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Abstract

We introduce one-time oblivious polynomial signatures (OOPS), a signature scheme based 

on polynomials over pairing-based elliptic curves that can securely produce signatures for up 

to a threshold of 𝑛 different messages. Signing more than 𝑛 messages allows anyone to forge 

signatures under the given parameters, making it necessary to reparameterize the scheme 

occasionally. We show that this property is not a severe limitation though by demonstrating 

how to build various efficient OOPS-based cryptographic protocols, including delegatable 

signatures, 1-out-of-𝑛 oblivious transfer, and partially oblivious PRFs.

1 Introduction
One-time oblivious polynomial signatures allow signers to securely sign up to a threshold of 

𝑛 messages for a given set of parameters that signer and verifiers have agreed upon ahead of 

time, e.g., during a setup phase. If the signer issues more than 𝑛 signatures, anyone can forge 

signatures on new messages under the given parameters (without knowing the signers secret 

key). To keep producing signatures securely, a signer thus needs to refresh the parameters 

of the signature scheme after signing up to 𝑛 messages. This property arises from the fact 

that the OOPS scheme is based on the evaluation of polynomials (over pairing-based elliptic 

curves) of degree 𝑛.

Even though this property might seem limiting at first, there are various situations where 

it is actually quite natural or even desireable to limit the number of signatures that a signer 

can or should produce. For example, in the context of identity systems [Ros+23, Whi19]. 

Concrete examples include systems like Privacy Pass [Int25], for anonymous authentication, 

or proof of stake blockchains where equivocation by validators results in slashing [GHW23]. 

As we will show later, OOPS can be used as a building block for constructing efficient 

cryptographic protocols including delegatable signatures, oblivious transfer, and (partially) 

oblivious PRFs.

Our construction is conceptually simple. The signer and the verifier agree, for a given con

text/topic (often identified through a seed 𝑠), on a set of elliptic curve base points 𝐻0, …, 𝐻𝑛, 

whose discrete logarithm relative to the group generator and each other is unknown. We treat 
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these base points as coefficients of a polynomial 𝐻(𝑋) and the signer produces a signature 

by evaluating the polynomial at the message 𝑚 as 𝐻(𝑚) = ∑𝑛
𝑖=0 𝑚𝑖 ⋅ 𝐻𝑖 and multiplying 

by their secret key 𝜅 to obtain the signature 𝜎 = 𝜅𝐻. Intuitively, this signature scheme has 

unforgeability because knowing 𝑛 evaluations on an 𝑛-degree polynomial does not allow you 

to evaluate the polynomial at another point.

Note that the construction can be extended directly to vectors of messages.

2 Related work
The construction is inspired by signatures for linear subspaces [Bon+09], where signers wish 

to produce signatures on base vectors of a linear subspace, such that the signature is valid for 

any vector in that space. In our construction, we wish to sign specific messages and vectors, 

while limiting the amount of times the signing key can be used for each epoch.

Semaphore RLN [Whi19] and zk-creds [Ros+23] use a special kind of nullifiers, where 

reusing the same key for an epoch, or a topic, results in the private key being revealed. Our 

construction achieves similar results in terms of rate-limiting at the cost of sacrificing unlink

ability. We leave for future work how to achieve cloning resistance without using SNARKs 

for every message inside an epoch.

BLS multisignatures [BDN18] are constructed similarly, with the notable difference that 

they are unforgeable for any given number of messages, mainly due to the fact that each 

message is hashed to the group, rather than the slot description.

Signature delegation by Schnorr signatures is done in [AN24]. Constructions are similar in 

the amount of information that has to be shared between delegator and delegatee. A major 

difference in our approach is that the delegation is invisible to the verifier and looks the same 

as any other signature, where as in [AN24], while the proxy signer’s identities are hidden, 

multiple Schnorr signatures are verified.

Oblivious Pseudorandom Functions (OPRFs) are a cryptographic primitive that allows a 

client to compute the output of a pseudorandom function (PRF) on a given input without 

revealing the input to the server that holds the PRF key [Jar+17, JKR19]. In our OPRF 

approach, the server gives the client the information needed to evaluate the OPRF locally for 

a specific topic. Additionally, the client is restricted to evaluate the PRF a limited amount 

of times before the evaluation capability becomes available for anyone seeing enough OPRF 

evaluations.

Oblivious transfer protocols such as [CO15], [Kol+16] In our scheme, the protocol can be 

split into offline and online phase where most of the sender’s work can be done during the 

offline phase. During the online phase both sender and verifier need to send only a constant 

amount of messages to each other.

BBS [BBS04, TZ23] and BBS+ [ASM08, CDL16] are designed for long-lived credentials 

and remain secure under an unbounded number of uses of the signing key. OOPS instead 

treats key reuse as a limited resource and enforces bounded usage per topic directly at the 

signature level, which in turn allowing it to use a non-randomized signing algorithm. BBS 
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signatures have a structural similarity to OOPS when considering a vector variant of OOPS 

for degree 1 polynomials, with a major difference of how the private key is used during signing.

