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Abstract

We introduce one-time oblivious polynomial signatures (OOPS), a signature scheme based
on polynomials over pairing-based elliptic curves that can securely produce signatures for up
to a threshold of n different messages. Signing more than n messages allows anyone to forge
signatures under the given parameters, making it necessary to reparameterize the scheme
occasionally. We show that this property is not a severe limitation though by demonstrating
how to build various efficient OOPS-based cryptographic protocols, including delegatable
signatures, 1-out-of-n oblivious transfer, and partially oblivious PRFs.

1 Introduction

One-time oblivious polynomial signatures allow signers to securely sign up to a threshold of
n messages for a given set of parameters that signer and verifiers have agreed upon ahead of
time, e.g., during a setup phase. If the signer issues more than n signatures, anyone can forge
signatures on new messages under the given parameters (without knowing the signers secret
key). To keep producing signatures securely, a signer thus needs to refresh the parameters
of the signature scheme after signing up to n messages. This property arises from the fact
that the OOPS scheme is based on the evaluation of polynomials (over pairing-based elliptic
curves) of degree n.

Even though this property might seem limiting at first, there are various situations where
it is actually quite natural or even desireable to limit the number of signatures that a signer
can or should produce. For example, in the context of identity systems [Ros+23, Whil9].
Concrete examples include systems like Privacy Pass [Int25], for anonymous authentication,
or proof of stake blockchains where equivocation by validators results in slashing [GHW23].
As we will show later, OOPS can be used as a building block for constructing efficient
cryptographic protocols including delegatable signatures, oblivious transfer, and (partially)
oblivious PRFs.

Our construction is conceptually simple. The signer and the verifier agree, for a given con-
text /topic (often identified through a seed s), on a set of elliptic curve base points H, ..., H,,,
whose discrete logarithm relative to the group generator and each other is unknown. We treat
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these base points as coefficients of a polynomial H(X) and the signer produces a signature
by evaluating the polynomial at the message m as H(m) = Z:l: o m® - H; and multiplying
by their secret key  to obtain the signature ¢ = kH. Intuitively, this signature scheme has
unforgeability because knowing n evaluations on an n-degree polynomial does not allow you
to evaluate the polynomial at another point.

Note that the construction can be extended directly to vectors of messages.

2 Related work

The construction is inspired by signatures for linear subspaces [Bon+09], where signers wish
to produce signatures on base vectors of a linear subspace, such that the signature is valid for
any vector in that space. In our construction, we wish to sign specific messages and vectors,
while limiting the amount of times the signing key can be used for each epoch.

Semaphore RLN [Whil9] and zk-creds [Ros+23] use a special kind of nullifiers, where
reusing the same key for an epoch, or a topic, results in the private key being revealed. Our
construction achieves similar results in terms of rate-limiting at the cost of sacrificing unlink-
ability. We leave for future work how to achieve cloning resistance without using SNARKSs
for every message inside an epoch.

BLS multisignatures [BDN18] are constructed similarly, with the notable difference that
they are unforgeable for any given number of messages, mainly due to the fact that each
message is hashed to the group, rather than the slot description.

Signature delegation by Schnorr signatures is done in [AN24]. Constructions are similar in
the amount of information that has to be shared between delegator and delegatee. A major
difference in our approach is that the delegation is invisible to the verifier and looks the same
as any other signature, where as in [AN24], while the proxy signer’s identities are hidden,
multiple Schnorr signatures are verified.

Oblivious Pseudorandom Functions (OPRFs) are a cryptographic primitive that allows a
client to compute the output of a pseudorandom function (PRF) on a given input without
revealing the input to the server that holds the PRF key [Jar+17, JKR19]. In our OPRF
approach, the server gives the client the information needed to evaluate the OPRF locally for
a specific topic. Additionally, the client is restricted to evaluate the PRF a limited amount
of times before the evaluation capability becomes available for anyone seeing enough OPRF
evaluations.

Oblivious transfer protocols such as [CO15], [Kol+16] In our scheme, the protocol can be
split into offline and online phase where most of the sender’s work can be done during the
offline phase. During the online phase both sender and verifier need to send only a constant
amount of messages to each other.

BBS [BBS04, TZ23] and BBS+ [ASMO08, CDL16] are designed for long-lived credentials
and remain secure under an unbounded number of uses of the signing key. OOPS instead
treats key reuse as a limited resource and enforces bounded usage per topic directly at the
signature level, which in turn allowing it to use a non-randomized signing algorithm. BBS



signatures have a structural similarity to OOPS when considering a vector variant of OOPS
for degree 1 polynomials, with a major difference of how the private key is used during signing.

