+ for j < ¢ .

h® be uniformly random generat?r)s of
Go. Compute and publish A" := (b ..., (h(i))TN ' 72)
to P and V.

Issue (epoch e)

1Y)

2)

3)

4)

Determine interpolation set. Let N. be the number of
receipts to be issued in this epoch. Note that if a user has
received a receipt in epoch (¢t — 1), they must be issued
receipt in epoch e. Let Q. := Q@ and N, := |Q®| such
that 7 is the smallest index with N9 > N.. Note that Q). =
{wi,...,wn,}. If Qc = Qe_1, the rest of the protocol is
the same as Fig. 3; otherwise, let Ac := Q¢ \ Qe—1.

V samples seed.. For each user i € [n]:

-V gets r; < PRF(seed.;i) and computes o; <
DS.Sign(sk,i||r:|le).

-V sends receipt rx; . := (1;, e,0;) to user U;. Note that
U; discards rx; . if they have spent a receipt in a previous
epoch.

Let r¢(z) be a degree-(N, — 1) polynomial with r(w;) =

PRF (seed,;) for i € [N.]. V computes cm,, := g}<{™).

‘P initializes the received receipt set R. := (.

Spend (epoch e) Identical to the Spend procedure in Fig. 3.
Audit (epoch e)

1y
2)

3)

4)

5)

6)

7

8)

V sends an audit request to P. N

Receipt commitments. P computes be (), be(z), fe(x) with

Re as step 2 in Fig. 4, with the interpolation points being

Q. instead of 2. P then sends (cmy, 1, cmp, 2,cmy,) and

the number of received receipts ke to V.

Seed reveal. V sends seed to P. P derives r; and interpo-

lates re(x) over Q..

Correctness proofs. P runs (C1), (C2) and (C3) as step 4

in Fig. 3.

Extension proofs.

o (E) Extension: P interpolates ce(x) over € such
that ce(z)|zca. , = be(z), and ¢(z)|ceca, = 0. The

prover computes gz, (), gr () such that ¢(xz) —be(x) =
Za, 1 ()qr(z) and c(z) = Za.(x)q (). Then P
sends cm. = ¢, 7y == g% and g = g2 10

V.

Disjoinmess proofs. P runs (D) with ¢(z) replacing be_1

as in Fig. 4.

Verifier checks. V accepts the claimed count k£ in this

epoch if and only if (C1), (C2), (C3), and (D) pass, and

the following check passes

« (E) Extension: e(7rL g 1<T)) < e(eme/cMe_1, g2)
and e(mr, g5 2 ”) £ e(cme, go).

Updates. P updates be(z) := c.(z) +Ee(ac). V updates
cme := cme, - cmp, and k := k + k.. They both update
the epoch number e := e + 1.

Figure 5: P-VAR that supports a dynamic user set.

The challenge arises with the disjointness proof (D). The
problem is that b._1(x) is defined over Q._1, so it and does
not necessarily evaluates to 0 over A,. Before running the
disjointness proofs the prover needs extend b._;(z) from
Qc_1 to ., with an extension proof: The prover interpolates
ce(z) of degree N, such that c.(z)|zeq._, = be—1 and
Ce(7)|zea, = 0, and commits cm,, = gfem. P needs to
prove that the extension is performed correctly by proving
two divisibility relations: (1) there exists a polynomial ¢, ()
such that c. () —be—1(x) = Zq,_, (x)qr(x) and (2) there ex-
ists a polynomial gg(z) such that c.(z) = Za,_(z)qr(x). P
sends the proofs 7 := g% and 7 := ¢?*") t0 V, which
are checked with e(g92(7), gZ2e-1(7)) L e(cme, /cMe_1,9)
and e(g9r(7) gZac (7)) < e(cm,, g). This step certify that
the extended polynomial c.(x) agrees with b._1(x) on Q.1
and vanishes on A..

Then P runs disjointness proof showing that b, is not
overlapping with c.(x) when evaluated over €2, as in §5.1,
with ¢, (z) replacing b._1 (x). Afterwards, the verifier verifies
the proofs. If all checks pass, they update the recorded values
accordingly. P updates b.(x) := ¢¢(z)+b.(z), and V updates
cme :=cme, -cmp, and k :=Fk + k..

Efficiency. In epoch e, issuance and audit over the current
domain €. cost O(N, log N.) field operations and O(N,)
group operations for P, with O(1) pairings (and constant-
size proofs) for V. In comparison, if the domain is fixed at
the global maximum N, every epoch costs O(NV log N) field
operations and O(N) group operations for P, regardless of
how many users are active.

Savings of the dynamic user set are significant when the
active user sets grow over time. Provisioned for N = 10 but
auditing epochs with N, = 102 active users yields a speedup
of at least 1\% =~ % ~ 1,000x. Over T' = 12 epochs,
suppose N, doubles each epoch from 10 up to 10°, then
with dynamic user sets, the total prover time is Zthl N, =
2N group operations and Zthl N,log N, =~ 2N log N field
operations; without dynamic user sets, the total prover time
is T'- N group operations and 7" - N log N field operations,
so the total prover time is reduced by at least 6x.

6. Applications

In this section, we discuss three applications of VAR to
enable or enhance auditing of trusted platforms.

6.1. Auditing Social Media Platforms

Content creators rely on social media platforms such as
Facebook, TikTok, and YouTube for their livelihood [30].
These large platforms, however, offer little verifiability
and transparency about how contents are prioritized and
monetized, leading to widespread concerns [11], [12], [13],
[14], [15], [16]. Recent regulations, such as the EU’s Digital
Services Act, call for greater scrutiny and auditing, but the
specific technical means are unclear. VAR can potentially

fill a gap by offering a means to audit content delivery on
social media platforms.

One area where VAR can be directly applied is to audit
the billing of paid boosts. Content creators pay to increase
the exposure of their content, through services such as Boost
Posts on Instagram, Promote on TikTok, Promoted Posts in
X [31], [32], [33]. Self-reported viewship is problematic as
the platforms stand to gain by inflating. Another application
of VAR is to detect stealth suppression attacks, a strengthened
form of so-called “shadow banning,” in which the platform
quietly limits the delivery of a creator’s content while keeping
the user interface, including reported views and engagement
statistics, looking normal.

Mapping to VAR. VAR can be applied as shown in Fig. 6.
The content creator acts as the Verifier V, the social platform
plays the role of the Prover P, and the viewers form the
user set U. The creator first issues (encrypted) content-
specific receipts to eligible viewers (e.g., followers) by
embedding them in the content they upload to P. When the
platform delivers the content to a viewer, the viewer retrieves
and spends the content-specific receipt by decrypting and
revealing it to the platform. The platform collects receipts to
be used at subsequent audits. At any point in time after
issuance, the creator can make an audit request to the
platform. The platform and the creator execute the VAR
audit procedure at the end of which, the creator should be
convinced of the count claimed by the platform.

X 0]

@

JE (content,{Enc(sk;, 1)} ;)
-—>
E Audit d
Followers

Social media platform (User)
(Prover)

(content, Enc(sk;, 1))

Receipt (r))

Content Creator
(Issuer)

Figure 6: VAR for auditing social media platforms.

A few points to discuss. First, implementing VAR re-
quires modifying the client software (e.g., in the form of
a modified app or a browser extension). The incentives
for development efforts may come from their potential to
improve the trustworthiness of the platforms. Second, VAR
requires the content creator and its followers to have well-
known public keys. In emergent social media platforms with
native support for DID [34], such as BlueSky [35] (and
ATProtocol variants) and Web3 social protocols (Lens [36],
Farcaster [37]), each user has a long-term public key stored
in their DID profile. For legacy platforms using platform-
specific identities, such as YouTube, binding public keys to a
centralized identity is not directly supported. One possibility
is for users to send their public key in a direct message to
the content creator, or publish it at a public bulletin board
accompanied by a proof of account ownership using an
oracle protocol [38], [39], [40].

Finally, VAR does not prevent inflation due to bots
created by users or the platform (which is permitted by
our model, where we view such malicious users as being
part of the malicious platform). However, a content creator
can impose further eligibility conditions to weed out bots,

such as ignoring the views from new or inactive accounts.
The point is that the verifier of VAR is also the issuer, so
they can choose the universe of users.