3 Preliminaries
We work over pairing-friendly elliptic curves. Thus, we denote by 𝐸 a pairing-friendly elliptic 

curve with scalar field 𝔽𝑟 and groups 𝔾1, 𝔾2, 𝔾𝑡 with generators 𝐺1 ∈ 𝔾1 and 𝐺2 ∈ 𝔾2 and 

that are equipped with an efficient bilinear pairing 𝑒 : 𝔾1 × 𝔾2 → 𝔾𝑡. We often use the 

notation <, > to denote the evaluation of the pairing operation, i.e. < 𝑃 , 𝑄 >= 𝑒(𝑃 , 𝑄) for 

𝑃 ∈ 𝔾1 and 𝑄 ∈ 𝔾2. In particular, we will work with type-3 pairings and we refer the reader 

to the literature for more details. Furthermore, let ℋ︀ : {0, 1}∗ → 𝔾1 denote a hash function 

that maps binary strings to points in 𝔾1. We also often write 𝑋 = [𝑥]𝑖 to denote the scalar 

multiplication of generator 𝐺 ∈ 𝔾𝑖 by a scalar 𝑥 ∈ 𝔽𝑟 for 𝑖 ∈ {1, 2}.

We work in the Algebraic Group Model (AGM). We say that the algorithm is algebraic if 

its output can be expressed as a linear combination of the group elements that it has seen 

during its execution. The AGM assumes that the adversary is algebraic and that the only way 

to break the scheme is to produce an algebraic forgery. We assume that we work in a type-3 

pairing setting, where <, >: 𝔾1 × 𝔾2 → 𝔾𝑡 and 𝔾1 ≠ 𝔾2, such that when the adversary 

outputs an element 𝐺 ∈ 𝔾𝑖, the linear combination is over the elements they’ve seen in 𝔾𝑖.

Our constructions rely on the (1,1)-Discrete Logarithm problem [BFL20]: Given a tuple 

(𝐺1, 𝛼𝐺1, 𝐺2, 𝛼𝐺2) ∈ 𝔾2
1 × 𝔾2

2 for 𝛼 ∈ 𝔽∗
𝑟 , output 𝛼. We say that the (1,1)-DLog assumption 

holds in the AGM if no polynomial-time algebraic adversary can solve the (1,1)-DLog 

problem with non-negligible probability.

4 Definitions

4.1 One-time oblivious polynomial signature scheme

• KeyGen() → (sk, vk): Generates a secret key sk, and returns (sk, vk).

• GenerateTopic(𝑑, topic) → 𝑇 : Takes as input a degree 𝑑 > 0 and a topic description 

topic ∈ {0, 1}∗ and generates and returns topic parameters 𝑇  used for signing and 

verification.

• Sign(sk, 𝑚, 𝑑, topic) → 𝜎: Takes as input a secret key sk, a message 𝑚, and a topic. 

It generates topic parameters 𝑇 = GenerateTopic(𝑑, topic) and uses them to return a 

signature 𝜎.

• Verify(vk, 𝑚, 𝜎, 𝑑, topic) → {0, 1}: Takes as input a verification key vk, message 𝑚, 

signature 𝜎, 𝑑 and topic. It generates topics parameters 𝑇 = GenerateTopic(𝑑, topic) 
and checks whether 𝜎 is a valid signature. If it is, it returns 1 (valid), otherwise it 

returns 0 (invalid).
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4.2 Delegatable signature scheme

• KeyGen() → (sk, vk): Generates a secret key sk, and returns (sk, vk).

• GenerateTopic(𝑑, topic) → 𝑇 : Takes as input a degree 𝑑 > 0 and a topic description 

topic ∈ {0, 1}∗ and generates topic parameters 𝑇  used for signing and verification.

• Delegate(sk, 𝑑, topic) → 𝐷: Takes as input a secret key sk, a degree 𝑑 > 0, and a topic 

description topic ∈ {0, 1}∗. It generates delegations parameters 𝐷.

• Sign(𝐷, 𝑚) → 𝜎: Takes as input delegation parameters 𝐷, and a message 𝑚. It uses 𝐷 

to return a signature 𝜎.

• Verify(vk, 𝑚, 𝜎, 𝑑, topic) → {0, 1}: Takes as input a verification key vk, message 𝑚, 

signature 𝜎, 𝑑 and topic. It generates topics parameters 𝑇 = GenerateTopic(𝑑, topic) 
and checks whether 𝜎 is a valid signature. If it is, it returns 1 (valid), otherwise it 

returns 0 (invalid).

5 OOPS
We describe OOPS, a signature scheme that has inherent rate-limiting per topic. Signatures 

certify both a topic and a message under that topic. After revealing one too many signatures, 

an observer is able to forge signatures for any message under the same topic. We observe that 

this is a natural constraint occasionally. In proof of stake protocols, validators are prevented 

from signing multiple messages for the same block, which is enforced by a slashing, an 

economic constraint.

The OOPS signature scheme is then specified as follows:

• OOPS.Setup(1𝜆) → (𝔾1, 𝔾2, 𝔾𝑡, 𝔽𝑟, 𝐺1, 𝐺2, ℋ︀): Takes as input a security parameter 

𝜆 and generates the parameters of the pairing pairing-friendly elliptic curve groups 

along with their generators and ℋ︀, the hash function to the group 𝔾1.