3 Preliminaries

We work over pairing-friendly elliptic curves. Thus, we denote by E a pairing-friendly elliptic
curve with scalar field F. and groups G, G,, G, with generators G; € G; and G, € G, and
that are equipped with an efficient bilinear pairing e : G; x G, — G,. We often use the
notation <, > to denote the evaluation of the pairing operation, i.e. < P,Q >= e(P, Q) for
P € G, and Q € G,. In particular, we will work with type-3 pairings and we refer the reader
to the literature for more details. Furthermore, let 7 : {0,1}* — G, denote a hash function
that maps binary strings to points in G;. We also often write X = [z]; to denote the scalar
multiplication of generator G € G; by ascalar z € F, for i € {1, 2}.

We work in the Algebraic Group Model (AGM). We say that the algorithm is algebraic if
its output can be expressed as a linear combination of the group elements that it has seen
during its execution. The AGM assumes that the adversary is algebraic and that the only way
to break the scheme is to produce an algebraic forgery. We assume that we work in a type-3
pairing setting, where <,>: G; x G, = G, and G, # G,, such that when the adversary
outputs an element G € G, the linear combination is over the elements they’ve seen in G;.

Our constructions rely on the (1,1)-Discrete Logarithm problem [BFL20]: Given a tuple
(Gy,aGy, Gy, aGy) € G2 x G3 for a € F*, output a.. We say that the (1,1)-DLog assumption
holds in the AGM if no polynomial-time algebraic adversary can solve the (1,1)-DLog
problem with non-negligible probability.

4 Definitions

4.1 One-time oblivious polynomial signature scheme
o KeyGen() — (sk, vk): Generates a secret key sk, and returns (sk, vk).

o GenerateTopic(d, topic) — T': Takes as input a degree d > 0 and a topic description
topic € {0,1}* and generates and returns topic parameters T' used for signing and
verification.

o Sign(sk, m, d, topic) — o: Takes as input a secret key sk, a message m, and a topic.
It generates topic parameters T = GenerateTopic(d, topic) and uses them to return a
signature o.

o Verify(vk, m, o, d, topic) — {0, 1}: Takes as input a verification key vk, message m,
signature o, d and topic. It generates topics parameters T' = GenerateTopic(d, topic)
and checks whether o is a valid signature. If it is, it returns 1 (valid), otherwise it
returns 0 (invalid).



4.2

Delegatable signature scheme
KeyGen() — (sk, vk): Generates a secret key sk, and returns (sk, vk).

GenerateTopic(d, topic) — T': Takes as input a degree d > 0 and a topic description
topic € {0,1}* and generates topic parameters T used for signing and verification.

Delegate(sk, d, topic) — D: Takes as input a secret key sk, a degree d > 0, and a topic
description topic € {0, 1}*. It generates delegations parameters D.

Sign(D, m) — o: Takes as input delegation parameters D, and a message m. It uses D
to return a signature o.

Verify(vk, m, o, d, topic) — {0, 1}: Takes as input a verification key vk, message m,
signature o, d and topic. It generates topics parameters T' = GenerateTopic(d, topic)
and checks whether o is a valid signature. If it is, it returns 1 (valid), otherwise it
returns 0 (invalid).

5 OOPS

We describe OOPS, a signature scheme that has inherent rate-limiting per topic. Signatures

certify both a topic and a message under that topic. After revealing one too many signatures,

an observer is able to forge signatures for any message under the same topic. We observe that

this is a natural constraint occasionally. In proof of stake protocols, validators are prevented

from signing multiple messages for the same block, which is enforced by a slashing, an

economic constraint.
The OOPS signature scheme is then specified as follows:

OOPS.Setup(1*) — (G4, Gy, G,,F., G}, Gy, H): Takes as input a security parameter
A and generates the parameters of the pairing pairing-friendly elliptic curve groups
along with their generators and ¢, the hash function to the group G; .

OOPS.KeyGen() — (sk, vk): Samples a fresh secret key sk = « € F,., computes a veri-
fication key vk = kGy, and returns (sk, vk).

OOPS.GenerateTopic(d, topic) — ((H;)%,): Takes as input a degree d > 0 and a
topic description topic € {0, 1}* and generates a list of base points H; = (H,, ..., H;)
in Gy where H, = H (topic || d | i) fori € {0, ..., d}.