6.2. Outcome-based Reimbursement

This class of applications extends the motivating example
of company-sponsored benefits in §1 and models scenarios
in which a funder (e.g., an employer) reimburses a third-
party service provider based on usage by beneficiaries (e.g.,
employees), a practice we call outcome-based reimbursement.

This model captures many public-benefit programs that
reimburse independent organizations for services to eligible
users. For example, public transit agencies contract with taxi
or shared-mobility operators and reimburse them for provid-
ing discounted or voucher-based rides to eligible riders (e.g.,
seniors or riders with disabilities) [41]. Workforce agencies
under programs such as WIOA [42] pay approved training
providers on a per-participant or per-hour basis for job-
training and work-based learning activities. Health and social-
services agencies similarly reimburse community behavioral
health clinics on a per-session basis for psychotherapy and
related services delivered to eligible clients [43].

Mapping to VAR. In all of these scenarios, the issuer
chooses the set of eligible users and can run VAR to audit
the outcome. The reimbursing entity (e.g., employer, transit
authority) acts as the issuer and verifier, V. Each provider
(counselor, transit operator) runs a prover P, and eligible
beneficiaries form the user set U. During issuance,) mints
service-specific receipts and makes them available to each
user in U. When users consume a service, they spend their
receipts at the corresponding prover P, which adds them to
its local VAR instance. At audit time, }V and P execute the
VAR audit procedure: P proves that the number of receipts
it holds matches the requested reimbursement for a given
service and time window and V verifies this claim while
learning only the aggregate count.

6.3. Read Receipt for Broadcast Messages

Motivation. When broadcast channels (e.g., Telegram
groups, WeChat groups) are used in sensitive contexts, such
as organizing activist events and whistleblowing, a malicious
or coerced broadcast platform can disrupt these activities
by dropping messages to selected recipients (e.g., users in a
specific country or region). In the absence of a verifiable read-
receipt mechanism, such suppression can happen silently,
with the broadcaster unalerted. VAR enables the sender to
gain cryptographic assurance that her message has been
delivered, and if not, switch to another platform. Note that
privacy and anonymity are especially important here in
these contexts: recipients should not be linked to a sensitive
message by the receipt, which VAR ensures.

Mapping to VAR. The mapping from the group messaging

application to VAR is quite similar to the social media setting.
In this case, the message sender acts as the VAR issuer and

verifier, the remaining group chat members act as VAR users,
and the messaging platform acts as the VAR prover. The
performance profile is different, though, as group chats tend
to be smaller than content creators’ follower sets, and the
protocol takes place more frequently.

7. Implementation and Evaluation

In this section, we report on implementation details and
the performance evaluation of P-VAR and S-VAR.

7.1. Implementation

7.1.1. Cryptographic primitives. We implement all schemes
(ours and baselines) in Rust (rustc v1.91.1) us-
ing arkworks v0.5 as the main cryptography library.
For P-VAR, the pairing-friendly groups Gi,Gs and
the scalar field ' are instantiated by BLS12-381 from
ark-bls12-381 v0.5. We use Ed25519 [44], [45] im-
plemented with ed25519-dalek v2.2.0 to instantiate
digital signatures and SHA-256 to instantiate PRFs and hash
functions. Our field and group choices across both schemes
provide 128 bit-security.

For S-VAR, we implement a standalone multi-secret-
sharing module with efficient sharing and reconstruction
algorithms. The field we use is the scalar field of BN254
instantiated with ark-bn254 v0.5. To reconstruct ef-
ficiently, we use the barycentric Lagrange formula [8].
Specifically, given n evaluation points {(x;, f(2:))}ie[n]s
we reconstruct at z = 0:

Z¢:1(wi/ x;)

where w; = 1/[[,;(z; — x;) are the barycentric weights.
With M(z) = [[,_,(x — x;), the weights can be written
as w; = w(w;), where w(z) = 3. To compute all
M’ (z;) efficiently, we build a subproduct tree [9] of the
factors (x — ;) and form M (x) at the root in O(C(n)logn)
time — here C'(n) is the cost of multiplying two n-degree
polynomials. We differentiate once, and perform multi-point
evaluation [9] of the derivative M’(z) at the x;’s using
the same tree, again in O(C(n)logn) time. For modular
reductions along the tree, we use the standard reversal and
Newton series inversion trick [46] so that reduction modulo
a degree-m node costs O(C(m)).

7.1.2. Baselines. We compare to two baselines: the PAS
scheme [5] and a scheme based on generic SNARK proofs.

Baseline 1: Predicate aggregate signatures. As described
in §3.3, the PAS scheme of Qiu et al. [5] is a close enough
baseline as it achieves all properties but deniability. Since
the original paper did not provide an implementation, we
implement the core inner-product arguments in Rust to obtain
a lower bound on the runtime.

Baseline 2: Generic SNARK with aggregate signatures.
Our second baseline achieves all security properties (with
some weakening) using a digital signature scheme with

efficient aggregation and generic SNARK, which P will use

to attest that he has received the claimed number of receipts.

We introduce this baseline solution in §3.3 and describe it
in more detail here. Each user U/; has a signature key pair
(sks, pk;); let pk = (pk;)ic[n) be the vector of all user public
keys. Each receipt is of the form rx; = (sid, 0;), where o; is
user U;’s signature on message sid (using sk;). Note that the
issuance process is simply a local signing operation. As users
spend, P maintains a bit vector b = (b;);c[n) Where b; =1
if and only if U/; has spent. At audit time, P computes the
count claimed = Zie[n] b;, an aggregate signature ¢ over
the received user signatures, the corresponding aggregate
public key apk, and finally a zk-SNARK 7 for the relation

x = (pk, claimed, apk), w="b:

b; € {0,1} Vi € [n] A

apk = AggPK((pki)iE[n];bizl) A ’
> ie[n) bi = claimed

(z,w

where AggPK is the algorithm for public key aggregation.

P sends (claimed, &,) to V, who verifies 7 against public
inputs, verifies & against apk, and checks that pk is indeed
the vector of all user public keys. We note that apk might
not hide the spend set and hurt user privacy; indeed, BLS
aggregate public keys are deterministic, so a semi-honest V
can de-anonymize users by brute-forcing apk.

We implement this baseline using Noir [18]
v1.0.0-beta.1l5, an open-source domain-specific
language (DSL) for writing SNARK circuits. We use Aztec’s
Barretenberg [47], Noir’s default proving backend, and the
UltraHonk proving system. Our implementation includes
the core zk-SNARK proof generation and verification, i.e.,
we omit the signature aggregation and verification. Thus
our benchmark provides a lower bound on the proving and
verification time for this baseline.

Choices of baselines. We consider alternative baselines such
as hinTS [29]. While the proof time of hinTS is acceptable,
it requires each user to run a preprocessing procedure with
O(n?) group operations (n is the number of users), making it
infeasible to scale to millions of users. Our benchmark shows
that preprocessing for n = 4,095 takes more than 70 seconds
for each user on a powerful machine (c71.16xlarge). For
n = 220 users, the preprocessing for each user is estimated
to take more than 50 days. Therefore we do not consider
hinTS a baseline for our protocols.

7.2. Experimental setup

Here, we describe the setup used for our evaluation. All
runtime measurements for a particular operation are averaged
over 10 runs, after 3 warmup runs. We also plot standard
deviations, but they may be too small to be legible.

AWS environments. Depending on the settings, we run
experiments on either a large server (c7i.l6xlarge,
denoted L) or a small server (c7i.xlarge, denoted S).
The S configuration has 4 vCPUs and 8 GiB of memory,
while L provides 64 vCPUs and 128 GiB of memory, both

powered by 4th-generation Intel Xeon Scalable (“‘Sapphire
Rapids”) processors.

Mapping server configurations to applications. Recall that
in our applications, a significant portion of the computation
is done on the prover side. The content creator application
(§6.1) might justify running the prover on the large server
as the prover already maintains significant infrastructure to
serve large user bases. In contrast, the broadcast receipts
(§6.3) and the service reimbursement (§6.2) applications
are expected to generally have fewer users and presumably
less well-resourced provers, for whom we use the small
servers. For issuance and verification (which occurs within
the same party), corporations and governments wishing to
audit reimbursements may use a large issuer. In contrast,
the moderators who issue receipts to receive read receipts
and social media content creators might use constrained
hardware, represented by our small server.