• OOPS.KeyGen() → (sk, vk): Samples a fresh secret key sk = 𝜅 ∈ 𝔽𝑟, computes a veri

fication key vk = 𝜅𝐺2, and returns (sk, vk).

• OOPS.GenerateTopic(𝑑, topic) → ((𝐻𝑖)𝑑
𝑖=0): Takes as input a degree 𝑑 > 0 and a 

topic description topic ∈ {0, 1}∗ and generates a list of base points 𝐻𝑖 = (𝐻0, …, 𝐻𝑑) 
in 𝔾1 where 𝐻𝑖 = ℋ︀(topic ‖ 𝑑 ‖ 𝑖) for 𝑖 ∈ {0, …, 𝑑}.

• OOPS.Sign(sk, 𝑚, 𝑑, topic) → 𝜎: Takes as input a secret key sk, a message 𝑚, and a 

topic. It derives vector of base points {𝐻𝑖}𝑑
𝑖=0 = OOPS.GenerateTopic(𝑑, topic) and 

returns a signature 𝜎 = 𝜅(∑𝑛−1
𝑖=0 𝑚𝑖𝐻𝑖) ∈ 𝔾1.

• OOPS.Verify(vk, 𝑚, 𝜎, 𝑑, topic) → {0, 1}: Takes as input a verification key vk, mes

sage 𝑚, signature 𝜎, 𝑑 and topic. It derives vector of base points {𝐻𝑖}𝑑
𝑖=0 = OOPS.
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GenerateTopic(𝑑, topic) and checks whether the following equation holds: ⟨𝜎,  𝐺2⟩ =
⟨∑𝑛−1

𝑖=0 𝑚𝑖𝐻𝑖,   vk⟩. If it holds, it returns 1 (valid), otherwise it returns 0 (invalid).

5.1 Security proof

5.1.1 Existential unforgeability

Setup.  The challenger runs OOPS.KeyGen gives the adversary vk = 𝛼𝐺2.

Signature Queries.  Adversary issues 𝑞𝑆 signature queries to the challenger. Each query 

consists of a message, a topic and a degree. The challenger runs OOPS.Sign and responds 

with the signature. The adversary is allowed to call ℋ︀ for 𝑞𝐻 times, which is also called inside 

OOPS. GenerateTopic.

Output.  The adversary outputs a signature 𝜎∗ satisfying the verification equation for a 

tuple (𝑚∗, 𝑑∗, topic∗) such that the message 𝑚∗ was not queried for the topic topic∗ and degree 

𝑑∗ during the signature queries and additionally the number of signature queries for the topic 

topic∗ and degree 𝑑∗ is at most 𝑑∗.

5.1.2 Proof

The challenger is given a (1, 1) − dlog instance (𝐺1, 𝛼𝐺1, 𝐺2, 𝛼𝐺2) ∈ 𝔾2
1 × 𝔾2

2, and needs to 

output 𝛼. The challenger simulates the hashing and signatures oracles as following. For hash 

queries, the challenger samples 𝜌𝑖 ← 𝔽𝑟 and sets 𝜂𝑖 = 𝜌𝑖𝐺1. For the specific hash queries 

related to topic bases, we set the special notation of: for query 𝑖 on topic 𝑡𝑖 and degree 𝑑𝑖, 

the challenger has 𝜌𝑡𝑖,𝑑𝑖,𝑗 for each 𝑗 ∈ [0, deg] and has 𝜂𝑖 = 𝐻(𝑡𝑖 ‖ 𝑑𝑖 ‖ 𝑗) = 𝜌𝑡𝑖,𝑑𝑖,𝑗𝐺1. For 

signature query 𝑖 with message 𝑚, topic 𝑡 and degree 𝑑, the challenger responds with 𝜎𝑖 =
∑𝑑

𝑗=0 𝑚𝑗𝜌𝑡,𝑑,𝑗𝛼𝐺1. Eventually, the adversary outputs 𝜎∗ for a message 𝑚∗ and topic 𝑡∗ with 

a degree 𝑑∗. If the tuple satisfies the signature verification equation and if 𝑚∗ was not queried 

more than 𝑑∗ times for the topic 𝑡∗ and degree 𝑑∗, the challenger can extract 𝛼 as following.

Since the adversary is algebraic, we have:

𝜎∗ = 𝛾𝐺1
𝐺1 + ∑

𝑞𝐻−1

𝑖=0
𝛾𝐻,𝑖𝜂𝑖 + ∑

𝑞𝑆−1

𝑖=0
𝛾𝜎,𝑖𝜎𝑖

= 𝛾𝐺1
𝐺1 + ∑

𝑞𝐻−1

𝑖=0
𝛾𝐻,𝑖𝜌𝑖𝐺1 + ∑

𝑞𝑆−1

𝑖=0
𝛾𝜎,𝑖 ∑

𝑑𝑖

𝑗=0
𝑚𝑗𝜌𝑡𝑖,𝑑𝑖,𝑗𝛼𝐺1

Additionally given that the verification equation is satisfied we have:

⟨𝜎∗,  𝐺2⟩ = ⟨∑
𝑑∗

𝑗=0
(𝑚∗)𝑗𝐻(𝑡∗ ‖ 𝑑∗ ‖ 𝑗),   vk⟩
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The challenger uses the two equations to extract 𝛼:

𝛼 ∑
𝑑∗

𝑗=0
(𝑚∗)𝑗𝜌𝑡∗, deg∗,𝑗 = 𝛾𝐺1

+ ∑
𝑞𝐻−1

𝑖=0
𝛾𝐻,𝑖𝜌𝑖 + ∑

𝑞𝑆−1

𝑖=0
𝛾𝜎,𝑖 ∑

𝑑𝑖

𝑗=0
𝑚𝑗𝜌𝑡𝑖,𝑑𝑖,𝑗𝛼

𝛼
(
∑

𝑑∗

𝑗=0
(𝑚∗)𝑗𝜌𝑡∗, deg∗,𝑗 − ∑

𝑞𝑆−1

𝑖=0
𝛾𝜎,𝑖 ∑

𝑑𝑖

𝑗=0
𝑚𝑗𝜌𝑡𝑖,𝑑𝑖,𝑗

)
 = 𝛾𝐺1

+ ∑
𝑞𝐻−1

𝑖=0
𝛾𝐻,𝑖𝜌𝑖

We argue that 𝑆 = (∑𝑑∗

𝑗=0(𝑚∗)𝑗𝜌𝑡∗, deg∗,𝑗 − ∑𝑞𝑆−1
𝑖=0 𝛾𝜎,𝑖 ∑𝑑𝑖

𝑗=0 𝑚𝑗
𝑖𝜌𝑡𝑖,𝑑𝑖,𝑗) = 0 with negligible 

probability. Because the adversary can query signatures with topic∗ and 𝑑∗ up to 𝑑∗ times, 

assuming that they did query 𝑑∗ times, we can rewrite 𝑆 as follows:

𝑆 = ∑
𝑑∗

𝑗=0
(𝑚∗)𝑗𝜌𝑡∗, deg∗,𝑗 − ∑

𝑑∗−1

𝑖=0
𝛾𝜎,𝑘𝑖

∑
𝑑𝑘𝑖

𝑗=0
𝑚𝑗

𝑘𝑖
𝜌𝑡∗,𝑑∗,𝑗 + ∑

𝑞𝑆−1−𝑑∗

𝑖=0
𝛾𝜎,𝑖 ∑

𝑑𝑖

𝑗=0
𝑚𝑗𝜌𝑡𝑖,𝑑𝑖,𝑗

Observe that each signature corresponds to the evaluation of a polynomial, with coefficients 

[𝛼𝜌𝑡𝑖, deg𝑖,0, …, 𝛼𝜌𝑡𝑖, deg𝑖, deg𝑖
] of degree 𝑑𝑖 at a point 𝑚𝑖. Since the adversary queried at most 𝑑∗ 

signatures for the topic 𝑡∗ and degree 𝑑∗ it has access to strictly less evaluations than the de

gree of polynomial defined by the base points {𝐻(𝑡∗ ‖ 𝑑∗ ‖ 𝑗)}𝑑∗

𝑗=0. By intractability of polyno

mial interpolation, the adversary cannot evaluate the 𝑑∗ polynomial at a new point from less 

than 𝑑∗ + 1 evaluations, thus the adversary can access another evaluation of the polynomial 

only if there is a linear dependency between the polynomial [𝛼𝜌𝑡𝑖, deg𝑖,0, …, 𝛼𝜌𝑡𝑖, deg𝑖, deg𝑖
] and 

the polynomials defined by the signatures queried with different topics and degrees. However, 

since the coefficients of each polynomial are sampled uniformly at random from 𝔽𝑟, the prob

ability that such a linear dependency exists is negligible in the security parameter 𝜆. Thus, 

with all but negligible probability 𝐷 = ∑𝑑∗

𝑗=0(𝑚∗)𝑗𝜌𝑡∗, deg∗,𝑗 − ∑𝑑∗−1
𝑖=0 𝛾𝜎,𝑘𝑖

∑𝑑𝑘𝑖
𝑗=0 𝑚𝑗

𝑘𝑖
𝜌𝑡∗,𝑑∗,𝑗 ≠

0 and the challenger can compute 𝛼 as: 𝛼 = (𝛾𝐺1
+ ∑𝑞𝐻−1

𝑖=0 𝛾𝐻,𝑖𝜌𝑖) ∗ 𝐷−1.

6 Delegatable signatures
In this section we show how one party can delegate signing rights, for a limited topic, to 

another party in a secure manner using our scheme. Consider two parties, a delegator and a 

delegatee. The delegator holds a private key 𝜅 and the corresponding verification key vk =
[𝜅−1]2. The delegatee wants to obtain signing rights from the delegator such that it can 

sign messages on behalf of the delegator without learning the private key 𝜅. Additionally, 

we want to ensure a topic-limited delegation. In other words, the delegatee should only be 

able to sign a message in a specific context or a specific purpose. For example, the delegatee 

should only be able to sign messages for a specific time period or for a specific application. To 

achieve this, we identify each topic with an 𝑛 degree polynomial 𝑝(𝑇 ) ∈ 𝔾1[𝑇 ], such that the 

coefficients depend on the private key. A signature on a message 𝑚 in the context of a topic is 