OOPS.Sign(sk, m, d, topic) — o: Takes as input a secret key sk, a message m, and a
topic. It derives vector of base points {H,}¢_, = OOPS.GenerateTopic(d, topic) and
returns a signature o = H(Z::Ol m'H,) € G,.

OOPS.Verify(vk, m, o, d, topic) — {0, 1}: Takes as input a verification key vk, mes-
sage m, signature o, d and topic. It derives vector of base points {H,}¢ , = OOPS.



GenerateTopic(d, topic) and checks whether the following equation holds: (o, Gy) =
<Z?:_01 mtH;, vk).Ifit holds, it returns 1 (valid), otherwise it returns 0 (invalid).

5.1 Security proof

5.1.1 Existential unforgeability
Setup. The challenger runs OOPS.KeyGen gives the adversary vk = aG,.

Signature Queries. Adversary issues gg signature queries to the challenger. Each query
consists of a message, a topic and a degree. The challenger runs OOPS.Sign and responds
with the signature. The adversary is allowed to call # for q;; times, which is also called inside
OOPS. GenerateTopic.

Output. The adversary outputs a signature o* satisfying the verification equation for a
tuple (m*, d*, topic*) such that the message m* was not queried for the topic topic* and degree
d* during the signature queries and additionally the number of signature queries for the topic
topic* and degree d* is at most d*.

5.1.2 Proof

The challenger is given a (1, 1) — dlog instance (G}, aGy, Gy, aGy) € G2 x G2, and needs to
output a. The challenger simulates the hashing and signatures oracles as following. For hash
queries, the challenger samples p;, <— F. and sets 7, = p,G;. For the specific hash queries
related to topic bases, we set the special notation of: for query ¢ on topic ¢, and degree d,,
.G, . For
signature query ¢ with message m, topic t and degree d, the challenger responds with o, =
Zj: 0 mJ Pt a,;0Gy . Eventually, the adversary outputs o™ for a message m* and topic ¢* with

a degree d*. If the tuple satisfies the signature verification equation and if m* was not queried

(%]

the challenger has p, , ; for each j € [0,deg] and has n; = H(¢; | d; | 5) = p4, 4

more than d* times for the topic t* and degree d*, the challenger can extract « as following.
Since the adversary is algebraic, we have:
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Additionally given that the verification equation is satisfied we have:

dr _
(07, Gy) = <Z (m*) H(t" | d* | 5), Vk>

J=0



The challenger uses the two equations to extract a:
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We argue that S = (ijo(m ) e degrj — quo Yoi ijo mipy. q4.5) = 0 with negligible
probability. Because the adversary can query signatures with topic* and d* up to d* times,
assuming that they did query d* times, we can rewrite .S as follows:
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Observe that each signature corresponds to the evaluation of a polynomial, with coefficients
[Pt deg,,00 -+s OPt, deg,, aeg, ] OF degree d; at a point m,. Since the adversary queried at most d*
signatures for the topic t* and degree d* it has access to strictly less evaluations than the de-
gree of polynomial defined by the base points { H (t* || d* | j) o- By intractability of polyno-
mial interpolation, the adversary cannot evaluate the d* polynomlal at a new point from less
than d* 4 1 evaluations, thus the adversary can access another evaluation of the polynomial
only if there is a linear dependency between the polynomial [ap; e 05 s Pt deg,, deg,] A0
the polynomials defined by the signatures queried with different topics and degrees. However,
since the coefficients of each polynomial are sampled uniformly at random from F,, the prob-
ability that such a linear dependency exists is negligible in the security parameter A. Thus,

with all but negligible probability D = 5% (m*)/p;. gege g = Yok, X M P #

0 and the challenger can compute a as: a = (7g, + Zf o YHiPi)* * D1

6 Delegatable signatures

In this section we show how one party can delegate signing rights, for a limited topic, to
another party in a secure manner using our scheme. Consider two parties, a delegator and a
delegatee. The delegator holds a private key x and the corresponding verification key vk =
[k71]5. The delegatee wants to obtain signing rights from the delegator such that it can
sign messages on behalf of the delegator without learning the private key . Additionally,
we want to ensure a topic-limited delegation. In other words, the delegatee should only be
able to sign a message in a specific context or a specific purpose. For example, the delegatee
should only be able to sign messages for a specific time period or for a specific application. To
achieve this, we identify each topic with an n degree polynomial p(T") € G, [T], such that the
coefficients depend on the private key. A signature on a message m in the context of a topic is
defined to be p(m). The coefficients of the polynomial are known only to the delegator, thus
nobody is able to evaluate the polynomial on their own. In order to delegate signing rights for