7.3. Issuance performance

We first report on the performance of the issuance
procedure. Note that our baselines do not require explicit
issuance (as they only need each user to hold a private/public
key, which is assumed to be known ahead of time by the
issuer or verifier), so we exclude them from the evaluation.

For our protocols, two metrics are of interest: the band-
width consumption and the runtime of the issuer.

Bandwidth. The issuer bandwidth is the total amount of data
sent by the issuer in supplying each user with receipts. Recall
from §4, that for S-VAR, a receipt consists of a random value
and a signature, regardless of the number of thresholds. On
top of the n receipts, the S-VAR issuer also sends auxiliary
data aux to the prover. In P-VAR instead, there are as many
per-user receipts as there are supported epochs, and each
receipt is also a random value and a signature.

Issuance time. The runtime of issuance is defined as
the time taken to compute all receipts for all users. The
issuance procedure for S-VAR primarily consists of FFT-
based polynomial interpolation and polynomial evaluation.
For P-VAR, it mainly consists of group operations. Our
reported issuance times include the signing of receipts.

Evaluation methods. For S-VAR, we measure issuer
bandwidth and time for a varying number of thresholds
k € {1,5,10,15,20}. For issuer bandwidth, our calculations
assume a geometric schedule, as described in §4.4; that is,
given n and k, we calculate r = n'/* and set thresholds
as t;y1 = t; - r, with ¢4z = n. Note that a geometric
schedule incurs a higher bandwidth compared to an arithmetic
schedule. For issuer time, we set ¢; = 0 for all 4 € [k], which
requires generating the maximum number of public points
(n) for each ¢;, and thus incurs the maximum size for aux; as
such, our benchmarks provide an upper bound on the issuance
time incurred by the geometric schedule. For P-VAR, we
measure issuer bandwidth and time in the regime where 1
audit is supported.

Evaluation results. The results are shown in Figs. 7 and 8.

)

g > -eo-S:1

= g 20 1 —o—L: 1

=) .

2 = S: 20

'g 5} L: 20

= 2 10H

m <

I 2 !

g k2 #

@ [}

4 R0 v 0 e-0-0-0-6 PECE RS=C
210 915 920 210 915 920

Number of Users Number of Users

(a) S-VAR issuer bandwidth with (b) S-VAR issuance time. We
varying numbers of thresholds. only show 1 and 20 thresholds
to reduce clutter.

Figure 7: Issuer bandwidth and time for S-VAR as a function
of the number n of users, with a varying number of supported
thresholds. L = ¢7i.16xlarge, S = c7i.xlarge.

S-VAR. Fig. 7a shows the issuer bandwidth of S-VAR as a
function of the number n of users, with a varying number
of thresholds k& € {1,5,10,15,20}. Concretely, for small
scale, such as 2'° users, issuance in S-VAR consumes
0.098 MB in bandwidth for 1 threshold, and 0.642 MB for
20 thresholds. For large scale, such as 220 (around one
million) users, issuance in S-VAR consumes 100.6 MB in
bandwidth for 1 threshold, and 704.6 MB for 20 thresholds.
With the chosen geometric schedule, issuer bandwidth in
S-VAR grows approximately linearly in n, since the user
receipts dominate. Similarly, bandwidth grows approximately
linearly in the number of thresholds k; for instance, each
additional threshold contributes about 32 MB at n = 220,

Figure 7b shows the issuance time of S-VAR on large
and small servers, in the 1- and 20-threshold regimes (to
reduce clutter, we skipped threshold numbers in between).
Issuance time in S-VAR scales roughly linearly with n, and
also with the number of supported thresholds k. The runtime
is concretely efficient; in the largest setting we benchmarked
— one million users and 20 thresholds — it takes only 23.15s
(small VM) and 1.876s (large VM). We found that EdADSA
signing dominates the issuer runtime on the small VM —
about 90% of total issuance time — whereas on the large
VM it contributes only around 50% of the runtime.

P-VAR. Both issuance bandwidth and time in P-VAR scale
linearly with n. Fig. 8a shows the issuer bandwidth of P-VAR
for one epoch. Concretely, issuance in P-VAR consumes
0.106 MB in bandwidth for 20 users and 109.05 MB for
220 ysers.

Figure 8b shows the issuance time. For 210 ygers, is-
suance takes 0.023s on the small VM and 0.005s on the
large VM; for 220 ysers, issuance takes 16.156 s on the small
VM and 1.516s on the large VM.

For reference, Fig. 8b shows the time it takes to produce
n Ed25519 signatures, as a function of the number n of
users. Signing contributes around 50% (small VM) and 33%
(large VM) to the total issuance time. Concretely, producing
210 signatures takes 0.008s on the small VM and 0.001s
on the large VM, and producing 22° signatures takes 7.68s

m

2 100 2
g Q
= =
% =
S 50 8
m <
5 2
g Z
v

= 0

210 215 220

Number of Users

(b) P-VAR issuance time.

Number of Users
(a) P-VAR issuer bandwidth

Figure 8: Issuance bandwidth and time for P-VAR as a
function of the number n of users, in the regime where 1 audit
is supported. Fig. 8b also shows the signing time, which is
part of issuance. L = c7i.16xlarge, S=c7i.xlarge.

on the small VM and 0.58s on the large VM. Recall that
issuance in both S-VAR and P-VAR involves signing each
user receipt individually. In S-VAR, the issuer signs once
per user, regardless of the number of thresholds. Thus, the
measured signing time in Fig. 8b applies to both P-VAR (for
one epoch) and to S-VAR (for any number of thresholds).

7.3.1. Comparison between S-VAR and P-VAR assuming
the same number of supported audits.

The above results evaluate S-VAR and P-VAR separately.
The two schemes have different tradeoffs: S-VAR’s overhead
scales with the precision (the number of thresholds), while
P-VAR'’s scales with the number of support epochs. To fairly
compare them, we choose a regime where the number of
thresholds supported in S-VAR is the same as the supported
epochs in P-VAR. The rationale is that this fixes the number
of audits a verifier can perform, while illustrating the
performance benefit of allowing inexact counting. To be
precise, given n users, we configure P-VAR and S-VAR to
support log, n thresholds and epochs, respectively. We run
S-VAR and P-VAR on small and large servers in the above
comparison regime; the results are shown in Fig. 9.

Bandwidth. Figure 9a shows the bandwidth of S-VAR and

P-VAR as a function of the number n of users. Concretely,

« For 219 users, issuance in S-VAR consumes 0.36 MB in
bandwidth, and P-VAR consumes 1.06 MB.

o For 220 users, issuance in S-VAR consumes 704.6 MB in
bandwidth, and P-VAR consumes 2,181 MB.

A trade-off emerges between the granularity of audits and
the issuer’s bandwidth. In particular, while S-VAR requires
about % of the issuer bandwidth consumed by P-VAR to
support log n audits, P-VAR support exact audit counts, while
S-VAR only supports auditing at powers-of-2 thresholds.

Issuance time. Figure 9b shows the issuance time of S-VAR

and P-VAR on large and small servers. Concretely,

« For 210 users, issuance in S-VAR takes 0.013 s, and P-VAR
takes 0.235s on the small VM.

« For 220 ysers, issuance in S-VAR takes 2.02's, and P-VAR
takes 30.3s on the large VM.

2,000 -

1,000

Issuer Bandwidth (MB)

0210 912 gl4 916 918 920
Number of Users

(a) Issuer bandwidth

100

30 | /

910 912 ola 916 918 920
Number of Users

a 300 | | —e— S-VAR: L 5
Tg’ - - S-VAR: S /!
RS P-VAR:L | | — — —— = '
=200 - T ’

o - m- P-VAR: S o

2

<

2

175}

R

(b) Issuance time. L = ¢7i.16xlarge, S = c7i.xlarge.

Figure 9: Issuer bandwidth and issuance time for S-VAR and P-VAR as a function of the number n of users, in a regime
where S-VAR supports log nn thresholds, and P-VAR supports log n epochs. Note that the number of permissible audits for
both protocols and the particular thresholds for S-VAR are tunable.