defined to be 𝑝(𝑚). The coefficients of the polynomial are known only to the delegator, thus 

nobody is able to evaluate the polynomial on their own. In order to delegate signing rights for 
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a specific topic, the delegator needs to send 𝑛 + 1 evaluations of the polynomial to the dele

gatee. More specifically, for a topic defined by a polynomial 𝑝(𝑇 ) of degree 𝑛, the delegator 

picks 𝑛 + 1 random points 𝑡0, …, 𝑡𝑛 ∈ 𝔽∗
𝑟  and computes the evaluations 𝑝(𝑡0), …, 𝑝(𝑡𝑛). The 

delegator then sends these evaluations to the delegatee. The delegatee can now interpolate 

the coefficients using these evaluations and can sign any message 𝑚 by computing 𝑝(𝑚). By 

existential unforgeability of our scheme, the delegatee cannot derive the private key 𝜅 from 

these evaluations and therefore they can only sign messages in the context of the delegated 

topic. Note that most of the work of delegation can be done ahead of time, before knowing 

the specific delegatee, by publishing 𝑛 evaluations. The delegator then only needs to send a 

single evaluation to the delegatee to complete the delegation.

6.1 Protocol

The construction is almost identical to OOPS, where the difference is in introducing a 

Delegate method and signing uses the delegation paramaters rather than the secret key.

• DOOPS.Setup, DOOPS.GenerateTopic, DOOPS.KeyGen and DOOPS.Verify are 

identical to the ones in OOPS.

• DOOPS.Delegate(𝑥, 𝑑, topic) → ((𝐸𝑖)𝑛
𝑖=0): Takes as an input a secret key 𝑥 of the 

delegator, a degree 𝑑 and a topic description topic and sends 𝑛 + 1 evaluations 𝐸𝑖 of 

the polynomial 𝑝(𝑇 ) = 𝜅(𝑥𝐻0 + 𝑥𝐻1𝑇 + … + 𝑥𝐻𝑛−1𝑇 𝑛−1) to the delegatee, where 

𝐻𝑖 are the base points derived from DOOPS.GenerateTopic(𝑑, topic). The delegation 

parameters 𝐷 consist of these evaluations. For simplicity evaluation points can be 

derived deterministically by hashing the topic and the degree along with the index 

to the field 𝔽𝑟. Note that these evaluations are exactly the signatures, therefore the 

delegatee can easily verify them using DOOPS.Verify.

• DOOPS.Sign(𝐷, 𝑚) → 𝜎: Takes as input the delegation parameters 𝐷, a mes

sage 𝑚, and a topic. It derives vector of base points {𝐻𝑖}𝑑
𝑖=0 = OOPS.

GenerateTopic(𝑑, topic). It uses the evaluations in 𝐷 to interpolate the coefficients of 

the polynomial 𝑝(𝑇 ), which are 𝜅𝐻𝑖 and returns a signature 𝜎 = 𝜅(∑𝑛−1
𝑖=0 𝑚𝑖𝐻𝑖) ∈ 𝔾1.

6.2 Security proof

The security of the delegatable signature scheme in the AGM relies on the security of our 

signature scheme and the hardness of the discrete logarithm problem. Since the adversary 

only receives 𝑛 + 1 signatures that are essentially polynomial evaluations of polynomials 

with random coefficients in 𝔽𝑟, and a different context has different random coefficients, they 

cannot derive the private key 𝜅 and therefore cannot sign messages outside the context of 

the delegated topic. Additionally, since the polynomial is of degree 𝑛 only the party that 

either knows the coefficients of the polynomial or has at least 𝑛 + 1 evaluations can sign 

messages in that context. Thus, the delegated signature scheme ensures that signing rights 
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are securely delegated to the delegatee for a specific topic without revealing the private key 

of the delegator.

6.3 Additional observations

We note that this scheme is highly compatible with existing BLS signature implementations 

and can use them as a blackbox. Concretely, assume we have the signing BLS.Sign and 

hash to curve BLS.ℋ︀ functions, the delegatee can invoke BLS.Sign on the messages 𝑚𝑖 =
(topic ‖ deg‖ 𝑖) which will output the signature 𝜎𝑖 = 𝑥 BLS.ℋ︀(𝑚𝑖). Observe that these sig

natures correspond to the coefficients of the polynomial which is used in the OOPS signature 

scheme. Having the coefficients, to sign a message 𝑚, delegatee then just computes an inner 

product between coefficients and powers of 𝑚.

This makes a gradual deployment of OOPS possible, even with existing hardware wallets 

and audited BLS implementations, while introducing a security tradeoff of being able to forge 

signatures that is only limited to a specific topic.