a specific topic, the delegator needs to send n + 1 evaluations of the polynomial to the dele-
gatee. More specifically, for a topic defined by a polynomial p(T") of degree n, the delegator
picks n 4+ 1 random points ¢, ..., t,, € F¥ and computes the evaluations p(t,), ..., p(t,,). The
delegator then sends these evaluations to the delegatee. The delegatee can now interpolate
the coefficients using these evaluations and can sign any message m by computing p(m). By
existential unforgeability of our scheme, the delegatee cannot derive the private key x from
these evaluations and therefore they can only sign messages in the context of the delegated
topic. Note that most of the work of delegation can be done ahead of time, before knowing
the specific delegatee, by publishing n evaluations. The delegator then only needs to send a
single evaluation to the delegatee to complete the delegation.

6.1 Protocol

The construction is almost identical to OOPS, where the difference is in introducing a
Delegate method and signing uses the delegation paramaters rather than the secret key.

e DOOPS.Setup, DOOPS.GenerateTopic, DOOPS.KeyGen and DOOPS.Verify are
identical to the ones in OOPS.

o DOOPS.Delegate(z, d, topic) — ((E;)7): Takes as an input a secret key x of the
delegator, a degree d and a topic description topic and sends n + 1 evaluations E; of
the polynomial p(T) = k(xHy + zH,T + ... + *H, ;T™ ') to the delegatee, where
H; are the base points derived from DOOPS.GenerateTopic(d, topic). The delegation
parameters D consist of these evaluations. For simplicity evaluation points can be
derived deterministically by hashing the topic and the degree along with the index
to the field F,. Note that these evaluations are exactly the signatures, therefore the
delegatee can easily verify them using DOOPS.Verify.

o DOOPS.Sign(D, m) — o: Takes as input the delegation parameters D, a mes-
sage m, and a topic. It derives vector of base points {H,}L, = OOPS.
GenerateTopic(d, topic). It uses the evaluations in D to interpolate the coefficients of
the polynomial p(T"), which are k H; and returns a signature o = H(ZZ_:OI m'H,) € G,.

6.2 Security proof

The security of the delegatable signature scheme in the AGM relies on the security of our
signature scheme and the hardness of the discrete logarithm problem. Since the adversary
only receives n + 1 signatures that are essentially polynomial evaluations of polynomials
with random coefficients in F,., and a different context has different random coeflicients, they
cannot derive the private key k and therefore cannot sign messages outside the context of
the delegated topic. Additionally, since the polynomial is of degree n only the party that
either knows the coefficients of the polynomial or has at least n 4+ 1 evaluations can sign
messages in that context. Thus, the delegated signature scheme ensures that signing rights



are securely delegated to the delegatee for a specific topic without revealing the private key
of the delegator.

6.3 Additional observations

We note that this scheme is highly compatible with existing BLS signature implementations
and can use them as a blackbox. Concretely, assume we have the signing BLS.Sign and
hash to curve BLS.J functions, the delegatee can invoke BLS.Sign on the messages m, =
(topic | deg| ¢) which will output the signature o, = & BLS. (m;). Observe that these sig-
natures correspond to the coefficients of the polynomial which is used in the OOPS signature
scheme. Having the coefficients, to sign a message m, delegatee then just computes an inner
product between coefficients and powers of m.

This makes a gradual deployment of OOPS possible, even with existing hardware wallets
and audited BLS implementations, while introducing a security tradeoff of being able to forge
signatures that is only limited to a specific topic.

7 Oblivious transfer from blind polynomial evaluation

7.1 Blind polynomial evaluation

One of the primitives that we need for our oblivious transfer protocol is a blind polynomial
evaluation [NPO06]. This is a protocol involving two parties, a sender and a receiver. The
sender holds a polynomial p(T') and the receiver holds a secret value s. At the end of the
protocol, the receiver should learn the evaluation p(s) without revealing s to the sender and
without learning anything else about the polynomial p(T") beyond the evaluation p(s). We
show how to use our scheme to perform blind evaluations of polynomials, such that most of
the work can be done ahead of the receiver choosing the evalutaion point. Let x be a private
key of a signer and let [k 1], be the corresponding verification key. Let p(T) = x(Cy + C,T +
CoT? + ... + C,_;T™ 1) be a polynomial in G, [T] and let the points C, ..., C,, be public and
such that discrete logarithm of each point with respect to a generator of G; is unknown.
The receiver picks a secret value s and computes an evaluation p’(s) = Cy + sCj + ... +
s"1C, ;. Note that for a secret s, p’(s) is a perfectly hiding commitment and additionally
note that p’(s) = k p(s). The receiver sends p’(s) to the sender who then computes a
signature on p’(s), i.e. 0 = kp’(s) = p(s) and sends it back to the receiver. The Receiver now
has the evaluation p(s) without revealing s to the sender and without learning anything else
about the polynomial p(T'). Additionally, suppose that sender holds two polynomials p, (T')
and py(T'). Since p’(s) is a perfectly blinding commitment, the sender cannot distinguish
whether it is evaluating p,(T") or p,(T") which is a crucial property for building efficient
oblivious transfer.