Two trends can be observed in this figure. First, P-VAR
performs worse than S-VAR, which is because S-VAR
primarily consists of FFT-based polynomial interpolations
and polynomial evaluations in fields, but P-VAR mainly
consists of group operations that are relatively more expen-
sive. Second, the issuance procedure in both schemes is
embarrassingly parallelizable, and there is roughly a 10x
speedup when running on L (which has 16x more cores
than S). Finally, we observe the same tradeoff as in the
bandwidth comparison: P-VAR requires approximately an
order-of-magnitude higher issuance time but provides more
fine-grained audits. Note that, despite being embarrassingly
parallelizable, our algorithms cannot fully leverage a large
number of cores; thus, the issuance time on L initially is
only 4x better than that on S; however, as the number of
users increases, the ratio approaches 10x.

Storage footprint on issuer and users. At the end of the
issuance procedure, in both schemes, the issuer can discard
the computed receipts and store a constant amount of data
per supported audit, on the order of 100s of bytes for both
S-VAR and P-VAR. Note that in S-VAR, the issuer must
store the threshold schedule but does not need to store all
secrets, as discussed in §4.2. In both schemes, each user
simply stores his issued receipt. In this log n-audits regime,
and for 220 users, the P-VAR user bandwidth is 2.08 kB; in
S-VAR, the user bandwidth is independent of the number of
audits and remains under 100 B.

7.4. Spend and Audit Performance

7.4.1. Spend. In the spend procedure of both S-VAR and
P-VAR, each user simply sends his constant-sized receipt
(96 B for S-VAR and 104 B for P-VAR); therefore, the spend
time and bandwidth are constant.

7.4.2. Proving time. We benchmark the proving time of a
single audit for both schemes and plot the results in Fig. 10.
In order to allow the best possible setting for our baselines,
we only provide baseline benchmarks on our bigger VM
(c7i.16xlarge). For all solutions we benchmark, the

proving time at audit is independent of the number of spent
receipts (n is the total number the system supports). We
highlight some concrete numbers:

o For 210 users, S-VAR takes 0.076s, and P-VAR takes
0.15s on the small VM.

o For 220 users, S-VAR takes 34s, and P-VAR takes 9.74s
on the large VM.

Comparing against baselines. Our SNARK baseline
numbers presented in Fig. 10 consist of the sum of the time
taken for witness generation and the time for proving. We
were able to benchmark the SNARK variant only for a narrow
band of parameters. At larger parameter sizes, the proving
server either exhausted memory or became unresponsive.
Even within the parameter range where the SNARK baseline
did complete, its proving time lagged behind both S-VAR
and P-VAR by at least an order of magnitude.

The PAS construction exhibits severe performance limita-
tions, with proving time orders of magnitude worse than any
other method we evaluated. One reason is that PAS needs
O(n) pairing operations, which scales poorly and quickly
becomes impractical. At the largest parameter size we tested,
220 the PAS solution’s prover performs 30x worse than
the next-best construction S-VAR. Even on the smaller VM,
S-VAR performs about 9x better than the PAS solution run
on the large server!

Comparing our two solutions. Across all machine con-
figurations we tested, P-VAR delivers lower proving time
than the corresponding S-VAR implementation for a single
audit. While P-VAR is slightly slower than S-VAR for very
small parameters, the trend reverses quickly: beyond the
small-parameter regime, P-VAR outperforms P-VAR across
every machine and every tested setting. The key reason is
the absence of FFT-friendly structure in the S-VAR proving
step. This transforms the polynomial-interpolation domain in
S-VAR into a fragmented and irregular subset, eliminating
the ability to use FFTs and forcing interpolation to proceed
in super-linear time.

Bandwidth. The bandwidth for both solutions is constant
at audit time: 32B in S-VAR and 1.1 kB in P-VAR.

—e— S-VAR: L - e- S-VAR: S —=— P-VAR: L - m- P-VAR: S
SNARK: L SNARK: S ——PAS: L -+4- PAS: S

1,000
800 T

600 |- 7

400 * *

200

Proving Time (s)

150
100

50

0210 912 2'1'4 916 918 920
Number of Users

Figure 10: Prover time for S-VAR and P-VAR. L =
c7i.léxlarge, S = c7i.xlarge. Note the discon-
tinuity in the y-axis, and the change of scale.

Round complexity and latency. For each solution, the
latency added by these proofs is just the proving time,
together with the network latency of any interactions, and
the proof generation time dominates. Per [48], the round trip
latency for a packet over TCP is 150ms, and in the case of
P-VAR the number of rounds for an audit is 2 and thus the
latency is 300ms. In the case of S-VAR, we have a single
round, so only 150ms latency. Both SNARK and PAS are
non-interactive, i.e., one round.

7.4.3. Verification. Next, we consider the audit verification
operations for each solution. The verification times for both
P-VAR and S-VAR are constant and concretely small. The
simplest verification of all the solutions presented here is for
S-VAR, which is a simple equality check for smaller than
32 B strings, taking negligible time (less than 100 ps on both
VMs). The P-VAR verifier runs in about 19ms on the small
VM and about 16ms on the large VM.

On the other hand, the verification time for PAS grows
logarithmically in the number of users (again, as expected),
with verification of an audit for 22° on L taking on average
625ms. The SNARK baseline presented here causes verifi-
cation time to increase linearly with the number of users,
reaching 469ms on L, at 2!6 users. Note that this time can
be shortened to a constant, approximately 28ms by making
the public keys a part of the witness but only at the expense
of significantly higher proving time.

7.5. Summary

Our experiments show that across all metrics, both
our VAR schemes outperform existing, more heavyweight

solutions. At small scale (a thousand users), both schemes
require less than 0.025s for issuance, and less than 0.15s
for audit proving. Our schemes are also concretely fast at
large scale (a million users); Issuance takes less than 2s for
either scheme, and for audit proving time, P-VAR requires
less than 10s and S-VAR requires less than 35s.

Our results also give rise to interesting trade-offs between
our solutions. As we have observed in §7.3, the issuer for
S-VAR runs faster than the issuer for P-VAR when supporting
the same number of audits. This trend is flipped in the proving
stage, where P-VAR outperforms all other solutions on the
respective machines. For a smaller number of users, the
prover time benefit wrought by a bigger machine is not
as readily apparent, but as the number of users grows, the
ratio of the proving time on L to that on S approaches the
difference in the number of cores for each solution. For
smaller numbers of users, the difference between the two
solutions is not as stark.

Thus, an application must select between P-VAR and
S-VAR based on the expected number of users, the size of
the issuer and the size of the prover. For instance, for an
application like §6.2, we would recommend P-VAR, as it
works well with a smaller prover but larger issuer.

8. Related Work

Signature aggregation. Aggregate signatures, most promi-
nently those based on BLS [4], compress multiple signa-
tures on (possibly) distinct messages into a single succinct
signature, enabling efficient verification. As we discuss
in §3.3, plain aggregate signatures lack signer anonymity,
deniability, and an efficient method to produce a proof of
count, and thus do not help towards constructing VAR. Qiu
and Tang propose Predicate Aggregate Signatures (PAS) [5],
allowing users to sign messages individually, and a designated
aggregator to produce a short aggregate signature certifying
that individual signatures are valid and that a public predicate
(e.g., a minimum number of distinct signers) is satisfied.
PAS matches some efficiency and security goals of VAR,
but its inner-product pairing arguments make it significantly
expensive and thus intractable at our million-user scale;
also, it does not achieve deniability, similar to all signature-
based solutions discussed here. We therefore treat PAS as a
conceptual strawman solution in §3.3.

More recent pairing-based threshold signature
schemes [28], [29] offer succinct, weighted, and multi-
threshold signing. In hinTS [29], each user publishes a
“hint” derived from their secret key and the Lagrange basis
polynomials, enabling the aggregator to efficiently prove the
well-formedness of the aggregate public key, via polynomial
commitments and generalized sumcheck-style argument.
This signing and verification efficiency comes at the cost
of O(n) per-user group operations for hint generation and
expensive preprocessing over all hints on the aggregator
side. Among hinTS [29] and the close variant of Das et
al. [28], hinTS is most relevant for us since it offers a
blinded variant that hides the exact set of signers, and this

is why we use it as one of our baselines in §7. Finally, all
three schemes [5], [28], [29] are signature-based and thus

do not provide deniability, which is a core property in VAR.

Privacy-preserving aggregate statistics. One line of work
(see, e.g., [49], [50], [51], [52]) considers the problem of
aggregating the data of many users for statistics, of which a

simple count of how many users spent a token is an example.