7 Oblivious transfer from blind polynomial evaluation

7.1 Blind polynomial evaluation

One of the primitives that we need for our oblivious transfer protocol is a blind polynomial 

evaluation [NP06]. This is a protocol involving two parties, a sender and a receiver. The 

sender holds a polynomial 𝑝(𝑇 ) and the receiver holds a secret value 𝑠. At the end of the 

protocol, the receiver should learn the evaluation 𝑝(𝑠) without revealing 𝑠 to the sender and 

without learning anything else about the polynomial 𝑝(𝑇 ) beyond the evaluation 𝑝(𝑠). We 

show how to use our scheme to perform blind evaluations of polynomials, such that most of 

the work can be done ahead of the receiver choosing the evalutaion point. Let 𝜅 be a private 

key of a signer and let [𝜅−1]2 be the corresponding verification key. Let 𝑝(𝑇 ) = 𝜅(𝐶0 + 𝐶1𝑇 +
𝐶2𝑇 2 + … + 𝐶𝑛−1𝑇 𝑛−1) be a polynomial in 𝔾1[𝑇 ] and let the points 𝐶0, …, 𝐶𝑛 be public and 

such that discrete logarithm of each point with respect to a generator of 𝔾1 is unknown. 

The receiver picks a secret value 𝑠 and computes an evaluation 𝑝′(𝑠) = 𝐶0 + 𝑠𝐶1 + … +
𝑠𝑛−1𝐶𝑛−1. Note that for a secret 𝑠, 𝑝′(𝑠) is a perfectly hiding commitment and additionally 

note that 𝑝′(𝑠) = 𝜅−1𝑝(𝑠). The receiver sends 𝑝′(𝑠) to the sender who then computes a 

signature on 𝑝′(𝑠), i.e. 𝜎 = 𝜅𝑝′(𝑠) = 𝑝(𝑠) and sends it back to the receiver. The Receiver now 

has the evaluation 𝑝(𝑠) without revealing 𝑠 to the sender and without learning anything else 

about the polynomial 𝑝(𝑇 ). Additionally, suppose that sender holds two polynomials 𝑝1(𝑇 ) 
and 𝑝2(𝑇 ). Since 𝑝′(𝑠) is a perfectly blinding commitment, the sender cannot distinguish 

whether it is evaluating 𝑝1(𝑇 ) or 𝑝2(𝑇 ) which is a crucial property for building efficient 

oblivious transfer.

7.2 Oblivious transfer

An 1-out-of-𝑛 oblivious transfer is a cryptographic primitive that allows a receiver to obtain 

one out of 𝑛 messages from a sender without revealing its choice, while additionally not learn
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ing anything about the other messages [CO15]. OT is often used in multi-party computation 

protocols such as secure function evaluation, garbled circuits, and distributed key generation 

[Lyu+25]. 1-out-of-𝑛 oblivious transfer protocol involves two parties, a sender who holds 𝑛 

messages 𝑚1, …, 𝑚𝑛 and a receiver who wants to obtain one of the messages 𝑚𝑐 for a choice 

𝑐 ∈ {1, …, 𝑛}. At the end of the protocol, the receiver should learn 𝑚𝑐 without revealing 𝑐 to 

the sender and without learning anything about other messages 𝑚𝑖 for 𝑖 ≠ 𝑐.

7.3 Construction overview

We build a 1-out-of-𝑛 oblivious transfer protocol from our blind polynomial evaluation 

scheme as follows. We achieve this by assigning a unique polynomial 𝑝𝑖(𝑇 ) ∈ 𝔾1[𝑇 ] to each 

message. Then, without loss of generality, the encryption key is chosen to be a hash of 

polynomial evaluation at 0, i.e., 𝑘𝑖 = Hash(𝑝𝑖(0)). For the application of oblivious transfer 

we can work with polynomials of degree 1, since this minimizes the communication overhead. 

The sender then encrypts each message 𝑚𝑖 under the encryption key 𝑘𝑖 and sends all the 

ciphertexts to the receiver. Coefficients of the polynomial depend on the private key of the 

sender as in Section 7.1, thus the receiver cannot compute evaluations on their own. To obtain 

the encryption key for a specific message, the receiver picks a secret value 𝑠, computes 𝑝𝑖′(𝑠), 
and then gets a blind evaluation 𝑝𝑖(𝑠) from the sender. From two different evaluations of 

𝑝𝑖(𝑇 ), the receiver can interpolate the coefficients of the polynomial and compute 𝑝𝑖(0) to 

derive the encryption key. Further, since the sender blindly evaluates one of the polynomials 

without knowing which, it cannot learn which message the receiver picked. Finally, since the 

receiver only learns one evaluation of the polynomial it cannot interpolate other polynomials 

and thus cannot learn anything about other messages.

Our oblivious transfer protocol has several benefits. It relies on standard cryptographic 

assumptions such as the hardness of the discrete logarithm problem and unforgeability of our 

signature scheme in the AGM. It is very efficient to compute for both sender and receiver, and 

most interestingly encryption keys do not depend on the receiver’s choice. This means that 

all encryption keys, and therefore encrypted messages, can be pre-computed by the sender 

before the protocol even starts. This is useful in many scenarios, especially when one sender 

needs to interact with many receivers and when there are multiple oblivious transfers to be 

performed. Pre-computation significantly reduces the online computation required during 

the protocol execution since the sender can first publish all encrypted messages before the 

actual protocol starts.

7.4 Protocol

Setup.

1. Setup(1𝜆) → (𝐶0, …, 𝐶2𝑛−1), where each 𝐶𝑖 ∈ 𝔾1 and the discrete logarithm of each 

point with respect to a generator of 𝔾1 is unknown.
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2. Sender and receiver agree on a cryptographic hash function Hash : 𝔾1 → {0, 1}𝑙 for 

some security parameter 𝑙.