7.2 Oblivious transfer
An 1-out-of-n oblivious transfer is a cryptographic primitive that allows a receiver to obtain
one out of n messages from a sender without revealing its choice, while additionally not learn-



ing anything about the other messages [CO15]. OT is often used in multi-party computation
protocols such as secure function evaluation, garbled circuits, and distributed key generation
[Lyu+25]. 1-out-of-n oblivious transfer protocol involves two parties, a sender who holds n
messages mq, ..., m,, and a receiver who wants to obtain one of the messages m,, for a choice
c € {1,...,n}. At the end of the protocol, the receiver should learn m_ without revealing ¢ to
the sender and without learning anything about other messages m, for i # c.

7.3 Construction overview

We build a 1-out-of-n oblivious transfer protocol from our blind polynomial evaluation
scheme as follows. We achieve this by assigning a unique polynomial p,(T") € G,[T] to each
message. Then, without loss of generality, the encryption key is chosen to be a hash of
polynomial evaluation at 0, i.e., k; = Hash(p,(0)). For the application of oblivious transfer
we can work with polynomials of degree 1, since this minimizes the communication overhead.
The sender then encrypts each message m, under the encryption key k; and sends all the
ciphertexts to the receiver. Coefficients of the polynomial depend on the private key of the
sender as in Section 7.1, thus the receiver cannot compute evaluations on their own. To obtain
the encryption key for a specific message, the receiver picks a secret value s, computes p;’(s),
and then gets a blind evaluation p;(s) from the sender. From two different evaluations of
p;(T'), the receiver can interpolate the coefficients of the polynomial and compute p;(0) to
derive the encryption key. Further, since the sender blindly evaluates one of the polynomials
without knowing which, it cannot learn which message the receiver picked. Finally, since the
receiver only learns one evaluation of the polynomial it cannot interpolate other polynomials
and thus cannot learn anything about other messages.

Our oblivious transfer protocol has several benefits. It relies on standard cryptographic
assumptions such as the hardness of the discrete logarithm problem and unforgeability of our
signature scheme in the AGM. It is very efficient to compute for both sender and receiver, and
most interestingly encryption keys do not depend on the receiver’s choice. This means that
all encryption keys, and therefore encrypted messages, can be pre-computed by the sender
before the protocol even starts. This is useful in many scenarios, especially when one sender
needs to interact with many receivers and when there are multiple oblivious transfers to be
performed. Pre-computation significantly reduces the online computation required during
the protocol execution since the sender can first publish all encrypted messages before the
actual protocol starts.

7.4 Protocol

Setup.

1. Setup(1*) — (Cy, .., Cy,,_1 ), where each C; € G; and the discrete logarithm of each
point with respect to a generator of G, is unknown.



. Sender and receiver agree on a cryptographic hash function Hash : G; — {0, 1} for

some security parameter [.
Sender and receiver agree on an authenticated encryption scheme AE = (Enc, Dec).

Sender and receiver agree on an evaluation point e € I} o at which the first evaluation
will occur

Pre-computation.

1.

Sender chooses a private key £ € F* and computes the corresponding public key pk =
[,

For each message m, for i € {0, ...,n — 1}, the sender constructs a polynomial p,(T") =
K(Cot + Cyip)T.

For each message m,;, the sender computes an encryption key k;, = Hash(p,(0)) and
computes a ciphertext ct, = Enc(k;, m;).

For each polynomial p,(T'), the sender computes a signature on the evaluation point e,
i.e.,o;, = p;(e).
Sender sends all ciphertexts ct, ..., ct,,_; to the receiver.

Sender sends all signatures oy, ..., o,,_; to the receiver.

Online phase.

7.5

. Receiver chooses ¢ € {0,...,n — 1} and a secret value s € F.