Some works such as Acorn [53] have considered checking
the client data for certain invariants (such as ensuring integers
are within a certain range). However, this line of work does
not assume an issuer (who is also the verifier), as in our
case, so it does not include any source of ground truth.
Torres et al. [54] propose a voting-style protocol for
privacy-preserving ad reporting at web scale; clients send
encrypted one-hot ballots under a public key, the ad server
homomorphically aggregates them, and a trusted tallying
party decrypts only aggregate per-add counts. Acharya
et al. [55] introduce non-interactive verifiable aggregation
(NIVA), a new primitive for secure computation of aggregate
statistics over a large population of clients. They construct
an efficient NIVA protocol using inner-product functional
encryption and fully linear PCPs to enforce NP validity
predicates on each client input. However, both works treat
the server as honest for integrity: a malicious server can
inject inputs and thus inflate aggregate counts; guarding

against such prover-side inflation is a central goal in VAR.

Blomer et al. [56] build an anonymous reputation system
where users can rate each product at most once; their system
model, however, relies on a trusted group manager who
controls group public keys and can always open signatures,
whereas VAR aims to avoid such a central authority.

Anonymous tokens. The motivation for anonymous tokens
is to enable access control, without tracking individual
users. For instance, Heydt-Benjamin et al. [57] consider
anonymous tokens as a solution to user tracking when
users use longer-lived “metrocards” or similar methods to
pay for public transport. Privacy pass [58] provides users
with tokens upon successful completion of a CAPTCHA or
similar challenge, allowing anonymous access to Internet
services while protecting servers from DDoS attacks and
bots. Anonymous counting tokens [59] focus on users being
anonymously issued tokens, but with a “count” bounding how
many tokens each user is able to obtain, not aggregating the
total number of spent tokens. A line of work on anonymous
tokens with a private metadata bit (e.g., [60], [61], [62])
includes a designated party that can decrypt the metadata
bit of individual tokens; however, this work does not focus
on aggregation or support proof of count.

Proof of Liability (PoL). Proof of Liability (PoL) protocols
(e.g., [63], [64], [65]) are motivated by the context of a bank
or cryptocurrency wallet provider showing to (1) any verifier
its total (or aggregate) liability across all users, and (2) each

user that their account balance is included in this liability.

At first glance, it may seem as though the aggregation

of total liability from PoL could solve the VAR problem.

However, the proof of aggregate liability is not meant to show,
cryptographically, that all the included liabilities correspond

to some ““valid” account. There is no central issuer and hence,
the only available recourse is for each user to individually
check that their liability is included correctly. Thus, this
setting differs fundamentally from our problem.

Threshold primitives towards tiered auditing. Threshold
signature schemes [28], [29], [66] can be used to construct
VAR with tiered auditing, but the required signature and
public key aggregation operations are heavier than necessary
in our setting, where plain secret sharing suffices. Multi-secret
sharing schemes (MSSS), starting from the information-
theoretic construction of Blundo et al. [23], offer a more
direct and lightweight approach. Kate et al. [7] formalized
bottom-up secret sharing, first used by Baird et al. [67]
to build multiverse threshold signatures. We also adopt
the bottom-up paradigm to obtain an efficient MSSS that
underpins our S-VAR construction. Dynamic threshold public
key encryption (TPKE) [68] and more efficient related primi-
tives [69] could be used to construct VAR with flexible tiered
audits; however, TPKE is heavier than desired for a simple
and lightweight tiered-audit solution. In fact, the threshold
encryption scheme with silent setup of Garg et al. [69]
relies on pairing-based cryptography similarly to our P-VAR
construction, which in our case enables exact auditing.

9. Discussion

Streaming delivery of receipts. In our descriptions so far,
we have presented our protocols as if any receipts are directly
communicated from the issuer to a user. This assumes an
out-of-band channel between the issuer and the users, which,
in practice, must be opened every time a new instance of
the protocol is run. However, our protocol can be deployed
in a way that receipts are relayed by the service provider
in a streaming fashion, so that users and the issuers do not
need to interact (beyond the initial key setup), and users
do not need to obtain all receipts at the beginning of the
protocol. Doing so requires the issuer 7 and each user U;
to establish a pairwise encryption key sk;. Then, for each
instance of the protocol, the issuance can consist of the 7
computing receipts rx;, which may consist of multiple sub-
blocks, (b}, ..., b") (for instance, a different receipt for each
epoch as described in P-VAR), followed by computing their
encryptions under sk; and sharing these with P. When a
user U; wishes to spend, it retrieves the necessary ciphertext
from P, decrypts it using sk;, and spends it as usual.

The social media application (§6.1) is a natural use case
for streaming delivery (and it is presented as such), where
users receive receipts as they download posts.

Semi-honest verifier assumption. In this work, our
adverarial model assumes a semi-honest verifier, i.e., we
assume V derives and issues receipts correctly. At the same
time, we do require user privacy:)V should only learn
the number of spent receipts, and nothing else about the
subset of users who spent. This assumption is justified by
the incentives: in all applications we consider, the primary
goal of the verifier is to hold a more powerful platform
‘P accountable, thus a malicious V who issues inconsistent

or malformed receipts would undermine his own ability
to receive an accurate engagement count, giving him little
incentive to deviate from the protocol. However, in all three
settings, V might still be tempted to analyze audit transcripts
in an effort to deanonymize and profile users. Our threat
model, therefore, focuses on treating P as fully malicious
with regard to inflating soundness, while limiting what an
otherwise semi-honest V' can infer about user spending.

10. Conclusion

Accurately measuring user engagement is central to
decisions across online platforms, public services, and com-
munication systems, yet self-reporting remains unreliable
due to incentives to inflate. Motivated by this gap, we
introduced Verifiable Aggregate Receipts (VAR), a primitive
that enables issuance of receipts and their privacy-preserving
aggregation into a compact proof of count. We formalized
VAR’s security goals via an ideal functionality, and presented
two constructions: S-VAR, a protocol based on bottom-up
secret sharing that enables tiered “fuzzy” audits with constant-
size receipts independent of the number of thresholds, and
P-VAR, a pairing-based protocol enabling exact audits with
constant-time verification and an extension to dynamic user
sets; we proved both schemes secure with respect to our
ideal functionality. We implemented and benchmarked our
protocols, showing that they scale to one million users, while
existing solutions are either at least an order of magnitude
slower in proving or do not scale to this regime. Finally,
we showcased three diverse applications of VAR: auditing
social media platforms, preventing fraudulent reimbursement
claims, and detecting censorship in broadcast.

Acknowledgements

Ioannis is partially supported by an IC3 grant.

References

[1] United States
York. U.s.
with the
[Online].

Southern District of New
announces $12.9 million settlement
submitting fraudulent cost reports.

https://www.justice.gov/usao-sdny/pr/

Attorney’s
attorney
door for
Available:

Office,

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19

A. Shamir, “How to share a secret,” Commun. ACM, vol. 22,
no. 11, pp. 612-613, Nov. 1979. [Online]. Available: https:
//dl.acm.org/doi/10.1145/359168.359176

A. Kate, P. Mukherjee, H. Saleem, P. Sarkar, and B. Roberts,
“ANARKey: A New Approach to (Socially) Recover Keys,” 2025,
publication info: Preprint. [Online]. Available: https://eprint.iacr.org/
2025/551

J.-P. Berrut and L. N. Trefethen, “Barycentric lagrange interpolation,”
SIAM Review, vol. 46, no. 3, pp. 501-517, 2004. [Online]. Available:
https://doi.org/10.1137/S0036144502417715

A. Borodin and R. Moenck, “Fast modular transforms,” Journal of
Computer and System Sciences, vol. 8, no. 3, pp. 366-386, 1974.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0022000074800292

E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and
N. P. Ward, “Aurora: Transparent succinct arguments for rlcs,” in
Annual international conference on the theory and applications of
cryptographic techniques. Springer, 2019, pp. 103-128.