3. Sender and receiver agree on an authenticated encryption scheme AE = (Enc, Dec).

4. Sender and receiver agree on an evaluation point 𝑒 ∈ 𝔽∗
𝑟 𝑟, at which the first evaluation 

will occur

Pre-computation.

1. Sender chooses a private key 𝜅 ∈ 𝔽∗
𝑟  and computes the corresponding public key pk =

[𝜅−1]2
2. For each message 𝑚𝑖 for 𝑖 ∈ {0, …, 𝑛 − 1}, the sender constructs a polynomial 𝑝𝑖(𝑇 ) =

𝜅(𝐶2𝑖 + 𝐶2𝑖+1)𝑇 .

3. For each message 𝑚𝑖, the sender computes an encryption key 𝑘𝑖 = Hash(𝑝𝑖(0)) and 

computes a ciphertext ct𝑖 = Enc(𝑘𝑖, 𝑚𝑖).

4. For each polynomial 𝑝𝑖(𝑇 ), the sender computes a signature on the evaluation point 𝑒, 
i.e., 𝜎𝑖 = 𝑝𝑖(𝑒).

5. Sender sends all ciphertexts ct0, …, ct𝑛−1 to the receiver.

6. Sender sends all signatures 𝜎0, …, 𝜎𝑛−1 to the receiver.

Online phase.

1. Receiver chooses 𝑐 ∈ {0, …, 𝑛 − 1} and a secret value 𝑠 ∈ 𝔽∗
𝑟 .

2. Receiver computes 𝑝′
𝑐(𝑠) = 𝐶2𝑐 + 𝑠𝐶2𝑐+1 and sends it to the sender. This is a perfectly 

hiding evaluation.

3. Sender computes a signature 𝜎 = [𝑥]1𝑝′
𝑐(𝑠) and sends it back to the receiver.

4. Receiver now has the evaluation 𝑝𝑐(𝑠). Using 𝑝𝑐(𝑒) received during pre-computation 

and 𝑝𝑐(𝑠) received from the sender, the receiver interpolates the coefficients of the 

polynomial to compute 𝑝𝑐(0) and derives the encryption key 𝑘𝑐 = Hash(𝑝𝑐(0)).

5. Finally, the receiver decrypts the ciphertext ct𝑐 using the encryption key 𝑘𝑐 to obtain 

the message 𝑚𝑐 = Dec(𝑘𝑐, ct𝑐).

7.5 Security proof

Sender privacy.  The receiver only learns one extra evaluation, that of the polynomial 

𝑝𝑐(𝑇 ) for their choice 𝑐. Since the polynomials are of degree 1, the receiver needs two 

evaluations to interpolate the polynomial and compute 𝑝𝑐(0). Thus, the receiver cannot learn 
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anything about other messages beyond their choice. The security proof is identical to the one 

in 5.1.

Receiver privacy.  Given the random scalar 𝑠 chosen by the receiver, the point 𝑝′
𝑐(𝑠) is 

indistinguishable from randomly sampled point in 𝔾1. Thus, the sender cannot distinguish 

which polynomial it is evaluating. Therefore, the sender learns nothing about the receiver’s 

choice.

7.6 Additional observations

Using PIR.  In order to decrypt a message, the receiver needs the decryption key and a 

ciphertext. To obtain the ciphertext the receiver cannot query the sender for the ciphertext 

since that would leak its choice. Since the sender publishes all encrypted messages before 

the protocol starts, the receiver can download all ciphertexts and then decrypt the one 

corresponding to its choice. This means that the receiver has to store all ciphertexts locally 

which can be a problem in memory constrainted environments. This can be avoided by using 

a private information retrieval (PIR) protocol [Cho+98] which allows a client to download 

a specific entry from a database without revealing its choice to the server. PIR doesn’t guar

antee that the receiver learns nothing about the database, but since the database consists 

of ciphertexts, which are hiding, the receiver anyway cannot learn anything about the other 

messages beyond its choice.

Two messages in the online round.  Instead of agreeing on a single evaluation point 𝑒 
during setup, the receiver can pick two random values 𝑠1, 𝑠2 ∈ 𝔽∗

𝑟  and send two blinded eval

uations 𝑝′
𝑐(𝑠1), 𝑝′

𝑐(𝑠2) to the sender. The sender then computes signatures on both blinded 

evaluations and sends them back to the receiver. The receiver now has two evaluations of the 

polynomial 𝑝𝑐(𝑇 ) and can directly interpolate the polynomial to compute 𝑝𝑐(0) and derive 

the encryption key. This way, the receiver doesn’t need to store any signatures from the pre-

computation phase. However, this comes at the cost of a slightly increased communication 

overhead in the online phase and computation since now the sender needs to compute two 

signatures and the receiver needs to receive two signatures. Note that if the receiver tried to 

cheat and evaluated polynomials with different coefficients, they will learn nothing since they 

only learned at most one evaluation per polynomial. It’s also straightforward to add efficient 

proofs of evaluation of a consistent polynomial.