Receiver computes p,(s) = C,, + sC,,.,; and sends it to the sender. This is a perfectly
hiding evaluation.

Sender computes a signature o = [z];p.(s) and sends it back to the receiver.

Receiver now has the evaluation p,(s). Using p,(e) received during pre-computation
and p.(s) received from the sender, the receiver interpolates the coefficients of the
polynomial to compute p,(0) and derives the encryption key k., = Hash(p.(0)).

Finally, the receiver decrypts the ciphertext ct, using the encryption key k, to obtain
the message m, = Dec(k,, ct,.).

Security proof

Sender privacy. The receiver only learns one extra evaluation, that of the polynomial
p.(T) for their choice c. Since the polynomials are of degree 1, the receiver needs two

evaluations to interpolate the polynomial and compute p,(0). Thus, the receiver cannot learn

10



anything about other messages beyond their choice. The security proofis identical to the one
inb5.1.

Receiver privacy. Given the random scalar s chosen by the receiver, the point p;(s) is
indistinguishable from randomly sampled point in G;. Thus, the sender cannot distinguish
which polynomial it is evaluating. Therefore, the sender learns nothing about the receiver’s
choice.

7.6 Additional observations

Using PIR. In order to decrypt a message, the receiver needs the decryption key and a
ciphertext. To obtain the ciphertext the receiver cannot query the sender for the ciphertext
since that would leak its choice. Since the sender publishes all encrypted messages before
the protocol starts, the receiver can download all ciphertexts and then decrypt the one
corresponding to its choice. This means that the receiver has to store all ciphertexts locally
which can be a problem in memory constrainted environments. This can be avoided by using
a private information retrieval (PIR) protocol [Cho+98] which allows a client to download
a specific entry from a database without revealing its choice to the server. PIR doesn’t guar-
antee that the receiver learns nothing about the database, but since the database consists
of ciphertexts, which are hiding, the receiver anyway cannot learn anything about the other
messages beyond its choice.

Two messages in the online round. Instead of agreeing on a single evaluation point e
during setup, the receiver can pick two random values s;, s, € F* and send two blinded eval-
uations p..(sy), p.(sy) to the sender. The sender then computes signatures on both blinded
evaluations and sends them back to the receiver. The receiver now has two evaluations of the
polynomial p,(T) and can directly interpolate the polynomial to compute p,.(0) and derive
the encryption key. This way, the receiver doesn’t need to store any signatures from the pre-
computation phase. However, this comes at the cost of a slightly increased communication
overhead in the online phase and computation since now the sender needs to compute two
signatures and the receiver needs to receive two signatures. Note that if the receiver tried to
cheat and evaluated polynomials with different coefficients, they will learn nothing since they
only learned at most one evaluation per polynomial. It’s also straightforward to add efficient
proofs of evaluation of a consistent polynomial.

DKG. We can build a non-interactive distributed key generation (DKG) protocol from
OOPS by using very similar construction as in the oblivious transfer. Instead of allowing
receiver to chose a message and a polynomial, sender can provably show that it sent a correct
evaluation to each party. To avoid interaction sender can evaluate a polynomial at a public
key of the receiver. More specifically, let [t], be a public key of the receiver. Evaluation of
polynomial [zCj, zC;]| at [t], can be obtained by computing: (zCy, [1]5) + (C}, z[t]5). To

11



ensure public verifiability TBD. The last issue is that receiver gets evaluation it G, instead of
G, . This can be solved by moving keys to G, i.e., encrpytion keys can be derived by hashing
to G, instead of G;. By obtaining 1 evaluation at public e and 1 evaluation at ¢ only the
receiver can interpolate p(7) in G, and compute p(0) to derive the encryption key.

8 Verifiable partially oblivious PRFs

In an oblivious PRF protocol, a client wants a server to evaluate a PRF using the server’s
secret key, while the server doesn’t learn the message the PRF was evaluated on. In a
constrainted oblivious PRFs the client is only allowed to evaluate the PRF on a subset of the
messages. If the topic is public, it’s called a partially oblivious PRF. In a verifiable oblivious
PRF, any third party can verify the correctness of the PRF evaluation.

Client — Server. The client chooses random ry,r; < F,. and prepares T, = Hy + ryH;
and T} = H,, + r{ H,. The client sends T, and T} . This is perfectly hiding, so the server doesn’t
learn the base points.

Server — Client. The server computes K, = k1, and K; = kT and sends those to the
client.