K. Conger, J. E. Bromwich, and T. Arango, “Woman opens
fire at youtube headquarters, wounding 3 before killing herself,”
The New York Times, April 2018. [Online]. Available: https:
/Iwww.nytimes.com/2018/04/03/us/youtube- shooting.html

P. Mozur, “A former youtube insider says the company failed to curb
extremism,” The New York Times, June 2019. [Online]. Available: https:
/Iwww.nytimes.com/2019/06/25/technology/youtube-extremism.html

R. Molla, “Youtube’s Igbtq community says its videos keep
getting restricted or demonetized,” Vox, October 2019. [On-
line]. Available: https://www.vox.com/culture/2019/10/10/20893258/
youtube-Igbtg-censorship-demonetization-nerd-city-algorithm-report

V. Staff, “Youtube settles three-year-long racial bias lawsuit
from black and Thispanic creators,” Verdict, February
2025. [Online]. Available: https://www.verdict.co.uk/news/

youtube- settles-three- year-long-racial- bias- lawsuit- from-black-and- hispanic-creators/

R. Caplan and T. Gillespie, “The algorithmic dance: Youtube’s
adpocalypse and the gatekeeping of cultural content in
digital media,” Internet Policy Review, vol. 9, no. 4,
2020. [Online]. Available: https://policyreview.info/articles/analysis/

algorithmic-dance- youtubes-adpocalypse-and- gatekeeping- cultural-content-digital

M. D. Staff, “Algorithms of favoritism: Power
wins again,” Modern Diplomacy, February 2025.
[Online]. Auvailable: https://moderndiplomacy.eu/2025/02/04/

algorithms- of-favoritism-power-wins-again/
“Digital Services Act (DSA) | Updates, Compliance, Training.”
[Online]. Available: https://www.eu-digital-services-act.com/

Noir Team. Noir documentation. [Online]. Available:

//noir-lang.org/docs/

https:

] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature

us-attorney-announces- 129-million-settlement-door-submitting-fraudulent-cost-rep@ii$ne secure against adaptive chosen-message attacks,” SIAM

[2] “Criminal Division | Case Summaries,” Jun. 2024. [On-
line]. Available: https://www.justice.gov/criminal/criminal-fraud/
health-care-fraud-unit/2024-national-hcf-case- summaries

[3] “District of Arizona | Seven Charged in Arizona as Part of
the Department of Justice’s 2024 National Health Care Fraud
Enforcement Action | United States Department of Justice,”
Jun. 2024. [Online]. Available: https://www.justice.gov/usao-az/pr/

seven-charged-arizona-part-department-justices-2024-national- health-care-

[4] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and
verifiably encrypted signatures from bilinear maps,” in Advances
in Cryptology—EUROCRYPT 2003: International Conference on the
Theory and Applications of Cryptographic Techniques, Warsaw, Poland,
May 4-8, 2003 Proceedings 22. Springer, 2003, pp. 416-432.

[5] T. Qiu and Q. Tang, “Predicate aggregate signatures and applica-
tions,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2023, pp. 279-312.

[20]

e

[22]

Journal on Computing, vol. 17, no. 2, pp. 281-308, 1988. [Online].
Available: https://doi.org/10.1137/0217017

A. Kate, G. M. Zaverucha, and 1. Goldberg, “Constant-size com-
mitments to polynomials and their applications,” in International
conference on the theory and application of cryptology and information
security. Springer, 2010, pp. 177-194.

M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm
for designing efficient protocols,” in Proceedings of the Ist ACM
Conference on Computer and Communications Security, ser. CCS *93.
New York, NY, USA: Association for Computing Machinery, 1993, p.
62-73. [Online]. Available: https://doi.org/10.1145/168588.168596

E. B. Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer,
and M. Virza, “Zerocash: Decentralized anonymous payments from
bitcoin,” in Proceedings of the 2014 IEEE Symposium on Security
and Privacy, ser. SP "14. USA: IEEE Computer Society, 2014, p.
459-474. [Online]. Available: https://doi.org/10.1109/SP.2014.36

https://www.justice.gov/usao-sdny/pr/us-attorney-announces-129-million-settlement-door-submitting-fraudulent-cost-reports
https://www.justice.gov/usao-sdny/pr/us-attorney-announces-129-million-settlement-door-submitting-fraudulent-cost-reports
https://www.justice.gov/criminal/criminal-fraud/health-care-fraud-unit/2024-national-hcf-case-summaries
https://www.justice.gov/criminal/criminal-fraud/health-care-fraud-unit/2024-national-hcf-case-summaries
https://www.justice.gov/usao-az/pr/seven-charged-arizona-part-department-justices-2024-national-health-care-fraud
https://www.justice.gov/usao-az/pr/seven-charged-arizona-part-department-justices-2024-national-health-care-fraud
https://dl.acm.org/doi/10.1145/359168.359176
https://dl.acm.org/doi/10.1145/359168.359176
https://eprint.iacr.org/2025/551
https://eprint.iacr.org/2025/551
https://doi.org/10.1137/S0036144502417715
https://www.sciencedirect.com/science/article/pii/S0022000074800292
https://www.sciencedirect.com/science/article/pii/S0022000074800292
https://www.nytimes.com/2018/04/03/us/youtube-shooting.html
https://www.nytimes.com/2018/04/03/us/youtube-shooting.html
https://www.nytimes.com/2019/06/25/technology/youtube-extremism.html
https://www.nytimes.com/2019/06/25/technology/youtube-extremism.html
https://www.vox.com/culture/2019/10/10/20893258/youtube-lgbtq-censorship-demonetization-nerd-city-algorithm-report
https://www.vox.com/culture/2019/10/10/20893258/youtube-lgbtq-censorship-demonetization-nerd-city-algorithm-report
https://www.verdict.co.uk/news/youtube-settles-three-year-long-racial-bias-lawsuit-from-black-and-hispanic-creators/
https://www.verdict.co.uk/news/youtube-settles-three-year-long-racial-bias-lawsuit-from-black-and-hispanic-creators/
https://policyreview.info/articles/analysis/algorithmic-dance-youtubes-adpocalypse-and-gatekeeping-cultural-content-digital
https://policyreview.info/articles/analysis/algorithmic-dance-youtubes-adpocalypse-and-gatekeeping-cultural-content-digital
https://moderndiplomacy.eu/2025/02/04/algorithms-of-favoritism-power-wins-again/
https://moderndiplomacy.eu/2025/02/04/algorithms-of-favoritism-power-wins-again/
https://www.eu-digital-services-act.com/
https://noir-lang.org/docs/
https://noir-lang.org/docs/
https://doi.org/10.1137/0217017
https://doi.org/10.1145/168588.168596
https://doi.org/10.1109/SP.2014.36

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

(35]
[36]

(371

[38]

(391

[40]

C. Blundo, A. De Santis, G. Di Crescenzo, A. G. Gaggia, and U. Vac-
caro, “Multi-Secret Sharing Schemes,” in Advances in Cryptology —
CRYPTO 94, Y. G. Desmedt, Ed. Berlin, Heidelberg: Springer, 1994,
pp. 150-163.

A. Kiayias, M. Osmanoglu, A. Russell, and Q. Tang, “Space Efficient
Computational Multi-Secret Sharing and Its Applications,” 2018,
publication info: Preprint. MINOR revision. [Online]. Available:
https://eprint.iacr.org/2018/1010

R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” Cryptology ePrint Archive, Paper 2000/067,
2000. [Online]. Available: https://eprint.iacr.org/2000/067

R. L. Rivest, A. Shamir, and Y. Tauman, “How to Leak a Secret,” in
Advances in Cryptology — ASIACRYPT 2001, C. Boyd, Ed. Berlin,
Heidelberg: Springer, 2001, pp. 552-565.

A. Bender, J. Katz, and R. Morselli, “Ring signatures: Stronger
definitions, and constructions without random oracles,” in Theory
of Cryptography Conference. Springer, 2006, pp. 60-79.

S. Das, P. Camacho, Z. Xiang, J. Nieto, B. Biinz, and L. Ren,
“Threshold signatures from inner product argument: Succinct, weighted,
and multi-threshold,” in Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security, 2023, pp.
356-370.

S. Garg, A. Jain, P. Mukherjee, R. Sinha, M. Wang, and Y. Zhang,
“hints: Threshold signatures with silent setup,” in 2024 IEEE sympo-
sium on security and privacy (SP). 1EEE, 2024, pp. 3034-3052.