DKG.  We can build a non-interactive distributed key generation (DKG) protocol from 

OOPS by using very similar construction as in the oblivious transfer. Instead of allowing 

receiver to chose a message and a polynomial, sender can provably show that it sent a correct 

evaluation to each party. To avoid interaction sender can evaluate a polynomial at a public 

key of the receiver. More specifically, let [𝑡]2 be a public key of the receiver. Evaluation of 

polynomial [𝑥𝐶0, 𝑥𝐶1] at [𝑡]2 can be obtained by computing: ⟨𝑥𝐶0,  [1]2⟩ + ⟨𝐶1,  𝑥[𝑡]2⟩. To 
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ensure public verifiability TBD. The last issue is that receiver gets evaluation it 𝔾𝑡 instead of 

𝔾1. This can be solved by moving keys to 𝔾𝑡, i.e., encrpytion keys can be derived by hashing 

to 𝔾𝑡 instead of 𝔾1. By obtaining 1 evaluation at public 𝑒 and 1 evaluation at 𝑡 only the 

receiver can interpolate 𝑝(𝑇 ) in 𝔾𝑡 and compute 𝑝(0) to derive the encryption key.

8 Verifiable partially oblivious PRFs
In an oblivious PRF protocol, a client wants a server to evaluate a PRF using the server’s 

secret key, while the server doesn’t learn the message the PRF was evaluated on. In a 

constrainted oblivious PRFs the client is only allowed to evaluate the PRF on a subset of the 

messages. If the topic is public, it’s called a partially oblivious PRF. In a verifiable oblivious 

PRF, any third party can verify the correctness of the PRF evaluation.

Client → Server.  The client chooses random 𝑟0, 𝑟1 ← 𝔽𝑟 and prepares 𝑇0 = 𝐻0 + 𝑟0𝐻1 

and 𝑇1 = 𝐻0 + 𝑟1𝐻1. The client sends 𝑇0 and 𝑇1. This is perfectly hiding, so the server doesn’t 

learn the base points.

Server → Client.  The server computes 𝐾0 = 𝜅𝑇0 and 𝐾1 = 𝜅𝑇1 and sends those to the 

client.

Client.  The client takes the two signatures and, using these two evaluations of the poly

nomial with coefficients 𝑇0 and 𝑇1, can evaluate it at any message 𝑚, by finding the linear 

combination resulting in 𝐾𝑚 = 𝜅(𝑇0 + 𝑚𝑇1). Note that only the client can perform this, 

since nobody else knows 𝑟0 and 𝑟1. The correctness of the evaluation can be checked by ⟨𝑇0 +
𝑚𝑇1,   pk⟩ = ⟨𝐾𝑚,  𝐺2⟩.

Note that you can only evaluate the PRF securely once, since one more evaluation will 

allow anyone to evaluate the PRF themselves. The constraint comes in the form of the client 

choosing specific base points, which can be derived, e.g., from a known message. If the client 

wants the topic to be known to the server, they can reveal the base points to the server in the 

first step.

8.1 Security proof

Client privacy.  Since the client blinds the base points using random scalars 𝑟0 and 𝑟1, 

points 𝑇0 and 𝑇1 are indistinguishable from random points in 𝔾1. Thus, the server cannot 

learn anything about the base points and therefore cannot learn anything about the message 

the PRF is evaluated on.

OPRF security.  Assume there is an algorithm that evaluates the OPRF without getting 

two valid singatures from the server. Then, we can use this algorithm to build an adversary 

that forges a signature for OOPS by breaking the OPRF protocol using the algorithm.
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8.2 Additional observations

Threshold OPRF.  The OPRF scheme is easily thresholdizable using secret sharing 

schemes for field elements.

Higher degree verifiable partially oblivious PRFs.  It’s straightforward to allow more 

public evaluations of the PRF by increasing the degree of the polynomial.

9 Future work

OOPS-zk-creds  Following the observations in [Ros+23] and [CFQ19], it is possible to 

have the prover, wishing to show an identity is a member of the current set of identities, 

to efficiently output a hiding Pedersen commitment 𝑃  to sk, the identity’s secret key. To 

implement ShowCred for a topic and message 𝑚, the prover performs the following:

1. Provide a discrete logarithm equality proof between 𝑃  and nullifier = sk ⋅
ℋ︀(topic ‖ 𝑑 ‖ pk), a fresh base point on 𝔾2.

2. Provide a discrete logarithm equality proof between 𝑃  and pkenc = sk ⋅ (𝐺1 + 𝐻0), a 

hiding commitment to the identity’s known public key, where 𝐻0 is the base point 

obtained from OOPS. GenerateTopic.

3. Output 𝜎 = OOPS. Sign(sk, 𝑚, 𝑑, topic).

4. Verification is adapted to be according to the new base: ⟨𝜎,  ℋ︀(topic ‖ 𝑑 ‖ pk)⟩ =
⟨𝑀,   nullifier⟩, where 𝑀  is the message constructed as in OOPS.

5. If 𝑛 + 1 signatures are revealed, compute 𝜎0 = sk ⋅ 𝐻0, which is the signature on the 

message 0 and reveal pk = pkenc − 𝜎0. Note that this is not post-quantum resistant. 

The details of the discrete logarithm equality proofs are left for future work.
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