Client. The client takes the two signatures and, using these two evaluations of the poly-
nomial with coefficients T;, and T}, can evaluate it at any message m, by finding the linear
combination resulting in K,, = k(Tj, + mT;). Note that only the client can perform this,
since nobody else knows r and r;. The correctness of the evaluation can be checked by (T, +
mTy, pk) = (K, Gy).

Note that you can only evaluate the PRF securely once, since one more evaluation will
allow anyone to evaluate the PRF themselves. The constraint comes in the form of the client
choosing specific base points, which can be derived, e.g., from a known message. If the client
wants the topic to be known to the server, they can reveal the base points to the server in the
first step.

8.1 Security proof

Client privacy. Since the client blinds the base points using random scalars 7, and r;,
points Tj, and T} are indistinguishable from random points in G;. Thus, the server cannot
learn anything about the base points and therefore cannot learn anything about the message
the PRF is evaluated on.

OPREF security. Assume there is an algorithm that evaluates the OPRF without getting

two valid singatures from the server. Then, we can use this algorithm to build an adversary
that forges a signature for OOPS by breaking the OPRF protocol using the algorithm.

12



8.2 Additional observations

Threshold OPRF. The OPRF scheme is easily thresholdizable using secret sharing
schemes for field elements.

Higher degree verifiable partially oblivious PRFs. It’sstraightforward to allow more
public evaluations of the PRF by increasing the degree of the polynomial.

9 Future work

OOPS-zk-creds Following the observations in [Ros+23] and [CFQ19], it is possible to
have the prover, wishing to show an identity is a member of the current set of identities,
to efficiently output a hiding Pedersen commitment P to sk, the identity’s secret key. To
implement ShowCred for a topic and message m, the prover performs the following:

1. Provide a discrete logarithm equality proof between P and nullifier = sk-
H (topic || d | pk), a fresh base point on G,.

=sk- (G; + Hp), a
hiding commitment to the identity’s known public key, where H|, is the base point
obtained from OOPS. GenerateTopic.

2. Provide a discrete logarithm equality proof between P and pk

enc

3. Output o = OOPS. Sign(sk, m, d, topic).

4. Verification is adapted to be according to the new base: (o, H (topic | d | pk)) =
(M, nullifier), where M is the message constructed as in OOPS.

5. If n + 1 signatures are revealed, compute o, = sk - H;;, which is the signature on the

message 0 and reveal pk = pk,,. — 0. Note that this is not post-quantum resistant.

enc
The details of the discrete logarithm equality proofs are left for future work.

10 Acknowledgements

We thank Nicolas Mohnblatt for his feedback and valuable comments. The initial direction
for OOPS arose in an in-progress work with Guillermo Angeris. We thank ChatGPT for
helpful suggestions.

Bibliography

[Ros+23] M. Rosenberg, J. White, C. Garman, and I. Miers, “zk-creds: Flexible anonymous
credentials from zksnarks and existing identity infrastructure,” in 2023 IEEE
Symposium on Security and Privacy (SP), 2023, pp. 790-808.

[Whil9] B. WhiteHat, “Semaphore RLN, rate limiting nullifier for spam prevention in
anonymous p2p setting.” Feb. 2019.

13



[Int25]

[GHW23]

[Bon+09]

[BDN18]

[AN24]

[Jar+17]

[JKR19]

[CO15]

[Kol+16]

[BBSO04]
[TZ23]
[ASMOS]

[CDL16]

[BFL20]

[INPO6]

“Privacy Pass Working Group.” [Online|. Available: https://datatracker.ietf.org/
wg/privacypass/about/

D. Grandjean, L. Heimbach, and R. Wattenhofer, “Ethereum Proof-of-Stake
Consensus Layer: Participation and Decentralization.” [Online|. Available:
https://arxiv.org/abs/2306.10777

D. Boneh, D. Freeman, J. Katz, and B. Waters, “Signing a linear subspace:
Signature schemes for network coding,” in International workshop on public key
cryptography, 2009, pp. 68-87.

D. Boneh, M. Drijvers, and G. Neven, “BLS multi-signatures with public-key ag-
gregation,” URL: https://crypto. stanford. edu/dabo/pubs/papers/BLSmultisig.
html, 2018.

G. Almashagbeh and A. Nitulescu, “Anonymous, timed and revocable proxy
signatures,” in International Conference on Information Security, 2024, pp. 23—
43.