K. Cabello. The state of the creator economy — assessing
the economic, cultural, and educational impact of youtube in
the us in 2022 — oxford economics. [Online]. Available:
https://www.oxfordeconomics.com/resource/youtube-us/

“How to boost an instagram post,” https://help.instagram.com/
2090822074310288/, 2025, accessed: 2025-12-01.

“Use promote to grow your tiktok audience,”
//support.tiktok.com/en/using- tiktok/growing- your-audience/
use-promote- to-grow- your-tiktok-audience, 2025, accessed:
2025-02-15.

https:

“Increase your reach on x,” https://help.x.com/en/
managing-your-account/increase-x-reach, 2025, accessed: 2025-02-15.

Bluesky. (2023) The did:plc identifier method. [Online]. Available:
https://atproto.com/specs/did

——, “AT protocol specification,” 2023, https://atproto.com.

L. Protocol. (2024) Lens protocol documentation. [Online]. Available:
https://docs.lens.xyz/

Farcaster. (2024) Farcaster protocol documentation. [Online].

Available: https://docs.farcaster.xyz/

F. Zhang, E. Cecchetti, K. Croman, A. Juels, and E. Shi, “Town
Crier: An Authenticated Data Feed for Smart Contracts,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS *16. New York, NY, USA:
Association for Computing Machinery, Oct. 2016, pp. 270-282.
[Online]. Available: https://dl.acm.org/doi/10.1145/2976749.2978326

F. Zhang, D. Maram, H. Malvai, S. Goldfeder, and A. Juels, “DECO:
Liberating Web Data Using Decentralized Oracles for TLS,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, ser. CCS *20. New York, NY, USA:
Association for Computing Machinery, Nov. 2020, pp. 1919-1938.
[Online]. Available: https://dl.acm.org/doi/10.1145/3372297.3417239

D. Maram, H. Malvai, F. Zhang, N. Jean-Louis, A. Frolov,
T. Kell, T. Lobban, C. Moy, A. Juels, and A. Miller, “CanDID:
Can-do decentralized identity with legacy compatibility, sybil-
resistance, and accountability,” in 42nd IEEE symposium on
security and privacy, SP 2021, san francisco, CA, USA, 24-27
may 2021. 1EEE, 2021, pp. 1348-1366. [Online]. Available:
https://doi.org/10.1109/SP40001.2021.00038

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Federal Transit Administration. (2016) Shared mobility fags:
Eligibility under FTA grant programs. Describes how FTA funds can
reimburse transit agencies that contract with shared mobility or taxi
operators, including voucher programs. Accessed: 2025-12-01. [On-
line]. Available: https://www.transit.dot.gov/regulations-and- guidance/
shared-mobility-faqs-eligibility-under-fta- grant- programs

Learn & Work Ecosystem Library. (2018) How does WIOA
provide/pay for training? Explains that Individual Training Accounts
(ITAs) under WIOA are used to pay Eligible Training Providers
to train participants in approved programs of study. Accessed:
2025-12-01. [Online]. Available: https://learnworkecosystemlibrary.
com/etp- 1-pager/

Connecticut Department of Social Services. (2013) Regulation
concerning payment of behavioral health clinic services. Medicaid
regulation specifying fee-schedule-based payment for individual,
group, and family psychotherapy and other behavioral health
clinic services. Accessed: 2025-12-01. [Online]. Available:
https://portal.ct.gov/-/media/Departments-and- Agencies/DSS/
Reimbursement-and- Certificate-of-Need/regulation_concerning_
payment_of_behavioral_health_clinic_services.pdf

S. Josefsson and I. Liusvaara, “Edwards-Curve Digital Signature
Algorithm (EdDSA),” RFC 8032, Jan. 2017. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc8032

D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B. Yang,
“High-speed high-security signatures,” Journal of Cryptographic
Engineering, vol. 2, no. 2, pp. 77-89, 2012. [Online]. Available:
https://doi.org/10.1007/s13389-012-0027- 1

R. P. Brent and H. T. Kung, “Fast algorithms for manipulating
formal power series,” J. ACM, vol. 25, no. 4, p. 581-595, Oct. 1978.
[Online]. Available: https://doi.org/10.1145/322092.322099

Aztec Team. Barretenberg documentation. [Online]. Available:
https://barretenberg.aztec.network/docs/
“Latency numbers everyone should know,” https:

/[static.googleusercontent.com/media/sre.google/en//static/pdf/
rule-of-thumb-latency-numbers-letter.pdf, google Site Reliability
Engineering, accessed 2025-12-04.

H. Corrigan-Gibbs and D. Boneh, “Prio: Private, robust, and scalable
computation of aggregate statistics,” in /4th USENIX symposium on
networked systems design and implementation (NSDI 17), 2017, pp.
259-282.

S. Addanki, K. Garbe, E. Jaffe, R. Ostrovsky, and A. Polychroniadou,
“Prio+: Privacy preserving aggregate statistics via boolean shares,” in
International Conference on Security and Cryptography for Networks.
Springer, 2022, pp. 516-539.

A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan,
D. Lie, M. Rudominer, U. Kode, J. Tinnes, and B. Seefeld, “Prochlo:
Strong privacy for analytics in the crowd,” in Proceedings of the 26th
symposium on operating systems principles, 2017, pp. 441-459.

J. H. Bell, K. A. Bonawitz, A. Gascon, T. Lepoint, and M. Raykova,
“Secure single-server aggregation with (poly) logarithmic overhead,”
in Proceedings of the 2020 ACM SIGSAC conference on computer
and communications security, 2020, pp. 1253-1269.

J. Bell, A. Gascén, T. Lepoint, B. Li, S. Meiklejohn, M. Raykova, and
C. Yun, “ACORN: input validation for secure aggregation,” in USENIX
Security Symposium. USENIX Association, 2023, pp. 4805-4822.

M. Green, W. Ladd, and I. Miers, “A Protocol for Privately Reporting
Ad Impressions at Scale,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. Vienna
Austria: ACM, Oct. 2016, pp. 1591-1601. [Online]. Available:
https://dl.acm.org/doi/10.1145/2976749.2978407

O. Acharya, S. Biswas, W. Feng, A. O’Neill, and A. Yerukhimovich,
“Non-interactive verifiable aggregation,” Proceedings on Privacy
Enhancing Technologies, vol. 2025, no. 4, pp. 1055-1074, 2025.
[Online]. Available: https://doi.org/10.56553/popets-2025-0171

https://eprint.iacr.org/2018/1010
https://eprint.iacr.org/2000/067
https://www.oxfordeconomics.com/resource/youtube-us/
https://help.instagram.com/2090822074310288/
https://help.instagram.com/2090822074310288/
https://support.tiktok.com/en/using-tiktok/growing-your-audience/use-promote-to-grow-your-tiktok-audience
https://support.tiktok.com/en/using-tiktok/growing-your-audience/use-promote-to-grow-your-tiktok-audience
https://support.tiktok.com/en/using-tiktok/growing-your-audience/use-promote-to-grow-your-tiktok-audience
https://help.x.com/en/managing-your-account/increase-x-reach
https://help.x.com/en/managing-your-account/increase-x-reach
https://atproto.com/specs/did
https://atproto.com
https://docs.lens.xyz/
https://docs.farcaster.xyz/
https://dl.acm.org/doi/10.1145/2976749.2978326
https://dl.acm.org/doi/10.1145/3372297.3417239
https://doi.org/10.1109/SP40001.2021.00038
https://www.transit.dot.gov/regulations-and-guidance/shared-mobility-faqs-eligibility-under-fta-grant-programs
https://www.transit.dot.gov/regulations-and-guidance/shared-mobility-faqs-eligibility-under-fta-grant-programs
https://learnworkecosystemlibrary.com/etp-1-pager/
https://learnworkecosystemlibrary.com/etp-1-pager/
https://portal.ct.gov/-/media/Departments-and-Agencies/DSS/Reimbursement-and-Certificate-of-Need/regulation_concerning_payment_of_behavioral_health_clinic_services.pdf
https://portal.ct.gov/-/media/Departments-and-Agencies/DSS/Reimbursement-and-Certificate-of-Need/regulation_concerning_payment_of_behavioral_health_clinic_services.pdf
https://portal.ct.gov/-/media/Departments-and-Agencies/DSS/Reimbursement-and-Certificate-of-Need/regulation_concerning_payment_of_behavioral_health_clinic_services.pdf
https://www.rfc-editor.org/rfc/rfc8032
https://doi.org/10.1007/s13389-012-0027-1
https://doi.org/10.1145/322092.322099
https://barretenberg.aztec.network/docs/
https://static.googleusercontent.com/media/sre.google/en//static/pdf/rule-of-thumb-latency-numbers-letter.pdf
https://static.googleusercontent.com/media/sre.google/en//static/pdf/rule-of-thumb-latency-numbers-letter.pdf
https://static.googleusercontent.com/media/sre.google/en//static/pdf/rule-of-thumb-latency-numbers-letter.pdf
https://dl.acm.org/doi/10.1145/2976749.2978407
https://doi.org/10.56553/popets-2025-0171

[56] J. Blomer, J. Juhnke, and C. Kolb, “Anonymous and Publicly Linkable
Reputation Systems,” in Financial Cryptography and Data Security,
R. Bohme and T. Okamoto, Eds. Berlin, Heidelberg: Springer, 2015,
pp. 478-488.