S. Jarecki, A. Kiayias, H. Krawczyk, and J. Xu, “TOPPSS: Cost-minimal Pass-
word-Protected Secret Sharing based on Threshold OPRF.” [Online]. Available:
https://eprint.iacr.org/2017/363

S. Jarecki, H. Krawczyk, and J. Resch, “Updatable Oblivious Key Management
for Storage Systems.” [Online]. Available: https://eprint.iacr.org/2019/1275

T. Chou and C. Orlandi, “The simplest protocol for oblivious transfer,” in Inter-
national Conference on Cryptology and Information Security in Latin America,
2015, pp. 40-58.

V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu, “Efficient Batched
Oblivious PRF with Applications to Private Set Intersection.” [Online]. Available:
https://eprint.iacr.org,/2016 /799

D. Boneh, X. Boyen, and H. Shacham, “Short Group Signatures.” [Online]. Avail-
able: https://eprint.iacr.org/2004 /174

S. Tessaro and C. Zhu, “Revisiting BBS Signatures.” [Online|. Available: https://
eprint.iacr.org/2023/275

M. H. Au, W. Susilo, and Y. Mu, “Constant-Size Dynamic k-TAA”. [Online].
Available: https://eprint.iacr.org/2008 /136

J. Camenisch, M. Drijvers, and A. Lehmann, “Anonymous Attestation Using the
Strong Diffie Hellman Assumption Revisited.” [Online]. Available: https://eprint.
iacr.org/2016,/663

B. Bauer, G. Fuchsbauer, and J. Loss, “A classification of computational
assumptions in the algebraic group model,” in Annual International Cryptology
Conference, 2020, pp. 121-151.

M. Naor and B. Pinkas, “Oblivious polynomial evaluation,” SIAM Journal on
Computing, vol. 35, no. 5, pp. 1254-1281, 2006.

14


https://datatracker.ietf.org/wg/privacypass/about/
https://datatracker.ietf.org/wg/privacypass/about/
https://arxiv.org/abs/2306.10777
https://eprint.iacr.org/2017/363
https://eprint.iacr.org/2019/1275
https://eprint.iacr.org/2016/799
https://eprint.iacr.org/2004/174
https://eprint.iacr.org/2023/275
https://eprint.iacr.org/2023/275
https://eprint.iacr.org/2008/136
https://eprint.iacr.org/2016/663
https://eprint.iacr.org/2016/663

[Lyu-+25]

[Cho+98]

[CFQ19]

Y. Lyu, Z. Li, H.-S. Zhou, and X. Deng, “Threshold ECDSA in Two Rounds.” [On-
line]. Available: https://eprint.iacr.org/2025/1696

B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private informa-
tion retrieval,” J. ACM, vol. 45, no. 6, pp. 965-981, Nov. 1998, doi:
10.1145/293347.293350.

M. Campanelli, D. Fiore, and A. Querol, “LegoSNARK: Modular design and
composition of succinct zero-knowledge proofs,” in Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, 2019, pp.
2075-2092.

15


https://eprint.iacr.org/2025/1696
https://doi.org/10.1145/293347.293350

	1 Introduction
	2 Related work
	3 Preliminaries
	4 Definitions
	4.1 One-time oblivious polynomial signature scheme
	4.2 Delegatable signature scheme

	5 OOPS
	5.1 Security proof
	5.1.1 Existential unforgeability
	5.1.1.1 Setup.
	5.1.1.2 Signature Queries.
	5.1.1.3 Output.

	5.1.2 Proof


	6 Delegatable signatures
	6.1 Protocol
	6.2 Security proof
	6.3 Additional observations

	7 Oblivious transfer from blind polynomial evaluation
	7.1 Blind polynomial evaluation
	7.2 Oblivious transfer
	7.3 Construction overview
	7.4 Protocol
	7.4.0.1 Setup.
	7.4.0.2 Pre-computation.
	7.4.0.3 Online phase.

	7.5 Security proof
	7.5.0.1 Sender privacy.
	7.5.0.2 Receiver privacy.

	7.6 Additional observations
	7.6.0.1 Using PIR.
	7.6.0.2 Two messages in the online round.
	7.6.0.3 DKG.


	8 Verifiable partially oblivious PRFs
	8.0.0.1 Client → Server.
	8.0.0.2 Server → Client.
	8.0.0.3 Client.
	8.1 Security proof
	8.1.0.1 Client privacy.
	8.1.0.2 OPRF security.

	8.2 Additional observations
	8.2.0.1 Threshold OPRF.
	8.2.0.2 Higher degree verifiable partially oblivious PRFs.


	9 Future work
	9.0.0.1 OOPS-zk-creds

	10 Acknowledgements
	Bibliography