[57] T. S. Heydt-Benjamin, H.-J. Chae, B. Defend, and K. Fu, “Privacy
for public transportation,” in International Workshop on Privacy
Enhancing Technologies. Springer, 2006, pp. 1-19.

[58] A. Davidson, I. Goldberg, N. Sullivan, G. Tankersley, and F. Val-
sorda, “Privacy pass: Bypassing internet challenges anonymously,”
Proceedings on Privacy Enhancing Technologies, 2018.

[59] F. Benhamouda, M. Raykova, and K. Seth, “Anonymous counting
tokens,” in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2023, pp. 245-278.

[60] B. Kreuter, T. Lepoint, M. Orru, and M. Raykova, “Anonymous tokens
with private metadata bit,” in Advances in Cryptology - CRYPTO
2020 - 40th Annual International Cryptology Conference, CRYPTO
2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings,
Part I, ser. Lecture Notes in Computer Science, D. Micciancio
and T. Ristenpart, Eds., vol. 12170. Springer, 2020, pp. 308-336.
[Online]. Available: https://doi.org/10.1007/978-3-030-56784-2_11

[61] M. Chase, F. B. Durak, and S. Vaudenay, “Anonymous tokens
with stronger metadata bit hiding from algebraic macs,” in Annual
International Cryptology Conference. Springer, 2023, pp. 418-449.

[62] F. Baldimtsi, L. Hanzlik, Q. Nguyen, and A. Yadav, “Non-interactive
anonymous tokens with private metadata bit,” Cryptology ePrint
Archive, 2025.

[63] Y. Ji and K. Chalkias, “Generalized proof of liabilities,” in CCS ’21:
2021 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, Republic of Korea, November 15 - 19, 2021,
Y. Kim, J. Kim, G. Vigna, and E. Shi, Eds. ACM, 2021, pp. 3465-
3486. [Online]. Available: https://doi.org/10.1145/3460120.3484802

[64] J. Xin, A. Haghighi, X. Tian, and D. Papadopoulos, “Notus: Dynamic
proofs of liabilities from zero-knowledge RSA accumulators,” in 33rd
USENIX Security Symposium (USENIX Security 24). Philadelphia, PA:
USENIX Association, Aug. 2024, pp. 1453-1470. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity24/presentation/xin

[65] F. Falzon, K. Elkhiyaoui, Y. Manevich, and A. D. Caro, “Short privacy-
preserving proofs of liabilities,” in Proceedings of the 2023 ACM
SIGSAC Conference on Computer and Communications Security, CCS
2023, Copenhagen, Denmark, November 26-30, 2023, W. Meng, C. D.
Jensen, C. Cremers, and E. Kirda, Eds. ACM, 2023, pp. 1805-1819.
[Online]. Available: https://doi.org/10.1145/3576915.3616645

[66] S. Das and L. Ren, “Adaptively Secure BLS Threshold Signatures
from DDH and co-CDH,” in Advances in Cryptology — CRYPTO 2024,
L. Reyzin and D. Stebila, Eds. Cham: Springer Nature Switzerland,
2024, pp. 251-284.

[67] L. Baird, S. Garg, A. Jain, P. Mukherjee, R. Sinha, M. Wang,
and Y. Zhang, ““ Threshold Signatures in the Multiverse ,” in 2023
IEEE Symposium on Security and Privacy (SP). Los Alamitos, CA,
USA: IEEE Computer Society, May 2023, pp. 1454-1470. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.
10179436

[68] C. Delerablée and D. Pointcheval, “Dynamic Threshold Public-Key
Encryption,” in Advances in Cryptology — CRYPTO 2008, D. Wagner,
Ed. Berlin, Heidelberg: Springer, 2008, pp. 317-334.

[69] S. Garg, D. Kolonelos, G.-V. Policharla, and M. Wang, “Threshold
Encryption with Silent Setup,” in Advances in Cryptology — CRYPTO
2024, L. Reyzin and D. Stebila, Eds. =~ Cham: Springer Nature
Switzerland, 2024, pp. 352-386.

”

[70] J. Groth, “On the Size of Pairing-Based Non-interactive Arguments,
in Advances in Cryptology — EUROCRYPT 2016, M. Fischlin and
J.-S. Coron, Eds. Berlin, Heidelberg: Springer, 2016, pp. 305-326.

[71] J. Thaler, “A Note on the GKR Protocol.”

Appendix A.
Additional Preliminaries

In this section, we provide additional preliminaries.

Digital signatures. A digital signature scheme is a tuple
of PPT algorithms DS = (Gen, Sign, Verify). On input a
security parameter A\, Gen outputs a key pair (sk, vk), where
sk is the secret signing key and vk is the public verification
key. On input a message m and sk, the signing algorithm
Sign outputs a signature o; on input a verification key
vk, a message m, and a signature o, and the verification
algorithm outputs a bit b € {0,1}. Correctness requires
that for all messages m and all (sk,vk) < Gen(1}),
we have Verify(vk, m,Sign(sk,m)) = 1. The standard
security notion is existential unforgeability under adaptive
chosen-message attacks (EUF-CMA) [19], which informally
states that no efficient adversary, even with oracle access
to Sign(sk,-), can produce a valid signature on any new
message it did not previously query.

zk-SNARK. An argument system for an NP relation R
consists of a computationally bounded prover P and a
verifier V, where P convinces) that a witness w exists
such that (z,w) € R for input z. A setup algorithm Gen
produces public parameters. The triple (Gen, P, V) is a zero-
knowledge argument (ZKA) of knowledge for R if it satisfies
completeness, knowledge soundness, and zero knowledge
(see [70], [71]). It is succinct if both the proof size and
verifier’s time are bounded by poly(\, |z|,log|R|), where
log | R| is the size of the circuit computing R. In this paper,
one of the baselines we compare our solutions against is
based on zero-knowledge succinct non-interactive arguments
of knowledge (zk-SNARKS), i.e., ZKAs of knowledge satis-
fying all three properties above and are succinct.

https://doi.org/10.1007/978-3-030-56784-2_11
https://doi.org/10.1145/3460120.3484802
https://www.usenix.org/conference/usenixsecurity24/presentation/xin
https://doi.org/10.1145/3576915.3616645
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179436
https://doi.ieeecomputersociety.org/10.1109/SP46215.2023.10179436

	Introduction
	Two Constructions
	Applications of VAR
	Implementation and Evaluation

	Preliminaries
	Problem Statement
	Problem: Verifiable Aggregate Receipts
	Models and Definitions
	Strawman Solutions

	S-VAR: VAR Based on Secret Sharing
	Multi-Secret Sharing Abstraction
	VAR Based On GMSS
	S-VAR: VAR Based on Bottom-Up GMSS
	On Threshold Schedules
	Security

	P-VAR: VAR Based on Pairings
	Protocol Details
	Security
	Supporting Dynamic User Sets

	Applications
	Auditing Social Media Platforms
	Outcome-based Reimbursement
	Read Receipt for Broadcast Messages

	Implementation and Evaluation
	Implementation
	Cryptographic primitives
	Baselines

	Experimental setup
	Issuance performance
	Comparison between S-VAR and P-VAR assuming the same number of supported audits

	Spend and Audit Performance
	Spend
	Proving time
	Verification

	Summary

	Related Work
	Discussion
	Conclusion
	References
	Appendix A: Additional Preliminaries

